
Chapter 9
Peer-to-Peer Data Management

In this chapter, we discuss the data management issues in the “modern” peer-to-
peer (P2P) data management systems. We intentionally use the phrase “modern”
to differentiate these from the early P2P systems that were common prior to
client/server computing. As indicated in Chap. 1, early work on distributed DBMSs
had primarily focused on P2P architectures where there was no differentiation
between the functionality of each site in the system. So, in one sense, P2P data
management is quite old—if one simply interprets P2P to mean that there are
no identifiable “servers” and “clients” in the system. However, the “modern” P2P
systems go beyond this simple characterization and differ from the old systems that
are referred to by the same name in a number of important ways, as mentioned in
Chap. 1.

The first difference is the massive distribution in current systems. While the early
systems focused on a few (perhaps at most tens of) sites, current systems consider
thousands of sites. Furthermore, these sites are geographically very distributed, with
possible clusters forming at certain locations.

The second is the inherent heterogeneity of every aspect of the sites and
their autonomy. While this has always been a concern of distributed databases,
coupled with massive distribution, site heterogeneity and autonomy take on added
significance, disallowing some of the approaches from consideration.

The third major difference is the considerable volatility of these systems.
Distributed DBMSs are well-controlled environments, where additions of new sites
or the removal of existing sites are done very carefully and rarely. In modern P2P
systems, the sites are (quite often) people’s individual machines and they join and
leave the P2P system at will, creating considerable hardship in the management of
data.

In this chapter, we focus on this modern incarnation of P2P systems. In these
systems, the following requirements are:

The original version of this chapter was revised. The correction to this chapter is available at https://
doi.org/10.1007/978-3-030-26253-2_13

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2_9

395

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26253-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-26253-2_13
https://doi.org/10.1007/978-3-030-26253-2_13
https://doi.org/10.1007/978-3-030-26253-2_9

396 9 Peer-to-Peer Data Management

• Autonomy. An autonomous peer should be able to join or leave the system at
any time without restriction. It should also be able to control the data it stores
and which other peers can store its data (e.g., some other trusted peers).

• Query expressiveness. The query language should allow the user to describe the
desired data at the appropriate level of detail. The simplest form of query is key
lookup, which is only appropriate for finding files. Keyword search with ranking
of results is appropriate for searching documents, but for more structured data,
an SQL-like query language is necessary.

• Efficiency. The efficient use of the P2P system resources (bandwidth, computing
power, storage) should result in lower cost, and, thus, higher throughput of
queries, i.e., a higher number of queries can be processed by the P2P system
in a given time interval.

• Quality of service. This refers to the user-perceived efficiency of the system,
such as completeness of query results, data consistency, data availability, and
query response time.

• Fault-tolerance. Efficiency and quality of service should be maintained despite
the failures of peers. Given the dynamic nature of peers that may leave or fail at
any time, it is important to properly exploit data replication.

• Security. The open nature of a P2P system gives rise to serious security chal-
lenges since one cannot rely on trusted servers. With respect to data management,
the main security issue is access control which includes enforcing intellectual
property rights on data contents.

A number of different uses of P2P systems have been developed for sharing
computation (e.g., SETI@home), communication (e.g., ICQ), or data (e.g., Bit-
Torrent, Gnutella, and Kazaa). Our interest, naturally, is on data sharing systems.
Popular systems such as BitTorrent, Gnutella, and Kazaa are quite limited when
viewed from the perspective of database functionality. First, they provide only file
level sharing with no sophisticated content-based search/query facilities. Second,
they are single-application systems that focus on performing one task, and it is
not straightforward to extend them for other applications/functions. In this chapter,
we discuss the research activities towards providing proper database functionality
over P2P infrastructures. Within this context, data management issues that must be
addressed include the following:

• Data location: peers must be able to refer to and locate data stored in other peers.
• Query processing: given a query, the system must be able to discover the peers

that contribute relevant data and efficiently execute the query.
• Data integration: when shared data sources in the system follow different

schemas or representations, peers should still be able to access that data, ideally
using the data representation used to model their own data.

• Data consistency: if data is replicated or cached in the system, a key issue is to
maintain the consistency between these duplicates.

Figure 9.1 shows a reference architecture for a peer participating in a data sharing
P2P system. Depending on the functionality of the P2P system, one or more of the

9 Peer-to-Peer Data Management 397

Query
Manager

Update
Manager

Cache
Manager

Data Management Layer

Semantic
Mappings

Remote
Data Cache

Local Data
Source

Wrapper

P
2P

N
et

w
or

k
Su

bl
ay

er

D
at

a
M

an
ag

em
en

t
A

P
I

U
se

r
In

te
rf
ac

e

Peer

local query

global query

answer

Peer

Peer Peer

Fig. 9.1 Peer reference architecture

components in the reference architecture may not exist, may be combined together,
or may be implemented by specialized peers. The key aspect of the proposed
architecture is the separation of the functionality into three main components: (1) an
interface used for submitting the queries; (2) a data management layer that handles
query processing and metadata information (e.g., catalogue services); and (3) a P2P
infrastructure, which is composed of the P2P network sublayer and P2P network. In
this chapter, we focus on the P2P data management layer and P2P infrastructure.

Queries are submitted using a user interface or data management API and
handled by the data management layer. They may refer to data stored locally or
globally in the system. The query request is processed by a query manager module
that retrieves semantic mapping information from a repository when the system
integrates heterogeneous data sources. This semantic mapping repository contains
metainformation that allows the query manager to identify peers in the system
with data relevant to the query and to reformulate the original query in terms that
other peers can understand. Some P2P systems may store the semantic mapping
in specialized peers. In this case, the query manager will need to contact these
specialized peers or transmit the query to them for execution. If all data sources
in the system follow the same schema, neither the semantic mapping repository nor
its associated query reformulation functionality is required.

Assuming a semantic mapping repository, the query manager invokes services
implemented by the P2P network sublayer to communicate with the peers that will
be involved in the execution of the query. The actual execution of the query is
influenced by the implementation of the P2P infrastructure. In some systems, data
is sent to the peer where the query was initiated and then combined at this peer.
Other systems provide specialized peers for query execution and coordination. In
either case, result data returned by the peers involved in the execution of the query

398 9 Peer-to-Peer Data Management

may be cached locally to speed up future executions of similar queries. The cache
manager maintains the local cache of each peer. Alternatively, caching may occur
only at specialized peers.

The query manager is also responsible for executing the local portion of a global
query when data is requested by a remote peer. A wrapper may hide data, query
language, or any other incompatibilities between the local data source and the
data management layer. When data is updated, the update manager coordinates the
execution of the update between the peers storing replicas of the data being updated.

The P2P network infrastructure, which can be implemented as either structured
or unstructured network topology, provides communication services to the data
management layer.

In the remainder of this chapter, we will address each component of this reference
architecture, starting with infrastructure issues in Sect. 9.1. The problems of data
mapping and the approaches to address them are the topics of Sect. 9.2. Query
processing is discussed in Sect. 9.3. Data consistency and replication issues are
discussed in Sect. 9.4. In Sect. 9.5, we introduce Blockchain, a P2P infrastructure
for recording transactions efficiently, safely, and permanently.

9.1 Infrastructure

The infrastructure of all P2P systems is a P2P network, which is built on top of
a physical network (usually the Internet); thus, it is commonly referred to as the
overlay network. The overlay network may (and usually does) have a different
topology than the physical network and all the algorithms focus on optimizing
communication over the overlay network (usually in terms of minimizing the
number of “hops” that a message needs to go through from a source node to a
destination node—both in the overlay network). The distinction between the overlay
network and the physical network may be a problem in that two nodes that are
neighbors in the overlay network may, in some cases, be considerably far apart
in the physical network. Therefore, the cost of communication within the overlay
network may not reflect the actual cost of communication in the physical network.
We address this issue at the appropriate points during the infrastructure discussion.

Overlay networks can be of two general types: pure and hybrid. Pure overlay
networks (more commonly referred to as pure P2P networks) are those where there
is no differentiation between any of the network nodes—they are all equal. In hybrid
P2P networks, on the other hand, some nodes are given special tasks to perform.
Hybrid networks are commonly known as superpeer systems, since some of the
peers are responsible for “controlling” a set of other peers in their domain. The
pure networks can be further divided into structured and unstructured networks.
Structured networks tightly control the topology and message routing, whereas in
unstructured networks each node can directly communicate with its neighbors and
can join the network by attaching themselves to any node.

9.1 Infrastructure 399

Fig. 9.2 Unstructured P2P network

9.1.1 Unstructured P2P Networks

Unstructured P2P networks refer to those with no restriction on data placement in
the overlay topology. The overlay network is created in a nondeterministic (ad hoc)
manner and the data placement is completely unrelated to the overlay topology. Each
peer knows its neighbors, but does not know the resources that they have. Figure 9.2
shows an example unstructured P2P network.

Unstructured networks are the earliest examples of P2P systems whose core
functionality remains file sharing. In these systems, replicated copies of popular
files are shared among peers, without the need to download them from a centralized
server. Examples of these systems are Gnutella, Freenet, Kazaa, and BitTorrent.

A fundamental issue in all P2P networks is the type of index to the resources that
each peer holds, since this determines how resources are searched. Note that what is
called “index management” in the context of P2P systems is very similar to catalog
management that we studied in Chap. 2. Indexes are stored metadata that the system
maintains. The exact content of the metadata differs in different P2P systems. In
general, it includes, at a minimum, information on the resources and sizes.

There are two alternatives to maintaining indices: centralized, where one peer
stores the metadata for the entire P2P system, and distributed, where each peer
maintains metadata for resources that it holds. Again, the alternatives are identical
to those for directory management.

The type of index supported by a P2P system (centralized or distributed) impacts
how resources are searched. Note that we are not, at this point, referring to running
queries; we are merely discussing how, given a resource identifier, the underlying
P2P infrastructure can locate the relevant resource. In systems that maintain a
centralized index, the process involves consulting the central peer to find the location

400 9 Peer-to-Peer Data Management

Peer n

Directory
Server

(1) Resource X?

(2) Peer n

(3
)

R
eq

ue
st

X

(4
)

X

Fig. 9.3 Search over a centralized index. (1) A peer asks the central index manager for resource,
(2) The response identifies the peer with the resource, (3) The peer is asked for the resource, (4) It
is transferred

of the resource, followed by directly contacting the peer where the resource is
located (Fig. 9.3). Thus, the system operates similar to a client/server one up to
the point of obtaining the necessary index information (i.e., the metadata), but from
that point on, the communication is only between the two peers. Note that the
central peer may return a set of peers who hold the resource and the requesting
peer may choose one among them, or the central peer may make the choice
(taking into account loads and network conditions, perhaps) and return only a single
recommended peer.

In systems that maintain a distributed index, there are a number of search
alternatives. The most popular one is flooding, where the peer looking for a resource
sends the search request to all of its neighbors on the overlay network. If any of
these neighbors have the resource, they respond; otherwise, each of them forwards
the request to its neighbors until the resource is found or the overlay network is fully
spanned (Fig. 9.4).

Naturally, flooding puts very heavy demands on network resources and is not
scalable—as the overlay network gets larger, more communication is initiated. This
has been addressed by establishing a Time-to-Live (TTL) limit that restricts the
number of hops that a request message makes before it is dropped from the network.
However, TTL also restricts the number of nodes that are reachable.

There have been other approaches to address this problem. A straightforward
method is for each peer to choose a subset of its neighbors and forward the request
only to those. There are different ways to determine this subset. For example, the
concept of random walks can be used where each peer chooses a neighbor at random

9.1 Infrastructure 401

Peer n

(1)
Resou

rce
X?

(1)
Resource

X? (1
)

R
es

ou
rc

e
X
?

(2
)

R
es

ou
rc

e
X

?

(2
)
R
es

ou
rc

e
X
?

(2) Resource X?

X

Fig. 9.4 Search over a Decentralized Index. (1) A peer sends the request for resource to all its
neighbors, (2) Each neighbor propagates to its neighbors if it does not have the resource, (3) The
peer who has the resource responds by sending the resource

and propagates the request only to it. Alternatively, each neighbor can maintain not
only indices for local resources, but also for resources that are on peers within a
radius of itself and use the historical information about their performance in routing
queries. Still another alternative is to use similar indices based on resources at each
node to provide a list of neighbors that are most likely to be in the direction of the
peer holding the requested resources. These are referred to as routing indices and
are used more commonly in structured networks, where we discuss them in more
detail.

Another approach is to exploit gossip protocols, also known as epidemic
protocols. Gossiping has been initially proposed to maintain the mutual consistency
of replicated data by spreading replica updates to all nodes over the network. It
has since been successfully used in P2P networks for data dissemination. Basic
gossiping is simple. Each node in the network has a complete view of the network
(i.e., a list of all nodes’ addresses) and chooses a node at random to spread the
request. The main advantage of gossiping is robustness over node failures since,
with very high probability, the request is eventually propagated to all the nodes in
the network. In large P2P networks, however, the basic gossiping model does not
scale as maintaining the complete view of the network at each node would generate
very heavy communication traffic. A solution to scalable gossiping is to maintain at
each node only a partial view of the network, e.g., a list of tens of neighbor nodes.
To gossip a request, a node chooses, at random, a node in its partial view and sends it

402 9 Peer-to-Peer Data Management

the request. In addition, the nodes involved in a gossip exchange their partial views
to reflect network changes in their own views. Thus, by continuously refreshing
their partial views, nodes can self-organize into randomized overlays that scale up
very well.

The final issue that we would like to discuss with respect to unstructured
networks is how peers join and leave the network. The process is different for
centralized versus distributed index approaches. In a centralized index system, a
peer that wishes to join simply notifies the central index peer and informs it of the
resources that it wishes to contribute to the P2P system. In the case of a distributed
index, the joining peer needs to know one other peer in the system to which it
“attaches” itself by notifying it and receiving information about its neighbors. At
that point, the peer is part of the system and starts building its own neighbors. Peers
that leave the system do not need to take any special action, they simply disappear.
Their disappearance will be detected in time, and the overlay network will adjust
itself.

9.1.2 Structured P2P Networks

Structured P2P networks have emerged to address the scalability issues faced by
unstructured P2P networks. They achieve this goal by tightly controlling the overlay
topology and the placement of resources. Thus, they achieve higher scalability at the
expense of lower autonomy as each peer that joins the network allows its resources
to be placed on the network based on the particular control method that is used.

As with unstructured P2P networks, there are two fundamental issues to be
addressed: how are the resources indexed, and how are they searched. The most
popular indexing and data location mechanism that is used in structured P2P
networks is a distributed hash table (DHT). DHT-based systems provide two APIs:
put(key, data) and get(key), where key is an object identifier. Each key (ki) is hashed
to generate a peer id (pi), which stores the data corresponding to object contents
(Fig. 9.5).

h(k1) =p1 h(k2) =p4 h(k3) =p6
DHT overlay
routing

value(k1)

p1

value(k2)

p4

value(k3)

p6

Peers

Fig. 9.5 DHT network

9.1 Infrastructure 403

A straightforward approach could be to use the URI of the resource as the IP
address of the peer that would hold the resource. However, one of the important
design requirements is to provide a uniform distribution of resources over the
overlay network and URIs/IP addresses do not provide sufficient flexibility. Con-
sequently, consistent hashing techniques that provide uniform hashing of values are
used to evenly place the data on the overlay. Although many hash functions may
be employed for generating virtual address mappings for the resource, SHA-1 has
become the most widely accepted base1 hash function that supports both uniformity
and security (by supporting data integrity for the keys). The actual design of the hash
function may be implementation dependent and we will not discuss that issue any
further.

Search (commonly called “lookup”) over a DHT-based structured P2P network
also involves the hash function: the key of the resource is hashed to get the id of
the peer in the overlay network that is responsible for that key. The lookup is then
initiated on the overlay network to locate the target node in question. This is referred
to as the routing protocol, and it differs between different implementations and is
closely associated with the overlay structure used. We will discuss one example
approach shortly.

While all routing protocols aim to provide efficient lookups, they also try
to minimize the routing information (also called routing state) that needs to be
maintained in a routing table at each peer in the overlay. This information differs
between various routing protocols and overlay structures, but it needs to provide
sufficient directory-type information to route the put and get requests to the
appropriate peer on the overlay. All routing table implementations require the use of
maintenance algorithms in order to keep the routing state up-to-date and consistent.
In contrast to routers on the Internet that also maintain routing databases, P2P
systems pose a greater challenge since they are characterized by high node volatility
and undependable network links. Since DHTs also need to support perfect recall
(i.e., all the resources that are accessible through a given key have to be found),
routing state consistency becomes a key challenge. Therefore, the maintenance of
consistent routing state in the face of concurrent lookups and during periods of high
network volatility is essential.

Many DHT-based overlays have been proposed. These can be categorized
according to their routing geometry and routing algorithm. Routing geometry
essentially defines the manner in which neighbors and routes are arranged. The
routing algorithm corresponds to the routing protocol discussed above and is defined
as the manner in which next-hops/routes are chosen on a given routing geometry.
The more important existing DHT-based overlays can be categorized as follows:

• Tree. In the tree approach, the leaf nodes correspond to the node identifiers that
store the keys to be searched. The height of the tree is log n, where n is the
number of nodes in the tree. The search proceeds from the root to the leaves by

1A base hash function is defined as a function that is used as a basis for the design of another hash
function.

404 9 Peer-to-Peer Data Management

doing a longest prefix match at each of the intermediate nodes until the target
node is found. Therefore, in this case, matching can be thought of as correcting
bit values from left-to-right at each successive hop in the tree. A popular DHT
implementation that falls into this category is Tapestry, which uses surrogate
routing in order to forward requests at each node to the closest digit in the routing
table. Surrogate routing is defined as routing to the closest digit when an exact
match in the longest prefix cannot be found. In Tapestry, each unique identifier
is associated with a node that is the root of a unique spanning tree used to route
messages for the given identifier. Therefore, lookups proceed from the base of
the spanning tree all the way to the root node of the identifier. Although this is
somewhat different from traditional tree structures, Tapestry routing geometry is
very closely associated with a tree structure and we classify it as such.

In tree structures, a node in the system has 2i−1 nodes to choose from as its
neighbor from the subtree with whom it has log(n − i) prefix bits in common.
The number of potential neighbors increases exponentially as we proceed further
up in the tree. Thus, in total there are nlog n/2 possible routing tables per node
(note, however that, only one such routing table can be selected for a node).
Therefore, the tree geometry has good neighbor selection characteristics that
would provide it with fault-tolerance. However, routing can only be done through
one neighboring node when sending to a particular destination. Consequently, the
tree-structured DHTs do not provide any flexibility in the selection of routes.

• Hypercube. The hypercube routing geometry is based on d-dimensional Carte-
sian coordinate space that is partitioned into an individual set of zones such that
each node maintains a separate zone of the coordinate space. An example of
hypercube-based DHT is the Content Addressable Network (CAN). The number
of neighbors that a node may have in a d-dimensional coordinate space is 2d (for
the sake of discussion, we consider d = log n). If we consider each coordinate to
represent a set of bits, then each node identifier can be represented as a bit string
of length log n. In this way, the hypercube geometry is very similar to the tree
since it also simply fixes the bits at each hop to reach the destination. However, in
the hypercube, since the bits of neighboring nodes only differ in exactly one bit,
each forwarding node needs to modify only a single bit in the bit string, which
can be done in any order. Thus, if we consider the correction of the bit string,
the first correction can be applied to any log n nodes, the next correction can be
applied to any (log n) − 1 nodes, etc. Therefore, we have (log n)! possible routes
between nodes, which provides high route flexibility in the hypercube routing
geometry. However, a node in the coordinate space does not have any choice over
its neighbors’ coordinates since adjacent coordinate zones in the coordinate space
cannot change. Therefore, hypercubes have poor neighbor selection flexibility.

• Ring. The ring geometry is represented as a one-dimensional circular identifier
space where the nodes are placed at different locations on the circle. The
distance between any two nodes on the circle is the numeric identifier difference
(clockwise) around the circle. Since the circle is one-dimensional, the data
identifiers can be represented as single decimal digits (represented as binary bit
strings) that map to a node that is closest in the identifier space to the given

9.1 Infrastructure 405

decimal digit. Chord is a popular example of the ring geometry. Specifically,
in Chord, a node whose identifier is a maintains information about log n other
neighbors on the ring where the ith neighbor is the node closest to a + 2i−1 on
the circle. Using these links (called fingers), Chord is able to route to any other
node in log n hops.

A careful analysis of Chord’s structure reveals that a node does not necessarily
need to maintain the node closest to a + 2i−1 as its neighbor. In fact, it can
still maintain the log n lookup upper bound if any node from the range [(a +
2i−1), (a + 2i)] is chosen. Therefore, in terms of route flexibility, it is able to
select between nlog n/2 routing tables for each node. This provides a great deal
of neighbor selection flexibility. Moreover, for routing to any node, the first hop
has log n neighbors that can route the search to the destination and the next node
has (log n) − 1 nodes, and so on. Therefore, there are typically (log n)! possible
routes to the destination. Consequently, ring geometry also provides good route
selection flexibility.

In addition to these most popular geometries, there have been many other DHT-
based structured overlays that use different topologies.

DHT-based overlays are efficient in that they guarantee finding the node on
which to place or find the data in log n hops, where n is the number of nodes
in the system. However, they have several problems, in particular when viewed
from the data management perspective. One of the issues with DHTs that employ
consistent hashing functions for better distribution of resources is that two peers that
are “neighbors” in the overlay network because of the proximity of their hash values
may be geographically quite apart in the actual network. Thus, communicating with
a neighbor in the overlay network may incur high transmission delays in the actual
network. There have been studies to overcome this difficulty by designing proximity-
aware or locality-aware hash functions. Another difficulty is that they do not provide
any flexibility in the placement of data—a data item has to be placed on the node
that is determined by the hash function. Thus, if there are P2P nodes that contribute
their own data, they need to be willing to have data moved to other nodes. This is
problematic from the perspective of node autonomy. The third difficulty is in that it
is hard to run range queries over DHT-based architectures since, as is well-known, it
is hard to run range queries over hash indices. There have been studies to overcome
this difficulty that we discuss later.

These concerns have caused the development of structured overlays that do not
use DHT for routing. In these systems, peers are mapped into the data space rather
than the hash key space. There are multiple ways to partition the data space among
multiple peers.

• Hierarchical structure. Many systems employ hierarchical overlay structures,
including tree, balanced trees, randomized balance trees (e.g., skip list), and
others. Specifically PHT and P-Grid employ a binary tree structure, where peers
whose data share common prefixes cluster under common branches. Balanced
trees are also widely used due to their guaranteed routing efficiency (the expected
“hop length” between arbitrary peers is proportional to the tree height). For

406 9 Peer-to-Peer Data Management

instance, BATON, VBI-tree, and BATON* employ k-way balanced tree structure
to manage peers, and data is evenly partitioned among peers at the leaf-level. In
comparison, P-Tree uses a B-tree structure with better flexibility on tree structural
changes. SkipNet and Skip Graph are based on the skip list, and they link
peers according to a randomized balanced tree structure where the node order
is determined by each node’s data values.

• Space-filling curve. This architecture is usually used to linearize sort data in
multidimensional data space. Peers are arranged along the space-filling curve
(e.g., Hilbert curve) so that sorted traversal of peers according to data order is
possible.

• Hyperrectangle structure. In these systems, each dimension of the hyperrectan-
gle corresponds to one attribute of the data according to which an organization is
desired. Peers are distributed in the data space either uniformly or based on data
locality (e.g., through data intersection relationship). The hyperrectangle space
is then partitioned by peers based on their geometric positions in the space, and
neighboring peers are interconnected to form the overlay network.

9.1.3 Superpeer P2P Networks

Superpeer P2P systems are hybrid between pure P2P systems and the traditional
client–server architectures. They are similar to client–server architectures in that not
all peers are equal; some peers (called superpeers) act as dedicated serves for some
other peers and can perform complex functions such as indexing, query processing,
access control, and metadata management. If there is only one superpeer in the
system, then this reduces to the client–server architecture. They are considered
P2P systems, however, since the organization of the superpeers follows a P2P
organization, and superpeers can communicate with each other in sophisticated
ways. Thus, unlike client–server systems, global information is not necessarily
centralized and can be partitioned or replicated across superpeers.

In a superpeer network, a requesting peer sends the request, which can be
expressed in a high-level language, to its responsible superpeer. The superpeer can
then find the relevant peers either directly through its index or indirectly using its
neighbor superpeers. More precisely, the search for a resource proceeds as follows
(see Fig. 9.6):

1. A peer, say Peer 1, asks for a resource by sending a request to its superpeer.
2. If the resource exists at one of the peers controlled by this superpeer, it notifies

Peer 1, and the two peers then communicate to retrieve the resource. Otherwise,
the superpeer sends the request to the other superpeers.

3. If the resource does not exist at one of the peers controlled by this superpeer, the
superpeer asks the other superpeers. The superpeer of the node that contains the
resource (say Peer n) responds to the requesting superpeer.

9.1 Infrastructure 407

Peer 1

Super-peer 2

Directory
Server

Super-peer 1

Directory
Server

Super-peer 3
Directory
Server

(1) Resource X?

(2
)

R
es

ou
rc

e
X
?

(2) Resource X?
(3) Peer n

(4) Peer n

Fig. 9.6 Search over a superpeer system. (1) A peer sends the request for resource to all its
superpeer, (2) The superpeer sends the request to other superpeers if necessary, (3) The superpeer
one of whose peers has the resource responds by indicating that peer, (4) The superpeer notifies
the original peer

4. Peer n’s identity is sent to Peer 1, after which the two peers can communicate
directly to retrieve the resource.

The main advantages of superpeer networks are efficiency and quality of service
(e.g., completeness of query results, query response time). The time needed to
find data by directly accessing indices in a superpeer is very small compared with
flooding. In addition, superpeer networks exploit and take advantage of peers’
different capabilities in terms of CPU power, bandwidth, or storage capacity as
superpeers take on a large portion of the entire network load. Access control can
also be better enforced since directory and security information can be maintained
at the superpeers. However, autonomy is restricted since peers cannot log in freely to
any superpeer. Fault-tolerance is typically lower since superpeers are single points
of failure for their subpeers (dynamic replacement of superpeers can alleviate this
problem).

Examples of superpeer networks include Edutella and JXTA.

408 9 Peer-to-Peer Data Management

Requirements Unstructured Structured Superpeer
Autonomy Low Low Moderate
Query expressiveness High Low High
Efficiency Low High High
QoS Low High High
Fault-tolerance High High Low
Security Low Low High

Fig. 9.7 Comparison of approaches

9.1.4 Comparison of P2P Networks

Figure 9.7 summarizes how the requirements for data management (autonomy,
query expressiveness, efficiency, quality of service, fault-tolerance, and security)
are possibly attained by the three main classes of P2P networks. This is a rough
comparison to understand the respective merits of each class. Obviously, there is
room for improvement in each class of P2P networks. For instance, fault-tolerance
can be improved in superpeer systems by relying on replication and fail-over
techniques. Query expressiveness can be improved by supporting more complex
queries on top of structured networks.

9.2 Schema Mapping in P2P Systems

We discussed the importance of, and the techniques for, designing database
integration systems in Chap. 7. Similar issues arise in data sharing P2P systems.

Due to specific characteristics of P2P systems, e.g., the dynamic and autonomous
nature of peers, the approaches that rely on centralized global schemas no longer
apply. The main problem is to support decentralized schema mapping so that a query
expressed on one peer’s schema can be reformulated to a query on another peer’s
schema. The approaches which are used by P2P systems for defining and creating
the mappings between peers’ schemas can be classified as follows: pairwise schema
mapping, mapping based on machine learning techniques, common agreement
mapping, and schema mapping using information retrieval (IR) techniques.

9.2.1 Pairwise Schema Mapping

In this approach, each user defines the mapping between the local schema and the
schema of any other peer that contains data that are of interest. Relying on the
transitivity of the defined mappings, the system tries to extract mappings between
schemas that have no defined mapping.

9.2 Schema Mapping in P2P Systems 409

MSR

IBM

Stanford

UW

UPenn

DBLP

CiteSeer

ACM

SIGMOD

PODS

Fig. 9.8 An example of pairwise schema mapping in piazza

Piazza follows this approach (see Fig. 9.8). The data is shared as XML docu-
ments, and each peer has a schema that defines the terminology and the structural
constraints of the peer. When a new peer (with a new schema) joins the system for
the first time, it maps its schema to the schema of some other peers in the system.
Each mapping definition begins with an XML template that matches some path
or subtree of an instance of the target schema. Elements in the template may be
annotated with query expressions that bind variables to XML nodes in the source.

The Local Relational Model (LRM) is another example that follows this
approach. LRM assumes that the peers hold relational databases, and each
peer knows a set of peers with which it can exchange data and services. This
set of peers is called peer’s acquaintances. Each peer must define semantic
dependencies and translation rules between its data and the data shared by each
of its acquaintances. The defined mappings form a semantic network, which is used
for query reformulation in the P2P system.

Hyperion generalizes this approach to deal with autonomous peers that form
acquaintances at runtime, using mapping tables to define value correspondences
among heterogeneous databases. Peers perform local querying and update process-
ing, and also propagate queries and updates to their acquainted peers.

PGrid also assumes the existence of pairwise mappings between peers, initially
constructed by skilled experts. Relying on the transitivity of these mappings and
using a gossip algorithm, PGrid extracts new mappings that relate the schemas of
the peers between which there is no predefined schema mapping.

9.2.2 Mapping Based on Machine Learning Techniques

This approach is generally used when the shared data is defined based on ontologies
and taxonomies as proposed for the semantic web. It uses machine learning

410 9 Peer-to-Peer Data Management

techniques to automatically extract the mappings between the shared schemas.
The extracted mappings are stored over the network, in order to be used for
processing future queries. GLUE uses this approach. Given two ontologies, for each
concept in one, GLUE finds the most similar concept in the other. It gives well-
founded probabilistic definitions to several practical similarity measures, and uses
multiple learning strategies, each of which exploits a different type of information
either in the data instances or in the taxonomic structure of the ontologies. To
further improve mapping accuracy, GLUE incorporates commonsense knowledge
and domain constraints into the schema mapping process. The basic idea is to
provide classifiers for the concepts. To decide the similarity between two concepts
X and Y, the data of concept Y is classified using X’s classifier and vice versa.
The number of values that can be successfully classified into X and Y represent the
similarity between X and Y.

9.2.3 Common Agreement Mapping

In this approach, the peers that have a common interest agree on a common
schema description for data sharing. The common schema is usually prepared and
maintained by expert users. The APPA P2P system makes the assumption that peers
wishing to cooperate, e.g., for the duration of an experiment, agree on a Common
Schema Description (CSD). Given a CSD, a peer schema can be specified using
views. This is similar to the LAV approach in data integration systems, except that
queries at a peer are expressed in terms of the local views, not the CSD. Another
difference between this approach and LAV is that the CSD is not a global schema,
i.e., it is common to a limited set of peers with a common interest (see Fig. 9.9).
Thus, the CSD does not pose scalability challenges. When a peer decides to share
data, it needs to map its local schema to the CSD.

Example 9.1 Given two CSD relation definitions R1 and R2, an example of peer
mapping at peer p is

p : R(A,B,D) ⊆ csd : R1(A,B,C), csd : R2(C,D,E)

CSD1

P P · · · P

Community 1

CSD2

P P · · · P

Community 2

Fig. 9.9 Common agreement schema mapping in APPA

9.3 Querying Over P2P Systems 411

In this example, the relation R(A,B,D) that is shared by peer p is mapped to
relations R1(A,B,C), R2(C,D,E) both of which are involved in the CSD. In APPA,
the mappings between the CSD and each peer’s local schema are stored locally at
the peer. Given a query Q on the local schema, the peer reformulates Q to a query
on the CSD using locally stored mappings. �

9.2.4 Schema Mapping Using IR Techniques

This approach extracts the schema mappings at query execution time using IR
techniques by exploring the schema descriptions provided by users. PeerDB follows
this approach for query processing in unstructured P2P networks. For each relation
that is shared by a peer, the description of the relation and its attributes is maintained
at that peer. The descriptions are provided by users upon creation of relations, and
serve as a kind of synonymous names of relation names and attributes. When a query
is issued, a request to find out potential matches is produced and flooded to the peers
that return the corresponding metadata. By matching keywords from the metadata
of the relations, PeerDB is able to find relations that are potentially similar to the
query relations. The relations that are found are presented to the issuer of the query
who decides whether or not to proceed with the execution of the query at the remote
peer that owns the relations.

Edutella also follows this approach for schema mapping in superpeer networks.
Resources in Edutella are described using the RDF metadata model, and the
descriptions are stored at superpeers. When a user issues a query at a peer p, the
query is sent to p’s superpeer where the stored schema descriptions are explored
and the addresses of the relevant peers are returned to the user. If the superpeer
does not find relevant peers, it sends the query to other superpeers such that they
search relevant peers by exploring their stored schema descriptions. In order to
explore stored schemas, superpeers use the RDF-QEL query language, which is
based on Datalog semantics and thus compatible with all existing query languages,
supporting query functionalities that extend the usual relational query languages.

9.3 Querying Over P2P Systems

P2P networks provide basic techniques for routing queries to relevant peers and
this is sufficient for supporting simple, exact-match queries. For instance, as noted
earlier, a DHT provides a basic mechanism to efficiently look up data based on a
key-value. However, supporting more complex queries in P2P systems, particularly
in DHTs, is difficult and has been the subject of much recent research. The main
types of complex queries which are useful in P2P systems are top-k queries, join
queries, and range queries. In this section, we discuss the techniques for processing
them.

412 9 Peer-to-Peer Data Management

9.3.1 Top-k Queries

Top-k queries have been used in many domains such as network and system
monitoring, information retrieval, and multimedia databases. With a top-k query,
the user requests k most relevant answers to be returned by the system. The degree
of relevance (score) of the answers to the query is determined by a scoring function.
Top-k queries are very useful for data management in P2P systems, in particular
when the complete answer set is very large.

Example 9.2 Consider a P2P system with medical doctors who want to share some
(restricted) patient data for an epidemiological study. Assume that all doctors agreed
on a common Patient description in relational format. Then, one doctor may want to
submit the following query to obtain the top 10 answers ranked by a scoring function
over height and weight:

SELECT *
FROM Patient P
WHERE P.disease = "diabetes"
AND P.height < 170
AND P.weight > 160
ORDER BY scoring-function(height,weight)
STOP AFTER 10

The scoring function specifies how closely each data item matches the conditions.
For instance, in the query above, the scoring function could compute the ten most
overweight people. �

Efficient execution of top-k queries in P2P systems is difficult because of the
scale of the network. In this section, we first discuss the most efficient techniques
proposed for top-k query processing in distributed systems. Then, we present the
techniques proposed for P2P systems.

9.3.1.1 Basic Techniques

An efficient algorithm for top-k query processing in centralized and distributed
systems is the Threshold Algorithm (TA) . TA is applicable for queries where the
scoring function is monotonic, i.e., any increase in the value of the input does not
decrease the value of the output. Many of the popular aggregation functions such as
Min, Max, and Average are monotonic. TA has been the basis for several algorithms,
and we discuss these in this section.

9.3 Querying Over P2P Systems 413

Threshold Algorithm (TA)

TA assumes a model based on lists of data items sorted by their local scores. The
model is as follows. Suppose we have m lists of n data items such that each data
item has a local score in each list and the lists are sorted according to the local
scores of their data items. Furthermore, each data item has an overall score that is
computed based on its local scores in all lists using a given scoring function. For
example, consider the database (i.e., three sorted lists) in Fig. 9.10. Assuming the
scoring function computes the sum of the local scores of the same data item in all
lists, the overall score of item d1 is 30 + 21 + 14 = 65.

Then the problem of top-k query processing is to find the k data items whose
overall scores are the highest. This problem model is simple and general. Suppose
we want to find the top-k tuples in a relational table according to some scoring
function over its attributes. To answer this query, it is sufficient to have a sorted
(indexed) list of the values of each attribute involved in the scoring function, and
return the k tuples whose overall scores in the lists are the highest. As another
example, suppose we want to find the top-k documents whose aggregate rank is
the highest with respect to some given set of keywords. To answer this query, the
solution is to have, for each keyword, a ranked list of documents, and return the k

documents whose aggregate rank over all lists are the highest.
TA considers two modes of access to a sorted list. The first mode is sorted (or

sequential) access that accesses each data item in their order of appearance in the
list. The second mode is random access by which a given data item in the list is
directly looked up, for example, by using an index on item id.

Given m sorted lists of n data items, TA (see Algorithm 9.1) goes down the sorted
lists in parallel, and, for each data item, retrieves its local scores in all lists through
random access and computes the overall score. It also maintains in a set Y , the k data

Position

1
2
3
4
5
6
7
8
9
10
. . .

List 1
Data Local
Item score

s1
d1 30
d4 28
d9 27
d3 26
d7 25
d8 23
d5 17
d6 14
d2 11
d11 10
.

List 2
Data Local
Item score

s2
d2 28
d6 27
d7 25
d5 24
d9 23
d1 21
d8 20
d3 14
d4 13
d14 12
.

List 3
Data Local
Item score

s3
d3 30
d5 29
d8 28
d4 25
d2 24
d6 19
d13 15
d1 14
d9 12
d7 11
.

Fig. 9.10 Example database with 3 sorted lists

414 9 Peer-to-Peer Data Management

Algorithm 9.1: Threshold Algorithm (TA)

Input: L1, L2, . . . , Lm: m sorted lists of n data items
f : scoring function
Output: Y : list of top-k data items
begin

j ← 1
threshold ← 1
min_overall_score ← 0
while j �= n + 1 and min_overall_score < threshold do

{Do sorted access in parallel to each of the m sorted lists}
for i from 1 to m in parallel do

{Process each data item at position j}
for each data item d at position j in Li do

{access the local scores of d in the other lists through random access}
overall_score(d) ← f (scores of d in each Li)

end for
end for
Y ← k data items with highest score so far
min_overall_score ← smallest overall score of data items in Y

threshold ← f (local scores at position j in each Li)
j ← j + 1

end while
end

items whose overall scores are the highest so far. The stopping mechanism of TA
uses a threshold that is computed using the last local scores seen under sorted access
in the lists. For example, consider the database in Fig. 9.10. At position 1 for all lists
(i.e., when only the first data items have been seen under sorted access) assuming
that the scoring function is the sum of the scores, the threshold is 30 + 28 + 30. At
position 2, it is 84. Since data items are sorted in the lists in decreasing order of local
score, the threshold decreases as one moves down the list. This process continues
until k data items are found whose overall scores are greater than a threshold.

Example 9.3 Consider again the database (i.e., three sorted lists) shown in Fig. 9.10.
Assume a top-3 query Q (i.e., k = 3), and suppose the scoring function computes
the sum of the local scores of the data item in all lists. TA first looks at the data
items which are at position 1 in all lists, i.e., d1, d2, and d3. It looks up the local
scores of these data items in other lists using random access and computes their
overall scores (which are 65, 63, and 70, respectively). However, none of them
has an overall score that is as high as the threshold of position 1 (which is 88).
Thus, at position 1, TA does not stop. At this position, we have Y = {d1, d2, d3},
i.e., the k highest scored data items seen so far. At positions 2 and 3, Y is set to
{d3, d4, d5} and {d3, d5, d8}, respectively. Before position 6, none of the data items
involved in Y has an overall score higher than or equal to the threshold value. At
position 6, the threshold value is 63, which is less than the overall score of the
three data items involved in Y , i.e., Y = {d3, d5, d8}. Thus, TA stops. Note that the
contents of Y at position 6 are exactly the same as at position 3. In other words,

9.3 Querying Over P2P Systems 415

at position 3, Y already contains all top-k answers. In this example, TA does three
additional sorted accesses in each list that do not contribute to the final result. This
is a characteristic of TA algorithm in that it has a conservative stopping condition
that causes it to stop later than necessary—in this example, it performs 9 sorted
accesses and 18 = (9 ∗ 2) random accesses that do not contribute to the final
result. �

TA-Style Algorithms

Several TA-style algorithms, i.e., extensions of TAThreshold Algorithm, have been
proposed for distributed top-k query processing. We illustrate these by means of the
Three Phase Uniform Threshold (TPUT) algorithm that executes top-k queries in
three round trips, assuming that each list is held by one node (which we call the list
holder) and that the scoring function is sum. The TPUT algorithm executed by the
query originator is detailed in Algorithm 9.2.

TPUT works as follows:

1. The query originator first gets from each list holder its k top data items. Let f

be the scoring function, d be a received data item, and si(d) be the local score
of d in list Li . Then the partial sum of d is defined as psum(d) = ∑m

i=1 s
′
i (d),

where s′
i (d) = si(d) if d has been sent to the coordinator by the holder of Li ,

else s′
i (d) = 0. The query originator computes the partial sums for all received

data items and identifies the items with the k highest partial sums. The partial
sum of the k−th data item (called phase-1 bottom) is denoted by λ1.

2. The query originator sends a threshold value τ = λ1/m to every list holder. In
response, each list holder sends back all its data items whose local scores are not
less than τ . The intuition is that if a data item is not reported by any node in this
phase, its score must be less than λ1, so it cannot be one of the top-k data items.
Let Y be the set of data items received from list holders. The query originator
computes the new partial sums for the data items in Y , and identifies the items
with the k highest partial sums. The partial sum of the k-th data item (called
phase-2 bottom) is denoted by λ2. Let the upper bound score of a data item d be
defined as u(d) = ∑m

i=1 ui(d), where ui(d) = si(d) if d has been received, else
ui(d) = τ . For each data item d ∈ D, if u(d) is less than λ2, it is removed from
Y . The data items that remain in Y are called top-k candidates because there may
be some data items in Y that have not been obtained from all list holders. A third
phase is necessary to retrieve those.

3. The query originator sends the set of top-k candidate data items to each list holder
that returns their scores. Then, it computes the overall score, extracts the k data
items with highest scores, and returns the answer to the user.

Example 9.4 Consider the first two sorted lists (List 1 and List 2) in Fig. 9.10.
Assume a top-2 query Q, i.e., k = 2, where the scoring function is sum. Phase 1

416 9 Peer-to-Peer Data Management

Algorithm 9.2: Three Phase Uniform Threshold (TPUT)
Input: L1, L2, . . . , Lm: m sorted lists of n data items, each at a different list holder
f : scoring function
Output: Y : list of top-k data items
begin

{Phase 1}
for i from 1 to m in parallel do

Y ← receive top-k data items from Li holder
end for
Z ← data items with the k highest partial sum in Y

λ1 ←partial sum of k-th data item in Z

{Phase 2}
for i from 1 to m in parallel do

send λ1/m to Li ’s holder
Y ← all data items from Li ’s holder whose local scores are not less than λ1/m

end for
Z ← data items with the k highest partial sum in Y

λ2 ← partial sum of k-th data item in Z

Y ← Y − {data items in Y whose upper bound score is less than λ2}
{Phase 3}
for i from 1 to m in parallel do

send Y to Li holder
Z ← data items from Li ’s holder that are in both Y and Li

end for
Y ← k data items with highest overall score in Z

end

produces the sets Y = {d1, d2, d4, d6} and Z = {d1, d2}. The k−th (i.e., second)
data item is d2, whose partial sum is 28. Thus we get λ1/2 = 28/2 = 14. Let us
now denote each data item d in Y as (d, score in List 1, score in List 2). Phase 2
produces

Y = {(d1, 30, 21), (d2, 0, 28), (d3, 26, 14), (d4, 28, 0), (d5, 17, 24), (d6, 14, 27),

(d7, 25, 25), (d8, 23, 20), (d9, 27, 23)} and Z = {(d1, 30, 21), (d7, 25, 25)}. Note
that d9 could also have been picked instead of d7 because it has same partial sum.
Thus we get λ2/2=50. The upper bound scores of the data items in Y are obtained
as:

u(d1) = 30 + 21 = 51
u(d2) = 14 + 28 = 42
u(d3) = 26 + 14 = 40
u(d4) = 28 + 14 = 42
u(d5) = 17 + 24 = 41
u(d6) = 14 + 27 = 41
u(d7) = 25 + 25 = 50
u(d8) = 23 + 20 = 43
u(d9) = 27 + 23 = 50

9.3 Querying Over P2P Systems 417

After removal of the data items in Y whose upper bound score is less than λ2, we
have Y = {d1, d7, d9}. The third phase is not necessary in this case as all data items
have all their local scores. Thus the final result is Y = {d1, d7} or Y = {d1, d9}. �

When the number of lists (i.e., m) is high, the response time of TPUT is much
better than that of the basic TA algorithm.

Best Position Algorithm (BPA)

There are many database instances over which TA keeps scanning the lists although
it has seen all top-k answers (as in Example 9.3). Thus, it is possible to stop much
sooner. Based on this observation, best position algorithms (BPA) that execute top-k
queries much more efficiently than TA have been proposed. The key idea of BPA is
that the stopping mechanism takes into account special positions in the lists, called
the best positions. Intuitively, the best position in a list is the highest position such
that any position before it has also been seen. The stopping condition is based on
the overall score computed using the best positions in all lists.

The basic version of BPA (see Algorithm 9.3) works like TA, except that it keeps
track of all positions that are seen under sorted or random access, computes best
positions, and has a different stopping condition. For each list Li , let Pi be the set of
positions that are seen under sorted or random access in Li . Let bpi , the best position
in Li , be the highest position in Pi such that any position of Li between 1 and bpi

is also in Pi . In other words, bpi is best because we are sure that all positions of Li

between 1 and bpi have been seen under sorted or random access. Let si(bpi) be the
local score of the data item that is at position bpi in list Li . Then, BPA’s threshold
is f (s1(bp1), s2(bp2), . . . , sm(bpm)) for some function f .

Example 9.5 To illustrate basic BPA, consider again the three sorted lists shown in
Fig. 9.10 and the query Q in Example 9.3.

1. At position 1, BPA sees the data items d1, d2, and d3. For each seen data item,
it does random access and obtains its local score and position in all the lists.
Therefore, at this step, the positions that are seen in list L1 are positions 1, 4,
and 9, which are, respectively, the positions of d1, d3, and d2. Thus, we have
P1 = {1, 4, 9} and the best position in L1 is bp1 = 1 (since the next position is
4 meaning that positions 2 and 3 have not been seen). For L2 and L3 we have
P2 = {1, 6, 8} and P3 = {1, 5, 8}, so bp2 = 1 and bp3 = 1. Therefore, the best
positions overall score is λ = f (s1(1), s2(1), s3(1)) = 30 + 28 + 30 = 88. At
position 1, the set of the three highest scored data items is Y = {d1, d2, d3}, and
since the overall score of these data items is less than λ , BPA cannot stop.

2. At position 2, BPA sees d4, d5, and d6. Thus, we have P1 = {1, 2, 4, 7, 8, 9},
P2 = {1, 2, 4, 6, 8, 9}, and P3 = {1, 2, 4, 5, 6, 8}. Therefore, we have bp1 = 2,
bp2 = 2, and bp3 = 2, so λ = f (s1(2), s2(2), s3(2)) = 28 + 27 + 29 = 84.
The overall score of the data items involved in Y = {d3, d4, d5} is less than 84,
so BPA does not stop.

418 9 Peer-to-Peer Data Management

Algorithm 9.3: Best Position Algorithm (BPA)

Input: L1, L2, . . . , Lm: m sorted lists of n data items
f : scoring function
Output: Y : list of top-k data items
begin

j ← 1
threshold ← 1
min_overall_score ← 0
for i from 1 to m in parallel do

Pi ← ∅
end for
while j �= n + 1 and min_overall_score < threshold do

{Do sorted access in parallel to each of the m sorted lists}
for i from 1 to m in parallel do

{Process each data item at position j}
for each data item d at position j in Li do

{access the local scores of d in the other lists through random access}
overall_score(d) ← f (scores of d in each Li)

end for
Pi ← Pi∪ {positions seen under sorted or random access}
bpi ← best position in Li

end for
Y ← k data items with highest score so far
min_overall_score ← smallest overall score of data items in Y

threshold ← f (local scores at position bpi in each Li)
j ← j + 1

end while
end

3. At position 3, BPA sees d7, d8, and d9. Thus, we have P1 = P2 = {1, 2, 3, 4, 5,

6, 7, 8, 9} and P3 = {1, 2, 3, 4, 5, 6, 7, 8, 10}. Thus, we have bp1 = 9, bp2 = 9,
and bp3 = 8. The best positions overall score is λ = f (s1(9), s2(9), s3(8)) =
11+13+14 = 38. At this position, we have Y = {d3, d5, d8}. Since the score of
all data items involved in Y is higher than λ, BPA stops, i.e., exactly at the first
position where BPA has all top-k answers.

Recall that over this database, TA stops at position 6. �
It has been proven that, for any set of sorted lists, BPA stops as early as TA, and

its execution cost is never higher than TA. It has also been shown that the execution
cost of BPA can be (m − 1) times (where m is the number of sorted lists) lower
than that of TA. Although BPA is quite efficient, it still does redundant work. One
of the redundancies with BPA (and also TA) is that it may access some data items
several times under sorted access in different lists. For example, a data item that
is accessed at a position in a list through sorted access and thus accessed in other
lists via random access may be accessed again in the other lists by sorted access at
the next positions. An improved algorithm, BPA2, avoids this and is therefore much
more efficient than BPA. It does not transfer the seen positions from list owners to

9.3 Querying Over P2P Systems 419

the query originator. Thus, the query originator does not need to maintain the seen
positions and their local scores. It also accesses each position in a list at most once.
The number of accesses to the lists done by BPA2 can be about (m− 1) times lower
than that of BPA.

9.3.1.2 Top-k Queries in Unstructured Systems

One possible approach for processing top-k queries in unstructured systems is to
route the query to all the peers, retrieve all available answers, score them using the
scoring function, and return to the user the k highest scored answers. However, this
approach is not efficient in terms of response time and communication cost.

The first efficient solution that has been proposed is that of PlanetP, which is
an unstructured P2P system. In PlanetP, a content-addressable publish/subscribe
service replicates data across P2P communities of up to ten thousand peers. The
top-k query processing algorithm works as follows. Given a query Q, the query
originator computes a relevance ranking of peers with respect to Q, contacts them
one by one in decreasing rank order, and asks them to return a set of their top-scored
data items together with their scores. To compute the relevance of peers, a global
fully replicated index is used that contains term-to-peer mappings. This algorithm
has very good performance in moderate-scale systems. However, in a large P2P
system, keeping the replicated index up-to-date may hurt scalability.

We describe another solution that was developed within the context of APPA,
which is a P2P network-independent data management system. A fully distributed
framework to execute top-k queries has been proposed that also addresses the
volatility of peers during query execution, and deals with situations where some
peers leave the system before finishing query processing. Given a top-k query Q

with a specified TTL, the basic algorithm called Fully Decentralized Top-k (FD)
proceeds as follows (see Algorithm 9.4):

1. Query forward. The query originator forwards Q to the accessible peers whose
hop-distance from the query originator is less than TTL.

2. Local query execution and wait. Each peer p that receives Q executes it locally:
it accesses the local data items that match the query predicate, scores them using
a scoring function, selects the k top data items, and saves them as well as their
scores locally. Then p waits to receive its neighbors’ results. However, since
some of the neighbors may leave the P2P system and never send a score-list to
p, the wait time has a limit that is computed for each peer based on the received
TTL, network parameters, and peer’s local processing parameters.

3. Merge-and-backward. In this phase, the top scores are bubbled up to the query
originator using a tree-based algorithm as follows. After its wait time has expired,
p merges its k local top scores with those received from its neighbors and sends
the result to its parent (the peer from which it received Q) in the form of a score-
list. In order to minimize network traffic, FD does not bubble up the top data

420 9 Peer-to-Peer Data Management

Algorithm 9.4: Fully Decentralized Top-k (FD)

Input: Q: top-k query
f : scoring function
T T L: time to live
w: wait time
Output: Y : list of top-k data items
begin

At query originator peer
begin

send Q to neighbors
Final_score_list ← merge local score lists received from neighbors
for each peer p in Final_score_list do

Y ← retrieve top-k data items in p

end for
end
for each peer that receives Q from a peer p do

T T L ← T T L − 1
if T T L > 0 then

send Q to neighbors
end if
Local_score_list ← extract top-k local scores
Wait a time w

Local_score_list ← Local_score_list ∪ top-k received scores
Send Local_score_list to p

end for
end

items (which could be large), only their scores and addresses. A score-list is
simply a list of k pairs (a, s), where a is the address of the peer owning the data
item and s its score.

4. Data retrieval. After receiving the score-lists from its neighbors, the query
originator forms the final score-list by merging its k local top scores with the
merged score-lists received from its neighbors. Then it directly retrieves the k

top data items from the peers that hold them.

The algorithm is completely distributed and does not depend on the existence
of certain peers, and this makes it possible to address the volatility of peers
during query execution. In particular, the following problems are addressed: peers
becoming inaccessible in the merge-and-backward phase; peers that hold top data
items becoming inaccessible in the data retrieval phase; late reception of score-lists
by a peer after its wait time has expired. The performance evaluation of FD shows
that it can achieve major performance gains in terms of communication cost and
response time.

9.3 Querying Over P2P Systems 421

9.3.1.3 Top-k Queries in DHTs

As we discussed earlier, the main functionality of a DHT is to map a set of keys
to the peers of the P2P system and lookup efficiently the peer that is responsible
for a given key. This offers efficient and scalable support for exact-match queries.
However, supporting top-k queries on top of DHTs is not easy. A simple solution is
to retrieve all tuples of the relations involved in the query, compute the score of each
retrieved tuple, and finally return the k tuples whose scores are the highest. However,
this solution cannot scale up to a large number of stored tuples. Another solution is
to store all tuples of each relation using the same key (e.g., relation’s name), so
that all tuples are stored at the same peer. Then, top-k query processing can be
performed at that central peer using well-known centralized algorithms. However,
the peer becomes a bottleneck and a single point of failure.

A solution has been proposed as part of APPA project that is based on TA
(see Sect. 9.3.1.1) and a mechanism that stores the shared data in the DHT in a
fully distributed fashion. In APPA, peers can store their tuples in the DHT using
two complementary methods: tuple storage and attribute value storage. With tuple
storage, each tuple is stored in the DHT using its identifier (e.g., its primary key)
as the storage key. This enables looking up a tuple by its identifier similar to a
primary index. Attribute value storage individually stores in the DHT the attributes
that may appear in a query’s equality predicate or in a query’s scoring function.
Thus, as in secondary indices, it allows looking up the tuples using their attribute
values. Attribute value storage has two important properties: (1) after retrieving an
attribute value from the DHT, peers can retrieve easily the corresponding tuple of
the attribute value; (2) attribute values that are relatively “close” are stored at the
same peer. To provide the first property, the key, which is used for storing the entire
tuple, is stored along with the attribute value. The second property is provided using
the concept of domain partitioning as follows. Consider an attribute a and let Da

be its domain of values. Assume that there is a total order ≺ on Da (e.g., Da is
numeric). Da is partitioned into n nonempty subdomains d1, d2, . . . , dn such that
their union is equal to Da , the intersection of any two different subdomains is empty,
and for each v1 ∈ di and v2 ∈ dj , if i < j , then we have v1 ≺ v2. The hash
function is applied on the subdomain of the attribute value. Thus, for the attribute
values that fall in the same subdomain, the storage key is the same and they are
stored at the same peer. To avoid attribute storage skew (i.e., skewed distribution
of attribute values within subdomains), domain partitioning is done in such a way
that attribute values are uniformly distributed in subdomains. This technique uses
histogram-based information that describes the distribution of values of the attribute.

Using this storage model, the top-k query processing algorithm, called DHTop
(see Algorithm 9.5), works as follows. Let Q be a given top-k query, f be its scoring
function, and p0 be the peer at which Q is issued. For simplicity, let us assume that
f is a monotonic scoring function. Let scoring attributes be the set of attributes that
are passed to the scoring function as arguments. DHTop starts at p0 and proceeds
in two phases: first it prepares ordered lists of candidate subdomains, and then it

422 9 Peer-to-Peer Data Management

Algorithm 9.5: DHT Top-k (DHTop)
Input: Q: top-k query;
f : scoring function;
A: set of m attributes used in f

Output: Y : list of top-k tuples
begin

{Phase 1: prepare lists of attributes’ subdomains}
for each scoring attribute Ai in A do

LAi
← all subdomains of Ai

LAi
← LAi

− subdomains which do not satisfy Q’s condition
Sort LAi

in descending order of its subdomains
end for
{Phase 2: continuously retrieve attribute values and their tuples until finding k top

tuples}
Done ← false
for each scoring attribute Ai in A in parallel do

i ← 1
while (i < number of subdomains of A) and not Done do

send Q to peer p that maintains the attribute values of subdomain i in LAi

Z ← Ai values (in descending order) from p that satisfy Q’s condition,
along with their corresponding data storage keys

for each received value v do
get the tuple of v

Y ← k tuples with highest score so far
threshold ← f (v1, v2, . . . , vm) such that vi is the last value received

for attribute Ai in A
min_overall_score ← smallest overall score of tuples in Y

if min_overall_score ≤ threshold then
Done ← true

end if
i ← i + 1

end for
end while

end for
end

continuously retrieves candidate attribute values and their tuples until it finds k top
tuples. The details of the two steps are as follows:

1. For each scoring attribute Ai , p0 prepares the list of subdomains and sorts them in
descending order of their positive impact on the scoring function. For each list,
p0 removes from the list the subdomains in which no member can satisfy Q’s
conditions. For instance, if there is a condition that enforces the scoring attribute
to be equal to a constant, (e.g., Ai = 10), then p0 removes from the list all the
subdomains except the subdomain to which the constant value belongs. Let us
denote by LAi

the list prepared in this phase for a scoring attribute Ai .
2. For each scoring attribute Ai , in parallel, p0 proceeds as follows. It sends Q

and Ai to the peer, say p, that is responsible for storing the values of the first
subdomain of LAi

, and requests it to return the values of Ai at p. The values are

9.3 Querying Over P2P Systems 423

returned to p0 in order of their positive impact on the scoring function. After
receiving each attribute value, p0 retrieves its corresponding tuple, computes its
score, and keeps it if the score is one of the k highest scores yet computed. This
process continues until k tuples are obtained whose scores are higher than a
threshold that is computed based on the attribute values retrieved so far. If the
attribute values that p returns to p0 are not sufficient for determining the k top
tuples, p0 sends Q and Ai to the site that is responsible for the second subdomain
of LAi

and so on until k top tuples are found.

Let A1,A2, . . . ,Am be the scoring attributes and v1, v2, . . . , vm be the last
values retrieved, respectively, for each of them. The threshold is defined to be
τ = f (v1, v2, . . . , vm). A main feature of DHTop is that after retrieving each new
attribute value, the value of the threshold decreases. Thus, after retrieving a certain
number of attribute values and their tuples, the threshold becomes less than k of
the retrieved data items and the algorithm stops. It has been analytically proven that
DHTop works correctly for monotonic scoring functions and also for a large group
of nonmonotonic functions.

9.3.1.4 Top-k Queries in Superpeer Systems

A typical algorithm for top-k query processing in superpeer systems is that of
Edutella. In Edutella, a small percentage of nodes are superpeers and are assumed
to be highly available with very good computing capacity. The superpeers are
responsible for top-k query processing and the other peers only execute the queries
locally and score their resources. The algorithm is quite simple and works as
follows. Given a query Q, the query originator sends Q to its superpeer, which
then sends it to the other superpeers. The superpeers forward Q to the relevant peers
connected to them. Each peer that has some data items relevant to Q scores them
and sends its maximum scored data item to its superpeer. Each superpeer chooses
the overall maximum scored item from all received data items. For determining the
second best item, it only asks one peer, the one that has returned the first top item,
to return its second top-scored item. The superpeer selects the overall second top
item from the previously received items and the newly received item. Then, it asks
the peer which has returned the second top item and so on until all k top items are
retrieved. Finally the superpeers send their top items to the superpeer of the query
originator, to extract the overall k top items, and send them to the query originator.
This algorithm minimizes communication between peers and superpeers since, after
having received the maximum scored data items from each peer connected to it, each
superpeer asks only one peer for the next top item.

424 9 Peer-to-Peer Data Management

9.3.2 Join Queries

The most efficient join algorithms in distributed and parallel databases are hash-
based. Thus, the fact that a DHT relies on hashing to store and locate data can
be naturally exploited to support join queries efficiently. A basic solution has
been proposed in the context of the PIER P2P system that provides support for
complex queries on top of DHTs. The solution is a variation of the parallel hash join
algorithm (PHJ) (see Sect. 8.4.1) which we call PIERjoin. As in the PHJ algorithm,
PIERjoin assumes that the joined relations and the result relations have a home
(called namespace in PIER), which are the nodes that store horizontal fragments of
the relation. Then it makes use of the put method for distributing tuples onto a set of
peers based on their join attribute so that tuples with the same join attribute values
are stored at the same peers. To perform joins locally, PIER implements a version of
the symmetric hash join algorithm (see Sect. 8.4.1.2) that provides efficient support
for pipelined parallelism. In symmetric hash join, with two joining relations, each
node that receives tuples to be joined maintains two hash tables, one per relation.
Thus, upon receiving a new tuple from either relation, the node adds the tuple into
the corresponding hash table and probes it against the opposite hash table based on
the tuples received so far. PIER also relies on the DHT to deal with the dynamic
behavior of peers (joining or leaving the network during query execution) and thus
does not give guarantees on result completeness.

For a binary join query Q (which may include select predicates), PIERjoin works
in three phases (see Algorithm 9.6): multicast, hash, and probe/join.

1. Multicast phase. The query originator peer multicasts Q to all peers that store
tuples of the join relations R and S, i.e., their homes.

2. Hash phase. Each peer that receives Q scans its local relation, searching for the
tuples that satisfy the select predicate (if any). Then, it sends the selected tuples
to the home of the result relation, using put operations. The DHT key used in
the put operation is calculated using the home of the result relation and the join
attribute.

3. Probe/join phase. Each peer in the home of the result relation, upon receiving
a new tuple, inserts it in the corresponding hash table, probes the opposite hash
table to find tuples that match the join predicate (and a select predicate if any),
and constructs the result joined tuples. Recall that the “home” of a (horizontally
partitioned) relation was defined in Chap. 4 as a set of peers where each peer
has a different partition. In this case, the partitioning is by hashing on the join
attribute. The home of the result relation is also a partitioned relation (using put
operations) so it is also at multiple peers.

This basic algorithm can be improved in several ways. For instance, if one of
the relations is already hashed on the join attributes, we may use its home as
result home, using a variation of the parallel associative join algorithm (PAJ) (see
Sect. 8.4.1), where only one relation needs to be hashed and sent over the DHT.

9.3 Querying Over P2P Systems 425

Algorithm 9.6: PIERjoin
Input: Q: join query over relations R and S on attribute A;
h: hash function;
HR, HS: homes of R and S
Output: T : join result relation;
HT: home of T
begin

{Multicast phase}
At query originator peer send Q to all peers in HR and HS

{Hash phase}
for each peer p in HR that received Q in parallel do

for each tuple r in Rp that satisfies the select predicate do
place r using h(HT,A)

end for
end for
for each peer p in HS that received Q in parallel do

for each tuple s in Sp that satisfies the select predicate do
place s using h(HT,A)

end for
end for
{Probe/join phase}
for each peer p in HT in parallel do

if a new tuple i has arrived then
if i is an r tuple then

probe s tuples in Sp using h(A)

else
probe r tuples in Rp using h(A)

end if
Tp ← r �� s

end if
end for

end

9.3.3 Range Queries

Recall that range queries have a WHERE clause of the form “attribute A in range
[a, b],” with a and b being numerical values. Structured P2P systems, in particular,
DHTs are very efficient at supporting exact-match queries (of the form “A = a”)
but have difficulties with range queries. The main reason is that hashing tends to
destroy the ordering of data that is useful in finding ranges quickly.

There are two main approaches for supporting range queries in structured P2P
systems: extend a DHT with proximity or order-preserving properties, or maintain
the key ordering with a tree-based structure. The first approach has been used in
several systems. Locality sensitive hashing is an extension to DHTs that hashes
similar ranges to the same DHT node with high probability. However, this method
can only obtain approximate answers and may cause unbalanced loads in large
networks.

426 9 Peer-to-Peer Data Management

The Prefix Hash Tree (PHT) is a tree-based distributed data structure that
supports range queries over a DHT, by simply using the DHT lookup operation.
The data being indexed are binary strings of length D. Each node has either 0 or 2
children, and a key k is stored at a leaf node whose label is a prefix of k. Furthermore,
leaf nodes are linked to their neighbors. PHT’s lookup operation on key k must
return the unique leaf node leaf (k) whose label is a prefix of k. Given a key k of
length D, there are D+1 distinct prefixes of k. Obtaining leaf (k) can be performed
by a linear scan of these potential D + 1 nodes. However, since a PHT is a binary
tree, the linear scan can be improved using a binary search on prefix length. This
reduces the number of DHT lookups from (D + 1) to (log D). Given two keys a

and b such as a ≤ b, two algorithms for range queries are supported, using PHT’s
lookup. The first one is sequential: it searches leaf (a) and then scans sequentially
the linked list of leaf nodes until the node leaf (b) is reached. The second algorithm
is parallel: it first identifies the node which corresponds to the smallest prefix range
that completely covers the range [a, b]. To reach this node, a simple DHT lookup is
used and the query is forwarded recursively to those children that overlap with the
range [a, b].

As in all hashing schemes, the first approach suffers from data skew that can
result in peers with unbalanced ranges, which hurts load balancing. To overcome this
problem, the second approach exploits tree-based structures to maintain balanced
ranges of keys. The first attempt to build a P2P network based on a balanced tree
structure is BATON (BAlanced Tree Overlay Network). We now present BATON
and its support for range queries in more detail.

BATON organizes peers as a balanced binary tree (each node of the tree is
maintained by a peer). The position of a node in BATON is determined by a (level,
number) tuple, with level starting from 0 at the root, number starting from 1 at the
root and sequentially assigned using in-order traversal. Each tree node stores links
to its parent, children, adjacent nodes, and selected neighbor nodes that are nodes
at the same level. Two routing tables: a left routing table and a right routing table
store links to the selected neighbor nodes. For a node numbered i, these routing
tables contain links to nodes located at the same level with numbers that are less
(left routing table) and greater (right routing table) than i by a power of 2. The
j th element in the left (right) routing table at node i contains a link to the node
numbered i − 2j−1 (respectively, i + 2j−1) at the same level in the tree. Figure 9.11
shows the routing table of node 6.

In BATON, each leaf and internal node (or peer) is assigned a range of values.
For each link this range is stored at the routing table and when its range changes,
the link is modified to record the change. The range of values managed by a peer is
required to be to the right of the range managed by its left subtree and less than the
range managed by its right subtree (see Fig. 9.12). Thus, BATON builds an effective
distributed index structure. The joining and departure of peers are processed such
that the tree remains balanced by forwarding the request upward in the tree for joins

9.3 Querying Over P2P Systems 427

1

2

4

8 9

5

10

3

6 7

Level 3

Level 2

Level 1

Level 0

Node 6: level 2, number=3
parent=3, leftchild=null, rightchild=null
leftadjacent=1, rightadjacent=3

Left routing table

Node Left
Child

Right
Child

Lower
Bound

Upper
Bound

0 5 10 null LB5 UB5
1 4 8 9 LB4 UB4

Right routing table

Node Left
Child

Right
Child

Lower
Bound

Upper
Bound

0 7 null null LB7 UB7

Fig. 9.11 BATON structure-tree index and routing table of node 6

1

[35,40)

2[15,20)

4

[5,10)

8

[0,5)

9

[10,15)

5

[27,35)

10

[20,27)

3

[46,50)

6

[40,46)

7

[50,55)

Q=[7,45]

Fig. 9.12 Range query processing in BATON

and downward in the tree for leaves, thus with no more than O(log n) steps for a
tree of n nodes.

A range query is processed as follows (Algorithm 9.7). For a range query Q with
range [a, b] submitted by node i, it looks for a node that intersects with the lower
bound of the searched range. The peer that stores the lower bound of the range
checks locally for tuples belonging to the range and forwards the query to its right
adjacent node. In general, each node receiving the query checks for local tuples and
contacts its right adjacent node until the node containing the upper bound of the
range is reached. Partial answers obtained when an intersection is found are sent to
the node that submits the query. The first intersection is found in O(log n) steps
using an algorithm for exact-match queries. Therefore, a range query with X nodes
covering the range is answered in O(log n + X) steps.

428 9 Peer-to-Peer Data Management

Algorithm 9.7: BatonRange
Input: Q: a range query in the form [a, b]
Output: T: result relation
begin

{Search for the peer storing the lower bound of the range}
At query originator peer
begin

find peer p that holds value a

send Q to p

end
for each peer p that receives Q do

Tp ← Range(p) ∩ [a, b]
send Tp to query originator
if Range(RightAdjacent (p)) ∩ [a, b] �= ∅ then

let p be right adjacent peer of p

send Q to p

end if
end for

end

Example 9.6 Consider the query Q with range [7, 45] issued at node 7 in Fig. 9.12.
First, BATON executes an exact-match query looking for a node containing the
lower bound of the range (see dashed line in the figure). Since the lower bound is
in the range assigned to node 4, it checks locally for tuples belonging to the range
and forwards the query to its adjacent right node (node 9). Node 9 checks for local
tuples belonging to the range and forwards the query to node 2. Nodes 10, 5, 1,
and 6 receive the query, they check for local tuples and contact their respective
right adjacent node until the node containing the upper bound of the range is
reached. �

9.4 Replica Consistency

To increase data availability and access performance, P2P systems replicate data.
However, different P2P systems provide very different levels of replica consistency.
The earlier, simple P2P systems such as Gnutella and Kazaa deal only with static
data (e.g., music files) and replication is “passive” as it occurs naturally as peers
request and copy files from one another (basically, caching data). In more advanced
P2P systems where replicas can be updated, there is a need for proper replica
management techniques. Unfortunately, most of the work on replica consistency
has been done only in the context of DHTs. We can distinguish three approaches
to deal with replica consistency: basic support in DHTs, data currency in DHTs,
and replica reconciliation. In this section, we introduce the main techniques used in
these approaches.

9.4 Replica Consistency 429

9.4.1 Basic Support in DHTs

To improve data availability, most DHTs rely on data replication by storing
(key, data) pairs at several peers by, for example, using several hash functions.
If one peer is unavailable, its data can still be retrieved from the other peers that
hold a replica. Some DHTs provide basic support for the application to deal with
replica consistency. In this section, we describe the techniques used in two popular
DHTs: CAN and Tapestry.

CAN provides two approaches for supporting replication. The first one is to use
m hash functions to map a single key onto m points in the coordinate space, and,
accordingly, replicate a single (key, data) pair at m distinct nodes in the network.
The second approach is an optimization over the basic design of CAN that consists
of a node proactively pushing out popular keys towards its neighbors when it finds
it is being overloaded by requests for these keys. In this approach, replicated keys
should have an associated TTL field to automatically undo the effect of replication
at the end of the overloaded period. In addition, the technique assumes immutable
(read-only) data.

Tapestry is an extensible P2P system that provides decentralized object location
and routing on top of a structured overlay network. It routes messages to logical
endpoints (i.e., endpoints whose identifiers are not associated with physical loca-
tion), such as nodes or object replicas. This enables message delivery to mobile or
replicated endpoints in the presence of instability of the underlying infrastructure. In
addition, Tapestry takes latency into account to establish each node’s neighborhood.
The location and routing mechanisms of Tapestry work as follows. Let o be an object
identified by id(o); the insertion of o in the P2P network involves two nodes: the
server node (noted ns) that holds o and the root node (noted nr) that holds a mapping
in the form (id(o), ns) indicating that the object identified by id(o) is stored at node
ns . The root node is dynamically determined by a globally consistent deterministic
algorithm. Figure 9.13a shows that when o is inserted into ns , ns publishes id(o) at
its root node by routing a message from ns to nr containing the mapping (id(o), ns).
This mapping is stored at all nodes along the message path. During a location query,
e.g., “id(o)?” in Fig. 9.13a, the message that looks for id(o) is initially routed
towards nr , but it may be stopped before reaching it once a node containing the
mapping (id(o), ns) is found. For routing a message to id(o)’s root, each node
forwards this message to its neighbor whose logical identifier is the most similar
to id(o).

Tapestry offers the entire infrastructure needed to take advantage of replicas,
as shown in Fig. 9.13b. Each node in the graph represents a peer in the P2P
network and contains the peer’s logical identifier in hexadecimal format. In this
example, two replicas O1 and O2 of object O (e.g., a book file) are inserted into
distinct peers (O1 → peer 4228 and O2 → peer AA93). The identifier of O1
is equal to that of O2 (i.e., 4378 in hexadecimal) as O1 and O2 are replicas of
the same object O. When O1 is inserted into its server node (peer 4228), the
mapping (4378, 4228) is routed from peer 4228 to peer 4377 (the root node for

430 9 Peer-to-Peer Data Management

ns
insert(id, O)

nr

(id, ns) (id, ns)

(id, ns)

nsid?

id?
Obj ID
O id

(a)

4228

insert(4378,O1)

43FE 437A

4664

4361

4377

4A6D AA93

insert(4378,O2)

4B4FE791
4378

57EC

β β

α
β

AA934378

4378

AA93

αα

αObj ID
O1 4378

Obj ID
4378

α (AA93,4378)
β (4228,4378)

(b)

O2

Fig. 9.13 Tapestry. (a) Object publishing. (b) Replica management

O1’s identifier). As the message approaches the root node, the object and the node
identifiers become increasingly similar. In addition, the mapping (4378, 4228) is
stored at all peers along the message path. The insertion of O2 follows the same
procedure. In Fig. 9.13b, if peer E791 looks for a replica of O, the associated
message routing stops at peer 4361. Therefore, applications can replicate data across
multiple server nodes and rely on Tapestry to direct requests to nearby replicas.

9.4 Replica Consistency 431

9.4.2 Data Currency in DHTs

Although DHTs provide basic support for replication, the mutual consistency of the
replicas after updates can be compromised as a result of peers leaving the network
or concurrent updates. Let us illustrate the problem with a simple update scenario
in a typical DHT.

Example 9.7 Let us assume that the operation put(k, d0) (issued by some peer) maps
onto peers p1 and p2 both of which get to store data d0. Now consider an update
(from the same or another peer) with the operation put(k, d1) that also maps onto
peers p1 and p2. Assuming that p2 cannot be reached (e.g., because it has left the
network), only p1 gets updated to store d1. When p2 rejoins the network later on,
the replicas are not consistent: p1 holds the current state of the data associated with
k, while p2 holds a stale state.

Concurrent updates also cause problems. Consider now two updates put(k, d2)
and put(k, d3) (issued by two different peers) that are sent to p1 and p2 in reverse
order, so that p1’s last state is d2, while p2’s last state is d3. Thus, a subsequent
get(k) operation will return either stale or current data depending on which peer is
looked up, and there is no way to tell whether it is current or not. �

For some applications (e.g., agenda management, bulletin boards, cooperative
auction management, reservation management, etc.) that could take advantage of a
DHT, the ability to get the current data is very important. Supporting data currency
in replicated DHTs requires the ability to return a current replica despite peers
leaving the network or concurrent updates. Of course, replica consistency is a more
general problem, as discussed in Chap. 6, but the issue is particularly difficult and
important in P2P systems, since there is considerable dynamism in the peers joining
and leaving the system.

A solution has been proposed that considers both data availability and data
currency. To provide high data availability, data is replicated in the DHT using a set
of independent hash functions Hr , called replication hash functions. The peer that
is responsible for key k with respect to hash function h at the current time is denoted
by rsp(k, h). To be able to retrieve a current replica, each pair (k, data) is stamped
with a logical timestamp, and for each h ∈ Hr , the pair (k, newData) is replicated
at rsp(k, h), where newData = {data, timestamp}, i.e., newdata is composed of
the initial data and the timestamp. Upon a request for the data associated with a key,
we can return one of the replicas that are stamped with the latest timestamp. The
number of replication hash functions, i.e., Hr , can be different for different DHTs.
For instance, if in a DHT the availability of peers is low, a high value of Hr (e.g.,
30) can be used to increase data availability.

This solution is the basis for a service called Update Management Service
(UMS) that deals with efficient insertion and retrieval of current replicas based
on timestamping. Experimental validation has shown that UMS incurs very little
overhead in terms of communication cost. After retrieving a replica, UMS detects

432 9 Peer-to-Peer Data Management

whether it is current or not, i.e., without having to compare with the other replicas,
and returns it as output. Thus, UMS does not need to retrieve all replicas to find a
current one; it only requires the DHT’s lookup service with put and get operations.

To generate timestamps, UMS uses a distributed service called Key-based
Timestamping Service (KTS). The main operation of KTS is gen_ts(k), which, given
a key k, generates a real number as a timestamp for k. The timestamps generated
by KTS are monotonic such that if tsi and tsj are two timestamps generated for the
same key at times ti and tj , respectively, tsj > tsi if tj is later than ti . This property
allows ordering the timestamps generated for the same key according to the time at
which they have been generated. KTS has another operation denoted by last_ts(k),
which, given a key k, returns the last timestamp generated for k by KTS. At any
time, gen_ts(k) generates at most one timestamp for k, and different timestamps for
k are monotonic. Thus, in the case of concurrent calls to insert a pair (k, data), i.e.,
from different peers, only the one that obtains the latest timestamp will succeed to
store its data in the DHT.

9.4.3 Replica Reconciliation

Replica reconciliation goes one step further than data currency by enforcing mutual
consistency of replicas. Since a P2P network is typically very dynamic, with peers
joining or leaving the network at will, eager replication solutions (see Chap. 6)
are not appropriate; lazy replication is preferred. In this section, we describe the
reconciliation techniques used in OceanStore, P-Grid, and APPA to provide a
spectrum of proposed solutions.

9.4.3.1 OceanStore

OceanStore is a data management system designed to provide continuous access to
persistent information. It relies on Tapestry and assumes an infrastructure composed
of untrusted powerful servers that are connected by high-speed links. For security
reasons, data is protected through redundancy and cryptographic techniques. To
improve performance, data is allowed to be cached anywhere in the network.

OceanStore allows concurrent updates on replicated objects and relies on
reconciliation to assure data consistency. A replicated object can have multiple
primary replicas and secondary replicas at different nodes. The primary replicas are
all linked and cooperate among themselves to achieve replica mutual consistency
by ordering updates. Secondary replicas provide a lesser degree of consistency in
order to gain performance and availability. Thus, secondary replicas may be less
up-to-date and can be in higher numbers than primary replicas. Secondary replicas
communicate among themselves and primary replicase via an epidemic algorithm.

Figure 9.14 illustrates update management in OceanStore. In this example, R is
the (only) replicated object, whereas R and Rsec denote, respectively, a primary and

9.4 Replica Consistency 433

R R

R R

RsecRsec Rsec Rsec

Rsec Rsec Rsec Rsec

Rsec

n1

Rsec

n2

(a)

R R

R R

RsecRsec Rsec Rsec

Rsec Rsec Rsec Rsec

Rsec

n1

Rsec

n2

(b)

R R

R R

RsecRsec Rsec Rsec

Rsec Rsec Rsec Rsec

Rsec

n1

Rsec

n2

(c)

Fig. 9.14 OceanStore reconciliation. (a) Nodes n1 and n2 send updates to the master group of
R and to several random secondary replicas. (b) The master group of R orders updates while
secondary replicas propagate them epidemically. (c) After the master group agreement, the result
of updates is multicast to secondary replicas

a secondary copy of R. The four nodes holding a primary copy are linked to each
other (not shown in the figure). Dotted lines represent links between nodes holding
primary or secondary replicas. Nodes n1 and n2 are concurrently updating R. Such
updates are managed as follows. Nodes that hold primary copies of R, called the
master group of R, are responsible for ordering updates. So, n1 and n2 perform
tentative updates on their local secondary replicas and send these updates to the
master group of R as well as to other random secondary replicas (see Fig. 9.14a).
The tentative updates are ordered by the master group based on timestamps assigned
by n1 and n2; at the same time, these updates are epidemically propagated among
secondary replicas (Fig. 9.14b). Once the master group obtains an agreement, the

434 9 Peer-to-Peer Data Management

result of updates is multicast to secondary replicas (Fig. 9.14c), which contain both
tentative2 and committed data.

Replica management adjusts the number and location of replicas in order to serve
requests more efficiently. By monitoring the system load, OceanStore detects when
a replica is overwhelmed and creates additional replicas on nearby nodes to alleviate
load. Conversely, these additional replicas are eliminated when they are no longer
needed.

9.4.3.2 P-Grid

P-Grid is a structured P2P network based on a binary tree structure. A decentralized
and self-organizing process builds P-Grid’s routing infrastructure which is adapted
to a given distribution of data keys stored by peers. This process addresses
uniform load distribution of data storage and uniform replication of data to support
availability.

To address updates of replicated objects, P-Grid employs gossiping, without
strong consistency guarantees. P-Grid assumes that quasiconsistency of replicas
(instead of full consistency which is too hard to provide in a dynamic environment)
is enough.

The update propagation scheme has a push phase and a pull phase. When a peer
p receives a new update to a replicated object R, it pushes the update to a subset
of peers that hold replicas of R, which, in turn, propagate it to other peers holding
replicas of R, and so on. Peers that have been disconnected and get connected again,
peers that do not receive updates for a long time, or peers that receive a pull request
but are not sure whether they have the latest update, enter the pull phase to reconcile.
In this phase, multiple peers are contacted and the most up-to-date among them is
chosen to provide the object content.

9.4.3.3 APPA

APPA provides a general lazy distributed replication solution that assures eventual
consistency of replicas. It uses the IceCube action-constraint framework to capture
the application semantics and resolve update conflicts.

The application semantics is described by means of constraints between update
actions. An action is defined by the application programmer and represents an
application-specific operation (e.g., a write operation on a file or document, or a
database transaction). A constraint is the formal representation of an application
invariant. For instance, the predSucc(a1, a2) constraint establishes causal ordering
between actions (i.e., action a2 executes only after a1 has succeeded); the mutual-
lyExclusive(a1, a2) constraint states that either a1 or a2 can be executed. The aim of

2Tentative data is data that the primary replicas have not yet committed.

9.4 Replica Consistency 435

reconciliation is to take a set of actions with the associated constraints and produce
a schedule, i.e., a list of ordered actions that do not violate constraints. In order to
reduce the schedule production complexity, the set of actions to be ordered is divided
into subsets called clusters. A cluster is a subset of actions related by constraints
that can be ordered independently of other clusters. Therefore, the global schedule
is composed by the concatenation of clusters’ ordered actions.

Data managed by the APPA reconciliation algorithm are stored in data structures
called reconciliation objects. Each reconciliation object has a unique identifier in
order to enable its storage and retrieval in the DHT. Data replication proceeds
as follows. First, nodes execute local actions to update a replica of an object
while respecting user-defined constraints. Then, these actions (with the associated
constraints) are stored in the DHT based on the object’s identifier. Finally, reconciler
nodes retrieve actions and constraints from the DHT and produce the global
schedule, by reconciling conflicting actions based on the application semantics. This
schedule is locally executed at every node, thereby assuring eventual consistency.

Any connected node can try to start reconciliation by inviting other available
nodes to engage with it. Only one reconciliation can run at-a-time. The reconcilia-
tion of update actions is performed in 6 distributed steps as follows. Nodes at step 2
start reconciliation. The outputs produced at each step become the input to the next
one.

• Step 1—node allocation: a subset of connected replica nodes is selected to
proceed as reconcilers based on communication costs.

• Step 2—action grouping: reconcilers take actions from the action logs and put
actions that try to update common objects into the same group since these actions
are potentially in conflict. Groups of actions that try to update object R are stored
in the action log R reconciliation object (LR).

• Step 3—cluster creation: reconcilers take action groups from the action logs
and split them into clusters of semantically dependent conflicting actions: two
actions a1 and a2 are semantically independent if the application judges it safe
to execute them together, in any order, even if they update a common object;
otherwise, a1 and a2 are semantically dependent. Clusters produced in this step
are stored in the cluster set reconciliation object.

• Step 4—clusters extension: user-defined constraints are not taken into account
in cluster creation. Thus, in this step, reconcilers extend clusters by adding to
them new conflicting actions, according to user-defined constraints.

• Step 5—cluster integration: cluster extensions lead to cluster overlapping (an
overlap occurs when the intersection of two clusters results in a nonnull set
of actions). In this step, reconcilers bring together overlapping clusters. At
this point, clusters become mutually independent, i.e., there are no constraints
involving actions of distinct clusters.

• Step 6—cluster ordering: in this step, reconcilers take each cluster from the
cluster set and order the cluster’s actions. The ordered actions associated with
each cluster are stored in the schedule reconciliation object. The concatenation

436 9 Peer-to-Peer Data Management

of all clusters’ ordered actions makes up the global schedule that is executed by
all replica nodes.

At every step, the reconciliation algorithm takes advantage of data parallelism,
i.e., several nodes perform simultaneously independent activities on a distinct subset
of actions (e.g., ordering of different clusters).

9.5 Blockchain

Popularized by bitcoin and other cryptocurrencies, blockchain is a recent P2P
infrastructure that can record transactions between two parties efficiently and safely.
It has become a hot topic, subject to much hype and controversy. On the one hand,
we find enthusiastic proponents such as Ito, Narula, and Ali claiming in 2017 that
blockchain is a disruptive technology that “will do to the financial system what the
Internet did to media.” On the other hand, we find strong opponents, e.g., famous
economist N. Roubini who calls blockchain in 2018 the most “overhyped and least
useful technology in human history.” As always, the truth is probably somewhere in
between.

Blockchain was invented for bitcoin to solve the double spending problem of
previous digital currencies without the need of a trusted, central authority. On
January 3, 2009, Satoshi Nakamoto3 created the first source block with a unique
transaction of 50 bitcoins to himself. Since then, there have been many other
blockchains such as Ethereum in 2013 and Ripple in 2014. The success has
been significant and cryptocurrencies have been used a lot for money transfer or
high-risk investment, e.g., initial coin offerings (ICOs) as an alternative to initial
public offerings (IPOs). The potential advantages of using a blockchain-based
cryptocurrency are the following:

• Low transaction fee (set by the sender to speed up processing), which is
independent of the amount of money transferred;

• Fewer risks for merchants (no fraudulent chargebacks);
• Security and control (e.g., protection from identity theft);
• Trust through the blockchain, without any central authority.

However, cryptocurrencies have also been used a lot for scams and illegal
activities (purchases on the dark web, money laundering, theft, etc.), which has
triggered warnings from market authorities and beginning of regulation in some
countries. Other problems are that it is:

• unstable: as there is no backing by a state or federal bank (unlike strong
currencies like Dollar or Euro);

3Pseudo for the person or people who developed bitcoin, which generated much speculation about
their true identity.

9.5 Blockchain 437

• unrelated to real economy, which fosters speculation;
• highly volatile, e.g., the exchange rate with a real currency (as set by cryptocur-

rency marketplaces) can greatly vary in a few hours;
• subject to severe crypto-bubble bursts, as in 2017.

Thus, there are pros and cons to blockchain-based cryptocurrencies. However, we
should avoid restricting the blockchain to cryptocurrency, as there are many other
useful applications. The original blockchain is a public, distributed ledger that can
record and share transactions among a number of computers in a secure and per-
manent way. It is a complex distributed database infrastructure, combining several
technologies such as P2P, data replication, consensus, and public key encryption.
The term Blockchain 2.0 refers to new applications that can be programmed
into the blockchain to go beyond transactions and enable exchange of assets
without powerful intermediaries. Examples of such applications are smart contracts,
persistent digital ids, intellectual property rights, blogging, voting, reputation, etc.

9.5.1 Blockchain Definition

Recording financial transactions between two parties has been traditionally done
using an intermediary centralized ledger, i.e., a database of all transactions, con-
trolled by a trusted authority, e.g., a clearing house. In a digital world, this
centralized approach has several problems. First, it creates single points of failure
and makes it an attractive target for attackers. Second, it favors concentration of
actors such as big financial institutions. Third, complex transactions that require
multiple intermediaries, typically with heterogeneous systems and rules, may be
difficult and take time to execute.

A blockchain is essentially a distributed ledger shared among a number of
participant nodes in a P2P network. It is organized as an append-only, replicated
database of blocks. Blocks are digital containers for transactions and are secured
through public key encryption. The code of each new block is built on that of the
preceding block, which guarantees that it cannot be tampered with. The blockchain
is viewed by all participants that maintain database copies in multimaster mode (see
Chap. 6) and collaborate through consensus in validating the transactions in the
blocks. Once validated and recorded in a block, a transaction cannot be modified
or deleted, making the blockchain tamper-proof. The participant nodes may not
fully trust each other and some may even behave in malicious (Byzantine) manner,
i.e., give different values to different observer nodes. Thus, in the general case, i.e.,
public blockchain as in bitcoin, the blockchain must tolerate Byzantine failures.

Note that the objective of a typical P2P data structure such as a DHT is to provide
fast and scalable lookup. The purpose of a blockchain is quite different, i.e., to
manage a continuously growing list of blocks in a secure and tamper-proof manner.
But scalability is not an objective as the blockchain is not partitioned across P2P
nodes.

438 9 Peer-to-Peer Data Management

Compared with the centralized ledger approach, the blockchain can bring the
following advantages:

• Increased trust in transactions and value exchange, by trusting the data, not the
participants.

• Increased reliability (no single point of failure) through replication.
• Built-in security through chaining of blocks and public key encryption.
• Efficient and cheaper transactions between participants, in particular, compared

with relying on a long chain of intermediaries.

Blockchains can be used in two different kinds of markets: public, e.g., cryp-
tocurrency, public auction, where anybody can join in, and private, e.g., supply
chain management, healthcare, where participants are known. Thus, an important
distinction to make is between public and private (also called permissioned)
blockchains.

A public blockchain (like bitcoin) is an open P2P nonpermissioned network and
can be very large scale. Participants are unknown and untrusted, and can join and
leave the network without notification. They are typically pseudonymized which
makes it possible to track a participant’s entire transaction history and sometimes
even to identify the participant.

A private blockchain is a closed permissioned network, so its scale is typically
much smaller than a public blockchain. Control is regulated to ensure that only
identified, approved participants can validate transactions. Access to blockchain
transactions can be restricted to authorized participants, which increases data pro-
tection. Although the underlying infrastructure can be the same, the main difference
between public and private blockchain is who (person, group, or company) is
allowed to participate in the network and who controls it.

9.5.2 Blockchain Infrastructure

In this section, we introduce the blockchain infrastructure as originally proposed
for bitcoin, focusing on the process of transaction processing. Participant nodes are
called full nodes to distinguish from other nodes, e.g., lightweight client nodes that
handle digital wallets. When a new full node joins the network, it synchronizes
with known nodes using Domain Name System (DNS) to obtain a copy of the
blockchain. Then, it can create transactions and become a “miner,” i.e., participate
in the validation of blocks called “mining” process.

Transaction processing is done in three main steps:

1. Creating a transaction after two users have agreed on transaction information
exchange: wallet addresses, public keys, etc.

2. Grouping of transactions in a block and linking with a previous block.
3. Validation of the block (and of the transactions) using “mining,” addition of the

validated block in the blockchain and replication in the network.

In the rest of this section, we present each step in more detail.

9.5 Blockchain 439

PKi

h

H-val signed
with SKi−1

Transaction

Owneri−1

PKi+1

h

H-val signed
with SKi

Transaction

Owneri

PKj

h

H-val signed
with SKi+1

Transaction

Owneri+1

Fig. 9.15 Chaining of transactions

9.5.2.1 Creating a Transaction

Let us consider a bitcoin transaction between a coin owner and a coin recipient
that receives the money. The transaction is secured with public key encryption and
digital signature. Each owner has a public and private key. The coin owner signs the
transaction by

• creating a hash digest of a combination of the previous transaction (with which
it receives the coins) and of the public key of the next owner;

• signing the hash digest with its private key.

This signature is then appended to the end of the transaction, thus making a chain
of transactions between all owners (see Fig. 9.15). Then, the coin owner publishes
the transaction in the network by multicasting it to all other nodes. Given the public
key of the coin owner who created the transaction, any node in the network can
verify the transaction’s signature.

9.5.2.2 Grouping Transactions into Blocks

Double spending is a potential flaw in a digital cash scheme in which the same
single digital token can be spent more than once. Unlike physical cash, a digital
token consists of a digital file that can be duplicated or falsified.

Each miner node (which maintains a copy of the blockchain) receives the
transactions that get published, validates them, and groups them into blocks. To
accept a transaction and include it in a block, the miners follow some rules such as
checking that the inputs are valid and that a coin is not double-spent (spent more
than once) as a result of an attack (see 51% attack next). It may be possible that
a malicious miner tries to accept a transaction that violates some rules and include
it in a block. In this case, the block will not obtain the consensus of other miners

440 9 Peer-to-Peer Data Management

T T · · · T

H-value nonce

Block

T T · · · T

H-value nonce

Block

Fig. 9.16 Chaining of blocks

Block 5 Block 6a Block 7a Block 8a

Block 6b

Fig. 9.17 Longest chain rule

that follow the rules and will not be accepted and included in the blockchain. Thus,
if a majority of miners follow the rule, the system works. As shown in Fig. 9.16,
each new block is built on a previous block of the chain by producing a hash
digest (h−value) of the previous block’s address, thus protecting the block from
tampering or change. The current size of a bitcoin block is 1 Megabyte, reflecting a
compromise between efficiency and security.

A problem that can arise is an accidental or intentional fork. As different blocks
are validated in parallel by different nodes, one node can see several candidate
chains at any time. For instance, in Fig. 9.17, a node may see blocks 7a and 6b,
both originated from block 5. The solution is to apply the longest chain rule, i.e.,
choose the block which is in the longest chain. In the example of Fig. 9.17, the
block 7a will be chosen to build the next block 7b. The rationale for this rule is
to minimize the number of transactions that need to be resubmitted. For instance,
transactions in Block 6b have to be resubmitted by the client (who will see that
the block has not been validated). Thus, transactions in a validated block are only
provisionally validated and confirmation must be awaited. Each new block accepted
in the chain after the validation of the transaction is considered as a confirmation.
Bitcoin considers a transaction mature after 6 confirmations (1 hour on average). In
Fig. 9.17, transaction maturity is illustrated by the darkness of the boxes (Block 6b
is lighter because its transactions will not be confirmed).

In addition to accidental forks, there are also intentional forks, which are useful
to add new features to the blockchain code base (protocol changes) or to reverse
the effects of hacking or catastrophic bugs. Two kinds of fork are possible: soft fork
versus hard fork. A soft fork is backward compatible: the old software recognizes
blocks created with new rules as valid. However, it makes it easy for attackers. A
famous occurrence of a hard fork is that of the Ethereum blockchain in 2016, after

9.5 Blockchain 441

an attack against a complex smart contract for venture capital. Ethereum forked but
without momentum from the community managing the software, thus leading to two
blockchains: (new) Ethereum and (old) Ethereum Classic. Note that the battle has
been more philosophical and ethical than technical.

9.5.2.3 Block Validation by Consensus

Since blocks are being produced in parallel by competing nodes, a consensus is
needed to validate and add them to the blockchain. Note that in the general case
of the public blockchain where participants are unknown, traditional consensus
protocols such as Paxos (see Sect. 5.4.5) are not applicable. The consensus protocol
of the bitcoin blockchain is based on mining.4 We can summarize the consensus
protocol as follows:

1. Miner nodes compete (as in a lottery) to produce new blocks. Using much
computing power, each miner tries to produce a nonce (number used once) for
the block (see Fig. 9.16).

2. Once a miner has found the nonce, it adds the block to the blockchain and
multicasts it to all network nodes.

3. Other nodes verify the new block, by checking the nonce (which is easy).
4. Since many nodes try to be the first to add a block to the blockchain, a lottery-

based reward system selects one of the competing blocks, based on some
probability, and the winner gets paid, e.g., 12.5 bitcoins today (originally 50).
This increases the money supply.

Mining is designed to be difficult. The more mining power the network has,
the harder it is to compute the nonce. This allows controlling the injection of new
blocks (“inflation”) in the system, on average 1 block every 10 minutes. The mining
difficulty consists in producing a Proof of Work (PoW), i.e., a piece of data that
is difficult to calculate but easy to verify, to calculate the nonce. PoW was first
proposed to prevent DoS attacks. The bitcoin blockchain uses the Hashcash PoW,
which is based on the SHA-256 hash function. The goal is to produce a value v such
that h(f (block, v)) < T , where

1. h is the SHA-256 hash function;
2. f is a function that combines v with information in the block, so the nonce cannot

be precomputed;
3. T is a target value shared by all nodes and reflects the size of the network;
4. v is a 256-bit number starting with n zero bits.

The average effort to produce the PoW is exponential in the number of zero bits
required, i.e., the probability of success is low and can be approximated as 1/2n.

4The term is used by analogy to gold mining as the process of bringing out coins that exist in the
protocol’s design.

442 9 Peer-to-Peer Data Management

This advantages powerful nodes, which now use big clusters of GPUs. However,
verification is very simple and can be done by executing a single hash function.

A potential problem with PoW based mining is the 51% attack, which enables
the attacker to invalidate valid transactions and double spend funds. To do so,
the attacker (a miner or miner coalition) must hold more than 50% of the total
computing power for mining. It then becomes possible to modify a received chain
(e.g., by removing a transaction) and produce a longer chain that will be selected by
the majority according to the longest chain rule.

9.5.3 Blockchain 2.0

The first generation blockchain, pioneered by bitcoin, enables recording of
transactions and exchange of cryptocurrencies without powerful intermediaries.
Blockchain 2.0 is a major evolution of the paradigm to go beyond transactions and
enable exchange of all kinds of assets. Pioneered by Etherum, it makes blockchain
programmable, allowing application developers to build APIs and services directly
on the blockchain.

Critical characteristics of the applications are that asset and value are exchanged
(through transactions), there are multiple participants, possibly unknown to each
other, and trust (in the data) is critical. There are many applications of Blockchain
2.0 in many industries, e.g., financial services and micropayments, digital rights,
supply chain management, healthcare record keeping, Internet of Things (IoT), food
provenance. Most of these applications can be supported by a private blockchain. In
this case, the major advantages are increased privacy and control, and more efficient
transaction validation since participants are trusted and there is no need to produce
a PoW.

An important capability that can be supported in Blockchain 2.0 is smart
contracts. A smart contract is a self-executing contract, with code that embeds
the terms and conditions of a contract. An example of simple smart contract
is a service contract between two parties, one that requests the service with an
associated payment, and the other that fulfills the service and once executed gets the
payment. In a blockchain, contracts can be partially or fully executed without human
interaction and involve many participants, e.g., IoT devices. A major advantage of
having smart contracts in the blockchain is that the code, which implements the
contract, becomes visible to all for verification. However, once on a blockchain the
contract cannot be changed. From a technical point of view, the main challenge is
to produce bug-free code, which would best be done using code verification.

An important collaborative initiative to produce open source blockchains and
related tools is the Hyperledger project of the Linux Foundation that was started in
2015 by IBM, Intel, Cisco, and others. The major frameworks are:

• Hyperledger Fabric (IBM, digital Asset): a permissioned blockchain infrastruc-
ture with smart contracts, configurable consensus, and membership services.

9.5 Blockchain 443

• Sawtooth (Intel): a novel consensus mechanism, “Proof of Elapsed Time,” that
builds on trusted execution environments.

• Hyperledger Iroha (Soramitsu): based on Hyperledger Fabric, with a focus on
mobile applications.

9.5.4 Issues

Blockchain is often advertised as a disruptive technology for recording transactions
and verifying records, with much impact on the finance industry. In particular,
the ability to program applications and business logic in the blockchain opens up
many possibilities for developers, e.g., smart contracts. Some proponents, e.g.,
cypherpunk activists, even consider it as a potential disruptive power that will
establish a sense of democracy and equality, where individuals and small businesses
will be able to compete with corporate powers.

However, there are important limitations, in particular in the case of the public
blockchain, as is the most general infrastructure. The limitations are:

• Complexity and scalability, in particular, difficult evolution of operating rules
that require forking the blockchain.

• Ever increasing chain size and high energy consumption (with PoW).
• Potential for a 51% attack.
• Low privacy as users are only pseudonymized. For instance, making a transaction

with a user may reveal all its other transactions.
• Unpredictable duration of transactions, from a few minutes to days.
• Lack of control and regulation, which makes it hard for states to watch and tax

transactions.
• Security concerns: if a private key is lost or stolen, an individual has no recourse.

To address these limitations, several research issues in distributed systems,
software engineering, and data management can be identified:

• Scalability and security of the public blockchain. This issue has triggered
renewed interest on consensus protocols, with more efficient alternatives to PoW:
proof-of-stake, proof-of-hold, proof-of-use, proof-of-stake/time. Furthermore,
there are other performance bottlenecks beside consensus. However, a major
issue remains the trade-off between performance and security. Bitcoin-NG is a
new generation blockchain with two types of blocks: key blocks that include
PoW, a reference to previous block, and mining reward, which makes PoW
computing more efficient; and microblocks that include transactions, but no PoW.

• Smart contract management, including code certification and verification, con-
tract evolution (change propagation), optimization, and execution control.

• Blockchain and data management. As a blockchain is merely a distributed
database structure, it can be improved by drawing from design principles of
database systems. For instance, a declarative language could make it easier

444 9 Peer-to-Peer Data Management

to define, verify, and optimize complex smart contracts. BigchainDB is a
new DBMS that applies distributed database concepts, in particular, a rich
transaction model, role-based access control, and queries, to support a scalable
blockchain. Understanding the performance bottlenecks also requires bench-
marking. BLOCKBENCH is a benchmarking framework for understanding the
performance of private blockchains against data processing workloads.

• Blockchain interoperability. There are many blockchains, each with different
protocols and APIs. The Blockchain Interoperability Alliance (BIA) has been
established to define standards in order to promote cross-blockchain transactions.

9.6 Conclusion

By distributing data storage and processing across autonomous peers in the network,
P2P systems can scale without the need for powerful servers. Today, major data
sharing applications such as BitTorrent, eDonkey, or Gnutella are used daily by
millions of users. P2P has also been successfully used to scale data management
in the cloud, e.g., DynamoDB key-value store (see Sect. 11.2.1). However, these
applications remain limited in terms of database functionality.

Advanced P2P applications such as collaborative consumption (e.g., car sharing)
must deal with semantically rich data (e.g., XML or RDF documents, relational
tables, etc.). Supporting such applications requires significant revisiting of dis-
tributed database techniques (schema management, access control, query process-
ing, transaction management, consistency management, reliability, and replication).
When considering data management, the main requirements of a P2P data manage-
ment system are autonomy, query expressiveness, efficiency, quality of service, and
fault-tolerance. Depending on the P2P network architecture (unstructured, struc-
tured DHT, or superpeer), these requirements can be achieved to varying degrees.
Unstructured networks have better fault-tolerance but can be quite inefficient
because they rely on flooding for query routing. Hybrid systems have better potential
to satisfy high-level data management requirements. However, DHT systems are
best for key-based search and could be combined with superpeer networks for more
complex searching.

Most of the work on data sharing in P2P systems has initially focused on schema
management and query processing, in particular to deal with semantically rich data.
However, more recently with blockchain, there has been much more work on update
management, replication, transactions, and access control, yet over relatively simple
data. P2P techniques have also received some attention to help scaling up data
management in the context of Grid Computing or to help protecting data privacy
in the context of information retrieval or data analytics.

Research on P2P data management is having renewed interest in two major
contexts: blockchain and edge computing. In the context of blockchain, the major
research issues, which we discussed at length at the end of Sect. 9.5, have to do with
scalability and security of the public blockchain (e.g., consensus protocols), smart

9.7 Bibliographic Notes 445

contract management, in particular, using declarative query languages, benchmark-
ing, and blockchain interoperability. In the context of edge computing, typically
with IoT devices, mobile edge servers could be organized as a P2P network to
offload data management tasks. Then, the issues are at the crossroads of mobile
and P2P computing.

9.7 Bibliographic Notes

Data management in “modern” P2P systems is characterized by massive distribu-
tion, inherent heterogeneity, and high volatility. The topic is fully covered in several
books including [Vu et al. 2009, Pacitti et al. 2012]. A shorter survey can be found
in [Ulusoy 2007]. Discussions on the requirements, architectures, and issues faced
by P2P data management systems are provided in [Bernstein et al. 2002, Daswani
et al. 2003, Valduriez and Pacitti 2004]. A number of P2P data management systems
are presented in [Aberer 2003].

In unstructured P2P networks, the problem of flooding is handled using one of
two methods as noted. Selecting a subset of neighbors to forward requests is due
to Kalogeraki et al. [2002]. The use of random walks to choose the neighbor set is
proposed by Lv et al. [2002], using a neighborhood index within a radius is due to
Yang and Garcia-Molina [2002], and maintaining a resource index to determine the
list of neighbors most likely to be in the direction of the searched peer is proposed by
Crespo and Garcia-Molina [2002]. The alternative proposal to use epidemic protocol
is discussed in [Kermarrec and van Steen 2007] based on gossiping that is discussed
in [Demers et al. 1987]. Approaches to scaling gossiping are given in [Voulgaris
et al. 2003].

Structured P2P networks are discussed in [Ritter 2001, Ratnasamy et al. 2001,
Stoica et al. 2001]. Similar to DHTs, dynamic hashing has also been successfully
used to address the scalability issues of very large distributed file structures [Devine
1993, Litwin et al. 1993]. DHT-based overlays can be categorized according
to their routing geometry and routing algorithm [Gummadi et al. 2003]. We
introduced in more details the following DHTs: Tapestry[Zhao et al. 2004], CAN
[Ratnasamy et al. 2001], and Chord [Stoica et al. 2003]. Hierarchical structured P2P
networks that we discussed and their source publications are the following: PHT
[Ramabhadran et al. 2004], P-Grid [Aberer 2001, Aberer et al. 2003a], BATON
[Jagadish et al. 2005], BATON* [Jagadish et al. 2006], VBI-tree [Jagadish et al.
2005], P-Tree [Crainiceanu et al. 2004], SkipNet [Harvey et al. 2003], and Skip
Graph [Aspnes and Shah 2003]. Schmidt and Parashar [2004] describe a system that
uses space-filling curves for defining structure, and Ganesan et al. [2004] propose
one based on hyperrectangle structure.

Examples of superpeer networks include Edutella [Nejdl et al. 2003] and JXTA.
A good discussion of the issues of schema mapping in P2P systems can be found

in [Tatarinov et al. 2003]. Pairwise schema mapping is used in Piazza [Tatarinov
et al. 2003], LRM [Bernstein et al. 2002], Hyperion [Kementsietsidis et al. 2003],

446 9 Peer-to-Peer Data Management

and PGrid [Aberer et al. 2003b]. Mapping based on machine learning techniques is
used in GLUE [Doan et al. 2003b]. Common agreement mapping is used in APPA
[Akbarinia et al. 2006, Akbarinia and Martins 2007] and AutoMed [McBrien and
Poulovassilis 2003]. Schema mapping using IR techniques is used in PeerDB [Ooi
et al. 2003] and Edutella [Nejdl et al. 2003]. Semantic query reformulation using
pairwise schema mappings in social P2P systems is addressed in [Bonifati et al.
2014].

An extensive survey of query processing in P2P systems is provided in
[Akbarinia et al. 2007b] and has been the basis for writing Sections 9.2 and 9.3.
An important kind of query in P2P systems is top-k queries. A survey of top-k
query processing techniques in relational database systems is provided in [Ilyas
et al. 2008]. An efficient algorithm for top-k query processing is the Threshold
Algorithm (TA) which was proposed independently by several researchers [Nepal
and Ramakrishna 1999, Güntzer et al. 2000, Fagin et al. 2003]. TA has been the
basis for several algorithms in P2P systems, in particular in DHTs [Akbarinia
et al. 2007a]. A more efficient algorithm than TA is the Best Position Algorithm
[Akbarinia et al. 2007c]. Several TA-style algorithms have been proposed for
distributed top-k query processing, e.g., TPUT[Cao and Wang 2004].

Top-k query processing in P2P systems has received much attention: in unstruc-
tured systems, e.g., PlanetP [Cuenca-Acuna et al. 2003] and APPA [Akbarinia et al.
2006]; in DHTs, e.g., APPA [Akbarinia et al. 2007a]; and in superpeer systems, e.g.,
Edutella [Balke et al. 2005]. Solutions to P2P join query processing are proposed in
PIER [Huebsch et al. 2003]. Solutions to P2P range query processing are proposed
in locality sensitive hashing [Gupta et al. 2003], PHT [Ramabhadran et al. 2004],
and BATON [Jagadish et al. 2005].

The survey of replication in P2P systems by Martins et al. [2006b] has been the
basis for Sect. 9.4. A complete solution to data currency in replicated DHTs, i.e.,
providing the ability to find the most current replica, is given in [Akbarinia et al.
2007d]. Reconciliation of replicated data is addressed in OceanStore [Kubiatowicz
et al. 2000], P-Grid [Aberer et al. 2003a], and APPA [Martins et al. 2006a, Martins
and Pacitti 2006, Martins et al. 2008]. The action-constraint framework has been
proposed for IceCube [Kermarrec et al. 2001].

P2P techniques have also received attention to help scaling up data management
in the context of Grid Computing [Pacitti et al. 2007] or edge/mobile computing
[Tang et al. 2019], or to help protecting data privacy in data analytics [Allard et al.
2015].

Blockchain is a relatively recent, polemical topic, featuring enthusiastic propo-
nents [Ito et al. 2017] and strong opponents, e.g., famous economist N. Roubini
[Roubini 2018]. The concepts are defined in the pioneering paper on the bit-
coin blockchain [Nakamoto 2008]. Since then, many other blockchains for other
cryptocurrencies have been proposed, e.g., Etherum and Ripple. Most of the
initial contributions have been made by developers, outside the academic world.
Thus, the main source of information is on web sites, white papers, and blogs.
Academic research on blockchain has recently started. In 2016, Ledger, the first
academic journal dedicated to various aspects (computer science, engineering, law,

Exercises 447

economics, and philosophy) related to blockchain technology was launched. In
the distributed system community, the focus has been on improving the security
or performance of the protocols, e.g., Bitcoin-NG [Eyal et al. 2016]. In the data
management community, we can find useful tutorials in major conferences, e.g.,
[Maiyya et al. 2018], survey papers, e.g., [Dinh et al. 2018], and system designs
such as BigchainDB. Understanding the performance bottlenecks also requires
benchmarking, as shown in BLOCKBENCH [Dinh et al. 2018].

Exercises

Problem 9.1 What is the fundamental difference between P2P and client–server
architectures? Is a P2P system with a centralized index equivalent to a client–server
system? List the main advantages and drawbacks of P2P file sharing systems from
different points of view:

• end-users;
• file owners;
• network administrators.

Problem 9.2 (**) A P2P overlay network is built as a layer on top of a physical
network, typically the Internet. Thus, they have different topologies and two nodes
that are neighbors in the P2P network may be far apart in the physical network.
What are the advantages and drawbacks of this layering? What is the impact of
this layering on the design of the three main types of P2P networks (unstructured,
structured, and superpeer)?

Problem 9.3 (*) Consider the unstructured P2P network in Fig. 9.4 and the bottom-
left peer that sends a request for resource. Illustrate and discuss the two following
search strategies in terms of result completeness:

• flooding with TTL=3;
• gossiping with each peer has a partial view of at most 3 neighbors.

Problem 9.4 (*) Consider Fig. 9.7, focusing on structured networks. Refine the
comparison using the scale 1–5 (instead of low, moderate, high) by considering the
three main types of DHTs: tree, hypercube, and ring.

Problem 9.5 (**) The objective is to design a P2P social network application, on
top of a DHT. The application should provide basic functions of social networks:
register a new user with her profile; invite or retrieve friends; create lists of friends;
post a message to friends; read friends’ messages; post a comment on a message.
Assume a generic DHT with put and get operations, where each user is a peer in the
DHT.

Problem 9.6 (**) Propose a P2P architecture of the social network application,
with the (key, data) pairs for the different entities which need be distributed.

448 9 Peer-to-Peer Data Management

Describe how the following operations: create or remove a user; create or remove
a friendship; read messages from a list of friends. Discuss the advantages and
drawbacks of the design.

Problem 9.7 (**) Same question, but with the additional requirement that private
data (e.g., user profile) must be stored at the user peer.

Problem 9.8 Discuss the commonalities and differences of schema mapping in
multidatabase systems and P2P systems. In particular, compare the local-as-view
approach presented in Chap. 7 with the pairwise schema mapping approach in
Sect. 9.2.1.

Problem 9.9 (*) The FD algorithm for top-k query processing in unstructured P2P
networks (see Algorithm 9.4) relies on flooding. Propose a variation of FD where,
instead of flooding, random walk or gossiping is used. What are the advantages and
drawbacks?

Problem 9.10 (*) Apply the TPUT algorithm (Algorithm 9.2) to the three lists
of the database in Fig. 9.10 with k=3. For each step of the algorithm, show the
intermediate results.

Problem 9.11 (*) Same question applied to Algorithm DHTop (see Algo-
rithm 9.5).

Problem 9.12 (*) Algorithm 9.6 assumes that the input relations to be joined are
placed arbitrarily in the DHT. Assuming that one of the relations is already hashed
on the join attributes, propose an improvement of Algorithm 9.6.

Problem 9.13 (*) To improve data availability in DHTs, a common solution is
to replicate (k, data) pairs at several peers using several hash functions. This
produces the problem illustrated in Example 9.7. An alternative solution is to use
a nonreplicated DHT (with a single hash function) and have the nodes replicating
(k, data) pairs at some of their neighbors. What is the effect on the scenario in
Example 9.7? What are the advantages and drawbacks of this approach, in terms of
availability and load balancing?

Problem 9.14 (*) Discuss the commonalities and differences of public versus
private (permissioned) blockchain. In particular, analyze the properties that need
be provided by the transaction validation protocol.

	9 Peer-to-Peer Data Management
	9.1 Infrastructure
	9.1.1 Unstructured P2P Networks
	9.1.2 Structured P2P Networks
	9.1.3 Superpeer P2P Networks
	9.1.4 Comparison of P2P Networks

	9.2 Schema Mapping in P2P Systems
	9.2.1 Pairwise Schema Mapping
	9.2.2 Mapping Based on Machine Learning Techniques
	9.2.3 Common Agreement Mapping
	9.2.4 Schema Mapping Using IR Techniques

	9.3 Querying Over P2P Systems
	9.3.1 Top-k Queries
	9.3.1.1 Basic Techniques
	9.3.1.2 Top-k Queries in Unstructured Systems
	9.3.1.3 Top-k Queries in DHTs
	9.3.1.4 Top-k Queries in Superpeer Systems

	9.3.2 Join Queries
	9.3.3 Range Queries

	9.4 Replica Consistency
	9.4.1 Basic Support in DHTs
	9.4.2 Data Currency in DHTs
	9.4.3 Replica Reconciliation
	9.4.3.1 OceanStore
	9.4.3.2 P-Grid
	9.4.3.3 APPA

	9.5 Blockchain
	9.5.1 Blockchain Definition
	9.5.2 Blockchain Infrastructure
	9.5.2.1 Creating a Transaction
	9.5.2.2 Grouping Transactions into Blocks
	9.5.2.3 Block Validation by Consensus

	9.5.3 Blockchain 2.0
	9.5.4 Issues

	9.6 Conclusion
	9.7 Bibliographic Notes
	Exercises

