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Abstract. In this paper, second order differential evolution (SODE) algorithm
is considered to solve the constrained optimization problems. After offspring are
generated by the second order differential evolution, the € constrained method is
chosen for selection in this paper. In order to show that second order differential
vector is better than differential vector in solving constrained optimization
problems, differential evolution (DE) with the € constrained method is used for
performance comparison. The experiments on 12 test functions from IEEE CEC
2006 demonstrate that second order differential evolution shows better or at least
competitive performance against DE when dealing with constrained optimiza-
tion problems.

Keywords: Constrained optimization - Evolutionary algorithm -
Differential evolution + SODE

1 Introduction

Constrained optimization problems (COPs) are mathematical programming problems
frequently encountered in the disciplines of science and engineering application.
Evolutionary algorithm is usually used to deal with constrained optimization problems
due to its excellent performance, but it is essentially an unconstrained optimization
evolutionary algorithm, which must be combined with constraint handing technique to
solve the constrained optimization problem. Evolutionary algorithm and an appropriate
constraint handing technique are combined to form a complete constrained evolu-
tionary optimization algorithm. Among all the evolutionary algorithms, differential
evolution (DE) [1] is one of the most important problem solvers.

Differential evolution was introduced by Price and Storn in 1997 [1], and has
numerous attractive advantages. First of all, its structure is simple. In addition, it
includes few control parameters. More importantly, its search ability, such as, higher
search efficiency, higher robustness and lower computational complexity, has been
demonstrated in many real-world applications [2, 3].
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Due to the above advantages, DE has been frequently applied to solve COPs.
Many DE variants optimization have been tailored to tackle COPs [4]. However, few
current studies investigate second order differential evolution (SODE) [5S] for con-
strained optimization. To illustrate that second order differential vector is better than
differential vector in solving constrained optimization problems, the & constrained
second order differential evolution (eSODE) is proposed in this paper.

The rest of the paper is organized as follows. In Sect. 2 some preliminary
knowledge are presented. The proposed eSODE is shown in Sect. 3. The experimental
and analytic results are presented in Sect. 4, and the last Section concludes the paper.

2 Preliminary Knowledge

2.1 Constrained Optimization Problems (COPs)

Without loss of generality, a COP can be described as follows:

minimize  f(X),X = (x1,...,xp) €S
subjectto:  g;(¥) <0,j=1,...,1 (1)
hi(®) =0,j=1+1,....m

L<xi<wu,i=1,...,D

where X = (xy,...,xp) is an D dimensional vector, f(X) is the objective function,
g;(¥) <0 and h;(¥) =0 are [ inequality constraints and m — [ equality constraints,
respectively. /; and u; are the lower and upper bounds of the i-th decision variable x;,
respectively.

The decision space S is an D-dimensional rectangular space in R”, in which every
point satisfies the upper and lower bound constraints.

The feasible region Q is defined by the [/ inequality constraints gj()'c') and the
(m — Iy equality constraints h;(X¥). Any point ¥ € Q is called a feasible solution;
otherwise, X is an infeasible solution. The aim of solving COPs is to locate the optimum
in the feasible region.

Usually, the degree of constraint violation of individual ¥ on the j-th constraint is
calculated as follows:

L f max(0,,(®), 1<j<
G = { a0 T 3y, 112 rm @

D=6, )
=1

where G;(X) is the degree of constraint violation on the j-th constraint. J is a positive
tolerance value.
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2.2 ¢ Constrained Method

The ¢ constrained method was proposed by Takahama and Sakai [6, 7]. The core idea
of this method is to divide the individual-based constraint violation degree into dif-
ferent regions by artificially setting the € value, and in different regions, the feasible
solution and the infeasible solution adopt different evaluation methods respectively.
The details on how to deal with the constraints, especially in constraint evolutionary
optimization, can be found in the references [10, 11].

When comparing two individuals, say X and X}, ¥ is better than ¥} if and only if
the following conditions are satisfied:

fE)<f®), if GE)<eAG@E)<e

f&)<f&), i GX)=GE) (4)
G(X;) <G(x)), otherwise

e(k) = {8@0)’(1 N (s)

oy — log £(0) + o 6

P o(1-£) (1 - rﬁ) (6)

where € in Eq. (4) is controlled by Egs. (5) and (6) and & is the current generation. &(0)
is the maximum degree of constraint violation of the initial population. 7, is the
maximum generation number. According to [8], « is set to 6.

2.3 Classical Differential Evolution

DE consists of four stages, i.e., initialization, mutation, crossover, and selection.

In the initialization stage, NP individuals are usually randomly generated from the
decision space.

In the mutation operation stage, DE creates a mutant vector V; for each sample X;.
The two extensively used mutation operators (called DE/rand/1 and DE/best/1) are
introduced as follows.

DE/rand/1:

Vl:frl+F(f;2_zrz)a 121,2,,NP (7)
DE/best/1:
Vi:zbesz+F(frl _zrg)a i= 1727"'7NP (8)

where ry, r,, r3 are three random and mutually different integers chosen from [1, NP],
and F is a scaling factor and is used to control the amplification of the differential
vector.
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In the crossover operation stage, the crossover is applied to the parent individual Ec’f
and its mutant vector . Then a trial vector #¥ is produced.

A xf] otherwise ®)

p { vf?j, rand <CR or j= jima
where rand is a uniformly distributed random number between 0 and 1. j,,q is a
random integer in [/, NP]. CR is the crossover probability.

In the selection operation stage, a comparison is conducted between parent indi-
vidual X‘f‘ and trial vector ﬁf? to select the better one among them.

. {Mf{, fluf) <f(x) (10)

. otherwise

2.4 Second Order Differential Evolution

SODE is also composed of four stages, i.e., initialization, mutation, crossover, and
selection. Except for the mutation stage, the other stages are the same as those of DE.

In the mutation operation stage, the usually and widely used mutation operations,
DE/rand/1, is adopted as analytic model strategies in this paper. In order to efficiently
utilize the direction information and the search status of the current population, the
second order difference vector mechanism, which is based on the classical mutation
strategies, is indicated as in Eqgs. (11)—(15).

d* = xj; — (11)
d]f = 7‘]:3 - x];4 (12)
df = X — X4 (13)
dy = x5 — X, (14)
d* = d* 4+ (df — d) (15)

where rl, 12, r3, r4, 15, 16 are different random integers in [/, NP]. A is set as 0.1, which
is discussed in reference [5]. x5, is the best vector in generation k. df in Egs. (12) and
(13) sets the same variable to different values, which is combined with Eq. (15) to
produce different algorithms.
(d¥ — db) in Eq. (15) is the second order difference vector. The mutant vector v¥ is
generated as follows:
V=X +F-d (16)

f =

where F is a scaling parameter and is set as 0.5. r7 is a random integer in [/, NP].
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In this paper, two composing patterns of d* will be used. The first form of d*
consists of Egs. (12) and (14). The second form of df consists of Egs. (13) and (14).
The first form and the second form based SODE, are denoted as SODErand and
SODEDbest, respectively.

3 The ¢Constrained Second Order Differential Evolution

Evolutionary algorithm is a general optimization framework. In order to solve the
constraint optimization problems, it must be combined with the appropriate constraint
handing technique. Evolutionary algorithm and the constraint handing technique are
combined to form a complete constrained evolutionary optimization algorithm.
Therefore, while retaining the idea of SODE, this paper adds an ¢ constrained method
to select descendants, which is denoted as eSODErand and eSODEDbest, respectively.

3.1 ¢ SODErand

In this paper, eSODErand uses SODErand mentioned in Sect. 2 to combine with &
constrained method. Its details is given in Algorithm 1.

Algorithm 1: ¢SODErand
Input: NP, maxFES, F, CR
k=1; // the generation number

N =

Create a random initial population x;{ Vi,i=1,...,NP:

w

FES=NP; // FES is the number of fitness evaluations;
Get the € value of the € constrained method according to Eq.(5);

for j =1: NP

6 Use SODErand to generate a trial vector u,i;

[N

7 Apply the € constrained method to compare x; and 3, ;

8 Use the better one for the next iteration;
9 FES=FES+1;

10 end for

11 k=k+1;

12 Stopping Criterion: If FES > maxFES, then stop and output the best solution, else go to Step 4.

3.2 A Subsection Sample

The difference between eSODEbest and eSODFErand is the mutation operation stage.
The former uses SODEbest mentioned in Sect. 2 to combine with & constrained
method. Its details is given in Algorithm 2.
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Algorithm 2: eSODEbest
Input: NP, maxFES, F, CR
1 k=1; // the generation number

2 Create a random initial population x; Vii=1,...,NP;

3 FES=NP; // FES is the number of fitness evaluations;

4 Get the € value of the € constrained method according to Eq.(5);
5 for j=1: NP

6 Use SODEDbest to generate a trial vector u; :

7 Apply the € constrained method to compare xﬁ, and u,’( ;

8 Use the better one for the next iteration;

9 FES=FES+1;

10 end for
11 k=k+1;

12 Stopping Criterion: If FES > maxFES, then stop and output the best solution, else go to Step 4.

4 Experimental Results and Algorithmic Analysis

4.1 CEC2006 Benchmark Functions

In order to check the performance of the proposed algorithms e€SODEbest and
€SODErand, 12 functions are selected from IEEE CEC2006 [9] as the preliminary test
suite, which is described in Table 1.

Table 1. CEC2006 benchmark functions.

Prob. | D | Type of function | LI | NI | LE | NE | Active
go1 | 20 | Nonlinear 91 0[/0 |0

go2 | 10 | Polynomial o0, 0/0 |1 |1
803 10 | Quadratic 31 5/0 |0 |6
804 7 | Polynomial 0| 4/0 |0 |2
805 8 | Linear 3130 0 |6
806 2 | Quadratic o 01 |1 |1
807 5 | Nonlinear 0ol0[3 |3 |3
gos | 10| Nonlinear 0] 0/0 0 |3
g0 5 | Nonlinear 4 134/0 (0 |4
g10 6 | Nonlinear 004 |4 |4
g11 | 15| Nonlinear 0] 5/0 0 |0
g12 7 | Linear 0| 1|5 |5 |6

Where D is the number of decision variables, LI is the number of linear inequality
constraints, NI the number of nonlinear inequality constraints, LE is the number of
linear equality constraints and NE is the number of nonlinear equality constraints,
active is the number of active constraints at X.
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4.2 Experimental Settings

In order to show the performance of two proposed algorithms, eDE is chosen to compare
with them. In this paper, eDE means to change SODErand in step6 of Algorithm 1 to
DE. In addition to the special instructions, the parameters are set as follows.

Independent running number: RUN = 25.
Population size: NP = 50.
Maximum number of function evaluations: maxFES = 240000.

Both parameters, F and CR are initialized to 0.5. Parameter A is set as 0.1.

It is noteworthy that the feasible rate, i.e., if the algorithm cannot consistently
provide feasible solutions in all 25 runs, the running percentage of finding at least one
feasible solution is recorded. So, based on the feasible rate, the experimental results are
divided into two parts. One part is that the feasible rate of all three algorithms is 100%,
and the other part is that there are some algorithms not 100% feasible. The former is
called part 1, and the latter part is called part 2.

4.3 Experimental Comparison for Part 1

In the 12 functions, the solutions of 6 functions, include go1, €02, £03> £07> £09»> &11, A€
consistent feasible over all 25 runs. All the final experimental results of the 6 functions
over 25 runs, are statistically listed in Table 2, which includes the statistical items of
the minimum final result (min), the median final result (median), the average final result
(mean) and the standard deviation (std) in multiple runs.

Table 2. Comparison of the results based on CEC2006 functions.

Prob. | Items | eSODErand | eSODEbest eDE

8o1 min —8.0361E—01 | —8.0360E—01 | —8.0360E—-01
mean |—8.0213E—01 | —8.0315E—-01 | —8.0112E—01
median | —8.0360E—01 | —8.0359E—01 | —8.0359E—-01
std 5.0795E-03 | 2.1990E—03 | 6.9590E-03

go2 | min —1.0003E+00 | —1.0003E+00 | —1.0003E+00
mean | —9.9920E-01 | —9.9972E-01 | —9.9936E—01
median | —9.9948E—-01 | —9.9989E—-01 | —9.9960E—01
std 1.1884E-03 |5.4964E—04 |1.4034E—-03

gos | min 5.1265E+03 | 5.1265E+03 | 5.1265E+03
mean |5.1273E+03 | 5.1265E+03 | 5.1266E+03
median | 5.1265E+03 | 5.1265E+03 | 5.1265E+03
std 3.6150E+00 |5.7052E—02 |5.6944E—01

go7 | min 5.3942E-02 |S5.1196E—02 |5.3942E—02
mean |5.4130E—-02 |5.3850E—02 |5.3956E—02
median | 5.3942E—02 | 5.3942E—-02 |5.3942E-02
std 9.4131E-04 |5.5928E—04 |5.8672E—05

(continued)
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Table 2. (continued)

Prob. | Items | eSODErand | eSODEbest eDE

goo | min —1.9052E+00 | —1.9052E+00 | —1.9052E+00
mean | —1.9052E+00 | —1.9052E+00 | —1.6578E+00
median | —1.9052E+00 | —1.9052E+00 | —1.4307E+00
std 4.5325E-16 |9.0649E—16 |2.4127E-01
g1 | min 3.2972E+01 |3.2910E+01 |3.2985E+01
mean |3.3166E+01 |3.3123E+01 |3.3216E+01
median | 3.3148E+01 | 3.3115E+01 |3.3194E+01
std 1.2913E-01 |8.6868E—02 |1.4633E—-01

Observed from Table 2 two proposed algorithms shows even better results in terms
of reliability and accuracy when comparing with ¢DE. Comparatively speaking,
e€SODErand performs a little worse than that of eSODEbest. The fact of eSODErand
and €SODEbest being better than €¢DE indicates that SODE has more information
utilizing ability for solving constrained optimization problems than DE.

4.4 Boxplot Performance Comparison

To compare the performance of algorithms better, the boxplot analysis is taken for
perusal. It can easily show the empirical distribution of all the final data in multiple
runs pictorially. In order to better analyze the results, the functions are divided into two
parts: Figs. 1 and 2.
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Boxplots are shown in Fig. 1, which shows that both medians and interquartile
range of eSODEDbest are comparatively lower. The median of €SODErand is lower than
that of eDE except for g02 function.
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Fig. 2. Performance comparison on go1, go3» go7-

The performance comparison of g01, g03 and g07 are shown in Fig. 2. Observed
from Fig. 2, the results of the three algorithms are relatively stable except for some
outliers.

4.5 Experimental Comparison for Part 2

In the 12 functions, the solutions of 6 functions, include go4, &os, Los> Los> 10> &12, ATE
inconsistent feasible. To get a more accurate solution, the 6 functions will be run 50
times to get results. The feasible rate, i.e., percentage of runs where at least one feasible
solution is found, is recorded if an algorithm fails to consistently provide feasible
solutions over all 50 runs. All the final experimental results of the 6 functions are
statistically listed in Table 3.
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Table 3. Comparison of the results based On CEC2006 functions.
Prob. | Items | SODErand | SODEbest | DE

go4 | min 90% 6.8063E+02 | 72%
mean 6.8063E+02
median 6.8063E+02
std 1.7807E—-05

8os | min 7.0571E+03 | 7.0564E+03 | 92%
mean | 7.0682E+03 | 7.0646E+03
median | 7.0650E+03 | 7.0645E+03
std 1.4941E+01 | 6.9106E+00

806 8% 8% 0%
808 4% 0% 0%
810 4% 4% 0%
g1 96% 98% 90%

Observed from Table 3, two proposed algorithms shows even better results in terms
of feasible rate when comparing with éDE. Especially the functions gos, gos, €10, the
solutions obtained by €DE are not feasible, but two proposed algorithms significantly
improve this phenomenon. This shows that SODE is more suitable for solving con-
strained optimization problems than DE.

5 Conclusions

A simple modification to SODE is proposed to solve COPs in this paper. The idea is
that after producing offspring by the second order differential evolution, the € con-
strained method is chosen for selection. eSODErand and eéSODEbest on the basis of
SODE are proposed. To test the effect of the proposed strategies, they are verified on
CEC2006 Benchmark Functions. Experimental results show that second order differ-
ence vector has a certain role in dealing with constraint optimization problems. This
idea can be hybridized with any DE variants, even for all the swarm intelligence and
evolutionary computing methods. So, how to even better utilize the second order
difference vector deserves further research.
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