
Chapter 8
Parallel Database Systems

Many data-intensive applications require support for very large databases (e.g.,
hundreds of terabytes or exabytes). Supporting very large databases efficiently for
either OLTP or OLAP can be addressed by combining parallel computing and
distributed database management.

A parallel computer, or multiprocessor, is a form of distributed system made
of a number of nodes (processors, memories, and disks) connected by a very
fast network within one or more cabinets in the same room. There are two
kinds of multiprocessors depending on how these nodes are coupled: tightly
coupled and loosely coupled. Tightly coupled multiprocessors contain multiple
processors that are connected at the bus level with a shared-memory. Mainframe
computers, supercomputers, and the modern multicore processors all use tight-
coupling to boost performance. Loosely coupled multiprocessors, now referred to as
computer clusters, or clusters for short, are based on multiple commodity computers
interconnected via a high-speed network. The main idea is to build a powerful
computer out of many small nodes, each with a very good cost/performance ratio,
at a much lower cost than equivalent mainframe or supercomputers. In its cheapest
form, the interconnect can be a local network. However, there are now fast standard
interconnects for clusters (e.g., Infiniband and Myrinet) that provide high bandwidth
(e.g., 100 Gigabits/sec) with low latency for message traffic.

As already discussed in previous chapters, data distribution can be exploited to
increase performance (through parallelism) and availability (through replication).
This principle can be used to implement parallel database systems, i.e., database
systems on parallel computers. Parallel database systems can exploit the parallelism
in data management in order to deliver high-performance and high-availability
database servers. Thus, they can support very large databases with very high loads.

Most of the research on parallel database systems has been done in the context of
the relational model because it provides a good basis for parallel data processing. In
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this chapter, we present the parallel database system approach as a solution to high-
performance and high-availability data management. We discuss the advantages and
disadvantages of the various parallel system architectures and we present the generic
implementation techniques.

Implementation of parallel database systems naturally relies on distributed
database techniques. However, the critical issues are data placement, parallel query
processing, and load balancing because the number of nodes may be much higher
than the number of sites in a distributed DBMS. Furthermore, a parallel computer
typically provides reliable, fast communication that can be exploited to efficiently
implement distributed transaction management and replication. Therefore, although
the basic principles are the same as in distributed DBMS, the techniques for parallel
database systems are fairly different.

This chapter is organized as follows: In Sect. 8.1, we clarify the objectives
of parallel database systems. In Sect. 8.2, we discuss architectures, in particular,
shared-memory, shared-disk, and shared-nothing. Then, we present the techniques
for data placement in Sect. 8.3, query processing in Sect. 8.4, load balancing in
Sect. 8.5, and fault-tolerance in Sect. 8.6. In Sect. 8.7, we present the use of parallel
data management techniques in database clusters, an important type of parallel
database system.

8.1 Objectives

Parallel processing exploits multiprocessor computers to run application programs
by using several processors cooperatively, in order to improve performance. Its
prominent use has long been in scientific computing to improve the response
time of numerical applications. The developments in both general-purpose parallel
computers using standard microprocessors and parallel programming techniques
have enabled parallel processing to break into the data processing field.

Parallel database systems combine database management and parallel processing
to increase performance and availability. Note that performance was also the
objective of database machines in the 1980s. The problem faced by conventional
database management has long been known as “I/O bottleneck,” induced by high
disk access time with respect to main memory access time (typically hundreds of
thousands times faster). Initially, database machine designers tackled this problem
through special-purpose hardware, e.g., by introducing data filtering devices within
the disk heads. However, this approach failed because of poor cost/performance
compared to the software solution, which can easily benefit from hardware progress
in silicon technology. The idea of pushing database functions closer to disk has
received renewed interest with the introduction of general-purpose microprocessors
in disk controllers, thus leading to intelligent disks. For instance, basic functions that
require costly sequential scan, e.g., select operations on tables with fuzzy predicates,
can be more efficiently performed at the disk level since they avoid overloading the
DBMS memory with irrelevant disk blocks. However, exploiting intelligent disks
requires adapting the DBMS, in particular, the query processor to decide whether
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to use the disk functions. Since there is no standard intelligent disk technology,
adapting to different intelligent disk technologies hurts DBMS portability.

An important result, however, is in the general solution to the I/O bottleneck. We
can summarize this solution as increasing the I/O bandwidth through parallelism.
For instance, if we store a database of size D on a single disk with throughput T ,
the system throughput is bounded by T . On the contrary, if we partition the database
across n disks, each with capacity D/n and throughput T ′ (hopefully equivalent to
T ), we get an ideal throughput of n ∗ T ′ that can be better consumed by multiple
processors (ideally n). Note that the main memory database system solution, which
tries to maintain the database in main memory, is complementary rather than
alternative. In particular, the “memory access bottleneck” in main memory systems
can also be tackled using parallelism in a similar way. Therefore, parallel database
system designers have strived to develop software-oriented solutions in order to
exploit parallel computers.

A parallel database system can be loosely defined as a DBMS implemented
on a parallel computer. This definition includes many alternatives ranging from
the straightforward porting of an existing DBMS, which may require only rewrit-
ing the operating system interface routines, to a sophisticated combination of
parallel processing and database system functions into a new hardware/software
architecture. As always, we have the traditional trade-off between portability
(to several platforms) and efficiency. The sophisticated approach is better able
to fully exploit the opportunities offered by a multiprocessor at the expense of
portability. Interestingly, this gives different advantages to computer manufacturers
and software vendors. It is therefore important to characterize the main points in the
space of alternative parallel system architectures. In order to do so, we will make
precise the parallel database system solution and the necessary functions. This will
be useful in comparing the parallel database system architectures.

The objectives of parallel database systems are similar to those of distributed
DBMSs (performance, availability, extensibility), but have somewhat different focus
due to the tighter coupling of computing/storage nodes. We highlight these below.

1. High performance. This can be obtained through several complementary
solutions: parallel data management, query optimization, and load balancing.
Parallelism can be used to increase throughput and decrease transaction response
times. However, decreasing the response time of a complex query through large-
scale parallelism may well increase its total time (by additional communication)
and hurt throughput as a side-effect. Therefore, it is crucial to optimize and
parallelize queries in order to minimize the overhead of parallelism, e.g., by
constraining the degree of parallelism for the query. Load balancing is the
ability of the system to divide a given workload equally among all processors.
Depending on the parallel system architecture, it can be achieved statically by
appropriate physical database design or dynamically at runtime.

2. High availability. Because a parallel database system consists of many redun-
dant components, it can well increase data availability and fault-tolerance. In
a highly parallel system with many nodes, the probability of a node failure at
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Fig. 8.1 Extensibility metrics. (a) Linear speed-up. (b) Linear scale-up

any time can be relatively high. Replicating data at several nodes is useful to
support failover, a fault-tolerance technique that enables automatic redirection
of transactions from a failed node to another node that stores a copy of the data.
This provides uninterrupted service to users.

3. Extensibility. In a parallel system, accommodating increasing database sizes or
increasing performance demands (e.g., throughput) should be easier. Extensibil-
ity is the ability to expand the system smoothly by adding processing and storage
power to the system. Ideally, the parallel database system should demonstrate
two extensibility advantages: linear speed-up and linear scale-up (see Fig. 8.1).
Linear speed-up refers to a linear increase in performance for a constant database
size and load while the number of nodes (i.e., processing and storage power) is
increased linearly. Linear scale-up refers to a sustained performance for a linear
increase in both database size, load and number of nodes. Furthermore, extending
the system should require minimal reorganization of the existing database.

The increasing use of clusters in large-scale applications, e.g., web data man-
agement, has led to the use of the term scale-out versus scale-up. Figure 8.2 shows
a cluster with 4 servers, each with a number of processing nodes (“Ps”). In this
context, scale-up (also called vertical scaling) refers to adding more nodes to a
server and thus gets limited by the maximum size of the server. Scale-out (also
called horizontal scaling) refers to adding more servers, called “scale-out servers”
in a loosely coupled fashion, to scale almost infinitely.

8.2 Parallel Architectures

A parallel database system represents a compromise in design choices in order
to provide the aforementioned advantages with a good cost/performance. One
guiding design decision is the way the main hardware elements, i.e., processors,
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main memory, and disks, are connected through some interconnection network.
In this section, we present the architectural aspects of parallel database sys-
tems. In particular, we present and compare the three basic parallel architectures:
shared-memory, shared-disk, and shared-nothing. Shared-memory is used in tightly
coupled multiprocessors, while shared-nothing and shared-disk are used in clusters.
When describing these architectures, we focus on the four main hardware elements:
interconnect, processors (P), main memory modules (M), and disks. For simplicity,
we ignore other elements such as processor cache, processor cores, and I/O bus.

8.2.1 General Architecture

Assuming a client/server architecture, the functions supported by a parallel database
system can be divided into three subsystems much like in a typical DBMS. The
differences, though, have to do with implementation of these functions, which
must now deal with parallelism, data partitioning and replication, and distributed
transactions. Depending on the architecture, a processor node can support all
(or a subset) of these subsystems. Figure 8.3 shows the architecture using these
subsystems, which is based on the architecture of Fig. 1.11 with the addition of a
client manager.

1. Client manager. It provides support for client interactions with the parallel
database system. In particular, it manages the connections and disconnections
between the client processes, which run on different servers, e.g., application
servers, and the query processors. Therefore, it initiates client queries (which
may be transactions) at some query processors, which then become responsible
for interacting directly with the clients and perform query processing and
transaction management. The client manager also performs load balancing, using
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Fig. 8.3 General architecture of a parallel database system

a catalog that maintains information on processor nodes’ load and precompiled
queries (including data location). This allows triggering precompiled query
executions at query processors that are located close to the data that is accessed.
The client manager is a lightweight process, and thus not a bottleneck. However,
for fault-tolerance, it can be replicated at several nodes.

2. Query processor. It receives and manages client queries, such as compile query,
execute query, and start transaction. It uses the database directory that holds all
metainformation about data, queries, and transactions. The directory itself should
be managed as a database, which can be replicated at all query processor nodes.
Depending on the request, it activates the various compilation phases, including
semantic data control and query optimization and parallelization, triggers and
monitors query execution using the data processors, and returns the results as
well as error codes to the client. It may also trigger transaction validation at the
data processors.

3. Data processor. It manages the database’s data and system data (system log, etc.)
and provides all the low-level functions needed to execute queries in parallel, i.e.,
database operator execution, parallel transaction support, cache management,
etc.
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8.2.2 Shared-Memory

In the shared-memory approach, any processor has access to any memory module
or disk unit through an interconnect. All the processors are under the control of a
single operating system.

One major advantage is simplicity of the programming model based on shared
virtual memory. Since metainformation (directory) and control information (e.g.,
lock tables) can be shared by all processors, writing database software is not very
different than for single processor computers. In particular, interquery parallelism
comes for free. Intraquery parallelism requires some parallelization but remains
rather simple. Load balancing is also easy since it can be achieved at runtime using
the shared-memory by allocating each new task to the least busy processor.

Depending on whether physical memory is shared, two approaches are possible:
Uniform Memory Access (UMA) and Non-Uniform Memory Access (NUMA),
which we present below.

8.2.2.1 Uniform Memory Access (UMA)

With UMA, the physical memory is shared by all processors, so access to memory
is in constant time (see Fig. 8.4). Thus, it has also been called symmetric multipro-
cessor (SMP). Common network topologies to interconnect processors include bus,
crossbar, and mesh.

The first SMPs appeared in the 1960s for mainframe computers and had a few
processors. In the 1980s, there were larger SMP machines with tens of processors.
However, they suffered from high cost and limited scalability. High cost was
incurred by the interconnect that requires fairly complex hardware because of the
need to link each processor to each memory module or disk. With faster and faster
processors (even with larger caches), conflicting accesses to the shared-memory
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Shared Memory

Fig. 8.4 Shared-memory



356 8 Parallel Database Systems

increase rapidly and degrade performance. Therefore, scalability has been limited to
less than ten processors. Finally, since the memory space is shared by all processors,
a memory fault may affect most processors, thereby hurting data availability.

Multicore processors are also based on SMP, with multiple processing cores and
shared-memory on a single chip. Compared to the previous multichip SMP designs,
they improve the performance of cache operations, require much less printed circuit
board space, and consume less energy. Therefore, the current trend in multicore
processor development is towards an ever increasing number of cores, as processors
with hundreds of cores become feasible.

Examples of SMP parallel database systems include XPRS, DBS3, and Volcano.

8.2.2.2 Non-Uniform Memory Access (NUMA)

The objective of NUMA is to provide a shared-memory programming model and
all its benefits, in a scalable architecture with distributed memory. Each processor
has its own local memory module, which it can access efficiently. The term NUMA
reflects the fact that accesses to the (virtually) shared-memory have a different cost
depending on whether the physical memory is local or remote to the processor.

The oldest class of NUMA systems is Cache Coherent NUMA (CC-NUMA)
multiprocessors (see Fig. 8.5). Since different processors can access the same data in
a conflicting update mode, global cache consistency protocols are needed. In order
to make remote memory access efficient, one solution is to have cache consistency
done in hardware through a special consistent cache interconnect. Because shared-
memory and cache consistency are supported by hardware, remote memory access
is very efficient, only several times (typically up to 3 times) the cost of local access.

A more recent approach to NUMA is to exploit the Remote Direct Memory
Access (RDMA) capability that is now provided by low latency cluster interconnects
such as Infiniband and Myrinet. RDMA is implemented in the network card
hardware and provides zero-copy networking, which allows a cluster node to
directly access the memory of another node without any copying between operating
system buffers. This yields typical remote memory access at latencies of the order
of 10 times a local memory access. However, there is still room for improvement.

P M · · · P M

Cache-consistent Interconnect

Fig. 8.5 Cache coherent non-uniform memory architecture (CC-NUMA)
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For instance, the tighter integration of remote memory control into the node’s local
coherence hierarchy yields remote access at latencies that are within 4 times a
local access. Thus, RDMA can be exploited to improve the performance of parallel
database operations. However, it requires new algorithms that are NUMA aware in
order to deal with the remote memory access bottleneck. The basic approach is to
maximize local memory access by careful scheduling of DBMS tasks close to the
data and to interleave computation and network communication.

Modern multiprocessors use a hierarchical architecture that mixes NUMA and
UMA, i.e., a NUMA multiprocessor where each processor is a multicore processor.
In turn, each NUMA multiprocessor can be used as a node in a cluster.

8.2.3 Shared-Disk

In a shared-disk cluster (see Fig. 8.6), any processor has access to any disk unit
through the interconnect but exclusive (nonshared) access to its main memory. Each
processor–memory node, which can be a shared-memory node is under the control
of its own copy of the operating system. Then, each processor can access database
pages on the shared-disk and cache them into its own memory. Since different
processors can access the same page in conflicting update modes, global cache
consistency is needed. This is typically achieved using a distributed lock manager
that can be implemented using the techniques described in Chap. 5. The first
parallel DBMS that used shared-disk is Oracle with an efficient implementation of a
distributed lock manager for cache consistency. It has evolved to the Oracle Exadata
database machine. Other major DBMS vendors such as IBM, Microsoft, and Sybase
also provide shared-disk implementations, typically for OLTP workloads.

Shared-disk requires disks to be globally accessible by the cluster nodes. There
are two main technologies to share disks in a cluster: network-attached storage
(NAS) and storage-area network (SAN). A NAS is a dedicated device to shared-
disks over a network (usually TCP/IP) using a distributed file system protocol
such as Network File System (NFS). NAS is well-suited for low throughput
applications such as data backup and archiving from PC’s hard disks. However,
it is relatively slow and not appropriate for database management as it quickly

P M · · · P M
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becomes a bottleneck with many nodes. A storage-area network (SAN) provides
similar functionality but with a lower level interface. For efficiency, it uses a block-
based protocol, thus making it easier to manage cache consistency (at the block
level). As a result, SAN provides high data throughput and can scale up to large
numbers of nodes.

Shared-disk has three main advantages: simple and cheap administration, high
availability, and good load balance. Database administrators do not need to deal
with complex data partitioning, and the failure of a node only affects its cached
data while the data on disk is still available to the other nodes. Furthermore, load
balancing is easy as any request can be processed by any processor–memory node.
The main disadvantages are cost (because of SAN) and limited scalability, which is
caused by the potential bottleneck and overhead of cache coherence protocols for
very large databases. A solution is to rely on data partitioning as in shared-nothing,
at the expense of more complex administration.

8.2.4 Shared-Nothing

In a shared-nothing cluster (see Fig. 8.7), each processor has exclusive access to its
main memory and disk, using Directly Attached Storage (DAS).

Each processor–memory–disk node is under the control of its own copy of the
operating system. Shared-nothing clusters are widely used in practice, typically
using NUMA nodes, because they can provide the best cost/performance ratio and
scale up to very large configurations (thousands of nodes).

Each node can be viewed as a local site (with its own database and software) in
a distributed DBMS. Therefore, most solutions designed for those systems such as
database fragmentation, distributed transaction management, and distributed query
processing may be reused. Using a fast interconnect, it is possible to accommodate
large numbers of nodes. As opposed to SMP, this architecture is often called
Massively Parallel Processor (MPP).

By favoring the smooth incremental growth of the system by the addition of new
nodes, shared-nothing provides extensibility and scalability. However, it requires

P M · · · P M
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Fig. 8.7 Shared-nothing architecture
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careful partitioning of the data on multiple disks. Furthermore, the addition of
new nodes in the system presumably requires reorganizing and repartitioning the
database to deal with the load balancing issues. Finally, node fault-tolerance is
difficult (requires replication) as a failed node will make its data on disk unavailable.

Many parallel database system prototypes have adopted the shared-nothing
architecture, e.g., Bubba, Gamma, Grace, and Prisma/DB. The first major parallel
DBMS product was Teradata’s database machine. Other major DBMS companies
such as IBM, Microsoft, and Sybase and vendors of column-store DBMS such as
MonetDB and Vertica provide shared-nothing implementations for high-end OLAP
applications. Finally, NoSQL DBMSs and big data systems typically use shared-
nothing.

Note that it is possible to have a hybrid architecture, where part of the cluster is
shared-nothing, e.g., for OLAP workloads, and part is shared-disk, e.g., for OLTP
workloads. For instance, Teradata supports the concept of clique, i.e., a set of nodes
that share a common set of disks, to its shared-nothing architecture to improve
availability.

8.3 Data Placement

In the rest of this chapter, we consider a shared-nothing architecture because it is
the most general case and its implementation techniques also apply, sometimes in
a simplified form, to the other architectures. Data placement in a parallel database
system exhibits similarities with data fragmentation in distributed databases (see
Chap. 2). An obvious similarity is that fragmentation can be used to increase
parallelism. As noted in Chap. 2, parallel DBMSs mostly use horizontal partitioning,
although vertical fragmentation can also be used to increase parallelism and load
balancing much as in distributed databases and has been employed in column-
store DBMSs, such as MonetDB or Vertica. Another similarity with distributed
databases is that since data is much larger than programs, execution should occur,
as much as possible, where the data resides. As noted in Chap. 2, there are two
important differences with the distributed database approach. First, there is no
need to maximize local processing (at each node) since users are not associated
with particular nodes. Second, load balancing is much more difficult to achieve in
the presence of a large number of nodes. The main problem is to avoid resource
contention, which may result in the entire system thrashing (e.g., one node ends
up doing all the work, while the others remain idle). Since programs are executed
where the data resides, data placement is critical for performance.

The most common data partitioning strategies that are used in parallel DBMSs
are the round-robin, hashing, and range-partitioning approaches discussed in
Sect. 2.1.1. Data partitioning must scale with the increase in database size and
load. Thus, the degree of partitioning, i.e., the number of nodes over which a
relation is partitioned, should be a function of the size and access frequency of the
relation. Therefore, increasing the degree of partitioning may result in placement
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reorganization. For example, a relation initially placed across eight nodes may have
its cardinality doubled by subsequent insertions, in which case it should be placed
across 16 nodes.

In a highly parallel system with data partitioning, periodic reorganizations for
load balancing are essential and should be frequent unless the workload is fairly
static and experiences only a few updates. Such reorganizations should remain
transparent to compiled queries that run on the database server. In particular, queries
should not be recompiled because of reorganization and should remain independent
of data location, which may change rapidly. Such independence can be achieved if
the runtime system supports associative access to distributed data. This is different
from a distributed DBMS, where associative access is achieved at compile time by
the query processor using the data directory.

One solution to associative access is to have a global index mechanism replicated
on each node. The global index indicates the placement of a relation onto a set of
nodes. Conceptually, the global index is a two-level index with a major clustering
on the relation name and a minor clustering on some attribute of the relation.
This global index supports variable partitioning, where each relation has a different
degree of partitioning. The index structure can be based on hashing or on a B-tree
like organization. In both cases, exact-match queries can be processed efficiently
with a single node access. However, with hashing, range queries are processed by
accessing all the nodes that contain data from the queried relation. Using a B-tree
index (usually much larger than a hash index) enables more efficient processing
of range queries, where only the nodes containing data in the specified range are
accessed.

Example 8.1 Figure 8.8 provides an example of a global index and a local index for
relation EMP(ENO, ENAME, TITLE) of the engineering database example we have
been using in this book.

Suppose that we want to locate the elements in relation EMP with ENO value
“E50.” The first-level index maps the name EMP onto the index on attribute ENO

global index on
ENO for relation EMP

node 1
(E1 to E20)

node j
(E31 to E60)

node n
(E71 to E80)

local index on
ENO for relation EMP

disk page 24
(E31 to E40)

disk page 91
(E51 to E60)

Fig. 8.8 Example of global and local indexes
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for relation EMP. Then, the second-level index further maps the cluster value “E50”
onto node number j . A local index within each node is also necessary to map a
relation onto a set of disk pages within the node. The local index has two levels,
with a major clustering on relation name and a minor clustering on some attribute.
The minor clustering attribute for the local index is the same as that for the global
index. Thus, associative routing is improved from one node to another based on
(relation name, cluster value). This local index further maps the cluster value “E5”
onto page number 91. �

A serious problem in data placement is dealing with skewed data distributions
that may lead to nonuniform partitioning and hurt load balancing. A solution
is to treat nonuniform partitions appropriately, e.g., by further fragmenting large
partitions. This is easy with range partitioning, since a partition can be split as a
B-tree leaf, with some local index reorganization. With hashing, the solution is to
use a different hash function on a different attribute, The separation between logical
and physical nodes is useful here since a logical node may correspond to several
physical nodes.

A final complicating factor for data placement is data replication for high
availability, which we discussed at length in Chap. 6. In parallel DBMSs, simpler
approaches might be adopted, such as the mirrored disks architecture where two
copies of the same data are maintained: a primary and a backup copy. However, in
case of a node failure, the load of the node with the copy may double, thereby hurt-
ing load balance. To avoid this problem, several high-availability data replication
strategies have been proposed for parallel database systems. An interesting solution
is Teradata’s interleaved partitioning that further partitions the backup copy on a
number of nodes. Figure 8.9 illustrates the interleaved partitioning of relation R
over four nodes, where each primary copy of a partition, e.g., R1, is further divided
into three partitions, e.g., R1,1, R1,2, and R1,3, each at a different backup node. In
failure mode, the load of the primary copy gets balanced among the backup copy
nodes. But if two nodes fail, then the relation cannot be accessed, thereby hurting
availability. Reconstructing the primary copy from its separate backup copies may
be costly. In normal mode, maintaining copy consistency may also be costly.

An alternative solution is Gamma’s chained partitioning , which stores the
primary and backup copy on two adjacent nodes (Fig. 8.10). The main idea is that

Fig. 8.9 Example of interleaved partitioning
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Fig. 8.10 Example of chained partitioning

the probability that two adjacent nodes fail is much lower than the probability that
any two nodes fail. In failure mode, the load of the failed node and the backup
nodes is balanced among all remaining nodes by using both primary and backup
copy nodes. In addition, maintaining copy consistency is cheaper. An open issue
is how to perform data placement taking into account data replication. Similar
to the fragment allocation in distributed databases, this should be considered an
optimization problem.

8.4 Parallel Query Processing

The objective of parallel query processing is to transform queries into execution
plans that can be efficiently executed in parallel. This is achieved by exploiting
parallel data placement and the various forms of parallelism offered by high-level
queries. In this section, we first introduce the basic parallel algorithms for data
processing. Then, we discuss parallel query optimization.

8.4.1 Parallel Algorithms for Data Processing

Partitioned data placement is the basis for the parallel execution of database queries.
Given a partitioned data placement, an important issue is the design of parallel
algorithms for efficient processing of database operators (i.e., relational algebra
operators) and database queries that combine multiple operators. This issue is
difficult because a good trade-off between parallelism and communication cost
must be reached since increasing parallelism involves more communication among
processors.

Parallel algorithms for relational algebra operators are the building blocks
necessary for parallel query processing. The objective of these algorithms is to
maximize the degree of parallelism. However, according to Amdahl’s law, only part
of an algorithm can be parallelized. Let seq be the ratio of the sequential part of a
program (a value between 0 and 1), i.e., which cannot be parallelized, and let p be
the number of processors. The maximum speed-up that can be achieved is given by
the following formula:
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MaxSpeedup(seq, p) = 1

seq +
(

1−seq
p

)

For instance, with seq = 0 (the entire program is parallel) and p = 4, we obtain
the ideal speed-up, i.e., 4. But with seq = 0.3, the speed-up goes down to 2.1. And
even if we double the number of processors, i.e., p = 8, the speed-up increases
only slightly to 2.5. Thus, when designing parallel algorithms for data processing,
it is important to minimize the sequential part of an algorithm and to maximize the
parallel part, by exploiting intraoperator parallelism.

The processing of the select operator in a partitioned data placement context
is identical to that in a fragmented distributed database. Depending on the select
predicate, the operator may be executed at a single node (in the case of an exact-
match predicate) or, in the case of arbitrarily complex predicates, at all the nodes
over which the relation is partitioned. If the global index is organized as a B-tree-
like structure (see Fig. 8.8), a select operator with a range predicate may be executed
only by the nodes that store relevant data. In the rest of this section, we focus on the
parallel processing of the two major operators used in database queries, i.e., sort and
join.

8.4.1.1 Parallel Sort Algorithms

Sorting relations is necessary for queries that require an ordered result or involve
aggregation and grouping. And it is hard to do efficiently as any item needs
to be compared with every other item. One of the fastest single processor sort
algorithms is quicksort but it is highly sequential and thus, according to Amdahl’s
law, inappropriate for parallel adaptation. Several other centralized sort algorithms
can be made parallel. One of the most popular algorithms is the parallel merge sort
algorithm, because it is easy to implement and does not have strong requirements
on the parallel system architecture. Thus, it has been used in both shared-disk
and shared-nothing clusters. It can also be adapted to take advantage of multicore
processors.

We briefly review the b-way merge sort algorithm. Let us consider a set of n

elements to be sorted. A run is defined as an ordered sequence of elements; thus, the
set to be sorted contains n runs of one element. The method consists of iteratively
merging b runs of K elements into a sorted run of K ∗ b elements, starting with
K = 1. For pass i, each set of b runs of bi−1 elements is merged into a sorted run of
bi elements. Starting from i = 1, the number of passes necessary to sort n elements
is logbn.

We now describe the application of this method in a shared-nothing cluster. We
assume the popular master–worker model for executing parallel tasks, with one
master node coordinating the activities of the worker nodes, by sending them tasks
and data and receiving back notifications of tasks done.
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Let us suppose we have to sort a relation of p disk pages partitioned over n nodes.
Each node has a local memory of b+1 pages, where b pages are used as input pages
and 1 is used as an output page. The algorithm proceeds in two stages. In the first
stage, each node locally sorts its fragment, e.g., using quicksort if the node is single
processor or a parallel b-way merge sort if the node is a multicore processor. This
stage is called the optimal stage since all nodes are fully busy. It generates n runs of
p/n pages, and if n equals b, one node can merge them in a single pass. However,
n can be very much greater than b, in which case the solution is for the master
node to arrange the worker nodes as a tree of order b during the last stage, called
the postoptimal stage. The number of necessary nodes is divided by b at each pass.
At the last pass, one node merges the entire relation. The number of passes for the
postoptimal stage is logbp. This stage degrades the degree of parallelism.

8.4.1.2 Parallel Join Algorithms

Assuming two arbitrary partitioned relations, there are three basic parallel algo-
rithms to join them: the parallel merge sort join algorithm , the parallel nested loop
(PNL) algorithm, and the parallel hash join (PHJ) algorithm. These algorithms are
variations of their centralized counterpart. The parallel merge sort join algorithm
simply sorts both relations on the join attribute using a parallel merge sort and joins
them using a merge like operation done by a single node. Although the last operation
is sequential, the result joined relation is sorted on the join attribute, which can be
useful for the next operation.

The other two algorithms are fully parallel. We describe them in more details
using a pseudoconcurrent programming language with three main constructs:
parallel-do, send, and receive. Parallel-do specifies that the following block of
actions is executed in parallel. For example,

for i from 1 to n in parallel-do action A

indicates that action A is to be executed by n nodes in parallel. The send and
receive constructs are basic data communication primitives: send sends data from
one node to one or more nodes, while receive gets the content of the data sent at
a particular node. In what follows we consider the join of two relations R and S
that are partitioned over m and n nodes, respectively. For the sake of simplicity, we
assume that the m nodes are distinct from the n nodes. A node at which a fragment
of R (respectively, S) resides is called an R-node (respectively, S-node).

Parallel Nested Loop Join Algorithm

The parallel nested loop algorithm is simple and general. It implements the
fragment-and-replicate method described in Sect. 4.5.1. It basically composes the
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Algorithm 8.1: Parallel Nested Loop (PNL)

Input: R1,R2, . . . ,Rm: fragments of relation R
S1,S2, . . . ,Sn: fragments of relation S ;
JP : join predicate
Output: T1,T2, . . . ,Tn: result fragments
begin

for i from 1 to m in parallel do {send R entirely to each S-node}
send Ri to each node containing a fragment of S

end for
for j from 1 to n in parallel do {perform the join at each S-node}

R ← ⋃m
i=1 Ri ; {Ri from R-nodes; R is fully replicated at S-nodes}

Tj ← R ��JP Sj
end for

end

Cartesian product of relationsR and S in parallel. Therefore, arbitrarily complex
join predicates, not only equijoin, may be supported.

The algorithm performs two nested loops. One relation is chosen as the inner
relation, to be accessed in the inner loop, and the other relation as the outer relation,
to be accessed in the outer loop. This choice depends on a cost function with two
main parameters: relation sizes, which impacts communication cost, and presence
of indexes on join attributes, which impacts local join processing cost.

This algorithm is described in Algorithm 8.1, where the join result is produced
at the S-nodes, i.e., S is chosen as inner relation. The algorithm proceeds in two
phases.

In the first phase, each fragment of R is sent and replicated at each node that
contains a fragment of S (there are n such nodes). This phase is done in parallel by
m nodes; thus, (m ∗ n) messages are necessary.

In the second phase, each S-node j receives relation R entirely, and locally joins
R with fragment Sj . This phase is done in parallel by n nodes. The local join can
be done as in a centralized DBMS. Depending on the local join algorithm, join
processing may or may not start as soon as data is received. If a nested loop join
algorithm, possibly with an index on the join attribute of S , is used, join processing
can be done in a pipelined fashion as soon as a tuple of R arrives. If, on the other
hand, a sort-merge join algorithm is used, all the data must have been received before
the join of the sorted relations begins.

To summarize, the parallel nested loop algorithm can be viewed as replacing the
operator R �� S by ∪n

i=1(R �� Si ).

Example 8.2 Figure 8.11 shows the application of the parallel nested loop algorithm
with m = n = 2. �
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R1 R2

Node 1 Node 2

S1 S2

Node 3 Node 4

R1 R2 R2R1

Fig. 8.11 Example of parallel nested loop

Parallel Hash Join Algorithm

The parallel hash join algorithm shown in Algorithm 8.2 applies only in the case of
equijoin and does not require any particular partitioning of the operand relations. It
has been first proposed for the Grace database machine, and is known as the Grace
hash join.

The basic idea is to partition relations R and S into the same number p of
mutually exclusive sets (fragments) R1,R2, . . . ,Rp, and S1,S2, . . . ,Sp, such that

R �� S =
p⋃

i=1

(Ri �� Si )

The partitioning of R and S is based on the same hash function applied to the
join attribute. Each individual join (Ri �� Si) is done in parallel, and the join result
is produced at p nodes. These p nodes may actually be selected at runtime based on
the load of the system.

The algorithm can be divided into two main phases, a build phase and a probe
phase. The build phase hashes R used as inner relation, on the join attribute, sends
it to the target p nodes that build a hash table for the incoming tuples. The probe
phase sends S, the outer relation, associatively to the target p nodes that probe the
hash table for each incoming tuple. Thus, as soon as the hash tables have been built
for R the S tuples can be sent and processed in pipeline by probing the hash tables.

Example 8.3 Figure 8.12 shows the application of the parallel hash join algorithm
with m = n = 2. We assume that the result is produced at nodes 1 and 2. Therefore,
an arrow from node 1 to node 1 or node 2 to node 2 indicates a local transfer. �
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Algorithm 8.2: Parallel Hash Join (PHJ)
Input: R1,R2, . . . ,Rm: fragments of relation R ;
S1,S2, . . . ,Sn: fragments of relation S ;
JP : join predicate R.A = S.B ;
h: hash function that returns an element of [1, p]
Output: T1,T2, . . . ,Tp: result fragments
begin

{Build phase}
for i from 1 to m in parallel do

Rji ← apply h(A) to Ri (j = 1, . . . , p); {hash R on A)}

send Rji to node j

end for
for j from 1 to p in parallel do

Rj ← ⋃m
i=1 R

i
j {receive Rj fragments from R-nodes}

build local hash table for Rj
end for
{Probe phase}
for i from 1 to n in parallel do

Sji ← apply h(B) to Si (j = 1, . . . , p); {hash S on B)}

send Sji to node j

end for
for j from 1 to p in parallel do

Sj ← ⋃n
i=1 S

i
j ; {receive Sj fragments from S-nodes}

Tj ← Rj ��JP Sj {probe Sj for each tuple of Rj}
end for

end

R11 R12 R21 R22 S11 S12 S21 S22
R1 R2 S1 S2

Node 1 Node 2 Node 3 Node 4

R11 R21 S11 S21 R12 R22 S12 S22

Node i Node j

Fig. 8.12 Example of parallel hash join
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The parallel hash join algorithm is usually much more efficient than the parallel
nested loop join algorithm, since it requires less data transfer and less local join
processing in the probe phase. Furthermore, one relation, say R may already be
partitioned by hashing on the join attribute. In this case, no build phase is needed
and the S fragments are simply sent associatively to corresponding R nodes. It is
also generally more efficient than the parallel sort-merge join algorithm. However,
this later algorithm is still useful as it produces a result relation sorted on the join
attribute.

The problem with the parallel hash join algorithm and its many variants is that
the data distribution on the join attribute may be skewed, thus leading to load
unbalancing. We discuss solutions to this problem in Sect. 8.5.2.

Variants

The basic parallel join algorithms have been used in many variants, in particular
to deal with adaptive query processing or exploit main memories and multicore
processors. We discuss these extensions below.

When considering adaptive query processing (see Sect. 4.6), the challenge is to
dynamically order pipelined join operators at runtime, while tuples from different
relations are flowing in. Ideally, when a tuple of a relation participating in a join
arrives, it should be sent to a join operator to be processed on the fly. However, most
join algorithms cannot process some incoming tuples on the fly because they are
asymmetric with respect to the way inner and outer tuples are processed. Consider
PHJ, for instance: the inner relation is fully read during the build phase to construct
a hash table, whereas tuples in the outer relation can be pipelined during the probe
phase. Thus, an incoming inner tuple cannot be processed on the fly as it must be
stored in the hash table and the processing will be possible only when the entire
hash table is built. Similarly, the nested loop join algorithm is asymmetric as only
the inner relation must be read entirely for each tuple of the outer relation. Join
algorithms with some kind of asymmetry offer little opportunity for alternating input
relations between inner and outer roles. Thus, to relax the order in which join inputs
are consumed, symmetric join algorithms are needed, whereby the role played by
the relations in a join may change without producing incorrect results.

The earlier example of symmetric join algorithm is the symmetric hash join,
which uses two hash tables, one for each input relation. The traditional build and
probe phases of the basic hash join algorithm are simply interleaved. When a tuple
arrives, it is used to probe the hash table corresponding to the other relation and find
matching tuples. Then, it is inserted in its corresponding hash table so that tuples
of the other relation arriving later can be joined. Thus, each arriving tuple can be
processed on the fly. Another popular symmetric join algorithm is the ripple join,
which is a generalization of the nested loop join algorithm where the roles of inner
and outer relation continually alternate during query execution. The main idea is
to keep the probing state of each input relation, with a pointer that indicates the
last tuple used to probe the other relation. At each toggling point, a change of roles
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between inner and outer relations occurs. At this point, the new outer relation starts
to probe the inner input from its pointer position onwards, to a specified number
of tuples. The inner relation, in turn, is scanned from its first tuple to its pointer
position minus 1. The number of tuples processed at each stage in the outer relation
gives the toggling rate and can be adaptively monitored.

Exploiting processors’ main memories is also important for the performance of
parallel join algorithms. The hybrid hash join algorithm improves on the Grace
hash join by exploiting the available memory to hold an entire partition (called
partition 0) during partitioning, thus avoiding disk accesses. Another variation is to
modify the built phase so that the resulting hash tables fit into the processor’s main
memory. This improves performance significantly as the number of cache misses
while probing the hash table is reduced. The same idea is used in the radix hash join
algorithm for multicore processors, where access to a core’s memory is much faster
than access to the remote shared-memory. A multipass partitioning scheme is used
to divide both input relations into disjoint partitions based on the join attribute, so
they fit into the cores’ memories. Then, hash tables are built over each partition of
the inner relation and probed using the data from the corresponding partition of the
outer relation. The parallel merge sort join, which is generally considered inferior
to the parallel hash join can also be optimized for multicore processors.

8.4.2 Parallel Query Optimization

Parallel query optimization exhibits similarities with distributed query processing.
However, it focuses much more on taking advantage of both intraoperator paral-
lelism (using the algorithms described above) and interoperator parallelism. As any
query optimizer, a parallel query optimizer has three components: a search space, a
cost model, and a search strategy. In this section, we describe the parallel techniques
for these components.

8.4.2.1 Search Space

Execution plans are abstracted by means of operator trees, which define the order
in which the operators are executed. Operator trees are enriched with annotations,
which indicate additional execution aspects, such as the algorithm of each operator.
In a parallel DBMS, an important execution aspect to be reflected by annotations
is the fact that two subsequent operators can be executed in pipeline. In this case,
the second operator can start before the first one is completed. In other words, the
second operator starts consuming tuples as soon as the first one produces them.
Pipelined executions do not require temporary relations to be materialized, i.e., a
tree node corresponding to an operator executed in pipeline is not stored.

Some operators and some algorithms require that one operand be stored. For
example, in PHJ (Algorithm 8.2), in the build phase, a hash table is constructed in
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Fig. 8.13 Two hash join trees with a different scheduling. (a) No pipeline. (b) Pipeline of R2,
Temp1, and Temp2

parallel on the join attribute of the smallest relation. In the probe phase, the largest
relation is sequentially scanned and the hash table is consulted for each of its tuples.
Therefore, pipeline and stored annotations constrain the scheduling of execution
plans by splitting an operator tree into nonoverlapping subtrees, corresponding to
execution phases. Pipelined operators are executed in the same phase, usually called
pipeline chain, whereas a storing indication establishes the boundary between one
phase and a subsequent phase.

Example 8.4 Figure 8.13 shows two execution trees, one with no pipeline
(Fig. 8.13a) and one with pipeline (Fig. 8.13b). In Fig. 8.13a, the temporary relation
Temp1 must be completely produced and the hash table in Build2 must be built
before Probe2 can start consuming R3. The same is true for Temp2, Build3, and
Probe3. Thus, the tree is executed in four consecutive phases: (1) build R1’s hash
table, (2) probe it with R2 and build Temp1’s hash table, (3) probe it with R3 and
build Temp2’s hash table, (4) probe it with R3 and produce the result. Figure 8.13b
shows a pipeline execution. The tree can be executed in two phases if enough
memory is available to build the hash tables: (1) build the tables for R1 R3 and R4,
(2) execute Probe1, Probe2, and Probe3 in pipeline. �

The set of nodes where a relation is stored is called its home. The home of an
operator is the set of nodes where it is executed and it must be the home of its
operands in order for the operator to access its operand. For binary operators such
as join, this might imply repartitioning one of the operands. The optimizer might
even sometimes find that repartitioning both the operands is of interest. Operator
trees bear execution annotations to indicate repartitioning.

Figure 8.14 shows four operator trees that represent execution plans for a three-
way join. Operator trees may be linear, i.e., at least one operand of each join node
is a base relation or bushy. It is convenient to represent pipelined relations as the
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Fig. 8.14 Execution plans as operator trees. (a) Left deep. (b) Right deep. (c) Zigzag. (d) Bushy

right-hand side input of an operator. Thus, right-deep trees express full pipelining,
while left-deep trees express full materialization of all intermediate results. Thus,
assuming enough memory to hold the left-hand side relations, long right-deep trees
are more efficient then corresponding left-deep trees. In a left-deep tree such as that
of Fig. 8.14a, only the last operator can consume its right input relation in pipeline
provided that the left input relation can be entirely stored in main memory.

Parallel tree formats other than left or right deep are also interesting. For example,
bushy trees (Fig. 8.14d) are the only ones to allow independent parallelism and
some pipeline parallelism. Independent parallelism is useful when the relations are
partitioned on disjoint homes. Suppose that the relations in Fig. 8.14d are partitioned
such that R1 and R2 have the same home h1 and R3 and R4 have the same home
h2 that is different than h1. Then, the two joins of the base relations could be
independently executed in parallel by the set of nodes that constitutes h1 and h2.

When pipeline parallelism is beneficial, zigzag trees, which are intermediate
formats between left-deep and right-deep trees, can sometimes outperform right-
deep trees due to a better use of main memory. A reasonable heuristic is to favor
right-deep or zigzag trees when relations are partially fragmented on disjoint homes
and intermediate relations are rather large. In this case, bushy trees will usually
need more phases and take longer to execute. On the contrary, when intermediate
relations are small, pipelining is not very efficient because it is difficult to balance
the load between the pipeline stages.

With the operator trees above, operators must capture parallelism, which
requires repartitioning input relations. This is exemplified in the PHJ algorithm
(see Sect. 8.4.1.2), where input relations are partitioned based on the same hash
function applied to the join attribute, followed by a parallel join on local partitions.
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Fig. 8.15 Operator tree with exchange operators. (a) Sequential operator tree. (b) Parallel operator
tree

To ease navigation in the search space by the optimizer, data repartitioning can be
encapsulated in an exchange operator. Depending on how partitioning is done,
we can have different exchange operators such as hashed partitioning, range
partitioning, or replicating data to a number of nodes. Examples of uses of exchange
operators are:

• Parallel hash join: hashed partitioning of the input relations on join attribute
followed by local join;

• Parallel nested loop join: replicating the inner relation on the nodes where the
outer relation is partitioned, followed by local join;

• Parallel range sort: range partitioning followed by local sort.

Figure 8.15 shows an example of operator tree with exchange operators. The
join operation is done by hashed partitioning of the input relations on A (operators
Xchg1 and Xchg2) followed by local join. The project operations are done by
duplicate elimination by hashing (operator Xchg3), followed by local project.

8.4.2.2 Cost Model

Recall that the optimizer cost model is responsible for estimating the cost of a given
execution plan. It consists of two parts: architecture-dependent and architecture-
independent. The architecture-independent part is constituted by the cost functions
for operator algorithms, e.g., nested loop for join and sequential access for select.
If we ignore concurrency issues, only the cost functions for data repartitioning and
memory consumption differ and constitute the architecture-dependent part. Indeed,
repartitioning a relation’s tuples in a shared-nothing system implies transfers of data
across the interconnect, whereas it reduces to hashing in shared-memory systems.
Memory consumption in the shared-nothing case is complicated by interoperator
parallelism. In shared-memory systems, all operators read and write data through
a global memory, and it is easy to test whether there is enough space to execute
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them in parallel, i.e., the sum of the memory consumption of individual operators
is less than the available memory. In shared-nothing, each processor has its own
memory, and it becomes important to know which operators are executed in parallel
on the same processor. Thus, for simplicity, we can assume that the set of processors
(home) assigned to operators do not overlap, i.e., either the intersection of the set of
processors is empty or the sets are identical.

The total time of a plan can be computed by a formula that simply adds all CPU,
I/O, and communication cost components as in distributed query optimization. The
response time is more involved as it must take pipelining into account.

The response time of plan p, scheduled in phases (each denoted by ph), is
computed as follows:

RT (p) =
∑
ph∈p

(maxOp∈ph(respT ime(Op) + pipe_delay(Op))

+ store_delay(ph))

where Op denotes an operator, respT ime(Op) is the response time of Op,
pipe_delay(Op) is the waiting period of Op necessary for the producer to deliver
the first result tuples (it is equal to 0 if the input relations of Op are stored),
store_delay(ph) is the time necessary to store the output result of phase ph (it
is equal to 0 if ph is the last phase, assuming that the results are delivered as soon
as they are produced).

To estimate the cost of an execution plan, the cost model uses database statistics
and organization information, such as relation cardinalities and partitioning, as with
distributed query optimization.

8.4.2.3 Search Strategy

The search strategy does not need to be different from either centralized or
distributed query optimization. However, the search space tends to be much
larger because there are more parameters that impact parallel execution plans, in
particular, pipeline and store annotations. Thus, randomized search strategies such
as Iterative Improvement and Simulated Annealing generally outperform traditional
deterministic search strategies in parallel query optimization. Another interesting,
yet simple approach to reduce the search space is the two phase optimization
strategy proposed for XPRS, a shared-memory parallel DBMS. First, at compile
time, the optimal query plan based on a centralized cost model is produced. Then,
at execution time, runtime parameters such as available buffer size and number of
free processors are considered to parallelize the query plan. This approach is shown
to almost always produce optimal plans.
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8.5 Load Balancing

Good load balancing is crucial for the performance of a parallel system. The
response time of a set of parallel operators is that of the longest one. Thus,
minimizing the time of the longest one is important for minimizing response time.
Balancing the load of different nodes is also essential to maximize throughput.
Although the parallel query optimizer incorporates decisions on how to execute a
parallel execution plan, load balancing can be hurt by several problems incurring
at execution time. Solutions to these problems can be obtained at the intra and
interoperator levels. In this section, we discuss these parallel execution problems
and their solutions.

8.5.1 Parallel Execution Problems

The principal problems introduced by parallel query execution are initialization,
interference, and skew.

Initialization

Before the execution takes place, an initialization step is necessary. This step
is generally sequential and includes task (or thread) creation and initialization,
communication initialization, etc. The duration of this step is proportional to the
degree of parallelism and can actually dominate the execution time of simple
queries, e.g., a select query on a single relation. Thus, the degree of parallelism
should be fixed according to query complexity.

A formula can be developed to estimate the maximal speed-up reachable during
the execution of an operator and to deduce the optimal number of processors. Let
us consider the execution of an operator that processes N tuples with n processors.
Let c be the average processing time of each tuple and a the initialization time per
processor. In the ideal case, the response time of the operator execution is

ResponseT ime = (a ∗ n) + c ∗ N

n

By derivation, we can obtain the optimal number of processors nopt to allocate
and the maximal achievable speed-up (Speedmax).

nopt =
√
c ∗ N

a
Speedmax = nopt

2

The optimal number of processors (nopt ) is independent of n and only depends
on the total processing time and initialization time. Thus, maximizing the degree of
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parallelism for an operator, e.g., using all available processors, can hurt speed-up
because of the overhead of initialization.

Interference

A highly parallel execution can be slowed down by interference. Interference occurs
when several processors simultaneously access the same resource, hardware, or
software. A typical example of hardware interference is the contention created
on the interconnect of a shared-memory system. When the number of processors
is increased, the number of conflicts on the interconnect increases, thus limiting
the extensibility of shared-memory systems. A solution to these interferences is to
duplicate shared resources. For instance, disk access interference can be eliminated
by adding several disks and partitioning the relations.

Software interference occurs when several processors want to access shared
data. To prevent incoherence, mutual exclusion variables are used to protect shared
data, thus blocking all but one processor that accesses the shared data. This is
similar to the locking-based concurrency control algorithms (see Chap. 5). However,
shared variables may well become the bottleneck of query execution, creating hot
spots. A typical example of software interference is the access of database internal
structures such as indexes and buffers. For simplicity, the earlier versions of database
systems were protected by a unique mutual exclusion variable, which incurred much
overhead.

A general solution to software interference is to partition the shared resource into
several independent resources, each protected by a different mutual exclusion vari-
able. Thus, two independent resources can be accessed in parallel, which reduces
the probability of interference. To further reduce interference on an independent
resource (e.g., an index structure), replication can be used. Thus, access to replicated
resources can also be parallelized.

Skew

Load balancing problems can arise with intraoperator parallelism (variation in
partition size), namely data skew, and interoperator parallelism (variation in the
complexity of operators).

The effects of skewed data distribution on a parallel execution can be classified
as follows: Attribute value skew (AVS) is skew inherent in the data (e.g., there are
more citizens in Paris than in Waterloo), while tuple placement skew (TPS) is the
skew introduced when the data is initially partitioned (e.g., with range partitioning).
Selectivity skew (SS) is introduced when there is variation in the selectivity of select
predicates on each node. Redistribution skew (RS) occurs in the redistribution step
between two operators. It is similar to TPS. Finally join product skew (JPS) occurs
because the join selectivity may vary between nodes. Figure 8.16 illustrates this
classification on a query over two relations R and S that are poorly partitioned.
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Fig. 8.16 Data skew example

The boxes are proportional to the size of the corresponding partitions. Such poor
partitioning stems from either the data (AVS) or the partitioning function (TPS).
Thus, the processing times of the two instances Scan1 and Scan2 are not equal. The
case of the join operator is worse. First, the number of tuples received is different
from one instance to another because of poor redistribution of the partitions of R
(RS) or variable selectivity according to the partition of R processed (SS). Finally,
the uneven size of S partitions (AVS/TPS) yields different processing times for
tuples sent by the scan operator and the result size is different from one partition
to the other due to join selectivity (JPS).

8.5.2 Intraoperator Load Balancing

Good intraoperator load balancing depends on the degree of parallelism and the
allocation of processors for the operator. For some algorithms, e.g., PHJ, these
parameters are not constrained by the placement of the data. Thus, the home of the
operator (the set of processors where it is executed) must be carefully decided. The
skew problem makes it hard for the parallel query optimizer to make this decision
statically (at compile time) as it would require a very accurate and detailed cost
model. Therefore, the main solutions rely on adaptive or specialized techniques that
can be incorporated in a hybrid query optimizer. We describe below these techniques
in the context of parallel join processing, which has received much attention. For
simplicity, we assume that each operator is given a home as decided by the query
processor (either statically or just before execution).



8.5 Load Balancing 377

Adaptive Techniques

The main idea is to statically decide on an initial allocation of the processors
to the operator (using a cost model) and, at execution time, adapt to skew
using load reallocation. A simple approach to load reallocation is to detect the
oversized partitions and partition them again onto several processors (among the
processors already allocated to the operation) to increase parallelism. This approach
is generalized to allow for more dynamic adjustment of the degree of parallelism.
It uses specific control operators in the execution plan to detect whether the static
estimates for intermediate result sizes will differ from the runtime values. During
execution, if the difference between the estimate and the real value is sufficiently
high, the control operator performs relation redistribution in order to prevent join
product skew and redistribution skew. Adaptive techniques are useful to improve
intraoperator load balancing in all kinds of parallel architectures. However, most
of the work has been done in the context of shared-nothing where the effects of
load unbalance are more severe on performance. DBS3 has pioneered the use of an
adaptive technique based on relation partitioning (as in shared-nothing) for shared-
memory. By reducing processor interference, this technique yields excellent load
balancing for intraoperator parallelism.

Specialized Techniques

Parallel join algorithms can be specialized to deal with skew. One approach is to
use multiple join algorithms, each specialized for a different degree of skew, and
to determine, at execution time, which algorithm is best. It relies on two main
techniques: range partitioning and sampling. Range partitioning is used instead of
hash partitioning (in the parallel hash join algorithm) to avoid redistribution skew
of the building relation. Thus, processors can get partitions of equal numbers of
tuples, corresponding to different ranges of join attribute values. To determine the
values that delineate the range values, sampling of the building relation is used to
produce a histogram of the join attribute values, i.e., the numbers of tuples for each
attribute value. Sampling is also useful to determine which algorithm to use and
which relation to use for building or probing. Using these techniques, the parallel
hash join algorithm can be adapted to deal with skew as follows:

1. Sample the building relation to determine the partitioning ranges.
2. Redistribute the building relation to the processors using the ranges. Each

processor builds a hash table containing the incoming tuples.
3. Redistribute the probing relation using the same ranges to the processors. For

each tuple received, each processor probes the hash table to perform the join.

This algorithm can be further improved to deal with high skew using additional
techniques and different processor allocation strategies. A similar approach is to
modify the join algorithms by inserting a scheduling step that is in charge of
redistributing the load at runtime.
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8.5.3 Interoperator Load Balancing

In order to obtain good load balancing at the interoperator level, it is necessary
to choose, for each operator, how many and which processors to assign for its
execution. This should be done taking into account pipeline parallelism, which
requires interoperator communication. This is harder to achieve in shared-nothing
for the following reasons: First, the degree of parallelism and the allocation of
processors to operators, when decided in the parallel optimization phase, are based
on a possibly inaccurate cost model. Second, the choice of the degree of parallelism
is subject to errors because both processors and operators are discrete entities.
Finally, the processors associated with the latest operators in a pipeline chain may
remain idle a significant time. This is called the pipeline delay problem.

The main approach in shared-nothing is to determine dynamically (just before the
execution) the degree of parallelism and the localization of the processors for each
operator. For instance, the rate match algorithm uses a cost model in order to match
the rate at which tuples are produced and consumed. It is the basis for choosing the
set of processors that will be used for query execution (based on available memory,
CPU, and disk utilization). Many other algorithms are possible for the choice of
the number and localization of processors, for instance, by maximizing the use of
several resources, using statistics on their usage.

In shared-disk and shared-memory, there is more flexibility since all processors
have equal access to the disks. Since there is no need for physical relation partition-
ing, any processor can be allocated to any operator. In particular, a processor can
be allocated all the operators in the same pipeline chain, thus, with no interoperator
parallelism. However, interoperator parallelism is useful for executing independent
pipeline chains. The approach proposed in XPRS for shared-memory allows the
parallel execution of independent pipeline chains, called tasks. The main idea is to
combine I/O-bound and CPU-bound tasks to increase system resource utilization.
Before execution, a task is classified as I/O-bound or CPU-bound using cost model
information as follows. Let us suppose that, if executed sequentially, task t generates
disk accesses at rate IOrate(t), e.g., in numbers of disk accesses per second. Let us
consider a shared-memory system with n processors and a total disk bandwidth
of B (numbers of disk accesses per second). Task t is defined as I/O-bound if
IOrate(t) > B/n and CPU-bound otherwise. CPU-bound and I/O-bound talks can
then be run in parallel at their optimal I/O-CPU balance point. This is accomplished
by dynamically adjusting the degree of intraoperator parallelism of the tasks in order
to reach maximum resource utilization.

8.5.4 Intraquery Load Balancing

Intraquery load balancing must combine intra and interoperator parallelism. To
some extent, given a parallel architecture, the techniques for either intra or
interoperator load balancing we just presented can be combined. However, in
shared-nothing clusters with shared-memory nodes (or multicore processors), the



8.5 Load Balancing 379

R1 R2 R3 R4

(a)

Build2

Probe1

Scan(R2)
Build1

Scan(R1)

Probe3

Probe2

Scan(R4)

Build3

Scan(R3)

(b)

Fig. 8.17 A join tree and associated operator tree. (a) Join tree. (b) Operator tree (ellipses are
pipeline chains)

problems of load balancing are exacerbated because they must be addressed at
two levels, locally among the processors or cores of each shared-memory node
(SM-node) and globally among all nodes. None of the approaches for intra and
interoperator load balancing just discussed can be easily extended to deal with this
problem. Load balancing strategies for shared-nothing would experience even more
severe problems worsening (e.g., complexity and inaccuracy of the cost model). On
the other hand, adapting dynamic solutions developed for shared-memory systems
would incur high communication overhead.

A general solution to load balancing is the execution model called Dynamic
Processing (DP). The fundamental idea is that the query is decomposed into self-
contained units of sequential processing, each of which can be carried out by any
processor. Intuitively, a processor can migrate horizontally (intraoperator paral-
lelism) and vertically (interoperator parallelism) along the query operators. This
minimizes the communication overhead of internode load balancing by maximizing
intra and interoperator load balancing within shared-memory nodes. The input to
the execution model is a parallel execution plan as produced by the optimizer, i.e.,
an operator tree with operator scheduling and allocation of computing resources to
operators. The operator scheduling constraints express a partial order among the
operators of the query: Op1 ≺ Op2 indicates that operator Op1 cannot start before
operator Op2.

Example 8.5 Figure 8.17 shows a join tree with four relations R1, R2, R3, and
R4, and the corresponding operator tree with the pipeline chains clearly identified.
Assuming that parallel hash join is used, the operator scheduling constraints are
between the associated build and probe operators:

Build1 ≺ Probe1
Build2 ≺ Probe3
Build3 ≺ Probe2
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There are also scheduling heuristics between operators of different pipeline
chains that follow from the scheduling constraints :

Heuristic1: Build1 ≺ Scan(R2) Build3 ≺ Scan(R4), Build2 ≺ Scan(R3)
Heuristic2: Build2 ≺ Scan(R3)

Assuming three SM-nodes i, j , and k with R1 stored at node i, R2 and R3 at node
j , and R4 at node k, we can have the following operator homes:

home (Scan(R1)) = i

home (Build1, Probe1, Scan(R2), Scan(R3)) = j

home (Scan(R4)) = k

home (Build2, Build3, Probe2, Probe3) = j and k

�
Given such an operator tree, the problem is to produce an execution that

minimizes response time. This can be done by using a dynamic load balancing
mechanism at two levels: (i) within an SM-node, load balancing is achieved via
fast interprocess communication; (ii) between SM-nodes, more expensive message-
passing communication is needed. Thus, the problem is to come up with an
execution model so that the use of local load balancing is maximized, while the
use of global load balancing (through message passing) is minimized.

We call activation the smallest unit of sequential processing that cannot be
further partitioned. The main property of the DP model is to allow any processor to
process any activation of its SM-node. Thus, there is no static association between
threads and operators. This yields good load balancing for both intraoperator and
interoperator parallelism within an SM-node, and thus reduces to the minimum the
need for global load balancing, i.e., when there is no more work to do in an SM-
node.

The DP execution model is based on a few concepts: activations, activation
queues, and threads.

Activations

An activation represents a sequential unit of work. Since any activation can be
executed by any thread (by any processor), activations must be self-contained
and reference all information necessary for their execution: the code to execute
and the data to process. Two kinds of activations can be distinguished: trigger
activations and data activations. A trigger activation is used to start the execution
of a leaf operator, i.e., scan. It is represented by an (Operator, Partition) pair
that references the scan operator and the base relation partition to scan. A data
activation describes a tuple produced in pipeline mode. It is represented by an
(Operator, T uple, Partition) triple that references the operator to process. For
a build operator, the data activation specifies that the tuple must be inserted in the
hash table of the bucket and for a probe operator, that the tuple must be probed with



8.5 Load Balancing 381

the partition’s hash table. Although activations are self-contained, they can only be
executed on the SM-node where the associated data (hash tables or base relations)
are.

Activation Queues

Moving data activations along pipeline chains is done using activation queues
associated with operators. If the producer and consumer of an activation are on
the same SM-node, then the move is done via shared-memory. Otherwise, it
requires message passing. To unify the execution model, queues are used for trigger
activations (inputs for scan operators) as well as tuple activations (inputs for build
or probe operators). All threads have unrestricted access to all queues located on
their SM-node. Managing a small number of queues (e.g., one for each operator)
may yield interference. To reduce interference, one queue is associated with each
thread working on an operator. Note that a higher number of queues would likely
trade interference for queue management overhead. To further reduce interference
without increasing the number of queues, each thread is given priority access to a
distinct set of queues, called its primary queues. Thus, a thread always tries to first
consume activations in its primary queues. During execution, operator scheduling
constraints may imply that an operator is to be blocked until the end of some other
operators (the blocking operators). Therefore, a queue for a blocked operator is also
blocked, i.e., its activations cannot be consumed but they can still be produced if
the producing operator is not blocked. When all its blocking operators terminate,
the blocked queue becomes consumable, i.e., threads can consume its activations.
This is illustrated in Fig. 8.18 with an execution snapshot for the operator tree of
Fig. 8.17.

Threads

A simple strategy for obtaining good load balancing inside an SM-node is to allocate
a number of threads that is much higher than the number of processors and let the
operating system do thread scheduling. However, this strategy incurs high numbers
of system calls due to thread scheduling and interference. Instead of relying on
the operating system for load balancing, it is possible to allocate only one thread
per processor per query. This is made possible by the fact that any thread can
execute any operator assigned to its SM-node. The advantage of this one thread per
processor allocation strategy is to significantly reduce the overhead of interference
and synchronization, provided that a thread is never blocked.
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Fig. 8.18 Snapshot of an execution

Load balancing within an SM-node is obtained by allocating all activation queues
in a segment of shared-memory and by allowing all threads to consume activations
in any queue. To limit thread interference, a thread will consume as much as possible
from its set of primary queues before considering the other queues of the SM-
node. Therefore, a thread becomes idle only when there is no more activation of
any operator, which means that there is no more work to do on its SM-node that is
starving.

When an SM-node starves, we share the load of another SM-node by acquiring
some of its workload. However, acquiring activations (through message passing)
incurs communication overhead. Furthermore, activation acquisition is not sufficient
since associated data, i.e., hash tables, must also be acquired. Thus, the benefit of
acquiring activations and data should be dynamically estimated.

The amount of load balancing depends on the number of operators that are
concurrently executed, which provides opportunities for finding some work to share
in case of idle times. Increasing the number of concurrent operators can be done by
allowing concurrent execution of several pipeline chains or by using nonblocking
hash join algorithms, which allows the concurrent execution of all the operators
of the bushy tree. On the other hand, executing more operators concurrently
can increase memory consumption. Static operator scheduling as provided by the
optimizer should avoid memory overflow and solve this trade-off.
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8.6 Fault-Tolerance

In this section, we discuss what happens in the advent of failures. There are several
issues raised by failures. The first is how to maintain consistency despite failures.
Second, for outstanding transactions, there is the issue of how to perform failover.
Third, when a failed replica is reintroduced (following recovery), or a fresh replica
is introduced in the system, the current state of the database needs to be recovered.
The main concern is how to cope with failures. To start with, failures need to be
detected. In group communication based approaches (see Chap. 6), failure detection
is provided by the underlying group communication (typically based on some
kind of heartbeat mechanism). Membership changes are notified as events.1 By
comparing the new membership with the previous one, it becomes possible to
learn which replicas have failed. Group communication also guarantees that all
the connected replicas share the same membership notion. For approaches that are
not based on group communication failure detection can be either delegated to the
underlying communication layer (e.g., TCP/IP) or implemented as an additional
component of the replication logic. However, some agreement protocol is needed
to ensure that all connected replicas share the same membership notion of which
replicas are operational and which ones are not. Otherwise, inconsistencies can
arise.

Failures should also be detected at the client side by the client API. Clients
typically connect through TCP/IP and can suspect of failed nodes via broken
connections. Upon a replica failure, the client API must discover a new replica,
reestablish a new connection to it, and, in the simplest case, retransmit the
last outstanding transaction to the just connected replica. Since retransmissions
are needed, duplicate transactions might be delivered. This requires a duplicate
transaction detection and removal mechanism. In most cases, it is sufficient to have
a unique client identifier, and a unique transaction identifier per client. The latter is
incremented for each new submitted transaction. Thus, the cluster can track whether
a client transaction has already been processed and if so, discard it.

Once a replica failure has been detected, several actions should be taken. These
actions are part of the failover process, which must redirect the transactions from a
failed node to another replica node, in a way that is as transparent as possible for the
clients. Failover highly depends on whether or not the failed replica was a master.
If a nonmaster replica fails, no action needs to be taken on the cluster side. Clients
with outstanding transactions connect to a new replica node and resubmit the last
transactions. However, the interesting question is which consistency definition is
provided. Recall from Sect. 6.1 that, in a replicated database, one-copy serializabil-
itycan be violated as a result of serializing transactions at different nodes in reverse
order. Due to failover, the transactions may also be processed in such a way that
one-copy serializability is compromised.

1Group communication literature uses the term view change to denote the event of a membership
change. Here, we will not use the term to avoid confusion with the database view concept.
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In most replication approaches, failover is handled by aborting all ongoing
transactions to prevent these situations. However, this way of handling failures
has an impact on clients that must resubmit the aborted transactions. Since clients
typically do not have transactional capabilities to undo the results of a conversational
interaction, this can be very complex. The concept of highly available transactions
makes failures totally transparent to clients so they do not observe transaction aborts
due to failures.

The actions to be taken in the case of a master replica failure are more involved
as a new master should be appointed to take over the failed master. The appointment
of a new master should be agreed upon by all the replicas in the cluster. In group-
based replication, thanks to the membership change notification, it is enough to
apply a deterministic function over the new membership to assign masters (all nodes
receive exactly the same list of up and connected nodes).

Another essential aspect of fault-tolerance is recovery after failure. High avail-
ability requires to tolerate failures and continue to provide consistent access to
data despite failures. However, failures diminish the degree of redundancy in the
system, thereby degrading availability and performance. Hence, it is necessary to
reintroduce failed or fresh replicas in the system to maintain or improve availability
and performance. The main difficulty is that replicas do have state and a failed
replica may have missed updates while it was down. Thus, a recovering failed
replica needs to receive the lost updates before being able to start processing new
transactions. A solution is to stop transaction processing. Thus, a quiescent state
is directly attained that can be transferred by any of the working replicas to the
recovering one. Once the recovering replica has received all the missed updates,
transaction processing can resume and all replicas can process new transactions.

8.7 Database Clusters

A parallel database system typically implements the parallel data management
functions in a tightly coupled fashion, with all homogeneous nodes under the full
control of the parallel DBMS. A simpler (yet not as efficient) solution is to use a
database cluster, which is a cluster of autonomous databases, each managed by an
off-the-shelf DBMS. A major difference with a parallel DBMS implemented on a
cluster is the use of a “black-box” DBMS at each node. Since the DBMS source code
is not necessarily available and cannot be changed to be “cluster-aware,” parallel
data management capabilities must be implemented via middleware. This approach
has been successfully adopted in the MySQL or PostgreSQL clusters.

Much research has been devoted to take full advantage of the cluster environment
(with fast, reliable communication) in order to improve performance and availability
by exploiting data replication. The main results of this research are new techniques
for replication, load balancing, and query processing. In this section, we present
these techniques after introducing a database cluster architecture.



8.7 Database Clusters 385

DBcluster
middleware

DBMS
· · ·

DBcluster
middleware

DBMS

Interconnect

Fig. 8.19 A shared-nothing database cluster

8.7.1 Database Cluster Architecture

Figure 8.19 illustrates a database cluster with a shared-nothing architecture. Parallel
data management is done by independent DBMSs orchestrated by a middleware
replicated at each node. To improve performance and availability, data can be
replicated at different nodes using the local DBMS. Client applications interact
with the middleware in a classical way to submit database transactions, i.e.,
ad hoc queries, transactions, or calls to stored procedures. Some nodes can be
specialized as access nodes to receive transactions, in which case they share a global
directory service that captures information about users and databases. The general
processing of a transaction to a single database is as follows. First, the transaction
is authenticated and authorized using the directory. If successful, the transaction is
routed to a DBMS at some, possibly different, node to be executed. We will see
in Sect. 8.7.4 how this simple model can be extended to deal with parallel query
processing, using several nodes to process a single query.

As in a parallel DBMS, the database cluster middleware has several software
layers: transaction load balancer, replication manager, query processor, and fault-
tolerance manager. The transaction load balancer triggers transaction execution at
the best node, using load information obtained from node probes. The “best” node
is defined as the one with lightest transaction load. The transaction load balancer
also ensures that each transaction execution obeys the ACID properties, and then
signals to the DBMS to commit or abort the transaction. The replication manager
manages access to replicated data and assures strong consistency in such a way
that transactions that update replicated data are executed in the same serial order
at each node. The query processor exploits both inter and intraquery parallelism.
With interquery parallelism, the query processor routes each submitted query to one
node and, after query completion, sends results to the client application. Intraquery
parallelism is more involved. As the black-box DBMSs are not cluster-aware, they
cannot interact with one another in order to process the same query. Then, it is
up to the query processor to control query execution, final result composition, and
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load balancing. Finally, the fault-tolerance manager provides online recovery and
failover.

8.7.2 Replication

As in distributed DBMSs, replication can be used to improve performance and
availability. In a database cluster, the fast interconnect and communication system
can be exploited to support one-copy serializability while providing scalability
(to achieve performance with large numbers of nodes) and autonomy (to exploit
black-box DBMS). A cluster provides a stable environment with little evolution
of the topology (e.g., as a result of added nodes or communication link failures).
Thus, it is easier to support a group communication system that manages reliable
communication between groups of nodes. Group communication primitives (see
Sect. 6.4) can be used with either eager or lazy replication techniques as a means to
attain atomic information dissemination (i.e., instead of the expensive 2PC).

We present now another protocol, called preventive replication, which is lazy
and provides support for one-copy serializability and scalability. Preventive repli-
cation also preserves DBMS autonomy. Instead of using total ordered multicast,
it uses FIFO reliable multicast that is simpler and more efficient. The principle
is the following. Each incoming transaction T to the system has a chronological
timestamp ts(T ) = C, and is multicast to all other nodes where there is a copy.
At each node, a time delay is introduced before starting the execution of T . This
delay corresponds to the upper bound of the time needed to multicast a message (a
synchronous system with bounded computation and transmission time is assumed).
The critical issue is the accurate computation of the upper bounds for messages (i.e.,
delay). In a cluster system, the upper bound can be computed quite accurately. When
the delay expires, all transactions that may have committed before C are guaranteed
to be received and executed before T , following the timestamp order (i.e., total
order). Hence, this approach prevents conflicts and enforces strong consistency
in database clusters. Introducing delay times has also been exploited in several
lazy centralized replication protocols for distributed systems. The validation of the
preventive replication protocol using experiments with the TPC-C benchmark over
a cluster of 64 nodes running the PostgreSQL DBMS have shown excellent scale-up
and speed-up.

8.7.3 Load Balancing

In a database cluster, replication offers good load balancing opportunities. With
eager or preventive replication (see Sect. 8.7.2), query load balancing is easy to
achieve. Since all copies are mutually consistent, any node that stores a copy of
the transaction data, e.g., the least loaded node, can be chosen at runtime by a
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conventional load balancing strategy. Transaction load balancing is also easy in
the case of lazy distributed replication since all master nodes need to eventually
perform the transaction. However, the total cost of transaction execution at all nodes
may be high. By relaxing consistency, lazy replication can better reduce transaction
execution cost and thus increase performance of both queries and transactions. Thus,
depending on the consistency/performance requirements, eager and lazy replication
are both useful in database clusters.

8.7.4 Query Processing

In a database cluster, parallel query processing can be used successfully to yield
high performance. Interquery parallelism is naturally obtained as a result of load
balancing and replication as discussed in the previous section. Such parallelism
is primarily useful to increase the throughput of transaction-oriented applications
and, to some extent, to reduce the response time of transactions and queries. For
OLAP applications that typically use ad hoc queries, which access large quantities of
data, intraquery parallelism is essential to further reduce response time. Intraquery
parallelism consists of processing the same query on different partitions of the
relations involved in the query.

There are two alternative solutions for partitioning relations in a database cluster:
physical and virtual. Physical partitioning defines relation partitions, essentially as
horizontal fragments, and allocates them to cluster nodes, possibly with replication.
This resembles fragmentation and allocation design in distributed databases (see
Chap. 2) except that the objective is to increase intraquery parallelism, not locality
of reference. Thus, depending on the query and relation sizes, the degree of
partitioning should be much finer. Physical partitioning in database clusters for
decision-support can use small grain partitions. Under uniform data distribution, this
solution is shown to yield good intraquery parallelism and outperform interquery
parallelism. However, physical partitioning is static and thus very sensitive to data
skew conditions and the variation of query patterns that may require periodic
repartitioning.

Virtual partitioning avoids the problems of static physical partitioning using a
dynamic approach and full replication (each relation is replicated at each node).
In its simplest form, which we call simple virtual partitioning (SVP) , virtual
partitions are dynamically produced for each query and intraquery parallelism
is obtained by sending subqueries to different virtual partitions. To produce the
different subqueries, the database cluster query processor adds predicates to the
incoming query in order to restrict access to a subset of a relation, i.e., a virtual
partition. It may also do some rewriting to decompose the query into equivalent
subqueries followed by a composition query. Then, each DBMS that receives a
subquery is forced to process a different subset of data items. Finally, the partitioned
result needs to be combined by an aggregate query.
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Example 8.6 Let us illustrate SVP with the following query Q:

SELECT PNO, AVG(DUR)
FROM WORKS
WHERE SUM(DUR) > 200
GROUP BY PNO

A generic subquery on a virtual partition is obtained by adding to Q’s
where clause the predicate “and PNO >= ‘P1’ and PNO < ‘P2’.” By binding
[‘P1’, ‘P2’] to n subsequent ranges of PNO values, we obtain n subqueries, each
for a different node on a different virtual partition of WORKS. Thus, the degree of
intraquery parallelism is n. Furthermore, the AVG(DUR) operation must be rewritten
as SUM(DUR), COUNT(DUR) in the subquery. Finally, to obtain the correct result for
AVG(DUR), the composition query must perform SUM(DUR)/SUM(COUNT(DUR))

over the n partial results.
The performance of each subquery’s execution depends heavily on the access

methods available on the partitioning attribute (PNO). In this example, a clustered
index on PNO would be best. Thus, it is important for the query processor to know
the access methods available to decide, according to the query, which partitioning
attribute to use. �

SVP allows great flexibility for node allocation during query processing since
any node can be chosen for executing a subquery. However, not all kinds of queries
can benefit from SVP and be parallelized. We can classify OLAP queries such that
queries of the same class have similar parallelization properties. This classification
relies on how the largest relations, called fact tables in a typical OLAP application,
are accessed. The rationale is that the virtual partitioning of such relations yields
higher intraoperator parallelism. Three main classes are identified:

1. Queries without subqueries that access a fact table.
2. Queries with a subquery that are equivalent to a query of Class 1.
3. Any other queries.

Queries of Class 2 need to be rewritten into queries of Class 1 in order for SVP
to apply, while queries of Class 3 cannot benefit from SVP.

SVP has some limitations. First, determining the best virtual partitioning
attributes and value ranges can be difficult since assuming uniform value distribution
is not realistic. Second, some DBMSs perform full table scans instead of indexed
access when retrieving tuples from large intervals of values. This reduces the
benefits of parallel disk access since one node could read an entire relation to access
a virtual partition. This makes SVP dependent on the underlying DBMS query
capabilities. Third, as a query cannot be externally modified while being executed,
load balancing is difficult to achieve and depends on the initial partitioning.

Fine-grained virtual partitioning addresses these limitations by using a large
number of subqueries instead of one per DBMS. Working with smaller subqueries
avoids full table scans and makes query processing less vulnerable to DBMS
idiosyncrasies. However, this approach must estimate the partition sizes, using



8.7 Database Clusters 389

database statistics and query processing time estimates. In practice, these estimates
are hard to obtain with black-box DBMSs.

Adaptive virtual partitioning (AVP) solves this problem by dynamically tuning
partition sizes, thus without requiring these estimates. AVP runs independently at
each participating cluster node, avoiding internode communication (for partition
size determination). Initially, each node receives an interval of values to work with.
These intervals are determined exactly as for SVP. Then, each node performs the
following steps:

1. Start with a very small partition size beginning with the first value of the received
interval.

2. Execute a subquery with this interval.
3. Increase the partition size and execute the corresponding subquery while the

increase in execution time is proportionally smaller than the increase in partition
size.

4. Stop increasing. A stable size has been found.
5. If there is performance degradation, i.e., there were consecutive worse execu-

tions, decrease size and go to Step 2.

Starting with a very small partition size avoids full table scans at the very
beginning of the process. This also avoids having to know the threshold after
which the DBMS does not use clustered indices and starts performing full table
scans. When partition size increases, query execution time is monitored allowing
determination of the point after which the query processing steps that are data size
independent do not influence too much total query execution time. For example, if
doubling the partition size yields an execution time that is twice the previous one,
this means that such a point has been found. Thus the algorithm stops increasing
the size. System performance can deteriorate due to DBMS data cache misses or
overall system load increase. It may happen that the size being used is too large and
has benefited from previous data cache hits. In this case, it may be better to shrink
partition size. That is precisely what step 5 does. It gives a chance to go back and
inspect smaller partition sizes. On the other hand, if performance deterioration was
due to a casual and temporary increase of system load or data cache misses, keeping
a small partition size can lead to poor performance. To avoid such a situation, the
algorithm goes back to Step 2 and restarts increasing sizes.

AVP and other variants of virtual partitioning have several advantages: flexibility
for node allocation, high availability because of full replication, and opportunities
for dynamic load balancing. But full replication can lead to high cost in disk usage.
To support partial replication, hybrid solutions have been proposed to combine
physical and virtual partitioning. The hybrid design uses physical partitioning for
the largest and most important relations and fully replicates the small tables. Thus,
intraquery parallelism can be achieved with lesser disk space requirements. The
hybrid solution combines AVP with physical partitioning. It solves the problem of
disk usage while keeping the advantages of AVP, i.e., full table scan avoidance and
dynamic load balancing.
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8.8 Conclusion

Parallel database systems have been exploiting multiprocessor architectures to
provide high-performance, high-availability, extensibility, and scalability with a
good cost/performance ratio. Furthermore, parallelism is the only viable solution
for supporting very large databases and applications within a single system.

Parallel database system architectures can be classified as shared-memory,
shared-disk, and shared-nothing. Each architecture has its advantages and lim-
itations. Shared-memory is used in tightly coupled NUMA multiprocessors or
multicore processors, and can provide the highest performance because of fast
memory access and great load balancing. However, it has limited extensibility
and scalability. Shared-disk and shared-nothing are used in computer clusters,
typically using multicore processors. With low latency networks (e.g., Infiniband
and Myrinet), they can provide high performance and scale up to very large
configurations (with thousands of nodes). Furthermore, the RDMA capability of
those networks can be exploited to make cost-effective NUMA clusters. Shared-disk
is typically used for OLTP workloads as it is simpler and has good load balancing.
However, shared-nothing remains the only choice for highly scalable systems, as
need in OLAP or big data, with the best cost/performance ratio.

Parallel data management techniques extend distributed database techniques.
However, the critical issues for such architectures are data partitioning, replication,
parallel query processing, load balancing, and fault-tolerance. The solutions to these
issues are more involved than in distributed DBMS because they must scale to high
numbers of nodes. Furthermore, recent advances in hardware/software such as low
latency interconnect, multicore processor nodes, large main memory, and RDMA
provide new opportunities for optimization. In particular, parallel algorithms for the
most demanding operators such as join and sort need be made NUMA-aware.

A database cluster is an important kind of parallel database system that uses
a black-box DBMS at each node. Much research has been devoted to take full
advantage of the cluster stable environment in order to improve performance and
availability by exploiting data replication. The main results of this research are new
techniques for replication, load balancing, and query processing.
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compared using a simple simulation model in [Breitbart and Silberschatz 1988]. The
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1986], Prisma/DB [Apers et al. 1992], Volcano [Graefe 1990], and XPRS [Hong
1992].
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in [Livny et al. 1987, Copeland et al. 1988, Hsiao and DeWitt 1991]. A scalable
solution is Gamma’s chained partitioning [Hsiao and DeWitt 1991], which stores
the primary and backup copy on two adjacent nodes. Associative access to a
partitioned relation using a global index is proposed in [Khoshafian and Valduriez
1987].

Parallel query optimization is treated in [Shekita et al. 1993], [Ziane et al. 1993],
and [Lanzelotte et al. 1994]. Our discussion of cost model in Sect. 8.4.2.2 is based
on [Lanzelotte et al. 1994]. Randomized search strategies are proposed in [Swami
1989, Ioannidis and Wong 1987]. XPRS uses a two phase optimization strategy
[Hong and Stonebraker 1993]. The exchange operator, which is the basis for parallel
repartitioning in parallel query processing, was proposed in the context of the
Volcano query evaluation system [Graefe 1990].

There is an extensive literature on parallel algorithms for database operators, in
particular sort and join. The objective of these algorithms is to maximize the degree
of parallelism, following Amdahl’s law [Amdahl 1967] that states that only part of
an algorithm can be parallelized. The seminal paper by [Bitton et al. 1983] proposes
and compares parallel versions of merge sort, nested loop join, and sort-merge join
algorithms. Valduriez and Gardarin [1984] propose the use of hashing for parallel
join and semijoin algorithms. A survey of parallel sort algorithms can be found in
[Bitton et al. 1984]. The specification of two main phases, build and probe, [DeWitt
and Gerber 1985] has been useful to understand parallel hash join algorithms. The
Grace hash join [Kitsuregawa et al. 1983], the hybrid hash join algorithm [DeWitt
et al. 1984, Shatdal et al. 1994], and the radix hash join [Manegold et al. 2002] have
been the basis for many variations in particular to exploit multicore processors and
NUMA [Barthels et al. 2015]. Other important join algorithms are the symmetric
hash join [Wilschut and Apers 1991] and the Ripple join [Haas and Hellerstein
1999b]. In [Barthels et al. 2015], the authors show that a radix hash join can perform
very well in large-scale shared-nothing clusters using RDMA.
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The parallel sort-merge join algorithm is gaining renewed interest in the context
of multicore and NUMA systems [Albutiu et al. 2012, Pasetto and Akhriev 2011].

Load balancing in parallel database systems has been extensively studied both in
the context of shared-memory and shared-disk [Lu et al. 1991, Shekita et al. 1993]
and shared-nothing [Kitsuregawa and Ogawa 1990, Walton et al. 1991, DeWitt
et al. 1992, Shatdal and Naughton 1993, Rahm and Marek 1995, Mehta and DeWitt
1995, Garofalakis and Ioannidis 1996]. The presentation of the Dynamic Processing
execution model in Sect. 8.5 is based on [Bouganim et al. 1996, 1999]. The rate
match algorithm is described in [Mehta and DeWitt 1995].

The effects of skewed data distribution on a parallel execution are introduced in
[Walton et al. 1991]. A general adaptive approach to dynamically adjust the degree
of parallelism using control operators is proposed in [Biscondi et al. 1996]. A good
approach to deal with data skew is to use multiple join algorithms, each specialized
for a different degree of skew, and to determine, at execution time, which algorithm
is best [DeWitt et al. 1992].

The content of Sect. 8.6 on fault-tolerance is based on [Kemme et al. 2001,
Jiménez-Peris et al. 2002, Perez-Sorrosal et al. 2006].

The concept of database cluster is defined in [Röhm et al. 2000, 2001].
Several protocols for scalable eager replication in database clusters using group
communication are proposed in [Kemme and Alonso 2000b,a, Patiño-Martínez et al.
2000, Jiménez-Peris et al. 2002]. Their scalability has been studied analytically in
[Jiménez-Peris et al. 2003]. Partial replication is studied in [Sousa et al. 2001].
The presentation of preventive replication in Sect. 8.7.2 is based on [Pacitti et al.
2005]. Load balancing in database clusters is addressed in [Milán-Franco et al. 2004,
Gançarski et al. 2007].

Most of the content of Sect. 8.7.4 is based on the work on adaptive virtual
partitioning [Lima et al. 2004] and hybrid partitioning [Furtado et al. 2008]. Physical
partitioning in database clusters for decision-support is addressed by [Stöhr et al.
2000], using small grain partitions. Akal et al. [2002] propose a classification
of OLAP queries such that queries of the same class have similar parallelization
properties.

Exercises

Problem 8.1 (*) Consider a shared-disk cluster and very big relations that need
to be partitioned across several disk units. How you would adapt the various
partitioning and replication techniques in Sect. 8.3 to take advantage of shared-disk?
Discuss the impact on query performance and fault-tolerance.

Problem 8.2 (**) Order-preserving hashing [Knuth 1973] could be used to parti-
tion a relation on an attribute A, so that the tuples in any partition i+1 have A values
higher than those of the tuples in partition i. Propose a parallel sort algorithm that
exploits order-preserving hashing. Discuss it advantages and limitations, compared
with the b-way merge sort algorithm in Sect. 8.4.1.1.
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Problem 8.3 Consider the parallel hash join algorithm in Sect. 8.4.1.2. Explain
what the build phase and probe phase are. Is the algorithm symmetric with respect
to its input relations?

Problem 8.4 (*) Consider the join of two relations R and S in a shared-nothing
cluster. Assume that S is partitioned by hashing on the join attribute. Modify the
parallel hash join algorithm in Sect. 8.4.1.2 to take advantage of this case. Discuss
the execution cost of this algorithm.

Problem 8.5 (**) Consider a simple cost model to compare the performance of
the three basic parallel join algorithms (nested loop join, sort-merge join, and hash
join). It is defined in terms of total communication cost (CCOM ) and processing cost
(CPRO ). The total cost of each algorithm is therefore

Cost (Alg.) = CCOM(Alg.) + CPRO(Alg.)

For simplicity, CCOM does not include control messages, which are necessary to
initiate and terminate local tasks. We denote by msg(#tup) the cost of transferring a
message of #tup tuples from one node to another. Processing costs (that include total
I/O and CPU cost) are based on the function CLOC(m, n) that computes the local
processing cost for joining two relations with cardinalities m and n. Assume that the
local join algorithm is the same for all three parallel join algorithms. Finally, assume
that the amount of work done in parallel is uniformly distributed over all nodes
allocated to the operator. Give the formulas for the total cost of each algorithm,
assuming that the input relations are arbitrary partitioned. Identify the conditions
under which an algorithm should be used.

Problem 8.6 Consider the following SQL query:

SELECT ENAME, DUR
FROM EMP, ASG, PROJ
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=PROJ.PNO
AND RESP="Manager"
AND PNAME="Instrumentation"

Give four possible operator trees: right-deep, left-deep, zigzag, and bushy. For
each one, discuss the opportunities for parallelism.

Problem 8.7 Consider a nine way join (ten relations are to be joined), calculate
the number of possible right-deep, left-deep, and bushy trees, assuming that each
relation can be joined with anyone else. What do you conclude about parallel
optimization?

Problem 8.8 (**) Propose a data placement strategy for a NUMA cluster (using
RDMA) that maximizes a combination of intranode parallelism (intraoperator
parallelism within shared-memory nodes) and internode parallelism (interoperator
parallelism across shared-memory nodes).
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Problem 8.9 (**) How should the DP execution model presented in Sect. 8.5.4 be
changed to deal with interquery parallelism?

Problem 8.10 (**) Consider a multiuser centralized database system. Describe the
main change to allow interquery parallelism from the database system developer and
administrator’s points of view. What are the implications for the end-user in terms
of interface and performance?

Problem 8.11 (*) Consider the database cluster architecture in Fig. 8.19. Assum-
ing that each cluster node can accept incoming transactions, make precise the
database cluster middleware box by describing the different software layers, and
their components and relationships in terms of data and control flow. What kind of
information need be shared between the cluster nodes? how?

Problem 8.12 (**) Discuss the issues of fault-tolerance for the preventive replica-
tion protocol (see Sect. 8.7.2).

Problem 8.13 (**) Compare the preventive replication protocol with the eager
replication protocol (see Chap. 6) in the context of a database cluster in terms
of: replication configurations supported, network requirements, consistency, perfor-
mance, fault-tolerance.

Problem 8.14 (**) Consider two relations R(A,B,C,D,E) and S(A,F,G,H). Assume
there is a clustered index on attribute A for each relation. Assuming a database
cluster with full replication, for each of the following queries, determine whether
Virtual Partitioning can be used to obtain intraquery parallelism and, if so, write the
corresponding subquery and the final result composition query.

(a) SELECT B, COUNT(C)
FROM R
GROUP BYB

(b) SELECT C, SUM(D), AVG(E)
FROM R
WHERE B=:v1
GROUP BY C

(c) SELECT B, SUM(E)
FROM. R, S
WHERE. R.A=S.A
GROUP BY B
HAVING COUNT(*) > 50

(d) SELECT B, MAX(D)
FROM+. R, S
WHERE C = (SELECT SUM(G) FROM S WHERE S.A=R.A)
GROUP BY B

(e) SELECT B, MIN(E)
FROM. R
WHERE D > (SELECT MAX(H) FROM S WHERE G >= :v1)
GROUP BY B
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