
Chapter 2
Distributed and Parallel Database Design

A typical database design is a process which starts from a set of requirements
and results in the definition of a schema that defines the set of relations. The
distribution design starts from this global conceptual schema (GCS) and follows two
tasks: partitioning (fragmentation) and allocation. Some techniques combine these
two tasks in one algorithm, while others implement them in two separate tasks as
depicted in Fig. 2.1. The process typically makes use of some auxiliary information
that is depicted in the figure although some of this information is optional (hence
the dashed lines in the figure).

The main reasons and objectives for fragmentation in distributed versus parallel
DBMSs are slightly different. In the case of the former, the main reason is data
locality. To the extent possible, we would like queries to access data at a single
site in order to avoid costly remote data access. A second major reason is that frag-
mentation enables a number of queries to execute concurrently (through interquery
parallelism). The fragmentation of relations also results in the parallel execution
of a single query by dividing it into a set of subqueries that operate on fragments,
which is referred to as intraquery parallelism. Therefore, in distributed DBMSs,
fragmentation can potentially reduce costly remote data access and increase inter
and intraquery parallelism.

In parallel DBMSs, data localization is not that much of a concern since the
communication cost among nodes is much less than in geo-distributed DBMSs.
What is much more of a concern is load balancing as we want each node in the
system to be doing more or less the same amount of work. Otherwise, there is the
danger of the entire system thrashing since one or a few nodes end up doing a
majority of the work, while many nodes remain idle. This also increases the latency
of queries and transactions since they have to wait for these overloaded nodes to
finish. Inter and intraquery parallelism are both important as we discuss in Chap. 8,

The original version of this chapter was revised. The correction to this chapter is available at https://
doi.org/10.1007/978-3-030-26253-2_13

© Springer Nature Switzerland AG 2020
M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,
https://doi.org/10.1007/978-3-030-26253-2_2

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26253-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-26253-2_13
https://doi.org/10.1007/978-3-030-26253-2_13
https://doi.org/10.1007/978-3-030-26253-2_2

34 2 Distributed and Parallel Database Design

GCS

Distribution
Design

Auxiliary
Information

Set of LCSs

Allocation

LCS2LCS1 LCSn

Physical
Design

Physical
Design

Physical
Design

Physical
Schema 1

Physical
Schema 2

Physical
Schema n

...

...

Fig. 2.1 Distribution design process

although some of the modern big data systems (Chap. 10) pay more attention to
interquery parallelism.

Fragmentation is important for system performance, but it also raises difficulties
in distributed DBMSs. It is not always possible to entirely localize queries and
transactions to only access data at one site—these are called distributed queries and
distributed transactions. Processing them incurs a performance penalty due to, for
example, the need to perform distributed joins and the cost of distributed transaction
commitment (see Chap. 5). One way to overcome this penalty for read-only queries
is to replicate the data in multiple sites (see Chap. 6), but that further exacerbates the
overhead of distributed transactions. A second problem is related to semantic data
control, specifically to integrity checking. As a result of fragmentation, attributes
participating in a constraint (see Chap. 3) may be decomposed into different
fragments that are allocated to different sites. In this case, integrity checking itself
involves distributed execution, which is costly. We consider the issue of distributed
data control in the next chapter. Thus, the challenge is to partition1 and allocate

1A minor point related to terminology is the use of terms “fragmentation” and “partitioning”: in
distributed DBMSs, the term fragmentation is more commonly used, while in parallel DBMSs, data
partitioning is preferred. We do not prefer one over the other and will use them interchangeably in
this chapter and in this book.

2.1 Data Fragmentation 35

ENO ENAME TITLE
E1 J. Doe Elect. Eng.
E2 M. Smith Syst. Anal.
E3 A. Lee Mech. Eng.
E4 J. Miller Programmer
E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.
E7 R. Davis Mech. Eng.
E8 J. Jones Syst. Anal.

EMP
ENO PNO RESP DUR
E1 P1 Manager 12
E2 P1 Analyst 24
E2 P2 Analyst 6
E3 P3 Consultant 10
E3 P4 Engineer 48
E4 P2 Programmer 18
E5 P2 Manager 24
E6 P4 Manager 48
E7 P3 Engineer 36
E8 P3 Manager 40

ASG

PNO PNAME BUDGET LOC
P1 Instrumentation 150000 Montreal
P2 Database Develop. 135000 New York
P3 CAD/CAM 250000 New York
P4 Maintenance 310000 Paris

PROJ
TITLE SAL
Elect. Eng. 40000
Syst. Anal. 34000
Mech. Eng. 27000
Programmer 24000

PAY

Fig. 2.2 Example database

the data in such a way that most user queries and transactions are local to one site,
minimizing distributed queries and transactions.

Our discussion in this chapter will follow the methodology of Fig. 2.1: we will
first discuss fragmentation of a global database (Sect. 2.1), and then discuss how
to allocate these fragments across the sites of a distributed database (Sect. 2.2). In
this methodology, the unit of distribution/allocation is a fragment. There are also
approaches that combine the fragmentation and allocation steps and we discuss
these in Sect. 2.3. Finally we discuss techniques that are adaptive to changes in
the database and the user workload in Sect. 2.4.

In this chapter, and throughout the book, we use the engineering database
introduced in the previous chapter. Figure 2.2 depicts an instance of this database.

2.1 Data Fragmentation

Relational tables can be partitioned either horizontally or vertically. The basis
of horizontal fragmentation is the select operator where the selection predicates
determine the fragmentation, while vertical fragmentation is performed by means
of the project operator. The fragmentation may, of course, be nested. If the nestings
are of different types, one gets hybrid fragmentation.

Example 2.1 Figure 2.3 shows the PROJ relation of Fig. 2.2 divided horizontally
into two fragments: PROJ1 contains information about projects whose budgets are
less than $200,000, whereas PROJ2 stores information about projects with larger
budgets. �

36 2 Distributed and Parallel Database Design

PNO PNAME BUDGET LOC
P1 Instrumentation 150000 Montreal
P2 Database Develop. 135000 New York

PROJ1

PNO PNAME BUDGET LOC
P3 CAD/CAM 255000 New York
P4 Maintenance 310000 Paris

PROJ2

Fig. 2.3 Example of horizontal partitioning

PNO BUDGET
P1 150000
P2 135000
P3 250000
P4 310000

PROJ1
PNO PNAME LOC
P1 Instrumentation Montreal
P2 Database Develop. New York
P3 CAD/CAM New York
P4 Maintenance Paris

PROJ2

Fig. 2.4 Example of vertical partitioning

Example 2.2 Figure 2.4 shows the PROJ relation of Fig. 2.2 partitioned vertically
into two fragments: PROJ1 and PROJ2. PROJ1 contains only the information
about project budgets, whereas PROJ2 contains project names and locations. It is
important to notice that the primary key to the relation (PNO) is included in both
fragments. �

Horizontal fragmentation is more prevalent in most systems, in particular in
parallel DBMSs (where the literature prefers the term sharding). The reason for
the prevalence of horizontal fragmentation is the intraquery parallelism2 that most
recent big data platforms advocate. However, vertical fragmentation has been
successfully used in column-store parallel DBMSs, such as MonetDB and Vertica,
for analytical applications, which typically require fast access to a few attributes.

The systematic fragmentation techniques that we discuss in this chapter ensure
that the database does not undergo semantic change during fragmentation, such as
losing data as a consequence of fragmentation. Therefore, it is necessary to be able
to argue about the completeness and reconstructability. In the case of horizontal
fragmentation, disjointness of fragments may also be a desirable property (unless
we explicitly wish to replicate individual tuples as we will discuss later).

1. Completeness. If a relation instance R is decomposed into fragments FR =
{R1,R2, . . . ,Rn}, each data item that is in R can also be found in one or more of
Ri’s. This property, which is identical to the lossless decomposition property of

2In this chapter, we use the terms “query” and “transaction” interchangeably as they both refer to
the system workload that is one of the main inputs to distribution design. As highlighted in Chap. 1
and as will be discussed in length in Chap. 5, transactions provide additional guarantees, and
therefore their overhead is higher and we will incorporate this into our discussion where needed.

2.1 Data Fragmentation 37

normalization (Appendix A), is also important in fragmentation since it ensures
that the data in a global relation is mapped into fragments without any loss. Note
that in the case of horizontal fragmentation, the “item” typically refers to a tuple,
while in the case of vertical fragmentation, it refers to an attribute.

2. Reconstruction. If a relation R is decomposed into fragments FR = {R1,R2, . . . ,

Rn}, it should be possible to define a relational operator � such that

R = �Ri , ∀Ri ∈ FR

The operator � will be different for different forms of fragmentation; it is
important, however, that it can be identified. The reconstructability of the relation
from its fragments ensures that constraints defined on the data in the form of
dependencies are preserved.

3. Disjointness. If a relation R is horizontally decomposed into fragments FR =
{R1, R2, . . . , Rn} and data item di is in Rj , it is not in any other fragment
Rk (k �= j). This criterion ensures that the horizontal fragments are disjoint.
If relation R is vertically decomposed, its primary key attributes are typically
repeated in all its fragments (for reconstruction). Therefore, in case of vertical
partitioning, disjointness is defined only on the nonprimary key attributes of a
relation.

2.1.1 Horizontal Fragmentation

As we explained earlier, horizontal fragmentation partitions a relation along its
tuples. Thus, each fragment has a subset of the tuples of the relation. There are
two versions of horizontal partitioning: primary and derived. Primary horizontal
fragmentation of a relation is performed using predicates that are defined on that
relation. Derived horizontal fragmentation, on the other hand, is the partitioning of
a relation that results from predicates being defined on another relation.

Later in this section, we consider an algorithm for performing both of these
fragmentations. However, we first investigate the information needed to carry out
horizontal fragmentation activity.

2.1.1.1 Auxiliary Information Requirements

The database information that is required concerns the global conceptual schema,
primarily on how relations are connected to one another, especially with joins. One
way of capturing this information is to explicitly model primary key–foreign key
join relationships in a join graph. In this graph, each relation Ri is represented as a
vertex and a directed edge Lk exists from Ri to Rj if there is a primary key–foreign
key equijoin from Ri to Rj . Note that Lk also represents a one-to-many relationship.

38 2 Distributed and Parallel Database Design

TITLE, SAL

PAY

ENO, ENAME, TITLE

EMP
L1

PNO, PNAME, BUDGET, LOC

PROJ

ENO, PNO, RESP, DUR

ASG

L2 L3

Fig. 2.5 Join graph representing relationships among relations

Example 2.3 Figure 2.5 shows the edges among the database relations given in
Fig. 2.2. Note that the direction of the edge shows a one-to-many relationship. For
example, for each title there are multiple employees with that title; thus, there is an
edge between the PAY and EMP relations. Along the same lines, the many-to-many
relationship between the EMP and PROJ relations is expressed with two edges to
the ASG relation. �

The relation at the tail of an edge is called the source of the edge and the relation
at the head is called the target. Let us define two functions: source and target, both
of which provide mappings from the set of edges to the set of relations. Considering
L1 of Fig. 2.5, source(L1) = PAY and target (L1) = EMP.

Additionally, the cardinality of each relation R denoted by card(R) is useful in
horizontal fragmentation.

These approaches also make use of the workload information, i.e., the queries
that are run on the database. Of particular importance are the predicates used in
user queries. In many cases, it may not be possible to analyze the full workload,
so the designer would normally focus on the important queries. There is a well-
known “80/20” rule-of-thumb in computer science that applies in this case as well:
the most common 20% of user queries account for 80% of the total data accesses,
so focusing on that 20% is usually sufficient to get a fragmentation that improves
most distributed database accesses.

At this point, we are interested in determining simple predicates. Given a relation
R(A1, A2, . . . , An), where Ai is an attribute defined over domain Di , a simple
predicate pj defined on R has the form

pj : Ai θ V alue

where θ ∈ {=, <, �=, ≤, >, ≥} and Value is chosen from the domain of
Ai (V alue ∈ Di). We use Pri to denote the set of all simple predicates defined
on a relation Ri . The members of Pri are denoted by pij .

2.1 Data Fragmentation 39

Example 2.4 Given the relation instance PROJ of Fig. 2.2,

PNAME = “Maintenance” and BUDGET ≤ 200000

is a simple predicate. �
User queries often include more complicated predicates, which are Boolean com-

binations of simple predicates. One such combination, called a minterm predicate,
is the conjunction of simple predicates. Since it is always possible to transform a
Boolean expression into conjunctive normal form, the use of minterm predicates in
the design algorithms does not cause any loss of generality.

Given a set Pri = {pi1, pi2, . . . , pim} of simple predicates for relation Ri , the
set of minterm predicates Mi = {mi1, mi2, . . . , miz} is defined as

Mi = {mij =
∧

pik∈Pri

p∗
ik}, 1 ≤ k ≤ m, 1 ≤ j ≤ z

where p∗
ik = pik or p∗

ik = ¬pik . So each simple predicate can occur in a minterm
predicate in either its natural form or its negated form.

Negation of a predicate is straightforward for equality predicates of the
form Attribute = V alue. For inequality predicates, the negation should be
treated as the complement. For example, the negation of the simple predicate
Attribute ≤ V alue is Attribute > V alue. There are theoretical problems of
finding the complement in infinite sets, and also the practical problem that the
complement may be difficult to define. For example, if two simple predicates
are defined of the form Lower_bound ≤ Attribute_1, and Attribute_1 ≤
Upper_bound, their complements are ¬(Lower_bound ≤ Attribute_1) and
¬(Attribute_1 ≤ Upper_bound). However, the original two simple predicates
can be written as Lower_bound ≤ Attribute_1 ≤ Upper_bound with a
complement ¬(Lower_bound ≤ Attribute_1 ≤ Upper_bound) that may not be
easy to define. Therefore, we limit ourselves to simple predicates.

Example 2.5 Consider relation PAY of Fig. 2.2. The following are some of the
possible simple predicates that can be defined on PAY.

p1 : TITLE = “Elect. Eng.”

p2 : TITLE = “Syst. Anal.”

p3 : TITLE = “Mech. Eng.”

p4 : TITLE = “Programmer”

p5 : SAL ≤ 30000

The following are some of the minterm predicates that can be defined based on
these simple predicates.

40 2 Distributed and Parallel Database Design

m1 : TITLE = “Elect. Eng.” ∧ SAL ≤ 30000

m2 : TITLE = “Elect. Eng.” ∧ SAL > 30000

m3 : ¬(TITLE = “Elect. Eng.”) ∧ SAL ≤ 30000

m4 : ¬(TITLE = “Elect. Eng.”) ∧ SAL > 30000

m5 : TITLE = “Programmer” ∧ SAL ≤ 30000

m6 : TITLE = “Programmer” ∧ SAL > 30000

�
These are only a representative sample, not the entire set of minterm predicates.

Furthermore, some of the minterms may be meaningless given the semantics of
relation PAY, in which case they are removed from the set. Finally, note that
these are simplified versions of the minterms. The minterm definition requires each
predicate to be in a minterm in either its natural or its negated form. Thus, m1, for
example, should be written as

m1 : TITLE = “Elect. Eng.” ∧ TITLE �= “Syst. Anal.” ∧ TITLE �= “Mech. Eng.”

∧ TITLE �= “Programmer” ∧ SAL ≤ 30000

This is clearly not necessary, and we use the simplified form.
We also need quantitative information about the workload:

1. Minterm selectivity: number of tuples of the relation that would satisfy a given
minterm predicate. For example, the selectivity of m2 of Example 2.5 is 0.25
since one of the four tuples in PAY satisfies m2. We denote the selectivity of a
minterm mi as sel(mi).

2. Access frequency: frequency with which user applications access data. If Q =
{q1, q2, . . . , qq} is a set of user queries, acc(qi) indicates the access frequency
of query qi in a given period.

Note that minterm access frequencies can be determined from the query frequen-
cies. We refer to the access frequency of a minterm mi as acc(mi).

2.1.1.2 Primary Horizontal Fragmentation

Primary horizontal fragmentation applies to the relations that have no incoming
edges in the join graph and performed using the predicates that are defined on that
relation. In our examples, relations PAY and PROJ are subject to primary horizontal
fragmentation, and EMP and ASG are subject to derived horizontal fragmentation.
In this section, we focus on primary horizontal fragmentation and devote the next
section to derived horizontal fragmentation.

A primary horizontal fragmentation is defined by a selection operation on the
source relations of a database schema. Therefore, given relation R its horizontal

2.1 Data Fragmentation 41

fragments are given by

Ri = σFi
(R), 1 ≤ i ≤ w

where Fi is the selection formula used to obtain fragment Ri (also called the
fragmentation predicate). Note that if Fi is in conjunctive normal form, it is a
minterm predicate (mi). The algorithm requires that Fi be a minterm predicate.

Example 2.6 The decomposition of relation PROJ into horizontal fragments
PROJ1 and PROJ2 in Example 2.1 is defined as follows3:

PROJ1 = σBUDGET≤200000(PROJ)

PROJ2 = σBUDGET>200000(PROJ)

�
Example 2.6 demonstrates one of the problems of horizontal partitioning. If the
domain of the attributes participating in the selection formulas is continuous and
infinite, as in Example 2.6, it is quite difficult to define the set of formulas F =
{F1, F2, . . . , Fn} that would fragment the relation properly. One possible solution
is to define ranges as we have done in Example 2.6. However, there is always the
problem of handling the two endpoints. For example, if a new tuple with a BUDGET
value of, say, $600,000 were to be inserted into PROJ, one would have to review
the fragmentation to decide if the new tuple is to go into PROJ2 or if the fragments
need to be revised and a new fragment needs to be defined as

PROJ2 = σ200000<BUDGET∧BUDGET≤400000(PROJ)

PROJ3 = σBUDGET>400000(PROJ)

Example 2.7 Consider relation PROJ of Fig. 2.2. We can define the following
horizontal fragments based on the project location. The resulting fragments are
shown in Fig. 2.6.

PROJ1 = σLOC=“Montreal”(PROJ)

PROJ2 = σLOC=“New York”(PROJ)

PROJ3 = σLOC=“Paris”(PROJ)

�
Now we can define a horizontal fragment more carefully. A horizontal fragment

Ri of relation R consists of all the tuples of R that satisfy a minterm predicate mi .

3We assume that the nonnegativity of the BUDGET values is a feature of the relation that is enforced
by an integrity constraint. Otherwise, a simple predicate of the form 0 ≤ BUDGET also needs to be
included in Pr . We assume this to be true in all our examples and discussions in this chapter.

42 2 Distributed and Parallel Database Design

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

PROJ1

PNO PNAME BUDGET LOC

P2 Database Develop. 135000 New York
P3 CAD/CAM 255000 New York
P4 Maintenance 310000 Paris

PROJ2

PNO PNAME BUDGET LOC

P4 Maintenance 310000 Paris

PROJ3

Fig. 2.6 Primary horizontal fragmentation of relation PROJ

Hence, given a set of minterm predicates M , there are as many horizontal fragments
of relation R as there are minterm predicates. This set of horizontal fragments is also
commonly referred to as the set of minterm fragments.

We want the set of simple predicates that form the minterm predicates to be
complete and minimal. A set of simple predicates Pr is said to be complete if and
only if there is an equal probability of access by every application to any tuple
belonging to any minterm fragment that is defined according to Pr .4

Example 2.8 Consider the fragmentation of relation PROJ given in Example 2.7.
If the only query that accesses PROJ wants to access the tuples according to the
location, the set is complete since each tuple of each fragment PROJi has the same
probability of being accessed. If, however, there is a second query that accesses only
those project tuples where the budget is less than or equal to $200,000, then Pr is not
complete. Some of the tuples within each PROJi have a higher probability of being
accessed due to this second application. To make the set of predicates complete, we
need to add (BUDGET ≤ 200000,BUDGET > 200000) to Pr:

Pr = {LOC = “Montreal”,LOC = “New York”,LOC = “Paris”,

BUDGET ≤ 200000,BUDGET > 200000}

�
Completeness is desirable because fragments obtained according to a complete set
of predicates are logically uniform, since they all satisfy the minterm predicate.
They are also statistically homogeneous in the way applications access them. These

4Clearly the definition of completeness of a set of simple predicates is different from the
completeness rule of fragmentation we discussed earlier.

2.1 Data Fragmentation 43

characteristics ensure that the resulting fragmentation results in a balanced load
(with respect to the given workload) across all the fragments.

Minimality states that if a predicate influences how fragmentation is performed
(i.e., causes a fragment f to be further fragmented into, say, fi and fj), there
should be at least one application that accesses fi and fj differently. In other words,
the simple predicate should be relevant in determining a fragmentation. If all the
predicates of a set Pr are relevant, Pr is minimal.

A formal definition of relevance can be given as follows. Let mi and mj be two
minterm predicates that are identical in their definition, except that mi contains the
simple predicate pi in its natural form, while mj contains ¬pi . Also, let fi and fj

be two fragments defined according to mi and mj , respectively. Then pi is relevant
if and only if

acc(mi)

card(fi)
�= acc(mj)

card(fj)

Example 2.9 The set Pr defined in Example 2.8 is complete and minimal. If,
however, we were to add the predicate PNAME = “Instrumentation” to Pr , the
resulting set would not be minimal since the new predicate is not relevant with
respect to Pr—there is no application that would access the resulting fragments
any differently. �

We now present an iterative algorithm that would generate a complete and
minimal set of predicates Pr ′ given a set of simple predicates Pr . This algorithm,
called COM_MIN, is given in Algorithm 2.1 where we use the following notation:

Rule 1: each fragment is accessed differently by at least one application.

fi of P r ′: fragment fi defined according to a minterm predicate defined over the
predicates of Pr ′.

COM_MIN begins by finding a predicate that is relevant and that partitions the
input relation. The repeat-until loop iteratively adds predicates to this set, ensuring
minimality at each step. Therefore, at the end the set Pr ′ is both minimal and
complete.

The second step in the primary horizontal design process is to derive the set of
minterm predicates that can be defined on the predicates in set Pr ′. These minterm
predicates determine the fragments that are used as candidates in the allocation step.
Determination of individual minterm predicates is trivial; the difficulty is that the
set of minterm predicates may be quite large (in fact, exponential on the number of
simple predicates). We look at ways of reducing the number of minterm predicates
that need to be considered in fragmentation.

This reduction can be achieved by eliminating some of the minterm fragments
that may be meaningless. This elimination is performed by identifying those
minterms that might be contradictory to a set of implications I . For example, if
Pr ′ = {p1, p2}, where

44 2 Distributed and Parallel Database Design

Algorithm 2.1: COM_MIN
Input: R: relation; Pr: set of simple predicates
Output: Pr ′: set of simple predicates
Declare: F : set of minterm fragments
begin

Pr ′ ← ∅; F ← ∅ {initialize}
find pi ∈ Pr such that pi partitions R according to Rule 1
Pr ′ ← Pr ′ ∪ pi

P r ← Pr − pi

F ← F ∪ fi {fi is the minterm fragment according to pi}
repeat

find pj ∈ Pr such that pj partitions some fk of Pr ′ according to Rule 1
Pr ′ ← Pr ′ ∪ pj

P r ← Pr − pj

F ← F ∪ fj

if ∃pk ∈ Pr ′ which is not relevant then
Pr ′ ← Pr ′ − pk

F ← F − fk

end if
until Pr ′ is complete

end

p1 : att = value_1
p2 : att = value_2

and the domain of att is {value_1, value_2}, so I contains two implications:

i1 : (att = value_1) ⇒ ¬(att = value_2)

i2 : ¬(att = value1) ⇒ (att = value_2)

The following four minterm predicates are defined according to Pr ′:

m1 : (att = value_1) ∧ (att = value_2)

m2 : (att = value_1) ∧ ¬(att = value_2)

m3 : ¬(att = value_1) ∧ (att = value_2)

m4 : ¬(att = value_1) ∧ ¬(att = value_2)

In this case the minterm predicates m1 and m4 are contradictory to the implications
I and can therefore be eliminated from M .

The algorithm for primary horizontal fragmentation, called PHORIZONTAL,
is given in Algorithm 2.2. The input is a relation R that is subject to primary
horizontal fragmentation, and Pr , which is the set of simple predicates that have
been determined according to applications defined on relation R.

Example 2.10 We now consider relations PAY and PROJ that are subject to primary
horizontal fragmentation as depicted in Fig. 2.5.

2.1 Data Fragmentation 45

Suppose that there is only one query that accesses PAY, which checks the salary
information and determines a raise accordingly. Assume that employee records are
managed in two places, one handling the records of those with salaries less than or
equal to $30,000, and the other handling the records of those who earn more than
$30,000. Therefore, the query is issued at two sites.

The simple predicates that would be used to partition relation PAY are

p1 : SAL ≤ 30000

p2 : SAL > 30000

thus giving the initial set of simple predicates Pr = {p1, p2}. Applying the
COM_MIN algorithm with i = 1 as initial value results in Pr ′ = {p1}. This
is complete and minimal since p2 would not partition f1 (which is the minterm
fragment formed with respect to p1) according to Rule 1. We can form the following
minterm predicates as members of M:

m1 : SAL < 30000

m2 : ¬(SAL ≤ 30000) = SAL > 30000

Therefore, we define two fragments FPAY = {PAY1,PAY2} according to M

(Fig. 2.7).

Algorithm 2.2: PHORIZONTAL
Input: R: relation; Pr: set of simple predicates
Output: FR: set of horizontal fragments of R
begin

Pr ′ ←COM_MIN(R, P r)
determine the set M of minterm predicates
determine the set I of implications among pi ∈ Pr ′
foreach mi ∈ M do

if mi is contradictory according to I then
M ← M − mi

end if
end foreach
FR = {Ri |Ri = σmi

R},∀mi ∈ M

end

TITLE SAL

Mech. Eng. 27000
Programmer 24000

PAY1

TITLE SAL

Elect. Eng. 40000
Syst. Anal. 34000

PAY2

Fig. 2.7 Horizontal fragmentation of relation PAY

46 2 Distributed and Parallel Database Design

Let us next consider relation PROJ. Assume that there are two queries. The first is
issued at three sites and finds the names and budgets of projects given their location.
In SQL notation, the query is

SELECT PNAME, BUDGET
FROM PROJ
WHERE LOC=Value

For this application, the simple predicates that would be used are the following:

p1 : LOC = “Montreal”

p2 : LOC = “New York”

p3 : LOC = “Paris”

The second query is issued at two sites and has to do with the management of
the projects. Those projects that have a budget of less than or equal to $200,000 are
managed at one site, whereas those with larger budgets are managed at a second
site. Thus, the simple predicates that should be used to fragment according to the
second application are

p4 : BUDGET ≤ 200000

p5 : BUDGET > 200000

Using COM_MIN, we get the complete and minimal set Pr ′ = {p1, p2, p4}.
Actually COM_MIN would add any two of p1, p2, p3 to Pr ′; in this example we
have selected to include p1, p2.

Based on Pr ′, the following six minterm predicates that form M can be defined:

m1 : (LOC = “Montreal”) ∧ (BUDGET ≤ 200000)

m2 : (LOC = “Montreal”) ∧ (BUDGET > 200000)

m3 : (LOC = “New York”) ∧ (BUDGET ≤ 200000)

m4 : (LOC = “New York”) ∧ (BUDGET > 200000)

m5 : (LOC = “Paris”) ∧ (BUDGET ≤ 200000)

m6 : (LOC = “Paris”) ∧ (BUDGET > 200000)

As noted in Example 2.5, these are not the only minterm predicates that can be
generated. It is, for example, possible to specify predicates of the form

p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5

2.1 Data Fragmentation 47

However, the obvious implications (e.g., p1 ⇒ ¬p2 ∧ ¬p3, ¬p5 ⇒ p4) eliminate
these minterm predicates and we are left with m1 to m6.

Looking at the database instance in Fig. 2.2, one may be tempted to claim that
the following implications hold:

i8 : LOC = “Montreal” ⇒ ¬(BUDGET > 200000)

i9 : LOC = “Paris” ⇒ ¬(BUDGET ≤ 200000)

i10 : ¬(LOC = “Montreal”) ⇒ BUDGET ≤ 200000

i11 : ¬(LOC = “Paris”) ⇒ BUDGET > 200000

However, remember that implications should be defined according to the seman-
tics of the database, not according to the current values. There is nothing in the
database semantics that suggest that the implications i8–i11 hold. Some of the
fragments defined according to M = {m1, . . . , m6} may be empty, but they are,
nevertheless, fragments.

The result of the primary horizontal fragmentation of PROJ is to form six
fragments FPROJ = {PROJ1,PROJ2,PROJ3,PROJ4,PROJ5,PROJ6} of relation
PROJ according to the minterm predicates M (Fig. 2.8). Since fragments PROJ2
and PROJ5 are empty, they are not depicted in Fig. 2.8. �

2.1.1.3 Derived Horizontal Fragmentation

A derived horizontal fragmentation applies to the target relations in the join graph
and is performed based on predicates defined over the source relation of the
join graph edge. In our examples, relations EMP and ASG are subject to derived
horizontal fragmentation. Recall that the edge between the source and the target
relations is defined as an equijoin that can be implemented by means of semijoins.

PNO PNAME BUDGET LOC
P1 Instrumentation 150000 Montreal

PROJ1

PNO PNAME BUDGET LOC
P2 Database Develop. 135000 New York

PROJ3

PNO PNAME BUDGET LOC
P3 CAD/CAM 255000 New York

PROJ4

PNO PNAME BUDGET LOC
P4 Maintenance 310000 Paris

PROJ6

Fig. 2.8 Horizontal fragmentation of relation PROJ

48 2 Distributed and Parallel Database Design

This second point is important, since we want to partition a target relation according
to the fragmentation of its source, but we also want the resulting fragment to be
defined only on the attributes of the target relation.

Accordingly, given an edge L where source(L) = S and target (L) = R, the
derived horizontal fragments of R are defined as

Ri = R� Si , 1 ≤ i ≤ w

where w is the maximum number of fragments that will be defined on R and Si =
σFi

(S), where Fi is the formula according to which the primary horizontal fragment
Si is defined.

Example 2.11 Consider edge L1 in Fig. 2.5, where source(L1) = PAY and
target (L1) = EMP. Then, we can group engineers into two groups according to
their salary: those making less than or equal to $30,000, and those making more
than $30,000. The two fragments EMP1 and EMP2 are defined as follows:

EMP1 = EMP� PAY1

EMP2 = EMP� PAY2

where

PAY1 = σSAL≤30000(PAY)

PAY2 = σSAL>30000(PAY)

The result of this fragmentation is depicted in Fig. 2.9. �
Derived horizontal fragmentation applies to the target relations in the join graph

and are performed based on predicates defined over the source relation of the
join graph edge. In our examples, relations EMP and ASG are subject to derived
horizontal fragmentation. To carry out a derived horizontal fragmentation, three
inputs are needed: the set of partitions of the source relation (e.g., PAY1 and PAY2
in Example 2.11), the target relation, and the set of semijoin predicates between

ENO ENAME TITLE
E3 A. Lee Mech. Eng.
E4 J. Miller Programmer
E7 R. Davis Mech. Eng.

EMP1
ENO ENAME TITLE
E1 J. Doe Elect. Eng.
E2 M. Smith Syst. Anal.
E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.
E8 J. Jones Syst. Anal.

EMP2

Fig. 2.9 Derived horizontal fragmentation of relation EMP

2.1 Data Fragmentation 49

the source and the target (e.g., EMP.TITLE = PAY.TITLE in Example 2.11). The
fragmentation algorithm, then, is quite trivial, so we will not present it in any detail.

There is one potential complication that deserves some attention. In a database
schema, it is common that there are multiple edges into a relation R (e.g., in Fig. 2.5,
ASG has two incoming edges). In this case, there is more than one possible derived
horizontal fragmentation of RṪhe choice of candidate fragmentation is based on two
criteria:

1. The fragmentation with better join characteristics;
2. The fragmentation used in more queries.

Let us discuss the second criterion first. This is quite straightforward if we
take into consideration the frequency that the data is accessed by the workload.
If possible, one should try to facilitate the accesses of the “heavy” users so that their
total impact on system performance is minimized.

Applying the first criterion, however, is not that straightforward. Consider, for
example, the fragmentation we discussed in Example 2.1. The effect (and the
objective) of this fragmentation is that the join of the EMP and PAY relations
to answer the query is assisted (1) by performing it on smaller relations (i.e.,
fragments), and (2) by potentially performing joins in parallel.

The first point is obvious. The second point deals with intraquery parallelism
of join queries, i.e., executing each join query in parallel, which is possible under
certain circumstances. Consider, for example, the edges between the fragments (i.e.,
the join graph) of EMP and PAY derived in Example 2.9. We have PAY1 → EMP1
and PAY2 → EMP2; there is only one edge coming in or going out of a fragment, so
this is a simple join graph. The advantage of a design where the join relationship
between fragments is simple is that the target and source of an edge can be
allocated to one site and the joins between different pairs of fragments can proceed
independently and in parallel.

Unfortunately, obtaining simple join graphs is not always possible. In that case,
the next desirable alternative is to have a design that results in a partitioned join
graph. A partitioned graph consists of two or more subgraphs with no edges between
them. Fragments so obtained may not be distributed for parallel execution as easily
as those obtained via simple join graphs, but the allocation is still possible.

Example 2.12 Let us continue with the distribution design of the database we
started in Example 2.10. We already decided on the fragmentation of relation EMP
according to the fragmentation of PAY (Example 2.11). Let us now consider ASG.
Assume that there are the following two queries:

1. The first query finds the names of engineers who work at certain places. It runs
on all three sites and accesses the information about the engineers who work on
local projects with higher probability than those of projects at other locations.

2. At each administrative site where employee records are managed, users would
like to access the responsibilities on the projects that these employees work on
and learn how long they will work on those projects.

50 2 Distributed and Parallel Database Design

The first query results in a fragmentation of ASG according to the (nonempty)
fragments PROJ1, PROJ3, PROJ4, and PROJ6 of PROJ obtained in Example 2.10:

PROJ1 : σLOC=“Montreal”∧BUDGET≤200000(PROJ)

PROJ3 : σLOC=“New York”∧BUDGET≤200000(PROJ)

PROJ4 : σLOC=“New York”∧BUDGET>200000(PROJ)

PROJ6 : σLOC=“Paris”∧BUDGET>200000(PROJ)

Therefore, the derived fragmentation of ASG according to {PROJ1, PROJ3, PROJ4,
PROJ6} is defined as follows:

ASG1 = ASG� PROJ1

ASG2 = ASG� PROJ3

ASG3 = ASG� PROJ4

ASG4 = ASG� PROJ6

These fragment instances are shown in Fig. 2.10.
The second query can be specified in SQL as

SELECT RESP, DUR
FROM ASG NATURAL JOIN EMPi

where i = 1 or i = 2, depending on the site where the query is issued. The derived
fragmentation of ASG according to the fragmentation of EMP is defined below and
depicted in Fig. 2.11.

ASG1 = ASG� EMP1

ASG2 = ASG� EMP12

ENO PNO RESP DUR
E1 P1 Manager 12
E2 P1 Analyst 24

ASG1

ENO PNO RESP DUR
E3 P3 Consultant 10
E7 P3 Engineer 36
E8 P3 Manager 40

ASG3

ENO PNO RESP DUR
E2 P2 Analyst 6
E4 P2 Programmer 18
E5 P2 Manager 24

ASG2

ENO PNO RESP DUR
E3 P4 Engineer 48
E6 P4 Manager 48

ASG4

Fig. 2.10 Derived fragmentation of ASG with respect to PROJ

2.1 Data Fragmentation 51

ENO PNO RESP DUR
E3 P3 Consultant 10
E3 P4 Engineer 48
E4 P2 Programmer 18
E7 P3 Engineer 36

ASG1
ENO PNO RESP DUR
E1 P1 Manager 12
E2 P1 Analyst 24
E2 P2 Analyst 6
E5 P2 Manager 24
E6 P4 Manager 48
E8 P3 Manager 40

ASG2

Fig. 2.11 Derived fragmentation of ASG with respect to EMP

�
This example highlights two observations:

1. Derived fragmentation may follow a chain where one relation is fragmented as a
result of another one’s design and it, in turn, causes the fragmentation of another
relation (e.g., the chain PAY → EMP → ASG).

2. Typically, there will be more than one candidate fragmentation for a relation
(e.g., relation ASG). The final choice of the fragmentation scheme is a decision
problem that may be addressed during allocation.

2.1.1.4 Checking for Correctness

We now check the fragmentation algorithms discussed so far with respect to the
three correctness criteria we discussed earlier.

Completeness

The completeness of a primary horizontal fragmentation is based on the selection
predicates used. As long as the selection predicates are complete, the resulting
fragmentation is guaranteed to be complete as well. Since the basis of the fragmen-
tation algorithm is a set of complete and minimal predicates (Pr ′), completeness is
guaranteed if Pr ′ is properly determined.

The completeness of a derived horizontal fragmentation is somewhat more
difficult to define since the predicate determining the fragmentation involves two
relations.

Let R be the target relation of an edge whose source is relation S, where R and S
are fragmented as FR = {R1,R2, . . . ,Rw} and FS = {S1,S2, . . . ,Sw}, respectively.
Let A be the join attribute between R and S. Then for each tuple t of Ri , there should
be a tuple t ′ of Si such that t[A] = t ′[A]. This is the well-known referential integrity
rule, which ensures that the tuples of any fragment of the target relation are also in
the source relation. For example, there should be no ASG tuple which has a project
number that is not also contained in PROJ. Similarly, there should be no EMP tuples
with TITLE values where the same TITLE value does not appear in PAY as well.

52 2 Distributed and Parallel Database Design

Reconstruction

Reconstruction of a global relation from its fragments is performed by the union
operator in both the primary and the derived horizontal fragmentation. Thus, for a
relation R with fragmentation FR = {R1,R2, . . . ,Rw}, R = ⋃

Ri , ∀Ri ∈ FR.

Disjointness

It is easier to establish disjointness of fragmentation for primary than for derived
horizontal fragmentation. In the former case, disjointness is guaranteed as long as
the minterm predicates determining the fragmentation are mutually exclusive.

In derived fragmentation, however, there is a semijoin involved that adds
considerable complexity. Disjointness can be guaranteed if the join graph is simple.
Otherwise, it is necessary to investigate actual tuple values. In general, we do not
want a tuple of a target relation to join with two or more tuples of the source relation
when these tuples are in different fragments of the source. This may not be very
easy to establish, and illustrates why derived fragmentation schemes that generate a
simple join graph are always desirable.

Example 2.13 In fragmenting relation PAY (Example 2.10), the minterm predicates
M = {m1,m2} were

m1 : SAL ≤ 30000

m2 : SAL > 30000

Since m1 and m2 are mutually exclusive, the fragmentation of PAY is disjoint.
For relation EMP, however, we require that

1. Each engineer has a single title.
2. Each title has a single salary value associated with it.

Since these two rules follow from the semantics of the database, the fragmenta-
tion of EMP with respect to PAY is also disjoint. �

2.1.2 Vertical Fragmentation

Recall that a vertical fragmentation of a relation R produces fragments R1,R2,
. . . ,Rr , each of which contains a subset of R’s attributes as well as the primary key
of RȦs in the case of horizontal fragmentation, the objective is to partition a relation
into a set of smaller relations so that many of the user applications will run on only
one fragment. Primary key is included in each fragment to enable reconstruction, as
we discuss later. This is also beneficial for integrity enforcement since the primary

2.1 Data Fragmentation 53

key functionally determines all the relation attributes; having it in each fragment
eliminates distributed computation to enforce primary key constraint.

Vertical partitioning is inherently more complicated than horizontal partitioning,
mainly due to the total number of possible alternatives. For example, in horizontal
partitioning, if the total number of simple predicates in Pr is n, there are 2n

possible minterm predicates. In addition, we know that some of these will contradict
the existing implications, further reducing the candidate fragments that need to
be considered. In the case of vertical partitioning, however, if a relation has m

nonprimary key attributes, the number of possible fragments is equal to B(m),
which is the mth Bell number. For large values of m,B(m) ≈ mm; for example, for
m = 10, B(m) ≈ 115, 000, for m = 15, B(m) ≈ 109, for m = 30, B(m) = 1023.

These values indicate that it is futile to attempt to obtain optimal solutions to the
vertical partitioning problem; one has to resort to heuristics. Two types of heuristic
approaches exist for the vertical fragmentation of global relations5:

1. Grouping: starts by assigning each attribute to one fragment, and at each step,
joins some of the fragments until some criteria are satisfied.

2. Splitting: starts with a relation and decides on beneficial partitionings based on
the access behavior of applications to the attributes.

In what follows we discuss only the splitting technique, since it fits more
naturally within the design methodology we discussed earlier, since the “optimal”
solution is probably closer to the full relation than to a set of fragments each of
which consists of a single attribute. Furthermore, splitting generates nonoverlapping
fragments, whereas grouping typically results in overlapping fragments. We prefer
nonoverlapping fragments for disjointness. Of course, nonoverlapping refers only
to nonprimary key attributes.

2.1.2.1 Auxiliary Information Requirements

We again require workload information. Since vertical partitioning places in one
fragment those attributes usually accessed together, there is a need for some measure
that would define more precisely the notion of “togetherness.” This measure is the
affinity of attributes, which indicates how closely related the attributes are. It is not
realistic to expect the designer or the users to be able to easily specify these values.
We present one way they can be obtained from more primitive data.

Let Q = {q1, q2, . . . , qq} be the set of user queries that access relation
R(A1,A2, . . . ,An). Then, for each query qi and each attribute Aj , we associate an
attribute usage value, denoted as use(qi,Aj):

5There is also a third, extreme approach in column-oriented DBMS (like MonetDB and Vertica)
where each column is mapped to one fragment. Since we do not cover column-oriented DBMSs in
this book, we do not discuss this approach further.

54 2 Distributed and Parallel Database Design

use(qi,Aj) =
{

1 if attribute Aj is referenced by query qi

0 otherwise

The use(qi, •) vectors for each query are easy to determine.

Example 2.14 Consider relation PROJ of Fig. 2.2. Assume that the following
queries are defined to run on this relation. In each case, we also give the SQL
expression.

q1: Find the budget of a project, given its identification number.

SELECT BUDGET
FROM PROJ
WHERE PNO=Value

q2: Find the names and budgets of all projects.

SELECT PNAME, BUDGET
FROM PROJ

q3: Find the names of projects located at a given city.

SELECT PNAME
FROM PROJ
WHERE LOC=Value

q4: Find the total project budgets for each city.

SELECT SUM(BUDGET)
FROM PROJ
WHERE LOC=Value

According to these four queries, the attribute usage values can be defined in
matrix form (Fig. 2.12), where entry (i, j) denotes use(qi,Aj). �

Attribute usage values are not sufficiently general to form the basis of attribute
splitting and fragmentation, because they do not represent the weight of application
frequencies. The frequency measure can be included in the definition of the attribute
affinity measure aff (Ai ,Aj), which measures the bond between two attributes of a
relation according to how they are accessed by queries.

PNO PNAME BUDGET LOC

q1 0 1 1 0

q2 1 1 1 0

q3 1 0 0 1

q4 0 0 1 0

Fig. 2.12 Example attribute usage matrix

2.1 Data Fragmentation 55

The attribute affinity measure between two attributes Ai and Aj of a relation
R(A1,A2, . . . ,An) with respect to the set of queries Q = {q1, q2, . . . , qq} is defined
as

aff (Ai ,Aj) =
∑

k|use(qk,Ai)=1∧use(qk,Aj)=1

∑

∀Sl

refl(qk)accl(qk)

where refl(qk) is the number of accesses to attributes (Ai ,Aj) for each execution
of application qk at site Sl and accl(qk) is the application access frequency measure
previously defined and modified to include frequencies at different sites.

The result of this computation is an n×n matrix, each element of which is one of
the measures defined above. This matrix is called the attribute affinity matrix (AA).

Example 2.15 Let us continue with the case that we examined in Example 2.14.
For simplicity, let us assume that refl(qk) = 1 for all qk and Sl . If the application
frequencies are

acc1(q1) = 15 acc1(q2) = 5

acc1(q3) = 25 acc1(q4) = 3

acc2(q1) = 20 acc2(q2) = 0

acc2(q3) = 25 acc3(q4) = 0

acc3(q1) = 10 acc3(q2) = 0

acc3(q3) = 25 acc2(q4) = 0

then the affinity measure between attributes PNO and BUDGET can be measured as

aff (PNO,BUDGET) =
1∑

k=1

3∑

l=1

accl(qk) = acc1(q1) + acc2(q1) + acc3(q1) = 45

since the only application that accesses both of the attributes is q1. The complete
attribute affinity matrix is shown in Fig. 2.13. Note that the diagonal values are not
computed since they are meaningless. �

PNO PNAME BUDGET LOC

PNO 0 45 0

PNAME 0 5 75

BUDGET 45 5 3

LOC 0 75 3

Fig. 2.13 Attribute affinity matrix

56 2 Distributed and Parallel Database Design

The attribute affinity matrix will be used in the rest of this chapter to guide
the fragmentation effort. The process first clusters together the attributes with high
affinity for each other, and then splits the relation accordingly.

2.1.2.2 Clustering Algorithm

The fundamental task in designing a vertical fragmentation algorithm is to find some
means of grouping the attributes of a relation based on the attribute affinity values
in AA. We will discuss the bond energy algorithm (BEA) that has been proposed
for this purpose. Other clustering algorithms can also be used.

BEA takes as input the attribute affinity matrix for relation R(A1, . . . ,An),
permutes its rows and columns, and generates a clustered affinity matrix (CA).
The permutation is done in such a way as to maximize the following global affinity
measure (AM):

AM =
n∑

i=1

n∑

j=1

aff (Ai ,Aj)[aff (Ai ,Aj−1) + aff (Ai ,Aj+1)

+ aff (Ai−1,Aj) + aff (Ai+1,Aj)]

where

aff (A0,Aj) = aff (Ai ,A0) = aff (An+1,Aj) = aff (Ai ,An+1) = 0

The last set of conditions takes care of the cases where an attribute is being placed
in CA to the left of the leftmost attribute or to the right of the rightmost attribute
during column permutations, and prior to the topmost row and following the last row
during row permutations. We denote with A0 the attribute to the left of the leftmost
attribute and the row prior to the topmost row, and with An+1 the attribute to the
right of the rightmost attribute or the row following the last row. In these cases, we
set to 0 aff values between the attribute being considered for placement and its left
or right (top or bottom) neighbors, since they do not exist in CA.

The maximization function considers the nearest neighbors only, thereby result-
ing in the grouping of large values with large ones, and small values with small ones.
Also, the attribute affinity matrix (AA) is symmetric, which reduces the objective
function to

AM =
n∑

i=1

n∑

j=1

aff (Ai ,Aj)[aff (Ai ,Aj−1) + aff (Ai ,Aj+1)]

2.1 Data Fragmentation 57

Algorithm 2.3: BEA
Input: AA: attribute affinity matrix
Output: CA: clustered affinity matrix
begin

{initialize; remember that AA is an n × n matrix}
CA(•, 1) ← AA(•, 1)

CA(•, 2) ← AA(•, 2)

index ← 3
while index ≤ n do {choose the “best” location for attribute AAindex}

for i from 1 to index − 1 by 1 do calculate cont (Ai−1,Aindex,Ai)

calculate cont (Aindex−1,Aindex,Aindex+1) {boundary condition}
loc ← placement given by maximum cont value
for j from index to loc by −1 do

CA(•, j) ← CA(•, j − 1) {shuffle the two matrices}
end for
CA(•, loc) ← AA(•, index)

index ← index + 1
end while
order the rows according to the relative ordering of columns

end

The details of BEA are given in Algorithm 2.3. Generation of the clustered
affinity matrix (CA) is done in three steps:

1. Initialization. Place and fix one of the columns of AA arbitrarily into CA.
Column 1 was chosen in the algorithm.

2. Iteration. Pick each of the remaining n − i columns (where i is the number
of columns already placed in CA) and try to place them in the remaining
i + 1 positions in the CA matrix. Choose the placement that makes the greatest
contribution to the global affinity measure described above. Continue this step
until no more columns remain to be placed.

3. Row ordering. Once the column ordering is determined, the placement of the
rows should also be changed so that their relative positions match the relative
positions of the columns.6

For the second step of the algorithm to work, we need to define what is meant
by the contribution of an attribute to the affinity measure. This contribution can
be derived as follows. Recall that the global affinity measure AM was previously
defined as

6From now on, we may refer to elements of the AA and CA matrices as AA(i, j) and CA(i, j),
respectively. The mapping to the affinity measures is AA(i, j) = aff (Ai ,Aj) and CA(i, j) =
aff (attribute placed at column i in CA, attribute placed at column j in CA). Even though AA

and CA matrices are identical except for the ordering of attributes, since the algorithm orders all
the CA columns before it orders the rows, the affinity measure of CA is specified with respect to
columns. Note that the endpoint condition for the calculation of the affinity measure (AM) can be
specified, using this notation, as CA(0, j) = CA(i, 0) = CA(n + 1, j) = CA(i, n + 1) = 0.

58 2 Distributed and Parallel Database Design

AM =
n∑

i=1

n∑

j=1

aff (Ai ,Aj)[aff (Ai ,Aj−1) + aff (Ai ,Aj+1)]

which can be rewritten as

AM =
n∑

i=1

n∑

j=1

[aff (Ai ,Aj)aff (Ai ,Aj−1) + aff (Ai ,Aj)aff (Ai ,Aj+1)]

=
n∑

j=1

[
n∑

i=1

aff (Ai ,Aj)aff (Ai ,Aj−1) +
n∑

i=1

aff (Ai ,Aj)aff (Ai ,Aj+1)

]

Let us define the bond between two attributes Ax and Ay as

bond(Ax,Ay) =
n∑

z=1

aff (Az,Ax)aff (Az,Ay)

Then AM can be written as

AM =
n∑

j=1

[bond(Aj ,Aj−1) + bond(Aj ,Aj+1)]

Now consider the following n attributes:

A1 A2 . . . Ai−1
︸�������������︷︷�������������︸

AM
′

Ai Aj Aj+1 . . . An
︸���������︷︷���������︸

AM1

The global affinity measure for these attributes can be written as

AMold = AM
′ + AM1

+ bond(Ai−1,Ai) + bond(Ai ,Aj) + bond(Aj ,Ai) + bond(Aj ,Aj+1)

=
i∑

l=1

[bond(Al ,Al−1) + bond(Al ,Al+1)]

+
n∑

l=i+2

[bond(Al ,Al−1) + bond(Al ,Al+1)]

+ 2bond(Ai ,Aj)

Now consider placing a new attribute Ak between attributes Ai and Aj in the
clustered affinity matrix. The new global affinity measure can be similarly written as

2.1 Data Fragmentation 59

AMnew = AM
′ + AM1 + bond(Ai ,Ak) + bond(Ak,Ai)

+ bond(Ak,Aj) + bond(Aj ,Ak)

= AM
′ + AM1 + 2bond(Ai ,Ak) + 2bond(Ak,Aj)

Thus, the net contribution to the global affinity measure of placing attribute Ak

between Ai and Aj is

cont (Ai ,Ak,Aj) = AMnew − AMold

= 2bond(Ai ,Ak) + 2bond(Ak,Aj) − 2bond(Ai ,Aj)

Example 2.16 Let us consider the AA matrix given in Fig. 2.13 and study the
contribution of moving attribute LOC between attributes PNO and PNAME, given
by the formula

cont (PNO,LOC,PNAME) = 2bond(PNO,LOC) + 2bond(LOC,PNAME)

− 2bond(PNO,PNAME)

Computing each term, we get

bond(PNO,LOC) = 45 ∗ 0 + 0 ∗ 75 + 45 ∗ 3 + 0 ∗ 78 = 135

bond(LOC,PNAME) = 11865

bond(PNO,PNAME) = 225

Therefore,

cont (PNO,LOC,PNAME) = 2 ∗ 135 + 2 ∗ 11865 − 2 ∗ 225 = 23550

�
The algorithm and our discussion so far have both concentrated on the columns

of the attribute affinity matrix. It is possible to redesign the algorithm to operate on
the rows. Since the AA matrix is symmetric, both of these approaches will generate
the same result.

Note that Algorithm 2.3 places the second column next to the first one during the
initialization step. This obviously works since the bond between the two, however,
is independent of their positions relative to one another.

Computing cont at the endpoints requires care. If an attribute Ai is being
considered for placement to the left of the leftmost attribute, one of the bond
equations to be calculated is between a nonexistent left element and Ak [i.e.,
bond(A0,Ak)]. Thus we need to refer to the conditions imposed on the definition

60 2 Distributed and Parallel Database Design

of the global affinity measure AM , where CA(0, k) = 0. Similar arguments hold
for the placement to the right of the rightmost attribute.

Example 2.17 We consider the clustering of the PROJ relation attributes and use
the attribute affinity matrix AA of Fig. 2.13.

According to the initialization step, we copy columns 1 and 2 of the AA matrix to
the CA matrix (Fig. 2.14a) and start with column 3 (i.e., attribute BUDGET). There
are three alternative places where column 3 can be placed: to the left of column
1, resulting in the ordering (3-1-2), in between columns 1 and 2, giving (1-3-2),
and to the right of 2, resulting in (1-2-3). Note that to compute the contribution
of the last ordering we have to compute cont (PNAME,BUDGET,LOC) rather than
cont (PNO,PNAME,BUDGET). However, note that attribute LOC has not yet been
placed into the CA matrix (Fig. 2.14b), thus requiring special computation as
outlined above. Let us calculate the contribution to the global affinity measure of
each alternative.
Ordering (0-3-1):

cont (A0,BUDGET,PNO) = 2bond(A0,BUDGET) + 2bond(BUDGET,PNO)

− 2bond(A0,PNO)

We know that

bond(A0,PNO) = bond(A0,BUDGET) = 0

bond(BUDGET,PNO) = 45 ∗ 45 + 5 ∗ 0 + 53 ∗ 45 + 3 ∗ 0 = 4410

PNO PNAME⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

PNO 45 0

PNAME 0 80

BUDGET 45 5

LOC 0 75

PNO BUDGET PNAME⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

PNO 45 45 0

PNAME 0 5 80

BUDGET 45 53 5

LOC 0 3 75

PNO BUDGET PNAME LOC⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

PNO 45 45 0 0

PNAME 0 5 80 75

BUDGET 45 53 5 3

LOC 0 3 75 78

PNO BUDGET PNAME LOC⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

PNO 45 45 0 0

BUDGET 45 53 5 3

PNAME 0 5 80 75

LOC 0 3 75 78

(a)

(c)

(b)

(d)

Fig. 2.14 Calculation of the clustered affinity (CA) matrix

2.1 Data Fragmentation 61

Thus

cont (A0,BUDGET,PNO) = 8820

Ordering (1-3-2):

cont (PNO,BUDGET,PNAME)= 2bondPNO,BUDGET) + 2bond(BUDGET,PNAME)

− 2bond(PNO,PNAME)

bond(PNO,BUDGET) = bond(BUDGET,PNO) = 4410

bond(BUDGET,PNAME) = 890

bond(PNO,PNAME) = 225

Thus

cont (PNO,BUDGET,PNAME) = 10150

Ordering (2-3-4):

cont (PNAME,BUDGET,LOC)= 2bond(PNAME,BUDGET) + 2bond(BUDGET,LOC)

− 2bond(PNAME,LOC)

bond(PNAME,BUDGET) = 890

bond(BUDGET,LOC) = 0

bond(PNAME,LOC) = 0

Thus

cont (PNAME,BUDGET,LOC) = 1780

Since the contribution of the ordering (1-3-2) is the largest, we select to place
BUDGET to the right of PNO (Fig. 2.14b). Similar calculations for LOC indicate that
it should be placed to the right of PNAME (Fig. 2.14c).

Finally, the rows are organized in the same order as the columns and the result is
shown in Fig. 2.14d. �

In Fig. 2.14d we see the creation of two clusters: one is in the upper left corner
and contains the smaller affinity values and the other is in the lower right corner
and contains the larger affinity values. This clustering indicates how the attributes
of relation PROJ should be split. However, in general the border for this split may
not be this clear-cut. When the CA matrix is big, usually more than two clusters are
formed and there are more than one candidate partitionings. Thus, there is a need to
approach this problem more systematically.

62 2 Distributed and Parallel Database Design

2.1.2.3 Splitting Algorithm

The objective of splitting is to find sets of attributes that are accessed solely, or for
the most part, by distinct sets of queries. For example, if it is possible to identify
two attributes A1 and A2 that are accessed only by query q1, and attributes A3 and
A4 that are accessed by, say, two queries q2 and q3, it would be quite straightforward
to decide on the fragments. The task lies in finding an algorithmic method of
identifying these groups.

Consider the clustered attribute matrix of Fig. 2.15. If a point along the diagonal
is fixed, two sets of attributes are identified. One set {A1,A2, . . . ,Ai} is at the upper
left-hand corner (denoted T A) and the second set {Ai+1, . . . ,An} is at the lower
right corner (denoted T B) relative to this point.

We now partition the set of queries Q = {q1, q2, . . . , qq} that access only T A,
only BA, or both. These sets are defined as follows:

AQ(qi) = {Aj |use(qi,Aj) = 1}
T Q = {qi |AQ(qi) ⊆ T A}
BQ = {qi |AQ(qi) ⊆ BA}
OQ = Q − {T Q ∪ BQ}

The first of these equations defines the set of attributes accessed by query qi; T Q

and BQ are the sets of queries that only access T A or BA, respectively, and OQ is
the set of queries that access both.

TA

BA

A1 A2 A3 · · · Ai Ai+1 · · · An

A1

A2

A2

...
Ai

Ai+1

...

An

Fig. 2.15 Locating a splitting point

2.1 Data Fragmentation 63

There is an optimization problem here. If there are n attributes of a relation,
there are n − 1 possible positions where the dividing point can be placed along
the diagonal of the clustered attribute matrix for that relation. The best position for
division is one which produces the sets T Q and BQ such that the total accesses
to only one fragment are maximized, while the total accesses to both fragments are
minimized. We therefore define the following cost equations:

CQ =
∑

qi∈Q

∑

∀Sj

refj (qi)accj (qi)

CT Q =
∑

qi∈T Q

∑

∀Sj

refj (qi)accj (qi)

CBQ =
∑

qi∈BQ

∑

∀Sj

refj (qi)accj (qi)

COQ =
∑

qi∈OQ

∑

∀Sj

refj (qi)accj (qi)

Each of the equations above counts the total number of accesses to attributes
by queries in their respective classes. Based on these measures, the optimization
problem is defined as finding the point x (1 ≤ x ≤ n) such that the expression

z = CT Q ∗ CBQ − COQ2

is maximized. The important feature of this expression is that it defines two
fragments such that the values of CT Q and CBQ are as nearly equal as possible.
This enables the balancing of processing loads when the fragments are distributed
to various sites. It is clear that the partitioning algorithm has linear complexity in
terms of the number of attributes of the relation, that is, O(n).

This procedure splits the set of attributes two-way. For larger sets of attributes,
it is quite likely that m-way partitioning may be necessary. Designing an m-way
partitioning is possible but computationally expensive. Along the diagonal of the
CA matrix, it is necessary to try 1, 2, . . . , m − 1 split points, and for each of these,
it is necessary to check which point maximizes z. Thus, the complexity of such
an algorithm is O(2m). Of course, the definition of z has to be modified for those
cases where there are multiple split points. The alternative solution is to recursively
apply the binary partitioning algorithm to each of the fragments obtained during the
previous iteration. One would compute T Q, BQ, and OQ, as well as the associated
access measures for each of the fragments, and partition them further.

Our discussion so far assumed that the split point is unique and single and divides
the CA matrix into an upper left-hand partition and a second partition formed by the
rest of the attributes. The partition, however, may also be formed in the middle of the
matrix. In this case, we need to modify the algorithm slightly. The leftmost column
of the CA matrix is shifted to become the rightmost column and the topmost row is

64 2 Distributed and Parallel Database Design

Algorithm 2.4: SPLIT
Input: CA: clustered affinity matrix; R: relation; ref : attribute usage matrix; acc: access

frequency matrix
Output: F : set of fragments
begin

{determine the z value for the first column}
{the subscripts in the cost equations indicate the split point}
calculate CT Qn−1
calculate CBQn−1
calculate COQn−1

best ← CT Qn−1 ∗ CBQn−1 − (COQn−1)
2

repeat
{determine the best partitioning}
for i from n − 2 to 1 by −1 do

calculate CT Qi

calculate CBQi

calculate COQi

z ← CT Q ∗ CBQi − COQ2
i

if z > best then best ← z {record the split point within shift}
end for
call SHIFT(CA)

until no more SHIFT is possible
reconstruct the matrix according to the shift position
R1 ← �T A(R) ∪ K {K is the set of primary key attributes of R}
R2 ← �BA(R) ∪ K

F ← {R1,R2}
end

shifted to the bottom. The shift operation is followed by checking the n−1 diagonal
positions to find the maximum z. The idea behind shifting is to move the block of
attributes that should form a cluster to the topmost left corner of the matrix, where
it can easily be identified. With the addition of the shift operation, the complexity of
the partitioning algorithm increases by a factor of n and becomes O(n2).

Assuming that a shift procedure, called SHIFT, has already been implemented,
the splitting algorithm is given in Algorithm 2.4. The input of the algorithm is the
clustered affinity matrix CA, the relation R to be fragmented, and the attribute usage
and access frequency matrices. The output is a set of fragments FR = {R1,R2},
where Ri ⊆ {A1,A2 . . . ,An} and R1 ∩ R2 = the key attributes of relation RṄote
that for n-way partitioning, this routine should be either invoked iteratively or
implemented as a recursive procedure.

Example 2.18 When the SPLIT algorithm is applied to the CA matrix obtained for
relation PROJ (Example 2.17), the result is the definition of fragments FPROJ =
{PROJ1,PROJ2}, where

PROJ1 = {PNO,BUDGET}
PROJ2 = {PNO,PNAME,LOC}

2.1 Data Fragmentation 65

Note that in this exercise we performed the fragmentation over the entire set of
attributes rather than only on the nonkey ones. The reason for this is the simplicity
of the example. For that reason, we included PNO, which is the key of PROJ in
PROJ2 as well as in PROJ1. �

2.1.2.4 Checking for Correctness

We follow arguments similar to those of horizontal partitioning to prove that the
SPLIT algorithm yields a correct vertical fragmentation.

Completeness

Completeness is guaranteed by the SPLIT algorithm since each attribute of the
global relation is assigned to one of the fragments. As long as the set of attributes A
over which the relation R is defined consists of A = ⋃

Ri , completeness of vertical
fragmentation is ensured.

Reconstruction

We have already mentioned that the reconstruction of the original global relation
is made possible by the join operation. Thus, for a relation R with vertical
fragmentation FR = {R1,R2, . . . ,Rr } and key attribute(s) K, R =��K Ri ,∀Ri ∈
FR. Therefore, as long as each Ri is complete, the join operation will properly
reconstruct RȦnother important point is that either each Ri should contain the key
attribute(s) of R or it should contain the system assigned tuple IDs (TIDs).

Disjointness

As noted earlier, the primary key attributes are replicated in each fragment.
Excluding these, the SPLIT algorithm finds mutually exclusive clusters of attributes,
leading to disjoint fragments with respect to the attributes.

2.1.3 Hybrid Fragmentation

In some cases a simple horizontal or vertical fragmentation of a database schema
may not be sufficient to satisfy the requirements of user applications. In this
case a vertical fragmentation may be followed by a horizontal one, or vice
versa, producing a tree-structured partitioning (Fig. 2.16). Since the two types of

66 2 Distributed and Parallel Database Design

R

R1

R11

V

R11

V

H

R2

R21

V

R22

V

R23

V

H

Fig. 2.16 Hybrid fragmentation

⋃

R11 R11 R21 R22 R23

Fig. 2.17 Reconstruction of hybrid fragmentation

partitioning strategies are applied one after the other, this alternative is called hybrid
fragmentation. It has also been named mixed fragmentation or nested fragmentation.

A good example for the necessity of hybrid fragmentation is relation PROJ.
In Example 2.10 we partitioned it into six horizontal fragments based on two
applications. In Example 2.18 we partitioned the same relation vertically into two.
What we have, therefore, is a set of horizontal fragments, each of which is further
partitioned into two vertical fragments.

The correctness rules and conditions for hybrid fragmentation follow naturally
from those for vertical and horizontal fragmentations. For example, to reconstruct
the original global relation in case of hybrid fragmentation, one starts at the leaves of
the partitioning tree and moves upward by performing joins and unions (Fig. 2.17).
The fragmentation is complete if the intermediate and leaf fragments are complete.
Similarly, disjointness is guaranteed if intermediate and leaf fragments are disjoint.

2.2 Allocation

Following fragmentation, the next decision problem is to allocate fragments to the
sites of the distributed DBMS. This can be done by either placing each fragment
at a single site or replicating it on a number of sites. The reasons for replication
are reliability and efficiency of read-only queries. If there are multiple copies of

2.2 Allocation 67

a fragment, there is a good chance that some copy of the data will be accessible
somewhere even when system failures occur. Furthermore, read-only queries that
access the same data items can be executed in parallel since copies exist on multiple
sites. On the other hand, the execution of update queries causes trouble since the
system has to ensure that all the copies of the data are updated properly. Hence the
decision regarding replication is a trade-off that depends on the ratio of the read-
only queries to the update queries. This decision affects almost all of the distributed
DBMS algorithms and control functions.

A nonreplicated database (commonly called a partitioned database) contains
fragments that are allocated to sites such that each fragment is placed at one site.
In case of replication, either the database exists in its entirety at each site (fully
replicated database), or fragments are distributed to the sites in such a way that
copies of a fragment may reside in multiple sites (partially replicated database). In
the latter the number of copies of a fragment may be an input to the allocation
algorithm or a decision variable whose value is determined by the algorithm.
Figure 2.18 compares these three replication alternatives with respect to various
distributed DBMS functions. We will discuss replication at length in Chap. 6.

The file allocation problem has long been studied within the context of distributed
computing systems where the unit of allocation is a file. This is commonly referred
as the file allocation problem (FAP) and the formulations are usually quite simple,
reflecting the simplicity of file APIs. Even this simple version has been shown to be
NP-complete, resulting in a search for reasonable heuristics.

FAP formulations are not suitable for distributed database design, due funda-
mentally to the characteristics of DBMSs: fragments are not independent of each
other so they cannot simply be mapped to individual files; the access to data in a
database is more complex than simple access to files; and DBMSs enforce integrity
and transactional properties whose costs need to be considered.

There are no general heuristic models that take as input a set of fragments and
produce a near-optimal allocation subject to the types of constraints discussed here.
The models developed to date make a number of simplifying assumptions and are
applicable to certain specific formulations. Therefore, instead of presenting one or

Full replication Partial replication Partitioning
QUERY
PROCESSING Easy Same difficulty

DIRECTORY
MANAGEMENT

Easy or
nonexistent Same difficulty

CONCURRENCY
CONTROL Moderate Difficult Easy

RELIABILITY Very high High Low

REALITY Possible
application

Realistic Possible
application

Fig. 2.18 Comparison of replication alternatives

68 2 Distributed and Parallel Database Design

more of these allocation algorithms, we present a relatively general model and then
discuss a number of possible heuristics that might be employed to solve it.

2.2.1 Auxiliary Information

We need the quantitative data about the database, the workload, the communication
network, the processing capabilities, and storage limitations of each site on the
network.

To perform horizontal fragmentation, we defined the selectivity of minterms.
We now need to extend that definition to fragments, and define the selectivity of
a fragment Fj with respect to query qi . This is the number of tuples of Fj that need
to be accessed in order to process qi . This value will be denoted as seli(Fj).

Another piece of necessary information on the database fragments is their size.
The size of a fragment Fj is given by

size(Fj) = card(Fj) ∗ length(Fj)

where length(Fj) is the length (in bytes) of a tuple of fragment Fj .
Most of the workload-related information is already compiled during fragmen-

tation, but a few more are required by the allocation model. The two important
measures are the number of read accesses that a query qi makes to a fragment Fj

during its execution (denoted as RRij), and its counterpart for the update accesses
(URij). These may, for example, count the number of block accesses required by
the query.

We also need to define two matrices UM and RM , with elements uij and rij ,
respectively, which are specified as follows:

uij =
{

1 if query qi updates fragment Fj

0 otherwise

rij =
{

1 if query qi retrieves from fragment Fj

0 otherwise

A vector O of values o(i) is also defined, where o(i) specifies the originating site
of query qi . Finally, to define the response-time constraint, the maximum allowable
response time of each application should be specified.

For each computer site, we need to know its storage and processing capacity.
Obviously, these values can be computed by means of elaborate functions or by
simple estimates. The unit cost of storing data at site Sk will be denoted as USCk .
There is also a need to specify a cost measure LPCk as the cost of processing one
unit of work at site Sk . The work unit should be identical to that of the RR and UR

measures.

2.2 Allocation 69

In our model we assume the existence of a simple network where the cost of
communication is defined in terms of one message that contains a specific amount
of data. Thus gij denotes the communication cost per message between sites Si and
Sj . To enable the calculation of the number of messages, we use msize as the size
(in bytes) of one message. There are more elaborate network models that take into
consideration the channel capacities, distances between sites, protocol overhead,
and so on, but this simple model is sufficient for our purposes.

2.2.2 Allocation Model

We discuss an allocation model that attempts to minimize the total cost of processing
and storage while trying to meet certain response time restrictions. The model we
use has the following form:

min(Total Cost)

subject to

response-time constraint
storage constraint
processing constraint

In the remainder of this section, we expand the components of this model based
on the information requirements discussed in Sect. 2.2.1. The decision variable is
xij , which is defined as

xij =
{

1 if the fragment Fi is stored at site Sj

0 otherwise

2.2.2.1 Total Cost

The total cost function has two components: query processing and storage. Thus it
can be expressed as

T OC =
∑

∀qi∈Q

QPCi +
∑

∀Sk∈S

∑

∀Fj ∈F

ST Cjk

where QPCi is the query processing cost of query qi , and ST Cjk is the cost of
storing fragment Fj at site Sk .

Let us consider the storage cost first. It is simply given by

ST Cjk = USCk ∗ size(Fj) ∗ xjk

70 2 Distributed and Parallel Database Design

and the two summations find the total storage costs at all the sites for all the
fragments.

The query processing cost is more difficult to specify. We specify it as consisting
of the processing cost (PC) and the transmission cost (T C). Thus the query
processing cost (QPC) for application qi is

QPCi = PCi + T Ci

The processing component, PC, consists of three cost factors, the access cost
(AC), the integrity enforcement cost (IE), and the concurrency control cost (CC):

PCi = ACi + IEi + CCi

The detailed specification of each of these cost factors depends on the algorithms
used to accomplish these tasks. However, to demonstrate the point, we specify AC

in some detail:

ACi =
∑

∀Sk∈S

∑

∀Fj ∈F

(uij ∗ URij + rij ∗ RRij) ∗ xjk ∗ LPCk

The first two terms in the above formula calculate the number of accesses of
user query qi to fragment Fj . Note that (URij + RRij) gives the total number of
update and retrieval accesses. We assume that the local costs of processing them are
identical. The summation gives the total number of accesses for all the fragments
referenced by qi . Multiplication by LPCk gives the cost of this access at site Sk .
We again use xjk to select only those cost values for the sites where fragments are
stored.

The access cost function assumes that processing a query involves decomposing
it into a set of subqueries, each of which works on a fragment stored at the site,
followed by transmitting the results back to the site where the query has originated.
Reality is more complex; for example, the cost function does not take into account
the cost of performing joins (if necessary), which may be executed in a number of
ways (see Chap. 4).

The integrity enforcement cost factor can be specified much like the processing
component, except that the unit local processing cost would likely change to reflect
the true cost of integrity enforcement. Since the integrity checking and concurrency
control methods are discussed later in the book, we do not study these cost
components further here. The reader should refer back to this section after reading
Chaps. 3 and 5 to be convinced that the cost functions can indeed be derived.

The transmission cost function can be formulated along the lines of the access
cost function. However, the data transmission overhead for update and that for
retrieval requests may be quite different. In update queries it is necessary to inform
all the sites where replicas exist, while in retrieval queries, it is sufficient to access
only one of the copies. In addition, at the end of an update request, there is no data
transmission back to the originating site other than a confirmation message, whereas
the retrieval-only queries may result in significant data transmission.

2.2 Allocation 71

The update component of the transmission function is

T CUi =
∑

∀Sk∈S

∑

∀Fj ∈F

uij ∗ xjk ∗ go(i),k +
∑

∀Sk∈S

∑

∀Fj ∈F

uij ∗ xjk ∗ gk,o(i)

The first term is for sending the update message from the originating site o(i) of
qi to all the fragment replicas that need to be updated. The second term is for the
confirmation.

The retrieval cost can be specified as

T CRi =
∑

∀Fj ∈F

min
Sk∈S

(rij ∗ xjk ∗ go(i),k + rij ∗ xjk ∗ seli(Fj) ∗ length(Fj)

msize
∗ gk,o(i))

The first term in T CR represents the cost of transmitting the retrieval request to
those sites which have copies of fragments that need to be accessed. The second
term accounts for the transmission of the results from these sites to the originating
site. The equation states that among all the sites with copies of the same fragment,
only the site that yields the minimum total transmission cost should be selected for
the execution of the operation.

Now the transmission cost function for query qi can be specified as

T Ci = T CUi + T CRi

which fully specifies the total cost function.

2.2.2.2 Constraints

The constraint functions can be specified in similar detail. However, instead of
describing these functions in depth, we will simply indicate what they should look
like. The response-time constraint should be specified as

execution time of qi ≤ maximum response time of qi,∀qi ∈ Q

Preferably, the cost measure in the objective function should be specified in terms
of time, as it makes the specification of the execution time constraint relatively
straightforward.

The storage constraint is

∑

∀Fj ∈F

ST Cjk ≤ storage capacity at site Sk,∀Sk ∈ S

whereas the processing constraint is

∑

∀qi∈Q

processing load of qi at site Sk ≤ processing capacity of Sk,∀Sk ∈ S

72 2 Distributed and Parallel Database Design

This completes our development of the allocation model. Even though we have
not developed it entirely, the precision in some of the terms indicates how one goes
about formulating such a problem. In addition to this aspect, we have indicated the
important issues that need to be addressed in allocation models.

2.2.3 Solution Methods

As noted earlier, simple file allocation problem is NP-complete. Since the model we
developed in the previous section is more complex, it is likely to be NP-complete as
well. Thus one has to look for heuristic methods that yield suboptimal solutions. The
test of “goodness” in this case is, obviously, how close the results of the heuristic
algorithm are to the optimal allocation.

It was observed early on that there is a correspondence between the file allocation
and the facility location problems. In fact, the isomorphism of the simple file
allocation problem and the single commodity warehouse location problem has been
shown. Thus, heuristics developed for the latter have been used for the former.
Examples are the knapsack problem solution, branch-and-bound techniques, and
network flow algorithms.

There have been other attempts to reduce the complexity of the problem. One
strategy has been to assume that all the candidate partitionings have been determined
together with their associated costs and benefits in terms of query processing. The
problem, then, is modeled as choosing the optimal partitioning and placement for
each relation. Another simplification frequently employed is to ignore replication at
first and find an optimal nonreplicated solution. Replication is handled at the second
step by applying a greedy algorithm which starts with the nonreplicated solution
as the initial feasible solution, and tries to improve upon it. For these heuristics,
however, there is not enough data to determine how close the results are to the
optimal.

2.3 Combined Approaches

The design process depicted in Fig. 2.1 on which we based our discussion separates
the fragmentation and allocation steps. The methodology is linear where the output
of fragmentation is input to allocation; we call this the fragment-then-allocate
approach. This simplifies the formulation of the problem by reducing the decision
space, but the isolation of the two steps may in fact contribute to the complexity
of the allocation models. Both steps have similar inputs, differing only in that
fragmentation works on global relations, whereas allocation considers fragments.
They both require workload information, but ignore how each other makes use
of these inputs. The end result is that the fragmentation algorithms decide how to
partition a relation based partially on how queries access it, but the allocation models

2.3 Combined Approaches 73

ignore the part that this input plays in fragmentation. Therefore, the allocation
models have to include all over again detailed specification of the relationship
among the fragment relations and how user applications access them. There are
approaches that combine the fragmentation and allocation steps in such a way that
the data partitioning algorithm also dictates allocation, or the allocation algorithm
dictates how the data is partitioned; we call these the combined approaches.
These mostly consider horizontal partitioning, since that is the common method
for obtaining significant parallelism. In this section we present these approaches,
classified as either workload-agnostic or workload-aware.

2.3.1 Workload-Agnostic Partitioning Techniques

This class of techniques ignores the workload that will run on the data and simply
focus on the database, often not even paying attention to the schema definition.
These approaches are mostly used in parallel DBMSs where data dynamism is
higher than distributed DBMSs, so simpler techniques that can be quickly applied
are preferred.

The simplest form of these algorithms is round-robin partitioning (Fig. 2.19).
With n partitions, the ith tuple in insertion order is assigned to partition (i mod
n). This strategy enables the sequential access to a relation to be done in parallel.
However, the direct access to individual tuples, based on a predicate, requires
accessing the entire relation. Thus, round-robin partitioning is appropriate for full
scan queries, as in data mining.

An alternative is hash partitioning, which applies a hash function to some
attribute that yields the partition number (Fig. 2.20). This strategy allows exact-
match queries on the selection attribute to be processed by exactly one node and all

· · ·

... · · ·

Fig. 2.19 Round-robin partitioning

...

Fig. 2.20 Hash partitioning

74 2 Distributed and Parallel Database Design

a–g h–m u–z

Fig. 2.21 Range partitioning

other queries to be processed by all the nodes in parallel. However, if the attribute
used for partitioning has nonuniform data distribution, e.g., as with people’s names,
the resulting placement may be unbalanced, with some partitions much bigger than
some others. This is called data skew and it is an important issue that can cause
unbalanced load.

Finally, there is range partitioning (Fig. 2.21) that distributes tuples based on
the value intervals (ranges) of some attribute and thus can deal with nonuniform
data distributions. Unlike hashing, which relies on hash functions, ranges must be
maintained in an index structure, e.g., a B-tree. In addition to supporting exact-
match queries (as in hashing), it is well-suited for range queries. For instance, a
query with a predicate “A between A1 and A2” may be processed by the only
node(s) containing tuples whose A value is in range [A1, A2].

These techniques are simple, can be computed quickly and, as we discuss in
Chap. 8, nicely fit the dynamicity of data in parallel DBMSs. However, they have
indirect ways of handling the semantic relationships among relations in the database.
For example, consider two relations that have a foreign key–primary key join
relationship such as R ��R.A=S.B S, hash partitioning would use the same function
over attribute R.A and S.B to ensure that they are located at the same node, thereby
localizing the joins and parallelizing the join execution. A similar approach can be
used in range partitioning, but round-robin would not take this relationship into
account.

2.3.2 Workload-Aware Partitioning Techniques

This class of techniques considers the workload as input and performs partitioning to
localize as much of the workload on one site as possible. As noted at the beginning
of this chapter, their objective is to minimize the amount of distributed queries.

One approach that has been proposed in a system called Schism uses the database
and workload information to build a graph G = V,E where each vertex v in V

represents a tuple in the database, and each edge e = (vi, vj) in E represents a
query that accesses both tuples vi and vj . Each edge is assigned a weight that is the
count of the number of transactions that access both tuples.

In this model, it is also easy to take into account replicas, by representing
each copy by a separate vertex. The number of replica vertices is determined by
the number of transactions accessing the tuple; i.e., each transaction accesses one

2.3 Combined Approaches 75

1 2

3 7

6

4

5

7

6

4

5

1 2

3

1 21

3

1 2

7

1

6

1

1

4 1

5

2 1

Q1

Q2

Q3

Q4

Q5

Fig. 2.22 Graph representation for partitioning in schism

copy. A replicated tuple is represented in the graph by a star-shaped configuration
consisting of n+1 vertices where the “central” vertex represents the logical tuple and
the other n vertices represent the physical copies. The weight of an edge between the
physical copy vertex and the central vertex is the number of transactions that update
the tuple; the weights of other edges remain as the number of queries that access the
tuple. This arrangement makes sense since the objective is to localize transactions
as much as possible and this technique uses replication to achieve localization.

Example 2.19 Let us consider a database with one relation consisting of seven
tuples that are accessed by five transactions. In Fig. 2.22 we depict the graph that
is constructed: there are seven vertices corresponding to the tuples, and the queries
that access them together are shown as cliques. For example, query Q1 accesses
tuples 2 and 7, query Q2 accesses tuples 2, 3, and 6, query Q3 accesses tuples 1, 2,
and 3, query Q4 accesses tuples 3, 4, and 5, and query Q5 accesses tuples 4 and 5.
Edge weights capture the number of transaction accesses.

Replication can be incorporated into this graph but replicating the tuples that are
accessed by multiple transactions; this is shown in Fig. 2.23. Note that tuples 1,
6, and 7 are not replicated since they are only accessed by one transaction each,
tuples 4 and 5 are replicated twice, and tuples 2 and 3 are replicated three times. We
represent the “replication edges” between the central vertex and each physical copy
by dashed lines and omit the weights for these edges in this example. �

Once the database and the workload are captured by this graph representation,
the next step is to perform a vertex-disjoint graph partitioning. Since we discuss
these techniques in detail in Sect. 10.4.1, we do not get into the details here, but
simply state that vertex-disjoint partitioning allocates each vertex of the graph to
a separate partition such that partitions are mutually exclusive. These algorithms
have, as their objective function, a balanced (or nearly balanced) set of partitions
while minimizing the cost of edge cuts. The cost of an edge cut takes into account
the weights of each edge so as to minimize the number of distributed queries.

The advantage of the Schism approach is its fine-grained allocation—it treats
each tuple as an allocation unit and the partitioning “emerges” as the allocation
decision is made for each tuple. Thus, the mapping of sets of tuples to queries can

76 2 Distributed and Parallel Database Design

1 22

2
2

3

3

3

3

7

6

4

4
4

5

5 5

2

3

5

4

7

2

6

2

3

1 2

3

3

5

4

5

4

1 221

2
2

3

3

1

3

3

1
7

1

6

1

1

4

4
4 1

5

5

1

5

11

Q1

Q2

Q3

Q4 Q5

Fig. 2.23 Schism graph incorporating replication

be controlled and many of them can execute at one site. However, the downside of
the approach is that the graph becomes very large as the database size increases, in
particular when replicas are added to the graph. This makes the management of the
graph difficult and its partitioning expensive. Another issue to consider is that the
mapping tables that record where each tuple is stored (i.e., the directory) become
very large and may pose a management problem of their own.

One approach to overcome these issues has been proposed as part of the SWORD
system that employs a hypergraph model7 where each clique in Fig. 2.22 is repre-
sented as a hyperedge. Each hyperedge represents one query and the set of vertices
spanned by the hyperedge represents the tuples accessed by it. Each hyperedge has
a weight that represents the frequency of that query in the workload. Therefore what
we have is a weighted hypergraph. This hypergraph is then partitioned using a k-way
balanced min-cut partitioning algorithm that produces k balanced partitions, each of
which is allocated to a site. This minimizes the number of distributed queries since
the algorithm is minimizing the cuts in hyperedges and each of these cuts indicates
a distributed query.

Of course, this change in the model is not sufficient to address the issues
discussed above. In order to reduce the size of the graph, and the overhead of
maintaining the associated mapping table, SWORD compresses this hypergraph as
follows. The set of vertices V in the original hypergraph G is mapped to a set of
virtual vertices V ′ using a hash or other function that operates on the primary keys
of the tuples. Once the set of virtual vertices are determined, the edges in the original
hypergraph are now mapped to hyperedges in the compressed graph (E′) such that
if the vertices spanned by a hyperedge e ∈ E are mapped to different virtual vertices
in the compressed graph, then there will be a hyperedge e′ ∈ E′.

7A hypergraph allows each edge (called a hyperedge) to connect more than two vertices as is the
case with regular graphs. The details of the hypergraph model are beyond our scope.

2.3 Combined Approaches 77

Q′
3

Q′
1,Q

′
2

1, 2

v ′
1

3, 4, 5

v ′
2

6,7

v ′
3

Fig. 2.24 Sword compressed hypergraph

Of course for this compression to make sense, |V ′| < |V |, so a critical issue is
to determine how much compression is desired—too much compression will reduce
the number of virtual vertices, but will increase the number of hyperedges, and
therefore the possibility of distributed queries. The resulting compressed hypergraph
G′ = (V ′, E′) is going to be smaller than the original hypergraph so easier to
manage and partition, and the mapping tables will also be smaller since they will
only consider the mapping of sets of virtual vertices.

Example 2.20 Let us revisit the case in Example 2.19 and consider that we are
compressing the hypergraph into three virtual vertices: v′

1 = 1, 2, v′
2 = 3, 4, 5, v′

3 =
6, 7. Then there would be two hyperedges: e′

1 = (v′
1, v

′
3) with frequency 2

(corresponding to Q1 and Q2 in the original hypergraph) and e′
2 = (v′

1, v
′
2) with

frequency 1 (corresponding to Q3). The hyperedges representing queries Q4 and
Q5 would be local (i.e., not spanning virtual vertices) so no hyperedges are required
in the compressed hypergraph. This is shown in Fig. 2.24. �

Performing the k-way balanced min-cut partitioning on the compressed hyper-
graph can be performed much faster and the resulting mapping table will be smaller
due to the reduced size of the graph.

SWORD incorporates replication in the compressed hypergraph. It first deter-
mines, for each virtual vertex, how many replicas are required. It does this by using
the tuple-level access pattern statistics for each tuple tj in each virtual vertex v′

i ,
namely its read frequency f r

ij and its write frequency f w
ij . Using these, it computes

the average read and write frequencies (ARF and AWF, respectively) of virtual
vertex v′

i as follows:

ARF(v′
i) =

∑
j f r

ij

log S(v′
i)

and AWF(v′
i) =

∑
j f w

ij

log S(v′
i)

S(v′
i) is the size of each virtual vertex (in terms of the number of actual vertices

mapped to it) and its log is taken to compensate for the skew in the sizes of virtual
vertices (so, these are size-compensated averages). From these, SWORD defines a

78 2 Distributed and Parallel Database Design

replication factor, R = AWF(v′
i)

ARWF(v′
i)

and a user-specified threshold δ (0 < δ < 1) is

defined. The number of replicas (#_rep) for virtual vertex v′
i is then given as

#_rep(v′
i) =

{
1 if R ≥ δ

ARF(v′
i) otherwise

Once the number of replicas for each virtual vertex is determined, these are added
to the compressed hypergraph and assigned to hyperedges in a way that minimizes
the min-cut in the partitioning algorithm. We ignore the details of this assignment.

2.4 Adaptive Approaches

The work described in this chapter generally assumes a static environment where
design is conducted only once and this design can persist. Reality, of course, is
quite different. Both physical (e.g., network characteristics, available storage at
various sites) and logical (e.g., workload) changes occur necessitating redesign
of the database. In a dynamic environment, the process becomes one of design-
redesign-materialization of the redesign. When things change, the simplest approach
is to redo the distribution design from scratch. For large or highly dynamic systems,
this is not quite realistic as the overhead of redesign is likely to be very high. A
preferred approach is to perform incremental redesign, focusing only on the parts of
the database that are likely to be affected by the changes. The incremental redesign
can either be done every time a change is detected or periodically where changes
are batched and evaluated at regular intervals.

Most of the work in this area has focused on changes in the workload (queries
and transactions) over time and those are what we focus in this section. While some
work in this area has focused on the fragment-then-allocate approach, most follow
the combined approach. In the former case one alternative that has been proposed
involves a split phase where fragments are further subdivided based on the changed
application requirements until no further subdivision is profitable based on a cost
function. At this point, the merging phase starts where fragments that are accessed
together by a set of applications are merged into one fragment. We will focus more
on the dynamic combined approaches that perform incremental redesign as the
workload changes.

The objective in the adaptive approaches is the same as the workload-aware par-
titioning strategies discussed in Sect. 2.3.2: to minimize the number of distributed
queries and ensure that the data for each query is local. Within this context, there are
three interrelated issues that need to be addressed in adaptive distribution design:

1. How to detect workload changes that require changes in the distribution design?
2. How to determine which data items are going to be affected in the design?
3. How to perform the changes in an efficient manner?

In the remainder we discuss each of these issues.

2.4 Adaptive Approaches 79

2.4.1 Detecting Workload Changes

This is a difficult issue on which there is not much work. Most of the adaptive
techniques that have been proposed assume that the change in the workload is
detected, and simply focus on the migration problem. To be able to detect workload
changes, the incoming queries need to be monitored. One way to do this is to
periodically examine the system logs, but this may have high overhead, especially
in highly dynamic systems. An alternative is to continuously monitor the workload
within the DBMS. In the SWORD system we discussed above, the system monitors
the percentage increase in the number of distributed transactions and considers that
the system has changed sufficiently to require a reconfiguration if this percentage
increase is above a defined threshold. As another example, the E-Store system
monitors both system-level metrics and tuple-level access. It starts by collecting
system-level metrics at each computing node using OS facilities. E-Store currently
focuses primarily on detecting workload imbalances across the computing nodes,
and therefore only collects CPU utilization data. If the CPU utilization imbalance
exceeds a threshold, then it invokes more fine-grained tuple-level monitoring to
detect the affected items (see next section). Although imbalance in CPU utilization
may be a good indicator of possible performance problems, it is too simple to
capture more significant workload changes. It is possible, of course, to do more
sophisticated monitoring, e.g., one can create a profile that looks at the frequency of
each query in a given time period, the percentage of queries that meet (or exceed)
their agreed-upon latencies (as captured in a service level agreement, perhaps),
and others. Then it can be decided whether the changes in the profile require
redesign, which can be done either continuously (i.e., every time the monitor
registers information) or periodically. The challenge here is to do this efficiently
without intruding on the system performance. This is an open research area that has
not been properly studied.

2.4.2 Detecting Affected Items

Once a change is detected in the workload the next step is to determine what data
items are affected and need to be migrated to address this change. How this is
done is very much dependent on the detection method. For example, if the system
is monitoring the frequency of queries and detects changes, then the queries will
identify the data items. It is possible to generalize from individual queries to query
templates in order to capture “similar” queries that might also be affected by the
changes. This is done in the Apollo system where each constant is replaced by a
wildcard. For example, the query

SELECT PNAME FROM PROJ WHERE BUDGET>200000 AND LOC = "London"

80 2 Distributed and Parallel Database Design

would be generalized to

SELECT PNAME FROM PROJ WHERE BUDGET>? AND LOC = "?"

While this reduces the granularity of determining the exact set of data items
that are affected, it may allow the detection of additional data items that might be
affected by similar queries and reduce the frequency of changes that are necessary.

The E-Store system starts tuple-level monitoring once it detects a system load
imbalance. For a short period, it collects access data to the tuples in each computing
node (i.e., each partition) and determines the “hot” tuples, which are the top-k most
frequently accessed tuples within a time period. To do this, it uses a histogram for
each tuple that is initialized when the tuple-level monitoring is enabled and updated
as access happens within the monitoring window. At the end of this time period, the
top-k list is assembled. The monitoring software gathers these lists and generates a
global top-k list of hot tuples—these are the data items that need to be migrated. A
side-effect is the determination of cold tuples; of particular importance are tuples
that were previously hot and have since become cold. The determination of the time
window for tuple-level monitoring and the value of k are parameters set by the
database administrator.

2.4.3 Incremental Reconfiguration

As noted earlier, the naive approach to perform redesign is to redo the entire data
partitioning and distribution. While this may be of interest in environments where
workload change occurs infrequently, in most cases, the overhead of redesign is
too high to do it from scratch. The preferred approach is to apply the changes
incrementally by migrating data; in other words, we only look at the changed
workload and the data items that are affected, and move them around.8 So, in this
section, we focus on incremental approaches.

Following from the previous section, one obvious approach is to use an incremen-
tal graph partitioning algorithm that reacts to changes in the graph representation we
discussed. This has been followed in the SWORD system discussed above and in
AdaptCache, both of which represent usage as hypergraphs and perform incremental
partitioning on these graphs. The incremental graph partitioning initiates data
migration for reconfiguration.

The E-Store system we have been discussing takes a more sophisticated
approach. Once the set of hot tuples are identified, a migration plan is prepared that
identifies where the hot tuples should be moved and what reallocation of cold tuples
is necessary. This can be posed as an optimization problem that creates a balanced
load across the computing nodes (balance is defined as average-load-across-nodes

8The research in this area has exclusively focused on horizontal partitioning, which will be our
focus here as well, meaning that our units of migration are individual tuples.

2.4 Adaptive Approaches 81

± a threshold value), but solving this optimization problem in real time for online
reconfiguration is not easy, so it uses approximate placement approaches (e.g.,
greedy, first-fit) to generate the reconfiguration plan. Basically, it first determines
the appropriate computing nodes at which each hot tuple should be located, then
addresses cold tuples, if necessary due to remaining imbalance, by moving them
in blocks. So, the generated reconfiguration plan addresses the migration of hot
tuples individually, but the migration of cold tuples as blocks. As part of the plan a
coordinating node is determined to manage the migration, and this plan is an input
to the Squall reconfiguration system.

Squall performs reconfiguration and data migration in three steps. In the first
step, the coordinator identified in the reconfiguration plan initializes the system for
migration. This step includes the coordinating obtaining exclusive access control
to all of these partitions through a transaction as we will discuss in Chap. 5. Then
the coordinator asks each site to identify the tuples that will be moving out of the
local partition and the tuples that will be coming in. This analysis is done on the
metadata so can be done quickly after which each site notifies the coordinator and
the initialization transaction terminates. In the second step, the coordinator instructs
each site to do the data migration. This is critical as there are queries accessing
the data as it is being moved. If a query is executing at a given computing node
where the data is supposed to be according to the reconfiguration plan but the
required tuples are not locally available, Squall pulls the missing tuples to process
the query. This is done in addition to the normal migration of the data according to
the reconfiguration plan. In other words, in order to execute the queries in a timely
fashion, Squall performs on-demand movement in addition to its normal migration.
Once this step is completed, each node informs the coordinator, which then starts
the final termination step and informs each node that reconfiguration is completed.
These three steps are necessary for Squall to be able to perform migration while
executing user queries at the same time rather than stopping all query execution,
performing the migration and then restarting the query execution.

Another approach is database cracking, which is an adaptive indexing technique
that targets dynamic, hard to predict workloads and scenarios where there is little or
no idle time to devote to workload analysis and index building. Database cracking
works by continuously reorganizing data to match the query workload. Every query
is used as an advice on how the data should be stored. Cracking does this by
building and refining indices partially and incrementally as part of query processing.
By reacting to every single query with lightweight actions, database cracking
manages to adapt to a changing workload instantly. As more queries arrive, the
indices are refined, and the performance improves, eventually reaching the optimal
performance, i.e., the performance we would get from a manually tuned system.

The main idea in the original database cracking approach is that the data system
reorganizes one column of the data at a time and only when touched by a query.
In other words, the reorganization utilizes the fact that the data is already read and
decides how to refine it in the best way. Effectively the original cracking approach
overloads the select operator of a database system and uses the predicates of each
query to determine how to reorganize the relevant column. The first time an attribute

82 2 Distributed and Parallel Database Design

A is required by a query, a copy of the base column A is created, called the cracker
column of A. Each select operator on A triggers the physical reorganization of the
cracker column based on the requested range of the query. Entries with a key that
is smaller than the lower bound are moved before the lower bound, while entries
with a key that is greater than the upper bound are moved after the upper bound
in the respective column. The partitioning information for each cracker column is
maintained in an AVL-tree, the cracker index. Future queries on column A search
the cracker index for the partition where the requested range falls. If the requested
key already exists in the index, i.e., if past queries have cracked on exactly those
ranges, then the select operator can return the result immediately. Otherwise, the
select operator refines on the fly the column further, i.e., only the partitions/pieces
of the column where the predicates fall will be reorganized (at most two partitions
at the boundaries of the range). Progressively the column gets more “ordered” with
more but smaller pieces.

The primary concept in database cracking and its basic techniques can be
extended to partition data in a distributed setting, i.e., to store data across a set of
nodes using incoming queries as an advice. Each time a node needs a specific part
of the data for a local query but the data does not exist in this node, this information
can be used as a hint that the data could be moved to this node. However, contrary to
the in-memory database cracking methods where the system reacts immediately to
every query, in a distributed setting we need to consider that moving the data is more
expensive. At the same time, for the same reason, the benefit that future queries
may have is going to be more significant. In fact, the same trade-off has already
been studied in variations of the original database cracking approach to optimize for
disk-based data. The net effect is twofold: (1) instead of reacting with every query,
we should wait for more workload evidence before we embark on expensive data
reorganization actions, and (2) we should apply “heavier” reorganizations to utilize
the fact that reading and writing data is more expensive out of memory. We expect
future approaches to explore and develop such adaptive indexing methods to benefit
from effective partitioning in scenarios where the workload is not easy to predict,
and there is not enough time to fully sort/partition all data before the first query
arrives.

2.5 Data Directory

The final distribution design issue we discuss is related to data directory. The
distributed database schema needs to be stored and maintained by the system.
This information is necessary during distributed query optimization, as we will
discuss later. The schema information is stored in a catalog/data dictionary/di-
rectory (simply directory). A directory is a metadatabase that stores a number of
information such as schema and mapping definitions, usage statistics, access control
information, and the like.

2.6 Conclusion 83

In the case of a distributed DBMS, schema definition is done at the global level
(i.e., the global conceptual schema—GCS) as well as at the local sites (i.e., local
conceptual schemas—LCSs). GCS defines the overall database while each LCS
describes data at that particular site. Consequently, there are two types of directories:
a global directory/dictionary (GD/D)9 that describes the database schema as the
end users see it, and the local directory/dictionary (LD/D) that describes the
local mappings and describes the schema at each site. Thus, the local database
management components are integrated by means of global DBMS functions.

As stated above, the directory is itself a database that contains metadata about
the actual data stored in the database. Therefore, the techniques we discussed in
this chapter, with respect to distributed database design also apply to directory
management, but in much simpler manner. Briefly, a directory may be either global
to the entire database or local to each site. In other words, there might be a single
directory containing information about all the data in the database (the GD/D), or
a number of directories, each containing the information stored at one site (the
LD/D). In the latter case, we might either build hierarchies of directories to facilitate
searches or implement a distributed search strategy that involves considerable
communication among the sites holding the directories.

A second issue is replication. There may be a single copy of the directory
or multiple copies. Multiple copies would provide more reliability, since the
probability of reaching one copy of the directory would be higher. Furthermore,
the delays in accessing the directory would be lower, due to less contention and the
relative proximity of the directory copies. On the other hand, keeping the directory
up-to-date would be considerably more difficult, since multiple copies would need
to be updated. Therefore, the choice should depend on the environment in which
the system operates and should be made by balancing such factors as the response-
time requirements, the size of the directory, the machine capacities at the sites, the
reliability requirements, and the volatility of the directory (i.e., the amount of change
experienced by the database, which would cause a change to the directory).

2.6 Conclusion

In this chapter, we presented the techniques that can be used for distributed database
design with special emphasis on the partitioning and allocation issues. We have
discussed, in detail, the algorithms that one can use to fragment a relational schema
in various ways. These algorithms have been developed quite independently and
there is no underlying design methodology that combines the horizontal and vertical
partitioning techniques. If one starts with a global relation, there are algorithms
to decompose it horizontally as well as algorithms to decompose it vertically into
a set of fragment relations. However, there are no algorithms that fragment a

9In the remainder, we will simply refer to this as the global directory.

84 2 Distributed and Parallel Database Design

global relation into a set of fragment relations some of which are decomposed
horizontally and others vertically. It is commonly pointed out that most real-life
fragmentations would be mixed, i.e., would involve both horizontal and vertical
partitioning of a relation, but the methodology research to accomplish this is lacking.
If this design methodology is to be followed, what is needed is a distribution
design methodology which encompasses the horizontal and vertical fragmentation
algorithms and uses them as part of a more general strategy. Such a methodology
should take a global relation together with a set of design criteria and come up with
a set of fragments some of which are obtained via horizontal and others obtained
via vertical fragmentation.

We also discussed techniques that do not separate fragmentation and allocation
steps—the way data is partitioned dictates how it is allocated or vice versa. These
techniques typically have two characteristics. The first is that they exclusively focus
on horizontal partitioning. The second is that they are more fine-grained and the unit
of allocation is a tuple; fragments at each site “emerge” as the union of tuples from
the same relation assigned to that site.

We finally discussed adaptive techniques that take into account changes in
workload. These techniques again typically involve horizontal partitioning, but
monitor the workload changes (both in terms of the query set and in terms of
the access patterns) and adjust the data partitioning accordingly. The naïve way
achieving this is by to do new batch run of the partitioning algorithm, but this
is obviously not desired. Therefore, the better algorithms in this class adjust data
distribution incrementally.

2.7 Bibliographic Notes

Distributed database design has been studied systematically since the early years
of the technology. An early paper that characterizes the design space is [Levin
and Morgan 1975]. Davenport [1981], Ceri et al. [1983], and Ceri et al. [1987]
provide nice overviews of the design methodology. Ceri and Pernici [1985] discuss
a particular methodology, called DATAID-D, which is similar to what we presented
in Fig. 2.1. Other attempts to develop a methodology are due to Fisher et al. [1980],
Dawson [1980], Hevner and Schneider [1980], and Mohan [1979].

Most of the known results about fragmentation have been covered in this
chapter. Work on fragmentation in distributed databases initially concentrated on
horizontal fragmentation. The discussion on that topic is mainly based on [Ceri
et al. 1982b] and [Ceri et al. 1983]. Data partitioning in parallel DBMS is treated
in [DeWitt and Gray 1992]. The topic of vertical fragmentation for distribution
design has been addressed in several papers (e.g., Navathe et al. [1984] and Sacca
and Wiederhold [1985]). The original work on vertical fragmentation goes back
to Hoffer’s dissertation [Hoffer 1975, Hoffer and Severance 1975] and to Niamir
[1978] and Hammer and Niamir [1979]. McCormick et al. [1972] present the bond

2.7 Bibliographic Notes 85

energy algorithm that has been adopted to vertical fragmentation by Hoffer and
Severance [1975] and Navathe et al. [1984].

The investigation of file allocation problem on wide area networks goes back to
Chu’s work [Chu 1969, 1973]. Most of the early work on this has been covered in the
excellent survey by Dowdy and Foster [1982]. Some theoretical results are reported
by Grapa and Belford [1977] and Kollias and Hatzopoulos [1981]. The distributed
data allocation work dates back to the mid-1970s to the works of Eswaran [1974]
and others. In their earlier work, Levin and Morgan [1975] concentrated on data
allocation, but later they considered program and data allocation together [Morgan
and Levin 1977]. The distributed data allocation problem has been studied in many
specialized settings as well. Work has been done to determine the placement of
computers and data in a wide area network design [Gavish and Pirkul 1986].
Channel capacities have been examined along with data placement [Mahmoud and
Riordon 1976] and data allocation on supercomputer systems [Irani and Khabbaz
1982] as well as on a cluster of processors [Sacca and Wiederhold 1985]. An
interesting work is the one by Apers [1981], where the relations are optimally
placed on the nodes of a virtual network, and then the best matching between
the virtual network nodes and the physical network is found. The isomorphism
of data allocation problem to single commodity warehouse location problem is
due to Ramamoorthy and Wah [1983]. For other solution approaches, the sources
are as follows: knapsack problem solution [Ceri et al. 1982a], branch-and-bound
techniques [Fisher and Hochbaum 1980], and network flow algorithms [Chang and
Liu 1982].

The Schism approach to combined partitioning (Sect. 2.3.2) is due to Curino
et al. [2010] and SWORD is due to Quamar et al. [2013]. Other works along these
lines are [Zilio 1998], [Rao et al. 2002], and [Agrawal et al. 2004], which mostly
focus on partitioning for parallel DBMSs.

An early adaptive technique is discussed by Wilson and Navathe [1986]. Limited
redesign, in particular, the materialization issue, is studied in [Rivera-Vega et al.
1990, Varadarajan et al. 1989]. Complete redesign and materialization issues have
been studied in [Karlapalem et al. 1996, Karlapalem and Navathe 1994, Kazerouni
and Karlapalem 1997]. Kazerouni and Karlapalem [1997] describe the stepwise
redesign methodology that we referred to in Sect. 2.4. AdaptCache is described
in [Asad and Kemme 2016].

The impact of workload changes on distributed/parallel DBMSs and the desir-
ability of localizing data for each transaction have been studied by Pavlo et al.
[2012] and Lin et al. [2016]. There are a number of works that address adaptive
partitioning in the face of these changes. Our discussion focused on E-Store [Taft
et al. 2014] as an exemplar. E-Store implements the E-Monitor and E-Planner
systems, respectively, for monitoring and detecting workload changes, and for
detecting affected items to create a migration plan. For actual migration it uses an
optimized version of Squall [Elmore et al. 2015]. There are other works along the
same vein; for example, P-Store [Taft et al. 2018] predicts load demands (as opposed
to E-Store reacting to them).

86 2 Distributed and Parallel Database Design

The log-inspection-based determination of workload changes is due to Levan-
doski et al. [2013].

One work that focuses on detecting workload shifts for autonomic computing is
described in Holze and Ritter [2008]. The Apollo system, which we referred to in
discussion how to detect data items that are affected, and that abstracts queries to
query templates in order to do predictive computation is described in Glasbergen
et al. [2018].

Database cracking as a concept has been studied in the context of main-
memory column-stores [Idreos et al. 2007b, Schuhknecht et al. 2013]. The cracking
algorithms have been adapted to work for many core database architecture issues
such as: updates to incrementally and adaptively absorb data changes [Idreos et al.
2007a], multiattribute queries to reorganize whole relations as opposed to only
columns [Idreos et al. 2009], to use also the join operator as a trigger for adaptation
[Idreos 2010], concurrency control to deal with the problem that cracking effectively
turns reads into writes [Graefe et al. 2014, 2012], and partition-merge-like logic to
provide cracking algorithms that can balance index convergence versus initialization
costs [Idreos et al. 2011]. In addition, tailored benchmarks have been developed to
stress-test critical features such as how quickly an algorithm adapts [Graefe et al.
2010]. Stochastic database cracking [Halim et al. 2012] shows how to be robust
on various workloads, and Graefe and Kuno [2010b] show how adaptive indexing
can apply to key columns. Finally, recent work on parallel adaptive indexing
studies CPU-efficient implementations and proposes cracking algorithms to utilize
multicores [Pirk et al. 2014, Alvarez et al. 2014] or even idle CPU time [Petraki
et al. 2015].

The database cracking concept has also been extended to broader storage layout
decisions, i.e., reorganizing base data (columns/rows) according to incoming query
requests [Alagiannis et al. 2014], or even about which data should be loaded [Idreos
et al. 2011, Alagiannis et al. 2012]. Cracking has also been studied in the context of
Hadoop [Richter et al. 2013] for local indexing in each node as well as for improving
more traditional disk-based indexing which forces reading data at the granularity of
pages and where writing back the reorganized data needs to be considered as a major
overhead [Graefe and Kuno 2010a].

Exercises

Problem 2.1 (*) Given relation EMP as in Fig. 2.2, let p1: TITLE< "Programmer"
and p2: TITLE > “Programmer” be two simple predicates. Assume that character
strings have an order among them, based on the alphabetical order.

(a) Perform a horizontal fragmentation of relation EMP with respect to {p1, p2}.
(b) Explain why the resulting fragmentation (EMP1, EMP2) does not fulfill the

correctness rules of fragmentation.
(c) Modify the predicates p1 and p2 so that they partition EMP obeying the

correctness rules of fragmentation. To do this, modify the predicates, compose

Exercises 87

all minterm predicates and deduce the corresponding implications, and then
perform a horizontal fragmentation of EMP based on these minterm predicates.
Finally, show that the result has completeness, reconstruction, and disjointness
properties.

Problem 2.2 (*) Consider relation ASG in Fig. 2.2. Suppose there are two appli-
cations that access ASG. The first is issued at five sites and attempts to find the
duration of assignment of employees given their numbers. Assume that managers,
consultants, engineers, and programmers are located at four different sites. The
second application is issued at two sites where the employees with an assignment
duration of less than 20 months are managed at one site, whereas those with longer
duration are managed at a second site. Derive the primary horizontal fragmentation
of ASG using the foregoing information.

Problem 2.3 Consider relations EMP and PAY in Fig. 2.2. EMP and PAY are
horizontally fragmented as follows:

EMP1 = σTITLE=“Elect. Eng.”(EMP)

EMP2 = σTITLE=“Syst. Anal.”(EMP)

EMP3 = σTITLE=“Mech. Eng.”(EMP)

EMP4 = σTITLE=“Programmer”(EMP)

PAY1 = σSAL≥30000(PAY)

PAY2 = σSAL<30000(PAY)

Draw the join graph of EMP�TITLE PAY. Is the graph simple or partitioned? If it
is partitioned, modify the fragmentation of either EMP or PAY so that the join graph
of EMP�TITLE PAY is simple.

Problem 2.4 Give an example of a CA matrix where the split point is not unique
and the partition is in the middle of the matrix. Show the number of shift operations
required to obtain a single, unique split point.

Problem 2.5 (**) Given relation PAY as in Fig. 2.2, let p1 : SAL < 30000 and
p2 : SAL ≥ 30000 be two simple predicates. Perform a horizontal fragmentation
of PAY with respect to these predicates to obtain PAY1 and PAY2. Using the
fragmentation of PAY, perform further derived horizontal fragmentation for EMP.
Show completeness, reconstruction, and disjointness of the fragmentation of EMP.

Problem 2.6 (**) Let Q = {q1, . . . , q5} be a set of queries, A = {A1, . . . ,A5} be
a set of attributes, and S = {S1, S2, S3} be a set of sites. The matrix of Fig. 2.25a
describes the attribute usage values and the matrix of Fig. 2.25b gives the application
access frequencies. Assume that refi(qk) = 1 for all qk and Si and that A1 is the
key attribute. Use the bond energy and vertical partitioning algorithms to obtain a
vertical fragmentation of the set of attributes in A.

Problem 2.7 (**) Write an algorithm for derived horizontal fragmentation.

88 2 Distributed and Parallel Database Design

A1 A2 A3 A4 A5⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

q1 0 1 1 0 1

q2 1 1 1 0 1

q3 1 0 0 1 1

q4 0 0 1 0 0

q5 1 1 1 0 0

S1 S2 S3⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

q1 10 20 0

q2 5 0 10

q3 0 35 5

q4 0 10 0

q5 0 15 0

(a) (b)

Fig. 2.25 Attribute usage values and application access frequencies in Exercise 3.6

Problem 2.8 (**) Assume the following view definition:

CREATE VIEW EMPVIEW(ENO, ENAME, PNO, RESP)
AS SELECT EMP.ENO, EMP.ENAME, ASG.PNO, ASG.RESP

FROM EMP JOIN ASG
WHERE DUR=24

is accessed by application q1, located at sites 1 and 2, with frequencies 10 and 20,
respectively. Let us further assume that there is another query q2 defined as

SELECT ENO, DUR
FROM ASG

which is run at sites 2 and 3 with frequencies 20 and 10, respectively. Based on
the above information, construct the use(qi,Aj) matrix for the attributes of both
relations EMP and ASG. Also construct the affinity matrix containing all attributes
of EMP and ASG. Finally, transform the affinity matrix so that it could be used to
split the relation into two vertical fragments using heuristics or BEA.

Problem 2.9 (**) Formally define the three correctness criteria for derived hori-
zontal fragmentation.

Problem 2.10 (*) Given a relation R(K,A,B,C) (where K is the key) and the
following query:

SELECT *
FROM R
WHERE R.A=10 AND R.B=15

(a) What will be the outcome of running PHF on this query?
(b) Does the COM_MIN algorithm produce in this case a complete and minimal

predicate set? Justify your answer.

Problem 2.11 (*) Show that the bond energy algorithm generates the same results
using either row or column operation.

Exercises 89

Problem 2.12 (**) Modify algorithm SPLIT to allow n-way partitioning, and
compute the complexity of the resulting algorithm.

Problem 2.13 (**) Formally define the three correctness criteria for hybrid frag-
mentation.

Problem 2.14 Discuss how the order in which the two basic fragmentation schemas
are applied in hybrid fragmentation affects the final fragmentation.

Problem 2.15 (**) Describe how the following can be properly modeled in the
database allocation problem.

(a) Relationships among fragments
(b) Query processing
(c) Integrity enforcement
(d) Concurrency control mechanisms

Problem 2.16 (**) Consider the various heuristic algorithms for the database
allocation problem.

(a) What are some of the reasonable criteria for comparing these heuristics?
Discuss.

(b) Compare the heuristic algorithms with respect to these criteria.

Problem 2.17 (*) Pick one of the heuristic algorithms used to solve the DAP, and
write a program for it.

Problem 2.18 (**) Assume the environment of Exercise 3.8. Also assume that
60% of the accesses of query q1 are updates to PNO and RESP of view EMPVIEW
and that ASG.DUR is not updated through EMPVIEW. In addition, assume that the
data transfer rate between site 1 and site 2 is half of that between site 2 and site 3.
Based on the above information, find a reasonable fragmentation of ASG and EMP
and an optimal replication and placement for the fragments, assuming that storage
costs do not matter here, but copies are kept consistent.

Hint: Consider horizontal fragmentation for ASG based on DUR = 24 predicate
and the corresponding derived horizontal fragmentation for EMP. Also look at the
affinity matrix obtained in Example 2.7 for EMP and ASG together, and consider
whether it would make sense to perform a vertical fragmentation for ASG.

	2 Distributed and Parallel Database Design
	2.1 Data Fragmentation
	2.1.1 Horizontal Fragmentation
	2.1.1.1 Auxiliary Information Requirements
	2.1.1.2 Primary Horizontal Fragmentation
	2.1.1.3 Derived Horizontal Fragmentation
	2.1.1.4 Checking for Correctness

	2.1.2 Vertical Fragmentation
	2.1.2.1 Auxiliary Information Requirements
	2.1.2.2 Clustering Algorithm
	2.1.2.3 Splitting Algorithm
	2.1.2.4 Checking for Correctness

	2.1.3 Hybrid Fragmentation

	2.2 Allocation
	2.2.1 Auxiliary Information
	2.2.2 Allocation Model
	2.2.2.1 Total Cost
	2.2.2.2 Constraints

	2.2.3 Solution Methods

	2.3 Combined Approaches
	2.3.1 Workload-Agnostic Partitioning Techniques
	2.3.2 Workload-Aware Partitioning Techniques

	2.4 Adaptive Approaches
	2.4.1 Detecting Workload Changes
	2.4.2 Detecting Affected Items
	2.4.3 Incremental Reconfiguration

	2.5 Data Directory
	2.6 Conclusion
	2.7 Bibliographic Notes
	Exercises

