
Chapter 3
Distributed Data Control

An important requirement of a DBMS is the ability to support data control, i.e.,
controlling how data is accessed using a high-level language. Data control typically
includes view management, access control, and semantic integrity control. Infor-
mally, these functions must ensure that authorized users perform correct operations
on the database, thus contributing to the maintenance of database integrity. The
functions necessary for maintaining the physical integrity of the database in the
presence of concurrent accesses and failures are studied separately in Chap. 5 in
the context of transaction management. In relational DBMSs, data control can
be achieved in a uniform fashion. Views, authorizations, and semantic integrity
constraints can be defined as rules that the system automatically enforces. The
violation of some rules by database operations generally implies the rejection of
the effects of some operations (e.g., undoing some updates) or propagating some
effects (e.g., updating related data) to preserve the database integrity.

The definition of these rules is part of the administration of the database, a
function generally performed by a database administrator (DBA). This person is
also in charge of applying the organizational policies. Well-known solutions for
data control have been proposed for centralized DBMSs. In this chapter, we discuss
how these solutions can be extended to distributed DBMSs. The cost of enforcing
data control, which is high in terms of resource utilization in a centralized DBMS,
can be prohibitive in a distributed environment.

Since the rules for data control must be stored, the management of a distributed
directory is also relevant in this chapter. The directory of a distributed DBMS can
be viewed as a distributed database. There are several ways to store data control def-
initions, according to the way the directory is managed. Directory information can
be stored differently according to its type; in other words, some information might
be fully replicated, whereas other information might be distributed. For example,
information that is useful at compile time, such as access control information, could

The original version of this chapter was revised. The correction to this chapter is available at https://
doi.org/10.1007/978-3-030-26253-2_13

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2_3

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26253-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-26253-2_13
https://doi.org/10.1007/978-3-030-26253-2_13
https://doi.org/10.1007/978-3-030-26253-2_3

92 3 Distributed Data Control

be replicated. In this chapter, we emphasize the impact of directory management on
the performance of data control mechanisms.

This chapter is organized as follows: View management is the subject of Sect. 3.1.
Access control is presented in Sect. 3.2. Finally, semantic integrity control is treated
in Sect. 3.3. For each section we first outline the solution in a centralized DBMS
and then give the distributed solution, which is often an extension of the centralized
one, although more difficult.

3.1 View Management

One of the main advantages of the relational model is that it provides full logical
data independence. As introduced in Chap. 1, external schemas enable user groups
to have their particular view of the database. In a relational system, a view is a
virtual relation, defined as the result of a query on base relations (or real relations),
but not materialized like a base relation in the database. A view is a dynamic window
in the sense that it reflects all updates to the database. An external schema can be
defined as a set of views and/or base relations. Besides their use in external schemas,
views are useful for ensuring data security in a simple way. By selecting a subset of
the database, views hide some data. If users may only access the database through
views, they cannot see or manipulate the hidden data, which is therefore secure.

In the remainder of this section we look at view management in centralized
and distributed systems as well as the problems of updating views. Note that in
a distributed DBMS, a view can be derived from distributed relations, and the
access to a view requires the execution of the distributed query corresponding
to the view definition. An important issue in a distributed DBMS is to make
view materialization efficient. We will see how the concept of materialized views
helps in solving this problem, among others, but requires efficient techniques for
materialized view maintenance.

3.1.1 Views in Centralized DBMSs

Most relational DBMSs use a view mechanism where a view is a relation derived
from base relations as the result of a relational query (this was first proposed within
the INGRES and System R projects). It is defined by associating the name of the
view with the retrieval query that specifies it.

Example 3.1 The view of system analysts (SYSAN) derived from relation EMP can
be defined by the following SQL query:

CREATE VIEW SYSAN(ENO, ENAME) AS
SELECT ENO, ENAME
FROM EMP
WHERE TITLE = "Syst. Anal."

3.1 View Management 93

�
The single effect of this statement is the storage of the view definition in the

catalog. No other information needs to be recorded. Therefore, the result of the
query defining the view (i.e., a relation having the attributes ENO and ENAME for the
system analysts as shown in Fig. 3.1) is not produced. However, the view SYSAN
can be manipulated as a base relation.

Example 3.2 The query

“Find the names of all the system analysts with their project number and
responsibility(ies)”

involving the view SYSAN and relation ASG can be expressed as

SELECT ENAME, PNO, RESP
FROM SYSAN NATURAL JOIN ASG

�
Mapping a query expressed on views into a query expressed on base relations

can be done by query modification. With this technique the variables are changed
to range on base relations and the query qualification is merged (ANDed) with the
view qualification.

Example 3.3 The preceding query can be modified to

SELECT ENAME, PNO, RESP
FROM EMP NATURAL JOIN ASG
WHERE TITLE = "Syst. Anal."

The result of this query is illustrated in Fig. 3.2. �
The modified query is expressed on base relations and can therefore be processed

by the query processor. It is important to note that view processing can be done at

ENO ENAME
E2 M. Smith
E5 B. Casey
E8 J. Jones

SYSAN

Fig. 3.1 Relation corresponding to the view SYSAN

ENAME PNO RESP
M. Smith P1 Analyst
M. Smith P2 Analyst
B. Casey P3 Manager
J. Jones P4 Manager

Fig. 3.2 Result of query involving view SYSAN

94 3 Distributed Data Control

compile time. The view mechanism can also be used for refining the access controls
to include subsets of objects. To specify any user from whom one wants to hide data,
the keyword USER generally refers to the logged-on user identifier.

Example 3.4 The view ESAME restricts the access by any user to those employees
having the same title:

CREATE VIEW ESAME AS
SELECT *
FROM EMP E1, EMP E2
WHERE E1.ENO = E2.ENO
AND E1.ENO = USER

In the view definition above, * stands for “all attributes” and the two tuple
variables (E1 and E2) ranging over relation EMP are required to express the join
of one tuple of EMP (the one corresponding to the logged-on user) with all tuples of
EMP based on the same title. For example, the following query issued by the user J.
Doe

SELECT *
FROM ESAME

returns the relation of Fig. 3.3. Note that the user J. Doe also appears in the result.
If the user who creates ESAME is an electrical engineer, as in this case, the view
represents the set of all electrical engineers. �

Views can be defined using arbitrarily complex relational queries involving
selection, projection, join, aggregate functions, and so on. All views can be
interrogated as base relations, but not all views can be manipulated as such. Updates
through views can be handled automatically only if they can be propagated correctly
to the base relations. We can classify views as being updatable and not updatable.
A view is updatable only if the updates to the view can be propagated to the base
relations without ambiguity. The view SYSAN above is updatable; the insertion, for
example, of a new system analyst 〈201, Smith〉 will be mapped into the insertion
of a new employee 〈201, Smith, Syst. Anal.〉. If attributes other than TITLE were
hidden by the view, they would be assigned null values.

Example 3.5 However, the following view, which uses a natural join (i.e., the
equijoin of two relations on a common attribute), is not updatable:

CREATE VIEW EG(ENAME, RESP) AS
SELECT DISTINCT ENAME, RESP

ENO ENAME TITLE
E1 J. Doe Elect. Eng.
E2 L. Chu Elect. Eng.

Fig. 3.3 Result of query on view ESAME

3.1 View Management 95

FROM EMP NATURAL JOIN ASG

The deletion, for example, of the tuple 〈Smith, Analyst〉 cannot be propagated,
since it is ambiguous. Deletions of Smith in relation EMP or analyst in relation ASG
are both meaningful, but the system does not know which is correct. �

Current systems are very restrictive about supporting updates through views.
Views can be updated only if they are derived from a single relation by selection and
projection. This precludes views defined by joins, aggregates, and so on. However, it
is theoretically possible to automatically support updates of a larger class of views.
It is interesting to note that views derived by join are updatable if they include the
keys of the base relations.

3.1.2 Views in Distributed DBMSs

The definition of a view is similar in a distributed DBMS and in centralized systems.
However, a view in a distributed system may be derived from fragmented relations
stored at different sites. When a view is defined, its name and its retrieval query are
stored in the catalog.

Since views may be used as base relations by application programs, their
definition should be stored in the directory in the same way as the base relation
descriptions. Depending on the degree of site autonomy offered by the system, view
definitions can be centralized at one site, partially duplicated or fully duplicated. In
any case, the information associating a view name to its definition site should be
duplicated. If the view definition is not present at the site where the query is issued,
remote access to the view definition site is necessary.

The mapping of a query expressed on views into a query expressed on base
relations (which can potentially be fragmented) can also be done through query
modification in the same way as in centralized DBMSs. With this technique, the
qualification defining the view is found in the distributed database catalog and then
merged with the query to provide a query on base relations. Such a modified query is
a distributed query, which can be processed by the distributed query processor (see
Chap. 4). The query processor maps the distributed query into a query on physical
fragments.

In Chap. 2 we presented alternative ways of fragmenting base relations. The
definition of fragmentation is, in fact, very similar to the definition of particular
views. Thus, it is possible to manage views and fragments using a unified mech-
anism. Furthermore, replicated data can be handled in the same way. The value
of such a unified mechanism is to facilitate distributed database administration.
The objects manipulated by the database administrator can be seen as a hierarchy
where the leaves are the fragments from which relations and views can be derived.
Therefore, the DBA may increase locality of reference by making views in one-to-
one correspondence with fragments. For example, it is possible to implement the

96 3 Distributed Data Control

view SYSAN illustrated in Example 3.1 by a fragment at a given site, provided that
most users accessing the view SYSAN are at the same site.

Evaluating views derived from distributed relations may be costly. In a given
organization it is likely that many users access the same view which must be
recomputed for each user. We saw in Sect. 3.1.1 that view derivation is done
by merging the view qualification with the query qualification. An alternative
solution is to avoid view derivation by maintaining actual versions of the views,
called materialized views. A materialized view stores the tuples of a view in
a database relation, like the other database tuples, possibly with indices. Thus,
access to a materialized view is much faster than deriving the view, in particular,
in a distributed DBMS where base relations can be remote. Introduced in the
early 1980s, materialized views have since gained much interest in the context of
data warehousing to speed up Online Analytical Processing (OLAP) applications.
Materialized views in data warehouses typically involve aggregate (such as SUM and
COUNT) and grouping (GROUP BY) operators because they provide compact database
summaries. Today, all major database products support materialized views.

Example 3.6 The following view over relation PROJ(PNO,PNAME,BUDGET,LOC)
gives, for each location, the number of projects and the total budget.

CREATE VIEW PL(LOC, NBPROJ, TBUDGET) AS
SELECT LOC, COUNT(*),SUM(BUDGET)
FROM PROJ
GROUP BY LOC

�

3.1.3 Maintenance of Materialized Views

A materialized view is a copy of some base data and thus must be kept consistent
with that base data which may be updated. View maintenance is the process of
updating (or refreshing) a materialized view to reflect the changes made to the
base data. The issues related to view materialization are somewhat similar to
those of database replication which we will address in Chap. 6. However, a major
difference is that materialized view expressions, in particular, for data warehousing,
are typically more complex than replica definitions and may include join, group
by, and aggregate operators. Another major difference is that database replication is
concerned with more general replication configurations, e.g., with multiple copies
of the same base data at multiple sites.

A view maintenance policy allows a DBA to specify when and how a view should
be refreshed. The first question (when to refresh) is related to consistency (between
the view and the base data) and efficiency. A view can be refreshed in two modes:
immediate or deferred. With the immediate mode, a view is refreshed immediately
as part as the transaction that updates base data used by the view. If the view and the
base data are managed by different DBMSs, possibly at different sites, this requires

3.1 View Management 97

the use of a distributed transaction, for instance, using the two-phase commit (2PC)
protocol (see Chap. 5). The main advantages of immediate refreshment are that
the view is always consistent with the base data and that read-only queries can be
fast. However, this is at the expense of increased transaction time to update both the
base data and the views within the same transactions. Furthermore, using distributed
transactions may be difficult.

In practice, the deferred mode is preferred because the view is refreshed in
separate (refresh) transactions, thus without performance penalty on the transactions
that update the base data. The refresh transactions can be triggered at different
times: lazily, just before a query is evaluated on the view; periodically, at predefined
times, e.g., every day; or forcedly, after a predefined number of updates to the base
data. Lazy refreshment enables queries to see the latest consistent state of the base
data but at the expense of increased query time to include the refreshment of the
view. Periodic and forced refreshment allow queries to see views whose state is
not consistent with the latest state of the base data. The views managed with these
strategies are also called snapshots.

The second question (how to refresh a view) is an important efficiency issue.
The simplest way to refresh a view is to recompute it from scratch using the base
data. In some cases, this may be the most efficient strategy, e.g., if a large subset of
the base data has been changed. However, there are many cases where only a small
subset of view needs to be changed. In these cases, a better strategy is to compute
the view incrementally, by computing only the changes to the view. Incremental
view maintenance relies on the concept of differential relation. Let u be an update
of relation R. R+ and R− are differential relations of R by u, where R+ contains the
tuples inserted by u into R, and R− contains the tuples of R deleted by u. If u is an
insertion, R− is empty. If u is a deletion, R+ is empty. Finally, if u is a modification,
relation R can be obtained by computing (V − V−) ∪ V+. Computing the changes
to the view, i.e., V+ and V−, may require using the base relations in addition to
differential relations.

Example 3.7 Consider the view EG of Example 3.5 which uses relations EMP and
ASG as base data and assume its state is derived from that of Example 3.1, so that
EG has 9 tuples (see Fig. 3.4). Let EMP+ consist of one tuple 〈E9, B. Martin,
Programmer〉 to be inserted in EMP, and ASG+ consist of two tuples 〈E4, P3,
Programmer, 12〉 and 〈E9, P3, Programmer, 12〉 to be inserted in ASG. The changes
to the view EG can be computed as:

EG+ = (SELECT ENAME, RESP
FROM EMP NATURAL JOIN ASG+)

UNION
(SELECT ENAME, RESP
FROM EMP+ NATURAL JOIN ASG)

UNION
(SELECT ENAME, RESP
FROM EMP+ NATURAL JOIN ASG+)

98 3 Distributed Data Control

which yields tuples 〈B. Martin, Programmer〉 and 〈J. Miller, Programmer〉. Note that
integrity constraints would be useful here to avoid useless work (see Sect. 3.3.2).
Assuming that relations EMP and ASG are related by a referential constraint that
says that ENO in ASG must exist in EMP, the second SELECT statement is useless as
it produces an empty relation. �

Efficient techniques have been devised to perform incremental view maintenance
using both the materialized views and the base relations. The techniques essentially
differ in their views’ expressiveness, their use of integrity constraints, and the
way they handle insertion and deletion. They can be classified along the view
expressiveness dimension as nonrecursive views, views involving outerjoins, and
recursive views. For nonrecursive views, i.e., select-project-join (SPJ) views that
may have duplicate elimination, union, and aggregation, an elegant solution is the
counting algorithm. One problem stems from the fact that individual tuples in the
view may be derived from several tuples in the base relations, thus making deletion
in the view difficult. The basic idea of the counting algorithm is to maintain a count
of the number of derivations for each tuple in the view, and to increment (resp.
decrement) tuple counts based on insertions (resp. deletions); a tuple in the view of
which count is zero can then be deleted.

Example 3.8 Consider the view EG in Fig. 3.4. Each tuple in EG has one derivation
(i.e., a count of 1) except tuple 〈M. Smith, Analyst〉 which has two (i.e., a count of
2). Assume now that tuples 〈E2, P1, Analyst, 24〉 and 〈E3, P3, Consultant, 10〉 are
deleted from ASG. Then only tuple 〈A. Lee, Consultant〉 needs to be deleted from
EG. �

We now present the basic counting algorithm for refreshing a view V defined
over two relations R and S as a query q(R,S). Assuming that each tuple in V has an
associated derivation count, the algorithm has three main steps (see Algorithm 3.1).
First, it applies the view differentiation technique to formulate the differential views
V+ and V− as queries over the view, the base relations, and the differential relations.
Second, it computes V+ and V− and their tuple counts. Third, it applies the changes
V+ and V− in V by adding positive counts and subtracting negative counts, and
deleting tuples with a count of zero.

ENAME RESP
J. Doe Manager
M. Smith Analyst
A. Lee Consultant
A. Lee Engineer
J. Miller Programmer
B. Casey Manager
L. Chu Manager
R. Davis Engineer
J. Jones Manager

Fig. 3.4 State of view EG

3.1 View Management 99

Algorithm 3.1: COUNTING
Input: V : view defined as q(R,S); R, S: relations; R+, R−: changes to R
begin

V+ = q+(V, R+, R, S)

V− = q−(V, R−, R, S)

compute V+ with positive counts for inserted tuples
compute V− with negative counts for deleted tuples
compute (V− V−) ∪ V+ by adding positive counts and subtracting negative counts

deleting each tuple in V with count = 0;
end

The counting algorithm is optimal since it computes exactly the view tuples
that are inserted or deleted. However, it requires access to the base relations. This
implies that the base relations be maintained (possibly as replicas) at the sites of the
materialized view. To avoid accessing the base relations so the view can be stored
at a different site, the view should be maintainable using only the view and the
differential relations. Such views are called self-maintainable.

Example 3.9 Consider the view SYSAN in Example 3.1. Let us write the view
definition as SYSAN=q(EMP) meaning that the view is defined by a query q on
EMP. We can compute the differential views using only the differential relations,
i.e., SYSAN+ = q(EMP+) and SYSAN− = q(EMP−). Thus, the view SYSAN is
self-maintainable. �

Self-maintainability depends on the views’ expressiveness and can be defined
with respect to the update type (insertion, deletion, or modification). Most SPJ views
are not self-maintainable with respect to insertion but are often self-maintainable
with respect to deletion and modification. For instance, an SPJ view is self-
maintainable with respect to deletion of relation R if the key attributes of R are
included in the view.

Example 3.10 Consider the view EG of Example 3.5. Let us add attribute ENO
(which is key of EMP) in the view definition. This view is not self-maintainable
with respect to insertion. For instance, after an insertion of an ASG tuple, we need
to perform the join with EMP to get the corresponding ENAME to insert in the
view. However, this view is self-maintainable with respect to deletion on EMP.
For instance, if one EMP tuple is deleted, the view tuples having same ENO can
be deleted. �

We discuss two optimizations that can significantly reduce the maintenance
time of the COUNTING algorithm. The first optimization is to materialize views
representing subqueries of the input query. A view is constructed by removing a
subset of relations from the query. These views are increasingly smaller and build
a hierarchy. F-IVM method constructs such a hierarchy, called a view tree, with the
input query at the top, the relations at the leaves, and inner views defined by project-
join-aggregate queries over their children. Updates to a relation are propagated
bottom-up in this view tree. The views that are on the path from the updated

100 3 Distributed Data Control

relation to the root are maintained using the delta processing from the COUNTING
algorithm. All other views remain unchanged; if they are materialized, then they
may speed up this delta processing. For a restricted class of acyclic queries, called
q-hierarchical, such view trees allow for constant-time updates to any of the input
relations.

The second optimization exploits the skew in the data. Values that appear very
often in the database are deemed heavy, while all others are light. IVMε uses
evaluation strategies that are sensitive to the heavy/light skew in the data and that
use materialized views and delta computation like all aforementioned maintenance
algorithms.

We exemplify these two optimizations for a query that counts the number of
triangles in a graph. We would like to refresh this triangle count immediately and
incrementally under one update to the data graph, which can be an edge insertion
or deletion. Let us consider three copies R, S, and T of the binary edge relation of a
graph with N edges. We record the multiplicities of tuples in the input relations and
views, that is, the number of their derivations, in a separate column P. Assuming
the schemas of the relations are (A,B,P_R), (B,C,P_S), and (C,A,P_T), the
triangle count query is

CREATE VIEW Q(CNT) AS
SELECT SUM(P_R * P_S * P_T) as CNT
FROM R NATURAL JOIN S NATURAL JOIN T

The insertion or deletion of an edge triggers updates to each of the three relation
copies. We discuss the case of updating R; the other two cases are treated similarly.
We model this update as a relation deltaR consisting of a single tuple (a, b, p),
where (a, b) defines the updated edge and p is the multiplicity. Following the
formalism of generalized multiset relations, we model both inserts and deletes
uniformly by allowing for multiplicities to be integers, that is, negative and positive
numbers. Then, for inserting or deleting the edge three times, we set the multiplicity
p to +3 or, respectively, to −3.

The COUNTING algorithm computes on the fly a delta query deltaQ that
represents the change to the query result: This query is the same as Q, where we
replace R by deltaR. This delta computation takes O(N) time since it needs to
intersect two lists of possibly O(N) many C-values that are paired with b in S and
with a in T (that is, the multiplicity of such pairs in S and T is nonzero).

The DBToaster approach speeds up the delta computation by precomputing three
auxiliary views representing the update-independent parts of the delta queries for
updates to the three relations:

CREATE VIEW V_ST(B, A, CNT) AS
SELECT B, A, SUM(P_S * P_T) as CNT
FROM S NATURAL JOIN T
GROUP BY B, A

CREATE VIEW V_TR(C, B, CNT) AS

3.1 View Management 101

SELECT C, B, SUM(P_T * P_R) as CNT
FROM T NATURAL JOIN R
GROUP BY C, B

CREATE VIEW V_RS(A, C, CNT) AS
SELECT A, C, SUM(P_R * P_S) as CNT
FROM R NATURAL JOIN S
GROUP BY A, C

The view V_ST allows to compute the delta query deltaQ in O(1) time, since
the join of deltaR and V_ST requires a constant-time lookup for 〈a, b〉 into V_ST.
However, maintaining the views V_RS and V_TR, which are defined using R, still
requires O(N) time.

The F-IVM method materializes only one of the three views, for instance,
V_ST. In this case, the maintenance under updates to R takes O(1) time, but the
maintenance of S and T under updates still takes O(N) time.

IVMε algorithm partitions the nodes in the graph depending on their degree, that
is, on the number of directly connected nodes: The heavy nodes have degree greater
than or equal to N1/2, while the light nodes have degree less than N1/2. This leads
to a partition of each of the three copies R, S, and T of the edge relation into a
heavy part R_h (S_h, T_h) and a light part R_l (S_l, T_l): a tuple 〈a, b, p〉 is in
R_h if a is heavy and in R_l otherwise; similarly, a tuple 〈b, c, p〉 is in S_h if b

is heavy and in S_l otherwise; finally, 〈c, a, p〉 is in T_h if c is heavy and in T_l
otherwise. We can rewrite Q by replacing each of the three relations with the union
of its two parts. The query Q is then equivalent to the union of eight skew-aware
views Q_r,s,t, where r, s, t ∈ {h, l}:

CREATE VIEW Q_r,s,t(CNT) AS
SELECT SUM(P_R * P_S * P_T) as CNT
FROM R_r NATURAL JOIN S_s NATURAL JOIN T_t

Consider a single-tuple update deltaR_r = {(a, b, p)} to the part R_r of
relation R for r ∈ {h, l}. The delta computation for a view Q_r,s,t is then given
by the following simpler query:

CREATE VIEW deltaQ_r,s,t(CNT) AS
SELECT SUM(P_R * P_S * P_T) as CNT
FROM deltaR_r NATURAL JOIN S_s NATURAL JOIN T_t
WHERE S_s.A = a AND T_t.B = b

IVMε adapts its maintenance strategy to each skew-aware view to achieve the
sublinear update time. While most of these views trivially achieve the O(N1/2)

upper bound, there is one exception. We next explain how to achieve this bound
for maintaining each of these views.

The delta computation for the four views Q_r,l,t (for r, t ∈ {h, l}) is
expressed as follows:

102 3 Distributed Data Control

CREATE VIEW deltaQ_r,l,t(CNT) AS
SELECT SUM(P_R * P_S * P_T) as CNT
FROM deltaR_r NATURAL JOIN S_l NATURAL JOIN T_t
WHERE S_l.A = a AND T_t.B = b

It joins the parts S_l with T_t on C. Since the update deltaR_r sets B to b in
S_l and b can only be a light value in S_l, there are at most N1/2 C-values paired
with b in S_l. The intersection of the set of C-values in S_l and T_t can then take
at most O(N1/2) time.

The delta computation for the views Q_r,h,h is expressed similarly. Since all
C-values in T_h are heavy, each of them has at least N1/2 A-values. This also means
there are at most N1/2 heavy C-values. The intersection of the set of the heavy C-
values in T_h with the C-values in S_h can then take at most O(N1/2) time.

However, the delta computation for the views Q_r,h,l for r ∈ {h, l} needs
linear time, since it requires iterating over all the C-values c paired with b in S_h
and with a in T_l; the number of such C-values can be linear in the size of the
database. In this case, IVMε precomputes the update-independent parts of the delta
queries as auxiliary materialized views and then exploits these views to speed up the
delta evaluation:

CREATE VIEW V_ST(B, A, CNT) AS
SELECT B, A, SUM(P_S * P_T) as CNT
FROM S_h NATURAL JOIN T_l
GROUP BY B, A

We materialize similar views V_RS and V_TR in case of updates to T and,
respectively, S. Each of these views needs O(N3/2) space. We can now compute
deltaQ_r,h,l using V_ST as

CREATE VIEW deltaQ_r,h,l(CNT) AS
SELECT SUM(P_R * CNT) as CNT
FROM deltaR_r NATURAL JOIN V_ST
WHERE V_ST.B = b AND V_ST.A = a

This takes O(1) time since we only need a lookup in V_ST to fetch the multi-
plicity of the edge (a, b) followed by the multiplication with p from deltaR_r.

3.2 Access Control

Access control is an important aspect of data security, the function of a database
system that protects data against unauthorized access. Another important aspect
is data protection, to prevent unauthorized users from understanding the physical
content of data. This function is typically provided by file systems in the context of

3.2 Access Control 103

centralized and distributed operating systems. The main data protection approach is
data encryption.

Access control must guarantee that only authorized users perform operations they
are allowed to perform on the database. Many different users may have access to
a large collection of data under the control of a single centralized or distributed
system. The centralized or distributed DBMS must thus be able to restrict the access
of a subset of the database to a subset of the users. Access control has long been
provided by operating systems as services of the file system. In this context, a
centralized control is offered. Indeed, the central controller creates objects, and may
allow particular users to perform particular operations (read, write, execute) on these
objects. Also, objects are identified by their external names.

Access control in database systems differs in several aspects from that in
traditional file systems. Authorizations must be refined so that different users have
different rights on the same database objects. This requirement implies the ability
to specify subsets of objects more precisely than by name and to distinguish
between groups of users. In addition, the decentralized control of authorizations is of
particular importance in a distributed context. In relational systems, authorizations
can be uniformly controlled by database administrators using high-level constructs.
For example, controlled objects can be specified by predicates in the same way as is
a query qualification.

There are two main approaches to database access control. The first approach
is called discretionary access control (DAC) and has long been provided by
DBMS. DAC defines access rights based on the users, the type of access (e.g.,
SELECT, UPDATE), and the objects to be accessed. The second approach, called
mandatory access control (MAC) further increases security by restricting access
to classified data to cleared users. Support of MAC by major DBMSs is more
recent and stems from increased security threats coming from the Internet. Other
approaches go further into adding more semantics to access control, in partic-
ular, role-based access control, which considers users with different roles, and
purpose-based access control, e.g., hippocratic databases, which associates purpose
information with data, i.e., the reasons for data collection and access.

From solutions to access control in centralized systems, we derive those for
distributed DBMSs. However, there is the additional complexity which stems from
the fact that objects and users can be distributed. In what follows we first present
discretionary and mandatory access control in centralized systems and then the
additional problems and their solutions in distributed systems.

3.2.1 Discretionary Access Control

Three main actors are involved in DAC: the subject (e.g., users, groups of users) who
trigger the execution of application programs; the operations, which are embedded
in application programs; and the database objects, on which the operations are
performed. Authorization control consists of checking whether a given triple

104 3 Distributed Data Control

(subject, operation, object) can be allowed to proceed (i.e., the user can execute
the operation on the object). An authorization can be viewed as a triple (subject,
operation type, object definition) which specifies that the subjects have the right
to perform an operation of operation type on an object. To control authorizations
properly, the DBMS requires the definition of subjects, objects, and access rights.

The introduction of a subject in the system is typically done by a pair (user name,
password). The user name uniquely identifies the users of that name in the system,
while the password, known only to the users of that name, authenticates the users.
Both user name and password must be supplied in order to log in the system. This
prevents people who do not know the password from entering the system with only
the user name.

The objects to protect are subsets of the database. Relational systems provide
finer and more general protection granularity than do earlier systems. In a file
system, the protection granule is the file. In a relational system, objects can be
defined by their type (view, relation, tuple, attribute) as well as by their content using
selection predicates. Furthermore, the view mechanism as introduced in Sect. 3.1
permits the protection of objects simply by hiding subsets of relations (attributes or
tuples) from unauthorized users.

A right expresses a relationship between a subject and an object for a particular
set of operations. In an SQL-based relational DBMS, an operation is a high-level
statement such as SELECT, INSERT, UPDATE, or DELETE, and rights are defined
(granted or revoked) using the following statements:

GRANT 〈operation type(s)〉 ON 〈object〉 TO 〈subject(s)〉
REVOKE 〈operation type(s)〉 FROM 〈object〉 TO 〈subject(s)〉

The keyword public can be used to mean all users. Authorization control can
be characterized based on who (the grantors) can grant the rights. To ease database
administration, it is convenient to define user groups, as in operating systems, for
the purpose of authorization. Once defined, a user group can be used as subject in
GRANT and REVOKE statements.

In its simplest form, the control is centralized: a single user or user class, the
database administrators, has all privileges on the database objects and is the only
one allowed to use the GRANT and REVOKE statements. A more flexible form of
control is decentralized: the creator of an object becomes its owner and is granted
all privileges on it. In particular, there is the additional operation type GRANT, which
transfers all the rights of the grantor performing the statement to the specified
subjects. Therefore, the person receiving the right (the grantee) may subsequently
grant privileges on that object. Thus, access control is discretionary in the sense that
users with grant privilege can make access policy decisions. The revoking process
is complex as it must be recursive. For example, if A, who granted B who granted
C the GRANT privilege on object O, wants to revoke all the privileges of B on O, all
the privileges of C on O must also be revoked. To perform revocation, the system
must maintain a hierarchy of grants per object where the creator of the object is the
root.

3.2 Access Control 105

The privileges of the subjects over objects are recorded in the catalog (directory)
as authorization rules. There are several ways to store the authorizations. The most
convenient approach is to consider all the privileges as an authorization matrix,
in which a row defines a subject, a column an object, and a matrix entry (for a pair
〈subject, object〉), the authorized operations. The authorized operations are specified
by their operation type (e.g., SELECT, UPDATE). It is also customary to associate
with the operation type a predicate that further restricts the access to the object.
The latter option is provided when the objects must be base relations and cannot
be views. For example, one authorized operation for the pair 〈Jones, relation EMP〉
could be

SELECT WHERE TITLE = "Syst.Anal."

which authorizes Jones to access only the employee tuples for system analysts.
Figure 3.5 gives an example of an authorization matrix where objects are either
relations (EMP and ASG) or attributes (ENAME).

The authorization matrix can be stored in three ways: by row, by column, or by
element. When the matrix is stored by row, each subject is associated with the list of
objects that may be accessed together with the related access rights. This approach
makes the enforcement of authorizations efficient, since all the rights of the logged-
on user are together (in the user profile). However, the manipulation of access rights
per object (e.g., making an object public) is not efficient since all subject profiles
must be accessed. When the matrix is stored by column, each object is associated
with the list of subjects who may access it with the corresponding access rights.
The advantages and disadvantages of this approach are the reverse of the previous
approach.

The respective advantages of the two approaches can be combined in the third
approach, in which the matrix is stored by element, that is, by relation (subject,
object, right). This relation can have indices on both subject and object, thereby
providing fast-access right manipulation per subject and per object.

Directly managing relationships between many subjects and many objects
gets complicated for database administrators. Role-based access control (RBAC)
addresses this problem by adding roles, as a level of independence between subjects
and objects. Roles correspond to various job functions (e.g., clerk, analyst, manager,
etc.), users are assigned particular roles, and authorizations on objects are assigned
to specific roles. Thus, users no longer acquire authorizations directly, but only

EMP ENAME ASG

Casey UPDATE UPDATE UPDATE

Jones SELECT SELECT SELECT
WHERE RESP �= ”Manager”

Casey NONE SELECT NONE

Fig. 3.5 Example of authorization matrix

106 3 Distributed Data Control

through their roles. Since there are not that many roles, RBAC simplifies much
access control, in particular when adding or modifying user accounts.

3.2.2 Mandatory Access Control

DAC has some limitations. One problem is that a malicious user can access
unauthorized data through an authorized user. For instance, consider user A who
has authorized access to relations R and S and user B who has authorized access to
relation S only. If B somehow manages to modify an application program used by
A so it writes R data into S, then B can read unauthorized data without violating
authorization rules.

MAC answers this problem and further improves security by defining different
security levels for both subjects and data objects. Furthermore, unlike DAC, the
access policy decisions are under the control of a single administrator, i.e., users
cannot define their own policies and grant access to objects. MAC in databases
is based on the well-known Bell-LaPadula model designed for operating system
security. In this model, subjects are processes acting on a user’s behalf; a process
has a security level also called clearance derived from that of the user. In its simplest
form, the security levels are Top Secret (T S), Secret (S), Confidential (C), and
Unclassified (U), and ordered as T S > S > C > U , where “>” means “more
secure.” Access in read and write modes by subjects is restricted by two simple
rules:

1. A subject T is allowed to read an object of security level l only if level(T) ≥ l.
2. A subject T is allowed to write an object of security level l only if class(T) ≤ l.

Rule 1 (called “no read up”) protects data from unauthorized disclosure, i.e., a
subject at a given security level can only read objects at the same or lower security
levels. For instance, a subject with secret clearance cannot read top-secret data.
Rule 2 (called “no write down”) protects data from unauthorized change, i.e., a
subject at a given security level can only write objects at the same or higher security
levels. For instance, a subject with top-secret clearance can only write top-secret
data but cannot write secret data (which could then contain top-secret data).

In the relational model, data objects can be relations, tuples, or attributes. Thus,
a relation can be classified at different levels: relation (i.e., all tuples in the relation
have the same security level), tuple (i.e., every tuple has a security level), or attribute
(i.e., every distinct attribute value has a security level). A classified relation is thus
called multilevel relation to reflect that it will appear differently (with different data)
to subjects with different clearances. For instance, a multilevel relation classified
at the tuple level can be represented by adding a security level attribute to each
tuple. Similarly, a multilevel relation classified at attribute level can be represented
by adding a corresponding security level to each attribute. Figure 3.6 illustrates a
multilevel relation PROJ* based on relation PROJwhich is classified at the attribute

3.2 Access Control 107

PNO SL1 PNAME SL2 BUDGET SL3 LOC SL4
P1 C Instrumentation C 150000 C Montreal C
P2 C Database Develop. C 135000 S New York S
P3 S CAD/CAM S 250000 S New York S

PROJ∗

Fig. 3.6 Multilevel relation PROJ* classified at the attribute level

PNO SL1 PNAME SL2 BUDGET SL3 LOC SL4
P1 C Instrumentation C 150000 C Montreal C
P2 C Database Develop. C Null S Null S

PROJ∗C

Fig. 3.7 Confidential relation PROJ*C

PNO SL1 PNAME SL2 BUDGET SL3 LOC SL4
P1 C Instrumentation C 150000 C Montreal C
P2 C Database Develop. C 135000 S New York S
P3 S CAD/CAM S 250000 S New York S
P3 C Web Develop. C 200000 C Paris C

PROJ∗∗

Fig. 3.8 Multilevel relation with polyinstantiation

level. Note that the additional security level attributes may increase significantly the
size of the relation.

The entire relation also has a security level which is the lowest security level of
any data it contains. For instance, relation PROJ* has security level C. A relation
can then be accessed by any subject having a security level which is the same or
higher. However, a subject can only access data for which it has clearance. Thus,
attributes for which a subject has no clearance will appear to the subject as null
values with an associated security level which is the same as the subject. Figure 3.7
shows an instance of relation PROJ* as accessed by a subject at a confidential
security level.

MAC has strong impact on the data model because users do not see the same
data and have to deal with unexpected side-effects. One major side-effect is called
polyinstantiation, which allows the same object to have different attribute values
depending on the users’ security level. Figure 3.8 illustrates a multirelation with
polyinstantiated tuples. Tuple of primary key P3 has two instantiations, each one
with a different security level. This may result from a subject T with security level
C inserting a tuple with key=“P3” in relation PROJ* in Fig. 3.6. Because T (with
confidential clearance level) should ignore the existence of tuple with key=“P3”
(classified as secret), the only practical solution is to add a second tuple with same
key and different classification. However, a user with secret clearance would see
both tuples with key=“E3” and should interpret this unexpected effect.

108 3 Distributed Data Control

3.2.3 Distributed Access Control

The additional problems of access control in a distributed environment stem from
the fact that objects and subjects are distributed and that messages with sensitive data
can be read by unauthorized users. These problems are: remote user authentication,
management of discretionary access rules, handling of views and of user groups,
and enforcing MAC.

Remote user authentication is necessary since any site of a distributed DBMS
may accept programs initiated, and authorized, at remote sites. To prevent remote
access by unauthorized users or applications (e.g., from a site that is not part of the
distributed DBMS), users must also be identified and authenticated at the accessed
site. Furthermore, instead of using passwords that could be obtained from sniffing
messages, encrypted certificates could be used.

Three solutions are possible for managing authentication:

1. Authentication information is maintained at a central site for global users which
can then be authenticated only once and then accessed from multiple sites.

2. The information for authenticating users (user name and password) is replicated
at all sites in the catalog. Local programs, initiated at a remote site, must also
indicate the user name and password.

3. All sites of the distributed DBMS identify and authenticate themselves similar
to the way users do. Intersite communication is thus protected by the use of the
site password. Once the initiating site has been authenticated, there is no need for
authenticating their remote users.

The first solution simplifies password administration significantly and enables
single authentication (also called single sign on). However, the central authentica-
tion site can be a single point of failure and a bottleneck. The second solution is
more costly in terms of directory management given that the introduction of a new
user is a distributed operation. However, users can access the distributed database
from any site. The third solution is necessary if user information is not replicated.
Nevertheless, it can also be used if there is replication of the user information. In this
case it makes remote authentication more efficient. If user names and passwords are
not replicated, they should be stored at the sites where the users access the system
(i.e., the home site). The latter solution is based on the realistic assumption that
users are more static, or at least they always access the distributed database from the
same site.

Distributed authorization rules are expressed in the same way as centralized ones.
Like view definitions, they must be stored in the catalog. They can be either fully
replicated at each site or stored at the sites of the referenced objects. In the latter case
the rules are duplicated only at the sites where the referenced objects are distributed.
The main advantage of the fully replicated approach is that authorization can be
processed by query modification at compile time. However, directory management
is more costly because of data duplication. The second solution is better if locality
of reference is very high. However, distributed authorization cannot be controlled at
compile time.

3.2 Access Control 109

Views may be considered to be objects by the authorization mechanism. Views
are composite objects, that is, composed of other underlying objects. Therefore,
granting access to a view translates into granting access to underlying objects. If
view definition and authorization rules for all objects are fully replicated (as in many
systems), this translation is rather simple and can be done locally. The translation is
harder when the view definition and its underlying objects are all stored separately,
as is the case with site autonomy assumption. In this situation, the translation is
a totally distributed operation. The authorizations granted on views depend on the
access rights of the view creator on the underlying objects. A solution is to record
the association information at the site of each underlying object.

Handling user groups for the purpose of authorization simplifies distributed
database administration. In a centralized DBMS, “all users” can be referred to as
public. In a distributed DBMS, the same notion is useful, the public denoting all the
users of the system. However an intermediate level is often introduced to specify the
public at a particular site, e.g., denoted by public@site_s. More precise groups can
be defined by the command

DEFINE GROUP 〈group_id〉 AS 〈list of subject_ids〉

The management of groups in a distributed environment poses some problems
since the subjects of a group can be located at various sites and access to an
object may be granted to several groups, which are themselves distributed. If group
information and access rules are fully replicated at all sites, the enforcement of
access rights is similar to that of a centralized system. However, maintaining this
replication may be expensive. The problem is more difficult if site autonomy (with
decentralized control) must be maintained. One solution enforces access rights by
performing a remote query to the nodes holding the group definition. Another
solution replicates a group definition at each node containing an object that may
be accessed by subjects of that group. These solutions tend to decrease the degree
of site autonomy.

Enforcing MAC in a distributed environment is made difficult by the possibility
of indirect means, called covert channels, to access unauthorized data. For instance,
consider a simple distributed DBMS architecture with two sites, each managing its
database at a single security level, e.g., one site is confidential, while the other is
secret. According to the “no write down” rule, an update operation from a subject
with secret clearance could only be sent to the secret site. However, according to
the “no read up” rule, a read query from the same secret subject could be sent to
both the secret and the confidential sites. Since the query sent to the confidential
site may contain secret information (e.g., in a select predicate), it is potentially a
covert channel. To avoid such covert channels, a solution is to replicate part of the
database so that a site at security level l contains all data that a subject at level l can
access. For instance, the secret site would replicate confidential data so that it can
entirely process secret queries. One problem with this architecture is the overhead
of maintaining the consistency of replicas (see Chap. 6 on replication). Furthermore,
although there are no covert channels for queries, there may still be covert channels

110 3 Distributed Data Control

for update operations because the delays involved in synchronizing transactions
may be exploited. The complete support for MAC in distributed database systems,
therefore, requires significant extensions to transaction management techniques and
to distributed query processing techniques.

3.3 Semantic Integrity Control

Another important and difficult problem for a database system is how to guarantee
database consistency. A database state is said to be consistent if the database
satisfies a set of constraints, called semantic integrity constraints. Maintaining
a consistent database requires various mechanisms such as concurrency control,
reliability, protection, and semantic integrity control, which are provided as part of
transaction management. Semantic integrity control ensures database consistency
by rejecting update transactions that lead to inconsistent database states, or by
activating specific actions on the database state, which compensate for the effects
of the update transactions. Note that the updated database must satisfy the set of
integrity constraints.

In general, semantic integrity constraints are rules that represent the knowledge
about the properties of an application. They define static or dynamic application
properties that cannot be directly captured by the object and operation concepts of a
data model. Thus the concept of an integrity rule is strongly connected with that of
a data model in the sense that more semantic information about the application can
be captured by means of these rules.

Two main types of integrity constraints can be distinguished: structural con-
straints and behavioral constraints. Structural constraints express basic semantic
properties inherent to a model. Examples of such constraints are unique key
constraints in the relational model, or one-to-many associations between objects
in the object-oriented model. Behavioral constraints, on the other hand, regulate
the application behavior. Thus they are essential in the database design process.
They can express associations between objects, such as inclusion dependency in the
relational model, or describe object properties and structures. The increasing variety
of database applications and the development of database design aid tools call for
powerful integrity constraints that can enrich the data model.

Integrity control appeared with data processing and evolved from procedural
methods (in which the controls were embedded in application programs) to declar-
ative methods. Declarative methods have emerged with the relational model to
alleviate the problems of program/data dependency, code redundancy, and poor
performance of the procedural methods. The idea is to express integrity constraints
using assertions of predicate calculus. Thus a set of semantic integrity assertions
defines database consistency. This approach allows one to easily declare and modify
complex integrity constraints.

3.3 Semantic Integrity Control 111

The main problem in supporting automatic semantic integrity control is that the
cost of checking for constraint violation can be prohibitive. Enforcing integrity
constraints is costly because it generally requires access to a large amount of data
that are not directly involved in the database updates. The problem is more difficult
when constraints are defined over a distributed database.

Various solutions have been investigated to design an integrity manager by
combining optimization strategies. Their purpose is to (1) limit the number of
constraints that need to be enforced, (2) decrease the number of data accesses to
enforce a given constraint in the presence of an update transaction, (3) define a
preventive strategy that detects inconsistencies in a way that avoids undoing updates,
(4) perform as much integrity control as possible at compile time. A few of these
solutions have been implemented, but they suffer from a lack of generality. Either
they are restricted to a small set of assertions (more general constraints would have
a prohibitive checking cost) or they only support restricted programs (e.g., single-
tuple updates).

In this section, we present the solutions for semantic integrity control first
in centralized systems and then in distributed systems. Since our context is the
relational model, we consider only declarative methods.

3.3.1 Centralized Semantic Integrity Control

A semantic integrity manager has two main components: a language for expressing
and manipulating integrity constraints, and an enforcement mechanism that per-
forms specific actions to enforce database integrity upon update transactions.

3.3.1.1 Specification of Integrity Constraints

Integrity constraints are manipulated by the database administrator using a high-
level language. In this section, we illustrate a declarative language for specifying
integrity constraints. This language is much in the spirit of the standard SQL
language, but with more generality. It allows one to specify, read, or drop integrity
constraints. These constraints can be defined either at relation creation time or at
any time, even if the relation already contains tuples. In both cases, however, the
syntax is almost the same. For simplicity and without lack of generality, we assume
that the effect of integrity constraint violation is to abort the violating transactions.
However, the SQL standard provides means to express the propagation of update
actions to correct inconsistencies, with the CASCADING clause within the constraint
declaration. More generally, triggers (event-condition-action rules) can be used to
automatically propagate updates, and thus to maintain semantic integrity. However,
triggers are quite powerful and thus more difficult to support efficiently than specific
integrity constraints.

112 3 Distributed Data Control

In relational database systems, integrity constraints are defined as assertions.
An assertion is a particular expression of tuple relational calculus, in which each
variable is either universally (∀) or existentially (∃) quantified. Thus an assertion
can be seen as a query qualification that is either true or false for each tuple in
the Cartesian product of the relations determined by the tuple variables. We can
distinguish between three types of integrity constraints: predefined, precondition, or
general constraints.

Predefined constraints are based on simple keywords. Through them, it is
possible to express concisely the more common constraints of the relational model,
such as nonnull attribute, unique key, foreign key, or functional dependency.
Examples 3.11–3.14 demonstrate predefined constraints.

Example 3.11 Employee number in relation EMP cannot be null.

ENO NOT NULL IN EMP

�
Example 3.12 The pair (ENO, PNO) is the unique key in relation ASG.

(ENO, PNO) UNIQUE IN ASG

�
Example 3.13 The project number PNO in relation ASG is a foreign key matching
the primary key PNO of relation PROJ. In other words, a project referred to in
relation ASG must exist in relation PROJ.

PNO IN ASG REFERENCES PNO IN PROJ

�
Example 3.14 The employee number functionally determines the employee name.

ENO IN EMP DETERMINES ENAME

�
Precondition constraints express conditions that must be satisfied by all

tuples in a relation for a given update type. The update type, which might be
INSERT, DELETE, or MODIFY, permits restricting the integrity control. To identify
in the constraint definition the tuples that are subject to update, two variables, NEW
and OLD, are implicitly defined. They range over new tuples (to be inserted) and
old tuples (to be deleted), respectively. Precondition constraints can be expressed
with the SQL CHECK statement enriched with the ability to specify the update type.
The syntax of the CHECK statement is

CHECK ON 〈relation name〉 WHEN 〈change type〉
(〈qualification over relation name〉)

3.3 Semantic Integrity Control 113

Examples of precondition constraints are the following:

Example 3.15 The budget of a project is between 500K and 1000K.

CHECK ON PROJ (BUDGET+ >= 500000 AND BUDGET <= 1000000)

�
Example 3.16 Only the tuples whose budget is 0 may be deleted.

CHECK ON PROJ WHEN DELETE (BUDGET = 0)

�
Example 3.17 The budget of a project can only increase.

CHECK ON PROJ (NEW.BUDGET > OLD.BUDGET AND
NEW.PNO = OLD.PNO)

�
General constraints are formulas of tuple relational calculus where all variables

are quantified. The database system must ensure that those formulas are always
true. General constraints are more concise than precompiled constraints since the
former may involve more than one relation. For instance, at least three precompiled
constraints are necessary to express a general constraint on three relations. A general
constraint may be expressed with the following syntax:

CHECK ON list of 〈variable name〉:〈relation name〉,
(〈qualification〉)

Examples of general constraints are given below.

Example 3.18 The constraint of Example 3.8 may also be expressed as

CHECK ON e1:EMP, e2:EMP
(e1.ENAME = e2.ENAME IF e1.ENO = e2.ENO)

�
Example 3.19 The total duration for all employees in the CAD project is less than
100.

CHECK ON g:ASG, j:PROJ (SUM(g.DUR WHERE
g.PNO=j.PNO)<100 IF j.PNAME="CAD/CAM")

�

114 3 Distributed Data Control

3.3.1.2 Integrity Enforcement

We now focus on enforcing semantic integrity that consists of rejecting update
transactions that violate some integrity constraints. A constraint is violated when it
becomes false in the new database state produced by the update transaction. A major
difficulty in designing an integrity manager is finding efficient enforcement algo-
rithms. Two basic methods permit the rejection of inconsistent update transactions.
The first one is based on the detection of inconsistencies. The update transaction
u is executed, causing a change of the database state D to Du. The enforcement
algorithm verifies, by applying tests derived from these constraints, that all relevant
constraints hold in state Du. If state Du is inconsistent, the DBMS can try either to
reach another consistent state, D′

u, by modifying Du with compensation actions or to
restore state D by undoing u. Since these tests are applied after having changed the
database state, they are generally called posttests. This approach may be inefficient
if a large amount of work (the update of D) must be undone in the case of an integrity
failure.

The second method is based on the prevention of inconsistencies. An update
is executed only if it changes the database state to a consistent state. The tuples
subject to the update transaction are either directly available (in the case of insert)
or must be retrieved from the database (in the case of deletion or modification). The
enforcement algorithm verifies that all relevant constraints will hold after updating
those tuples. This is generally done by applying to those tuples tests that are derived
from the integrity constraints. Given that these tests are applied before the database
state is changed, they are generally called pretests. The preventive approach is more
efficient than the detection approach since updates never need to be undone because
of integrity violation.

The query modification algorithm is an example of a preventive method that
is particularly efficient at enforcing domain constraints. It adds the assertion
qualification to the query qualification by an AND operator so that the modified
query can enforce integrity.

Example 3.20 The query for increasing the budget of the CAD/CAM project by
10%, which would be specified as

UPDATE PROJ
SET BUDGET = BUDGET*1.1
WHERE PNAME= "CAD/CAM"

will be transformed into the following query in order to enforce the domain
constraint discussed in Example 3.9.

UPDATE PROJ
SET BUDGET = BUDGET * 1.1
WHERE PNAME= "CAD/CAM"
AND NEW.BUDGET ≥ 500000
AND NEW.BUDGET ≤ 1000000

�

3.3 Semantic Integrity Control 115

The query modification algorithm, which is well-known for its elegance, pro-
duces pretests at runtime by ANDing the assertion predicates with the update
predicates of each instruction of the transaction. However, the algorithm only
applies to tuple calculus formulas and can be specified as follows. Consider the
assertion (∀x ∈ R)F (x), where F is a tuple calculus expression in which x is the
only free variable. An update of R can be written as (∀x ∈ R)(Q(x) ⇒ update(x)),
where Q is a tuple calculus expression whose only free variable is x. Roughly
speaking, the query modification consists in generating the update (∀x ∈ R)((Q(x)

and F(x)) ⇒update(x)). Thus x needs to be universally quantified.

Example 3.21 The foreign key constraint of Example 3.13 that can be rewritten as

∀g ∈ ASG, ∃j ∈ PROJ : g.PNO = j.PNO

could not be processed by query modification because the variable j is not
universally quantified. �

To handle more general constraints, pretests can be generated at constraint
definition time, and enforced at runtime when updates occur. In the rest of this
section, we present a general method. This method is based on the production,
at constraint definition time, of pretests that are used subsequently to prevent the
introduction of inconsistencies in the database. This is a general preventive method
that handles the entire set of constraints introduced in the preceding section. It
significantly reduces the proportion of the database that must be checked when
enforcing assertions in the presence of updates. This is a major advantage when
applied to a distributed environment.

The definition of pretest uses differential relations, as defined in Sect. 3.1.3. A
pretest is a triple (R, U,C) in which R is a relation, U is an update type, and C is an
assertion ranging over the differential relation(s) involved in an update of type U .
When an integrity constraint I is defined, a set of pretests may be produced for the
relations used by I . Whenever a relation involved in I is updated by a transaction
u, the pretests that must be checked to enforce I are only those defined on I for the
update type of u. The performance advantages of this approach are twofold. First,
the number of assertions to enforce is minimized since only the pretests of type u

need be checked. Second, the cost of enforcing a pretest is less than that of enforcing
I since differential relations are, in general, much smaller than the base relations.

Pretests may be obtained by applying transformation rules to the original
assertion. These rules are based on a syntactic analysis of the assertion and quantifier
permutations. They permit the substitution of differential relations for base relations.
Since the pretests are simpler than the original ones, the process that generates them
is called simplification.

Example 3.22 Consider the modified expression of the foreign key constraint in
Example 3.15. The pretests associated with this constraint are

(ASG, INSERT, C1), (PROJ, DELETE, C2), and (PROJ, MODIFY, C3),

where C1 is

116 3 Distributed Data Control

∀ NEW ∈ ASG+, ∃j ∈ PROJ: NEW.PNO = j .PNO

C2 is

∀g ∈ ASG, ∀ OLD ∈ PROJ− : g.PNO �= OLD.PNO

and C3 is

∀g ∈ ASG, ∀ OLD ∈ PROJ− ∃ NEW ∈ PROJ+ : g.PNO �= OLD.PNO OR
OLD.PNO = NEW.PNO �

The advantage provided by such pretests is obvious. For instance, a deletion on
relation ASG does not incur any assertion checking.

The enforcement algorithm makes use of pretests and is specialized according
to the class of the assertions. Three classes of constraints are distinguished: single-
relation constraints, multirelation constraints, and constraints involving aggregate
functions.

Let us now summarize the enforcement algorithm. Recall that an update trans-
action updates all tuples of relation R that satisfy some qualification. The algorithm
acts in two steps. The first step generates the differential relations R+ and R− from
R. The second step simply consists of retrieving the tuples of R+ and R−, which do
not satisfy the pretests. If no tuples are retrieved, the constraint is valid. Otherwise,
it is violated.

Example 3.23 Suppose there is a deletion on PROJ. Enforcing (PROJ, DELETE,
C2) consists in generating the following statement:

result ← retrieve all tuples of PROJ− where ¬(C2)

Then, if the result is empty, the assertion is verified by the update and consistency
is preserved. �

3.3.2 Distributed Semantic Integrity Control

In this section, we present algorithms for ensuring the semantic integrity of
distributed databases. They are extensions of the simplification method discussed
previously. In what follows, we assume global transaction management capabilities,
as provided for homogeneous systems or multidatabase systems. Thus, the two main
problems of designing an integrity manager for such a distributed DBMS are the
definition and storage of constraints, and their enforcement. We will also discuss the
issues involved in integrity constraint checking when there is no global transaction
support.

3.3 Semantic Integrity Control 117

3.3.2.1 Definition of Distributed Integrity Constraints

An integrity constraint is supposed to be expressed in predicate calculus. Each
assertion is seen as a query qualification that is either true or false for each tuple
in the Cartesian product of the relations determined by the tuple variables. Since
assertions can involve data stored at different sites, the storage of the constraints
must be decided so as to minimize the cost of integrity checking. There is a strategy
based on a taxonomy of integrity constraints that distinguishes three classes:

1. Individual constraints: single-relation single-variable constraints. They refer
only to tuples to be updated independently of the rest of the database. For
instance, the domain constraint of Example 3.15 is an individual assertion.

2. Set-oriented constraints: include single-relation multivariable constraints such
as functional dependency (Example 3.14) and multirelation multivariable con-
straints such as foreign key constraints (Example 3.13).

3. Constraints involving aggregates: require special processing because of the cost
of evaluating the aggregates. The assertion in Example 3.19 is representative of
a constraint of this class.

The definition of a new integrity constraint can be started at one of the sites
that store the relations involved in the assertion. Remember that the relations can
be fragmented. A fragmentation predicate is a particular case of assertion of class
1. Different fragments of the same relation can be located at different sites. Thus,
defining an integrity assertion becomes a distributed operation, which is done in
two steps. The first step is to transform the high-level assertions into pretests, using
the techniques discussed in the preceding section. The next step is to store pretests
according to the class of constraints. Constraints of class 3 are treated like those of
class 1 or 2, depending on whether they are individual or set-oriented.

Individual Constraints

The constraint definition is sent to all other sites that contain fragments of the
relation involved in the constraint. The constraint must be compatible with the
relation data at each site. Compatibility can be checked at two levels: predicate and
data. First, predicate compatibility is verified by comparing the constraint predicate
with the fragment predicate. A constraint C is not compatible with a fragment
predicate p if “C is true” implies that “p is false,” and is compatible with p

otherwise. If noncompatibility is found at one of the sites, the constraint definition
is globally rejected because tuples of that fragment do not satisfy the integrity
constraints. Second, if predicate compatibility has been found, the constraint is
tested against the instance of the fragment. If it is not satisfied by that instance,
the constraint is also globally rejected. If compatibility is found, the constraint is
stored at each site. Note that the compatibility checks are performed only for pretests
whose update type is “insert” (the tuples in the fragments are considered “inserted”).

118 3 Distributed Data Control

Example 3.24 Consider relation EMP, horizontally fragmented across three sites
using the predicates

p1 : 0 ≤ ENO < “E3”
p2 : “E3” ≤ ENO ≤ “E6”
p3 : ENO > “E6”

and the domain constraint C: ENO < “E4.” Constraint C is compatible with p1
(if C is true, p1 is true) and p2 (if C is true, p2 is not necessarily false), but not
with p3 (if C is true, then p3 is false). Therefore, constraint C should be globally
rejected because the tuples at site 3 cannot satisfy C, and thus relation EMP does not
satisfy C. �

Set-Oriented Constraints

Set-oriented constraints are multivariable; that is, they involve join predicates.
Although the assertion predicate may be multirelation, a pretest is associated with
a single relation. Therefore, the constraint definition can be sent to all the sites that
store a fragment referenced by these variables. Compatibility checking also involves
fragments of the relation used in the join predicate. Predicate compatibility is useless
here, because it is impossible to infer that a fragment predicate p is false if the
constraint C (based on a join predicate) is true. Therefore C must be checked for
compatibility against the data. This compatibility check basically requires joining
each fragment of the relation, say R, with all fragments of the other relation, say S,
involved in the constraint predicate. This operation may be expensive and, as any
join, should be optimized by the distributed query processor. Three cases, given in
increasing cost of checking, can occur:

1. The fragmentation of R is derived (see Chap. 2) from that of S based on a
semijoin on the attribute used in the assertion join predicate.

2. S is fragmented on join attribute.
3. S is not fragmented on join attribute.

In the first case, compatibility checking is cheap since the tuple of S matching a
tuple of R is at the same site. In the second case, each tuple of R must be compared
with at most one fragment of S, because the join attribute value of the tuple of R can
be used to find the site of the corresponding fragment of S. In the third case, each
tuple of R must be compared with all fragments of S. If compatibility is found for
all tuples of R, the constraint can be stored at each site.

Example 3.25 Consider the set-oriented pretest (ASG, INSERT, C1) defined in
Example 3.16, where C1 is

∀ NEW ∈ ASG+, ∃j ∈ PROJ: NEW.PNO = j .PNO

3.3 Semantic Integrity Control 119

Let us consider the following three cases:

1. ASG is fragmented using the predicate

ASG�PNO PROJi

where PROJI is a fragment of relation PROJ. In this case each tuple NEW
of ASG has been placed at the same site as tuple j such that NEW.PNO =
j .PNO. Since the fragmentation predicate is identical to that of C1, compatibility
checking does not incur communication.

2. PROJ is horizontally fragmented based on the two predicates

p1 : PNO < “P3”
p2 : PNO ≥ “P3”

In this case each tuple NEW of ASG is compared with either fragment PROJ1, if
NEW.PNO < “P3,” or fragment PROJ2, if NEW.PNO ≥ “P3.”

3. PROJ is horizontally fragmented based on the two predicates

p1 : PNAME = “CAD/CAM”
p2 : PNAME �= “CAD/CAM”

In this case each tuple of ASG must be compared with both fragments PROJ1
and PROJ2.

�

3.3.2.2 Enforcement of Distributed Integrity Constraints

Enforcing distributed integrity constraints is more complex than in centralized
DBMSs, even with global transaction management support. The main problem is to
decide where (at which site) to enforce the integrity constraints. The choice depends
on the class of the constraint, the type of update, and the nature of the site where the
update is issued (called the query master site). This site may, or may not, store the
updated relation or some of the relations involved in the integrity constraints. The
critical parameter we consider is the cost of transferring data, including messages,
from one site to another. We now discuss the different types of strategies according
to these criteria.

Individual Constraints

Two cases are considered. If the update transaction is an insert statement, all the
tuples to be inserted are explicitly provided by the user. In this case, all individual
constraints can be enforced at the site where the update is submitted. If the update
is a qualified update (delete or modify statements), it is sent to the sites storing the
relation that will be updated. The query processor executes the update qualification
for each fragment. The resulting tuples at each site are combined into one temporary

120 3 Distributed Data Control

relation in the case of a delete statement, or two, in the case of a modify statement
(i.e., R+ and R−). Each site involved in the distributed update enforces the assertions
relevant at that site (e.g., domain constraints when it is a delete).

Set-Oriented Constraints

We first study single-relation constraints by means of an example. Consider the
functional dependency of Example 3.14. The pretest associated with update type
INSERT is

(EMP, INSERT, C)

where C is

(∀e ∈ EMP)(∀NEW1 ∈ EMP)(∀NEW2 ∈ EMP) (1)

(NEW1.ENO = e.ENO ⇒ NEW1.ENAME = e.ENAME) ∧ (2)

(NEW1.ENO = NEW2.ENO ⇒ NEW1.ENAME = NEW2.ENAME (3)

The second line in the definition of C checks the constraint between the inserted
tuples (NEW1) and the existing ones (e), while the third checks it between the
inserted tuples themselves. That is why two variables (NEW1 and NEW2) are
declared in the first line.

Consider now an update of EMP. First, the update qualification is executed by
the query processor and returns one or two temporary relations, as in the case of
individual constraints. These temporary relations are then sent to all sites storing
EMP. Assume that the update is an INSERT statement. Then each site storing a
fragment of EMP will enforce constraint C described above. Because e in C is
universally quantified, C must be satisfied by the local data at each site. This is due
to the fact that ∀x ∈ {a1, . . . , an}f (x) is equivalent to [f (a1)∧f (a2)∧· · ·∧f (an)].
Thus the site where the update is submitted must receive for each site a message
indicating that this constraint is satisfied and that it is a condition for all sites. If the
constraint is not true for one site, this site sends an error message indicating that the
constraint has been violated. The update is then invalid, and it is the responsibility
of the integrity manager to decide if the entire transaction must be rejected using the
global transaction manager.

Let us now consider multirelation constraints. For the sake of clarity, we assume
that the integrity constraints do not have more than one tuple variable ranging over
the same relation. Note that this is likely to be the most frequent case. As with single-
relation constraints, the update is computed at the site where it was submitted. The
enforcement is done at the query master site, using the ENFORCE algorithm given
in Algorithm 3.2.

3.3 Semantic Integrity Control 121

Algorithm 3.2: ENFORCE
Input: U : update type; R: relation
begin

retrieve all compiled assertions (R, U, Ci)
inconsistent ← false
for each compiled assertion do

result ← all new (respectively, old), tuples of R where ¬(Ci)

end for
if card(result) �= 0 then

inconsistent ← true
end if
if ¬inconsistent then

send the tuples to update to all the sites storing fragments of R
else

reject the update
end if

end

Example 3.26 We illustrate this algorithm through an example based on the foreign
key constraint of Example 3.13. Let u be an insertion of a new tuple into ASG. The
previous algorithm uses the pretest (ASG, INSERT, C), where C is

∀NEW ∈ ASG+, ∃j ∈ PROJ: NEW.PNO = j .PNO

For this constraint, the retrieval statement is to retrieve all new tuples in ASG+,
where C is not true. This statement can be expressed in SQL as

SELECT NEW.*
FROM ASG+ NEW, PROJ
WHERE COUNT(PROJ.PNO WHERE NEW.PNO = PROJ.PNO)=0

Note that NEW.* denotes all the attributes of ASG+. �
Thus the strategy is to send new tuples to sites storing relation PROJ in order

to perform the joins, and then to centralize all results at the query master site. For
each site storing a fragment of PROJ, the site joins the fragment with ASG+ and
sends the result to the query master site, which performs the union of all results.
If the union is empty, the database is consistent. Otherwise, the update leads to
an inconsistent state and should be rejected, using the global transaction manager.
More sophisticated strategies that notify or compensate inconsistencies can also be
devised.

Constraints Involving Aggregates

These constraints are among the most costly to test because they require the calcula-
tion of the aggregate functions. The aggregate functions generally manipulated are
MIN, MAX, SUM, and COUNT. Each aggregate function contains a projection part and

122 3 Distributed Data Control

a selection part. To enforce these constraints efficiently, it is possible to produce
pretests that isolate redundant data which can be stored at each site storing the
associated relation. This data is what we called materialized views in Sect. 3.1.2.

3.3.2.3 Summary of Distributed Integrity Control

The main problem of distributed integrity control is that the communication and
processing costs of enforcing distributed constraints can be prohibitive. The two
main issues in designing a distributed integrity manager are the definition of the
distributed assertions and of the enforcement algorithms that minimize the cost
of distributed integrity checking. We have shown in this chapter that distributed
integrity control can be completely achieved, by extending a preventive method
based on the compilation of semantic integrity constraints into pretests. The method
is general since all types of constraints expressed in first-order predicate logic
can be handled. It is compatible with fragment definition and minimizes intersite
communication. A better performance of distributed integrity enforcement can
be obtained if fragments are defined carefully. Therefore, the specification of
distributed integrity constraints is an important aspect of the distributed database
design process.

The method described above assumes global transaction support. Without global
transaction support as in some loosely coupled multidatabase systems, the problem
is more difficult. First, the interface between the constraint manager and the
component DBMS is different since constraint checking can no longer be part of
the global transaction validation. Instead, the component DBMSs should notify
the integrity manager to perform constraint checking after some events, e.g., as a
result of local transactions’ commitments. This can be done using triggers whose
events are updates to relations involved in global constraints. Second, if a global
constraint violation is detected, since there is no way to specify global aborts,
specific correcting transactions should be provided to produce global database states
that are consistent. The solution is to have a family of protocols for global integrity
checking. The root of the family is a simple strategy, based on the computation
of differential relations (as in the previous method), which is shown to be safe
(correctly identifies constraint violations) but inaccurate (may raise an error event
though there is no constraint violation). Inaccuracy is due to the fact that producing
differential relations at different times at different sites may yield phantom states for
the global database, i.e., states that never existed. Extensions of the basic protocol
with either timestamping or using local transaction commands are proposed to solve
that problem.

3.5 Bibliographic Notes 123

3.4 Conclusion

Data control includes view management, access control, and semantic integrity
control. In relational DBMSs, these functions can be uniformly achieved by enforc-
ing rules that specify data manipulation control. Solutions initially designed for
handling these functions in centralized systems have been significantly extended and
enriched for distributed systems, in particular, support for materialized views and
group-based discretionary access control. Semantic integrity control has received
less attention and is generally not well supported by distributed DBMS products.

Full data control is more complex and costly in terms of performance in
distributed systems. The two main issues for efficiently performing data control are
the definition and storage of the rules (site selection) and the design of enforcement
algorithms which minimize communication costs. The problem is difficult since
increased functionality (and generality) tends to increase site communication. The
problem is simplified if control rules are fully replicated at all sites and harder if
site autonomy is to be preserved. In addition, specific optimizations can be done
to minimize the cost of data control but with extra overhead such as managing
materialized views or redundant data. Thus the specification of distributed data
control must be included in the distributed database design so that the cost of control
for update programs is also considered.

3.5 Bibliographic Notes

Data control is well-understood in centralized systems and all major DBMSs
provide extensive support for it. Research on data control in distributed systems
started in the mid-1980s with the R* project at IBM Research and has increased
much since then to address new important applications such as data warehousing or
data integration.

Most of the work on view management has concerned updates through views
and support for materialized views. The two basic papers on centralized view
management are [Chamberlin et al. 1975] and [Stonebraker 1975]. The first
reference presents an integrated solution for view and authorization management
in the System R project at IBM Research. The second reference describes the
query modification technique proposed in the INGRES project at UC Berkeley
for uniformly handling views, authorizations, and semantic integrity control. This
method was presented in Sect. 3.1.

Theoretical solutions to the problem of view updates are given in [Bancilhon
and Spyratos 1981, Dayal and Bernstein 1978, Keller 1982]. In the seminal paper
on view update semantics [Bancilhon and Spyratos 1981], the authors formalize
the view invariance property after updating, and show how a large class of views
including joins can be updated. Semantic information about the base relations is

124 3 Distributed Data Control

particularly useful for finding unique propagation of updates. However, the current
commercial systems are very restrictive in supporting updates through views.

Materialized views have received much attention in the context of data warehous-
ing. The notion of snapshot for optimizing view derivation in distributed database
systems is due to [Adiba and Lindsay 1980], and generalized in Adiba [1981] as a
unified mechanism for managing views and snapshots, as well as fragmented and
replicated data. Self-maintainability of materialized views with respect to the kind
of updates (insertion, deletion, or modification) is addressed in [Gupta et al. 1996].
A thorough paper on materialized view management can be found in Gupta and
Mumick [1999], with the main techniques to perform incremental maintenance of
materialized views. The counting algorithm which we presented in Sect. 3.1.3 was
proposed in [Gupta et al. 1993]. We introduced two recent important optimizations
that have been proposed to significantly reduce the maintenance time of the counting
algorithm, following the formalism of generalized multiset relations [Koch 2010].
The first optimization is to materialize views representing subqueries of the input
query [Koch et al. 2014, Berkholz et al. 2017, Nikolic and Olteanu 2018]. The
second optimization exploits the skew in the data [Kara et al. 2019].

Security in computer systems in general is presented in [Hoffman 1977]. Security
in centralized database systems is presented in [Lunt and Fernández 1990, Castano
et al. 1995]. Discretionary access control (DAC) in distributed systems has first
received much attention in the context of the R* project. The access control
mechanism of System R [Griffiths and Wade 1976] is extended in [Wilms and
Lindsay 1981] to handle groups of users and to run in a distributed environment.
Mandatory access control (MAC) for distributed DBMS has recently gained much
interest. The seminal paper on MAC is the Bell and LaPadula model originally
designed for operating system security [Bell and Lapuda 1976]. MAC for databases
is described in [Lunt and Fernández 1990, Jajodia and Sandhu 1991]. A good
introduction to multilevel security in relational DBMS can be found in [Rjaibi
2004]. Transaction management in multilevel secure DBMS is addressed in [Ray
et al. 2000, Jajodia et al. 2001]. Extensions of MAC for distributed DBMS are
proposed in [Thuraisingham 2001]. Role-based access control (RBAC) [Ferraiolo
and Kuhn 1992] extends DAC and MAC by adding roles, as a level of independence
between subjects and objects. Hippocratic databases [Sandhu et al. 1996] associate
purpose information with data, i.e., the reasons for data collection and access.

The content of Sect. 3.3 comes largely from the work on semantic integrity
control described in [Simon and Valduriez 1984, 1986, 1987]. In particular, [Simon
and Valduriez 1986] extend a preventive strategy for centralized integrity control
based on pretests to run in a distributed environment, assuming global transaction
support. The initial idea of declarative methods, that is, to use assertions of
predicate logic to specify integrity constraints, is due to [Florentin 1974]. The
most important declarative methods are in [Bernstein et al. 1980a, Blaustein 1981,
Nicolas 1982, Simon and Valduriez 1984, Stonebraker 1975]. The notion of concrete
views for storing redundant data is described in [Bernstein and Blaustein 1982].
Note that concrete views are useful in optimizing the enforcement of constraints
involving aggregates. Civelek et al. [1988], Sheth et al. [1988b], and Sheth et al.

Exercises 125

[1988a] describe systems and tools for data control, particularly view management.
Semantic integrity checking in loosely coupled multidatabase systems without
global transaction support is addressed in [Grefen and Widom 1997].

Exercises

Problem 3.1 Define in SQL-like syntax a view of the engineering database
V(ENO, ENAME, PNO, RESP), where the duration is 24. Is view V updatable?
Assume that relations EMP and ASG are horizontally fragmented based on access
frequencies as follows:

Site 1 Site 2 Site 3

EMP1 EMP2

ASG1 ASG2

where

EMP1 = σTITLE �=“Engineer”(EMP)

EMP2 = σTITLE = “Engineer”(EMP)

ASG1 = σ0<DUR<36(ASG)

ASG2 = σDUR≥36(ASG)

At which site(s) should the definition of V be stored without being fully
replicated, to increase locality of reference?

Problem 3.2 Express the following query: names of employees in view V who
work on the CAD/CAM project.

Problem 3.3 (*) Assume that relation PROJ is horizontally fragmented as

PROJ1 = σPNAME = “CAD/CAM” (PROJ)
PROJ2 = σPNAME�= “CAD/CAM” (PROJ)

Modify the query obtained in Problem 3.2 to a query expressed on the fragments.

Problem 3.4 (**) Propose a distributed algorithm to efficiently refresh a snapshot
at one site derived by projection from a relation horizontally fragmented at two
other sites. Give an example query on the view and base relations which produces
an inconsistent result.

Problem 3.5 (*) Consider the view EG of Example 3.5 which uses relations EMP
and ASG as base data and assume its state is derived from that of Example 3.1, so
that EG has 9 tuples (see Fig. 3.4). Assume that tuple 〈E3, P3, Consultant, 10〉 from
ASG is updated to 〈E3, P3, Engineer, 10〉. Apply the basic counting algorithm for

126 3 Distributed Data Control

refreshing the view EG. What projected attributes should be added to view EG to
make it self-maintainable?

Problem 3.6 Propose a relation schema for storing the access rights associated with
user groups in a distributed database catalog, and give a fragmentation scheme for
that relation, assuming that all members of a group are at the same site.

Problem 3.7 (**) Give an algorithm for executing the REVOKE statement in a
distributed DBMS, assuming that the GRANT privilege can be granted only to a group
of users where all its members are at the same site.

Problem 3.8 (**) Consider the multilevel relation PROJ** in Fig. 3.8. Assuming
that there are only two classification levels for attributes (S and C), propose
an allocation of PROJ** on two sites using fragmentation and replication that
avoids covert channels on read queries. Discuss the constraints on updates for this
allocation to work.

Problem 3.9 Using the integrity constraint specification language of this chapter,
express an integrity constraint which states that the duration spent in a project cannot
exceed 48 months.

Problem 3.10 (*) Define the pretests associated with integrity constraints covered
in Examples 3.11–3.14.

Problem 3.11 Assume the following vertical fragmentation of relations EMP, ASG,
and PROJ:

Site 1 Site 2 Site 3 Site 4

EMP1 EMP2

PROJ1 PROJ2

ASG1 ASG2

where

EMP1 = �ENO, ENAME(EMP)

EMP2 = �ENO, TITLE(EMP)

PROJ1 = �PNO, PNAME(PROJ)

PROJ2 = �PNO, BUDGET(PROJ)

ASG1 = �ENO, PNO, RESP(ASG)

ASG2 = �ENO, PNO, DUR(ASG)

Where should the pretests obtained in Problem 3.9 be stored?

Problem 3.12 (**) Consider the following set-oriented constraint:

CHECK ON e:EMP, a:ASG
(e.ENO = a.ENO AND (e.TITLE = "Programmer")
IF a.RESP = "Programmer")

Exercises 127

What does it mean? Assuming that EMP and ASG are allocated as in the previous
exercise, define the corresponding pretests and their storage. Apply algorithm
ENFORCE for an update of type INSERT in ASG.

Problem 3.13 (**) Assume a distributed multidatabase system with no global
transaction support. Assume also that there are two sites, each with a (different) EMP
relation and an integrity manager that communicates with the component DBMS.
Suppose that we want to have a global unique key constraint on EMP. Propose
a simple strategy using differential relations to check this constraint. Discuss the
possible actions when a constraint is violated.

	3 Distributed Data Control
	3.1 View Management
	3.1.1 Views in Centralized DBMSs
	3.1.2 Views in Distributed DBMSs
	3.1.3 Maintenance of Materialized Views

	3.2 Access Control
	3.2.1 Discretionary Access Control
	3.2.2 Mandatory Access Control
	3.2.3 Distributed Access Control

	3.3 Semantic Integrity Control
	3.3.1 Centralized Semantic Integrity Control
	3.3.1.1 Specification of Integrity Constraints
	3.3.1.2 Integrity Enforcement

	3.3.2 Distributed Semantic Integrity Control
	3.3.2.1 Definition of Distributed Integrity Constraints
	3.3.2.2 Enforcement of Distributed Integrity Constraints
	3.3.2.3 Summary of Distributed Integrity Control

	3.4 Conclusion
	3.5 Bibliographic Notes
	Exercises

