
Ying Tan · Yuhui Shi · 
Ben Niu (Eds.)

LN
CS

 1
16

55

10th International Conference, ICSI 2019
Chiang Mai, Thailand, July 26–30, 2019
Proceedings, Part I

Advances 
in Swarm Intelligence



Lecture Notes in Computer Science 11655

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Ying Tan • Yuhui Shi • Ben Niu (Eds.)

Advances
in Swarm Intelligence
10th International Conference, ICSI 2019
Chiang Mai, Thailand, July 26–30, 2019
Proceedings, Part I

123



Editors
Ying Tan
Peking University
Beijing, China

Yuhui Shi
Southern University of Science
and Technology
Shenzhen, China

Ben Niu
Shenzhen University
Shenzhen, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-26368-3 ISBN 978-3-030-26369-0 (eBook)
https://doi.org/10.1007/978-3-030-26369-0

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-26369-0


Preface

This book and its companion volumes, LNCS vols. 11655 and 11656, constitute the
proceedings of the 10th International Conference on Swarm Intelligence (ICSI 2019)
held during July 26–30, 2019, in Chiang Mai, Thailand.

The theme of ICSI 2019 was “Serving Life with Intelligence Science.” ICSI 2019
provided an excellent opportunity and/or an academic forum for academics and
practitioners to present and discuss the latest scientific results and methods, innovative
ideas, and advantages in theories, technologies, and applications in swarm intelligence.
The technical program covered most of the aspects of swarm intelligence and its related
areas.

ICSI 2019 was the tenth international gathering in the world for researchers working
on most of the aspects of swarm intelligence, following successful events in Shanghai
(ICSI 2018), Fukuoka (ICSI 2017), Bali (ICSI 2016), Beijing (ICSI-CCI 2015), Hefei
(ICSI 2014), Harbin (ICSI 2013), Shenzhen (ICSI 2012), Chongqing (ICSI 2011), and
Beijing (ICSI 2010), which provided a high-level academic forum for participants to
disseminate their new research findings and discuss emerging areas of research. It also
created a stimulating environment for participants to interact and exchange information
on future challenges and opportunities in the field of swarm intelligence research. ICSI
2019 was held in conjunction with the 4th International Conference on Data Mining
and Big Data (DMBD 2019) held in Chiang Mai, Thailand, for sharing common
mutual ideas, promoting transverse fusion, and stimulating innovation.

The ICSI 2019 was held in Chiang Mai, Thailand, which was founded in 1296 as the
capital of the ancient Lanna Kingdom, located 700 km north of Bangkok in a verdant
valley on the banks of the Ping River. Chiang Mai is a land of misty mountains and
colorful hill tribes, a playground for seasoned travelers, a paradise for shoppers, and a
delight for adventurers. Chiang Mai can expand visitors’ horizons with Thai massage,
cooking courses, variety of handicrafts, and antiques. Despite its relatively small size,
Chiang Mai truly has it all. Today it is a place where past and the present seamlessly
merge with modern buildings standing side by side with venerable temples.

ICSI 2019 took place at the Duangtawan Hotel in Chiang Mai, Thailand, which is
located in the center of Night Bazaar, one of the famous shopping areas in downtown
Chiang Mai. Surrounded by a night market where there is an ideal district for shopping,
sightseeing, meeting, and commercial business, the hotel is only 15 minutes away from
Chiang Mai International Airport, the main railway station, and Chiang Mai bus
station. Guests can easily access the weekend walking streets, historical attractions, and
traditional temples, while indulging in fascinating northern eateries, original handi-
crafts, souvenirs, and local entertainment. The hotel offers comfortable and convenient
guestrooms overlooking Chiang Mai’s vibrant city view, and a plentiful service of
TAI-style restaurants and bars, as well as a complete service of MICE events towards a
selection of our function rooms. Guests can enjoy the wide-panoramic view of an
outdoor swimming pool, fully-equipped fitness center, and well-being Varee Spa.



ICSI 2019 received 179 submissions and invited submissions from about 429
authors in 30 countries and regions (Algeria, Australia, Austria, Bangladesh, Brazil,
China, Colombia, Finland, Germany, Chinese Hong Kong, India, Iraq, Italy, Japan,
Malaysia, Mexico, New Zealand, Norway, Portugal, Romania, Russia, Serbia,
Singapore, South Africa, Spain, Sweden, Chinese Taiwan, Thailand, United Kingdom,
United States of America) across 6 continents (Asia, Europe, North America,
South America, Africa, and Oceania). Each submission was reviewed by at least two
reviewers, and on average 2.6 reviewers. Based on rigorous reviews by the Program
Committee members and reviewers, 82 high-quality papers were selected for publi-
cation in this proceedings volume with an acceptance rate of 45.81%. The papers are
organized into 13 cohesive sections covering major topics of swarm intelligence
research and its development and applications.

On behalf of the Organizing Committee of ICSI 2019, we would like to express our
sincere thanks to Peking University, Southern University of Science and Technology,
and Mae Fah Luang University for their sponsorship, and to Computational Intelli-
gence Laboratory of Peking University, School of Information Technology of Mae Fah
Luang University, and IEEE Beijing Chapter for its technical co-sponsorship, as well as
to our supporters of International Neural Network Society, World Federation on Soft
Computing, Beijing Xinghui Hi-Tech Co., and Springer Nature.

We would also like to thank the members of the Advisory Committee for their
guidance, the members of the international Program Committee and additional
reviewers for reviewing the papers, and the members of the Publications Committee for
checking the accepted papers in a short period of time. We are particularly grateful to
the proceedings publisher Springer for publishing the proceedings in the prestigious
series of Lecture Notes in Computer Science. Moreover, we wish to express our
heartfelt appreciation to the plenary speakers, session chairs, and student helpers. In
addition, there are still many more colleagues, associates, friends, and supporters who
helped us in immeasurable ways; we express our sincere gratitude to them all. Last but
not the least, we would like to thank all the speakers, authors, and participants for their
great contributions that made ICSI 2019 successful and all the hard work worthwhile.

June 2019 Ying Tan
Yuhui Shi
Ben Niu
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Abstract. Inspired by the adversarial learning in generative adversarial
network, a novel optimization framework named Generative Adversarial
Optimization (GAO) is proposed in this paper. This GAO framework
sets up generative models to generate candidate solutions via an adver-
sarial process, in which two models are trained alternatively and simul-
taneously, i.e., a generative model for generating candidate solutions and
a discriminative model for estimating the probability that a generated
solution is better than a current solution. The training procedure of the
generative model is to maximize the probability of the discriminative
model. Specifically, the generative model and the discriminative model
are in this paper implemented by multi-layer perceptrons that can be
trained by the back-propagation approach. As of an implementation of
the proposed GAO, for the purpose of increasing the diversity of gener-
ated solutions, a guiding vector ever introduced in guided fireworks algo-
rithm (GFWA) has been employed here to help constructing generated
solutions for the generative model. Experiments on CEC2013 benchmark
suite show that the proposed GAO framework achieves better than the
state-of-art performance on multi-modal functions.

Keywords: Generative Adversarial Optimization (GAO) ·
Adversarial Learning · Generative adversarial network (GAN) ·
Guiding vector · Multi-modal functions

1 Introduction

Continuously-valued function optimization problem [20] has long been an impor-
tant problem in mathematics and computer science. With the development of
deep learning in recent years, continuously-valued function optimization prob-
lem has become more and more important [23,37]. For continuously-valued func-
tion optimization problems, gradient-based methods are commonly used, such as
stochastic gradient descent (SGD), Newton’s method, conjugate gradient (CG),
BFGS and so on [33]. However, for more complex functions and multi-modal
functions, gradient-based methods can only find local optimal solutions. For
these problems, the algorithm needs to be able to better deal with the balance
between exploration and exploitation [4].
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In order to solve the problem, more and more meta-heuristic algorithms have
been proposed. Meta-heuristic algorithms are usually inspired by biological or
human behaviors. By designing a sophisticated mechanism to guide algorithms
to find solutions, so as to avoid local optimal solutions and find global optimal
solutions. The most critical component for meta-heuristic algorithms is gener-
ating solutions and retaining solutions. For the part of generating solutions, the
algorithm should generate better solutions as many as possible, but at the same
time, it is also hoped that the generated solutions have a rich diversity and will
not cluster in local optimal spaces. For the part of retaining solutions, the algo-
rithm should retain better solutions, but it is also hoped that potential solutions
which are not so good currently can be retained, because solutions which is bet-
ter than the current optimal solution may be found in the local searches around
them later.

In the early meta-heuristic algorithms, various methods to generate solutions
were proposed. Particle swarm optimization (PSO) [19] mimics migration and
clustering in the foraging of birds to generate solution. The genetic algorithm
(GA) [8] targets all individuals in a group and uses randomization techniques to
efficiently search a coded parameter space. The fireworks algorithm (FWA) [40]
employs the fitness value of each firework to dynamically calculate the explosion
radius and the number of sparks in an explosion as local search. In recent years,
research on methods to generate solutions tends to be more refined. Guided
firework algorithm (GFWA) [26] employs the fitness value information obtained
by the explosion sparks to construct the guiding vector (GV) with promising
direction and adaptive length, and an elite solution called guiding spark (GS) is
generated by adding the guiding vector to the corresponding firework position.

In recent years, generative adversarial network (GAN) [13] has been proposed
as a new generating model, with its outstanding performance proving its pow-
erful ability in generative tasks. Different from the previous generative model,
GAN guides a generator to automatically learn how to generate by setting a
loss function. In GAN, a discriminator and a generator are alternatively trained,
where the discriminator is used to discriminate between the generated sample
and the real sample, the generator is used to generate samples as real as possible,
so as to deceive the discriminator. GAN has been widely used in the fields of
image generation [10,12,32], video synthesis [41,42], text generation [3,21,44],
music generation [14], semi-supervised learning [5,9], medical image [7] and infor-
mation security [16,35].

Inspired by the adversarial learning in GAN, a feasible optimization frame-
work, so-called Generative Adversarial Optimization (GAO), is proposed in this
paper. The framework sets up generative models to generate candidate solutions
via an adversarial process, in which two models are trained alternatively and
simultaneously, i.e., a generative model G to generate candidate solutions, and a
discriminative model D to estimates the probability that a generated solution is
better than a current solution. The training procedure for G is to maximize the
probability of D. In our case, G and D are defined by multi-layer perceptrons,
which can be trained with back-propagation. To improve the quality of generated



Generative Adversarial Optimization 5

solutions, the guiding vectors introduced in GFWA are employed to help con-
structing generated solutions. Experiments on CEC2013 benchmark suite show
that the proposed framework achieves impressive performance on multi-modal
functions.

The main contributions of this paper are as follows:

1. Inspired by adversarial learning and GAN, a novel optimization framework
so-called Generative Adversarial Optimization, GAO, for short, is proposed.

2. The guiding vectors introduced in GFWA [26] are employed to help construct-
ing generated solutions, which improves the training stability and generative
diversity of G.

3. Experiments show that for GAO, multiple rounds of updates are necessary
to obtain better generative capabilities.

4. Compared with current famous optimization algorithms, GAO achieves better
than state-of-the-art performance on multi-modal functions.

The remainder of this paper is organized as follows. Section 2 presents related
works of meta-heuristic algorithms and GAN. Section 3 describes the detail of
GAO, a novel optimization framework proposed for continuously-valued function
optimization. Experimental settings and results are presented and discussed in
Sect. 4. Conclusions are given in Sect. 5.

2 Related Works

2.1 Meta-heuristic Algorithms

Inspired by biological and human behaviors, meta-heuristic algorithms are a kind
of algorithms that can be used to better solve continuous optimization problems
by simulating agents’ behaviors in order to balance “exploration” and “exploita-
tion” [4]. In recent years, researches on meta-heuristic algorithms for optimiza-
tion problem have developed rapidly, more and more meta-heuristic algorithms
have been proposed. According to the mechanism of the agents’ behaviour, meta-
heuristic algorithms can be divided into swarm intelligence algorithms [18] and
evolutionary computation algorithms.

Swarm intelligence algorithms are usually inspired by the behavior of biolog-
ical groups in natural world to seek the optimum in search space by employing
programs to simulate the interaction among biological individuals. Swarm intel-
ligence algorithms mainly focus on biological groups such as ant colony [11],
bird flock [19], fish school [29], etc. In addition, some non-biological group sys-
tems also belong to the scope of the researches on swarm intelligence, such as
multi-robot systems, fireworks [40] and other unnatural phenomena. there are
many famous swarm intelligence algorithms such as particle swarm optimization
(PSO) [19], ant colony optimization (ACO) [11], fireworks algorithm (FWA)
[24–26,39,40,45–47], etc. Specially, GFWA [26] proposed the guiding vector to
help constructing solutions for the first time.

Evolutionary computation algorithms are primarily inspired by biological
evolution, which solves the global optimal solution by simulating the evolution
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of organisms. Specific algorithms include genetic algorithm (GA) [8], evolution
strategy (ES) [38], genetic programming, evolutionary programming, differential
evolution (DE) [31], etc.

2.2 Generative Adversarial Networks

Generative adversarial network (GAN), which was first proposed by Goodfellow
in 2014 [13], provides a new method of learning deep representations based on
extensively unlabeled data. The basic idea of GAN is derived from the minimax
two-player game in game theory, consisting of a generator G and a discriminator
D. GAN is trained by means of adversarial learning, with the goal of estimating
the potential distribution of the data samples and generating new data sam-
ples. The discriminator D of the original GAN can be regarded as a function
D : D(x) → (0, 1), which maps the sample to the discriminant probability that
whether the sample is from the real data distribution or the generator distribu-
tion. The generator G is trained to reduce the discriminator’s accuracy. If the
generator distribution is sufficient to perfectly match the real data distribution,
then the discriminator will be most confused and give a probability value of 0.5
to all inputs.

Since GAN was proposed, it has quickly become a hot research issue. A large
number of researches based on GAN have sprung up, mainly focusing on opti-
mizing GAN’s structure [10,32,43] and loss function [1,28,30], proposing some
tricks to assist the training of GAN [15,32,34], and using GAN to solve specific
problems. GAN is widely used in many fields, and there are many impressive
works on different tasks. For image Synthesis, there are LapGAN [10], DCGAN
[32] and etc. For image-to-image translation, there are pix2pix [17], cycleGAN
[48], etc. For super-resolution, there are SRGAN [22]. For text generation and
NLP, there are seqGAN [44], maliGAN [3], Gumbel-softmax GAN [21], etc. For
information security, there is MalGAN [16].

3 GAO: Generative Adversarial Optimization

GAO and its detailed implementation are presented in this section. First, the
model architectures are described in Sect. 3.1, then the training procedure of
GAO is discussed in details in Sect. 3.2.

3.1 Model Architectures

Different from the existing meta-heuristic algorithms which mainly adopt ran-
dom sampling to generate elite solutions or guiding vectors [26], in GAO, we
adopt a generative network G to generate effective guiding vectors for current
solutions to move towards. Simultaneously, a discriminative network D is trained
to evaluate whether the generated solution is better than a current one. The
generative network G is trained by computing gradients from the feedback of
D, which means that G learns how to generate better guiding vectors under the
guidance of D.
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Fig. 1. Architecture of GAO

Given a objective function f , an optimization problem seeks to find the global
minimum x∗ ∈ A which satisfies:

f(x∗) ≤ f(x), ∀x ∈ A (1)

where A is the searching space.
As illustrated in Fig. 1, G gets the input, which includes a current solution

xc, a noise z and a step size l, and outputs a guiding vector g. This procedure
can be expressed in Eq. 2:

g = G(xc, z, l) (2)

Then the guiding vector g is added to the current solution xc to get the generated
solution xg, as shown in Eq. 3:

xg = xc + g (3)

D receives a current solution xc and a generated solution xg, then outputs a
prediction p that whether the generated solution xg is better than the current
solution xc as shown in Eq. 4. If the generated solution xg is better than the
current solution xc, let p = 1, otherwise p = 0.

p = D(xc, xg) =
{

1, xg is better than xc

0, else
(4)
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In order to train D, labels yi for tuples of current solution and generated
solution {xi

c, x
i
g} are required. The objective function f is employed to label the

two-tuple set {xi
c, x

i
g} as expressed in Eq. 5. The training of D will be detailedly

discussed in Sect. 3.2.

yi =
{

1, if f(xi
g) < f(xi

c)
0, else

(5)

Fig. 2. Architecture of G Fig. 3. Architecture of D

The architecture of G is illustrated in Fig. 2. First, G concatenate the current
solution xc and noise z included in the input, then feed the concatenated vector
to a fully-connected layer (denoted as FC). Finally G dot the concatenated vector
with step size l and get the guiding vector g as G’s output. This procedure can
be expressed in Eq. 6.

g = G(xc, z, l) = FC([xT
c , zT ]T ) · l (6)

The architecture of D is illustrated in Fig. 3. First, D feed two solutions xc,
xg to the same fully-connected layer denoted as FC1, then subtract the output
of xc with the output of xg. Finally, D feed the subtracted vector to a fully-
connected layer denoted as FC2 and get the prediction p as D’s output. This
procedure can be expressed in Eq. 7. The activation function for the final layer
of FC2 should be sigmoid function to regularize the prediction.

p = D(xc, xg) = FC2(FC1(xc) − FC1(xg)) (7)
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3.2 Training of GAO

The complete training procedure of GAO is shown in Algorithm1. At the begin-
ning, μ solutions are randomly sampled in searching space to make up the solu-
tion set C = {xi

c, i = 1, 2, ..., μ}, calculate each solution’s fitness value f(xi
c)

and initialize the step size l. Then we repeatedly do adversarial training of D
and G, select solutions to be retained and reduce step size l as the iteration
progresses. When the termination criterion is met, the algorithm exit the loop.
Since the time allowed to evaluate the solution using fitness function is limited as
MaxFES = 10000∗D, in which D is the evaluation dimension of fitness function
[27], the termination criterion always refers to whether the limited evaluation
time is used up. Details of training D and G, selecting solutions and reducing
step size are discussed below.

Algorithm 1. Training procedure of GAO
Require: μ: number of current solutions
Require: β: number of solutions generated at each iteration
Require: linit: initial value of step size l
1: randomly sample μ solutions in searching space A as set C = {xi

c}
2: calculate fitness value f(xi

c) for each solution xi
c in C

3: initialize the step size l = linit

4: while termination criterion is not met do
5: generate β solutions and train D
6: train G with fitted D
7: select μ solutions for next iteration from μ current solutions and β generated

solutions
8: reduce step size l
9: end while

Training of D. D is trained to evaluate whether the generated solution xg will
be better than the current solution xc. Train D requires employing G to generate
solutions first. In this paper, the number of solutions to be generated totally at
each iteration is denoted as β. Since D receives two solutions as input and output
a prediction, training D requires triplets composed of two solutions xi

c and xi
g

and a label yi, in which yi can be calculated with Eq. 5. For a triplet {xi
c, x

i
g, y

i},
the loss function of D can be calculated with Eq. 8:

max
D

lossD = yi log(D(xi
c, x

i
g)) + (1 − yi) log(1 − D(xi

c, x
i
g)) (8)

When training with batches, the loss of a batch is the average loss for each triplet
in batch.

Training of G. As mentioned above, G learns how to generate better guiding
vectors under the guidance of D, which means that G is trained by computing
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gradients from the feedback of D. G is trained to generate elite guiding vectors
for current solutions, so it’s hoped that the generated solutions perform better
than current solutions. For a current solution xi

c, the loss function of G can be
calculated with Eq. 9:

max
G

lossG = log(D(xi
c, x

i
c + G(xi

c, z, l))) (9)

In which, z is a random Gaussian noise, l is the step size. When training with
batches, the loss of a batch is the average loss for each triplet in the batch.

Selecting Solutions. In general, solutions with better fitness values should be
retained, so we calculate the probability to be selected for each solution xi in
Eq. 10 and select solutions using the calculated probability:

pr(xi) =
γ−α

f(xi)∑n
i=1 γ−α

f(xi)

(10)

where γf(xi) means the rank of fitness value for xi among all solutions, n is
the total number of candidate solutions, α is a hyper-parameter to control the
shape of the distribution. The larger α is, the probability of solutions with better
fitness values is larger as well.

Reducing Step Size. In GAO, the guiding vector introduced in GFWA [26] is
employed to control the searching radius at each iteration. In a general searching
process, searching radius should be larger at the beginning and gradually reduced
to a smaller value, which coincides with keeping the balance between exploration
and exploitation. At the beginning, the algorithm needs to explore the searching
space to avoid missing any local optimal region where the global optimum may
exist. As the algorithm goes on, it has accumulated some information about
the searching space and tends to exploit more in existing local optimal regions.
Thus several different schemes to adjust step size are designed, for which the
basic principle is to gradually decrease the step size as the algorithm goes on.
The detailed introduction and experiments will be discussed in Sect. 4.

4 Experiments

In this section, principles on how to set parameters and construct D and G are
given. In more detail, we first introduce the model architecture specifically and
give principles for setting parameters. Secondly, the benchmark the experiment
taken on is introduced. Finally, we compare GAO with other famous optimization
algorithms.

In our experiment, the architecture of D and G are mainly fully-connected
layers. In this section, we denote the number of hidden layers as L, the sizes of
each hidden layer as H, the sizes of output layer as O ,the activation functions
of each hidden layer as AH and the activation functions of output layer as AO.
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each of them is introduced respectively as follows. For FC in G, we set L = 1,
H = [64], O = dimension of objective function, AH = [relu], AO = tanh. For
FC1 in D, we set L = 2, H = [64, 64], O = 10, AH = [relu, relu], AO = relu.
For FC2 in D, we set L = 1, H = [10], O = 1, AH = [relu], AO = sigmoid.

The number of solutions retained at each iteration is denoted as μ, which
mainly keeps the balance between “exploration” and “exploitation” [4]. Since
the time allowed to evaluate is limited to MaxFES = 10000 ∗ D, where D
is the dimension of the objective function, smaller μ allows more solutions to
be generated from one solution, which focuses on “exploitation”, while larger μ
allows generating solutions from more locations in search space, which focuses
on “exploration”. In this paper, we follow the suggestion in [40] and set μ = 5.

To train D, we need to label the tuple of {xi
c, x

i
g} with yi, which requires

using objective function to evaluate the fitness value of xi
g, since fitness value

of xi
c have been calculated at the former iteration. To make D learn how to

generate solutions better, we not only generate xi
g from G, but also generate xi

g

from local search and global search at each iteration. When generating solution,
xi

g calculated from Eq. 3 have to be clipped to the boundary once it exceeds the
search space. In this paper, we denote the number of solutions to be generated
totally at each iteration as β. On account of the limit of MaxFES, the iteration
number MaxIter = MaxFES

β . In this paper, we set β = 30.

Fig. 4. How step size changes with different monotone functions

As discussed in Sect. 3.2, when selecting solutions, we calculate a probability
to be selected for each solution xi as expressed in Eq. 10 and select solutions in
accordance with that probability. We denote the parameter controlling the shape
of the distribution as α. The larger α is, the probability of solutions with better
fitness values is larger as well. In this paper, we set α = 2 as suggested in [24].
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In our experiment, step size l have to be set as linit at the beginning of the
algorithm. In general, we set linit = 1

2 · radius of search space. Specifically for
CEC2013 [27] in this paper, we set linit = 50. To gradually reduce the step size as
the algorithm goes on, we map the iteration count to [ε, linit] with a monotone
function F , here ε is a small positive number set to 10−20 in this paper. In
practice, we compare exponential function and power function with different
power. Figure 4 illustrates how step size changes with iteration count increases
when using different functions. It shows that using exponential function make
the step size drop rapidly. And when using power function, the step size drop
faster as the power increases.

We compare different monotone functions on CEC2013 benchmark suite and
the average ranks (ARs) are shown in Figs. 5 and 6, in which AR-uni, AR-multi
and AR-all indicate average ranks for uni-modal, multi-modal and all functions,
respectively. It shows that using power function performs better than exponential
function and using 4.5 as power is comprehensively best. In this paper, we use
power function and set power to 4.5.

Fig. 5. Average ranks for different mono-
tone functions

Fig. 6. Average ranks for power function
with different power

We choose CEC2013 single objective optimization benchmark suite [27] as
the test suite for the following experiments. CEC2013 single objective optimiza-
tion benchmark suite includes 5 uni-modal functions and 23 multi-modal func-
tions, whose optimal values range from −1400 to 1400 and searching range is
[−100, 100]. According to the requirements of the benchmark suite, all the algo-
rithms should run 51 times for each function to calculate average and variance.
The maximal number of function evaluations in each run, which is denoted as
MaxFES, is set as 10000∗D, where D is the dimension of the objective function.
The benchmark suite supports 10, 30 and 50 as the dimension of the objective
function.
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We compared GAO with the famous optimization algorithms including the
artificial bee colony algorithm (ABC), the standard particle swarm optimiza-
tion 2011 (SPSO2011) [6], the restart CMA-ES with increasing population size
(IPOP-CMA-ES) [2], the differential evolution algorithm (DE) [36] and the loser-
out tournament based FWA (LoT-FWA) [24]. The parameters of these algo-
rithms are set as suggested in [2,6,24,36]. All these algorithms are tested under
same conditions with GAO. The mean errors, standard deviations and average
ranks are shown in Table 1. Average ranks are calculated separately for uni-
modal functions and multi-modal functions, denoted as AR.uni and AR.multi,
respectively. Average rank for all functions are denoted as AR.all. The minimal
mean errors for each function are shown in bold.

As illustrated in Table 1, on all functions, IPOP-CMA-ES performs best,
followed by GAO and LoT-FWA, while SPSO2011 is the worst one. IPOP-CMA-
ES, ABC, GAO and LoT-FWA achieve 11, 10, 6 and 5 of 28 minimal mean errors
on all functions, respectively. Specifically on uni-modal functions, IPOP-CMA-
ES performs best as well, followed by DE, SPSO2011 and GAO performing
comparable, while ABC is the worst one. IPOP-CMA-ES achieves all minimal
errors on uni-modal functions, while ABC, SPSO2011, LoT-FWA and GAO
achieve 1 of 5 the minimal mean errors.

On multi-modal functions, GAO performs best, followed by LoT-FWA and
IPOP-CMA-ES, while SPSO2011 is the worst one. ABC achieves 8 of 23 minimal
mean errors on multi-modal functions, followed by IPOP-CMA-ES, GAO and
LoT-FWA, achieving 6, 5, 4 of 23 minimal mean errors, respectively. SPSO2011
and DE performs worst, achieving none minimal mean errors on multi-modal
functions. Although ABC achieves 8 minimal mean errors on multi-modal func-
tions, it also achieves 10 maximal mean error, which shows that ABC is not
stable enough. At the same time, GAO achieves none maximal mean errors on
all functions, which shows that GAO is quite stable and can be adapted to
various problems.

It turns out from the experimental results that the proposed GAO framework
performs quite very well on multi-modal functions. This is mainly due to the
adversarial learning procedure, which enables G to learn how to generate elite and
diverse solutions under the supervision of D, rather than to follow an artificially-
designed meta-heuristic rule directly. In our implementation, the guiding vector
introduced in GFWA [26] has been employed to improve the quality and diversity
of generated solutions, which can also certainly be replaced by other feasible
methods. In this paper, the exploration on hyper-parameters is greatly simplified,
with a main focus on presenting the proposed optimization framework.

5 Conclusion

Inspired by the adversarial learning in generative adversarial network, this paper
proposed a novel optimization framework, so-called GAO, for short, which is the
first attempt to employ adversarial learning for continuously-valued function
optimization. In order to improve the quality of generated solutions, a guid-
ing vector appeared in GFWA is employed in this paper to help constructing
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generated solutions. Experiments on CEC2013 benchmark suite shew that the
proposed GAO algorithm performs quite well, especially on multi-modal func-
tions, it gave the best performance over some famous optimization approaches.
Meanwhile, the performance of the GAO framework on uni-modal functions
indicates that there is still room for improvement. It is worth noting that the
proposed GAO framework should be further studied since it can be easily embed-
ded into any iterative algorithms as an operator to generate solutions. We hope
this paper can be regarded as a start point to attract more research on solving
various optimization problems using adversarial learning strategy.
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Abstract. Interruption regime of operation using in physical swarm units for
input-output data, preventing of emergency mode of operation, acceleration of
reaction on suddenly appearing dangerous external affects, etc., is considered. It
is shown that for the proper planning of computation process in systems with
interruption it is necessary to have a model, which permits to predict system
state at any time. Approach to simulation, based on the representation of random
time intervals, both interrupt quest generator, and interrupt handler, with discrete
distributions is proposed. Method of time densities sampling is worked out. For
discrete distributions formulae, describing competition are obtained. With use
the Petri-Markov net notion complex model of system under investigation with
discrete distributions, which takes into account the draw effect in competition, is
built. Recursive procedure, which permits rather exactly simulate a functioning
of the system as a whole, is worked out. Method of numerical analysis, arising
from digital model is schematically described.

Keywords: Interruption � Interrupt quest generator � Interrupt handler �
Petri-Markov net � Discrete distribution � Competition � Draw effect �
Recursive procedure

1 Introduction

When managing the individual physical units of swarm (i.e. mobile robot, drone, etc.
[1–3]), digital controllers, in which interruption regime of operation is realized for input
data, rapid response to internal and external emergencies, are widely used [4].
Utilization of such regime requires additional hard and software, that, in turn, requires
increasing of control system volume and energy consumption, so when design and
especially optimization of swarm unit configuration, it is necessary to have the model,
which permits describe system behavior in physical time. Usually interruption regime
is realized as follows: on admission an interruption from external hardware, controller
CPU discontinues main program interpretation and switches to interrupt handling, after
completion of which it returns to execution of postponed program. So in computer
system there is a competition [5–7] between CPU and external interrupt source, which
was in detail considered in [8, 9]. Basic theories, used in to simulate system, namely the
semi-Markov process theory [10] and the theory of Petri-Markov net [11], give exact,
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but rather complicated description of the process, which is suitable for analytical study
of the system, but little avail to its practical numerical analysis.

2 Models of Interruption System Components

The primary operational model of components of computer system with interruptions is
shown on the Fig. 1. Model includes Interrupt Quests Generator (IQG) and Interrupt
Handler (IH).

When IQG and IH not interact between them, then mathematical description of
components operation may be represented as 2-parallel semi-Markov process as
follows:

P ¼ P1; P2f g; ð1Þ

where P is 2-parallel Petri-Markov net (PMN); P1 is PMN, described Interrupt quest
generator; P2 is PMN, described interrupt handler.

In turn,

P1 ¼ C1; Z1; I1; O1; U1 tð Þ; K1
� �

; ð2Þ

P2 ¼ C2; Z2; I2; O2; U2 tð Þ; K2
� �

; ð3Þ

where C1 ¼ c11; c12f g, C2 ¼ c2f g are sets of places; Z1 ¼ f1f g, Z2 ¼ f21; f22f g are
sets of transitions; I1 ¼ I1 f1ð Þf g, I2 ¼ I21 f21ð Þ; I22 f22ð Þf g are sets of transition input
functions; O1 ¼ O1 f1ð Þf g, O2 ¼ O21 f21ð Þ; O22 f22ð Þf g are sets of transition output
functions; U2 tð Þ ¼ 0; f tð Þ½ � are matrices of time densities of residence of corre-
sponding semi-Markov processes in their places, before doing semi-steps into proper
transitions; K1 ¼ c11; f1ð Þ; c11; f1ð Þ½ �, K2 are matrices of logical conditions of doing
semi-steps from proper transitions; f tð Þ is the runtime of interrupt handler;

γ11

ζ1
γ12

γ2
IH

ζ21 ζ22

IQG

Fig. 1. Components of system with interruptions.
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I1 f1ð Þ ¼ c11f g; O1 f1ð Þ ¼ c11; c12f g;
I21 f21ð Þ ¼ £; I22 f22ð Þ ¼ c2f g; O21 f21ð Þ ¼ c2f g; O22 f22ð Þ ¼ £;

U1 tð Þ ¼ g tð Þ
0

� �
; K2 ¼ b

0

� �
;

g tð Þ is time interval density between two neighbor Interrupt quests; b is start of IH.
In the model (2) place c11 simulates lag time between neighbor interrupt quests

equal to g tð Þ. Place c12 simulates interrupt handler, which absorbs interrupt quests;
transition f1 simulates «fork» type parallelism, when one process separated onto two
ones; logical conditions K1 show, that two semi-steps are executed immediately after
semi-step from the place c11 to the transition f1 is done. As it follows from (2) interrupt
generation is an ergodic semi-Markov process. In the model (3) place c2 simulates lag
time between starting and finishing interrupt handling; transitions f21 and f22 simulate
starting and finishing of handling, correspondingly, so interrupt handling lasts during
random time interval f tð Þ.

For working out the complex model of interruptions, which takes into account
interaction of components IQG and IH, one should assume, that:

– the computer system under investigation may process data on K interruption levels;
– interrupt handling programs are quite the same at all levels;
– the main program is quite the same as the interrupt handler.

3 Sampling of Time Densities

In the most general case both f tð Þ and g tð Þ are continual functions, with the next
common properties:

0� tmin � arg / tð Þ½ � � tmax\1
Z1
0

u tð Þdt ¼ 1; ð4Þ

where / tð Þ 2 f tð Þ; g tð Þf g; tmin; tmax are lower and upper boundaries of function
domain.

Time density / tð Þ may be represented as a histogram. For this purpose domain
tmin; tmax½ � should be divided onto K intervals, 0� t\s1, …, sk�1 � t\sk, …,
sK�1 � t\1, as it is shown on the Fig. 2. When sampling, two cases are possible: at
first case lower and upper boundaries are clearly defined, so it is advisable to do all
intervals of histogram digits quite the same, id est.

D ¼ tmax � tmin

K
; ð5Þ
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where K is the number of histogram digits; at the second case the function / tð Þ at lower
boundary is as follows

lim
dv/ tð Þ
dtv

����
t ! 0

¼ 0; v ¼ 0; 1; 2; . . .; ð6Þ

or at upper boundary is as follows

lim
dv/ tð Þ
dtv

����
t ! 1

¼ 0; v ¼ 0; 1; 2; . . .; ð7Þ

i.e. approaches to zero asymptotically, so intervals from s1 till sK�1, may be done the
same and equal to

D ¼ s1 � sK�1

K � 2
: ð8Þ

The first and last intervals may differ from others, and are appointed as follows

D1 ¼ s1 � 0; DK ¼ 1� sK�1: ð9Þ

Such appointment of intervals for calculation of histogram digits nomination is
necessary for reducing of a time complexity of computer system investigation. The
width of all histogram digits, including first and last, expediently to appoint the same
and equal to D (see Fig. 2), so histogram domain begins from the point s0 ¼ s1 � D
and ends at the point sK ¼ sK�1 þD. Representative point of k-th histogram digits is
situated at the middle of k-th digit, between points sk�1 and sk:

τ0 τ1 ... τk-1 τk ...        τK-1 τK t

T1 T2 ...       Tk  ...             TK
φp

p1

p2

pk

pK

φ(t)

Δ

Fig. 2. Sampling of time density.
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Tk ¼ sk � D
2
; sk ¼ s0 þ k � D ð10Þ

Histogram digit values may be defined as follows:

pk ¼ U s k; rð Þ½ � � U s k; rð Þ½ �; ð11Þ

where U s k; rð Þ½ � ¼ Rs k;rð Þ

0
/ tð Þdt is the right border distribution function of the histogram

k-th digit; U s k; lð Þ½ � ¼ Rs k;lð Þ

0
/ tð Þdt is the left border distribution function of the his-

togram k-th digit;

s k; lð Þ ¼
s1 þD k�2ð Þ; when 2� k�K;
smin; when k ¼ 1; case 1;
0; when k ¼ 1; case 2;

8<
: ð12Þ

s k; rð Þ ¼
s1 þD k�1ð Þ; when 1� k�K � 1;
smax; when k ¼ K; case 1;
1; when k ¼ K; case 2:

8<
: ð13Þ

In sampled model every digit of histogram is represented as weighted shifted
degenerative distribution law, so function, described histogram, is as follows:

e/ tð Þ ¼
XK
k¼1

pk � d t � Tkð Þ; ð14Þ

where d . . .ð Þ is the shifted Dirac function; pk is the weight of Dirac function.
Due to (11), in (14) next stipulation is fulfilled:

XK
k¼1

pk ¼ 1: ð15Þ

Parameters one should to choose, when function / tð Þ sampling, are the next:

• in the case 1 - the only parameter, namely, number K of histogram digits;
• in the case 2 - number K, lower s0 and upper sK boundaries of histogram domain.

For proper assignment both parameter listed, and values pk , 1� k�K, of histogram
digits, latter should be slightly modified using an optimization procedure. Optimization
criterion may be defined as follows:

for the case 1� e ¼
XK
k¼1

Zsk
sk�1

/ tð Þ � pkj jdt ; ð16Þ
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for the case 2� e ¼
Zs0
0

/ tð Þdtþ
XK
k¼1

Zsk
sk�1

/ tð Þ � pkj jdtþ
Z1
sK

/ tð Þdt; ð17Þ

where sk�1 and sk are lower and upper boundaries of histogram k-th digit.
When optimization procedure, at least next conditions must be met; restriction (15) for
optimal values of histogram digits; equality of expectations of initial density / tð Þ and
distribution e/ tð Þ, namely

M ¼
Z1
0

t � / tð Þdt ¼
Z1
0

t � e/ tð Þdt ¼ eM; ð18Þ

equality of dispersions of initial density / tð Þ and distribution e/ tð Þ, namely

Z1
0

t �Mð Þ2�/ tð Þdt ¼
Z1
0

t � eM� �2
�e/ tð Þdt: ð19Þ

Optimization may be carried out by any known method, for example numerically
[12].

Due to / tð Þ 2 f tð Þ; g tð Þf g, with substitutions f tð Þ ! ef tð Þ and g tð Þ ! eg tð Þ prob-
lem of interruption simulation is reduced to the task of simulation of parallel interactive
semi-Markov processes with discrete distributions.

4 The United Model of the System with Interruptions

Models of interruption system components (1) may be united into complex PMN,
shown on the Fig. 3:

PR ¼ A; Z; W tð Þ; K� �
; ð20Þ

where A ¼ a0; 1A; . . .; kAk; . . .
� �

is the set of places; a0 is the place, which simulates
start of system operation; kA ¼ ka1; ka2; ka3; ka4

� �
k ¼ 1; 2; . . . are subsets of

places, which simulate a competition [11] on the k-th level; ka1 are places which
simulate IH operation (when k = 1 it is the main program), ka3 are places which
simulate IQG operation; ka3, ka4 are pseudo-places, which simulate return onto pre-
vious levels of IH, 1a3 is absorbing place, which simulates end of operation; Z ¼
z0; . . .; zk; . . .f g is the set of transitions, which define interruption level; W tð Þ is the

matrix of time distributions; K is the matrix of logical conditions.
Anatomically PMN may be divided onto overlapping subnets, according to inter-

ruption levels. Every level simulates a competition between IQG and IH. Subnet
structure of k-th level is as follows:
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PRk ¼ Ak; Zk;Wk tð Þ; Kk
� �

; k ¼ 1; 2; . . .; ð21Þ

where Ak ¼ ka1; ka2; ka3; ka4; kþ 1a1; kþ 1a2
� �

is the subset of places; Zk ¼
zk�2; zk�1; zkf g is the subset of transitions; Wk tð Þ is the 6 � 3 matrix of time densities,

which specifies time intervals of the subnet residence in states of subset Ak; Kk is the
3 � 6 matrix of logical conditions of doing semi-steps from transitions of subset Zk.

Elements of matrix Wk tð Þ are as follows:

w13 tð Þ ¼ k e/1 tð Þ;w23 tð Þ ¼ k e/2 tð Þ;w32 tð Þ ¼ d tð Þ;w41 tð Þ ¼ d tð Þ; ð22Þ

where k e/2, k e/2 are auxiliary distributions; all other elements are equal to zero;

e/1 tð Þ ¼
XK 1ð Þ

k 1ð Þ¼1 1ð Þ
p1;k 1ð Þ � d t � T1;k 1ð Þ

	 

; ð23Þ

z0

...

a0

1a3
1a1

1a2

2a4
2a2

2a1

...

ka4
ka1

ka2

k+1a4
k+1a2

k+1a1

z1

z2

zk-1

zk

zk+1

...

A1

A2

Ak

Ak+1

k-1a3

Sf / Sg

Sv / Sg

Sv / Sg

Sv / Sg

1a4

2a3

ka3

k+1a3

... ... ... ...

... ... ... ...

... ...

... ... ... ...

... ... ... ...

Fig. 3. Petri-Markov net.
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e/2 tð Þ ¼
XK 2ð Þ

k 2ð Þ¼1 2ð Þ
p2;k 2ð Þ � d t � T2;k 2ð Þ

	 

: ð24Þ

Stochastic summation in the right part of (23), (24) may be considered as K(1)/K(2)
possible realizations of time interval, which are randomly selected from sets
T1;1 1ð Þ; . . .; T1;k 1ð Þ; . . .; T1;K 1ð Þ

� �
= T2;1 2ð Þ; . . .; T2;k 2ð Þ; . . .; T2;K 2ð Þ
� �

.

Elements of matrix Kk are as follows:

kk21 zk�1;
ka1

	 
 ¼ kk22 zk�1;
ka1

	 
 ¼ ka3; zk�1
	 


;
kk33 zk; ka3

	 
 ¼ ka1; zk
	 
 ^ ka2; zk

	 

; kk34 zk; ka4

	 
 ¼ ka1; zk
	 


;
kk35 zk; kþ 1a1

	 
 ¼ kk36 zk; kþ 1a2
	 
 ¼ ka2; zk

	 

;

ð25Þ

where ...a...; z...ð Þ is corresponding semi-step from place to transition; z...; ...a...ð Þ is cor-
responding semi-step from transition to place; all other elements are equal to logical zero.

5 The Digital Competition

The PMN (21) permits to analyze operation of the system with interruption. The
analysis is based on the theory of competition, and its development, theory of digital
competition. Let processes (23) and (24) compete between them. Then distribution of
competition outcome is as follows:

uw tð Þ ¼ d
dt

1� 1� eU1 tð Þ
h i

1� eU2 tð Þ
h in o

¼ hw1 tð Þþ hd tð Þþ hw2 tð Þ; ð26Þ

where ... eU... k; lð Þ ¼ Rt
0

...e/... nð Þdn is the distribution function; hw1 tð Þ is the weighted

distribution of winning the competition by first participant; hd tð Þ is weighted distri-
bution of competition draw; hw2 tð Þ is weighted distribution of winning the competition
by second participant;

hw1 tð Þ ¼
XK 1ð Þ�1

k 1ð Þ¼1 1ð Þ
p1;k 1ð Þd t � T1;k 1ð Þ

� � � Xk 1ð Þþ 1

k 2ð Þ¼K 2ð Þ
p2;k 2ð Þ; ð27Þ

hd tð Þ ¼
Xmin K 1ð Þ;K 2ð Þ½ �

k 1ð Þ¼k 2ð Þ½ �¼1

p1;k 1ð Þp2;k 2ð Þd t � T1;k 1ð Þ
� �

; ð28Þ

hw2 tð Þ ¼
XK 2ð Þ�1

k 2ð Þ¼1 2ð Þ
p2;k 2ð Þd t � T22;k 2ð Þ

� � � Xk 2ð Þþ 1

k 1ð Þ¼K 1ð Þ
p1;k 1ð Þ: ð29Þ
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Probabilities and pure distributions of different outcomes of competition are as
follows:

pw1 ¼
XK 1ð Þ�1

k 1ð Þ¼1 1ð Þ
p1;k 1ð Þ �

Xk 1ð Þþ 1

k 2ð Þ¼K 2ð Þ
p2;k 2ð Þ;uw1 tð Þ ¼ hw1 tð Þ

pw1
; ð30Þ

pd ¼
Xmin K 1ð Þ;K 2ð Þ½ �

k 1ð Þ¼k 2ð Þ½ �¼1

p1;k 1ð Þp2;k 2ð Þd t � T1;k 1ð Þ
� �

;ud tð Þ ¼ hd tð Þ
pd

; ð31Þ

pw2 ¼
XK 2ð Þ�1

k 2ð Þ¼1 2ð Þ
p2;k 2ð Þ �

Xk 2ð Þþ 1

k 1ð Þ¼K 1ð Þ
p1;k 1ð Þ;uw2 tð Þ ¼ hw2 tð Þ

pw2
: ð32Þ

If in competition wins the one of participants, for example the first, he waits until
the second participant complete the distance during the time [8]

u1!2 tð Þ ¼
g tð Þ R1

0

e/1 sð Þ � e/2 tþ nð Þdn
R1
0

eU1 tð Þd eU2 tð Þ
; ð33Þ

where g tð Þ is the Heaviside function; n is an additional argument having the dimension
of time.

When e/1 sð Þ and e/2 sð Þ have the same domain left s1;0 ¼ s2;0 ¼ s0 and right s1;K ¼
s2;K ¼ sK border, and the same sampling interval D (see Fig. 1), then discrete variant of
(30) is as follows:

u1!2 tð Þ ¼

PK 1ð Þ

k 1ð Þ¼1

PK 2ð Þ�k 1ð Þþ 1

k 2ð Þ¼k 1ð Þ
p1;k 2ð Þp2;k 1ð Þþ k 2ð Þ�1d t � D k 1ð Þ � 1½ �f g

PK 1ð Þ

k 1ð Þ¼1

PK 2ð Þ�k 1ð Þþ 1

k 2ð Þ¼k 1ð Þ
p1;k 2ð Þp2;k 1ð Þþ k 2ð Þ�1

: ð34Þ

Similarly,

u2!1 tð Þ ¼

PK 1ð Þ

k 1ð Þ¼1

PK 2ð Þ�k 1ð Þþ 1

k 2ð Þ¼k 1ð Þ
p2;k 2ð Þp1;k 1ð Þþ k 2ð Þ�1d t � D k 1ð Þ � 1½ �f g

PK 1ð Þ

k 1ð Þ¼1

PK 2ð Þ�k 1ð Þþ 1

k 2ð Þ¼k 1ð Þ
p2;k 2ð Þp1;k 1ð Þþ k 2ð Þ�1

: ð35Þ

Formulae obtained permit to describe recursive procedure of the system analysis.
Recursive procedure begins from semi-step a0; z0ð Þ, which causes semi-steps z0; 1a1ð Þ
and z0; 1a2ð Þ, To execute such semi-steps substitutions
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1u1 tð Þ :¼ ef tð Þ; 1u2 tð Þ :¼ eg tð Þ; ð36Þ

should be done, which shows, that IH and IQG start simultaneously. When starting,
time densities 1u1 tð Þ and 1u2 tð Þ begin compete between them. There are three possible
outcomes of competition: 1u1 tð Þ wins, 1u1 tð Þ and 1u2 tð Þ draw; 1u2 tð Þ wins. For named
outcomes probabilities of switches, weighted and pure time densities are described with
formulae: (27), (30); (28), (31); (29), (32) correspondingly.

6 Conclusion

Digital model obtained permits to calculate main parameters, necessary when studying
system with interruption, time interval, which system spend for wandering from one
state to another and probability of such a walk. Simple algorithm of calculation permit
use proposed method for optimization of system as a whole, for example for opti-
mization of interrupt handler runtime. Further development of the method may be
direct to optimization of sampling of standard distribution laws, alignment of samplings
of IQG and IH, etc.

The research was carried out within the state assignment of the Ministry of Edu-
cation and Science of Russian Federation (No. 2.3121.2017/PCH).
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Abstract. Information exploitation processes use different data mining algo-
rithms for obtaining knowledge patterns from data obtained on the problem
domain. One of the assumptions when working with these algorithms is that the
complexity of the membership domain of the cases they use does not affect the
quality of the obtained results. So, it is important to analyze the behavior of the
information exploitation process through the discovery of group membership
rules by using clustering and induction algorithms. This research characterizes
the complexity of the domains in terms of the pieces of knowledge that describe
them and information exploitation processes they seek to discover. The results
of the experiments show that, in the case of the process for discovering group
membership rules, the quality of the patterns differs depending on the algorithms
used in the process and the complexity of the domains to which they are applied.

Keywords: Information exploitation engineering �
Information exploitation process � Complexity of domains � Clustering �
Induction algorithm performance

1 Introduction

Information exploitation is defined as the search for relevant patterns and regularities in
large masses of information [1, 2]. Information exploitation based on intelligent sys-
tems [3] refers specifically to the application of intelligent system methods to discover
and enumerate patterns in the information.

The authors in [4] have defined five information exploitation processes: discovery
of behavioral rules, discovery of groups, discovery of significant attributes, discovery
of group membership rules, and weighting of behavioral rules or group member-
ship. The information exploitation processes use different data mining algorithms for
obtaining knowledge patterns from the examples (instances) selected on the domain of
problem. One of the implicit assumptions of these algorithms is that when the algo-
rithms for the information exploitation process are fixed, the complexity of the domain
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on which information is applied does not impact on the quality of the patterns obtained.
However, there is evidence [5] that the complexity of the domains, in terms of the
pieces of knowledge that describe them and the information exploitation processes they
seek to discover, emerges as a component to consider when analyzing the quality of the
results to be obtained [6].

In this context, the research seeks to demonstrate through an experiment that, in the
case of the information exploitation process in the discovery of group membership
rules, the quality of the produced patterns differ depending on the complexity of the
domains on which they are applied and the algorithms used in the process [7–9].

The following research questions emerge: Is the assumption that the performance of
any pair of algorithms used to discover group membership rules independent of the
complexity of the domain? In the case that this assumption is false: What is the pair that
provides a better understanding about the situation according to the complexity of the
domain?

2 Theoretical Review

2.1 Information Exploitation Process

Information Exploitation (DM for Data Mining) consists of the extraction of nontrivial
knowledge that is implicit in the data available from different sources of information
[Schiefer et al. 2004]. Such knowledge is previously unknown and can be useful for
some processes [10]. For an expert, or the person responsible for a system, data are not
usually the most relevant issue but the knowledge that is enclosed in their relations,
fluctuations, and dependencies.

This discipline encompasses a set of techniques aimed at the extraction of
actionable knowledge, implicit in the Data Warehouse (DW) or another storage system
of the organization. The bases of these techniques can be found in the statistical
analysis and intelligent systems. Information Exploitation addresses the solution of
problems related to prediction, classification, and segmentation [11, 12].

A process of information, or an information exploitation process [13] can be
defined as a set of logically related tasks running to achieve, from a set of information
with a degree of value for the organization, another set of information with a degree of
value greater than the initial one [13]. Each information exploitation process defines a
set of input, a set of transformations, and a set of output information. An information
exploitation process can be part of a larger process or can include other information
exploitation processes that must be included in it, allowing a view from several levels
of granularity [14].

For this paper, it is important to describe the process of discovering group mem-
bership rules using clustering and induction algorithms for the knowledge extraction.

The process of discovering group membership rules applies when the business
problem requires identifying the characteristics, described in terms of attributes, and
their possible values from a set of a priori classes that are unknown but are in the mass
of the available information about the domain of problem. The process can be
described as follows: the first step is to identify the existing sources of information in
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the organization that offer relevant data about the addressed problem. After identifying
the variables, they are included in the same source of information called integrated data
[15–17].

Clustering algorithms are applied once the data are integrated, obtaining a partition
of the set of records in different groups that are called identified groups, subsequently
generating files associated with each identified group, which are referred to as ordered
groups. The attribute group of each ordered group is used as the class attribute of that
group, later becoming a file with identified class attribute (GR). Finally, an induction
algorithm is implemented to obtain a set of rules that define the behavior of each group
[18, 19].

2.2 Domain Classification by Complexity

To address the issue of complexity of domains, in [8], it is characterized in terms of
pieces of knowledge (rules) that explain the membership of an instance (example) to a
specific domain. So, the complexity of domain is characterized by the number of
classes that describe it, the number of rules that define the membership to each class,
the number of attributes that each rule can have, and the number of values (different) of
each attribute.

Based on classification attributes set out and the classification protocol of proposed
domains, the authors in [7, 20, 21] classify the domains according to their complexity
in the following types:

Simple Complexity Domains: Those domains in which the increase in number of
examples by rule improves the coverage of rules independent of other used
dimensions.
Medium Complexity Domains: Those domains explained by examples with few
attributes and few classes, or few attributes and many classes, or few classes and
few rules per class.
Oscillating Domains: Those domains that are explained with examples where the
number of attributes by example can vary, or number of examples supported by a
rule, or common values of attributes in a set of examples covered by the same rule.
Complex Domains: Those domains that are explained with examples with few
attributes and many possible values per attribute, or with many attributes and few
possible values per attribute, or with many attributes and many possible values per
attribute.
Hypercomplex Domains: Those domains that are explained with examples where
there can be a variation in the number of possible values that can be taken by the
attributes, the number of attributes that cover examples, the number of rules that
cover examples, or the number of classes.

3 Method

A tool based on the test bench or experimental design is proposed in [9]. This tool was
developed in JAVA 2.2.1 and PostgreSQL 11.2 as database manager.
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The tool allows to set the complexity of the domain on which the experimentation
will be conducted. For this purpose, the parameters of the relevant domain must be
defined manually (or the system allows the automatic allocation), so generating the free
variables (without restrictions in their values) at random. The basic parameters to be
defined for the determination of the domain complexity are shown in Table 1.

Table 1. The basic parameters to be defined for determining the domain complexity.

Item Description

Number of Classes (CC) The number of different classes that will be created
by the tool; each class will have a set of rules and
therefore a set of examples; the number of classes
will dictate the number of groups where all the
examples generated in an experiment will be
grouped

Number of Attributes (CA) The number of attributes that the examples to be
generated will have; at the same time, each attribute
will have a certain number of possible values

Number of Possible Values per
Attribute (CVA)

The number of different values that an attribute can
take both at the time of generating a rule that will
impose a condition on a certain attribute (in this case,
the number of possible values will be limited, as
shown later) or when generating the examples

Percentage of Possible Values per
Attribute in Rules (PCVA)

The percentage of the number of possible values per
attribute that will be considered to create the rules

Percentage of Examples used for
Training the Algorithms (PENT)

The percentage of generated examples that will be
used for training the clustering and induction
algorithms before completely running them; the
training examples are randomly selected from the
full set of examples

Number of Rules to be generated for
each class (CRC)

The number of rules that is generated for each class;
the generated rules describe each class since the
examples of domain are generated from them

Number of Examples to be generated
for each rule (CER)

The number of examples to be generated for each
rule; it should be considered that the number of
examples will depend on the number of classes that
have been defined, the number of rules to generate
per class as defined, and this parameter; therefore,
the number of examples generated will quickly rise
depending on the values assigned to the parameters

Number of attributes to use in each
rule (CAR).

This parameter can be understood as the number of
conditions that each rule generated by the tool will
have; the value of this parameter must be less than or
equal to the number of defined attributes

Seed for generation of Random
Numbers (SEM)

The seed that will be used by the tool to generate
random numbers that feed the whole process of
experimentation
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The definition of domains in laboratory conditions involves the generation of a set
of “original” rules. Based on these rules, examples will be generated to support it. Each
rule presents the following format “if att1 = val1 and att2 = val2… and attn = valn
then Cn”. The number of rules to be generated and the number of conditions of the
rules, as well as the number of classes, attributes, and values are defined based on the
values set by the experiment parameters. The experiment is composed of 3 steps:

[i] The first step defines the complexity of the domain to be analyzed and
determines its parameters. As a result of this case, the rules of domain and the
number of cases that support these rules are generated.

[ii] The second step consists in the implementation of each of the possible pairs of
data mining algorithms, thus obtaining the set of discovered rules.

[iii] The third and final step consists in the comparison between the set of clas-
sification rules generated in the first step and the rules discovered in the second
step. The percentage of rules discovered in the right way defines the success of
the experiment [9, 22, 23].

4 Results

For the experimental development, 7500 experiences were conducted (300 scenarios
for each of the 5 types of domains) to perform the analysis of 30 possible combinations
of algorithm pairs. The variables of each scenario were defined at random according to
the possible variations between the domains listed in [9]. Categories were defined to
establish the variation of values for each relevant variable (Table 2), the relationship
between these categories (per parameter), and the complexity of the domain (Table 3).

Table 2. Categorization of variable variation

Variables Low Medium High

CC 2–4 5–7 8–10
CRC 1–5 6–10 11–15
CER 1–7 8–14 15–21
CAR 1–2 3–4 5–6
CVA 1–4 5–7 8–10
PCVA 1–40 41–70 71–100
CA 1–4 5–7 8–10
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Table 3 derives the possible compositions of each scenario according to its com-
plexity. Simple Complexity Scenarios: for simple scenarios of complexity, the variable
CER varies from 15 to 21 while holding fixed the value of the rest of variables [24, 25].

Medium Complexity scenarios: in these scenarios, variables vary. Number of
classes in the range from 2 to 4; Number of rules per Class in the range from 1 to 5,
Number of Rule attributes in the range from 1 to 2; and number of attributes in the
range from 1 to 5.

Oscillating Complexity Scenarios: in these scenarios, variables vary. Number of
Rule Attributes in the range from 3 to 6; Number of Attribute values in the range from
8 to 10; and number of examples by rule in the range from 15 to 21.

Complex Complexity Scenarios: for these scenarios, variables vary. Number of
Rule Attributes in the range from 3 to 4, Number of Attribute Values in the range from
4 to 7, number of examples per rule in the range from 15 to 21, Percentage of Possible
Attribute Values in the range from 45 to 70, and the Number of Attributes in the range
from 5 to 7.

Hypercomplex Complexity Scenarios: in these scenarios, the variables vary.
Number of Classes in the range from 2 to 4, Number of Rules per Class in the range
from 1 to 5, Number of Attribute Values in the range from 8 to 10, Number of
Examples per Rule in the range from 15 to 21, Percentage of Possible Values Attribute
in the range from 75 to 100, and Number of Attributes in the range from 2 to 4.

The development of the experiment generated a matrix of complexity which details
the average results of success of each pair of algorithms from the generated 100 cases.
Tables 4, 5, 6, 7 and 8 present the results.

Table 4 shows the average results obtained for Simple complexity domains with
each combination of algorithms. Note that the best combination for this type of
complexity are the SOM and ID3 algorithms with a 73.8% of rules properly covered on
average, followed by the combination Farthest First and ID3 with 67.55%.

The higher results from the point of view of induction can be seen in the Column of
the ID3 algorithm and, from the point of view of clustering, in the row that belongs to
the SOM algorithm with their respective combinations. The lower results are found in
the combinations of clustering algorithms with induction algorithms AQ15 and CN2.

Table 3. Relation between complexity and independent variables according to the variation
range

Complexity/variables CC CRC CAR CVA CER PCVA CA

Simple High

Medium Low Low Low Low-medium
Oscillating Medium-high High High
Complex Medium Low-medium High Medium Medium

Hypercomplex Low Low High High High Low
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Table 5 shows the average results obtained for the domains of medium complexity.
The best combination of algorithms for this type of complexity was Farthest First and
ID3 with 53.31% of rules properly covered on average, followed by the combination
SOM and ID3 with 51.87%. In general, it can be observed that, for this type of
complexity, results are fewer in relation to those obtained for domains of other
complexities.

Table 6 shows the average results obtained for Oscillating complexity domains.
The best combination of algorithms for this type of complexity was KNN and a priori
with 95.13% of rules correctly covered on average, followed by the combination EM
and a priori with 90.14%. From the point of view of the induction algorithms, the
combinations of the A priori algorithm present the highest results, while, from the point
of view of the clustering algorithms, the KMeans algorithm with its respective com-
binations has the highest averages. Note that combinations of AQ15 algorithm were the
lowest and combinations of the CN2 algorithm increased again.

Table 4. Simple complexity results

PART J48 ID3 A priori CN2 AQ15

KMeans 51.5 57.45 60.38 52.37 16.25 9
EM 39.75 40.77 39.14 63.75 11.12 9
Farthest First 46.35 49.1 67.13 62.12 10.37 6.75
SOM 51.86 62 73.8 49.75 25.12 10.87
KNN 36.11 40 53.23 52.5 12.37 8.5

Table 5. Medium complexity results

PART J48 ID3 A priori CN2 AQ15

KMeans 40.27 45.73 51.01 43.03 18.39 12.85
EM 32.84 34.97 41.72 49.43 15.18 9.71
Farthest First 36.05 38.11 53.31 46.08 15.70 8.84
SOM 40.62 46.16 51.87 40.12 18.09 11.26
KNN 38.66 41.45 45.58 34.10 18.87 13.01

Table 6. Oscillating complexity results

PART J48 ID3 A priori CN2 AQ15

KMeans 49.5 59.75 70.25 83.75 25.5 13.25
EM 40.62 48.5 48.75 90.14 21.83 11.13
Farthest First 48.75 53.5 71.5 83.75 22.37 9.25
SOM 29.12 30.87 61.62 84 21.12 2.5
KNN 9.62 9.37 19.5 95.13 14 1.5
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Table 7 shows the average results obtained for complex complexity domains. The
best combination of algorithms for this type of complexity was EM and a priori with
91.15% of rules correctly covered on average, followed by the combination KNN and
A priori with 88.3%. Again, in this type of complexity, the highest results are in the
combinations of the A priori algorithm with the clustering algorithms. Note that, for
this complexity, the combinations of ID3 also present high values and, from the point
of view of clustering algorithms, the best combinations are those where the Farthest
First algorithm is present.

Table 8 shows the average results obtained for Hypercomplex complexity domains
with each combination of algorithms. The best combination of algorithms for this type
of complexity was EM and A priori with 77.14% of rules correctly covered on average,
followed by the combination Farthest First and A priori with 71.90%. In this type of
complexity, the highest results are for the combinations with the CN2 algorithm,
reaching and sometimes exceeding the combinations of the PART algorithm.

5 Conclusions

From the previous results, it is possible to assert that the performance achieved by the
pairs of algorithms varies according to the complexity of the domain. The best pairs are
ordered by complexity in an increasing way: <SOM, ID3>, <Farthest First; ID3>,
<KNN, A PRIORI>, <EM, A PRIORI> and <EM, A PRIORI>. It can also be noted in
the results that the A PRIORI algorithm presents significant improvements for the last 3
complexities regardless of the clustering algorithm with which it is matched, high-
lighting that they show the highest level of performance.

Table 7. Complex complexity results

PART J48 ID3 A priori CN2 AQ15

KMeans 50 53.37 68.87 81.75 19 12.37
EM 22.13 24.12 27.87 91.15 16.4 6
Farthest First 54.75 54.63 77.75 82.5 16.75 10.75
SOM 46.62 51 72.25 80.62 17.37 8.25
KNN 27.12 27.25 54.62 88.3 16.87 4.625

Table 8. Hypercomplex complexity results

PART J48 ID3 A priori CN2 AQ15

KMeans 36.74 41.60 49.21 66.86 37.14 18.24
EM 25.54 28.64 29.65 77.14 30.19 10.97
Farthest First 31.31 35.46 40.65 71.90 31.81 12.81
SOM 34.67 40.96 52.17 61.34 37.051 19.65
KNN 22.65 25.12 34.24 70.31 32.051 12.9
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Although the pair presents the best levels of performance in the last 2 complexities
of domain, all of them present acceptable levels of success. The PART and J48
algorithms present the highest level of general success in the simplest domain. CN2 and
AQ15 algorithms present the lowest levels of success, for all complexities and com-
binations of algorithms in a global way. The CN2 algorithm presents improvements in
its results as the complexity increases, although all of them are significantly below the
performance.

References

1. Khella, R., Abu-Naser, S.S.: Rule based system for chest pain in infants and children. Int.
J. Eng. Inf. Syst. 1(4), 138–148 (2017)

2. Abu Naser, S.S., Baraka, M.H., Baraka, A.R.: A proposed expert system for guiding
freshman students in selecting a major in Al-Azhar University, Gaza. J. Theor. Appl. Inf.
Technol. 4(9) (2008)

3. Azaab, S., Abu Naser, S., Sulisel, O.: A proposed expert system for selecting exploratory
factor analysis procedures. J. Coll. Educ. 4(2), 9–26 (2000)

4. Abu-Nasser, B.S.: Medical expert systems survey. Int. J. Eng. Inf. Syst. 1(7), 218–224
(2017)

5. AlZamily, J.Y., Abu-Naser, S.S.: A cognitive system for diagnosing musa acuminata
disorders. Int. J. Acad. Inf. Syst. Res. (IJAISR) 2(8), 1–8 (2018)

6. Abu Naser, S.S.: Predicting learners performance using artificial neural networks in linear
programming intelligent tutoring system. Int. J. Artif. Intell. Appl. 3(2), 65 (2012)

7. Elzamly, A., Hussin, B., Abu Naser, S.S., Shibutani, T., Doheir, M.: Predicting critical cloud
computing security issues using Artificial Neural Network (ANNs) algorithms in banking
organizations. Int. J. Inf. Technol. Electr. Eng. 6(2), 40–45 (2017)

8. El Agha, M., Jarghon, A., Abu Naser, S.S.: Polymyalgia rheumatic expert system. Int.
J. Eng. Inf. Syst. (IJEAIS) 1(4), 125–137 (2017)

9. Abu Naser, S.S., Zaqout, I.S.: Knowledge-based systems that determine the appropriate
students major: In the faculty of engineering and information technology. World
Wide J. Multidiscip. Res. Dev. 2(10), 26–34 (2016)

10. Abu Naser, S., Akkila, A.N.: A proposed expert system for skin diseases diagnosis. J. Appl.
Sci. Res. 4(12), 1682–1693 (2008)

11. Kamatkar, S.J., Kamble, A., Viloria, A., Hernández-Fernandez, L., Cali, E.G.: Database
performance tuning and query optimization. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD
2018. LNCS, vol. 10943, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-93803-5_1

12. Viloria, A., Robayo, P.V.: Virtual network level of application composed IP networks
connected with systems-(NETS Peer-to-Peer). Indian J. Sci. Technol. 9(46) (2016)

13. Torres-Samuel, M., Vásquez, C.L., Viloria, A., Varela, N., Hernández-Fernandez, L.,
Portillo-Medina, R.: Analysis of patterns in the university world rankings Webometrics,
Shanghai, QS and SIR-SCimago: case Latin America. In: Tan, Y., Shi, Y., Tang, Q. (eds.)
DMBD 2018. LNCS, vol. 10943, pp. 188–199. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93803-5_18

14. Huggins, J., Campbell, T., Broderick, T.: Coresets for scalable bayesian logistic regression.
In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 29, pp. 4080–4088. Curran Associates, Inc. (2016)

Algorithm Integration Behavior 37

http://dx.doi.org/10.1007/978-3-319-93803-5_1
http://dx.doi.org/10.1007/978-3-319-93803-5_1
http://dx.doi.org/10.1007/978-3-319-93803-5_18
http://dx.doi.org/10.1007/978-3-319-93803-5_18


15. Munteanu, A., Schwiegelshohn, C., Sohler, C., Woodruff, D.: On coresets for logistic
regression. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 31, pp. 6562–6571.
Curran Associates, Inc. (2018)

16. Ostrovsky, R., Rabani, Y., Schulman, L.J., Swamy, C.: The effectiveness of Lloyd-type
methods for the k-means problem. In: 47th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2006, pp. 165–176. IEEE (2006)

17. Trelles, O., Prins, P., Snir, M., Jansen, R.C.: Big data, but are we ready? Nat. Rev. Genet. 12
(3), 224 (2011)

18. Torres-Samuel, M., et al.: Efficiency analysis of the visibility of Latin American universities
and their impact on the ranking web. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018.
LNCS, vol. 10943, pp. 235–243. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
93803-5_22

19. Alaei, A.R., Becken, S., Stantic, B.: Sentiment analysis in tourism: capitalizing on big data.
J. Travel. Res. 58(2), 175–191 (2019). https://doi.org/10.1177/0047287517747753

20. Abu Naser, S.S., Shaath, M.Z.: Expert system urination problems diagnosis. World
Wide J. Multidiscip. Res. Dev. 2(5), 9–19 (2016)

21. Boyd, D., Crawford, K.: Six Provocations for big data. In: A Decade in Internet Time:
Symposium on the Dynamics of the Internet and Society (2011). SSRN: http://ssrn.com/
abstract=1926431 or http://dx.doi.org/10.2139/ssrn.1926431

22. Moreno, A., Moro, E.: Big data versus small data: the case of ‘gripe’ (flu) in Spanish.
Procedia Soc. Behav. Sci. 198, 339–343 (2015)

23. Liu, B.: Sentiment Analysis and Opinion Mining. Morgan and Claypool, Chicago (2012)
24. Garcia, D., Garas, A., Schweitzer, F.: Positive words carry less information than negative

words. EPJ Data Sci. 1, 3 (2012). http://www.epjdatascience.com/content/1/1/3
25. Lazer, D., Kennedy, R., King, G., Vespignani, A.: Big data. The parable of Google Flu: traps

in big data analysis. Science 343(6176), 1203–1205 (2014)

38 J. Silva et al.

http://dx.doi.org/10.1007/978-3-319-93803-5_22
http://dx.doi.org/10.1007/978-3-319-93803-5_22
http://dx.doi.org/10.1177/0047287517747753
http://ssrn.com/abstract=1926431
http://ssrn.com/abstract=1926431
http://dx.doi.org/10.2139/ssrn.1926431
http://www.epjdatascience.com/content/1/1/3


Success-History Based Position Adaptation
in Co-operation of Biology Related Algorithms

Shakhnaz Akhmedova(&), Vladimir Stanovov, and Eugene Semenkin

Reshetnev Siberian State University of Science and Technology,
“Krasnoyarskiy Rabochiy” Av. 31, 660037 Krasnoyarsk, Russia

shahnaz@inbox.ru,

{vladimirstanovov,eugenesemenkin}@yandex.ru

Abstract. Previously, a meta-heuristic approach called Co-Operation of Biol-
ogy Related Algorithms or COBRA based on a fuzzy logic controller for solving
real-parameter optimization problems was introduced and described. COBRA’s
basic idea consists in a cooperative work of well-known bio-inspired algorithms
with similar schemes, while the fuzzy logic controller determines which bio-
inspired algorithms should be included in the co-operative work at a given
moment for solving optimization problems using the COBRA approach.
COBRA’s performance has been evaluated on a set of test functions and its
workability demonstrated. However, COBRA’s search efficiency depends sig-
nificantly on its ability to keep the balance between exploration and exploitation
when solving complex multimodal problems. In this study, a new technique for
generating potential solutions in biology-inspired algorithms is proposed. This
technique uses a historical memory of successful positions found by individuals
to guide them in different directions and thus to improve the exploration and
exploitation abilities. The proposed method was applied to the components of
the COBRA approach. The modified meta-heuristic as well as its original variant
and components (with and without the proposed modification), were evaluated
on a set of various well-known test functions. The obtained experimental results
are presented and compared. It was established that the fuzzy-controlled
COBRA with success-history based position adaptation allows better solutions
with the same computational effort to be found. Thus, the usefulness of the
proposed position adaptation technique was demonstrated.

Keywords: Optimization � Biology-inspired algorithms � Cooperation �
External archive � Probabilistic distribution

1 Introduction

Co-Operation of Biology Related Algorithms or COBRA is a meta-heuristic approach
developed for solving unconstrained real-parameter optimization problems [1]. Its basic
idea consists in the cooperative simultaneous work of different biology-inspired
algorithms with similar schemes. In the original version of the COBRA approach, six
well-known bio-inspired heuristics were used as component-algorithms, namely the
Particle Swarm Optimization Algorithm (PSO) [2], the Wolf Pack Search Algorithm
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(WPS) [3], the Firefly Algorithm (FFA) [4], the Cuckoo Search Algorithm (CSA) [5],
the Bat Algorithm (BA) [6] and, finally, the Fish School Search Algorithm (FSS) [7].

However, there are various other algorithms which could be used as components
for COBRA. Moreover, previously conducted experiments demonstrated that even the
bio-inspired algorithms which had already been chosen could be combined in different
ways. Later, the fuzzy-controlled COBRA was proposed, where the component-
algorithms and their population sizes were automatically determined by the fuzzy
controller [8]. This modification was called COBRA-f and its workability was
demonstrated in [9].

The COBRA-f approach was originally developed for continuous variable space,
but despite its effectiveness compared to the above-listed biology-related algorithms
(its components and the original COBRA), the COBRA-f meta-heuristic still needs to
address the exploration (visiting entirely new regions of the search space) and
exploitation (visiting regions of the search space within the neighbourhood of previ-
ously visited points) of the search space [10].

A variety of ideas has been proposed to seek the balance between exploration and
exploitation of the population-based algorithms, which includes parameter adaptation
methods, population size control, island models and many others (for example, [11] or
[12]). One of the valuable ideas proposed for the DE algorithm in [13] is to use an
archive of potentially good solutions, which is limited in size and updated as the search
proceeds. This idea is similar to the external non-dominated set of solutions used in
multi-objective optimizers such as SPEA or SPEA2 [14].

The advantage of the archive is that it contains promising solutions that appear to
have valuable information about the search space and its promising regions, thereby
indicating the history of algorithms’ successful searches [13]. The idea of using such
information could be applied to any population-based method. In this paper, the idea of
applying the success-history based archive of potentially good solutions is applied to
the biology-inspired component-algorithms of the COBRA-f approach.

Therefore, in this paper firstly the COBRA-f meta-heuristic approach is described,
and then a description of the modified fuzzy-controlled COBRA is presented. In the
next section, the experimental results obtained by the fuzzy-controlled COBRA-f and
its new modification as well as results obtained by components with and without the
external archive are discussed and demonstrated. Finally, some conclusions are given
in the last section.

2 Fuzzy-Controlled COBRA

The meta-heuristic approach called Co-Operation of Biology Related Algorithms or
COBRA [1] was developed based on six optimization methods, namely Particle Swarm
Optimization (PSO) [2], the Wolf Pack Search (WPS) [3], the Firefly Algorithm
(FFA) [4], the Cuckoo Search Algorithm (CSA) [5], the Bat Algorithm (BA) [6] and
the Fish School Search (FSS) [7] (hereinafter referred to as “component-algorithms”).
The proposed approach consists in the generation of one population for each biology-
inspired algorithm, giving six populations, which are then executed in parallel, coop-
erating simultaneously with each other.
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The fuzzy-controlled COBRA is a self-tuning meta-heuristic, so there is no need to
choose the population size for each component-algorithm [8]. The number of indi-
viduals in the population of each algorithm can increase or decrease depending on the
fitness values. To be more specific, the success rates of component-algorithms were
used as the fuzzy controller’s inputs and the population size changes as outputs [8].

The fuzzy controller had seven input variables, including six success rates, one for
each component and an overall success rate, and six output variables, i.e. the number of
solutions to be added to or removed from each component. The success rate for the first
six input variables is the best fitness value of a given population. The last input variable
is determined as the ratio of the number of iterations during which the best found fitness
value was improved to a given number of iterations, which is a pre-defined constant.
Thus, the process of population growth is automated by the fuzzy controller [8].

The Mamdani-type fuzzy inference is used to obtain the output values. The rule
base contained 21 fuzzy rules and had the following structure: each three rules
described the case when one of the components gave better results than the others (as
there are six components, 18 rules were established); the last three rules used the
overall success of all components (variable 7) to add or remove solutions from all
components, i.e. to regulate the computational resources [8].

The input variables were always in the range [0, 1], and fixed fuzzy terms of
triangular shape were used for this case. In addition to the three classical fuzzy sets A1,
A2 and A3, the “Don’t Care” (DC) condition and the A4 term with the meaning “larger
than 0” (opposite to A1) were also used to decrease the number of rules and make them
simpler [8]. For the outputs, three fuzzy terms of triangular shape were used. The
output fuzzy terms were symmetrical, and the positions and shapes were determined by
two values, encoding the left and right position of the central term, as well as the
middle position of the side terms in one value, and the left and right positions of the
side term in another value. These values were optimized using the PSO algorithm and
the parameters [−12, −2, 0, 19] were obtained according to [8]. The defuzzification
procedure is performed by calculating the centre of mass of the shape received by fuzzy
inference.

In addition, all populations communicated with each other with the aim of pre-
venting their preliminary convergence to the local modes. The communication was
determined in the following way: populations exchanged individuals in such a way that
a part of the worst individuals of each population was replaced by the best individuals
of other populations. Thus, the group performance of all algorithms could be improved.

The performance of the fuzzy-controlled COBRA was evaluated on a set of
benchmark problems with 10 and 30 variables taken from [15] and the experiments
showed that COBRA-f works successfully and is reliable on different benchmarks [8,
9]. Besides, the meta-heuristic COBRA-f was compared with its component-algorithms
and with the original COBRA, and simulations and the comparison showed that
COBRA-f is superior to these biology-inspired algorithms when the dimension grows
or when complicated problems are solved [8].
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3 Proposed Modification

In this study, the success-history based position adaptation of potential solutions for
improving the search diversity of the biology-inspired component-algorithms of the
COBRA approach and consequently COBRA’s efficiency is introduced. The key
concept of the proposed technique can be described as follows.

First of all, the initial population for a given biology-inspired component-algorithm
is generated. To be more specific, the set of potential solutions called individuals and
represented as real-valued vectors with length D, where D is the number of dimensions
for a given optimization problem, is randomly generated. Additionally, the external
archive for best found positions is created. The maximum size of this archive is chosen
by the end-user and stays the same during the work of the component-algorithm, but at
the beginning the external archive is empty.

For each individual in each population, the local best found position (the best found
position by a given individual) in the search space is also saved. Thus, the local best for
each individual is initially its current coordinates. If later the improved position is
discovered, then it will be used as the local best and the previous one will be stored in
the external archive.

The process of the external archive update for component-algorithms can be
described with the following pseudo-code for a minimization problem:

A is the external archive with maximum size |A|
The current number of individuals stored in A is k
The individuals stored in the archive are Ai, i = 1,…,k
N is the population size
The individuals in the population are Pj, j = 1,…,N
The local best for each Pj is localj, j = 1,…,N
The objective function is f
For each individual Pj (j = 1,…,N)
If f(Pj) < f(localj)
If (k + 1) ≤ |A|
Ak+1 = localj
k = k + 1

End If
If (k + 1) > |A|
Randomly choose the integer r from 1 to |A|
If f(localj) < f(Ar)
Ar = localj

End If
End If
localj = Pj

End If

End For
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As was mentioned earlier, firstly six populations for component-algorithms are
generated. For each component-algorithm, an external archive is created, and then all
component-algorithms are executed in parallel. Later, when individuals change their
position in the search space according to the formulas given for the considered
component-algorithm, they can use the individuals stored in the archive with some
probability pa.

Despite the fact that there is one renewable external archive for each component-
algorithm, only three of them use archives during their execution. This is because
previously conducted research demonstrated that only the Firefly Algorithm, the
Cuckoo Search Algorithm and the Bat Algorithm show statistically better results by
using an archive for an individual’s position adaptation [16]. Firstly, let’s consider the
Bat Algorithm [6]. Each i-th individual from the population in the Bat Algorithm is
represented by its coordinates xi and velocity vi. The following formulas are used for
updating velocities and locations/solutions in the BA approach:

vi tþ 1ð Þ ¼ vi tð Þ þ xi tð Þ�x�ð Þ � fi: ð1Þ

xi tþ 1ð Þ ¼ vi tþ 1ð Þþ xi tð Þ: ð2Þ

where t and (t + 1) are the numbers which indicate the current and the next iterations, x*

is the current best found solution by the whole population, and fi is the frequency of the
emitted pulses for the i-th individual [6]. Thus, with the probability pa instead of x* the
randomly chosen individual Ai from the external archive (if it is not empty) will be
used. This is done with the expectation that individuals will move in multiple directions
and, therefore, will be able to find better solutions.

For the other two algorithms, FFA and CSA, the archive is used in the same way:
with probability pa the current point of attraction x

* is changed to the stored solution Ai.
To be more specific, in the CSA approach, individuals are sorted according to the
objective function. Then part of the worst ones is removed from the population and
new individuals are generated instead of them using the external archive with a given
probability pa. On the other hand, in the FFA approach, a firefly or individual moves
towards another firefly or individual if the latter has a better objective function value
[4]. Thus, while using the proposed technique for the FFA approach, the firefly can be
moved also towards individuals from the external archive.

After the simultaneous execution of all component-algorithms, the fuzzy controller
makes a decision about the population sizes of components. To be more specific, each
population’s size can decrease to a minimal value chosen by the end-user or increase
(the maximum population size is also established beforehand). While increasing the
population size, new individuals can be generated using the following scheme:
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paddi is the probability for using normal distribution 
N(a, σ) with mean value a and standard deviation σ
|Aci| is the current archive size of the i-th population
alg_besti is the currently best found position by the i-
th population 
Generate random number rand from the interval [0, 1]
If rand ≤ paddi and |Aci| > 0

Generate random integer r from [1,|Aci|]
a = 0.5∙(Acir + alg_besti)
σ = |Acir – alg_besti|
Generate new individual ind_new = N(a, σ)

End If
Else

Generate new individual ind_new around the alg_besti
End Else

As was mentioned earlier, populations also communicate with each other. How-
ever, in this version of the fuzzy-controlled COBRA, part of the worst individuals of
each population is replaced by new individuals generated by a scheme similar to the
one described above, but instead of alg_besti the currently best found position by all
populations is used.

Thus, the position adaptation strategy of success-history based potential solutions
depends on the probability pa (there are three values for this probability, specifically
one value for each component-algorithm that uses its archive during the execution), the
maximum archive size |A| and probabilities paddi (one for each component-algorithm).

4 Experimental Results

To check the efficiency of the proposed algorithm, the modified COBRA-f algorithm,
called COBRA-fas, was tested on a set of 23 classical test problems. These functions
have been widely used in literature, for instance [17], and their descriptions are given in
[18]. The set of mentioned benchmark functions includes classical benchmark func-
tions such as Ackley’s, Rastrigin’s, Griewank’s, Sphere, Swefel’s and Rosenbrock’s
functions. They span a diverse set of features and are separated into three groups:
unimodal, high-dimensional and low-dimensional multimodal benchmark functions.

The performance of the suggested algorithm COBRA-fas was compared with other
state-of-the-art algorithms like PSO [2], WPS [3], FFA [4], CSA [5], BA [6] and FSS
[7]. These algorithms have several parameters that should be initialized before running.
The optimal control parameters usually depend on problems and they are unknown
without prior knowledge. Therefore, the initial values of the necessary parameters for
all algorithms were taken from the original papers dedicated to them.
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For all mentioned biology-inspired algorithms except COBRA-fas, the initial
population size was equal to 100 on all 23 benchmark functions for comparison, while
the maximum number of iterations was equal to 1000. Thus, to check the efficiency of
the proposed algorithm COBRA-fas, the maximum number of function evaluations was
set to 100000.

In order to show the advantage of the modification COBRA-fas more clearly, it was
also compared with the fuzzy-controlled COBRA-f. For COBRA-f the maximum
number of function evaluations was also set to 100000. Parameters for the COBRA-fas
approach were found by PSO in the same way as for the COBRA-f algorithm [8], with
the following parameters being obtained: [−3, −2, 0, 10]. The maximum archive size
|Ai| for each component-algorithm of the COBRA-fas meta-heuristic was equal to 50.
The minimum population size for each component was set to 0, but if the total sum of
population sizes was equal to 0, then all population sizes increased up to 10. Addi-
tionally, the maximum total sum of population sizes was set to 300.

Previously conducted experiments showed that the probability of using the external
archive should have the following values for FFA, CSA and BA: 0.75, 0.6 and 0.15
respectively [16]. For the rest of the component-algorithms, the probability of using the
external archive was set to 0 (the archive was not used specifically during the execution
of a given component-algorithm but was updated). The probability paddi for the i-th
component-algorithm was set to 0.25, where i = 1, …, 6.

COBRA-fas was also compared with modified versions of FFA, CSA and BA: each
modification used the external archive for position adaptation of individuals [16]. For
these modifications (FFA-a, CSA-a and BA-a), the same maximum archive size as for
COBRA-fas was chosen. For them, the initial population size was equal to 100 on each
benchmark function and the maximum number of iterations was equal to 1000.

Each of the 23 problems was solved by all the mentioned algorithms and the
experimental results such as average and standard deviation (SD) values are reported.
Statistical parameter results are presented in Table 1. The outcomes are averaged over
30 program runs and the best results are shown in bold type in Table 1.

From Table 2 it can be observed that the proposed approach COBRA-fas outper-
formed state-of-the-art approaches and their modifications as well as COBRA-f on five
unimodal functions (f1, f2, f3, f6 and f7) in terms of the mean and standard deviation of
the results. Regarding function f4, COBRA-fas was outperformed only by the fuzzy-
controlled COBRA-f in terms of the mean and standard deviation of the results.
However, the median value obtained by COBRA-fas for f4 was the best among all the
others. Finally, regarding function f5, COBRA-fas was outperformed only by the
modification CSA-a.

For multimodal functions f8–f13 with many local minima, the final results are more
important because these functions can reflect the algorithm’s ability to escape from
local optima. For functions f9, f10 and f11, COBRA-fas was successful in finding the
global minimum. For function f8, CSA’s modification with the external archive CSA-a
gave the best results, but the median value found by COBRA-fas was equal to the
global minimum. Regarding f10, several algorithms gave the same results, with
COBRA-fas and COBRA-f being among them. For function f12, the proposed modi-
fication CSA-a produced better results compared to the others. Regarding function f13,
CSA-a outperformed the others in terms of the mean and standard deviation of the
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results. However, the median value obtained by COBRA-fas for this function was the
best. Therefore, it can be concluded that the proposed algorithm also has a high
exploration ability.

For f14–f23 with only a few local minima, the dimension of the function is also
small. For functions f14, f15, f16, f17, f18, f19 and f23, COBRA-fas was successful in
finding the global minimum. Regarding f14 and f16, PSO, COBRA-f and COBRA-fas
produced the same results. For function f17, PSO, FSS, COBRA-f and COBRA-fas also
gave the same values. Regarding f18 and f19, COBRA-f and COBRA-fas produced the
same mean, standard deviation and median values. From Table 1, it can be observed
that the COBRA-fas approach performs better than the other algorithms on the mul-
timodal low-dimensional benchmarks.

In Table 2, the results of comparison between COBRA-fas and the other mentioned
algorithms according to the Mann-Whitney statistical test with significance level
p = 0.01 are presented. The following notations are used in Table 2: “+” means that
COBRA-fas was better compared to a given algorithm, similarly, “–” means that
proposed algorithm was statistically worse, and “=” means that there was no significant
difference between their results.

Thus, the comparison demonstrates that proposed modification COBRA-fas sig-
nificantly outperforms other algorithms. Therefore, it can be used for solving the
optimization problems instead of the other algorithms used in this study.

5 Conclusions

In this paper, a new modification of the meta-heuristic COBRA, namely the COBRA-
fas meta-heuristic, is proposed for solving real-valued unconstrained optimization
problems. This algorithm is compared with others using a set of 23 test functions. The
experimental results show that the performance of the proposed algorithm is superior to
that of the other biology-inspired algorithms: it is better at exploiting the search space
and also has advantages in exploration.

In future research, real-world problems will be solved using the COBRA-fas
approach to determine whether the modification provides good results in real cases with
the parameters obtained in this study. This algorithm could also be considered for usage
in multi-objective and constrained optimization problems.

Acknowledgments. Research is performed with the support of the Ministry of Education and
Science of the Russian Federation within State Assignment project № 2.1680.2017/ПЧ.

Table 2. Results of the Mann-Whitney statistical test with p = 0.01

PSO WPS FSS CSA FFA BA CSA-a FFA-a BA-a COBRA-f

+ 15 12 17 17 23 12 11 13 11 8
– 0 0 0 1 0 0 2 0 0 1
¼ 5 8 3 2 0 11 7 7 12 11
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Abstract. As a nature inspired metaheuristic algorithm, Water Cycle Algorithm
(WCA) has been applied to some real-world problems for its excellent opti-
mization performance. However, in standard WCA, each individual only learns
information from a higher level individual but lacks communication among inter
peers, which leads to the loss of some important information. In order to address
this problem, an inter-peer communication mechanism based Water Cycle
Algorithm (IPCWCA) is presented in this paper. In IPCWCA, besides getting
information from higher level individual, each stream and river communicate
with one of their peers to increase the diversity of whole population and enhance
the efficiency of optimization. To explore the efficiency of IPCWCA, other four
heuristic algorithms are involved to test on eight benchmark functions. Exper-
imental results show that IPCWCA performs better on solving different types of
problems compared with other four algorithms.

Keywords: Standard water cycle algorithm �
Inter-peer communication mechanism � IPCWCA

1 Introduction

Water Cycle Algorithm (WCA) was inspired by the nature phenomenon of water cycle
and presented by Eskandar et al. [1], describing the processes including water cycle and
the flow among streams, rivers and sea in detail. In WCA, initial individuals are
generated at first and then chosen as sea, rivers and streams according to the fitness
values. Then, flow step makes streams flow to sea and rivers and makes rivers flow to
sea. Last, as important portions of water cycle, evaporation and raining start, which
avoid WCA being trapped into local optima.

Recently, WCA has attracted the attention of scholars widely. For the purpose of
enhancing the original WCA’s performance, many variances and real-world applica-
tions of it are presented. To modify the original WCA, Seyed et al. [2] proposed an
improved WCA by introducing a local optimization operator. Wang et al. [3] presented
a binary encoding water cycle algorithm to solve the Bayesian network structures
learning problem. Ahmed et al. [4] proposed a novel WCA (MWCA) to address
Directional Over Current Relays’ optimal coordination problems. Besides, improved

© Springer Nature Switzerland AG 2019
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WCAs have been applied to many areas, such as electrical power systems [5], traveling
salesman problem [6], traffic light scheduling problem [7] and so on.

In this paper, an inter-peer communication mechanism based Water Cycle Algo-
rithm (IPCWCA) is proposed to promote the information communication among
individuals and then improve the performance of WCA. This inter-peer communication
mechanism requires each stream and river to select a peer randomly before flowing to a
higher level individual and learn from some dimensions of its peer. After learning from
a peer, the position of each stream and river will be updated.

The rest of the paper is organized as follows: Sect. 2 introduces the principle of
original WCA briefly. The proposed IPCWCA is presented in Sect. 3. In Sect. 4, some
algorithms and the proposed WCA were tested on a series of benchmark functions.
Finally, Sect. 5 draws conclusions and gives future work.

2 Water Cycle Algorithms

Water Cycle Algorithm (WCA) is a new metaeuristic optimization approach to solve
the constrained engineering optimization problems, which simulates the processes of
water cycle and the flow among streams, rivers and sea.

WCA can be summarized as:

(i) Initialization. WCA creates initial population firstly and then calculates the
fitness value of all individuals. Among these individuals, sea is the best one
owing the best fitness value. Later, some rivers whose fitness values are closest
to the sea’s are selected. After choosing the sea and rivers, the remaining
individuals are regarded as streams and then will flow to the rivers and sea.

(ii) Flow. The intensity of flow to rivers and sea, using

NSn ¼ round
Cn

PNsr
n¼1 Cn

�
�
�
�
�

�
�
�
�
�
� NStreams

( )

; n ¼ 1; 2; . . .;Nsr ð1Þ

The new position of a stream after flowing to the rivers and sea, using

XStreamðtþ 1Þ ¼ XStreamðtÞþ rand � C � XSeaðtÞ � XStreamðtÞð Þ ð2Þ

XStreamðtþ 1Þ ¼ XStreamðtÞþ rand � C � XRiverðtÞ � XStreamðtÞð Þ ð3Þ

and then exchange the position of specific river/sea with a stream if the stream
has better fitness value.

The new position of a river after flowing to the sea, using

XRiverðtþ 1Þ ¼ XRiverðtÞþ rand � C � XSeaðtÞ � XRiverðtÞð Þ ð4Þ

and then exchange the position of sea with a river if the river has better fitness
value.
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(iii) Evaporation and Raining. This process is defined to prevent WCA from get-
ting into local optima and improve the performance of WCA. In WCA, evap-
oration leads individuals to evaporate and then rain as streams. The new streams
are generated, using:

XNew
Streamðtþ 1Þ ¼ LBþ rand � ðUB� LBÞ ð5Þ

3 Inter-Peer Communication Mechanism Based Water Cycle
Algorithm

As mentioned above, the individuals in standard WCA consist of three roles, including
sea, river and stream. Then, the streams flow to specific river and sea will be decided
according to the fitness value of the river and sea. To be more specific, take an
example, there are 10 streams flow to a river. 10 streams’ position will be updated after
flowing and the river will be replaced by a stream if the stream’s fitness value is better
than the river’s. Therefore, several rivers represent some local best individuals in their
own group and sea is the global best individual.

In original WCA, as an information exchange way, flow step helps streams learn
from rivers or sea and urges rivers learn from sea. It means that each stream and river
can get some useful information from high level individual, which is beneficial for
them to improve their performance. Unfortunately, there is no information communi-
cation among inter streams and inter rivers. The lack of inter-peer communication may
cause some important information loss and then influence the exploration performance
of the algorithm.

To avoid the loss of significant information, especially from excellent peer indi-
viduals, an inter-peer communication mechanism is presented in this paper to improve
the performance of WCA. Just like us human beings, besides learning from superiors,
we tend to study some advantages of our peers to improve our own abilities. Similarly,
in addition to follow high level individuals’ example, streams and rivers in the new
communication mechanism will learn from one of their peers before flow step. The
structure of original WCA is shown in Fig. 1 while IPCWCA is in Fig. 2. The yellow
circle, green circle and blue circle represents sea, river and stream respectively. Arrow
among inter streams or inter rivers means potential information communication.
Table 1 shows the pseudo code of IPCWCA.

In IPCWCA, the peer is selected randomly among all streams or rivers. Thus, this
peer may be the best individual or the worst individual, which is useful to improve
diversity of the population. In other words, each stream and river in IPCWCA can get
information from any other peer to update itself before flow step. At each iteration, the
peer of a stream (Xi) or a river (Xj) will be selected by the random index I:

Istream ¼ fix rand � S� NSrð Þð Þþ 1 Istream 6¼ Xi ð6Þ

Iriver ¼ fix rand � Nsr � 1ð Þð Þþ 1 Iriver 6¼ Xj ð7Þ
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Where S is the number of individuals, Nsr is the total number of rivers and sea.
Therefore, the index Istream ranges from 1 to S − Nsr and the index Iriver ranges from 1
to Nsr − 1. After choosing a learning peer, a Gauss method is used to give a new
position:

Positionstreamð1; dÞ ¼ Positionstreamð1; dÞ: � gauss
gauss ¼ Nð0; PositionIstreamð1; dÞj jÞ ð8Þ

Positionriverð1; dÞ ¼ Positionriverð1; dÞ: � gauss
gauss ¼ Nð0; PositionIriver ð1; dÞj jÞ ð9Þ

For streams, “gauss” represents a normal distribution with a mean of 0 and a
variance of the Istream’s dth dimension’s absolute value and the same is true for rivers.
Instead of learning from all dimensions, each stream and river only acquire information
from some dimensions of their peer. The number of dimensions and specific dimen-
sions are also determined randomly. After getting information from a peer, a new
position will be created and each stream or river will adopt this new position.

Table 1. The pseudo code of IPCWCA

Initialize paramesters and population
For i=1: it_max :

For j=1: (S-Nsr) :
Each stream learns from one of its peer by (8) and update its position;
Each specific stream flows to sea by (2) and calculate the stream’s fitness value;
IF Fitness_stream < Fitness_sea

Sea and stream exchange position and fitness value.
End

End
For j=1: (S-Nsr):

Each stream learns from one of its peer by (8) and update its position;
Each specific  stream flows to connected river by (3) and calculate the stream’s fitness value;
IF Fitness_stream < Fitness_river

River and stream exchange position and fitness value.
IF Fitness_river < Fitness_sea

Sea and river exchange position and fitness value.
End

End
End
For  j=1: (Nsr-1) :

Each river learns from one of its peer by (9) and update its position;
Each river flows to sea by (4) and calculate the river’s fitness value;
IF Fitness_river < Fitness_sea

Sea and river exchange position and fitness value.
End

End
IF Evaporation condition is satisfied

Create new streams by (5);
End

End
Output the sea’s position and fitness value
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4 Experiments and Analysis

4.1 Benchmark Functions Parameter Settings

To test the efficiency of IPCWCA, eight benchmark functions are chosen [8, 9],
including five unimodal benchmark functions (Powers, Sphere, Sumsquares, Zakharov,
Schwefel 2.22) and three multimodal benchmark functions (Schwefel, Ackley,
Weierstrass). The minimum values of all functions are the same and are equal to zero.
Meanwhile, other four algorithms including original Water Cycle Algorithm, Hydro-
logic Cycle Optimization [10], Particle Swarm Optimization [11] and Bacterial For-
aging Optimization [12] are chosen to compare with our proposed algorithm. The
number of individuals for all algorithms are 50, the number of dimension is set as 10
and 30 (10D and 30D) respectively, the running time is 30, the maximum number of
iterations is 2000, and other related parameters about these algorithms are shown as
follows. WCA and IPCWCA: Nsr = 4, dmax = 1e−16. HCO: maxFT = 3, Peva = 0.1.
PSO: xmax = 0.9, xmin = 0.7, C1 = C2 = 2, Vmin = 0.1 � Lb, Vmax = 0.1 � Ub.
BFO: Ned = 4, Nre = 5, Nc = 100, Csz = 0.1, Ns = 10, Sr = Npop/2, Ped = 0.25.

4.2 Experimental Results

After running 30 times, the results are shown. Tables 2 and 3 describe numerical results
including the mean value, standard deviation, the minimum value and the maximum
value while Figs. 3 and 4 show convergence characteristics.

For the first five unimodal benchmark functions, in both 30D and 10D experiments,
IPCWCA obtains all minimum value of the mean value, standard deviation, the min-
imum value and the maximum value, especially on Powers, Sphere and Sumsquares
functions for which IPCWCA can find the best value of zero on both four values.

As for the last three multimodal benchmark functions, IPCWCA performs differ-
ently. For Schwefel function, IPCWCA doesn’t get the best value. Maybe it is because

Fig. 1. The structure of WCA Fig. 2. The structure of IPCWCA (Color figure
online)
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IPCWCA is not good at optimizing this function and trapped into the local optima. For
Ackley and Weierstrass functions, compared with four other algorithms, IPCWCA
performs best no matter in the mean value or other values.

In general, among these five algorithms, HCO and IPCWCA have better perfor-
mance. Although HCO performs well and gets the global best value on some bench-
mark functions, IPCWCA has a faster convergent speed on most benchmark functions
and acquires the best value in almost all test functions.

Table 2. Numerical results of eight benchmark functions for 30D

IPCWCA WCA HCO PSO BFO

Powers 0 2.5984e−28 0 6.6328e−17 5.6413e−04
0 1.4111e−27 0 1.7281e−16 2.1207e−04
0 2.0490e−37 0 3.2228e−21 1.6824e−04
0 7.7310e−27 0 7.1097e−16 1.1000e−03

Sumsquares 0 1.0222e−19 2.5115e−140 8.4000e−03 7.1376e+00
0 2.9501e−19 1.1513e−139 6.4000e−03 9.9880e−01
0 2.6248e−24 1.0371e−155 1.7000e−03 4.3918e+00
0 1.4961e−18 6.2125e−139 3.1400e−02 8.7403e+00

Sphere 0 5.9790e−19 6.3254e−141 2.3900e−02 5.6157e+03
0 3.0209e−18 2.4906e−140 1.4900e−02 4.0051e+02
0 1.1465e−23 3.6395e−159 6.1000e−03 4.6122e+03
0 1.6580e−17 1.2456e−139 6.3000e−02 6.5628e+03

Zakharov 3.3218e−128 2.8411e−08 2.0089e−19 1.1689e+02 3.6456e+01
1.8194e−127 5.7918e−08 6.0838e−19 7.1114e+01 6.4301e+00
4.7496e−197 4.0432e−10 4.0184e−25 5.8400e−02 2.7430e+01
9.9654e−127 2.7434e−07 2.7725e−18 3.3097e+02 5.0585e+01

Schwefel 2.22 1.6623e−244 5.9704e−07 5.8646e−123 2.0500e−01 5.4255e+01
0 3.2515e−06 2.0627e−122 9.5700e−02 2.9359e+01
6.7130e−291 2.9959e−12 3.6115e−131 5.1300e−02 7.0728e+00
4.9859e−243 1.7813e−05 8.5786e−122 5.1510e−01 1.1220e+02

Schwefel 3.1176e+03 3.4081e+03 1.2705e+03 5.3998e+03 5.1234e+03
4.3308e+02 7.7276e+02 2.3430e+02 8.3766e+02 8.6769e+01
2.1981e+03 1.9026e+03 8.2907e+02 4.0673e+03 4.9124e+03
4.2465e+03 5.8674e+03 1.6985e+03 7.2659e+03 5.3133e+03

Ackley 8.8818e−16 1.6820e−01 5.3883e−15 2.0767e+00 1.9473e+01
0 3.8190e−01 1.5979e−15 5.0040e−01 6.3700e−02
8.8818e−16 1.2874e−10 4.4409e−15 9.4010e−01 1.9263e+01
8.8818e−16 1.1552e+00 7.9936e−15 3.0295e+00 1.9561e+01

Weierstrass 0 1.0629e+01 0 9.1903e+00 3.6403e+01
0 2.5344e+00 0 2.1960e+00 1.2772e+00
0 6.3341e+00 0 4.6499e+00 3.3760e+01
0 1.9318e+01 0 4.3156e+00 3.8494e+01
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(a) Powers (b) Sumsquares

(c) Sphere (d) Zakharov

(e) Schwefel 2.22 (f) Schwefel

(g) Ackley (h) Weierstrass
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Fig. 3. Convergence characteristics of five algorithms for 30D
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Fig. 4. Convergence characteristics of five algorithms for 10D
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Table 3. Numerical results of eight benchmark functions for 10D

IPCWCA WCA HCO PSO BFO

Powers 0 8.5176e−111 0 2.0824e−21 2.2787e−04
0 4.5646e−110 0 1.1081e−20 9.2549e−05
0 1.0261e−138 0 1.1400e−28 4.7856e−05
0 2.5016e−109 0 6.0742e−20 4.7239e−04

Sumsquares 0 6.0739e−37 0 1.8989e−19 1.8540e−01
0 2.9561e−36 0 6.0078e−19 3.4900e−02
0 8.9237e−60 0 1.2797e−25 1.2250e−01
0 1.6181e−35 0 3.1744e−18 2.4640e−01

Sphere 0 3.6823e−38 0 1.0135e−18 3.6800e−02
0 1.8227e−37 0 4.9803e−18 1.0300e−02
0 9.4577e−62 0 1.3531e−23 1.7400e−02
0 9.9804e−37 0 2.7339e−17 5.7200e−02

Zakharov 1.7518e−274 6.6776e−29 1.6039e−105 3.6040e−17 2.2020e−01
0 2.5288e−28 8.7301e−105 1.8391e−16 4.6600e−01
0 2.2706e−35 8.3979e−127 3.0075e−22 1.0370e−01
4.9773e−273 1.3590e−27 4.7826e−104 1.0094e−15 3.8650e−01

Schwefel2.22 9.1904e−313 1.3859e−17 6.3036e−249 9.1869e−04 5.7030e−01
0 4.4135e−17 0 2.4000e−03 6.8800e−02
0 4.0116e−25 7.3470e−268 4.6735e−06 4.2890e−01
2.5121e−311 2.2613e−16 1.7488e−247 1.2600e−02 6.8750e−01

Schwefel 3.0105e+02 8.5276e+02 3.5667e+01 1.0324e+03 9.5609e+02
1.9616e+02 2.9169e+02 5.5419e+01 1.8925e+02 1.4782e+02
6.9600e−02 2.1714e+02 1.2728e−04 7.8959e+02 9.2777e+02
7.2689e+02 1.3241e+03 1.2251e+02 1.7177e+03 1.7378e+03

Ackley 8.8818e−16 7.4015e−15 3.4935e−15 1.6229e−10 1.6073e+01
0 2.1035e−15 1.5979e−15 2.9967e−10 6.5520e−01
8.8818e−16 4.4409e−15 8.8818e−16 3.2907e−12 1.4438e+01
8.8818e−16 1.5099e−14 4.4409e−15 1.4971e−09 1.7142e+01

Weierstrass 0 7.3880e−01 0 2.6650e−01 8.3649e+00
0 9.7830e−01 0 3.4530e−01 4.9460e−01
0 0 0 3.9500e−02 6.9718e+00
0 3.6251e+00 0 1.1940e+00 9.0979e+00

5 Conclusions and Future Work

In this paper, an inter-peer based Water Cycle Algorithm named IPCWCA is proposed.
Compared with standard WCA, IPCWCA adopts information communication among
peers, which is beneficial to avoid useful information loss and increase the diversity of
whole population.
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During this inter-peer communication mechanism, each stream and river select one
peer to communicate and update its position. In order to test the performance of
IPCWCA, several heuristic algorithms are used to compare with it on eight benchmark
functions. As a result, IPCWCA shows good efficiency and outperforms other algo-
rithms on different functions both in 10D and 30D experiments. In the future, we will
continue to improve the ability of IPCWCA and try to apply it to some real-world
problems, like Portfolio Problems, Nurse Scheduling Problems and so on.
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Abstract. Multi-agent systems are applied to a variety of scenarios, in
which target entrapment has become a primary research area in recent
decades. In order to solve the problem of intelligent swarm behavior con-
trol, the hierarchical gene regulation network (H-GRN) is proposed. How-
ever, the networks in H-GRN rely solely on target information for behav-
ioral control, and interaction with surrounding partners only involves
avoiding physical collisions. To benefit from the cooperation with part-
ners, we design a cooperation-based gene regulatory network (C-GRN)
for target entrapment. Following the hierarchical gene regulatory net-
work, we use the agent’s own sensor to get the companion information,
and add information to the network by controlling changes in the cor-
responding protein concentration. In addition, a self-organizing obstacle
avoidance control method is also proposed. A series of empirical evalua-
tions index comparison show that C-GRN can cooperate with partners.
The experimental results indicate that the total time to complete task
and average thickness of the target’s encirclement is obviously optimized
in a simulation experiment.

Keywords: Cooperation-based gene regulatory network ·
Target entrapment · Swarm agents · Pattern formation ·
Self-organization

1 Introduction

The development in self-organising multi-agent systems has become attractive in
recent years. Because of their properties such as robustness in dynamic environ-
ment, the systems have found a wide range of successful applications, including
cluster search and rescue operation [1,2], large objects handling [3,4], cooperative
positioning and mapping [5,6], cluster area shape coverage [7,8]. Among these,
self-organized target entrapment with a swarm of simple agents is a promising
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research topic with numerous applications, where entrapping a dangerous tar-
get is an important mission of a agent swarm, or sub-task of further collective
operations.

For target entrapment, due to its stability and robustness, considerable atten-
tion has been paid to its various applications, which leads to the development
of regional coverage methods. Pattern formation algorithms for swarm agents
can be largely divided into five categories: (a) leader-follower and virtual struc-
ture, in which the leaders are firstly specified or identified, and the followers
keep relative position to the leader [9,10]; (b) behavioural approach: rules are
applied to relatively important agents to control group behavior [11–13]; (c) mor-
phogen diffusion: morphogen-like signals are used to provide agents with infor-
mation of others relative locations [14–16]. (d) reaction-diffusion model: several
morphogens in cells begin to react with morphogens in other adjacent cells to
produce interesting patterns [17,18]; (e) gene regulatory network: multi-cellular
systems are used to control multi-agent systems [19,20].

Despite the large body of research on multi-agent pattern formation, self-
organizing multi-agent systems still have many unresolved problems. First, there
is a large amount of communication between agents to obtain environmental
information. In existing research, behavioral control often requires a global coor-
dinate system to achieve collaboration between agents or completely ignore coop-
eration with surrounding agents and only consider collision avoidance [24]. Apart
from that, when entrapping a target, the agent easily loses the information of
the target in a complex environment because the target may be good at escap-
ing the encirclement. A hierarchical gene regulatory network [25] was proposed
to adapt to dynamic targets. However, they have not fully utilized cooperation
with partners but only use them as restrictions on action.

As for gene regulatory network, Guo et al. [21] proposed a decentralized con-
trol algorithm for multi-agent shape construction by establishing a metaphor
between multi-cellular systems and multi-agent systems. They use a multi-
objective evolutionary algorithm to evolve to GRN model, which was also
improved to eliminate the dependence on the availability of the global coordinate
system [22]. In addition, a hierarchical gene regulatory network (H-GRN) [24]
was proposed, where the first layer is responsible for adaptive pattern generation,
while the second is a control mechanism that drives the agents on to the gen-
erated pattern. By using this network, the agents can cover the pattern formed
around the target to achieve the goal of entrapping the target. However, it costs
too much time to forming an encirclement around the target.

To solve these problems, in this paper, we introduce a cooperation-based
gene regulatory network for target entrapment, named C-GRN, to enhance the
cooperation with partners. We assume that the agent can use the sensor to
receive information about surrounding partners. Then recording them in the
agent’s own coordinate system. When pattern is formed, the partner’s position
will be used as input to lead changes in protein concentration. Thus, a pattern
showing the unstable position is generated to guide the agent’s actions.
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In our proposed model, partners are considered when pattern is generating.
By adding to the pattern based on the target proposed before, the performance
of targets entrapment is optimized, with less completion time and higher entrap-
ment quality.

2 The Proposed Framework

The framework C-GRN is presented in this section. We first give the overview
of C-GRN. Then we detail two key modules: (1) cooperation with partner in the
upper layer model, (2) the differentially obstacle avoidance mechanism.

2.1 Overall Structure

The overview of C-GRN is given in Fig. 1. Undoubtedly, using agent swarm to
catch a target is becoming a trend. To better complete a entrapment task, more
cooperations between partners should be considered. Thereby, we jointly con-
sider the partner information and target information when entrapment pattern
is generating, so agents can be reinforced to weak areas faster.

In the overall structure of C-GRN, the information of targets and agents is
used as input to cause changes in protein concentration. Protein concentration
is expressed in a blue circle with words. The protein concentration S guides the
formation of guidance model. And in the layer 2, protein concentration Pi and
Gi change according to pattern with the aim of guiding the motion of agents.

Fig. 1. Overview of a two-layer C-GRN structure for target entrapment under the help
of partner and obstacle
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Obstacle cannot be perceived entirely in a proximate scenario. It is obvious
that much information is needed if an agent tends to avoid obstacles using a
pattern generated in the upper layer. Further, original methods have less adap-
tation when the obstacles appear or move suddenly. So a self-organizing obstacle
avoidance mechanism is proposed, which expects to keep away from obstacles
by using its own sensor.

2.2 Cooperation with Partners

In order to apply the model to the target entrapment scenario and improve its
performance, we propose a model that considers peer collaboration. This model
enables an agent to generate pattern depends on the information from not only
the targets but also the partners. Thus, the agent can spot the weak parts of the
encirclement and reinforce it.

An improved frame is proposed in the upper layer of the model (see Fig. 1). By
applying gene regulation network, agents can simply interact with others through
the protein concentration in the environment. They get the protein concentration
p in the environment which is produced by all the detected targets [24], and this
integrated protein will activate the internal protein concentrations. Similarly, an
agent also gets the protein concentration ci produced by the perceived agent. The
protein concentration ci includes g4,j and g5,j produced when detected nearby
agent j for agent i.

As for a swarm of agents with sensors, they are able to gain the knowledge
about the protein concentration by using position sensors. In this way, protein
concentration can diffuse through agents [23] using the following equation:.

dg4,j

dt
= −g4,j + e−λj . (1)

dg5,j

dt
= −g5,j + [(1 − sig(λj , ε1, α1)) + sig(λj , ε2, α2)] . (2)

dci

dt
= −ci + k1

ntj∑

j=1

g4,j + k2

ntj∑

j=1

g5,j . (3)

sig(x, z, k) =
1

1 + e−k(x−z)
. (4)

where ci is the protein concentration got from neighbouring in agent i, λj is the
input from agent j, and ntj is the number of agents that are communicationally
connected to agent i. g4,j and g5,j represent the protein concentration produced
by homologous gene which is activated by environment input λj from agent
j. Parameter k1 and k2 represent the impact of protein concentration g4,j and
g5,j for agent i, respectively. For a two-dimensional scene, its computational
complexity is O(n2).

A common phenomenon in biology is that every agent has a source of pro-
tein concentration g5,j , and it diffuses through the exponential curve, refer to
Fig. 2(a). However, because it is sensitive to noise and disturbance at the part
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of low slope, an effective solution is provided by Werfel [23]. They put a small
diffusion source at the opposite side, then the two protein concentrations inter-
act with each other, which results in a linear concentration gradient of the first
protein concentration diffusion, shown as Fig. 2(b). Similarly, we assume a neg-
ative protein g5,j is also produced when getting the partner j’s input, and its
concentration is defined as Eq. (2). By combining the two proteins, the diffusion
will avoid from low slope and be more robust to the environment.

Fig. 2. Comparing the concentration pattern of diffusion mechanism.

To be more robust to noise and disturbance, protein concentration c is dif-
fused following Eq. (5). The final pattern depends on the input of target and
partner, according to the following formula.

S =
N∑

i=1

aiDi. (5)

where S is an integrated protein concentration that represents the synthesis of
all protein effects, also the final parameter that will be delivered to the lower
layer and used to form the pattern by agent itself. N is the number of protein
species which directly impacts protein concentration S. ai is the influence of
protein concentration Di of i-th kind of protein. In this part, S consists of the
cooperation protein c and target protein g3.

S = g3 + c. (6)

The target protein g3 is activated by the integrated protein p and protein
concentration g2 and g3. Where pj represents the protein concentration produced
by the j-th target input γj and p is the sum of concentrations of all detected nt

targets.

dpj
dt

= −pj + ∇2pj + γi, p =
nt∑

j=1

pj . (7)

dg1
dt

= −g1 + sig(p, θ1, k). (8)
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dg2
dt

= −g2 + [1 − sig(p, θ2, k)]. (9)

dg3
dt

= −g3 + sig(g1 + g2, θ3, k). (10)

New pattern generated under the upper layer, as shown in the white part
of the Fig. 3. It shows two examples of a target entrapping pattern from pro-
tein concentration g3 and c when the entrapping task is unfinished (Fig. 3(a))
and completed (Fig. 3(b)). Agents are represented by white points, the target is
represented by a white asterisk, and the gradient of the pattern is represented
by different colors. Agents tend to be employed in lighter areas in the pattern,
where the encirclement of the target is unstable and easy to break.

Fig. 3. Examples of a target entrapping pattern from protein concentration S generated
by the upper layer of the C-GRN. (Color figure online)

2.3 Self-organizing Obstacle Avoidance Mechanism

To enhance adaptivity capacity of agents to avoid obstacles in a dynamic envi-
ronment, in our study, self-organizing obstacle avoidance is added in lower layer.
It can be applied when the obstacles move fast or appear suddenly, i.e., the
pattern generated from upper layer has no time to change. So in our proposed
mechanism, the loss cased by wrong pattern can be avoided.

This mechanism is based on the agent’s own sensor. The agent determines the
speed and direction of the movement at next step through the C-GRN network.
Then, the agent detects the situation in this direction. If it is safe, which means
no obstacles or attackers, the agent can move forward according to the original
plan. If there are things that might harm the agent, then the agent detects the
left and right direction, whose angle with this direction is the random degree. The
mechanism compares the detection results on both sides until there is something
on one side, but not on the other side. Then proceeds from the original direction
and continue to increase the angle detection, until the angle is found at which
the obstacle is not detected. The agent will record this angle and the next step
is to proceed at this angle.
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Therefore, agents can quickly avoid obstacles, only through their own sensors
and self-organizing obstacle avoidance mechanisms.

3 Experimental Analysis

Numerical simulations have been performed using scenarios containing either
stationary or moving targets to evaluate the feasibility and benefit of the pro-
posed algorithm. Parameters for the upper layer of the C-GRN are set up as
k1 = 0.6, k2 = −0.4, and for the lower layer as a = 6.5, m = 4.2, c = 9.9,
r = 4.3, and b = 3.5. These values in the lower layer adopt the settings in [25].
In addition, the speed of the agent is 1 m/s considering the agents’ physical
capability. Changing the speed according to the environment is considered in
the future work.

3.1 Entrapping Stationary Targets

In this section, the designed task of agents is to entrap two stationary targets.
The size of the field is set to [15, 15], and an agent is represented by a blue point.
The targets are stationary at the upper left and lower right corners, respectively.
Initially, the agents are gathered in a [2, 2] square in the lower left corner. Figure 4
shows snapshots of a situation where 40 agents are trapping 2 targets, under the
governance of the improved network C-GRN. By using a diffusion term Eq. (5),
the C-GRN dynamics inherently adapts itself to the environmental changes, i.e.,
the moving partners.

Fig. 4. 40 agent (blue point) entrapping 2 targets (denoted by ×). The pattern is
simply represented by a red NURBS curve. (Color figure online)

Figure 4 shows that the agents trap targets with faster spreading speed. In
the end, both goals are completely entrapped. To quantitatively evaluate the
pattern formation performance, we performed a set of simulations to examine
the time cost to complete the encirclement. The time cost is defined to be the
time when every unit of the target is occupied, it also means the target has no
direction to escape.
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The experiment was done many times with different numbers of agents and
the experimental results are listed in Table 1, which are average over 25 inde-
pendent runs. From the table, we can conclude that the agents can move faster
under the cooperation between agents.

Table 1. Average entrapping time cost(s)

No. of agents

Network 40 50 60

H-GRN 57 (s) 55 (s) 52 (s)

C-GRN 48 (s) 45 (s) 42 (s)

4 Conclusions and Future Work

In this paper, a cooperation-based gene regulatory network is presented for tar-
get entrapment. The main new feature of the proposed model is that the target
pattern generated by the agent not only depends on the information of the target,
but also considers the influence of the surrounding agents. Therefore, agents can
enhance the cooperation with other agents by using their sensors exclusively.
This ability of cooperation is not available in the H-GRN model, nor in any
existing models for distributed agent swarm control, to the best of our knowl-
edge. The proposed model in our study enables a cooperative self-organization of
multi-agent systems and enhanced performance of target entrapment. Empirical
results show that the performance of the system in terms of the time needed for
completing a entrapment task obviously decreases due to the using of the whole
framework.

However, it should be pointed out that this network requires precise position-
ing of surrounding agents, so that high demands on the sensor is requested. We
are considering to propose other computational methods for sensors with poor
performance to adapt to the proposed network in the future work.

A few quite conservative assumptions are still made in this model, including
the reliance on global coordinate system. In this model, the agent needs to know
the position of its target and other agents in the global coordinate system. A more
realistic implementation is to establish the agent’s own polar coordinate system
and locate various objects in it. Apart from that, the agent needs to calculate
all the partners within the detection range, which requires the computing power
and storage capacity of the agent.

The use of encirclement consisting of unmanned equipment to entrap targets
is a common application of current unmanned systems. The C-GRN proposed
in this work can be conceivably extended to complete dangerous missions such
as reclamation thieves or terrorists. The salient features of such missions are
complex environments, many obstacles, dangerous targets and easy escape. For
example, at a terrorist base, terrorists are dangerous and good at using envi-
ronmental obstacles to escape. In this scenario, using this network can make
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better use of surrounding agent to arrest. In short, this network is suitable for
all multi-agent swarm systems to enhance collaboration between agents.
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Abstract. Stochastic population-based nature-inspired metaheuristics
have recently revealed that they are a very robust tool for planning sport
training sessions in various sports, e.g. running, cycling, triathlon. Most
of the existing solutions in literature are focused on planning training ses-
sions for a particular training cycle. Until recently, no special attention was
paid to planning interval training sessions, where the high-intensity inter-
vals are followed by low-intensity periods of recovery. This kind of training
sessions increases the aerobic capacity of an athlete. In this paper, we pro-
pose planning interval training sessions using stochastic population-based
nature-inspired metaheuristics. The proposed bat algorithm was tested
on an archive of interval training sessions realized by a younger mountain
biker, where two different scenarios were taken into account.

Keywords: Planning sport training sessions · Metaheuristics ·
Optimization

1 Introduction

Sport trainers are crucial components in the process of an athlete’s sports train-
ing, that is a required precondition for achieving success in the sport compe-
titions. The primary task of the modern sport trainer is offering assistance for
athletes, helping them by planning sport training sessions, analyzing the past
training sessions, and also racing. Typically, it is very difficult to become an
excellent sport trainer. Therefore, the majority of them are past athletes with
many training, as well as racing, experiences. Besides these experiences, each
good trainer must have a deep knowledge about nutrition, human anatomy,
sociology, psychology, and so on.

Nowadays, we live in a society where modern Information Technology (IT)
can be found in almost every domain of life. Therefore, it is no wonder that the
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modern computer technology has also been applied into the domain of Sport. A
recent book [4] has introduced the concept of the Artificial Sport Trainer (AST),
based on stochastic population-based nature-inspired metaheuristics [3,6]. Auto-
matic planning of the sport training sessions that is a part of the AST is still
considered as a very hard task. For an efficient automatic planning of sports
training sessions, algorithms have to deal with archives of existing sports train-
ing sessions, which were obtained by measuring the performance data obtained
during the real ones by wearable mobile devices (e.g., sports watches, mobile
phones). Additionally, these algorithms are able to deal with several constraints
that could arise during the process of sport training. In some cases, athletes are
injured and the existing training plan needs to be adapted accordingly.

Until recently, no special attention was devoted to automatic planning of inter-
val training sessions, where the high-intensity intervals are interspersedwith recov-
ery periods, due to increasing the aerobic capacity of the athlete in sports training.
In this paper, the automatic planning of interval training sessions in mountain bik-
ing presents the main challenge. Thus, this planning is represented as an optimiza-
tion problem, which combines the high-intensity intervals and corresponding low-
intensity recovery periods from existing interval training sessions collected within
an archive, such that the sum of all TRIMP values of the proposed intervals does
not exceed the prescribed maximum value. Let us notice that the TRIMP value
represents an intensity measure of the specific interval training session expressed
as a product of average Heart Rate (HR) by its duration (t).

Although the proposed algorithm could be implemented using any stochas-
tic population-based nature-inspired algorithm [5], the Bat Algorithm (BA) [12]
was selected due to its simplicity. The algorithm for planning the interval train-
ing sessions was applied to an archive of 40 existing interval training sessions
produced by a young mountain cyclist. However, the results were commented by
real cyclist trainers, who confirmed that these training plans could be applied
in practice. To the authors’ knowledge, this is the first study that operates with
population-based metaheuristics for the interval training sessions planning.

In summary, this paper presents the following main novel contributions:

– to elucidate the problem of planning the interval training sessions,
– to present planning the interval training sessions as an optimization problem,
– to propose a new method for particular problem based on the BA.
– to apply the proposed algorithm on a real archive of collected interval training

sessions.

The structure of this paper is as follows: Sect. 2 deals with the fundamentals
of interval training in mountain biking. In Sect. 3, the optimization problem of
planning the interval training sessions is discussed in detail. Experiments and
results are subjects of Sect. 4, while Sect. 5 summarizes the performed work and
outlines directions for the future work.

2 Fundamentals of Interval Training in Mountain Bike

Interval training has a very long tradition. In general, for successful endurance
athletes must balance the overall frequency and volume of training with the
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high-intensity interval training sessions [11]. The interval training session inter-
sperses the high-intensity intervals (i.e., exercises of intensity equal to or higher
than the maximal lactate steady-state threshold) with recovery periods (i.e., low-
intensity exercises or recovery). Interval training was first described by Reindell
and Roskamm [2], and was popularized by the Olympic Champion Emil Zatopek
in the 1950s. Indeed, aerobic interval training is defined as an interval training
which elicits aerobic metabolism at a higher ratio than anaerobic metabolism.

The Olympic format of cross-country mountain bike racing (XCO) is a fairly
different sport in comparison to road cycling, because it changes also the basic
principles of mountain bike training by including high-intensity workouts beside
the endurance ones. A cycling race requires cyclists to possess the ability to
generate a relatively high power output of short duration during steep climbing
and in accelerations [10]. It can be characterized as a high-intensity, intermit-
tent activity that requires riders to compete over varying terrains, including
rocky paths, a technical single-track, and open forestry roads. Frequently, this
also includes obstacles such as jumps and vertical drops, with high-intensity,
high-power ascending sections that are separated by relatively lower-intensity
descents [1,7,8].

In sports theory, it is well known that mountain bikers need to adapt, and to
simulate competitive conditions during their training sessions. Especially, there
are a lot of short periods of acceleration. Typically, mountain bikers have to
overcome up to 120 of such accelerations within 90 min of racing. Consequently,
special attention needs to be paid to the development of speed (with emphasis
on high intensity training), as well as specific strength (special strength training)
and coordination, which becomes particularly important during the downhills [9].

A typical endurance training session consists of repeated 1 to 8 min runs
at 90 % to 100 % speed of maximal oxygen uptake, with recovery intervals of
2 to 3 min). This is the most effective program for improving maximal oxygen
uptake and performance for endurance athletes [2]. On the other hand, studies
of anaerobic intervals divide the interval training into two categories. The first
category (the older studies) examined this kind of training at a fixed work-rate.
Thus, the time limit, or the number of repetitions, was suitable to sustain a
different pause duration. The intensities used in these studies were not at the
highest intensity level, but were at about 130 % to 160 % of the maximal oxygen
uptake speed. Moreover, they used high-intensity intervals of 10 to 15 s in dura-
tion that were interrupted by short recovery intervals of 15 to 40 s in duration.
The second category (the more recent studies) demanded that the high-intensity
intervals of 30 s be interspersed with different recovery intervals of 4 to 5 min in
duration. These studies examined the changes in maximal dynamic power during
successive exercise periods, and characterized the associated metabolic changes
in muscle [2].
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3 Problem Definition and Proposed Solution Method

An interval training consists of a sequence of exercises, where each high-intensity
exercise is followed by a low-intensity exercise that is dedicated to resting. For
instance, if the typical interval training session in cycling lasts 60 min and there
are 10 intervals, the duration of each interval is 6 min, where the high-intensity
interval lasts 5 min and the low-intensity one 1 min. Formally, each interval of
an interval training session can be expressed as ITi = 〈Ii, Ri〉, where the high-
intensity period is defined as couple Ii = 〈HR(I)

i , t
(I)
i 〉, and the low-intensity

period as Ri = 〈HR(R)
i , t

(R)
i 〉. In both couples, the first element HR(.)

i determines
the average heart rate, while the second element t(.)i the duration of i-th interval.
In summary, the whole interval training session is defined as:

IT =
[〈

HR(I)
1 , t

(I)
1 ,HR(R)

1 , t
(R)
1

〉
, . . . ,

〈
HR(I)

n , t(I)n ,HR(R)
n , t(R)

n

〉]
, (1)

where n describes the number of intervals in the interval training session IT .
All the interval training sessions realized in one training cycle are accumu-

lated into an archive of interval training sessions, in other words:

A =

⎧
⎪⎪⎨

⎪⎪⎩
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where m determines the number of interval training sessions in archive A.

3.1 Problem Definition

Planning the interval training sessions in mountain biking is presented as an
optimization problem in the following way: Let us assume, an archive of interval
training sessions in mountain biking to be A, and the desired values TRIMP0

are given, where the measure TRIMP determines the intensity of the interval
training session according to the following equation:

TRIMP = HR · t. (3)

Then, the total intensity of the interval training session is expressed as follows:

TRIMP(IT ) =
n∑

j=1

(
HR(I)

kj
· t(I)kj

+ HR(R)
kj

· t(R)
kj

)
, (4)

subject to
n∑

j=1

(
t
(I)
kj

+ t
(R)
kj

)
≤ TD , and (5)

t
(I)
0 ≤ t

(I)
kj

< 0, for j = 1, . . . , n, (6)
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where kj determines the j-th interval of the selected k-th interval training ses-
sion from the archive A, TD is the duration of the interval training (typically
≤60 min), and t

(I)
0 the maximum duration of the high-intensity interval that

cannot be zero.
Objective function is expressed as:

f(IT ) = |TRIMP(IT ) − TRIMP0| . (7)

The task of the optimization algorithm is to find the minimum value of the
objective function, in other words:

f∗(IT ) = min f(IT ). (8)

In the remainder of the section, the design of the stochastic population-based
nature-inspired algorithm for planning the interval training is illustrated in
detail.

3.2 Algorithm for Planning the Interval Training

As said before, the algorithm for planning interval training can be any stochastic
population-based nature-inspired algorithm. However, the BA [12] was used in
our study, due to its simplicity. The following modifications must be applied to
the original algorithm.

Representation of Individuals. The individuals representing the interval
training session IT are represented as vectors:

xi = [xi,1, . . . , xi,n], for i = 1, . . . ,Np, (9)

where each of xi,j ∈ [0, 1] for j = 1, . . . , n determines the index of the interval
training session, from which the IT k,j elements of the interval training k belong-
ing to the specific interval j are taken, n is a dimension of the problem, and Np
denotes the number of individuals within the population.

Evaluation of Objective Function. The objective function is expressed by
Eq. (7). In order to evaluate this function, each element of the vector xi,j needs
to be mapped into the corresponding elements of the interval training IT k,j

according to the following equation:

kj = �xi,j · m� + 1, (10)

where kj ∈ [1,m] determines the j-th interval of the k-th interval training session
within the archive A.
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Repairing the Infeasible Solutions. Often, the solution generated by the
stochastic population-based nature-inspired algorithms, can be infeasible, when
the constraints according the inequalities in Eqs. (5) and (6) are violated. Let
us assume that we generate 10 intervals that must be finished in one hour.
When the generated interval training exceeds the limitation of one hour, the
constraint presented in Eq. (5) is violated. In this case, the infeasible solution
is repaired, such that one of the intensity intervals in the violating solution
is selected randomly. This interval is then modified with the interval of lower
duration in the randomly selected interval training from the archive.

The second constraint violation occurs when the duration of the high-
intensity interval exceeds the maximum duration t

(I)
0 . Also, in that case, the

randomly selected high-intensity interval violating constraint is changed with
the high-intensity interval from the randomly selected interval training from the
archive that does not violate the constraint.

However, the additional constraints could be incorporated into Eq. (4) that
determine the characteristics of the interval training in more detail. Obviously,
the constraints remain as a direction for the future.

Comment. The principle of the proposed algorithm is simple: Actually, it
selects the most suitable values of the HR and t for the specific interval from the
interval training sessions accumulated into the archive. Thereby, this does not
generate new values that were not realized in practice. Consequently, if we want
to generate the interval training with maximum values, this could be achieved
only to a certain extent, i.e., when all the maximum values were not achieved
in the same interval training. This means that the algorithm never prescribes
values which the athlete does not achieve in real training, but it is expected that
the results of particular intervals will overcome the prescribed “hard” interval
training sessions. Thus, the athlete increases the level of his/her achievements
due to archiving each activity into the archive.

4 Experiments and Results

The aim of the experimental work was to evaluate the proposed stochastic
population-based nature-inspired algorithm for planning interval training ses-
sions. In line with this, two scenarios were defined:

– scenario A: deals with interval training of low-intensity TRIMP ,
– scenario B: deals with interval training of high-intensity TRIMP .

Characteristics of both scenarios are described in detail in the remainder of the
section. The results of scenarios were obtained by applying the BA for planning
the interval training using the parameter setting as illustrated in Table 1.

The proposed BA was applied on an archive of interval training sessions con-
sisting of m = 40 interval training sessions, realized by the professional young
mountain biker. Part of the archive is presented in Table 2. Let us notice that
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Table 1. Parameter setting of the
BA

Nr. Parameter name Value

1 Population size Np = 50

2 Individual size n = 10

3 Pulse rate ri = 0.5

4 Loudness Ai = 0.5

Table 2. Part of the archive

ID HR
(I)
ID t

(I)
ID HR

(R)
ID t

(I)
ID

1 185 5 147 3

2 186 5 148 2

3 186 4 149 2

4 187 5 148 3

5 188 4 150 2

the archive comprises interval training sessions of a wide spectrum, i.e., from the
low-intensity and short-duration toward the high-intensity and long-duration.
The same is also true for the resting period, where they are spread from shorter-
duration to longer-duration. The intensities of this period are similar, and, there-
fore, can be ignored.

Although 25 runs of the proposed BA were performed for each scenario, we
are interested only in the best solution according to the Eq. (8).

4.1 Scenario A

The characteristics of the interval training sessions in this scenario are used to
generate an interval training plan of lower-intensity TRIMP . This means that
the rational algorithm for planning the interval training session needs to select
both the observed training periods (i.e., intensity and recovery) of either low-
intensity or short-duration. Thus, the desired total intensity of the generated
interval training was set to TRIMP0 = 9, 000. However, the interval training
plan must be generated with n = 10 intensity and recovery periods.

Table 3. Generated interval training plan of lower-intensity TRIMP

ID HR
(I)
ID t

(I)
ID HR

(R)
ID t

(I)
ID TRIMP

(I)
ID TRIMP

(R)
ID TRIMP ID

1 183 5 140 2 915 280 1195

2 187 3 161 1 561 161 722

3 188 3 161 1 564 161 725

4 184 3 160 1 552 160 712

5 187 3 161 1 561 161 722

6 186 5 148 2 930 296 1226

7 183 5 140 2 915 280 1195

8 188 3 161 1 564 161 725

9 188 4 150 2 752 300 1052

10 188 3 161 1 564 161 725
∑

186.2 37 154.3 14 6,878 2,121 8,999
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The results of Scenario A are presented in Table 3, from which it can be
seen that the total intensity of the best generated interval training amounts to
TRIMP = 8, 999. This means that the algorithm found the solution of intensity
TRIMP , differing from the desired one by less than 1 % (more precisely 99.99 %
matching). On the other hand, this training session is also of short-duration, due
to endurance of 37 + 14 = 51 min, where the average heart rate of the intensity
period is 186.2 bpm, and the recovery period 154.3 bpm.

The comment of the real sports trainer is as follows: Results in the table shows
a high level of correlation with aerobic interval training, which is performed by
mountain bikers very often, especially in preparation periods for competitions.
The first type of training plan consists of repeated 3–5 min high intensity inter-
vals with a relatively short-time of recovery (1–2 min). This training method
ensures a successful adaptation to the level of high acidose by the athletes, which
represents a similar effort as usually presented in the mountain bike races.

4.2 Scenario B

In this scenario, two demands were tested: (1) drastic increase of the demanded
interval training intensity to TRIMP0 = 15, 000, and (2) at least one intensity
period to be longer or equal to t

(I)
kj

≥ 9 min. Now, the BA must prefer the
intensity and recovery periods of longer-duration on the one hand, and of higher-
intensity on the other. Also here, the interval training must consist of 10 intensity,
as well as recovery periods.

The results of Scenario B are depicted in Table 4, from which it can be seen that
the total intensity of the best interval training needs to be realized at the intensity
TRIMP = 14, 960, that means 99.73 % matching with the demanded intensity.
The slightly worse results than in Scenario A is a consequence of more constrained
problem substituted with additional objectives. In this case, the total duration of

Table 4. Generated interval training plan of higher-intensity TRIMP

ID HR
(I)
ID t

(I)
ID HR

(R)
ID t

(I)
ID TRIMP

(I)
ID TRIMP

(R)
ID TRIMP ID

1 179 5 120 6 895 720 1,615

2 188 5 151 2 940 302 1,242

3 178 6 148 3 1,068 444 1,512

4 174 8 138 4 1,392 552 1,944

5 186 4 143 2 744 286 1,030

6 172 9 131 5 1,548 655 2,203

7 185 4 145 2 740 290 1,030

8 177 7 135 4 1,239 540 1,779

9 186 5 148 2 930 296 1,226

10 187 5 148 3 935 444 1,379
∑

181.2 58 140.7 33 10,431 4,529 14,960
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the interval training increases to 58 + 33 = 91 min, while the average heart rate of
the intensity period settles at 181.2 bpm, and the recovery period 140.7 bpm.

The comment of the real sports trainer is now as follows. The second type of
training consists of repeated 4–9 min intensity intervals, with recovery periods
that last approximately 50 % less time than the intensity phase. Although this
type of interval training slightly differs from the above mentioned Scenario A,
it is the most effective for improving the maximal oxygen uptake and racing
performance of the mountain bikers.

5 Conclusion

There is no doubt that stochastic population-based nature-inspired metaheuris-
tics are a robust tool for planning the training sessions in various sports. In past,
these metaheuristics have appeared for planning sports training sessions, where
this training plan was generated for longer training periods.

In this paper, we investigated the possibility of planning the interval training
sessions that consist of different intervals, and each interval is composed of an
intensity interval and recovery period. Additionally, each intensity interval and
recovery period are determined by the average heart rate and duration. The
planning is represented as an optimization problem, where all intervals (i.e.,
intensity interval and recovery period) are composed from an archive of the
interval training sessions, such that the total intensity of the training according
to value TRIMP does not exceed the desired intensity TRIMP0. Let us mention
that, in this preliminary phase, we do not generate the training plan for the
whole training cycle, but for one interval training session only.

Although the algorithm for planning the interval training sessions could be
implemented in any stochastic population-based nature-inspired algorithm, the
BA was applied in this study. Experiments using the algorithm were divided
into two scenarios, e.g. Scenario A and Scenario B, where both were conducted
on an archive consisting of 40 interval training sessions realized by a younger
mountain biker. The results confirmed our assumption that population-based
metaheuristics can be applied for such type of planning.

The future of this area is still full of opportunities. Firstly, we should focus on
the feedback of athletes who train on the training plan proposed by our method.
Secondly, we should take into account more information about the already real-
ized training sessions. From the initial observations, we see that there are many
differences among athletes in the realm of endurance or speed. For that reason,
some athletes prefer more interval sessions of more duration over intensity, while
others vice-versa.
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Abstract. This paper investigates how the communication architecture
of a ground swarm of agents contributes to the survivability level when
trying to solve the problem of survivable ground networks via UAV sup-
port. The paper considers the two most important conceptual communi-
cation architectures, infrastructure and adhoc, and compares the levels
of survivability obtained by each of them when we use a mobility model
for the UAVs which is based on evolutionary swarm intelligence. Results
show that systems which operate in infrastructure mode tend to exhibit
higher levels of survivability, which is somewhat counter-intuitive but
can be explained through the way the mobility model implements the
behavior of the supporting UAVs.

Keywords: Evolutionary swarm intelligence · Survivable networks ·
Communication architectures

1 Introduction

Swarm intelligence has been increasingly used in recent years in the field of sur-
vivable networks, where the wireless communication between mobile unmanned
agents operating on the ground (UGV) is facilitated by a swarm of unmanned
aerial vehicles (UAVs) that act as mobile aerial communication relays. The con-
cept of survivability refers to the extent to which the UGVs remain connected
when various obstructions occur in the ground wireless communication, thanks
to the convenient positioning of the UAVs.

Research in survivable networks is mainly focused on the mobility models
adopted by the UAVs as part of the aerial swarms used for ensuring network
survivability. These refer to the decision-making mechanisms that provide the
optimal air trajectories and/or positions, to ensure communication within the
UGV swarm. While mobility models aim to improve the network survivability
levels, they also contribute to other aspects such as the scalability of the over-
all systems, or the level of operational integration between the UAV and UGV
swarms [12,18]. The investigations in survivable networks domain propose swarm
intelligence methods for ground systems of interest that use certain given com-
munication (conceptual) architectures [2,12] or technologies [7,8]. These inves-
tigations demonstrate the ability of the proposed methods to ensure network
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survivability when applied to the respective given systems, but do not investi-
gate the possibility of being applied to systems using different communication
architectures/technologies. However, we argue that working solely on improving
the swarm behaviors that lead to network survivability may not be sufficient,
since the communication architecture (and/or technology) used by the ground
system of interest may have as well a significant impact. Thus, another question
to be answered is, if a certain swarm intelligence method is given for guiding
the UAV swarms, then what would be the communication architecture that
the ground system should employ to maximize the performance of the method.
Analyzing this aspect is crucial especially when the system considered from a
network survivability perspective does not exist yet, and a decision on its future
design needs to be made.

This paper considers the two most important conceptual communication
architectures adopted by the existing networked systems, i.e. infrastructure and
adhoc, and compares the levels of survivability obtained when a swarm intelli-
gence method is applied to each of them. To perform the comparison between
the two communication architectures, we use one of the most recent swarm intel-
ligence UAV mobility models used in survivable networks, which was proposed
in [12]. This mobility model uses a bio-inspired approach that combines swarm
intelligence and evolutionary computation, where the UAVs and ground agents
are modelled as a boids-like dual air-ground swarm, and the UAVs’ movements
are optimized by a real-time genetic algorithm.

The rest of the paper is organized as follows. Section 2 briefly discusses the
main achievements reported in the literature in relation to the swarm intelligence
methods used in survivable networks. Then, Sect. 3 describes the methodology
used to compare the two communication architectures, and Sect. 4 presents and
discusses the experiment results. In the end, Sect. 5 summarises the findings and
concludes the paper.

2 Background

The survivable network problem is not exclusively related to contexts where
mobile aerial support is used by the swarming ground agents. Historically, mobile
ground relays have been initially used to connect mobile ground agents. How-
ever, with the ever increasing needs of communication, and the broader contexts
where ground swarming was adopted, aerial relays became necessary. Satellites
and high-altitude fixed-wing aircraft have been proposed in the early days, but
they have substantial limitations, especially related to their ability to follow the
ground agents in difficult locations like forests, urban areas, indoors or under-
ground. As a result, the subsequent studies on survivability could only be per-
formed on very low numbers of agents, where the concept of swarming can be
hardly considered. In [3,7] very low scale systems are investigated, with one relay
agent and two ground agents. In [6] few relay agents support the communica-
tion between a single mobile ground agent and a fixed base station. Attempts to
investigate larger systems have been reported in [2,8,9], however, they are still
limited to few relay agents and few ground agents.
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The leap towards using true swarm intelligence in survivable networks con-
texts came with the advances in drone technology. The availability of minia-
turized, versatile and low-cost rotary-wing UAVs (i.e. multicopter drones) made
possible the investigation of a wider range of swarm intelligence mobility models
for the UAVs, which have been applied to systems with higher number of agents.
With respect to survivable networks domain, the increased number of agents also
posed the question about the type of information available to UAVs from both
the air and ground side. The information can be global, where map-based or
global positioning systems inputs have been proposed [4,11], or local as in boid-
like swarms [14], where inputs come only from the neighboring agents [2,6]. While
studies that use global information exists, the bulk of the literature in survivable
networks concentrates on models that use local information. Thus, the literature
discussed below refers exclusively to models that rely on local information.

Chaos-enhanced mobility models, which build on early approaches like ran-
dom trajectories [11], generated a considerable amount of research in the liter-
ature [15]. Parametric approaches with fixed pre-tuned parameters have been
also proposed over time, especially in early studies on survivable network
research [2,8,10] Another category of mobility models is based on nature-inspired
swarming behaviours, such as ant colony pheromone-based mobility [11], bat
algorithms [16], or boids-based finite state machines [2]. Models based on artifi-
cial evolution principles have been also reported in the literature, where evolu-
tionary computation techniques are used to evolve parameters of the controllers
used in the aerial agents [6]; though, this direction has been less investigated.
This is in essence because of the challenges imposed by the use of evolution-
ary computation techniques in real-time contexts, i.e. due to their relatively
slow convergence [17], especially when they need to optimize large numbers of
parameters.

Recently, hybrid methods have been proposed, which use boids-based flock-
ing behaviour (i.e. Reynolds’ boids [14]) to implement UAVs’ movement and
evolutionary computation to optimise their movement towards increased ground
network survivability. Such hybrid method is proposed in [12], where the authors
take a step froward and model both UAVs and ground agents as boids guided
by the classic boids forces [14]—cohesion, alignment and separation—to obtain
a dual air-ground swarm. The air and ground swarms are in fact a single swarm,
with the UAVs and ground agents having the parameters tuned differently. The
evolutionary computation technique takes the form of a genetic algorithm that
optimizes the parameters of the UAV boids towards improving the ground net-
work survivability. Given that the number of parameters of the boids is low, the
genetic algorithm runs well in real-time; thus, the use of boids rules with the
genetic algorithm avoids the slow convergence issues.

In terms of the communication architecture/technology used by the systems
under investigation, some of the existing studies work with the adhoc mode [8,9]
while others work with the infrastructure mode [2,12]. To the best of our knowl-
edge, no study exists to date to compare the two communication architectures in
the context of survivable networks when swarm intelligence mobility models are
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used. Thus, we perform this comparison using a modified version of the hybrid
mobility model proposed in [12]. This modification is in the way the genetic
algorithm works. In [12] the authors intend to demonstrate the viability of their
approach for any type of movement pattern of the UGVs. In this paper, we are
interested in the comparison of the two communication architectures and adopt
only the core algorithm from [12], but we use it for a different set of scenarios,
with different operational environment and agent settings, as explained below.

3 Methodology

In this paper we consider a test-bed environment that has been largely used for
survivable networks investigations [2,5,12]. This is a flat 2D rectangular surface
S with length L and width W , which has no obstacles. The UGVs can move freely
on the surface, but must avoid collision with each other. Above this surface fly
the UAVs at a constant low altitude that does not affect communication with
the ground; this means the communication is only affected by the horizontal
movement. There are na UAVs and ng UGVs in the environment. Both UAVs
and UGVs are modelled based on Reynolds’ boids model [14] and use the two
key boids concepts: the neighborhood-based interaction and the three forces—
cohesion, alignment and separation. All forces are defined and calculated exactly
as in Reynolds’ paper, while the neighborhood is calculated slightly differently,
as explained below.

The ground network survivability is typically evaluated based on the “con-
nectivity” concept. This uses the graph theoretical concept of connected network
component [1], which denotes a sub-graph where any two nodes are connected
to each other. We define connectivity as the number of connected components
that exist at a moment in time within the swarm of UGVs. Ideally, when the
ground swarm is fully connected, the connectivity has the value 1, i.e. there is
only one sub-graph which is equal to the entire ground network. In practice,
more than one connected components are accepted in survivable networks, due
to the nature of the problem. However, among them one or several giant con-
nected components should exist [13]. In this paper, we measure the survivability
by calculating the size of the giant components throughout the simulation.

3.1 The Agents

The UGVs are modelled as a boids-based swarm, and follow the three classic
boids rules, which are applied as a result of the influence received from their
ground neighbors, where the neighborhood is defined by agents’ vision distance
vd and vision angle vα.

The forces are calculated like in Reynolds original study [14], and then, the
velocity V and position P of a UGV at time step t are updated using Eqs. 1
and 2, respectively.

V (t) = V (t− 1) + WC · C(t) + WA ·A(t) + WS · S(t) (1)



84 G. Leu and J. Tang

P (t) = P (t− 1) + V (t) (2)

where WC , WA, and WS are weights corresponding to cohesion, alignment, and
separation forces. These weights are constant, because the movement pattern of
the UGVs is fixed (i.e. they perform a specific task). We recall that in survivable
networks contexts the UGVs operate in the field to accomplish a certain task,
and are not aware or concerned about the UAVs’ activity.

When the ground swarm is in infrastructure mode, no direct communication
exists between UGVs; they can only communicate indirectly via the UAVs. When
the ground swarm is in adhoc mode, an omnidirectional ground communication
range Rg is considered. The communication range is only used to determine the
adhoc links, not to define the neighborhood.

The UAVs are also modelled as a boids-based swarm, but with slightly differ-
ent interactions. The interaction in the air, between UAVs, follows the three clas-
sic boids forces showing the influence from the neighboring UAVs. In addition,
an interaction with the ground is considered, and modelled via two additional
forces that represent the influence from the neighboring ground agents. We recall
that the purpose in survivable networks is for the UAVs to move according to the
UGVs’ movement, so that they facilitate communication. Thus, an UAV is influ-
enced by the movement of the UGVs situated in its neighborhood through the
cohesion and alignment forces. The separation force is not considered, because
there is no risk of collision between UAVs and UGVs.

Unlike the UGVs (i.e. classic vision-based boids), UAVs’ neighborhood is
defined using an omnidirectional air communication range Ra, and is different for
the infrastructure and adhoc modes. Thus, the UAV swarm is not a classic vision-
based swarm, but an adhoc networked swarm where links are established within
the Ra range. When the ground swarm is in infrastructure mode, the neighbors
of an UAV are the UAVs and UGVs situated within the air communication
range Ra. When the ground swarm is in adhoc mode, the neighbors of an UAV
are the UAVs situated within Ra, the UGVs situated within Ra (we call them
primary air-ground neighbors—PAGN), plus the UGVs that are outside Ra but
are adhoc connected to the PAGNs (i.e. they are within Rg from the PAGNs).

With the five forces calculated as in Reynodls’ study according to the corre-
sponding neighborhood, the velocity VAi

(t) and position PAi
(t) of each UAV Ai

are updated as in Eqs. 3 and 4, respectively.

VAi
(t) =VAi

(t− 1)
+ WCA

CAi
(t) + WAA

AAi
(t) + WSA

SAi
(t)

+ WCAG
CAGi

(t) + WAAG
AAGi

(t)
(3)

PAi
(t) = PAi

(t− 1) + VAi
(t) (4)

where CA, AA and SA are the three air-air forces, CAG and AAG are the two
air-ground forces, and W s denote the weights of the forces. Unlike the UGVs, the
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force weights of the UAVs are not constant, since their movement must adapt
continuously to the movement of the UGVs. Thus, an optimization of the force
weights at each time step is needed, so that the best connectivity for the UGVs
is achieved. The optimization algorithm is described in detail in Sect. 3.2.

3.2 The Optimization Method

A decentralized real-time GA is used to optimize the force weights in the update
rules of the UAVs, so that the resultant movements lead to high network surviv-
ability. Each UAV runs the GA separately to obtain its own set of optimal force
weights at each time step. Thus, each UAV optimizes independently its own five
force weights plus the speed, with the purpose of providing better connectivity
to the ground agents. In theory, each UAV should run the GA at each time step
of the simulation; however, in practice a certain time is needed for the evolution
to reach meaningful results. For this reason the UAVs run their GAs every t′

time steps. The GAs run in time windows of duration t′, where the duration is
the stopping condition. This affects the quality of the optimal solution at each
GA run, but ensures the overall simulation runs in real-time. The time windows
allow a historical period of duration t′, as well as a future prediction period of
duration t′ to be used for optimization as part of the fitness function (which is
explained below).

The structure of the chromosomes is the same for all UAVs in the simulation.
They are vectors with 6 components [s,WGA,WGC ,WAA,WAC ,WAS ], where
W s are force weights and s is the speed. The value ranges for the genes in the
chromosomes are: speed between 0 (hovering) and 5, separation weight between
0.5 and 2, all other weights (i.e. WGA,WGC ,WAA,WAC) between 0 and 0.5.

The fitness function is based on the number of UGVs covered by an UAV
and its neighbors (i.e. one hop aerial network links), with the consideration of
both historic and predicted periods.

F =
t∑

k=t−t′
NG(k) + NG(t + t′) (5)

where NG is the total number of ground agents covered by an UAV and its
neighbouring UAVs.

The GA aims to maximize the fitness, which means, to increase the UAV’s
individual coverage as well as the number of neighbouring connections for estab-
lishing better connectivity. Further, selection, crossover, and mutation operators
are applied for producing offspring. Selection uses the binary tournament with
elitism, and reproduction employs single point crossover at a rate of 0.8, and
mutation at a rate that is the reciprocal of the chromosome length ( 1

ma×6 ).
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4 Experiments and Results

4.1 Experimental Setup

The numbers of agents are ng = 100 UGVs and na = 4 UAVs. They operate
in an environment of size 1000 × 1000 units for a duration of 22000 time steps.
UGVs are initialized with random positions, and the weights of their forces
are: WC = 0.01, WA = 0.125 and WS = 1. Their neighborhood is defined
by vd = 30 units, and vα = 360◦. The communication range for the adhoc
scenario is Rg = vd, for convenience. UAVs are initialized to form a 300 × 300
units square situated in the center of the environment. The UAV communication
range is Ra = 300. Each UAV initializes 50 chromosomes randomly (the size of
the population in the GA) and runs the GA repeatedly in t′ time windows to
optimize the weights of its forces.

There are a total of 30 random number generator seeds used for initialing
the environment and agents, which means, 30 runs for each scenario, to ensure
statistical validity of the results. Two scenarios are used, as explained earlier in
the paper: infrastructure mode and adhoc mode.

4.2 Discussion of Results

As explained earlier in the paper, we measure the ground network survivability
by calculating the size of the giant components throughout the simulation, for
the system operating in infrastructure and adhoc modes. Figure 1 shows the top 3
largest components for the two scenarios. Of these three, the most relevant is the
largest component. The other two, while still accounting for the overall quality
of the communications within the UGV swarm, have sizes that do not qualify
them as giant components [13]. However, when analyzing these two components
we can see that they are smaller in infrastructure mode. Arguably, we can expect
that since less nodes are in the second and third largest components, then more
nodes will be part of the largest component. This confirms if we analyse the curve
illustrating the largest component. From a survivability perspective the levels for
the largest component match those reported in previous studies [2,12]. However,
from a comparison perspective it is still difficult to decide which communication
architecture is better, even though visually the infrastructure mode seems better.

To clarify this, we would like to investigate how much time out of the total
simulation time the largest component has a certain size. Figure 2 illustrates the
results of this investigation, where higher values on the right side of the plot
indicate better survivability. We can see clearly that throughout the simulation
the largest component contains between 95 and 100 nodes for more than 40%
of the time in infrastructure mode compared to approx. 25% in adhoc mode. It
can be also seen that in infrastructure mode the largest component has over 80
nodes for a relatively high percentage of time compared to the adhoc mode. In
addition, the adhoc mode also has periods of time when the largest component
contains as few as 30 to 40 nodes, which does not happen in infrastructure mode.
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Fig. 1. The number of agents in TOP 3 largest sub-networks.

Fig. 2. The number of agents over time (percentage) in the largest sub-network.

With the above simulation results, if becomes apparent that if the UGV
swarm uses infrastructure as a communication architecture, the resultant sur-
vivability is higher compared to the adhoc case. This may be counter-intuitive
at a first sight, since having the possibility to connect any UGV to any other
UGV directly, without UAV support, seems to be more beneficial for the overall
connectivity. However, in reality, we recall that the survivable network problem
is focused on situations when communication is disrupted for various reasons. As
such, the high dynamics of the ground swarm and the potential disruptions still
lead to the network being broken in numerous subnetworks despite the adhoc
architectural approach; which further means that aerial support is still needed.
Then, the UAVs need to react to the movement of the various adhoc subnet-
works via the boids forces, as explained in the methodology. We recall that if
an UAV has a neighbor in a subnetwork, in adhoc mode this UAV is attracted
by all UGVs in the subnetwork, whereas in infrastructure mode it is attracted
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only by that particular neighbor. This means that if clusters of UGVs are in
the field and are far away from each other, they may pull away and disconnect
the UAVs from each other leading to a much larger loss of the system’s overall
connectivity.

The above results and their rationale are nevertheless pertinent to the mobil-
ity model use in this paper. Indeed, the conclusions may be different if other
models are used. However, the hybrid models that employ evolutionary swarm
intelligence are the most recent and, arguably, the most comprehensive in relation
to the survivable networks problem; hence, we may assume that the infrastruc-
ture mode could be the better performer in general, regardless of the mobility
model. Whilst this is an assumption at the moment, more investigation would be
needed the evaluate its validity in other contexts, which is an important direction
of future work resulting from this paper.

5 Conclusion

In this paper, we investigated how the communication architecture of a ground
swarm agents contributes to the survivability level in the context of survivable
networks. We considered the two most important conceptual communication
architectures, infrastructure and adhoc, and compared the levels of survivability
obtained when a hybrid swarm intelligence mobility model was used. Results
showed that the system that operates in infrastructure mode tends to exhibit
higher levels of survivability, which is somewhat counter-intuitive but can be
explained through the way the mobility model implements the supporting UAVs
behavior.

In summary, we conclude by saying that the findings of this paper have
some limitations through that they might be bounded to the mobility model
used; however, this is a preliminary study which considered the influence of the
communication architecture on the survivable networks problem for the first
time, and opens the way for significant future work in this direction.
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Abstract. Particle swarm optimization (PSO) is a stochastic search
algorithm based on the social dynamics of a flock of birds. The per-
formance of the PSO algorithm is known to be sensitive to the values
assigned to its control parameters, and appropriate tuning of these con-
trol parameters can greatly improve performance. This paper employs
function analysis of variance (fANOVA) to quantify the importance of
each of the three conventional PSO control parameters, namely the iner-
tia weight (ω), the cognitive acceleration coefficient (c1), and the social
acceleration coefficient (c2), according to their respective variances asso-
ciated with the fitness. Results indicate that the inertia value, ω, has the
greatest sensitivity to its assigned value and thus is the most important
parameter to tune when optimizing PSO performance for low dimen-
sional problems.

Keywords: Particle swarm optimization · Self-adaptive ·
Control parameter tuning · fANOVA · Response surface

1 Introduction

It is widely accepted that an effective search technique should strike a bal-
ance between exploration, which focuses on examining unexplored regions of the
search space, and exploitation, which focuses on improving (promising) known
solutions. In the particle swarm optimization (PSO) algorithm [20], the explo-
ration and exploitation can be controlled by appropriately setting the values of
the three primary control parameters [1,2,5,6,29]. In turn, the performance of
PSO can be greatly improved when the parameters are tuned with respect to
the current problem [3,7,19,23].
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While there is a clear benefit associated with effective control parameter
tuning in the PSO algorithm, the tuning process is typically time-consuming
and cumbersome given that a large number of candidate control parameter con-
figurations must be analyzed. Fortunately, there have been a number of studies
that have suggested general-purpose control parameter values based on empirical
evidence [5,7,10,14,18,23,29,32].

To alleviate the issue of manual parameter tuning, numerous self-adaptive
PSO (SAPSO) algorithms that adapt their control parameter values over time
have been proposed [25,26,28,30,31]. Despite their reported successes, a large
majority of these SAPSO algorithms have been shown to exhibit poor perfor-
mance [12,13,33]. It is hypothesized that the poor performance of SAPSO algo-
rithms is due to their simultaneous need to optimize two continuous problems,
namely the primary optimization problem and the control parameter tuning
problem. Furthermore, poor performance in the control parameter tuning prob-
lem will most certainly lead to poor performance in the primary optimization
problem. Therefore, any reduction in the difficulty of the control parameter
tuning problem will likely lead to major improvements in the performance of
SAPSO algorithms. One potential avenue for reducing the difficulty of the con-
trol parameter tuning problem is to identify which of the control parameters
are most influential in the tuning process. If any of the control parameters are
found to be more influential towards the overall performance, more resources
can be allocated to optimizing their values. Similarly, control parameters that
have little influence on the overall performance can be allocated less resources
when optimizing their values.

To this end, the primary objective of this study is to determine the relative
importance of each of the three PSO control parameters. Functional analysis of
variance (fANOVA) [27], which examines the variance of a response relative to
each of its inputs, is employed to analyze the importance of each of the PSO
control parameters across a suite of 20 benchmark problems in both 10 and 30
dimensions. A total of 8400 PSO control parameter configurations are examined
on both 10D and 30D problems to provide a comprehensive analysis of the effects
of each control parameter. Note that the purpose of this study is not to identify
well-performing control parameter configurations. Rather, this study presents a
meta-analysis of the control parameters to identify their relative importance for
the purposes of tuning.

The remainder of this paper is structured as follows. Section 2 provides the
necessary background on PSO, the control parameter tuning problem, and the
fANOVA procedure. Section 3 describes the experimental procedure used in this
work, while Sect. 4 presents the experimental results. Finally, Sect. 5 provides
concluding remarks and avenues for future work.

2 Background

This section provides the necessary background for the remainder of this paper.
Section 2.1 introduces the PSO algorithm. The control parameter tuning problem
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is formally described in Sect. 2.2 while Sect. 2.3 describes common automated
parameter tuning methods. Section 2.4 provides a description of the fANOVA
procedure.

2.1 Particle Swarm Optimization

The PSO algorithm [20] consists of a collection of particles, which each rep-
resents a candidate solution to an optimization problem. Each particle retains
three pieces of information, namely its current position, its velocity, and its (per-
sonal) best position found within the search space. Particle positions are updated
each iteration by calculation and subsequent addition of a velocity vector to the
particle’s current position.

A particle’s velocity is influenced by the attraction towards two promising
locations in the search space, namely the best position found by the particle itself
and the best position found by any particle within the particle’s neighbourhood
[21], in addition to a momentum term. The neighbourhood of a particle is defined
as the other particles within the swarm from which it may take influence, most
commonly the entire swarm, or the two immediate neighbours when the particles
are arranged in a ring structure [21].

According to the inertia weight model [26], the velocity is calculated for
particle i as

vij(t + 1) =ωvij(t) + c1r1ij(t)(yij(t) − xij(t))
+ c2r2ij(t)(ŷij(t) − xij(t)),

(1)

where vij(t) and xij(t) are the velocity and position in dimension j at time
t, respectively. The inertia weight is given by ω, while c1 and c2 represent the
cognitive and social acceleration coefficients, respectively. The stochastic compo-
nent of the algorithm is provided by the random values r1ij(t), r2ij(t) ∼ U(0, 1),
which are independently sampled each iteration for all components of each par-
ticle’s velocity. Finally, yij(t) and ŷij(t) denote the personal and neighbourhood
best positions in dimension j, respectively. Particle positions are then updated
according to

xij(t + 1) = xij(t) + vij(t + 1). (2)

2.2 Formalized Control Parameter Tuning

Given an algorithm A that has np control parameters with domains Θ1, ..., Θnp
,

respectively, the configuration space of A is defined as Θ = Θ1 × ... × Θnp
. The

notation Np is used to refer to the set {p1, ..., pnp
} of all control parameters of

algorithm A. A (complete) instantiation of the control parameters is then given
by a vector θi = (θp1 , ..., θpnp

). The general goal of control parameter tuning is
to find a configuration θi ∈ Θ that minimizes the performance metric m(θi, πj)
over a set of k problems π1, π2, ..., πk. The performance metric m(θi, πj) can
be any metric that quantifies the performance of A with respect to a parameter
configuration θi ∈ Θ on a problem πj . The control parameter tuning problem can
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then be summarized as finding the parameter configuration θ∗ that minimizes
the overall performance of A, given by

θ∗ = arg min f(θi) :=
k∑

j=1

(m(θi, πj)), (3)

assuming that the performance metric m is to be minimized.

2.3 Automated Control Parameter Tuning Methods

Configuring a heuristic optimizer is a complicated, labour-intensive process.
Recently, there has been considerable research efforts devoted to creating auto-
mated parameter tuning methods. These tools are generally model-free and can
be applied to arbitrary optimization algorithms and objective functions. Gen-
erally, automated parameter configuration techniques are based on the assump-
tion that the response surfaces are smooth and that the performance of nearby
parameter configurations are correlated – an assumption that has not been ver-
ified, in general [24]. Therefore, improving the underlying assumptions used in
automated control parameter tuning methods can be of large benefit. Three
of the most prominent parameter configuration methods used in practice are
ParamILS [17], Iterated F-Race [4], and Bayesian Optimization [22], each of
which are briefly described below.

ParamILS is an iterated local search procedure that begins with an initial
parameter configuration and randomly samples candidate configurations, retain-
ing the best found, which is then refined via a local search procedure and a per-
turbation (i.e., mutation) to escape local optima [17]. Furthermore, the search is
reinitialized at random, according to a fixed probability. This process continues
until no further improvements can be made. The search process is conducted over
a fixed set of training instances, with further extensions that can adaptively vary
the number of target runs needed for each candidate parameter configuration.

Iterated F-Race is based on racing techniques from machine learning,
whereby a large set of candidate configurations are examined under a fixed
computational budget and those that show promise are allocated more of the
computation time [4]. At each iteration, each of the candidate configurations are
evaluated in parallel and poor performing configurations are removed from con-
sideration as soon as statistical evidence is gathered against their performance,
thereby allowing the promising configurations a larger computational budget.
In Iterated F-Race, the surviving candidate configurations are used to bias the
selection of new candidate configurations to consider. This process is repeated
until some termination criterion is satisfied.

Bayesian optimization, which is very prominent in machine learning contexts,
is a global optimization technique that models an objective function (e.g., the
performance of a control parameter configuration) using a Bayesian statistical
model, and subsequently uses an acquisition function to decide the regions of
the search space to sample next [22]. A statistical model, which is typically
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a Gaussian process, provides a probability distribution to describe the poten-
tial performance associated with any particular parameter configuration and
as new configurations are examined, the distribution is updated accordingly.
An expected improvement process is typically used as the acquisition function,
whereby new configurations to examine are selected with respect to a trade-off
between those expected to perform well and those with high uncertainty.

2.4 fANOVA

Optimization techniques, such as PSO, often behave strikingly different when the
configurations of their control parameters are varied [3,7,19,23]. To quantify the
overall effect of each control parameter, the fANOVA technique [27] is a classical
statistical approach that is used to decompose the variance of a response value
into additive components associated with each subset of its inputs [16]. In the
context of this paper, fANOVA is used to quantify the performance associated
with a partial instantiation of the algorithm’s control parameters, in regards to
all instantiations of the remaining control parameters.

Using the definitions provided in Sect. 2.2, let θφ = (θφ1 , ..., θφm
) be a partial

instantiation of m ≤ np control parameters of A, such that {θφ1 , ..., θφm
} =

Φ ⊆ Np. The extension set of θφ, denoted by X(θφ), is then defined as the
set of control parameter configurations that form a complete instantiation when
combined with θφ, denoted by θT where T = Np \ Φ.

The marginal performance of θφ, denoted by m̂(θφ), is then defined as the
expected (i.e., predicted) performance of θφ with respect to all instantiations of
the remaining control parameters, as given by

m̂(θφ) =
1

||ΘT ||
∫

ŷ(θT )dθT , (4)

where ŷ : Θ �→ R, and ||ΘT || =
∏k

i=1 ||ΘTi
||. Assuming that ΘTi

is defined as a
closed interval [u, l], which is true for the PSO control parameters examined in
this paper, then ||ΘTi

|| = u−l. In simpler terms, the marginal performance given
by Eq. (4) quantifies the performance of a (particular) partial instantiation of
control parameters, θφ, over the set of all instantiations of the remaining control
parameters T .

Given that exact calculation of the marginal performance would require enu-
merating and sampling an infinite number of possible parameter configurations1,
a random forest model is used to approximate the marginal performance in lin-
ear time [16]. The key principle underlying the prediction technique is that each
regression tree defines a partitioning of the configuration space Θ, such that the
marginal prediction of the entire forest is the average prediction over each tree
[16].

The fANOVA procedure uses the predicted marginal performance to par-
tition the observed variation of a response value (i.e., the performance of an

1 Assuming the control parameter values are continuous.
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algorithm) into additive components associated with subsets of its inputs (i.e.,
control parameter values). In the context of this paper, fANOVA is used to
partition the model ŷ into additive components that depend only on partial
instantiations θφ. The importance of each partial instantiation θφ (i.e., subset
of control parameters), can then be quantified by the fraction of variance of ŷ
associated with θφ [16]. A larger fraction of variance associated with a particu-
lar control parameter indicates a higher sensitivity to the values of that control
parameter. Therefore, control parameters with higher values for the variance are
more influential, and thus should have a higher priority when tuning control
parameter values.

3 Experimental Setup

To examine the effect of each of the PSO control parameters, values for each
control parameter were sampled in increments of 0.1 in the following ranges:
ω ∈ [−1.0, 1.0], c1 ∈ [0.1, 2.0], and c2 ∈ [0.1, 2.0], producing a total of 8400
parameter configurations. These ranges were chosen to approximately coincide
with the boundaries of the theoretically stable region [9]. Selecting parameter
values outside of the theoretically stable region is not recommended as these
parameter values generally lead to worse performance than random search [8].
Each parameter configuration was examined on a suite of 20 minimization prob-
lems, summarized in Table 1, in both 10 and 30 dimensions. Each experiment
made use of synchronous updates and ran for 5000 iterations with a swarm size
of 30. Experiments were repeated 30 times using the gbest topology. To prevent
invalid attractors, personal best positions were only updated if the new position
was feasible and had a better fitness than the previous personal best position.
Particles were initialized uniformly within the feasible region and had an initial
velocity of 0 [11]. The response values, for use in the fANOVA procedure, were
taken as the average fitness values after 5000 iterations.

According to the definitions provided in Sect. 2.2, algorithm A is the PSO
algorithm, the training instances πi are problems provided in Table 1, and the
performance metric m(θ, πi) is the average fitness of PSO after 5000 iterations
on problem πi using configuration θj . Therefore, these experiments examine the
influence of each control parameter on the overall fitness of the PSO algorithm.

4 Results

This section presents the results of the aforementioned experimental procedure.
Section 4.1 presents the proportion of variance in fitness associated with each
control parameter, while Sect. 4.2 presents the response surfaces visually.

4.1 Variance in Fitness

Table 2 presents the proportion of variance in fitness associated with each of
the three control parameters in both 10 and 30 dimensions where bold entries



An Analysis of Control Parameter Importance in the PSO Algorithm 99

Table 1. Benchmark problems

Problem Domain Problem Domain

Absolute Value [−100, 100]d Quartic [−1.28, 1.28]d

Ackley [−32.768, 32.768]d Rastrigin [−5.12, 5.12]d

Alpine [−10, 10]d Rosenbrock [−30, 30]d

Egg Holder [−512, 512]d Saloman [−100, 100]d

Elliptic [−100, 100]d Schaffer 6 [−100, 100]d

Griewank [−600, 600]d Schwefel 1.2 [−100, 100]d

Hyperellipsoid [−5.12, 5.12]d Shubert [−10, 10]d

Michalewicz [0, π]d Spherical [−5.12, 5.12]d

Norwegian [−1.1, 1.1]d Step [−100, 100]d

Quadric [−100, 100]d Vincent [0.25, 10]d

denote the control parameter that has the highest variance for a particular prob-
lem. Note that the variances do not sum to 1 because the fANOVA procedure
calculates the variance associated with each subset of parameters, while Table 2
only presents the results for each control parameter independently. From Table 2,
it is evident that the ω parameter had the greatest variance for all 20 problems
in both dimensionalities, with the exception of the Elliptical problem in 30D. On
average, the inertia component accounted for 55.1% of the variance in 10D prob-
lems and 42.1% on 30D problems. Thus, the influence of the inertia component
was more pronounced in 10D problems. The cognitive acceleration coefficient
was the least important parameter to tune, accounting for only 0.9% and 0.4%
of the variance in 10D and 30D problems, respectively. The social acceleration
coefficient accounted for 7.5% and 12.4% of the variance in 10D and 30D prob-
lems, respectively.

It is noteworthy that the variance associated with the ω control parameter
was significantly below the average, at only 19.0% and 17.2% for 10D and 30D,
when considering the Elliptic problem, while the c2 control parameter was sig-
nificantly above the average, at 17.6% and 27.8% for this problem. The exact
reason that the results for the Elliptic problem are anomalous is not yet known.

For the objective functions considered in this paper, these results provide
strong evidence that the inertia weight is the most influential control param-
eter, with respect to overall fitness, in the PSO algorithm for low dimensional
problems. Additionally, this suggests that the cognitive acceleration coefficient is
the least influential control parameter while the social control parameter is only
moderately influential. This may explain the tendency for SAPSO algorithms to
focus solely on the inertia weight [15].
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Table 2. Proportion of variance in fitness for PSO control parameters

Problem 10D 30D

ω c1 c2 ω c1 c2

Absolute Value 0.645021 0.001677 0.038427 0.446099 0.001371 0.094186

Ackley 0.610086 0.000370 0.023532 0.414973 0.002505 0.066243

Alpine 0.662894 0.002883 0.043359 0.532597 0.002557 0.071407

Egg Holder 0.508794 0.010904 0.023919 0.512384 0.000663 0.046083

Elliptic 0.189763 0.005530 0.176589 0.172190 0.008921 0.278671

Griewank 0.616815 0.001870 0.095774 0.410851 0.003300 0.177518

Hyperellipsoid 0.600843 0.002612 0.098467 0.406675 0.004425 0.183428

Michalewicz 0.607955 0.010827 0.015676 0.550291 0.001364 0.015341

Norwegian 0.567687 0.003638 0.085906 0.606357 0.008016 0.046624

Quadric 0.571072 0.004573 0.109951 0.417776 0.010275 0.195691

Quartic 0.481665 0.001954 0.150146 0.322408 0.005273 0.256089

Rastrigin 0.632356 0.000798 0.057356 0.555449 0.001185 0.067148

Rosenbrock 0.469396 0.002248 0.153637 0.333712 0.004969 0.251373

Saloman 0.610867 0.000264 0.059487 0.391126 0.000982 0.139879

Schaffer 6 0.494144 0.027852 0.028585 0.455864 0.005774 0.003785

Schwefel 1.2 0.570365 0.004249 0.107213 0.419636 0.010159 0.196484

Shubert 0.310248 0.109850 0.019874 0.080289 0.014961 0.004335

Spherical 0.603515 0.002277 0.098588 0.411410 0.003379 0.177229

Step 0.610909 0.001599 0.101479 0.406908 0.002340 0.188080

Vincent 0.653907 0.001226 0.018588 0.572382 0.000508 0.017953

Mean 0.550915 0.009860 0.075328 0.420969 0.004646 0.123877

Std. Dev 0.118774 0.024342 0.049636 0.128060 0.003957 0.090519

4.2 Response Surface Analysis

Figures 1, 2 and 3 present, for each of the ω, c1, and c2 control parameters, the
average fitness values associated with the different values of that particular con-
trol parameter. These plots are henceforth referred to as the response surfaces.
In these figures, the solid line through the middle indicates the average fitness
while the larger region indicates one standard deviation above and below the
average. These figures give an overview of the control parameter values that
lead to the best performance, while also providing a visual indication of their
influence.

Figure 1 presents the average fitness, with respect to ω, for selected problems
in 10D and 30D. It is evident from these figures that the ω control parameter
had the largest variability, thereby supporting the fANOVA results. Visually, an
inertia value of approximately 0.8 lead to the best overall fitness. Values above
0.8 tended to rapidly deteriorate in fitness, while values below 0.8 demonstrated
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(a) Absolute Value, 10D (b) Egg Holder, 10D (c) Michalewicz, 10D

(d) Absolute Value, 30D (e) Egg Holder, 30D (f) Michalewicz, 30D

Fig. 1. Average fitness, with respect to ω, on various problems.

(a) Absolute Value, 10D (b) Egg Holder, 10D (c) Michalewicz, 10D

(d) Absolute Value, 30D (e) Egg Holder, 30D (f) Michalewicz, 30D

Fig. 2. Average fitness, with respect to c1, on various problems.

relatively smooth deterioration in fitness as the inertia value decreased. Note that
the overall shape of the plots were largely the same regardless of the problem and,
furthermore, that the same general shape was observed for both 10D and 30D
problems. Additionally, the small standard deviations indicate a low deviation,
which suggests that the values of c1 and c2 had significantly less impact on the
performance than the value of ω.
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(a) Absolute Value, 10D (b) Egg Holder, 10D (c) Michalewicz, 10D

(d) Absolute Value, 30D (e) Egg Holder, 30D (f) Michalewicz, 30D

Fig. 3. Average fitness, with respect to c2, on various problems.

Figure 2 presents the average fitness, with respect to c1, for selected problems
in 10D and 30D. It is first noted that the standard deviations were much higher.
This indicates that the value of the c1 control parameter was much less important
than the values of the other two control parameters. In contrast to the ω control
parameter, values for c1 generally had a smooth response surface. However, for
some problems, the average fitness increased as the value of c1 increased, while
for other problems, the average fitness deteriorated as the values of c1 increased.
A noteworthy observation is the striking difference between the response surfaces
for the Egg Holder problem in 10D (Fig. 2b) and 30D (Fig. 2e).

Figure 3 presents the average fitness, with respect to c2, for selected prob-
lems in 10D and 30D. As with the ω control parameter, the response surfaces
for the c2 control parameter depicted much less deviation, thereby indicating a
higher level of importance. However, similar to the response surfaces for the c1
control parameter, the average fitness with respect to c2 would either improve
or deteriorate as the value of c1 increased, depending on the problem.

5 Conclusions

This paper investigated the relative importance of the three main control param-
eters, namely ω, c1, and c2, for the particle swarm optimization (PSO) algorithm.
A total of 8400 parameter configurations were examined on a benchmark suite of
20 minimization problems in both 10 and 30 dimensions. The functional analysis
of variance (fANOVA) procedure was executed to indicate the variance in fitness
associated with each of the control parameters. Response surfaces were plotted
to visually inspect the effect of various values of each control parameter.
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For the objective functions considered in this paper, the results suggest that
the inertia control parameter, ω, accounts for 55.1% and 42.1% of the variance in
fitness, on average, for 10D and 30D problems, respectively. The cognitive accel-
eration coefficient, c1, was the least important control parameter and accounts
for less that 1% of the variance in fitness, on average. Therefore, when tun-
ing a PSO algorithm, the value of the inertia weight control parameter is by
far the most important to tune. Visual inspection of the response surfaces also
indicated that the response surface of the inertia weight is largely uninfluenced
by the problem itself or the dimensionality, while the same can not be said for
the other two control parameters. These results have major implications for the
design of future self-adaptive PSO algorithms (SAPSO) as they provide concrete
evidence that tuning the inertia weight will reap the largest benefit, while tuning
the cognitive acceleration is of little benefit.

An immediate avenue of future work is to determine the variance associ-
ated with each subset of control parameters, thus determining their influence in
combination with one another. Furthermore, investigating problems with larger
dimensionalities, different PSO topologies, and other PSO variants is also war-
ranted.
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Abstract. The applied task of synthesis of digital self-oscillating control sys-
tem is considered. Problem of correction devices parameters search is consid-
ered as the task of finite-dimensional optimization task. For its solution parallel
swarm optimization algorithm is worked out. Algorithm is applied to parametric
optimization of actuator digital control self-oscillating system. The proposed
approach had superior features, including easy implementation, stable conver-
gence characteristic, and good computational efficiency. When control system
digital realization synthesis the exact algorithm of determination of periodical
movement in relay system is worked out. Method of self-oscillations stability
analysis in such a system is proposed. Optimization task is solved with taking
into account the criterion of stability of self-oscillations in the system under
consideration. Effectiveness of proposed methods and PSO algorithms was
shown on the example of synthesis of digitally controlled relay system for an
electro-pneumatic servo-mechanism. On the model example it is shown that the
use of the PSO algorithm as compared with the genetic algorithm (GA) have
better convergence.

Keywords: Digital control system � Particle Swarm Optimization �
Self-oscillation � Stability � Actuator � Relay controller

1 Introduction

Methods of swarm intelligence are widely used in the field of computing and artificial
intelligence now. Swarm conception, based on social behavioral model had been
introduced for investigation of distributed intellectual systems [1]. Swarm includes set
of homogeneous simple agents, which execute simple operations and interact between
them and/or environment without any external control. Swarm social behavior is
formed as the consequence of self-organizing and local interaction [2]. Swarm intel-
ligence permit rather effective solve the tasks of global optimization [1–4]. At first
particle swarm optimization (PSO) algorithm had been proposed at 1995 [3]. Its
simplest realization may be performed as follows: in n–dimensional space with those or
that method set of points, named the swarm, is created. Points shifted in space, and at
every location point, optimization criterion is calculated. Optimal solution is best
solution by points position and by points itself. The PSO technique can generate a
quality solution within shorter calculation time and stable convergence characteristic
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than other stochastic methods [5, 6]. Many practical optimization tasks are subject to
constraints, which means that not an arbitrary solution to the problem is searched for,
but a solution that complies with certain restrictions. The use of the PCO algorithm for
optimization of problems with constraints is considered in [7, 8]. The most common
approach for solving constraints optimization (CO) problems is the use of a penalty
function [9]. In this paper, the performance of the Particle Swarm Optimization method
(PSO), in solving CO problems is investigated. This approach may be applied to
synthesis of relay self-oscillating system with digital control and various restrictions.
Relay systems are widely used in servo control systems. Studies on the use of such
systems are to numerous publications [10–12]. The main works deal with the analysis
of periodic processes and the assessment of their stability and linearization for systems
operating in continuous time. Currently, self-oscillating relay control systems are being
designed in digital form [13, 14]. The traditional design of such systems is based on a
finite-dimensional optimization of the controller parameters. The criterion for the
synthesis of a relay feedback system is the minimization of phase lag [14]. When use
the PSO algorithm for synthesis multiple calculation of criterion is executed. It is
important, that computational procedure is performed as soon as possible. The paper
proposes an approach to the calculation of the quality indicator for a linearized model
of a relay system with a sampled. Control system digital realization causes significant
influence on self-oscillating system operation parameters [14, 16], this is why it is
necessary to take into account sampling influence.

The rest of this paper is organized as follows. The formal definition of the problem
under study is given in Sect. 2. In the 3rd and 4th section, the problems of identifying
periodic motions and assessing their stability are considered. In Sect. 5, the parameters
of the relay controller are optimized using the PSO and GA method. Section 6 con-
cludes with a brief summary of this paper.

2 Mathematical Description of System Under Investigation

Flowchart of relay control system (RCS) with linear controllable object is shown on the
Fig. 1.

Fig. 1. Block diagram of the sampled-data relay control system.
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On the flowchart, the function F e kTs½ �ð Þ determines static characteristic of two-
position relay (TPR) with hysteresis (Fig. 2). To the input of this element is applied
sequence e kTs½ � ¼ f kTs½ � � y kTs½ �k ¼ 0; 1; 2; . . ., where f kTs½ � is discrete input signal;
y kTs½ � is the feedback signal, obtained from feedback continual signal y tð Þ by means of
sampling with regular sampling period Ts. At every time interval
kTs � t\ kþ 1ð ÞTs; k ¼ 0; 1; 2; . . . to controllable object signal U tð Þ ¼ U kTs½ � is
applied. Mathematical model of closed system in the space of states is as follows

x kþ 1ð ÞTs½ � ¼ Ux kTs½ � þWU kTs½ �;
y kTs½ � ¼ CT kTs½ �:

�
ð1Þ

where x is the phase variable vector. System matrices are determined with well-known
dependencies:

U ¼ eATs ;W ¼
Z TS

0
eAtdtB: ð2Þ

where A;B are matrices of continual object under control of corresponding size.

3 Periodical Movements in the Discrete Relay System

Let us apply to system under investigation method of specification of all possible
periodical movements, which can be set in the digital self-oscillating system. Let us
also assume that symmetrical ultimate cycle with period N = 2M exists. Due to system
is the discrete one, output relay element sequence may be performed as discrete
function, shown on the Fig. 3:

U k½ � ¼ A; k ¼ 1þmN; 2þmN; . . .MþmN;
U k½ � ¼ �A; k ¼ Mþ 1þmN; . . .;NþmN:

;m ¼ 0; 1; 2; . . .
�

: ð3Þ

Fig. 2. Static charac-
teristic hysteresis relay.

Fig. 3. Output signal of a relay
element.
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Periodical signal (3) may be transformed onto Fourier series [13]

U k½ � ¼ 1
N

XN

n¼1
Cne

jnx0k ð4Þ

where x0 ¼ 2p
N ; Cn is the complex coefficient:

Cn ¼
XN
k¼1

U k½ �e�jnx0k ¼
XM
k¼1

e
�jpnk
M �

XN
k¼Mþ 1

e
�jpnk
M :

When n is even, then Cn is equal to zero, otherwise

Cn ¼ 1� �1ð Þnð Þ je�jnp=N

sin np=Nð Þ : ð5Þ

Output signal of the continual part of the system, when input signal is as (4) is as
follows

y k½ � ¼ 1
N

XN

n¼1
W ejnx0
� �

Cne
jnx0k ¼ j

N

XN

n¼1
1� �1ð Þnð Þ e�jnp=N

sin np=Nð Þ e
2jnk=N : ð6Þ

Similarly to continual case [10], let us introduce notion phase locus of discrete relay
system. Components of phase locus are named R-characteristics, they are functions of
semi-period of oscillation and determine nominations of phase variables at the moment
of switching of relay element from negative to positive value. In such a way, phase
locus is the vector function x� Mð Þ, which depends on parameter M and describes all
symmetrical periodical movements. Due to the fact, that in periodical movement there
is a symmetry y 0½ � ¼ �y MTs½ � then with taking into account (6)

y M½ � ¼ � 1
M

XM

n¼1

1� �1ð Þnð Þ
sin np

N

� � Im W jnx0ð Þe�jpn M�0:5ð Þ
M

� �
: ð7Þ

Relay switch condition in the discrete system quite differ from continual case. In
continual system self-oscillation are determined from condition of trajectory y tð Þ
attachment to switching surface y tð Þ ¼ �b at time moment t. When discrete case
discrete function y k½ � causes switching only at moments, aliquot integer values of
sampling interval MTs � t. Conditions switch relay element into a sample data relay
systems

y M½ � � � b;
y M � 1½ � � � b:

�
ð8Þ

To search for all limit cycles in a given relay feedback system, you can use
expression (7) and check the inequality (8). The search for all possible symmetric
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periodic motions in systems can be performed graphically. Based on the delay in
switching the relay 2 0; Ts½ �, the R-characteristics [14] (7) will take the form

y M; s½ � ¼ � 1
M

XM

n¼1

1� �1ð Þnð Þ
sin np

N

� � Im W jnx0ð Þe�jnx0se�
jpn M�0:5ð Þ

M

� �
: ð9Þ

Possible symmetric periodic movements with a period N are determined by the
graphical solution of the equation y M; s½ � ¼ �b. Time discretization leads to the
occurrence of various periodic motions in relay control systems.

4 Stability of Self-oscillation in the Digital Relay System
and Linearization

In the case of RCS relay switches only at time moments, which are aliquot integer
values Ts, but disturbances at initial conditions ~y k½ � ¼ y k½ � þD may not adduct to
changing of relay switching moment. Such a situation is shown on the Fig. 4, where
t1; t2½ � are moments of switching of undisturbed trajectory y k½ � and disturbed trajectory
~y k½ � correspondingly. Relay output signal U k½ � switches at the moment MTs, similarly
to the case of undisturbed trajectory.

Initial periodical solution y k½ � ¼ CTx k½ � intersects switching surface �b at time
moments t1. Let us introduce small disturbance D to periodical trajectory y(t) and
suppose that disturbed periodical trajectory ~y tð Þ ¼ CT x tð ÞþDð Þ will intersect switch-
ing surface at the time moment t1. If both solutions intersect switching surface during
the same interval of the set

t1 ^ t2 2 M � 1½ �;Mð ÞTs ð10Þ

then relay switches at the same time moment MTs, both in the case of undisturbed and
in the case of small disturbance D. If (10) will be fulfilled for further switches, then
trajectory will be asymptotically convergent to ultimate cycle. If in discrete system
there is stable ultimate cycle, then for it there is some domain of disturbances D, at
which control signal U k½ � do not change. For periodical trajectory stability analysis in
RCS it is necessary to evaluate set of values D, at which condition (10) will be fulfilled.

Fig. 4. Periodic trajectory of a disturbed and undisturbed system
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Domain of permissible disturbances, at which shifting of switching moments does
not occur may be obtained as follows. Let us suppose that in the relay system there is
symmetrical ultimate cycle with the period NTs, and matrix A is the Hurwitz matrix In
this case all solutions with initial conditions ~x�N ¼ x�N þD, where D 2 DI will be
asymptotically converged to the stable limit cycle. In such a way the problem of
definition of admissible set of disturbances is quite equivalent to the task of definition
of set of attainability of discrete system. Method of searching of such a set is
expounded in [15, 17].

As was shown, time sampling leads to a delay in switching the relay with the
continuous case. Using the expression 9 can determine the equivalent time delay s. It is
possible to assess the stability of the sample relay system using the equivalent system
with a delay [18].

Proposition 1. Periodic motions in a closed relay system will be asymptotically
orbitally stable if all the eigenvalues of the product of matrices W1W2 are in a circle of
unit radius.

W1 ¼ I � An� Ax�m þBA
� �

C

CAn� Ax�m þBA
� �

 !
eA sþ T0ð Þ ð11Þ

W1 ¼ I � Anþ Ax�m þBA
� �

C

CAnþ Ax�m þBA
� �

 !
eA sþ T0ð Þ ð12Þ

s – equivalent delay, x�m – the initial value belongs to the maximum limit cycle, identity
matrix by dimension n� nð Þ, n� and nþ positive integers that are determined and
solutions of the next system

CAiþ 1x�m þCAiBA ¼ 0; i ¼ 0; . . .; nþ ;
CAnþ þ 1x�m þCAnþ BA\0;

CAjþ 1x�m þCAjBA ¼ 0; i ¼ 0; . . .; n�;
CAn� þ 1x�m þCAn�BA\0:

8>><
>>: ð13Þ

The condition presented allows us to estimate the stability of periodic motions in a
relay system with a delay.

4.1 Linearization of Relay Sampled-Data Feedback Systems

Tracking mode accuracy of the relay control system is estimated from the frequency
response of a closed feedback systems. At the stage of optimization of the controller
parameters is important to quickly calculate the criterion. Linearization allows a simple
way to study the tracking mode for the input signals in the relay system. The paper
considers the linearization of the relay equivalent transmission coefficient (see Fig. 5)
[10].
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In the case of a sample-data relay feedback system, the relay transfer ratio will be
variable Kp sð Þ 2 K1;K2; . . .;Km½ �, Km–corresponds to the maximum limit cycle. The
equivalent transmission coefficient is calculated on the basis of a relay system with
delay s.

Kp sð Þ ¼ 2p
N

XM

k¼1
�1ð ÞkRe W

jpk
M

� �
e�

jpk
M s

� �� �
: ð14Þ

The accuracy of the tracking mode is estimated by the amplitude-frequency and
phase frequency response

A x; sð Þ ¼ Kp sð ÞW pð Þ
1þKp sð ÞW pð Þ
				

				; ð15Þ

u x; sð Þ ¼ arg
Kp sð ÞW pð Þ

1þKp sð ÞW pð Þ

 �

: ð16Þ

A designed relay controller must maintain the desired frequency of self-oscillations
and minimize phase lag and meet the requirements of the amplitude-frequency char-
acteristic. Tuning the controller parameters is performed by the finite-optimization. in
the paper describes the method of optimizing the swarm of particles with constraints is
considered.

5 Optimization of RCS with Use PSO Method

Let us consider global PSO algorithm. On the first stage at the parametric space
randomly swarm of initial points is created. Every point moves in some direction with a
speed, which is defined as follows:

Vi kþ 1½ � ¼ wVi k½ � þC1r1 pi k½ � � Si k½ �ð ÞþC1r1 g k½ � � Si k½ �ð Þ: ð17Þ

Fig. 5. Linearization relay feedback systems
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Next position of point in the space may be defined as follows:

Si kþ 1½ � ¼ Si k½ � þVi kþ 1½ �; i ¼ 1; 2; . . .; n: ð18Þ

where Si k½ � is the current position of i-th searching point, Vi k½ � is the speed of i-th point;
n is number of points in the swarm, pi is the best value of optimization criterion for i-th
point, g is the best value from all points, xmin �x�xmax is the weight coefficient,
xmin;xmax are minimal and maximal values of weight coefficient; r1; r2 2 0; 1ð �. Ci is i-
th point inertia coefficient [6, 7];

Ci ¼ xmax � xmax � xminð Þk
kmax

ð19Þ

As criterion of algorithm stopping one use error of convergence of swam pointsPn
k¼1 var pkð Þ\e, where e is permissible accuracy of convergence. The constraints on

the parameters in the optimization algorithm are implemented as penalty functions. The
use of penalty functions is one of the most common approaches to deal with constraints
in evolutionary computation. If a minimization problem is assumed, the objective
function f is modified to fnew

fnew xð Þ ¼ f xð Þ; if x 2 X;
þ1; otherwise:

�

X - set of possible values. Simple parallel realization of algorithm is possible (Fig. 6).

6 Example

As an example let us consider simplified model of actuator, flowchart of which is
shown on the Fig. 7. In the model rigid mechanical limiters are not taken into con-
sideration, so assumption, that system operates in linear domain are made.

On flowchart: f kTs½ � is the input signal; WfilterðzÞ ¼ a1z
z�a2

is discrete correction

device, WfreqðzÞ ¼ Kf zþTf
z2�1:762zþ 0:8187 device of discrete self-oscillation frequency correc-

tion; U½k� is the signal from output of relay; b ¼ 0:001 is the relay hysteresis; d is the
output shaft rotation angle; Ts ¼ 0:001 ðsÞ is the sampling period. Plant parameters:
K1 ¼ 7, T1 ¼ 0:001, Km ¼ 1:0, TM ¼ 0:004, nM ¼ 0:8, Tg ¼ 0:025, M ¼ 0:68. The
filter WfilterðzÞ provides frequency correction. The filter WfreqðzÞ provides stabilization
of self-oscillation frequency. As the criterion of actuator operation effectiveness
maximal phase lag in working interval of frequencies of input signals

fnew a1; a2; T1;K1ð Þ ¼ maxxmin �x�xmax u x; sð Þ ð20Þ

Calculation of optimization criterion conveniently to do with use linear model (See
Fig. 5). Parallel PSO optimization algorithm implemented in MatLab. Using the
electro-pneumatic actuator as an example, the controller is optimized using the PSO
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method and the standard GA method. The constraints on the parameters of the con-
troller are the conditions for the stability of self-oscillations and the physical release of
the controller (Table 1).

Fig. 6. Algorithm PSO

114 E. V. Larkin et al.



From the above simulation result, it illustrates that PSO has the better performance
and faster convergence speed compared with the basic GA in relay controller param-
eters tuning problem. The particle swarm algorithm converges in 250 iterations (Figs. 8
and 9).

Fig. 7. Electro-pneumatic servomechanism.

Table 1. Results of the relay controller parameter tuning.

GA PSO

WfilterðzÞ ¼ 1:106z�1:104
z�0:9979 WfilterðzÞ ¼ 1:714z�1:711

z�0:9971

WfreqðzÞ ¼ 0:02249zþ 0:002088
z2�1:732zþ 0:8007 WfreqðzÞ ¼ 0:002067zþ 0:001934

z2�1:762zþ 0:8187

Fig. 8. Phase frequency characteristic of electro-pneumatic-servomechanism synthesized opti-
mized by methods PSO and GA.
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7 Conclusion

The result obtained confirms high efficiency of proposed method of PSO for solving the
problem of relay control system design. Method may be used for optimization of wide
class of digital relay control systems with self-oscillations.

Further investigation development in this area may be aimed on working out the
method of selection of the direction of swarm unit movement during optimal solution
search, which accelerate runtime of PSO algorithm.

Acknowledgement. The research was carried out within the state assignment of the Ministry of
Education and Science of Russian Federation (No 2.3121.2017/PCH).
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Abstract. As a kind of evolutionary algorithms, particle swarm optimization is
famous for its simplicity and efficiency in optimization. However, for complex
problems, PSO is prone to be trapped into the local optima. To address this issue,
a particle swarm optimizer with niching strategy and entropy-based exploration
strategy (PSO-NE) is proposed in this paper. To be specific, on one hand, a
distance based niching strategy and the competitive learning strategy are adopted
to design the exploitation in PSO-NE; on the other hand, the exploration in PSO-
NE is achieved by an entropy based exploring strategy. With such kind of
designs, the exploitation and exploration in PSO-NE can be dependently
adjusted, which is beneficial for balancing these two factors. To validate the
effectiveness of the proposed algorithm, extensive experiments have been con-
ducted based on 28 benchmarks from CEC’ 2013. The proposed algorithm shows
its competitive performance with comparing to six other typical variants of PSO.

Keywords: Particle swarm optimizer � Global optimization �
Niching strategy � Competitive learning � Entropy

1 Introduction

As a kind of evolutionary algorithms (EAs), particle swarm optimization (PSO) has
attracted a huge amount of attentions since its advent [1, 2]. The basic PSO keeps a
number of particles each of which includes two attributes, the velocity and position
which are iteratively updated according to the following equations

vdi tþ 1ð Þ ¼ w � vdi tð Þþ c1 � r1 � pbestdi tð Þ � pdi tð Þ� �þ c2 � r2 � gbestd tð Þ � pdi tð Þ� � ð1Þ

pdi tþ 1ð Þ ¼ pdi tð Þþ vdi tþ 1ð Þ ð2Þ

where t is the generation number; pdi and vdi are the dth dimensions of the position and
velocity of ith particle respectively; pbestdi represents the dth dimension of the best
position searched by ith particle in current generation while gbestd are the best position
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of the whole swarm in current generation; w is the inertia weight, c1 and c2 are the
acceleration coefficients; r1 and r2 are two randomly generated number within ½0; 1�.
Due to its simplicity and efficiency, PSO has been widely used in many studies areas,
such as antenna designs [3], feature selection [4], robot path planning [5], and power
system [6].

But many researchers have found that PSO lacks efficiency in solving complex
optimizations. Thus, a lot of studies can be found in past two decades. First, many
researchers focus on the adjustment of the parameters in PSO including the deter-
ministic control methods [7–9] and the adaptive control strategies [10, 11]. Second,
some efforts are made to diversify the exemplars for particles, such as the fully
informed particle swarm optimization [12], the comprehensive learning particle swarm
optimizer [13], and the competitive swarm optimizer (CSO) [17]. Besides, hybridiza-
tion with other techniques is also much accounted by many studies such as particle
swarm optimizer with crossover [18] and cooperatively coevolutionary strategy [19].

However, PSO and its variants still always fail to find the global optima in many
cases. That’s mainly because the existing PSO variants usually can’t get a good balance
between exploitation and exploration. For example, CSO enhances the exploration by
learning the mean position of the whole swarm. However, such mean position is shared
by all the particles to be updated [17], which results in a highly coupled relationship
between exploration and exploitation in such kind of learning strategy.

To address this issue, this paper aims to reduce the coupling between exploitation
and exploration in PSO and the main contributions in this paper are in following.

(1) A niching strategy is adopted to classify the particles into several sub-groups based
on the distances among particles; then, a competitive learning strategy is employed
to exploit each sub-group.

(2) An entropy based exploring strategy is proposed to enhance the exploration of
PSO.

The rest of this paper is organized as follows. A brief overview of the related works
on PSO will be presented in Sect. 2. In Sect. 3, the details of the proposed algorithm
are introduced. The experiments and the results analyses are conducted in Sect. 4 and
we end this paper with the conclusion in Sect. 5.

2 Related Works

For improving the performance of PSO, the existing works can be mainly categorized
into following three classes.

2.1 Modified Updating Strategies

In such kind of variants, the main idea is to propose new learning strategy to improve
the search ability of PSO. Mendes and Kennedy designed a fully informed learning
strategy where particles learn to the contracted exemplars based on their neighbors
[12]. Liang proposed comprehensive learning which allows each particle’s pbest to be a
leader [13]. Chen and Zhang proposed ALCPSO in which the gbest can be challenged
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and replaced by another generated particle in some cases leading to a more diverse
global leader [20]. Cheng and Sun proposed FBE which includes two sub-swarms and
a fitness value based competition. They identify the weak particles and the strong
particles at each generation, then each weak particle is leaded by the best and another
randomly selected particles from another sub-swarm while the strong particles are
subjected to a mutation operation [14]. Later in 2015, Cheng and Jin proposed the
competitive swarm optimizer which shows promising performance both in low
dimensional and large scale optimization [17]. In the same year, Cheng and Jin pro-
posed SL-PSO allowing particles to learn from each particles that better than them-
selves [15]. Last year, Yang and Chen proposed DLLSO in recently [16]. DLLSO
grades particles base on the fitness values, and every particle chooses two different
exemplars from superior levels. By this way, particles in DLLSO can get more diverse
exemplars than CSO.

2.2 Parameter Control Strategies

The parameters are essential for controlling the convergence and diversity of PSO. Shi
proposed a linear control methods and a fuzzy control strategy for the adjustment of the
inertia weight [21, 22]. Ratnaweera and Halgamuge proposed HPSO-TVAC, where the
acceleration coefficients are varying during the run of the algorithm [8]. APSO pro-
posed by Zhan adjusts the acceleration coefficients according to an evolutionary state
estimation strategy [10].

2.3 Hybridization with Other Techniques

The hybridization with other techniques is to utilize other techniques to enhance the
search ability of the basic PSO. Such as the CCPSO-SK and CCPSO-HK integrated the
co-operative co-evolutionary framework into PSO [23, 24]. Following this idea, Li and
Yao put forward CCPSO2 in which the Gaussian and Cauchy distribution are used to
update individuals to make a balance between exploitation and exploration [25]. Qin
and Cheng proposed a PSO variant by dividing the whole swarm into learned and
learning sub-swarms at each generation. And the learning sub-swarm will learn from
the learned sub-swarm with a random probability [26]. The genetic learning particle
swarm optimization put forward by Gong and Li uses crossover and mutation operators
to enhance the exploration ability of PSO [27]. Similar to this idea, Chen and Li
designed two different crossover operations to breed promising exemplars in their
recent work [18].

More about the development of PSO can be found in [28]. Although these works
have promoted PSO in various kinds of optimizations, PSO and its variants are still less
effective for complex optimization. As discussed in Sect. 1, this is mainly because most
of the existing methods still cannot achieve a good balance between exploitation and
exploration, especially in solving problems with high complexity.

Thus, to further decouple the exploitation and exploration and get more reasonable
balance between these two factors for PSO. This paper proposed a novel variant of PSO
with introducing a niching method, the competitive learning strategies and an entropy-
based exploration tactics. The details will be presented in the following section.

120 D. Li et al.



3 Proposed Algorithm

As discussed above, one can found that PSO still need to be further improved in
balancing its exploitation and exploration. Thus, we proposed a novel variant of PSO as
following.

3.1 Exploitation Operator

Exploitation is important for PSO because it can help the algorithm to refine the located
promising areas. However, for the basic PSO, the current global best position of the
swarm at each generation may be not in the most promising area in the search space
under some cases during the optimization, especially for the multi-modal optimization.
This can be illustrated by Fig. 1.

As shown in Fig. 1, the true global best solution is pg while the current global best
position is p1. And in the basic PSO, all the particle will be attracted by p1 which will
lead to missing of the true global best solution. To address this issue, it is better to
group the swarm to different sub-groups as shown in Fig. 1. By this way, more
promising solutions can be exploited which can potentially address the aforementioned
issue. To achieve this, a niching method and the competitive learning strategy are
adopted which will be introduced following.

Algorithm 1. Niching strategy: Clustering for Speciation [29]

Input : Population P, cluster size M
Step 1: Sort P according to fitness;
Step 2: While P is not empty

Select the best individual Pbest in P as a new seed;
Build a species containing Pbest and M-1 individuals nearest to it;
Eliminate these M individuals from P;

End While
Output: A set of species

x

y

.
.

. ..

. pg
p1

Fig. 1. A potential function with one decision variable.
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Then, in each group, for a thorough exploitation, the competitive learning strategy
proposed in [17] is used to identify the particles to be updated and the corresponding
exemplars. Consequently, the velocity of a particle to be updated in subgroup in the
exploitation phase will be updated by using (3)

vdm;l;i tþ 1ð Þ ¼ r1 � pdm;w;i tð Þ � pdm;l;i tð Þ
� �

ð3Þ

where vdm;l;i tð Þ and pdm;l;i tð Þ denote the dth dimension of the ith particle to be updated in
mth subgroup and the corresponding information of the exemplars; r1 holds the same
meaning with that in (1).

3.2 Exploration Operator

For exploration, a commonly used way is to keep the particles uniformly dispersed in
the search space. To achieve this, this paper suggests an entropy based exploring
strategy because entropy is an effective measure to evaluate the scatter degree of a set
of random variables. Specifically, we adopt a modified entropy measurement based on
the design proposed in [30], where the particles will be first sorted according to their
fitness values and then the entropy for ith particle is defined as following

entropyi ¼ �normal proi;1 log2 proi;1
� �þ proi;2 log2 proi;2

� �� �� � � normal Li
L

� 	

ð4Þ

proi;1 ¼ fitnessi � fitnessi�1

Li
ð5Þ

proi;2 ¼ fitnessiþ 1 � fitnessi
Li

ð6Þ

Li ¼ fitnessiþ 1 � fitnessi�1 ð7Þ

L ¼ max fitnessð Þ �min fitnessð Þ ð8Þ

where normalf~zg is a normalize operator by dividing each element in~z by the maxi-
mum value of~z. From (4)–(8) one can find that the proposed method takes both the
uniform degree and the search space of particles in fitness landscape, which results in a
more reasonable measurement for the uniform degree of particles. However, it is
obvious that this method cannot compute the entropy for the best and worst particles, in
this paper, such kind of particles’ entropy are set to 0. Due to the space limitation, the
detailed analysis for the benefits of the entropy-based crowding measurement will be
not presented here, one can find it in [30].

Besides, to further enhance the flexibility of the search behavior of particles, a
social learning based strategy is embedded in the exploration operator. The velocity
updating of ith particle in exploration phase can be expressed in (9)
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vdi tþ 1ð Þ ¼ c2 � r2 � pdj tð Þ � pdi tð Þ
� �

ð9Þ

where pdj is the dth dimension of the jth particle that randomly selected in the set in
which all the particles’ entropy is larger than ith particle; c2 and r2 hold the same
meaning with that in (1).

In summary, the proposed velocity updating strategy for ith particle in mth sub-
group that to be updated can be shown in (10) and (11)

vdm;l;i tþ 1ð Þ ¼ w � vdm;l;i tð Þþ r1 � pdm;w;i tð Þ � pdm;l;i tð Þ
� �

þ c2 � r2 � pdj tð Þ � pdm;l;i tð Þ
� �

ð10Þ

pdm;l;i tþ 1ð Þ ¼ pdm;l;i tð Þþ vdm;l;i tþ 1ð Þ ð11Þ

To this end, the pseudo code of the proposed PSO-NE is shown in Algorithm 2.

Algorithm 2. Proposed algorithm: PSO-NE
Input : Population P, cluster size M, parameter c2

Step 1: Swam initialization;
Step 2: Compute the fitness for P;
Step 2: While terminal criterion is false
               Sort P according to fitness
               Execute the niching strategy according to Algorithm 1;
               Computing the entropy for particles using (4)-(8);
               Update swarm using (10)-(11);
               Compute the fitness for P;

End While
Output: Best particle

4 Experiments and Discussions

4.1 Experiments Settings

To validate the performance of PSO-NE, 28 benchmark functions from CEC’s 2013 are
employed to conduct the experiments. More details about the benchmarks can be find
in [31]. Six other popular variants of PSO are adopted to compare with PSO-NE
including ALCPSO [20], CLPSO [13], CSO [17], HPSO-TVAC [8], and FIPS [12],
DLLSO [16].

In the experiments, the dimensionality D of the functions is set to 50. Each algo-
rithm has a population size N of 40. The maximum fitness evaluations MaxFEs is set to
10000 � D, the search range is [−100 100]. For parameter settings, the cluster size M in
PSO-NE is set to 10 while the parameter c2 is set to 1 to 0.4 during the run. For the
other five algorithms, we adopt the default parameter settings as following.
In ALCPSO, w varies from 0.9 to 0.4 while c1 ¼ c2 ¼ 1:49; In CLPSO, w also varies
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Table 1. The experimental results with fitness evaluations of 5e5.

Function Property ALCPSO CLPSO CSO HPSO-TVAC LIPS DLLSO PSO-NE

1 mean 3.19E-12 3.18E-13 2.27E-13 6.63E-12 6.79E-11 1.06E+01 2.27E-13
pvalue 8.68E-05 7.81E-03 1.00E+00* 8.82E-05 8.84E-05 8.86E-05 -

2 mean 3.02E+07 3.53E+07 2.67E+06 7.71E+06 4.95E+07 5.01E+07 1.96E+06
pvalue 8.86E-05 8.86E-05 2.50E-03 8.86E-05 1.20E-04 8.86E-05 -

3 mean 1.95E+09 3.65E+09 2.47E+09 2.33E+09 4.83E+09 2.83E+10 4.60E+05
pvalue 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 -

4 mean 4.97E+03 3.42E+04 5.06E+04 2.40E+04 1.18E+05 1.29E+05 1.87E+03
pvalue 1.03E-04 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 -

5 mean 1.88E-12 3.87E-13 7.91E-11 1.33E-06 1.43E-08 1.48E+02 3.12E-13
pvalue 8.81E-05 2.07E-03 1.28E-03 8.86E-05 8.86E-05 8.86E-05 -

6 mean 5.96E+01 4.62E+01 5.60E+01 9.28E+01 5.93E+01 1.59E+02 4.57E+01
pvalue 3.04E-02 2.32E-01* 1.26E-01* 2.93E-04 3.19E-03 8.86E-05 -

7 mean 1.19E+02 1.19E+02 6.23E+01 1.75E+02 1.17E+02 1.06E+02 8.11E-01
pvalue 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 -

8 mean 2.11E+01 2.11E+01 2.11E+01 2.11E+01 2.11E+01 2.11E+01 2.11E+01
pvalue 8.23E-01* 1.91E-01* 7.37E-01* 6.27E-01* 3.32E-01* 7.37E-01* -

9 mean 5.35E+01 5.39E+01 2.89E+01 5.83E+01 4.80E+01 3.94E+01 9.88E+00
pvalue 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 -

10 mean 9.32E-01 1.47E+01 1.18E+00 2.41E+00 1.16E+00 3.30E+02 7.15E-02
pvalue 8.86E-05 8.86E-05 8.86E-05 8.86E-05 1.69E-02 8.86E-05 -

11 mean 2.69E+01 7.39E-14 7.62E+01 8.11E+01 2.10E+02 1.37E+02 2.62E+01
pvalue 9.70E-01* 8.84E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 -

12 mean 3.17E+02 3.22E+02 7.68E+01 5.46E+02 2.40E+02 1.62E+02 1.71E+02
pvalue 1.63E-04 1.03E-04 2.19E-04 8.86E-05 1.71E-03 3.70E-01* -

13 mean 4.58E+02 4.13E+02 1.96E+02 6.78E+02 4.52E+02 3.77E+02 1.93E+02
pvalue 8.86E-05 8.86E-05 6.81E-01* 8.86E-05 8.86E-05 8.86E-05 -

14 mean 1.04E+03 8.97E-01 2.13E+03 1.45E+03 4.64E+03 4.84E+03 1.05E+03
pvalue 5.50E-01* 8.86E-05 8.86E-05 3.19E-03 8.86E-05 8.86E-05 -

15 mean 9.28E+03 8.25E+03 5.08E+03 8.40E+03 6.95E+03 6.91E+03 7.70E+03
pvalue 7.19E-03 3.51E-01* 6.81E-04 1.91E-01* 2.18E-01* 1.17E-01* -

16 mean 3.05E+00 1.89E+00 7.24E-01 2.75E+00 7.48E-01 5.66E-01 3.40E+00
pvalue 3.59E-03 8.86E-05 8.86E-05 4.55E-03 8.86E-05 8.86E-05 -

17 mean 1.24E+02 5.08E+01 8.86E-05 2.57E+02 3.49E+02 2.11E+02 9.34E+01
pvalue 2.54E-04 8.86E-05 8.97E-03 8.86E-05 8.86E-05 8.86E-05 -

18 mean 3.83E+02 4.07E+02 1.03E+02 8.21E+02 3.73E+02 2.79E+02 3.70E+02
pvalue 5.50E-01* 8.86E-05 8.86E-05 8.86E-05 8.81E-01* 1.03E-04 -

19 mean 1.46E+01 5.47E-01 1.47E+01 1.94E+01 9.34E+01 6.00E+01 6.59E+00
pvalue 8.86E-05 8.86E-05 1.89E-04 8.86E-05 8.86E-05 8.86E-05 -

20 mean 2.45E+01 2.36E+01 2.06E+01 2.24E+01 2.21E+01 2.34E+01 2.03E+01
pvalue 8.86E-05 8.86E-05 6.81E-01* 1.20E-04 2.19E-04 8.86E-05 -

21 mean 7.74E+02 2.33E+02 6.18E+02 8.66E+02 3.78E+02 1.27E+03 9.36E+02
pvalue 1.91E-01* 8.86E-05 6.90E-03 8.23E-01* 2.19E-04 3.66E-02 -

22 mean 2.68E+03 2.45E+01 2.65E+03 1.84E+03 6.68E+03 6.10E+03 1.18E+03
pvalue 8.86E-05 8.86E-05 8.86E-05 1.89E-04 8.86E-05 8.86E-05 -

23 mean 9.78E+03 1.00E+04 5.74E+03 1.04E+04 9.07E+03 8.80E+03 8.56E+03
pvalue 6.20E-02* 4.00E-02 1.71E-03 3.04E-02 5.02E-01* 7.37E-01* -

24 mean 3.53E+02 3.51E+02 2.92E+02 3.81E+02 3.54E+02 3.22E+02 2.15E+02
pvalue 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 -

25 mean 3.89E+02 3.90E+02 3.29E+02 3.77E+02 4.15E+02 3.60E+02 2.90E+02
pvalue 8.86E-05 8.86E-05 1.40E-04 8.86E-05 8.86E-05 8.86E-05 -

26 mean 4.38E+02 2.04E+02 3.53E+02 4.22E+02 2.76E+02 4.00E+02 3.01E+02
pvalue 8.86E-05 3.90E-04 2.51E-02 5.17E-04 2.47E-01* 6.81E-04 -

27 mean 1.74E+03 1.60E+03 1.18E+03 2.09E+03 1.74E+03 1.44E+03 5.19E+02
pvalue 8.86E-05 1.89E-04 8.86E-05 8.86E-05 8.86E-05 8.86E-05 -

28 mean 2.14E+03 4.00E+02 7.25E+02 3.95E+03 8.76E+02 1.59E+03 4.00E+02
pvalue 8.84E-05 8.86E-05 2.98E-05 8.86E-05 8.68E-05 8.86E-05 -

w/l/t 21/1/6 18/7/3 17/6/5 24/1/3 22/1/5 22/2/4 -
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from 0.9 to 0.4, c ¼ 1:49445 and m ¼ 7; In CSO, phi is set to 0; In HPSO-TVAC, w
varies from 0.9 to 0.4, c1 varies from 0.5 to 2.5 while c2 varies from 2.5 to 0.5; In FIPS,
v ¼ 0:729 and

P
ci ¼ 0:41; In DLLSO the level number set is 4; 6; 8; 10; 20f g and

u¼ 0:4. We run 20 simulations of each algorithm on each benchmark to get repre-
sentative performance.

4.2 Results and Discussions

In this part, we record the difference between the obtained best fitness value and the
real global optima in each run. Then the mean optimization results and the p-value
obtained by Wilcoxon test are shown in Table 1, while Fig. 2 shows the convergence
curve of these algorithms, due to the limitation of the space, we just draw the con-
vergence figure on F3 and F7 which are unimodal and multimodal function respec-
tively. In Table 1, the best results of mean performance are high lightened by gray; the
p-value marked by bond and “*” indicate PSO-NE significantly better than and sta-
tistically equivalent to the compared algorithm on the corresponding function and. w/l/t
at the bottom of the tables represent that how many times PSO-NE wins/loses/ties in
the competitions with comparing to the corresponding algorithms.

From Table 1 we can see that the proposed PSO-NE wins for 16 functions with the
mean fitness comparison. To be specific, for all the unimodal functions, PSO-NE
obtains the best results, especially for F2, F3, PSO-NE performs much better than all
the other algorithms; for the multi-modal functions, PSO-NE wins the first place on 6
functions; besides, the proposed PSO-NE performs competitive on the composition
Functions as shown in Table 1.

For the p-value results, PSO-NE wins 21, 18, 17, 24, 22, 22 times over the cor-
responding algorithms, which stochastically demonstrates the competitive performance
of PSO-NE. Additionally, the convergence figures also demonstrate the promising
exploitation ability of PSO-NE.

In summary, the results shown in Table 1 turn out that the proposed strategy is
effective for improving PSO in low dimension optimization.

Fig. 2. The convergence figure on F3 and F7.
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5 Conclusions

In this paper, we propose a niching strategy and competitive learning based local
exploitation strategy and an entropy based exploring strategy. On one hand, because
the particles in PSO-NE can exploit local areas by cooperating with their neighbors,
PSO-NE has a more reasonable exploitation ability; on the other hand, because of the
designed entropy based exploring strategy, particles in PSO-NE perform better in
exploration. Finally, 28 benchmarks are used to test the proposed algorithm with
comparing to six other popular PSO variants. The results finally demonstrate the
proposed algorithm is effective to deal with optimization problems.
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Abstract. Wireless communication systems play a major role in com-
munication systems, especially in modern communication systems. An
antenna is one of the most important part of wireless communication
systems. An Antenna is a device for transmitting or receiving signals.
Antennas can be broadly divided into two types, antenna elements and
antenna arrays. Antenna elements function in transmitting or receiv-
ing signals. Antenna arrays are actually an array of antenna elements.
Analytical approach for designing an antenna element is possible for an
antenna array with a simple configuration. An example is a 2-element
array. However, for designing complicated antenna arrays, it is a very dif-
ficult task, especially aperiodic arrays. A design problem can be regarded
as an optimization problem. There are various optimization techniques;
one of which is particle swarm optimization. Particle swarm optimiza-
tion is one of optimization based on the behavior of social animals, i.e.,
fishes, birds and bees. For particle swarm optimization, each bee travel
from place to place to find the highest density of honeybees. The bees and
the highest density of honeybees are analogous to potential solutions and
the position with optimal fitness function. Particle swarm optimization
allows designing aperiodic antenna arrays more convenient and flexible.
This paper presents a study on designing an aperiodic antenna array
using boolean particle swarm optimization, a version of particle swarm
optimization.

Keywords: Antennas · Arrays · Fitness function ·
Boolean particle swarm optimization · Aperiodic

1 Introduction

Wireless communication systems play a major role in communication systems,
especially in modern communication systems. An antenna is one of the most
important part in wireless systems. An antenna is a device for transmitting
or receiving signals. Antennas can be broadly divided into two types, antenna
elements and antenna arrays.
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1.1 Antenna Arrays

Antenna arrays are actually an array of antenna elements. In this article, antenna
arrays are briefly discussed. Further literature may be found in [1–5]. In general,
antenna elements of an antenna array are identical and oriented in the same
direction. The total electric field intensity E and magnetic field intensity H in
the far-field generated by all antenna elements of an N -element antenna array
can be expressed as

Etotal =
N∑

n=1

En and Htotal =
N∑

n=1

Hn (1)

Since all antenna elements are identical and oriented in the same direction, the
total electric field intensity Etotal and the total magnetic field intensity Htotal

can be factor out and are of the form.

Etotal = E0AF (θ, ϕ) and Htotal = H0AF (θ, ϕ) (2)

where E0 and H0 are electric field intensity and magnetic field intensity gen-
erated by an antenna element. In addition, the factor AF (θ, ϕ) is called “array
factor”.

The array factor AF (ϕ, θ) can be expressed as

AF (θ, ϕ) =
N∑

n=1

Inejkrn.n̂+βn (3)

or

AF (θ, ϕ) =
N∑

n=1

Inejkrn sin θ cos (ϕ−ϕn)+βn (4)

where θ is elevation angle whereas ϕ is azimuthal angle in the spherical coor-
dinates as shown in Fig. 1. In addition, k is the wavenumber and In, βn is the
relative current excitation and relative phase, respectively, of the nth element.
Finally, n̂ is the unit vector in the direction of observation (θ, ϕ) and rn is the
position vector of the nth antenna element. In spherical coordinates, the nth

antenna element is located at the spherical coordinates (rn, θn, ϕn).
The array factor pattern can illustrate how well the antenna array can direct

to a specified direction. There is another parameter which is closely related to
the array factor mentioned earlier. The directivity D is defined by [1,3]

D =
|AF (θ, ϕ)|2max

1
4π

∫ π

0

∫ 2π

0

|AF (θ, ϕ)|2sin θdϕdθ

(5)
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Fig. 1. Spherical coordinates.

Kuhirun [3] demonstrated that

D =

(
N∑

n=1

In

)2

N∑

n=1

I2n + 2
N∑

m=2

m−1∑

n=1

InIm
sin (k|rn − rm|)

(k|rn − rm|)

(6)

The proof can be found in [3].

For a simple antenna array (i.e, two-element array), analytical approach may
be utilized. However, it is difficult for more complicated antenna array. Opti-
mization techniques [6–11] can be used in practice. One of the most popular
optimization techniques used in antenna engineering is particle swarm optimiza-
tion [6,9,11].

1.2 Particle Swarm Optimization

Particle swarm optimization is one of stochastic optimization techniques based
on behavior of social animals. Examples are fishes, birds, and bees. For particle
swarm optimization, each bee (potential solution) travels from place to place in
the search space to find the place with highest density of honeybees (optimal
solution). Direction and velocity of each bee are determined stochastically by
inertia factor- the inertia of each bee, cognitive factor-the past experience of
each bee and social factor-the past experience of the whole population of bees.
More detail can be found in [6,9,11].

2 Setup of Computer Simulation

First of all, encode each bee (potential solution) using binary number described
in Sect. 2.1 and set the fitness function described in Sect. 2.2. Next, perform
computer simulation using matlab code shown in Sect. 2.3.
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2.1 Encoding

Shown in Fig. 2, the nth antenna element in the ithN -element array is located
at the coordinates (xi, yi). xi and yi where A ≤ xi ≤ B and C ≤ yi ≤ D are
represented by an n-binary number xb,i and yb,i, respectively.

xb,n =
[
xnx

b,n . . . x1
b,n

]
and yb,n =

[
y

ny

b,n . . . y1
b,n

]
(7)

xn = d

nx∑

j=1

xj
b,i2

j−1 + A and yn = w

ny∑

j=1

yj
b,i2

j−1 + C (8)

d =
B − A

2nx − 1
and w =

D − C

2ny − 1
(9)

where nx and ny are the numbers of bits of xb,n yb,n, respectively. Also, xi and
yi represent xn and yn, respectively. In addition, Xb,i = [xb,1 . . . xb,N ], Yb,i =
[yb,1 . . . yb,N ], nX = nxN and nY = nyN

Fig. 2. Figure to show coding. This figure show an example of a 2-element array where
nx = 3, ny = 3, xb,1 = [011], xb,2 = [100], yb,1 = [011] and yb,2 = [101]. That is, Xb, i =
[xb,1xb,2] = [011100], Y b, i = [yb,1yb,2] = [011101], nX = 2 × 3 = 6 and nY = 2 × 3 = 6

2.2 Fitness Function

We aim to maximize the directivity D whereas to keep the spacings between
adjacent elements large enough so that the mutual effect between elements is
negligible. The fitness function f is described by

f = c1f1 + c2f2 (10)

where f1 corresponds to the directivity D and f2 corresponds to the minimum
distance between adjacent elements.
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The fitness function f is set as follows:

f = −c1

(
N∑

n=1

In

)2

N∑
n=1

I2
n + 2

N∑
m=2

m−1∑
n=1

InIm
sin (k|rn − rm|)
(k|rn − rm|)

+c2max(minthreshold−|rn−rm|, 0)

(11)
where c1 = 1 and c2 = 5000

It is of importance to note that we intend select the constants c1 and c2 in
that c2 >> c1 > 0. The reason behind this is that f2 dominates f1 when f2 is
not zero.

2.3 Algorithm for Computer Simulation

The computer simulation is performed using boolean particle swarm optimiza-
tion [12]. The algorithm for computer simulation is shown below.

Algorithm 1. Algorithm for Boolean Particle Swarm Optimization
time t ← 0
for i = 1 : Na do

Evaluate Fitness Function of array i
end for
for i = 1 : Na do

Initialize pt
i and vt

i

pt
i,best ← pt

i

end for
Locate Gt

best

while Terminating Criteria are not met do
t ← t + 1
for i = 1 : Na do

for n = 1 : Nb do
randomise ω, α1 and α2

vt
i,n = ωvt−1

i,n + α1(p
t−1
i,n,best ⊕ pt−1

i,n ) + α2(G
t−1
n,best ⊕ pt−1

i,n )

pt
i,n = pt

i,n ⊕ vt
i,n

end for
Update pt

i,best

end for
Update Gt

best

end while
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Table 1. Table for comparison between the optimized 9-element antenna array and
the standard 9-element square antenna array with minimum distance of λ

Type of arrays Minimum
threshold

Minimum
distance

Value of fitness
function

Directivity

Optimized antenna array λ 0.502λ 2477 11.2455

0.8λ 0.668λ 647 11.7102

0.5λ 0.490λ 39.3532 10.9987

Standard square array - λ - 8.7264

Table 2. Table for comparison between the optimized 25-element antenna array and
the standard 25-element square antenna array with minimum distance between ele-
ments of 0.5λ

Type of arrays Minimum
threshold

Minimum
distance

Value of fitness
function

Directivity

Optimized antenna array 0.5λ 0.15λ 1744.1 11.9401

Standard square array - 0.5λ - 15.2779

Fig. 3.Optimized 9-element antenna array with minimum threshold of λ. Each antenna
element is represented by “o” and the coordinates is shown in wavelength λ
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Fig. 4. Optimized 9-element antenna array with minimum threshold of 0.8λ. Each
antenna element is represented by “o” and the coordinates is shown in wavelength λ

Fig. 5. Optimized 9-element antenna array with minimum threshold of 0.5λ. Each
antenna element is represented by “o” and the coordinates is shown in wavelength λ
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Fig. 6. Standard 9-element square antenna array with minimum distance of λ. Each
antenna element is represented by “o” and the coordinates is shown in wavelength λ

Fig. 7. Optimized 25-element antenna array with minimum threshold of 0.5λ. Each
antenna element is represented by “o” and the coordinates is shown in wavelength λ
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Fig. 8. Standard 25-element square antenna array with minimum distance of 0.5λ. Each
antenna element is represented by “o” and the coordinates is shown in wavelength λ

3 Simulation Setup and Results

Both arrays optimized by boolean particle swarm optimization and standard
square antenna array are confined by the area of 2λ × 2λ, that is, Xmin = A =
−λ,Xmax = B = λ, Ymin = C = −λ, Ymax = D = λ. The numbers of bits
nx and ny representing each xi and yi are both 30. The number Na of array
population is 30. For designing an aperiodic antenna array using particle swarm
optimization, the number of iterations for particle swarm optimization is set to
be 500. Minimum threshold minthreshold is varied for each optimization case.

Table 1 shows minimum distance, value of fitness function for the optimized
antenna array associated with each value of minimum thresholds. For com-
parison, the directivity of the standard square antenna array for a fixed min-
imum distance of λ is shown. Optimized antenna arrays for minimum threshold
(minthreshold) of λ, 0.8λ and 0.5λ are shown in Figs. 3, 4 and 5, respectively,
whereas standard square antenna array is shown in Fig. 6. The number of ele-
ments for both optimized antenna array and standard square antenna array is
9. It follows that the minimum distance between adjacent elements of standard
square array shown in Fig. 6 is λ.

Table 2 shows minimum distance, value of fitness function for the optimized
antenna array. For comparison, the directivity of the standard 25-element square
antenna array for a fixed minimum distance of 0.5λ is shown. Optimized antenna
arrays for minimum threshold minthreshold) of 0.5λ is shown in Fig. 7 whereas
standard 25-element square antenna array is shown in Fig. 8. The number of
elements for both optimized antenna array and standard square antenna array is
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25. It follows that the minimum distance between adjacent elements of standard
square array shown in Fig. 8 is 0.5λ.

4 Conclusion

Designing an antenna array using particle swarm optimization allows more flex-
ible, especially for antenna arrays with more complicated structure, i.e., aperi-
odic antenna arrays. However, it is known that to obtain the global optimized
solution using particle swarm optimization is not guaranteed. There are several
possible reasons; one of which is that the optimized solution obtained using par-
ticle swarm optimization gets trapped locally or, possibly, there exists no good
solution. The optimization result may not as good as it is supposed to be. One
possible way is to relax the constraint, that is, to reduce the minimum threshold.
This is a trade-off since too low minimum distance between elements may result
in too much interference between elements. Another possible way is to enlarge
the confined area of optimized antenna arrays to make more possible antenna
array configurations.
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Abstract. Good energy performance of buildings can decrease energy con-
sumption. The optimization of building energy performance is a typical multi-
objective problem. The purpose of this paper is to propose a powerful and easy-
to-use multi-objective optimization approach for building energy performance.
In this work, an improved multi-objective particle swarm optimization algorithm
with less control parameters is proposed and coupled with EnergyPlus building
energy simulation software to improve the energy performance of buildings.
Applied the proposed approach into a typical office building located at Beijing in
China, and compared with three representational algorithms, experimental
results show that the proposed approach is a very powerful and useful tool.

Keywords: Building performance optimization � Particle swarm optimization �
Multi-objective � EnergyPlus

1 Introduction

Energy is one of the most important resources in society. With the development of
industrial, energy consumption continues to increase. Among the total energy con-
sumption, the buildings and construction are energy-intensive, accounting for about
40% of the total energy consumption. Now, the energy consumption mechanism of the
whole building has become an international issue [1].

In the early stage of studying building energy, most studies focus on the prediction
models or strategies on energy consumptions due to the lack of effective simulation
tools [2–5]. In recent years, due to the increase of running speed of energy consumption
simulation software and the improvement of calculation accuracy, scholars have begun
to focus on studying model-based building energy optimization. Part of typical evo-
lutionary optimization technologies, such as genetic algorithm [6–8], distributed evo-
lutionary optimization [9], ant colony optimization [10], have been successfully applied
to building energy performance optimization problems. However, they all treat the
building energy optimization problem as a single-objective optimization problem.

The optimization of building energy performance is a typical multi-objective
problem, which includes at least two objectives, i.e., maximizing the user comfort and
minimizing the energy consumption [11–13]. In view of this, a few of multi-objective
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approaches based on evolutionary algorithms have been studied [12–17]. Particle
swarm optimization (PSO) is a relatively new evolutionary optimization technique
[18]. Compared with the traditional evolutionary optimization techniques, PSO has the
advantages of simple concept and fast convergence speed, and has been widely used in
various practical problems [19–21]. However, few studies apply it to the energy
consumption optimization of the building. Recently Delgarm [1] studied the applica-
tion of multi-objective PSO in building performance design problem. However, since
needing decision makers repeatedly to modify control parameters for obtaining good
optimization solutions, this method is too sensitive to the setting of control parameters,
such as inertia weights and learning factors.

In this paper, a multi-objective particle swarm optimization algorithm with few
control parameters is proposed and coupled with EnergyPlus building energy simula-
tion software to improve the capability of PSO on solving building energy performance
optimization problems. The main contributions of this paper are as follows: (1) con-
sidering both the user comfort and minimizing the energy consumption, a more gen-
eralized multi-objective optimization model of building energy performance is
introduced; (2) a new PSO-based multi-objective optimization algorithm with few
control parameters is proposed and applied to the above model; (3) a PSO-based
simulation platform for building energy preference design is established.

2 Related Work

2.1 Multi-objective Optimization

A typical multi-objective optimization problem can be defined as: finding decision
vectors X� ¼ ½x�1; x�2; � � � ; x�n� to satisfy the following condition [22–24]:

(1) xLi � xi � xUi ; i ¼ 1; 2; � � � ; n, where X ¼ ðx1; x2; � � � ; xnÞ;
(2) J equations or inequality constraints,

hjðXÞ ¼ ð� Þ 0; j ¼ 1; 2; � � � ; J ð1Þ

(3) Simultaneously minimizing the objective vector function

FðXÞ ¼ ðf1ðXÞ; f2ðXÞ; . . .; fMðXÞÞ ð2Þ

In the definition, F(X) is objective function, and X is decision variable. The
boundary values of all the decision variables constitute the decision space S 2 <n of
the problem, and the output values of the M objective functions constitute the target
space Z of the problem.

To compare the quality between solutions, the concept of Pareto dominance is
proposed [25–27].

Definition 1 (Pareto dominance). A vector Y ¼ ðy1; y2; � � � ; yMÞ is said to dominate
Y 0 ¼ ðy01; y02; � � � y0MÞ (denoted by Y � Y 0), if Y is partially less than Y 0, yi � y0i, 8i 2
f1; 2; � � � ;Mg; and there exists j 2 f1; 2; � � � ;Mg, such that yj\y0j.
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Definition 2 (Pareto optimal). For a multi-objective optimization problem FðXÞ, a
solution vector X� is Pareto optimal if it has any solution X 2 F satisfying the fol-
lowing conditions:

8i 2 1; 2; . . .:Mf g; fiðX�Þ � fiðXÞ& 9j 2 1; 2; . . .:Mf g; fjðX�Þ\ fjðXÞ: ð3Þ

2.2 Particle Swarm Optimization

PSO is initialized with a set of random particles, and then iteratively searches for the
optimal solution of the problem. In each iteration, each particle updates its position
mainly by learning two empirical knowledge. One is the optimal position found by the
particle itself, i.e. the personal best position or the personal leader, and the other is the
optimal position found by its neighboring particle so far, i.e. the global best position or
global leader.

Taking the global version of PSO as example, and assuming that the i-th particle in
the swarm is Xi ¼ ðxi;1; xi;2; � � � ; xi;nÞ, the global best position is Gb ¼ ðgb1;
gb2; � � � ; gbnÞ and its personal best position is Pbi ¼ ðpbi;1; pbi;2; � � � ; pbi;nÞ, the new
position and velocity of this particle is as follows:

vi;jðtþ 1Þ ¼ wvi;jðtÞþ c1r1ðpbi;jðtÞ � xi;jðtÞÞþ c2r2ðgbjðtÞ � xi;jðtÞÞ ð4Þ

xi;jðtþ 1Þ ¼ xi;jðtÞþ vi;jðtþ 1Þ ð5Þ

where t is the iteration times; w is the inertia weight, c1 and c2 are two learning factor,
r1 and r2 are two random numbers in [0, 1].

3 The Proposed PSO-Based Multi-objective Approach

This section presents a powerful multi-objective PSO optimization approach with less
control parameters for optimizing the building energy performance. Firstly, a new
multi-objective optimization model is given by introducing new key parameters, such
as lighting power density and personnel density. Next, an improved bare-bones multi-
objective PSO algorithm with few control parameters are proposed to balance the
convergence and diversity of the swarm. Finally, the improved algorithm is applied to
building energy performance model, and a running platform of the algorithm is built by
integrating the software Matlab and EnergyPlus.

3.1 Multi-objective Optimization Model of Building Energy Performance

The building energy consumption (BEC) and the user discomfort (UDC) are two main
indicators or objectives in building energy saving design. Based on EnergyPlus, this
paper establishes the multi-objective optimization model of building energy perfor-
mance. Specifically, this model considers 12 optimization parameters or decision
variables, i.e. building orientation xor, window length xwl, window height xwh, glazing
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heat transfer coefficient xghtc (Glazing u-factor), solar heat gain coefficient of the
glazing xshgc (Glazing solar heat gain coefficient), thickness of the outer insulation layer
of wall xtolw, solar radiation absorption rate of the external wall xsrar (Wall solar
absorptance), personnel density xpd (people per zone floor area), lighting power density
xlpd (watts per zone floor area of the light), equipment power density xepd (watts per
zone floor area of the equipment), heating and cooling setpoint temperature of air
conditioning system, xhst and xcst.

After giving a building and setting the values of these parameters, the EnergyPlus
software will be able to calculate the annual energy consumption of this building and
the uncomfortable hours of users. Based on this, the multi-objective optimization
model of building energy performance can be described as follows:

min F ¼ ðBECðXÞ;UDCðXÞÞ
s:t:X ¼ ðxor; xwl; xwh; xghtc; xshgc; xtolw; xsrar; xpd; xlpd; xepd; xhst; xcstÞ

ð6Þ

3.2 The Improved Bare-Bones Multi-objective PSO Algorithm

Due to the need to adjust the inertia weight and the learning factors to control the global
exploration and the local exploitation of the algorithm, most of multi-objective PSO
methods have the shortcoming of being sensitive to the control parameters. Focused on
this, in our previous work we proposed a multi-objective particle swarm optimization
algorithm with few control parameters, called the bare-bones multi-objective PSO (BB-
MOPSO) [28]. However, we find by analyzing the particle update strategy of BB-
MOPSO that: when the global best position and the personal best position are very
close or even equal, the particles in BB-MOPSO will stop evolving ahead of time. To
this end, this section presents an improved update strategy based on adaptive
perturbation:

xi;jðtþ 1Þ ¼ N r3�Pbi;jðtÞþ ð1�r3Þ�Gbi;jðtÞ
2 ; Pbi;jðtÞ � Gbi;jðtÞ

�� ��þ dj
� �

; if Uð0; 1Þ\0:5

Gbi;jðtÞ; otherwise

(

ð7Þ

dj ¼ ðxupj � xlowj Þ � eð�5t=TÞ; pro d	 rand
0; otherwise

�
ð8Þ

pro d ¼ 0:5� 1� 1
M

XM
m¼1

fmðPbiðtÞÞ � fmðGbiðtÞÞ
fmax
m � fmin

m

����
����

 !
ð9Þ

Where T is the maximum iteration times of the algorithm, xupj and xlowj are the upper

and lower bounds of the j-th decision variable value; fmax
m and fmin

m are the maximum
and minimum values of the m-th objective function obtained by the archive; fmðGbiðtÞÞ
and fmðPbiðtÞÞ are the m-th objective value of Gbi and Pbi respectively; pro d is a
perturbation probability determined by the degree of similarity between Gbi and Pbi;
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dj is the disturbance factor determined by the similarity of Gbi and Pbi, and the iteration
time of the swarm.

Based on the above work, steps of the improved multi-objective PSO algorithm
(BBMOPSO-A) are described as follows:

Step 1: Set related parameters, including the particle swarm size N, the maximum
iteration time T;
Step 2: Initialization. Generate the initial positions of N particles randomly in the
variable space, set the personal best position of each particle to its own; Set the
archive set Ar to an empty set;
Step 3: Calculate the objective values for all particles. In this paper, the position of
each particle is a set of feasible system parameters. Write the values of these
parameters into EnergyPlus, and then run the software to obtain the values of two
objective functions, BEC and UDC;
Step 4: Update the external archive based on the crowded distance technology in
[29];
Step 5: Update the global best position and the personal best position of each
particle by the method in [28];
Step 6: Update the position of each particle by the formula (7);
Step 7: Determine whether the maximum iteration time T is reached. If yes, stop the
algorithm and output the Pareto optimal solutions saved in the archive; otherwise,
continue to step 3.

4 Experiments and Analyses

4.1 Application Cases

This experiment takes the design of a typical office room as examples. This office room
locates in Beijing of China. Beijing has not only densely population, but also has very
densely office buildings [12]. Using the SketchUp software to create the architectural
shape of a common office, Fig. 1 shows the base style of the office. The length, width
and height of this model are 8.8 m, 3.6 m and 3.9 m. The initial length and height of
the window are 1.7 m and 1.6 m. Considering the 12 decision variables listed in the
Eq. (7), Table 1 gives the ranges of these decision variables.

4.2 Comparison Algorithm and Performance Index

This section applies the proposed BBMOPSO-A algorithm to the above office room in
Beijing, and compares it with three typical evolution computation-based building
energy-saving methods. Three typical multi-objective methods are the NSGA-II-based
multi-objective optimization algorithm (NSGA-II) proposed in [11], the artificial bee
colony optimization-based multi-objective optimization algorithm (MOABC) proposed
in [16], and the PSO-based multi-objective optimization algorithm (MOPSO) proposed
in [1]. For a fair comparison, we set the same population size N = 50 and the same
maximum number of iterations T = 20 for all the algorithms. Table 2 shows the
detailed parameter settings for all the algorithms.
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This paper uses EnergyPlus to simulate the building energy consumption behavior,
uses Matlab to implement the proposed multi-objective PSO algorithm, and uses a
Visual C ++ based interface program to embed new solutions from Matlab into
EnergyPlus. This paper uses the hyper-volume measure (HV) [30] to evaluate the
performance of an algorithm. This measure can simultaneously evaluate the distribu-
tion and convergence of a set of optimal solutions.

Table 1. Decision variables and their range of values

Decision variables Unit Range Reference value

Building orientation ° [0, 360) 0
Window length m (0, 3.6) 1.7
Window height m (0, 3.9) 1.6
Glazing u-factor w

�ðm2 � kÞ (2, 6) 4.3

Glazing solar heat gain coefficient – (0, 0.7) 0.65
Thickness m (0, 0.1) 0.1
Wall solar absorptance – (0.1, 1) 0.6
Personnel density – (0.1, 1) 0.2
Lighting power density w

�
m2 [6, 12] 9

Equipment power density \ w
�
m2 [10, 18] 14

Heating setpoint temperature °C [18, 23] 20
Cooling setpoint temperature °C [24, 28] 26

Fig. 1. Outline of the Laboratory Office

Table 2. Parameter settings for all the algorithms

Algorithms Parameter setting

NSGA-II Cross ratio 0.7, Variation ratio 0.4, Mutation rate 0.02, Tolerance 0.001
MOABC The maximum number of searches per food is 5
MOPSO Acceleration coefficients c1 and c2 are taken as 2; Inertia weight is 0.5;

The archive size Na = 50
BBMOPSO-A The archive size Na = 50

144 Y. Zhang et al.



4.3 Comparison with NSGA-II, MOABC and MOPSO

Running the four algorithms 20 times respectively, Table 3 shows their HV values for
the office room. Table 4 shows the SC values obtained by different algorithms. In the
Table, SC (A1, A2) indicates the proportion of the results of the algorithm A2 domi-
nated by the algorithm A1. We can see that:

(1) Comparing the performance of NSGA-II with the other three algorithms, the
average value of NSGA-II is significantly inferior to that of BBMOPSO-A,
MOABC and MOPSO in terms of the HV measure. The convergence of the
solutions obtained by BBMOPSO-A is significantly better than that of NSGA-II,
where SC (BBMOPSO-A, NSGA-II) = 1 and SC (NSGA-II, BBMOPSO-A) = 0.

(2) Comparing the performance of BBMOPSO-A and MOABC, MOABC achieves the
smallest variance in terms of the HV measure, but its average is significantly
inferior to the average HV value of BBMOPS0-A. Moreover, comparing their SC
values, BBMOPSO-A dominates 30.61% solution of the MOABC algorithm, SC
(BBMOPSO-A, MOABC) = 0.3061, but the ratio of optimal solutions of MOABC
dominated by BBMOPSO-A is only 13.33%, SC (MOABC, BBMOPSO-
A) = 13.33. Therefore, the performance of BBMOPSO-A is better than the
MOABC algorithm.

(3) Comparing the performance of BBMOPSO-A and MOPSO, BBMOPSO-A show
better performance than MOPSO in terms of the HV measure. The average HV
value of BBMOPSO-A is significantly better than that of MOPSO. Moreover,
comparing their SC measure values, BBMOPSO-A dominates 36.96% solution of
MOPSO, SC (BBMOPSO-A, MOPSO) = 0.3696, but the ratio of optimal solu-
tions of MOPSO dominated by BBMOPSO-A is only 8.67%, SC (MOPSO,
BBMOPSO-A) = 0.0867. This indicates that the convergence of the solutions
obtained by BBMOPS0-A is better than that of MOPSO.

Table 3. HV values obtained by different algorithms for the Beijing case

Algorithm HV(Best) HV(Worst) HV(Average) HV(Std)

NSGA-II 29654 15115 21566 6194
MOABC 28929 27350 27788 998
MOPSO 29930 23083 27166 3609
BBMOPSO-A 31153 28086 29200 1697

Table 4. SC values obtained by different algorithms for the Beijing case

Algorithm SC(BBMOPSO-A, *) SC(*, BBMOPSO-A)
Average Std Average Std

NSGA-II 1 0 0 0
MOABC 0.3061 0.0204 0.1333 0.0216
MOPSO 0.3696 0.0697 0.0867 0.0502
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5 Conclusions

To solve the problem of building energy performance design, a multi-objective particle
swarm optimization algorithm with few control parameters, called BBMOPSO-A, is
proposed. Integrating the proposed algorithm with the simulation software EnergyPlus,
we established a powerfully and easy-to-use simulation platform for building energy
performance design. Taking a typical office room located in Beijing as examples,
experimental results show that the proposed BBMOPSO-A algorithm can obtain Pareto
optimal solutions with good convergence and distribution, is a highly competitive
optimization method for solving building energy performance design.
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Abstract. One of the problems in public transportation is the vehicle scheduling
problem (VSP), which can reduce the bus company cost and meet the demand of
passengers’minimum waiting time. This paper proposes an ensemble differential
algorithm based on particle swarm optimization (abbreviated as PSOEDE) to
solve the VSP. In PSOEDE algorithm, the mutation process is designed by
dividing the original process into two parts: the first part combines the PSO
operator with the improved mutation strategy to enhance the global search ability,
while the second part is to randomly select two mutation strategies (i.e. random
learning and optimal learning) to improve the diversity of population. In addition,
the random selection methods of the parameters and crossover strategies are
proposed and applied in the total PSOEDE algorithm. The effectiveness and
superiority of the proposed PSOEDE algorithm in dealing with the VSP are
verified using the simulation experiments and six comparison algorithms.

Keywords: Particle swarm optimization � Differential evolution algorithm �
Vehicle scheduling problem

1 Introduction

Vehicle scheduling problem (VSP), known as a complex NP-Hard problem, has become
the most noteworthy issue in operating of public transportation system [1]. In the past,
classical optimization methods are applied in dealing with VSP, including variable
neighborhood search (VNS) [2], adaptive memetic algorithm (AMA) [3], first in and first
out algorithm (FIFO) [4] and so on. However, satisfactory solutions are still hard to find
in terms of performance and efficiency. Therefore, many improved evolutionary com-
putation approaches are proposed to solve VSP, e.g. genetic algorithm (GA) [5–7], ant
colony optimization (ACO) [8], particle swarm optimization (PSO) [9], and differential
evolution (DE) [10]. Though the superior performances of independent optimization
algorithms have been verified, the shortcoming of premature convergence still exists.

Earlier studies mostly focused on the independent evolutionary computation
algorithms to handle VSP. This paper incorporates PSO operator in the ensemble DE
algorithm (PSOEDE) to enhance the global best performance in solving VSP. To
enhance the population diversity, random selection methods of mutation strategies (i.e.
random learning and optimal learning) are applied in the proposed PSOEDE algorithm.
Random learning can guide the individual to explore more widely while the optimal
learning can lead the individual to explore deeper.
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The remaining paper is organized as follows. Section 2 describes an introduction of
VSP model. The proposed algorithm is given in Sect. 3. In Sect. 4, the experimental
results of a case of VSP are provided. Section 5 is the conclusion.

2 Vehicle Scheduling Problem

In VSP model [10–12], one single-goal problem is formed by merging two objectives
(i.e. the operation cost of bus company and the satisfaction of passenger’s waiting time)
using the weight coefficients (i.e. a and 1�a) in Eq. (1). In addition, the constraints, i.e.
departmental requirement, the conditions of passenger safety and bus company interest
guarantee are displayed in Eqs. (2)–(4) respectively.

fit ¼ a�
PM

m¼1
ðTm=DtmÞ

Ts=Dtmin
þ 1�að Þ

�
ðP

M

m¼1

PN

n¼1
ðTm=DtmÞ � qmn � Dtm � Dtm=2Þ=

PM

m¼1

PN

n¼1
kmn

Dtmax
ð1Þ

s.t.

hmmin �Dtm � hmmax ð2Þ

XM

m¼1

XN

n¼1

kmn=ðQ�
XM

m¼1

ðTm=DtmÞ�P ð3Þ

Cp

XM

m¼1

XN

n¼1

kmn [Cq � L�
XM

m¼1

ðTm=DtmÞ ð4Þ

where m ¼ ð1. . .m. . .MÞ is the mth period and n ¼ ð1. . .n. . .NÞ is the nth platform. Dtm
means the time interval during the mth period. Ts is the day’s total operation time and
Tm is the time during the mth period. kmn and qmn represent the number of the arrival
passengers and the passengers’ arrival rate on the nth platform during the mth period,
respectively. The range of time interval during the mth period is from hmmin to hmmax.
Q is the capacity of every vehicle. Cp is the unit ride fee of every passenger and Cq is
the operational cost of every vehicle in a unit of mileage. P is the full load rate of every
vehicle. a is bus company cost’s weight coefficient.

3 The Proposed PSOEDE Algorithm

Based on the advantages of PSO [13] (i.e. fast speed of convergence and fewer
parameters) and superior exploration capability of DE [14], a novel hybrid algorithm
(named as PSOEDE) is proposed in this paper, including PSO operator in mutation step
and ensemble strategy of random parameters.
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3.1 PSO Operator in Mutation Step

In the mutation process, the multi-population cooperative strategy [15, 23] is applied to
enhance the population diversity. At the beginning of each iteration, two subpopula-
tions (P1 and P2) are generated from two independent methods (particles updating
method from PSO (Eqs. (5)–(7) [16]) and improved mutation method from DE
(Eq. (8)). The number of every subpopulation is NP. The mutation method is improved
by following the strategy of individual optimal learning (i.e. the best position of the ith

particle pbesti), which is beneficial for expanding the disturbance of the group.
The better individuals of these two subpopulations are preserved by comparing

with the previous population. However, the number of population is constant. Finally, a

Set parameters C1, C2, Wmax , Wmin, FES, NP, CR, F, and Gmax;
Initialization: G=0, fitcount=NP, populationand velocity vi.

fitcount< FES

Generate new population P1 andP2 using 
Eqs. (5)-(7) and Eq.(8) respectively.

Form new population P3 by evaluating the 
fitness of the population P1 and P2

Update the population P1 and P2 compared 
with the fitness of population P0.

Start

Generate the new mutated vector vi using 
Eq. (9) or Eq. (10) according to the 
corresponding F

fitcount =fitcount+2*NP

Crossover Step: Generate the trial vector 
ui based on crossover strategies with 
random crossover probability CR;

fitcount =fitcount+NP

Update the individual 
of the population P3.

f (u) f (x)
Update the parameters F ,
CR.

Yes No

G=G+1;

G=Gmax

G=G-1;
Yes

Yes

End

No

No

Mutation Step:

Output new population P3

and the parameters F, CR

Fig.1. The flowchart of PSOEDE algorithm
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new population P3 is generated according to evaluating the fitness values of the two
subpopulations.

vGþ 1
i ¼ xvGi þ c1randð0; 1ÞðpbestGi � xGi Þþ c2randð0; 1ÞðgbestG � xGi Þ ð5Þ

xGþ 1
i ¼ xGi þ vGþ 1

i ð6Þ

x ¼ xmax � ðxmax � xminÞ � G=Gmax ð7Þ

xGi ¼ FGðpbestGi � xGi ÞþFGðxGa � xGb Þ; i ¼ 1. . .NP ð8Þ

where G ¼ 1. . .G. . .Gmax is Gth iteration. xGi and vGi are the ith particle and its corre-
sponding velocity at Gth iteration. gbest is the best position of population at each
iteration. c1 and c2 are acceleration factors. x is the inertia weight. The range of it is
xmin to xmax. F is the scaling factor. a and b are indexes selected from ½1;NP� and are
not i.

3.2 Ensemble Strategy of Random Parameters

The effectiveness of DE algorithm depends on the mutation and crossover strategies.
The suitable strategies can make DE algorithm apply in various problems [17]. In
mutation process of PSOEDE algorithm, the mutation strategies are randomly selected
from two methods (random learning, i.e. Eq. (9) [18] and optimal learning, i.e. Eq. (10)
[19]) except the PSO operator and improved mutative strategy. Random learning can
improve exploration in breadth while optimal learning can enhance the exploration in
depth. In PSOEDE, the selection method of mutation strategy is consistent with the
random method of parameter (i.e. scaling factor F). The scaling factor is given two
values, which are assigned to every individual of the population [23]. In order to
improve the population diversity, Binomial crossover and exponential crossover [20]
are used to renew the trial vector ui in proposed PSOEDE algorithm. The selection
method of these two crossover strategies corresponds the random method of parameters
(i.e. crossover probability CR). Three values of CR is embedded in PSOEDE.

vGi ¼ xGi þK � ðxGr1 � xGi ÞþFG � ðxGr2 � xGr3Þ ð9Þ

vGi ¼ xGi þK � ðgbestG � xGi ÞþFG � ðxGr4 � xGr5Þ ð10Þ

where K is a value between 0 to 1. r1, r2, r3, r4 and r5 are randomly selected from
1;NP½ �. They are different from each other and are not i.

After mutation and crossover step, the greedy selection method is employed to
update the population by evaluating the fitness value. The termination criteria in pro-
posed algorithm is the maximum function evaluations’ number FES. The flowchart of
PSOEDE is shown in Fig. 1.

A Novel PSOEDE Algorithm for VSP in Public Transportation 151



4 Simulation Test and Discussion

4.1 Parameters Setting and Encoding

Every individual in proposed algorithm is seen as a potential solution for VSP and
fitness function is combined by object function and constraints using penalty function.
The basic variables of VSP model are described in [11]. Some well-exploit algorithms
(i.e. PSO [16], DE and comprehensive learning PSO (CLPSO) [21]) and recently
proposed algorithms (i.e. DE with ensemble of parameters and mutation strategies
(EPSDE) [17] and ensemble PSO (EPSO) [22]) are compared to verify the performance
of PSOEDE. The maximum function evaluations’ number FES is 300000 is and swarm
size is 40. Scaling factors F are 0.5 and 0.9, while 0.1, 0.5 and 0.9 are selected as value
of crossover probabilities CR. Other parameters are set from [23].

4.2 Experiment Results and Discussion

Table 1 displays the experiment results and the bold type is used to underline the
optimal solution obtained by comparing six optimization algorithms. Figure 2 shows
the convergence curves of different weight coefficients a.

Table 1. The fitness values of six algorithms with different weight coefficient a

a PSO EPSO CLPSO DE EPSDE PSOEDE

0.1 3.8845E−02
±4.9069E−03

3.4284E−02
±2.1276E−03

3.6142E−02
±1.9494E−03

6.0009E−02
±3.0663E−03

3.1108E−02
±1.1196E−17

3.1108E−02
–8.2471E−8

0.2 7.6578E−02
±8.9614E−03

6.6907E−02
±3.9351E−03

7.2487E−02
±6.2626E−03

1.2252E−01
±3.9463E−03

6.2999E−02
±1.6221E−03

6.1505E−02
–2.4380E−17

0.3 1.0866E−01
±1.1677E−02

1.0111E−01
±5.5718E−03

1.0781E−01
±6.7674E−03

1.7951E−01
±8.9369E−03

9.3433E−02
±1.6644E−03

9.1903E−02
–1.7094E−17

0.4 1.4447E−01
±1.3254E−02

1.3278E−01
±6.8579E−03

1.4054E−01
±7.2986E−03

2.3759E−01
±9.8380E−03

1.2369E−01
±1.5097E−03

1.2261E−01
±1.6613E−03

0.5 1.8541E−01
±2.1622E−02

1.6809E−01
±8.2172E−03

1.7696E−01
±9.4040E−03

2.9039E−01
±1.3940E−02

1.5444E−01
±1.1580E−03

1.5283E−01
–6.5007E−4

0.6 2.1036E−01
±1.5634E−02

1.9759E−01
±1.0881E−02

2.0625E−01
±9.8602E−03

3.5215E−01
±2.1629E−02

1.8455E−01
±8.9394E−04

1.8323E−01
–5.0425E−04

0.7 2.5580E−01
±1.9072E−02

2.3030E−01
±1.3606E−02

2.4131E−01
±1.5349E−02

4.2371E−01
±1.7950E−02

2.1469E−01
±6.0645E−04

2.1379E−01
–6.0643E−04

0.8 2.9067E−01
±2.3327E−02

2.6203E−01
±1.2944E−02

2.8407E−01
±1.3766E−02

4.5565E−01
±2.8916E−02

2.4472E−01
±3.7668E−04

2.4452E−01
±2.3649E−03

0.9 3.3142E−01
±4.3105E−02

2.9355E−01
±1.6126E−02

3.1900E−01
±2.2112E−02

5.3183E−01
±2.5341E−02

2.7469E−01
±2.0215E−04

2.7455E−01
±2.4847E−04

1 3.6052E-−01
±3.1712E−02

3.2204E−01
±1.2050E−02

3.3402E−01
±1.5374E−02

5.7309E−01
±3.2697E−02

3.0469E−01
±2.7273E−17

3.0469E−01
±3.6891E−11
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As shown in Table 1, the proposed PSOEDE algorithm succeeds to perform well in
comparison with other five algorithms. In addition, the results of PSO, DE, CLPSO and
EPSO are not better than PSOEDE and EPSDE. The optimal solution of the PSOEDE
algorithm is same as the EPSDE algorithm on the weight coefficients of bus company
cost a ¼ 0:1 and a ¼ 1. In Fig. 2, the superior performance of the proposed PSOEDE
algorithm can be clearly seen on the weight coefficients a ¼ 0:3 and a ¼ 0:5. Com-
pared with the EPSDE algorithm, the PSOEDE algorithm avoids the local convergence
and is conductive in more in-depth exploration.

The main reason that proposed PSOEDE algorithm performs better than other five
algorithms on solving VSP are as follows: (1) In PSOEDE algorithm, the PSO operator
and improved mutation strategy is applied to enhance the disturbance diversity; (2) The
ensemble mutation strategies (i.e. random learning and optimal learning) are proposed
to improve exploration capability of PSOEDE algorithm.

=0.3α =0.5α

=0.7α =0.9α

0 0.5 1 1.5 2 2.5 3

x 10
5

-1.05

-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65
Fitness Curve

FES

Fi
tn

es
s(

lo
g)

PSO
EPSO
CLPSO
DE
EPSDE
PSOEDE

0 0.5 1 1.5 2 2.5 3

x 10
5

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45
Fitness Curve

FES

Fi
tn

es
s(

lo
g)

PSO
EPSO
CLPSO
DE
EPSDE
PSOEDE

0 0.5 1 1.5 2 2.5 3

x 10
5

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35
Fitness Curve

FES

Fi
tn

es
s(

lo
g)

PSO
EPSO
CLPSO
DE
EPSDE
PSOEDE

0 0.5 1 1.5 2 2.5 3

x 10
5

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2
Fitness Curve

FES

Fi
tn

es
s(

lo
g)

PSO
EPSO
CLPSO
DE
EPSDE
PSOEDE

Fig.2. The partial iteration figure obtained by sixed algorithms
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5 Conclusion

In this paper, a novel ensemble differential algorithm with PSO operator (PSOEDE) is
proposed to solve the problem of vehicle scheduling. In PSOEDE algorithm, the
mutation process is divided into two parts to avoid the premature convenience. The
experiment results illustrate that PSOEDE algorithm shows the superiority in obtaining
the better time interval scheduling to reduce the cost and improve the passengers’
satisfactory. In terms of search accuracy, the PSOEDE algorithm is slightly better than
other five algorithms. The superior performance of the EPSODE algorithm demon-
strates that the PSOEDE algorithm is potentially applicable to the VSP and sets of
scheduling problems similar to VSP.
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Abstract. Particles in PSO algorithms evolve only in one group, or in
many groups but without interaction between different groups. Inspired
by the concept of social class evolution process, a hierarchical compe-
tition framework is proposed in this paper. Through the competition
mechanism, particles can flow dynamically between different levels, and
this can reduce the probability of top-level particles leading to a wrong
direction and in this way enhance the global search ability. In this paper,
the proposed framework is tested in combination with the canonical
PSO and one of the most famous variant particle warm optimizers,
named quantum-behaved particle swarm optimizer. All the experiments
are run on the CEC’2013 benchmark function database, and the results
show that the global search ability and the convergence speed are both
improved compared to the basic optimizers.

Keywords: Global optimization ·
Hierarchical competition framework · Particle swarm optimize

1 Introduction

PSO begins with a population of candidate solutions, also called particles group,
and then it improves each candidate solution iteratively until the termination
condition is reached. Since particles aggregate to their local best position and
the global best position, sometimes the algorithm falls into the local optima and
in some situations premature convergence and stagnation occur [2,12,15]. At
the same time, the performance of PSO also depends on the algorithm parame-
ters [18]. Generally, particle swarm optimization models can be divided into two
types, according to whether the particles exchange the information with whole
population, and we can have global optimization models and local optimization
models [10]. Kennedy [9] proved that the global model has a faster convergence
speed, but it is more easily to trap it into local optima. In order to overcome the
above shortcomings, researchers have proposed various improvements. These can
c© Springer Nature Switzerland AG 2019
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be divided into four categories: particle swarm initialization [8,17], neighbour-
hood topology [9–11], parameter selection [4,5], and blending strategies [16].

For neighbourhood topology improvement measurements, common neigh-
bourhood topologies like Ring topology [13], von Neumann topology [7], and
Moore topology [6] are widely used these days. However, these topologies only
consider the influence from neighbourhood and the global candidate solution,
they do not consider that particles should also learn from particles from other
groups. In addition, it is not sensible that the importance of all the particles
are equally. Moreover, these topology only have one layer, which increases the
probability of being trapped into local optima.

In a human management social system, people often can be divided into three
classes, namely, lower class, middle class and top class. People from the top class
have to make plans to guide the middle class people, and people from middle
class need to guide the lower class. Besides, lower class person can enter to upper
class through competition, upper class person may lose its power and enter the
lower class. Such a dynamic system can ensure that society can develop in the
right direction.

Considering the above shortcomings, and inspired by the concept of human
social class evolution process, we propose a novel three layer topology called hier-
archical competition framework for particle swarm optimization. The differences
are as follows: First, the numbers of particles in different layers are different,
and particles are distributed hierarchically in the proposed framework; that is,
an upper layer has fewer particles than a lower layer. Second, competition not
only exists in the same group, but also occurs between adjacent layers.

We have applied the proposed hierarchical competition framework with
canonical PSO and quantum-behaved particle swarm optimizers, and named
them hierarchical competition particle framework based swarm optimization
algorithm (HCPSO), and hierarchical competition framework based quantum-
behaved particle swarm optimization algorithm (HCQPSO), respectively. Then,
we have compared HCPSO and HCQPSO with their corresponding basic algo-
rithm, PSO and QPSO, respectively.

The rest of paper is organized as follows: In Sect. 2, the standard particle
swarm optimization and quantum-behaved particles swarm optimization algo-
rithm are described. In Sect. 3, we demonstrate the proposed method named
hierarchical competition framework in detail. In Sect. 4, the dataset we used in
the experiment is shortly described, and the experiment results are analyzed in
this section as well. Finally, conclusions and future work are discussed in Sect. 5.

2 Canonical Particle Swarm Optimizer
and Quantum-Behaved Particle Swarm Optimizer

2.1 Canonical Particle Swarm Optmizer

It is common that each particle in the search-space has its own position and veloc-
ity, and all particles change their position and velocity around the search-space
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according to some simple mathematical formulae. The most classical formulae
are:

vi(t + 1) = w(t) · vij(t) + c1 · r1 · (pbesti(t) − xi(t))
+c2 · r2 · (gbest(t) − xi(t)) .

(1)

xi(t + 1) = xi(t) + vi(t + 1) . (2)

where vi(t) is the velocity value at time t, xi(t) is the position at time t.
pbesti(t) and gbest(t) are the personal best candidate solution position and the
global best candidate solution at time t, respectively. c1 and c2 are cognitive
acceleration parameters and social acceleration parameter, respectively, always
set to 2. r1 and r2 are random numbers in the range of [0, 1]. At time t + 1,
the position of particles are changed as in Eq. (2). Each particle is influenced by
its local best-known position and is guided to the global best-known position.
Parameter w(t) is set to control the balance of the global and social candidate
solution, and is usually decreases linearly by:

w(t) = winit − t · (winit − wend)/T . (3)

where winit and wend are the initial weight and the end weight of w, respectively,
and are usually set to 0.9 and 0.4. T is the maximum number of iterations.

2.2 Quantum-Behaved Particle Swarm Optimize

Recently, researchers proposed various local models [9,11] to overcome the short-
comings of the global model, and quantum-behaved swarm optimizer (QPSO)
is one of the most efficient global particle swarm optimizers motivated by the
theory of quantum mechanics [19].

Clerc [3] analyzed the convergence of PSO and proved that each particle is
attracted by the attractor position, the update formula of traditional PSO can
then also be written as:

Ai(t) = ϕi,j(t) · pbesti(t) + ϕi,j(t) · gbest(t) . (4)

where ϕ(i,j)(t) is a randomly generated number in the range from 0 to 1.
The novelty of QPSO was to build up an attractor in each particle position.

It should be noted that the velocity and the position of particles cannot be
determined at the same time in the quantum space, so the state of particle can
only be described by a wave function Ψ(X, t) [1] defined as,

ψ(X, t)dxdydz = Qdxdydz . (5)
Q = (x, y, z) . (6)

where Q is the position in the 3-dimensional quantum space.
In QPSO, the Monte Carlo method is used to generate the position randomly.

The position of the ith particle at time (t + 1) iteration can be obtained by:

xi(t + 1) = Ai(t) ± 0.5 · Li(t) · ln(
1

ui(t)
) . (7)



Hierarchical Competition Framework for Particle Swarm Optimization 159

where ui(t) is a random number uniformly distributed in [0, 1]. Li(t) is defined
as:

Li(t) = 2 · αt · |mbesti(t) − xi(t)| . (8)

αt = α0 + (α1 − α0) · it
I

. (9)

where mbesti(t) means the mean position of personal best candidate solution of
particle i at time t, D is the dimension of the problem, N is the number of the
particles. αt is the parameter to control the convergence speed, which is always
set by a linear decreasing function. it is the iteration number at time t and I is
the maximum fitness evaluation number. According to Eqs. 8, 9, each particle in
the QPSO algorithm can be updated by:

xi(t + 1) = Ai(t) ± αt · |mbesti(t) − xi(t)| · ln(
1

ui(t)
) . (10)

The Pseudocode of the QPSO is given in Algorithm 1 below.

3 Hierarchical Competition Framework Based PSO
Algorithm

The hierarchical competition framework described here is inspired by a social
phenomenon named social class division. In the human society, people can be
divided into three classes, namely, lower class, middle class and top class. There-
fore, we established a three layer hierarchical competition framework as Fig. 1
shows.

(a) The convergence profile on 100-D F1.

Fig. 1. Experimental results of convergence profiles on 100-D functions. (Color figure
online)
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Similar to this phenomenon, particles in the same level have to compete with
each other in each iteration, several winner particles in this level have a chance
to evolve to the upper-level (red points in Fig. 1) and the losers from the upper
level may be moved to the lower-level (green points in Fig. 1). In detail, winner
particles from the lower-level and loser particles from the upper-level will be put
into a pool to have another competition, and the winner particles in this pool
will finally evolve to the upper-level, and the loser particles be moved to the
lower-level.

In addition, like a leader in the human society, the upper-level particles have
to guide the lower-level particles to a right direction. Meanwhile, persons from
lower classes have an opportunity to enter the upper class through competition.
Therefore, in the proposed framework, the particles from a lower-level that finally
entered an upper-level can influence the search direction of the upper-level.

Through this competition mechanism, particles can flow dynamically between
different levels, which can reduce the probability of top-level particles leading to
a wrong direction and can enhance global search ability.

It should be noted that the particles’ numbers in different layers are different.
According to the phenomenon of human social class evolution, the quantities of
particles are increased from Top-level to Lower-level. The ratio of the three levels
are set to 0.6, 0.3 and 0.1 from the total population. The number of exchange
particles between adjacent level particles are usually set to half of quantities of
upper layer in the experiments. Furthermore, we use mean personal best-known
solution of upper level to guide the lower level particles.

Algorithm 1. Pseudocode of the proposed framework
1: Generate an initial population randomly and calculate fitness value;.
2: Separate the whole particles group into three subgroups according to fitness value.
3: Initial pbestij , gbest, mbestupper(t);
4: while The termination condition is not met do
5: Update pbesti and gbest, mbestuppert;
6: Level 1: Update particles using MQPSO;
7: Level 2: Update particles using MQPSO;
8: Exchange particles between Level 1 and Level 2;
9: Level 3: Update particles using canonical QPSO or PSO;

10: Exchange particles between Level 2 and Level 3;
11: end while

3.1 Combined with Canonical PSO

We first combine hierarchical competition framework with canonical PSO, and
called it HCPSO. We have mentioned that we use the mean personal best-known
solution of upper level to guide the lower level particles. Therefore, the velocity
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update formula of particles in the lower level can be rewritten as,

vi(t + 1) = w(t) · vij(t) + c1 · r1 · (pbesti(t) − xi(t))
+c2 · r2 · (mbestupper(t) − xi(t)) . (11)

where mbestupper(t) means the mean personal best-known solution of adjacent
upper level. The others parameters are not changed. We call it modified PSO
(MPSO) in this paper.

For the top layer, particles are influenced by the personal best solution and
global best solution as usual. In order to describe the algorithm more clearly, we
use level 1, level 2 and level 3 to present lower, middle and top level.

3.2 Combined with QPSO

Then, we combine hierarchical competition framework with QPSO, and we called
it HCQPSO. Similar to the change in PSO, the update formula in Level 1 and
Level 2 can be rewritten as,

Ai(t) = ϕi,j(t) · pbesti(t) + ϕi,j(t) · mbestupper(t) . (12)

The modified QPSO is called MQPSO in this paper. The Pseudocode of the
proposed framework is given in Algorithm 2.

4 Experiments

In order to test our hypothesis that the hierarchical competition framework
based algorithm would be at least as good as the standard PSO and QPSO,
we ran 51 runs of experiments on the CEC’2013 standard benchmark functions
with 30-D decision variables. The maximum fitness evaluations (FEs) is 30000.
The following sections describe the benchmark database, parameters we set in
the experiments and the results.

4.1 Database Summary and Parameters Set

The results are shown in Tables 2 and 3. The letter w, l, and e represent win,
lose and comparable result in the table. Table 2 shows the results of HCPSO and
PSO, and we see that HCPSO has better mean value results on 15 benchmark
functions, and one comparable result. HCPSO also obtained better best value
result and the standard deviation value is smaller than PSO on most functions.

The CEC’2013 [14] benchmark suitet has 20 functions, with 5 unimodal func-
tions and 15 basic multimodal functions, as Table 1 shows. In our experiments,
we use this 20 functions with 30-D decision variables to test the performance
of the proposed method. In order to maintain fairness in comparison, all the
parameters are set the same as set in the original paper of PSO and QPSO.

In hierarchical competition framework, we only have to set particles ratios
(for the 3 levels) and the exchange probability. The ratio of lower level, middle
level, and top level are set to 0.6, 0.3 and 0.1, respectively. The number of
exchange particles between adjacent level particles, we usually set it to half of
the quantities of upper layer in the experiments.
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Table 1. CEC’2013 dataset conclusion

No Functions fi* = fi(x*)

Unimodal functions 1 Sphere Function −1400

2 Rotatet High Conditioned Elliptic Function −1300

3 Rotated Bent Cigar Function −1200

4 Rotated Discus Function −1100

5 Different Powers Function −1000

Basic multimodal functions 6 Rotated Rosenbrock’s Function −900

7 Rotated Schaffers F7 Function −800

8 Rotated Ackley’s Function −700

9 Rotated Weierstrass Function −600

10 Rotated Griewank’s Function −500

11 Rastrigin’s Function −400

12 Rotated Rastrigin’s Function −300

13 Non-Continuous Rotated Rastrigin’s Function −200

14 Schwefel’s Function −100

15 Rotated Schwefel’s Function 100

16 Rotated Katsuura Function 200

17 Lunacek BiRastriginFunction 300

18 Rotated Lunacek BiRastrigin Function 400

19 Expanded Griewank’s plus Rosenbrock’s Function 500

20 Expanded Scaffer’s F6 Function 600

4.2 Results and Analysis

Table 3 shows the results of HCQPSO and QPSO, where HCQPSO performs
better than the basic algorithm and it has better mean value result on 13 bench-
mark functions, and one comparable result. HCQPSO also find better best value
result and the Standard deviation value is smaller than QPSO on most func-
tions. These results prove that the hierarchical competition framework based
algorithms can improve the global search ability and has stable convergence.

In order to further prove the stable convergence rate and good global search
ability of the algorithm, we have plotted the convergence profile on function 2 and
function 5, respectively. In the top two figures, we can see that the convergence
rate of HCPSO is decreased in a stable manner compared to PSO, and finds a
better global value in the end. Meanwhile, we known that QPSO has a strong
global search ability but the convergence rate is low, but HCQPSO has improved
this shortcoming. Two figures below in Figs. 2 and 3 has shown its strong global
search capability with a faster convergence rate.

The main reason is, through this competition mechanism, particles can flow
dynamically between different levels, which can make the diversity explode and
reduce the probability of top-level particles leading to a wrong direction and can
enhance global search ability. Furthermore, we use mean solution of upper level
as the attractor point to guide the lower level particles that limited the search
space of lower layer to speed up the convergence rate.
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Table 2. Experimental results of hierarchiacal competition framework based PSO
algorithm

Function number PSO HCPSO PSO HCPSO PSO HCPSO

Mean value Best value Std value

1 3.30E−13 9.09E−14 2.27E−13 0.00E+00 1.14E−13 1.13E−13

2 5.59E+06 1.06E+06 1.90E+05 3.50E+05 4.86E+06 7.04E+05

3 3.42E+07 5.08E+06 7.14E+05 8.13E+04 5.52E+07 8.24E+06

4 4.15E+02 4.77E+01 9.23E+01 2.25E+01 2.71E+02 1.70E+01

5 2.81E−13 1.02E−13 1.14E−13 0.00E+00 7.99E−14 4.74E−14

6 8.89E+01 8.22E+01 4.58E−03 1.62E−01 4.22E+01 3.08E+01

7 4.00E+01 5.00E+00 1.24E+01 1.21E+00 1.33E+01 2.42E+00

8 2.08E+01 2.08E+01(≈) 2.07E+01 2.07E+01 5.54E−02 5.21E−02

9 2.45E+01 1.41E+01 1.88E+01 8.62E+00 3.45E+00 3.03E+00

10 1.73E−01 1.42E−01 2.71E−02 4.19E−02 1.08E−01 7.26E−02

11 1.02E+01 9.07E+00 3.98E+00 2.98E+00 3.13E+00 2.60E+00

12 7.05E+01 5.44E+01 3.28E+01 7.96E+00 2.12E+01 5.24E+01

13 1.30E+02 5.69E+01 7.18E+01 3.98E+00 2.84E+01 3.92E+01

14 4.41E+02 1.51E+03 2.41E+01 2.80E+02 1.90E+02 1.56E+03

15 6.32E+03 6.12E+03 3.85E+03 5.25E+03 5.90E+02 3.40E+02

16 1.76E+00 1.82E+00 9.78E−01 1.21E+00 3.49E−01 2.45E−01

17 4.65E+01 5.47E+01 3.80E+01 3.31E+01 4.68E+00 2.73E+01

18 1.71E+02 1.61E+02 7.40E+01 1.31E+02 4.65E+01 8.83E+00

19 2.55E+00 3.36E+00 1.34E+00 2.04E+00 6.45E−01 1.09E+00

20 1.08E+01 1.02E+01 9.06E+00 9.16E+00 9.48E−01 4.60E−01

w/l/e 15/4/1

(a) PSO on functions 2 (b) QPSO on functions 2

Fig. 2. Convergence profile on functions 2.
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Table 3. Experimental results of hierachiacal competetion framework based qpso
algorithm

Function number QPSO HCQPSO QPSO HCQPSO QPSO HCQPSO

Mean value Best value Std

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

2 5.83E+05 1.17E+05 6.46E+04 5.07E+04 3.52E+05 3.55E+04

3 1.66E+06 8.67E+05 1.01E+02 1.73E+01 4.52E+06 1.44E+06

4 1.69E−03 6.27E−01 7.12E−06 1.09E−01 2.40E−03 4.85E−01

5 6.69E−14 0.00E+00 0.00E+00 0.00E+00 5.65E−14 0.00E+00

6 2.68E+01 1.30E+01 6.90E−02 2.31E−01 2.55E+01 1.25E+01

7 4.74E+00 1.59E+00 4.17E−01 1.76E−01 4.07E+00 1.46E+00

8 2.09E+01 2.09E+01(≈) 2.07E+01 2.06E+01 4.63E−02 5.67E−02

9 1.20E+01 1.11E+01 5.44E+00 7.14E+00 4.20E+00 1.84E+00

10 8.12E−02 1.42E−01 2.46E−02 3.20E−02 3.72E−02 7.73E−02

11 6.23E+00 2.21E+00 1.00E+00 0.00E+00 3.00E+00 1.40E+00

12 3.91E+01 1.09E+01 1.53E+01 5.97E+00 2.32E+01 4.75E+00

13 6.86E+01 2.69E+01 2.27E+01 1.09E+01 2.65E+01 1.30E+01

14 2.46E+03 3.63E+03 3.99E+02 8.54E+02 2.00E+03 2.15E+03

15 6.36E+03 4.66E+03 5.19E+03 1.51E+03 3.30E+02 1.71E+03

16 1.99E+00 2.08E+00 1.25E+00 1.53E+00 2.52E−01 1.80E−01

17 6.41E+01 6.61E+01 3.48E+01 3.27E+01 2.70E+01 4.04E+01

18 1.75E+02 1.56E+02 1.47E+02 1.32E+02 1.03E+01 8.63E+00

19 2.46E+00 2.93E+00 1.29E+00 2.20E+00 5.90E−01 4.87E−01

20 1.05E+01 9.63E+00 8.80E+00 8.24E+00 6.25E−01 4.89E−01

w/l/e 13/6/1

(a) PSO on functions 5 (b) QPSO on functions 5

Fig. 3. Convergence profile on functions 5.
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5 Conclusion

In this paper, motivated by the human social class mobility, we proposed a
general method named hierarchical competition framework for particle swarm
optimization, which can improve the global search ability and enhance the con-
vergence performance. In the future, we will pay more attention to combining
this framework with other algorithms and then test its performance on high
dimensional and large scale optimization problems.
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Abstract. Robotic tunneling is urgently needed to be developed for the safety
and efficiency of coal mining. This paper have studied one of the key tech-
nologies, which was cutting trajectory planning method of roadheader. It could
reduce the cost of tunneling, improve the cutting efficiency of coal and rock, and
reduced casualties. The improved particle swarm optimization (PSO) is adopt to
plan the cutting trajectory and the features of the improvements are reflected in
multi-targets and multi-group of particle swarm. The fitness value is redefined to
reflect multiple targets of cutting, which are avoiding the dirt band, shortest and
section forming. It could most represent the real cutting process. And the multi-
group search region segmentation are adopt to maintain the diversity of the
group, prevent the algorithm from falling into a local optimum and improve the
efficiency of the algorithm. Finally, for real cutting, the collision avoidance is
corrected by expansion operation. Results of simulation experiments showed
that the proposed method could plan out the optimal cutting trajectories for
roadheader which was suitable for actual automatic control.

Keywords: Cutting trajectory planning � PSO � Multi-target � Multi-group �
Roadheader

1 Introduction

In recent years, the automation and intelligence of coal mine have progressed rapidly
[1]. The technology and workmanship of unmanned coal mining working face have
gradually matured and more than 30 have been put into used. However, the devel-
opment of fully-mechanized tunneling has lagged far behind. A roadheader is the core
equipment used for the tunneling. The under holing, coal cutting, loading, temporary
support, drilling and paving nets, and permanent anchoring are the six main production
processes linked for the fully-mechanized excavation work surface [2]. In view of the
difficulties in obtaining coal and rock properties, equipment postures, and operating
condition parameters in the process, there are various challenges, such as accurate and
reliable measurement and control, and safe and efficient formation of sections under the
circumstances of floor inclined and complex and load unknown and suddenly changed.
The realization of unmanned excavation in coal mine underground is currently the
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Y. Tan et al. (Eds.): ICSI 2019, LNCS 11655, pp. 167–176, 2019.
https://doi.org/10.1007/978-3-030-26369-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26369-0_16&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26369-0_16&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26369-0_16&amp;domain=pdf
https://doi.org/10.1007/978-3-030-26369-0_16


forefront technology pursued by the international coal industry, and it is also a tech-
nological leap for the safe and efficient mining in China [3].

In many engineering field, path planning is an important part of automatic control.
Liu designed a novel inchworm robot which was used in inspection and maintenance of
gas and liquid supply pipelines. And its optimized motion planning was presented
using the genetic algorithm (GA) [4]. To solve the shortest path design problem
(SPDP) on bidirectional path topology for automated guided vehicles, Hamzheei
developed an integer linear programming model and proposed an ant colony system
(ACS) algorithm [5]. Lebedev introduced a new type of neural network which named
the dynamic wave expansion neural network (DWENN) for path generation of both
mobile robots and robotic manipulators in a dynamic environment [6]. While Qu
studied global path planning for multiple mobile robots [7]. Chu [8] and Huang [9]
both studied path planning methods for tool of computer aided manufacturing machine.

For roadheader, it also needs to plan the path for walking and cutting to realize
robotic tunneling. This paper studies the cutting trajectory planning of the roadheader,
which mainly aimed at the cutting process, totally different from the walking path
planning. The cutting of the roadheader is carried out by cutting arm and trajectory is
formed by movement of cutting head. It needs to be planned according to a certain set
of performance indicators (such as time, specific point, accuracy, etc.) to get the
optimal one which could cut out the most regular section without collision.

Because the particle swarm optimization (PSO) is fast, easy to be implemented, and
only a few parameters need to be adjusted [10–12], this paper studies an improved PSO
for cutting trajectory planning of roadheader. According to the section shape and
cutting procedure, the basic PSO is improved to plan the optimal target trajectory that
meets the planning goals. The trajectory planning method proposed in this paper could
provide a solution for the planning and automatic control of full-coverage trajectories
for large-scale equipment in confined space.

2 The Principle of Basic PSO

The basic idea of the PSO algorithm is that birds are abstracted as “particles” without
mass and volume. The solution group is equivalent to a bird group. All particles have a
fitness value that is determined by the function being optimized. Each particle has a
speed that determines the direction and distance they fly. Then the particles follow the
current optimal particle and search in the solution space.

The PSO algorithm initializes a group of particles randomly and then finds the
optimal solution iteratively. In each iteration, the particle updates its own extremum by
tracking these two “extreme values”. One is the individual extremum Pbestð Þ that each
particle have achieved by itself in the history search process. The other is the global
extremum gbestð Þ that all particles achieved in the entire particle swarm. At the same
time, each particle constantly changes its speed in the solution space to determine its
own direction and flight distance, and fly toward the area pointed by Pbest and gbest as
soon as possible.

Suppose that in the N dimensional target search space, there are m particles that
make up a community. The position formula of the i th particle in the t th iteration is:
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~xi tð Þ ¼ xi;1 tð Þ; xi;2 tð Þ; � � � ; xi;N tð Þ� �
i ¼ 1; 2; � � � ;m: ð1Þ

Its velocity formula is:

~vi tð Þ ¼ vi;1 tð Þ; vi;2 tð Þ; � � � ; vi;N tð Þ� �
i ¼ 1; 2; � � � ;m: ð2Þ

The fitness value is:

fitnessi tð Þ ¼ f ~xi tð Þð Þ: ð3Þ

In the tþ 1 th iteration, the update equation for the position and velocity of the
particle’s d th dimension component 1� d�Nð Þ are as follows:

vid ¼ w� vid þ c1r1 � xPbestid � xid
� �þ c2r2 � xgbestid � xid

� �
: ð4Þ

xid ¼ xid þ vid : ð5Þ

In the equation, vid is the d th dimension component of the i th particle’s flight
velocity vector; xid is the d th dimension component of the i th particle’s position
vector; xPbestid is the best position experienced by the d th dimension component of the

i th particle; xgbestid represents the best position that the current particle group experi-
ences in solution space; r1 and r2 are random numbers between 0; 1½ �; c1 and c2 are the
acceleration coefficients; x is inertia weight.

3 Cutting Trajectory Planning Based on Improved PSO

During the continuous excavation operation, the disturbance of the coal seam unsteady
factors (such as the dirt band, changes of coal and rock properties at the roof and
bottom boundaries of the cut section) will affect the cutting path of the unmanned
tunneling equipment. While the cutting trajectory is closely related with roadheader
operational stability, efficiency and power consumption. In the cutting process, when
the hardness of coal rock changes abruptly, because the rotation speed of the cutting
motor cannot be changed, if the cutting arm’s swing speed cannot be adjusted quickly,
it will easily cause damages of picks, gears, and joints of driving cylinders, and cutting
motor will also be shutdown with greatly overloaded current or even damaged. In the
case of a relatively large volume dirt band, the body of the roadheader will generate
violent vibration, and will cause a large error of its position and posture, resulting in a
large offset of the tunneling section. Therefore, the dynamic correction and real-time
planning of the cutting trajectory and the adaptive control of the cutting process are the
key to achieve accurate and efficient automatic cutting.

The central task of the PSO-based cutting trajectory planning is to find a path from
the starting point to the ending point in an already established grid map. This trajectory
should be reasonably avoided the dirt band and shortened to guarantee the section
profiled. For this purpose, the basic PSO needs to be improved as follows.
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(1) Multi-target of cutting trajectory planning

The overall goal of the cutting trajectory planning is to form the section, that is, to
ensure that the section is completely covered and to ensure the formation quality of the
two boundaries. The local goal is to reasonably avoid the dirt band when the dirt band
is large and make it the shortest.

To this end, each particle represents a solution to the planned trajectory which is set
to be a number of one-dimensional arrays. Each point in the array represents the
number of the grid in space which is one-to-one correspondence with its position. The
array represents the entire trajectory of the particle and its connection can cover the
entire section. Let a large number of particles find together, and the optimal trajectory
could be found after a few iterations.

The fitness function of the improved PSO considers three performance indexes
which are the length of the experienced trajectory, the trajectory validity, and the
trajectory integrity, shown in formula (6). The smaller the fitness value, the shorter the
trajectory, and the best the particle.

f ¼ x1fit1 þx2fit2 þx3fit3 0\x1;x2;x3\1: ð6Þ

In the formula, x1;x2;x3 are adjustment parameters; fit1 ¼
Pn
i¼1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xiþ 1 � xið Þ2 þ yiþ 1 � yið Þ2
q

represents the length of the experienced trajectory; fit2 ¼
1 Valid
0 Invalid

�
represents the trajectory validity; fit2 ¼ 1 Full cover

1 Others

�
represents the

trajectory integrity.

(2) Particle initialization and multi-group search region segmentation

In order to maintain the diversity of the group and prevent the algorithm from falling
into a local optimum, each particle is randomly initialized, and according to the coal
mining cutting process, the starting point of all particles are set as a uniform starting
point. For example, when encountering a relatively medium-hard coal, the process in
general is drilling the coal wall from the left bottom corner, sweeping the bottom, and
then cutting from the bottom up. Therefore, the starting point of all particles are need to
be set at the left bottom corner of the grid.

At the same time, when iterating, a multi-group parallel evolution is adopted, and
different groups are arranged in different feasible regions of the search space. As shown
in Fig. 1, the entire cross section is divided into 3 parts by dividing the area near the
dirt band and each part is searched by one group separately. If the current section does
not have a dirt band, one group is still used for searching. The number of each group
particles are the same. The advantage is that the search efficiency can be improved. For
the part with the dirt band, the search trajectory is the shortest and avoiding the dirt
band, and the validity of the trajectory should be considered. In other parts, the search
is relatively simple, so as to ensure the requirements of the section forming.
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(3) Effectiveness of particles

The neighborhood of a grid normally included the up, down, left, right, left up, left
down, right up, and right down ones. However, the boundary points of the section are
rather special. Their neighborhoods are different according to their locations, excluding
the neighborhood points outside the boundary.

For complex sections with dirt bands, because the cutting head cut step by step,
while the search of particles is random and may not be a continuous path, it needs to
determine whether the particles are valid by examining two adjacent points of the found
trajectory in order according to the grids neighborhood. If the neighboring points on the
connection between two adjacent points not passed through the dirt band region, the
trajectory between the two points is valid. If from the start point to the end point are all
valid, the trajectory of the particle is considered valid, and the particle invalid should be
searched again.

Specific steps of roadheader cutting trajectory planning based on improved PSO are
as follows:

Step 1: Use grid method to model the environment and create a two-dimensional
array chart a½ � b½ � which representing environmental information. The total number of
grids is m ¼ a � b.
Step 2: Parameters initialization
Set the group size as N, inertial weight x, acceleration coefficients C1 and C2,
maximum number of iterations Nmax and maximum velocity Vmax. At the same
time, define the particle trajectory array as Group N½ � m½ �, particle velocity array
Velocity N½ � m½ �, local optimal trajectory array IndividualBest N½ � m½ �, global optimal
trajectory array GlobalBest m½ �, local optimal fitness value IndividualBestFitness N½ �,
global optimal fitness GlobalBestFitness.

Fig. 1. Schematic diagram of multi-group search region segmentation
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Step 3: Randomly generate the particle trajectory array Group N½ � m½ � and velocity
array Velocity N½ � m½ �. Set the initial starting point of all particles according to the
cutting procedure: Group N½ � 1½ � ¼ s.
Step 4: Check each particle validity. Calculate the IndividualBestFitness N½ � using
formula (6) and get the GlobalBestFitness. According to the fitness values, if better
than before, update IndividualBest N½ � m½ � and GlobalBest m½ �, otherwise not.
Step 5: Increase the number of iterations, each trajectory respectively exchanged
with the local optimal trajectory, the global optimal trajectory and velocity
according to Eqs. (4) and (5).
Step 6: If reaches the maximum number of iterations or meet the system accuracy
requirements, stop the algorithm, otherwise go to Step 4.

4 Simulation and Results

To verify the effectiveness of the proposed algorithm, a large number of simulation
experiments has been performed using MATLAB. The initial parameters of the sim-
ulation are set as: 4 m * 4 m rectangular roadway section, position of the dirt band in
the environment is given, group size N¼ 500, inertial weight x¼ 0:96�n=Nmax,
acceleration coefficients C1 ¼ 0:4 and C2 ¼ 0:4, maximum number of iterations
Nmax ¼ 200, speed maximum Vmax ¼ 40. Randomly set the position of the dirt band,
the simulation results are as shown in Fig. 2. It can be seen that all particles could find
the optimal trajectory within 105 times iteration.

Since the cutting head is large, the optimal trajectory obtained by the particle will
cause collision and damage to the pick during actual cutting. For this reason, in
collision avoidance correction, the dirt band is firstly subjected to an expansion
operation, and one grid is outwardly expanded (gray grids in Fig. 2). In the process of
particle optimization, the gray grids should also forbidden to be selected. At the same
time, when the roadheader is automatically cutting, the cutting head is controlled to
stop 1 grid away from the boundary of the dirt band after expansion.

Take the EBZ200 type roadheader as an example. The diameter of the cutting head
is 800 mm. Assume the projections of the cutting head on the roadway sections are
approximately circular. The experiments and results of the optimization in actual
cutting are shown in Fig. 3. From the simulation results, it can be seen that when the
roadheader is controlled cutting automatically, adopting the trajectory planning and
correction method, the section can be effectively cut avoiding dirt band collision and
the full cover forming can be ensured.
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a) Optimal trajectory and evolutionary curve of section with dirt band on the left

b) Optimal trajectory and evolutionary curve of section with dirt band on the right

c) Optimal trajectory and evolutionary curve of section with dirt band on the roof

d) Optimal trajectory and evolutionary curve of section with two dirt bands

Fig. 2. Simulation results of cutting trajectory planning using improved PSO
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a) Correction trajectory with dirt band on the left

b) Correction trajectory with dirt band on the right

c) Correction trajectory with dirt band on the roof

d) Correction trajectory with two dirt bands

Fig. 3. Simulation results of autonomous cutting trajectory correction method
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5 Conclusion

Since path planning is an important part to fulfill robotic tunneling, this paper proposed
a cutting trajectory planning method based on improved PSO in order to realize the
automatic and intelligent cutting of the roadheader.

The features of the improvements are reflected in multi-targets and multi-group of
particle swarm. The fitness value is redefined to reflect multiple targets of cutting,
which are avoiding the dirt band, shortest and section forming. It could most represent
the real cutting process. And the multi-group search region segmentation are adopt to
maintain the diversity of the group, prevent the algorithm from falling into a local
optimum and improve the efficiency of the algorithm. Finally, for real cutting, the
collision avoidance is corrected by expansion operation. The simulation experiments
are carried out and the results show the correctness of the method.

At present, cutting trajectory planning has just made initial progress. The simula-
tion of rectangular sections have been carried out, while sections with other shapes still
needs to be continued. At the same time, this paper only designs the algorithm for the
global static environment, that is, the position and shape of dirt bands are given and
fixed. The dynamic optimization problem still needs further research. The successful
solution of cutting trajectory planning can provide the optimal trajectory for the
automatic control of cutting, and automatically control the cutting arm’s swing speed to
adapt to the hardness of cutting. It could reduce the cost of tunneling, improve the
cutting efficiency of coal and rock, and reduced casualties. So, it has an important
research significance.
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Abstract. University course timetabling problem (UCTP) is well known to be
Non-deterministic Polynomial (NP)-hard problem, in which the amount of
computational time required to find the optimal solutions increases exponen-
tially with problem size. Solving the UCTP manually with/without course
timetabling tool is extremely difficult and time consuming. A particle swarm
optimisation based timetabling (PSOT) tool has been developed in order to solve
the real-world datasets of the UCTP. The conventional particle swarm optimi-
sation (PSO), the standard particle swarm optimisation (SPSO), and the Maurice
Clerc particle swarm optimisation (MCPSO) were embedded in the PSOT
program for optimising the desirable objective function. The analysis of vari-
ance on the computational results indicated that both main effect and interactions
were statistically significant with a 95% confidence interval. The MCPSO
outperformed the other variants of PSO for most datasets whilst the computa-
tional times required by all variants were moderately difference.

Keywords: Course timetabling � Particle swarm � Metaheuristic �
Parameter setting

1 Introduction

University course timetabling problem (UCTP) is one of the most challenging
scheduling problems and also classified into combinatorial optimisation problems due
to its complexity and constraints [1]. This problem arises every semester and is solved
either manually by academic staff or using automatic course timetabling tool [2, 3].
Solving large course timetabling problems without efficient timetabling program is
extremely difficult and may require a group of experts to work for several days [4].

Swarm intelligence (SI) has received great attention in the communities of opti-
misation, computer science, computational intelligence, bio-inspired algorithms, and
SI-based algorithms [5]. SI-based algorithms such as ant colony optimisation (ACO),
artificial bee colony (ABC) algorithm, firefly algorithm (FA), cuckoo search (CS), and
particle swarm optimisation (PSO) have become very popular to solve large-scale
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combinatorial optimisation problems [5]. These algorithms have been widely adopted
to solve NP hard problems within acceptable computational time, but they do not
guarantee optimum solutions [6]. Among the intelligent algorithms, PSO has been
successfully applied to solve problems in several domains such as clustering problem,
image processing, function optimisation, etc. This is because of PSO algorithm has a
few parameters to adjust and requires little memory for computation, easy to under-
stand and implement [7].

We have conducted a comprehensive literature survey on articles indexed in Scopus
databases covering the period from the past to February 2019 using “course timetabl*”
and “particle swarm*” as keywords, several variants of PSO were found to be applied
to solve the UCTP. For examples, the conventional PSO (called PSO) has been applied
to generate the optimal course timetables for 16 lecturers, 10 classrooms, and 10 classes
[8]. The standard PSO using inertia weight factor (called SPSO) has been also
developed to solve the UCTP both real world datasets [9] and benchmarking datasets
[10]. Another variant of PSO introduced by Maurice Clerc (called MCPSO) has been
wildly applied to deal with the UCTP [11–14]. However, there is no report related with
the performance comparison among three variants of PSO to solve the UCTP. More-
over, parameter values of PSOs found on all articles have been set by using ad hoc
fashion approach [10–14] or one factor at a time experimental strategy [8, 9]. The
factorial experiment is one of the best statistical approaches for identifying optimal
parameter setting especially when considering several factors [15].

The objectives of this paper were to: (i) develop a particle swarm optimisation
based timetabling (PSOT) tool for solving real-world UCTP in Thailand; (ii) investi-
gate the appropriate parameter settings of PSOs using statistical experimental design
and analysis; and (iii) compare the performances of the conventional particle swarm
optimisation (CPSO), the standard particle swarm optimisation (SPSO), and the
Maurice Clerc particle swarm optimisation (MCPSO) in terms of the solution quality
and computational time. The next section of this paper briefly explains the PSO
algorithm. Section 3 describes the UCTP followed by the procedures of the PSOT tool
in Sect. 4. Section 5 presents the experimental results and analysis followed by
conclusions.

2 Particle Swarm Optimisation (PSO)

Particle Swarm Optimisation (PSO) was inspired by swarm behaviour in nature, such
as bird flocking, fish schooling, and proposed by Kennedy and Eberhart in 1995 [16].
PSO has become one of the most widely used swarm-intelligence-based algorithms to
solve every area in optimisation, computational intelligence, and design applications
due to its simplicity and flexibility [17].

According to the conventional PSO procedures, the objective function F(x) at an
initial process is specified. Each particle xi (i = 1, 2,…, P) is generated randomly and
evaluated its fitness. The iteration best solution (Pbest) and the global best solution
(Gbest) are identified by following Eq. (1) [18].
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Pbestði; tÞ ¼ arg min
k¼1;2;...;t

½FðXk
i Þ�; i 2 ð1; 2; 3; . . .;PÞ;

GbestðtÞ ¼ arg min
i¼1;2;...;P
k¼1;2;...;t

½FðXk
i Þ�; : ð1Þ

Where i is index of particles, P is population (particle) size, t is current iteration,
and F(x) is objective function. For each generation of conventional PSO, generating
new solutions xtþ 1

i for each particle i is updated by using velocity and position vectors
according to Eqs. (2) and (3), respectively [19].

Vtþ 1
i ¼ Vt

i þ c1 r1ðPbestði; tÞ � Xk
i Þþ c2 r2ðGbestði; tÞ � Xk

i Þ: ð2Þ

Xtþ 1
i ¼ Xt

i þVtþ 1
i : ð3Þ

Where Vi denotes the velocity, c1 and c2 are positive constant parameters called
acceleration coefficients, and r1 and r2 are uniformly distributed random variables
within range from 0 to 1 [18]. For standard PSO (called SPSO), generating new
solutions xtþ 1

i is produced by using velocity and position vectors according to Eqs. (4)
and (3) [18, 19]. Another variant of PSO introduced by Maurice Clerc is called
MCPSO, in which applies Eqs. (5)–(6), and (3) for velocity and position updates [19].

Vtþ 1
i ¼ xVt

i þ c1 r1ðPbestði; tÞ � Xk
i Þþ c2 r2ðGbestði; tÞ � Xk

i Þ: ð4Þ

Vtþ 1
i ¼ KðVt

i þ c1r1ðPbestði; tÞ � Xk
i Þþ c2r2ðGbestði; tÞ � Xk

i ÞÞ: ð5Þ

K ¼ 2

2� /�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/2 � 4/
p

�

�

�

�

�

�

; / ¼ c1 þ c2; /[ 4: ð6Þ

Where x is the inertia weight used to balance the global exploration and local
exploitation [18], K is constriction factor to control the velocity of particles [19], and u
is a positive parameter depending on the acceleration coefficients. After preforming the
movement strategies of PSO, the fitness value of new solution xi or F(xi) is evaluated.
The new xiwill be replaced to the Pbest if the F(xi) is better than the F(Pbest). Moreover, if
the F(xi) is also better than the F(Gbest), The new xi will be replaced to the Gbest. These
processes are repeated until getting to the maximum iteration (G) or stop criterion.

Parameters required for any metaheuristic algorithm play a significant role for the
algorithm’s performance [20]. Parameters have to be tuned due to the optimal values
for the parameters depend on the problem domain, the instance, and the computational
time to solve [21]. A comprehensive literature survey on Scopus database covering the
period from the past to February 2019 focused on the application of PSO on UCTP has
been conducted and summarised in Table 1. There are many parameters to be assigned
before computational executions including: (i) the number of population (particle) sizes
(P); (ii) the acceleration coefficients (c1 and c2); and (iii) the inertia weight (x). Due to

Variants and Parameters Investigations 179



an ad hoc fashion, most of research articles have not reported on the investigation of the
best parameter setting of PSO via the appropriate statistical design and analysis.

3 University Course Timetabling Problem (UCTP)

Timetabling courses and examinations in educational institutions is a crucial activity,
which assigns appropriate timeslots for students, lecturers, and classrooms [22]. In this
research, the real-world university course timetabling data obtained from previous
research was considered [23]. Generally, the constraints found in course timetabling
can be classified into two types: hard constraints (HC) and soft constraints (SC) [6].
Hard constraints are the most important and must be satisfied to have a feasible
timetable whereas soft constraints are more relaxed as some violations are acceptable.
However, the number of SC violations should be minimised [22]. Both HC and SC
constraints considered in this research can be described as following [23].

The considered HC were: (i) all lectures within a course must be scheduled and
assigned to distinct periods (HC1); (ii) students and lecturers can only attend one
lecture at a time (HC2); (iii) only one lecture can take place in a room at a given time
(HC3); (iv) lecturers and students must be available for a lecture to be scheduled (HC4);
(v) all courses must be assigned into the classrooms according to their given
requirements including building location, room facilities, and room types (HC5); and
(vi) all lectures within a course required consecutive periods must be obeyed (HC6).

In additions, The considered SC were: (i) all courses should be scheduled in the
appropriate classroom in order to avoid unnecessary operating or renting costs (hour)

Table 1. Comprehensive literature review of PSO’s parameter settings to solve the UCTP

Authors PSO
variants

PSO’s parameter settings to solve the UCTP
No. of
Particles

c1 c2 x

Oswald and Anand Deva
Durai [11]

MCPSO 10 2.5 1.5 1/(2 * log(2))

Ahandani and Vakil
Baghmisheh [10]

SPSO 60 0.8 0.8 0.3

Chen and Shih [8] SPSO, PSO 30 2 2 0.8
Kanoh and Chen [9] SPSO 200 5 2 0.05
Irene, Safaai, Mohd and
Zaiton [12]

MCPSO 10 2.8 1.3 1/(2 * log(2))

Irene, Deris and Mohd
Hashim [13]

MCPSO 10 2.8 1.3 1/(2 * log(2))

Sheau Fen Ho, Safaai and
Siti Zaiton [14]

MCPSO 10 2.8 1.3 1/(2 * log(2))

Range 10–200 0.8–5 0.8–2 0.05–1.66
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(SC1); (ii) the courses taught by the given lecturer(s) should be assigned into their
available or preferred day and periods in order to save the hiring costs (hour) (SC2); and
(iii) the classrooms should be scheduled in consecutive working periods of a day in
order to reduce the number of times to clean or setup after using the rooms (times)
(SC3).

HC1–HC6 determine whether potential solutions are feasible. HC1–HC3 are the
fundamental timetabling constraints (called “event-clash”) that can be found in almost
all university timetabling problems [6] whilst HC4–HC6 are individual requirements
and timetabling policy found in many universities in Thailand. This research, SC1–SC3

are considered as the objective function, which aim to minimise the total university
operating costs considered from the candidate timetables following (7);

Minimise FðXk
i Þ ¼ W1SC1 þW2SC2 þW3SC3: ð7Þ

Subject to : HCh ¼ 0; 8h; ð8Þ

Equation (7) is the objective functions that evaluate the total university operating
costs of the SC1–SC3, called FðXk

i Þ. The weightings (W1–W3) for each SC are not
restricted and depend upon the user preferences for each institution. In this work, W1–

W3 were specified at 50 (currency units per hour), 300 (currency units per hour), and
2.5 (currency units per times), respectively. Equation (8) checks a timetable to be a
feasible timetable, in which all HCs must be satisfied. Where h is an index relating to
the hth hard constraint (h = 1, 2, 3,…, H), where H is the number of hard constraints.

4 Particle Swarm Optimisation Based Timetabling (PSOT)
Tool

The PSOT program has been coded in modular style using a general purpose pro-
gramming language called TCL/TK with C extension [24]. It was developed in order to
solve the real world UCTP by using three variants of particle swarm optimisation
(PSO) including: (i) conventional PSO (PSO); (ii) standard PSO (SPSO), and
(iii) Maurice Clerc PSO (MCPSO). The main procedures within the PSOT program are
included in five steps and shown in Fig. 1.

Step 1: after uploading course timetable data and assigning PSO’s parameters, the
total number of events (n) is determined from the number of teaching periods required
for all modules (courses). Then, an event list containing a set of n events was ini-
tialised. The event sequence in the list was sorted by using the Largest unpermitted
period degree (LUPD) first heuristic [25]. This rule reduces the probability of getting
infeasible timetables that generally occur in the process of solution initialisation. Next
process is to create an empty timetable or solution. The length of that is calculated
taking into account the number of timeslots per day, working day per week, and given
classrooms. Then, all events according to the sorted list were inserted into an empty
timetable in order to produce an initial population xi (i = 1, 2, 3, …, P) that represents
a set of possible timetables. Next step is to create a new list having the same length of
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solution, in which each timeslot of a new list is assigned random numbers uniformly
distributed between 0 and 1. This process is called a random key technique [26].

Step 2: this is the evolution process of the PSO algorithm. Each particle xi is
selected to update particle’s velocity based on the variants of PSO. Particle’s velocity
of the CPSO, SPSO, and MCPSO are produced by using Eqs. (2), (3), and (4),
respectively. Next process, particle’s position of x0i for all variants of PSO are updated
by using Eq. (6). Step 3: after evolution process, a new solution (x0i) may be either
feasible or infeasible timetable. The repair process was therefore design and embedded
in the PSOT program in order to rectify infeasible solutions. Step 4: the solution quality
of the x0i can be measured by using Eq. (7). If F(x0i) is better than F(Pbest), a particle
Pbest is replaced by the x0i whereas a particle Pgest is replaced by the x0i if its solution
quality is better. This processes will be repeated until all particles in the population are
improved. Step 5: These processes (Step 2 to Step 4) will be repeated until reach the
maximum iterations before showing the best so far results.

5 Experimental Results and Analysis

The objective of the PSOT program is to construct course timetables with the lowest
total operating costs (Z). The aims of the computational experiments were to:
(i) identify which main factors and their interactions were statistically significant for
three variants of PSO; and (ii) explore and compare the performance of the PSO with
difference movement strategies including the conventional PSO, the standard PSO
(called SPSO), and the Maurice Clerc PSO (called MCPSO). Personal computer with
Core 2 Quad 3.00 GHz CPU and 4 GB RAM was used to determine the computational
time required to execute experimental runs. Five real-world university course time-
tabling datasets obtained from the previous research [23] were used in the computa-
tional experiment.

Begin                                /*Step 1*/
Input data and Set PSO’s parameters
Sort a list of courses using heuristic orderings
Create initial population, xi (i = 1,2,…,P)
Generate random keys for each xi

While t < Max_Iteration(I) do /*Step 2*/
For (i=1, i<= Max_Pop(P), i++) do

Pick random numbers: r1, r2 U(0,1)
If PSO do Update particle’s velocity xi using Eq.(2)
If SPSO do Update particle’s velocity xi 4)
If MCPSO do Update particle’s velocity xi 5)
Update particle’s position xi 3)
If (xi do

Repair xi /*Step 3*/
Evaluate objective functions F(xi ) /*Step 4*/
If F(xi ) > F(Pbest),do Replace Pbest by the new solution xi

If F(xi ) > F(Gbest),do Replace Gbest by the new solution xi

Output results and visualisation of Gbest /*Step 5*/
End

Fig. 1. Pseudo code of the PSOT tool
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5.1 PSO Parameters Investigation

The experiment was aimed to investigate which factors and first level interactions were
statistically significant; and to identify the best settings for these factors. The main
factors of the PSO, SPSO, and MCPSO included (i) the combination of population
(particle) sizes and the number of generation (PG), which determines the total number
of solutions generated (or amount of search) and the execution time, this computational
experiments the value was fixed at 24,000 to limit the time taken for computational
search; (ii) the acceleration coefficients (c1 and c2); and (iii) the inertia weight (x) for
the SPSO and the MCPSO, excepted the conventional PSO. The experimental design
for all PSO’s variants, shown in Table 2 was used together with data from dataset
number 1. The range of available values for each parameter of PSO were considered
from comprehensive literature reviews (shown in Table 1).

A full factorial experiment based on the design in Table 2 was considered for this
experiment. Thus, the total number of runs required for the PSO and MCPSO would be
33 = 27 runs per replication whereas the total runs for the SPSO would be 34 = 81 runs
per replication. The first instant problem was selected and replicated ten times using
different random seeds for all PSO’s variants. The computational results obtained from
the SPSO (34 * 10 = 810 runs), the PSO (33 * 10 = 270 runs), and MCPSO
(33 * 10 = 270 runs) were analysed by using a general linear model form of analysis of
variance (ANOVA). Table 3 shows the ANOVA table, which shows the source of
variation (Source), degrees of freedom (DF), F-value, and P-value.

Table 3 shows the PSO parameters in terms of the main effect and first level
interactions. PG, PG * c2, and PG * x were statistically significant with a 95%
confidence interval. The random seed number (Seeds) did not statistically affect the
PSO performance. Moreover, the most influential factor in this experiment was PG
because it had the highest F-value. After ANOVA analysis, the appropriate parameter
settings for each variant of PSO were determined by using the lowest mean obtained
from main effect and interaction plots. For example shown in Fig. 2, the best parameter
settings for SPSO are: PG = 200 * 120, c1 = 0.8–5.0, c2 = 0.8, and x = 0.8. More-
over, the best settings for PSO parameters are: PG = 200 * 120, c1 = 0.8, and
c2 = 0.8. However, the best settings for MCPSO are: PG = 10 * 2,400, c1 = 2.8, and
c2 = 1.5.

Table 2. Experimental factors and levels for the PSO variants

Factors Levels SPSO Factor values PSO Factor values MCPSO Factor values

−1 0 +1 −1 0 +1 −1 0 +1

PG 3 10 * 2400 60 * 400 200 *120 10 * 2400 60 * 400 200 * 120 10 * 2400 60 * 400 200 * 120

c1 3 0.8 2.8 5 0.8 2.8 5 2.8 4 5

c2 3 0.8 1.3 2 0.8 1.3 2 1.3 1.5 2

x 3 0.05 0.8 1.66 – – – – – –
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5.2 Performance of PSO’s Variants

The objective of this experiment was to explore and compare the performance of the
PSO with difference movement strategies including PSO, SPSO, and MCPSO in term
of the quality of the solutions. The appropriate parameter settings for three variants of
PSO were adopted from previous experiment. Five course timetabling datasets were
used to test and compare the performance of these algorithms to find the course
timetable with the lowest penalty Z. The computational run for each instance was
repeated ten times by using different random seeds. The computational results were
analysed in terms of Avg (currency unit), SD, and Time (minute unit) as shown in
Table 4.

Table 3. ANOVA analysis of PSOs parameters

Source DF SPSO PSO MCPSO
F-value P-value F-value P-value F-value P-value

PG 2 92.15 0.000 19.36 0.000 1.490 0.228
c1 2 0.00 1.000 1.17 0.311 0.600 0.548
c2 2 2.50 0.083 0.80 0.449 0.580 0.563
x 2 0.90 0.407 – – – –

Seeds 9 1.65 0.097 1.02 0.426 1.150 0.326
PG * c1 4 0.00 1.000 0.27 0.899 0.730 0.574
PG * c2 4 8.04 0.000 0.24 0.917 1.410 0.230
c1 * c2 4 0.00 1.000 0.53 0.714 0.490 0.740
PG * x 4 5.23 0.000 – – – –

c1 * x 4 0.00 1.000 – – – –

c2 * x 4 1.47 0.210 – – – –

Error 768
Total 809

Fig. 2. Example of SPSO’s main effect plots of PG, c1, c2, and x factors
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From Table 4, it can be seen that the average values of the best so far solutions
(timetables) generated by MCPSO were better than those values generated by both PSO
and SPSO for most problems. The PSO outperformed the other methods for problem
number 1 whereas the SPSO outperformed both PSO and MCPSO for problem number
5. Moreover, the SD values and the averages of the computational times obtained from
both methods were moderately different for all problems.

6 Conclusions

A particle swarm optimisation based timetabling (PSOT) tool has been developed in
order to solve the real-world university course timetabling problems. The conventional
PSO, the SPSO, and the MCPSO were embedded in the PSOT program for con-
structing the desirable timetables with minimal objective function. Full factorial
experimental designs and ANOVA were adopted to investigate the statistically
influential factors for each variant of PSO before identifying its best parameter settings.
It was found that the PSOs’ parameters in terms of the main effect and interactions
including PG, PG * c2, and PG * x were statistically significant with a 95% confi-
dence interval. The most influential factor in this experiment was PG because it had the
highest F-value. Moreover, the MCPSO outperformed the other variants of PSO for
most datasets whereas the SPSO and PSO outperformed the other variants only one
dataset. However, the computational times required by the proposed PSO variants were
moderately difference.

Acknowledgements. This work was part of research project supported by the Thailand
Research Fund (TRF) and Office of the Higher Education Commission (OHEC) under grant
number MRG6080066.

Table 4. Performance comparisons between three variants of PSO

Dataset No. SPSO PSO MCPSO

Avg SD T Avg SD T Avg SD T

1 203,098.75 41.28 7.37 202,944.90 410.98 6.60 203,030.80 134.34 6.44
2 382,899.98 364.81 24.23 382,918.73 218.27 21.61 382,744.20 391.59 22.82
3 306,721.83 213.26 41.03 306,854.75 163.04 35.26 305,400.33 596.58 36.55
4 310,214.98 382.26 31.10 310,000.63 464.64 30.05 308,821.35 597.81 26.75
5 492,891.90 409.66 50.04 492,910.05 197.49 41.72 493,002.15 500.36 47.81
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Abstract. The paper discusses the use of an optimization algorithm based on
the behaviour of the ant colony to solve the problem of forming the composition
of a multiversion fault-tolerant software package. A model for constructing a
graph for the implementation of the ant algorithm for the selected task is pro-
posed. The modifications of the basic algorithm for both the ascending and the
descending design styles of software systems are given. When optimizing for
downstream design, cost, reliability, and evaluation of the successful imple-
mentation of each version with the specified characteristics are taken into
account. When optimizing for up-stream design, reliability and resource inten-
sity indicators are taken into account, as there is a selection from already
implemented software modules. A method is proposed for increasing the effi-
ciency of the ant algorithm, which consists in launching a group of “test” ants,
choosing the best solution from this group and further calculating on the basis of
it. A software system that implements both modifications of the basic ant
algorithm for both design styles, as well as the possibility of applying the
proposed multiple start technique to both modifications, is considered. The
results of calculations obtained using the proposed software tool are considered.
The results confirm the applicability of ant algorithms to the problem of forming
a multiversion software package, and show the effectiveness of the proposed
method.

Keywords: Ant algorithm � Multiversion programming � Reliability �
Optimization � Software design � Architecture

1 Introduction

Recently, the development of genetic algorithms, which are optimization algorithms
based on natural decision-making mechanisms, has been very actively developing [1].
One of such algorithms is the ant colony algorithm (an optimization algorithm for
imitating an ant colony, Ant Colony Optimization - ACO) [2]. This algorithm is a
product of cooperation of scientists studying the behaviour of social insects and spe-
cialists in the field of computer technology. The basis of this algorithm is the behaviour
of ants, or rather their ability to find the shortest paths to the food source.
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The main idea of ant algorithms is to use the principles of self-organization of real
ants to coordinate artificial “agents” who cooperate in performing computational tasks.
The essence of ant algorithms (AA) is artificial stigmergy - a mechanism of sponta-
neous indirect interaction between individuals, which consists in leaving environmental
labels to individuals that stimulate the further activity of other individuals to coordinate
sets of artificial “agents”. One of the most successful applications of AA is the opti-
mization algorithm of the ant colony imitation. It imitates the principles of collecting
food used by ants in anthills.

The ant colony is a multi-agent system, and, despite the simplicity of its individual
representatives, this system is capable of solving complex problems. Each represen-
tative of the colony is trying to find the shortest way to the source of food, while it
cannot get access to information obtained by other representatives of the colony, so
they must have a mechanism that would allow combining their knowledge. This
mechanism is the ability of ants to mark the path with the help of pheromone. If in the
process of searching the ant finds a source of food, then on the way back it will mark its
route with a pheromone [3]. Other ants will rely on this signal when searching for food.
The higher the pheromone value marks the path, the more likely the ant will choose this
route in its search. This self-organization mechanism formed the basis of the ant colony
algorithm.

Agents mark the traversed path with pheromone, increasing the chances of this path
when choosing alternatives. In order for the algorithm not to roll into the region of local
extremum, there is a mechanism such as pheromone evaporation. This mechanism is
responsible for ensuring that the paths, mistakenly chosen as a solution, gradually lose
their attractiveness due to the evaporation of pheromone on them.

2 The Problem of Designing Multiversion Software Systems

In recent years, industries have actively developed, requiring reliable, fault-tolerant
real-time control systems. These include high-tech production using composite and
hazardous materials, autonomous unmanned objects - from multi-rotor systems to cars
with autopilot function and motorized seats for people with disabilities. Software is an
integral part of modern control systems, however, only simple software can be guar-
anteed to be created without errors. Modern software of control systems is used for
solving more and more complex tasks, the volume of the processed information
increases in an avalanche manner. Increasing software complexity causes probability of
errors [4].

The issue of designing fault-tolerant software systems of control systems is
becoming increasingly important. The most relevant approach today is multiversion
programming. Multiversion programming [5] offers parallel execution of N indepen-
dently developed functionally equivalent versions with the choice of a correct exit by
the decision block, as a rule, on the basis of voting.

In the process of applying the methodology of multiversion programming in the
task of designing software, it becomes necessary to form the optimal composition of
the multiversion software components. Depending on the design style used, the layout
task also changes. In the case of top-down design, we know the required functionality,
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but there are no ready-made implementations of software components yet. In this case,
the problem of selecting the optimal software modules and their specific versions for
implementation arises.

In the case of an ascending design style, we already have implementations of
software components, often with already known characteristics. The problem arises of
the optimal layout of the existing components, and, if necessary, the development of
the missing ones.

To solve both of these tasks, it is advisable to apply actively developing today
evolutionary algorithms, namely, the optimization algorithm of the ant colony
imitation.

3 Architecture of the Designed Software

To increase the fault tolerance of software systems, software redundancy in the most
critical modules for reliability is introduced into them. There are usually several such
modules, in our case we will consider a software package with 10 modules (m1–m10).
The probability of activation of modules can be different and depends on the archi-
tecture of the software package and the frequency of calling a specific functional
implemented by the modules. Let us consider the architecture of the software, which
will be described in this paper in Fig. 1.

Why do we need to know the architecture of the designed software? It affects the
calculation of the most important parameter - reliability, or rather, estimates of the
probability of failure-free operation for a given period of time [6]. This is a probabilistic
characteristic taking values from 0 to 1, where 0 is an absolutely unreliable system, and
1 is an absolutely reliable one. The architecture is not used to calculate the total cost of
implementing the software and the probability of its successful implementation. Let us
consider the architecture under consideration (Fig. 1). It is clearly seen from the

Fig. 1. Architecture of the considered software
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scheme that the modules m1 m10 are always used, the modules m2–m4 are activated
with a probability of 0.16, and the module m8 with a probability of 0.16 (0.38 * 0.43).
The overall reliability will be calculated using the formula

Prel ¼ Pm1 � 0:62 � ðPm2 � Pm3 � Pm4ð Þþ 0:38 � Pm5 � 0:57 � Pm6 � Pm7ð Þð
þ 0:43 � Pm8Þ � Pm9Þ � Pm10:

As it becomes clear from the formula, the change in the reliability of different
modules will not equally affect the reliability of the entire software package. For
example, the reliability of the modules m1 and m10 is more important than the reli-
ability of the module m8.

The formation of the multiversion software package is an important optimization
problem that can be solved in various ways, from simple enumeration to recently
gaining popularity of evolutionary algorithms.

4 Modification of the Ant Algorithm for Descending Design

In solving the problem of descending design, we know the requirements for the ver-
sions that need to be developed. The following parameters will be used for opti-
mization: the cost of the version implementation, the reliability of the version, the
probability of a successful version implementation (the probability that the version will
be implemented with a given reliability for the expected cost).

Our case will differ from the traveling salesman problem, which is most often cited
as an example of the work of ant algorithms [7, 8]. Earlier we described the con-
struction of a graph for the ant algorithm when solving the problem of optimizing the
composition of a multiversion software package [9]. In our case, it will be a directed
graph in which the ant will make M decisions - by the number of modules in the
system, in this example 10. Each time the arcs will be all possible implementations of
this module. For implementation of multiversion voting, the number of versions N
3 is necessary, we have only 10 versions of versions, so we will consider all possible
combinations of these versions in the module with N from 3 to 10. Each version can be
included in the module only one time, therefore we cannot build a module of more than
10 non-repeating versions. We will take into account all theoretically possible com-
binations with given restrictions on the number of versions. With N from 3 to 10: {1; 2;
3} … {1; 4; 8; 9; 10} … {2; 3; 5; 7; 8; 9} … {1; 2; 3; 4; 5; 6; 7; 8; 9; 10}, the total of
such combinations will be 968 for each module, that is, the ant will choose from 968
arcs at each step. The total system implementation options will be 968 m, where m is
the number of modules in the system.

The weight of each arc will be calculated by the formula Wij ¼ R�Vð Þb
C C, and the

probability of transition along this arc is Pij ¼ saij�WijP
saij�Wijð Þ, where sij is the pheromone

value on this arc, a and b are coefficients affecting the operation of the algorithm, the
larger a is, the stronger the ant’s decision depends on the pheromone level, the larger b,
the more ant’s decision depends on the weight of the arc [10]. The effect of a and b
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coefficients on the operation of the algorithm was studied in [9]. It is important to note
that in our case the arc has no length, as in the classical algorithm, and the weight is
rather an inverse characteristic - the more weight, the “more attractive” the arc.

In the classical model, after the ant successfully passes the route, it leaves a trace on
all the ribs, inversely proportional to the length of the path. In our implementation, the
pheromone value will increase by the specified values in two cases - if an ant chooses a
composition that satisfies the constraints (for example, when optimizing at cost, there
are restrictions on the minimum reliability and evaluation of the successful imple-
mentation of the system) and when the composition replaces the optimal solution. This
change was made for reasons of the same number of edges passed by all ants (by the
number of modules, each arc is a specific combination of versions in the module) and
the absence of a length indicator, which is replaced by a weight indicator. In addition,
traces of pheromone evaporate, that is, the intensity of the pheromone on all edges
decreases at each iteration of the algorithm. Thus, at the end of each iteration, it is
necessary to update the intensity values.

5 Modification of the Ant Algorithm for Upstream Design

Using the modification proposed above, we solve the task of arranging the optimal
composition of the multiversion software package only for top-down design, when we
know the requirements and architecture of the software being developed, but the
functional modules themselves have not yet been developed.

However, there is often a need to develop on the principle of bottom-up design,
when we already have developed components, of which it is necessary to make the
optimal structure of the developed software system. Such an approach can significantly
reduce both the time and material costs of software development by re-using the
previously developed software code.

In this case, the value of the previously developed module ceases to matter, since its
reuse will be conditionally free. Such a parameter as the probability of successful
implementation of the component, since it has already been developed, the cost of its
development, functional and reliability characteristics also loses its meaning. Thus, we
need to change again the formula for calculating the weights of the arcs. The calcu-
lation of the probability of transitions and the general logic are preserved - arcs with
more weight remain more “attractive”.

Since we choose from the modules that have already been tested, we already know
not only their assessment of reliability, but also the functional characteristics, including
the resources consumed. Thus, for an upstream design, the weight of each arc will be

calculated by the formula Wij ¼ Rð Þb
T , where T is the assessment of resource intensity,

determined by the consumption of a critical resource for this project and the importance
factor of resource intensity. It is necessary to clarify this point. If we leave the eval-
uation of resource intensity in the denominator without a coefficient, and b equals to 1,
then the component with twice the reliability, but with twice the resource intensity will
be equally attractive from the point of view of the system. This should be avoided,
because in a real situation, as a rule, the requirements for resources are not as critical as
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for reliability, and in the case of the availability of resources, a more reliable com-
ponent should always be chosen. Therefore, it is necessary to enter the coefficient when
calculating the resource intensity estimate and set the coefficient b to be greater than 1.

6 Software Implementation

Let us consider the software implementation of the proposed ant algorithm modifica-
tions. The program interface is shown in Fig. 2, the screenshot shows the optimization
result for reliability for the top-down design.

The program allows loading the characteristic values of versions from a file or
generate values randomly. Randomly generated values can also be written to a file and
used later. The form sets the minimum and maximum values of versions and all other
parameters required for the calculation: coefficients a and b, evaporation coefficient,
the number of ants in one “run”, restrictions on cost, reliability, probability of suc-
cessful implementation, resource intensity, the amount of pheromone added for the
path that satisfies the conditions and for the path that has improved the optimal solu-
tion. Also on the right is the number of “test ants” for the multiple-run mode. Opti-
mization modes, maximization of reliability, probability of successful implementation
of the system, their work, or minimization of system cost for top-down design are
selected from the drop-down lists, reliability maximization and resource consumption
minimization for upstream design.

Fig. 2. Software implementation interface for optimizing the reliability of a downstream design
task (Color figure online)
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The characteristics of all available versions are displayed in the main area, while
optimizing the selected versions are highlighted in red. The characteristics used for
optimization in this mode are displayed, in Fig. 2 the optimization for the descending
design is presented, in Fig. 3 - for the upward design.

7 Method of Multiple Algorithm Start

As the simulation shows in the proposed software environment, the result of the ant
algorithm strongly depends on the passage of the first group of ants, which is almost
random, since the pheromone values at the beginning are the same, and the weights of
the arcs have relatively close values. When the first ants choose paths that are far from
optimal, however, improving the solution, these arcs will receive an increase in the
pheromone value, and from the truly optimal, but not used arcs, the pheromone will
evaporate, which will reduce the chance of finding a really optimal solution. To further
improve the operation of the algorithm, we can offer the following option: run the first
few groups of ants, compare the result obtained by them at the first iteration, choose the
best one and continue further modeling only with the best group. This does not sig-
nificantly complicate the calculations, however, it will allow to exclude cases when, at
the beginning of the simulation, the far-from-optimal arc solutions received a high
pheromone value and even a large number of further iterations do not improve the
solution.

Fig. 3. Software implementation interface for optimization of the upstream design task (Color
figure online)
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The proposed method of increasing the efficiency of the ant algorithm consists in
launching a group of “test” ants, choosing the best solution from this group and further
calculating based on it. The scheme of work of a technique is presented in Fig. 4.

This technique is implemented in a software tool for both modifications of the ant
algorithm.

8 Simulation Results

Let us study the simulation results obtained in the software implementation. We will
carry out optimization of reliability with the number of ants from 100 to 600. Table 1
presents the result for the downward design, Table 2 - for the ascending design.

As it is clearly seen from the results presented in Table 1, an increase in the number
of ants leads to finding a more optimal solution. However, due to the randomness
inherent in the principle of the algorithm, its work depends on the passage of the first
group of ants. From the results it can be seen that 100 ants have found a more optimal
solution than 200. This is due to the fact that the first group of 200 ants went farther
from the optimal solution than at 100, and even twice the number of ants did not allow
us to find a more optimal solution.

As it is seen from the results presented in Table 2, for the upstream design, the
same patterns are preserved - an increase in the number of ants leads to finding a more
optimal solution.

Fig. 4. The scheme of the multiple start

Table 1. The influence of the number of ants on the optimization results for the downward
design

Ants 100 200 300 600 300-10

Cost 3272 3327 3481 3495 3360
Reliability 0.9421 0.9395 0.9557 0.9628 0.9628
Succ. ratio 0.9997 0.9999 0.9999 0.9999 0.9998
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Table 3 presents the results of the optimization in reliability for the descending
design with 600 ants. In the first column, the method of multiple starts was not used, in
the rest 10, 30, 50 and 100 test ants were used. The total number of ants has always
been 600, that is, with 50 test ants for the best of their solutions, 550 ants passed for
further optimization. Thus, the total number of ants in all cases is 600, which allows us
to objectively compare the results, and the use of the multiple start technique does not
lead to an increase in the resource intensity of the algorithm.

The results in Table 3 show that 10 ants are not enough to eliminate the probability,
but already at 30 ants there is a more optimal solution that improves with an increase in
the number of ants used for multiple start. Despite the smaller number of ants par-
ticipating in the main optimization, the algorithm with the use of multiple start all finds
a more optimal solution.

The results in Table 4 show that for 300 ants, the effectiveness of the multiple start
technique is not so high, since the number of ants for the main optimization is sig-
nificantly reduced. In the case of 100 test ants, a less optimal solution was obtained.
However, it should be noted that multiple experiments show that in case of using
multiple starts with 30 or more test ants, the algorithm shows more stable results,
“outliers” disappear - a much less optimal solution caused by a bad route of the first
group of ants.

Table 3. The effect of the number of test ants with multiple start (600 ants)

Ants 0 10 30 50 100

Cost 2955 3494 3401 3411 3480
Reliability 0.9845 9824 0.9862 0.9872 0.9874
Succ. ratio 0.9998 0.9996 0.9993 0.9991 0.9996

Table 4. The effect of the number of test ants with multiple start (300 ants)

Ants 0 10 30 50 100

Cost 3403 3356 3266 3247 3409
Reliability 0.9809 9776 0.9804 0.9826 0.9786
Succ. ratio 0.9995 0.9999 0.9992 0.9992 0.9981

Table 2. The effect of the number of ants on optimization results for upstream design

Ants 50 100 200 300 600

Reliability 0.9912 0.9934 0.9941 0.9952 0.9954
Resource intensity 4408 4362 4698 4585 4798
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The results in Table 5 show that for the upstream design, the multiple start tech-
nique is effective. It is noteworthy that in the case of 10 and 30 test ants the same
solution was found.

Many further experiments have shown a general trend - the use of the multiple-start
technique makes the solution of the ant algorithm much more stable. If in the classical
implementation there are often “outliers” - solutions that are far from optimal, then
when applying the multiple start technique with a sufficient number of test ants, the
system always gives a suboptimal solution.

9 Conclusion

The simulation results in the proposed software environment show the applicability of
ant algorithms to the problem of designing the optimal composition of a multiversion
software for both top-down and bottom-up design. The proposed modifications of the
ant algorithm have a good performance, since they allow an acceptable solution to be
obtained in 100–600 iterations, which is significantly faster than comparing 968 m (in
our case, m = 10) combinations for the classical search for an optimal solution using
the search method. The results show the effectiveness of the proposed method of
multiple starts. This technique allows getting rid of the main drawback of ant algo-
rithms - a strong dependence on the trajectory of the first group of ants, which is almost
random, since the pheromone values at the beginning are the same, and the weights of
the arcs have relatively close values. The use of the technique of multiple starts makes
the ant algorithms more “stable”, eliminating the emergence of solutions that are far
from optimal, while almost without increasing the complexity of the algorithm
calculation.
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Abstract. The investigate of the cell image data are able to obtain the corre-
lation between many diseases and abnormal cell behavior by tracking their
trajectories. In this paper, a novel Ant Colony Algorithm for cell tracking based
on Gaussian cloud model is proposed. In order to speed up the search and
improve the accuracy, pheromone prediction strategy based on Gaussian cloud
model is utilized. Experiment results show the effectiveness of our approach and
it is competitive with some of the existing methods presented in recent literature.

Keywords: Ant Colony Optimization � Cell tracking � Gaussian cloud model

1 Introduction

In recent years, research on cell tracking has become a hot topic and it has been widely
applied in cancer metastasis, developmental biology, immunology response, etc.
Manual analysis is a simple and straightforward method to track moving cells. How-
ever, with the increasing of cell datasets, manual work is becoming heavy workload
and inefficiency. Automated track processing can extract a richness of information far
beyond what a manual work can observe. So, automated cell tracking method has
attracted extensive research attentions.

The tracking of cells in microscopic image sequence is very challenging, such as
poor signal-to-noise ratios images, cell deformations, cell’s diversity of behaviors. To
overcome these difficulties aforementioned, plenty of work has been carried out, which
can be generally divided into three categories, such as detection-based association
methods [1], model-based evolution methods [2] and stochastic filtering methods [3, 4].
The detection-based association methods involve two steps. At first, cells in each frame
will be segmented, and then associate the segmented objects in association steps.
Finally, lineages of cells are established in adjacent frames. These algorithms will not
work well when segmentation is less accurate. Model-based evolution methods detect
and track the cells simultaneously. The key idea of stochastic filtering methods is to
establish a model for each cell to predict the next status. In general, this type of
methods works well when the objects can be modeled in a Bayesian framework.

ACO [5] is a swarm intelligence-based method inspired by the behaviors of ants’
foraging food. Under the guidance of pheromones, ants are more likely to choose
shorter paths between the nest and food, which further leads to different amounts of
pheromones in different paths. This algorithm has the characteristics of parallel
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computing and heuristic search. Now based on the great development, ACO have been
used by a number of investigators as tools for studying image processing problems [6],
traveling salesman problems (TSP) [7] and vehicle routing problems [8, 9].

In the ant colony algorithm for cell tracking, searching for interest cells is looked
upon as an ant colony foraging process. However, similar with other nature-inspired
algorithms, ACO also has its own shortcomings. The major weakness is that it searches
speed slowly at the initial step and takes more time to cluster around their favored
regions. In order to fill up with the research gap, pheromone prediction strategy based
on Gaussian cloud model is utilized to reduce the processing time of ACO.

The remainder of this paper is structured as follows. In Sect. 2, the cell tracking
method is described in details. Section 3 presents the experimental results of cell
tracking. Finally, the fourth section includes the concluding remarks.

2 The Algorithm

In this paper, we present a novel Ant Colony Algorithm for cell tracking based on
Gaussian cloud model to reduce the computation time and improve the accuracy

2.1 Gaussian Cloud Model

Cloud model is proposed based on the traditional fuzzy mathematics and probability
statistics theory, which can converse model between qualitative concept and quanti-
tative values [10]. Because two-dimensional cloud model can represent a large number
of uncertainties phenomenon. So it has been widely used. In two dimensional cloud
model theory, a qualitative concept is characterized by three numerical characteristics
namely, expectation Ex1;Ex2ð Þ, standard entropy En1;En2ð Þ and hyper standard
entropy He1;He2ð Þ. Ex1;Ex2ð Þ represents expectation of cloud droplets distribution in
the domain, En1;En2ð Þ represents uncertainty of qualitative concept, and He1;He2ð Þ is
Uncertainty Measures of the entropy. Given the parameters Ex1;Ex2 ;En1;En2 ;ð
He1;He2Þ, the Gaussian cloud model can be generated. The digital characteristics of the
cloud are shown in Fig. 1.
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Fig. 1. The schematic diagram of two-dimension cloud model
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2.2 Algorithm Description

2.2.1 Initialization of the Algorithm
The initialization step is performed at the beginning. A number of ants are randomly
assigned on image potential region and assigning the initial pheromone values is
performed.

In our algorithm, a local pheromone field corresponds to a potential cell. In general
way, in terms of the resulting pheromone field, the more pheromone the pixel, the
greater the probability of the existence of cells. To help the ACO work faster in finding
cells, the spatiotemporal information is utilized to generate predicted pheromone field.
Since the cloud model has the characteristics of randomness and uncertain concepts, and
that the bell shape of clouds, is most useful in representing the shape of pheromone field.

The two-dimensional cloud model integrates the information of pheromone quantity
and pixel spatial position perfectly, which not only shows the uncertainty of pheromone
quantity, but also the uncertainty of pixel spatial position. So, we use the Gaussian cloud
distribution to predictive the pheromone field evolution model of the cell.

Position values of pheromone field mapping to Cells are estimated at every time
step. Then, predicting the current pheromone field position of each cell by using the
previous frame estimated values. Suppose the position of pheromone field sik�1 cor-
responding to ant colony i is ðExik�1;Eyik�1Þ. The pheromone on every pixel corre-
sponds to a cloud droplet. Then, Gaussian cloud model with numerical characteristics
(ðExi;Eyi;Eni1;Eni2;Hei1;Hei2Þ is generated for the predicted pheromone field sikjk�1 of

headings should be numbered. Lower level headings remain unnumbered; they are
formatted as run-in headings.

sikjk�1;j � cloud dropðxj; yj; ljÞ ðj ¼ 1; 2; . . .;DÞ; ð1Þ

lij ¼ e
�ðxj�Ex

i
k
Þ2

2ðEni
1
Þ2 �

ðyj�Eyik Þ
2

2ðEni
2
Þ2 ; ð2Þ

where ðExik;EyikÞ is expectation of distribution of cloud drops i in the domain, corre-
sponding to the center of pheromone field. We set ðExik;EyikÞ ¼ FðExik�1;Eyik�1ÞT , F is
the state transition matrix. ðxj; yjÞ represents the 2-D position of cloud drops (pixel), lij
is the membership degree of j-th cloud drops in cloud model i, which represents the
amount of pheromone. D is the number of cloud drops. Eni1;En

i
2

� �
and Hei1;He

i
2

� �
is

standard entropy and Uncertainty Measures of the entropy, respectively.

2.2.2 Movement of the Ants
Ants operate is the current cell image. During search process, an ant chooses which cell
to move to according to heuristics and the pheromone intensity of the four surrounding
pixels. Assume ant at the current position of pixel i, it selects the next pixel using the
following probabilistic formula:
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In the equation, pai!j is the probability with which ant a chooses to move from the
pixel i to the pixel j at the t-th iteration. H ið Þ is the set of all available neighbors of
pixel, sj is equal to the amount of pheromone on pixel j at the t-th iteration, and gj is
heuristic value representing the degree of similarity between the current pixel and the
target pixel. Heuristic information gj is estimated based on gradient information of
image. a and b are the parameters to adjust the effects of the pheromone value and
heuristic value, respectively. a determines the relatively importance of the track,
reflecting the effect of accumulated information of the ant in the course of movement. b
weighs the comparative importance of heuristic information.

2.2.3 Pheromone Updating
Pheromone record accumulates historical experience and helps the search more
directed. Under the guidance of pheromone, ants search in the neighborhood of pixels.
In this work, we considered two kinds of pheromone, diffusive pheromone and
accumulative pheromone. Diffusive pheromone is the propagated information from the
different channels of the neighbor pixels. Accumulative pheromone is the accumulative
information in each iteration. After all ants have moved once, the pheromone level of
each pixel is updated according to the following formula:

sj tð Þ  ð1� qÞsj t � 1ð Þþ
X

a

Duaj t � 1ð Þþ gj t � 1ð Þ; ð4Þ

where q 0\q\1ð Þ is the coefficient representing pheromone evaporation.P

a
Duaj t � 1ð Þ represents accumulative pheromone, Duaj t � 1ð Þ is the amount of pher-

omone laid by ant a on pixel j. Term gj t � 1ð Þ models all diffusion input to pixel.
Once the searching behavior of each ant is finished, the resulting pheromone field is

build. Then, the multimodality of pheromone field is utilized to extract cell state [11].

2.2.4 Algorithm Structure
In this section, to visualize our proposed algorithm in a full view, we represent the
flowchart of the proposed algorithm. The algorithm contains three parts: Initialization,
Movement of the ants and Pheromone Update, shown in Fig. 2.
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3 Experiments

In this section, we will discuss the implementation process in detail to verify the
validity of our proposed method. All experiments were performed in MATLAB
(R2016a) on a 1.7 GHz processor computer with 4G random access memory.

We defined three metrics to measure the performance of the tracking framework.
The label switching rate (LSR) is the number of label switching events normalized over
total number of ground truth tracks. The lost tracks ratio (LTR) is the number of tracks
lost over total number of ground truth tracks. The false tracks ratio (LSR) is the number
of false objects that are tracked over total number of ground truth tracks [12]. It is noted
that cells partially entering and leaving the image are not considered when we compute
the above measures.

To intuitively show how our method able to track the cells, the trajectories of on the
cells in 2D space is shown in Fig. 3. Figure 4 presents the position estimates of each
cell in each frame in x and y-directions. From the result we can obtain the exact
locations of cells in each frame and the knowledge of the life cycle of each cell. we can
see that the proposed method worked well when the cell mitosis, changing shape,
cluster together and cell’s diversity of behaviors happen in poor image sequences.

Figure 5 shows the velocity results of each cell in each frame in x and y-directions.
It can be seen that cell 1 undergoes fast motion, and cell 5 also moves rapidly both in x
and y directions, while the velocities of other cells are very small such as cell 9.
Although the motion of each cell changes drastically, our algorithm can still accurately
track all cells.

To illustrate the effectiveness of the proposed approach, we compare our algorithm
with other techniques, such as the multi-Bernoulli filter [3] and the particle filter(PF)
[13]. We record all LSR, LTR and FTR in each frame over 100 Monte-Carlo simu-
lations, and their averaged values are listed in Table 1. From the result we can see that
the averaged LSR, LTR and FTR are only 6.44%, 7.89% and 1.37%, respectively,
using our algorithm. The comparison results show that our algorithm performs better
than other methods when cells are mitosis, changing shape, cluster together and cell’s
diversity of behaviors happen.

Initial pheromone 
field basedon 

Guassian cloud 
model

Current ant 
colony state

Pheromone
field

Cell state 
estimation

Image input Movement of the ants

1kτ −

Fig. 2. The main framework of our proposed method
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Frame 1                     frame 5                 frame 6               frame 9

frame 17       frame 18

(a)The distribution of ant colony
Frame 1                     frame 5                 frame 6            frame 9

frame 17 frame 18

(b) Tracking results of original image sequences
Frame 1                      frame 5                      frame 6                    frame 9

frame 17       frame 18

(c) The resulting ant pheromone field

Fig. 3. Tracking results with our proposed mode (q ¼ 0:3; a ¼ 0:1; b ¼ 0:5)
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4 Conclusions

This work focuses on the application of Ant Colony Optimization algorithms combined
with Gaussian clod model to a problem of cell tracking. Promising results and analysis
are obtained from experiment, in the sense that our proposed algorithm performs better
than other compared approaches.
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Fig. 4. Position estimate of each cell in x and y directions
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Fig. 5. Instant velocity estimate of each cell in x and y directions

Table 1. Comparison results for tracking performance of various methods

Method LSR (%) LTR (%) FTR (%)

PF [11] 22.3 20.33 18.56
Multi-Bernoulli filter [3] 11.89 14.56 15.78
Our method 6.44 7.89 1.37
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Abstract. Graph coloring problem (GCP) is a classical combinatorial
optimization problem and has many applications in the industry. Many
algorithms have been proposed for solving GCP. However, insufficient
efficiency and unreliable stability still limit their performance. Aiming
to overcome these shortcomings, a physarum-based ant colony optimiza-
tion for solving GCP is proposed in this paper. The proposed algorithm
takes advantage of the positive feedback mechanism of the physarum
mathematical model to optimize the pheromone matrix updating in the
ant colony optimization. Some experiments are implemented to estimate
the efficiency and stability of the proposed algorithm compared with typ-
ical ant colony optimization and some state-of-art algorithms. According
to these results, in terms of the efficiency, stability and computational
cost, we can daringly infer that the improved ant colony optimization
with the physarum model performs better than the aforementioned for
graph coloring. In particular, it is recommended that the model is of
rationality and the proposed algorithm is of validity, which will foster a
science of color number and computational cost in GCP.

Keywords: Physarum-based ant colony optimization ·
Graph coloring problem · Physarum mathematical model ·
Ant colony algorithm

1 Introduction

The graph coloring problem (GCP) is one of the most studied combinatorial
optimization problems in the graph theory [1]. The main purpose of this kind of
problems is to find a coloring of vertices with the minimum number of colors such
that any two adjacent vertices have different colors [2]. It has a wide spread of
real-world applications in the timetabling, resource assignment, network design,
crew assignment and register allocation [3].

Since it has been proved that the graph coloring problem belongs to a typical
NP-hard problem in which the computational cost to obtain the optimal solution
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increases exponentially as the problem size increases as possible, and the research
for the problem mainly focuses on the intelligent algorithm [4]. But there is no
exact polynomial algorithm for NP-hard problems, many scholars have proposed
various methods for solving approximate solutions from the perspective of mod-
ern bionic algorithms, such as DNA algorithm [5], ant colony algorithm [6,7],
and particle swarm optimization [8]. Among them, the ant colony algorithm is
widely used and has achieved ideal results in solving the graph coloring problem
due to its pheromone update mechanism. However, some shortcomings, such as
the insufficient efficiency and unreliable stability still limit the performance of
ant colony-based algorithms [9,10].

Physarum, which is a simple multinucleated and unicellular slime mold,
shows an intelligence in the network designing due to its internal positive feed-
back mechanism [11]. Furthermore, inspired by the intelligence of physarum,
a physarum mathematical model (hereinafter referred to as PMM strategy) is
proposed by Tero [12]. Inspired by the positive feedback mechanism of PMM,
a physarum pheromone matrix update strategy (hereinafter referred to as PM
strategy) is proposed in this paper to optimize the pheromone matrix of ant
colony algorithm. Based on PM, the physarum-based ant colony optimization
for GCP is proposed to overcome the insufficient efficiency, unreliable stability
and redundant computational cost to some extend. And a series of represented
experiments are implemented to estimate the performance of PM-ACO.

The remaining parts of this paper are organized as follows: Sect. 2 describes
the graph coloring problem and introduces the basic ant colony algorithm about
how to solve GCP. Section 3 proposes the PM and a physarum-based ant colony
algorithm (PM-ACO) for GCP. Section 4 reveals that the basic ACO [13], some
advanced algorithms in [14] with the benchmark datasets on website1 are used
to estimate the efficiency and stability of PM-ACO. Finally, Sect. 5 concludes
this paper.

2 Related Works

According to the aforementioned works, focusing on many real-world applica-
tions, currently, the graph coloring problem is divided into three categories:
vertex coloring, edge coloring and graph full coloring [1]. With certain transfor-
mation, the edge coloring and graph full coloring can be equivalent to the vertex
coloring [2]. Therefore, this paper mainly focuses on the vertex coloring.

The graph coloring problem (GCP) can be defined as follows: let G = (V,E)
be a graph, where V is a set of vertices and E is a set of edges. The graph coloring
problem is to divide V into K color groups. Each group forms an independent
set, that is, there are no adjacent vertices. Our goal is to find the K. K =
min{k1, k2 . . . kn}, where k1, k2 . . . kn are obtained in each iteration.

Many algorithms have been proposed to solve GCP, however, ant colony
optimization is someone to do for it, which has strong robustness and is of ability

1 https://mat.tepper.cmu.edu/COLOR/instances.html.

https://mat.tepper.cmu.edu/COLOR/instances.html
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to search a better resolution. On the contrast, it depends on parameters and
computational cost greatly. Thus, insufficient efficiency and unreliable stability
limit its performance. As a result, it is essential for ACO to improve and modify
its core to overcome the dilemma.

In the face of these intractable problems, one of the most significant explana-
tions for the performance directed at algorithm cannot be nothing but the color
number K which negatively correlated. Thus the optimized version is intended
to get the minimum K value. At the same time, the computational cost is the
other important evaluation indicator.

In mathematics, ant colony optimization for graph coloring problem is defined
as follows: in a graph G, a set of vertices V is denoted as v1, v2, . . . , vn. C =
{c1, c2, . . . , cn} is a set of colors and the maximum vertex degree is Max degree.
When solving GCP based on ant colony optimization, m ants are used to color
the vertices in graph.

A(n × n) represents the adjacency matrix of graph G(V,E), then:

A(n × n) =

{
1, a vertex vi is connected with vj

0, otherwise
(1)

τ(i × j) denotes the pheromone matrix, τ(i, j) is the current pheromone
between vertex vi and vj . And each edge follows the pheromone volatilization
rule:

τij(i, j) = (1 − ρ)τij(i, j) + Δτ(i, j) (2)

where ρ indicates the pheromone volatility, Δτ(i, j) represents the pheromone
left by an ant on a path (i, j), which is defined by Eq. (3).

Δτ(i, j) = F/M (3)

F is the pheromone intensity and M indicates the number of nodes colored.
ηij is the heuristic information defined in Eq. (4).

ηij = 1/M (4)

pij represents the transition probability of an ant while choosing the next
vertex, then colors this node randomly based on Eq. (5).

pij =
τα
ijη

β
ij

Στα
ijη

β
ij

(5)

And, inspired by the intelligence of the physarum, it is a combination about
physarum and ACO, which is proposed to solve GCP.

3 Physarum-Based Ant Colony Optimization

In this subsection, Sect. 3.1 first introduces the physarum positive feedback
mechanism and corresponding mathematical model. Section 3.2 proposes the
basic core of physarum-based ant colony optimization and describes the details
of PM-ACO.
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3.1 The Physarum Mathematical Model

As mentioned above, the physarum positive feedback mechanism is inspired
by the physarum, a simple multinucleated and unicellular slime mold. In the
labyrinth test, the physarum protoplast pipeline would cover the entire maze
first. Then the dead end pipeline would disappear, and the longer pipeline would
disappear. Finally, the protoplasmic pipeline would converge to the shortest path
[15]. Further research by Tero et al. [16] has found that during the convergence
of protoplasmic pipelines, the radius of the protoplast pipeline and the flow in
the pipeline have shown a positive feedback relationship, that is, the higher the
flowing flux in a tube is, the thicker the tube becomes, vice versa.

On this basis, Tero et al. [12] have used the Poiseuille’s equation to character-
ize the relationship between the pipe radius and flow. Based on the Kirchhoff’s
law, a positive feedback system is established to simulate the positive feedback
mechanism (the physarum mathematical model PMM) [17].

The basic PMM model is used to find the shortest path between two points
[18]. It is assumed that the edge in network is a pipe with water flow, Nin is
the water inlet, and Nout is the water outlet. The conductivity D of the pipe
connecting the vertex i and j, is used to reflect the radius of the pipe. The
relationship between flux Q and continuity D is characterized by the Poiseuille
equation as shown in Eq. (6), where Pi presents the pressure of vertex i and Lij

denotes the length of a pipe (i, j).

Qij =
Dij

Lij
|Pi − Pj | (6)

According to the Kirchhoff’s law as shown in Eq. (7), the pressures and fluxes
can be obtained at each time step.

Pi =
∑

i

Qij =

⎧⎪⎨
⎪⎩

I0, if vi is an inlet
−I0, if vi is an outlet
0, otherwise

(7)

Dt+1
ij = f

(|Qt
ij |

) − rDt
ij (8)

The positive feedback relationship is characterized by Eq. (8). In time step
t, the flux Q feeds back to the conductivity Dt+1 based on Eq. (8). And then
the conductivity Dt+1 feeds back to Qt+1 again. In the wake of such feedback
process, the network finally converges to a stable state.

More specifically, f
(|Qt

ij |
)

has two forms, as shown in Eqs. (9) and (10) [19].
Equation (9) has a good effect on solving the shortest path. And Eq. (10) is better
for network design implemented in our scheme.

f (Q) = Qu (9)

f (Q) =
(1 + a) Qu

1 + aQu
(10)
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3.2 The Physarum-Based Ant Colony Optimization

In PM-ACO, assuming that flows in the physarum network is pheromone. The
physarum pheromone is considered in the renewal process of pheromone matrix
in ACO. This update strategy for physarum pheromone matrix is denoted as
PM strategy.

In PM-ACO, the positive feedback mechanism is defined as Eq. (11). Where a
pipe flux Qij is replaced by the average flux Qij as shown in Eq. (12). M denotes
the number of edges. In time step t, both ends of each edge in graph are regarded
as the inlet and outlet respectively. The pressure of each vertex and flux of each
edge can be obtained by Eqs. (6) and (7). And the initial flux is defined as I0,
which means 2×F

n×(n−1) . The average flux Qij is measured by Eq. (12). Then the

flux Qt
ij feeds back to the conductivity Dt+1

ij based on Eq. (11).

d

dt
Dij =

|Qij |
1 + |Qij | − Dij (11)

Qij =
1
M

M∑
m=1

|Q(m)
ij | (12)

After that, the pheromone obtained by PM strategy is used to update the
pheromone matrix in ACO as shown in Eq. (13). Where ε is the influence factor
of the physarum pheromone on total pheromone. And the tempsteps represents
the number of steps affected by PM strategy during the algorithm operation.
According to the mathematical analysis of PM model in [20], the evolution rate
of PM model is relatively fast, and the evolution ends between 100 and 300
iterations. Therefore, it is appropriate to take tempstep ∈ [100, 300].

Δτij (t) = ρ

[
F

M
+ ε

Qij (t) × M

F

]
(13)

ε = 1 − 1

1 + λ
temsteps

2 −(t+1)
(14)

Based on PM strategy, the physarum-based ant colony optimization is
designed for the graph coloring in this paper, described as Algorithm1.

4 Experiments

For the purpose of the validity of assessing the efficiency and stability of PM-
ACO based on the benchmark datasets (See footnote 1), especially color number
and computational cost, three representative experiments have been schemed for
aforementioned insufficient deficiencies. In Sect. 4.2, the typical ACO [13], Exh
[21] and AGA [21] are compared with PM-ACO in order to validate the efficiency
of PM-ACO based on four cross-sectional datasets (queen16 16, queen8 12,
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Algorithm 1: The Physarum-based Ant Colony Optimization
Input: The Graph(node : n, edge)
Output: Number of colors : K, Algorithm runtime
Initialization: flux Q, continuity D, ants m, proportion factor α, β, λ,
pheromone volatility ρ, pheromone matrix τij , visited color set,
unvisited color set
for iteration = 1 : N do

for point = 2 : n do
for ant = 1 : m do

Selection probability pij is calculated for point based on Eq. (5);
One point is selected based on the roulette mechanism;
Update corresponding parameters: I0, Q, D, P , Δτ(i, j);
Colour the current point:
if collision then

colour the point with random color in visited color set
else

colour the point with random color in unvisited color set
end

end
update the local pheromone τ(i, j)

end
update the global pheromone τ(i, j)

end

queen10 10 and queen12 12). In Sect. 4.3, with the purpose of verifying the sta-
bility, typical ACO, PM-ACO and some advanced algorithms MCOACL, ABAC,
BEECOL in [14] have been tested on twenty benchmark datasets to move down-
ward a deep step. Section 4.4 further discusses the computational cost of PM-
ACO.

4.1 Datasets

The experimental data used in this paper, is derived from the graph coloring
international standard database, and details are described in website (See foot-
note 1).

4.2 Efficiency

With comparison about efficiency, typical algorithms ACO [13], Exh [21] and
AGA [21] are compared with PM-ACO on four representative datasets. The
experimental results are shown in Table 1. According to our results, PM-ACO is
superior to other algorithms. As for the dataset queen8 12, PM-ACO has found
the best K. And pointing to the dense graph (i.e., queen12 12 and queen16 16),
which is quite difficult to color nodes, PM-ACO has also done great performance.
Distinctly, it shows that PM-ACO presents excellent performance.
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Table 1. Comparison among PM-ACO, ACO, Exh and AGA

Graph Best K PM-ACO ACO Exh AGA

queen16 16 18 18 20 25 25

queen8 12 12 12 14 16 16

queen10 10 11 12 13 18 18

queen12 12 13 14 15 22 22

4.3 Stability

To further verify the efficiency and the stability of PM-ACO, sort of experiments
have been implemented around these two elements. The advanced algorithms
MCOACL, ABAC, BEECOL in [14] and PM-ACO have been tested upon twenty
benchmark datasets as shown in Table 2. According to the experimental results,
PM-ACO reveals a better performance even if compared with the advanced
algorithms. For the datasets David, Huck, myciel3, myciel4, myciel5, myciel6,
myciel3 and queen5 5, PM-ACO and contrastive algorithms have found the best
K. For the rest datasets, the color number obtained by PM-ACO is much closer
to the best K compared to the contrastive algorithms. It can be seen that PM-
ACO can stably find a better color number for various kinds of datasets. Con-
sequently, PM-ACO holds the excellent efficiency and stability to some extend
for solving GCP.

Fig. 1. Result analysis of color number and convergence
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Table 2. Contrastive performances

Graph Best PM- MCOA AB BEE ACO Graph Best PM- MCOA AB BEE ACO

K ACO COL AC COL K ACO COL AC COL

David 11 11 11 11 11 11 queen8 12 12 12 13 12 12 14

Huck 11 11 11 11 11 11 queen8 8 9 10 10 9 10 10

Jean 10 11 11 11 11 11 queen9 9 10 11 11 10 11 12

myciel3 4 4 4 4 4 4 queen10 10 / 12 12 11 12 13

myciel4 5 5 5 5 5 5 queen11 11 11 13 14 13 13 14

myciel5 6 6 6 6 6 6 queen12 12 / 14 15 14 14 15

myciel6 7 7 7 7 7 7 queen13 13 13 15 16 15 15 16

queen5 5 5 5 5 5 5 5 queen14 14 / 17 17 16 16 18

queen6 6 7 7 8 7 8 8 queen15 15 / 18 18 17 18 19

queen7 7 7 8 7 7 8 9 queen16 16 / 18 19 18 19 20

4.4 Computational Cost

This section implements a series of deeper emulational experiments involved com-
putational cost to test the speed of PM-ACO. Basic ACO [13] and PM-ACO are
used to test 20 times upon the queen series datasets. Then computational cost
of each generation can be obtained to evaluate the speed of these algorithms.
Taking the experimental results into account, visibly, it is outstanding that PM-
ACO has acquired preferable color number than basic ACO as shown in Fig. 1.
As well as the computational cost, PM-ACO has superior performance compared
to basic ACO based on Table 3. For the small-scale datasets, such as queen5 5
and queen6 6, the computational cost of ACO is close to PM-ACO. However,
processing from the dataset queen10 10, with the size of the dataset increases,
the gap between the computational cost of ACO and PM-ACO exposes wider,
and PM-ACO reveals much more sufficient capacity than ACO. Especially for
the large-scale datasets queen15 15 and queen16 16, PM-ACO requires less com-
putational cost than ACO.

Table 3. Computational cost of ACO and PM-ACO

Graph Best K PM-ACO ACO Graph Best K PM-ACO ACO

K Time (s) K Time (s) K Time (s) K Time (s)

queen5 5 5 5 0.02 5 0.03 queen11 11 11 13 0.50 14 2.42

queen6 6 7 7 0.04 8 0.08 queen12 12 / 14 0.77 15 3.86

queen7 7 7 8 0.07 9 0.20 queen13 13 13 15 1.09 16 6.38

queen8 8 9 10 0.12 10 0.40 queen14 14 / 17 1.56 18 9.61

queen9 9 10 11 0.21 12 0.75 queen15 15 / 18 2.23 19 14.45

queen10 10 / 12 0.32 13 1.46 queen16 16 / 18 3.09 20 20.62
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5 Conclusion

GCP is a classical NP-hard problem, and many algorithms have been proposed
for solving it. However, insufficient efficiency and unreliable stability still limit
their performance. Aiming to overcome these shortcomings, a Physarum-based
Ant Colony Optimization for solving GCP is proposed in this paper. Based
on PM, PM-ACO takes advantage of the positive feedback mechanism of the
physarum mathematical model to optimize the pheromone matrix updating in
ant colony optimization. Three representative experiments with sort of famous
benchmark datasets have been implemented to prove the assumption that the
improved ACO with PM strategy holds better performance in terms of the
efficiency, stability and computational cost. Deriving from experimental con-
sequences, we can infer a brand new potency in GCP that PM-ACO can seek
the best K or suboptimal color number in a great bucks of types of graph with
the valuable computational cost around this area.
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Abstract. This paper investigates a multi-stage hybrid flow shop scheduling
problem in a real-world printed circuit board (PCB) assembly shop. Some
distinct characteristics such as calendar constraints, sequence-dependent setup
times, unrelated parallel machines and stage skipping are taken into account.
Besides, lot-sizing is introduced to split an order of PCBs into a number of
smaller sub-lots to improve the utilization of the assembly lines. This article
develops an effective hierarchical approach to reduce the complexity of such a
complicated PCB scheduling problem by decomposing it into two highly cou-
pled sub-problems of job sequencing and batch scheduling with lot-sizing.
A two-stage ant colony algorithm with lot-sizing is proposed to evolve best
results for makespan criterion. Extensive computational experiments have been
conducted to compare the performance with two other algorithms. The results
demonstrate that the proposed two-stage ant colony algorithm with lot-sizing is
competitive in terms of computational result, computational time and stability.

Keywords: Hybrid flow shop � PCB assembly shop scheduling �
Ant colony algorithm � Lot sizing

1 Introduction

Printed circuit boards (PCBs) are used as components for facsimiles, personal com-
puters, printers, and other electrical/electronic devices. However, most of the PCB
manufacturers are facing the challenge to improve the production efficiency in order to
cope with the fierce competition.

According to the theory of operations scheduling, the PCB assembly process in the
factory can be regarded as a hybrid flow shop (HFS) scheduling problem. Different
from ordinary HFS scheduling problem, some characteristics emerged in PCB
assembly shop significantly substantiates the complexity of the HFS scheduling
problem. Two distinctive features are summarized as follows:

1. Lot sizing: Considering that the machine setup times are required between pro-
cessing of different PCBs, the orders are always split into a small number of sub-
lots. PCBs are produced in batches to enhance the utilization of the machines and
the assembly lines. Each batch consists of identical PCBs with the same due date.
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All batches have the same sequence of stations to visit, since the PCBs have the
same route. Each lot of a PCB type is processed till completion.

2. Calendar constraints: The calendar is a tool to set the work shifts of all the
machines. This work shift is also called a capacity which is a segment of continuous
available times of a machine. In the investigated PCB assembly shop, this means the
machines such as screen printers, refold machines, inspection equipment, and also
different types of placement machines are available only at working times in the
calendar.

Besides, the setup times for the jobs depend on the sequence of PCBs to be
processed. Also, the machines in each stage are unrelated, i.e., the processing times for
different machines to complete the same sub-lot are different. The stage skipping is also
allowed because not all jobs are required to go through all the stages.

These factors are generally considered separately as reported in the literature.
The PCB scheduling problem considered in this paper can be described against the
literature along the following directions: (1) PCB assembly shop scheduling;
(2) scheduling with lot-sizing; and (3) scheduling with limited machine availability.

Many researchers have developed different algorithms, either mathematical or
heuristic, to optimize different factors in PCB assembly. Ji et al. [1] formulated the
problem of allocating components to a PCB assembly line as a minimax-type integer
programming (IP) model. Alkaya and Duman [2] adopted metaheuristic approach to
optimize the chip shooter component placement machines by decomposing the prob-
lem into placement sequencing and feeder configuration. Tóth et al. [3] presented a
two-step optimisation method for the machine reconfiguration and workload balancing
in the case of multiple PCB batches of different sizes and PCB types.

The technique of lot-sizing has been widely used for scheduling in recent years.
Truscott [4] mentioned several potential benefits of lot streaming. Huang and Yu [5]
developed an improved ant colony optimization to resolve multi-objective job shop
scheduling problem with equal-size lot splitting. Wang et al. [6] studied integrated
batching and lot streaming problem with variable sub-lots, incompatible job families,
and sequence-dependent setup times, and developed heuristics for an efficient solution.
From the literature, we can see that most works only indicate the condition of the job
grouping or assumption that the job batches already exist. Very limited references are
available that addresses the creation of job batches.

The traditional scheduling problem assumes that the machines are continuously
available for processing throughout the planning horizon. However, in a real-life
industry, this availability may not be true due to machine breakdowns (stochastic) or
preventive maintenance or calendar capacity (deterministic). Allaoui and Artiba [7]
studied two-stage hybrid flow shop with availability constraints. Yaurima et al. [8]
proposed modified genetic algorithm for the hybrid flow shop with unrelated machines,
sequence-dependent setup times, availability constraints, and limited buffers. Gholami
et al. [9] incorporated simulation into genetic algorithm approach for a hybrid flow
shop scheduling problems with sequence-dependent setup times and machines with
random breakdowns. Seidgar et al. [10] investigated a two-stage assembly flow shop
problem which considers machines breakdown, and presented a genetic algorithm and
new self-adapted differential evolutionary algorithm. Han et al. [11] proposed an
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evolutionary multi-objective robust scheduling algorithm for blocking lot-streaming
flow shop scheduling problems with machine breakdowns.

Based on the above brief literature review, we find that few researchers discussed
the combination of these factors in one model, and there is a gap between theoretical
development and practical application for such a complicated PCB assembly
scheduling problem. Although a broad body of literature on PCB assembly shop
scheduling has been published, only few works have implemented on industrial
practice. Since the literatures lay particular stress on the model and algorithm, some
real-life restrictions are either simplified or ignored. This research is an attempt to
bridge this gap by proposing a comprehensive solution to this complicated scheduling
problem which can coordinate all the necessary characteristics.

The remainder of this paper is organized as follows. Section 2 addresses the
description of the investigated scheduling problem. Section 3 describes the basic ant
colony algorithm and summarized the process of formulation and the main character-
istics of the proposed algorithm. Section 4 reports the outcomes of the experimental
study. Finally, some concluding remarks are presented in Sect. 5.

2 Problem Statement

The detailed layout of the assembly shop in our collaborating company is depicted in
Fig. 1. All the PCBs go through 5 stages of manufacturing (assembly) process: surface
mounting, reflow soldering, automatic/manual insertion, wave soldering and inspection
by burn-in. The PCBs composed by small electronic elements might skip the insertion
stage.

Suppose there are n jobs and m stages in the PCB assembly shop where each job is
available at time zero and contains a lot of items of the same kind. Each stage can be
processed by several machines, which are capacitated. The capacity, which is limited,

Fig. 1. Layout of the PCB assembly shop.
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will be consumed in producing an item. The target is to minimize the makespan.
Assumptions and constraints for the scheduling problem are as follows:

1. All jobs are independent and available for processing at the initial time of
scheduling.

2. Each job contains identical items with the same ready time and due date and can be
separated into several sub-lots.

3. One machine can process only one job at a time and one job can be processed by
only one machine at any time.

4. All the items in a sub-lot should be processed on the same machine.
5. A new sub-lot can start only after the completion of the previous sub-lot produced

on the same machine, i.e., preemption is not allowed.
6. The machines in every stage are unrelated, i.e., the processing times for different

machines to complete the same sub-lot are different.
7. Not all jobs are required to go through all stages, e.g., some jobs might skip some

production stages.

3 Ant Colony Algorithm with Lot-Sizing

Due to the high complexity of the hybrid flow shop scheduling problem with lot sizing
and calendar constraints, the exact method cannot obtain a feasible solution in an
acceptable computational time. Although many heuristic algorithms based on dis-
patching rules have been employed with higher efficiency, the quality of the solution
often deteriorates as the problem size increases because of the existence of many local
optima. An intelligent algorithm has obvious advantages in solving complex produc-
tion scheduling problems due to its optimization goal of seeking satisfactory solutions,
easy integration of problem knowledge and expert experience, and procedure robust-
ness. As a promising swarm intelligence algorithm, the ant colony algorithm
(ACA) has been widely used to solve large-scale combinatorial optimization problems
since its first introduction by Dorigo [12], due to its positive feedback, concurrency,
robustness, global search, and independent of strict mathematical properties, etc. As an
algorithm aiming to search for an optimal path in a graph, ACA has been widely used
to solve the combinatorial problem, especially scheduling problem.

3.1 Two-Stage Structure and Algorithm Flow Chart

Considering the complexity of the investigated problem, we decompose it into two
highly coupled sub-problems, which are job sequencing and lot scheduling of a job.
This method is similar to that proposed in Arnaout et al. [13]. As described above,
ACA has been proved to be a prominent tool for scheduling problem. We adopt the
ACA to solve the sub-problems and propose a two-stage ant colony algorithm with lot-
sizing (TSACAWLS). The flow chart of proposed algorithm is shown in Fig. 2.

Figure 3 illustrates the structure of the proposed two-stage ant colony algorithm. As
shown in the figure, the investigated problem is divided into two highly coupled stages:
at stage 1, we determine the sequence of jobs. And at stage 2, we assign all the sub-lots
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to the machines after separating the production stages of each job into multiple sub-
lots. We manage each of these stages with an ant system scheme.

3.2 Job Sequencing

Stage 1 mainly deals with job sequencing problem to minimize the makespan of all
jobs. We express the output of first stage with a vector (S1) that contains n entries and
each entry representing a job. The sub-lots of jobs to machines are arranged according
to the sequence in the vector. We introduce sIi;j and gIi;j to express the pheromone trail
and the visibility of ant respectively. The possibility to select job j after i and the value
of gIi;j are calculated as follows:

Start

Search for a job for lot scheduling

Stop criteria 
satisfied?

Batching and select processing 
machine with lot-sizing rule

Stop criteria 
satisfied?

Search for the capacity sequence

Assign capacities for 
the sub-lot

End

Search for available 
capacities of the sub-lot

Calculate the route length 
(makespan)

Update 
pheromone

All jobs be 
counted?

Select a sub-lot for scheduling

All sub-lots be 
counted?

Local search
Local search

Update 
pheromone

No

No

Yes

Yes

No

Yes

No

Yes

Initialize job information

Fig. 2. Flow chart of two-stage ant colony algorithm with lot-sizing

Fig. 3. Structure of two-stage ant colony algorithm with lot-sizing
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PI
i;j ¼

sIi;j

� �a
� gIi;j
� �b

P
l�U sIi;l

� �a
� gIi;l
� �b

: ð1Þ

gIi;j ¼ 1=Seti;j: ð2Þ

Where Seti;j is the setup time between job i and j.
After all the ants complete their paths, we update the pheromone amounts in each

link locally by reducing the amount due to evaporation and globally by increasing the
amounts of pheromone in the routes constructed by the ant that produces the best
objective function (OFbest). This is estimated according to the following formulas:

sIi;j  1� qð ÞsIi;jþ qDsI;besti;j : ð3Þ

DsI;besti;j ¼ 1=OFbest

0
if arc i; jð Þ is used by best ant

otherwise

�
: ð4Þ

Where OFbest, representing the makespan of the best job sequence, is the objective
function with respect to the best vector S1

best. Objective function of a job sequence is
calculated through stage 2.

3.3 Batch Scheduling and Lot-Sizing

In order to calculate the objective function of a job sequence given by stage 1, we
schedule the sub-lots in stage 2 after separating the production stages of the job into
several sub-lots. Stage 2 can be separated into two highly coupled sub-problems: sub-
lots scheduling problem and lot-sizing problem. We schedule each stage of a job with
an AS scheme and express the output with a vector (S2) that contains m entries and
each entry representing a capacity. After that, a sub-lot will be arranged to the capacity
according to the sequence in the vector. As we had described previously, several
machines are capable of process a production stage Oi, j, it’s vital to choose a suitable
machine to process the job at the production stage. We assume the set of machines for
stage Oi, j to be Ei, j and entitle each machine in Ei, j with an objective value OV.
Machine with the largest OV are selected for the production stage.

OV ¼ N=
XN

c¼1
X

l2Li;j�1 alTc 8i 2 n; j 2 m: ð5Þ

al ¼ Qi=
Xl

k¼1 Qi;j�1;k 8i 2 n; j 2 m: ð6Þ

Tc ¼ Si;j cð Þ �Max Ci;j�1;k
� �

if Si;j cð Þ�Max Ci;j�1;k
� �

0 otherwise

�
8i 2 n; j 2 m; k 2 Li;j�1 ð7Þ

Where al is the weight of quantity to the objective, Tc is the weight of capacity c to
the objective, N is the available number of capacity whose start time is later than the

Ant Colony Algorithm Based Scheduling with Lot-Sizing for PCB 225



earliest end time of the previous stage and end time earlier than the due date, and Si;j cð Þ
is the start time of capacity c.

The pheromone trail sIIi;j

� �
is defined in this stage to indicate latest completion time

of the production stage. In addition to the pheromone, we introduce gIIi;j to express the
visibility of ant. The possibility to select capacity j after i and the value of gIIi;j is
calculated as follows:

PII
i;j ¼

sIIi;j

� �a
� gIIi;j

� �b

P
l�U sIIi;l

� �a
� gIIi;l

� �b
: ð8Þ

gIIi;j ¼ 1=Endj: ð9Þ

Where Endj is the end time of capacity j.
After all ants finish their paths, we will update the pheromone locally and globally

with the similar manner of AS scheme in stage1.

sIIi;j  1� qð ÞsIIi;jþ qDsII;besti;j : ð10Þ

DsII;besti;j ¼ 1=OVbest

0

�
if arc i; jð Þ is used by best ant;

otherwise:
ð11Þ

Where OVbest is the objective value of the best vector in stage2, representing the
minimum completion time of the stage. It can be calculated by the vector S2 combined
with the lot-sizing technique below.

In order to separate the stage into multiple sub-lots and calculate the completion
time of the production stage, we proposed a lot-sizing method. The detailed flow chart
of stage 2 with lot-sizing is shown in Fig. 4.

3.4 Local Search Strategy

It is known that ACA usually provides very competitive solutions when integrated with
a local search algorithm. Therefore, we include a local search algorithm in our
implementation of ACA. After the ant k finishes its route search process, we generate
neighbouring solutions for the ant in S1 and S2. If the local search generates a better
solution at that particular iteration, we use the local search solution at that iteration to
update the pheromone. The neighbouring solution for S1 is generated by rotating a
random entry in the vector to the first position while that for S2 by swapping two
randomly generated entries in the vector.
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4 Computational Results

To investigate the effectiveness of the proposed two-stage ant colony algorithm with
lot-sizing, algorithms are coded in Microsoft Visual Studio 2008 and experiments are
executed on Window 7 with a Core2 E8400 CPU and 2 GB RAM.

4.1 Parameters Setting

The factors considered in this experiment along with four different levels, respectively
are as follows: a: (1, 2, 3, 4), b: (2, 3, 4, 5) and q: (0.1, 0.2, 0.3, 0.4); where q is the
pheromone evaporation. To reduce the number of runs but reach sound conclusions,
uniform experiment are utilized, which has been shown to be an effective design.
Table 1 shows the final combination parameters of the factors. We denote the 16
groups of parameters in this table to be Com1, Com2,…, Com16 respectively. The
value DEV ¼ x�min

max�min is defined to weigh the results, where x is the current value, min is
the known optimal value and max is the known worst value. The results with lower
DEV are better. The results are shown in Fig. 5. It can be clearly seen the Com 11
makes the best performance. In order to get the most optimal result, the parameters in
Com 11 are adopted.
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End
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Fig. 4. Flow chart of batch scheduling and lot-sizing

Table 1. Design of uniform experiment

Com 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
b 2 4 3 5 5 3 4 2 3 5 2 4 4 2 5 3
q .3 .1 .2 .4 .2 .4 .3 .1 .1 .3 .4 .2 .4 .2 .1 .3
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4.2 Convergence Validation

As it is difficult to prove the convergence of the algorithm in theory, we validate the
convergence with real examples. We run the algorithm three times with the parameters
in Com11. The other parameters are set as follows: Ant = 5, Iteration = {3, 6, 9,…,
99}. The ACA in stage 1 and stage 2 followed the same parameters setting. Figure 6
shows the best results with respect to every iteration. It can be seen that the algorithm
converges to an optimal value when the iteration approaches 66.

4.3 Comparisons with Other Heuristics

As mentioned above, few works have dealt with hybrid flow shop scheduling problem
with lot sizing and calendar constraints. For lack of benchmark instances and com-
parison algorithms, we attempt to prove the priority of ACA and lot-sizing respectively.
We compare the TSACAWLS to two-stage Simulated Annealing with lot-sizing
(TSSAWLS) in order to validate the superiority of the ACA algorithm and make a
comparison with two-stage ant colony algorithm (TSACA) to verify the effectiveness
of the lot-sizing technique.

Two metrics are used to compare the three meta-heuristic algorithms; namely:
stability and speed to get a near-optimal solution. The stability of one algorithm can be
calculated by: d = avg − min. The second metric is obtained by the average of com-
putation time (CPU time) to get a near-optimal solution.
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Figure 7 shows the stability of the meta-heuristic algorithms. It can be seen that
TSACAWLS and TSACA outperforms TSSAWLS for all problem sizes and TSACA
performs better than TSACAWLS when the number of jobs excess 11. Figure 8 depicts
the average computational time of all algorithms. All algorithms require less time than
45000 ms which is acceptable in reality. TSACA and TSACAWLS require less time to
get a near-optimal solution than TSSAWLS, and TSACA consumes less time than
TSACAWLS. Though TSACA performs better than TSACAWLS in stability and
computational time, their differences are not significant.

To further verify that the lot-sizing can enhance the utilization and balance the load
of bottle machines, we calculate the utilization (η) of every machine and record the
results in Fig. 9. It is clear that the algorithm considering lot-sizing (TSSAWLS and
TSACAWLS) performs better in improving the utilization and balancing the load of
bottle machines.
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5 Conclusions

This study deals with a multi-stage PCB scheduling problem from a semiconductor
manufacturing company. The problem is characterized by a combination of multiple
features such as lot sizing, calendar constraints, sequence-dependent setup times,
unrelated parallel machines and stage skipping. A two-stage ant colony algorithm with
lot-sizing is proposed to minimize the makespan for this complicated PCB assembly
shop scheduling problem. The approach is compared to the two-stage simulated
annealing with lot-sizing to verify the superiority of its ACA algorithm, and to the two-
stage ant colony algorithm to validate the effectiveness of the lot-sizing technique. The
results show that TSACAWLS is more stable and faster to get a near-optimal solution
than TSSAWLS for all instances. Though TSACA performs better than TSACAWLS
in stability and computational time, their differences are not significant. Furthermore,
the numerical results show the lot-sizing technique can help enhance the utilization and
balance the load of bottle machines.

This paper proposes a two-stage ant colony algorithm combined with the lot-sizing
method and successfully solves the complicated PCB assembly shop scheduling
problem by decomposing them into two sub-problems. This research on this subject
makes an important contribution to the overall knowledge in the field of PCB assembly
shop scheduling, and the development of the multi-stage ACA approach also expands
the application scope of ant colony optimization in the complex production scheduling
field. Although the research has dealt with several academically challenging issues,
further work is still needed. The first extension is that the multiple objectives especially
related with the due date, such as total tardiness, needs to be considered. Furthermore,
due to the influence of dynamic interrupts in actual production process, real-time
scheduling or rescheduling based on the up-to-date shop floor information is one of our
research directions in future.
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Abstract. A variable-speed-based navigation and map building method of an
autonomous mobile robot is developed in this paper in cooperation with an ant
colony optimization algorithm (ACO). In real-world applications, an autono-
mous mobile robot is expected to operate at variable speed. It should slow down
in vicinity of obstacles, whereas moving at high speed in open areas. A LIDAR-
based local navigator algorithm integrated with a variable speed module is
implemented for local navigation and obstacle avoidance. A variable speed
navigation paradigm is developed in integration with the ACO algorithm to
dynamically adapt its speed to the environment scenarios. In addition to the
variable speed ACO based navigation, grid-based map representations are
imposed for real-time autonomous robot navigation. Simulation and comparison
studies demonstrate effectiveness of the proposed real-time variable-speed-based
ACO approach of an autonomous mobile robot.

Keywords: Variable speed navigation � Ant colony optimization (ACO) �
Map building � LIDAR-based local navigator

1 Introduction

Ant colony optimization algorithm (ACO) is a probabilistic technique for solving
computational problems to finding suitable routes through graphs, which has suc-
cessfully applications to robot navigation [1]. Real-time collision-free navigation and
map building of an autonomous mobile robot is one of the most crucial issues in
robotics. Populated with a variety of obstacles in an environment, mission of naviga-
tion and map building is involved in searching a suitable collision-free trajectory of an
autonomous robot to move from a starting point to a final target while the robot
constructs a map.

There have been many models proposed for autonomous robot navigation and
mapping such as learning-based method [2], fuzzy logic [3], neural networks [4–6],
tree-based model [7], brain storm optimization method [8, 9], bacterial foraging
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optimization algorithm [10], graph-based method [11], particle swarm optimization
method [10, 12], ant colony optimization [13, 14], genetic algorithms [15], etc.

Pfeiffer et al. developed a model that combines expert demonstrations, imitation
learning (IL) and deep reinforcement learning (RL) for robot navigation, in which a
deep reinforcement learning of the learned navigation policy is used in real-world
environments [2]. Kayacan et al. proposed a type-2 fuzzy logic model for autonomous
navigation of an agricultural robot that involves the control of dynamic subsystems [3].
Chen et al. [4] proposed a neural network based adaptive dynamic control to solve the
trajectory tracking issues, in which a leader–follower relation-invariable persistent
formation control is imposed, and the global leader navigates the mission trajectory.
Yang and Luo [5] developed a real-time autonomous robot coverage navigation model
with obstacle avoidance in a non-stationary environment through a bio-inspired neural
network method. It is computationally efficient [5]. Luo et al. extended the bio-inspired
neural network into multi-robot navigation [6]. Sanz et al. [7] proposed an expert-
guided kinodynamic (EGK) Rapidly-Exploring Random Trees (RRT) path planner.

Recently, plenty of evolutionary computation approaches have been explored to
resolve the robot motion planning and navigation issues. As an example, Tuba et al. [8]
applied brain storm optimization (BSO) method to the robot motion planning, from
which the improved BSO model is enforced to enhance the accuracy and validity of the
motion planning. BSO algorithm decrements computational time through local search
procedure, where each new candidate solution trends to the local best position [9]. Roy
et al. [10] used bacterial foraging optimization (BFO) algorithm to develop a robot path
planner model with obstacle avoidance. A graph-based method that is a sort of
enhanced Voronoi Diagram was utilized for robot motion planning in association with
Vector Field Histogram (VFH) algorithm based on the LIDAR sensor information to
locally guide the vehicle [11]. Particle swarm optimization method is applicable for the
robot motion planning issue [12]. Ant colony optimization (ACO) algorithms have
been studied to mimic the behavior of ants to provide heuristic solutions for opti-
mization problems [13, 14]. Ma et al. [13] presented a nature-inspired ant colony
optimization algorithm to search the optimal trajectory, in which the ACO model is
imposed to aggregate the collision risk, length, and energy consumption, into the
objective function as well as incorporate the steering window constraint [14].

Some researchers integrated two or three algorithms to performance of algorithms
for robot motion planning. For instance, Fu et al. [12] developed a hybrid method,
denoted as DEQPSO, which combines the differential evolution (DE) with quantum-
behaved particle swarm optimization (QPSO) for the unmanned aerial vehicle
(UAV) navigation, to further enhance the performance of both algorithms. Chen et al.
[15] developed a hybrid algorithm that incorporates genetic algorithms and ant colony
optimization. Luo and Yang proposed a biologically inspired neural network model for
motion planning that integrates a neural network model and a heuristic algorithm under
unknown environments [18, 21].

However, approaches aforementioned have not taken the robot speed into account
in the motion planning and mapping. In real-world applications, an autonomous mobile
robot is presumed to operate at variable speed. It should slow down in vicinity of
obstacles, whereas moving at high speed in free areas. In this paper, a variable speed
navigation and map building method of an autonomous mobile robot is developed in

Variable Speed Robot Navigation by an ACO Approach 233



cooperation with an ACO algorithm (ACO). A LIDAR-based local navigator algorithm
is implemented for local navigation and obstacle avoidance. Grid-based map repre-
sentations are imposed for real-time autonomous robot navigation [16].

2 ACO Algorithms for Robot Path Planning

Ants in terms of the ACO are intelligent agents in the robot navigation and mapping,
which walk from one waypoint to another navigated by pheromone trails through an a
priori available heuristic information. In this paper, ant colony optimization is applied
for the robot navigation and mapping. The agent (ant) is initially placed in a waypoint.
Ant pheromone strength, sij tð Þ, a numerical information, defined with each arc i; jð Þ is
updated in the ACO algorithm, in which t is the iteration counter. At each iteration
phase, a probabilistic action select rule is imposed to an agent, or, a mobile robot, k.
The probability of a robot k, currently at waypoint i, which traverses to waypoint j at
the t th iteration of the algorithm, is achieved as follows in Eq. (1).

pkij tð Þ ¼
½sij tð Þ�a� #ij½ �bP
l2@k

i
½sil tð Þ�a� #il½ �b if j 2 @k

i ð1Þ

where @k
i is the feasible adjacent waypoint of the robot k, the set of cities which the

robot k has not visited yet. Parameters a and b determine the relative influence of the
pheromone trail and the heuristic information. The #ij ¼ 1=dij is an a priori available
heuristic value, and dij is the distance between two waypoints. Parameter a represents
importance factor of the pheromone, which matches a classical stochastic greedy
algorithm. Parameter b is an importance factor of the heuristics function. If the larger
parameter b becomes, the more likely it is that the robot moves to the closest waypoint
driven by the heuristic function. If a parameter q is defined as the pheromone trail
evaporation, 0\q\1 to prevent the pheromone trails from accumulating unlimitedly;
it allows the ACO algorithm to neglect unreasonably bad decisions previously made.

At each iteration step, Dskij tð Þ; the amount of pheromone robot k places on the arcs it
has visited is dynamically updated by decreasing the pheromone strength on all arcs by

Procedure ACO algorithm for Robot Naviga on
Set parameters, initialize pheromone trails

while (termina on condi on not met) do
ConstructSolu ons
ApplyLocalSearch
UpdateTrails

end
end ACO algorithm for Robot Naviga on

Fig. 1. ACO algorithm for robot path planning
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a constant factor before enabling each robot to supplement pheromone on the arcs. The
pheromone strength sij is dynamically updated as Eq. (2).

sij tþ 1ð Þ ¼ 1� qð Þ � sij tð ÞþDsij
Dsij ¼

Pn
k¼1 Ds

k
ij

�
; 0\q\1 ð2Þ

The amount of pheromone Dskij tð Þ; is defined as three modes [13, 14]:

(1) Ant cycle system mode:

Dskij tð Þ ¼
Q

Lk tð Þ
0

if arc i; jð Þ is used by robot k
otherwise

�

(2) Ant quantity system mode:

Dskij tð Þ ¼
Q

dij tð Þ
0

�
if arc i; jð Þ is used by robot k

otherwise

(3) Ant density system mode:

Dskij tð Þ ¼
Q
0

�
if arc i; jð Þ is used by robot k

otherwise

Lk tð Þ is the length of the kth robot’s tour. dij tð Þ is the distance between waypoints i and
j. Here Q is constant representing the total amount of the pheromone. The ACO
algorithm for motion planning is summarized as Fig. 1 [13, 14].

3 Variable Speed Navigation and Map Building

Concurrent map building and navigation are the essence of successful robot navigation
under unknown environments. Map building is a fundamental task in order to achieve
high levels of autonomy and robustness in robot navigation that makes it possible for
autonomous robots to make decision in positioning with obstacle avoidance. Therefore,
in terms of robotics navigation, 2D grid-based map filled with equally-sized cells,
marked as either occupied or free, is built as a mobile robot walks in an unknown
environment [19].

In our navigation system, it is decomposed of two layers, one is an ACO global
path planner, and the other is a histogram-based local navigator. Efficiency and flex-
ibility motivate ACO to be adapted to motion planning and map building of an
autonomous robot. The local navigation aims to create velocity commands for the
autonomous mobile robot to move towards a target. The inclusion of a sequence of
markers in the motion planning, which decomposes the global route generated by the
ACO global planner into a sequence of segments, makes the model especially efficient
for the workspace densely populated by obstacles. A histogram-based Vector Field
Histogram (VFH) approach for robot navigation was developed by Ulrich and
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Borenstein [17]. VFH is utilized in this paper as our LIDAR-based local navigator. The
polar histogram of obstacles in workspace with VFH is shown in Fig. 2.

Variable speed robot navigation aims to move the robot at a variable speed. In our
navigation system, the histogram-based local navigator senses the obstacles through the
on-board 270º LIDAR with a radius of 2.5 shown in Fig. 3. In most circumstances, a
maneuverable autonomous mobile robot may be considered as a point robot in com-
parison with the size of the robot and its maneuvering possibilities to the size of the free
workspace. The robot moves in the open areas, at a fast speed in our model whereas it
moves slowly in the vicinity of obstacles. Once an obstacle area is sensed by the 270º
LIDAR such as a segment of red boundary of the obstacle, the robot will decrease its
speed in the vicinity of obstacles (see Fig. 3). The variable speed module has been
integrated into the VFH local navigation algorithm. While the robot approaches vicinity
of obstacles, the robot movement is represented by serried circles in Fig. 3. The robot
moving in the open areas are illustrated by sparse circles in Fig. 3.

Fig. 2. Polar histogram of obstacles in workspace with VFH method (redrawn from [17])

Fig. 3. Illustration of variable speed robot navigation (Color figure online)
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4 Simulation and Comparison Studies

Simulation and comparison studies are carried out to validate the effectiveness and
efficiency of proposed real-time variable-speed-based ACO autonomous robot navi-
gation and mapping, in this section.

4.1 Comparison of the Proposed Variable Speed Model with GA-ACO
Algorithm

The proposed variable-speed-based ACO algorithm associated with VFH local navi-
gation is used to compare with GA, ACO and GA-ACO models, respectively. Recall
that Chen et al. [15] proposed a hybrid model combining GA and ACO approaches to
resolve robot motion planning issue. However, their model has not carried out the local
navigation that is necessary for the autonomous robot navigation systems. A compar-
ison study is described in this section to evaluate the efficiency of the proposed model.
The proposed model compares with others in terms of the minimum trajectory length,
and number of turns [15].

The trajectories of robot motion planning are illustrated about the proposed model,
GA-ACO, ACO and GA, respectively, in Fig. 4. The workspace has a size of 20 � 20,

Fig. 4. Illustration of robot navigation with various models. (a) the proposed model; (b) GA-
ACO model; (c) ACO model; (d) GA model.
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which is topologically organized as a cell-based map. The final trajectory planned by
our proposed model is shown in Fig. 4(a) with variable speed depicted in Fig. 3. The
robot moves at slow speed in the vicinity of obstacles, but it accelerates in the open
areas in Fig. 4(a). In Table 1, comparative data may be found that our proposed model
is much better than the models of GA-ACO, ACO, GA, respectively, in the minimum
trajectory length, and number of turns. The comparison results show that the trajectory
length by our proposed model is 3.43% shorter than GA-ACO, 5.02% shorter than
ACO, and 12.77% shorter than GA, respectively. Furthermore, the number of turns of
proposed model is 28.57% better than GA-ACO, 54.55% better than ACO, and 16.67%
better than GA, respectively.

Table 1. Comparison of path length and turns (Fig. 11 in [15])

Models Minimum length Number of turns

Proposed model 28.042 5
GA-ACO 29.038 7
ACO 29.524 11
GA 32.147 6

Fig. 5. Illustration of robot navigation and mapping in various stages by the improved ACO
model (a) trajectory generated in the middle stage; (b) map built in the middle stage; (c) trajectory
generated at the end; (d) map built at the end. (Color figure online)

238 T. Lei et al.



The robot is able to traverse from the initial point to plan a reasonable collision-free
route to reach the final designation. The robot moves at the variable speed while it
constructs the map with 270º LIDAR. The trajectory generated by the robot is shown in
Fig. 5(a) whereas the map built is illustrated in Fig. 5(b) at the middle of the travel of
the robot. In this simulation, the robot is guided in an unknown environment populated
with obstacles depicted in Fig. 5(c), which shows that the robot traverses from starting
point to the final designation with successful obstacle avoidance. The built map while
the robot moves in the unknown environment with 270º LIDAR scan is illustrated in
Fig. 5(d). The yellow portions are detected obstacles in Fig. 5(b) and (d).

4.2 Comparison of the Variable Speed ACO with Others

The proposed model is then applied to a test scenario with populated obstacles in
comparison of the test scenario identical as Fig. 6 of [20] shown in Fig. 6(a) in this
context. The workspace has a size of 20 � 20, which is topologically organized as a
cell-based map. The parameters of our improved ACO algorithm are selected as fol-
lows: a ¼ 1; q ¼ 0:3 and b = 5. Initially, the starting point is located at S (13, 19)
whereas the robot moves toward the goal at T (7, 1). The trajectory planned when using
our proposed ACO model is illustrated in Fig. 6(b). The generated trajectory length,
numbers of turns, and steps to complete by the robot are listed in Table 2 in com-
parison with Zhang’s model [20].

The shorter and safer trajectory is generated by our ACO model illustrated in
Fig. 6(b). The trajectory length produced by our ACO model is 19.7% shorter than the
one by Zhang’s model summarized in Table 2. It is observed that our model outper-
forms over theirs in terms of the trajectory length, and number of steps and turns. The
number of turns of our model is 62.5% better than theirs. The resulting trajectory
length, number of turns and steps are illustrated in Fig. 6(c). Consequently, our pro-
posed method, in total, with the improved ACO algorithm has better performance.
While the robot approaches vicinity of obstacles, the robot moves slowly. The robot
moves in the open areas at high speed.

With VFH-based local navigator, the built map from the initial position S (13, 19)
and the final trajectory planned, and final map built exactly when the robot reaches the
final target are illustrated in Fig. 6(d). The white fields indicate detected obstacles, but
the black portion of image represents explored zones by the 270º LIDAR scans.

Table 2. Comparison of path length, turns and steps (Fig. 6 in [20])

Models Minimum length Turns Steps

Proposed model 22.07 3 20
Zheng’s model [20] 27.49 8 25
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5 Conclusion

An efficient variable-speed-based ACO algorithm has been developed for real-time
robot navigation and map building in this paper. A LIDAR-based local navigator
algorithm has been implemented for local navigation and obstacle avoidance. A vari-
able-speed navigation paradigm has been presented in integration with the ACO
algorithm to dynamically adapt its speed to the environment scenarios. In addition to
the variable speed ACO based navigation, grid-based map representations are imposed
for real-time autonomous robot navigation. Simulation and comparison studies have
demonstrated effectiveness of the proposed real-time variable speed ACO approach of
an autonomous mobile robot.
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Abstract. The focus of this paper is to schedule printed circuit board
(PCB) assembly process while minimizing the mean flow time as well as work-
in-process inventories. Here, problem for scheduling different types of PCBs on
a single sequential pick-and-place automatic machine is considered in which the
total number of different components required to process each type of PCBs
exceeds the capacity of the feeder rack. The above objective is achieved through
minimizing the number of feeder rack changes or component switches and
sequential placement of components. A component switch refers to removal of
one type of component from the feeder rack and a different type of component is
placed on it, and may occur when changing to next type of PCB. In order to
reduce component switches, group technology is applied following the counts of
new components needed to add for successive group formation. Mathematical
models are developed for PCB grouping and PCB group sequencing problem
and integrated as multi-functional model to determine the optimal sequence of
component placements. Ant colony optimization (ACO) technique is used to
solve the proposed model and the results are compared with the different
component grouping methods available in the literature.

Keywords: Scheduling � Printed circuit board � Pick-and-place � Grouping �
Group sequencing � Ant colony optimization

1 Introduction

Scheduling can be defined as “prescribing when and where each operation necessary to
manufacture the product is to be performed”. The main aim of scheduling is to plan the
sequence of work so that production can be systematically arranged towards the end of
completion of all the products by due date. It is one of the vital components of
production planning system that closely works with the material requirement planning
and shop floor to optimize the resource utilization throughout the production.

A scheduling strategy involves both job and resource related parameters [1], which
sets multi criterion objectives for a scheduling problem; job related – meeting the due
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dates and minimizing the completion time, resource related – maximizing resource
utilization and minimizing work in process. Although these objectives are conflicting in
nature, the solutions of multi objective problems provide deeper insights to the decision
maker than those of single-objective problems. In the present work, multi-objective
scheduling problem in PCB assembly process is considered to minimize the mean flow
time as well as work-in-process inventories.

The paper is structured as follows: Sect. 2 describes the PCB assembly process and
the working of an automated pick and place machine is illustrated. Section 3 explores
the literature pertaining to the development of the related work done on scheduling and
grouping of PCBs. Section 4 introduces ACO and is devoted to the development of the
proposed approach. In Sect. 5, the proposed methodology is validated using a test
problem from the available literature and the results are compared with existing
methodologies in Sect. 6. Finally, the Sect. 7 concludes the present work.

1.1 PCB Assembly

PCB assembly is a discrete manufacturing process in which a number of electronic
components are mounted on laminated boards. Assembly of printed circuit boards
mainly consists of: (i) Printing of circuit on a clad board (laminated copper board),
(ii) Placing electronic component on board, and (iii) Soldering of component (tin-lead
allow). In PCB assembly line, the entire operations are performed to manufacture a
PCB. Placing the components on a board involves several movements. In the present
study, a sequential automatic placement machine, such as the pick-and-place
(PAP) machine that performs the pick-up and placement operations one-by-one. The
configuration of the PAP machine used in this work consists of three components: a
table to which the PCB is attached, a feeder rack that holds components, and a head that
picks components from the feeder and places them on the PCB. A complete board
cycle is assumed in which the head starts from a given home position, moves between
feeders (on the machine) and placement locations (on the PCB) until all the compo-
nents have been mounted. The head returns to the home position once all the com-
ponents required for a board have been placed on the board.

The machine has a robotic arm, which has one or more heads. Heads pick up
components from the reels on the feeder racks and place them on the PCB, by means of
using an appropriate tool. Each component type can be picked up with a subset of tools,
that is, one head with a specific tool can only pick up components from a limited set of
component types. Tools are changed in the automatic tool changer (ATC) when the
next component cannot be picked up with the current tool.

2 Literature Review

A memetic algorithm was developed combining Genetic Algorithm (GA) and local
search procedure to solve the combinatorial problem. Ho and Ji [2] considered distance
travelled by the placement head for picking and placing the components and developed
a hybrid GA for determining the optimal sequence of component placements and
assignment of component types to feeder racks simultaneously for a sequential PAP
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placement mechanism. In their another work, Ho and Ji [3] formulated several math-
ematical models for determining the optimal sequence of component placements and
assignment of component types to feeders simultaneously and employed genetic
algorithm to solve the models while minimizing the total distance traveled by the
placement head. Another hybrid GA was developed by Ho et al. [4] combining two
improved heuristics, the nearest neighbour heuristic and iterated swap procedure, to
minimize the total assembly time. In a recent study, Noroozi and Mokhtari [5] pre-
sented a GA based intelligent optimization techniques incorporated with Monte Carlo
simulation to minimize the make span under uncertain processing times considering the
feeders capacity. Though, Hardas et al. [6] presented a custom application of GA to
demonstrate the effectiveness of GA for solving the component placement sequencing
problem, several other meta-heuristic based approaches have been demonstrated by
researchers. Chen and Lin [7] showed that the performance of particle swarm opti-
mization (PSO) is not worse than the performance of GA in terms of the distance
traveled by the placement head. Zeng and Guo [8] proposed a two-stage approach for
optimizing PCB assembly on the sequential pick-and-place machine wherein the first
stage, the distance score with weights selection (DSWS) method was used to select a
suited set of slots to load feeders then a novel swarm intelligence approach, called the
elimination with decay-based swarm intelligence approach (EDSIA) was employed for
assignment of feeders to the selected slots and the placement sequence of the com-
ponents. Another swarm based intelligent technique Cuckoo search37 was proposed for
PCB drill path optimization by Wei Chen in 2014.

A survey carried by Crama et al. [9] revealed that many researchers [10] introduced
group technology (GT) to the sequencing problem to minimize the setup times for
different PCBs and so to minimize make span

In the present work, the PCB grouping is done first based on the similar component
requirements followed by PCB group sequencing to reduce the total number of feeder
reconfiguration. Although various intelligent computational techniques such as differ-
ent heuristics and meta-heuristics (GA, PSO, Cuckoo Search) were adopted by
researchers in quest to better results, the authors in the present work have investigated
another efficient computational technique ACO for PCB scheduling problem.

3 Ant Colony Optimization

Ant colony optimization is a population based meta-heuristic that is inspired by the
collective behavior of ants for finding the shortest path between the ant colony and the
food [11].

Informally, an ACO algorithm can be imagined as the interplay of three procedures:
(i) Construct ants solutions, (ii) Update pheromones, and (iii) Daemon actions.

Construct ants solutions manages a colony of ants that concurrently and asyn-
chronously visit adjacent states of the considered problem by moving through neigh-
bour nodes of the problem. Update pheromones is the process by which the pheromone
trails are modified. The trails value can either increase, as ants deposit pheromone on
the components or connections they use, or decrease, due to pheromone evaporation.
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Daemon actions is the final procedure used to implement centralized actions which
cannot be performed by single ants. The success of ACO in different large-scale
application areas [12–14] motivated us for selecting ACO as solution strategy.

3.1 Assumption

The following assumptions were implied prior to the mathematical model formulation:

(i) Number of slots in the feeder rack is known.
(ii) Each reel carries only one component type.
(iii) Only one slot in the feeder rack is occupied by the reel carrying a component

type.
(iv) The total number of different component types required for processing a group

of PCBs is less than the feeder rack capacity for atleast one group to initialize
grouping.

The Mathematical Model for PCB Grouping
This problem provides a set of groups ‘G’ of PCB types in such a way that the number
of resulting groups |G| is minimized without exceeding the number of component types
‘S’ that a machine can accommodate.

Notation
Types of PCBs to be processed = N
Types of components required for processing ‘N’ PCBs = M � N
Number of components in PCBi ¼ Mi �M

Decision Variable
aki ¼ 1, if component type k is used in PCB type i

0, otherwise
pij ¼ 1, if PCB type i is assigned to group j

0, otherwise
qj ¼ 1, if group j is formed

0, otherwise

rkj ¼ 1
M

XN

i¼1
pijaki

� �
ð1Þ

minpij;qj;rkj Gj j ¼
XN

q¼1
qj ð2Þ

Subject to,

XM

k¼1
rkjqj ¼ S ð3Þ

XN

J¼1
pijqj ¼ 1 ð4Þ
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pij; qj; rkj 2 0; 1f g ð5Þ

Equation (1) indicates if the component type k is used by at least one PCB in group
j. Equation (2) states the PCB grouping subjected to constraints represented by
Eqs. (3), (4) and (5). Equation (3) states the criteria for new group formation i.e.
number of component types in each group should exceed the number of available slots
present in the feeder rack. Equation (4) assures that one PCB type must be assigned to
only one group while Eq. (5) represents the integrity constraints.

The Mathematical model for PCB group sequencing
This problem consists of sequencing the groups in ‘G’ such that the total number of

feeder changes ‘C’ is minimized.

Decision Variable
xjl ¼ 1, if PCB group l is manufactured after PCB group j

0, otherwise
Cil ¼ 1, if PCB group ‘j’ and ‘l’ does not use the same component type ‘k’

0, otherwise

minxjl2 0;1f g Cil ¼
X

j2G
X

l2G
XM

k¼1
rkj � rkl
� �2

xjl ð6Þ

Subject to,

X
l2G xjl ¼ 1; 8j 2 G ð7Þ

X
j2G xjl ¼ 1; 8j 2 G ð8Þ

Equation (6) provides the changes in the feeder rack when finishing the manu-
facturing of PCB group ‘j’ and starting with PCB group ‘l’. Equations (7) and (8)
present the constraints imposed for PCB group sequencing. Equation (7) implies that
one PCB group must be manufactured right after the group ‘j’ and Eq. (8) states that
one PCB group must be manufactured right after group ‘l’.

Strategy for Grouping PCBs
Grouping of PCBs is done involving the principle of collecting the PCBs that require
similar components for assembly under a single group. Assumption (iv) is used to
initialize grouping PCBs in different groups. A new group is to be formed when the
feeder rack capacity is exceeded. The PCB that adds the minimum number of com-
ponents will be chosen for next group. At each grouping stage, the group would be
evaluated on the counts of new components needed to add for successive group
formation.
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The PCB groups are then subsequently sequenced using ACO by optimizing
Eqs. (2) and (6) under corresponding constraints.

4 An ACO Algorithm for PCB Grouping

STEP 1: Determine the staring SEED PCB. SEED is the PCB requiring the
maximum number of components (maximum global similarity) for
assembly.

STEP 2: Start with an empty group ‘G’ and assign SEED PCB as the first member of
the group and load the components in the feeder rack that are required for
its assembly.

STEP 3: For finding the next element of the group, find that unallocated PCB having
the maximum number of similar components as compared to SEED. Load
all the extra components needed to assemble this PCB and proceed until the
feeder rack capacity is exceeded.

STEP 4: When the feeder rack capacity is exceeded, make another empty group and
repeat steps 2–4.

STEP 5: Repeat the above steps until either each PCB forms a part of a group or
forms a group of its own.

4.1 ACO Algorithm for PCB Group Sequencing

STEP 1: Set the different parameters and initialize the pheromone trails.
STEP 2: Calculate the number of similar elements in each group.
STEP 3: Start iteration 1. Each ant is positioned at the starting node according to the

distribution strategy (each node has at least one ant).
STEP 4: For k = 1 to m (k = number of ants, m = number of nodes), move each ant

to different route and repeat until all nodes are visited once.
STEP 5: Compute candidate list according to the heuristic information.
STEP 6: Select the node to be visited next (from candidate list).
STEP 7: A local pheromone updating rule is applied until ant k has completed tour.
STEP 8: When all the ants have completed their tour, pheromone is updated by the

global updating rule also, considering the evaporation of pheromone.
STEP 9: Update the heuristic parameters until end condition is met or an optimal

solution is obtained
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5 Validation

An industrial scheduling problem is considered to test the efficiency of the developed
algorithm. The data regarding this study are available at Catay et al. [14]. These prior
studies (and datasets) are cited at relevant place within the text as references [14].
Table 1 shows the different parameters of the test problem and Table 2 shows the
component incidence matrix.

Before any PCB is processed all the components are removed from the master
spool or considering it empty. All the components are generally removed from the rack
to fully load the rack with maximum of its capacity. This helps further during the entire
assembly process. Since the capacity of the rack to hold different component is 20, so at
the start of the assembly process all 20 different components will loaded on the feeder
rack when first PCB is about to be assembled. So, loading the feeder rack at start means
20 components switch over at the start of the assembly process. Once feeder rack is
loaded than next component switch over depends upon the schedule of the PCB’s.
Minimum the switching of the component minimum will be the total assembly time.

Table 1. Data taken from industrial scenarios [14]

Parameter Average data drawn from
industry source

Number of PCB types 12
The total number of different component types required
for each PCB type

30

Capacity of master spool to hold different component
types

20

Average number of each component type required by each
PCB type

13.5

Table 2. Component incidence matrix

PCB No.

Component No. 1 2 3 4 5 6 7 8 9 10 11 12
1 1 0 1 0 1 1 1 0 1 0 0 0
2 0 0 0 0 0 1 0 0 0 1 0 0
3 1 1 1 1 0 0 1 1 0 0 0 0
4 0 0 1 1 1 0 1 0 1 1 0 0
5 1 0 0 1 1 0 1 0 1 0 1 1
6 1 0 0 0 0 0 0 0 0 1 1 1
7 0 0 1 0 0 1 0 1 0 1 1 0
8 1 1 1 1 1 1 0 0 0 1 0 1

(continued)
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According to the first step of the grouping algorithm, SEED PCB is determined.
The PCB with the maximum number of components is selected as SEED (PCB 7).
Place this PCB as the first element of the empty group G1. Second element of the group
is selected having the maximum number of similar components with the SEED PCB
i.e. PCB 5. If another element is placed in the group G1 then the feeder rack capacity
will be exceeded therefore a new empty group G2 is formed. This process continues
until all the unallocated PCBs are assigned to different groups or forms a group of its
own. Following the steps of the algorithm, total six groups are formed as shown in
Table 3, having two PCBs each considering the feeder rack capacity is not exceeded.

Table 2. (continued)

PCB No.

9 1 1 0 0 1 0 1 1 0 0 0 0

10 1 0 0 0 0 0 0 1 1 0 0 1
11 1 0 0 0 0 0 0 1 0 1 1 0
12 0 1 0 0 1 0 1 1 0 1 0 1
13 0 1 0 0 0 1 1 0 0 0 1 1
14 0 0 1 1 0 0 0 0 1 0 0 0
15 1 0 0 1 1 0 0 0 0 1 1 1
16 1 0 0 0 1 0 1 1 0 1 0 0
17 0 0 1 1 1 0 1 0 0 0 0 1
18 0 0 0 0 0 0 1 0 0 0 0 0
19 0 0 0 0 0 1 0 0 0 0 0 0
20 0 0 0 1 0 1 1 0 1 0 0 1
21 0 1 0 1 0 0 0 0 0 1 0 0
22 1 1 0 0 0 1 1 0 0 0 1 1
23 0 1 0 0 0 0 0 1 0 1 1 0
24 0 0 0 0 0 0 1 1 1 0 1 1
25 1 0 1 0 1 0 1 1 1 0 1 1
26 0 1 0 1 0 1 1 0 1 0 0 1
27 0 0 1 0 0 1 0 0 0 0 0 0
28 0 1 1 1 0 0 1 0 1 1 0 0
29 1 1 1 1 0 1 0 1 1 0 0 0
30 0 1 1 1 0 0 1 1 0 1 0 0P

13 12 12 13 10 11 17 12 11 13 10 13
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6 Results and Comparisons

The proposed method assembles a lot of 12 PCBs in 6 PCB groups with 49 feeder rack
changes which is less as compared with the results of the previous methods developed
as shown in Table 4.

When the developed algorithm is applied to the grouping schemes from the pre-
vious work, their results further improved as shown in Table 5. In addition to this, the
proposed ACO algorithm provides the optimal sequence for processing these PCB
groups while maintaining the feeder rack capacity.

Table 3. PCB groups and their member PCBs

Group No. PCB No. Component types required S � 20

G1 7,5 19
G2 12, 11 16
G3 1, 8 18
G4 4, 9 17
G5 10, 2 19
G6 3, 6 18

Table 4. Comparison with different component grouping methods

Method proposed by No. of feeder rack changes No. of groups formed

Hashiba and Chang [10] 62 6
Maimon and Stub [15] 66 7
Bhaskar and Narendran [16] 60 7
Narayanaswami and Iyengar [17] 56 6

Table 5. Number of feeder rack changes without and with proposed ACO

Method proposed
by

No. of feeder rack changes without
using ACO algorithm

No. of feeder rack changes
after using ACO algorithm

Hashiba and
Chang [10]

62 46

Maimon and
Stub [15]

66 52

Bhaskar and
Narendran [16]

60 51

Narayanaswami and
Iyengar [17]

56 46
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7 Conclusion

In this paper, problem for scheduling N type of PCBs on single sequential pick-and-
place automatic machine was discussed in which the total number of different com-
ponents required to process each type of PCBs exceeds the capacity of the feeder rack.
An ACO based approach was developed in combination with application of group
technology for efficient scheduling of PCBs to minimize the number of component
switches. The problem comprises of two stages; grouping of PCBs followed by PCB
group sequencing. The PCB grouping strategy involved the criteria of similar com-
ponent requirement. The proposed approach yield better result when compared with
other existing methodologies. Also, the ACO algorithm computed the solution in
relatively very small time. Hence, model developed could be employed for solving
highly complex industry-size PCB scheduling problems more efficiently.

The ACO described here can be extended to use for multiple machines augmented
with different performance criteria. While the ACO approach presented in this article
showed a better performance, it still remains an open question whether a more efficient
methodology can be developed with other grouping strategy.
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Abstract. We introduce two strategies into the guided fireworks algo-
rithm (GFWA) to further improve its performance by generating one
or more weight-based guiding spark individual(s) for each firework indi-
vidual. The first strategy assigns different weights to spark individu-
als under each firework individual according to their fitness and then
calculates one or more guiding vector(s) to guide the firework individ-
ual to evolve into potential directions. The second strategy decides the
number of weight-based guiding spark individuals dynamically based on
the evolution of a firework individual, i.e. if a firework individual does
not evolve and survive in the next generation, then the second strategy
reduces the number of spark individuals generated around the firework
individual and generates the same reduced number of weight-based guid-
ing spark individuals additionally. We design a controlled experiment to
evaluate the performance of our proposal using CEC 2013 benchmark
functions with five different dimensions. The experiment results confirm
that the proposed strategies can provide effective guidance information
to improve the GFWA performance significantly, and its acceleration
effect for higher dimensional tasks is more obvious.

Keywords: Fireworks algorithm · Meta-heuristic algorithm ·
Weight-based guiding sparks · Acceleration

1 Introduction

The fireworks algorithm (FWA) [1] is a new family member of evolutionary com-
putation community and simulates explosion process of real fireworks repeatedly
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to find the global optimum. Many powerful variants of FWA have been sprung
up like mushrooms by incorporating various effective search mechanisms, such
as enhanced FWA (EFWA) [2], dynamic FWA (dynFWA) [3], adaptive FWA
(AFWA) [4], guided FWA (GFWA) [5] and others [6–9]. They have also solved
many complex real-world applications successfully, including multilevel image
thresholding [10], RFID network planning [11] and privacy preserving [12], etc.,
thanks to their excellent characteristics. Although they have achieved gratifying
results, there is still plenty of room to further improve FWA performance.

The primary objective of this paper is to propose a new type of weight-
based guiding spark individuals to accelerate the convergence of FWA. The first
strategy gives different weights to spark individuals to generate proposed weight-
based guiding spark individuals, and the second strategy focuses on deciding the
number of the guiding spark individuals dynamically, while GFWA always uses
only one. The secondary objective is to analyze the effect of our proposal as well
as their applicability and point out some open topics for discussion.

Following this introductory section, we roughly summarize optimization prin-
ciples of FWA and a short introduction of GFWA in the Sect. 2. The proposed
two strategies are comprehensively described in the Sect. 3. We evaluate the per-
formance of our proposal using 28 benchmark functions of 5 different dimensions
in the Sect. 4. Finally, we analyze some topics coming from the evaluation results
in the Sect. 5 and conclude our works in the Sect. 6.

2 Optimization Mechanisms of Fireworks Algorithm

There are many generated sparks around a real firework launched into the sky,
which can be considered as a local search pattern around a specific point. Inspired
by this explosion process, FWA assigns different explosion amplitude and number
of generated spark individuals to each firework individual to balance exploitation

Fig. 1. Search process of FWA. (a) The initial firework individuals are generated ran-
domly, (b) explosion spark individuals (blue solid points) and mutation spark indi-
viduals (green irregular points) are generated and (c) firework individuals in the next
generation are selected from all individuals in the (b). The (b) and (c) are iterated
until a termination condition is satisfied. (Color figure online)



Accelerating Fireworks Algorithm with Weight-Based Guiding Sparks 259

and exploration. These explosion processes are repeated until a termination con-
dition is satisfied. The Fig. 1 demonstrates the general framework of the FWA
consisting of three major operations: explosion, mutation and selection.

Fig. 2. (a) A guiding spark is calculated by adding a guiding vector information from
a firework. The guiding vector is a vector from the centroid of poor spark individuals
to that of better spark individuals. (b) An example case of a guiding vector pointing
to a wrong direction.

GFWA is one of the most powerful variants of FWA, and its core idea is to
divide spark individuals into two groups according to their fitness, determine a
guiding vector from the centroid of the poor group to that of the better group,
and evolve a firework individual to the guiding direction (Fig. 2(a)). However,
an incorrect guiding vector may hinder the convergence of a firework individ-
ual as shown in Fig. 2(b). Since we do not focus on GFWA itself, the detailed
implementations can refer to the [5]. We propose two strategies to avoid poor
guidance by generating multiple high precision guiding vectors.

3 Two Proposed Strategies for GFWA

We propose two strategies to further improve the GFWA performance by intro-
ducing the concept of weights and generating multiple potential guiding vectors.
The first strategy, weight-based guiding strategy, assigns different weights to gen-
erated spark individuals according to their fitness, which is expected to find a
more effective guiding direction. The second strategy, quantitative increase strat-
egy, may increase the number of weight-based guiding spark individuals to avoid
falling into a local area based on previous searches.
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3.1 Weight-Based Guiding Strategy

Top σ spark individuals among those generated by a firework individual xi based
on fitness rank are copied into a pool, and N̂ spark individuals are randomly
selected from the pool to calculate a guiding vector, i.e. we can obtain N̂ vectors
from the firework individual to these selected spark individuals.

The next problem is how to handle weights. There are many methods to
assign weights to these vectors. In this paper, we simply use the fitness differ-
ence between a firework individual and a selected spark individual to determine
weights, which means the more potential directions are, the more weight they
are given. Thus, the i-th guiding spark individual gi is calculated by weighting
these vectors using Eq. (1). The i-th guiding vector is defined as a vector from
the i-th firework individual xi to the guiding spark individual gi.

gi =
N̂∑

j=1

∣∣f(sij) − maxf(sij)
∣∣

∑N̂
j=1

∣∣f(sij) − maxf(sij)
∣∣

× (sij − xi) + xi (1)

where sij is the j-th spark individual generated by the i-th firework individual
xi (1 ≤ j ≤ N̂), and f() is a fitness function.

Note that

– if the i-th firework individual does not survive in the next generation, the pool
is cleared. Otherwise, the pool is kept and generated better spark individuals
are recorded into the pool until the upper limit is met. Once the pool becomes
full, newcomers update poorer ones in the pool in turn.

– N̂ is less than the pool size.
– if the j-th spark individual sij is worse than the i-th firework individual xi,

the weight of the vector from the firework individual to the spark individual,
sij − xi, is set to 0.

3.2 Quantitative Increase Strategy

The second strategy is used only when a firework individual has not evolved
and survived to the next generation. Multiple guiding sparks then are generated
by using the first strategy to help the firework individual to evolve. Suppose
the total number of spark individuals generated by the firework individual is
M in the coming explosion operation. When the case mentioned in the above
happens, we reduce the number of spark individuals generated by the explosion
operation to α × M and pack the number by generating (1 − α) × M guiding
spark individuals. We set α as 0.9 in our experimental evaluations.

The next key problem is how to generate multiple guiding vectors. Since a
pool can provide a variety of spark individuals, we randomly select half of spark
individuals from the pool to calculate a guiding vector and repeat this operation
(1 − α) × M times to provide multiple different guiding sparks.

Algorithm 1 outlines the flow of FWA combined with our proposed strategies.
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Algorithm 1. The general framework of our proposed strategies combined to
general FWA.
1: Randomly initialize n firework individuals in a search space.
2: Evaluating the fitness of firework individuals.
3: while a termination condition is not satisfied do
4: Calculating an explosion amplitude for each firework individual.
5: Calculating the number of spark individuals generated by firework individuals.
6: Reassigning the proportion of spark individuals if the second strategy is executed.

7: Generating spark individuals by an explosion operation.
8: Generating guiding sparks for each firework using the first strategy.
9: Evaluating the fitness of all generating spark individuals.

10: Choose the best individual as a firework individual in the next generation.
11: Randomly choose other n−1 firework individuals among the rest of individuals.
12: end while

4 Experimental Evaluations

To evaluate the performance of our proposed strategies, we combine the original
guiding strategy in the [5] and our proposal with three different FEW variants,
EFWA [2], dynFWA [3] and AFWA [4], respectively. Each benchmark function
from the CEC2013 benchmark test suit [13] is run 51 times independently in 5
dimension settings of D = 10, 30, 50, 70 and 100.

These functions are designed for real parameter single-objective optimization,
and their landscape characteristics include shifted, rotated, global on bounds,
unimodal and multi-modal. The parameter settings used in our experimental
evaluations showed as following; the number of firework individuals is set to 1,
and the total number of spark individuals is set to 200. σ used for selecting top
spark individuals is set to 0.2. The explosion amplitude used in EFWA is set to
80. All other parameter settings of EFWA, dynFWA and AFWA are exactly the
same with original references [2,3] and [4], respectively. The dimension selection
mechanism is not used in these evaluations to increase population diversity.

We use the number of fitness calls rather than generations to evaluate conver-
gence fairly. The maximal number of evaluations, i.e. termination condition, of
each run is 10,000×D. We apply the Wilcoxon signed-rank test and the Holm’s
multiple comparison test on the fitness values at the termination condition to
check significant difference between the original guiding Strategy in the [5] and
our proposed strategies. Tables 1, 2 and 3 show results of statistical tests.

5 Discussions

5.1 Discussion on the Proposed Strategies

We begin our discussion from an explanation of the superiority of our proposal.
The first strategy, weight-based guiding strategy, uses only spark individuals
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Table 1. Wilcoxon signed-rank test and Holm’s multiple comparison test results for
average fitness of 3 methods for 51 trial runs. �, >, and ≈ mean that there are
significant differences with significant levels 1%, 5%, and no significance, respectively.
\ means that there is no significant difference among them. 0, 1, and 2 mean (EFWA
+ the original guiding strategy in the [5]), (EFWA + the proposed strategy 1), and
(EFWA + the proposed strategies 1 and 2), respectively.

Func. 10-D 30-D 50-D 70-D 100-D

f1 2 � 1 � 0 1 � 2 � 0 1 � 2 � 0 1 � 2 � 0 1 � 2 � 0

f2 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 2 ≈ 1 � 0 1 � 2 � 0

f3 1 ≈ 0 � 2 2 � 1 � 0 1 � 2 � 0 2 � 0 � 1 2 � 1 ≈ 0

f4 2 � 1 ≈ 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0

f5 2 � 1 ≈ 0 2 � 1 � 0 1 � 2 � 0 1 � 2 � 0 1 � 2 � 0

f6 \ 1 � 2 � 0 1 � 2 � 0 1 � 2 ≈ 0 1 ≈ 0 � 2

f7 0 ≈ 1 � 2 2 � 1 ≈ 0 2 � 1 � 0 2 � 1 � 0 2 � 1 ≈ 0

f8 \ \ \ \ \
f9 0 ≈ 2 > 1 0 � 1 ≈ 2 2 ≈ 0 � 1 0 ≈ 2 � 1 0 � 1 ≈ 2

f10 2 � 1 � 0 1 � 2 � 0 1 � 2 � 0 1 � 2 � 0 1 � 2 � 0

f11 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0

f12 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0

f13 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0

f14 \ \ 2 � 0 ≈ 1 2 � 0 ≈ 1 2 � 0 ≈ 1

f15 2 � 0 ≈ 1 2 � 0 ≈ 1 2 � 0 ≈ 1 2 � 0 ≈ 1 2 � 1 ≈ 0

f16 \ \ \ \ \
f17 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 1 � 2 � 0

f18 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 1 > 2 � 0

f19 2 � 1 � 0 1 � 2 � 0 1 � 2 � 0 1 � 2 � 0 1 � 0 � 2

f20 0 ≈ 1 � 2 2 � 0 ≈ 1 2 � 0 ≈ 1 2 � 1 � 0 \
f21 2 ≈ 1 � 0 \ 0 � 1 ≈ 2 1 � 0 � 2 1 � 2 � 0

f22 2 > 1 ≈ 0 2 � 0 ≈ 1 2 � 0 ≈ 1 2 � 0 ≈ 1 2 � 0 ≈ 1

f23 2 � 0 ≈ 1 2 � 0 ≈ 1 2 � 0 > 1 2 � 0 ≈ 1 2 � 1 ≈ 0

f24 1 ≈ 2 > 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0

f25 2 > 1 � 0 \ 0 � 1 � 2 2 � 1 ≈ 0 0 � 1 � 2

f26 2 � 1 � 0 2 � 1 � 0 0 ≈ 1 � 2 1 ≈ 2 � 0 2 � 1 � 0

f27 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0

f28 0 ≈ 2 � 1 2 � 1 � 0 1 � 2 � 0 1 � 2 � 0 2 � 1 � 0

which fitness are better than that of a firework individual to construct mul-
tiple vectors from the firework individual to selected spark individuals. Different
weights based on their fitness differences are given to these potential vectors
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Table 2. Wilcoxon signed-rank test and Holm’s multiple comparison test results for
average fitness of 3 methods for 51 trial runs. The symbols used in this Table have same
mean with the Table 1. 0, 1, and 2 mean (dynFWA + the original guiding strategy in
the [5]), (dynFWA + the proposed strategy 1), and (dynFWA + the proposed strategies
1 and 2), respectively.

Func. 10-D 30-D 50-D 70-D 100-D

f1 \ \ \ \ \
f2 2 � 1 > 0 2 � 1 ≈ 0 2 � 1 � 0 2 � 1 � 0 2 ≈ 1 � 0

f3 1 ≈ 2 � 0 2 > 1 > 0 2 � 1 � 0 2 ≈ 1 � 0 2 > 1 � 0

f4 2 � 1 � 0 2 � 0 � 1 0 � 2 � 1 0 ≈ 2 � 1 0 � 2 � 1

f5 2 � 0 � 1 2 � 0 � 1 2 � 0 � 1 0 � 2 � 1 0 � 2 ≈ 1

f6 \ \ 1 � 2 � 0 \ \
f7 2 ≈ 1 � 0 2 � 1 ≈ 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0

f8 1 � 2 ≈ 0 1 � 2 ≈ 0 1 ≈ 2 > 0 \ 1 � 2 ≈ 0

f9 2 � 1 > 0 2 ≈ 1 � 0 2 ≈ 1 � 0 2 > 1 � 0 2 � 1 � 0

f10 2 ≈ 1 > 0 2 ≈ 1 � 0 \ \ 1 > 0 ≈ 2

f11 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 2 ≈ 1 � 0

f12 2 � 1 > 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 2 > 1 � 0

f13 2 � 1 ≈ 0 2 � 1 � 0 2 > 1 � 0 2 � 1 � 0 2 � 1 � 0

f14 \ \ 1 ≈ 2 � 0 \ \
f15 \ \ \ 2 ≈ 1 > 0 2 ≈ 1 � 0

f16 \ \ 1 ≈ 2 > 0 \ \
f17 2 � 0 ≈ 1 2 � 0 > 1 2 ≈ 0 > 1 \ \
f18 2 � 1 ≈ 0 2 � 0 ≈ 1 2 ≈ 0 � 1 \ \
f19 2 � 1 ≈ 0 2 � 1 > 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0

f20 \ \ 2 ≈ 1 � 0 2 � 1 � 0 \
f21 \ \ 0 � 2 ≈ 1 0 � 1 ≈ 2 1 > 2 ≈ 0

f22 2 ≈ 1 > 0 \ 1 ≈ 2 � 0 \ \
f23 2 > 1 ≈ 0 \ 1 > 2 > 0 1 ≈ 2 � 0 2 ≈ 1 � 0

f24 2 > 0 ≈ 1 2 � 1 � 0 2 ≈ 1 � 0 2 ≈ 1 � 0 2 � 1 � 0

f25 \ 2 ≈ 1 � 0 2 ≈ 1 � 0 1 ≈ 2 � 0 2 > 1 � 0

f26 2 � 1 ≈ 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0

f27 2 ≈ 1 > 0 2 � 1 � 0 2 � 1 � 0 2 � 1 � 0 2 > 1 � 0

f28 0 � 1 � 2 2 > 1 ≈ 0 \ \ 2 ≈ 1 > 0

to calculate a guiding vector. The possibility of getting a better guiding spark
individual by using the guiding vector from the firework individual becomes high.

A guiding spark individual has an anti-noise property to avoid over-preference
for a certain direction because of aggregating multiple potential directions.
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Table 3. Wilcoxon signed-rank test and Holm’s multiple comparison test results for
average fitness of 3 methods for 51 trial runs. The symbols used in this Table have
same mean with the Table 1. 0, 1, and 2 mean (AFWA + the original guiding strategy
in the [5]), (AFWA + the proposed strategy 1), and (AFWA + the proposed strategies
1 and 2), respectively.

Func. 10-D 30-D 50-D 70-D 100-D

f1 \ 1 ≈ 2 � 0 1 ≈ 2 � 0 1 � 2 � 0 1 � 2 � 0

f2 2 ≈ 1 � 0 2 ≈ 1 � 0 1 ≈ 2 � 0 2 ≈ 1 � 0 1 ≈ 2 � 0

f3 \ 2 ≈ 1 � 0 2 ≈ 1 � 0 2 ≈ 1 � 0 2 � 1 � 0

f4 2 � 1 ≈ 0 1 � 2 ≈ 0 1 ≈ 2 � 0 1 ≈ 2 � 0 2 � 1 � 0

f5 1 > 0 ≈ 2 1 � 2 � 0 1 ≈ 2 � 0 1 > 2 � 0 1 ≈ 2 � 0

f6 \ 2 > 1 � 0 1 � 2 � 0 1 ≈ 2 � 0 2 � 1 � 0

f7 \ 1 ≈ 2 � 0 2 ≈ 1 � 0 2 ≈ 1 � 0 2 � 1 � 0

f8 2 � 1 ≈ 0 1 ≈ 2 > 0 \ 2 � 0 � 1 \
f9 \ 2 ≈ 1 > 0 2 ≈ 1 > 0 2 � 1 ≈ 0 2 � 0 � 1

f10 \ 1 ≈ 2 � 0 1 � 2 � 0 1 > 2 � 0 1 > 2 � 0

f11 2 > 1 ≈ 0 1 ≈ 2 � 0 1 ≈ 2 � 0 1 > 2 � 0 1 � 2 � 0

f12 2 � 0 ≈ 1 1 ≈ 2 � 0 2 ≈ 1 � 0 1 > 2 � 0 1 � 2 � 0

f13 2 � 0 ≈ 1 2 ≈ 1 � 0 1 ≈ 2 � 0 1 ≈ 2 � 0 1 � 2 � 0

f14 \ 2 ≈ 0 � 1 0 � 2 � 1 2 ≈ 0 � 1 2 � 0 � 1

f15 2 � 0 ≈ 1 2 ≈ 0 � 1 2 ≈ 0 � 1 2 ≈ 0 � 1 2 � 0 > 1

f16 \ 0 � 2 � 1 0 � 2 � 1 2 � 0 � 1 2 ≈ 0 � 1

f17 2 � 1 ≈ 0 \ 0 � 1 ≈ 2 \ 1 � 2 � 0

f18 2 � 0 ≈ 1 \ \ 1 � 2 > 0 1 � 2 � 0

f19 2 > 1 ≈ 0 2 � 1 � 0 2 ≈ 1 � 0 1 ≈ 2 � 0 1 > 2 � 0

f20 \ 2 ≈ 0 � 1 2 � 0 � 1 \ \
f21 \ 1 � 2 � 0 2 ≈ 1 � 0 1 � 2 � 0 1 ≈ 2 � 0

f22 \ 2 ≈ 0 � 1 0 ≈ 2 � 1 2 ≈ 0 � 1 2 � 0 > 1

f23 \ 2 � 0 � 1 2 � 0 � 1 2 > 0 � 1 2 � 1 ≈ 0

f24 \ 1 ≈ 2 � 0 1 � 2 � 0 1 � 2 � 0 2 > 1 � 0

f25 \ 2 � 1 > 0 2 � 1 ≈ 0 2 � 1 ≈ 0 2 � 1 ≈ 0

f26 \ 0 ≈ 1 � 2 1 ≈ 0 � 2 2 ≈ 1 � 0 1 ≈ 2 � 0

f27 \ 1 > 2 � 0 2 ≈ 1 � 0 1 � 2 � 0 1 � 2 � 0

f28 \ 1 � 2 � 0 2 � 1 � 0 1 ≈ 2 � 0 1 � 2 � 0

Although the first strategy increases computing costs, i.e. weight processing oper-
ation, it is acceptable to add only one additional fitness operation. We can say
that it is a low cost, high return strategy from the cost-performance view.
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The second strategy, quantitative increase strategy, is to reduce the number
of spark individuals generated by an explosion operation and generate the same
number of guiding spark individuals to speed up unevolved firework individuals.
Since the guiding operation is more likely to favor potential directions rather
than a random search, multiple guiding vectors may be beneficial for a firework
individual to jump out of the current local area.

To solve the key problem of how to generate diversified guidance vectors, a
spark pool is adopted to efficiently use information by storing many excellent
spark individuals generated in the past. This strategy does not need additional
fitness calculations, but it simply redistributes the proportion of two different
types of spark individuals. We can say that it is a low risk, easy-to-use strategy.

5.2 Discussion on Experimental Result

The next discussion is on the effectiveness and applicability of our proposal. To
evaluate its performance, we compare it with the original guiding strategy in
the [5], and apply them to three different baseline algorithms, EFWA, AFWA
and dynFWA, respectively. We apply the Wilcoxon signed-rank test and Holm’s
multiple comparison test to the average fitness of 51 trial runs at the termination
condition and check significant differences between two guiding methods. From
the results of these statistical tests, we found that our proposed strategies had
better performance in both unimodal and multimodal tasks on all 5 different
dimensions. It may be because our proposal can provide more precise multiple
guiding directions to accelerate convergence of FWA. The results show that our
proposal can be applied to various variants of FWA successfully and implies that
they have a wide range of applicability.

Finally, we discuss several potential approaches to further improve the perfor-
mance of our proposed strategies. As the next improvement, we may use fitness
gradient information instead of fitness difference to handle weights. How to fur-
ther improve the accuracy of guiding spark individuals and how to use them to
accelerate FWA are also our future works.

6 Conclusion

We proposed two effective strategies to improve a guiding information of the
original GFWA and further increase its optimization ability. The first strat-
egy uses existing and historical information to construct guiding vectors more
reasonably, and the second strategy increases the number of guiding spark indi-
viduals to provide multiple potential guiding spark individuals. The experiments
confirmed that our proposal can improve the performance of the GFWA signifi-
cantly.

In our future work, we will continue to explore and exploit the hidden infor-
mation to accelerate convergence and propose new methods to handle the weights
reasonably. Besides, we will use them to solve practical problems.
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Abstract. As rising swarm intelligence, fireworks algorithm (FWA) is
designed to search the global optimum by the cooperation between the
firework with the best fitness named as core firework (CF) and the other
non-CFs. Loser-out tournament based fireworks algorithm (LoTFWA) is
the most pioneering variant characterized by using competition as a new
manner of interaction. However, its independent selection operator may
prevent non-CFs from aggregating to CF in the late evolutionary phase
if they fall into different local optima. This work proposes a last-position
elimination-based fireworks algorithm which allocates more fireworks in
the initial process of the optimization to search and locate the scattered
local optima. Then for every fixed number of generations, the firework
with the worst performance is eliminated and its budget of sparks is
reallocated to other fireworks. In the final stage of optimization, only
CF survives with all the budget of sparks and thus the aggregation of
non-CFs to CF is ensured. Extensive experimental results performed on
both CEC2013 and CEC2015 benchmarks covering 43 functions show
that the proposed algorithm significantly outperforms most of the state-
of-the-art FWA variants.

Keywords: Fireworks algorithm · Swarm intelligence ·
Independent selection · Elimination mechanism

1 Introduction

Fireworks algorithm (FWA) proposed by Tan [6], as a rising SI optimization
algorithm, is inspired by the explosion process of fireworks in the sky. Zheng
et al. [8] propose an enhanced fireworks algorithm (EFWA) with five modifi-
cations to FWA. Based on the work of EFWA, Zheng et al. [7] propose the
dynamic search fireworks algorithm (dynFWA). In it, the firework with best
fitness in each generation is called core firework (CF) and others are called non-
core fireworks (non-CFs). Li et al. [1] present an adaptive fireworks algorithm
c© Springer Nature Switzerland AG 2019
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(AFWA) by using adaptive amplitude. Li et al. [2] propose a guided fireworks
algorithm (GFWA) by introducing a novel guiding spark to improve FWA perfor-
mance. Zheng et al. [9] propose a cooperative framework for fireworks algorithm
(CoFFWA) which can greatly enhance the exploitation ability of non-CFs by
using an independent selection operator and increase the exploration capacity
by a crowdness-avoiding cooperative strategy among the fireworks. Li and Tan
[3] propose a loser-out tournament based fireworks algorithm (LoTFWA) which
also utilizes an independent selection operator to select fireworks for the next
generation. However, its independent selection operator may prevent non-CFs
from aggregating to CF in the late evolutionary stage. This work proposes a
novel Last-position Elimination-based fireworks algorithm (LEFWA). At first, it
allocates more fireworks at the initial phase to search and locate scattered local
optima. Then for every G (>1) generations, the firework with the worst fitness is
eliminated and its budget of sparks is reallocated to other fireworks. At the final
stage of optimization, only CF survives with all the budget of sparks and thus
the aggregation of non-CFs to CF is guaranteed. This elimination mechanism
reinforces exploitation by eliminating unpromising areas along with an evolution
process and reveals where the true global optimum locates.

The rest of this paper is organized as follows. Section 2 introduces the related
work. Section 3 describes and analyzes the proposed algorithm in detail. Section 4
presents the experimental settings and results. Conclusions are given in Sect. 5.

2 Related Work

In LoTFWA, the number of sparks for each firework depends on the ranking of
its fitness value rather than the fitness value itself, it is calculated as follows:

Si = M · ri
−α

∑n
i=1(ri

−α)
(1)

where ri is the fitness ranking of firework i, α is a parameter to control the
shape of the distribution. The larger α is, the more explosion sparks good fire-
works generate. M and n represent the total number of sparks and fireworks,
respectively.

Secondly, LoTFWA adopts a dynamic amplitude update strategy for each
firework which is first introduced in the dynFWA [7]. The amplitude of each
firework is calculated as follows:

Ai(t) =
{

Ai(t − 1) · ρ+ if f(Xi(t)) − f(Xi(t − 1)) < 0
Ai(t − 1) · ρ− otherwise (2)

where Xi(t) and Ai(t) are the position and the amplitude of i-th firework at
generation t, respectively. ρ+ ∈ (1,+∞) and ρ− ∈ (0, 1) are the coefficients of
amplification and reduction, respectively.
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Finally, the explosion sparks are generated uniformly within a hypercube.
The radius of the hypercube is the explosion amplitude and the center of the
hypercube is the position of the firework. Algorithm 1 shows how the explosion
sparks are generated for each firework.

Algorithm 1. Generating explosion sparks for Xi

1: for j = 1 to Si do
2: for d = 1, 2, ..., D do
3: sd

i,j = Xd
i + Ai · rand(−1, 1)

4: if sd
i,j < BL or sd

i,j > BU then
5: sd

i,j = BL + rand(0, 1) · (BU − BL)
6: end if
7: end for
8: end for
9: return all the si,j

LoTFWA utilizes a recently proposed guiding spark [2] as the mutation oper-
ator which is simple and efficient. Algorithm 2 shows how the guiding sparks
are generated for each firework. σ is a parameter to control the proportion of
adopted explosion sparks. Note that only one guiding spark is generated for each
firework.

Algorithm 2. Generating the guiding spark for Xi

1: Sort the sparks by their fitness values f(si,j) in the ascending order
2: Δi = Xi + 1

σSi
(
∑σSi

j=1 si,j − ∑Si
j=Si−σSi+1 si,j)

3: gsi = Xi + Δi

4: return gsi

LoTFWA adopts an independent selection operator to enhance the exploita-
tion ability of non-CFs. In LoTFWA, each firework and its sparks are regarded
as a group. The best candidate x∗

i in group i in the current generation is selected
as a new firework for the next generation.

The search manner of the conventional fireworks algorithm is based on the
cooperation of several fireworks. While in LoTFWA, the competition becomes a
new manner of interaction, in which the fireworks are compared with each other
not only according to their current status but also according to their progress
rate. The progress rate of the i-th firework in generation g is calculated as follows:

δg
i = f(Xg−1

i ) − f(Xg
i ) ≥ 0 (3)

The prediction of its fitness in the final generation gmax is calculated as follows:

˜f(Xgmax

i ) = f(Xg
i ) − δg

i (gmax − g) (4)
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The i-th firework is considered as a loser and will be reinitialized if the prediction
is worse than the current best one, i.e., ˜f(Xgmax

i ) > minjf(Xg
j ). Algorithm 3

shows how the loser-out tournament mechanism works in every generation.

Algorithm 3. Loser-out tournament
1: for i = 1 to n do
2: if f(Xg

i ) < f(Xg−1
i ) then

3: δg
i = f(Xg−1

i ) − f(Xg
i )

4: end if
5: if f(Xg

i ) − δg
i (gmax − g) > minjf(Xg

j ) then
6: reinitialize the i-th firework
7: end if
8: end for

Integrating the above mechanisms, the main process of LoTFWA is described
in Algorithm 4.

Algorithm 4. LoTFWA
1: Initialize n fireworks and evaluate their fitness
2: while (stopping criterion not met) do
3: for i = 1 to n do
4: Calculate the number of sparks using (1)
5: Calculate explosion amplitude using (2)
6: Generate explosion sparks using Algorithm 1
7: Generate the guiding spark using Algorithm 2
8: Evaluate all the sparks
9: Select the new firework independently

10: end for
11: Perform the loser-out tournament using Algorithm 3
12: end while

3 Proposed Algorithm

In order to solve the problem of LoTFWA that non-CFs cannot aggregate to
CF in the final stage, this work proposes LEFWA which adopts a last-position
elimination mechanism based on LoTFWA. The description and analysis of the
proposed algorithm are given in this section.

3.1 LEFWA

At the initial phase, LEFWA initializes n fireworks randomly in a search space
and evaluates their fitness. At each generation, same as LoTFWA, the number
of sparks and explosion amplitude of each firework are calculated. After each
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firework generates its explosion sparks and the guiding spark, the independent
selection operator and loser-out tournament strategy are adopted. Then, the
last-position elimination mechanism is introduced in the proposed LEFWA. For
every G (>1) generations, the firework with the worst fitness is eliminated and
G is calculated as follows:

G =
(Fmax − n)/M

n
(5)

where Fmax is the maximum number of fitness evaluations, M is the total number
of sparks and n is the initial number of fireworks. (Fmax − n)/M calculates a
rough total number of generations. Because of the initialization of n fireworks
at the beginning of the algorithm, n should be subtracted from Fmax. Then
the total number of generations is divided into n segments and each contains
roughly G generations. For every G generations, the current number of fireworks
n̂ is updated as

n̂ = n̂ − 1. (6)

The budget of sparks of the eliminated firework is reallocated to other better
fireworks. At the final stage of evolution, only CF survives with all the budget of
sparks and thus the aggregation of non-CFs to CF is guaranteed. This elimina-
tion mechanism enhances the exploitation ability by giving up unpromising areas
gradually and reveals where the true global optimum locates. The procedure of
LEFWA is shown in Algorithm 5.

Algorithm 5. LEFWA
1: Initialize n fireworks and evaluate their fitness
2: Calculate G using (5)
3: while (stopping criterion not met) do
4: if current generation is divisible by G and n̂ > 1 then
5: Eliminate the worst firework
6: Update n̂ using (6)
7: end if
8: for i = 1 to n̂ do
9: Calculate the number of sparks using (1)

10: Calculate explosion amplitude using (2)
11: Generate explosion sparks using Algorithm 1
12: Generate the guiding spark using Algorithm 2
13: Evaluate all the sparks
14: Select the new firework independently
15: end for
16: Perform the loser-out tournament using Algorithm 3
17: end while
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3.2 Analysis of LEFWA

The diversity of population decreases gradually due to the last-position elimina-
tion mechanism in LEFWA. To solve this problem, LEFWA needs to initialize
more fireworks than LoTFWA. This work utilizes the average distance between
each candidate and the center of whole population to measure the diversity of
population, which is calculated as follows:

diversity =
∑n+M

i=1 (||xi − xc||)
n + M

(7)

where xc is the center of all candidates and ||xi − xc|| represents the distance
between the i-th candidate and xc. For the fourth function of CEC2013 bench-
mark [5], Fig. 1 shows the diversity curves of LEFWA as compared to LoTFWA’s
in two cases, one with the same initial number of fireworks, and the other with
a different number. n0(LEFWA) and n0(LoTFWA) are the initial number of
fireworks in LEFWA and LoTFWA, respectively. We calculate the diversity of
population for every 100 evaluations. In each subfigure, X-axis represents the
number of calculations and Y-axis represents the diversity of population.

As shown in Fig. 1(a), the diversity of population in LEFWA decreases obvi-
ously for every G generations as caused by the last-position elimination mech-
anism. As a result, the exploration capability of LEFWA is worse than that
of LoTFWA. In Fig. 1(b), LEFWA has higher diversity than LoTFWA in the
early evolutionary stage because of more initial fireworks. Although the diver-
sity of population in LEFWA decreases along with an evolution process, LEFWA
has better capability of exploration at the early evolutionary phase and better
exploitation ability at the late evolutionary stage than LoTFWA respectively,
which are exactly a feature that evolutionary algorithms should own. In addition,
Fig. 1 shows that LoTFWA still maintains a high diversity at the late evolution-
ary stage, indicating that non-CFs cannot aggregate to CF in the final stage. It is
worth mentioning that the reinitialization triggered by the loser-out tournament
mechanism makes the diversity of LoTFWA increase at the late stage.

Fig. 1. The diversity curve of LEFWA and LoTFWA.
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4 Experiments

4.1 Experimental Settings

To show the performance of LEFWA, total 28 functions in CEC2013 benchmark
[5] and total 15 functions in CEC2015 benchmark [4] are used, which contain uni-
modal, multimodal, hybrid and composition functions. For convenience, F1–F28
and F29–F43 represent functions in CEC2013 and CEC2015 benchmark, respec-
tively. For each function, dimension D is set to 30, and the maximum number
of fitness evaluations is 10000D. For a comprehensive comparison, EFWA [8],
dynFWA [7], CoFFWA [9], GFWA [2] and LoTFWA [3] are also tested. Their
parameter configurations are the same as those in the corresponding references.
Each algorithm is run for 51 times independently on each function. At the end of
each run, it outputs the error that is defined as f(X∗)−f∗, where X∗ represents
the best solution found by it and f∗ is the global optimal fitness of a function.
Finally, for all algorithms, the means and standard deviations of errors are given.

In LEFWA, all parameter configurations are the same as in LoTFWA. How-
ever, as mentioned above, because of the elimination mechanism, the initial
number of fireworks in LEFWA n is higher than those in LoTFWA, as listed in
Table 1. To be fair, the total number of fitness evaluations in all algorithms is
set to the same value, i.e., 10000D.

Table 1. Parameter configurations

Algorithms Parameters settings

EFWA n = 5, M = 50, Â = 40

dynFWA n = 5, M = 150, Â = 40, Ac(1) = 200, ρ+ = 1.2, ρ− = 0.9

CoFFWA n = 5, M = 150, Â = 40, Ac(1) = 200, ρ+ = 1.2, ρ− = 0.9

GFWA n = 1, M = 200, σ = 0.2, Â = 40, Ac(1) = 200, ρ+ = 1.2, ρ− = 0.9

LoTFWA n = 5, M = 300, σ = 0.2, α = 0, Ai(1) = 200, ρ+ = 1.2, ρ− = 0.9

LEFWA n = 11, M = 300, σ = 0.2, α = 0, Ai(1) = 200, ρ+ = 1.2, ρ− = 0.9

4.2 Experimental Results

The statistical results on CEC2013 and CEC2015 benchmarks are from 51 inde-
pendent runs, respectively. A Wilcoxon rank sum test is conducted between each
algorithm and LEFWA. It tests whether performances of two algorithms are sig-
nificantly different (with confidence level 95%). The result of such test is shown in
Table 2 and presented as a+/b/c−, which means LEFWA is significantly better
than/not significantly different from/significantly worse than the corresponding
algorithm on a/b/c functions.
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Table 2. Wilcoxon test between each algorithm and LEFWA

Benchmark EFWA dynFWA CoFFWA GFWA LoTFWA

CEC2013 26+/0/2− 21+/4/3− 22+/4/2− 19+/5/4− 10+/15/3−
CEC2015 12+/3/0− 13+/1/1− 13+/0/2− 12+/1/2− 4+/11/0−
Total 38+/3/2− 34+/5/4− 35+/4/4− 31+/6/6− 14+/26/3−

In CEC2013, LEFWA outperforms all the contenders. The Wilcoxon rank
sum test shows that LEFWA significantly outperforms EFWA on 26 functions
and dynFWA on 21 functions in a total of 28 functions. Compared to CoF-
FWA and GFWA, LEFWA significantly outperforms on 22 and 19 functions,
respectively. Additionally, LEFWA significantly outperforms LoTFWA on 10
functions and is significantly worse than it on 3 functions. This result indicates
that LEFWA has better performance than LoTFWA’s. In CEC2015, LEFWA
also outperforms all algorithms. The Wilcoxon rank sum test shows that LEFWA
significantly outperforms EFWA on 12 functions and dynFWA on 13 functions
in total 15 functions. Besides, LEFWA significantly outperforms CoFFWA on 13
functions and GFWA on 12 functions. Additionally, compared with LoTFWA,
LEFWA outperforms on 4 functions and is significantly worse on no function.

5 Conclusions and Future Work

This paper reviews LoTFWA that utilizes an independent selection operator and
points out its possible slow convergence as caused by non-core fireworks falling
into local optima at the late optimization stage. In order to overcome this limi-
tation, this study introduces an elimination mechanism into LoTFWA, resulting
LEFWA. The proposed algorithm eliminates the firework with the worst fitness
for every G (>1) generations and thus guarantees the aggregation of non-CFs
to CF.

Acknowledgement. This work is supported by China NSF under Grants No.
61572359 and 61272271.
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Abstract. Antennas play an important role in the operation of all radio
equipment, which is widely used in wireless local area networks, mobile tele-
phony, and satellite communication. The antenna array synthesis seeks steering
nulls in the direction of interference and placing the main beam directed to the
desired signal. In this paper, the pattern synthesis is modeled as a single-
objective combinatorial optimization problem with constraints. The Brain Storm
Optimization (BSO) is modified for pattern synthesis of the planar antenna
array. Instead of adopting the k-mean clustering, the proposed method follows
the Gaussian Mixture Model and also adopted the idea of the discrete Genetic
Algorithm (GA) in introducing the binary creating operator into our model. To
verify the performances of the proposed method, it is applied to pattern synthesis
of the planar antenna array in comparing with the GA. The simulation results
show that the proposed BSO algorithm in its modified version has good
applicability for the synthesis of thinned planar arrays.

Keywords: Brain Storm Optimization � Thinned planar array �
Gaussian mixture model � Binary creating operator

1 Introduction

An antenna array (or array antenna) [1], frequently used in a radar system, is composed
of multiple individual antennas which work together to produce a high directive gain or
a specified pattern. The thinning is performed by turning off a percentage of elements in
an antenna array without causing major degradation in system performance. The
advantages that the thinned antenna array [2, 3] has over the completely filled array in
terms of cost, weight, power consumption and heat dissipation.

The antenna array thinning can be modeled as a combinatorial optimization
problem. It is difficult to design a thinned array optimally due to the exponential
increase of n-combinations to tackle as a result of a large number of the array elements.
Though, if the array is symmetric, it will halve the number of possibilities for the
placement of the elements.
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The traditional optimization methods such as conjugate gradient and downhill are
not suitable for thinning the large-scale antenna array synthesis as there is an n-infinite
number of possible combinations. Swarm intelligence [4, 5] offers a practical way to
address the thinning problem. The swarm algorithms make few or no assumptions
about the problem and make full use of swarm searching to seeking the optimal
combination of the antenna array. Haupt first employed the Genetic Algorithm (GA) to
optimize the linear array and planar array with 200 elements [6]. After that, various
swarm intelligence tools have been used to the thinned antenna array synthesis, such as
GA, Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Dif-
ferential Evolution (DE).

A planar antenna array is the number of elements connected and arranged in a
matrix array and interconnected to produce a directional radiation pattern. Ares-Pena
et al. presented a GAs for the pattern synthesis involving linear and planar arrays [7].
Marcano and Duran elaborated on two particular methods for the synthesis of complex
radiation pattern for linear and a planar array based on GAs [8]. Villegas developed a
parallel GA for the synthesis of arbitrarily shaped beam coverage using planar 2D
phased-array antennas [9]. Chen et al. designed a modified real GA for the element
position optimization of sparse planar arrays with rectangular boundary [10]. Jain and
Mani discussed the basic concepts of antenna array, array thinning and dynamic
thinning, and the GA is applied to reduce total number of active elements in the linear
and planar arrays [11]. Zhang et al. proposed a GA based on orthogonal design and
applied the orthogonal GA to optimize the planar thinned array with a minimum peak
side lobe level [12]. Ha et al. introduced the modified compact GA, which had been
applied to the optimized synthesis of different-size linear and planar thinned arrays
[13]. Cheng et al. proposed a novel hybrid multi-objective optimization algorithm
based on the non-dominated sorting genetic algorithm II and validated the good per-
formance of the proposed algorithm on the large planar thinned arrays [14]. Quevedo-
Teruel and Rajo-Iglesias used the side lobe level as the desirability parameter and
employed the ACO as a useful alternative in the thinned linear and planar arrays design
[15]. Li et al. presented an improved PSO for electromagnetic applications, which were
concerned with linear as well as planar array [16]. Lanza Diego et al. applied a
modified PSO algorithm to planar array synthesis considering complex weights and
directive element patterns [17]. Wang et al. introduced a chaotic binary PSO algorithm
as a useful alternative for thinning large linear and planar arrays to obtain a low side
lobe level [18].

Metaheuristics deliver a set of satisfactory optimal solutions and further room for
improvement in search for best ones. One of the latest representatives of Swarm
Intelligence Family - Brain Storm Optimization (BSO) algorithm based on human
brainstorming has superior properties in evolutionary terms. In this paper, we present
the method of optimization of uniformly spaced planar arrays based on a promising
metaheuristics - BSO algorithm.

The remainder of this paper is organized as follows. In Sect. 2, the thinning
problem of planar arrays is described. In Sect. 3, the BSO is modified based on
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Gaussian mixture model and the binary creating operator. Simulation experiments and
comparisons are provided in Sect. 4. Finally, several conclusive remarks are given in
Sect. 5.

2 Problem Formulation for Planar Arrays

A planar array puts both the active and parasitic elements on one plane, making them
two dimensional. The antenna beam can be electrically scanned in both azimuth and
elevation directions. A schematic diagram of a planar array antenna is given as Fig. 1.

As shown in Fig. 1, the M array elements along the y-direction are uniformly
arranged at a pitch of dy, and the N array elements along the x-direction are uniformly
arranged at a spacing of dx, thereby, forming planar array of a rectangular grid.
Assuming that the direction of the target is represented as cos ax; cos ay; cos az

� �
, the

spatial phase difference between the m; nð Þ-th array element and the 1; 1ð Þ-th reference
array element along the x-axis and the y-axis can be expressed as:

D/x ¼ 2p
k dn cos ax

D/y ¼ 2p
k dm cos ay

�
: ð1Þ

where m 2 1; 2; � � � ;Mf g, n 2 1; 2; � � � ;Nf g. The dm denotes the distance between the
m; nð Þ-th array element and the 1; 1ð Þ-th reference array element azimuth, and dn
denotes the m; nð Þ-th array element and the 0; 0ð Þ-th reference.

From the geometry illustrated in Fig. 1, the following can be derived.

cos ax ¼ sin h cos /
cos ay ¼ sin h sin /
cos az ¼ cos h

8<
: : ð2Þ

1

Target 
direction

1 2 N

2

M

3

3 ...

...

θ
φ

z

y

x

xd

yd

xα yαzα

Fig. 1. Geometry of the planar array.
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The phase difference between the m; nð Þ-th array element and the 1; 1ð Þ-th reference
array element can be expressed as:

D/mn ¼
2p
k

dn sin h cos uþ dm sin h sin uð Þ: ð3Þ

Let the maximum value of the main beam of the array be /0; h0ð Þ. The excitation
amplitude and phase of the m; nð Þ-th element are Amn and amn, respectively.

amn ¼ 2p
k

dn sin h0 cos u0 þ dm sin h0 sin u0ð Þ: ð4Þ

The orientation pattern function of the planar array can be expressed as:

F h;uð Þ ¼
XN
n¼1

XM
m¼1

fmn /; hð Þamnej D/mn�amnð Þ

¼
XN
n¼1

XM
m¼1

fmn /; hð Þamnej2pk dm cos h cos u�cos h0 sin u0ð Þþ dn sin h�sin h0ð Þ½ �:

ð5Þ

In general, the antenna array element is in according with the equiamplitude dis-
tribution and omnidirectional, so the amplitude weighting is not required, i.e., amn ¼ 1
and fmn u; hð Þ ¼ 1. This implies the pattern function of the planar array can be
expressed as:

F h;uð Þ ¼
XM
m¼1

ej
2p
k dm sin h sinu�sin h0 sin u0ð Þ XN

n¼1

ej
2p
k dn sin h cos u�sin h0 cos uð Þ

¼ F1 h;uð Þj j � F2 h;uð Þj j: ð6Þ

where F1 h;uð Þj j and F2 h;uð Þj j represent the antenna pattern of the y-direction linear
array and the x-direction linear array respectively.

According to the definition of Maximum Side Lobe Level (MSLL), the fitness
function can be taken as the sum of the maximum sidelobe level of the azimuth pattern
and the maximum sidelobe of the pitch pattern:

MSLL ¼ max
/2S1

F /; h0;/0; h0ð Þð Þþ max
/2S2

F /0; h;/0; h0ð Þð Þ: ð7Þ

where the S1 represents the side lobe range of the azimuth pattern at h ¼ h0 and the S2
denotes the side lobe region of the pitch-direction pattern at / ¼ /0.

If the zero-power point of the main lobe of the azimuth pattern is set as 2u0, then
we have S1 ¼ /j/min �/�/0 � u0 [/0 þu0 �/�/maxf g.

If the zero-power point of the main lobe of the pitch-direction pattern is 2w0, then
S2 ¼ hjhmin � h� h0 � w0 [ h0 þw0 � h� hmaxf g.

Hence, the fitness function is described as min
f

MSLLð Þ.
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3 The Modified Brain Storm Optimization

3.1 The Basic BSO Algorithm

The BSO algorithm was firstly contributed to Shi in 2011 [19, 20]. It is a global search
optimal algorithm, which simulates the proceeding of the human brainstorming and can
get the globally best.

The basic BSO generally employs three strategies to produces new candidate
solutions and more especially the clustering operator organizes solutions into different
groups by using a k-means algorithm. The creating operator is used to produces new
candidate solutions by combining existing solutions with a disturbance vector.
Selecting the operator determines whether the solutions will be kept into the next
generation based on their fitness values. The main procedure of the basic BSO is
described as Algorithm 1.

01. Initialization: Randomly generate n potential solutions, and evaluate them;
02. while not termination condition do
03. Clustering: Cluster n individuals into m clusters by a clustering algorithm;
04. Creating: Randomly select one or two cluster(s) to generate new individual;
05. Selection: The newly generated individual is compared with the existing 

individual with the same individual index; the better one is kept and recorded 
as the new individual;

06. Evaluate the n individuals. 
07. end

Algorithm 1. Procedure of the basic brain storm optimization algorithm

3.2 Clustering with Gaussian Mixture Model

The basic BSO employs the k-means algorithm, which partitions the candidate solutions
into k clusters. The k-means algorithm has problems such as non-circular and overlap-
ping situations. It is often not suitable when clusters are not round shaped. Since it uses
some distance functions and distance is measured from the clustering center. Another
major problem is that data points may be overlapping between the clusters. But they are
deterministically assigned to one and only one cluster. To address these problems, we
introduce the Gaussian mixture model into the modified BSO version. In this approach,
it describes each cluster by its centroid (mean), covariance, and the cluster size.

For x 2 <d , we can define a Gaussian mixture model by making each of the
components a Gaussian density with parameters lk and

P
k . Each component is a

multivariate Gaussian density

pk xjhkð Þ ¼ 1

2pð Þd=2 P
k

�� ��1=2 e
�1

2 x�l
k

� �tP�1

k
x�l

k

� �
: ð8Þ

with its own parameters hk ¼ l
k
;
P

k

n o
.
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We define the Expectation-Maximization (EM) algorithm for Gaussian mixtures as
follows. The algorithm is an iterative algorithm that starts from some initial estimates of
H (e.g., random), and then proceeds to iteratively update H until convergence is
detected, where the complete set of parameters is H ¼ a1; � � � ; aK ; h1; � � � hKf g. Each
iteration consists of an E-step and an M-step.

E-Step: Denote the current parameter values as H. Compute the weight xik of data
point xi in cluster k for all data points xi, 1� i�N and all mixture components
1� k�K.

M-Step: Now use the weights and the data to calculate new parameter values. Let
Nk ¼

PN
i¼1 xik, i.e., the sum of the membership weights for the k-th component—this

is the effective number of data points assigned to component k.

3.3 Clustering with Gaussian Mixture Model

The basic BSO algorithm is initialized utilizing real-number encoding and generates
new candidate solutions by using the sigmoid function. The updating formulas are
given as follows.

xoffsprings ¼ xparents þ n� G l;rð Þ: ð9Þ

xparents ¼ xdi
x1 � xdi þx2 � xdj

�
one cluster
two clusters

: ð10Þ

where xoffsprings and xparents represent the new generated and the selected solutions from
a cluster or two clusters respectively. G l; rð Þ is Gaussian random function with mean l
and standard derivation r. Superscript d denotes the dimension index. The x1 and x2

are weight values. The n is the coefficient called step-size. It is a logarithmic sigmoid
transfer function, which affects the contribution of the Gaussian noise [21, 22].

In the binary BSO, the solution is updated in a continuous version. The difference
between binary BSO with continuous version is that the solutions are mapped in terms
of probabilities that a bit will change to one. Using this definition, a solution must be
restricted within the range [0, 1]. So, a map is introduced to map all real valued-
numbers of velocity to the range [0, 1]. The normalization function used here is a
sigmoid function as:

x0ij tð Þ ¼ sig xij tð Þ
� � ¼ 1

1þ e�xij tð Þ : ð11Þ

And the binary candidate solution is obtained using the equation below:

xij tþ 1ð Þ ¼ 1 if rij\x0ij tð Þ
0 otherwise

�
: ð12Þ

where rij is a uniform random number in the range [0, 1].
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(a)  The directional 3D diagram. 

(b) Azimuth pattern. 

(c)  Pitch pattern. 

Fig. 2. The directional pattern of the optimized antenna array
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4 Experimental Simulation and Result Analysis

The experiments are carried out on a planar array consisting of 20 azimuthal elements
and 10 pitched elements. The pitched array is constructed with equal intervals of half
wavelength. All array elements are in accord with the equiamplitude and omnidirec-
tional. The wavelength is 1 m, and the array aperture sets as 9:5 m� 4:5 m. The beam
pointing angle is 0

�
; 0

�� �
, and the sparse rate is 50%. A sparse array with 100 elements

is simulated to minimize the sum of the maximum sidelobe level in the sparse azimuth
pattern and the maximum sidelobes in the pitch pattern.

The population size of the modified BSO is 50, and the number of maximum
iteration is set to 200 for one execution. The simulation results of the best array are
illustrated as Figs. 2 and 3, respectively. Figure 4 shows the best fitness values of two
swarm algorithms over iterations.

From Fig. 2, we can see that Fig. 2(a) shows the directional 3D diagram of the
thinned antenna array based on the modified BSO algorithm. Figures 2(b) and (c) detail
the process of the azimuth pattern and the pitch pattern, respectively. The Fig. 3 shows
the element locations of the thinned antenna array using the proposed BSO algorithm.
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Fig. 3. The element locations of the thinned antenna array
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Fig. 4. The fitness evolution curves over iterations.
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Figure 4 shows the best fitness curves of the BSO and GA in 200 iterations. Although
the GA works well at an earlier stage (before 140 iterations), the modified BSO has the
pattern of coming from behind to outperform GA. Therefore, the BSO algorithm has
good applicability to the synthesis of the thinned planar arrays.

5 Conclusions

The antenna array thinning problem is a combinatorial optimization problem. This
problem has made designing a suitable algorithm for thinning a large-scale antenna
array very difficult. This paper presents a new method for optimizing planar antenna
array configurations. The modified BSO algorithm is designed on the Gaussian mixture
model and the binary creating operator basis. After a successful application of the
algorithm to pattern synthesis of the planar antenna array, the simulation results show
that the proposed BSO algorithm in its modified version has good applicability for the
synthesis of thinned planar arrays over GA.
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Abstract. This paper proposes refrigerated showcase fault detection by a
correntropy based Artificial Neural Network (ANN) using Fast Brain Storm
Optimization (FBSO). Since there are approximately 50,000 convenience stores
in Japan and it is difficult for experts to tune up all of showcase systems with
different characteristics. Therefore, an automatic parameter tuning method for
various showcase systems such as ANN should be applied. Effectiveness of the
proposed method is verified by comparison with conventional least square error
(LSE) based ANNs using stochastic gradient descent (SGD) and correntropy
based ANNs using Differential Evolutionary Particle Swarm Optimization
(DEEPSO) with actual showcase data.

Keywords: Fault detection � Refrigerated showcase �
Artificial neural network � Correntropy � Fast brain storm optimization

1 Introduction

Refrigerated showcases generally circulate cold air using air fans and maintain tem-
peratures inside the showcases at predetermined temperatures in order to keep tem-
peratures of food and drink in supermarkets and convenience stores. Abnormal
conditions that the showcases cannot maintain the predetermined temperatures may
occur because of refrigerant leakage and frost formation of refrigerated showcases.
Deterioration in food quality may occur when the predetermined temperatures of the
showcases cannot be maintained. Accurate fault detection using IoT technologies is
crucial for customer service. According to advance in IoT technologies, on-line
monitoring of showcase conditions can be realized in order to recognize various
abnormal conditions of refrigerated showcases.

Using unsupervised learning techniques including expectation maximization, k-
means, and self-organizing maps, a fault detection method of refrigerated showcases
has been developed by Santana et al. [1]. Air-conditioners also utilize refrigeration

© Springer Nature Switzerland AG 2019
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cycles and an only few methods have been also proposed for air-conditioner fault
detection. These methods can be divided into two groups: classic artificial intelligence
and integration methods of plural techniques. In classic artificial intelligence tech-
niques, Rossi et al. developed a rule-based fault detection method for vapor com-
pression air-conditioners [2]. York et al. developed a rule-based fault detection system
for air handling unit [3]. Han et al. developed a rule-based fault diagnosis expert system
for variable air volume (VAV) air handling unit [4]. In integration methods of plural
techniques, Li et al. proposed a statistical rule-based fault detection method for package
air-conditioners [5]. Han et al. proposed a fault detection method for vapor compres-
sion refrigeration systems that integrates support vector machine (SVM) with principal
component analysis (PCA) [6].

As of January in 2016, 55,640 convenience stores exist in Japan [7]. Since climatic
environments of stores are different in various regions, introduced showcases are dif-
ferent, and a characteristic of each showcase system is different. Therefore, engineers
are required to develop different knowledge for fault detection for each showcase using
classic artificial intelligence. Namely, it is difficult for engineers to tune up fault
detection systems for all showcase systems with different characteristics. Integration
methods require engineers to understand the contents of the method and set various
parameters by understanding the meaning of the parameters. On the other hand, fault
detection models and rules can be generated by machine learning based methods only
with learning data automatically.

Artificial neural network (ANN) is one of machine learning techniques and a sort of
supervised learning methods. It can generate a fault detection model only with learning
data and engineers can utilize it without understanding learning algorithms of ANN
such as SGD. Therefore, it can be applied to showcases with different characteristic
automatically. However, these conventional ANN based methods have two challenges.
The first one is effectiveness of ANN weights learning. Conventionally, SGD has been
applied for parameter tuning of ANN [8]. However, using SGD, ANN parameters may
be trapped in local minima. Although PSO based ANNs have been utilized for escaping
from local minima, it still has a problem of premature convergence [9, 10]. In order to
tackle the challenge, the authors have developed DEEPSO based ANN and it has been
verified to realize high accuracy for refrigerated showcase fault detection [11]. How-
ever, there is still room for improving fault detection accuracy. FBSO is one of the
improvement method of Brain storm optimization (BSO) and it has a possibility to
overcome the problem [12]. The second one is engineering for handling abnormal data.
When abnormal data exist in the learning data, SGD tries to calculate the gradient to the
abnormal data and move to the direction which can minimize the difference between
the abnormal data and the outputs of the ANN. Therefore, a learned model becomes
inappropriate for normal test data. Therefore, when abnormal data exist in learning data
for refrigerated showcase fault detection, engineers have to remove the abnormal data
for developing an appropriate ANN model. Since it is a heavy workload for the
engineer, development of a fault detection method that can reduce the workload for the
engineer is one of crucial challenges in this field. Correntropy has been proposed in
order to solve this problem [13]. Even if there are abnormal data, correntropy can
naturally ignore the data. The authors have developed a correntropy based ANN using
DEEPSO for fault detection of refrigerated showcase [11]. The method is verified to
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realize more accurate fault detection than LSE based ANN using SGD, LSE based
ANN using PSO, and LSE based ANN using DEEPSO. Therefore, utilization of
correntropy can be effective for handling abnormal data of showcases.

This paper proposes a fault detection method for refrigerated showcase by a cor-
rentropy based ANN using FBSO. Effectiveness of the proposed method is verified by
comparison with a conventional LSE based ANN using SGD and a correntropy based
ANN using DEEPSO with actual showcase data.

2 Refrigerated Showcase Fault Detection

The amount of refrigerant flow and temperatures of various points inside the showcases
are measured for management of showcases. Therefore, fault detection of showcases
can be realized using the measured sensor data. For example, if measured data of
showcases can be gathered and stored in data center through cloud computing, fault
detection rules of various stores using ANN can be generated automatically and remote
detection can be realized using the learned ANN. For example, when abnormal con-
ditions occur in a showcase of a certain store, an operator confirms the system situation
of the showcase using a Web application. Then, the operator dispatches service persons
to the store, and the showcase is checked and the service company can respond to the
abnormal condition. Such rapid treatment of faults in showcases can be realized
according to recent progress of IoT technologies.

A fault detection method has to be developed using normal and abnormal condition
data in order to realize on-line fault detection of showcases. This paper assumes offline
learning of ANN for fault detection of showcases is executed using stored data in data
center and online fault detection is executed using the learned ANN and online data
gathered from various stores.

3 Conventional Parameter Tuning Methods of ANN

A multi-layer ANN is a hierarchical neural network composed of input layer, hidden
layer, and output layer. The following sigmoid function is usually utilized as an acti-
vation function for multi-layer ANN:

f uð Þ ¼ ~f uð Þ ¼ 1
1þ e�u ð1Þ

where u is an input value to the activated function.
Conventionally, a multi-layer ANN is learned by SGD using the following loss

function. Weights and biases of a neural network are updated in order to reduce a loss
function value. Using SGD, the tuning of ANN weights may be trapped in local
minima.

Ep ¼ 1
2

XJ
j¼1

tpj � opj
� �2

p ¼ 1; � � � ;Pð Þ ð2Þ

288 N. Otaka et al.



where, Ep is a loss function for pattern p, tpj is p th target data of j th output layer unit,
J is the number of output layer units, P is the number of training data.

SGD evaluates LSE using difference between an output value of ANN and a target
value. However, a loss function value increases drastically when the difference become
large. Therefore, overfitting may occur by LSE based learning in order to reduce the
large loss function value.

4 The Proposed Fault Detection Method for Refrigerated
Showcase by a Correntropy Based ANN Using FBSO

4.1 Overview of Correntropy [13]

Using LSE, when a difference between an output value of ANN and a target value
become large, a loss function value increases drastically. Therefore, whole classifica-
tion results are influenced by abnormal values. Correntropy is a technique to solve the
challenge. A correntropy has been proposed by Liu, Pokharel, and Principe in 2006.
The loss function is expressed using the following equation by Correntropy:

maxE oð Þ ¼ 1
P

XP
p¼1

f oi � tið Þ ð3Þ

f oi � tið Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2

p exp � oi � tið Þ2
2r2

 !
ð4Þ

where r is a kernel size.
A form of normal distribution is utilized by Correntropy using the difference

between an output value of ANN and a target value for evaluation.
Difference between the LSE based method and the correntropy based method can

be explained as follows. Loss function values by the LSE using (2) and correntropy
based methods using (3) and (4) are shown in Fig. 1(a) and (b). r in (4) is set to 1 in
Fig. 1(b). In Fig. 1 (a), when error is 3, a loss function value is 9 and when error is 4,
the value is 16. When errors increase using the LSE based method, loss function values
increase drastically. Therefore, since ANN learning by the LSE based method is a kind
of minimization problems, learning of weights are largely influenced by the large
differences. On the contrary, in Fig. 1(b), when error is 3, a loss function value by
correntropy is approximately 0.004 and when error is 4, the value is approximately
0.0001. Therefore, using correntropy, loss function values reduce extremely when
errors exceed a certain constant value. Therefore, since ANN learning by correntropy is
a kind of maximization problems, learning of ANN weights are not influenced by the
large differences. Namely, learning by correntropy based method is performed in order
to be suitable for normal data rather than abnormal data.

As shown above, difference of the loss functions largely influences to fault
detection results. Learning and test stages by the LSE and the correntropy based
methods using different decision boundary functions are shown by Figs. 2 and 3. In the
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figures, black circle data means normal data and white circle data means fault data.
Decision boundary functions in order to classify data are shown by Bold solid curves.
Using the LSE based method, the decision boundary function is drastically influenced
in order to fit to abnormal data and it is largely bended as shown in Fig. 2(a). Then, at
the test stage, using the function, fault detection leads to be incorrect as shown in
Fig. 2(b). On the contrary, as shown in Fig. 3(a), the decision boundary function by the
correntropy based method is not influenced by abnormal data and appropriate (not
overfitted) learning is performed. Then, test data can be correctly classified and
improvement of classification accuracy can be expected using the correntropy based
method (Fig. 3(b)).

The loss function values using correntropy depends on kernel size, r, in (4).
Therefore, r should be carefully tuned considering various data of the target fault
detection problem.

Fig. 1. Loss function values by the LSE method and correntropy for two learning data.

Fig. 2. Learning and test stages using the LSE based method.
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4.2 Overview of FBSO [12]

BSO is proposed by Shi in 2011 [14] and it is one of evolutionary computation
methods. BSO utilizes various procedures, namely, initialization, clustering, generation
of new individuals, and selection.

– Initialization: N Individuals are randomly generated.
– Clustering: All individuals are separated into several clusters using k-means

method.
– New Individuals Generation: New individuals are generated using the following

equations.

ykij ¼ xkij þ logsig 0:5�k�k max
h

� �� rand 0; 1ð Þ � N 0; 1ð Þkij
i ¼ 1; � � � ;NI ; j ¼ 1; � � � ;NDVð Þ ð5Þ

xkij ¼ rand 0; 1ð Þ � xkij1 þ 1� rand 0; 1ð Þð Þ � xkij2
i ¼ 1; � � � ;NI ; j ¼ 1; � � � ;NDVð Þ ð6Þ

where yiterij is a newly generated individual of decision variable j of individual i at
iteration k, NI is the number of individuals, k max is the maximum number of
iteration, h is a coefficient to change slope of log-sigmoid transfer function, NDV is
the number of decision variables xkij; x

k
ij1; and x

k
ij2 are selected current searching

points of decision variable j of individual i at iteration k, rand 0; 1ð Þ is an uniform
random number in the range 0; 1ð Þ, N l; rð Þkij is a Gaussian random real number for
decision variable j of individual i at iteration k.

– Selection: The newly generated individual is compared with the current individuals
with the same index of individual and record the better one as new individual.

BSO utilizes the k-means method for clustering. It makes the BSO algorithm time-
consuming to perform the clustering in every iteration. In order to solve the problem,
FBSO utilizes a simple grouping method (SGM) [15] developed for modified BSO
instead of k-means method utilized in the original BSO [14]. An algorithm of new
individuals’ generation is shown in Fig. 4. In the figure, the cluster center is the best
evaluated individual instead of the closest individual to the center of the cluster from
the distance point of view in k-means method.

Fig. 3. Learning and test stages using the correntropy based method.
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The procedures of SGM can be expressed as follows:

– Step. 1 Select M different individuals randomly from the current individuals as
cluster centers of M clusters.

– Step. 2 Distances to M cluster centers for all current individuals are calculated,
compare the distance values to M cluster centers, and allocate the individual to the
closest cluster.

4.3 The Proposed Fault Detection Method for Refrigerated Showcase
by a Correntropy Based ANN Using FBSO

The proposed fault detection method for refrigerated showcase by a correntropy based
ANN using FBSO is shown in Fig. 5. Learning for the correntropy based ANN using
FBSO have three procedures. Firstly, sensor data of the showcases are input into the
proposed ANN and outputs are calculated by forward propagation as shown in Fig. 5.
Next, loss function value is calculated by correntropy using sum of difference between
outputs of ANN and target values using all learning data. Then, weights and biases of
ANN are updated based on the FBSO processes to maximize the loss function value by
correntropy.

The proposed fault detection algorithm for refrigerated showcases by a correntropy
based ANN using FBSO is shown below:

Step: 1 Initial weights and biases of ANN of all individual are generated within pre-
determined limits randomly.

Step: 2 The initial ANN weights and biases of individuals are evaluated by cor-
rentropy based loss function values with all learning data of showcase. k is
set to 1.

Step: 3 Weights and biases of individuals are divided into several clusters using the
SGM procedure explained in Sect. 4.2.

Step: 4 Generate new weights and biases of individuals using the new individuals
generation procedure explained in Sect. 4.2.

Fig. 4. An algorithm of new individuals’ generation.
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Step: 5 Loss function values of individuals are calculated by correntropy using new
weights and biases of ANN with learning data of showcase.

Step: 6 The newly generated weights and biases are compared with the current
weights and biases of ANN with the same individual index. The better one is
stored as the current weights and biases of the ANN.

Step: 7 When the current iteration number reaches k max, the procedure can be
stopped. Otherwise, k ¼ kþ 1 and go to Step. 3. Then, repeat the procedures.

5 Simulation

5.1 Simulation Conditions

The proposed correntropy based ANN for refrigerated showcase fault detection using
FBSO is applied to actual showcase data for three months. Fault detection results by the
proposed correntropy based ANN using FBSO method are compared with fault
detection results by the conventional LSE based ANN using SGD and the correntropy
based ANN using DEEPSO. Simulation conditions are shown below:

– All showcase data are separated into 30% test data and 70% learning data.
– The number of hidden units is set to 10.
– Sigmoid functions are utilized as activation functions of all layers in the proposed

ANN.
– The kernel size of the loss function is set to 1.0 by pre-simulation.
– Abnormal data are included in the learning data at a rate of 5% and 10% randomly

(missing rates).
– 90% of normal data are reduced randomly by random under sampling because rates

of normal and fault showcase data are imbalanced.
– Since learning results of ANN generally depends on initial weights and biases, the

number of trials is set to 30.
– Rates that fault data are classified to be faulty accurately (Fault), rates that normal

data are classified to be normal accurately (Normal), and rates of accurate fault
detection (Total) are utilized for the evaluations.

– The parameters of FBSO and DEEPSO are shown below:

Fig. 5. Learning for the correntropy based ANN using FBSO.

Refrigerated Showcase Fault Detection by a Correntropy 293



(a) Common parameters
The number of individuals(agents) is set to 128, k max of FBSO is set to 40000.
DEEPSO evaluates loss function two times for original and clone individuals.
Therefore, the k max for DEEPSO is set to half of that for FBSO, namely, 20000
for keeping the same number of the loss function evaluations.

(b) FBSO parameters
P_replace is set to 0.1, P_one is set to 0.9, P_one_center is set to 0.7, P_two_-
center is set to 0.9.

(c) DEEPSO parameters
The learning parameters s and s0 are set to 0.4 and 0.001,
Probability p is set to 0.95, the initial values of Bk

ij and Ck
ij are set to 0.9 and 0.4.

– The parameters of SGD are shown below:
Learning rate is set to 0.1, the maximum iteration number of SGD is set to 200000.
In order to set the same number of the loss function evaluations, the number has to
be set to 5120000 (128 * 40000). However, the number is set to 300000 because
SGD is already converged with 300000.
It is the most important for fault detection of the showcases to minimize influence
on customers by fault. Therefore, “Fault” evaluations are considered as most
important.

5.2 Simulation Results

Table 1 shows average values of accuracy of “Total”, “Normal”, and “Fault” using
various numbers of missing rates for test data by the LSE based SGD, the correntropy
based DEEPSO, and the proposed correntropy based FBSO. In the case of 0%, 5%, and
10% of missing rates, the proposed correntropy based ANN using FBSO can classify
“fault” more accurately than the conventional methods (bold numbers). Namely, even
when abnormal data do not exist in the learning data, the proposed method can classify
“fault” more accurately than the conventional methods. Moreover, when abnormal data
exist in the learning data, there is a possibility that the proposed correntropy based
ANN using FBSO can classify “fault” accurately without engineering.

Table 1. Average values of accuracy using various number of missing rates for test data by the
LSE based SGD, the correntropy based DEEPSO, and the proposed correntropy based FBSO.

Method Evaluation Missing rates [%]
0 5 10

LSE based SGD Total [%] 98.603 97.772 97.526
Normal [%] 99.241 98.587 98.367
Fault [%] 81.879 79.896 78.996

(continued)
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6 Conclusions

This paper proposes refrigerated showcase fault detection by a correntropy based ANN
using FBSO. Effectiveness of the proposed method is verified by comparison with the
conventional LSE based ANN using SGD and the correntropy based ANN using
DEEPSO with actual showcase data. Using actual showcase data, even if abnormal data
exist in learning data, it is verified that the proposed method can classify “fault” more
accurately without engineering than the conventional methods.

As future works, for improvement in accuracy of fault detection, various techniques
for imbalanced data and applications of various deep learning techniques integrated
with evolutionary computation methods will be investigated.
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Abstract. The overweight in the population has become a problem due
to the deficiency on the nutritional contributions, increasing the number
of people with diseases. The origin of this problem lies in the way people
eat, with a poor nutritional quality and in excessive quantities. To solve
this, it is necessary that people consider balance diets with the nutritional
expectation and the necessary food to improve people’s health and reduce
the rates of overweight and obesity. The diet design can be stated as
an optimization problem and solved using different algorithms. In this
paper, an Artificial Bee Colony (ABC) algorithm has been proposed to
automatically design diets considering the physical characteristics of the
subjects to find the best diet that satisfies their nutritional requirements
using the USDA National Nutrient Database. Particularly, this research
is focused on relatively healthy people between 18 and 55 years old to help
them to avoid nutritional related diseases. The proposed methodology is
compared against particle swarm optimization using the Harris-Benedict
equation in order to verify if is capable to achieve the calorie goal.

Keywords: Automatic diet generation · Artificial Bee Colony ·
Basal Metabolic Rate

1 Introduction

Nowadays, the overweight and the obesity in Mexico is generated due to an
energy imbalance between the calories consumed and spent. This occurs because
of the lack of interest that the people take about their health and their alimen-
tation habits. This makes essential to propose a solution or a plan that can lead
the Mexicans through a better and healthier life by generating a change in their
alimentation. For this, it is propose to utilize the swarm intelligence to develop
automatically balanced diets for the necessities of the individuals. There have
been another works that utilized computational algorithms to create balanced
diets but with a totally different equations and structure of this project. As
implementing a multi-objective optimization algorithm NSGA-II and focusing
on diabetic patients [1], or based on the Quantum Genetic Algorithm [2]. There
is also a work focused on the generation of tasty calorie restricted diets using
c© Springer Nature Switzerland AG 2019
Y. Tan et al. (Eds.): ICSI 2019, LNCS 11655, pp. 299–309, 2019.
https://doi.org/10.1007/978-3-030-26369-0_28
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a Differential Evolution algorithm [3] and papers applying the particle swarm
optimization algorithm as [4,5].

Although the previous papers provide acceptable results during the diet
design, they did not consider relevant information such as price which is a rele-
vant factor for complete the diet for the Mexicans. This represents a challenge
for this research to achieve a remarkable difference.

In this paper, it is proposed a methodology to automatically design diets con-
sidering physical characteristics of the subjects in order to determine the basal
metabolic rate in terms of the Harris-Benedict equation, as a reference to design
an accurate diet. The design process is conducted by means of the Artificial
Bee Colony (ABC) algorithm using the equivalent portions of food that allow to
optimize the quantity of calories with restrictions of macronutrients and price.
Additionally, we perform a comparison between the Particle Swarm Optimiza-
tion algorithm. Moreover, the proposed methodology is focused on people with
an age between 18 and 55 (because of the Harris-Benedict equation).

2 Basic Concepts

For understanding the diet automation design is necessary to describe all the con-
cepts related with it. The diet calculations and the ABC algorithm are essential
parts of the process. This section described the elements used for design the
most suitable diet according with the nutritional expectation.

2.1 Diet Calculation

It is possible to create balanced diets with the nutritional quality required to
improve the people’s health and reduce the probabilities of being with over-
weight or obese. The diets vary from each individual according with their phys-
ical characteristics and the specific number of calories required; specially with
kids, seniors and people with food-related diseases. In this paper is consider
individuals between 18 and 55 years old, with purpose of taking people into a
healthier life.

The diet problem works as a linear optimization problem as described in
[6]. In our paper, the objective is to find a low-cost balanced diet that have
the nutrients and caloric requirements for the individuals. The linear problem
formula is defined by the objective function (Eq. 1), focused on minimizing the
cost of the food for the diet, the constrain (Eq. 2) verify the portions of food in
all the nutrients and (Eq. 3) is the definition of the variable’s domain p.

min
∑

i

cipi (1)

∑

i

mijpi ≥ bj ,∀j ∈ {0, ...N} (2)

pi ≥ 0,∀i ∈ {0, ...F} (3)
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where c is the cost of the food, p represents the amount of food, mij is the
amount of nutrients in each food, b denotes the minimal requirement of nutrients,
N represents the set of nutrients considered in the problem and F is the set of
available foods.

The proposal in this paper includes a different approach of the original solu-
tion proposed by Stigler, because it only considered a set of 77 foods. So, we can
remark that one of the problems is that it does not have a sufficient selection of
food. This makes essential to utilize a different approach for the diet generator.
For this, the solution seeks to minimize the calories consumed using Artificial
Bee Colony algorithm, based on the requirements of a balanced diet. Since the
requirements must comply with the equivalent food portions to cover the caloric
needs of a healthy person per day.

The linear problem is defined with several variables that will be described
next. A decision variable xi that means the amount of Kcal by portion of food
i ∈ [1, 24], ci represents the cost of the portion of equivalent food i ∈ [1, 24], gj
is percentage of macronutrient j ∈ {1, 2, 3} described in grams, and finally nij is
the number of macronutrients represented in grams [7] j ∈ {1, 2, 3} (fat, protein,
carbohydrates) contained in the portion of equivalent food i ∈ [1, 24]. With this
information, the linear problem proposed formulations are generated (4)–(7):

min|
∑

i

xi − Kcal| (4)

Subject to
0 ≤ xi ≤ 5616,∀i ∈ [1, 24] (5)

∑

i

ci ≤ bi,∀i ∈ [1, 42] (6)

∑

i

nij ≤ gj ,∀j ∈ {1, 2, 3} (7)

where the grams of protein (Eq. 8) are represented as g1, the grams of fat (Eq. 9)
as g2, the grams of carbohydrates (Eq. 10) as g3 and the number of Kcal (Eq. 11)
corresponded to (Eq. 11) or (Eq. 12), according to [8].

g1 =
Kcal ∗ 0.30

4
(8)

g2 =
Kcal ∗ 0.20

9
(9)

g3 =
Kcal ∗ 0.50

4
(10)

Kcal = 6.4 + (13.7 + w) + 5h − 6.76a (11)

Kcal = 655.1 + (9.6 + w) + 1.8h − 4.7a (12)
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where the variables a, w and h correspond to the age in years of the subject,
weight in kilograms and the height in centimeters respectively. The minimization,
generated between the calories of the diet and Kcal, states the objective function
Eq. 4. The Kcal number established the calories to consume by a healthy person
in a day (called Basal Metabolic Rate [9]). The Kcal are calculated by the
Harris-Benedict formula, which is based on the age, weight and height of the
person and varies depending if is a men (see Eq. 11) or a women (see Eq. 12).

To maintain the amount of carbohydrates, fat and protein under the require-
ments, the Eq. 5 is used. Equation 6 is use to keep the cost of the diet within
budget. The Eq. 7 defines the variable xi domain.

2.2 Artificial Bee Colony

The Artificial Bee Colony (ABC) algorithm was used to find the best solution
to generate an automatic balance diet. ABC algorithm is inspired on the honey
bees behavior with the purpose of solving multidimensional problems [10]. The
algorithm considers the colony size (CS), the number of food sources (FS) and the
limit (L) as control parameters. The limit is the abandoned criteria for a solution.
In the ABC model, the bees are the agents that search for rich food sources close
to their hive, which means good solutions for the problem. The position of the
food source represents the possible solution, and the nectar amount of the source
represents the fitness function of the solution.

The first phase is where the scouts bees discover food sources randomly.
Equation (13) initialize the solution xm that can hold n variables, li and ui are
the lower and upper bounded values i ∈ {1, ..., n} that the solution can take and
r is a random number.

xmi = li + r(ui − li) (13)

In the second phase employed bees search for new food sources vm using Eq. (14),
where xmi is the previous food source i ∈ {1, ..., n}, xki is a food source
i ∈ {1, ..., n} randomly selected from the population and φmi is a random num-
ber between a range previously defined [−a, a].Then a greedy selection is made
between vm and xm.

vmi = xmi + φmi(xmi − xki) (14)

The onlooker bees use probability to choose new food sources. The probability
value pm is obtained by Eq. 15, know as a roulette wheel selection method [11].
Where fitm(xm) is the fitness value of the solution xm.

pm =
fitm(xm)

∑FS
m=1 fitm(xm)

(15)

Scout bees create new solutions when a solution cannot be improved before
the abandoned criteria(L). Algorithm 1 is the psudo-code of the ABC algorithm.
For more details, see [10].
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Algorithm 1 Pseudo-code of ABC
Initialize the first population xi with Eq. 13.
Evaluate the solution.
while maximum cycle not met do

Generate new solutions vm using Eq. 14 and evaluate them.
Make a greedy selection between vm and xm.
Calculate probability pm for solutions xm applying Eq. 15.
Select new solutions vm by onlookers bees from the xm solutions depending on pm
and evaluate them.
Apply the greedy selection process.
Replace the solutions that were not improved before the abandoned criteria (L)
with new ones generated by scout bees.
Memorize the best solution achieved so far

end

3 Proposed Methodology

The propose methodology tries to generate automatic diets by applying an Arti-
ficial Bee Colony algorithm. In order to do that, this methodology is divided
in 4 main steps. The first step is focused on obtaining the nutritional informa-
tion of the equivalent portions of food. The second step was focused on build
a fitness function that allows to measure the quality of the designed diet. The
third step was devoted to determine how to code the solution into the particles.
Finally, taking into account the solutions generated with ABC, different diets
were designed based on a manual nutrition. This section describes these details.

1. Data Source. To solve the problem described, is necessary to obtained the
products and their characteristics from a Database, in order to calculate the
fitness function. First, the objective function evaluates the data on a .csv (coma
separated value) file queried of the data source. This function contains the index
of the equivalent portion of food and quantity of energy in Kcal. These parts of
the index are contained on the equivalent portion of food, quantity of protein,
carbohydrates, fat in grams and the cost in Mexican pesos (MXN). Next, the
.csv file is read and saved in a bi-dimensional array until complete a solution
index. For every iteration, the solution (24 index array) is evaluated; firstly on
the objective function, and then on the fitness function, so, then every index is
searched in the bi-dimensional array and pull the information to calculate the
fitness. The process continues until it gets the best solution. At this time, the
information (food name description, portion and quantity of food to consume)
of each index corresponding to a food is searched by a query on the database.
2. Fitness Function. The Caloric Restricted Diet problem has certain con-
strains in order to find the most feasible solution. There are several techniques
to handle constrained problems as unconstrained. The method applied by ABC is
a tournament selection operator, where two different solutions are compared by
applying the Deb’s rules [12] in order to manage the constrains according with
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[13]. Equation (16) represents the fitness function, which evaluated the non-
viable solutions that are based on the number of violated restrictions. Where
fmax is the worst feasible solution, gj(x) is the violated constraint j ∈ {1, ...,m},
m is the number of violated constrains and f(x) is as defined in Eq. (4).

fit(mx) =
{

f(x) if feasible
fmax +

∑m
j=1 gj(x) otherwise (16)

3. Solution Representation. The solution of the problem will be the best
fitness of the food source vector, this will be represented as a 24 integer array.
Each item in the array represents the index of a equivalent portion of food in
the data source. As it presented in Fig. 1 the array is divided in 7 food groups,
Vegetables (V), Fruits(F), Cereals(C), Animal Origin(A), Sugar(S) and Fat(F),
considered to design a balance diet.

Fig. 1. Structure of the food source represented in a 24 array in terms of different food
groups.

4. Diet Design. According with the nutrition manual published by Instituto
Mexicano del Seguro Social (IMSS) [14], a balance diet must be composed from
19 to 35 equivalent portions of food, which are divided in 8 food groups that must
be eaten through the day, vegtables 4–5, fruits 3–5, cereals 6–11, legumes 1–2,
animal origin 2–5, milk 1–3, fat 1–2, sugar 1–2 portion of food. The equivalent
portion of food are sorted in the 5 different meals(Breakfast (B), Snack 1 (S1),
Lunch (L), Snack 2 (S2) and Dinner (D)), that must be eaten through the day in
order to have at least one portion of equivalent food of each group in the main
meals(B,L,D), and one or two equivalent portion of food between meals (S1,
S2). Table 1 shows the distribution of 24 equivalent portion of foods between
the 5 meals of the day. For this paper, 24 items could met the requirements
of a caloric restricted diet that is bounded between 1200 Kcal and 2000 Kcal
[15]. Milk group is included into the animal origin food group, because of the
distribution of the data source used in this work.

4 Experimental Results

In this paper, several experiments were performed to prove the effectiveness of
the proposed methodology. The dataset used to perform the experimental tests



Automatic Diet Generation by Artificial Bee Colony Algorithm 305

Table 1. Distribution of food portions

Food Vegetables Fruits Cereals Legumes Animal origin Fat Sugar TOTAL

#Portions 4 4 6 2 4 2 2 24

Breakfast 1 1 2 1 1 1 1

Snack 1 1

Lunch 2 1 2 2 1

Snack 2 1

Dinner 1 1 1 1 1 1

was obtained from two sources: the nutritional values was the Standard Reference
(SR), from the United States Department of Agriculture Agricultural Research
Service USDA National Nutrient Database [16] in the latest update from March
2018; the food cost values were obtained by the monthly average price of food
in MXN published by INEGI [17] in the last semester of 2018.

SR database contains more than 7000 food items from several food groups
with the nutritional information and food components. The data is presented as
a 100 g portion of food and the equivalent nutrients for the portion. Also, the
database provided the nutritional information for the amount of a equivalent
portion of food, the one used in this work. The data source presents food in sev-
eral categories included alcoholic beverage, baby food and restaurant food (foods
from a specific provider), these ones were not consider into the data set for the
experimental tests. The categories used in the experiments were assign to the
corresponding food group, Vegetables (V): Vegetables and Vegetable Products
with 767 items; Fruits (F): Fruits and Fruit Juices with 345 items; Cereals (C):
Breakfast Cereals, Baked Products, Cereals Grains and Pasta with 874 items;
Legumes (L): Legumes and Legume Products, Nut and Seed Products with 425
items; Animal Origin and Milk (AO): Sausages and Luncheon Meats, Pork Prod-
ucts, Beef Products,Fish and Shellfish Products, Lamb, Veal and Game Prod-
ucts, Poultry Products, Dairy and Egg Products with 2824 items; Fats (F): Fats
and Oils with 214 items; Sugar: Sweets with 325 items.

The control parameter of ABC Algorithm are: Colony Size (CS) set as
{5, 10, 12, 16, 20, 22, 24, 28, 30, 36, 38, 40, 44, 45, 50, 60, 70, 80, 90, 100},
the limit for scout bees is calculated by Eq. 17 according to [10].

L = (CS ∗ D)/2 (17)

where D is the dimension of the problem and is set as D=24. The number of
Food Sources is set by Eq. 18 as described in [10]

FS = (CS/2) (18)

For each parameter configuration, the program was run 30 times aiming to
know the best and worst solution, the average of the solution and standard
deviation. The caloric goal to reach in these experimental test was 1800 Kcal,
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constrains set as 135 g of protein, 40 g of fat, 225 g of carbohydrates calculated
by equations (8–10) and a budged of $110 MXN, this amount was obtained by
the Encuesta Nacional de Ingresos y Gastos de los Hogares (ENIGH) 2016 [18].

The results of the experiments are listed in Table 2, where the first and sixth
column represent the control parameters configuration, second and seventh col-
umn represent the average solution with standard deviation, third and eight
column the best solution, fourth and ninth column the worst solution and the
fifth and tenth column the average of Kcal generated by the algorithm. The best
solution for each food source configuration is marked in bold and the average
evolution of the solution is graphed in Fig. 2.

Fig. 2. Average of the solution evolution with the 3 best parameters configurations.

Fig. 3. Comparison of the solution evolution with ABC and PSO.

The constrains values of the best set of parameters are listed in Table 3, where
it can be observed that the nutritional restrictions were met without exceeding
an error of 10%. The constraint that does not met requirements is the cost,
it has an error greater than 15%, this may be due to the variation in prices
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Table 2. Experimental results

CS Average Best Worst Kcal CS Average Best Worst Kcal

5 66.53 ± 48.52 0.03 287.87 1823.56 38 0.55± 0.43 0.00 2.96 1800.06

10 149.93 ± 7.62 0.00 608.32 1802.49 40 0.61 ± 0.47 0.01 2.97 1800.11

12 9.84 ± 4.46 0.14 45.87 1801.85 44 0.44 ± 0.29 0.01 3.02 1799.88

16 1.82 ± 1.65 0.01 6.73 1799.97 45 0.28 ± 0.28 0.00 1.20 1800.17

20 23.92 ± 13.93 0.03 87.20 1800.22 50 0.42 ± 0.31 0.00 2.29 1800.00

22 2.92 ± 1.25 0.00 12.23 1800.88 60 0.37 ± 0.24 0.01 1.97 1800.02

24 3.01 ± 1.54 0.032 12.18 1800.75 70 0.35± 0.29 0.00 1.02 1800.11

28 1.52 ± 0.86 0.002 6.45 1800.19 80 0.07± 0.09 0.00 0.32 1799.99

30 10.88 ± 0.75 0.008 5.23 1800.02 90 0.16 ± 0.14 0.00 0.67 1800.01

36 0.34 ± 0.285 0.003 1.00 1800.00 100 0.09 ± 0.11 0.00 0.39 1800.03

in Mexican markets and that the cost obtained by the data source is monthly
average. And finally, in the last row of the table are listed the Kcal, obtained
by the algorithm that has an error of less than 0.1% which means that the ABC
algorithm generates good results meeting the nutritional requirements without
violating the percentage error of %10 with the exception the cost constraint.

ABC algorithm solution is compared with a solution generated by a Particle
Swarm Optimization (PSO) in Fig. 3. The figure shows how faster ABC algo-
rithm is compared with PSO and how the ABC solution almost reach the zero,
while PSO does not, and remain in the same value far from zero through several
iterations. The table shows the configurations for the control parameters of both
algorithms.

Finally, in Table 4 is presented an example of a diet generated by ABC with
the configuration on one of the best parameters that reach the caloric goal with

Table 3. Constrains values reached by ABC algorithm.

Constraint Reached
(L = 840,
FS = 35)

Error Reached
(L = 960,
FS = 40)

Error Reached
(L = 456,
FS = 19)

Error

Protein (g) ≥135 138.36.36 0.0002 138.61 0.0002 136.36 0.0001

Fat (g) ≥40 44.527 0.001 443.648 0.0009 44.543 0.001

Carbs (g) ≥225 233.179 0.0003 229.805 0.0002 229.541 0.0002

Budget (MXN) ≤110 135.97 23.609 142.53 29.572 129.96 18.145

Kcal
desired

Average
(L = 840,
FS = 35)

Error Average

(L = 960,
FS = 40)

Error Average
(L = 456,
FS = 19)

Error

Kcal generated 1800 1800.107 5.9E-07 1799.991 4.8E-08 1800.068 3.7E-07
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Table 4. Average of the constrains values reached for each parameter configuration

Meal Kcal Food Quantity Price

Breakfast 28.08 BRUSSELS SPROUTS 0.5 cup $7.02

7.7 LIME JUICE 1 fl oz $1.00

77.9625 BAGELS 1 oz $9.30

140.4 MUFFINS 1 muffin $8.50

70.98 TOFU FIRM 0.2 block $9.50

273.02 CHICKEN 1 cup, chopped $16.80

29.41 APPLE FRUIT BUTTERS 1 tbsp $1.00

13.44 MAYONNAISE FAT-FREE 2 tbsp $0.50

Snack 1 56.24 PEAR 1 half, with liquid $3.50

Lunch 1.256 RED PEPPERS 1 tbsp $0.50

2.0 GREEN PEPPERS 1 ring $1.00

167.99 PASTA WITH ADDED SALT 1 cup farfalle $6.80

31.92 WHITE BREAD 1 slice crust not eaten $0.50

75.65 LAMB 1 oz $13.50

177.65 PORK (CHOPS) 3 oz $7.00

35.28 ITALIAN SALAD DRESING 1 tbsp $0.40

52.44 QUINCES 1 fruit without refuse $3.60

Snack 2 29.12 GINGERSNAPS COOKIES 1 cookie $6.50

Dinner 9.288 SESAME CRUNCH 1 piece $4.81

72.25 SHRIMP 3 oz $16.83

116.7 CEREAL ALPHA-BITS 1 cup $4.50

92.13 MANDARIN 1 cup $4.50

109.88 YELLOW CORN 1 cup $5.00

129.276 DRIED COCONUT MEAT 1 oz $4.50

Kcal = 1800.062 Prot = 135.58 g Carbs = 225.193 g Fat = 43.659 g $137.06

an error of less than 0.1%, in addition to that, the constrains values has an error
considered within the parameters of the diet design, with a cost of $137.06 MXN
that exceeds the budget by $27.06 MXN.

5 Conclusions

This work described a method to create balanced diets with the nutritional
expectation by applying the Artificial Bee Colony (ABC) algorithm. This diets
are generated using the physical characteristics of the users and looking to
reach the caloric goal in terms of the Harris-Benedict equation. Furthermore,
the restrictions of macronutrients and price are considered by the algorithm to
achieve the design of an accurate diet.

The results were compared against a similar resource as the Particle Swarm
Optimization algorithm (PSO) to identify the best possible solution for the prob-
lem. At last, the ABC algorithm had a significant improve in compare with the
PSO algorithm. This means, that the error percentage of the ABC was lower
and with better results.
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Abstract. As an effective swarm intelligence based optimization technique,
artificial bee colony (ABC) algorithm has become popular in recent years.
However, its performance is still not satisfied in solving some complex opti-
mization problems. The main reason is that both of the employed bee phase and
onlooker bee phase use the same solution search equation to generate new
candidate solutions, and the solution search equation is good at exploration but
poor at exploitation. To solve this problem, in this paper, we propose a multi-
strategy artificial bee colony algorithm with neighborhood search (MSABC-NS).
In MSABC-NS, a multi-strategy mechanism is designed to use two different
solution search equations, and a neighborhood search mechanism is introduced to
make full use of good solutions. Experiments are conducted on 22 widely used
benchmark functions, and three different ABC variants are included in the
comparison. The results show that our approach can achieve better performance
on most of the benchmark functions.

Keywords: Artificial bee colony � Exploration and exploitation �
Multi-strategy mechanism � Neighborhood search

1 Introduction

Artificial bee colony (ABC) algorithm is a swarm intelligence based optimization
technique, and it has become popular in the community of evolutionary algorithms
(EAs) in recent years. Some previous works have pointed out that the performance of
ABC is competitive in comparison with other EAs, such as genetic algorithm (GA)
[1, 2], particle swarm optimization (PSO) [3, 4], and differential evolution (DE) [5].
The basic ABC is proposed by Karaboga in 2005, which simulates the honeybee’s
foraging behavior [6, 7]. The basic ABC contains three different kinds of bees, i.e.,
employed bees, onlooker bees, and scout bees. These three different kinds of bees have
different tasks, but they cooperate to maximize the nectar amount, which implies that
they cooperate to search the optimal solution of optimization problems.

Although the ABC algorithm has shown good performance, its performance is still
not satisfactory in solving some complex optimization problems. Some researchers have
indicated that the basic ABC tends to show slow convergence speed. The main reasons
possibly include two aspects. On the one hand, the solution search equation in the basic
ABC algorithm is good at exploration but poor at exploitation, which leads to an
improper balance between the exploration and exploitation capabilities. As we know, a

© Springer Nature Switzerland AG 2019
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good balance between the exploration and exploitation capabilities is the key issue for
the performance of EAs. On the other hand, different kinds of bees have different tasks,
so the responsibilities should also be different. In the basic ABC, however, the same
solution search equation is used by both of the employed bees and onlooker bees to
generate new candidate solutions, so the performance is limited in this context.

To solve these problems, many different improved ABC variants have been pro-
posed in recent years, and most of them focus on designing new solution search
equations. For instances, Zhu et al. [8] proposed a modified ABC variant (GABC) in
which the global best solution is integrated into the solution search equation to improve
the exploitation capability. Based on the idea of using good solutions, Gao et al. [9]
modified the original solution search equation inspired by the DE mutation strategy
DE/best/1 in their proposed MABC algorithm. In contrast with the two aforementioned
works of using the global best solution, Karaboga et al. [10] designed a neighborhood
search mechanism based on the Euclidean distance in their proposed qABC algorithm,
which aims to improve the exploitation capability while without losing diversity. Very
recently, Cui et al. [11] proposed a modified version of GABC, called MPGABC, in
which a multi-strategy of using different solution search equations is designed, and the
reported experimental results show the effectiveness and efficiency of MPGABC.

Inspired by the above ABC variants, in this paper, we propose a multi-strategy ABC
with neighborhood search (MSABC-NS). As above mentioned, the possible reasons of
the deficiencies include two aspects, so wemake two correspondingmodifications to deal
with the deficiencies, respectively. First, we design a multi-strategy mechanism in which
two different solution search equations are used through a simple IF-ELSE structure.
Second, we introduce a neighborhood search mechanism to make full use of good
solutions. It’s necessary to point out that our modifications is based on the structure of
MPGABC, and the proposed MSABC-NS algorithm can be considered as an improved
version of MPGABC to some extent. In the experiments, a suite of widely used 22
benchmark functions is employed to estimate the performance of our approach, and three
different ABC variants are included in the comparison. The experimental results show
that our approach can achieve better performance on most of the benchmark functions.

The remainder of this paper is organized as follows. We will briefly introduce the
basic ABC algorithm in the Sect. 2, while our proposed algorithm will be described in
detail in the Sect. 3. The Sect. 4 will show the experiments and the corresponding
analysis. The summary of this paper is given in the last section.

2 The Basic ABC Algorithm

The optimization process of the basic ABC algorithm includes four phases, i.e., the
initialization phase, the employed bee phase, the onlooker bee phase and the scout bee
phase. After initialization phase, ABC turns into a loop of the employed bee phase, the
onlooker bee phase and the scout bee phase until the termination condition is met.
These three phases have different responsibilities in terms of their roles in the opti-
mization process. In the employed bee phase, the employed bees are responsible for
exploration, while the onlooker bees has the responsibility of exploitation in the
onlooker bee phase, and the scout bees discards food source which cannot be exploited
further. These four phases are described in detail as follows.
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(1) The initialization phase

In the initialization phase, the initial food sources are generated randomly according
to the Eq. (1). It’s worth noting that a food source represents a candidate solution of the
optimization problem.

xi;j ¼ xminj þ rand 0; 1ð Þ � xmaxj � xminj

� �
; ð1Þ

where xi represents the ith food source, xmaxj and xminj represent the boundary of the jth
dimension.

(2) The employed bee phase

In the employed bee phase, each employed bee searches a new food source by
using the solution search equation listed in the Eq. (2). After all of the employed bees
finish their search, they will share the relevant information with the onlooker bees
which include the nectar amount and the positions of the food sources.

vi;j ¼ xi;j þ;i;j � xk;j � xi;j
� �

; ð2Þ
where xi represents the current food source or parent candidate solution, vi indicates the
new candidate solution. ;i;j is an uniform random number within the range �1; 1½ �.
j 2 1; 2. . .;Df g is a randomly selected dimension, and D is the dimensionality of the
optimization problem. If vi is better than xi in terms of the fitness value, then xi will be
replaced with vi in the next generation. It’s worth noting that the fitness value is
calculated by using the following Eq. (3), where fiti and f xið Þ is the fitness value and
the objective value of xi respectively.

fiti ¼
1

1þ f xið Þ
1þ abs f xið Þð Þ

�
: ð3Þ

(3) The onlooker bee phase

In the onlooker bee phase, onlooker bees will continue to search new food sources,
but this is different from the employed bee phase in which each food source has the
chance to be searched. Instead, onlooker bees favor searching good food sources based
on the received information from the employed bees. The probability of food source
whether is selected depends on the fitness value, and the following Eq. (4) is used to
calculate the probability.

pi ¼ fiti=
XNS

j¼1
fitj: ð4Þ

It can be seen that the bigger the value of fiti is, the higher probability of being
selected for the ith food source. After determining which food source should be
selected, the onlooker bees will use the same solution equation listed in the Eq. (2) to
generate new candidate solutions.

(4) The scout bee phase

In the scout bee phase, if a food source cannot be exploited for limit times, it is
considered to be exhausted, and it will be discarded by the scout bee. As an alternative,
this discarded food source will be randomly initialized by using the above Eq. (1).
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3 The Proposed MSABC-NS Algorithm

3.1 The Multi-strategy Mechanism

In the basic ABC algorithm, both of the employed bee phase and the onlooker bee
phase use the same solution search equation to generate new candidate solutions. Due
to the strong exploration capability but weak exploitation capability of the solution
search equation, the performance of the basic ABC is not satisfactory in solving some
complex problems. Therefore, we attempt to design a multi-strategy ABC variant to
solve this deficiency, which is beneficial to take the advantages of different strategies.

In fact, there already exist some works about multi-strategy ABC variant. Wang
et al. [12] designed a multi-strategy mechanism in which a strategy pool is constructed
based on three solution search strategies. When the food source cannot be successfully
updated by some solution search strategy, a different new strategy will be randomly
selected from the strategy pool to replace the old strategy. However, due to the reason
of random selection, the efficiency of the algorithm can be improved further.

Very recently, Cui et al. [11] designed a new multi-strategy mechanism in their
proposed MPGABC algorithm in which two different solution search strategies are
included. The first strategy is the same with the basic solution search equation, while
the second one uses the information of the global best solution to guide search. To
control the frequency of these two strategies, a control parameter P is introduced which
has significant impact on the performance of MPGABC. However, a fixed value of P is
employed, which may hinder the versatility of MPGABC.

Being inspired by the above multi-strategy ABC variants, we attempt to propose a
simple but effective multi-strategy mechanism to enhance the performance of ABC. In
the algorithm 1, the structure of the proposed multi-strategy mechanism is first given
for a clear description. In there, Xpbest is a randomly selected food source from a food
source set which contains the top N best food sources. The value of N is set to SN � q,
SN is the number of food sources and q is a random number in the range 2

SN ; 0:1
� �

. ui;j

is an uniformly distributed random number in the range 0; 1:5½ �. Xk is a randomly
selected food source from the population. ;i;j is an uniformly distributed random
number in the range �1; 1½ �.

It can be seen from the algorithm 1, Xpbest is a member of the top N food sources
which implies it has relatively good fitness value, and it can be considered as an elite
solution. What’s more, ui;j is set to be larger than 0, this is helpful to push Xi to move
toward Xpbest, and the convergence rate of the algorithm can be speeded up to some
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extent. It’s worth noting that the value of N is not fixed, which is beneficial to prevent
the algorithm from being too greedy [13]. If the food source Xi cannot be improved by
the Xpbest, the original solution search equation in the basic ABC is used as an alter-
native. To some extent, this IF-ELSE structure can enhance the exploitation capability
while without losing the exploration capability. In addition, the new probability model
in the MGPABC algorithm is still kept in our proposed algorithm for the onlooker bees.

3.2 The Neighborhood Search Mechanism

In order to further improve the performance of our approach, the global neighborhood
search (GNS) operator proposed by Wang et al. [14] is introduced into our approach.
The neighborhood search is to search the vicinity area of candidate solutions for better
solutions. In fact, in different EAs, researchers have designed a variety of different
types of neighborhood search operations. For example, Wang et al. [14] proposed a
global neighborhood search operation to solve the problem of slow convergence speed
of PSO algorithm. Although different neighborhood search operations have their own
characteristics, they all effectively improve the performance of the corresponding
algorithm. In this paper, we directly adopt the GNS operation to further improve the
performance of our approach. The GNS operation has a simple structure but good
performance, and the Eq. (5) is used in the GNS operation

TXi ¼ r1 � Xi þ r2 � Xgbest þ r3 � Xa � Xbð Þ: ð5Þ

In the Eq. (5), TXi is the candidate solution, Xgbest is the global best solution in the
population, Xa and Xb are exclusive food sources and they are randomly selected from
the population, what’s more, they have to be different from Xi. The parameters r1, r2
and r3 are exclusive random numbers within [0, 1], and they have to meet the condition
r1 þ r2 þ r3 ¼ 1. A clear demonstration of the GNS operation is presented in Fig. 1. In
order to control use frequency of the GNS operation, we set the probability of using the
GNS operation to 0.1.

3.3 Pseudo-code of MSABC-NS

In this paper, we propose an improved ABC variant (MSABC-NS) by combining a
simple multi-strategy mechanism with the GNS operator. The pseudo-code of

Xi

Xa

Xb

Gbest

The available 
search

Fig. 1. The global neighborhood search operator.
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MSABC-NS is described in the algorithm 2. In there, FEs is the number of used fitness
function evaluations, and MaxFEs, as the stopping criterion, is the maximal number of
fitness function evaluations. The control parameter P is set to 0.1, triali represents the
non-updated times of the i th food source.
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4 Experiments and Analysis

4.1 Benchmark Functions

We use 22 widely used benchmark functions to verify our approach. In these functions,
F1–F9 are the unimodal functions, F6 is an uncontinuous step function, F10 is mul-
timodal when its dimension is more than three, and F11–F22 are multimodal functions.
The detailed definitions about the functions are listed in the Table 1. For the parameter
settings of our approach, SN is set to 50, dimensionality of the functions D is set to 30,
maxFES is set to 5000 � D and limit is set to SN � D=2. Each algorithm is run 25 times
per function, the average function values are recorded.

Table 1. The 22 benchmark functions used in the experiments.

Function Name Range Optimum

F1 Sphere �100; 100½ �D 0

F2 Elliptic �100; 100½ �D 0

F3 SumSquare �10; 10½ �D 0

F4 SumPower �1; 1½ �D 0

F5 Schwefel2.22 �10; 10½ �D 0

F6 Schwefel2.21 �100; 100½ �D 0

F7 Step �100; 100½ �D 0

F8 Exponential �10; 10½ �D 0

F9 Quartic �1:28; 1:28½ �D 0

F10 Rosenbrock �5; 10½ �D 0

F11 Rastrigin �5:12; 5:12½ �D 0

F12 NCRastrigin �5:12; 5:12½ �D 0

F13 Griewank �600; 600½ �D 0

F14 Schwefel2.26 �500; 500½ �D 0

F15 Ackley �50; 50½ �D 0

F16 Penalized1 �100; 100½ �D 0

F17 Penalized2 �100; 100½ �D 0

F18 Alpine �10; 10½ �D 0

F19 Levy �10; 10½ �D 0

F20 Weierstrass �1; 1½ �D 0

F21 Himmelblau �5; 5½ �D −78.33236

F22 Michalewicz 0; p½ �D −30, −50, −100
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4.2 Verifications of the Proposed Algorithmic Components

Our approach includes two components, i.e., the multi-strategy mechanism and the
GNS operator. To verify these two components, two compared algorithms are designed
as baselines, i.e., MPGABC-IE and MPGABC-NS. MPGABC-IE represents the
MPGABC algorithm only replace its multi-strategy mechanism with our proposed
multi-strategy mechanism, while MPGABC-NS only adds the GNS operator. The
compared results are shown in the Table 2 and the best results are shown in boldface.

As we can see from the Table 2, when compared with MPGABC, MPGABC-IE
can get better results on the functions F1, F2, F3, F5, F10, F18 and F20, this implies
that the proposed multi-strategy mechanism has shown better performance. Similarly,
MSABC-NS has achieved better results on most test functions, and this indicates that
the GNS operator indeed improve the performance of the algorithm. After by combing
these two components, MSABC-NS has shown the best performance among the
included four algorithms.

Table 2. Efficiency of the proposed algorithmic components.

Function MPGABC MPGABC-IE MPGABC-NS MSABC-NS

F1 6.52E−53 7.80E−57 6.60E−63 2.43E−58
F2 8.06E−50 3.88E−54 1.52E−58 5.20E−55
F3 4.59E−54 7.82E−58 5.97E−64 1.60E−58
F4 3.44E−58 6.40E−45 2.36E−64 3.01E−43
F5 9.32E−29 2.12E−32 7.22E−33 1.96E−33
F6 1.01E+00 4.55E+00 2.96E−22 1.84E−10
F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F8 4.10E−06 4.13E−06 0.00E+00 0.00E+00
F9 2.36E−02 2.61E−02 3.45E−04 6.06E−04
F10 1.05E+00 6.16E−01 2.81E+01 2.60E+01
F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F12 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F13 0.00E+00 4.88E−17 0.00E+00 0.00E+00
F14 3.82E−04 3.82E−04 3.82E−04 3.82E−04
F15 3.48E−14 3.50E−14 2.15E−15 2.01E−15
F16 1.57E−32 1.57E−32 1.57E−32 1.57E−32
F17 1.35E−32 1.35E−32 2.78E−24 1.35E−32
F18 3.86E−08 2.65E−09 9.91E−09 4.27E−13
F19 1.35E−31 1.35E−31 4.39E−03 1.35E−31
F20 2.23E−03 1.65E−04 6.56E−04 1.53E−04
F21 −7.83E+01 −7.83E+01 −7.83E+01 −7.83E+01
F22 −2.86E+01 −2.86E+01 −2.86E+01 −2.86E+01

A Multi-Strategy Artificial Bee Colony Algorithm 317



4.3 Compared with Other State-of-the-Art ABCs

In order to further verify the performance of MSABC-NS, we compare it with other
three state-of-the-art ABC variants, i.e., GABC, MABC and MPGABC. The brief
introductions of these three ABC variants have been given in the Sect. 1. The results
are shown in the Table 3 and the best results have been marked in boldface. As seen,
MSABC-NS also achieved the best performance among the four involved algorithms.

5 Conclusion

In order to enhance the performance of the basic ABC algorithm, we proposed a multi-
strategy ABC with the neighborhood search operator. In the multi-strategy mechanism,
two different solution search equations are used through a simple IF-ELSE structure,
which aims to take the advantages of different solution search equation. Furthermore, a
global neighborhood search operator is introduced into our approach to improve the
performance, and this operator is helpful to speed up the convergence rate while
without losing diversity. Based on the 22 wildly used benchmark functions, the
experimental results have shown the effectiveness of our approach.

Table 3. Experimental results of MABC, qABC, MPGABC and MSABC-NS.

Function MABC qABC MPGABC MSABC-NS

F1 4.82E−39 1.34E−15 6.52E−53 2.43E−58
F2 4.36E−36 2.70E−20 8.06E−50 5.20E−55
F3 3.20E−40 4.65E−22 4.59E−54 1.60E−58
F4 2.11E−35 7.13E−51 3.44E−58 3.01E−43
F5 5.01E−21 7.78E−23 9.32E−29 1.96E−33
F6 9.37E+00 2.89E+00 1.01E+00 1.84E−10
F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F8 6.71E−06 6.78E−06 4.10E−06 0.00E+00
F9 2.87E−02 2.91E−02 2.36E−02 6.06E−04
F10 3.42E+00 7.15E−02 1.05E+00 2.60E+01
F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F12 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F13 1.13E−15 0.00E+00 0.00E+00 0.00E+00
F14 3.82E−04 3.82E−04 3.82E−04 3.82E−04
F15 3.06E−14 3.10E−14 3.48E−14 2.01E−15
F16 1.57E−32 6.85E−13 1.57E−32 1.57E−32
F17 1.35E−32 2.00E−17 1.35E−32 1.35E−32
F18 4.44E−17 1.19E−16 3.86E−08 4.27E−13
F19 1.35E−31 2.60E−13 1.35E−31 1.35E−31
F20 0.00E+00 0.00E+00 2.23E−03 1.53E−04
F21 −7.83E+01 −7.83E+01 −7.83E+01 −7.83E+01
F22 −2.86E+01 −2.86E+01 −2.86E+01 −2.86E+01
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Abstract. Border reconstruction is a key technology in medical image
processing, where it is applied to identify and separate different tissues,
organs, and tumors in diagnostic procedures. The classical approaches
for this problem are based on either linear or polynomial functions to
describe the border of the region of interest. However, little effort has
been devoted to the more powerful case of rational functions, which
extend the polynomial case by including extra degrees of freedom (the
weights). As a consequence, rational functions are more difficult to com-
pute. In this paper, we solve the problem by applying a nature-inspired
swarm intelligence method called cuckoo search algorithm. The method
is applied to two illustrative examples of medical images with satisfactory
results.

Keywords: Swarm intelligence · Cuckoo search algorithm ·
Medical imaging · Border reconstruction · Rational curves

1 Introduction

The automatic detection and reconstruction of the borders of objects and areas
in images has been a major topic of research in several areas for decades. This
problem arises very often in fields such as image processing, pattern recogni-
tion, artificial vision, and virtual and augmented reality, to mention just a few.
It is also a key technology for medical applications, as it helps to identify and
discriminate different tissues and organs for medical visualization in popular
non-invasive diagnostic procedures such as computer tomography, magnetic res-
onance imaging, infrared imaging, dermoscopy, ultrasonography, magnetic reso-
nance spectroscopy, and many others. In fact, medical image processing is one
of the most relevant application fields of border detection and reconstruction.
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The classical graphical pipeline in automatic medical image processing con-
sists of three stages: (1) image segmentation; (2) feature extraction and feature
selection; and (3) classification. Typically, the process starts with a medical
image obtained by either of the many clinical procedures based on this technol-
ogy. While in the past the image was directly used by the medical specialist for
visual analysis for diagnostic and therapeutic purposes, the current trend today
is to automate the process as much as possible [7,10,11]. However, in many
cases the first step of the process is still highly manual: after visual inspection of
the image, the medical specialist selects a set of points of the image by clicking
with the mouse on the computer screen or a display device. Such points, usu-
ally referred to as feature points, correspond to the border between regions of
interest (ROIs), usually corresponding to different tissues or organs, or enclos-
ing a possible lesion or tumor. This process is called border detection [2]. After
this initial selection of feature points, a computer software applies graphical rou-
tines to determine the border of the ROI under analysis, a process called border
reconstruction.

The classical procedure in border reconstruction of medical images is to con-
sider a simple polyline connecting consecutive feature points with straight seg-
ments. The output of this process is a polygonal enclosing the ROI. Such a
polyline gives a rough approximation of the boundary between the ROI and the
surrounding background, which is usually enough in many cases, provided that
the number of feature points is large enough to describe all the geometry of
the border with certain accuracy. However, this procedure can be improved by
considering free-form parametric curves, which take advantage of a higher num-
ber of degrees of freedom to add extra flexibility to this process. For instance,
the polyline does not represent the real process well, as the border of medi-
cal images is not generally piecewise linear. In addition, this linear procedure
relies on interpolation schemes that enforce the border to pass through all fea-
ture points. This is often troublesome, as medical data are typically affected
by artifacts inherent to manual processes, such as outliers and noise in data.
Under such conditions, approximation schemes (that only require the border to
pass near the feature points) are better suited for this problem [1]. Furthermore,
approximation schemes are more advantageous in terms of accuracy, computer
memory, and data storage capacity, as the border can be accurately described
by a few tens of parameters even for very large collections of feature points.
Because of these reasons, in this paper we will consider approximation schemes
for this border reconstruction step.

Classical approximation techniques for border reconstruction with free-form
parametric curves are primarily based on polynomial schemes, such as the popu-
lar Bézier and B-spline curves [6]. Such schemes can be improved by considering
some extra real parameters called weights, which allow the user to modify the
shape of the curve locally by simply changing the weight of one or several poles
of the curve without changing the location of the poles. This is an interesting and
valuable feature, as it makes it possible to reduce the degree of the curve signifi-
cantly without penalizing the approximation accuracy. The resulting parametric
curve is no longer a polynomial function but a rational one.
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Unfortunately, using rational curves is by far much more difficult than the
polynomial case, because some extra variables (the weights) have also to be com-
puted. In addition, the different variables (data parameters, poles, and weights)
are strongly related to each other in a highly nonlinear way [3]. As a result, we
have to solve a difficult continuous multivariate nonlinear optimization problem
that cannot be properly solved in the general case through traditional mathe-
matical optimization techniques.

Our method to solve this problem is based on a nature-inspired metaheuris-
tics called cuckoo search algorithm and introduced by Prof. X.S. Yang in 2009
to solve difficult optimization problems [14]. The algorithm is inspired by the
obligate interspecific brood-parasitism of some cuckoo species that lay their eggs
in the nests of host birds of other species. Since its inception, the cuckoo search
(specially its variant that uses Lévy flights) has been successfully applied in sev-
eral papers reported recently in the literature to difficult optimization problems
from different domains [12,13,15], including data fitting with polynomial curves
[5]. However, to the best of our knowledge, the method has never been used so
far for border reconstruction of medical images with rational curves.

The structure of this paper is as follows: the fundamentals and main features
of the cuckoo search algorithm are discussed in Sect. 2. The problem of data fit-
ting with rational Bézier curves is discussed in Sect. 3. The proposed method to
solve the border reconstruction problem is presented in Sect. 4. To illustrate the
performance of our method, it is applied in Sect. 5 to perform border reconstruc-
tion of two medical images. The paper closes in Sect. 6 with the main conclusions
of this contribution and our plans for future work in the field.

2 The Cuckoo Search Algorithm

Cuckoo search (CS) is a nature-inspired population-based metaheuristic algo-
rithm originally proposed by Yang and Deb in 2009 to solve optimization prob-
lems [14]. The algorithm is inspired by the brood-parasitism of some cuckoo
species that lay their eggs in the nests of host birds of other species with the aim
of escaping from the parental investment in raising their offspring. This strategy
is also useful to minimize the risk of egg loss to other species, as the cuckoos can
distributed their eggs amongst a number of different nests. Of course, sometimes
it happens that the host birds discover the alien eggs in their nests. In such
cases, the host bird can take different responsive actions varying from throwing
such eggs away to simply leaving the nest and build a new one elsewhere.

This interesting and surprising breeding behavioral pattern is the metaphor
of the cuckoo search metaheuristic approach for solving optimization problems.
In the cuckoo search algorithm, the eggs in the nest are interpreted as a pool of
candidate solutions of an optimization problem while the cuckoo egg represents
a new coming solution. The ultimate goal of the method is to use these new (and
potentially better) solutions associated with the parasitic cuckoo eggs to replace
the current solution associated with the eggs in the nest. This replacement,
carried out iteratively, will eventually lead to a very good solution of the problem.
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In addition to this representation scheme, the CS algorithm is also based on
three idealized rules [14,15]:

Table 1. Cuckoo Search Algorithm via Lévy flights as originally proposed in [14,15].

1. Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;
2. The best nests with high quality of eggs (solutions) will be carried over to

the next generations;
3. The number of available host nests is fixed, and a host can discover an alien

egg with a probability pa ∈ [0, 1]. In this case, the host bird can either throw
the egg away or abandon the nest and build a new nest in a new location.

For simplicity, the third assumption can be approximated by a fraction pa

of the n nests being replaced by new nests (with new random solutions at new
locations). For a maximization problem, the quality or fitness of a solution can
simply be proportional to the objective function. However, other (more sophis-
ticated) expressions for the fitness function can also be defined.

Based on these three rules, the basic steps of the CS algorithm can be sum-
marized as shown in the pseudo-code reported in Table 1. Basically, the CS
algorithm starts with an initial population of n host nests and it is performed
iteratively. In the original proposal, the initial values of the jth component of
the ith nest are determined by the expression xj

i (0) = rand.(upj
i − lowj

i )+ lowj
i ,

where upj
i and lowj

i represent the upper and lower bounds of that jth compo-
nent, respectively, and rand represents a standard uniform random number on
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the open interval (0, 1). Note that this choice ensures that the initial values of
the variables are within the search space domain. These boundary conditions
are also controlled in each iteration step.

For each iteration g, a cuckoo egg i is selected randomly and new solutions
xi(g + 1) are generated by using the Lévy flight, a kind of random walk in
which the steps are defined in terms of the step-lengths, which have a certain
probability distribution, with the directions of the steps being isotropic and
random. According to the original creators of the method, the strategy of using
Lévy flights is preferred over other simple random walks because it leads to
better overall performance of the CS. The general equation for the Lévy flight
is given by:

xi(g + 1) = xi(g) + α ⊕ levy(λ) (1)

where g indicates the number of the current generation, and α > 0 indicates the
step size, which should be related to the scale of the particular problem under
study. The symbol ⊕ is used in Eq. (1) to indicate the entry-wise multiplication.
Note that Eq. (1) is essentially a Markov chain, since next location at generation
g + 1 only depends on the current location at generation g and a transition
probability, modulated by the Lévy distribution as:

levy(λ) ∼ g−λ, (1 < λ ď 3) (2)

which has an infinite variance with an infinite mean. The generation of random
numbers with Lévy flights is comprised of two steps: firstly, a random direction
according to a uniform distribution is chosen; then, the generation of steps fol-
lowing the chosen Lévy distribution is carried out. The authors suggested to use
the so-called Mantegna’s algorithm for symmetric distributions, where “sym-
metric” means that both positive and negative steps are considered (see [12] for
details). Their approach computes the factor:

φ̂ =

⎛
⎝ Γ (1 + β̂).sin

(
π.β̂
2

)

Γ
((

1+β̂
2

)
.β̂.2

β̂−1
2

)
⎞
⎠

1
β̂

(3)

where Γ denotes the Gamma function and β̂ =
3
2

in the original implementation

by Yang and Deb [15]. This factor is used in Mantegna’s algorithm to compute
the step length ς as: ς = u

|v|
1
β̂

, where u and v follow the normal distribution

of zero mean and deviation σ2
u and σ2

v , respectively, where σu obeys the Lévy
distribution given by Eq. (3) and σv = 1. Then, the stepsize ζ is computed as:

ζ = 0.01 ς (x − xbest) (4)

where ς is computed as above. Finally, x is modified as: x ← x + ζ.Ψ where Ψ
is a random vector following the normal distribution N(0, 1).
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The CS method then evaluates the fitness of the new solution and compares
it with the current one. In case the new solution brings better fitness, it replaces
the current one. On the other hand, a fraction of the worse nests (according to
the fitness) are abandoned and replaced by new solutions so as to increase the
exploration of the search space looking for more promising solutions. The rate
of replacement is given by the probability pa, a parameter of the model that has
to be tuned for better performance. Moreover, for each iteration step, all current
solutions are ranked according to their fitness and the best solution reached so
far is stored as the vector xbest (used, for instance, in Eq. (4)). This algorithm
is applied in an iterative fashion until a stopping criterion is met.

3 Problem to Be Solved

We assume that the reader is familiar with the free-form parametric curves [8,9].
Mathematically, a free-form rational Bézier curve Φ(τ) of degree η is defined as:

Φ(τ) =

η∑
j=0

ωjΛjφ
η
j (τ)

η∑
j=0

ωjφ
η
j (τ)

(5)

where Λj are vector coefficients called the poles, ωj are their scalar weights,
φη

j (τ) are the Bernstein polynomials of index j and degree η, given by:

φη
j (τ) =

(
η

j

)
τ j (1 − τ)η−j

and τ is the curve parameter, defined on the finite interval [0, 1]. By convention,
0! = 1. Note that in this paper vectors are denoted in bold.

Suppose now that we are given a set of data points {Δi}i=1,...,κ in R
ν (usually

ν = 2 or ν = 3). Our goal is to obtain the rational Bézier curve Φ(τ) performing
discrete approximation of the data points {Δi}i. To do so, we have to compute
all parameters (i.e. poles Λj , weights ωj , and parameters τi associated with
data points Δi, for i = 1, . . . , κ, j = 0, . . . , η) of the approximating curve Φ(τ)
by minimizing the least-squares error, Υ , defined as the sum of squares of the
residuals:

Υ = minimize
{τi}i
{Λj}j

{ωj}j

⎡
⎢⎢⎢⎢⎢⎣

κ∑
i=1

⎛
⎜⎜⎜⎜⎜⎝

Δi −

η∑
j=0

ωjΛjφ
η
j (τi)

η∑
j=0

ωjφ
η
j (τi)

⎞
⎟⎟⎟⎟⎟⎠

2⎤
⎥⎥⎥⎥⎥⎦

. (6)

Now, taking:

ϕη
j (τ) =

ωjφ
η
j (τ)

η∑
k=0

ωkφη
k(τ)

(7)
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Fig. 1. Original medical images and their corresponding selected border feature points.

Eq. (6) becomes:

Υ = minimize
{τi}i
{Λj}j

{ωj}j

⎡
⎢⎣

κ∑
i=1

⎛
⎝Δi −

η∑
j=0

Λjϕ
η
j (τ)

⎞
⎠

2
⎤
⎥⎦ , (8)

which can be rewritten in matrix form as: Ω.Λ = Ξ, where: Ω = [Ωi,j ] =⎡
⎣

(
κ∑

k=1

ϕη
i (τk)ϕη

j (τk)

)

i,j

⎤
⎦, Ξ = [Ξj ] =

⎡
⎣

(
κ∑

k=1

Δkϕη
j (τk)

)

j

⎤
⎦, Λ = (Λ0, . . . ,

Λη)T , for i, j = 0, . . . , η, and (.)T means the transposition of a vector or a
matrix. In general, κ >> η meaning that the system of equations Ω.Λ = Ξ is
over-determined. If values are assigned to the τi, our problem can be solved as
a classical linear least-squares minimization, with the coefficients {Λi}i=0,...,η

as unknowns. This problem can readily be solved by standard numerical tech-
niques. On the contrary, if the values of τi are treated as unknowns, the problem
becomes much more difficult. Indeed, since the polynomial blending functions
φη

j (τ) are nonlinear in τ and so are the rational blending functions ϕη
j (τ), the

least-squares minimization of the errors is a nonlinear continuous optimization
problem. Note also that in many practical cases the number of data points can be
extremely large, meaning that we have to deal with a large number of unknowns.
It is also a multimodal problem, since there might be arguably more than one
set of parameter values leading to the optimal solution.

In conclusion, the complex interplay among all sets of unknowns (data param-
eters, poles, and weights) leads to a very difficult over-determined, multimodal,
multivariate, continuous, nonlinear optimization problem. In this work, we are
interested to solve this general problem. Instead of making assumption about
the values of some free parameters, we include all of them in our computations.
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Fig. 2. Graphical results for the first example: image and rational border curve: (left)
without and (right) with the feature points.

4 The Cuckoo Search Method

Our approach is based on the application of the cuckoo search method with
Lévy flights described in Sect. 2 to our initial input, i.e., the set of feature
points {Δi}i=1,...,κ. We consider an initial parameterization and set of weights,
assumed to be random in their respective domains, and apply the cuckoo search
on a collection of individuals consisting of the vector Sg = {Pg,Wg}, where
Pg = {τg

1 , . . . , τg
κ}, Wg = {ωg

0 , . . . , ω
g
η}, and the superscript g denotes the gen-

eration index. The procedure computes the final values of data parameters and
weights. Then, inserting them into Eq. (7), we apply least-squares minimization
to compute the values of {Λi}i=0,...,η according to Eq. (8).

As it is very well-known, the parameter tuning of metaheuristic methods is
largely a problem-dependent issue [4]. Fortunately, the cuckoo search is spe-
cially advantageous in this regard. In clear contrast to other metaheuristics
that typically depend on several parameters, cuckoo search depends on only
two parameters (the population size, n and the probability pa) so the parameter
tuning becomes a much simpler task. In this paper they are set to n = 100 and
pa = 0.25, as these values have already been used in previous papers with good
results [5]. Regarding our stopping criterion, the method was executed for niter

iterations, with niter set to 50, 000 generations in our examples.

5 Experimental Results

Our method has been applied to two medical images of skin cancer obtained from
the digital image archive of the Medical Center, University of Groningen (The
Netherlands). They are shown in Fig. 1. The figure shows the original images with
a collection of superimposed feature points identified by a trained dermatologist
as belonging to the boundary of the skin lesion. Our results for both examples
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Fig. 3. Graphical results for the second example: image and rational border curve:
(left) without and (right) with the feature points.

are shown in Figs. 2 and 3, respectively. The figures show the original medical
image and the best reconstructed rational border curve without (left) and with
(right) the feature points. From the figures we can see that the method obtains
a very good fitting of the data points for both examples. The corresponding
convergence diagrams for both examples are shown in Fig. 4.

Fig. 4. Convergence diagram for the first (left) and the second example (right).

6 Conclusions and Future Work

In this paper we focus on the problem of border reconstruction for medical images
with rational curves. Given a collection of feature points assumed to lie on the
boundary of a certain region of interest, the goal is to determine the rational
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curve that best fits these data points in the least-squares sense. Although this
problem has already been addressed in the literature for the polynomial case,
it was still unsolved for rational curves, which are more general and flexible
but also more challenging, as they include some extra degrees of freedom (the
weights) that have also to be computed. The method presented in this paper
is based on the cuckoo search algorithm. It has been applied to two examples
of medical images with visually satisfactory results. The limiting factor of this
method is that it requires many iterations to converge, making it unsuitable for
real-time applications. Future work includes the extension of this approach to
the case of piecewise rational functions, its generalization to the case of surfaces
for volumetric reconstruction, and reducing the number of required iterations.
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Abstract. In this paper, we study the fruit fly in the fruit fly optimization
algorithm (FOA) system moving in a quantum multi-dimensional space and
propose a quantum behaved fruit fly optimization algorithm (QFOA) for the
continuous function optimization problem. Computational experiments and
comparisons are carried out based on a set of benchmark functions. The com-
putational results show the advantage of QFOA to the original FOA.

Keywords: Fruit fly optimization algorithm (FOA) � Quantum �
Continuous function optimization problem

1 Introduction

Fruit fly optimization algorithm (FOA) is a novel proposed swarm intelligent opti-
mization, which is inspired by the food finding behavior of fruit flies [1]. Recently,
FOA attracts researchers’ attention and is used to solve more and more optimization
problems, for example, the semiconductor final testing scheduling problem [2], UAV
path planning [3, 4], general regression neural network optimization [5], parameter
tuning for proportional-integral-derivative controllers [6, 7], and so on.

In order to further improve the efficiency and global search ability of the FOA,
several improved versions of FOA are proposed by researchers [2–8]. Zhang et al. [3]
fuses the phase angle-encoded and mutation adaptation mechanisms into the basic
FOA, in which the designed osphresis-based search procedure using the mutation
adaptation mechanism enhances the balance of FOA in terms of the exploitation and
exploration ability, while the phase angle-based encoded strategy for fruit fly locations
helps to achieve the high performance in the convergence process. Pan et al. [8]
introduced a new control parameter to adjust the search scope around the fruit fly
swarm location adaptively as well as a new solution generating method to enhance the
accuracy and convergence rate, and presented the improved fruit fly optimization
(IFFO) algorithm.
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Sun et al. [9–11] put forward a quantum behaved particle swarm optimization
(QPSO) algorithm model from the perspective of Quantum Mechanics view rather than
the Newtonian rules assumed in all previous versions of PSO. QPSO was tested on
some benchmark functions and experimental results showed that QPSO outperforms
PSO. Inspired by their contributions, in this paper, the novel quantum behaved fruit fly
optimization algorithm (QFOA) is proposed to solve the continuous function opti-
mization problems. Simulation results on benchmark functions are given to demon-
strate the effectiveness and feasibility of the proposed approach.

The rest of this paper is organized as follows. Overview of the basic FOA is
described in Sect. 2. Section 3 presents the QFOA in details. Numerical experiment
comparisons on the benchmark functions are provided in Sect. 4. Section 5 concludes
this paper finally.

2 Fruit Fly Optimization Algorithm

Fruit flies are superior to other species in terms of olfactory and visual senses [1]. When
fruit flies look for the food, they use the olfactory organ to sense various odors, and use
the visual organ to spot the food.

The FOA is inspired by the behavior of the fruit flies. As the process illustrated in
Fig. 1, FOA randomly generates a fruit fly swarm’s initial location, and then, the fruit
fly is assigned the random direction and distance for following movement. As the food
location is unknown, the distance to the origin is estimated. After they arrive at the new
positions, the algorithm can find the best position with the results of calculation and
judgment. Repeating this process and FOA can finally get the optimal solution.
Compared with existing bio-inspired algorithms, FOA is much simpler and straight-
forward to implement [4], which only takes several lines to code the core part in any
programming language.

3 Quantum-Behaved FOA

(1) Quantum delta potential well model

According to the quantum theory, objects are described by the wave function wðx; tÞ,
rather than the position x and velocity v. Any quantum object has the wave-like
properties and can exist in many places at once. In the quantum space, the probability
of the object appearing on a spot is proportional to the strength module of the wave
function on this spot, as follows

w x; tð Þj j2dxdydz ¼ Qdxdydz ð1Þ

where Qdxdydz is the probability of the object appearing on the spot x ¼ ðx; y; zÞ at
time t. Thus, the strength module w x; tð Þj j2 is the probability density function satisfying
the following equation
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Z þ1

�1
wj j2dxdydz ¼

Z þ1

�1
Qdxdydz ¼ 1 ð2Þ

In the quantum physics, the motion of objects is described by the Schrödinger’s
equation as follows

ð3Þ

where ħ is a constant called Planck Constant, Ĥ is the Hamiltonian operator which is
given by the following equation

STRUCTURE OF FOA 
/* Initialization */  

1 Set the generation counter NC = 0; 
2 Set the number of fruit flies as Mpop; 
3 Randomly initialize the fruit fly swarm’s location as [Xaxis, Yaxis];

/* Iterative search */
4 while termination criteria is not satisfied do
5 Generation counter NC = NC + 1

/* Search using osphresis */
6 for i = 1 : Mpop do
7 Generate the random direction and distance, and

Xi = Xaxis + random
Yi = Yaxis + random

9 Compute the distance to the origin: 
22

iii YXD +=

10 Calculate the judged value of smell concentration:
Si=1/Di

11 Evaluate the smell concentration judge function (also called fitness function) to 
get the smell concentrations:

Smelli = f(Si) 
12 end for

/* Search using vision */
13 Select the fruit fly that has the best smell concentration:

index = arg max( Smelli ) 
14 if [Xindex, Yindex] has the better smell than [Xaxis, Yaxis], then The fruit fly uses vision to fly 

towards the location:
Xaxis = Xindes and Yaxis = Yindes

15 end while

 

Fig. 1. Procedure of FOA.
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ð4Þ

where m is the object mass and V(x) denotes the potential field of the object.

(2) Quantum behaved fruit fly

Fruit flies search for the food around the location of the fruit fly swarm, and this
random search behavior can be replaced by a quantum behavior. We hypothesize the
fruit fly swarm move in the quantum space, and each fruit fly searches for the food
source in the Delta potential well, of which the location of the fruit fly swarm paxis is
the center.

For simplicity, the one-dimensional space is considered here. Thus, if the location
of the food source is denoted by x, its potential energy in the one-dimensional Delta
potential well is represented as follows

VðxÞ ¼ �cdðx� paxisÞ ¼ �cdðyÞ ð5Þ

According to the Schrödinger’s equation, the following normalized wave function
can be obtained as

wðyÞ ¼ 1ffiffiffi
L

p e� yj j=L ð6Þ

where L is the characteristic length of Delta potential well. Therefore, the probability
density function is as follows

QðyÞ ¼ wðyÞj j2¼ 1
L
e�2 yj j=L ð7Þ

The above equation is equated to

y ¼ � L
2
ln
1
u

ð8Þ

where u is the random number uniformly distributed on (0, 1). Hence, we can obtain
the food source location that the fruit fly searches for, which is determined as follows

x ¼ paxis � L
2
ln
1
u

ð9Þ

(3) Osphresis-based Search using the Quantum Behavior

In the QFOA algorithm, it assumes that a 1-D Delta potential well exists on each
dimension at the swarm center attractor point, and every osphresis-based search
behavior of the fruit fly has the quantum properties. The quantum-behaved foraging
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process of the fruit fly is depicted by the wave function instead of the completely
random way.

For the two models of the basic FOA, the quantum-behaved searching mechanism
for osphresis-based search are described in details as follows.

In the osphresis-based search process, Mosp new locations of the food source are
generated in the Delta potential well of which the swarm location (Xaxis, Yaxis) is the
center. The quantum-behaved searching mechanism for FOA can be given by

Xiðgþ 1Þ ¼ Xaxis � Lx;i
2 ln 1

rx

Yiðgþ 1Þ ¼ Yaxis � Ly;i
2 ln 1

ry

(
ð10Þ

where i = 1, 2, …, Mosp, rx and ry are the random value in the range of [0,1]. Lx;i and
Ly;i are the delta potential well characteristic length of the corresponding dimension,
which are determined by the last searching location of the fruit fly based on the
olfactory as follows

Lx;i ¼ 2b Xaxis � XiðgÞj j
Ly;i ¼ 2b Yaxis � YiðgÞj j

�
ð11Þ

where g is the current number of iteration and b is contraction-expansion coefficient to
control the quantum searching range, which is determined by

b ¼ b1 logsig 10 � 0:5� g=Gmaxð Þð Þþ b2 ð12Þ

where b1 and b2 are the two parameters to restrict the value range, namely
b 2 ½b2; b1 þ b2�.

The implementation procedure of the osphresis-based search using the quantum
behavior for fruit flies is as follows (Fig. 2):

/* Quantum-behaved search using osphresis */ 
1 for i = 1 : Mosp do
2  Calculate the characteristic length 

Lx,i = 2b|Xaxis – Xi| , 
Ly,i = 2b|Yaxis – Yi| ;

3  while 1 do
4  Generate the random direction and distance as follows:
5  if random>0.5 then Xi=Xaxis+0.5 Lx,j ln(1/rx) else Xi = Xaxis – 0.5 Lx,j ln(1/rx) ;
6  if random>0.5 then Yi=Yaxis+0.5 Ly,j ln(1/ry) else Yi = Yaxis – 0.5 Ly,j ln(1/ry) ;
7  Calculate the distance to the origin: 

2
i

2
ii YXD += ;

8  Calculate the judged value of smell concentration: 
Si = 1/Di ; 

9  if Si Xmax and Si Xmin then break; 
10  end while
11  Evaluate the smell concentrations: Smelli = f(Si) ;
12 end for 

Fig. 2. Quantum-behaved search procedure of QFOA.
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4 Experimental Comparison

To test the performance of the proposed QFOA, we consider six benchmark problems
commonly used in the literature, which are listed in Table 1. For all tested functions,
we set the optimum o ¼ 1D and the dimension D = 2 and 10. In this section, we
compare the presented QFOA with the basic FOA, IFFO and PSO. The tests are
implemented on a computer with Intel(R) Core(TM) i3 3.07 GHz CPU, 4 GB memory,
and Window 7. All the algorithms are coded using the Matlab-2009a, and no com-
mercial algorithm tools are used. Due to the randomness nature of swarm intelligence
algorithms, the tested algorithms are run 50 times independently for each function and
the statistical results are used for the performance evaluation and comparison. The
same population size is Mosp = 10D and the same maximum number of function
evaluation is fes = 5000D for all algorithms.

Tables 2 and 3 report summary statistics for the optimum values found by the four
tested algorithms for benchmark functions with D = 2 and D = 10 after 50 independent
runs, respectively. We compare the best values, the mean values, the max values, and
the standard variance of the solutions found. Rank records the performance-rank of
seven algorithms for dealing with each benchmark function according to their mean
results. The total rank for each algorithm is defined according to their mean rank values
over all benchmark problems.

Table 1. Benchmark functions.

No. Name Dim. Range x* Min

f1 Shifted Sphere Function D [–100,100] o 0
f2 Shifted Schwefel’s Problem 1.2 D [–100,100] o 0
f3 Shifted Rotated High Conditioned Elliptic

Function
D [–100,100] o 0

f4 Shifted Rosenbrock’s Function D [–10,10] o 0
f5 Shifted Rotated Ackley’s Function with Global

Optimum on Bounds
D [–32, 32] o 0

f6 Shifted Rastrigin’s Function D [–5.12,
5.12]

o 0

f7 Shifted Rotated Griewank’s Function without
Bounds

D [–600,600] o 0
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The results show that the proposed QFOA performs better than the basic FOA for
most functions. The QFOA algorithm gets the smallest variance over the simulations.
The convergence curves of the average best function values are displayed in Figs. 3
and 4. QFOA improves the local search ability near the optimal solution and leads to
the improved global convergence of FOA.

Table 2. Statistical results on benchmark functions with D = 2

F Fmin QFOA FOA IFFO PSO

1 0 Min 0 3.39 � 10−7 8.06 � 10−9 0
Mean 0 8.66 � 10−5 7.04 � 10−6 0
Max 0 3.36 � 10−4 3.30 � 10−5 0
Std. 0 8.38 � 10−5 7.75 � 10−6 0
Rank 1 3 2 1

2 0 Min 0 1.13 � 10−6 1.58 � 10−7 0
Mean 6.51 � 10−32 1.12 � 10−4 6.86 � 10−5 0
Max 1.23 � 10−30 4.59 � 10−4 4.93 � 10−4 0
Std. 1.82 � 10−31 9.70 � 10−5 8.90 � 10−5 0
Rank 2 4 3 1

3 0 Min 0 1.26 � 10−3 2.07 � 10−3 0
Mean 0 1.53 � 10−1 6.56 0
Max 0 5.61 � 10−1 9.43 � 101 0
Std. 0 1.42 � 10−1 1.51 � 101 0
Rank 1 2 3 1

4 0 Min 5.30 � 10−5 4.65 � 10−5 3.35 � 10−3 4.70 � 10−14

Mean 1.36 � 10−2 9.15 � 10−3 3.05 � 101 1.76
Max 2.89 � 10−2 4.55 � 10−2 1.20 � 102 2.29 � 101

Std. 7.52 � 10−3 1.07 � 10−2 3.31 � 101 5.56
Rank 2 1 4 3

5 0 Min 8.88 � 10−16 1.44 � 10−3 7.70 � 10−5 8.88 � 10−16

Mean 2.88 � 10−15 2.45 � 10−2 2.68 � 10−3 8.88 � 10−16

Max 1.51 � 10−14 7.80 � 10−2 9.03 � 10−3 8.88 � 10−16

Std. 2.70 � 10−15 1.47 � 10−2 1.82 � 10−3 0
Rank 2 4 3 1

6 0 Min 0 1.56 � 10−6 3.06 � 10−7 0
Mean 0 3.10 � 10−5 4.38 � 10−3 2.12 � 10−3

Max 0 1.24 � 10−4 7.68 � 10−3 7.46 � 10−3

Std. 0 2.76 � 10−5 3.63 � 10−3 2.77 � 10−3

Rank 1 2 4 3
Mean rank 1.5 2.667 3.167 1.667
Total rank 1 3 4 2
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Table 3. Statistical results on benchmark functions with D = 10

F Fmin QFOA FOA IFFO PSO

1 0 Min 0 8.03 � 10−2 6.80 � 10−6 6.65 � 10−14

Mean 4.51 � 10−29 2.40 � 10−1 5.90 � 10−5 8.14 � 10−6

Max 2.01 � 10−27 3.50 � 10−1 3.10 � 10−4 3.73 � 10−4

Std. 2.84 � 10−28 5.46 � 10−2 5.66 � 10−5 5.27 � 10−5

Rank 1 4 3 2
2 0 Min 1.97 � 10−24 1.53 � 10−1 1.99 � 10−1 4.37 � 10−3

Mean 5.26 � 10−14 3.32 � 10−1 6.96 � 10−1 2.42 � 10−1

Max 2.58 � 10−12 5.89 � 10−1 1.44 5.45 � 10−1

Std. 3.64 � 10−13 1.00 � 10−1 3.66 � 10−1 1.39 � 10−1

Rank 1 3 4 2
3 0 Min 0 3.41 � 102 1.41 � 10−1 5.64 � 10−10

Mean 1.09 � 10−12 9.59 � 102 6.08 8.03 � 10−5

Max 5.44 � 10−11 2.12 � 103 5.53 � 101 1.78 � 10−3

Std. 7.70 � 10−12 3.73 � 102 9.68 2.70 � 10−4

Rank 1 4 3 2
4 0 Min 2.38 2.03 � 101 5.77 � 10−2 5.25

Mean 4.26 2.89 � 101 2.82 � 101 9.36
Max 8.65 3.98 � 101 8.13 � 10−1 4.96 � 101

Std. 1.56 5.16 2.61 � 101 8.92
Rank 1 4 3 2

(continued)
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Fig. 3. Comparison of convergence curves on benchmark functions with D = 2.
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5 Conclusion

FOA is a new evolutionary computation approach. To improve the performance of the
FOA, a quantum version of FOA was proposed. QFOA studied the individual fruit fly
moving in quantum multi-dimensional space and established a quantum Delta potential
well model for the whole fruit fly swarm. Extensive comparative studies were con-
ducted based on various test functions. The experiment results showed much advantage
of QFOA to the traditional FOA. Our future work will generalize the QFOA to solve
combinatorial and discrete optimization problems.
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Fig. 4. Comparison of convergence curves on benchmark functions with D = 10.

Table 3. (continued)

F Fmin QFOA FOA IFFO PSO

5 0 Min 4.44 � 10−15 9.43 � 10−1 1.28 � 10−3 1.28 � 10−6

Mean 2.32 � 10−14 1.45 2.76 � 10−3 2.39 � 10−4

Max 2.42 � 10−13 1.89 5.08 � 10−3 2.35 � 10−3

Std. 4.34 � 10−14 2.29 � 10−1 8.66 � 10−4 4.66 � 10−4

Rank 1 4 3 2
6 0 Min 0 1.06 � 10−2 9.42 � 10−5 3.34 � 10−1

Mean 4.22 � 10−17 2.63 � 10−2 3.71 � 10−2 4.93 � 10−1

Max 6.66 � 10−16 4.47 � 10−2 1.16 � 10−1 6.27 � 10−1

Std. 1.10 � 10−16 7.61 � 10−3 2.49 � 10−2 7.22 � 10−2

Rank 1 2 3 4
Mean rank 1 3.5 3.167 2.333
Total rank 1 4 3 2
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Abstract. Flood routing is a methodology to predict the changes of the
flow of water as it moves through a natural river, an artificial channel, or
a reservoir. It is widely used in fields such as flood prediction, reservoir
design, geographic planning, and many others. One of the most popular
and widely used flood routing techniques is the Muskingum model, as it
is conceptually simple and only depends on a few parameters that can be
estimated from historical inflow/outflow records. However, the estima-
tion of such parameters for the nonlinear case is still a challenging task.
In this paper we present a method based on a powerful swarm intelli-
gence technique called bat algorithm to solve the parameter estimation
problem of the nonlinear Muskingum model for channel routing. The
method is applied to an illustrative example used as a benchmark in the
field with very good results. We also show that our method outperforms
other state-of-the-art methods in the field such as PSO.

Keywords: Swarm intelligence · Global optimization ·
Bat algorithm · Flood routing · Hydrologic models ·
Parameter estimation

1 Introduction

Flood routing is a very important subject of research in water engineering and
other fields. Roughly speaking, flood routing aims at predicting the changes of
the rate of flow (discharge) over the time for a given section or point of a river,
channel, or reservoir. This problem has many relevant applications in several
areas, such as hydrology, flood forecasting, watershed simulations, geographic
planning, flood protection, reservoir design, and many others.

Several methods have been described in the literature to address this problem.
Among them, the Muskingum method is one of the most popular and frequently
c© Springer Nature Switzerland AG 2019
Y. Tan et al. (Eds.): ICSI 2019, LNCS 11655, pp. 341–351, 2019.
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used methods for engineering of rivers and channels owing to its simplicity. This
method, originally proposed in 1938 for the Muskingum river in Ohio [10], is
indeed very simple to use, as it only depends on two parameters that can be
estimated from past inflow and outflow data. The nonlinear Muskingum model
is given by the following evolution equations:

dSt

dt
= It − Ot, (1)

St = K[χIt + (1 − χ)Ot]m, (2)

where St, It and Ot denote the values of the storage, inflow and outflow at time
t, respectively, K is a storage time constant for the river reach that provides an
approximates the flow travel time through the river reach, χ is a weight usually
taken values between 0 and 0.3 for stream channels, and m is an exponent
introduced to account for the effects of nonlinearity.

In spite of its simplicity, the Muskingum model is still affected by a crit-
ical problem: the estimation of its parameters. Finding the correct values for
K, χ and m is challenging, because such values cannot be obtained from the
historical inflow and outflow hydrographs. This means that a powerful param-
eter estimation method is absolutely required. As a result, several optimization
techniques have already been applied during the last two decades to tackle this
issue. Early methods for this problem described in the literature include least-
squares method (LSM) [6], Hook-Jeeves pattern search with linear regression,
the conjugate gradient and Davidon-Fletcher-Powell method [13], and nonlin-
ear least-squares regression [20]. More recently, two approximate methods based
on computing the slopes of the inflow and outflow hydrographs at their inter-
section point and the computation of such hydrographs at two specific points
were described in [1]. Other approach using the Broyden-Fletcher-Goldfard-
Shanno (BFGS) method was reported in [5]. The method in [2] is based on
the Nelder-mead simplex algorithm. Neither of these methods do guarantee the
global optima. Recently, researchers in the field turned their attention towards
nature-inspired metaheuristics. They include the use of genetic algorithms [11]
and hybrid methods, such as a combination of the modified honey bee colony
optimization with generalized reduced gradient methods in [12].

Among the myriad of nature-inspired metaheuristic methods for optimiza-
tion, those based on swarm intelligence are receiving increasing attention during
the last few years because of their ability to cope with problems where little
or no information at all is available about the problem [16]. These methods are
also very effective for optimization problems where the objective function is not
differentiable making gradient-based methods unsuitable, or for problems under
difficult conditions (e.g., noisy data, irregular sampling) commonly found in real-
world applications. Swarm intelligence methods applied to this problem include
harmony search [9], and particle swarm optimization [4], artificial bee colony
[14]. A very recent method also considers particle swarm optimization for this
problem and investigates the effect of using variable values for the parameters
[3].
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It is worthwhile to remark that some of the previous methods do not consider
the same Muskingum model addressed in this work, but other variations of it. For
instance, the method in [3] consider the (simpler) linear Muskingum model, while
the method in [1], although also nonlinear, considers a variation of Eq. (2) given
by: St = K[χIn

t + (1 − χ)On
t ]. In other words, there are several (qualitatively

different) formulations of the Muskingum model so it is important to notice
which one is actually under analysis. This observation is crucial to avoid leading
our readers to confusion about the real model used in this contribution and its
possible relationship with other previous approaches.

In this paper, we address the parameter estimation problem for the nonlin-
ear Muskingum method given by Eqs. (1)–(2). Our approach is based a powerful
nature-inspired swarm intelligence technique for global optimization called bat
algorithm. The structure of this paper is as follows: the main steps of the pro-
cedure for the nonlinear Muskingum model are briefly described in Sect. 2. The
bat algorithm is described in detail in Sect. 3 and then applied to our problem
in Sect. 4. Our experimental results are briefly discussed in Sect. 5. The paper
closes with the main conclusions and some ideas for future work in the field.

2 Procedure for the Nonlinear Muskingum Model

Rearranging Eq. (2), the rate of outflow becomes:

Ot =
(

1
1 − X

)(
St

K

) 1
m

−
(

X

1 − X

)
It , (3)

Combining Eqs. (1) and (3), we get:

ΔSt

Δt
=

(
1

1 − X

) (
St

K

) 1
m

−
(

X

1 − X

)
It , (4)

St+1 = St + ΔSt (5)

Ot+1 =
(

1
1 − X

)(
St+1

K

) 1
m

−
(

X

1 − X

)
Īt+1 , (6)

where Īt+1 = (It+1 + It)/2. Then, the procedure for the nonlinear Muskingum
model given by Eqs. (1)–(2) is based on the following steps:

• Step 1: Assume initial values for the three parameters K, χ and m.
• Step 2: Calculate the storage St using Eq. (2), taking the initial outflow equal

to the initial inflow.
• Step 3: Calculate the time rate of storage using Eq. (4).
• Step 4: Estimate the next accumulated storage using Eq. (5).
• Step 5: Calculate the next outflow using Eq. St using Eq. (6). It will replace

Īt+1 when the ratio of storage t and t + 1 exceeds 2.
• Step 6: Repeat the steps 2–5.
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3 The Bat Algorithm

The bat algorithm is a nature-inspired swarm intelligence algorithm proposed by
Yang in 2010 to solve optimization problems [17–19]. The algorithm is inspired
by the echolocation behavior of bats, which is used as a metaphor for a global
optimization method and is described by three idealized rules:

1. Bats use echolocation to sense distance and distinguish between food, prey
and background barriers.

2. Each virtual bat flies randomly with a velocity vi at position (solution) xi

with a fixed frequency fmin, varying wavelength λ and loudness A0 to search
for prey. As it searches and finds its prey, it changes wavelength (or frequency)
of their emitted pulses and adjust the rate of pulse emission r, depending on
the proximity of the target.

3. It is assumed that the loudness will vary from a (initially large and positive)
value A0 to a minimum constant value Amin.

In general, we assume that the frequency f evolves on a bounded interval
[fmin, fmax]. For simplicity, we can assume that fmin = 0, so f ∈ [0, fmax].
The rate of pulse can simply be in the range r ∈ [0, 1], where 0 means no
pulses at all, and 1 means the maximum rate of pulse emission. The pseudo-
code of the algorithm is shown in Algorithm1. Basically, it considers an initial
population of P individuals (bats). Each bat, representing a potential solution,
has a location xi and velocity vi, initialized with random values within the
search space. Then, the pulse frequency, pulse rate, and loudness are computed
for each individual bat. The swarm evolves iteratively over generations until the
maximum number of generations, Gmax, is reached. For each generation g and
each bat, new frequency, location and velocity are computed as:

fg
i = fg

min + β(fg
max − fg

min) , (7)

vg
i = vg−1

i + [xg−1
i − x∗] fg

i , (8)

xg
i = xg−1

i + vg
i (9)

where β ∈ [0, 1] follows the random uniform distribution, and x∗ represents the
current global best location (solution), which is obtained through evaluation
of the objective function at all bats and ranking of their fitness values. The
superscript (.)g is used to denote the current generation g.

The best current solution and a local solution around it are probabilistically
selected and the search is intensified by a local random walk. For this local
search, the solution selected is perturbed locally through a random walk as.
xnew = xold + εAg, where ε is a uniform random number on the interval [−1, 1]
and Ag =< Ag

i >, is the average loudness of all the bats at generation g.
If the new solution is better than the previous best one, it is probabilistically

accepted depending on the value of the loudness. In that case, the algorithm
increases the pulse rate and decreases the loudness. This process is repeated for
the given number of generations. In general, the loudness decreases once a bat
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Require: (Initial Parameters)
Population size: P Maximum number of generations: Gmax

Loudness: A Pulse rate: r
Maximum frequency: fmax Dimension of the problem: d
Objective function: φ(x), with x = (x1, . . . , xd)

T

Random number: θ ∈ U(0, 1)
1: g ← 0
2: Initialize the bat population xi and vi, (i = 1, . . . , n)
3: Define pulse frequency fi at xi

4: Initialize pulse rates ri and loudness Ai

5: while g < Gmax do
6: for i = 1 to P do
7: Generate new solutions by adjusting frequency,
8: and updating velocities and locations //eqns. (7)-(9)
9: if θ > ri then

10: sbest ← sg //select the best current solution
11: lsbest ← lsg //generate a local solution around sbest

12: end if
13: Generate a new solution by local random walk
14: if θ < Ai and φ(xi) < φ(x∗) then
15: Accept new solutions
16: Increase ri and decrease Ai

17: end if
18: end for
19: g ← g + 1
20: end while
21: Rank the bats and find current best x∗

22: return x∗

Algorithm 1: Bat algorithm pseudocode

finds its prey (in our analogy, once a new best solution is found), while the rate
of pulse emission decreases. For simplicity, the following values are commonly
used: A0 = 1 and Amin = 0, assuming that this latter value means that a bat has
found the prey and temporarily stop emitting any sound. The evolution rules for
loudness and pulse rate are: Ag+1

i = αAg
i and rg+1

i = r0i [1 − exp(−γg)], where
α and γ are constants. Note that for any 0 < α < 1 and any γ > 0 we have:
Ag

i → 0, rg
i → r0i , as g → ∞. In general, each bat should have different values

for loudness and pulse emission rate. To this aim, we can take an initial loudness
A0

i ∈ (0, 2) while the initial emission rate r0i can be any value in the interval
[0, 1]. Loudness and emission rates will be updated only if the new solutions are
improved, an indication that the bats are moving towards the optimal solution.
As a result, the bat algorithm applies a parameter tuning technique to control the
dynamic behavior of a swarm of bats. Similarly, the balance between exploration
and exploitation can be controlled by tuning algorithm-dependent parameters.
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4 The Method

Bat algorithm has already been applied to data fitting problems [7,8]. Still, to
apply bat algorithm described above to our problem, we need to define some
important issues. Firstly, we need an adequate representation of the problem.
Each bat Bj , representing a potential solution, corresponds to a parametric vec-
tor of the free variables of the problem, in the form: Bj = (Kj , χj ,mj). These
parametric vectors are initialized with random values on the intervals (0, 10)
for K and m and (0, 5) for χ. We remark however that these constraints apply
only for the initial conditions, as we allow the variables to move freely outside
such ranges during the execution of the algorithm. Secondly, a fitness function
is required for optimization. In our problem, the goal is to predict the outflow
given the inflow and then compare the predicted outflow with the observed one.
This can be properly done through least-squares minimization. Let Ot and Ōt be
the observed and the predicted outflow at time t, respectively. We consider the
least-squares functional LSQ given by the sum of the squares of the residuals:

Minimize(LSQ) = Minimize
{Kj},{χj},{mj}

[
n∑

t=1

(Ot − Ōt)2
]

(10)

where n denotes the number of time instances of the inflow/outflow time series.
Finally, we need to address the important issue of parameter tuning. It is well-
known that the performance of swarm intelligence techniques depends of a proper
parameter tuning, which is also problem-dependent. Due to this reason, our
choice has been fully empirical, based on numerous computer simulations for
different parameter values. In this paper, we consider a population size of 30 as
larger population sizes do increase the CPU times without significantly improv-
ing our numerical results. The initial and minimum loudness and parameter α
are set to 0.5, 0, and 0.2, respectively. Regarding the stopping criterion, all execu-
tions are performed until no further improvement is achieved after 20 consecutive
generations.

5 Experimental Results

Our method has been tested on an illustrative example first proposed in 1974
by Wilson [15] and corresponding to a channel routing problem. This example
has been widely used as a benchmark for different methods in several previous
works. Table 1 reports the values of the observed inflow and outflow (columns 2
and 3) for different time instances, expressed in hours (column 1). All flow results
are expressed in cubic meters per second (cms). We also report the numerical
results of two previous methods, reported in [11] and [4] and based on genetic
algorithms (GA) and PSO respectively, (columns 4 and 5) and the results of our
method based on the bat algorithm (column 6). To avoid the spurious effects
derived from the randomness of the process, we run 15 independent executions
of our method and then consider the average value. This means that the results
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Table 1. Observed inflow and outflow hydrographs and computed outflow of two state-
of-the-art GA and PSO methods and of our bat algorithm method for the example in
the paper (best results are highlighted in bold)

Observed Computed outflow (cms)

Time (h) Inflow (cms) Outflow (cms) GA PSO Our method

0 22 22 22.0 22.0 23.0

6 23 21 22.0 22.0 21.5

12 35 21 22.4 22.6 22.2

18 71 26 26.3 28.1 26.2

24 103 34 34.2 32.2 34.0

30 111 44 44.2 45.0 43.3

36 109 55 56.9 57.0 55.2

42 100 66 68.2 67.5 65.6

48 86 75 77.1 75.9 74.4

54 71 82 83.2 81.2 81.0

60 59 85 85.7 85.6 84.4

66 47 84 84.2 84.2 83.5

72 39 80 80.2 79.6 79.9

78 32 73 73.3 73.3 72.5

84 28 64 65.0 65.0 63.6

90 24 54 55.8 56.2 53.8

96 22 44 46.7 46.5 45.1

102 21 36 38.0 37.3 36.5

108 20 30 30.9 29.7 30.4

114 19 25 25.7 24.3 25.5

120 19 22 22.1 20.6 22.7

126 18 19 20.4 19.6 20.0

Table 2. Parameter values, LSQ error, and improvement rate obtained for the methods
in our comparison (best error and and improvement rate highlighted in bold).

Method SI approach K χ m LSQ I.R.

Mohan [11] Genetic
algorithms

0.1033 0.2873 1.8282 38.23 0.00%

Chu and Chang [4] Particle swarm
optimization

0.1824 0.3330 2.1458 36.89 3.50%

Our method Bat algorithm 3.4580 0.0034 2.3065 19.59 48.78%
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reported in the last column are not those of the best execution (which are even
better) but the average of the 15 independent executions. Still, the numerical
results obtained with our method are very relevant. A visual comparison between
the columns 3 and 5 reveals that our method performs very well, as it is able
to capture the real tendency of data for all times instances in the example. This
means that our method has a very good predictive capability.

We also compare our results with those of two methods based on GA [11]
and PSO [4]. These methods have been primarily chosen for comparison because
they are very popular and widely considered state-of-the-art methods in the field
and outperform many other methods in the literature for this problem. The best
result for each time instance has been highlighted in bold for easier comparison.
As the reader can see, our method outperforms these methods for most time
instances in this example. This fact becomes evident from Table 2, where we
show the optimal parameter values (columns 3–5) along with the LSQ error
(column 6) obtained with the three methods (described in columns 1–2), and
the improvement rate (column 7) obtained with respect to the worst method
(the GA, in this case). Once again, the best results are in bold. Note that our
method improves the LSQ error of the GA and PSO methods significantly, with
an improvement rate of 48.78% and 46.89% over GA and PSO, respectively.

Our good numerical results are confirmed visually in Fig. 1. The figure depicts
the observed inflow and outflow hydrographs as well as the predicted outflow for
the PSO and bat algorithm methods used in our comparative work. Note the
excellent visual matching between the observed outflow and the outflow predicted
by our method. Although the outflow of the PSO method is very close to the

Fig. 1. Observed and predicted inflow and outflow hydrographs for the example com-
puted with the parameter values obtained with PSO and our bat algorithm method.
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Fig. 2. Convergence diagram of the LSQ error function for the minimum, maximum
and average values for 15 different executions.

observed one, ours is even better as it becomes visually indistinguishable from
the observed outflow and they overlap each other. This is the best indicator of
the good performance of our method for this real-world example.

Finally, Fig. 2 shows the convergence diagram of our method for the max-
imum, minimum and average values from the 15 independent executions. As
shown, the method converges in all cases, and there is no large variation between
the different executions, meaning that the method is robust for different execu-
tions, a very valuable feature for real-world applications.

6 Conclusions and Future Work

In this paper we present a bat algorithm-based method to solve the parame-
ter estimation problem of the nonlinear Muskingum model, a relevant problem
in hydrology, flood forecasting, dam design and other engineering fields. The
method is simple to understand and easy to implement. Our computational
experiments for a popular real-world channel routing example used as a bench-
mark in the field show that it performs very well, is robust and outperforms
other state-of-the-art approaches in the field. We conclude that it can be safely
used for outflow prediction in flood forecasting and in related tasks. Future
work in the field includes the extension of this approach to the case of natural
rivers and reservoir routing, for which the parameters are expected to behave
quite differently. Improving the accuracy of our method even further is also part
of our future work in the field.
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Abstract. Dynamic optimization problems (DOPs) are prevailingly addressed
because of their origins from real-world issues. In addition to existing methods
that have been developed for evolutionary algorithms to solve DOPs, this paper
provides a hybrid memory and clone scheme, called memory-based clone
selection, for bacterial foraging optimization algorithms in dynamic environ-
ments. Meanwhile, two gene libraries (Random and Non-random) are involved
to clone outstanding individuals and dynamically manage the gene hall and
memory. This approach not only results in greater diversity and better global
search ability, but also enables the algorithm higher adaptability to environ-
mental dynamics and changes. The simulation result generated by a dynamic
rotation peak benchmark confirms that proposed memory and clone schemes-
based BFO (MCBFO) outperforms standard BFO and PSO in terms of popu-
lation diversity, convergence rate and searching ability.

Keywords: Bacterial foraging optimization � Dynamic optimization problems �
Memory � Immigrants � Clone selection

1 Introduction

As a member of meta-heuristic algorithms, Evolutionary Algorithm (EA) is a type of
stochastic search technique enlightened by norms of natural evolution or the behavior
of biological groups such as biological evolution, genetics and the social behavior of
species. Since EAs can be easily implemented and less restrained on problems to be
solved, they have shown broad application prospects in stationary optimization and
search problems [1, 2]. However, due to dynamic and uncertain environments, opti-
mization problems are inevitably affected [3].

To better work out dynamic optimization problems (DOPs), aside from quickly and
precisely finding the location of global optimum, EAs also should unremittingly track
the optima over time, or search a robust solution that works well in a variety of
uncertain situations. Since EAs have difficulties in getting rid of an old optimum when
converging, DOPs pose a severe challenge to EAs. Nevertheless, enhanced EAs still
serves as a good solution for DOPs because these algorithms are normally inspired
from the natural and biological evolution subjecting to an ever-changing environment.
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In recent decades, an increasing number of scholars have been dedicating to
studying EAs for DOPs. Apart from the simplest approach (Restart EAs when a change
is detected), there should be other approaches that efficiently utilize computing
resources and find similar solutions for DOPs, which include multi-population mech-
anisms [4], memory schemes [5] and diversity reintroduction [6].

Passino firstly proposed bacterial foraging optimization (BFO) after investigating
foraging behaviors of E. coli [7]. BFO has achieved excellent performance in many static
benchmark and practical optimization problems [8]. However, there remains an under-
explored research area where few scholars have studied BFO in uncertain situations.

This work further explores BFO with explicit memory and clone schemes in order
to improve the effectiveness in solving DOPs. Firstly, a dynamic time pattern to update
the memory with closet scheme is adopted. Secondly, the clone schemes include
random and non-random gene libraries composed of gene fragments of random length
to clone elites for generating immigrants to replace the population.

Six different dynamic environments generated by a dynamic rotation peak bench-
mark are used to verify the effectiveness of MCBFO, BFO, and PSO (Particle Swarm
Optimization). Experimental results reveal that MCBFO utilizing both the memory and
clone selection outperforms its counterparts.

2 Approaches Developed to EAs for DOPs

Approaches developed to EAs include: memory schemes, multi-population mecha-
nisms and reintroducing diversity. To keep search efficiency while enhance diversity,
this paper highlights memory strategies, immigration strategies and immune system
cloning strategies.

2.1 Explicit Memory Schemes

The explicit memory scheme of EA in a dynamic environment benefits from the
accurate representation of independent storage space. In any new environments, it is
capable of explicitly reusing useful information from previous iterations stored in
memory. Moreover, memory strategy usually consists of direct memory scheme and
associative memory scheme. The direct strategy is to store good individuals in current
environment. When detecting changes, it will either reuse the individuals themselves or
generate new solutions based on the memory to replace the bad ones, so that the
population can adapt to the environment quickly [9]. The associated memory strategy
stores good solution and associated environmental information. Such environmental
information can be used to similarity metrics for higher efficiency in finding historically
optimal solutions that are more relevant to changing environments [10].

2.2 Immigration Strategies

Immigration strategies normally encompass three categories: random immigration,
memory immigration, and elite immigration, which facilitate improving search ran-
domness and enhancing group diversity. Such strategies improve randomness and the
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global search ability of the algorithm and enable individuals’ higher probability to escape
local optimum and effectively solve the convergence problem of EAs. Furthermore,
random immigration is rather simple and consistent with the rules of nature [9]. In each
iteration, a probability is used to randomly generate immigrant populations in the search
range to replace some individuals in the current population. Memory immigration and
elite immigrants integrate the advantages of memory and elites to make the algorithm
quickly adapt to the new environment [11]. In addition, memory and elites guide the
search direction of immigrant populations, so that the algorithm is able to retain diversity
and previous environmental information.

2.3 Cloning Selection

Simões and Costa [12] proposed a GA (Genetic Algorithm) imitating the mechanism of
immune system to solve DOPs. During cloning selection, Somatic hypermutation often
causes certain variation. To simulate the phenomenon, the algorithm created some gene
libraries that comprises many fixed-length gene segments, which are used in a cloning
process. These libraries are randomly generated at the beginning of the searching
process and remain unchanged. Each individual is subject to a transformation modi-
fication with probability pt. The process of transformation is as follows. Firstly, we
choose one gene segment randomly. Then, a transformation location on this gene
fragment is randomly selected and recorded. Finally, from the recorded locus, indi-
viduals’ own genes are replaced with the selected gene segments. By using transfor-
mation as a hypermutation operator, EAs can increase population diversity and take
advantages of previous useful solution information.

3 Description of Investigated BFO

3.1 Standard BFO

In SBFO, three main bacterial-specific behaviors as chemotaxis, reproduction and
elimination and dispersal, are implemented for updating the position of individuals and
finding the optimum [7]. The chemotaxis operator moves the bacteria to a better
position. The reproduction operator complies with the rule that the fittest bacteria
survives while poorly performed bacteria will die. In addition, in the elimination and
dispersal operator, the bacteria will be randomly reassigned to a location, thus
increasing the randomness of the algorithm.

The SBFO consists of three levels of loops, from the outside to the inside for
elimination and dispersal, reproduction, and chemotaxis. Figure 1 shows the flow of
the SBFO.

3.2 Memory and Clone Schemes-Based BFO (MCBFO)

Figure 2 presents the pseudo-code of the BFO, which employ memory, cloning selection
and immigrants’ schemes, referring to MCBFO. MCBFO organically integrates two
modules of memory and diversity enhancement. It extracts and preserves favorable
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information for the environment, performs dynamic management of memory and gene
libraries, and generates immigrant populations based on cloned elites, thereby increasing
population diversity and population search range, jumping out of local optimal solutions,
and tracking dynamic targets to better solve DOPs.

In the MCBFO algorithm, memory Mem(T) is first randomly generated, and
memory is managed according to a dynamic time mode, that is, memory update is
performed when an environmental change is detected or T = TChange. After each
memory updates, the random integer randi(gap) 2 0; gapð Þ will determine when the
memory will be updated next time TChange. For the detection of the environment, we
adopt simplest method to see whether the average fitness value of the observed pop-
ulation and memory fluctuates greatly.

In this algorithm, two ways are introduced to utilize different memory update
methods: if T = TChange, then choose the contemporary elite E(T), otherwise choose the
previous generation of elite E(T − 1), and find the memory individual ClMem closest to
the elite, if it is not as good as the elite, it will be replaced. Subsequently, the SBFO

Fig. 1. The flow chart of SBFO
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search procedure was performed. Finally, the elite immigration strategy is executed with
the probability PIm. Specifically, a group of rim * n immigrant Imm(T) around the elite E
(T) are cloned and used to replace the worst population in the search population.

For the Cloning selection strategy, unlike [12], this algorithm has three differences.
First, [12] has multiple random gene libraries, but this algorithm has only two random
and non-random gene libraries, with 30% and 70% gene fragments respectively.
Second, the gene library of [12] consists of a series of fixed-length segments, but this
article has fragments of random 1–3 lengths. Third, when cloning cells, the original
method replaces genes at random location of individuals with randomly selected
segments, but we use an aligned transformation strategy [13]. Specifically, two gene
libraries are randomly generated initially within the search range. The update method is
to randomly update the random library at each iteration. For the non-random library,
the tournament selection strategy is adopted. First, two individuals are randomly
selected in the population, and then the individual with good fitness is selected.
A contiguous gene of the individual is randomly selected as a gene fragment, and the
starting position of the fragment is recorded. MCBFO uses an aligned clone trans-
formation strategy. First, it randomly selects a fragment from the gene library. Once the
fragment is from a random library, the gene at a random location of the object is
replaced; otherwise, the gene at the location recorded before the object is replaced.

Fig. 2. The pseudo-code of MCBFO
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4 Experimental Study

4.1 Dynamic Test Environments

We used a dynamic rotation peak benchmark [14] to measure the performance of
MCBFO and BFO algorithms in various changing environments. The optimization
problem is described as follows:

F ¼ max
i¼1:m

Hi
!

tð Þ= 1þ Wi
�!

tð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
xj �~Xi

j tð Þ
� �2

=n

r ! !
ð1Þ

The ~H and ~W change in six ways: case small step, case large step, case random,
case chaotic, case recurrent and case recurrent with noisy.

The parameters of the test problem are set as follows: The number of peaks:
m = 10; Width range: w 2 [1, 10]; Width severity is 0.5; Initial width is 5; Dimension:
n = 10; Search range: x 2 [−5, 5]; Change frequency: frequency = 10000 � n; The
number of changes: numchange = 5; the rest of the parameters are default.

4.2 The Parameters of the Algorithms

SBFO and MCBFO, the length of chemotaxis step Csz = 0.2, the maximum number of
swims is set to 4. The probability of elimination: Pel = 0.25. The max numbers of
chemotaxis, reproduction and elimination-dispersal are set as: Nc = 300, Nre = 10,
Ned = 2. For PSO, learning rate C1, C2 = 1.49445 and weight w = 0.8. All the
experiment runs 10 times, the times of function evaluations are 500000, the size of
population p = 50.

For MCBFO, the total number of gene fragments: num_gene = 30, and random
fragments accounted for 0.3, update interval of memory: gap = 20, memory, clone and
immigration accounts for 0.2, 0.2 and 0.1 percent of the population respectively.

4.3 Experimental Results and Analysis

Figures 3, 4, 5, 6, 7 and 8 show that MCBFO performs better than other rivals in all six
dynamic environments. In the top five dynamic environments, the fitness of MCBFO
was poor at the beginning of each environmental change, but it can clone a group of
immigrants more in line with the current environment according to memories, so that
the convergence of the algorithm would quickly exceed the performance of SBFO.

Ultimately, when the environment changes, MCBFO can quickly generate indi-
viduals that match the current environment based on the memories, making it out-
perform traditional BFO and SPSO at the beginning. Above all, this algorithm that
clones new individuals based on the gene libraries, is not easy to fall into local opti-
mum and capable of broad global search. In comparison, the performance of SPSO is
not satisfying, which may be explained by the fact that linear optimization mechanism
is prone to fall into local optimum.
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Fig. 3. Convergence curve of small step Fig. 4. Convergence curve of large step

Fig. 5. Convergence curve of random Fig. 6. Convergence curve of chaotic

Fig. 7. Convergence curve of recurrent Fig. 8. Convergence curve of recurrent
with noisy
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5 Conclusions

This paper provides a bacterial foraging optimization with memory and clone selection
to deal with dynamic optimization problems. The function of memories is to store
favorable environmental information of the previous generation, which speeds up the
convergence rate of algorithm when the environment changes. The cloning strategy
that uses two gene libraries to clone elites will drive the population towards the optimal
solution while maintain the population diversity.

The effectiveness of the proposed algorithm was verified on a dynamic rotation
peak benchmark in the result. As indicated, the proposed MCBFO was an effective
technique that outperforms the classical BFO and PSO in tracking dynamic optimal
solutions.
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Abstract. Lecturer university timetabling is an NP-hard real-world problem
still needs great attention. The occurrences of the creation of timetable in every
university prior to semester starts are compulsory. Its inclusively must cater both
hard and soft constraints to satisfy both lecturers and students as the space and
time are highly concerned. Genetic Algorithm and Hybrid Genetic Algorithms-
Hill Climbing with embedded with elitist mechanism are evaluated with the use
of real data sets. The findings have shown Hybrid Genetic Algorithms-Hill
Climbing with elitist outperformed Genetic Algorithm with elitist in obtaining
an optimal solution. The beauty element offered by Hill Climbing seeking local
best individual of the population has given fast convergences with the capability
avoiding local optimum. In future, more soft constraints identification of a real
problem of lecturer timetabling problem should very much considered as to
ensure satisfactions of lecturers and students.

Keywords: Elitist � Genetic Algorithm � Lecturer timetabling problem �
Hill-climbing � Optimization

1 Introduction

Timetabling or scheduling is an NP-hard problem that focuses on the allocation of
resources over time and space for sets of tasks [1]. Various hard constraints and soft
constraints are considered. Many types of timetabling existed from the old times till
now as such of nurse shift scheduling [2, 3], airline crew pairing scheduling [4] home
health care scheduling [5, 6], job shop scheduling [7, 8] and university timetabling [9–
12]. Some of them are still required great attention, especially in the aspect of obtaining
an optimum solution. For instance, Lecturer University Timetabling (LTP) with the
target of producing a non-clashing timetable still have not reached their most optimum
solution as it is very much dependent to the problem details and satisfaction to all soft
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constraints. This is evident from the result of Genetic Algorithm (GA) [11, 13],
Graph Coloring [14] and Ant Colony Optimization [15]. The criteria to solve is
complex as it involves many lecturers, the lecturer’s time, many students, courses taken
and the availability of the resources such as classrooms, lecture halls and computer
labs. For instance, lecturer can request a special classroom for a given course or the
maximum learning hour for a student is 4 h [16]. A feasible timetable should be able to
fulfil all hard constraints and minimize the number of soft constraints.

Historically, the timetable in a university is done manually whereby the staff in
charge will personally allocate the lecturer, student and suitable classroom for that
class. This process is very time consuming, complex and still could not reach the goal
of a constraint-free timetable after several iterations of the timetabling process. How-
ever, only several important constraints are being considered in the manual method.
Hence, to overcome this matter, researchers have found a solution which is by using the
optimization method to create an automatic timetable generator that is able to produce
an optimal or best near- optimal schedule. Hence, it is only right if a viable timetable
can be produced to help the lecturers ease their workload and to avoid any clashes in
teaching many classes. However, there is still room for improvement in the generation
of the result. Thus, a new solution is needed to achieve an optimum lecturer timetable.

This paper addresses the evaluation of hybrid GA-Hill Climbing with elitist to see
the performances based on the data sets from Faculty of Computer and Mathematical
Sciences, Universiti Teknologi MARA (UiTM), Malaysia. There exists a semi-
automatic system to produce a timetable where the academic staff in charge must still
key in the data into the system and arrange them one after another. According to the
academic staff in charge in the faculty, this process usually takes up to 3 to 4 weeks to
finally produce a non-overlapping timetable for the lecturer. The remainder of this
article is organized as follows. Section 2 explains the survey for soft constraints
identification for LTP. The hybrid GA-Hill Climbing with Elitist (GA-HC-Elitist) is
discussed in Sect. 3. Section 4 presents computational results of the comparison
between original GA- Elitist and GA-HC-Elitist. Section 5 concludes this paper.

2 Identification of Soft Constraints for Lecturer Timetabling
Problem

Prior to identify the constraints of the LTP, a questionnaire was developed based on the
adaptation from [17]. A total of 19 questions were asked to the lecturers from the
Faculty of Computer and Mathematical Sciences. An analysis was performed from the
data gathering. From the 19 questions given, lecturers were asked to rank each question
from 1 (most preferred) to 5 (most dislike).
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Based on Fig. 1, each question was arranged separately. The total of each mark was
summed up and an average score was calculated. The score was then rounded off to
determine in which ranking does that question stand between 1 to 5. Each rank was
represented by different colors. For instance, question 1 record an average score of
4.714, hence, after rounding off, the result was 5. This indicates that question 1 ranks at
point 5 with it being most disliked by almost all lecturers. The color for each question is
as shown in Fig. 2.

In Fig. 2, the “Question Number” column represents the question number from 1 to
19 that scores the respective mark. Question number 12 and 13 records rating 1 (most
preferred). The question was about having lecture or lab or tutorial events at 10.00 am
to 12.00 pm. Most lecturers preferred their class at that time. Secondly, question
number 6, 8, 10 and 11 records a mark of 2 which indicated them as preferred. These
questions were on having only 2 events in the morning and having any one of the
events at 8.00 am to 10.00 pm. Other than that, lecturers do not mind having to teach 2
lecture events a day or teaching 2 lecture events and 1 lab or tutorial event in a day.
Some of them also do not mind having classes at 12.00 pm to 2.00 pm and some are
even agreed by having lab or tutorial sessions at 2.00 pm to 4.00 pm.

The fourth and fifth questions determine the penalty to be given as they both record
criteria lecturers’ dislikes most. Question number 5, 7, 9, 14, 16 and 19 were marked at
4 (dislike) hence, they were chosen as the one lecturer dislikes. The question asks for
the lecturer’s opinion in having 3 events per day, teaching lecture events at 12.00 pm –

2.00 pm or 2.00 pm – 4.00 pm and teaching lab/tutorial events at 4.00 pm – 6.00 pm.
Finally, ranking at number 5, question 1, 2 and 18 were chosen as those they dislike

Fig. 2. Colors representing each mark and question number

Fig. 1. Analysis on each question and questions asked

Evaluation of Genetic Algorithm and Hybrid Genetic Algorithm-Hill Climbing 365



most. Those are about teaching 3 lecture events in a day, teaching 3 lab or tutorial
events in a day and having to give a lecture at 4.00 pm to 6.00 pm. From this survey, a
few soft constraints have been achieved to fulfil the criteria that can satisfy the lec-
turer’s view on their timetable. Two of the soft constraints that must be minimized and
considered in this paper are:

• Lecture events are scheduled in the afternoon session (4.00 pm – 6.00 pm)
• Laboratory or tutorial event is scheduled in the afternoon session (4.00 pm –

6.00 pm)

3 Hybrid GA – Hill Climbing with Elitist Solution

3.1 Solution Mapping

This paper addresses the improvement of the solution of LTP in [13]. The chromosome
is filled up with a discrete encoding scheme to represent each condition every gene
holds. The mapping is illustrated in the Fig. 1.

Where, Gene A represents Room capacity, gene B represents lecturer teaching
hours, gene C represents subjects, gene D represents timeslot and gene E represent
courses. The fitness function is based on the penalty scores gained from the soft
constraints. The objective is to achieve the minimum sum of all penalties. Higher
penalties were given to hard constraints and soft constraint that were most disliked by
the lecturers. The 6th and 7th violations were based on findings from Sect. 2, Figs. 3
and 4, Tables 1, 4 and 5.

10 16 2 3 14 

A B C D E 

Fig. 3. Solution mapping with an example of genes values

Table 1. Violation, penalties and type of constraints

No Violation Penalties Constraint

1 Lecturer cannot teach more than 1 course at the same time 50 Hard
2 No room can be occupied by more than one group at the

same time
50 Hard

3 No student can attend more than one lecture at the same
time

50 Hard

4 The capacity of the classroom should match with the
capacity of student group

20 Hard

5 Lecturer cannot teach less than given credit hour 20 Soft
6 Lecture event at 4.00 pm – 6.00 pm 10 Soft
7 Lab/Tutorial event at 4.00 pm – 6.00 pm 10 Soft
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Based on the Table 2, the solution generated should not violate any of the viola-
tions as it will result in a bad solution. The hard constraints must not be violated while
the soft constraint should be minimized as much as possible to achieve a viable
schedule. Equation 1 is the fitness function adapted from [17].

Minimize f xð Þ ¼ 1
ðsummation of penalties + 1)

ð1Þ

3.2 Genetic Algorithm - Hill Climbing with Elitist Steps

Basically, the GA-HC-Elitist steps for solving the LTP are as follows:
Step 1: Start the program by initializing the variables such as number of populations,
mutation rate, crossover rate, number of elitist, chromosome and number of
generations.
Step 2: The initial timetable population will be generated. The chromosome is repre-
sented in a string typed variable with a fixed length. Each chromosome represents the
possible timetabling solution. The chromosome length depends on the number of
classes for the semester. The number of populations will then decide how many
chromosomes to be produced. It is important to find the best optimal size of the
population and generation because the size will give effect to the computation time and
the solution. A big population may result in a longer computation time, but with a more
promising result, and a small population will result in a shorter computation time but
with lower possibility of a good solution.
Step 3: In this step, the population will be evaluated by measuring the fitness function.
The fitness function is defined as in Eq. 1. The sum of penalties is made up from the
total hard and soft constraints that have been violated. The constraints are such as those
listed in Table 2.
Step 4: At the end of the evaluation, the chromosome that sets the best fitness will be
brought forward as parents to be mated for the reproduction process to produce a new
off springs. The selection method used is Tournament Selection with Elitist.
Step 5: After the first selection, the solutions will be evaluated to check if it has met the
termination criteria. If it has met, then the generation will stop there, and the results will
be generated. Otherwise, the next step will be done.
Step 6: The population will undergo crossing over and mutation operators. The
crossover method used is the uniform crossover between parent 1 and parent 2 chro-
mosome comparison. Parent 1 will be taken from the selection and parent 2 is the
random individual created to allow variance between the two. The crossover will be
made based on the result from the probabilities of the solution. The probability of 0.5
has been fixed for the gene swapping and at the end of the crossover phase, off springs
will be generated. After that, the mutation phase will take over. In this algorithm, a
simple Hill Climbing Optimization is implemented in the mutation phase. Since
mutation is used to allow diversity in the solution and to avoid local minima, Hill
Climbing fits best at this phase to allow greater power in the local search. The Hill
Climbing will generate only fittest individual to be carried out in the next phase. The
flow of the Hill Climbing is as follows:
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1. Get fittest individual from the current population.
2. Create random individual to perform mutation.
3. Do 1st mutation between the individuals while it fits the mutation probability.
4. Check if the new individual’s fitness is greater or lesser than the previous current

fitness.
5. If the fitness is lesser than repeat the mutation process by repeating step 2 to 4.
6. If the new individual’s fittest is more, then proceed to the next step with the new

individual in the population.
7. End.

Step 7: Evaluate the current population and check with the termination criteria. If the
criteria have met then move forward to the next step, otherwise repeat from step 3.
Each repetition is considered as new generation and the number of generations is
updated after each loop.
Step 8: Once the algorithm has reached its end, print the best fit solution as the most
optimal solution. Finally, print the timetable solution.

4 Computational Experiments and Findings

4.1 Parameter Setting

The performance of GA-HC-Elitist was tested within such parameter settings as shown
in Table 3 and it was compared with GA-Elitist.

Fig. 4. Flowchart of GA-HC-Elitist

Table 2. Parameter setting

Parameter Value

Number of population 20, 50, 120, 180
Crossover rate 0.7, 0.8, 0.9, 0.95
Mutation rate 0.001, 0.002, 0.005, 0.01
Generation 10, 20, 50, 80
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4.2 Comparison Performance Between GA-HC-Elitist and GA-Elitist

The overall analysis on the performance of the two techniques. Each technique has
gone through a series of similar parameter tuning and consideration of constraints as
shown in Table 2.

Computational Experiment Based on Population Size
This section reports the results from different numbers of population size of 20, 50, 120
and 180 using the LTP datasets from Faculty of Computer and Mathematical Sciences.
The constant value of crossover rate = 0.9, mutation rate = 0.001, maximum number
of generations of 20, tournament size of 5 are evaluated. As can be seen in Table 3,
GA-HC-elitist has obtained better results faster as compared to GA-elitist during the
population size of 20. The execution time of GA-HC-elitist is slightly more however it
has recorded a penalty of only 40 at a smaller population of 20 compared to GA-elitist
that records a penalty of 40 only at the population size 50 with 703 ms. The difference
is very small hence this indicates that the implementation of hill climbing only requires
a smaller population size to reach a feasible solution. After several consecutive itera-
tions from each population, GA-HC-elitist records a significant decrease in the com-
putation time as the population size grows, whereas, GA-elitist demonstrates
inconsistent reading of execution time with the similar method of iterations.

Computational Experiment Based on Crossover Rate
This section reports the results with crossover rates of 0.7, 0.8, 0.9 and 0.95. The
constant value of population size = 20, mutation rate = 0.001, maximum number of
generations of 20, tournament size of 5. GA-HC-elitist outperformed the GA-elitist in
achieving a fitter solution of 0.322580 even though both records the fittest solution at a
crossover rate of 0.9. The execution time taken to achieve such fitness was 668 ms
which is faster than when reaching the fittest solution at rates 0.7 and 0.9. Although the
GA-elitist records a smaller execution time, it still could not beat the fittest solution
generated with the assist of the Hill Climbing method.

Table 3. Results with different population size

Population size GA-elitist GA-HC-elitist
Fitness value Execution time (ms) Fitness value Execution time (ms)

20 0.0141 597 0.0244 717
50 0.0244 703 0.0164 687
120 0.0141 667 0.0164 668
180 0.0196 675 0.0123 662
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Computational Experiment Based on the Mutation Rate
The mutation rate of 0.005, 0.002, 0.001 and 0.01 has been tested by maximum number
of generations of 20, tournament size of 5 are evaluated. With the help of Hill Climbing
in mutation, at the rate of 0.001 and 0.1, both have recorded a higher value of fitness in
0.32258. Nevertheless, this occurs since Hill Climbing was working on to get a better
solution here. It filters only the fittest solution to be passed on to the next generation.
Therefore, it leads to a slightly longer execution time compared to GA-elitist that
simply passes on the mutated individual without further filtering.

Computational Experiment Based on the Number of Generations
A mixture of 10, 20, 50 and 80 generations has been tested alongside other parameter
settings. As shown in the Table 6 with the total number of 50 generations set, the fittest
solution of 1.0 has been achieved at the 48th generation for GA-HC-elitist as compared
to the other technique that managed to get the fittest value at the 67th generation. GA-
HC-elitist provides a shorter time was taken to achieve the optimal solution at 2050 ms
compared to 9367 ms for GA-elitist. Hence, the GA-HC-elitist has once again proven
its efficiency by overcoming the GA-elitist both in smaller population size to achieve
fitness and the faster computation time.

Table 4. Results with different crossover rate

Crossover rate GA-elitist GA-HC-elitist
Fitness value Execution time(ms) Fitness value Execution time(ms)

0.7 0.0123 676 0.0164 717
0.8 0.0110 474 0.0244 687
0.9 0.0141 526 0.3226 668
0.95 0.0197 736 0.0164 662

Table 5. Results with different generation number

Mutation rate GA-elitist GA-HC-elitist
Fitness value Execution time(ms) Fitness value Execution time(ms)

0.005 0.024 429 0.016 604
0.002 0.014 440 0.014 630
0.001 0.011 499 0.323 579
0.01 0.012 541 0.323 544
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Computational Results from 15 Experiments
An experiment of 15 consecutive runs was performed by using the optimal parameter
settings found from results above. The parameters are population size = 50, crossover
rate = 0.9, mutation rate = 0.001, number of generations of 50 and tournament
size = 5. It is interesting to note that from the table, it can be clearly seen the GA-HC-
elitist has outperformed the GA by achieving 13 times of the best solution,
whereas GA-elitist only achieves 8 times of fitness out of 15 experiments. The com-
putation time, however, it differs by quite a number. However, this is because the Hill
Climbing has taken a little more time in searching for the best individuals before
passing it forward to the next evaluation. Other than that, in an independent wise, the
time taken to achieve the optimal result is lesser for GA-HC elitist as compared to GA.
The use of the combined local search and global search has enhanced the quality of the
solution in getting a faster convergence in GA-HC-elitist. It is true as mentioned in
previous studies that GA-HC-elitist can surpass GA in getting a faster optimal solution
with a more acceptable computation time (Gopal et al., 2016; Liu et al., 2016). Based
on the results from the experiments above, it can be concluded that the GA-HC-elitist
outperforms GA-elitist and produces better optimal solutions. GA-HC-elitist method
has recorded much better efficiency in finding the solutions for this timetabling opti-
mizer both in the execution time and solution generations. The combination of GA and
Hill Climbing Optimization has decreased the number of generations needed to find the
fittest solution and it can be done within a shorter time span.

5 Conclusions

This paper proposes GA-HC-elitist to fine tune for a better result for LTP. The eval-
uation of GA-elitist and GA-elitist were performed with inclusion on identifying the
satisfaction factors to create a viable schedule for the lecturers. A survey was done and
analyzed to obtain relevant soft constraints that would satisfy the lecturers. The
identified soft constraints were added to the list of penalty measures and tested. Several
tunings and experiments have been made to the algorithms to ensure that an optimal
solution can be gained based on the fixed parameter settings. GA-HC-elitist is out-
performed GA-elitist for many occurrences of obtaining an optimal solution. Hill

Table 6. Results with different number of generations

No of generations GA-elitist GA-HC-elitist
Fitness value Execution time (ms) Fitness value Execution time (ms)

10 0.0041 440 0.0062 390
20 0.1000 473 0.0164 598
50 0.0444 831 1.0000 2050
80 1.0000 9367 1.0000 5467
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Climbing Optimization with local search increased the efficiency it through its simple
local search in finding the fittest individuals. For future work, it seems a viable for GA-
HC-elitist to be tested with large data sets of LTP.
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Abstract. Personalized search is essentially a qualitative optimization
problem since its target is to find items (as solutions) satisfied by the
searcher. Interactive evolutionary computation (IEC) is powerful in solv-
ing this problem in view of optimization. The privacy protection when
using other users’ information in the personalized search, however, has
not been concerned when designing IECs. We here present an improved
interactive estimation of distribution algorithm (IEDA) with dual prob-
abilistic models by integrating the Federated Learning (FL) proposed for
privacy protection. The Federated-SVD is first developed by embedding
the singular value decomposition (SVD)-based collaborative filtering into
the structure of FL for safely gaining the social preference. The decom-
posed user and item (solution) features by SVD are uploaded and aggre-
gated in the central service and finally used to construct and update the
probabilistic models. The superiority of the enhanced IEDA is demon-
strated through ten personalized search cases on movies and TV series.

Keywords: Interactive estimation of distribution algorithm ·
Personalized search · Privacy protection · Federated learning · SVD

1 Introduction

Interactive evolutionary computation (IEC), by involving a person into the evo-
lutionary process to evaluate the individuals, has been concerned for decades
due to its superiority in optimizing problems difficult to be exactly depicted
with a mathematical model [16], and has been applied to many practical prob-
lems, e.g., fashion design, lens optimization, personalized search [12]. Most IECs,
however, are developed based on the genetic algorithm strategy since it is simple
to be performed. We presented an interactive estimation of distribution algo-
rithm (IEDA) inspired by the personalized search process and applied to laptop
search, in which the domain knowledge was extracted to effectively get the initial
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population and then built a probabilistic model using Bayesian model [2]. Fur-
ther encouraged by our previous work, we turn our view to the deep integration
of personalized search and IEDA.

As highly related research fields, personalized search and recommender sys-
tems (RSs) share many techniques and insights. In the study of RSs, approaches
are grouped into three main streams: content-based, collaborative filtering (CF)
and their hybrid techniques. The hybrid ones are more effective, and thus they
are more popular in recent years. Many existing improved IECs, e.g., surrogate
model assisted ones, can actually be viewed as an enhancement by articulating
the content-based filtering technique since the information of the searched solu-
tions in the evolutionary process are fully used to get the possible preference
model [2,11]. In [1], Yang et al. proposed the dual probabilistic model assisted
interactive estimation of distribution algorithm (DPM-IEDA) for addressing per-
sonalized search problems by efficiently incorporating the social preference. The
DPM-IEDA adopted the collaborative filtering and the content-collaborative
hybrid strategy by constructing a dual-probabilistic model. In such a framework,
however, the privacy of the social group is ignored.

Recently, increasing information disclosure cases have raised public’s great
concerns over their privacy security. As a solution, Google proposed federated
learning (FL) in 2017 [10] following the principle of focused collection or data
minimization [4]. Local models training and central aggregation, as two main
components, consist of the FL process [5,7,10]. The key point is that, with no
single piece of privacy data being updated to or stored on the server, only local
models’ parameters are sent to the center and aggregated to obtain the central
model to protect privacy security.

If the FL structure, content-collaborative filtering technique for high efficient
recommender can be subtly integrated with IEC, it is possible that we can obtain
a powerful intelligent optimization structure for not only effectively explore more
satisfied solutions but also without privacy leakage when using the group users
information. Motivated by this, we here present a federated learning based inter-
active EDA, in which the content and collaborative filtering are used to build
two probabilistic models from the perspectives of social search preference and
the individual one respectively. The framework of integrating federated learning
is presented, and a federated collaborative strategy is given in detail.

The main contributions of our work are as follows: (1) FL is integrated with
the IEC for keeping the data privacy, which can be a general form and extended
with many other learning models for improving IECs’ performance. (2) A specific
federated collaborative filtering model, i.e. federated singular value decomposi-
tion (Federated-SVD), is given for obtaining the social preference on the searched
items. (3) Dual probabilistic models for the EDA are provided to enhance the
initialization and exploration of the evolution. The remainder of this paper is
organized as follows. Section 2 briefly introduces the IEC-assisted personalized
search, FL, and CF. And then, Sect. 3 details the proposed algorithm. In Sect. 4,
the application of the proposed algorithm together with the experimental results
and analyses is addressed. Conclusions are drawn in Sect. 5.
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2 Related Concepts

As discussed, personalized search belongs to qualitative optimization problems
that are of no explicit mathematical expression. In the associated studies, user
preference reflected by evaluated items are used and tracked [15]. If the items
to be searched by a person are regarded as discrete solutions, the personalized
search problem can be defined as: maxf(i) i ∈ D, where D is the feasible space
of existing items, f(i) is the preferable evaluation on the i-th item but cannot
be explicitly defined and often reflected by the user’s interactions. If the item is
encoded into individuals, and the user’s preference or evaluations on the item can
be obtained, then IEC is the nature optimization tool. Therefore, the encoding of
item and user preference modeling are the most important issues when applying
IEC to the personalized search. In our previous work [2], we have presented
a method to encode items described with words by use of word2vec. As for
the preference modeling, lots of surrogate assisted IECs have been developed
[2,13,14].

Federated learning was first presented by Google from the viewpoint of keep-
ing the personal data privacy when tracking the possible interests of a user based
on his/her history internet behavior information [5–7,10]. Each user’s personal
data are stored only on his/her local mobile devices, and the machine learning
model for extracting his/her preference is built also only on the local device. The
model parameters of all the participated users are then uploaded to the server
and aggregated to get the possible common interest. The aggregated parameters
can then be downloaded to the local devices for further learning and model build-
ing. Such process is iterated and the recommended items under this structure
are updated along with the newly stored personal behavior information.

The introduction of Collaborative filtering (CF) is further given here. CF is
greatly popular in Recommender Systems (RSs) [8]. According to the collected
preference from lots of relevant users (social or public preference), CF techniques
make predictions of the interests of a user to items. The existing CF algorithms
can be generally divided into the following two categories: (1) Memory-based
approaches are characterized by calculating the similarity between users/items
with the help of rating data, e.g. item-based/user-based top-K recommendations.
(2) Model-based approaches predict missing ratings by employing models
that are trained by different data mining or machine learning algorithms, e.g.
latent Dirichlet allocation (LDA), probabilistic latent semantic analysis (pLSA),
and singular value decomposition (SVD).

CF and content-based recommender are very popular and effective in finding
more items interested by the user, but they have not been well articulated with
IEC to get the user’s preference model and enhance the explorative performance
of EC.
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3 Federated Learning Assisted Interactive EDA
with Dual Probabilistic Models

The framework of the proposed algorithm is shown in Fig. 1, and the main con-
tributions of our work are shaded. It is clear that two probabilistic models will
be constructed/updated in the IEDA process by designing a federated SVD
(CF technique) to extract the public preference and support vector regression
(SVR) (content-based strategy) to fetch the current user’s interest. The searched
items are described with words or documents, therefore, the Doc2Vec learning
is used to transfer the words into vectors. This step is time-consuming and
can be done offline. With the trained Doc2vec, the public dataset provided by
those volunteers or collected before, the user-item matrix can be obtained and
the Federated-SVD is applied here to draw the public preference and sent it to
construct the first probabilistic model. The population is first generated by sam-
pling the Federated-SVD-based probabilistic model, and the items for the user to
evaluate are then sampled with the content-based, i.e. SVR based probabilistic
model. Along with the evolution, the current user’s interactions and evaluated
items will be collected to update the SVR based probabilistic mode to drive the
EDA process. Specifically, the key of our work to develop a privacy-preserving
CF technique to get the public preference, which will be presented in Sect. 3.1
under the framework of FL; then, the construction of the dual probabilistic mod-
els (DPM) and the corresponding entire algorithm (shorted as FL-DPM-IEDA)
will be addressed in detail.

Fig. 1. The framework of federated learning assisted IEDA with dual probabilistic
models.

3.1 Federated-SVD

The Federated-SVD presented here is to obtain an estimated interest of user
u on the newly appeared or unevaluated i-th item, denoted as r̂ui. With such
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estimations, the probability of selecting the this item can be statistically calcu-
lated, and then the public preference induced probabilistic model is easy to be
constructed.

Compared with SVD, the key improvements of the Federated-SVD are that
all users’ rating records are locally stored, and also all local SVD algorithms are
executed in a decentralized manner; thus, user privacy can be well protected. The
rating records matrix R is saved locally and used to carry out the SVD algorithm
to get two matrices, P and Q. Matrix P corresponds to the user feature vectors
{...,pu, ...}, while matrix Q corresponds to the item feature vectors {..., qi, ...}.
Between the server and users, only parameters {...,pu, ...} and {..., qi, ...} are
exchanged. Clearly, these two vectors carry the information of the public data.
With the help of the obtained user and item features, the interest of user u to
item i, i.e. the rating r̂ui is estimated with the following equation [8]:

r̂ui = µ + bu + bi + qT
i pu (1)

where µ, bu and bi are the corresponding average values of R, Ru·, and R·i. They
can be calculated with the following equations: µ =

∑
m

∑
n Rm,n

M∗N , bu =
∑

n Ru,n

N ,
and bi =

∑
m Rm,i

M , where M and N are respectively the numbers of users and
items. The corresponding pseudo code of Federated-SVD is given in Algorithm 1.

Compared with the traditional SVD and federated learning, our Federated-
SVD has two different characterizes. First, the training data composes of two
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parts, i.e., the public users ratings on their evaluated items and the current
users ratings on the same items stored in the local device. The public group
has no privacy protection needs but the current user needs privacy protection.
Second, the aggregation strategy of the algorithm is different. The user and
item feature models after aggregation are denoted as modeUI and modeI. The
terms/parameters of Eq. 1 belong to two groups: the user related (bu,pu) and
the item related (bi, qi). When considering the local matrices, they share the
same features of items (bi, qi) instead of (bu,pu) of users. Undoubtedly, server-
side aggregation is reliable for item features. Therefore, for modeUI, local clients
set bu,pu, bi, qi are uploaded and averagely aggregated, while the other mode
(I), only bi, qi are set with the aggregated parameters. Such an aggregation is
beneficial on reducing the communication and computational cost.

3.2 Dual Probabilistic Models

The content-based probabilistic model is constructed with the support vector
regression (SVR) that takes evaluated items’ content-based features as input
and returns the corresponding estimated ratings, i.e. r̂ = SVR(v). In the equa-
tion, v represents the content-based feature and is in the form of a fixed-length
vector. Given the estimated ratings r̂l, the content-based probabilistic model

p = {..., pl, ...}, l ∈ pop is here defined as: pl ← er̂l/
∑|pop|

1
er̂l , where pop corre-

sponds to the population in IEDA.
Unlike the content-based model that plays the rule of a surrogate to dynam-

ically track the current user’s preference, the CF-based one employs the collab-
orative intelligence reflected by the rating matrix to enhance the power of the
presented IEDA, i.e. r̂ui. SV D(·) is detailed in Eq. 1, and in it, u and i are the
active user and the item to be assessed. With the predicted ratings, the CF-based
probabilistic model is then obtained. In the initialization, all the items with the
CF-predicted ratings lower than a certain threshold are first filtered out, and the
rest are then categorized into K groups, i.e. {Lsearch,1, ..., Lsearch,k, ..., Lsearch,K}.
To category Lsearch,k, its CF-based probabilistic model pk = {..., pj , ...}, j ∈
Lsearch,k is expressed as: pj = P̂ ′

k ∗ er̂j/
∑|Lsearch,k|

1
er̂j , where j indexes the

items belonging to category Lsearch,k, and P̂ ′
k is the probability of category k.

Federated-SVD-based probabilistic model initialization is detailed in Algo-
rithm 2. As for the implementation of the initialization, details can be found
in our previous study [1]. To the items in the evaluation list, the active user
conducts interactions, i.e. user evaluation to get their ratings. The evaluation
list becomes se,t used to update two probabilistic models.

4 Experiments and Analysis

4.1 Experimental Settings

Experiments in this Section are divided into: (1) Federated-SVD-assisted rec-
ommendations and (2) privacy-preserving FL-DPM-IEDA assisted personalized
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search. Upon the renowned dataset, MovieLens 20M Dataset [3], the first part
given in Sect. 4.2 conducts the experimental comparison between the Federated-
SVD and SVD for testifying the effectiveness of the presented privacy-preserving
recommender technique. The root-mean-square error (RMSE) is adopted as the
metric.

Moreover, the other one in Sect. 4.3 is carried out to demonstrate the supe-
riority of the enhanced FL-DPM-IEDA through the comparisons among it, the
basic DPM-IEAD, and interactive genetic algorithm (IGA). Here, two datasets,
MovieLens 20M Dataset and Amazon product data [9], are involved. Indicators:
(1) number of found satisfactory items, to show the searching ability in
diversity of the presented IEDA; (2) average rating, to illustrate the guidance
effectiveness of the group preference model; and (3) algorithm runtime, to
state the total computational cost and user fatigue. Normally, the number of
generations are limited to twenty in IEC since user fatigue is considered [16].

4.2 Federated-SVD-Assisted Recommendations

The experimental setting is given: (1) The SVD recommender technique
executed on local clients, its corresponding parameters, together with their
ranges/values, are as: 100 (Feature Dimension), 5 (Epochs), and {True, False}
(Biased). Corresponding to Eq. 1, Feature Dimension indicates the dimensions
of bu, bi,pu, qi; if the Biased is set as False, the biased terms disappear, and the
Equation then becomes r̂ui = qT

i pu. (2) The Federated-SVD recommender
technique executed on local clients, its corresponding parameters, together
with their ranges/values, are as: 10 (K), {1, 2, 5} (m), 50 (Communication
Rounds), and {modeI, modeUI} (Initial Mode). K and m indicate the total size
number of clients and the size of the participating subset in each communication
round. As for the Initial Mode, if it is set as modeI, the local SVD only receives
bi, qi from the server and sets them as the initial value before local training.
Otherwise, all parameters including bu, bi,pu, qi are addressed.

Rather than finely tuning the parameters, the experiments are designed and
carried out for offering a basic understanding of the selection of them and their
effect on the performance of Federated-SVD. Also, the experiments and corre-
sponding analyses are expected to be a brief guide in practical engineering.

The corresponding results are given in Table 1. This group of experiments
is conducted on the proposed Federated-SVD and SVD. The 10 1, 10 2, and
10 5 in the table header correspond to those experiments that are conducted on
the FL setting with 10 clients, together with 1, 2, and 5 participating clients in
each communication round. Related conclusions are drawn: (1) Effectiveness
of Federated-SVD: When comparing the 2nd-4th columns and the 5th col-
umn, Federated-SVD outperforms SVD. (2) Initial Mode: When the first and
second rows of the 2nd-4th columns come into focus, Federated-SVD on modeI
achieves better results; moreover, the Federated-SVD on modeUI still performs
better than SVD. As previously discussed, features from Eq. 1 belong to two
groups: the user related (bu,pu) and the item related (bi, qi). When considering
local matrices, they share the same features of items (bi, qi), whereas their user
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related features vary. The server-side aggregation of user related features causes
performance deterioration, which has been experimentally proven. Also, such a
mode, i.e. modeI, is beneficial on reducing the communication and computa-
tional cost. (3) m : By comparing the 2nd-4th columns, it is not difficult to find
the performance corresponding to different values of m slightly fluctuates. So,
Federated-SVD is not sensitive to m.

Table 1. Experiment on Federated-SVD.

Initial mode Federated-SVD
@10 1

Federated-SVD
@10 2

Federated-SVD
@10 5

SVD

modeI 0.764358 0.763886 0.747109 0.915296

modeUI 0.846934 0.850753 0.85938

4.3 Privacy-Preserving FL-DPM-IEDA Assisted Personalized
Search

Privacy-preserving personalized search tasks where algorithms are expected to
help users locate as many satisfactory items as possible are addressed in this sub-
section. Two indicators are the average number of found satisfactory items and
the bracketed average rating. In order to clearly analyze algorithms, five active
users are selected from each dataset, i.e. ten in total. All cases are repeated thirty
times for conducting Mann-Whitney U-test. Experimental comparisons among
three algorithms on ten cases are conducted, and the results are listed in Table 2.
Cells are marked with † when the proposed algorithm outperforms competitors
on both metrics and the corresponding results pass the Mann-Whitney U-test
with a 0.95 confidence level. The Cell is marked with ‡ when the performance of
the proposed algorithm is worse than another competitor(s) on one metric and
the corresponding result does not pass the Mann-Whitney U-test with a 0.95
confidence level.

Runtime of compared algorithms is as follows: 0.57s (FL-DPM-IEDA), 0.15s
(DPM-IEDA), and 2.83s (IGA). Here are conclusions: (1) When addressing
privacy-preserving personalized search tasks, the presented algorithm outper-
forms all the other compared ones on all cases, except for one case with a slightly
worse average rating. (2) When the proposed FL-DPM-IEDA is compared with
its original version DPM-IEDA, the proposed one achieves better performance,
and its advantages stem from the federated-learning-enhanced CF-based proba-
bilistic model, i.e. Federated-SVD. The corresponding experimental discussions
regarding Federated-SVD versus original SVD is given in the previous Sect. 4.2.
(3) The basic DPM-IEDA performs better than the IGA; IGA is the worst
competitor. (4) The proposed privacy-preserving FL-DPM-IEDA is in the mid-
range position and of slightly higher time cost than DPM-IEDA. Since human
customers are involved in the process, and they are required to cooperate with
algorithms, its performance is acceptable.
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Table 2. Experiment on overall performance.

Active user ID Privacy-Preserving
FL-DPM-IEDA

DPM-IEDA IGA

24661 ◦ 7.30(3.46) 6.03(3.41) † 6.70(3.35) †
41079 ◦ 6.80(3.59) 4.97(3.52) † 4.10(3.44) †
33082 ◦ 1.77(2.46) 1.20(2.34) † 1.00(2.29) †
106939 ◦ 98.07(4.45) 95.80(4.48) ‡ 62.80(4.06) †
123352 ◦ 20.73(3.49) 16.10(3.32) † 12.40(2.98) †
A2EDZH51XHFA9B � 42.73(3.66) 28.43(3.36) † 33.83(3.31) †
AP3B615GM191G � 138.07(4.39) 115.73(4.15) † 110.97(4.06) †
A1AISPOIIHTHXX � 117.57(4.36) 102.27(4.24) † 98.17(4.13) †
A1GHUN5HXMHZ89 � 94.63(4.27) 86.63(4.20) † 79.53(4.09) †
AER15RIMV8E6D � 103.27(4.26) 84.73(4.10) † 95.67(4.15) †

◦ Cases are from MovieLens 20M. � Cases are from Movie and TV (5-core),
Amazon Dataset.

5 Conclusions

In order to fulfill the urgent need for privacy protection in the personalized
search where users’ history information is commonly involved, this study pro-
poses the Federated-SVD and then integrates it into the IEDA framework to
develop an enhanced FL-DPM-IEDA with two probabilistic models considered.
In the extensive experiments, the presented Federated-SVD and FL-DPM-IEDA
have experimentally proven their superiorities in the effectiveness and efficiency
of helping user locate satisfactory items.

In the future, the privacy-protected personalized search will be studied more
deeply for enlarging the application of these techniques. For example, we aim to
design a practical IEDA framework that is capable of integrating more different
model structures. On the other hand, search diversity will be considered as well.
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Abstract. In this paper, second order differential evolution (SODE) algorithm
is considered to solve the constrained optimization problems. After offspring are
generated by the second order differential evolution, the e constrained method is
chosen for selection in this paper. In order to show that second order differential
vector is better than differential vector in solving constrained optimization
problems, differential evolution (DE) with the e constrained method is used for
performance comparison. The experiments on 12 test functions from IEEE CEC
2006 demonstrate that second order differential evolution shows better or at least
competitive performance against DE when dealing with constrained optimiza-
tion problems.

Keywords: Constrained optimization � Evolutionary algorithm �
Differential evolution � SODE

1 Introduction

Constrained optimization problems (COPs) are mathematical programming problems
frequently encountered in the disciplines of science and engineering application.
Evolutionary algorithm is usually used to deal with constrained optimization problems
due to its excellent performance, but it is essentially an unconstrained optimization
evolutionary algorithm, which must be combined with constraint handing technique to
solve the constrained optimization problem. Evolutionary algorithm and an appropriate
constraint handing technique are combined to form a complete constrained evolu-
tionary optimization algorithm. Among all the evolutionary algorithms, differential
evolution (DE) [1] is one of the most important problem solvers.

Differential evolution was introduced by Price and Storn in 1997 [1], and has
numerous attractive advantages. First of all, its structure is simple. In addition, it
includes few control parameters. More importantly, its search ability, such as, higher
search efficiency, higher robustness and lower computational complexity, has been
demonstrated in many real-world applications [2, 3].
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Due to the above advantages, DE has been frequently applied to solve COPs.
Many DE variants optimization have been tailored to tackle COPs [4]. However, few
current studies investigate second order differential evolution (SODE) [5] for con-
strained optimization. To illustrate that second order differential vector is better than
differential vector in solving constrained optimization problems, the e constrained
second order differential evolution (eSODE) is proposed in this paper.

The rest of the paper is organized as follows. In Sect. 2 some preliminary
knowledge are presented. The proposed eSODE is shown in Sect. 3. The experimental
and analytic results are presented in Sect. 4, and the last Section concludes the paper.

2 Preliminary Knowledge

2.1 Constrained Optimization Problems (COPs)

Without loss of generality, a COP can be described as follows:

minimize f ð~xÞ;~x ¼ ðx1; . . .; xDÞ 2 S
subject to: gjð~xÞ� 0; j ¼ 1; . . .; l

hjð~xÞ ¼ 0; j ¼ lþ 1; . . .;m
li � xi � ui; i ¼ 1; . . .;D

ð1Þ

where ~x ¼ ðx1; . . .; xDÞ is an D dimensional vector, f ð~xÞ is the objective function,
gjð~xÞ� 0 and hjð~xÞ ¼ 0 are l inequality constraints and m − l equality constraints,
respectively. li and ui are the lower and upper bounds of the i-th decision variable xi,
respectively.

The decision space S is an D-dimensional rectangular space in Rn, in which every
point satisfies the upper and lower bound constraints.

The feasible region X is defined by the l inequality constraints gjð~xÞ and the
(m − l) equality constraints hjð~xÞ. Any point ~x 2 X is called a feasible solution;
otherwise,~x is an infeasible solution. The aim of solving COPs is to locate the optimum
in the feasible region.

Usually, the degree of constraint violation of individual~x on the j-th constraint is
calculated as follows:

Gjð~xÞ ¼ maxð0; gjð~xÞÞ; 1� j� l
maxð0; hjð~xÞ

�� ��� dÞ; lþ 1� j�m

�
ð2Þ

Gð~xÞ ¼
Xm
j¼1

Gjð~xÞ ð3Þ

where Gjð~xÞ is the degree of constraint violation on the j-th constraint. d is a positive
tolerance value.
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2.2 e Constrained Method

The e constrained method was proposed by Takahama and Sakai [6, 7]. The core idea
of this method is to divide the individual-based constraint violation degree into dif-
ferent regions by artificially setting the e value, and in different regions, the feasible
solution and the infeasible solution adopt different evaluation methods respectively.
The details on how to deal with the constraints, especially in constraint evolutionary
optimization, can be found in the references [10, 11].

When comparing two individuals, say~xki and~x
k
j ,~x

k
i is better than~x

k
j if and only if

the following conditions are satisfied:

f ð~xiÞ\f ð~xjÞ; if Gð~xiÞ� e ^ Gð~xjÞ� e
f ð~xiÞ\f ð~xjÞ; if Gð~xiÞ ¼ Gð~xjÞ
Gð~xiÞ\Gð~xjÞ; otherwise

8<
: ð4Þ

eðkÞ ¼ eð0Þð1� k
Tc
Þcp; 0\k\Tc

0; k� Tc

�
ð5Þ

cp ¼ � log e 0ð Þþ a

log 1� k
Tc

� � ð6Þ

where e in Eq. (4) is controlled by Eqs. (5) and (6) and k is the current generation. e 0ð Þ
is the maximum degree of constraint violation of the initial population. Tc is the
maximum generation number. According to [8], a is set to 6.

2.3 Classical Differential Evolution

DE consists of four stages, i.e., initialization, mutation, crossover, and selection.
In the initialization stage, NP individuals are usually randomly generated from the

decision space.
In the mutation operation stage, DE creates a mutant vector~vi for each sample~xi.

The two extensively used mutation operators (called DE/rand/1 and DE/best/1) are
introduced as follows.

DE/rand/1:

~vi ¼~xr1 þFð~xr2 �~xr3Þ; i ¼ 1; 2; . . .;NP ð7Þ

DE/best/1:

~vi ¼~xbest þFð~xr1 �~xr2Þ; i ¼ 1; 2; . . .;NP ð8Þ

where r1; r2; r3 are three random and mutually different integers chosen from [1, NP],
and F is a scaling factor and is used to control the amplification of the differential
vector.
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In the crossover operation stage, the crossover is applied to the parent individual~xki
and its mutant vector~vki . Then a trial vector ~uki is produced.

uki;j ¼
vki;j; rand�CR or j ¼ jrand
xki;j; otherwise

(
ð9Þ

where rand is a uniformly distributed random number between 0 and 1. jrand is a
random integer in [1, NP]. CR is the crossover probability.

In the selection operation stage, a comparison is conducted between parent indi-
vidual~xki and trial vector ~uki to select the better one among them.

xkþ 1
i ¼ uki ; f ðuki Þ� f ðxki Þ

xki ; otherwise

�
ð10Þ

2.4 Second Order Differential Evolution

SODE is also composed of four stages, i.e., initialization, mutation, crossover, and
selection. Except for the mutation stage, the other stages are the same as those of DE.

In the mutation operation stage, the usually and widely used mutation operations,
DE/rand/1, is adopted as analytic model strategies in this paper. In order to efficiently
utilize the direction information and the search status of the current population, the
second order difference vector mechanism, which is based on the classical mutation
strategies, is indicated as in Eqs. (11)–(15).

dk ¼ xkr1 � xkr2 ð11Þ

dk1 ¼ xkr3 � xkr4 ð12Þ

dk1 ¼ xkbest � xkr4 ð13Þ

dk2 ¼ xkr5 � xkr6 ð14Þ

dkr ¼ dk þ kðdk1 � dk2Þ ð15Þ

where r1, r2, r3, r4, r5, r6 are different random integers in [1, NP]. k is set as 0.1, which
is discussed in reference [5]. xkbest is the best vector in generation k. dk1 in Eqs. (12) and
(13) sets the same variable to different values, which is combined with Eq. (15) to
produce different algorithms.

ðdk1 � dk2Þ in Eq. (15) is the second order difference vector. The mutant vector vki is
generated as follows:

vki ¼ xkr7 þF � dkr ð16Þ

where F is a scaling parameter and is set as 0.5. r7 is a random integer in [1, NP].
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In this paper, two composing patterns of dkr will be used. The first form of dkr
consists of Eqs. (12) and (14). The second form of dkr consists of Eqs. (13) and (14).
The first form and the second form based SODE, are denoted as SODErand and
SODEbest, respectively.

3 The eConstrained Second Order Differential Evolution

Evolutionary algorithm is a general optimization framework. In order to solve the
constraint optimization problems, it must be combined with the appropriate constraint
handing technique. Evolutionary algorithm and the constraint handing technique are
combined to form a complete constrained evolutionary optimization algorithm.
Therefore, while retaining the idea of SODE, this paper adds an e constrained method
to select descendants, which is denoted as eSODErand and eSODEbest, respectively.

3.1 e SODErand

In this paper, eSODErand uses SODErand mentioned in Sect. 2 to combine with e
constrained method. Its details is given in Algorithm 1.

3.2 A Subsection Sample

The difference between eSODEbest and eSODErand is the mutation operation stage.
The former uses SODEbest mentioned in Sect. 2 to combine with e constrained
method. Its details is given in Algorithm 2.
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4 Experimental Results and Algorithmic Analysis

4.1 CEC2006 Benchmark Functions

In order to check the performance of the proposed algorithms eSODEbest and
eSODErand, 12 functions are selected from IEEE CEC2006 [9] as the preliminary test
suite, which is described in Table 1.

Where D is the number of decision variables, LI is the number of linear inequality
constraints, NI the number of nonlinear inequality constraints, LE is the number of
linear equality constraints and NE is the number of nonlinear equality constraints,
active is the number of active constraints at~x.

Table 1. CEC2006 benchmark functions.

Prob. D Type of function LI NI LE NE Active

g01 20 Nonlinear 9 0 0 0 1
g02 10 Polynomial 0 0 0 1 1
g03 10 Quadratic 3 5 0 0 6
g04 7 Polynomial 0 4 0 0 2
g05 8 Linear 3 3 0 0 6
g06 2 Quadratic 0 0 1 1 1
g07 5 Nonlinear 0 0 3 3 3
g08 10 Nonlinear 0 0 0 0 3
g09 5 Nonlinear 4 34 0 0 4
g10 6 Nonlinear 0 0 4 4 4
g11 15 Nonlinear 0 5 0 0 0
g12 7 Linear 0 1 5 5 6

Second Order Differential Evolution for Constrained Optimization 389



4.2 Experimental Settings

In order to show the performance of two proposed algorithms, eDE is chosen to compare
with them. In this paper, eDE means to change SODErand in step6 of Algorithm 1 to
DE. In addition to the special instructions, the parameters are set as follows.

• Independent running number: RUN = 25.
• Population size: NP = 50.
• Maximum number of function evaluations: maxFES = 240000.

Both parameters, F and CR are initialized to 0.5. Parameter k is set as 0.1.
It is noteworthy that the feasible rate, i.e., if the algorithm cannot consistently

provide feasible solutions in all 25 runs, the running percentage of finding at least one
feasible solution is recorded. So, based on the feasible rate, the experimental results are
divided into two parts. One part is that the feasible rate of all three algorithms is 100%,
and the other part is that there are some algorithms not 100% feasible. The former is
called part 1, and the latter part is called part 2.

4.3 Experimental Comparison for Part 1

In the 12 functions, the solutions of 6 functions, include g01, g02, g03, g07, g09, g11, are
consistent feasible over all 25 runs. All the final experimental results of the 6 functions
over 25 runs, are statistically listed in Table 2, which includes the statistical items of
the minimum final result (min), the median final result (median), the average final result
(mean) and the standard deviation (std) in multiple runs.

Table 2. Comparison of the results based on CEC2006 functions.

Prob. Items eSODErand eSODEbest eDE

g01 min −8.0361E−01 −8.0360E−01 −8.0360E−01
mean −8.0213E−01 −8.0315E−01 −8.0112E−01
median −8.0360E−01 −8.0359E−01 −8.0359E−01
std 5.0795E−03 2.1990E−03 6.9590E−03

g02 min −1.0003E+00 −1.0003E+00 −1.0003E+00
mean −9.9920E−01 −9.9972E−01 −9.9936E−01
median −9.9948E−01 −9.9989E−01 −9.9960E−01
std 1.1884E−03 5.4964E−04 1.4034E−03

g03 min 5.1265E+03 5.1265E+03 5.1265E+03
mean 5.1273E+03 5.1265E+03 5.1266E+03
median 5.1265E+03 5.1265E+03 5.1265E+03
std 3.6150E+00 5.7052E−02 5.6944E−01

g07 min 5.3942E−02 5.1196E−02 5.3942E−02
mean 5.4130E−02 5.3850E−02 5.3956E−02
median 5.3942E−02 5.3942E−02 5.3942E−02
std 9.4131E−04 5.5928E−04 5.8672E−05

(continued)
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Observed from Table 2 two proposed algorithms shows even better results in terms
of reliability and accuracy when comparing with eDE. Comparatively speaking,
eSODErand performs a little worse than that of eSODEbest. The fact of eSODErand
and eSODEbest being better than eDE indicates that SODE has more information
utilizing ability for solving constrained optimization problems than DE.

4.4 Boxplot Performance Comparison

To compare the performance of algorithms better, the boxplot analysis is taken for
perusal. It can easily show the empirical distribution of all the final data in multiple
runs pictorially. In order to better analyze the results, the functions are divided into two
parts: Figs. 1 and 2.

Table 2. (continued)

Prob. Items eSODErand eSODEbest eDE

g09 min −1.9052E+00 −1.9052E+00 −1.9052E+00
mean −1.9052E+00 −1.9052E+00 −1.6578E+00
median −1.9052E+00 −1.9052E+00 −1.4307E+00
std 4.5325E−16 9.0649E−16 2.4127E−01

g11 min 3.2972E+01 3.2910E+01 3.2985E+01
mean 3.3166E+01 3.3123E+01 3.3216E+01
median 3.3148E+01 3.3115E+01 3.3194E+01
std 1.2913E−01 8.6868E−02 1.4633E−01

g02                                                                                                          g09

g11

Fig. 1. Performance comparison on g02, g09, g11.
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Boxplots are shown in Fig. 1, which shows that both medians and interquartile
range of eSODEbest are comparatively lower. The median of eSODErand is lower than
that of eDE except for g02 function.

The performance comparison of g01, g03 and g07 are shown in Fig. 2. Observed
from Fig. 2, the results of the three algorithms are relatively stable except for some
outliers.

4.5 Experimental Comparison for Part 2

In the 12 functions, the solutions of 6 functions, include g04, g05, g06, g08, g10, g12, are
inconsistent feasible. To get a more accurate solution, the 6 functions will be run 50
times to get results. The feasible rate, i.e., percentage of runs where at least one feasible
solution is found, is recorded if an algorithm fails to consistently provide feasible
solutions over all 50 runs. All the final experimental results of the 6 functions are
statistically listed in Table 3.

g01                                                                                                          g03

g07 

Fig. 2. Performance comparison on g01, g03, g07.
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Observed from Table 3, two proposed algorithms shows even better results in terms
of feasible rate when comparing with eDE. Especially the functions g06, g08, g10, the
solutions obtained by eDE are not feasible, but two proposed algorithms significantly
improve this phenomenon. This shows that SODE is more suitable for solving con-
strained optimization problems than DE.

5 Conclusions

A simple modification to SODE is proposed to solve COPs in this paper. The idea is
that after producing offspring by the second order differential evolution, the e con-
strained method is chosen for selection. eSODErand and eSODEbest on the basis of
SODE are proposed. To test the effect of the proposed strategies, they are verified on
CEC2006 Benchmark Functions. Experimental results show that second order differ-
ence vector has a certain role in dealing with constraint optimization problems. This
idea can be hybridized with any DE variants, even for all the swarm intelligence and
evolutionary computing methods. So, how to even better utilize the second order
difference vector deserves further research.
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Abstract. Church’s Thesis for discrete algorithms motivates an analo-
gous thesis for dealing with analog algorithms. Specifically, the notions of
analog algorithm and dynamical system are postulated to be equivalent.
Stability for hybrid algorithms is addressed by considering Lyapunov
energy functions for analog algorithms with continuous and discontinu-
ous states.
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1 Introduction

Gurevich [3] has shown that any algorithm that satisfies three intuitive pos-
tulates can be step-by-step emulated by an abstract state machine (ASM).
Adding a postulate of effectivity, Dershowitz and Gurevich [2] proceeded to
prove that all notions of effective algorithms for discrete-time models of compu-
tation (e.g. Turing machines, Minsky counter machines, Post machines, random
access machines) are covered by their formalization. Bournez, Dershowitz and
Néron [1] then extended that axiomatization to supply a generic notion of ana-
log algorithm and prove completeness results. Their postulates, defining analog
algorithms, are in the same spirit of those given for discrete algorithms. These
notions are reviewed and adapted in the next two sections.

Our study of stability considers Lyapunov energy functions for algorithms
with continuous and discontinuous states. It extends preliminary work for purely
dynamical systems [5] to handle hybrid systems with both discrete and analog
transitions. This is the subject of Sect. 4.

The agents of an artificial swarm system are often hybrid by nature. Stability
is a crucial property for such swarm agents.

2 Computability of Discrete Algorithms

The basic characteristic of a computable function, as formalized in [2,3], is that
there must exist a finite description of an algorithm describing how to compute
the function.
c© Springer Nature Switzerland AG 2019
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According to this view, a function is computable if: (a) given an input from its
domain, it can give the corresponding output by following a procedure (program)
that is formed by a finite number of exact unambiguous instructions – possibly
relying on unbounded storage space; (b) it returns such output (halts) in a finite
number of steps; and (c) if given an input that is not in its domain, it either
never halts or it gets “stuck” and fails.

Gurevich [3] proposed a generic model of computation that incorporates these
properties in what constitutes a “formal” algorithm, and which is outlined next.

Postulate I (Discrete system). An algorithm is a state-transition system,
consisting of a set (or proper class) of states, a subset of which are initial states,
and a partial transition function on states that determines the next-state rela-
tion. States with no next state are terminal.

Postulate II (Abstract state). States are first-order structures with equality,
all sharing the same fixed, finite vocabulary, including the scalar (nullary func-
tion) true. States and initial states are closed under isomorphism. Transitions
preserve the base set (domain), and transitions and isomorphisms commute. The
interpretations given by a state x to the function symbols f in the vocabulary
of the structure are denoted by [[f ]]x, and extended in the usual way to (ground)
terms.

Definition 1 (Locations and updates). If f is a j-ary function symbol in
the state vocabulary and ā is a j-tuple of elements of the base set of a state
x, then their combination f(ā) is called a location. We denote by [[f(ā)]]x its
interpretation [[f ]]x(ā) in x. When x and y are structures over the same base set
and vocabulary, y\x is the set of updates {f(ā) �→ [[f(ā)]]y : [[f(ā)]]y �= [[f(ā)]]x}.
Postulate III (Bounded exploration). There exists some finite set of
ground terms over the vocabulary of the states, such that states that agree
on the values of these terms also agree on all next-step state changes.

An abstract state machine, or ASM, is a state-transition system in which
algebraic states (without predicate symbols) store the values of functions of the
current state. Transitions are programmed using a convenient language based
on guarded commands for updating individual states. ASMs captures the notion
that each step of an algorithm performs a bounded amount of work, whatever
domain it operates over, so are central to the succeeding development.

Definition 2 (ASM). An abstract state machine (ASM) is given by a set
of algebraic states (without predicate symbols) sharing a vocabulary and closed
under isomorphism, a subset of initial states also closed under isomorphism, and
a program P , composed of:

– assignments s := u, for terms s and u over the vocabulary of the states;
– conditionals if q then P or if q then P else R, where q is a conjunction of

equalities and inequalities between terms and P and R are programs; and
– parallel composition par P1, . . . Pn rap, for programs P1, . . . , Pn.
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A program P defines a set of updates
�

P (x) for each state x, according to the
standard semantics of these programming constructs, each update being of the
form f(ā) �→ b, for values ā, b in the base set of x.

Gurevich [3] goes on to prove the following important result.

Theorem 3 (Representation). For every process satisfying Postulates I–III,
there is an abstract state machine (ASM) in the same vocabulary, with the same
sets of states and initial states, that emulates it step-by-step, state-for-state.

To capture the notion of effectiveness, one additional postulate regarding
initial states is needed.

Postulate IV (Arithmetical state). Up to isomorphism, all initial states
have the natural numbers as their base set, all share the same operations and
constants – save input values, and there is exactly one initial state for each pos-
sible input. Their operations are all basic arithmetic (+, −, ×, ÷, <), or can
be programmed by ASMs using only basic arithmetic, or else are completely
undefined.

Employing this last postulate, arithmetical ASMs may be defined [2]. With
all this information, the Church Thesis is proved.

Theorem 4 (Church’s Thesis). A numeric function is partial recursive if
and only if it is computed by a state-transition system satisfying Postulates I–IV.
The input is contained in the initial state of a computation and the output in its
terminal state.

Remark 5. We have restricted this presentation to algorithms that work over the
natural numbers. However, it is possible to extend it to other possible domains
(strings, lists, graphs, etc.) by introducing an encoding notion and the concept
of arithmetized algorithm, as done in [2]. No matter what other effective model
of computation is chosen, its power of computation will not be increased beyond
that given by partial recursive functions. Theorem3 plays a fundamental role in
the proof. See [2] for more details. As a corollary Turing’s Thesis is obtained.

3 Effectiveness of Hybrid Algorithms

We are interested next in extrapolating from the above discussion to analog
algorithms along the lines suggested by Bournez, Dershowitz, and Néron [1].

Postulate Ia (Dynamical system). A hybrid algorithm is a dynamical sys-
tem (T,X,A, ϕt) consisting of a time set T (a monoid with an addition operator
+ and neutral 0), a metric state space X (with metric d), initial states A ⊆ X,
and a family of evolution operators ϕt : X ⇀ X, parameterized by t ∈ T (but
not necessarily defined for all t ∈ T ) and satisfying the following two properties:
ϕt+s = ϕt ◦ ϕs and ϕ0 is the identity function.
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Remark 6. In our definition of dynamical system, it is allowed to have, in general,
more than one evolution operator.

Dynamical systems are classified based on the properties of T , X, and ϕ. The
time set T , is it continuous or discrete? Is the state space X finite or infinite?
Continuous or discrete? Finite-dimensional or infinite-dimensional? Regarding
the evolution map ϕt: is it deterministic or stochastic, autonomous or time-
dependent, invertible or not, etc.?

When T = R = (−∞,∞), we speak of a continuous-time dynamical system,
and when T = N = {0, 1, 2, · · · } we speak of a discrete-time dynamical system.
We will consider T equipped with the absolute value as a normed space (T, | · |).

A dynamical system is generally defined by one or more differential or dif-
ference equations.

Remark 7. When dealing with continuous dynamical systems determined by
ordinary differential equations on R

n, the euclidean metric d is

d(x, y) = |x − y| =

√
√
√
√

n∑

i=1

(xi − yi)2, ∀x, y ∈ R
n.

For discrete dynamical systems determined by difference equations, X equipped
with this euclidean metric defines a metric space.

Definition 8 (Computable system). A dynamical system is said to be com-
putable if its family of evolution operators (also called its trajectories) are
obtained as solutions of its mathematical model.

Postulate IIa (Abstract state). A hybrid algorithm is an abstract transition
system satisfying Postulate II.

Definition 9 (Generator). An infinitesimal generator is a function that maps
states to updates, and which respects isomorphisms.

Definition 10 (Semantics). A semantics ψ over a class C of sets S is a par-
tial function mapping initial evolutions (non-point evolutions starting at t = 0)
over some S ∈ C to an element of S. The infinitesimal generator associated
with a semantics ψ maps the state space X, for x ∈ X such that ψ([[f(ā)]]ϕt(x))
is defined for all locations f(ā), to the set of updates

�
ψ(x) = {f(ā) �→

ψ([[f(ā)]]ϕt(x)) : f in vocabulary of x and ā in base set of x}.
Remark 11. When T = R, an example of semantics over the class of sets S
containing T is the derivative ψder, when it exists. When T = N, an example
of semantics over the class of all sets would be the function ψN mapping f to
ψN(fn) = fn+1, n ∈ N.

Remark 12. From now on, we assume that some semantics ψ is fixed to deal
with different types of dynamical system; it could be ψder, but it could also
be another one. However, it is assumed that the class of dynamical systems is
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restricted to those that guarantee the existence of the respective semantics, and
as a result its associated set of updates is well defined. Therefore, not all possible
dynamical systems are allowed.

The following corresponds to the Bounded Exploration Postulate, but now
for continuous transitions.

Postulate IIIa (Bounded exploration). For any hybrid algorithm, there
exists a finite set T of variable free terms over the vocabulary of its states,
such that

�
ψ(x) =

�
ψ(y) for all states x and y that coincide for all terms in T .

Definition 13 (Hybrid algorithm). A hybrid algorithm is a dynamical sys-
tem that satisfies Postulates Ia–IIIa.

In addition to the rules of ASM programs as given in Definition 2, we need
dynamic rules.

Definition 14 (Dynamic ASM). Programs may include statements
Dynamic(f(t1, · · · , tj), t0), where f is a symbol of arity j and t0, t1, . . . , tj are
ground terms. This rule imposes constraints ψ(f(t1, . . . , tj)) = t0 on the updates�

ψ(x).

The proposed model can adequately describe hybrid systems, made of alter-
nating sequences of continuous evolution and discrete transitions.

Example 15 (Bouncing ball). Let us consider a simple model of a bouncing ball,
a classic example of a hybrid dynamical system, whose mathematical model is
given by the equations x′′ = −gm, where g is the gravitational constant and
v = x′ is the velocity, except that upon impact, each time x = 0, the velocity
changes according to v = −kv, where k is the coefficient of impact. Every time
the ball bounces, its speed is reduced by a factor k. Its evolution is described by
its associated set of updates of the following program rules

if x = 0 then v := −kv

else par Dynamic(x, v),Dynamic(v,−gm) rap

with dynamics ψder.

Definition 16 (Program). A ψASM comprises the following: an ASM pro-
gram, a set S of first-order structures with equality over some finite vocabulary
V closed under isomorphisms with a subset I of S closed under isomorphisms,
and a well-defined update set of computations

�
ψ associated with ψ.

We are assuming that for each dynamical system, the trajectories can be
computed from the description of its dynamical system, as, for example, in the
case of nonlinear differential equation, the Lipschitz conditions are satisfied, etc.
In other words, not all dynamical systems are contemplated just those that
guarantee their existence.
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Definition 17 (Unambiguity). A semantics ψ is unambiguous if for all sets
S of first-order structures over some finite vocabulary V closed under isomor-
phisms, and for all subsets S′ ∈ S closed under isomorphisms, whenever there
exists some ϕ and a ψASM, then ϕ is unique.

Bournez, Dershowitz, and Néron finish their presentation giving their main
result (analogous to Theorem3).

Theorem 18. Assuming ψ is unambiguous, for every process satisfying
Postulates Ia–IIIa, there is an equivalent ψASM.

Theorem 19 (Church’s Thesis for hybrid algorithms). A dynamical sys-
tem is computable if and only if a ψASM computes it.

Proof. If the dynamical system is computable (per Definition 8), there exists an
algorithm that computes its trajectories from its mathematical model descrip-
tion and, therefore, the ψASM program will be able to emulate and compute
these trajectories by a proper definition of its rules. For the other direction of
the implication, given a ψASM that first interprets the fixed dynamical system
and then computes its trajectories, we define a numerical procedure that mim-
ics it and therefore computes the dynamical system’s trajectories. In fact, its
trajectories define an exact mathematical model of themselves. 
�

4 Stability of Hybrid Algorithms

We are ready now to consider the stability concept for hybrid algorithms in
terms of Lyapunov energy functions. We deal with algorithms whose states are
structures with metric space S, d as base set.

Definition 20 (Stability). Consider a hybrid algorithm. We say that state x
with a ∈ S and time-indexed location ft,t0(a), where t and t0 belong to T , is
stable if for all t0 ∈ T and for all ε > 0 there exists δ = δ(t0, ε) > 0 such that if
given a′ ∈ S, with d(a′, a) < δ ⇒ d([[ft,t0(a

′)]]x, [[ft,t0(a)]]x) < ε for all t ∈ T .

Chaotic systems are unstable.

Definition 21 (Continuity). Consider a hybrid algorithm. We say that state
x with a ∈ S and time-indexed location ft(a) is continuous at t ∈ T if for all
ε > 0 there exists δ = δ(t) > 0 and state y such that if given t′ ∈ T , with
|t − t′| < δ ⇒ d([[ft(a)]]x, [[ft′(a)]]y) < ε.

Definition 22 (Class K). A continuous function α : [0,∞) → [0,∞) is said to
belong to class K if it is strictly increasing and α(0) = 0.

Postulate E (Bounded energy). The Lyapunov energy function associated
with a hybrid algorithm at its starting time point t0 ∈ T multiplied by some
finite constant c ≥ 1 bounds the whole Lyapunov energy function, transferred or
transformed by the whole algorithm, as the Lyapunov energy function evolves
in time.
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Theorem 23. Consider a hybrid algorithm with the possibility of discontinuous
states at points t1, t2, · · · ∈ T . Assume there exists a Lyapunov function V :
S × T → R

+ and two functions α, β ∈ K, such that

α(d([[ft,t0(a
′)]]x, [[ft,t0(a)]]x)) ≤ V ([[ft,t0(a

′)]]x, t)
≤ β(d([[ft,t0(a

′)]]x, [[ft,t0(a)]]x))

for all a, a′ ∈ S, t, t0 ∈ T . Assume Postulate E and that [[ft0,t0(a
′)]]x = a′ holds,

then the hybrid algorithm is stable.

Proof. We want to show that there exists a δ = δ(t0, ε) > 0 such that
given a′ with d(a′, a) < δ ⇒ d([[ft,t0(a

′)]]x, [[ft,t0(a)]]x) < ε for all t ∈ T .
We claim δ = β−1(α(ε)/c) does the job. Indeed, d([[ft,t0(a

′)]]x, [[ft,t0(a)]]x) ≤
α−1(V ([[ft,t0(a

′)]]x, t)) ≤ α−1(cV ([[ft0,t0(a
′)]]x, t0)) = α−1(cV (a′, t0)) ≤

α−1(cβ(d(a′, a))) < ε, where Postulate E has been used in the second inequality
and the equation [[ft0,t0(a

′)]]x = a′ in the first. 
�
An example of a stable hybrid algorithm whose Lyapunov function satisfies

the conditions imposed by Theorem23 is the one provided in [4], which consists
of a ball in a constant gravitational field bouncing inelastically on a flat vibrating
table. It is interesting to see how the Lyapunov function, proposed in the cited
paper, monotonically decreases as t increases. In other words, Postulate E holds
with c = 1.
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1. Bournez, O., Dershowitz, N., Néron, P.: Axiomatizing analog algorithms.
In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds.) CiE 2016. LNCS, vol.
9709, pp. 215–224. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40189-8 22. http://nachum.org/papers/AxiomatizationAnalog.pdf, https://arxiv.
org/pdf/1604.04295v2.pdf

2. Dershowitz, N., Gurevich, Y.: A natural axiomatization of computability
and proof of Church’s Thesis. Bull. Symbolic Logic 14, 299–350 (2008).
http://nachum.org/papers/Church.pdf

3. Gurevich, Y.: Sequential abstract state machines capture sequential algorithms.
ACM Trans. Comput. Logic 1, 77–111 (2000). http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.146.3017&rep=rep1&type=pdf

4. Heimsch, T.F., Leine, R.I.: A novel Lyapunov-like method for the non-autonomous
bouncing ball system. In: Proceedings of the 7th European Nonlinear Dynamics
Conference (ENOC), Rome (2011)

5. Retchkiman, Z., Dershowitz, N.: The Church thesis, its proof, and the notion of
stability and stabilization for analog algorithms. Commun. Appl. Anal. 23, 233–248
(2019)

https://doi.org/10.1007/978-3-319-40189-8_22
https://doi.org/10.1007/978-3-319-40189-8_22
http://nachum.org/papers/AxiomatizationAnalog.pdf
https://arxiv.org/pdf/1604.04295v2.pdf
https://arxiv.org/pdf/1604.04295v2.pdf
http://nachum.org/papers/Church.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.146.3017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.146.3017&rep=rep1&type=pdf


Swarm Robotics



Stochastic Self-organizing Control
for Swarm Robot Systems

Daisuke Inoue(B), Daisuke Murai, and Hiroaki Yoshida

Toyota Central R&D Labs., Inc., Nagakute, Aichi, Japan
{daisuke-inoue,Daisuke-Murai,h-yoshida}@mosk.tytlabs.co.jp

https://www.tytlabs.com/

Abstract. In swarm robot systems, forming a target shape with
autonomously moving robots is an important task. Considering cost and
scalability, it is desirable that the observation information required by
the robots to form patterns be minimal, whereas the patterns themselves
can be as complicated as needed. In this paper, we propose a method of
achieving this task under the situation that a scalar value representing a
clue to its position is the only information that each robot can observe.
We adopted the optimization method proposed by Mesquita et al. [Inter-
national workshop on hybrid systems: Computation and control, pp. 358
(2008)] as a control method for the swarm robot systems. This method
requires neither centralized controllers nor position identification of each
robot, and we thus refer to it as “self-organizing control.” Compared with
existing control methods, the proposed method reduces memory usage
and computational complexity. By means of both numerical simulations
and experiments with actual robots, we quantitatively confirmed that
self-organization was achieved.

Keywords: Swarm robotics · Self-organization · Multi-agent systems

1 Introduction

Swarm robot systems aim at performing complicated tasks with large groups
of robots equipped with relatively simple hardware [2,3,13]. Such systems are
attracting much attention because of their flexibility, environmental adaptabil-
ity, and robustness against failure [5,15]. One task proposed for robot swarms
is the formation of a target shape while each robot moves autonomously. The
task includes several fundamental activities, including consensus, in which robots
gather in one place, and coverage, in which robots are scattered all over a cer-
tain field [8,12,17]. In this task, the complexity of the shape that the robots can
form depends on the amount of observations made by each robot. For example,
when each robot is able to directly obtain its position and orientation using GPS
and a gyro sensor, controlling movement towards the target coordinates is easy.
However, when a large number of robots is used, it is costly to equip each robot

c© Springer Nature Switzerland AG 2019
Y. Tan et al. (Eds.): ICSI 2019, LNCS 11655, pp. 405–416, 2019.
https://doi.org/10.1007/978-3-030-26369-0_38
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with sensors, and the lack of sensors makes shape formation very difficult. To cir-
cumvent such problems, we studied a method for pattern formation without any
individual robot knowing its own position directly; that is, a self-organizing con-
trol method. Instead of having robots obtain information about their positions,
we assumed a situation where each robot can obtain a scalar value representing
“the desirability of the current position.” One simple example of the scalar value
is a light intensity that a robot can observe. In this example, robots gather more
densely where the light is strong and more sparsely where the light is weak.
Although such a problem setting is similar to a global control problem, in that
scalar values are transmitted to the entire group, the situation considered here
is more realistic when we consider a massive number of robots, because sending
position and orientation directly become less obvious.

In this context, the paper by Mesquita et al. [10] reports a remarkable
study. They proposed a method to maximize a certain class of the function
Q : Rd → R (d = 2 or 3) while letting a large number of virtual agents search
in R

d-space according to a certain rule R. As a result of running the agent with
this rule, it was shown that the density distribution of the agents converged
to the given function Q. Then, the user can know the maximum value of the
function, at which the agents exist most densely, after some time elapses. There-
fore, in Ref. [10], the rule of each robot’s motion was introduced as a means of
optimization.

In this study, we applied the method proposed in Ref. [10] to impart self-
organizing control to a swarm robots in real space. In other words, by applying
the agent paradigm to robots, Q becomes the position clue and R becomes the
rule for robot movement, and the density distribution formed by the robots
is expected to converge to Q. Because the rule R is probabilistic, we call this
method stochastic self-organizing control. As compared with conventional meth-
ods often used for coverage control in multi-agent systems, such as the ones
in Refs. [1,6,9], the present stochastic self-organizing control has the following
features:

(1) The robots stochastically remain moving, even in a steady state.
(2) The simple algorithms have low computational complexity.
(3) The only necessary information is the value of Q (without self-positions and

orientation).

Although (1) is seemingly problematic from the viewpoint of energy consump-
tion, it can provide performance superior to that of deterministic control when
there are differences in robot abilities, because the continuous motion keeps
robots exchanging their positions within a certain area. Items (2) and (3) mean
that the robots can be controlled effectively even when they have small memory
and few sensors, respectively; in other words, the proposed method is applicable
to a simple, small robot.

The rest of this paper is organized as follows. In Sect. 2, we formulate a shape
formation problem and describe the stochastic self-organizing control method.
In Sects. 3 and 4, we perform a large-scale simulation and an actual machine
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experiment. In Sect. 5, we evaluate the performance of the proposed method and
discuss future directions for algorithm improvement.

2 Stochastic Self-organizing Control

2.1 Problem Formulation

Consider N mobile robots on R
2-space. Assume that each robot has a unique

identifier from 1 to N . The position and velocity of robot i at time t ∈ R+ (R+ :=
{a | a ∈ R, a ≥ 0}) are denoted by xi(t) ∈ R

2 and vi(t) ∈ V, respectively, where
V denotes the velocity space of each robot. We make the following assumptions
for each robot:

1. V = ρS, where ρ ∈ R+ is a constant and S is the unit sphere equipped with a
Lebesgue measure dμ. This means that each robot always moves at a constant
speed of ρ > 0.

2. The robot continuously selects either straight-ahead motion or rotational
motion. This method of movement is called run and tumble.

3. We define the set D as D := {f ∈ L1(R2) | f > 0,
∫
R2 f(x)dx = 1}, and

consider Q ∈ D. Each robot is not able to obtain its own position xi(t) and
orientation, but it can measure the value of the function Q(xi(t)).

4. All robots are assumed to move according to the same algorithms. It is also
assumed that robots do not communicate with each other, and their density
is sufficiently small to avoid collisions. At this time, because the motion of
each robot can be regarded as independent, in the following description, the
position and speed of the robot are represented by x(t) and v(t), respectively;
that is, index i is dropped.

We define p(x, v, t) as the probability density of finding a robot at position
x with velocity v at time t. We assume that for each fixed time t, p(x, v, t) ∈
L1(R2 ×ρS) holds, when R

2 ×ρS is provided with the product measure dx⊗dμ.
The purpose of the considered control problem is to ensure that

lim
t→∞

∫

ρS

p(x, v, t)dμ(v) = Q(x). (1)

is satisfied by designing rule R. This rule determines the speed v(t) depending on
the history of values of the scalar function {Q(x(τ)) | τ ∈ [s, t], s ≤ t} observed
by each robot.

2.2 Controller Design

Mesquita et al. [10] proposed a method for solving an optimization problem by
finding the maximum of a function, say Q(x). This method relies on stochasti-
cally selecting the rotational motion of an agent. Here we apply it to achieve our
goal in Eq. (1). The probability that a tumble does not occur between the time
instants t and s is given by
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exp
(

−
∫ t

s

λ(x + τv, v)dτ

)

. (2)

where λ : R
2 × ρS → R is the tumbling rate, λ is a design parameter, and

λ ∈ L∞(R2 × ρS) holds. At each tumble, the velocity changes to a random
value v̄ ∈ ρS with probability density Tv− , which may depend on the velocity
v− just before the tumble. This is represented as v̄ ∼ Tv− . Tv− is also a design
parameter. In summary, we obtain

ẋ(t) = v(t),
v̇(t) = 0,

v(t) =

⎧
⎨

⎩

v̄, v̄ ∼ Tv− w. p. 1 − exp
(
− ∫ t

s
λ(x + τv, v)dτ

)
,

v− w. p. exp
(
− ∫ t

s
λ(x + τv, v)dτ

)
.

(3)

where the third equation corresponds to rule R.
In Ref. [14], an equivalent expression of Eq. (3), which is a partial differential

equation describing the time evolution of the density distribution of the variables,
is derived as follows:

∂p

∂t
+ v · ∇xp(x, v, t) = −λ(x, v)p(x, v, t) +

∫

ρS

Tv′λ(x, v′)p(x, v′, t)dμ(v′). (4)

Equation (4) is interpreted intuitively as follows: on the left-hand side, we find a
drift term v·∇xp(x, v, t) corresponding to straight robot movement. On the right-
hand side, we find a loss term −λp(x, v, t) that corresponds to robots leaving
state (x, v) and a gain term that corresponds to robots transitioning to the next
state (x, v).

In [10], λ and Tv− are designed for solving an optimization problem of max-
imizing Q(x) by means of analyzing Eq. (4). This is expressed as the following
theorem:

Theorem 1. ([10]). Suppose that Q satisfies Q ∈ D and ‖∇x ln Q(x)‖ ∈
L∞(R2). If Tv′ is designed as a uniform distribution as

Tv′(v) =
1

μ(ρS)
. (5)

and λ is designed as

λ(x, v) = η(x) − v · ∇x ln Q(x). (6)

where η(x) =
∫

ρS
Tv′(v)λ(x, v′)dμ(v′), then, for any p(x, v, t) that satisfies

p(x, v, 0) ∈ D and Eq. (4),

p(x, v, t) → Q(x), (t → ∞). (7)

holds in norm.
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Fig. 1. Scalar value function Q used for numerical calculation. (a): Image of Lena
placed in the space [0, 1, 000]2 m2. (b): Image converted to scalar function Q after
processing by grayscaling, high contrasting, and normalization.

In Theorem 1, we regard η(·) in Eq. (6) as a design parameter and let it be a
constant η̄ ∈ R+. This means that the designer chooses the average tumbling
rate of each robot in advance. Note that because of this the convergence of
the distribution, which is described in Theorem1, will not rigorously hold. The
probability of Eq. (2) is then calculated as

exp
(

−
∫ t

s

λ(x(τ), v(τ))dτ

)

= exp
(

−
∫ t

s

η̄ − v · ∇x ln Q(x(τ))dτ

)

= exp(−η̄(t − s))
Q(x(t))
Q(x(s))

.

(8)

In Eq. (8), the size of eta serves as a parameter for controlling the rotation
probability as time passes. By using Eq. (8), we can control each robot with the
following steps:

1. Set s ← t0 at the initial time t = t0.
2. Calculate the value p̄ ∈ [0, 1) of Eq. (8) at each time t.
3. Generate a uniform random number in the [0, 1] section. If it is larger than p̄,

rotate with an angle sampled from a uniform distribution of ρS and reset the
value of s (s ← t). If it is smaller than p̄, continue traveling straight ahead
(no turning).

4. Repeat steps 2 and 3.

As guaranteed by Theorem 1, the distribution p(x, v, t) of the robot is expected
to converge to the given function Q(x) using the above steps.

3 Numerical Simulation

We carried out numerical simulation using a large number of robots, namely
40, 000. Each robot moves according to the dynamics of Eq. (3), where the speed
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Fig. 2. Trajectory of the movement of 40, 000 robots.

of the robot ρ is 0.05m/s. In the actual computation, Eq. (3) is discretized using
Euler approximation at a sampling interval of 1.0 s. The value of η̄ = 0.1 s−1

is used as a parameter representing the average rotation rate in Eq. (8). The
initial positions of the robot are assumed to be equally spaced in the section
[250, 750]2 m2. For the scalar value function Q, we used the often used Lena [16]
test image, to correspond to the section [0, 1000]2 m2, as shown in Fig. 1(a). To
convert the original image into a suitable density distribution, we performed the
following procedure:

1. Grayscaling: We converted the image to monochrome, and expressed it as
scalar value function ψ : R2 → R.
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Fig. 3. KL divergence obtained by numerical integration at each time step.

2. High contrasting: To increase the kurtosis of the distribution, we applied the
following nonlinear transformation (for details, see Ref. [7]):

φ(q) = exp(30(ψ(q) − 1)). (9)

where q ∈ R represents each pixel value of the image.
3. Normalization: The value of each pixel was normalized by the sum of the

values of all the pixels, yielding a density distribution.

Figure 1(b) shows a plot of the scalar function Q after performing these opera-
tions.

We used the procedure described above to simulate the movement of 40, 000
robots, and their resulting trajectories are plotted in Fig. 2. We confirmed that
the robots, which were uniformly aligned at the initial time, tended to self-
organize into a form of the scalar value function Q representing the image. To
evaluate the convergence of the distribution quantitatively, we introduced the
following Kullback-Leibler (KL) divergence dKL(t; p,Q):

dKL(t; p,Q) :=
∫

R2

∫

ρS

(

p(x, v, t) ln
p(x, v, t)

Q(x)

)

dxdμ(v). (10)

This is a measure of how the probability distribution p is different from the
reference probability distribution Q. Because dKL(t; p,Q) → 0 (t → ∞) holds
iff p → Q holds, we can regard the smallness of dKL(t; p,Q) as an evaluation of
the proximity of the distributions. Figure 3 shows a time evolution of the value of
dKL, obtained by numerically integrating Eq. (10) within the space [0, 1, 000]2 m2

discretized into a grid with 10,000 cells. The KL divergence, which was 6.46 at
the initial time t = 0 s, decreased to 4.87 at t = 10 s, which means that the
density distribution p(x, v, t) formed by the robots approached the scalar value
function Q(x).
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Fig. 4. Experimental setup.

Fig. 5. Robots moving on the stage along with their projected trajectory.

4 Experiment with Robots

In addition to the numerical simulations, we also carried out experiments using
actual robots. We employed e-puck 2, a research and educational robot devel-
oped by Michael and Francesco [11]. The robot’s diameter is as small as 7 cm,
and it has a programmable microcontroller. It moves by operating two stepping
motors independently, and it carries many sensors, such as infrared proximity
sensor, inertial measurement unit, time-of-flight distance sensor, and camera. In
addition, these robots can communicate with each other robot or a master PC
via Wifi or Bluetooth interface.

Our experimental setup is shown in Fig. 4. Each robot moved on a stage mea-
suring 1 × 1m according to the steps described in Sect. 2.2 with the value of Q
at its own position. Also, for visualization, a projector displayed the locus of the
position of the robots. Figure 5 shows the robots moving on the stage and the
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Fig. 6. Trajectory of movement of three e-puck robots.

displayed trajectories. In this experiment, the robots did not sense the function
Q; instead, the master PC sent the information to each robot. More specifically,
the master PC used the camera above the stage to detect markers applied to the
top of each robot and then calculated the value of Q from the marker position.
The value of Q was then transmitted to each robot via Bluetooth communication.
The reason for employing this procedure to obtain the value of Q, rather than
directly sensing it, was to separate the evaluation of the performance of the pro-
posed control method from the evaluation of the sensing performance of the
robot. Because the number of Bluetooth simultaneous communication devices was
limited, three robots were used in the experiment. In the numerical simulation
described in Sect. 3, convergence of the distribution was evaluated by means of a
joint distribution of many robots. In this experiment, convergence of the distri-
bution was verified by observing the distribution formed by the trajectory of the
position of each robot. This means that we assumed that Ergodicity is established
in the system.
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Fig. 7. KL divergence obtained by numerical integration at each time step.

The speed of movement of each robot ρ was 0.02m/s, and control was per-
formed with the sampling period 0.6 s. For the parameter η̄, we used the value
0.6 s−1. Unlike the numerical simulation, each robot can collide with walls or
other robots because the robots have a finite size. To avoid collisions, we imple-
mented an avoidance function that detects an obstacle using infrared sensors
and changes the traveling direction in the direction opposite to the obstacle.
Consequently, strictly speaking, the movement algorithm is different from the
one described in Sect. 2.2. It was thus expected that the collision avoidance
negatively effects the distribution convergence. We discuss this in more detail in
Sect. 5.

In Fig. 6, the multimodal function used as Q and the trajectories of the posi-
tion of robots are visualized. We confirmed that the trajectories of the three
robots approached the shape of the given scalar value function Q as time pro-
ceeded. Figure 7 shows the plot of the KL divergence (10) at each time step t,
which was obtained by dividing the 1 × 1m space of the stage into 14,400 cells
and numerically integrating the values on them. The KL divergence, which was
4.92 at the initial time t = 0 s, decreased to 0.63 at t = 6, 900 s, and it was quan-
titatively confirmed that the density distribution p(x, v, t) formed by the robots
approached the scalar value function Q(x) after sufficient time had elapsed.

5 Discussion and Concluding Remarks

Here, we compare our proposed method with the method proposed by Cortés
et al. [6], which is often used for coverage control. Cortés proposed the following
method for moving the robots to minimize an evaluation function:

ẋi(t) = −K [xi(t) − g(Vi(x(t)))] . (11)

g(Vi(x(t))) :=

∫
Vi(x(t))

zQ(z)dz
∫

Vi(x(t))
Q(z)dz

. (12)
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where K ∈ R+ is the gain of the controller and Vi(x) is called the Voronoi
region, defined as Vi(x) := {z ∈ R

2|‖z − xi‖ ≤ ‖z − xi‖ ∀j s.t. j = i}. Here, the
evaluation function represents the closeness between the distribution formed by
the robot swarm and the target shape.

Compared with [6], the computational cost of the proposed method is small.
In Ref. [6], integration of the function on the Voronoi region was necessary to
obtain the value of g in Eq. (12). In contrast, our method is implemented by only
calculating Eq. (8) and a uniform random number at each time step. In addi-
tion, in the proposed method, less information is necessary than in the method
of Cortés, where the robots need to know their own position and those of neigh-
boring robots to compute their Voronoi regions at each time step. Finally, while
Eq. (11) assumes that the robots are able to go straight to the target coordi-
nates, which usually requires them to have their own orientation information,
in the proposed method, only the value of Q(x) is used to carry out run and
tumble with only the random angle rotation at tumble phases; robots do not
need information on their own positions and orientations.

In the proposed method, however, because of its stochastic nature, the prob-
ability of collision between robots is expected to be higher than that in the
Cortés’ method. It is thus necessary for each robot to have a function to avoid
collision with other robots, as implemented in Sect. 4. The collision avoidance is
regarded as an interaction force acting on the robot. At this time, a new term
representing the proximity interaction is added to Eq. (3) as follows:

ẋi(t) = vi(t),
v̇i(t) = fij(t),

vi(t) =

⎧
⎨

⎩

v̄, v̄ ∼ Tv−
i

w. p. 1 − exp
(
− ∫ t

s
λ(xi + τvi, vi)dτ

)
,

v−
i w. p. exp

(
− ∫ t

s
λ(xi + τvi, vi)dτ

)
.

(13)

where fij(t) is the interaction term expressing the repulsive force between robot
i and robot j. As a result of this term, Eq. (3) is not independent for each robot,
so that the dimension of the corresponding partial differential equation (4) is N .
In the field of statistical mechanics, mean field approximation, which averages
interactions with surrounding particles and performs approximation, is often
applied to decrease the dimension of the system, by means of an appropriate
enclosure. However, for proximity interaction, as in our case, the mean field
approximation may not be valid, and a different approach is necessary to decrease
the dimension. Recently, Bruna et al. [4] proposed an approximation method for
systems with proximity interactions, and we are now working on developing a
new algorithm incorporating this approximation approach.

Acknowledgement. The authors would like to thank Dr. Yuji Ito for the useful
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12. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked
multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)
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Abstract. Chemical Reaction Algorithm (CRO) is a metaheuristic for opti-
mization inspired by the nature of chemical reactions. A chemical reaction is a
natural process of transforming the unstable substances to the stable ones. In this
research paper a hybrid chemical reaction optimization algorithm based on local
search and global search with an intuitive graphical evaluation framework is
presented, which combines the advantages of Chemical Reaction Optimization
and Particle Swarm Optimization.

Keywords: Swarm intelligence � Chemical reaction optimization � Framework

1 Foundations

1.1 Chemical Reaction Algorithm

Chemistry is the field of science that studies the chemical properties of matter and its
structures [1]. In microscopic view, a chemical reaction starts with unstable molecules
with energy. Energy is required for breaking chemical bonds into several molecules.
The molecules interact with each other through a sequence of elementary reactions.

The underlying principles of chemical reactions are governed by the first two laws
of Thermodynamics. The first law (conservation energy) defines that energy cannot be
created or destroyed; energy transforms from one form to another and transfer from one
entity to another. A chemical reacting system consists of the chemical substances and
its surroundings. Each chemical substance possesses potential and kinetic energies, and
the energies of the surroundings are symbolically represented by the central energy
buffer in CRO [2].

A reaction is endothermic when it requires heat obtained from the surroundings to
initialize the reaction process. An exothermic reaction refers to one whose chemical
substances give heat to the surroundings. These two reactions are characterized by the
initial buffer size (i) positive, reaction is endothermic and (ii) zero, reaction is
exothermic. The second law defines that the entropy of the system tends to increase,
where entropy is the measure of the degree of disorder.

Potential energy is the energy stored in a molecule with respect to its molecular
configuration. Molecules are classified into species based on the fundamental chemical
properties. For example, carbon monoxide (CO) and nitrogen dioxide (NO2) are two
different chemical species. The chemical system (CO + NO2) is unstable and the
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chemicals finally convert to stable species, CO2 and NO. The chemical equation which
governs this process is described by CO + NO2 ! CO2 + NO. This reacting system is
realized inmultiple stages, described by consecutive sub-reactions: 2NO2 ! NO3 + NO
and NO3 + CO ! NO2 + CO2.

A chemical reaction results in more stable products with minimum energy and is a
step-wise process of searching for the optimal point. At the end of the process, they are
converted to those with minimum energy to support their existence.

Molecule is identified by its molecular structure, which characterizes the contained
atoms, bond length, angle, and torsion. Energy of the molecules are stored in the form
of chemical bonds; bond formation requires energy from outside while bond breakage
releases energy to the surroundings. A chemical change of the molecule is triggered by
a collision. The two types of collision (i) uni-molecular and (ii) inter-molecular are
considered. CRO is a variable population-based metaheuristic [2].

CRO is a multi-agent algorithm and the manipulated agents are molecules.
Essential attributes of each molecule include (a) the molecular structure (x); (b) the
potential energy (PE); and (c) the kinetic energy (KE), (d) number of hits, (e) the
minimum structure, (f) the minimum PE; and (g) the minimum hit number [3]:

• Molecular structure x captures a solution of the problem. x is a two-dimensional
vector, that represents a point.

• Potential energy is the objective function value of the corresponding solution
represented by x. If f denotes the objective function, PE = f(x).

• Kinetic energy KE is a non-negative number and it quantifies the tolerance of the
system accepting a worse solution than the existing one.

• numbOfHits counts how many reactions the molecule was involved in
• minStruct holds the molecular structure when MinPE was achieved, both together

are called information of the best solution in the following
• minPE saves the minimum PE the molecule has found
• minHit holds the numbOfHits, when MinPE was achieved

Additionally, a buffer is required, representing the energy level of the surroundings.
Exothermic reactions transfer energy to the buffer and endothermic can take energy

from the buffer.
Following functions are used to find new potential molecular structures:

• NeighbourhoodSearch N1(x) is finding a potential new molecular structure x0. N is
implemented, as a single step of the Gradient descent of random length between 0
and the constant moveAlongGradeMaxStep.

• NeighbourhoodSearch N2ðx1; x2Þ generates new molecule structures x01 by adding
a * x2 to x1 and x02 by adding b * x1 to x2 with a, b e [− impactOfOtherMolecule,
impactOfOtherMolecule].

• C1(x) takes a molecular structure x and generates x1 by keeping the first dimension
of x while the second dimension is generated randomly in the search space and x2

by keeping the second dimension of x while the first dimension is generated
randomly in the search space.

• C2ðx1; x2Þ takes two molecular structures x1 and x2 to create a new molecular
structure by adding each dimension of x1 and x2 in a random proportion.
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Also functions for updating the best solution found are defined

• updateMinSolutionðMxÞ updates the current best solution of a molecule by the
current solution by assigning PEx to minPEx; x to minStructx and numbOf - Hitsx
to minHitx.

• transMinSolðMx; Mx0 Þ transfers the information about the minimal solution of Mx0

to Mx assigning minPEx0 to minPEx, minStructx0 to minStructx and min-Hitsx0 to
minHitx.

Chemical Reactions
There are four chemical reactions in CROA. The on-wall ineffective collision and inter-
molecular ineffective collision realize the local search and the synthesis and decom-
position realize the Exploration of new areas.

On-Wall Ineffective Collision
The on-wall ineffective collision simulates a
collision of a molecule with a wall, whereby
themolecule is slightlymodified. The potential
molecular structure x0 is calculated by N1(x)
and the numbOfHitsx is increased by one.

It is energetically possible for the molecule
to change structures from x to x0, if

PExþKEx�PEx0 ð1Þ

is accomplished.
In this process, a ratio of the percentage

1� a; a � KELossRate; 1½ �ð Þ of the surplus of
energy

buffer bufferþðPExþKEx � PEx0 Þ � 1� að Þ ð2Þ

is transferred to the buffer, where KELossRate is a constant, describing how much KE
is at least kept by the molecule in percentage.

The remaining energy is added as kinetic energy to the molecule.

KEx0  ðPExþKEx � PEx0 Þ � a: ð3Þ

x is replaced with x0 and PEx is assigned PEx0 . Finally, it is checked if the molecule
has reached a fewer PEx than minPEx and if so, updateMinSolution(x) is executed.

Decomposition
The decomposition simulates the splitting of a molecule, whereby one molecule is
generated into two new ones. A random large part of the energy can be withdrawn out
of the buffer in this process.
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Starting with C1(x) two new potential molecular structures are created:

x01  
xx

ygenerated

� �
x02  

xgenerated
yx

� �
ð4Þ

If

PExþKEx�PEx01 þPEx02 : ð5Þ

is fulfilled, the decomposition can occur
without external energy.

Two new molecules, Mx01 and Mx02 , are
created. The energy surplus

ðPExþKExÞ � ðPEx01 þPEx02Þ: ðivÞ

is split up in a random proportion and is
distributed to KEx01 and KEx02 in this pro-
portion. If the new molecules haven’t
reached a lower PE than minPEx, the best
solution of Mx is set as their best solution
including minPEx, minStructx and minHitx.
Mx is destroyed.

If the decomposition cannot occur with-
out external energy, it is examined, whether
the reaction can happen with a randomly
large part of energy out of the buffer.

If d1; d2 � 0; 1½ �

d1 � d2 �BufferþPExþKEx�PEx01 þPEx02 :

ðiivÞ

is fulfilled, the decomposition can occur. Two new molecules are produced through x01
and x02. The energy surplus, calculated by

d1 � d2 �BufferþPExþKEx � PEx01 þPEx02 : ð6Þ

is split up in a random proportion and both molecules in this proportion are assigned as
KE. The initial molecule is deleted. The decomposition will not be executed and the
numbOfHitsx will be increased by one, if there isn’t enough energy for it.

Inter-molecular Ineffective Collision
The inter-molecular ineffective collision simulates the collision of two molecules, Mx1

and Mx2 , with low impact. Two new potential molecular structures, x01 and x02 are
found by N2 x1; x2ð Þ resulting into:
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a; b � �impactOfOtherMolecule; impactOfOtherMolecule½ �

x01  
xx1 þ a � xx2

yx1
þ a � yx2

� �
: ð7Þ

x02  
xx2 þ b � xx1

yx2
þ b � yx1

� �
: ð8Þ

If

PEx1 þKEx1 þPEx2 þKEx2 � PEx01 þPEx02

� �
:

ð9Þ

is fulfilled, it is energetically possible, and the
reaction occurs. The energy surplus

PEx1 þKEx1 þPEx2 þKEx2 � PEx01 þPEx02

� �
: ð10Þ

is split up in a random proportion and saved as kinetic energy in KEx01 and KEx02 . x1

and x2 are replaced by x01 and x
0
2. Has a molecule reached a better solution than held in

the information of the best solution, the information of the best solution is replaced
with the current solution.

Synthesis
A low KE in a molecule indicates that the local search is completed. The purpose of
synthesis is, to transform a new molecule out of
two molecules which have a KE below the con-
stant minimumKE. x0 is created by C2(x1, x2).

a; b � 0; 1½ �

x0  xx1 � aþ xx2 � 1� að Þ
yx1
� bþ yx2

� 1� bð Þ
� �

: ð11Þ

If

PEx1 þKEx1 þPEx2 þKEx2 �PEx0 ðxivÞ

is fulfilled, the reaction is possible and occurs.
A new molecule Mx0 is formed. The KEx0 is
calculated through the energy surplus
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KEx0  ðPEx1 þKEx1 þPEx2 þKEx2Þ � PEx0 : ð12Þ

The information of the best solution of Mx1 , Mx2 and the current solution of Mx0 is
stored in Mx0 . If the reaction has taken place, Mx1 , Mx2 are destroyed. Has the reaction
not taken place the numbOfHitsx1 and numbOfHitsx2 are increased by one.

Program Sequence
The program sequence is shown in Fig. 1 and explained in the following. The algo-
rithm is started by a start button and stopped by a stop button described in 5.

Initialization: Random points of the set of solutions of the function are generated in
the search space. These points serve as molecular structures x for the number of
molecules that are created. Every molecule has the constant initialKE set as KE.

The initial amount of energy in the buffer is assigned the constant initialBuffer.

Iterative Reactions: Firstly, it is chosen at random if an inter-molecular or a uni-
molecular reaction takes place.

Fig. 1. Program sequence of CROA
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Stopping Criteria: The algorithm is stopped, if the user presses the stop button.

1.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a nature-inspired metaheuristic method. It was
first introduced by Kennedy and Eberhart in 1995 [4]. PSO is inspired by the swarm
behavior of birds flocking and utilizes this behavior to guide the particles for search for
globally optimal solutions. The population of particles is spread randomly in the search
space [5]. The particles are assumed to be flying in the search space.

The velocity and position of each particle is updated iteratively based on personal
and social experiences [6]. Each particle possesses a local memory in which the best so
far achieved experience is stored. A global memory keeps the best solution found.
Sizes of memories are restricted to one. Local memory represents the personal expe-
rience of the particle and the global memory represents the social experience of the
swarm.

Using randomized correction coefficients are used to maintain the balance between
personal and social experience. The philosophy behind the velocity update procedure is
to reduce the distance between the particle and the best personal and social known
locations. A swarm consists of N particles moving around in a D-dimensional search
space. The position of the i-th particle at the t-th iteration is represented by Xi

(t) = (xi1,
xi2, …, xiD) that are used to evaluate the quality of the particle. During the search
process the particle adjusts its position toward the global optimum according to the two
factors (i) best position encountered by itself (pbest) denoted as Pi = (pi1, pi2, …, piD)
and the best position encountered by the whole swarm (gbest) denoted as Pg = (pg1,
pg2, …, pgD). Its velocity at the t-th iteration is represented by Vi(t) = (vi1, vi2, …, viD).
The position at next iteration is calculated according to the following equations:

VðtÞi ¼ kðx � Vðt�1Þi þ c1 � randðÞ � ðPi�Xðt�1Þi þ c2 � randðÞ � ðPg�Xðt�1Þi ÞÞ: ð13Þ

XðtÞi ¼ Xðt�1Þi þVðtÞi : ð14Þ
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where c1 (cognitive acceleration factor) and c2 (social acceleration factor) are two
positive constants, rand() is a random function in the range [0, 1]; x is inertia factor;
and k is construction factor. The velocities of the particles are within [Vmin, Vmax]

D. If
an element of velocities exceeds the threshold Vmin or Vmax, it is set equal to the
corresponding threshold.

2 Swarm-Based Chemical Reaction Optimization

The CROA does not converge towards a solution. This is because the molecules do not
have a common global knowledge. Through the combination of the CROA and the
particle Swarm Optimization, the aim is to reach a common global knowledge and to
converge towards the best solutions and thereby examine the local search spaces more
effectively. The explorative chemical reactions, synthesis and decomposition, are
replaced by the PSO inspired reaction PSOUpdate. A hybrid chemical reaction opti-
mization algorithm “Swarm-based Chemical Reaction Optimization” (SCROA) based
on local search and global search is developed, which combines the advantages of
Chemical Reaction Optimization and Particle Swarm Optimization.

Chemical Reactions
The chemical reactions inter-molecular ineffective collision and on-wall ineffective
collision from the CROA are taken on from the SCROA. The decomposition and the
synthesis are replaced by the PSOUpdate. The explorative property is kept, and a
convergence is hereby achieved additionally. The PSOUpdate updates the velocity of
the molecule and tries to move it towards the direction of the velocity, following the
energetic rules defined in CROA. Keeping the same properties of a molecule as in
CROA, with the addition of the velocity.

• Velocity vx captures the current velocity of the molecule
• xv describes the first dimension and yv the second dimension of v
• xx is equal to the first dimension and yx the second dimension of x
• minxx is equal to the first dimension, minyx second dimension of minStructx
• minxglobal, minyglobal and minPEglobal are holding the information about best found

solution of all molecules. While f(minxglobal, minyglobal) = minPEglobal

• c1,c2 and w are the constants of the PSO

PSO-Update
Firstly, the velocity of the molecule is recalculated. This consists of the current velocity
weighted with w, the distance to the best result the molecule has achieved weighted
with a random factor r1 � 0; 1½ � and c1, as well as the distance to the best result, which
was reached globally weighted with a random factor r2 � 0; 1½ � and c2.
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vx  xvx � wþ c1 � r1 � minxx � xxð Þþ c2 � r2 � minxglobal � xx
� �

yvx � wþ c1 � r1 � minyx � yxð Þþ c2 � r2 � ðminyglobal � yxÞ
� �

: ð15Þ

Afterwards x′ is generated by vx and x. a 2 [0, 1]

x0  a � xvx þ xx
yvx þ yx

� �
: ð16Þ

If

PExþKEx�PEx0 : ð17Þ

is fulfilled, the molecule can change
from x to x0 without external energy and
so the step can be executed. The energy
surplus is added as kinetic energy.

KEx0  ðPExþKEx � PEx0 Þ: ð18Þ

Now x and KEx is updated to x0 and
KEx0 .
If it is not possible for the molecule to
change from x to x0 without external
energy, a part of the energy from the
buffer is tried to be used to make the step
possible.

If

d1; d2 � 0; 1½ �

d1 � d2 �BufferþPExþKEx�PEx01 : ð19Þ

is fulfilled, the molecular structure can change. The kinetic energy is now calculated as
shown:

KEx0  d1 � d2 �BufferþPExþKEx � PEx0 : ð20Þ

x and KEx is updated to x0 and KEx0 . Has the reaction taken place, it is checked if a
better solution is found, than the best ever found solution of the molecule. If a new best
is found the information is updated and checked if a new global best solution is
achieved and if so, the information about the global best solution is updated.
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Program Sequence SCROA
The program sequence of the SCROA is identical of the program sequence of the
CROA with two differences:

• Additionally to the initialization described in the CROA, the created molecules
are assigned a random velocity vx, where each dimension has a value between
−initialMaxLengthVelocityPerDim and initialMaxLengthVelocityPerDim, where
initialMaxLengthVelocityPerDim is a constant.

• The reactions synthesis and decomposition are replaced by the PSOUpdate

3 Parameter

For every combination of algorithm and function a brute force parameter analysis was
carried out. Delivering following parameters (Table 1):

4 Results

In Fig. 2 the lowest points (minPE) are shown in a boxplot for each function. Those
boxplots represent 100.000 executions of each algorithm. The result of the evaluation
on the function Ackley and Rastirgin is, that SCROA is significantly superior.

Table 1. Results of the parameter analysis

Parameter/Function Ackley Rastirgin

Name CROA SCROA PSO CROA SCROA PSO
c1 – 0 0.242 – 1.425 0.212
c2 – 0.28 0.806 – 1.486 0.644
w – 0.28 0.688 – 0.845 0.712
keMinLossRate 0.2 0.1429 – 0.72 0.52 –

moleColl 0.36 0.7 – 0.6 0.52 –

minimumKe 16.0 7.0 – 16.0 32.0 –

numberOfHitsForDecomposition 22 40 – 22 16 –

PopSize 24 59 71 24 43 90
minVelocityStep – 0 – – 0 –

maxVelocity – – – – – –

MoveAlongGradeMaxStep 0.099 0.066 – 0.186 0.216 –

InitialKE 20.0 50.0 – 33.0 25.0 –

impactOfOtherMolecule 0.970 0.078 – 0.177 0.065 –

initialBuffer 2000 2500 – 1350 1350 –
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5 Graphical User Interface

The Graphical User Interface shows the current selected equation plotted in two 360-
degree rotatable diagrams. Right above the diagrams, the algorithm can be selected,
which should run in the diagram. The molecules are displayed in each diagram by a
black dot. The current best-found solution of each algorithm is displayed beneath the
diagrams as point (x|y|z). The user chooses one of the following functions with the
drop-down menu displayed in the top [7]: Rosenbrock function, Rastirgin function,
Ackley function. After selecting a function, the user starts the evaluation. The evalu-
ation can be stopped or paused. Also, the number of Iteration each algorithm executes
can be changed with the slider in the Top left between 0 and 100.000, while the

Fig. 2. Results of the functions Ackley and Rastirgin

Fig. 3. Graphical user interface
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simulation is paused or stopped. The current Iteration is displayed above the two
diagrams. Additionally, the user can toggle the visibility of the function with the
Surface button, resulting that only the axes and the molecules are shown. With enabling
logging with the Logging button, every Iteration the best solution will be logged to a
CSV File (Fig. 3).

6 Conclusions

In this research paper a hybrid Chemical Reaction Optimization algorithm based on
local search and global search with an intuitive graphical evaluation framework was
presented, which combines the advantages of Chemical Reaction Optimization and
Particle Swarm Optimization. The Results on the Evaluation have shown that the
SCROA has significative performed better than CROA and PSO on different

Benchmark function, which gives reason for further research. An intuitive and
interactive Graphical User Interface with 360-degree rotatable diagrams was developed
which is used for research and study at Baden-Wuerttemberg Cooperative State
University (DHBW) in Mosbach (Germany).
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Abstract. This paper proposes a novel mixed game pigeon-inspired opti-
mization (MGPIO) algorithm for unmanned aircraft system (UAS) swarm for-
mation control. The outer loop controller based on artificial potential field
method is designed to transform the UAS swarm formation into abstract
movements in the potential field. The inner loop controller based on PIO is
designed to solve the optimal UAS position. A novel pigeon-inspired opti-
mization integrated with mixed game theory is proposed to enhance its capacity
and convergence speed to solve complex problem while reducing the compu-
tational load. This method maintains the capability of the PIO to diversify the
pigeons’ exploration in the solution space. Moreover, the proposed method
improves the quality of the pigeons based on the situation. A series of simulation
experiments are conducted compared with basic PIO and Particle Swarm
Optimization (PSO) approach. The experimental results verify the feasibility and
effectiveness of the proposed method.

Keywords: Pigeon-inspired optimization � Mixed game theory �
Unmanned aircraft system � Swarm formation

1 Introduction

Unmanned Aircraft System (UAS) has demonstrated repeatedly major potential for
diverse applications in military, civilian and public domains [1]. UAS swarm formation
control has strong coupling and nonlinearity and no direct mapping relationship
between the performance index and the model parameters, the selection of the control
input of the close formation model is a key problem. The swarm intelligence opti-
mization algorithm has no special requirements for solving these problems, hence it has
obvious advantages in controlling unmanned vehicles, robot path planning and UAS
swarm formation.

Pigeon-inspired optimization (PIO) is a novel optimization algorithm, which pre-
sented in 2014 [2]. Unlike other swarm-based algorithms such as Particle Swarm
Optimization (PSO) and Differential Evolution (DE), PIO uses the special homing
ability of pigeons that they combine the sun, the earth’s magnetic field and landmarks
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to find their destination. However, the basic PIO algorithm is easy to fall into the local
optimal solution. Xu et al. proposed a modified method based on PIO to avoid falling
into the local optimal value and increase the population diversity by introducing the
adjacent-disturbances and integrated-dispatching strategies [3]. Duan and Wang
employed PIO approach in the training process of the Echo state network (ESN) to
obtain desired parameters [4]. Zhang et al. proposed a novel predator-prey pigeon-
inspired optimization (PPPIO) to solve the UAV three-dimension path planning
problem in dynamic environment [5]. In this paper, a novel pigeon-inspired opti-
mization integrated with mixed game theory (MGPIO) is proposed to solve the problem
for swarm formation of the UAS. PIO is aimed at pigeons’ navigation behavior, by
simulating its characteristics, to find the global optimal solution.

2 Design of Outer Loop Controller Based on Artificial
Potential Field Method

Consider a UAS consisting of n drones in a 3-dimensional Euclidean space, each drone
is considered as a particle, then the kinetic model of each drone is described as follows:

_Pi ¼ vi;mi _vi ¼ ui � kivi; i ¼ 1; . . .; n ð1Þ

where _Pi 2 R
3 indicates the position vector of drone i, _vi 2 R

3 indicates the speed
vector of drone i, mi [ 0 indicates the mass of drone i. _ui 2 R

3 is the control input
value and the �kivi is the speed damping term.

In order to achieve the desired speed of the entire UAS and maintain constant
distance between drones, it is necessary to control the speed of UAS to make it
consistent and tend to expect speed. At the same time, it is necessary to control the
distance between the drones so that the total potential energy is minimized. In sum-
mary, the control input ui of drone i can be described as:

ui ¼ ai þ bi þ ci þ kivi ð2Þ

where ai represents the component generated by the artificial potential function in the
UAS swarm, it comes from Eq. (3). bi represents the component which drone i con-
verges with its neighboring drones. ci represents the component of drone i speed
tending to the desired speed, which depends on the input signal of the leader drone.

The potential function between drone i and its adjacent drone j is:

Vij Pij
�� ��� � ¼ ln Pij

�� ��2 þ R2
desire

pijk k2 ð3Þ

where Pij ¼ Pi � Pj indicates the relative position vector between drone i and drone j.
Rdesire indicates the desired distance between the drone i and drone j [6] in the UAS.

The control input ui of wingman i includes three dimensions. The first two
dimension ui1;2 are the control input in the horizontal direction and the third dimension

430 H. Duan et al.



ui3 is in the vertical direction. It is assumed that all drones in the UAS can receive
leader’s input signal (leader’s speed state), the control input ui1;2 can be defined as
follows:

ui1;2 ¼ �Kp

X
r Pij

1;2k kVij � Kv

X
vi1;2 � v j1;2

� �
� mi vi1;2 � v11;2

� �
þ kivi1;2 ð4Þ

where Kv [ 0 indicates the speed feedback gain factor and Kp [ 0 indicates the arti-
ficial potential field gain factor to control the priority of speed’s consistence and the
formation.

The control input in the vertical direction ui3 is defined as follows:

ui3 ¼ �Kh Pi
3 � Pj

3

� �� Kv

X
vi3 � v j3
� �� mi vi3 � v13

� �þ kivi3 ð5Þ

where Kh indicates the altitude feedback gain factor to control the altitude of the
formation.

3 Design of Inner Loop Controller Based on Pigeon-Inspired
Optimization and Mixed Game Theory

3.1 Pigeon-Inspired Optimization

Pigeons have special navigation capabilities. Pigeons use the sun, the Earth’s magnetic
field and landmarks to find paths, and use different navigation tools at different stages
of the itinerary. When they start flying, the pigeons rely more on navigation tool like
compass. In the middle of the itinerary, the navigation tool can be switched to the
landmark, this moment the individual pigeons will re-evaluate the route they have
experienced and make corrections.

Based on the special behavior of the pigeons during the itinerary, pigeon-inspired
optimization uses two different operator models to mimic the different navigation tools
in different stages of the pigeon flight.

Map and Compass Operator
The rules in the map and compass operator are defined with the position Xi and the
velocity Vi of pigeon i, and the positions and velocities in a D-dimension search space
are updated in each iteration. The new position Xi and velocity Vi of pigeon i at the t-th
iteration can be calculated as follows:

Vi tð Þ ¼ Vi t � 1ð Þe�Rt þ r1 Xg � Xi t � 1ð Þ� � ð6Þ

Xi tð Þ ¼ Xi t � 1ð ÞþVi tð Þ ð7Þ
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where R is the map and compass factor, r1 is a random number, and Xg is the current
global best position, which can be obtained by comparing the positions among all the
pigeons.

As shown in Fig. 1, the best position of the pigeons is developed by using map and
compass operator. By comparing the pigeons’ positions, the pigeon on the right is the
best pigeon. Each pigeon can adjust its flying direction according to (6), which is
expressed by the thick arrows. The thin arrows are its former flying direction. The
vector sum of these two arrows is its next flying direction.

Landmark Operator
In the landmark operator, half of pigeons is decreased by Np in every generation.
However, the pigeons are still far from the destination, and they are unfamiliar with the
landmarks. Let Xc be the center of some pigeons’ position at the t-th iteration, and
suppose every pigeon can fly straight to the destination. The position updating rule for
pigeon i at t-th iteration can be given by:

Np tð Þ ¼ Np t � 1ð Þ
2

ð8Þ

Xc tð Þ ¼
P

Np
Xi tð Þf Xi tð Þð ÞP
Np
f Xi tð Þð Þ ð9Þ

Xi tð Þ ¼ Xi t � 1ð Þþ r2 Xc tð Þ � Xi t � 1ð Þð Þ ð10Þ

where r2 is a random number and f is the quality of the pigeon individual. For max-
imum problems, f ¼ f xð Þ, for minimum problems, f ¼ 1

f xð Þþ e, where e is a constant and

f xð Þ is the cost function.
As shown in Fig. 2, the center of these pigeons is their final destination. Half of the

pigeons (pigeons out of the circle) will follow the pigeon, which are close to their
destination. The pigeons, which are close to their destination (pigeons in the circle),
will fly to their destination very quickly.

Fig. 1. Map and compass operator model of PIO
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3.2 Mixed Game Theory

Mixed Strategy Nash Equilibrium
A mixed strategy is a strategy consisting of possible moves and a probability distri-
bution (collection of weights) which corresponds to how frequently each move is to be
played. A player would only use a mixed strategy when he is indifferent between
several pure strategies, and when keeping the opponent guessing is desirable - that is,
when the opponent can benefit from knowing the next move [7].

If each player in an n-player game has a finite number of pure strategies, then there
exists at least one equilibrium in (possibly) mixed strategies. If there are no pure
strategy equilibria, there must be a unique mixed strategy Nash equilibrium. However,
it is possible for pure strategy and mixed strategy Nash equilibria to coexist [8].

Playing the Field
The concept of an ‘unbeatable strategy’ or an ‘evolutionarily stable strategy’ is extended
to cases in which the payoff to an individual adopting particular strategy depends, not on
the strategy adopted by one or a series of individual opponents, but on some average
property of the population as a whole, or some section of the population [9, 10].

3.3 Pigeon-Inspired Optimization Integrated with Mixed Game Theory

In the mixed game theory, players can choose different strategies with some kind of
probability rather than pure strategies. The basic PIO model is improved by combining
mixed game theory (MGPIO) to increase the diversity of the population and improve
the feasibility and accuracy of solving the problem of UAS swarm formation.

The velocity and position of pigeon i will be updated as follows:

Vi tð Þ ¼ Vi t � 1ð Þe�Rt þ s � r1 Xg � Xi t � 1ð Þ� �þ 1� sð Þ � r2 Xc � Xi t � 1ð Þð Þ ð11Þ

Xi tð Þ ¼ Xi t � 1ð ÞþVi tð Þ ð12Þ

Fig. 2. Landmark operator model in PIO
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where s ¼ 1 or 0, which indicates the pigeon’s available strategies (following the best
pigeon or following the center of the pigeons’ position). r1 and r2 are random numbers
between (0, 1). The probability matrix of the pigeons is defined as:

P ¼ p1
p1 þ p2

p2
p1 þ p2

� � ð13Þ

p1 ¼ Q1 � f Xg
� � ð14Þ

p2 ¼ Q2 � f Xcð Þ ð15Þ

where Qi; i 2 1; 2f g represent the ratio of strategy i at last iteration, f denotes the fitness
value of the position Xg or Xc.

Table 1 shows the procedure of the proposed MGPIO.

3.4 Computation Complexity of MGPIO

From the mathematical description of the MGPIO algorithm, the computation com-
plexity of the algorithm can be calculated as follows: Time complexity of the map and
compass operator or the landmark operator on one generation is O DNp

� �
because the

MGPIO algorithm need to use (11) (12) to update every dimensionality of every
pigeon. Since the number of iterations is Nc, we can sum them up and find out the
computation complexity of the algorithm which is O DNpNc

� �
.

4 Implementation of UAS Swarm Formation Control

4.1 Process of UAS Swarm Formation

The specific process of UAS swarm formation based on MGPIO is as Table 2.
In summary, the basic idea of the inner and outer loop control method to solve the

UAS swarm formation control is: The outer loop controller takes the current cluster

Table 1. Procedure of MGPIO

Step 1 Set parameters and initialize the pigeons’ position and velocity
Step 2 Calculate each pigeon’s fitness value. Determine the best pigeon’s position Xg and

center of the pigeons’ positions Xc

Step 3 According to Eqs. (13)–(15), fill the probability matrix and decide the strategy in
t-th iteration

Step 4 Update positions and velocity. Determine the current optimum solution
Step 5 If Nc < Ncmax, go to Step 2. Otherwise output the best found solution
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state as the controller input, and its output is the expected state at the next moment. At
the same, it also provides an optimization target for the inner loop controller. The
purpose of improving the MGPIO is to find the optimal control input, so that the
difference between actual state and the expected state of the next moment is as small as
possible. In the case that the outer loop controller continuously provides the expected
state, the inner loop controller continuously solves the corresponding input, and so on,
to solve the problems of UAS swarm formation control.

4.2 Comparative Experimental Results

In order to evaluate the performance of our proposed MGPIO algorithm and the
effectiveness of UAS swarm formation, a series of experiments compared with basic
PIO algorithm and PSO algorithm are conducted in MATLAB R2018a programming
environment on a PC with 2.50 GHz CPU.

Assume that there are 6 drones in the swarm, including 1 leader and 5 wingmen.
Figures 3, 4 and 5 shows the simulation results when using the MGPIO algorithm.

Table 2. Process of UAS swarm formation

Step 1 The current leader drone control input is given and get the status output
Step 2 Use the artificial potential function (3) and get the expected position
Step 3 Use the inner loop controller based on MGPIO and get the control input of the

wing-man drones in the UAS and the status output
Step 4 Go to step 1 until the termination condition is reached

Fig. 3. Simulation result in a 3-D view
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From Figs. 3, 4 and 5, MGPIO algorithm could form a stable formation. This is
because the MGPIO algorithm have faster convergence speed and it is better at
avoiding local minimum. Simulation and comparison experiments verify the feasibility
and effectiveness of the proposed method. The comparative evolutionary curves of
MGPIO with basic PIO, PSO in artificial potential function (3) is showed in Fig. 6.
From evolution curves of three algorithms, it shows MGPIO converged faster than
basic PIO and PSO algorithm and the final result of MGPIO is better than the other two
algorithms.

Fig. 4. Simulation result in a top-down view

Fig. 5. Simulation result in a side view
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5 Conclusions

The UAS swarm formation is a challenging technical problem. This paper uses the
inner and outer loop control to design a UAS swarm formation controller. The outer
loop controller selects the artificial potential field function and the mixed game pigeon-
inspired optimization algorithm is introduced as a parameter regulator for the inner loop
controller. At the same time, the simulation and comparison experiments verify the
feasibility and effectiveness of the proposed method, and verify the effectiveness of the
MGPIO algorithm by comparing the effects of the UAS swarm form under different
inner loop controllers.
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Abstract. Task assignment is one of the important links in UAV combat
planning, which has an important influence on the overall combat effectiveness
of the system. UAV task assignment is a typical optimization problem. In this
paper, an optimization model of the multi-UAV collaborative task assignment
problem is firstly established, and then a coding scheme and a sequence number
cross method are designed for the multi-UAV multi-task problem, and the two-
parent genetic algorithm is used to solve the problem. The results show that the
proposed method has the advantages of faster convergence and higher accuracy
under the same calculation conditions than the single parent genetic algorithm,
and can effectively solve the multi-task assignment problem of multi-UAV.

Keywords: UAV � Task assignment � Genetic algorithm � Coding

1 Introduction

In the face of increasingly complex application environment and diversified operational
requirements, single UAV is limited by its own software and hardware conditions,
therefore, it has some limitations in use. In order to make up for the limitation of single
UAV, cooperative operation of UAV cluster has become a research hotspot in
unmanned combat technology. In formation, each UAV has its own characteristics,
functions, payloads, combat capabilities and other aspects. Under various constraints,
all combat tasks are allocated to UAV formation in a reasonable way to maximize the
performance of the system and to give full play to the cooperative work efficiency of
UAV formation. This is an important research topic of UAV formation combat system.
In order to assign multiple UAVs to perform a group of tasks cooperatively and
improve the efficiency of tasks, a reasonable and efficient collaborative control method
is indispensable. Therefore, a reasonable collaborative task planning must be carried
out for the multi-aircraft system.

UAV mission assignment can be classified into cooperative task assignment and
independent task assignment according to the correlation between UAV combat tasks
[1], and static task assignment and dynamic task assignment according to the envi-
ronment of UAV combat tasks [2]. It can also be divided into centralized task allo-
cation, distributed task allocation and hierarchical distributed task allocation according
to the way of task allocation [3].

Multi-machine off-line collaborative task planning is a centralized static task
planning modeling method. A reasonable mathematical model of task planning must be
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established before the optimal algorithm is used for UAV task assignment. The com-
monly used modeling methods of centralized task planning include multi-trip salesman
problem, vehicle routing problem, negotiation model based on market bidding mech-
anism, network flow model, mixed integer linear programming model and so on.
Among them, the multi-traveler-problem model and vehicle routing model are appli-
cable to the multi-UAV coordination of a single type of task.

Different task assignment algorithms can be used for different task planning
models, such as evolutionary algorithms, genetic algorithms, tabu search algorithms,
and particle swarm optimization algorithms, etc. Genetic algorithm has been widely
used in discrete optimization problems. In recent years, the genetic algorithm using
serial number coding method is more and more applied to solve the VRP problem and
the UAV task assignment problem [4–8], and has achieved some success. Literature [6]
regards the UAV task assignment problem as a VRP problem, and then studies the
large-scale UAV task assignment method based on parthenogenetic algorithm; In lit-
erature [7], a mathematical model is built for the resource scheduling problem in the
multi-UAV collaborative system. In the model, each UAV performs an attack task, and
the optimization target is the weighted sum of the benefit obtained from destroying the
target and the cost of destroying the UAV. Then, the dynamic resource scheduling
algorithm based on genetic algorithm is studied. Furthermore, aimed the problem of
collaborative mission planning of multi-target group multi-base multi-UAV, a Periodic
Fast Search Genetic Algorithm (PFSGA) is proposed in literature [8].

In view of the shortcomings of traditional genetic algorithm in multi-UAV coop-
erative task assignment, this paper improves the design of coding mode, establishes the
corresponding relationship between UAV and task coding segment by adding zero in
coding, and in the process of evolution, sequence number crossover and mutation
operations are carried out on the task coding and zero at the same time to realize
random changes in the task coding and number of each UAV, so that the algorithm has
global search capability.

2 UAV Task Assignment Algorithm

The research of task assignment in this paper is aimed at multi-UAV reconnaissance or
ground attack tasks in two-dimensional battlefield space. Suppose that an aircraft
consisting of M UAVs attacked N different targets on the ground. The UAV set is U
and the task set is T, and there is no no-fly zone, terrain obstacles and sudden threats in
the battlefield. etc., we define I, f1; 2; � � � ;Mg and J, f1; 2; � � � ;Ng as subscript sets
for UAVs and task targets. In a task assignment, each task is executed only once. Based
on the above assumptions, the key to the multi-UAV task assignment using genetic
algorithm is to determine the serial number coding method, design the fitness function
and genetic operation operator.
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2.1 The Chromosome Coding

Genetic algorithm takes the coding of decision variables as the operation object, so the
format of chromosome coding has a crucial influence on the performance of the
optimization algorithm.

In the traditional multi-UAV task assignment problem, the chromosome encoding
method is similar to the “traveling salesman problem”. using randomly arranged
1 * N natural numbers as the chromosome coding, and each chromosome also cor-
responds to a randomly generated non-negative integer set, which is used to represent
the number of tasks assigned to each UAV. In addition, another chromosomal coding
method is proposed in the literature [7], which divides chromosomes into M gene
segments of the same length, each gene segment corresponding to a task sequence
executed by a UAV, and the length is the maximum number of tasks that can be
performed by a single UAV. If the number of tasks of the UAV does not reach the
maximum number of tasks, 0 is used to complete the vacant position of the gene
segment. It can be seen that both coding modes can be applied to multi-UAV multi-
target task assignment, but there is a problem that the encoding form is complex, which
is not conducive to crossover and mutation operation.

In view of the above problems, this paper has improved the traditional chromosome
coding method. The specific coding scheme is as follows:

The code length is M + N − 1, which consists of 1 * N natural numbers and
M − 1 zeros randomly arranged. Among them, the natural number of 1 * N represents
the task number, and 0 is used to distinguish the coding interval of different drones.
Figure 1 is a coding example of a feasible solution for a task assignment problem for a
UAV. The figure assumes that the number of UAVs is three and the task targets are ten.

As can be seen from Fig. 1, the chromosome code is divided into three segments by
two 0 codes, corresponding to the task sequences of the three UAVs. Each task
sequence represents the task number and execution order of a UAV command. For
example, the task execution sequence of the UAV 1 is 3-5-1.

This encoding method ensures that each task is executed by a UAV. Based on this
coding method, the task number and order of the UAV can be modified by adjusting
the order of natural numbers. The number of UAVs that perform the task can be
adjusted by adjusting the position of code 0. If code 0 is at the first and the last position
of chromosome or two codes 0 are adjacent to each other, it means that there is a UAV
that does not participate in task assignment.

When the initial population is created based on this encoding format, the natural
numbers 1 * N are first randomly arranged. Then, among the integers from 0 to N,
m − 1 numbers are randomly selected as the coding position of 0, and the m − 1 zeros
are filled into the corresponding position in order.

Fig. 1. Example of chromosome length and segmentation
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2.2 Sample Selection

Genetic algorithm is mainly based on Darwin’s natural selection process, so the size of
the selection intensity plays a key role. The selection process depends on three factors:
the sample space, the sample mechanism, and the selection probability. In this paper,
the probability-based method is used to select the individuals for operation, and the
selected pairs of individuals are cross-operated, and the selected individual individuals
are mutated to generate a new population for the next genetic operation. It is worth
noting that in the selection process, code 0 can also be selected for crossover and
mutation operations to change the number of tasks performed by the UAV. In the
process of evolution, it is possible that the optimal solution of a generation is destroyed
by the intersection and mutation, which may lead to degradation. This problem is
hidden in the commonly used probabilistic selection operation. Therefore, this paper
retains the optimal solution of the previous generation as one of the next generation
individuals during genetic manipulation.

2.3 Cross and Mutation Operations

Crossover and mutation are the key genetic operations in genetic algorithms. Aiming at
the characteristics of chromosome coding in task assignment, a sequence number cross
method is proposed in this paper. When a segment of the coding of the parent sample is
selected based on probability, the selected coding is sorted from small to large. In order
to solve the problem that coding is not unique when coding crossover occurs, the
method of sequence number crossover can be used. The coding segments of the two
paternal chromosomes are reordered according to each other’s sequence number,
instead of crossing the coding directly. Figure 2 shows an example of a sequence
crossover method.

Fig. 2. Sequence number cross operation
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For the selected individual, a pair of coded positions are randomly exchanged as a
mutation operation to generate a new population for the next genetic operation (Fig. 3).

2.4 Calculation of Individual Fitness Values

The attack cost index is used as the individual adaptive value. The indicators mainly
include three aspects: (1) The threat cost of the UAV caused by the execution of the
mission; (2) The target value of the UAV attack; (3) Time cost. In this paper, the
methods of literature [6] and [7] are used to calculate the individual fitness. The fitness
function of each chromosome Y is

f ðYÞ ¼
X
i;j

cijxij ð1Þ

In this formula, xijði ¼ 1; � � � ;M; j ¼ 1; � � � ;NÞ is a binary decision variable, it can
be obtained by decoding the chromosome. It is defined as:

xij ¼ 1 UAV j assigned to the task i
0 other

�
ð2Þ

cij is the threat degree of the i-th UAV, and the calculation formula is as follows:

cij ¼ ð1� PkijÞ � V �miniðTMatrixÞ=TMatrixði; jÞ ð3Þ

In formula (3), V is the value index of target i, and is the probability that UAV j is
destroyed by enemy target i. TMatrix is the time matrix for UAV j to fly to the target,
which makes the total flight distance of each UAV shorter.

3 The Simulation Experiment

In order to test the effectiveness of the parental genetic algorithm on the task assign-
ment of multi-UAV, a simulation example was created and calculated according to the
actual combat environment. Take 3 UAVs and 10 mission targets as examples. The
location distribution of UAVs and targets is shown in Fig. 4. The number of UAVs is
respectively (UAV1, UAV2, UAV3), while the 10 target points that need to be attacked
are labeled as 1, 2, …, 10. Assuming that the threat index for each target is the same
(0.8), the probability of destruction of each target to the UAV is shown in Table 1.

Fig. 3. Variation operation
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Using the parent algorithm to solve the problem, the operating parameters are:
genetic algebra 500, population size 60, crossover probability Pc = 0.5, mutation
probability Pm = 0.2. After running for 500 generations, the adaptive value of the
optimal individual Y is fopt = 6.0836. Figure 5 shows the fitness change curve of a
solution with the number of iterations. The optimal solution chromosome coding is
shown in Fig. 6.

It can be seen that the optimal task assignment result is: UAV 1: 1 ! 7; UAV 2:
5 ! 8 ! 9 ! 6; UAV 3: 3 ! 2 ! 4 ! 10.

Fig. 4. Example of actual combat environment

Table 1. Threat index and destruction probability of the target

Pki1 Pki2 Pki3 Vi

T1 0.2 0.3 0.5 0.8
T2 0.5 0.4 0.1 0.8
T3 0.2 0.4 0.3 0.8
T4 0.7 0.6 0.3 0.8
T5 0.3 0.1 0.6 0.8
T6 0.7 0.2 0.6 0.8
T7 0.1 0.4 0.3 0.8
T8 0.5 0.3 0.2 0.8
T9 0.4 0.2 0.3 0.8
T10 0.6 0.4 0.1 0.8
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In order to verify the effectiveness of the algorithm proposed in this paper, the
parental genetic algorithm in this paper and the single parent genetic algorithm in
literature [7] were respectively used to solve the above problems, and 100 times of
simulation were conducted. The obtained comparison results are shown in Table 2.

By comparison, it can be seen that compared with the single parent genetic algo-
rithm, the parental genetic algorithm converges faster and is less likely to fall into the
local optimal solution, which significantly improves the computational ability of the
global optimal solution and is more suitable for solving the UAV task assignment
problem.
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Fig. 5. Fitness evolution curve

Fig. 6. Optimal chromosome coding

Table 2. Comparison of simulation results of two genetic algorithms

Optimal solution
ratio (%)

Average solution algebra
of optimal solution

Parental genetic algorithm 91 84.6
Single parent genetic
algorithm

64 94.48
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4 Conclusion

In the cooperative control of multi-UAV, reasonable task assignment can effectively
improve the combat effectiveness of the formation. In order to solve the problem of
UAV multi-task assignment, this paper adopts the parental genetic algorithm and
improves the traditional coding method. Through the parental sequence number
crossover and mutation operation, the global optimization ability and convergence
speed of the algorithm are improved. The simulation results show that compared with
the single parent genetic algorithm, the algorithm has faster convergence speed and is
less likely to fall into the local optimal solution.
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Abstract. Inverse kinematics solution, for five degree of freedom assis-
tant robot arm, will be described in this work with three different meth-
ods. Denavit - Hartenberg approach (D-H), Screw theory and Itera-
tive method will be used. Novel approach of decoupling method will be
detailed; after that analytical solution with Paden-Kahan sub problems
will be presented, and iterative method will be applied too. Simulations
using previous methods will be shown. Finally, results will be compared
and discussed.

Keywords: Inverse kinematics · Manipulator motion modelling ·
Decoupling method · Iterative method · Screw method

1 Introduction

Robots are complex mechanisms that integrate multiple technologies to achieve
a purpose. The use of robots in manufacturing processes for industrial environ-
ments is closely related in production operations, material handling, inspection,
execution, assembly, etc.

It is common to use robots to perform repetitive and labor cycles that gen-
erally a human can not perform. The manipulators or robotic arms are in the
group of multi-functional programmable robots, able to make decisions, respond
to orders and communicate with other machines [11,16].

The use of robots in manufacturing processes has led to create several lines of
research; where the individual actions of the robot joints are analyzed in detail to
execute the desired movement routine. The end-effector position and orientation,
and inverse kinematics algorithms can determine the translational or rotational
displacement of each and every joint [14].
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Inverse kinematics is one of the most important and widely studied problems
in robotics. There are multiple mathematical methods to solve the inverse kine-
matics problem [8,10]. In the present research, kinematic decoupling method,
screw-based method and an iterative method are used.

The decoupling method is a closed-form solution that divides the inverse
kinematics problem into two problems: position and orientation. This method is
appropriated for robots that have an arm and a wrist, where the wrist joint axes
are aligned at a point [1]. Defining the position and orientation desired as well
as the wrist point, is possible to calculate the 3 first joints that define robot’s
position (θ1, θ2, θ3). Once the first three joints and end-effector orientation
matrix are known [noa], the subsequent joint variables are obtained [13,15].

Screw-based method is used in kinematic study of mechanisms, this theory is
mainly used to analyze the position of a kinematic chain. By means of geometric
entities, an axis is defined to represent the rotation and translation in a manip-
ulator. This method allows to express angular velocities of the body and linear
velocities in a point that coincide with the origin. The instantaneous motion of
a rigid body is analyzed in relation to a reference system [20,22,23].

Iterative methods allow to perform calculations from progressive approxi-
mations of a seed. Indirect methods give place to a succession of vectors that
converge to the solution; the calculation is concluded when the most approxi-
mate solution is found after a few iterations [12]. To facilitate the interpretation
of movements and positions of the robot, it is necessary to use the Cartesian
coordinates x, y, z. The arrangement of the displacement joint is determined to
achieve the desired position of the end-effector [17].

In previous reviews of inverse kinematics problem, the following disadvan-
tages were identified: in iterative methods, the computational cost tends to be
high, as it takes time to find the correct convergences and to find the most
approximate solution [18,22]. In the method based on screws, sub-problems can
arise to give solution to the inverse kinematics and the geometric calculations
can remarkably hinder the solution, the articular angles are obtained by means
of the numerical integration of the joint velocities and errors can appear in the
process [21,23]. In kinematic decoupling methods, it is complex to express the
kinematics in an arbitrary way and to establish the parameters for the vector
equation [13,15]. In the present investigation, all the methods described above
are applied and analyzed in a assistant robot arm, at the end, it is determined
which is the most efficient method in a real case, with the corresponding math-
ematical development.

Section 2 of this paper presents the main approach to the problem analyzed.
Section 3 solves the problem of inverse kinematics proposed by the closed solution
method of kinematic decoupling, screw-based method and open solution with
iterative numerical methods. In Sect. 4 the results and discussion of the research
are presented, and the methodology used to solve the inverse kinematic problem
is described and computational tools are used for the different factors in the
robot space with simulations. The conclusions are presented in Sect. 5.
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1.1 Contributions

Screw based method has the following contributions:

– Avoiding singularities.
– Paden-Kahan subproblems is an analytical straightforward method for solving

manipulator inverse kinematics.

Decoupling method has the following contribution:

– The inverse kinematics problem is divided into two simpler subproblems.

This work compares three different algorithms to solve the inverse kinematics
problem in an assistant robot arm. The goal was to identify the more efficient
algorithm in terms of reaching a point within the workspace and computation
time.

2 Problem Statement

In order to picking objects, the robot should use the better solution for approach-
ing and do the motion. The motion problem for translating an object, from any
place to other, implies that the robot should find two hand goals configurations;
one for picking the object, and the other one for leaving it.

The picking motion is divided in the following steps: Find the hand robot goal
configuration; make the suitable 3D spatial hand trajectories, avoiding external
and self collisions, in order to approach close to the goal (path planning); com-
pute the inverse kinematics arm for each point of trajectory (joints trajectories);
send to the robot the joints trajectories, in order to reach close hand goal config-
uration; open the hand, approach to the goal and picking the object; and finally,
repeat the same process in order to move the object and to leave it in the sec-
ond goal configuration. This work is focused in the inverse kinematic solution,
and three feasible methods are proposed, which are described in the following
sections.

Fig. 1. Assistant robot
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3 Proposed Inverse Kinematics Solutions

3.1 Assistant Robot Arm

The manipulation part of assistant robot (Fig. 1) is the NAO humanoid, which
is a programmable humanoid developed by the French company Aldebarán
Robotics R©. Among the features of NAO is that the body of the robot has 25
degrees of freedom and a network of 27 sensors. It also includes elements that
allow interacting with the environment including a voice synthesizer, speakers
and RGB LEDs. In terms of software, it has a program called choregraphe which
works with graphic language. It has a complete development set that works with
languages such as C++, Python, JAVA R©, .NET and MATLAB R© [19].

The research was developed from the arm characteristics of NAO robot, the
arm has a total length of 233.7 mm and 5 degrees of freedom (DOF).

3.2 Inverse Kinematics Decoupling Method

The Denavit-Hartenberg (D-H) algorithm was used to solve inverse kinematics
for a 5-DOF assistant robot arm. D-H is a systematic method to describe and
represent the spatial geometry of kinematic chain elements. This method uti-
lizes a Homogeneous Transformation Matrix (HTM) to describe the relationship
between two adjacent rigid elements. HTM relates spatial localization of robot
end effector, regarding to coordinates system of robot base [3].

Conventional method to solve inverse kinematic is frequently used to obtain
the position of a 3-DOF robot, even though it may be equally used for a 6-DOF
robot with a higher complexity. Therefore, it was used decoupling method to
solve inverse kinematics for a 5-DOF assistant robot arm. The inverse kinemat-
ics problem was divided into two parts; the first one was to obtain the D-H
parameters and asses its forward kinematics solution, the second one was to use
decoupling method based on D-H parameters and asses its inverse kinematics
solution.

To find the forward kinematics solution, it was used the D-H convention [4,9],
that is represented as a product of four basic transformations. Where θi, di, ai,
αi are the D-H parameters associated with link i and joint i.

As it is indicated in the D-H algorithm [4,9]; the first step was to define
coordinates frames in every joint for the 5-DOF humanoid robot arm as shown
in (Fig. 2), the second step was to generate the D-H parameters (Table 1), in
order to know the forward kinematics solution and start working in the inverse
kinematics solution.

The decoupling method split the inverse kinematics problem into two parts;
inverse position kinematics and inverse orientation kinematics. To do this, it is
necessary to identify the wrist center to separate position from orientation, and
setting desired position and desired orientation.

The wrist center for the 5-DOF humanoid robot arm was located in the elbow
(joints 3 and 4). The D-H parameters were generated again for 2 joints as shown
(Table 2), in order to know the wrist center position, denoted as

#»

P w, which was a
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Fig. 2. Coordinate frames

Table 1. D-H parameters for the 5-DOF humanoid robot arm

Joint θ d a α

1 θ1 l1 0 π/2

2 θ2 + π/2 0 0 π/2

3 θ3 l2 0 −π/2

4 θ4 0 0 π/2

5 θ5 l3 + l4 0 0

Table 2. D-H parameters for 2-DOF - kinematic decoupling

Joint θ d a α

1 θ1 l1 0 π/2

2 θ2 0 l2 0

three-vector. The desired position for the end effector was denoted as
#»

P e, which
was a three-vector, see Eq. (2). The l3 and l4 were parameters associated to the
robot arm (links) and #»z 5 was an orientation vector of the HTM.

#»

P w =
#»

P e − (l3 + l4) #»z 5 (1)

Inverse kinematics was solved for a robot of 2 DOF, with the D-H parameters
shown in Table 2. As a result, the equations listed below that define the first two
joints (θ1 and θ2) were obtained, see Eqs. (3) and (4).

θ1 = arctan
Pwy

Pwx

(2)

θ2 = arctan
Pwz−l1

l2√
1 − (Pwz−l1

l2
)
2

(3)

Once the two first joints were defined for the robot arm, it was necessary to
define the next 3 joints. To do this, it was used the orientation matrix, that was
represented by R0

5, see Eq. (5).
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R0
5 = [noa] =

⎡
⎣

nx ox ax

ny oy ay

nz oz az

⎤
⎦ = R0

2R
3
5 (4)

R0
5 was the desired orientation for the end effector, which had been already

defined since the beginning of the inverse kinematics problem. R0
2 was determined

from the values of θ1 and θ2, and R3
5 was the matrix from which joints (θ3, θ4

and θ5) were obtained. The equations are listed below (6), (7), (8)

θ3 = arctan
sin(θ1)ax − cos(θ1)ay

− cos(θ1) sin(θ2)ax − sin(θ1) sin(θ2)ay + cos(θ2)az
(5)

θ4 = arctan

√
1 − (cos(θ1) cos(θ2)ax + cos(θ2) sin(θ1)ay + sin(θ2)az)

2

cos(θ1) cos(θ2)ax + cos(θ2) sin(θ1)ay + sin(θ2)az
(6)

θ5 = arctan −(
cos(θ1) cos(θ2)ox + cos(θ2) sin(θ1)oy + sin(θ2)oz

cos(θ1) cos(θ2)nx + cos(θ2) sin(θ1)ny + sin(θ2)nz
) (7)

3.3 Screw-Based Method

Paden and Kahan (P-K) subproblems are used in this subsection, in order to
solve the inverse kinematics of 5 DOF humanoid arm (see Fig. 3). At first, for-
ward kinematics is computed by the exponential product of exponential matrices,
as following:

gst(θ) = eζ1θ̂1 .eζ2θ̂2 .eζ3θ̂3 .eζ4θ̂4 .eζ5θ̂5 .gst(0) (8)

Where θ is the vector of joint arm rotation angles: θ1, θ2, θ3, θ4, and θ5. The
ζi is the ith joint twist. Furthermore, gst(θ) and gst(0) are the target, and initial
end-effector configuration, respectively.

Next, the P-K subproblems are applied, taking into account the gst(θ) solu-
tion, from the above Eq. (8).

Fig. 3. Humanoid 5 DOF arm screw modeling. Frames S and T , analysis points p,q ,
and t , ith joint angle θi, and axis direction ωi.
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Thus with P-K-2 subproblem, the θ1, and θ2 joint angles are obtained as
following, by applying screw motions to analysis point q , where the last three
joint articulations are crossed:

eζ1θ̂1 .eζ2θ̂2 .eζ3θ̂3 .eζ4θ̂4 .eζ5θ̂5 .q = q′ (9)

As the last three joints are crossed, they do not causes any effect to point q .
So, the Eq. 9, turns to: eζ1θ̂1 .eζ2θ̂2 .q = q′. Being q′ = gst(θ).gst(0)−1.q

After that, by applying the last three screws to the point p, where the joints
one and two are crossed, the θ4, and θ5 joint angles are computed as following:

eζ3θ̂3 .eζ4θ̂4 .eζ5θ̂5 .p = p′ (10)

Where p′ = e−ζ2θ̂2 .e−ζ1θ̂1 .gst(θ).gst(0)−1.p. As, the third axis direction
crosses the point p, its rotation θ3 does not affect to that point. So, the Eq. 10
becomes to eζ4θ̂4 .eζ5θ̂5 .p = p′, and the P-K-2 subproblem could be applied, to
compute the θ4, and θ5 joint angles.

And finally, with P-K-1 subproblem, the θ3 joint angle is obtained, by apply-
ing the third screw motion, to the point t , which is the origin of end-effector
frame T , as next:

eζ3θ̂3 .t = t′ (11)

Being t′ = e−ζ2θ̂2 .e−ζ1θ̂1 .gst(θ).gst(0)−1.e−ζ5θ̂5 .e−ζ4θ̂4 .t

Fig. 4. Humanoid 5 DOF arm screw modeling with floating base S . Frames S and T ,
analysis points p, q , and t , ith joint angle θi, and axis direction ωi.

The versatility of screws modeling, allows to have a floating base S (see
Fig. 4), and introduce it forward in the model, just including the respec-
tive screw motions. Where, for a given shoulder position and orientation
(xs, ys, zs, θxs, θys, θzs), the forward kinematics is expressed, such as:

gst(θ) = eζxsx̂s .eζysŷs .eζzsẑs .eζxsθ̂xs .eζysθ̂ys .eζzsθ̂zs ....eζ4θ̂4 .eζ5θ̂5 .gst(0) (12)

Thus, the inverse kinematics could be solved as before, and only the addi-
tional screw motions should be added in the solution. So, the solution including
the whole body humanoid, for increasing the robot work space, is easy to extent.
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3.4 Iterative Numerical Solution

It was used the Robotics Toolbox for Matlab R© to asses the iterative method for
a 5-DOF humanoid robot arm. As it is stated in different literature [2,5], these
kind of methods offer open solutions to the inverse kinematics problem, due to
this, sometimes they lead to no-convergence.

The algorithm used in the Robotics Toolbox is shown in Eq. (13), the solution
is computed iteratively using the pseudo-inverse Jacobian of the manipulator; Δ
returns the difference between the desired position and the current position, as
a 6 element vector of displacements and rotations [6].

θ̇ = J+(θ)Δ(F(θ) − T ) (13)

The Robotics Toolbox employed the D-H parameters showed in Table 1 to
model the robot arm; it was used functions like fkine, ikine, Link and SerialLink
to obtain the inverse kinematics solution.

4 Results and Discussion

As it was stated before, iterative methods, sometimes lead to no-convergence;
therefore, the iterative algorithm was evaluated for a 5-DOF assistant robot arm,
comparing with a kinematic decoupling algorithm, and screw based algorithm,
which offer a closed solution for the kinematic chain.

It was used eight different positions for the assistant robot arm, all of them
within the work-space, considering length of every link and restrictions of every
joint. The positions are described in Table 3.

Table 3. Evaluated positions

x, y, z, nx, ny, nz, ox, oy, oz, ax, ay, az Kinematic decoupling Screw based method Iterative

method

(0, −177.40, −25.22, 0, −0.71, 0.71, −1, 0,

0, 0, −0.71, −0.71)

(−pi/2, pi/8, pi,

−3pi/8, 0)

(−pi/2, pi/8, pi,

−3pi/8, 0)

(−pi/2, pi/8,

0, −3pi/8, 0)

(131.1, 80.4, 146.1, 0.5 −0.71, 0.5, 0.71, 0

−0.71, 0.5, 0.71, 0.5)

(0, pi/4, −pi/2, pi/4,

0)

(0, pi/4, −pi/2, pi/4,

0)

(0, pi/4, pi/2,

−pi/4, 0)

(150.97, 147.78, 15.0, −0.5, 0.87, 0, 0, 0, 1,

0.87, 0.5, 0)

(pi/3, 0, pi/2, pi/6, 0) (pi/3, 0, pi/2, pi/6, 0) No converge

(114.45, 114.45, −83.47, 0.71, −0.71, 0,

−0.61, −0.61, −0.5, 0.35, 0.35, −0.87)

(pi/4, 0, −pi, pi/3,

−pi/2)

(pi/4, 0, −pi, pi/3,

−pi/2)

Error

(59.68, −100.1, 191.21, −0.07, 0.75, 0.66,

−0.99, −0.14, 0.05, 0.13, −0.65, 0.75)

(−pi/6, pi/3, pi/2,

pi/6, −pi/4)

(−pi/6, pi/3, pi/2,

pi/6, −pi/4)

Error

(189.4, 0, 10.65, 0.5, 0, 0.87, 0, −1, 0, 0.87,

0, −0.5)

(0, pi/6, pi, pi/3, 0) (0, pi/6, pi, pi/3, 0) (0, pi/6, 0,

−pi/3, 0)

(44.82, −184.07, 15.0, 0.97, −0.26, 0, 0, 0, 1,

−0.26, −0.97, 0)

(−pi/4, 0, pi/2, pi/3,

0)

(−pi/4, 0, pi/2, pi/3,

0)

(−pi/4, 0,

−pi/2, −pi/3,

0)

(0, 218.70, 15.0, 0, 0, −1, −1, 0, 0, 0, 1, 0) (pi/2, 0, −pi/2, 0,

−pi/2)

(pi/2, 0, −pi/2, 0,

−pi/2)

Error
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The vectors showed in Table 3 includes position an orientation; the first three
elements define position and the rest of them define orientation. Units are in
millimeter and angles are in radian.

The decoupling method as well as the screw based method just need the
position and orientation of the end-effector and returns the joint positions; while
iterative method in Robotics Toolbox needs information from joint positions
(forward kinematics solution) to return joint positions. The experiment was as
follows:

(a) It was used a forward kinematics algorithm based on D-H parameters to
evaluate effectiveness in kinematic decoupling algorithm.

(b) It was defined a random position joint to the forward kinematics algorithm.
(c) The solution from forward kinematics algorithm (position and orientation

of end-effector) was introduced to the kinematic decoupling algorithm.
(d) The solution from kinematic decoupling algorithm was compared with the

forward kinematics algorithm entrance.
(e) The entrance from forward kinematics algorithm and the solution from kine-

matic decoupling algorithm were evaluated in the iterative algorithm.
(f) The solutions from overall algorithms (iterative, decoupling, and screws)

were compared; identifying differences, errors and no-convergence.

Computational time response was evaluated, in order to find the best solu-
tion. For each localization evaluated in Table 3, computational time was mea-
sured, with these results, a time average was obtained for each algorithm. The
results are show as follows:

– Screw Based Method = 0,45 ms
– Decoupling Method = 0,20 us
– Iterative Method = 0,65 ms

Results describe that Decoupling and Screw based methods find the same
solutions; hence, all of them allow approaching the hand to the same points,
instead of iterative method not converge at some points. That is, because:

– The analytical methods, (Decoupling and Screw based), make a straightfor-
ward solution without any iteration.

– The solution with iterative method for a 5 DOF kinematic chain, with 3D
spatial coordinates of the robot end-effector, have six inputs (3 positions coor-
dinates and 3 orientations coordinates), while the kinematics chain have only
five degree of freedom, which can only control 3 positions and 2 orientation
coordinates at 3D space. So, jacobian matrix is not square, and the pseudo
inverse is computed, which causes not convergence at some end-effector con-
figurations.

5 Conclusions

Screws modeling allows a closed straightforward analytical solution, including
floating base manipulators. Just using two frames: Base and End-effector ones,
and free vectors on SO(3).
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Decoupling and Screws based methods allow the same solution with two
different approaches:

– Decoupling, with homogeneous transform matrices, that is with frames rela-
tionship between each robot joint, and two additional frames: base and end
effector.

– Screws, with twist related to each robot joint, that is with free vector direction
on each robot joint, and two frames: base and end effector.

The screws method simplified the analytical solution of kinematics chain, and
the geometric description of this kind of mechanical systems. The two proposed
approaches, one with fixed base, and other with floating base give the same
solutions. The floating base approach, allows to move the robot hand motion
with wholebody robot displacement.

As it was seen before in results section, the decoupling method is much faster
than screw based method and iterative method; nevertheless, the decoupling
method does not avoid singularities while screw based method does.

Iterative method is not suitable for this robot arm, because sometimes is
not possible the convergence, so there is not solution, for reaching some hand
configurations on 3D space.
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