
A Proof System for a Unified Temporal
Logic

Liang Zhao1, Xiaobing Wang1(B), Xinfeng Shu2(B), and Nan Zhang1

1 Institute of Computing Theory and Technology and ISN Laboratory,
Xidian University, P.O. Box 177, Xi’an 710071, People’s Republic of China

{lzhao,nanzhang}@xidian.edu.cn, xbwang@mail.xidian.edu.cn
2 School of Computer Science and Technology, Xi’an University of Posts

and Communications, Xi’an 710061, People’s Republic of China
shuxf@xupt.edu.cn

Abstract. Theorem proving is a widely used approach to the verifica-
tion of computer systems, and its theoretical basis is generally a proof
system for formal derivation of logic formulas. In this paper, we propose a
proof system for Propositional Projection Temporal Logic (PPTL) with
indexed expressions, which is a unified temporal logic that subsumes the
well-used Linear Temporal Logic (LTL). First, the syntax, semantics and
logic laws of PPTL that allows indexed expressions are introduced, and
the representation of LTL constructs by PPTL formulas is shown. Then,
the proof system for the logic is presented which consists of axioms and
inference rules for the derivation of both basic constructs and indexed
expressions of PPTL. To show the capability of the proof system, several
examples of formal proofs are provided. Finally, the soundness of the
proof system is demonstrated.

Keywords: Theorem proving · Proof system · Temporal Logic ·
Indexed expression · Soundness

1 Introduction

Projection Temporal Logic (PTL) [3] is an extension of Interval Temporal Logic
(ITL) [13] by introducing a new projection construct and supporting both finite
and infinite timeline. Within the PTL framework, Propositional PTL (PPTL)
is proved to have the full regular expressiveness [18], and its decision problem
has been solved [5]. Further, Modeling, Simulation and Verification Language
(MSVL) [7], an executable subset of PTL armed with a framing technique, is
defined as the language for system modeling. Based on these theoretical work, a
unified model checking [2] approach with PTL is developed for formal verification
of computer systems [4,20].

This research is supported by the NSFC Grant Nos. 61751207, 61732013, 61672403,
and 61572386.

c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): COCOON 2019, LNCS 11653, pp. 663–676, 2019.
https://doi.org/10.1007/978-3-030-26176-4_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26176-4_55&domain=pdf
https://doi.org/10.1007/978-3-030-26176-4_55

664 L. Zhao et al.

The advantage of the model checking approach is that verification can be
done automatically. However, it suffer from the state explosion problem and
thus less suitable to verify data intensive applications. Another approach to
system verification widely used in practice is theorem proving [10], in which a
proof system for a specific logic, usually a temporal logic, is constructed in terms
of axioms and inference rules. To verify whether a computer system satisfies a
desired property, both the system and the property are characterized by formulas
S and P of the logic, respectively. Then, the problem is to check whether S → P
can be proved formally by the axioms and inference rules of the proof system.
Generally, such a verification process involves human assistance and can be done
semi-automatically. The advantage of theorem proving is that it avoids the state
explosion problem and can verify both finite-state and infinite-state systems,
including data intensive applications.

In the past three decades, a number of proof systems for Liner Temporal
Logic (LTL), Computing Tree Logic (CTL) and other temporal logics have
emerged [9,11,12]. However, the expressive power of these logics is weaker than
ITL or PPTL. Within the ITL community, several researchers have investigated
axiomatic systems with different extensions. Rosner and Pnueli [16] present a
proof system for a propositional choppy logic with chop, next and until opera-
tors. Bowman and Thompson provide a completeness proof and a tableau-based
decision procedure for PITL with projection over finite intervals [1]. Moszkowski
proposes an axiom system over finite intervals for PITL, and later extends the
work to infinite intervals [14]. Besides, two proof systems are formalized for
PPTL [8] and PTL [17], respectively.

A recent study [6] extends PPTL with indexed expressions that take the form
of

∨
i∈N

R[i]. Although indexed expressions are obtained by applying the syntax
rules countably infinitely many times, they have definite semantics and certain
good properties. Especially, they can equivalently represent the strong until U
and weak until W constructs of LTL. As a result, PPTL with indexed expressions
is a unified temporal logic that involves LTL as one of its subsets.

To employ PPTL and the indexed-expression technique to system verification
in the theorem proving approach, we develop a proof system Π for the unified
logic in this paper. Specifically, Π consists of two sub-systems of axioms and
inference rules. The first sub-system is provided for formal proof of basic PPTL
constructs, such as next, projection, always and chop plus. The second sub-
system is designed especially for formal derivation of formulas with indexed
expressions. We provide a few examples to show how the proof system Π works,
and demonstrate its soundness that every formula proved by Π is valid.

The paper is organized as follows. The next section introduces PPTL, includ-
ing indexed expressions and their capability of representing LTL. Then, Sect. 3
presents our proof system in terms of axioms and inference rules and Sect. 4 pro-
vides examples of formal proofs with the proof system. In Sect. 5, the soundness
of the proof system is demonstrated. Finally, conclusions are drawn in Sect. 6
with a discussion on potential future work.

A Proof System for a Unified Temporal Logic 665

2 Propositional Projection Temporal Logic

We first introduce basic notions of Propositional Projection Temporal Logic
(PPTL) [3]. Let P be a countable set of atomic propositions and B = {tt ,ff }
the boolean domain. Usually, we use small letters, possibly with subscripts, like
p, q, r1, to denote atomic propositions in P and capital letters, possibly with sub-
scripts, like P,Q,R1, to represent general PPTL formulas. Formally, the formulas
of PPTL are inductively defined by the following syntax:

P ::= q | ¬P | P ∧ P | © P | (P [+]) prj P
P [+] ::= P | P, P [+]

where P [+] represents a finite sequence of PPTL formulas separated by commas.
For simplicity, some previous publications of PPTL, such as [3,18], use the syntax
defined as follows.

P :: = q | ¬P | P1 ∧ P2 | © P | (P1, . . . , Pm) prj P

It is trivial to prove that the two definitions are equivalent. Notice that © (next),
and prj (projection) are temporal operators, while ¬ and ∧ are defined as they
are in classical propositional logic. A formula is called a state formula if it does
not contain any temporal operators.

In the semantics of PTL, formulas are interpreted upon intervals. An interval
σ = 〈s0, s1, . . .〉 is a non-empty sequence of states, finite or infinite, while a state
s is a mapping from P to B. The length of an interval σ, denoted as |σ|, is the
number of states in σ minus one if σ is finite; or the smallest infinite ordinal
ω if σ is infinite. Let N denote the set of natural numbers. To have a uniform
notation for both finite and infinite intervals, we use extended natural numbers
as indices, that is Nω = N∪{ω}, and extend the comparison operators, =, <,≤,
to Nω by considering ω = ω and for all i ∈ N, i < ω. Moreover, we write
 as
≤ −{(ω, ω)}. To simplify definitions, we denote σ by 〈s0, · · · , s|σ|〉, where s|σ| is
undefined if σ is infinite. With such a notation, σ(i..j) (0 ≤ i
 j ≤ |σ|) denotes
a sub-interval 〈si, · · · , sj〉.

To formalize the semantics of the projection construct prj, we define an aux-
iliary operator ↓ to get rid of singleton points. For an interval σ and natural
numbers i0 ≤ . . . ≤ im (m ∈ N), σ ↓ (i0, . . . , im) denotes the interval obtained
from σ by preserving only states with non-repeated indices from il (0 ≤ l ≤ m).
For example, 〈s0, s1, s2, s3, s4〉 ↓ (0, 0, 2, 2, 2, 3) = 〈s0, s2, s3〉. In addtion, we use
σ · σ′ to denote the concatenation of two intervals σ and σ′, provided σ is finite.

An interpretation is a tuple I = (σ, k, j), where σ = 〈s0, s1, . . .〉 is an interval,
k ∈ N and j ∈ Nω with 0 ≤ k ≤ j ≤ |σ|. For a PPTL formula P , I |= P denotes
that I is an interpretation of P , defined inductively as follows. Intuitively, it
means that P is interpreted over the subinterval σ(k..j) of σ with the current
state being sk.

666 L. Zhao et al.

I |= p iff sk(p) = tt
I |= ¬P iff I �|= P
I |= P1 ∧ P2 iff I |= P1 and I |= P2

I |= ©P iff k < j and (σ, k + 1, j) |= P
I |= (P1, . . . , Pm) prj Q iff there exist (extended) natural numbers k = i0 ≤ . . . ≤ im−1

� im ≤ j such that (σ, il−1, il) |= Pl for all 1 ≤ l ≤ m
and (σ′, 0, |σ′|) |= Q for σ′ given by either

(1) σ′ = σ ↓ (i0, . . . , im) · σ(im+1,...,j) if im < j, or
(2) σ′ is a prefix of σ ↓ (i0, . . . , im) if im = j.

Fig. 1. Possible interpretations of (P1, P2, P3) prj Q

The projection construct (P1, . . . , Pm) prj Q is a key operator of PPTL, which
has potential applications for compositional reasoning about concurrent systems.
The construct allows formulas P1, . . . , Pm, Q to be autonomous, each interpreted
in its own interval. Specifically, two different time scales exist, where P1, . . . , Pm

are interpreted over a series of fine-grained intervals while Q is interpreted over a
coarse-grained projected interval. In particular, the sequence of P1, . . . , Pm and
Q may terminate at different time points. The intuition of (P1, P2, P3) prj Q is
shown in Fig. 1.

A formula P is satisfied by an interval σ, denoted by σ |= P , if (σ, 0, |σ|) |= P .
A formula P is satisfiable if σ |= P for some σ while a formula P is valid, denoted by
|= P , if σ |= P for all intervals σ. The abbreviations such as tt , ff , ∨, → and ↔ are

A Proof System for a Unified Temporal Logic 667

defined as usual. Some derived formulas of PPTL are shown below. They are useful
in characterizing various temporal properties.

ε
def= ¬ © tt P ;Q def= (P,Q) prj ε

♦P
def= tt ;P �P

def= ¬♦¬P

P+ def= (P [+]) prj ε P ∗ def= ε ∨ P+

halt(P) def= �(ε ↔ P) final(P) def= �(ε → P)
keep(P) def= �(©tt → P) rem(P) def= �(©tt → ©P)

fin
def= ♦ε ln(n) def=

{
ε if n = 0
©ln(n − 1) if n ≥ 1

inf
def= � © tt P ‖ Q

def= P ∧ (Q ; tt) ∨ Q ∧ (P ; tt)

The empty formula ε means that the current state is the last one of the interval,
and the chop construct P ;Q means the sequential composition of P and Q.
Besides, the sometimes construct ♦P (resp. always construct �P) indicates P
holds at some state (resp. every state) from the current state on. The meaning
of the chop plus construct P+ (resp. chop star construct P ∗) is as usual, i.e.,
P holds repeatedly for one or more (resp. zero or more) times. Then, halt(P)
and final(P) say that P holds at the last state of the interval, while halt(P)
also requires P holds only at the last state. The formula keep(P) (resp. rem(P))
means that P holds at every state that has a next (resp. previous) state in the
interval. In addition, fin (resp. inf) indicates the interval is finite (resp. infinite),
and ln(n) claims that the length of the remaining interval is exactly n. Finally,
the parallel construct P ‖ Q means that P and Q are interpreted in parallel.

We denote |= P ↔ Q by P ≡ Q (equivalence), and |= P → Q by P ⊂ Q
(strong implication). Some logic laws of PPTL are provided as follows, whose
proofs can be found in [3].

♦P ≡ P ∨ ©♦P �P ≡ P ∧ ε ∨ P ∧ ©�P
P+ ≡ P ∨ (P ;P+) Q ; (P1 ∨ P2) ≡ (Q ;P1) ∨ (Q ;P2)
�¬Q ≡ ¬♦Q keep(P) ≡ ε ∨ P ∧ ©keep(P)
�P ∨ �Q ⊂ �(P ∨ Q) halt(P) ≡ P ∧ ε ∨ ¬P ∧ ©halt(P)
�(P ∧ Q) ≡ �P ∧ �Q final(P) ≡ P ∧ ε ∨ ©final(P)
tt ≡ fin ∨ inf rem(P) ≡ ε ∨ ©P ∧ ©rem(P)
©(P ∨ Q) ≡ ©P ∨ ©Q �(P ∧ ©tt) ≡ P ∧ ©�(P ∧ ©tt)
©(P ∧ Q) ≡ ©P ∧ ©Q �(P → Q) ⊂ �P → �Q
©¬P ≡ ©tt ∧ ¬ © P P1 ; (P2 ;P3) ≡ (P1 ;P2) ;P3

2.1 Indexed Expression

Generally, a well-formed formula of PPTL is constructed by applying the syntax
rules finitely many times. However, some formulas formed by applying the syntax
rules countably infinitely many times, such as

∨
i∈N

©iP , have definite semantics
and good properties.

668 L. Zhao et al.

A recent work [6] studies a kind of such formulas, namely indexed expressions,
which are of the form

∨
i∈N

R[i] where R[i] is a well-formed formula with an index
i ∈ N. Specifically, R[i] may contain sub-formulas such as ©iP , P i and P (i). For
i ∈ N, ©iP is the application of the next operator to P for i times, P i means
P holds repeatedly for i times, while P (i) means P holds at the consecutive i
states from the current state on. Formally, they are defined as follows.

©iP
def=

{
P if i = 0
© ©i−1 P if i ≥ 1 P i def=

{
ε if i = 0
P i−1 ;P if i ≥ 1

P (i) def=

⎧
⎨

⎩

tt if i = 0
P if i = 1
P ∧ ©P (i−1) if i > 1

The semantics of an indexed expression is clear. Let I be an interpretation.

I |=
∨

i∈N

R[i] iff there exists i ∈ N such that I |= R[i]

Intuitively,
∨

i∈N
R[i] means some R[i] holds for i ∈ N. From now on, we consider

PPTL with indexed expressions in that a formula may contain indexed expres-
sion(s) as its sub-formula(s). Nevertheless, it is good that indexed expressions
do not occur nested, since R[i] in

∨
i∈N

R[i] is a well-formed formula.
To avoid excessive use of parentheses, we specify the precedence of operators

as: 1. +, ∗; 2. ¬, ©, �, ♦, prj; 3. ∧; 4.
∨

i∈N
; 5. ∨; 6. ; ; 7. ‖; 8. →; 9. ↔, where

1 = highest and 9 = lowest.

Fig. 2. Intuitive meaning of p U q (see (a)) and p W q (see (a) or (b))

Indexed expressions of the form
∨

i∈N
P (i) ∧ ©iQ are closely related to the

recursive equation X ≡ Q ∨ P ∧ ©X [6], shown by the following lemmas.

Lemma 1. The recursive equation X ≡ Q∨P ∧©X has exactly two solutions:∨
i∈N

P (i) ∧ ©iQ and
∨

i∈N
P (i) ∧ ©iQ ∨ �(P ∧ ©tt).

Lemma 2. Let X be a formula satisfying X ≡ Q ∨ P ∧ ©X, then

1. X ⊂ ♦Q iff X ≡ ∨
i∈N

P (i) ∧ ©iQ, and
2. �(P ∧ ©tt) ⊂ X iff X ≡ ∨

i∈N
P (i) ∧ ©iQ ∨ �(P ∧ ©tt).

Many cases of indexed expressions are intrinsically well-formed in that they
are equivalent to well-formed formulas. Specifically, we have the following logic

A Proof System for a Unified Temporal Logic 669

laws. Most of the laws are proved using the above lemmas, the others are proved
by the fixed-point induction approach [19].
∨

i∈N
©iQ ≡ ♦Q

∨
i∈N

Qi ≡ Q∗
∨

i∈N
P (i) ∧ ©i(P ∧ ε) ≡ �P ∧ ♦ε

∨
i∈N

P (i) ∧ ©iε ≡ keep(P) ∧ ♦ε
∨

i∈N
(¬P)(i) ∧ ©i(P ∧ ε) ≡ halt(P) ∧ ♦ε

∨
i∈N

(©P)(i) ∧ ©iε ≡ rem(P) ∧ ♦ε
∨

i∈N
P (i) ∧ ©i(P ∧ ε) ∨ �(P ∧ ©tt) ≡ �P

∨
i∈N

P (i) ∧ ©iε ∨ �(P ∧ ©tt) ≡ keep(P)
∨

i∈N
(¬P)(i) ∧ ©i(P ∧ ε) ∨ �(¬P ∧ ©tt) ≡ halt(P)

∨
i∈N

(©P)(i) ∧ ©iε ∨ �(©P ∧ ©tt) ≡ rem(P)

2.2 Representing Linear Temporal Logic

Linear Temporal Logic (LTL) [15] is a well-known temporal logic, which is based
on a linear-time perspective and defined over an infinite interval. Usually, LTL
refers to the propositional subset of LTL which has been widely used in practice.
In LTL, the most prominent operators are strong until U and weak until W,
which is a weak version of U. Their intuitive meanings are shown in Fig. 2 and
more details can be found in [2].

We show that both the strong until and weak until operators can be rep-
resented as PPTL formulas with indexed expressions. Suppose (P UQ)P and
(P WQ)P are PPTL formulas that have the same meaning as P UQ and P WQ,
respectively. Then, both (P UQ)P and (P WQ)P satisfy the recursive equation
X ≡ Q ∧ inf ∨ P ∧ ¬Q ∧ ©X. In addition, they satisfy (P UQ)P ⊂ ♦(Q ∧ inf)
and �(P ∧ ¬Q ∧ ©tt) ⊂ (P WQ)P. According to Lemma 2, we have

(P UQ)P ≡ ∨
i∈N

(P ∧ ¬Q)(i) ∧ ©i(Q ∧ inf) ≡ inf ∧ ∨
i∈N

(P ∧ ¬Q)(i) ∧ ©iQ, and

(P WQ)P ≡ inf ∧ ∨
i∈N

(P ∧ ¬Q)(i) ∧ ©iQ ∨ �(P ∧ ¬Q ∧ ©tt).

Therefore, we can simply define the two operators in PPTL in the following way.

P UQ
def= inf ∧ ∨

i∈N
(P ∧ ¬Q)(i) ∧ ©iQ, and

P WQ
def= inf ∧ ∨

i∈N
(P ∧ ¬Q)(i) ∧ ©iQ ∨ �(P ∧ ¬Q ∧ ©tt).

On the other hand, except U and W, every construct of LTL has a direct
counterpart in PPTL. As a result, PPTL with indexed expressions is a unified
temporal logic that subsumes LTL.

3 Proof System

This section presents the proof system Π for PPTL with indexed expressions,
consisting of a set of axioms and inference rules. Each axiom defines a formula
that can be directly derived by the system, and each inference rule defines a one-
step derivation of a conclusion formula from one or more hypothesis formulas.

670 L. Zhao et al.

A formal proof (or formal derivation) of a formula P is a sequence of formulas
P0, . . . , Pn (n ∈ N) such that Pn = P and each Pi (0 ≤ i ≤ n) is either an axiom
or the conclusion formula of an inference rule, provided every hypothesis formula
of the rule has occurred in the preceding formulas P0, . . . , Pi−1. If such a formal
proof exists, we say that P is proved by Π or P is a theorem of Π, denoted as
�Π P . When there is no confusion, we omit the subscript and simply write � P .

Specifically, the proof system Π is composed of two parts: axioms and infer-
ence rules ΠB for basic constructs, such as next and projection, and those ΠI

for indexed expressions, i.e. Π = ΠB ∪ ΠI .

3.1 Axioms and Inference Rules for Basic Constructs

A proof system for basic constructs of PPTL has been proposed in [8], which
adopts a relatively complex version of syntax that considers a projection-plus
construct (P1, . . . , (Pi, . . . , Pj)⊕, . . . , Pm) prj Q as a basic construct. Here, we
provide ΠB , an equivalent but more concise presentation of the proof system,
based on the current version of syntax considering the projection construct
instead of the projection-plus construct.

Let S denote a state formula and Ω represent a finite sequence of formulas,
which is possible the empty sequence τ . For convenience, we define (τ) prj P to
be P . The set of axioms of ΠB are presented as follows.

TAU ψ where ψ is an instance of a propositional tautology
POF (Ω1, P1 ∨ P2, Ω2) prj Q ↔ (Ω1, P1, Ω2) prj Q ∨ (Ω1, P2, Ω2) prj Q
POB (Ω) prj (Q1 ∨ Q2) ↔ (Ω) prj Q1 ∨ (Ω) prj Q2

PFN (Ω1, P1, P2, Ω2) prj Q ↔ (Ω1, P1 ∧ fin, P2, Ω2) prj Q
PIN (Ω, P ∧ inf) prj Q ↔ (Ω, P ∧ inf) prj (Q ∧ fin)
PSM (Ω1, S ∧ ε, P, Ω2) prj Q ↔ (Ω1, S ∧ P, Ω2) prj Q
PSF (S ∧ P, Ω) prj Q ↔ S ∧ (P, Ω) prj Q PSB (Ω) prj (S ∧ Q) ↔ S ∧ (Ω) prj Q
PEF (Ω, ε) prj Q ↔ (Ω) prj Q PEB (P) prj ε ↔ P
PNX (©P, Ω) prj © Q ↔ ©((P, Ω) prj Q) CPR P+ ↔ P ∨ (P ∧ ©tt ;P+)
NXN ©¬P ↔ ¬(ε ∨ ©P) NXA ©(P ∧ Q) ↔ ©P ∧ ©Q
CNX ©P ;Q ↔ ©(P ;Q) CAS P1 ; (P2 ;P3) ↔ (P1 ;P2) ;P3

STN P ∧ ♦¬P → ♦(P ∧ ©¬P) ALR �P ↔ P ∧ (ε ∨ ©�P)

Intuitively, an axiom is a formula that is supposed to be valid. Especially, the
validity of a formula P ↔ Q means that P and Q are equivalent.

The set of inference rules of ΠB are presented as follows.

MP
P P → Q

Q
SUB

P (Q) Q ↔ Q′

P (Q′)

NXM
P → Q

©P → ©Q
PRM

P → P ′ Q → Q′

(Ω1, P,Ω2) prj Q → (Ω1, P
′, Ω2) prj Q′

ALW
P

�P
CPM

P → Q
P+ → Q+

REC
P → Q ∨ ©P

P → ♦Q ∨ � © P

A Proof System for a Unified Temporal Logic 671

The rule MP is the classic rule of modus ponens for propositional logic. And in
the rule SUB, P (Q) denotes a formula P with a sub-formula Q, and P (Q′) is the
formula obtained from P (Q) by substituting Q with Q′. Intuitively, an inference
rule means: if the hypothesis formulas are all valid, the conclusion formula is
also valid. More explanations of these axioms and inference rules can be found
in [8].

3.2 Axioms and Inference Rules for Indexed Expressions

We propose a proof (sub-)system ΠI to reason about PPTL formulas with
indexed expressions. The set of axioms of ΠI are presented as follows. Here,
P denotes a formula without any index.

IST
∨

i∈N
Qi ↔ Q∗

INS R[i] → ∨
i∈N

R[i] INR
∨

i∈N
R[i] ↔ R[0] ∨ ∨

i∈N
R[i + 1]

INA
∨

i∈N
P ∧ R[i] ↔ P ∧ ∨

i∈N
R[i] INO

∨
i∈N

(P ∨ R[i]) ↔ P ∨ ∨
i∈N

R[i]
INN

∨
i∈N

©R[i] ↔ ©∨
i∈N

R[i] INC
∨

i∈N
(P ;R[i]) ↔ P ;

∨
i∈N

R[i]

Among the axioms, IST indicates that an indexed expression
∨

i∈N
Qi can always

be replaced by the star construct Q∗. In fact, both the formulas mean that P
holds repeatedly for zero or more times. Then, INS and INR reflect two standard
property of the infinite disjunction operator

∨
i∈N

. In addition, INA, INO, INN
and INC indicate that the and, or, next and chop operators are distributive over
the infinite disjunction operator, respectively.

The set of inference rules of ΠI are presented as follows.

INM
R[i] → R′[i]∨

i∈N
R[i] → ∨

i∈N
R′[i]

REF
R ↔ Q ∨ P ∧ ©R R → ♦Q

∨
i∈N

P (i) ∧ ©iQ ↔ R

REI
R ↔ Q ∨ P ∧ ©R �(P ∧ ©tt) → R

∨
i∈N

P (i) ∧ ©iQ ∨ �(P ∧ ©tt) ↔ R

Among the inference rules, INM indicates that the infinite disjunction operator is
monotonic. Besides, REF and REI are provided for solving R from the recursive
biconditional “equation” R ↔ Q ∨ P ∧ ©R. The solution is in the form of
an indexed expression, possibly in disjunction with a specific always formula.
Intuitively, REF and REI are in accordance with the two cases of Lemma 2 that
the recursion is made for finitely many times and for possibly infinitely many
times, respectively.

The approach of theorem proving can be applied to verify properties of sys-
tems formally. First, both a system and a desired property are specified by PPTL
formulas S and P , respectively. Then, the system satisfies the property if and
only if we can find a formal proof of � S → P by the proof system Π.

672 L. Zhao et al.

4 Examples of Formal Proofs

To show the capability of the proof system Π, we provided a few examples of
formal proofs. Notice that once � P is proved, P is a theorem of the system and
can be used in the formal proof of other formulas.

Example 1. � keep(P) ↔ ε ∨ P ∧ ©keep(P). The theorem is denoted as T1,
whose formal proof is given as follows. Recall that ε = ¬ © tt and keep(P) =
�(©tt → P).

(1) keep(P) ↔ (©tt → P) ∧ (ε ∨ ©keep(P)) ALR
(2) (©tt → P) ∧ (ε ∨ ©keep(P)) ↔ ε ∨ P ∧ ©keep(P) TAU
(3) keep(P) ↔ ε ∨ P ∧ ©keep(P) SUB (1) (2)

Example 2. � ♦P ↔ P ∨ ©♦P . The theorem is denoted as T2, whose formal
proof is given as follows. Recall that �P = ¬♦¬P for any formula P .

(1) ¬♦¬¬P ↔ ¬P ∧ (ε ∨ ©¬♦¬¬P) ALR
(2) ¬¬P ↔ P TAU
(3) ¬♦P ↔ ¬P ∧ (ε ∨ ©¬♦P) SUB (1) (2)
(4) (¬♦P ↔ ¬P ∧ (ε ∨ ©¬♦P)) → (♦P ↔ P ∨ ¬(ε ∨ ©¬♦P)) TAU
(5) ♦P ↔ P ∨ ¬(ε ∨ ©¬♦P) MP (3) (4)
(6) ©¬¬♦P ↔ ¬(ε ∨ ©¬♦P) NXN
(7) ¬¬♦P ↔ ♦P TAU
(8) ©♦P ↔ ¬(ε ∨ ©¬♦P) SUB (6) (7)
(9) ♦P ↔ P ∨ ©♦P SUB (5) (8)

Example 3. � ∨
i∈N

©iQ ↔ ♦Q. This theorem is denoted as T3, whose formal
proof is given as follows.

(1) ♦Q ↔ Q ∨ ©♦Q T2
(2) ♦Q → ♦Q TAU
(3)

∨
i∈N

©iQ ↔ ♦Q REF (1) (2)

Intuitively, the indexed expression
∨

i∈N
©iQ means Q must hold at some

state, which is equivalently characterized by the well-formed formula ♦Q.

Example 4. � ∨
i∈N

P (i) ∧ ©iQ → ♦Q. This theorem is denoted as T4, whose
formal proof is given as follows.

(1) P (i) ∧ ©iQ → ©iQ TAU
(2)

∨
i∈N

P (i) ∧ ©iQ → ∨
i∈N

©iQ INM
(3)

∨
i∈N

©iQ ↔ ♦Q T3
(4)

∨
i∈N

P (i) ∧ ©iQ → ♦Q SUB (2) (3)

The intuition of T4 is that the indexed expression
∨

i∈N
P (i) ∧ ©iQ implies

Q must hold at some state.

A Proof System for a Unified Temporal Logic 673

Example 5. � ∨
i∈N

P (i)∧©iε∨�(P ∧©tt) ↔ keep(P). This theorem is denoted
as T5, whose formal proof is given as follows. Recall that ♦P = tt ;P =
(tt , P) prj ε for any formula P .

(1) keep(P) ↔ ε ∨ P ∧ ©keep(P) T1
(2) ¬(©tt → P) → ¬(P ∧ ©tt) TAU
(3) ε → ε TAU
(4) ♦¬(©tt → P) → ♦¬(P ∧ ©tt) PRM (2) (3)
(5) (♦¬(©tt → P) → ♦¬(P ∧ ©tt)) → (�(P ∧ ©tt) → keep(P)) TAU
(6) �(P ∧ ©tt) → keep(P) MP (4) (5)
(7)

∨
i∈N

P (i) ∧ ©iε ∨ �(P ∧ ©tt) ↔ keep(P) REI (1) (6)

Intuitively, the formula
∨

i∈N
P (i)∧©iε∨�(P ∧©tt) with an indexed expres-

sion means that the current interval is either finite or infinite and P keeps holding
at every non-final state, which is equivalently characterized by the well-formed
formula keep(P).

Example 6. � P UQ ↔ inf ∧ ∨
i∈N

P (i) ∧ ©iQ. This theorem is denoted as T6,
whose formal proof is given as follows. Recall that P UQ = inf ∧ ∨

i∈N
(P ∧

¬Q)(i) ∧ ©iQ.

(1)
∨

i∈N
P (i) ∧ ©iQ ↔ Q ∨ ∨

i∈N
P ∧ ©P (i) ∧ © ©i Q INR

(2)
∨

i∈N
P ∧ ©P (i) ∧ © ©i Q ↔ P ∧ ∨

i∈N
©P (i) ∧ © ©i Q INA

(3)
∨

i∈N
P (i) ∧ ©iQ ↔ Q ∨ P ∧ ∨

i∈N
©P (i) ∧ © ©i Q SUB (1) (2)

(4) ©(P (i) ∧ ©iQ) ↔ ©P (i) ∧ © ©i Q NXA
(5)

∨
i∈N

P (i) ∧ ©iQ ↔ Q ∨ P ∧ ∨
i∈N

©(P (i) ∧ ©iQ) SUB (3) (4)
(6)

∨
i∈N

©(P (i) ∧ ©iQ) ↔ ©∨
i∈N

P (i) ∧ ©iQ INN
(7)

∨
i∈N

P (i) ∧ ©iQ ↔ Q ∨ P ∧ ©∨
i∈N

P (i) ∧ ©iQ SUB (5) (6)
(8) Q ∨ P ∧ ©∨

i∈N
P (i) ∧ ©iQ

↔ Q ∨ P ∧ ¬Q ∧ ©∨
i∈N

P (i) ∧ ©iQ TAU
(9)

∨
i∈N

P (i) ∧ ©iQ ↔ Q ∨ P ∧ ¬Q ∧ ©∨
i∈N

P (i) ∧ ©iQ SUB (7) (8)
(10)

∨
i∈N

P (i) ∧ ©iQ → ♦Q T4
(11)

∨
i∈N

(P ∧ ¬Q)(i) ∧ ©iQ ↔ ∨
i∈N

P (i) ∧ ©iQ REF (9) (10)
(12) (

∨
i∈N

(P ∧ ¬Q)(i) ∧ ©iQ ↔ ∨
i∈N

P (i) ∧ ©iQ)
→ (P UQ ↔ inf ∧ ∨

i∈N
P (i) ∧ ©iQ) TAU

(13) P UQ ↔ inf ∧ ∨
i∈N

P (i) ∧ ©iQ MP (11) (12)

T6 indicates that the representation of P UQ can be simplified by replacing
the indexed expression

∨
i∈N

(P ∧ ¬Q)(i) ∧ ©iQ with a relatively concise one
∨

i∈N
P (i) ∧©iQ. Intuitively, the former indexed expression means that P holds

until Q holds for the first time, and the latter indexed expression means that P
holds until sometimes Q holds. These meanings are actually equivalent.

5 Soundness

An observation about the examples presented in the previous section is that
many theorems of the proof system Π coincide with the logic laws of PPTL.

674 L. Zhao et al.

For instance,
∨

i∈N
©iQ ↔ ♦Q is a theorem (T3), and there is a logic law∨

i∈N
©iQ ≡ ♦Q which means the formula

∨
i∈N

©iQ ↔ ♦Q is valid.
In fact, this is a universal phenomenon. We are going to show that the proof

system Π is sound, i.e., each theorem proved by Π is valid.
For this, we first establish the soundness of axioms and inference rules of

Π. On the one hand, each axiom is a valid formula. On the other hand, the
conclusion formula of each inference rule is valid, provided all the hypothesis
formulas are valid.

Theorem 1 (Soundness of Axioms and Inference Rules). Each axiom or
inference rule of Π is sound, in that

1. |= P if P is an axiom of Π, and

2. |= P if
P1 · · · Pn

P
is an inference rule of Π (n ≥ 1) and |= Pi for each

1 ≤ i ≤ n.

The proof of Theorem1 is presented in the Appendix of this paper.
As a natural deduction of Theorem1, every formula proved by Π is valid.

That is, the proof system Π is sound.

Theorem 2 (Soundness ofΠ). For each PPTL formula P , � P implies |= P .

Proof. � P means there is a formal proof P1, . . . , Pn (n ≥ 1) with Pn = P .
According to Theorem 1, |= Pi for each 1 ≤ i ≤ n. This involves |= P . ��

6 Conclusions

In this paper, we develop a proof system Π for PPTL with indexed expressions,
which is a unified temporal logic that subsumes the well-used LTL. Specifically,
Π consists of axioms and inference rules for formal derivation of both basic
PPTL constructs and indexed expressions. We provide a few examples to show
how the proof system works. In addition, we demonstrate Π is sound in that
every formula proved by Π is valid.

In the near future, we are going to prove the completeness of Π, i.e., every
valid formula can also be proved formally by Π. This may be achieved by study-
ing the normal form of indexed expressions and then making structural induction
based on the normal form. We also plan to explore more meaningful styles of
indexed expressions other than

∨
i∈N

Qi and
∨

i∈N
P (i) ∧ ©iQ, including their

logic laws and relation with specific recursive equations. Which styles of indexed
expressions have equivalent well-formed formulas is still an open question.

A Proof System for a Unified Temporal Logic 675

Appendix

This appendix presents the proof of Theorem1.

Proof. We only need to prove the soundness of axioms and inference rules in ΠI .
The soundness of axioms and inference rules in ΠB has been proved in [8].

(IST) For any interval σ, we have

σ |= ∨
i∈N

Qi

⇐⇒ σ |= Qi for some i ∈ N

⇐⇒ σ |= ε or σ |= Qi for some i ≥ 1
⇐⇒ σ |= ε or σ |= Q+

which indicates σ |= ∨
i∈N

Qi ↔ Q∗. Recall that Q∗ = ε ∨ Q+.
(INS) For any interval σ, we have

σ |= R[i]
=⇒ σ |= R[i] for some i ∈ N

⇐⇒ σ |= ∨
i∈N

R[i]

which indicates σ |= R[i] → ∨
i∈N

R[i].
(INR) For any interval σ, we have

σ |= ∨
i∈N

R[i]
⇐⇒ σ |= R[i] for some i ∈ N

⇐⇒ σ |= R[0] or σ |= R[i + 1] for some i ∈ N

⇐⇒ σ |= R[0] or σ |= ∨
i∈N

R[i + 1]

which indicates σ |= ∨
i∈N

R[i] ↔ R[0] ∨ ∨
i∈N

R[i + 1].
(INA) For any interval σ, we have

σ |= ∨
i∈N

P ∧ R[i]
⇐⇒ σ |= P ∧ R[i] for some i ∈ N

⇐⇒ σ |= P and σ |= R[i] for somei ∈ N

⇐⇒ σ |= P and σ |= ∨
i∈N

R[i]

which indicates σ |= ∨
i∈N

P ∧ R[i] ↔ P ∧ ∨
i∈N

R[i]. The proofs of (INO), (INN)
and (INC) are similar.

(INM) Suppose |= R[i] → R′[i]. Then, for any interval σ, σ |= R[i] implies
σ |= R′[i]. So, for any interval σ, σ |= R[i] for some i ∈ N implies σ |= R′[i] for
some i ∈ N, which means σ |= ∨

i∈N
R[i] implies σ |= ∨

i∈N
R′[i], or equivalently

σ |= ∨
i∈N

R[i] → ∨
i∈N

R′[i].
(REF) Suppose |= R ↔ Q∨P ∧©R and |= R → ♦Q. Then, R ≡ Q∨P ∧©R

and R ⊂ ♦Q. According to Lemma 2,
∨

i∈N
P (i) ∧ ©iQ ≡ R, which means

|= ∨
i∈N

P (i) ∧ ©iQ ↔ R. The proof of (REI) is similar. ��

676 L. Zhao et al.

References

1. Bowman, H., Thompson, S.J.: A decision procedure and complete axiomatization
of finite interval temporal logic with projection. J. Logic Comput. 13(2), 195–239
(2003)

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (2000)

3. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Bei-
jing (2006)

4. Duan, Z., Tian, C.: A unified model checking approach with projection temporal
logic. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp.
167–186. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88194-
0 12

5. Duan, Z., Tian, C.: A practical decision procedure for propositional projection
temporal logic with infinite models. Theoret. Comput. Sci. 554, 169–190 (2014)

6. Duan, Z., Tian, C., Zhang, N., Ma, Q., Du, H.: Index set expressions can represent
temporal logic formulas. Theoret. Comput. Sci. (2018). https://doi.org/10.1016/j.
tcs.2018.11.030

7. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Sci. Com-
put. Program. 70(1), 31–61 (2008)

8. Duan, Z., Zhang, N., Koutny, M.: A complete proof system for propositional pro-
jection temporal logic. Theoret. Comput. Sci. 497, 84–107 (2013)

9. French, T., Reynolds, M.: A sound and complete proof system for QPTL. In:
Advances in Modal logic 2002, pp. 127–148 (2002)

10. Kanso, K., Setzer, A.: A light-weight integration of automated and interactive
theorem proving. Math. Struct. Comput. Sci. 26(01), 129–153 (2016)

11. Kesten, Y., Pnueli, A.: Complete proof system for QPTL. J. Logic Comput. 12(5),
701–745 (2002)

12. Manna, Z., Pnueli, A.: Completing the temporal picture. Theoret. Comput. Sci.
83(1), 91–130 (1991)

13. Moszkowski, B.C.: Executing Temporal Logic Programs. Cambridge University,
Cambridge (1986)

14. Moszkowski, B.C.: A complete axiom system for propositional interval temporal
logic with infinite time. Log. Methods Comput. Sci. 8(3) (2012)

15. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
IEEE Symposium on Foundations of Computer Science, pp. 46–57. IEEE Computer
Society (1977)

16. Rosner, R., Pnueli, A.: A choppy logic. In: LICS 1986, pp. 306–313 (1986)
17. Shu, X., Duan, Z.: A decision procedure and complete axiomatization for projection

temporal logic. Theor. Comput. Sci. (2017). https://doi.org/10.1016/j.tcs.2017.09.
026

18. Tian, C., Duan, Z.: Expressiveness of propositional projection temporal logic with
star. Theoret. Comput. Sci. 412, 1729–1744 (2011)

19. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
The MIT Press, Cambridge (1993)

20. Zhang, N., Duan, Z., Tian, C.: Model checking concurrent systems with MSVL.
Sci. China: Inf. Sci. 59(11), 101–118 (2016)

https://doi.org/10.1007/978-3-540-88194-0_12
https://doi.org/10.1007/978-3-540-88194-0_12
https://doi.org/10.1016/j.tcs.2018.11.030
https://doi.org/10.1016/j.tcs.2018.11.030
https://doi.org/10.1016/j.tcs.2017.09.026
https://doi.org/10.1016/j.tcs.2017.09.026

	A Proof System for a Unified Temporal Logic
	1 Introduction
	2 Propositional Projection Temporal Logic
	2.1 Indexed Expression
	2.2 Representing Linear Temporal Logic

	3 Proof System
	3.1 Axioms and Inference Rules for Basic Constructs
	3.2 Axioms and Inference Rules for Indexed Expressions

	4 Examples of Formal Proofs
	5 Soundness
	6 Conclusions
	References

