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A vast (and daunting) array of statistical and econometric techniques 
are available to the researcher for deriving business cycle metrics. Again 
doing justice to this literature is incredibly difficult but it is useful to 
cover the broad approaches adopted and how they relate to the theoreti-
cal models discussed in the previous chapter.

3.1  Aggregated or Disaggregated Data

In this section we draw heavily on the discussion in Chadha et al. (2019) 
to which the reader is directed for more detail. As Chadha et al. (2019) 
note there are two key issues with regard to business cycle determination.

The first issue is whether one should look at many disaggregated series to 
analyse the business cycle or whether a single aggregate measure of output 
such as GDP should be analysed. Many classic analyses of business cycle 
dating in the United Kingdom typically used a wide variety of series. Burns 
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and Mitchell’s (1946) chronology of the UK business cycle up until 1938, 
from 1792 on annual basis and from 1848 on a monthly basis, was based 
on 141 time series covering not only production indices and activity series, 
but also commodity prices, asset prices, interest rates and money and credit 
series. A number of chronologies followed in this tradition such as Ashton 
(1959) for the C18th, Gayer et al. (1953) for the period 1792–1848, and 
Rostow (1972) who covered the years from 1788 to 1914.

The obvious problem is that the range of indicators may provide con-
flicting answers to key turning points in the business cycle. Burns and 
Mitchell (1946) note that “there were cases in which the turning points 
were widely scattered, and others in which they were concentrated around 
two separate dates. ” Their approach was to derive “specific cycles” in 
each time series and then combined and “weighted” to determine the 
“reference cycle” for the overall economy. As noted by Romer (1994) 
there was a large degree of subjective judgement involved in weighting 
together different series and the method used was left relatively vague.

At that time, aggregate measures of economic activity, such as real 
GDP, were still in their infancy, particularly given the focus on not only 
the C20th, but also the C19th. So in this sense Burns and Mitchell like 
other researchers had no other choice than to use a range of indicators. 
As Harding and Pagan (2002) point out this is indeed what Burns and 
Mitchell would have used had it been available:

Aggregate [economic] activity can be given a definite meaning and made 
conceptually measurable by identifying it with gross national product.

Unfortunately, no satisfactory series of any of these types is available 
by months or quarters for periods approximating those we seek to cover. 
(Burns and Mitchell 1946)

Given the increasing availability of national accounts data, later busi-
ness cycle chronologies tended to use aggregate measures of economic  
activity such as GDP to identify turning points. In the post-WW2 
period, the Central Statistical Office (CSO 1993), now the Office for 
National Statistics (ONS), maintained a quarterly “reference chro-
nology”, covering from 1958 to 1992, based on turning points in real 
GDP. The Organisation for Economic Co-operation and Development 
(OECD 2019) continue to produce a set of turning points for the 
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United Kingdom using (de-trended) real GDP and a version of the Bry 
and Boschan (1971) algorithm we discuss later. This chronology extends 
back to 1955 on a monthly basis. And leading research institutes, such 
as the Centre for Economic Policy Research (CEPR 2019) and National 
Bureau of Economic Research (NBER 2019), focus on real GDP (and 
some its components) and employment.

Focusing on an aggregate measure of economic activity, such as real 
GDP, clearly has advantages. As we discuss in Chapter 4 real GDP can 
be measured in three different ways. On the expenditure side, it com-
bines together consumption, investment and government spending by 
domestic residents plus net spending by overseas residents on exports 
(exports minus imports) using their share in total expenditure to weight 
them together. On the output side, it combines the production of the 
agricultural, industrial and services sectors weighted by their respective 
shares in the value added they contribute to the economy. These com-
ponents are, in turn, aggregates of many more sub-components. And 
on the income side, GDP can be measured as the sum of employment 
earning and profits delated by the GDP deflator to give a measure of 
real output. So GDP weights together many different indicators of 
activity according to their overall importance in the economy.

However there remain issues with using GDP as a sole representa-
tive indicator. First, as we go back in time GDP data may only exist 
at an annual frequency when precise business cycle dating requires 
quarterly or monthly data especially if that dating is ultimately used to 
inform monthly and quarterly policy decisions. This can be ameliorated 
by using monthly and quarterly indicators to interpolate or “tempo-
rally disaggregate” aggregate measures of GDP using methods such as 
those suggested by Chow and Lin (1971). So in some sense this is just a 
method that combines the aggregate and disaggregated approaches but 
in a way that is constrained to match the aggregate annual data.

Second, there may be reasons why GDP or output is not the best 
summary measure for business cycle analysis. Output might be the best 
measure for assessing inflationary pressures but it may not provide the 
best measure of social welfare in the economy. Unemployment, GDP 
per person or productivity may be better indicators of overall welfare. 
Here of course one can adopt Burns and Mitchell’s approach which 

http://dx.doi.org/10.1007/978-3-030-26346-1_4
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establishes a reference cycle based on GDP and then specific cycles for 
other variables of interest can then be benchmarked against that.

Thirdly one might not consider cycles to be important for welfare 
unless it is broadly spread across different sectors. Zarnowitz (1985), 
building on Lucas’ definition of the cycle, argues that business cycles 
represent expansions and contractions that consist of recurrent serially 
correlated and cross-correlated movement in many economic variables. So 
the dispersion of cyclical or serially correlated movements across many 
activities is more important than one narrowly concentrated in a few 
industries or sectors.

Finally each of the three approaches to measuring GDP themselves 
often provide conflicting answers. For example, in the UK the output, 
income and expenditure measures suggest a different profile for the 
slowdown in productivity at the end of the C19th and the start of the 
C20th. Therefore, it is not clear that focusing on an aggregate meas-
ure of economic activity gets around the issue of measurement error. 
Often the only thing that can be done is to average the estimates from 
the three approaches. However, using balanced estimates of real GDP 
would help to ameliorate this problem, where estimates from the three 
approaches are weighted together based on a subjective assessment of 
the reliability of its underlying components (Sefton and Weale 1995). 
The subjective element of course remains important.

We discuss the availability of GDP data and the importance of some 
of these issues in the UK in Chapter 4.

3.2  Classical Versus Growth Cycles—To 
De-trend or Not to De-trend?

The second issue is whether business cycle metrics should be derived 
from the level of activity—the classic cycle—or whether it should be 
applied to de-trended data and generate “growth cycles”. Burns and 
Mitchell (1946) were clear they were interested in expansions and con-
tractions in the level of activity and this methodology is currently still 
used by the NBER Business Cycle Dating Committee which meets to 

http://dx.doi.org/10.1007/978-3-030-26346-1_4
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determine the chronology of US business cycles. However as Romer 
(1994) discusses the NBER chronology appears to have shifted over 
time. Prior to 1927 the dating appears to be based on de-trended data 
and this can have significant impact on business cycle chronology and 
metrics. For example, Romer (1994) shows how this shift in procedure 
is largely behind the result that US recessions appear to get shorter over 
time and generates an alternative chronology prior to 1927 based on an 
algorithm that closely matches the NBER dating of post-war US cycles.

So which method is to be preferred? Harding and Pagan (2002) are 
quite clear “there is no need to perform a de-trending operation to 
analyse the business cycle”. They note the wide variety of de-trending 
methods available to researchers each of which might produce a differ-
ent chronology and metrics. A number of recent chronologies published 
by researchers such as Romer (1994), Davis (2006), Berge and Jordà 
(2013), and Jordà et al. (2013) follow their approach and prefer to base 
them on data in levels. This is also true of the modern chronologies 
published by the CEPR and NBER.

However some researchers are interested in business cycles for analys-
ing the degree of inflationary pressure in the economy and de-trended 
measures of output or “output gaps” are a key ingredient in Phillips 
curve analysis that links inflation to activity. More generally policy-
makers may be interested in ironing out inefficiencies in the economy. 
Growth cycles tend to be correlated with fluctuations in unemployment 
and monetary and fiscal policy might be set to offset those movements. 
So in this respect growth cycles are a more useful concept to analyse for 
policymakers. However one has to be careful to de-trend output in the 
right way. As discussed earlier, the correct concept of trend for the New 
Keynesian model is the level of output that would prevail under flexible 
prices and it is not clear any of the statistical methods of de-trending 
output do this effectively as we will see.

The metrics one derives from the classic and growth cycle are dif-
ferent in a number of respects. First, classic cycles tend to have much 
longer expansion phases than compared with contraction phases. 
Typically in many countries recessions have been short and sharp and so 
the metrics for the two phases appear highly asymmetric. Growth cycles 
on the other hand tend to be more symmetric as the contraction phase 
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applies to any period where growth is below the estimated trend and 
not just to absolute falls in activity.

Also as Romer (1994) notes, growth cycles based on de-trended out-
put tend to have peaks that appear earlier than classic cycles and troughs 
that appear later, if the profile of output is relatively smooth. This is 
because output, although increasing, may slow relative to trend before it 
falls in absolute terms. Similarly contractions in growth cycles will per-
sist beyond the period of falling output until output growth returns to 
trend.

As a result of these differences it is important to decide on which 
metrics are important for the purposes to which business cycle meas-
urement is being put. Classical cycles are more judgement-free and so in 
some sense the business cycles facts that will emerge will be firmer. That 
means they may be more useful for comparing turning points across 
time such as in Romer’s analysis. But classical cycles may be less useful 
in themselves for policy purposes when judgements about trend inevita-
bly have to be made.

We discuss methods of deriving business cycle metrics under both 
methods in the next two sections.

3.3  Methods of Determining Turning Points 
in Classic Cycles

The classic approach to chronicling the business cycle is to identify 
turning points such as peaks and troughs. This then defines two phases. 
The expansion phase is the period following the trough of the cycle to 
the next peak. The contraction phase is then the period following the 
peak to the trough. The full cycle is then the combined expansion and 
contraction phase. There are two general approaches to detecting turn-
ing points in classic cycles. The first takes what is effectively a graphi-
cal approach supported by algorithms to censor and refine the turning 
points obtained. The second involves applying a statistical model to the 
data.
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3.3.1  The Graphic or Algorithmic Approach

Under the simplest algorithmic approach a set of candidate peaks, Pt,  
and troughs, Tt, can be identified by looking at changes or the first 
 difference in the level of output. A peak period P is defined if output is 
lower both before and after that period. A trough is defined if output is 
higher either side of that period.

Figure 3.1 shows this graphically for the case of a smooth cycle.
It may seem odd that the analysis of a classical cycle’s turning points 

is based on the change or growth of output, given the distinction 
made earlier with growth cycles. But as stressed by Harding and Pagan 
(2002), the rules above are not about locating a cycle in the growth rate 
they are just an input into the dating process of the classical cycle in 
levels.

For annual data the application of this dating rule is relatively 
straightforward and this process may then be sufficient with no further 
iterations unless the changes are very small and there are “flat points” at 

Pt = 1 if yt ≥ yt−1 and yt > yt+1

Tt = 1 if yt ≤ yt−1 and yt < yt+1

Fig. 3.1 Classical business cycle dating
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peaks or troughs where one has to decide whether output has peaked or 
troughed at the start or end of the flat point.

For monthly and quarterly data one might want also to place some 
restrictions on the length of the cycles given volatility and measurement 
error in the data. And, when those rules are in place certain other fea-
tures then hold such as making sure peaks and troughs alternate. This 
process requires an explicit algorithmic procedure to implement. The 
most popular algorithm is that developed by Bry and Boschan (1971). 
They specify a set of rules that apply to monthly seasonally adjusted 
series:

• First a contraction or expansion phase must have a duration of no 
less than 5 months. This is the source of the popular idiom known 
as a “technical” recession which involves two consecutive quarters of 
negative growth.

• Second a full cycle, on both a Peak-to-Peak and Trough-to-Trough 
basis must have a duration of at least 15 months.

However further censoring rules may then apply to the data. For 
example a two-quarter contraction maybe succeeded by a quarter of 
growth, which in turn is followed by a quarter or quarters of decline. 
Such  “double-dip” recessions are common. This raises the question 
of whether the contraction should be dated up to the earlier or later 
trough. A metric that can be used is the absolute output gain in the 
intervening quarter of growth. If it is larger (smaller) than the absolute 
output loss in the subsequent quarter or quarters of decline, we select 
the earlier (later) trough as marking the end of the contraction.

A further issue is the notion of the recovery phase of the cycle which 
forms part of the expansion phase. Figure 3.1 demonstrates this in the 
expansion between time periods T3 and T4. The recovery point is where, 
following a period of contraction, output recovers to reach its previous 
peak, beyond that is the “boom” period. However it may be the case 
that output may not have returned to its previous peak by the time the 
next contraction occurs. The recovery is “interrupted”. This then leads 
to issues of how to treat “mini” peaks and troughs that occur in between 
the previous trough and the recovery point.
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3.3.2  The Statistical Approach—Markov-Switching 
Methods

Another way to detect business cycle turning points is through an 
explicit statistical model of the data and then using the estimated 
parameters of the model to try and obtain a business cycle chronology 
based on the probability of being at a particular turning point. A pop-
ular method of doing this is the Markov-switching approach developed 
by Hamilton (1989). This approach is well able to capture the asym-
metry observed in the data that troughs are shorter and sharper than 
expansions and assumes no prior knowledge of turning points (unlike 
the earlier method of Neftci 1982).

Under this approach mean or underlying growth in the economy is 
in one of two states (S ): a high-growth or expansion state (S = 1), or a 
low-growth/contraction state where S = 0. And the economy randomly 
switches between these two unobserved states. By specifying the statis-
tical model underlying this switching one can try and determine from 
the data which state the economy is in. Using a simple autoregressive or 
AR(2) process for output we can show an example of this approach:

where µst is the mean growth rate that switches between states:

The probability P of being in one state or the other follows a  first-order 
Markov process. This defines the probability of being in a particular 
state conditional on the existing state:

yt = yt−1 + µst + φ(yt−1 − yt−2 − µst−1)+ vt

µst = α0 + α1St

P
[

St = 1|St−1 = 1
]

= p

P
[

St = 0|St−1 = 1
]

= 1− p

P
[

St = 0|St−1 = 0
]

= q
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Hamilton then develops an approach for estimating the parameters of 
this statistical model. Which state an economy is in at any particular 
time remains unobservable in the Hamilton framework. The prob-
ability of being in a particular state at a particular time can be calcu-
lated based on the estimated parameters of the model and the evolving 
path of the process. The key metric for determining a turning point is 
through evaluating the conditional probability based on the observed 
movements of output at that point P[St = 1|yt , yt−1, yt−2] which 
Hamilton’s filtering process determines. He augments this with a 
smoothing procedure using future values of y to ensure the path of 
probabilities remains smooth. One then needs to set a benchmark 
probability to determine whether the economy is one state or another. 
Hamilton (1989) suggests using the rule that a quarter is part of a  low- 
growth, or recessionary, period if the smoothed conditional probability 
P[St = 1|yt+2, yt+1, yt , yt−1, yt−2] < 0.5.

3.4  Methods of De-trending—Growth Cycles

The basic method to determine metrics for growth cycles is to remove 
both the trend and irregular (white noise) components from a series 
to leave the cyclical component(s). There are three popular and related 
procedures for de-trending a series on a univariate basis, which are then 
often extended to a multivariate basis where common trends and cycles 
between variables can be identified. These three methods are discussed 
in turn but can be shown to derive from a more general model and as a 
result the implicit restrictions in the three models can be identified and 
discussed.

Essentially a series can be decomposed into a trend component (τ)  
a cyclical component (c ) and a white noise component ω where 
ωt = N(0, σω) is normally distributed and may contain measurement 
error in the data. For quarterly and monthly data an additional seasonal 
component (s ) can be added

P
[

St = 0|St−1 = 1
]

= 1− q
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Many of the differences between de-trending methods depend on how 
the trend and cyclical components are specified and the extent to which 
the trend and cycle are assumed to be correlated.

3.4.1  The Unobserved Components Model

The Unobserved Components (UC) model was popularised by Harvey 
(1989) and Harvey and Jaeger (1993). In this model the trend and the 
cyclical components are assumed to be uncorrelated phenomena that 
are driven by different “shocks” or stochastic processes.

The trend component itself is typically written as a random walk with 
drift.

which can be written as:

where the trend has both a stochastic and deterministic trend compo-
nent. The term µt represents the deterministic component of the trend 

which grows at a constant “drift” rate µ whereas 
t
∑

j=0

ǫt−j represents the 

“stochastic trend” based on the cumulative effect of “permanent” shocks 
that affect the trend level of output and other variables in economy. 
Again those permanent shocks have a distribution: εt = N(0, σε).

However this model can be generalised further where the drift term 
itself can be stochastic. This means there can be “shocks” to both the 
trend growth rate and trend level of output. This is known as the “local 
linear trends” model.

where again the error term is a mean-zero normally distributed variable, 
ηt = N

(

0, ση
)

yt = τt + ct + ωt + st

τt = τt−1 + µt + ǫt

τt = µt +
t

∑

j=0

εt−j

µt = µt−1 + ηt
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Another way of modelling the trends is as a sequence of one-off deter-
ministic regime shifts in either the level or deterministic trend component:

where D is a vector of impact dummy variables and 
t
∑

i=0

Dt−i a vector 

of one-zero step-dummies. D can also be specified so there are one-off 
shifts in the slope of the deterministic trend. This is known as a “ linear 
segmented trend” model (see Perron and Wada [2009] and Crafts and 
Mills [2017]). Essentially this involves determining separate growth 
regimes with a different trend growth rate. The timing of regimes can 
either be determined statistically or by assumption based on known fea-
tures of the economy or using natural breakpoints such as wars.

In the UC model the cyclical component is typically written as an 
autoregressive moving average model or “ARMA” model driven by a 
different set of shocks υt. In this case

where υt is a set of shocks υt = N(0, συ) which generate dynamic or 
cyclical (serially correlated) effects through the distributed lag matrices 
�(L) and �(L). So for example �(L)υt is a distributed lag of current 
and past cyclical shocks = �0υt +�1υt−1 + . . .

The simplest model of the cycle that can generate serially correlated 
movements and periodic cycles is the stationary AR(2) model discussed 
earlier when discussing the multiplier-accelerator model.

The nature of the cycle generated depends on the roots (z ) of this sec-
ond order difference equation.

τt = µ+ µ ∗ Dt + τt−1

τt = µt + µ ∗
t

∑

i=0

Dt−i

�(L)ct = �(L) υt

ct = ψ1ct−1 + ψ2ct−2 + υt

z1, z2 =
−ψ1 ±

√

ψ2
1 + 4ψ2

2
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If the roots are real

then the impact of a shock υt will gradually and asymptotically tend 
to zero. In this case a “cycle” may only be observed because the shock 
process is white noise and negative shocks are likely to follow positive 
shocks. But this would be in line with the Lucas definition of the cycle 
which refers to serially-correlated movements around a trend.

If on the other hand the roots are complex

then a shock υt will generate a periodic cycle of its own with periodicity 
or length of cycle given by

In this case what we observe as the cycle will be a mixture of overlap-
ping waves responding to positive and negative shocks as discussed in 
Chapter 2.

An alternative approach is where the cyclical component can be 
set up explicitly as a trigonometric function where the cycle can be 
expressed as a mixture of sine and cosine waves dependent on two 
parameters α and β with a given frequency λ

which are combined recursively to produce a time-varying stochastic 
cycle given by

ψ2
1 + 4ψ2 > 0

ψ2
1 + 4ψ2 < 0

k =
2π

cos−1
[

ψ1/(2
√
−ψ2)

]

ct = α cos �t + β sin �t

c∗t = −α sin �t + β cos �τ

[

ct
c∗t

]

= ρ

[

cos � sin �

− sin � cos �

][

ct−1

c∗t−1

]

+
[

υt
υ∗
t

]

http://dx.doi.org/10.1007/978-3-030-26346-1_2
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where ρ is a damping factor < 1 to ensure the process is stationary. This 
is effectively an ARMA(2) model which reduces to a simple AR(1) pro-
cess if λ = 0 or π. But in general, this framework assumes the cycles are 
periodic by definition.

A satisfactory description of cyclical movements may require more 
than one cyclical component operating at different frequencies, for 
example a business cycle frequency of 2–8 years and a credit cycle 
component of 8–20 years. Simultaneous estimation of these different 
cyclical components can be achieved within the UC framework. So in 
principle ct can be set up as a set of N trigonometric cycles.

The parameters of the model are typically estimated using the Kalman 
Filter and a key restriction in the “standard” UC model is that the 
covariance between the unobserved shocks driving the cycle and the 
shocks driving the trend is zero.

Many applications of the UC model with this restriction trend to pro-
duce a relatively smooth trend component and relatively large cyclical 
components.

3.4.2  The Beveridge-Nelson Decomposition

The Beveridge-Nelson (1981) decomposition (BN) starts from a similar 
underlying specification to the UC model. The trend component is typ-
ically set up in the same way but in this case the cyclical component is a 
moving average process resulting from the same stochastic source as the 
trend. In this case:

ct =
N
∑

j=1

cj,t

Cov(εtυt) = 0

yt = τt + ct

τt = τt−1 + µt + ϕ(1)ǫt
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So the trend and cycle are perfectly and (negatively) correlated in this 
model. Decompositions using this approach typically produce more 
variable trends and much smaller cyclical components. We will see 
this is very evident in the UK data. Morley et al. (2003) show that the 
Beveridge and Nelson (1981) decomposition is in fact equivalent to 
that of the trend-cycle decomposition from a general UC model that 
allows for correlation between the shocks driving the trend and cycle. 
In other words the standard UC model employed by many research-
ers effectively imposes what in many cases is a testable zero correlation 
restriction on the shocks driving trend and cycle. Morley et al. (2003) 
show this zero correlation restriction can be rejected for US quarterly 
data. Once the restriction of a zero correlation between the shocks 
driving trend and cycle is relaxed the UC and BN models are essen-
tially the same. As Grant and Chan (2017) discuss both methods in 
this case will in general deliver cycles that exhibit what many business 
cycle researchers find unpalatable—cycles that are noisy and small in 
amplitude.

3.4.3  HP and Band-Pass Filters—Non-parametric 
Methods

An alternative approach to deriving trends and cycles is to use a 
non-parametric filtering approach. In this case the specification of the 
trend and cycle components are not determined a priori and then esti-
mated but rather are derived by meeting some other a priori criteria. 
One well known non-parametric method is the Hodrick-Prescott or 
HP filter. The Hodrick-Prescott decomposition is based on the smooth-
ing problem initiated by Bohlmann (1899) and Whittaker (1923). The 
trend is the solution to the following problem

ct = ϕ̃(L)ǫt

min
τ

[

T
∑

t=1

(yt − τt)
2 + �

T
∑

t=1

(

�2τt

)2

]
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where λ is a fixed constant that penalises variability in the trend compo-
nent. The larger the value of λ, the smoother is the associated HP trend. 
Hodrick and Prescott (1980, 1997) highlight that λ may be viewed as 
the noise-to-signal ratio under certain restrictive conditions. They then 
suggest setting λ = 1600 for US quarterly data and 100 for annual data. 
Grant and Chan (2017) show that a general unobserved component 
with a more flexible specification for the trend and which allows for cor-
relation between trend and cycle components nests the HP filter as a 
special case. Harvey and Jaeger (1993) show that the HP filter is the 
optimal linear estimator of the trend in the basic UC model

Notice, however, that this rationalisation has the following assump-
tions: (i) the series is integrated of order 2; (ii) the cyclical component 
is a white noise process; and (iii) that the chosen value of the parame-
ter λ corresponds to the ratio of the variance of the irregular compo-
nent to the variance of the innovation in the trend component. This is 
one reason why HP filters may produce spurious cycles if the smooth-
ing parameter chosen or other implied restrictions are different to that 
implied by the unrestricted estimates of the UC model. As an exam-
ple of the HP filter producing spurious cycles Harvey and Jaeger (1993) 
and Harding and Pagan (2005) show that if output follows a random 
walk, which would be interpreted in the UC framework as a pure sto-
chastic trend, and one applies the standard HP filter to data generated 
from the random walk process one will generate what looks like a cycle 
with significant serial correlation.

Band-pass filters are another popular way of non-parametric 
de-trending but take a slightly different approach to the HP filter. The 

yt = τt + νt

τt = τt−1 + µt + ǫt

µt = µt−1 + ηt

� =
σν

ση
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band-pass filter essentially takes a two-sided weighted moving average 
of the data where the weights are chosen so that cycles in a particular 
band, given by a specified lower and upper bound, are allowed through 
and the remaining cycles are filtered out. Essentially for business cycle 
analysis a business cycle band of 2–8 years is typically chosen. Baxter 
and King (1995) and Christiano and Fitzgerald (1999) both provide 
approximations to the ideal band-pass filter. These filters have also been 
argued to generate spurious cycles (e.g. Benati 2001). Because the  band- 
pass filter is both a low pass and a high pass filter, it leads to cycles that 
are typically smoother than the HP filter, which acts only as a high pass 
filter and does not cut off higher frequency movements below say two 
years.

A feature of both types of filters is whether the filter is “one-sided” or 
“two-sided”. A one-sided filter only uses information up to time t when 
assessing the state of the cycle at time t. A two-sided filter however 
uses both past and future observations to assess the state at any given 
moment in time. For the purposes of developing forecasting models, 
e.g. Phillips curve models that use the output gap to forecast inflation, 
a one-sided filter is a more appropriate method to de-trend output. 
This is because when carrying out forecasts in real time future informa-
tion about the time series is unavailable, so one needs to construct a 
model based on what forecast information set that will be available at 
the time. For the purposes of retrospectively analysing business cycles 
however a two-sided filter is more appropriate as it takes into account 
all the information we have about the time series although there will 
still be an issue about the end point of the series where the filter will be 
missing the information about future values.
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