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Abstract. We investigate a non-submodular maximization problem
subject to a p-independence system constraint, where the non-
submodularity of the utility function is characterized by a series of
parameters, such as submodularity (supmodularity) ratio, generalized
curvature, and zero order approximate submodularity coefficient, etc.
Inspired by Feldman et al. [15] who consider a non-monotone submod-
ular maximization with a p-independence system constraint, we extend
their Repeat-Greedy algorithm to non-submodular setting. While there
is no general reduction to convert algorithms for submodular optimiza-
tion problems to non-submodular optimization problems, we are able
to show the extended Repeat-Greedy algorithm has an almost constant
approximation ratio for non-monotone non-submodular maximization.

Keywords: Approximation algorithms ·
Non-submodular maximization · Independence system constraint

1 Introduction

Submodular optimization is widely studied in optimization, computer science,
and economics, etc. Submodularity is a very powerful tool in many optimization
applications such as viral marketing [9,18], recommendation system [12,15,21],
nonparametric learning [1,16], and document summarization [20], etc.

The greedy algorithm introduced by Nemhauser et al. [22] gave the first (1 −
e−1)-approximation for monotone submodular maximization with a cardinality
constraint (SMC). Feige [13] considered a maximal k-cover problem, which is a
special case of SMC, and showed that there is no algorithms with approximation
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ratio greater than (1 − e−1 + ε) for any ε > 0, under the assumption P �= NP.
Sviridenko [23] considered a monotone submodular maximization with a knap-
sack constraint, and provided a tight (1 − e−1)-approximation algorithm with
time complexity O(n5). Calinescu et al. [8] provided a (1 − e−1)-approximation
algorithm for monotone submodular maximization with a matroid constraint. All
extant results of constrained submodular maximization assume monotonicity of
the objective functions. In this paper, we consider a non-monotonic and non–
submodular maximization problem subject to a more general p-independence sys-
tem constraint.

1.1 Our Contributions

In this work, we consider a non-submodular maximization with an independence
system constraint. Specifically, all feasible solutions associated with this model
generate a p-independence system and the objective function is characterized by
a series of parameters, such as submodularity (supmodularity) ratio, generalized
curvature, and zero order approximate submodularity coefficient, etc. Our main
results can be summarized as follows.

– We first investigate the efficiency of a greedy algorithm with two scenarios.
Firstly, the objective function is non-submodularity and non-monotonic. Sec-
ondly, the feasible solution belongs to a p-independence system. We show
that some good properties are still retained in the non-submodular setting
(Theorem 1).

– Second we study the non-monotone non-submodular maximization problem
without any constraint. Based on a simple approximate local search, for any
ε > 0 we show that there exists a polynomial time (3/c2 + ε)-approximation
algorithm, where c is the zero order approximate submodularity coefficient of
objective function (Theorem 2).

– Finally, we apply the first two algorithms as the subroutines to solve a non-
monotone non-submodular maximization problem with p-independence sys-
tem constraint. Our algorithm is an extension of the Repeat-Greedy introduced
in [15]. Based on a multiple times rounding of the above subroutine algorithms,
we derived a nearly constant approximation ratio algorithm (Theorem3).

1.2 The Organization

We give a brief summary of related work in Sect. 2. The necessary preliminaries
and definitions are presented in Sect. 3. The main algorithms and analyses are
provided in Sect. 4. We present a greedy algorithm in Sect. 4.1, an approximate
local search in Sect. 4.2, and the core algorithm is provided in Sect. 4.3. In Sect. 5,
we offer a conclusion for our work.

2 Related Works

Non-monotone Submodular Optimization. Unlike the monotone submodular
optimization, there exists a natural obstacle in the study of non-monotonic
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case. For example, direct application of the greedy algorithm introduced by
Nemhauser et al. [22] to the non-monotonic case does not yield a constant
approximation guarantee. Some previous work is summarized below. For the non-
monotone submodular maximization problem without any constraint (USM),
Feige et al. [14] presented a series of algorithms. They first showed a uniform ran-
dom algorithm has a 1/4-approximation ratio. Second, they gave a deterministic
local search 1/3-approximation algorithm and a random 2/5-approximation algo-
rithm. For symmetric submodular functions, they derived a 1/2-approximation
algorithm and showed that any (1/2+ ε)-approximation for symmetric submod-
ular functions must need an exponential number of queries for any fixed ε > 0.
Based on local search technique, Buchbinder et al. [7] provided a random linear
time 1/2-approximation algorithm.

Optimization of non-monotone submodular with complex constraints are
also considered previously. Buchbinder and Feldman [5] gave a deterministic
1/2-approximation algorithm for USM with time complexity O(n2). For non-
monotone submodular maximization with cardinality constraint, they derived a
deterministic 1/e-approximation algorithm, which has a slightly better approx-
imation ration than the random (1/e + 0.004)-approximation ratio by [6].
Buchbinder and Feldman [4] considered a more general non-monotone sub-
modular maximization problem with matroid constraint and presented the cur-
rently best random 0.385-approximation algorithm. Lee et al. [19] derived a
1/(p + 1 + 1/(p − 1) + ε)-approximation algorithm as well as non-monotone
submodular maximization algorithm with a constraint of the intersection of p
matroids. For a more general p-independence system constraint, Gupta et al.
[17] derived a 1/3p-approximation, which needs O(np�) function value oracles,
where � is the maximum size of feasible solutions. Mirzasoleiman et al. [21]
improved the approximation ratio to 1/2k, while the time complexity was still
bounded by O(np�). Recently, with improved time complexity of O(n�

√
p), the

approximation ratio was improved to 1/(p +
√

p) by Feldman et al. [15].

Non-submodular Maximization. There are also many problems in optimization
and machine learning whose utility functions do not possess submodularity. Das
and Kempe [11] introduced a definition of submodularity ratio γ to measure
the magnitude of submodularity of the utility function. For the maximization of
monotone non-submodular function with cardinality constraint (NSMC), they
showed the greedy algorithm can achieve a (1 − e−γ)-approximation ratio. Con-
forti and Cornuéjols [10] studied the efficiency of the greedy algorithm by defining
curvature κ of submodular objective functions for SMC and showed the approx-
imation could be improved it to 1/κ(1 − e−κ). Bian et al. [2] introduced a more
expressive formulation by providing a definition of the generalized curvature α of
any non-negative set function. Combining the submodularity ratio with the gen-
eralized curvature, they derived the tight 1/α(1 − e1/(αγ))-approximation ratio
of the greedy algorithm for NSMC. Inspired by these work, Bogunovic et al.
[3] introduced further parameters, such as supmodularity ratio, inverse general-
ized curvature, etc., to characterize the utility function. They derived the first
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constant approximation algorithm for monotone robust non-submodular maxi-
mization problem with cardinality constraint.

3 Preliminaries

In this section, we present some necessary notations. We are given a ground set
V = {u1, ..., un}, and a utility function f : 2V → R+. The function f may not be
submodular; namely the following zero order condition of submodular may not
hold

f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B),∀A,B ⊆ V.

For our purpose, we define a parameter c to approximate the submodularity of
our utility function.

Definition 1. Given an integer k, let {Ai}k
i=1 be a collection of subsets of V.

The zero order approximate submodularity coefficient is the largest ck ∈ [0, 1]
such that

k∑

i=1

f(Ai) ≥ ck · [f(∪iAi) + f(∩iAi)].

For any A,B ⊆ V, we set fA(B) = f(A ∪ {B}) − f(A) as the amount
of change by adding B to A. For the sake of brevity and readability, we set
fA(u) = f(A + u) − f(A) for any singleton element u ∈ V. Then we restate
the submodularity ratio γ in the following definition. The submodularity ratio
measures how close of f being submodular.

Definition 2 ([2,3,11]). Given an integer k, the submodularity ratio of a non-
negative set function f with respect to V is

γV,k(f) = min
A⊆V,B:|B|≤k,A∩B=∅

∑
u∈B fA(u)
fA(B)

.

Let k be the maximum size of any feasible solution, and omit signs k,V and f
for clarity. Bian et al. [2] introduced an equivalent formulation of submodularity
ratio γ by the largest γ such that

∑

u∈B

fA(u) ≥ γ · fA(B),∀A,B ⊆ V, A ∩ B = ∅.

Bogunovic et al. [3] defined supmodularity ratio γ̌ that measures how close a
utility function is supermodular.

Definition 3 ([3]). The supmodularity ratio of a non-negative set function f is
the largest γ̌ such that

fA(B) ≥ γ̌ ·
∑

u∈B

fA(u),∀A,B ⊆ V, A ∩ B = ∅.
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For a monotone submodular function, Conforti and Cornuéjols [10] intro-
duced the definition of total curvature κf and curvature κf (S) w.r.t. a set
S ⊆ V as follows. Denote κf = 1 − minu∈V fV\{u}(u)/f(u), and κf (S) =
1 − minu∈S fS\{u}(u)/f(u). Sviridenko et al. [24] provided a definition of cur-
vature from submodular to non-submodular functions. The expanded curvature
is defined as κo = 1 − minu∈V minA,B⊆V\{u} fA(u)/fB(u). Bian et al. [2] pre-
sented a more expressive formulation of curvature, which measures how close a
set function is to being supmodular.

Definition 4 ([2]). The generalized curvature of a non-negative function f is
the smallest scalar α such that

fA\{u}∪B(u) ≥ (1 − α) · fA\{u}(u),∀A,B ⊆ V, u ∈ A \ B.

Recently, Bogunovic et al. [3] introduced the concept of inverse generalized
curvature α̌, which can be described as follows:

Definition 5 ([3]). The inverse generalized curvature of a non-negative func-
tion f is the smallest scalar α̌ such that

fA\{u}(u) ≥ (1 − α̌)fA\{u}∪B(u),∀A,B ⊆ V, u ∈ A \ B.

The above parameters are used to characterize a non-negative set func-
tion from different points of view. We provide a lower bound of zero order
approximate submodularity coefficient c by inverse generalized curvature α̌. I.e.,
c ≥ 1 − α̌. The proof is referred to the full version. We omit the relation of the
other parameters as they can be found in [2,3]. In the rest of this part, we restate
the concept of the p-independence system.

Let I = {Ai}i be a finite collection of subsets chosen from V. We say the
tuple (V, I) is an independence system if for any A ∈ I, A′ ⊆ A implies that
A′ ∈ I. The sets of I are called the independent sets of the independence system.
An independent set B contained in a subset X ⊆ V is a base (basis) of X if no
other independent set A ⊆ X strictly contains B. By the above terminologies
we restate the definition of p-independence system as follows.

Definition 6 ([15]). An independence system (V, I) is a p-independence sys-
tem if, for every subset X ⊆ V and for any two bases B1, B2 of X, we have
|B1|/|B2| ≤ p.

In our model, assume the utility function is characterized by these parame-
ters, and the collection of all feasible subsets constructs a p-independence system.
We also assume that there exist a utility function value oracle and an indepen-
dence oracle; i.e., for any A ⊆ V, we can obtain the value of f(A) and know if
A in I or not. The model can be described as follows:

OPT ← arg max
S⊆V,S∈I

f(S), (1)

where (V, I) is a p-independence system.
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4 Algorithms

In this section, we present some algorithms in dealing with non-submodular
maximization. Before providing our main algorithm, we first investigate the effi-
ciency of two sub-algorithms. In Subsect. 4.1, we restate the greedy algorithm
for submodular maximization with p-independence system constraint, and show
that some good properties are still retained in the non-submodular setting.
In Subsect. 4.2, we present a local search for non-monotone non-submodular
maximization without any constraint. Finally, we provide the core algorithm in
Subsect. 4.3.

4.1 Greedy Algorithm Applied to Non-submodular Optimization

The pseudo codes of the greedy algorithm are presented in Algorithm 1. Let
SG = {u1, ..., u�} be the returned set by Algorithm 1. We start with SG = ∅.
In each iteration, we choose the element u with maximum gain, and add it to
the current solution if it satisfies SG + u ∈ I. For clarity, we let OPT be any
optimum solution set of maximizing the utility function under p-independence
system constraint. Then we can derive a lower bound of f(SG) by the following
theorem.

Theorem 1. Let SG be the returned set of Algorithm 1, then we have

f(OPT ∪ SG) ≤
(

p

γ2γ̌(1 − α̌)
+ 1

)
f(SG).

Proof. Refer to the full version of this paper.

Algorithm 1. Greedy(V, f, I)
1: SG ← ∅, A ← ∅
2: repeat
3: A ← {e|SG ∪ {e} ∈ I}
4: if A �= ∅ then
5: e ← arg maxe′∈A fSG(e′)
6: SG ← SG + e
7: end if
8: until A = ∅
9: Return SG

Let B ∈ I be any independent set and set SG
i = {u1, ..., ui} be the set of the

first i elements added by Algorithm 1. We can iteratively construct a partition of
B according to SG. We start with B0 = B and set Bi = {u ∈ B\SG

i |SG
i +u ∈ I}

for iteration i ∈ [�] = {1, ..., �}, where � denotes the size of SG in the end. Then
the collection of {Bi−1 \ Bi}�

i=1 derives a partition of B. Let Ci = Bi−1 \ Bi for
any i ∈ [�]. The construction can be summarized as Algorithm 2. The properties
of the above partition are presented in the following lemma.
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Algorithm 2. Construct(V, f, I)
1: S0 ← ∅, B0 ← B
2: for i = 1 : � do
3: Bi ← {u ∈ B \ Si|Si + u ∈ I}
4: end for
5: Return {Bi−1 \ Bi}�

i=1

Lemma 1. Let {Ci}�
i=1 be the returned partition of Algorithm 2, then

– for each i ∈ [�], we have
∑i

j=1 pj ≤ p · i where pj = |Cj |; and
– for each i ∈ [�], we have pi · δi ≥ γ(1 − α̌)fSG(Ci).

Proof. Refer to the full version of this paper.

4.2 Local Search Applied to Non-submodular Optimization

In this subsection, we present a local search algorithm for the non-monotone non-
submodular maximization problem without any constraint. The main pseudo
codes are provided by Algorithm 3. Feige et al. [14] introduced the local search
approach to deal with the non-monotone submodular optimization problem. We
extend their algorithm to the non-submodular setting, and show that the algo-
rithm still keeps a near constant approximation ratio by increasing a factor.

In order to implement our algorithm in polynomial time, we relax the local
search approach and find an approximate local solution. Let SLS be the returned
set of Algorithm 3 and let OPT o be any optimum solution without any con-
straint. We restate the definition of approximate local optimum as follows.

Definition 7 ([14]). Given a set function f : 2V → R, a set A ⊆ V is called a
(1 + λ)-approximate local optimum if, f(A − u) ≤ (1 + λ) · f(A) for any u ∈ A
and f(A + u) ≤ (1 + λ) · f(A) for any u /∈ A.

By the definition of the approximate local optimum solution, we show that
there exists a similar performance guarantee in the non-submodular case. The
details are summarized in the following theorem.

Theorem 2. Given ε > 0, c and α̌ ∈ [0, 1). Let SLS be the returned set of
Algorithm 3 by setting set λ = c2ε

(1−α̌)n . We have

f(OPT o) ≤
(

3
c2

+ ε

)
· f(SLS).

Proof. Refer to the full version of this paper.

Before proving the above theorem, we need the following lemma.

Lemma 2. If S is a (1 + λ)-approximate local optimum for a non-submodular
function f , then for any set T such that T ⊆ S or T ⊇ S, we have

f(T ) ≤ [1 + λn(1 − α̌)] · f(S).
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Algorithm 3. Local Search(V, f, λ)
1: S ← arg maxu∈V f(u), U ← V
2: repeat
3: if there exists u ∈ U \ S such that f(S + u) ≥ (1 + λ)f(S) then
4: S ← S + u
5: U ← U − u
6: end if
7: until
8: if there exists u ∈ S such that f(S − u) ≥ (1 + λ)f(S) then
9: S ← S − u, and go back to Repeat loop.

10: end if
11: Return SLS ← arg max{f(S), f(V \ S)}

Proof. Let S = {u1, ..., uq} be a (1 + λ)-approximate local optimum solution
returned by Algorithm 3. W.l.o.g., we assume T ⊆ S, then we construct Ti such
that T = T1 ⊆ T2 ⊆ · · · ⊆ Tr = S and ui = Ti \ Ti−1. For each i ∈ {2, ..., q},
we have

f(Ti) − f(Ti−1) ≥ (1 − α̌)(f(S) − f(S − ui)) ≥ −λ(1 − α̌)f(S),

where the first inequality follows by the definition of the inverse generalized
curvature and the second inequality follows by the definition of the approximate
local optimum. Summing up the above inequalities, we have

f(S) − f(T ) =
q∑

i=2

[f(Ti) − f(Ti−1)] ≥ −λq(1 − α̌)f(S),

implying that f(T ) ≤ [1 + λq(1 − α̌)]f(S) ≤ [1 + λn(1 − α̌)]f(S), where the
second inequality follows from q ≤ n. Simultaneously, the case of T ⊇ S can be
similarly derived by the above process.

4.3 The Core Algorithm

In this subsection, we present the main algorithm, which is an extension of the
Repeat-Greedy algorithm introduced in [15]. The pseudo codes are presented
as Algorithm 4. We run the main algorithm in r rounds. Let Vi be the set of
candidate elements set at the start of round i ∈ [r]. We first run the greedy step
of Algorithm 1. Then, we proceed with the local search step of Algorithm 3 on
the set returned from the first step. Simultaneously, we update the candidate
ground set as Vi = V \ Vi−1. Finally, we output the best solution among all
returned sets. We can directly obtain two estimations of the utility function by
Theorems 1 and 2, respectively. The results are summarized as follows.

Lemma 3. For any iteration i ∈ [r] of Algorithm 4, we have

1. f(Si ∪ (OPT ∩ Vi)) ≤
(

p
γ2γ̌(1−α̌) + 1

)
f(Si), and

2. f(Si ∩ OPT ) ≤ (
3
c2 + ε

)
f(S′

i).
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Buchbinder et al. [6] derived an interesting property in dealing with non-
monotone submodular optimization problems. Now, we extend this property to
the non-submodular case, as summarized in the following lemma.

Lemma 4. Let g : 2V → R+ be a set function with inverse generalized curvature
α̌g, and S be a random subset of V where each element appears with probability
at most pr (not necessarily independent). Then E[g(S)] ≥ [1 − (1 − α̌g)pr] ·g(∅).

Proof. Refer to the full version of this paper.

Using this result, we can derive an estimation of f(OPT ). Let S be a random set
of {Si}r

i=1 with probability pr = 1
r and set g(S) = f(OPT ∪ S) for any S ⊆ V.

Then we have α̌ = α̌f = α̌g. By Lemma 4, we yield

1
r

r∑

i=1

f(Si ∪ OPT ) = E[f(S ∪ OPT )] = E[g(S)] ≥ [1 − (1 − α̌g)pr] · g(∅)

=
(

1 − 1 − α̌

r

)
· f(OPT ).

Multiplying both sides of the last inequality by r, we get

r∑

i=1

f(Si ∪ OPT ) ≥ [r − (1 − α̌)] · f(OPT ). (2)

The following lemma presents a property based on zero order approximate sub-
modularity coefficient of the objective function.

Lemma 5 ([15]). For any subsets A,B,C ⊆ V, we have

f(A ∪ B) ≤ 1
c

· [f(A ∪ (B ∩ C)) + f(B \ C)].

Algorithm 4. Repeat Greedy(V, f, I, r)
1: i = 1, V1 ← V
2: repeat
3: Si ← output of Greedy(Vi, f, I)
4: S′

i ← output of Local Search(Si, f, λi)
5: Vi ← Vi \ Si

6: i ← i + 1
7: until i = r
8: Return S ← arg max{f(Si), f(S′

i)}i∈[r]
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Proof. To prove this lemma, we have the following

f(A ∪ B) = f(A ∪ (B ∩ C) ∪ (B \ C))
≤ f(A ∪ (B ∩ C) ∪ (B \ C)) + f(A ∪ (B ∩ C) ∩ (B \ C))

≤ 1
c

· [f(A ∪ (B ∩ C)) + f(B \ C)] ,

where the first inequality follows from the nonnegativity of the objective func-
tion and the second inequality is derived by the definition of the zero order
approximate submodularity coefficient c.

From these lemmas and choosing properly the number of rounds, we conclude
that if the parameters of the utility function are fixed, or have a food estimation,
then Algorithm 4 yieds a near constant performance guarantee for problem (1).
The details are presented in the following theorem.

Theorem 3. Give an objective function f : 2V → R+ with parameters c, γ, γ̌, α̌,
and a real number ε > 0, let S be the returned set of Algorithm 4. Set r = �Δ�.
Then we have

f(OPT )
f(S)

≤
[(

p

γ2γ̌c(1 − α̌)
+

3Δ

2c4
+

1
c

)
+

εΔ

2c4

]
· [1 − (1 − α̌) · (Δ + 1)]−1

,

where

Δ = (1 − α̌) +

√

(1 − α̌)2 + (1 − α̌)
(

2c3

3 + c2ε
+ 1

)
+

p

γ2γ̌
· 2c3

3 + c2ε
.

Proof. Refer to the full version of this paper.

5 Conclusion

We consider the non-submodular and non-monotonic maximization problem
with a p-independence system constraint, where the objective utility function
is characterized by a set of parameters such as submodularity (supmodularity)
ratio, inverse generalized curvature, and zero order approximate submodularity
coefficient. We study a greedy algorithm applied to non-submodular optimiza-
tion with p-independence system constraint, and show the algorithm preserves
some good properties even though the objective function is non-submodularity.
Then, we investigate the unconstrained non-submodular maximization problem.
Utilizing an approximate local search technique, we derive an O(3/c2 + ε)-
approximation algorithm, where c is the zero order approximate submodular-
ity coefficient. Finally, combining these two algorithms, we obtain an almost
constant approximation algorithm for the non-monotone non-submodular max-
imization problem with p-independence system constraint.
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