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Abstract. This article discusses the problem of deploying safety-critical
software for an autonomous system, namely a collaborative robot oper-
ating in domestic environments. We present a deployment infrastructure
to enhance both humans and robots in carrying out their deployment
activities. We develop means to enable humans to explicitly specify the
requirements of the software to be deployed, along with the resources
of the robot platform on which the software will be executed. In addi-
tion, we propose an architecture which enables robots to autonomously
re-deploy their software at run-time in order to account for changing
requirements imposed by their task, platform and environment. We show
how the architecture enables a collaborative robot to autonomously re-
deploy safety monitors for detecting in-hand slippage often occuring in
human-robot handover tasks. By doing so, the robot autonomously main-
tains a certain safety level as the functioning of the monitor depends on
both selecting and deploying the correct monitoring strategy for the sit-
uation at hand.

Keywords: Runtime AI safety monitoring ·
Model-based engineering approaches to AI safety

1 Introduction

Autonomous systems such as collaborative robots (see Fig. 1) are expected to
carry out many different tasks in challenging environments not only over a
long period of time, but also in a trustworthy manner. To do so, robots are
equipped with a wide variety of software components ranging from solving func-
tional problems such as planning, perception and control to safety-critical com-
ponents required for execution monitoring, diagnosis and fault detection and
isolation [14]. To achieve a certain level of autonomy robots are required to
autonomously plan and execute actions and at the same time to cope with vary-
ing requirements for the software. Many of those variations are difficult to predict
as they are induced by changing tasks, goals and environmental features. It is
important to emphasize that the changing requirements are not only influenc-
ing core functional components, but also safety-critical modules such as func-
tional safety features which aim to control hazards such that risks are mitigated.
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Therefore, deployment in robotics can be considered as an ongoing activity as
different software components both functional and safety-critical are likely to be
re-deployed at run-time in order to fulfill varying requirements. As we aim for
truly autonomous systems robots themselves should be endowed with means to
deploy their software. By doing so, the need for human intervention is reduced
which paves the way for long-running robot applications.

Fig. 1. The collaborative Care-O-bot
3 robot in a domestic environment.

Even though, in robotics deploy-
ment information is already available
in terms of architectural and plat-
form models [4,12] and configura-
tion files [3,15] we identified in [6]
that the majority of deployment
approaches tend to be inflexible as
they do not cover use cases where
there is a need to respond to run-
time changes. To this end, we gener-
alized and described in [6] a reference
architecture for deploying component-
based robot software. In this article
we instantiate this architecture (see
Sect. 4) for a collaborative robot appli-
cation (see Sect. 2) and thereby validate its applicability. We show how the
architecture and corresponding deployment algorithms enable a collaborative
robot to autonomously re-deploy safety monitoring strategies. By re-deploying
the monitors we can assure that in-hand slippage is detected even in the presence
of varying requirements induced, for example, by the robots task.

2 Motivating Example

We consider collaborative robots as those shown in Fig. 1 to exemplify our work
on deploying safety monitors. Collaborative robots are becoming more and more
widespread not only in industrial and factory-like applications [16], but also in
domestic scenarios. While traditionally in industrial scenarios robots are sepa-
rated from human workers by fences collaborative robots share their workspace
with humans. In those workspaces collaborative robots are expected to carry out
a wide variety of tasks simultaneously or even in cooperation with humans. The
close interaction with humans requires to adequately address safety concerns
over the complete life-cycle of a robotic application. By conforming to standards
such as ISO TS 15066 [10] and ISO 12011 [9] the collaborative workspace and
type of tasks are specified which enables safety engineers to perform risk assess-
ment. In the context of this work we consider the Care-O-bot 3 (see Fig. 1) as a
collaborative robot capable of preparing, transporting and handing over coffee
mugs to inhabitants of an apartment. For this application the risk assessment
identified a unacceptable risk, namely that the robot could scald a person by
dropping a mug with hot coffee while handing it over to a user. Thus, the risk
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assessment recommends to implement risk reduction techniques, namely safety
monitoring which is described in the following section.

2.1 Safety Monitor for Detecting In-Hand Slippage

To safely execute manipulation tasks (e.g. object picking, placing and human-
robot handover) collaborative robots need to be equipped with means to detect
slippage. That is, whether an object is moving within the robot’s grasp. To
detect in-hand slippage on the Care-O-bot 3 service robot (see Fig. 1), Sanchez
et al. [1] proposed three different types of slip detectors based on tactile (exte-
roceptive) and force (proprioceptive) measurements and as a fusion of these
(see Fig. 2). The force slip detector assumes a slip occurs whenever a force
is exerted in the right direction (e.g. downwards with respect to the grasp
frame). The tactile slip detector estimates the tangential force on the sensor
caused by a sliding pressure (e.g. a grasped object slipping). The combined
slip detector fuses both slip signals from the tactile slip detector and the force
slip detector in a rule-based manner where experimentally obtained threshold
values for the tactile and force slip detector are compared with each other.

Fig. 2. The high-level functional architecture of the
force, tactile and combined slip detector.

From a safety perspective
the three slip detectors rep-
resent an active safety fea-
ture, namely a safety mon-
itor which aims to preserve
safety by checking safety-
relevant information and
possibly altering the robots
behavior. Safety monitors
are well-developed tech-
niques in robotics which
generally aim to prevent an
autonomous robot of per-
forming unsafe actions [14].
In our scenario, an unsafe
action could be dropping a coffee mug while handing it over to a user. The slip
detector can be used to prevent dropping the mug by detecting slippage and
by exerting a higher force on the grasped mug. However, the performance of
each slip detector varies considerably depending on the action, for example, the
tactile slip detector outputs a slip whenever grasping an object. Contrary, the
force slip detector achieves perfect accuracy for detecting actual slips, however
its performance is poor when no slippage occurs, for example, when the robot
base is moving. Thus, the evaluation of the approach carried out on the Care-O-
bot 3 platform [1], highly suggests that the actions and motions performed by
the robot during grasping should be taken into account for improved safety per-
formance. Therefore, it is necessary to adapt the safety monitor to the current
robot’s actions at run time.
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2.2 Deployment Requirements of the Safety Monitor

To this end, it is not only crucial to select the correct monitoring strategy for
the task at hand, but also to deploy the safety monitor on the best matching
platform. That is, a platform which fulfills the deployment requirements of the
selected safety monitor. In the context of this work the Care-O-bot 3 robot is
a distributed system with several computational platforms, thus several deploy-
ment options. For the described slip detectors we can formulate the following
deployment requirements:

R1: The force slip detector should be deployed on a platform to which the force
sensor is connected.

R2: The tactile slip detector should be deployed on a platform to which all
tactile sensors are connected.

R3: The combined slip detector should be deployed on a platform with at least
250MB working memory.

Those requirements are based on experimentally obtained timing results of dif-
ferent deployment options.

3 Specifying Safety Monitors

We employ the textual, Ruby-based domain-specific languages RPSL (Robot
Perception Specification Language) and DepSL (Deployment Specification Lan-
guage) [8] to model architectural and deployment concerns of safety monitors
(see Fig. 3). With RPSL one can model multi-stage slip detectors as those intro-
duced in Sect. 2 as directed acyclic graphs composed of sensor components (e.g.
force sensors) and processing components. In RPSL those graphs are called per-
ception graphs and represent an executable and deployable unit. DepSL is used
to attach platform requirements to each each safety monitor (cf. Sect. 2.2). To
this end, DepSL supports the following requirement types proposed by the OMG
deployment specification [13]:

Quantity. This requirement allows to express a certain number of required ele-
ments. For example, a certain number of tactile sensors connected
to a platform (cf. R2).

Capacity. This requirement allows to express a certain capacity of a platform
resource which can be consumed by one or more perception graphs.
For example, the size (capacity) of working memory (cf. R3).

Minimum. This requirement allows to express an acceptable lower bound of a
platform property. For example, maximum latency of a networking
connection.

Maximum. This requirement allows to express an acceptable upper bound of
a platform property. For example, the maximum latency of a net-
working connection.
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1 rpsl.perception_graph do
2 name "force_slip_detector"
3 connect "force_sensor", "out_port",
4 "slip_detection", "in_port"
5 ...
6 end
7
8 depsl.deployment_specification do
9 name "force_slip_detector"

10 add_constraint :attribute , :platform_has , "force_sensor"
11 ...
12 end

Fig. 3. An excerpt of the RPSL domain model of the force-based slip detector. DepSL
is employed to specify deployment constraints for the force slip detector perception
graph, namely that the platform where the graph will be eventually deployed has a
force sensor attached to it.

Attribute. This requirement allows to express the existence of certain platform
properties. For example, a certain hardware version of a sensor or
a specific operating system installed on the platform (cf. R1).

Selection. This requirement allows to express a set of elements where one or
more should be available on the platform. For example, different
sensors of the same modality, but from different manufacturers.

Those requirements are used by the deployment architecture (see Sect. 4) to
identify suitable platforms for each safety monitor.

4 Deploying Safety Monitors

The deployment architecture depicted as a component-based diagram in Fig. 4
conforms to the reference architecture specified in [6]. The basic idea of the
architecture is to separate the concern of what should be deployed from the
where it should be deployed. In the following sections we focus on the latter.
Note, as the deployment architecture has been developed in the context of RPSL
and as the safety monitors are specified with RPSL we will use the term perception
graph interchangeably with the term safety monitor.

4.1 Context Monitoring

One or more context monitoring components are composed in the deployment
architecture in order to provide the contextual information needed to select
(see Sect. 4.3) and deploy (see Sect. 4.4) safety monitors. To this end, con-
text monitors collect – hence requiring additional interfaces (see Fig. 4) –
and interpret all the measurements required to infer the current state of
robots’ environment, platform (e.g. sensors, actuators and computational ele-
ments) and tasks and skills. Context monitors make this information accessi-
ble to other components by inserting them in the repository (see Sect. 4.2).
In the context of the case study the main objective of the context monitor



Adaptive Deployment of Safety Monitors for Autonomous Systems 351

Fig. 4. The architecture for deploying the safety monitors
depicted as a UML-like component diagram.

is to retrieve the cur-
rent action performed
by the Care-O-bot 3.
To this end, three
different actions are
detectable by the con-
text monitor. First,
whether the fingers of
the gripper are closed
to hold an object (cf.
grasp). Second, whet-
her the robot’s base
moves while holding
an object (cf. move
base). Third, whether
the fingers of the gripper are open to hand-over an object (cf. release).

4.2 Repository

The repository plays a central role in the deployment architecture as it contains
all the knowledge required for carrying out the deployment activities. Broadly
speaking, the knowledge can be classified in design time and run time knowl-
edge. Examples of the former are domain models expressing knowledge about the
safety monitors (see Sect. 2) and the robot platform, and examples for the latter
are information about the current memory usage or the availability of sensors
required, for example, by the safety monitors. The repository component pro-
vides three interfaces, namely Insert, Query and Notify. The Query interface is
used to retrieve information about design and run time knowledge. The Insert
interface is used to create and update information in the repository, and the
Notify interface is employed to inform other components about those changes
in the repository. In the context of the case study both the RPSL and DepSL
(see Fig. 3) were employed to create domain models representing the knowl-
edge relevant for deploying the safety monitors. Those domain models represent
not only the three different slip detectors, but also their associated deployment
descriptions and the computational hardware of the Care-O-bot 3 robot. It is
important to note that the repository in the context of this case study is realized
as a graph database [7]. Thus, both RPSL and DepSL domain models have been
translated to a labeled property graph representation. As demonstrated in [7]
this representation paves the way to execute semantic queries to retrieve implic-
itly defined information required to infer on which platform, for example, the
safety monitor should be deployed. As shown in Fig. 5a–d excerpts of the graph
expressing the case study are depicted.
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(a) An excerpt of the repository at time t0.

(b) An excerpt of the repository at time t1.

(c) An excerpt of the repository at time t2.

(d) An excerpt of the repository at time t3.

Fig. 5. Snapshots of the graph-based repository during the case study. Note, the snap-
shots are an excerpt of the complete graph database and focus on how the links between
the deployment description (and their corresponding requirements) and the available
platforms are established during the case study.
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4.3 Selection of Safety Monitors

The perception graph selection component (see Fig. 4) is in charge of select-
ing one or more perception graphs suitable for the task at hand. To this end,
activation is either triggered – in a reactive manner – by changes of context con-
ditions using the Notify interface or by higher-level components via the Select
interface provided by the component. In order to select a safety monitor which is
appropriate for the current action context a simple, yet powerful rule-based app-
roach is applied. During design time a set of of decision rules have been devised.
Here, the action context is part of the rule condition and the selection of a
safety monitor is part of the rule body. The rules are based on the experiments
described in [1].

Algorithm 1. Finding a platform satisfying the deployment requirements.
1: function Deploy.perceptionGraphs(G) � G is the set of graphs to be deployed.
2: for each gi ∈ G do
3: di ← Query.getDeploymentInformation(gi)
4: if di �= ∅ then
5: if Query.hasFixedDeployment(di) then
6: p ← Query.getFixedPlatform(di)
7: if Control.start(gi, p) then
8: return success
9: else

10: Error.deploymentFailed(gi, p)
11: return error
12: else
13: C ← Query.getConstraints(di) � C, the deployment constraints.
14: P ← checkValidity(C) � P , the acceptable platforms.
15: if P �= ∅ then
16: if not Query.isDeployed(gi, P ) then
17: if Control.start(gi, pk ∈ P ) then
18: return success
19: else
20: Error.deploymentFailed(gi, pk ∈ P )
21: return error
22: else
23: Error.noAcceptablePlatforms(gi)
24: return error
25: else
26: Error.deploymentInformationMissing(gi)
27: return error

4.4 Adaptive Deployment of Safety Monitors

The perception graph deployment component (see Fig. 4), or just deployer, is
responsible for deploying one or more perception graphs. To do so, the deployer
provides a Deploy interface which is used by the selector to inform the deployer
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which perception graphs have to be deployed. After receiving such a request,
Algorithm 1 is used to find those platforms which meet the deployment require-
ments for the given graphs. In case no platform is suitable, for example, if no
platform satisfies the memory requirements, an error is reported via the Error
interface. The implementation of the Error interface depends significantly on
(a) how the reference architecture is realized in an application context, and (b)
how the overall error management is implemented (see e.g. Garcia et al. [5] for a
survey). The deployment algorithms shown in Algorithms 1 and 2 are explained
in the following paragraphs by making use of the case study described in Sect. 2.
We assume that at time t0 the robot is located in the kitchen and has a mug in
its hand. At this point in time the repository (see Sect. 4.2) is composed of nodes
and edges as shown in Fig. 5a. Subsequently, a user requests the robot to deliver
the mug to the living room. At time t1 the robot starts moving it’s base, hence
the context monitor (see Sect. 4.1) detects the move base action context and
updates the repository. Based on the context update, the selector (see Sect. 4.3)
component requests the tactile slip detector to be deployed. Thus, the selector
calls the perceptionGraphs() method of the Deploy interface provided by the
deployer.

As shown in Algorithm 1 for each selected perception graph gi correspond-
ing deployment information di is retrieved. That is, the node which resolves
the perception graph is retrieved. In case no deployment information for gi is
available an error is reported. Subsequently it is checked whether or not a fixed
deployment is given. That is, it is checked whether di has an edge to a platform
which is labeled :EXECUTABLE ON. As shown in Fig. 5a no fixed deployment for
the tactile slip detector is provided. Thus, all the deployment requirements of
di are retrieved in order to find an acceptable platform meeting the require-
ments. The checkValidity() method takes the requirements and returns those
platforms P satisfying them. In the context of this example, checkValidity()
checks which platform provides nine tactile sensors as those are required for the
tactile slip detector. Basically two situations can occur, namely no platform is
meeting the requirements or one or more platforms meet the requirements. In
the former case an error is reported and for the latter case it is checked whether
or not gi is already deployed on one of the acceptable platforms. If gi is not
yet deployed on one of the acceptable platforms the deployer calls the start()
method of the Control interface provided by the infrastructure component1 in
order to request the execution of gi on pk ∈ P . Having successfully deployed gi
on pk the infrastructure component creates an edge labeled :DEPLOYED ON from
the tactile deployment node to the platform node (see Fig. 5b).

At time t2 the robot reaches the living room and hands-over the mug to the
user. The robot opens the fingers of the gripper to release the mug. Thus, the
context monitor detects the release action. Subsequently, the selector chooses an
appropriate slip detector for the observed context, namely the force slip detec-
tor. The selector requests the deployer to stop the current slip detector and to

1 The infrastructure component abstracts the concrete runtime environment, e.g. a
robot software framework.
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deploy the force slip detector. Depending on the implementation of the percep-
tion graphs it would be also possible to simply send a pause signal to the slip
detector.

As shown in Fig. 5c once the tactile slip detector is stopped, the edge from the
deployment to the platform node is updated, namely the label is changed from
:DEPLOYED ON to :DEPLOYMENT HISTORY. Like at time t1 deployment require-
ments are checked and the force slip detector is deployed on the platform to
which the force sensor is connected. At time t3 the force sensor breaks and no
force signal is provided anymore. The context monitor detects this failure and
updates the corresponding platform model, namely the edge from the platform
node to the sensor/device node is removed (see Fig. 5d). The repository noti-
fies the deployer about those changes. Subsequently, the deployer executes the
checkDeployment() method shown in Algorithm 2. The main objective of Algo-
rithm 2 is to ensure that deployments remain valid in the presence of platform
changes. To this end, each active deployment on the updated platform pi is
checked whether or not the requirements are met (cf. Algorithm 1). Three situ-
ations can occur, namely (a) no platform meets the requirements, (b) pi meets
the requirements, or (c) other platforms than pi meet the requirements. In the
context of the case study no platform satisfies the requirements, thus, the force
slip detector is stopped.

Algorithm 2. Checking whether or not deployments are valid.
1: function checkDeployment(pi)
2: D ← Query.getActiveDeployments(pi) � D, the active deployments on pi.
3: for each di ∈ D do
4: gi ← Query.getPerceptionGraph(di) � gi, the perception graph.
5: C ← Query.getConstraints(di) � C, deployment constraints.
6: P ← checkValidity(C) � P , the acceptable platforms.
7: if P = ∅ then
8: Error.noAcceptablePlatforms(gi)
9: if Control.stop(gi, pi) then

10: return success
11: else
12: Error.stoppingFailed(gi, pi)
13: return error
14: if pi ∈ P then
15: return success
16: if not P = ∅ and pi /∈ P then
17: if Control.start(gi, pk ∈ P ) then
18: return success
19: else
20: Error.deploymentFailed(gi, pk ∈ P )
21: return error
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5 Related Work and Discussion

Software deployment for autonomous systems and robotics in particular is usu-
ally achieved by some kind of deployment infrastructure provided by the under-
lying robot software framework. For example, the roslaunch deployment tool
of the popular ROS [15] framework takes a XML-based description of the ROS
architecture as an input and initiates the deployment according to it. To this
end, components in ROS also known as nodes are started, stopped, parameters
are set and so forth. Another notable deployment approach in robotics is pro-
posed by Ando et al. [2]. Here – in the context of the OpenRTM robot software
framework – deployment is considered as a part of component and system lifecy-
cle management. The approach mainly deals with implementation-level details,
for example, how manager services interact and how components are instanti-
ated. Like in ROS, the OpenRTM deployment infrastructure relies on dedicated
deployment files expressing crucial deployment information such as the location
of an executable and so forth. Although these approaches help to automate the
deployment task they are limited as they are not capable of expressing and
resolving deployment requirements as presented in this paper. The deployment
architecture proposed in this paper is inspired by the MAPE-K [11] reference
architecture for self-adaptive software systems as it contains similar building
blocks as those proposed in MAPE-K such as monitoring, knowledge storage,
analysis and so forth. However, the introduced deployment architecture is more
fine-grained as, for example, a stepwise deployment is supported. Here, the selec-
tor (see Sect. 4.3) deals with what should be deployed and the deployer (see
Sect. 4.4) deals with how and where it should be deployed. It is important to
note that currently, all deployment requirements are treated equally by Algo-
rithm 1 as no preferences, weights or the like are given. Thus, if a platform is not
meeting all the requirements it is not in the set of acceptable platforms P (cf.
Algorithm 1). In addition, the current implementation ensures that the deploy-
ment requirements are not modified at run time. However, supporting dynamic,
modifiable requirements could be feasible in even more dynamic situations such
as in the context of cloud-robotics where resources are requested on demand.

6 Concluding Remarks

This article presented an approach for deploying safety monitors at run-time even
in the presence of varying requirements. The presented work has been developed
and integrated on a real robotic system which demonstrates its applicability to
re-deploy safety monitors at run-time.
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