
Chapter 7
Database Integration—Multidatabase
Systems

Up to this point, we considered distributed DBMSs that are designed in a top-
down fashion. In particular, Chap. 2 focuses on techniques for partitioning and
allocating a database, while Chap. 4 focuses on distributed query processing over
such a database. These techniques and approaches are suitable for tightly integrated,
homogeneous distributed DBMSs. In this chapter, we focus on distributed databases
that are designed in a bottom-up fashion—we referred to these as multidatabase
systems in Chap. 1. In this case, a number of databases already exist, and the design
task involves integrating them into one database. The starting point of bottom-up
design is the set of individual local conceptual schemas (LCSs). The process consists
of integrating local databases with their (local) schemas into a global database and
generating a global conceptual schema (GCS) (also called the mediated schema).
Querying over a multidatabase system is more complicated in that applications
and users can either query using the GCS (or views defined on it) or through the
LCSs since each existing local database may already have applications running on
it. Therefore, the techniques required for query processing require adjustments to the
approach we discussed in Chap. 4 although many of those techniques carry over.

Database integration, and the related problem of querying multidatabases, is only
one part of the more general interoperability problem, which includes nondatabase
data sources and interoperability at the application level in addition to the database
level. We separate this discussion into three pieces: in this chapter, we focus on the
database integration and querying issues, we discuss the concerns related to web
data integration and access in Chap. 12, and we discuss the more general issue of
integrating data from arbitrary data sources in Chap. 10 under the title data lakes.

This chapter consists of two main sections. In Sect. 7.1, we discuss database
integration—the bottom-up design process. In Sect. 7.2 we discuss approaches to
querying these systems.
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7.1 Database Integration

Database integration can be either physical or logical. In the former, the source
databases are integrated and the integrated database is materialized. These are
known as data warehouses. The integration is aided by extract–transform–load
(ETL) tools that enable extraction of data from sources, its transformation to match
the GCS, and its loading (i.e., materialization). This process is depicted in Fig. 7.1.
In logical integration, the global conceptual (or mediated) schema is entirely virtual
and not materialized.

These two approaches are complementary and address differing needs. Data
warehousing supports decision-support applications, which are commonly termed
Online Analytical Processing (OLAP). Recall from Chap. 5 that OLAP applications
analyze historical, summarized data coming from a number of operational databases
through complex queries over potentially very large tables. Consequently, data
warehouses gather data from a number of operational databases and materialize
it. As updates happen on the operational databases, they are propagated to the data
warehouse, which is known as materialized view maintenance.

By contrast, in logical data integration, the integration is only virtual and there is
no materialized global database (see Fig. 1.13). The data resides in the operational
databases and the GCS provides a virtual integration for querying over the multiple
databases. In these systems, GCS may either be defined up-front and local databases
(i.e., LCSs) mapped to it, or it may be defined bottom-up, by integrating parts of the
LCSs of the local databases. Consequently, it is possible for the GCS not to capture
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Fig. 7.1 Data warehouse approach
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all of the information in each of the LCSs. User queries are posed over this global
schema, which are then decomposed and shipped to the local operational databases
for processing as is done in tightly integrated systems, with the main difference
being the autonomy and potential heterogeneity of the local systems. These have
important effects on query processing that we discuss in Sect. 7.2. Although there
is ample work on transaction management in these systems, supporting global
updates is quite difficult given the autonomy of the underlying operational DBMSs.
Therefore, they are primarily read-only.

Logical data integration and the resulting systems are known by a variety of
names; data integration and information integration are perhaps the most common
terms used in literature although these generally refer to more than database
integration and incorporate data from a variety of sources. In this chapter, we focus
on the integration of autonomous and (possibly) heterogeneous databases; thus, we
will use the term database integration or multidatabase systems (MDBSs).

7.1.1 Bottom-Up Design Methodology

Bottom-up design involves the process by which data from participating databases
can be (physically or logically) integrated to form a single cohesive global database.
As noted above, in some cases, the global conceptual (or mediated) schema is
defined first, in which case the bottom-up design involves mapping LCSs to this
schema. In other cases, the GCS is defined as an integration of parts of LCSs. In
this case, the bottom-up design involves both the generation of the GCS and the
mapping of individual LCSs to this GCS.

If the GCS is defined upfront, the relationship between the GCS and the LCSs
can be of two fundamental types: local-as-view and global-as-view. In local-as-
view (LAV) systems, the GCS definition exists, and each LCS is treated as a view
definition over it. In global-as-view systems (GAV), on the other hand, the GCS is
defined as a set of views over the LCSs. These views indicate how the elements
of the GCS can be derived, when needed, from the elements of LCSs. One way to
think of the difference between the two is in terms of the results that can be obtained
from each system . In GAV, the query results are constrained to the set of objects
that are defined in the GCS, although the local DBMSs may be considerably richer
(Fig. 7.2a). In LAV, on the other hand, the results are constrained by the objects
in the local DBMSs, while the GCS definition may be richer (Fig. 7.2b). Thus, in
LAV systems, it may be necessary to deal with incomplete answers. A combination
of these two approaches has also been proposed as global-local-as-view (GLAV)
where the relationship between GCS and LCSs is specified using both LAV and
GAV.

Bottom-up design occurs in two general steps (Fig. 7.3): schema translation
(or simply translation) and schema generation. In the first step, the component
database schemas are translated to a common intermediate canonical representation
(InS1, InS2,. . ., InSn). The use of a canonical representation facilitates the trans-
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lation process by reducing the number of translators that need to be written. The
choice of the canonical model is important. As a principle, it should be one that
is sufficiently expressive to incorporate the concepts available in all the databases
that will later be integrated. Alternatives that have been used include the entity-
relationship model, object-oriented model, or a graph that may be simplified to a tree
or XML. In this chapter, we will simply use the relational model as our canonical
data model despite its known deficiencies in representing rich semantic concepts.
This choice does not affect in any fundamental way the discussion of the major
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issues of data integration. In any case, we will not discuss the specifics of translating
various data models to relational; this can be found in many database textbooks.

Clearly, the translation step is necessary only if the component databases are
heterogeneous and local schemas are defined using different data models. There has
been some work on the development of system federation, in which systems with
similar data models are integrated together (e.g., relational systems are integrated
into one conceptual schema and, perhaps, object databases are integrated to another
schema) and these integrated schemas are “combined” at a later stage (e.g.,
AURORA project). In this case, the translation step is delayed, providing increased
flexibility for applications to access underlying data sources in a manner that is
suitable for their needs.

In the second step of bottom-up design, the intermediate schemas are used to
generate a GCS. The schema generation process consists of the following steps:

1. Schema matching to determine the syntactic and semantic correspondences
among the translated LCS elements or between individual LCS elements and
the predefined GCS elements (Sect. 7.1.2).

2. Integration of the common schema elements into a global conceptual (mediated)
schema if one has not yet been defined (Sect. 7.1.3).

3. Schema mapping that determines how to map the elements of each LCS to the
other elements of the GCS (Sect. 7.1.4).

It is also possible that the schema mapping step be divided into two phases: map-
ping constraint generation and transformation generation. In the first phase, given
correspondences between two schemas, a transformation function such as a query or
view definition over the source schema is generated that would “populate” the target
schema. In the second phase, an executable code is generated corresponding to this
transformation function that would actually generate a target database consistent
with these constraints. In some cases, the constraints are implicitly included in the
correspondences, eliminating the need for the first phase.

Example 7.1 To facilitate our discussion of global schema design in multidatabase
systems, we will use an example that is an extension of the engineering database we
have been using throughout the book. To demonstrate both phases of the database
integration process, we introduce some data model heterogeneity into our example.

Consider two organizations, each with their own database definitions. One is
the (relational) database example that we introduced in Chap. 2. We repeat that
definition in Fig. 7.4 for completeness. The second database also defines similar
data, but is specified according to the entity-relationship (E-R) data model as
depicted in Fig. 7.5.1

We assume that the reader is familiar with the entity-relationship data model.
Therefore, we will not describe the formalism, except to make the following points
regarding the semantics of Fig. 7.5. This database is similar to the relational

1In this chapter, we continue our notation of typesetting relation names in typewriter font, but
we will use normal font for E-R model components to be able to easily differentiate them.
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Fig. 7.4 Relational engineering database representation
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Fig. 7.5 Entity-relationship database

engineering database definition of Fig. 7.4, with one significant difference: it
also maintains data about the clients for whom the projects are conducted. The
rectangular boxes in Fig. 7.5 represent the entities modeled in the database,
and the diamonds indicate a relationship between the entities to which they are
connected. The relationship type is indicated around the diamonds. For example,
the CONTRACTED-BY relation is a many-to-one from the PROJECT entity to the
CLIENT entity (e.g., each project has a single client, but each client can have
many projects). Similarly, the WORKS-IN relationship indicates a many-to-many
relationship between the two connected relations. The attributes of entities and the
relationships are shown as ellipses. �

Example 7.2 The mapping of the E-R model to the relational model is given in
Fig. 7.6. Note that we have renamed some of the attributes in order to ensure name
uniqueness. �



7.1 Database Integration 287

Fig. 7.6 Relational mapping of E-R schema

7.1.2 Schema Matching

Given two schemas, schema matching determines for each concept in one schema
what concept in the other matches it. As discussed earlier, if the GCS has already
been defined, then one of these schemas is typically the GCS, and the task is to
match each LCS to the GCS. Otherwise, matching is done over two LCSs. The
matches that are determined in this phase are then used in schema mapping to
produce a set of directed mappings, which, when applied to the source schema,
would map its concepts to the target schema.

The matches that are defined or discovered during schema matching are specified
as a set of rules where each rule (r) identifies a correspondence (c) between two
elements, a predicate (p) that indicates when the correspondence may hold, and
a similarity value (s) between the two elements identified in the correspondence.
A correspondence may simply identify that two concepts are similar (which we
will denote by ≈) or it may be a function that specifies that one concept may be
derived by a computation over the other one (for example, if the budget value of
one project is specified in US dollars, while the other one is specified in Euros,
the correspondence may specify that one is obtained by multiplying the other one
with the appropriate exchange rate). The predicate is a condition that qualifies
the correspondence by specifying when it might hold. For example, in the budget
example specified above, p may specify that the rule holds only if the location of
one project is in US, while the other one is in the Euro zone. The similarity value
for each rule can be specified or calculated. Similarity values are real values in the
range [0,1]. Thus, a set of matches can be defined as M = {r}, where r = 〈c, p, s〉.

As indicated above, correspondences may either be discovered or specified. As
much as it is desirable to automate this process, there are many complicating factors.
The most important is schema heterogeneity, which refers to the differences in the
way real-world phenomena are captured in different schemas. This is a critically
important issue, and we devote a separate section to it (Sect. 7.1.2.1). Aside from
schema heterogeneity, other issues that complicate the matching process are the
following:

• Insufficient schema and instance information: Matching algorithms depend
on the information that can be extracted from the schema and the existing
data instances. In some cases there may be ambiguity due to the insufficient
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information provided about these items. For example, using short names or
ambiguous abbreviations for concepts, as we have done in our examples, can
lead to incorrect matching.

• Unavailability of schema documentation: In most cases, the database schemas
are not well documented or not documented at all. Quite often, the schema
designer is no longer available to guide the process. The lack of these vital
information sources adds to the difficulty of matching.

• Subjectivity of matching: Finally, it is important to recognize that matching
schema elements can be highly subjective; two designers may not agree on
a single “correct” mapping. This makes the evaluation of a given algorithm’s
accuracy significantly difficult.

Nevertheless, algorithmic approaches have been developed to the matching
problem, which we discuss in this section. A number of issues affect the particular
matching algorithm. The more important ones are the following:

• Schema versus instance matching. So far in this chapter, we have been focusing
on schema integration; thus, our attention has naturally been on matching
concepts of one schema to those of another. A large number of algorithms
have been developed that work on schema elements. There are others, however,
that have focused instead on the data instances or a combination of schema
information and data instances. The argument is that considering data instances
can help alleviate some of the semantic issues discussed above. For example, if
an attribute name is ambiguous, as in “contact-info,” then fetching its data may
help identify its meaning; if its data instances have the phone number format,
then obviously it is the phone number of the contact agent, while long strings
may indicate that it is the contact agent name. Furthermore, there are a large
number of attributes, such as postal codes, country names, email addresses, that
can be defined easily through their data instances.

Matching that relies solely on schema information may be more efficient,
because it does not require a search over data instances to match the attributes.
Furthermore, this approach is the only feasible one when few data instances are
available in the matched databases, in which case learning may not be reliable.
However, in some cases, e.g., peer-to-peer systems (see Chap. 9), there may
not be a schema, in which case instance-based matching is the only appropriate
approach.

• Element-level vs. structure-level. Some matching algorithms operate on indi-
vidual schema elements, while others also consider the structural relationships
between these elements. The basic concept of the element-level approach is that
most of the schema semantics are captured by the elements’ names. However,
this may fail to find complex mappings that span multiple attributes. Match
algorithms that also consider structure are based on the belief that, normally,
the structures of matchable schemas tend to be similar.

• Matching cardinality. Matching algorithms exhibit various capabilities in terms
of cardinality of mappings. The simplest approaches use 1:1 mapping, which
means that each element in one schema is matched with exactly one element in
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Fig. 7.7 Taxonomy of schema matching techniques

the other schema. The majority of proposed algorithms belong to this category,
because problems are greatly simplified in this case. Of course there are many
cases where this assumption is not valid. For example, an attribute named
“Total price” could be mapped to the sum of two attributes in another schema
named “Subtotal” and “Taxes.” Such mappings require more complex matching
algorithms that consider 1:M and N:M mappings.

These criteria, and others, can be used to come up with a taxonomy of matching
approaches. According to this taxonomy (which we will follow in this chapter
with some modifications), the first level of separation is between schema-based
matchers versus instance-based matchers (Fig. 7.7). Schema-based matchers can
be further classified as element-level and structure-level, while for instance-based
approaches, only element-level techniques are meaningful. At the lowest level, the
techniques are characterized as either linguistic or constraint-based. It is at this
level that fundamental differences between matching algorithms are exhibited and
we focus on these algorithms in the remainder, discussing linguistic approaches
in Sect. 7.1.2.2, constraint-based approaches in Sect. 7.1.2.3, and learning-based
techniques in Sect. 7.1.2.4. These are referred as individual matcher approaches, and
their combinations are possible by developing either hybrid matchers or composite
matchers (Sect. 7.1.2.5).

7.1.2.1 Schema Heterogeneity

Schema matching algorithms deal with both structural heterogeneity and semantic
heterogeneity among the matched schemas. We discuss these in this section before
presenting the different match algorithms.

Structural conflicts occur in four possible ways: as type conflicts, dependency
conflicts, key conflicts, or behavioral conflicts. Type conflicts occur when the same
object is represented by an attribute in one schema and an entity (relation) in
another. Dependency conflicts occur when different relationship modes (e.g., one-
to-one versus many-to-many) are used to represent the same thing in different
schemas. Key conflicts occur when different candidate keys are available and
different primary keys are selected in different schemas. Behavioral conflicts are
implied by the modeling mechanism. For example, deleting the last item from one
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database may cause the deletion of the containing entity (i.e., deletion of the last
employee causes the dissolution of the department).

Example 7.3 We have two structural conflicts in the running example of this
chapter. The first is a type conflict involving clients of projects. In the schema of
Fig. 7.5, the client of a project is modeled as an entity. In the schema of Fig. 7.4,
however, the client is included as an attribute of the PROJ entity.

The second structural conflict is a dependency conflict involving the WORKS_IN
relationship in Fig. 7.5 and the ASG relation in Fig. 7.4. In the former, the
relationship is many-to-one from the WORKER to the PROJECT, whereas in the
latter, the relationship is many-to-many. �

Structural differences among schemas are important, but their identification and
resolution is not sufficient. Schema matching has to take into account the (possibly
different) semantics of the schema concepts. This is referred to as semantic hetero-
geneity, which is a fairly loaded term without a clear definition. It basically refers to
the differences among the databases that relate to the meaning, interpretation, and
intended use of data. There are attempts to formalize semantic heterogeneity and to
establish its link to structural heterogeneity; we will take a more informal approach
and discuss some of the semantic heterogeneity issues intuitively. The following are
some of these problems that the match algorithms need to deal with.

• Synonyms, homonyms, hypernyms. Synonyms are multiple terms that all refer
to the same concept. In our database example, PROJ relation and PROJECT
entity refer to the same concept. Homonyms, on the other hand, occur when
the same term is used to mean different things in different contexts. Again, in
our example, BUDGET may refer to the gross budget in one database and it
may refer to the net budget (after some overhead deduction) in another, making
their simple comparison difficult. Hypernym is a term that is more generic than
a similar word. Although there is no direct example of it in the databases we
are considering, the concept of a Vehicle in one database is a hypernym for
the concept of a Car in another (incidentally, in this case, Car is a hyponym of
Vehicle). These problems can be addressed by the use of domain ontologies that
define the organization of concepts and terms in a particular domain.

• Different ontology: Even if domain ontologies are used to deal with issues in one
domain, it is quite often the case that schemas from different domains may need
to be matched. In this case, one has to be careful of the meaning of terms across
ontologies, as they can be highly domain dependent. For example, an attribute
called LOAD may imply a measure of resistance in an electrical ontology, but in
a mechanical ontology, it may represent a measure of weight.

• Imprecise wording: Schemas may contain ambiguous names. For example, the
LOCATION (from E-R) and LOC (from relational) attributes in our example
database may refer to the full address or just part of it. Similarly, an attribute
named “contact-info” may imply that the attribute contains the name of the
contact agent or his/her telephone number. These types of ambiguities are
common.
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7.1.2.2 Linguistic Matching Approaches

Linguistic matching approaches, as the name implies, use element names and other
textual information (such as textual descriptions/annotations in schema definitions)
to perform matches among elements. In many cases, they may use external sources,
such as thesauri, to assist in the process.

Linguistic techniques can be applied in both schema-based approaches and
instance-based ones. In the former case, similarities are established among schema
elements, whereas in the latter, they are specified among elements of individual data
instances. To focus our discussion, we will mostly consider schema-based linguistic
matching approaches, briefly mentioning instance-based techniques. Consequently,
we will use the notation 〈SC1.element-1 ≈ SC2.element-2, p, s〉 to represent that
element-1 in schema SC1 corresponds to element-2 in schema SC2 if predicate p

holds, with a similarity value of s. Matchers use these rules and similarity values to
determine the similarity value of schema elements.

Linguistic matchers that operate at the schema element-level typically deal with
the names of the schema elements and handle cases such as synonyms, homonyms,
and hypernyms. In some cases, the schema definitions can have annotations (natural
language comments) that may be exploited by the linguistic matchers. In the case
of instance-based approaches, linguistic matchers focus on information retrieval
techniques such as word frequencies, key terms, etc. In these cases, the matchers
“deduce” similarities based on these information retrieval measures.

Schema linguistic matchers use a set of linguistic (also called terminological)
rules that can be handcrafted or may be “discovered” using auxiliary data sources
such as thesauri, e.g., WordNet. In the case of handcrafted rules, the designer needs
to specify the predicate p and the similarity value s as well. For discovered rules,
these may either be specified by an expert following the discovery, or they may be
computed using one of the techniques we will discuss shortly.

The handcrafted linguistic rules may deal with issues such as capitalization,
abbreviations, and concept relationships. In some systems, the handcrafted rules
are specified for each schema individually (intraschema rules) by the designer, and
interschema rules are then “discovered” by the matching algorithm. However, in
most cases, the rule base contains both intra and interschema rules.

Example 7.4 In the relational database of Example 7.2, the set of rules may have
been defined (quite intuitively) as follows where RelDB refers to the relational
schema and ERDB refers to the translated E-R schema:

〈uppercase names ≈ lower case names, true, 1.0)〉
〈uppercase names ≈ capitalized names, true, 1.0)〉
〈capitalized names ≈ lower case names, true, 1.0)〉
〈RelDB.ASG ≈ ERDB.WORKS_IN, true, 0.8〉
. . .
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The first three rules are generic ones specifying how to deal with capitalizations,
while the fourth one specifies a similarity between the ASG of RelDB and the
WORKS_IN of ERDB. Since these correspondences always hold, p = true. �

As indicated above, there are ways of determining the element name similarities
automatically. For example, COMA uses the following techniques to determine
similarity of two element names:

• The affixes which are the common prefixes and suffixes between the two element
name strings are determined.

• The n-grams of the two element name strings are compared. An n-gram is a
substring of length n and the similarity is higher if the two strings have more
n-grams in common.

• The edit distance between two element name strings is computed. The edit
distance (also called the Levenshtein metric) determines the number of character
modifications (additions, deletions, insertions) that one has to perform on one
string to convert it to the second string.

• The soundex code of the element names is computed. This gives the phonetic
similarity between names based on their soundex codes. Soundex code of English
words is obtained by hashing the word to a letter and three numbers. This hash
value (roughly) corresponds to how the word would sound. The important aspect
of this code in our context is that two words that sound similar will have close
soundex codes.

Example 7.5 Consider matching the RESP and the RESPONSIBILITY attributes in
the two example schemas we are considering. The rules defined in Example 7.4
take care of the capitalization differences, so we are left with matching RESP with
RESPONSIBILITY. Let us consider how the similarity between the two strings can
be computed using the edit distance and the n-gram approaches.

The number of editing changes that one needs to do to convert one of these
strings to the other is 10 (either we add the characters “O,” “N,” “S,” “I,” “B,”
“I,” “L,” “I,” “T,” “Y,” to string “RESP” or delete the same characters from string
“RESPONSIBILITY”). Thus the ratio of the required changes is 10/14, which
defines the edit distance between these two strings; 1 − (10/14) = 4/14 = 0.29
is then their similarity.

For n-gram computation, we need to first fix the value of n. For this example,
let n = 3, so we are looking for 3-grams. The 3-grams of string “RESP” are
“RES” and “ESP.” Similarly, there are twelve 3-grams of “RESPONSIBILITY”:
“RES,” “ESP,” “SPO,” “PON,” “ONS,” “NSI,” “SIB,” “IBI,” “BIP,” “ILI,” “LIT,” and
“ITY.” There are two matching 3-grams out of twelve, giving a 3-gram similarity of
2/12 = 0.17. �

The examples we have covered in this section all fall into the category of 1:1
matches—we matched one element of a particular schema to an element of another
schema. As discussed earlier, it is possible to have 1:N (e.g., Street address, City,
and Country element values in one database can be extracted from a single Address
element in another), N:1 (e.g., Total_price can be calculated from Subtotal and Taxes
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elements), or N:M (e.g., Book_title, Rating information can be extracted via a join
of two tables one of which holds book information and the other maintains reader
reviews and ratings). 1:1, 1:N, and N:1 matchers are typically used in element-level
matching, while schema-level matching can also use N:M matching, since, in the
latter case the necessary schema information is available.

7.1.2.3 Constraint-Based Matching Approaches

Schema definitions almost always contain semantic information that constrain the
values in the database. These are typically data type information, allowable ranges
for data values, key constraints, etc. In the case of instance-based techniques, the
existing ranges of the values can be extracted as well as some patterns that exist in
the instance data. These can be used by matchers.

Consider data types that capture a large amount of semantic information. This
information can be used to disambiguate concepts and also focus the match.
For example, RESP and RESPONSIBILITY have relatively low similarity values
according to calculations in Example 7.5. However, if they have the same data type
definition, this may be used to increase their similarity value. Similarly, the data type
comparison may differentiate between elements that have high lexical similarity. For
example, ENO in Fig. 7.4 has the same edit distance and n-gram similarity values to
the two NUMBER attributes in Fig. 7.5 (of course, we are referring to the names of
these attributes). In this case, the data types may be of assistance—if the data type of
both ENO and worker number (WORKER.NUMBER) is integer, while the data type
of project number (PROJECT.NUMBER) is a string, the likelihood of ENO matching
WORKER.NUMBER is significantly higher.

In structure-based approaches, the structural similarities in the two schemas can
be exploited to determine the similarity of the schema elements. If two schema
elements are structurally similar, this enhances our confidence that they indeed
represent the same concept. For example, if two elements have very different names
and we have not been able to establish their similarity through element matchers,
but they have the same properties (e.g., same attributes) that have the same data
types, then we can be more confident that these two elements may be representing
the same concept.

The determination of structural similarity involves checking the similarity of
the “neighborhoods” of the two concepts under consideration. Definition of the
neighborhood is typically done using a graph representation of the schemas where
each concept (relation, entity, attribute) is a vertex and there is a directed edge
between two vertices if and only if the two concepts are related (e.g., there is an
edge from a relation vertex to each of its attributes, or there is an edge from a foreign
key attribute vertex to the primary key attribute vertex it is referencing). In this
case, the neighborhood can be defined in terms of the vertices that can be reached
within a certain path length of each concept, and the problem reduces to checking
the similarity of the subgraphs in this neighborhood. Many of these algorithms
consider the tree rooted at the concept that is being examined and compute the
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similarity of the concepts represented by the root vertices in the two trees. The
fundamental idea is that if the subgraphs (subtrees) are similar, this increases the
similarity of the concepts represented by the “root” vertex in the two graphs. The
similarity of the subgraphs is typically determined in a bottom-up process, starting
at the leaves whose similarity is determined using element matching (e.g., name
similarity to the level of synonyms or data type compatibility). The similarity of the
two subtrees is recursively determined based on the similarity of the vertices in the
subtree. The similarity of two subgraphs (subtrees) is then defined as the fraction of
leaves in the two subtrees that are strongly linked. This is based on the assumption
that leaf vertices carry more information and that the structural similarity of two
nonleaf schema elements is determined by the similarity of the leaf vertices in
their respective subtrees, even if their immediate children are not similar. These
are heuristic rules and it is possible to define others.

Another interesting approach to considering neighborhood in directed graphs
while computing similarity of vertices is similarity flooding. It starts from an initial
graph where the vertex similarities are already determined by means of an element
matcher, and propagates, iteratively, to determine the similarity of each vertex to
its neighbors. Hence, whenever any two elements in two schemas are found to be
similar, the similarity of their adjacent vertices increases. The iterative process stops
when the vertex similarities stabilize. At each iteration, to reduce the amount of
work, a subset of the vertices are selected as the “most plausible” matches, which
are then considered in the subsequent iteration.

Both of these approaches are agnostic to the edge semantics. In some graph
representations, there is additional semantics attached to these edges. For exam-
ple, containment edges from a relation or entity vertex to its attributes may be
distinguished from referential edges from a foreign key attribute vertex to the
corresponding primary key attribute vertex. Some systems (e.g., DIKE) exploit these
edge semantics.

7.1.2.4 Learning-Based Matching

A third alternative approach that has been proposed is to use machine learning
techniques to determine schema matches. Learning-based approaches formulate the
problem as one of classification where concepts from various schemas are classified
into classes according to their similarity. The similarity is determined by checking
the features of the data instances of the databases that correspond to these schemas.
How to classify concepts according to their features is learned by studying the data
instances in a training dataset.

The process is as follows (Fig. 7.8). A training set (τ ) is prepared that consists
of instances of example correspondences between the concepts of two databases Di

and Dj . This training set can be generated after manual identification of the schema
correspondences between two databases followed by extraction of example training
data instances or by the specification of a query expression that converts data from
one database to another. The learner uses this training data to acquire probabilistic
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τ = {DI .em ≈ Dj .en} Learner

Dk ,Dl Classifier

Probabilistic
knowledge

Classification
predictions

Fig. 7.8 Learning-based matching approach

information about the features of the datasets. The classifier, when given two other
database instances (Dk and Dl), then uses this knowledge to go through the data
instances in Dk and Dl and make predictions about classifying the elements of Dk

and Dl .
This general approach applies to all of the proposed learning-based schema

matching approaches. Where they differ is the type of learner that they use and
how they adjust this learner’s behavior for schema matching. Some have used
neural networks (e.g., SEMINT), others have used Naïve Bayesian learner/classifier
(Autoplex , LSD) and decision trees. We do not discuss the details of these learning
techniques.

7.1.2.5 Combined Matching Approaches

The individual matching techniques that we have considered so far have their strong
points and their weaknesses. Each may be more suitable for matching certain cases.
Therefore, a “complete” matching algorithm or methodology usually needs to make
use of more than one individual matcher.

There are two possible ways in which matchers can be combined: hybrid and
composite. Hybrid algorithms combine multiple matchers within one algorithm.
In other words, elements from two schemas can be compared using a number
of element matchers (e.g., string matching as well as data type matching) and/or
structural matchers within one algorithm to determine their overall similarity.
Careful readers will have noted that in discussing the constraint-based matching
algorithms that focused on structural matching, we followed a hybrid approach
since they were based on an initial similarity determination of, for example, the
leaf nodes using an element matcher, and these similarity values were then used in
structural matching. Composite algorithms, on the other hand, apply each matcher
to the elements of the two schemas (or two instances) individually, obtaining
individual similarity scores, and then they apply a method for combining these
similarity scores. More precisely, if si(C

k
j , Cm

l ) is the similarity score using matcher
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i (i = 1, . . . , q) over two concepts Cj from schema k and Cl from schema m, then
the composite similarity of the two concepts is given by s(Ck

j , Cm
l ) = f (s1, . . . , sq),

where f is the function that is used to combine the similarity scores. This function
can be as simple as average, max, or min, or it can be an adaptation of more
complicated ranking aggregation functions that we will discuss further in Sect. 7.2.
Composite approach has been proposed in the LSD and iMAP systems for handling
1:1 and N:M matches, respectively.

7.1.3 Schema Integration

Once schema matching is done, the correspondences between the various LCSs have
been identified. The next step is to create the GCS, and this is referred to as schema
integration. As indicated earlier, this step is only necessary if a GCS has not already
been defined and matching was performed on individual LCSs. If the GCS was
defined upfront, then the matching step would determine correspondences between
it and each of the LCSs and there would be no need for the integration step. If the
GCS is created as a result of the integration of LCSs based on correspondences
identified during schema matching, then, as part of integration, it is important to
identify the correspondences between the GCS and the LCSs. Although tools have
been developed to aid in the integration process, human involvement is clearly
essential.

Example 7.6 There are a number of possible integrations of the two example LCSs
we have been discussing. Figure 7.9 shows one possible GCS that can be generated
as a result of schema integration. We use this in the remainder of this chapter. �

Integration methodologies can be classified as binary or n-ary mechanisms based
on the manner in which the local schemas are handled in the first phase (Fig. 7.10).
Binary integration methodologies involve the manipulation of two schemas at a
time. These can occur in a stepwise (ladder) fashion (Fig. 7.11a) where intermediate
schemas are created for integration with subsequent schemas, or in a purely binary
fashion (Fig. 7.11b), where each schema is integrated with one other, creating an
intermediate schema for integration with other intermediate schemas.

Fig. 7.9 Example integrated GCS (EMP is employee, PR is project, CL is client)
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Integration process

Binary

Ladder Balanced

n-ary

One-shot Iterative

Fig. 7.10 Taxonomy of integration methodologies

(a)

(b)

Fig. 7.11 Binary integration methods. (a) Stepwise. (b) Pure binary

(a) (b)

Fig. 7.12 N -ary integration methods. (a) One-pass. (b) Iterative

N -ary integration mechanisms integrate more than two schemas at each iteration.
One-pass integration (Fig. 7.12a) occurs when all schemas are integrated at once,
producing the global conceptual schema after one iteration. Benefits of this approach
include the availability of complete information about all databases at integration
time. There is no implied priority for the integration order of schemas, and the
trade-offs, such as the best representation for data items or the most understandable
structure, can be made between all schemas rather than between a few. Difficulties
with this approach include increased complexity and difficulty of automation.

Iterative n-ary integration (Fig. 7.12b) offers more flexibility (typically, more
information is available) and is more general (the number of schemas can be varied
depending on the integrator’s preferences). Binary approaches are a special case of
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iterative n-ary. They decrease the potential integration complexity and lead towards
automation techniques, since the number of schemas to be considered at each step is
more manageable. Integration by an n-ary process enables the integrator to perform
the operations on more than two schemas. For practical reasons, the majority of
systems utilize binary methodology, but a number of researchers prefer the n-ary
approach because complete information is available.

7.1.4 Schema Mapping

Once a GCS (or mediated schema) is defined, it is necessary to identify how the
data from each of the local databases (source) can be mapped to GCS (target) while
preserving semantic consistency (as defined by both the source and the target).
Although schema matching has identified the correspondences between the LCSs
and the GCS, it may not have identified explicitly how to obtain the global database
from the local ones. This is what schema mapping is about.

In the case of data warehouses, schema mappings are used to explicitly extract
data from the sources, and translate them to the data warehouse schema for
populating it. In the case of data integration systems, these mappings are used in
query processing phase by both the query processor and the wrappers (see Sect. 7.2).

There are two issues related to schema mapping that we will study: mapping
creation and mapping maintenance. Mapping creation is the process of creating
explicit queries that map data from a local database to the global one. Mapping
maintenance is the detection and correction of mapping inconsistencies resulting
from schema evolution. Source schemas may undergo structural or semantic
changes that invalidate mappings. Mapping maintenance is concerned with the
detection of broken mappings and the (automatic) rewriting of mappings such
that semantic consistency with the new schema and semantic equivalence with the
current mapping are achieved.

7.1.4.1 Mapping Creation

Mapping creation starts with a source LCS, the target GCS, and a set of schema
matches M and produces a set of queries that, when executed, will create GCS
data instances from the source data. In data warehouses, these queries are actually
executed to create the data warehouse (global database), while in data integration
systems, they are used in the reverse direction during query processing (Sect. 7.2).

Let us make this more concrete by referring to the canonical relational represen-
tation that we have adopted. The source LCS under consideration consists of a set
of relations Source = {O1, . . . ,Om}, the GCS consists of a set of global (or target)
relations T arget = {T1, . . . ,Tn}, and M consists of a set of schema match rules as
defined in Sect. 7.1.2. We are looking for a way to generate, for each Tk , a query
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Qk that is defined on a (possibly proper) subset of the relations in Source such that,
when executed, it will generate data for Tk from the source relations.

This can be accomplished iteratively by considering each Tk in turn. It starts with
Mk ⊆ M (Mk is the set of rules that only apply to the attributes of Tk) and divides
it into subsets {M1

k , . . . ,Ms
k } such that each M

j
k specifies one possible way that

values of Tk can be computed. Each M
j
k can be mapped to a query q

j
k that, when

executed, would generate some of Tk’s data. The union of all of these queries gives
Qk(= ∪j q

j
k ) that we are looking for.

The algorithm proceeds in four steps that we discuss below. It does not consider
the similarity values in the rules. It can be argued that the similarity values would
be used in the final stages of the matching process to finalize correspondences,
so that their use during mapping is unnecessary. Furthermore, by the time this
phase of the integration process is reached, the concern is how to map source
relation (LCS) data to target relation (GCS) data. Consequently, correspondences
are not symmetric equivalences (≈), but mappings ( �→): attribute(s) from (possibly
multiple) source relations are mapped to an attribute of a target relation (i.e.,
(Oi .attributek,Oj .attributel) �→ Tw.attributez)).

Example 7.7 To demonstrate the algorithm, we will use a different example
database than what we have been working with, because it does not incorporate
all the complexities that we wish to demonstrate. Instead, we will use the following
abstract example.

Source relations (LCS):

O1(A1,A2)

O2(B1,B2,B3)

O3(C1,C2,C3)

O4(D1,D2)

Target relation (GCS):

T(W1,W2,W3,W4)

We consider only one relation in GCS since the algorithm iterates over target
relations one-at-a-time; this is sufficient to demonstrate the operation of the
algorithm.

The foreign key relationships between the attributes are as follows:

Foreign key Refers to

A1 B1

A2 B1

C1 B1

Assume that the following matches have been discovered for attributes of relation
T (these make up MT). In the subsequent examples, we will not be concerned with
the predicates, so they are not explicitly specified.
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r1 = 〈A1 �→ W1, p〉
r2 = 〈A2 �→ W2, p〉
r3 = 〈B2 �→ W4, p〉
r4 = 〈B3 �→ W3, p〉
r5 = 〈C1 �→ W1, p〉
r6 = 〈C2 �→ W2, p〉
r7 = 〈D1 �→ W4, p〉

�
In the first step, Mk (corresponding to Tk) is partitioned into its subsets

{M1
k , . . . ,Mn

k } such that each M
j
k contains at most one match for each attribute

of Tk . These are called potential candidate sets, some of which may be complete
in that they include a match for every attribute of Tk , but others may not be. The
reasons for considering incomplete sets are twofold. First, it may be the case that
no match is found for one or more attributes of the target relation (i.e., none of
the match sets is complete). Second, for large and complex database schemas, it
may make sense to build the mapping iteratively so that the designer specifies the
mappings incrementally.

Example 7.8 MT is partitioned into fifty-three subsets (i.e., potential candidate
sets). The first eight of these are complete, while the rest are not. We show some
of these below. To make it easier to read, the complete rules are listed in the order
of the target attributes to which they map (e.g., the third rule in M1

T is r4, because
this rule maps to attribute W3):

M1
T = {r1, r2, r4, r3} M2

T = {r1, r2, r4, r7}
M3
T = {r1, r6, r4, r3} M4

T = {r1, r6, r4, r7}
M5
T = {r5, r2, r4, r3} M6

T = {r5, r2, r4, r7}
M7
T = {r5, r6, r4, r3} M8

T = {r5, r6, r4, r7}
M9
T = {r1, r2, r3} M10

T = {r1, r2, r4}
M11
T = {r1, r3, r4} M12

T = {r2, r3, r4}
M13
T = {r1, r3, r6} M14

T = {r3, r4, r6}
. . . . . .

M47
T = {r1} M48

T = {r2}
M49
T = {r3} M50

T = {r4}
M51
T = {r5} M52

T = {r6}
M53
T = {r7}

�
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In the second step, the algorithm analyzes each potential candidate set M
j
k to

see if a “good” query can be produced for it. If all the matches in M
j
k map values

from a single source relation to Tk , then it is easy to generate a query corresponding
to M

j
k . Of particular concern are matches that require access to multiple source

relations. In this case the algorithm checks to see if there is a referential connection
between these relations through foreign keys (i.e., whether there is a join path
through the source relations). If there is not, then the potential candidate set is
eliminated from further consideration. In case there are multiple join paths through
foreign key relationships, the algorithm looks for those paths that will produce the
most number of tuples (i.e., the estimated difference in size of the outer and inner
joins is the smallest). If there are multiple such paths, then the database designer
needs to be involved in selecting one (tools such as Clio, OntoBuilder, and others
facilitate this process and provide mechanisms for designers to view and specify
correspondences). The result of this step is a set Mk ⊆ Mk of candidate sets.

Example 7.9 In this example, there is no M
j
k where the values of all of T’s attributes

are mapped from a single source relation. Among those that involve multiple source
relations, rules that involve O1,O2, and O3 can be mapped to “good” queries since
there are foreign key relationships between them. However, the rules that involve
O4 (i.e., those that include rule r7) cannot be mapped to a “good” query since there
is no join path from O4 to the other relations (i.e., any query would involve a cross
product, which is expensive). Thus, these rules are eliminated from the potential
candidate set. Considering only the complete sets, M2

k ,M4
k ,M6

k , and M8
k are pruned

from the set. In the end, the candidate set (Mk) contains thirty-five rules (the readers
are encouraged to verify this to better understand the algorithm). �

In the third step, the algorithm looks for a cover of the candidate sets Mk . The
cover Ck ⊆ Mk is a set of candidate sets such that each match in Mk appears in
Ck at least once. The point of determining a cover is that it accounts for all of the
matches and is, therefore, sufficient to generate the target relation Tk . If there are
multiple covers (a match can participate in multiple covers), then they are ranked
in increasing number of the candidate sets in the cover. The fewer the number of
candidate sets in the cover, the fewer are the number of queries that will be generated
in the next step; this improves the efficiency of the mappings that are generated. If
there are multiple covers with the same ranking, then they are further ranked in
decreasing order of the total number of unique target attributes that are used in the
candidate sets constituting the cover. The point of this ranking is that covers with
higher number of attributes generate fewer null values in the result. At this stage,
the designer may need to be consulted to choose from among the ranked covers.

Example 7.10 First note that we have six rules that define matches in Mk that
we need to consider, since M

j
k that include rule r7 have been eliminated. There

are a large number of possible covers; let us start with those that involve M1
k to

demonstrate the algorithm:
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C1
T = {{r1, r2, r4, r3}

︸�����������︷︷�����������︸

M1
T

, {r1, r6, r4, r3}
︸�����������︷︷�����������︸

M3
T

, {r2}
︸︷︷︸

M48
T

}

C2
T = {{r1, r2, r4, r3}

︸�����������︷︷�����������︸

M1
T

, {r5, r2, r4, r3}
︸�����������︷︷�����������︸

M5
T

, {r6}
︸︷︷︸

M50
T

}

C3
T = {{r1, r2, r4, r3}

︸�����������︷︷�����������︸

M1
T

, {r5, r6, r4, r3}
︸�����������︷︷�����������︸

M7
T

}

C4
T = {{r1, r2, r4, r3}

︸�����������︷︷�����������︸

M1
T

, {r5, r6, r4}
︸������︷︷������︸

M12
T

}

C5
T = {{r1, r2, r4, r3}

︸�����������︷︷�����������︸

M1
T

, {r5, r6, r3}
︸������︷︷������︸

M19
T

}

C6
T = {{r1, r2, r4, r3}

︸�����������︷︷�����������︸

M1
T

, {r5, r6}
︸��︷︷��︸

M32
T

}

At this point we observe that the covers consist of either two or three candidate
sets. Since the algorithm prefers those with fewer candidate sets, we only need to
focus on those involving two sets. Furthermore, among these covers, we note that the
number of target attributes in the candidate sets differ. Since the algorithm prefers
covers with the largest number of target attributes in each candidate set, C3

T is the
preferred cover.

Note that due to the two heuristics employed by the algorithm, the only covers we
need to consider are those that involve M1

T,M
3
T,M

5
T, and M7

T. Similar covers can be
defined involving M3

T,M
5
T, and M7

T; we leave that as an exercise. In the remainder,
we will assume that the designer has chosen to use C3

T as the preferred cover. �

The final step of the algorithm builds a query q
j
k for each of the candidate sets

in the cover selected in the previous step. The union of all of these queries (UNION
ALL) results in the final mapping for relation Tk in the GCS.

Query q
j
k is built as follows:

• SELECT clause includes all correspondences (c) in each of the rules (ri
k) in

M
j
k .

• FROM clause includes all source relations mentioned in ri
k and in the join

paths determined in Step 2 of the algorithm.
• WHERE clause includes conjunct of all predicates (p) in ri

k and all join
predicates determined in Step 2 of the algorithm.

• If ri
k contains an aggregate function either in c or in p

• GROUP BY is used over attributes (or functions on attributes) in the
SELECT clause that are not within the aggregate;
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• If aggregate is in the correspondence c, it is added to SELECT, else (i.e.,
aggregate is in the predicate p) a HAVING clause is created with the
aggregate.

Example 7.11 Since in Example 7.10 we have decided to use cover C3
T for the final

mapping, we need to generate two queries: q1
T and q7

T corresponding to M1
T and M7

T,
respectively. For ease of presentation, we list the rules here again:

r1 = 〈A1 �→ W1, p〉
r2 = 〈A2 �→ W2, p〉
r3 = 〈B2 �→ W4, p〉
r4 = 〈B3 �→ W3, p〉
r5 = 〈C1 �→ W1, p〉
r6 = 〈C2 �→ W2, p〉

The two queries are as follows:

q1
k : SELECT A1,A2,B2,B3

FROM O1,O2
WHERE p1 AND O1.A2 = O2.B1

q7
k : SELECT B2,B3,C1,C2

FROM O2,O3
WHERE p3 AND p4 AND p5 AND p6
AND O3.c1 = O2.B1

Thus, the final query Qk for target relation T becomes q1
k UNION ALL q7

k . �
The output of this algorithm after it is iteratively applied to each target relation

Tk is a set of queries Q = {Qk} that, when executed, produce data for the
GCS relations. Thus, the algorithm produces GAV mappings between relational
schemas—recall that GAV defines a GCS as a view over the LCSs and that is exactly
what the set of mapping queries do. The algorithm takes into account the semantics
of the source schema since it considers foreign key relationships in determining
which queries to generate. However, it does not consider the semantics of the target,
so that the tuples that are generated by the execution of the mapping queries are not
guaranteed to satisfy target semantics. This is not a major issue in the case when the
GCS is integrated from the LCSs; however, if the GCS is defined independent of the
LCSs, then this is problematic.

It is possible to extend the algorithm to deal with target semantics as well as
source semantics. This requires that interschema tuple-generating dependencies be
considered. In other words, it is necessary to produce GLAV mappings. A GLAV
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mapping, by definition, is not simply a query over the source relations; it is a
relationship between a query over the source (i.e., LCS) relations and a query over
the target (i.e., GCS) relations. Let us be more precise. Consider a schema match v

that specifies a correspondence between attribute A of a source LCS relation R and
attribute B of a target GCS relation T (in the notation we used in this section we have
v = 〈R.A ≈ T.B, p, s〉). Then the source query specifies how to retrieve R.A and the
target query specifies how to obtain T.B. The GLAV mapping, then, is a relationship
between these two queries.

This can be accomplished by starting with a source schema, a target schema, and
M , and “discovering” mappings that satisfy both the source and the target schema
semantics. This algorithm is also more powerful than the one we discussed in this
section in that it can handle nested structures that are common in XML, object
databases, and nested relational systems.

The first step in discovering all of the mappings based on schema match
correspondences is semantic translation, which seeks to interpret schema matches
in M in a way that is consistent with the semantics of both the source and target
schemas as captured by the schema structure and the referential (foreign key)
constraints. The result is a set of logical mappings each of which captures the design
choices (semantics) made in both source and target schemas. Each logical mapping
corresponds to one target schema relation. The second step is data translation that
implements each logical mapping as a rule that can be translated into a query that
would create an instance of the target element when executed.

Semantic translation takes as inputs the source Source and target schemas
T arget , and M and performs the following two steps:

• It examines intraschema semantics within the Source and T arget separately and
produces for each a set of logical relations that are semantically consistent.

• It then interprets interschema correspondences M in the context of logical
relations generated in Step 1 and produces a set of queries into Q that are
semantically consistent with T arget .

7.1.4.2 Mapping Maintenance

In dynamic environments where schemas evolve over time, schema mappings can
be made invalid as the result of structural or constraint changes of the schemas.
Thus, the detection of invalid/inconsistent schema mappings and the adaptation of
such schema mappings to new schema structures/constraints are important.

In general, automatic detection of invalid/inconsistent schema mappings is
desirable as the complexity of the schemas and the number of schema mappings
used in database applications increase. Likewise, (semi-)automatic adaptation of
mappings to schema changes is also a goal. It should be noted that automatic
adaptation of schema mappings is not the same as automatic schema matching.
Schema adaptation aims to resolve semantic correspondences using known changes
in intraschema semantics, semantics in existing mappings, and detected semantic
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inconsistencies (resulting from schema changes). Schema matching must take a
much more “from scratch” approach at generating schema mappings and does not
have the ability (or luxury) of incorporating such contextual knowledge.

Detecting Invalid Mappings

In general, detection of invalid mappings resulting from schema change can either
happen proactively or reactively. In proactive detection environments, schema
mappings are tested for inconsistencies as soon as schema changes are made by
a user. The assumption (or requirement) is that the mapping maintenance system is
completely aware of any and all schema changes, as soon as they are made. The
ToMAS system, for example, expects users to make schema changes through its
own schema editors, making the system immediately aware of any schema changes.
Once schema changes have been detected, invalid mappings can be detected by
doing a semantic translation of the existing mappings using the logical relations of
the updated schema.

In reactive detection environments, the mapping maintenance system is unaware
of when and what schema changes are made. To detect invalid schema mappings in
this setting, mappings are tested at regular intervals by performing queries against
the data sources and translating the resulting data using the existing mappings.
Invalid mappings are then determined based on the results of these mapping tests.

An alternative method that has been proposed is to use machine learning
techniques to detect invalid mappings (as in the Maveric system). What has been
proposed is to build an ensemble of trained sensors (similar to multiple learners
in schema matching) to detect invalid mappings. Examples of such sensors include
value sensors for monitoring distribution characteristics of target instance values,
trend sensors for monitoring the average rate of data modification, and layout and
constraint sensors that monitor translated data against expected target schema syntax
and semantics. A weighted combination of the findings of the individual sensors is
then calculated where the weights are also learned. If the combined result indicates
changes and follow-up tests suggest that this may indeed be the case, an alert is
generated.

Adapting Invalid Mappings

Once invalid schema mappings are detected, they must be adapted to schema
changes and made valid once again. Various high-level mapping adaptation
approaches have been proposed. These can be broadly described as fixed rule
approaches that define a remapping rule for every type of expected schema change,
map bridging approaches that compare original schema S and the updated schema
S′, and generate new mapping from S to S′ in addition to existing mappings,
and semantic rewriting approaches, which exploit semantic information encoded in
existing mappings, schemas, and semantic changes made to schemas to propose map
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rewritings that produce semantically consistent target data. In most cases, multiple
such rewritings are possible, requiring a ranking of the candidates for presentation
to users who make the final decision (based on scenario- or business-level semantics
not encoded in schemas or mappings).

Arguably, a complete remapping of schemas (i.e., from scratch, using schema
matching techniques) is another alternative to mapping adaption. However, in most
cases, map rewriting is cheaper than map regeneration as rewriting can exploit
knowledge encoded in existing mappings to avoid computation of mappings that
would be rejected by the user anyway (and to avoid redundant mappings).

7.1.5 Data Cleaning

Errors in source databases can always occur, requiring cleaning in order to correctly
answer user queries. Data cleaning is a problem that arises in both data warehouses
and data integration systems, but in different contexts. In data warehouses where
data is actually extracted from local operational databases and materialized as a
global database, cleaning is performed as the global database is created. In the case
of data integration systems, data cleaning is a process that needs to be performed
during query processing when data is returned from the source databases.

The errors that are subject to data cleaning can generally be broken down into
either schema-level or instance-level concerns. Schema-level problems can arise
in each individual LCS due to violations of explicit and implicit constraints. For
example, values of attributes may be outside the range of their domains (e.g., 14th
month or negative salary value), attribute values may violate implicit dependencies
(e.g., the age attribute value may not correspond to the value that is computed as the
difference between the current date and the birth date), uniqueness of attribute values
may not hold, and referential integrity constraints may be violated. Furthermore,
in the environment that we are considering in this chapter, the schema-level
heterogeneities (both structural and semantic) among the LCSs that we discussed
earlier can all be considered problems that need to be resolved. At the schema level,
it is clear that the problems need to be identified at the schema match stage and fixed
during schema integration.

Instance level errors are those that exist at the data level. For example, the
values of some attributes may be missing although they were required, there could
be misspellings and word transpositions (e.g., “M.D. Mary Smith” versus “Mary
Smith, M.D.”) or differences in abbreviations (e.g., “J. Doe” in one source database,
while “J.N. Doe” in another), embedded values (e.g., an aggregate address attribute
that includes street name, value, province name, and postal code), values that were
erroneously placed in other fields, duplicate values, and contradicting values (the
salary value appearing as one value in one database and another value in another
database). For instance-level cleaning, the issue is clearly one of generating the
mappings such that the data is cleaned through the execution of the mapping
functions (queries).
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The popular approach to data cleaning has been to define a number of operators
that operate either on schemas or on individual data. The operators can be composed
into a data cleaning plan. Example schema operators add or drop columns from
table, restructure a table by combining columns or splitting a column into two, or
define more complicated schema transformation through a generic “map” operator
that takes a single relation and produces one or more relations. Example data level
operators include those that apply a function to every value of one attribute, merging
values of two attributes into the value of a single attribute and its converse split
operator, a matching operator that computes an approximate join between tuples of
two relations, clustering operator that groups tuples of a relation into clusters, and a
tuple merge operator that partitions the tuples of a relation into groups and collapses
the tuples in each group into a single tuple through some aggregation over them, as
well as basic operators to find duplicates and eliminate them. Many of the data level
operators compare individual tuples of two relations (from the same or different
schemas) and decide whether or not they represent the same fact. This is similar to
what is done in schema matching, except that it is done at the individual data level
and what is considered are not individual attribute values, but entire tuples. However,
the same techniques we studied under schema matching (e.g., use of edit distance
or soundex value) can be used in this context. There have been proposals for special
techniques for handling this efficiently within the context of data cleaning such as
fuzzy matching that computes a similarity function to determine whether the two
tuples are identical or reasonably similar.

Given the large amount of data that needs to be handled, data level cleaning is
expensive and efficiency is a significant issue. The physical implementation of each
of the operators we discussed above is a considerable concern. Although cleaning
can be done off-line as a batch process in the case of data warehouses, for data
integration systems, cleaning may need to be done online as data is retrieved from
the sources. The performance of data cleaning is, of course, more critical in the latter
case.

7.2 Multidatabase Query Processing

We now turn our attention to querying and accessing an integrated database obtained
through the techniques discussed in the previous section—this is known as the
multidatabase querying problem. As previously noted, many of the distributed query
processing and optimization techniques that we discussed in Chap. 4 carry over to
multidatabase systems, but there are important differences. Recall from that chapter
that we characterized distributed query processing in four steps: query decompo-
sition, data localization, global optimization, and local optimization. The nature of
multidatabase systems requires slightly different steps and different techniques. The
component DBMSs may be autonomous and have different database languages and
query processing capabilities. Thus, an MDBS layer (see Fig. 1.12) is necessary
to communicate with component DBMSs in an effective way, and this requires
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Fig. 7.13 Generic layering scheme for multidatabase query processing

additional query processing steps (Fig. 7.13). Furthermore, there may be many
component DBMSs, each of which may exhibit different behavior, thereby posing
new requirements for more adaptive query processing techniques.

7.2.1 Issues in Multidatabase Query Processing

Query processing in a multidatabase system is more complex than in a distributed
DBMS for the following reasons:

1. The computing capabilities of the component DBMSs may be different, which
prevents uniform treatment of queries across multiple DBMSs. For example,
some DBMSs may be able to support complex SQL queries with join and aggre-
gation, while some others cannot. Thus the multidatabase query processor should
consider the various DBMS capabilities. The capabilities of each component is
recorded in the directory along with data allocation information.

2. Similarly, the cost of processing queries may be different on different DBMSs,
and the local optimization capability of each DBMS may be quite different. This
increases the complexity of the cost functions that need to be evaluated.

3. The data models and languages of the component DBMSs may be quite differ-
ent, for instance, relational, object-oriented, semi-structured, etc. This creates
difficulties in translating multidatabase queries to component DBMS and in
integrating heterogeneous results.
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4. Since a multidatabase system enables access to very different DBMSs that may
have different performance and behavior, distributed query processing techniques
need to adapt to these variations.

The autonomy of the component DBMSs poses problems. DBMS autonomy can
be defined along three main dimensions: communication, design, and execution.
Communication autonomy means that a component DBMS communicates with
others at its own discretion, and, in particular, it may terminate its services at
any time. This requires query processing techniques that are tolerant to system
unavailability. The question is how the system answers queries when a component
system is either unavailable from the beginning or shuts down in the middle of
query execution. Design autonomy may restrict the availability and accuracy of cost
information that is needed for query optimization. The difficulty of determining
local cost functions is an important issue. The execution autonomy of multidatabase
systems makes it difficult to apply some of the query optimization strategies
we discussed in previous chapters. For example, semijoin-based optimization of
distributed joins may be difficult if the source and target relations reside in different
component DBMSs, since, in this case, the semijoin execution of a join translates
into three queries: one to retrieve the join attribute values of the target relation and
to ship it to the source relation’s DBMS, the second to perform the join at the source
relation, and the third to perform the join at the target relation’s DBMS. The problem
arises because communication with component DBMSs occurs at a high level of the
DBMS API.

In addition to these difficulties, the architecture of a distributed multidatabase
system poses certain challenges. The architecture depicted in Fig. 1.12 points to
an additional complexity. In distributed DBMSs, query processors have to deal
only with data distribution across multiple sites. In a distributed multidatabase
environment, on the other hand, data is distributed not only across sites but also
across multiple databases, each managed by an autonomous DBMS. Thus, while
there are two parties that cooperate in the processing of queries in a distributed
DBMS (the control site and local sites), the number of parties increases to three
in the case of a distributed MDBS: the MDBS layer at the control site (i.e., the
mediator) receives the global query, the MDBS layers at the sites (i.e., the wrappers)
participate in processing the query, and the component DBMSs ultimately optimize
and execute the query.

7.2.2 Multidatabase Query Processing Architecture

Most of the work on multidatabase query processing has been done in the context
of the mediator/wrapper architecture (see Fig. 1.13). In this architecture, each
component database has an associated wrapper that exports information about the
source schema, data, and query processing capabilities. A mediator centralizes the
information provided by the wrappers in a unified view of all available data (stored
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in a global data dictionary) and performs query processing using the wrappers
to access the component DBMSs. The data model used by the mediator can be
relational, object-oriented, or even semi-structured. In this chapter, for consistency
with the previous chapters on distributed query processing, we continue to use
the relational model, which is quite sufficient to explain the multidatabase query
processing techniques.

The mediator/wrapper architecture has several advantages. First, the specialized
components of the architecture allow the various concerns of different kinds of
users to be handled separately. Second, mediators typically specialize in a related
set of component databases with “similar” data, and thus export schemas and
semantics related to a particular domain. The specialization of the components
leads to a flexible and extensible distributed system. In particular, it allows seamless
integration of different data stored in very different components, ranging from full-
fledged relational DBMSs to simple files.

Assuming the mediator/wrapper architecture, we can now discuss the various
layers involved in query processing in distributed multidatabase systems as shown
in Fig. 7.13. As before, we assume the input is a query on global relations expressed
in relational calculus. This query is posed on global (distributed) relations, meaning
that data distribution and heterogeneity are hidden. Three main layers are involved in
multidatabase query processing. This layering is similar to that of query processing
in homogeneous distributed DBMSs (see Fig. 4.2). However, since there is no
fragmentation, there is no need for the data localization layer.

The first two layers map the input query into an optimized distributed query
execution plan (QEP). They perform the functions of query rewriting, query
optimization, and some query execution. The first two layers are performed by the
mediator and use metainformation stored in the global directory (global schema,
allocation, and capability information). Query rewriting transforms the input query
into a query on local relations, using the global schema. Recall that there are
two main approaches for database integration: global-as-view (GAV) and local-as-
view (LAV). Thus, the global schema provides the view definitions (i.e., mappings
between the global relations and the local relations stored in the component
databases) and the query is rewritten using the views.

Rewriting can be done at the relational calculus or algebra levels. In this chapter,
we will use a generalized form of relational calculus called Datalog that is well-
suited for such rewriting. Thus, there is an additional step of calculus to algebra
translation that is similar to the decomposition step in homogeneous distributed
DBMSs.

The second layer performs query optimization and (some) execution by con-
sidering the allocation of the local relations and the different query processing
capabilities of the component DBMSs exported by the wrappers. The allocation
and capability information used by this layer may also contain heterogeneous cost
information. The distributed QEP produced by this layer groups within subqueries
the operations that can be performed by the component DBMSs and wrappers.
Similar to distributed DBMSs, query optimization can be static or dynamic.
However, the lack of homogeneity in multidatabase systems (e.g., some component
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DBMSs may have unexpectedly long delays in answering) makes dynamic query
optimization more critical. In the case of dynamic optimization, there may be
subsequent calls to this layer after execution by the subsequent layer as illustrated by
the arrow showing results coming from the translation and execution layer. Finally,
this layer integrates the results coming from the different wrappers to provide a
unified answer to the user’s query. This requires the capability of executing some
operations on data coming from the wrappers. Since the wrappers may provide very
limited execution capabilities, e.g., in the case of very simple component DBMSs,
the mediator must provide the full execution capabilities to support the mediator
interface.

The third layer performs query translation and execution using the wrappers.
Then it returns the results to the mediator that can perform result integration

from different wrappers and subsequent execution. Each wrapper maintains a
wrapper schema that includes the local export schema and mapping information
to facilitate the translation of the input subquery (a subset of the QEP) expressed in
a common language into the language of the component DBMS. After the subquery
is translated, it is executed by the component DBMS and the local result is translated
back to the common format.

The wrapper information describes how mappings from/to participating local
schemas and global schema can be performed. It enables conversions between
components of the database in different ways. For example, if the global schema
represents temperatures in Fahrenheit degrees, but a participating database uses
Celsius degrees, the wrapper information must contain a conversion formula to
provide the proper presentation to the global user and the local databases. If the
conversion is across types and simple formulas cannot perform the translation,
complete mapping tables could be used in the wrapper information stored in the
directory.

7.2.3 Query Rewriting Using Views

Query rewriting reformulates the input query expressed on global relations into a
query on local relations. It uses the global schema, which describes in terms of views
the correspondences between the global relations and the local relations. Thus, the
query must be rewritten using views. The techniques for query rewriting differ in
major ways depending on the database integration approach that is used, i.e., GAV
or LAV. In particular, the techniques for LAV (and its extension GLAV) are much
more involved. Most of the work on query rewriting using views has been done
using Datalog, which is a logic-based database language. Datalog is more concise
than relational calculus and thus more convenient for describing complex query
rewriting algorithms. In this section, we first introduce Datalog terminology. Then,
we describe the main techniques and algorithms for query rewriting in the GAV and
LAV approaches.
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7.2.3.1 Datalog Terminology

Datalog can be viewed as an in-line version of domain relational calculus. Let us
first define conjunctive queries, i.e., select-project-join queries, which are the basis
for more complex queries. A conjunctive query in Datalog is expressed as a rule of
the form:

Q(t) : −R1(t1), . . . ,Rn(tn)

The atom Q(t) is the head of the query and denotes the result relation. The atoms
R1(t1), . . . ,Rn(tn) are the subgoals in the body of the query and denote database
relations. Q and R1, . . . ,Rn are predicate names and correspond to relation names.
t, t1, . . . , tn refer to the relation tuples and contain variables or constants. The
variables are similar to domain variables in domain relational calculus. Thus, the
use of the same variable name in multiple predicates expresses equijoin predicates.
Constants correspond to equality predicates. More complex comparison predicates
(e.g., using comparators such as 
=, ≤, and <) must be expressed as other subgoals.
We consider queries that are safe, i.e., those where each variable in the head also
appears in the body. Disjunctive queries can also be expressed in Datalog using
unions, by having several conjunctive queries with the same head predicate.

Example 7.12 Let us consider GCS relations EMP and WORKS defined in Fig. 7.9.
Consider the following SQL query:

SELECT E#, TITLE, P#
FROM EMP NATURAL JOIN WORKS
WHERE TITLE = "Programmer" OR DUR = 24

The corresponding query in Datalog can be expressed as:

Q(E#,TITLE,P#) : −EMP(E#,ENAME, “Programmer”,CITY),

WORKS(E#,P#,RESP,DUR)

Q(E#,TITLE,P#) : −EMP(E#,ENAME,TITLE,CITY),

WORKS(E#,P#,RESP, 24)

�

7.2.3.2 Rewriting in GAV

In the GAV approach, the global schema is expressed in terms of the data sources
and each global relation is defined as a view over the local relations. This is similar
to the global schema definition in tightly integrated distributed DBMS. In particular,
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the local relations (i.e., relations in a component DBMS) can correspond to
fragments. However, since the local databases preexist and are autonomous, it may
happen that tuples in a global relation do not exist in local relations or that a
tuple in a global relation appears in different local relations. Thus, the properties
of completeness and disjointness of fragmentation cannot be guaranteed. The lack
of completeness may yield incomplete answers to queries. The lack of disjointness
may yield duplicate results that may still be useful information and may not need to
be eliminated. Similar to queries, view definitions can use Datalog notation.

Example 7.13 Let us consider the global relations EMP and WORKS in Fig. 7.9,
with a slight modification: the default responsibility of an employee in a project
corresponds to its title, so that attribute TITLE is present in relation WORKS but
absent in relation EMP. Let us consider the local relations EMP1 and EMP2 each
with attributes E#, ENAME, TITLE, and CITY, and local relation WORKS1 with
attributes E#, P#, and DUR. The global relations EMP and WORKS can be simply
defined with the following Datalog rules:

EMP(E#,ENAME,CITY) : −EMP1(E#,ENAME,TITLE,CITY) (d1)

EMP(E#,ENAME,CITY) : −EMP2(E#,ENAME,TITLE,CITY) (d2)

WORKS(E#,P#,TITLE,DUR) : −EMP1(E#,ENAME,TITLE,CITY),

WORKS1(E#,P#,DUR) (d3)

WORKS(E#,P#,TITLE,DUR) : −EMP2(E#,ENAME,TITLE,CITY)),

WORKS1(E#,P#,DUR) (d4)

�
Rewriting a query expressed on the global schema into an equivalent query on

the local relations is relatively simple and similar to data localization in tightly
integrated distributed DBMS (see Sect. 4.2). The rewriting technique using views is
called unfolding, and it replaces each global relation invoked in the query with its
corresponding view. This is done by applying the view definition rules to the query
and producing a union of conjunctive queries, one for each rule application. Since
a global relation may be defined by several rules (see Example 7.13), unfolding can
generate redundant queries that need to be eliminated.

Example 7.14 Let us consider the global schema in Example 7.13 and the following
query q that asks for assignment information about the employees living in Paris:

Q(e, p) : −EMP(e,ENAME, “Paris”),WORKS(e, p,TITLE,DUR).
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Unfolding q produces q ′ as follows:

Q′(e, p) : −EMP1(e,ENAME,TITLE, “Paris”),WORKS1(e, p,DUR). (q1)

Q′(e, p) : −EMP2(e,ENAME,TITLE, “Paris”),WORKS1(e, p,DUR). (q2)

Q′ is the union of two conjunctive queries labeled as q1 and q2. q1 is obtained by
applying GAV rule d3 or both rules d1 and d3. In the latter case, the query obtained
is redundant with respect to that obtained with d3 only. Similarly, q2 is obtained by
applying rule d4 or both rules d2 and d4. �

Although the basic technique is simple, rewriting in GAV becomes difficult when
local databases have limited access patterns. This is the case for databases accessed
over the web where relations can be only accessed using certain binding patterns for
their attributes. In this case, simply substituting the global relations with their views
is not sufficient, and query rewriting requires the use of recursive Datalog queries.

7.2.3.3 Rewriting in LAV

In the LAV approach, the global schema is expressed independent of the local
databases and each local relation is defined as a view over the global relations. This
enables considerable flexibility for defining local relations.

Example 7.15 To facilitate comparison with GAV, we develop an example that is
symmetric to Example 7.13 with EMP and WORKS defined in that example as global
relations as. In the LAV approach, the local relations EMP1, EMP2, and WORKS1
can be defined with the following Datalog rules:

EMP1(E#,ENAME,TITLE,CITY) : −EMP(E#,ENAME,CITY),

WORKS(E#,P#,TITLE,DUR) (d5)

EMP2(E#,ENAME,TITLE,CITY) : −EMP(E#,ENAME,CITY),

WORKS(E#,P#,TITLE,DUR) (d6)

WORKS1(E#,P#,DUR) : −WORKS(E#,P#,TITLE,DUR) (d7)

�
Rewriting a query expressed on the global schema into an equivalent query

on the views describing the local relations is difficult for three reasons. First,
unlike in the GAV approach, there is no direct correspondence between the terms
used in the global schema, (e.g., EMP, ENAME) and those used in the views (e.g.,
EMP1, EMP2, ENAME). Finding the correspondences requires comparison with each
view. Second, there may be many more views than global relations, thus making
view comparison time consuming. Third, view definitions may contain complex
predicates to reflect the specific contents of the local relations, e.g., view EMP3
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containing only programmers. Thus, it is not always possible to find an equivalent
rewriting of the query. In this case, the best that can be done is to find a maximally
contained query, i.e., a query that produces the maximum subset of the answer.
For instance, EMP3 could only return a subset of all employees, those who are
programmers.

Rewriting queries using views has received much attention because of its
relevance to both logical and physical data integration problems. In the context
of physical integration (i.e., data warehousing), using materialized views may be
much more efficient than accessing base relations. However, the problem of finding
a rewriting using views is NP-complete in the number of views and the number of
subgoals in the query. Thus, algorithms for rewriting a query using views essentially
try to reduce the numbers of rewritings that need to be considered. Three main
algorithms have been proposed for this purpose: the bucket algorithm, the inverse
rule algorithm, and the MinCon algorithm. The bucket algorithm and the inverse
rule algorithm have similar limitations that are addressed by the MinCon algorithm.

The bucket algorithm considers each predicate of the query independently to
select only the views that are relevant to that predicate. Given a query Q, the
algorithm proceeds in two steps. In the first step, it builds a bucket b for each subgoal
q of Q that is not a comparison predicate and inserts in b the heads of the views that
are relevant to answer q. To determine whether a view V should be in b, there must
be a mapping that unifies q with one subgoal v in V.

For instance, consider query Q in Example 7.14 and the views in Example 7.15.
The following mapping unifies the subgoal EMP(e, ENAME, “Paris”) of Q with the
subgoal EMP(E#, ENAME, CITY) in view EMP1:

e → E#, “Paris” → CITY

In the second step, for each view V of the Cartesian product of the nonempty
buckets (i.e., some subset of the buckets), the algorithm produces a conjunctive
query and checks whether it is contained in Q. If it is, the conjunctive query is kept
as it represents one way to answer part of Q from V. Thus, the rewritten query is a
union of conjunctive queries.

Example 7.16 Let us consider query Q in Example 7.14 and the views in Exam-
ple 7.15. In the first step, the bucket algorithm creates two buckets, one for each
subgoal of Q. Let us denote by b1 the bucket for the subgoal EMP(e, ENAME,
“Paris”) and by b2 the bucket for the subgoal WORKS(e, p, TITLE, DUR). Since
the algorithm inserts only the view heads in a bucket, there may be variables in a
view head that are not in the unifying mapping. Such variables are simply primed.
We obtain the following buckets:

b1 = {EMP1(E#,ENAME,TITLE′,CITY),

EMP2(E#,ENAME,TITLE′,CITY)}
b2 = {WORKS1(E#,P#,DUR′)}
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In the second step, the algorithm combines the elements from the buckets, which
produces a union of two conjunctive queries:

Q′(e, p) : −EMP1(e,ENAME,TITLE, “Paris”),WORKS1(e, p,DUR) (q1)

Q′(e, p) : −EMP2(e,ENAME,TITLE, “Paris”),WORKS1(e, p,DUR) (q2)

�
The main advantage of the bucket algorithm is that, by considering the predicates

in the query, it can significantly reduce the number of rewritings that need to be
considered. However, considering the predicates in the query in isolation may yield
the addition of a view in a bucket that is irrelevant when considering the join with
other views. Furthermore, the second step of the algorithm may still generate a large
number of rewritings as a result of the Cartesian product of the buckets.

Example 7.17 Let us consider query Q in Example 7.14 and the views in Exam-
ple 7.15 with the addition of the following view that gives the projects for which
there are employees who live in Paris.

PROJ1(P#) : −EMP1(E#,ENAME, “Paris”),

WORKS(E#,P#,TITLE,DUR) (d8)

Now, the following mapping unifies the subgoal WORKS(e, p, TITLE, DUR) of
Q with the subgoal WORKS(E#, P#, TITLE, DUR) in view PROJ1:

p → PNAME

Thus, in the first step of the bucket algorithm, PROJ1 is added to bucket b2.
However, PROJ1 cannot be useful in a rewriting of Q since the variable ENAME
is not in the head of PROJ1 and thus makes it impossible to join PROJ1 on the
variable e of Q. This can be discovered only in the second step when building the
conjunctive queries. �

The MinCon algorithm addresses the limitations of the bucket algorithm (and
the inverse rule algorithm) by considering the query globally and considering how
each predicate in the query interacts with the views. It proceeds in two steps like the
bucket algorithm. The first step starts by selecting the views that contain subgoals
corresponding to subgoals of query Q. However, upon finding a mapping that unifies
a subgoal q of Q with a subgoal v in view V, it considers the join predicates in
Q and finds the minimum set of additional subgoals of Q that must be mapped to
subgoals in V. This set of subgoals of Q is captured by a MinCon description (MCD)
associated with V. The second step of the algorithm produces a rewritten query by
combining the different MCDs. In this second step, unlike in the bucket algorithm,
it is not necessary to check that the proposed rewritings are contained in the query
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because the way the MCDs are created guarantees that the resulting rewritings will
be contained in the original query.

Applied to Example 7.17, the algorithm would create 3 MCDs: two for the views
EMP1 and EMP2 containing the subgoal EMP of Q and one for ASG1 containing the
subgoal ASG. However, the algorithm cannot create an MCD for PROJ1 because
it cannot apply the join predicate in Q. Thus, the algorithm would produce the
rewritten query Q′ of Example 7.16. Compared with the bucket algorithm, the
second step of the MinCon algorithm is much more efficient since it performs fewer
combinations of MCDs than buckets.

7.2.4 Query Optimization and Execution

The three main problems of query optimization in multidatabase systems are
heterogeneous cost modeling, heterogeneous query optimization (to deal with
different capabilities of component DBMSs), and adaptive query processing (to deal
with strong variations in the environment—failures, unpredictable delays, etc.). In
this section, we describe the techniques for the first two problems. In Sect. 4.6, we
presented the techniques for adaptive query processing. These techniques can be
used in multidatabase systems as well, provided that the wrappers are able to collect
information regarding execution within the component DBMSs.

7.2.4.1 Heterogeneous Cost Modeling

Global cost function definition, and the associated problem of obtaining cost-related
information from component DBMSs, is perhaps the most-studied of the three
problems. A number of possible solutions have emerged, which we discuss below.

The first thing to note is that we are primarily interested in determining the cost
of the lower levels of a query execution tree that correspond to the parts of the query
executed at component DBMSs. If we assume that all local processing is “pushed
down” in the tree, then we can modify the query plan such that the leaves of the tree
correspond to subqueries that will be executed at individual component DBMSs. In
this case, we are talking about the determination of the costs of these subqueries that
are input to the first level (from the bottom) operators. Cost for higher levels of the
query execution tree may be calculated recursively, based on the leaf node costs.

Three alternative approaches exist for determining the cost of executing queries
at component DBMSs:

1. Black-Box Approach. This approach treats each component DBMS as a black
box, running some test queries on it, and from these determines the necessary
cost information.
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2. Customized Approach. This approach uses previous knowledge about the
component DBMSs, as well as their external characteristics, to subjectively
determine the cost information.

3. Dynamic Approach. This approach monitors the runtime behavior of compo-
nent DBMSs, and dynamically collects the cost information.

We discuss each approach, focusing on the proposals that have attracted the most
attention.

Black-Box Approach

In the black-box approach, the cost functions are expressed logically (e.g., aggregate
CPU and I/O costs, selectivity factors), rather than on the basis of physical
characteristics (e.g., relation cardinalities, number of pages, number of distinct
values for each column). Thus, the cost functions for component DBMSs are
expressed as

Cost = initialization cost + cost to f ind qualifying tuples

+ cost to process selected tuples

The individual terms of this formula will differ for different operators. However,
these differences are not difficult to specify a priori. The fundamental difficulty is the
determination of the term coefficients in these formulas, which change with different
component DBMSs. One way to deal with this is to construct a synthetic database
(called a calibrating database), run queries against it in isolation, and measure the
elapsed time to deduce the coefficients.

A problem with this approach is that the results obtained by using a synthetic
database may not apply well to real DBMSs. An alternative is based on running
probing queries on component DBMSs to determine cost information. Probing
queries can, in fact, be used to gather a number of cost information factors. For
example, probing queries can be issued to retrieve data from component DBMSs
to construct and update the multidatabase catalog. Statistical probing queries can
be issued that, for example, count the number of tuples of a relation. Finally,
performance measuring probing queries can be issued to measure the elapsed time
for determining cost function coefficients.

A special case of probing queries is sample queries. In this case, queries are
classified according to a number of criteria, and sample queries from each class
are issued and measured to derive component cost information. Query classification
can be performed according to query characteristics (e.g., unary operation queries,
two-way join queries), characteristics of the operand relations (e.g., cardinality,
number of attributes, information on indexed attributes), and characteristics of the
underlying component DBMSs (e.g., the access methods that are supported and the
policies for choosing access methods).
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Classification rules are defined to identify queries that execute similarly, and
thus could share the same cost formula. For example, one may consider that two
queries that have similar algebraic expressions (i.e., the same algebraic tree shape),
but different operand relations, attributes, or constants, are executed the same way if
their attributes have the same physical properties. Another example is to assume that
join order of a query has no effect on execution since the underlying query optimizer
applies reordering techniques to choose an efficient join ordering. Thus, two queries
that join the same set of relations belong to the same class, whatever ordering is
expressed by the user. Classification rules are combined to define query classes. The
classification is performed either top-down by dividing a class into more specific
ones or bottom-up by merging two classes into a larger one. In practice, an efficient
classification is obtained by mixing both approaches. The global cost function
consists of three components: initialization cost, cost of retrieving a tuple, and cost
of processing a tuple. The difference is in the way the parameters of this function
are determined. Instead of using a calibrating database, sample queries are executed
and costs are measured. The global cost equation is treated as a regression equation,
and the regression coefficients are calculated using the measured costs of sample
queries. The regression coefficients are the cost function parameters. Eventually,
the cost model quality is controlled through statistical tests (e.g., F-test): if the tests
fail, the query classification is refined until quality is sufficient.

The above approaches require a preliminary step to instantiate the cost model
(either by calibration or sampling). This may not be always appropriate, because
it would slow down the system each time a new DBMS component is added. One
way to address this problem is to progressively learn the cost model from queries.
The assumption is that the mediator invokes the underlying component DBMSs by
a function call. The cost of a call is composed of three values: the response time to
access the first tuple, the whole result response time, and the result cardinality. This
allows the query optimizer to minimize either the time to receive the first tuple or
the time to process the whole query, depending on end-user requirements. Initially
the query processor does not know any statistics about component DBMSs. Then
it monitors ongoing queries: it collects processing time of every call and stores it
for future estimation. To manage the large amount of collected statistics, the cost
manager summarizes them, either without loss of precision or with less precision
at the benefit of lower space use and faster cost estimation. Summarization consists
of aggregating statistics: the average response time is computed for all the calls
that match the same pattern, i.e., those with identical function name and zero or
more identical argument values. The cost estimator module is implemented in a
declarative language. This allows adding new cost formulas describing the behavior
of a particular component DBMS. However, the burden of extending the mediator
cost model remains with the mediator developer.

The major drawback of the black-box approach is that the cost model, although
adjusted by calibration, is common for all component DBMSs and may not capture
their individual specifics. Thus it might fail to estimate accurately the cost of a query
executed at a component DBMS that exposes unforeseen behavior.
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Customized Approach

The basis of this approach is that the query processors of the component DBMSs
are too different to be represented by a unique cost model as used in the black-
box approach. It also assumes that the ability to accurately estimate the cost of
local subqueries will improve global query optimization. The approach provides a
framework to integrate the component DBMSs’ cost model into the mediator query
optimizer. The solution is to extend the wrapper interface such that the mediator
gets some specific cost information from each wrapper. The wrapper developer is
free to provide a cost model, partially or entirely. Then, the challenge is to integrate
this (potentially partial) cost description into the mediator query optimizer. There
are two main solutions.

A first solution is to provide the logic within the wrapper to compute three cost
estimates: the time to initiate the query process and receive the first result item
(called reset_cost), the time to get the next item (called advance_cost), and the
result cardinality. Thus, the total query cost is

T otal_access_cost = reset_cost + (cardinality − 1) ∗ advance_cost

This solution can be extended to estimate the cost of database procedure calls. In that
case, the wrapper provides a cost formula that is a linear equation depending on the
procedure parameters. This solution has been successfully implemented to model a
wide range of heterogeneous components DBMSs, ranging from a relational DBMS
to an image server. It shows that a little effort is sufficient to implement a rather
simple cost model and this significantly improves distributed query processing over
heterogeneous sources.

A second solution is to use a hierarchical generic cost model. As shown in
Fig. 7.14, each node represents a cost rule that associates a query pattern with a
cost function for various cost parameters.

The node hierarchy is divided into five levels depending on the genericity of
the cost rules (in Fig. 7.14, the increasing width of the boxes shows the increased
focus of the rules). At the top level, cost rules apply by default to any DBMS. At
the underlying levels, the cost rules are increasingly focused on: specific DBMS,
relation, predicate, or query. At the time of wrapper registration, the mediator
receives wrapper metadata including cost information, and completes its built-
in cost model by adding new nodes at the appropriate level of the hierarchy.
This framework is sufficiently general to capture and integrate both general cost
knowledge declared as rules given by wrapper developers and specific information
derived from recorded past queries that were previously executed. Thus, through an
inheritance hierarchy, the mediator cost-based optimizer can support a wide variety
of data sources. The mediator benefits from specialized cost information about each
component DBMS, to accurately estimate the cost of queries and choose a more
efficient QEP.

Example 7.18 Consider the GCS relations EMP and WORKS (Fig. 7.9). EMP is
stored at component DBMS db1 and contains 1,000 tuples. ASG is stored at
component DBMS db2 and contains 10,000 tuples. We assume uniform distribution
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Fig. 7.14 Hierarchical cost formula tree

of attribute values. Half of the WORKS tuples have a duration greater than 6. We
detail below some parts of the mediator generic cost model where R and S are
two relations, A is the join attribute and we use superscripts to indicate the access
method:

cost (R) = |R|

cost (σpredicate(R)) = cost (R) (access to R by sequential scan—by default)

cost (R ��
ind
A S) = cost (R)+|R| ∗ cost (σA=v(S)) (using an index based (ind)

join with the index on S.A)

cost (R ��
nl
A S) = cost (R) + |R| ∗ cost (S) (using a nested-loop (nl) join)

Consider the following global query Q:

SELECT *
FROM EMP NATURAL JOIN WORKS
WHERE WORKS.DUR>6
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The cost-based query optimizer generates the following plans to process Q:

P1 = σDUR>6(EMP ��
ind
E# WORKS)

P2 = EMP ��
nl
E# σDUR>6(WORKS)

P3 = σDUR>6(WORKS) ��ind
E# EMP

P4 = σDUR>6(WORKS) ��nl
E# EMP

Based on the generic cost model, we compute their cost as:

cost (P1) = cost (σDUR>6(EMP ��
ind
E# WORKS)

= cost (EMP ��
ind
E# WORKS)

= cost (EMP) + |EMP| ∗ cost (σE#=v(WORKS))

= |EMP| + |EMP| ∗ |WORKS| = 10, 001, 000

cost (P2) = cost (EMP) + |EMP| ∗ cost (σDUR>6(WORKS))

= cost (EMP) + |EMP| ∗ cost (WORKS)

= |EMP | + |EMP| ∗ |WORKS| = 10, 001, 000

cost (P3) = cost (P4) = |WORKS| + |WORKS|
2

∗ |EMP|

= 5, 010, 000

Thus, the optimizer discards plans P1 and P2 to keep either P3 or P4 for processing
Q. Let us assume now that the mediator imports specific cost information about
component DBMSs. db1 exports the cost of accessing EMP tuples as:

cost (σA=v(R)) = |σA=v(R)|

db2 exports the specific cost of selecting WORKS tuples that have a given E# as:

cost (σE#=v(WORKS)) = |σE#=v(WORKS)|

The mediator integrates these cost functions in its hierarchical cost model, and can
now estimate more accurately the cost of the QEPs:

cost (P1) = |EMP| + |EMP| ∗ |σE#=v(WORKS)|
= 1, 000 + 1, 000 ∗ 10
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= 11, 000

cost (P2) = |EMP| + |EMP| ∗ |σDUR>6(WORKS)|

= |EMP| + |EMP| ∗ |ASG|
2

= 5, 001, 000

cost (P3) = |WORKS| + |WORKS|
2

∗ |σE#=v(EMP)|

= 10, 000 + 5, 000 ∗ 1

= 15, 000

cost (P4) = |WORKS| + |WORKS|
2

∗ |EMP|

= 10, 000 + 5, 000 ∗ 1, 000

= 5, 010, 000

The best QEP is now P1 which was previously discarded because of lack of cost
information about component DBMSs. In many situations P1 is actually the best
alternative to process Q1. �

The two solutions just presented are well-suited to the mediator/wrapper archi-
tecture and offer a good trade-off between the overhead of providing specific cost
information for diverse component DBMSs and the benefit of faster heterogeneous
query processing.

Dynamic Approach

The above approaches assume that the execution environment is stable over time.
However, in most cases, the execution environment factors are frequently changing.
Three classes of environmental factors can be identified based on their dynamicity.
The first class for frequently changing factors (every second to every minute)
includes CPU load, I/O throughput, and available memory. The second class for
slowly changing factors (every hour to every day) includes DBMS configuration
parameters, physical data organization on disks, and database schema. The third
class for almost stable factors (every month to every year) includes DBMS type,
database location, and CPU speed. We focus on solutions that deal with the first two
classes.

One way to deal with dynamic environments where network contention, data
storage, or available memory changes over time is to extend the sampling method
and consider user queries as new samples. Query response time is measured
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to adjust the cost model parameters at runtime for subsequent queries. This
avoids the overhead of processing sample queries periodically, but still requires
heavy computation to solve the cost model equations and does not guarantee that
cost model precision improves over time. A better solution, called qualitative,
defines the system contention level as the combined effect of frequently changing
factors on query cost. The system contention level is divided into several discrete
categories: high, medium, low, or no system contention. This allows for defining
a multicategory cost model that provides accurate cost estimates, while dynamic
factors are varying. The cost model is initially calibrated using probing queries. The
current system contention level is computed over time, based on the most significant
system parameters. This approach assumes that query executions are short, so the
environment factors remain rather constant during query execution. However, this
solution does not apply to long running queries, since the environment factors may
change rapidly during query execution.

To manage the case where the environment factor variation is predictable (e.g.,
the daily DBMS load variation is the same every day), the query cost is computed
for successive date ranges. Then, the total cost is the sum of the costs for each
range. Furthermore, it may be possible to learn the pattern of the available network
bandwidth between the MDBS query processor and the component DBMS. This
allows adjusting the query cost depending on the actual date.

7.2.4.2 Heterogeneous Query Optimization

In addition to heterogeneous cost modeling, multidatabase query optimization must
deal with the issue of the heterogeneous computing capabilities of component
DBMSs. For instance, one component DBMS may support only simple select oper-
ations, while another may support complex queries involving join and aggregate.
Thus, depending on how the wrappers export such capabilities, query processing
at the mediator level can be more or less complex. There are two main approaches
to deal with this issue depending on the kind of interface between mediator and
wrapper: query-based and operator-based.

1. Query-based. In this approach, the wrappers support the same query capability,
e.g., a subset of SQL, which is translated to the capability of the component
DBMS. This approach typically relies on a standard DBMS interface such as
Open Database Connectivity (ODBC) and its extensions for the wrappers or
SQL Management of External Data (SQL/MED). Thus, since the component
DBMSs appear homogeneous to the mediator, query processing techniques
designed for homogeneous distributed DBMS can be reused. However, if the
component DBMSs have limited capabilities, the additional capabilities must be
implemented in the wrappers, e.g., join queries may need to be handled at the
wrapper, if the component DBMS does not support join.

2. Operator-based. In this approach, the wrappers export the capabilities of the
component DBMSs through compositions of relational operators. Thus, there is
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more flexibility in defining the level of functionality between the mediator and
the wrapper. In particular, the different capabilities of the component DBMSs
can be made available to the mediator. This makes wrapper construction easier
at the expense of more complex query processing in the mediator. In particular,
any functionality that may not be supported by component DBMSs (e.g., join)
will need to be implemented at the mediator.

In the rest of this section, we present, in more detail, the approaches to query
optimization in these systems.

Query-Based Approach

Since the component DBMSs appear homogeneous to the mediator, one approach
is to use a distributed cost-based query optimization algorithm (see Chap. 4) with
a heterogeneous cost model (see Sect. 7.2.4.1). However, extensions are needed
to convert the distributed execution plan into subqueries to be executed by the
component DBMSs and into subqueries to be executed by the mediator. The hybrid
two-step optimization technique is useful in this case (see Sect. 4.5.3): in the first
step, a static plan is produced by a centralized cost-based query optimizer; in the
second step, at startup time, an execution plan is produced by carrying out site
selection and allocating the subqueries to the sites. However, centralized optimizers
restrict their search space by eliminating bushy join trees from consideration.
Almost all the systems use left linear join orders. Consideration of only left linear
join trees gives good results in centralized DBMSs for two reasons: it reduces the
need to estimate statistics for at least one operand, and indexes can still be exploited
for one of the operands. However, in multidatabase systems, these types of join
execution plans are not necessarily the preferred ones as they do not allow any
parallelism in join execution. As we discussed in earlier chapters, this is also a
problem in homogeneous distributed DBMSs, but the issue is more serious in the
case of multidatabase systems, because we wish to push as much processing as
possible to the component DBMSs.

A way to resolve this problem is to somehow generate bushy join trees and
consider them at the expense of left linear ones. One way to achieve this is to apply
a cost-based query optimizer to first generate a left linear join tree, and then convert
it to a bushy tree. In this case, the left linear join execution plan can be optimal
with respect to total time, and the transformation improves the query response time
without severely impacting the total time. A hybrid algorithm that concurrently
performs a bottom-up and top-down sweep of the left linear join execution tree,
transforming it, step-by-step, to a bushy one is possible. The algorithm maintains
two pointers, called upper anchor nodes (UAN) on the tree. At the beginning, one
of these, called the bottom UAN (UANB ), is set to the grandparent of the leftmost
root node (join with R3 in Fig. 4.9), while the second one, called the top UAN
(UANT ), is set to the root (join with R5). For each UAN the algorithm selects a
lower anchor node (LAN). This is the node closest to the UAN and whose right
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child subtree’s response time is within a designer-specified range, relative to that of
the UAN’s right child subtree. Intuitively, the LAN is chosen such that its right child
subtree’s response time is close to the corresponding UAN’s right child subtree’s
response time. As we will see shortly, this helps in keeping the transformed bushy
tree balanced, which reduces the response time.

At each step, the algorithm picks one of the UAN/LAN pairs (strictly speaking, it
picks the UAN and selects the appropriate LAN, as discussed above), and performs
the following translation for the segment between that LAN and UAN pair:

1. The left child of UAN becomes the new UAN of the transformed segment.
2. The LAN remains unchanged, but its right child vertex is replaced with a new

join node of two subtrees, which were the right child subtrees of the input UAN
and LAN.

The UAN mode that will be considered in that particular iteration is chosen
according to the following heuristic: choose UANB if the response time of its left
child subtree is smaller than that of UANT ’s subtree; otherwise, choose UANT . If
the response times are the same, choose the one with the more unbalanced child
subtree.

At the end of each transformation step, the UANB and UANT are adjusted.
The algorithm terminates when UANB = UANT , since this indicates that no
further transformations are possible. The resulting join execution tree will be almost
balanced, producing an execution plan whose response time is reduced due to
parallel execution of the joins.

The algorithm described above starts with a left linear join execution tree
that is generated by a centralized DBMS optimizer. These optimizers are able
to generate very good plans, but the initial linear execution plan may not fully
account for the peculiarities of the distributed multidatabase characteristics, such
as data replication. A special global query optimization algorithm can take these
into consideration. One proposed algorithm starts from an initial plan and checks
for different parenthesizations of this linear join execution order to produce a
parenthesized order that is optimal with respect to response time. The result is
an (almost) balanced join execution tree. This approach is likely to produce better
quality plans at the expense of longer optimization time.

Operator-Based Approach

Expressing the capabilities of the component DBMSs through relational operators
allows tight integration of query processing between the mediator and the wrappers.
In particular, the mediator/wrapper communication can be in terms of subplans.
We illustrate the operator-based approach via the planning functions proposed in
the Garlic project. In this approach, the capabilities of the component DBMSs
are expressed by the wrappers as planning functions that can be directly called
by a centralized query optimizer. It extends a rule-based optimizer with operators
to create temporary relations and retrieve locally stored data. It also creates the
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PushDown operator that pushes a portion of the work to the component DBMSs
where it will be executed. The execution plans are represented, as usual, as operator
trees, but the operator nodes are annotated with additional information that specifies
the source(s) of the operand(s), whether the results are materialized, and so on. The
Garlic operator trees are then translated into operators that can be directly executed
by the execution engine.

Planning functions are considered by the optimizer as enumeration rules. They
are called by the optimizer to construct subplans using two main functions:
accessPlan to access a relation, and joinPlan to join two relations using the access
plans. These functions precisely reflect the capabilities of the component DBMSs
with a common formalism.

Example 7.19 We consider three component databases, each at a different site.
Component database db1 stores relation EMP(ENO, ENAME, CITY) and com-
ponent database db2 stores relation WORKS(ENO, PNAME, DUR). Component
database db3 stores only employee information with a single relation of schema
EMPASG(ENAME, CITY, PNAME, DUR), whose primary key is (ENAME, PNAME).
Component databases db1 and db2 have the same wrapper w1, whereas db3 has a
different wrapper w2.

Wrapper w1 provides two planning functions typical of a relational DBMS. The
accessPlan rule

accessPlan(R: relation, A: attribute list, P : select predicate) =
scan(R,A, P , db(R))

produces a scan operator that accesses tuples of R from its component database
db(R) (here we can have db(R) = db1 or db(R) = db2), applies select predicate P ,
and projects on the attribute list A. The joinPlan rule

joinPlan(R1,R2: relations, A: attribute list, P : join predicate) =
join(R1,R2,A, P )

condition: db(R1) 
= db(R2)

produces a join operator that accesses tuples of relations R1 and R2 and applies join
predicate P and projects on attribute list A. The condition expresses that R1 and
R2 are stored in different component databases (i.e., db1 and db2). Thus, the join
operator is implemented by the wrapper.

Wrapper w2 also provides two planning functions. The accessPlan rule

accessPlan(R: relation, A: attribute list, P : select predicate) =
fetch(CITY=“c”)

condition: (CITY=“c”) ⊆ P

produces a fetch operator that directly accesses (entire) employee tuples in compo-
nent database db3 whose CITY value is “c.” The accessPlan rule

accessPlan(R: relation, A: attribute list, P : select predicate) =
scan(R,A, P )
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Fig. 7.15 Heterogeneous query execution plan

produces a scan operator that accesses tuples of relation R in the wrapper and applies
select predicate P and attribute project list A. Thus, the scan operator is implemented
by the wrapper, not the component DBMS.

Consider the following SQL query submitted to mediator m:

SELECT ENAME, PNAME, DUR
FROM EMPASG
WHERE CITY = "Paris" AND DUR > 24

Assuming the GAV approach, the global view EMPASG(ENAME, CITY, PNAME,
DUR) can be defined as follows (for simplicity, we prefix each relation by its
component database name):

EMPASG = (db1.EMP �� db2.WORKS) ∪ db3.EMPASG

After query rewriting in GAV and query optimization, the operator-based
approach could produce the QEP shown in Fig. 7.15. This plan shows that the
operators that are not supported by the component DBMS are to be implemented
by the wrappers or the mediator. �

Using planning functions for heterogeneous query optimization has several
advantages in MDBSs. First, planning functions provide a flexible way to express
precisely the capabilities of component data sources. In particular, they can be
used to model nonrelational data sources such as web sites. Second, since these
rules are declarative, so they make wrapper development easier. The only important
development for wrappers is the implementation of specific operators, e.g., the scan
operator of db3 in Example 7.19. Finally, this approach can be easily incorporated
in an existing, centralized query optimizer.

The operator-based approach has also been successfully used in DIMDBS,
an MDBS designed to access multiple databases over the web. DISCO uses the
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GAV approach and supports an object data model to represent both mediator and
component database schemas and data types. This allows easy introduction of new
component databases, easily handling potential type mismatches. The component
DBMS capabilities are defined as a subset of an algebraic machine (with the usual
operators such as scan, join, and union) that can be partially or entirely supported
by the wrappers or the mediator. This gives much flexibility for the wrapper
implementors in deciding where to support component DBMS capabilities (in the
wrapper or in the mediator). Furthermore, compositions of operators, including
specific datasets, can be specified to reflect component DBMS limitations. However,
query processing is more complicated because of the use of an algebraic machine
and compositions of operators. After query rewriting on the component schemas,
there are three main steps:

1. Search space generation. The query is decomposed into a number of QEPs,
which constitutes the search space for query optimization. The search space is
generated using a traditional search strategy such as dynamic programming.

2. QEP decomposition. Each QEP is decomposed into a forest of n wrapper QEPs
and a composition QEP. Each wrapper QEP is the largest part of the initial QEP
that can be entirely executed by the wrapper. Operators that cannot be performed
by a wrapper are moved up to the composition QEP. The composition QEP
combines the results of the wrapper QEPs in the final answer, typically through
unions and joins of the intermediate results produced by the wrappers.

3. Cost evaluation. The cost of each QEP is evaluated using a hierarchical cost
model discussed in Sect. 7.2.4.1.

7.2.5 Query Translation and Execution

Query translation and execution is performed by the wrappers using the component
DBMSs. A wrapper encapsulates the details of one or more component databases,
each supported by the same DBMS (or file system). It also exports to the mediator
the component DBMS capabilities and cost functions in a common interface. One
of the major practical uses of wrappers has been to allow an SQL-based DBMS to
access non-SQL databases.

The main function of a wrapper is conversion between the common interface
and the DBMS-dependent interface. Figure 7.16 shows these different levels of
interfaces between the mediator, the wrapper, and the component DBMSs. Note
that, depending on the level of autonomy of the component DBMSs, these three
components can be located differently. For instance, in the case of strong autonomy,
the wrapper should be at the mediator site, possibly on the same server. Thus,
communication between a wrapper and its component DBMS incurs network cost.
However, in the case of a cooperative component database (e.g., within the same
organization), the wrapper could be installed at the component DBMS site, much
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Fig. 7.16 Wrapper interfaces

like an ODBC driver. Thus, communication between the wrapper and the component
DBMS is much more efficient.

The information necessary to perform conversion is stored in the wrapper schema
that includes the local schema exported to the mediator in the common interface
(e.g., relational) and the schema mappings to transform data between the local
schema and the component database schema and vice versa. We discussed schema
mappings in Sect. 7.1.4. Two kinds of conversion are needed. First, the wrapper
must translate the input QEP generated by the mediator and expressed in a common
interface into calls to the component DBMS using its DBMS-dependent interface.
These calls yield query execution by the component DBMS that return results
expressed in the DBMS-dependent interface. Second, the wrapper must translate
the results to the common interface format so that they can be returned to the
mediator for integration. In addition, the wrapper can execute operations that are
not supported by the component DBMS (e.g., the scan operation by wrapper w2 in
Fig. 7.15).

As discussed in Sect. 7.2.4.2, the common interface to the wrappers can be query-
based or operator-based. The problem of translation is similar in both approaches.
To illustrate query translation in the following example, we use the query-based
approach with the SQL/MED standard that allows a relational DBMS to access
external data represented as foreign relations in the wrapper’s local schema. This
example illustrates how a very simple data source can be wrapped to be accessed
through SQL.

Example 7.20 We consider relation EMP(ENO, ENAME, CITY) stored in a very
simple component database, in server ComponentDB, built with Unix text files.
Each EMP tuple can then be stored as a line in a file, e.g., with the attributes
separated by “:”. In SQL/MED, the definition of the local schema for this relation
together with the mapping to a Unix file can be declared as a foreign relation with
the following statement:

CREATE FOREIGN TABLE EMP
ENO INTEGER,
ENAME VARCHAR(30),
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CITY VARCHAR(20)
SERVER ComponentDB
OPTIONS (Filename ’/usr/EngDB/emp.txt’,

Delimiter ’:’)

Then, the mediator can send SQL statements to the wrapper that supports access to
this relation. For instance, the query

SELECT ENAME
FROM EMP

can be translated by the wrapper using the following Unix shell command to extract
the relevant attribute:

cut -d: -f2 /usr/EngDB/emp

Additional processing, e.g., for type conversion, can then be done using program-
ming code. �

Wrappers are mostly used for read-only queries, which makes query translation
and wrapper construction relatively easy. Wrapper construction typically relies on
tools with reusable components to generate most of the wrapper code. Furthermore,
DBMS vendors provide wrappers for transparently accessing their DBMS using
standard interfaces. However, wrapper construction is much more difficult if updates
to component databases are to be supported through wrappers (as opposed to
directly updating the component databases through their DBMS). A major problem
is due to the heterogeneity of integrity constraints between the common interface
and the DBMS-dependent interface. As discussed in Chap. 3, integrity constraints
are used to reject updates that violate database consistency. In modern DBMSs,
integrity constraints are explicit and specified as rules that are part of the database
schema. However, in older DBMSs or simpler data sources (e.g., files), integrity
constraints are implicit and implemented by specific code in the applications. For
instance, in Example 7.20, there could be applications with some embedded code
that rejects insertions of new lines with an existing ENO in the EMP text file. This
code corresponds to a unique key constraint on ENO in relation EMP but is not
readily available to the wrapper. Thus, the main problem of updating through a
wrapper is guaranteeing component database consistency by rejecting all updates
that violate integrity constraints, whether they are explicit or implicit. A software
engineering solution to this problem uses a tool with reverse engineering techniques
to identify within application code the implicit integrity constraints that are then
translated into validation code in the wrappers.

Another major problem is wrapper maintenance. Query translation relies heavily
on the mappings between the component database schema and the local schema. If
the component database schema is changed to reflect the evolution of the component
database, then the mappings can become invalid. For instance, in Example 7.20,
the administrator may switch the order of the fields in the EMP file. Using invalid
mappings may prevent the wrapper from producing correct results. Since the
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component databases are autonomous, detecting and correcting invalid mappings
is important. The techniques to do so are those for mapping maintenance that we
discussed in this chapter.

7.3 Conclusion

In this chapter, we discussed the bottom-up database design process, which we
called database integration and how to execute queries over databases constructed
in this manner. Database integration is the process of creating a GCS (or a mediated
schema) and determining how each LCS maps to it. A fundamental separation is
between data warehouses where the GCS is instantiated and materialized, and data
integration systems where the GCS is merely a virtual view.

Although the topic of database integration has been studied extensively for a long
time, almost all of the work has been fragmented. Individual projects focus either on
schema matching, or data cleaning, or schema mapping. What is needed is an end-
to-end methodology for database integration that is semiautomatic with sufficient
hooks for expert involvement. One approach to such a methodology is the work of
Bernstein and Melnik [2007], which provides the beginnings of a comprehensive
“end-to-end” methodology.

A related concept that has received considerable discussion in literature is data
exchange, which is defined as “the problem of taking data structured under a
source schema and creating an instance of a target schema that reflects the source
data as accurately as possible” [Fagin et al. 2005]. This is very similar to the
physical integration (i.e., materialized) data integration, such as data warehouses,
that we discussed in this chapter. A difference between data warehouses and the
materialization approaches as addressed in data exchange environments is that
data warehouse data typically belongs to one organization and can be structured
according to a well-defined schema, while in data exchange environments data may
come from different sources and contain heterogeneity.

Our focus in this chapter has been on integrating databases. Increasingly,
however, the data that are used in distributed applications involve those that are
not in a database. An interesting new topic of discussion among researchers is the
integration of structured data that is stored in databases and unstructured data that
is maintained in other systems (web servers, multimedia systems, digital libraries,
etc.). We discuss these in Chap. 12 where we focus on the integration of data from
different web repositories and introduce the recent concept of data lakes.

Another issue that we ignored in this chapter is data integration when a GCS
does not exist or cannot be specified. The issue arises particularly in the peer-to-
peer systems where the scale and the variety of data sources make it quite difficult
(if not impossible) to design a GCS. We will discuss data integration in peer-to-peer
systems in Chap. 9.
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The second part of this chapter focused on query processing in multidatabase
systems, which is significantly more complex than in tightly integrated and homo-
geneous distributed DBMSs. In addition to being distributed, component databases
may be autonomous, have different database languages and query processing
capabilities, and exhibit varying behavior. In particular, component databases may
range from full-fledged SQL databases to very simple data sources (e.g., text files).

In this chapter, we addressed these issues by extending and modifying the
distributed query processing architecture presented in Chap. 4. Assuming the
popular mediator/wrapper architecture, we isolated the three main layers by which
a query is successively rewritten (to bear on local relations) and optimized by
the mediator, and then translated and executed by the wrappers and component
DBMSs. We also discussed how to support OLAP queries in a multidatabase, an
important requirement of decision-support applications. This requires an additional
layer of translation from OLAP multidimensional queries to relational queries. This
layered architecture for multidatabase query processing is general enough to capture
very different variations. This has been useful to describe various query processing
techniques, typically designed with different objectives and assumptions.

The main techniques for multidatabase query processing are query rewriting
using multidatabase views, multidatabase query optimization and execution, and
query translation and execution. The techniques for query rewriting using mul-
tidatabase views differ in major ways depending on whether the GAV or LAV
integration approach is used. Query rewriting in GAV is similar to data localization
in homogeneous distributed database systems. But the techniques for LAV (and its
extension GLAV) are much more involved and it is often not possible to find an
equivalent rewriting for a query, in which case a query that produces a maximum
subset of the answer is necessary. The techniques for multidatabase query optimiza-
tion include cost modeling and query optimization for component databases with
different computing capabilities. These techniques extend traditional distributed
query processing by focusing on heterogeneity. Besides heterogeneity, an important
problem is to deal with the dynamic behavior of the component DBMSs. Adaptive
query processing addresses this problem with a dynamic approach whereby the
query optimizer communicates at runtime with the execution environment in order
to react to unforeseen variations of runtime conditions. Finally, we discussed the
techniques for translating queries for execution by the components DBMSs and for
generating and managing wrappers.

The data model used by the mediator can be relational, object-oriented, or others.
In this chapter, for simplicity, we assumed a mediator with a relational model that
is sufficient to explain the multidatabase query processing techniques. However,
when dealing with data sources on the Web, a richer mediator model such as
object-oriented or semistructured (e.g., XML- or RDF-based) may be preferred.
This requires significant extensions to query processing techniques.
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2001], while examples of GAV are presented in papers [Adali et al. 1996a, Garcia-
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and Lenzirini 1984, Dayal and Hwang 1984, Melnik et al. 2002], while n-ary
mechanisms are discussed in [Elmasri et al. 1987, Yao et al. 1982, He et al. 2004].
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[Miller et al. 2001] that discuss Clio, and [Roitman and Gal 2006] that describes
OntoBuilder.

Mapping creation algorithm in Sect. 7.1.4.1 is due to Miller et al. [2000],
Yan et al. [2001], and [Popa et al. 2002]. Mapping maintenance is discussed by
Velegrakis et al. [2004].

Data cleaning has gained significant interest in recent years as the integration
efforts opened up to data sources more widely. The literature is rich on this topic
and is well discussed in the book by Ilyas and Chu [2019]. In this context, the
distinction between schema-level and instance-level cleaning is due to Rahm and
Do [2000]. The data cleaning operators we discussed are column splitting [Raman
and Hellerstein 2001], map operator [Galhardas et al. 2001], and fuzzy match
[Chaudhuri et al. 2003].

Work on multidatabase query processing started in the early 1980s with the first
multidatabase systems (e.g., [Brill et al. 1984, Dayal and Hwang 1984] and [Landers
and Rosenberg 1982]). The objective then was to access different databases within
an organization. In the 1990s, the increasing use of the Web for accessing all kinds
of data sources triggered renewed interest and much more work in multidatabase
query processing, following the popular mediator/wrapper architecture [Wiederhold
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1992]. A brief overview of multidatabase query optimization issues can be found
in [Meng et al. 1993]. Good discussions of multidatabase query processing can
be found in [Lu et al. 1992, 1993], in Chapter 4 of [Yu and Meng 1998] and in
[Kossmann 2000].

Query rewriting using views is discussed in [Levy et al. 1995] and surveyed in
[Halevy 2001]. In [Levy et al. 1995], the general problem of finding a rewriting
using views is shown to be NP-complete in the number of views and the number
of subgoals in the query. The unfolding technique for rewriting a query expressed
in Datalog in GAV was proposed in [Ullman 1997]. The main techniques for query
rewriting using views in LAV are the bucket algorithm [Levy et al. 1996b], the
inverse rule algorithm [Duschka and Genesereth 1997], and the MinCon algorithm
[Pottinger and Levy 2000].

The three main approaches for heterogeneous cost modeling are discussed in
[Zhu and Larson 1998]. The black-box approach is used in [Du et al. 1992, Zhu and
Larson 1994]; the techniques in this group are probing queries: [Zhu and Larson
1996a], sample queries (which are a special case of probing) [Zhu and Larson 1998],
and learning the cost over time as queries are posed and answered [Adali et al.
1996b]. The customized approach is developed in [Zhu and Larson 1996b, Roth
et al. 1999, Naacke et al. 1999]; in particular cost computation can be done within
the wrapper (as in Garlic) [Roth et al. 1999] or a hierarchical cost model can be
developed (as in Disco) [Naacke et al. 1999]. The dynamic approach is used in [Zhu
et al. 2000], [Zhu et al. 2003], and [Rahal et al. 2004] and also discussed by Lu
et al. [1992]. Zhu [1995] discusses a dynamic approaching sampling and Zhu et al.
[2000] present a qualitative approach.

The algorithm we described to illustrate the query-based approach to hetero-
geneous query optimization (Sect. 7.2.4.2) has been proposed in [Du et al. 1995]
and also discussed in [Evrendilek et al. 1997]. To illustrate the operator-based
approach, we described the popular solution with planning functions proposed in
the Garlic project [Haas et al. 1997a]. The operator-based approach has been also
used in DISCO, a multidatabase system to access component databases over the
web [Tomasic et al. 1996, 1998].

The case for adaptive query processing is made by a number of researchers in
a number of environments. Amsaleg et al. [1996] show why static plans cannot
cope with unpredictability of data sources; the problem exists in continuous queries
[Madden et al. 2002b], expensive predicates [Porto et al. 2003], and data skew [Shah
et al. 2003]. The adaptive approach is surveyed in [Hellerstein et al. 2000, Gounaris
et al. 2002]. The best-known dynamic approach is eddy (see Chap. 4), which is
discussed in [Avnur and Hellerstein 2000]. Other important techniques for adaptive
query processing are query scrambling [Amsaleg et al. 1996, Urhan et al. 1998],
Ripple joins [Haas and Hellerstein 1999b], adaptive partitioning [Shah et al. 2003],
and Cherry picking [Porto et al. 2003]. Major extensions to eddy are state modules
[Raman et al. 2003] and distributed Eddies [Tian and DeWitt 2003].

In this chapter, we focused on the integration of structured data captured in
databases. The more general problem of integrating both structured and unstructured
data is discussed by Halevy et al. [2003] and Somani et al. [2002]. A different
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generality direction is investigated by Bernstein and Melnik [2007], who propose
a model management engine that “supports operations to match schemas, compose
mappings, diff schemas, merge schemas, translate schemas into different data
models, and generate data transformations from mappings.”

In addition to the systems we noted above, in this chapter we referred to a number
of other systems. These and their main sources are the following: SEMINT [Li and
Clifton 2000, Li et al. 2000], ToMAS [Velegrakis et al. 2004], Maveric [McCann
et al. 2005], and Aurora [Yan 1997, Yan et al. 1997].

Exercises

Problem 7.1 Distributed database systems and distributed multidatabase systems
represent two different approaches to systems design. Find three real-life applica-
tions for which each of these approaches would be more appropriate. Discuss the
features of these applications that make them more favorable for one approach or
the other.

Problem 7.2 Some architectural models favor the definition of a global conceptual
schema, whereas others do not. What do you think? Justify your selection with
detailed technical arguments.

Problem 7.3 (*) Give an algorithm to convert a relational schema to an entity-
relationship one.

Problem 7.4 (**) Consider the two databases given in Figs. 7.17 and 7.18 and
described below. Design a global conceptual schema as a union of the two databases
by first translating them into the E-R model.

Figure 7.17 describes a relational race database used by organizers of road races
and Fig. 7.18 describes an entity-relationship database used by a shoe manufacturer.
The semantics of each of these database schemas is discussed below. Figure 7.17
describes a relational road race database with the following semantics:

DIRECTOR is a relation that defines race directors who organize races; we
assume that each race director has a unique name (to be used as the key), a phone
number, and an address.

Fig. 7.17 Road race database
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LICENSES is required because all races require a governmental license, which is
issued by a CONTACT in a department who is the ISSUER, possibly contained
within another government department DEPT; each license has a unique LIC_NO
(the key), which is issued for use in a specific CITY on a specific DATE with a
certain COST.

RACER is a relation that describes people who participate in a race. Each person
is identified by NAME, which is not sufficient to identify them uniquely, so a
compound key formed with the ADDRESS is required. Finally, each racer may
have a MEM_NUM to identify him or her as a member of the racing fraternity, but
not all competitors have membership numbers.

SPONSOR indicates which sponsor is funding a given race. Typically, one sponsor
funds a number of races through a specific person (CONTACT), and a number of
races may have different sponsors.

RACE uniquely identifies a single race which has a license number (LIC_NO) and
race number (R_NO) (to be used as a key, since a race may be planned without
acquiring a license yet); each race has a winner in the male and female groups
(MAL_WIN and FEM_WIN) and a race director (DIR).

Figure 7.18 illustrates an entity-relationship schema used by the sponsor’s
database system with the following semantics:

DISTRIBUTOR

SIN

Name

Address

Contract
1

Cost

MANUFACTURER
N

Name Address

Makes

N

Prod cost

SHOES

M

Size Model

Sells

N

M

Cost

Employs

1Base sal

SALESPERSON

N

SIN

Commission

Name

Fig. 7.18 Sponsor database
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SHOES are produced by sponsors of a certain MODEL and SIZE, which forms
the key to the entity.

MANUFACTURER is identified uniquely by NAME and resides at a certain
ADDRESS.

DISTRIBUTOR is a person that has a NAME and ADDRESS (which are
necessary to form the key) and a SIN number for tax purposes.

SALESPERSON is a person (entity) who has a NAME, earns a COMMISSION,
and is uniquely identified by his or her SIN number (the key).

Makes is a relationship that has a certain fixed production cost (PROD_COST).
It indicates that a number of different shoes are made by a manufacturer, and that
different manufacturers produce the same shoe.

Sells is a relationship that indicates the wholesale COST to a distributor of shoes.
It indicates that each distributor sells more than one type of shoe, and that each
type of shoe is sold by more than one distributor.

Contract is a relationship whereby a distributor purchases, for a COST, exclusive
rights to represent a manufacturer. Note that this does not preclude the distributor
from selling different manufacturers’ shoes.

Employs indicates that each distributor hires a number of salespeople to sell the
shoes; each earns a BASE_SALARY.

Problem 7.5 (*) Consider three sources:

• Database 1 has one relation Area(Id, Field) providing areas of specializa-
tion of employees; the Id field identifies an employee.

• Database 2 has two relations, Teach(Professor, Course) and
In(Course, Field); Teach indicates the courses that each professor
teaches and In specifies possible fields that a course can belong to.

• Database 3 has two relations, Grant(Researcher, GrantNo) for grants
given to researchers, and For(GrantNo, Field) indicating which fields the
grants are for.

The objective is to build a GCS with two relations: Works(Id, Project)
stating that an employee works for a particular project, and Area(Project,
Field) associating projects with one or more fields.

(a) Provide a LAV mapping between Database 1 and the GCS.
(b) Provide a GLAV mapping between the GCS and the local schemas.
(c) Suppose one extra relation, Funds(GrantNo, Project), is added to

Database 3. Provide a GAV mapping in this case.

Problem 7.6 Consider a GCS with the following relation: Person(Name,
Age, Gender). This relation is defined as a view over three LCSs as follows:

CREATE VIEW Person AS
SELECT Name, Age, "male" AS Gender
FROM SoccerPlayer
UNION
SELECT Name, NULL AS Age, Gender
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FROM Actor
UNION
SELECT Name, Age, Gender
FROM Politician
WHERE Age > 30

For each of the following queries, discuss which of the three local schemas
(SoccerPlayer, Actor, and Politician) contributes to the global
query result.

(a) SELECT Name FROM Person

(b) SELECT Name FROM Person WHERE Gender = "female"

(c) SELECT Name FROM Person WHERE Age > 25

(d) SELECT Name FROM Person WHERE Age < 25

(e) SELECT Name FROM Person WHERE Gender = "male"

AND Age = 40

Problem 7.7 A GCS with the relation Country(Name, Continent,
Population, HasCoast) describes countries of the world. The attribute
HasCoast indicates if the country has direct access to the sea. Three LCSs are
connected to the global schema using the LAV approach as follows:

CREATE VIEW EuropeanCountry AS
SELECT Name, Continent, Population, HasCoast
FROM Country
WHERE Continent = "Europe"

CREATE VIEW BigCountry AS
SELECT Name, Continent, Population, HasCoast
FROM Country
WHERE Population >= 30000000

CREATE VIEW MidsizeOceanCountry AS
SELECT Name, Continent, Population, HasCoast
FROM Country
WHERE HasCoast = true AND Population > 10000000

(a) For each of the following queries, discuss the results with respect to their
completeness, i.e., verify if the (combination of the) local sources cover all
relevant results.

1. SELECT Name FROM Country

2. SELECT Name FROM Country WHERE Population > 40

3. SELECT Name FROM Country WHERE Population > 20

(b) For each of the following queries, discuss which of the three LCSs are necessary
for the global query result.

1. SELECT Name FROM Country
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2. SELECT Name FROM Country WHERE Population > 30

AND Continent = "Europe"

3. SELECT Name FROM Country WHERE Population < 30

4. SELECT Name FROM Country WHERE Population > 30

AND HasCoast = true

Problem 7.8 Consider the following two relations PRODUCT and ARTICLE that
are specified in a simplified SQL notation. The perfect schema matching correspon-
dences are denoted by arrows.

PRODUCT −→ ARTICLE

Id: int PRIMARY KEY −→ Key: varchar(255) PRIMARY KEY

Name: varchar(255) −→ Title: varchar(255)

DeliveryPrice: float −→ Price: real

Description: varchar(8000) −→ Information: varchar(5000)

(a) For each of the five correspondences, indicate which of the following match
approaches will probably identify the correspondence:

1. Syntactic comparison of element names, e.g., using edit distance string
similarity

2. Comparison of element names using a synonym lookup table
3. Comparison of data types
4. Analysis of instance data values

(b) Is it possible for the listed matching approaches to determine false correspon-
dences for these match tasks? If so, give an example.

Problem 7.9 Consider two relations S(a, b, c) and T(d, e, f). A match
approach determines the following similarities between the elements of S and T:

T.d T.e T.f

S.a 0.8 0.3 0.1

S.b 0.5 0.2 0.9

S.c 0.4 0.7 0.8

Based on the given matcher’s result, derive an overall schema match result with
the following characteristics:

• Each element participates in exactly one correspondence.
• There is no correspondence where both elements match an element of the

opposite schema with a higher similarity than its corresponding counterpart.

Problem 7.10 (*) Figure 7.19 illustrates the schema of three different data
sources:
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MyGroup

RELATION Publication
Pub ID: INT PRIMARY KEY
VenueName: VARCHAR
Year: INT
Title: VARCHAR

RELATION AuthorOf
Pub ID FK: INT PRIMARY KEY
Member ID FK: INT PRIMARY KEY

RELATION GroupMember
Member ID: INT PRIMARY KEY
Name: VARCHAR
Email: VARCHAR

MyConference

RELATION ConfWorkshop
CW ID: INT PRIMARY KEY
Year: INT
Location: VARCHAR
Organizer: VARCHAR
AssociatedConf ID: INT

RELATION Paper

Pap ID: INT PRIMARY KEY
Title: VARCHAR
Authors: ARRAY[20] OF VARCHAR
CW ID FK: INT

MyPublisher

RELATION Journal
Journ ID: INT PRIMARY KEY
Name: VARCHAR
Volume: INT
Issue: INT
Year: INT

RELATION Article
Art ID: INT PRIMARY KEY
Title: VARCHAR
Journ ID: INT

RELATION Author
Art ID FK: INT PRIMARY KEY
Pers ID FK: INT PRIMARY KEY
Position: INT

RELATION Editor
Journ ID FK: INT PRIMARY KEY
Pers ID FK: INT PRIMARY KEY

RELATION Person
Pers ID: INT PRIMARY KEY
LastName VARCHAR
FirstName: VARCHAR
Affiliation: VARCHAR

Fig. 7.19 Figure for Exercise 7.10

• MyGroup contains publications authored by members of a working group;
• MyConference contains publications of a conference series and associated

workshops;
• MyPublisher contains articles that are published in journals.

The arrows show the foreign key-to-primary key relationships; note that we do
not follow the proper SQL syntax of specifying foreign key relationships to save
space—we resort to arrows.

The sources are defined as follows:
MyGroup

• Publication

• Pub_ID: unique publication ID
• VenueName: name of the journal, conference, or workshop
• VenueType: “journal,” “conference,” or “workshop”
• Year: year of publication
• Title: publication’s title

• AuthorOf

• many-to-many relationship representing “group member is author of publica-
tion”

• GroupMember

• Member_ID: unique member ID
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• Name: name of the group member
• Email: email address of the group member

MyConference

• ConfWorkshop

• CW_ID: unique ID for the conference/workshop
• Name: name of the conference or workshop
• Year: year when the event takes place
• Location: event’s location
• Organizer: name of the organizing person
• AssociatedConf_ID_FK: value is NULL if it is a conference, ID of

the associated conference if the event is a workshop (this is assuming that
workshops are organized in conjunction with a conference)

• Paper

• Pap_ID: unique paper ID
• Title: paper’s title
• Author: array of author names
• CW_ID_FK: conference/workshop where the paper is published

MyPublisher

• Journal

• Journ_ID: unique journal ID
• Name: journal’s name
• Year: year when the event takes place
• Volume: journal volume
• Issue: journal issue

• Article

• Art_ID: unique article ID
• Title: title of the article
• Journ_ID_FK: journal where the article is published

• Person

• Pers_ID: unique person ID
• LastName: last name of the person
• FirstName: first name of the person
• Affiliation: person’s affiliation (e.g., the name of a university)

• Author

• represents the many-to-many relationship for “person is author of article”
• Position: author’s position in the author list (e.g., first author has Position 1)

• Editor
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RELATION Course
id: INT PRIMARY KEY
name: VARCHAR[255]
tutor id fk: INT

RELATION Tutor
id: INT PRIMARY KEY
lastname: VARCHAR[255]
firstname: VARCHAR[255]

RELATION Lecture
id: INT PRIMARY KEY
title: VARCHAR[255]
lecturer: VARCHAR[255]

Fig. 7.20 Figure for Exercise 7.11

• represents the many-to-many relationship for “person is editor of journal
issue”

(a) Identify all schema matching correspondences between the schema elements of
the sources. Use the names and data types of the schema elements as well as the
given description.

(b) Classify your correspondences along the following dimensions:

1. Type of schema elements (e.g., attribute–attribute or attribute–relation)
2. Cardinality (e.g., 1:1 or 1:N)

(c) Give a consolidated global schema that covers all information of the source
schemas.

Problem 7.11 (*) Figure 7.20 illustrates (using a simplified SQL syntax) two
sources Source1 and Source2. Source1 has two relations, Course and Tutor,
and Source2 has only one relation, Lecture. The solid arrows denote schema
matching correspondences. The dashed arrow represents a foreign key relationship
between the two relations in Source1.

The following are four schema mappings (represented as SQL queries) to
transform Source1’s data into Source2.

1. SELECT C.id, C.name as Title, CONCAT(T.lastname,

T.firstname) AS Lecturer

FROM Course AS C

JOIN Tutor AS T ON (C.tutor_id_fk = T.id)

2. SELECT C.id, C.name AS Title, NULL AS Lecturer

FROM Course AS C

UNION

SELECT T.id AS ID, NULL AS Title, T,

lastname AS Lecturer

FROM Course AS C

FULL OUTER JOIN Tutor AS T ON(C.tutor_id_fk=T.id)

3. SELECT C.id, C.name as Title, CONCAT(T.lastname,

T.firstname) AS Lecturer

FROM Course AS C

FULL OUTER JOIN Tutor AS T ON(C.tutor_id_fk=T.id)
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Discuss each of these schema mappings with respect to the following questions:

(a) Is the mapping meaningful?
(b) Is the mapping complete (i.e., are all data instances of O1 transformed)?
(c) Does the mapping potentially violate key constraints?

Problem 7.12 (*) Consider three data sources:

• Database 1 has one relation AREA(ID, FIELD) providing areas of specializa-
tion of employees where ID identifies an employee.

• Database 2 has two relations: TEACH(PROFESSOR, COURSE) and
IN(COURSE, FIELD) specifying possible fields a course can belong to.

• Database 3 has two relations: GRANT(RESEARCHER, GRANT#) for grants
given to researchers, and FOR(GRANT#, FIELD) indicating the fields that the
grants are in.

Design a global schema with two relations: WORKS(ID, PROJECT) that
records which projects employees work in, and AREA(PROJECT, FIELD) that
associates projects with one or more fields for the following cases:

(a) There should be a LAV mapping between Database 1 and the global schema.
(b) There should be a GLAV mapping between the global schema and the local

schemas.
(c) There should be a GAV mapping when one extra relation FUNDS(GRANT#,

PROJECT) is added to Database 3.

Problem 7.13 (**) Logic (first-order logic, to be precise) has been suggested as a
uniform formalism for schema translation and integration. Discuss how logic can be
useful for this purpose.

Problem 7.14 (**) Can any type of global optimization be performed on global
queries in a multidatabase system? Discuss and formally specify the conditions
under which such optimization would be possible.

Problem 7.15 (**) Consider the global relations EMP(ENAME, TITLE, CITY)
and ASG(ENAME, PNAME, CITY, DUR). CITY in ASG is the location of the
project of name PNAME (i.e., PNAME functionally determines CITY). Consider
the local relations EMP1(ENAME,TITLE, CITY), EMP2(ENAME, TITLE, CITY),
PROJ1(PNAME, CITY), PROJ2(PNAME, CITY), and ASG1(ENAME, PNAME,
DUR). Consider query Q which selects the names of the employees assigned to
a project in Rio de Janeiro for more than 6 months and the duration of their
assignment.

(a) Assuming the GAV approach, perform query rewriting.
(b) Assuming the LAV approach, perform query rewriting using the bucket algo-

rithm.
(c) Same as (b) using the MinCon algorithm.
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Problem 7.16 (*) Consider relations EMP and ASG of Example 7.18. We denote by
|R| the number of pages to store R on disk. Consider the following statistics about
the data:

|EMP| = 100

|ASG| = 2 000

selectivity(ASG.DUR > 36) = 1%

The mediator generic cost model is

cost (σA=v(R)) = |R|
cost (σ (X)) = cost (X), where X contains at least one operator.

cost (R ��
ind
A S) = cost (R) + |R| ∗ cost (σA=v(S)) using an indexed join algorithm.

cost (R ��
nl
A S) = cost (R) + |R| ∗ cost (S) using a nested loop join algorithm.

Consider the MDBS input query Q:

SELECT *
FROM EMP NATURAL JOIN ASG
WHERE ASG.DUR>36

Consider four plans to process Q:

P1 = EMP ��
ind
ENO σDUR>36(ASG)

P2 = EMP ��
nl
ENO σDUR>36(ASG)

P3 = σDUR>36(ASG) ��ind
ENO EMP

P4 = σDUR>36(ASG) ��nl
ENO EMP

(a) What is the cost of plans P1 to P4?
(b) Which plan has the minimal cost?

Problem 7.17 (*) Consider relations EMP and ASG of the previous exercise.
Suppose now that the mediator cost model is completed with the following cost
information issued from the component DBMSs.

The cost of accessing EMP tuples at db1 is

cost (σA=v(R)) = |σA=v(R)|
The specific cost of selecting ASG tuples that have a given ENO at db2 is

cost (σENO=v(ASG)) = |σENO=v(ASG)|
(a) What is the cost of plans P1 to P4?
(b) Which plan has the minimal cost?
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Problem 7.18 (**) What are the respective advantages and limitations of the
query-based and operator-based approaches to heterogeneous query optimization
from the points of view of query expressiveness, query performance, development
cost of wrappers, system (mediator and wrappers) maintenance, and evolution?

Problem 7.19 (**) Consider Example 7.19 by adding, at a new site, component
database db4 which stores relations EMP(ENO, ENAME, CITY) and ASG(ENO,
PNAME, DUR). db4 exports through its wrapper w3 join and scan capabilities. Let us
assume that there can be employees in db1 with corresponding assignments in db4
and employees in db4 with corresponding assignments in db2.

(a) Define the planning functions of wrapper w3.
(b) Give the new definition of global view EMPASG(ENAME, CITY, PNAME,

DUR).
(c) Give a QEP for the same query as in Example 7.19.


	7 Database Integration—Multidatabase Systems
	7.1 Database Integration
	7.1.1 Bottom-Up Design Methodology
	7.1.2 Schema Matching
	7.1.2.1 Schema Heterogeneity
	7.1.2.2 Linguistic Matching Approaches
	7.1.2.3 Constraint-Based Matching Approaches
	7.1.2.4 Learning-Based Matching
	7.1.2.5 Combined Matching Approaches

	7.1.3 Schema Integration
	7.1.4 Schema Mapping
	7.1.4.1 Mapping Creation
	7.1.4.2 Mapping Maintenance

	7.1.5 Data Cleaning

	7.2 Multidatabase Query Processing
	7.2.1 Issues in Multidatabase Query Processing
	7.2.2 Multidatabase Query Processing Architecture
	7.2.3 Query Rewriting Using Views
	7.2.3.1 Datalog Terminology
	7.2.3.2 Rewriting in GAV
	7.2.3.3 Rewriting in LAV

	7.2.4 Query Optimization and Execution
	7.2.4.1 Heterogeneous Cost Modeling
	7.2.4.2 Heterogeneous Query Optimization

	7.2.5 Query Translation and Execution

	7.3 Conclusion
	7.4 Bibliographic Notes
	Exercises


