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Abstract. The traveling purchaser problem (TPP), a generalization of
the traveling salesman problem, is to determine a tour of suppliers and
purchase needed products from suppliers, while minimizing the travel-
ing and purchasing cost. This problem finds applications in the routing
and scheduling contexts and its variants with different constraints have
been widely studied. Motivated by the phenomenon that most real-world
instances of TPP have a small parameter (such as the number of sup-
pliers, the number of products to purchase and others), we study TPP
and its variants from the view of parameterized complexity. We show
that TPP and some variants are fixed-parameter tractable by taking the
number k of products or the number m of suppliers as the parameter, and
W[2]-hard by taking the number q of visited suppliers as the parameter.
Furthermore, we implement some of our fixed-parameter tractable algo-
rithms to show that they are practically effective when the parameters
are not very large.

1 Introduction

The traveling purchaser problem (TPP) is a single vehicle routing problem that
has been widely studied. In this problem, we need to buy several products from
some suppliers and the objective is to minimize the total amount of traveling and
purchasing costs. Let s0 denote the home, which is the starting and ending point
of the tour. We use M = {s0, s1, s2, . . . , sm−1} to denote the set of suppliers
together with the home and K = {g1, g2, . . . , gk} to denote the set of products
to purchase, where |M| = m and |K| = k. The input of the problem consists of an
m×k matrix P = {pij} to indicate the price of product gj at supplier si, where we
may let pi0j0 be ∞ or empty if a supplier si0 does not provide product gj0 , and an
m×m matrix D = {dij} to indicate the traveling costs (distances) from site si to
site sj . The goal is to find a tour (cycle) starting and ending at home s0, visiting
a subset of the suppliers in M to buy all products in K, while minimizing the
composed cost of traveling and purchasing. For the distances between sites, our
problem does not require that dij = dji (the symmetry assumption). However,
we assume that the distances satisfy the triangle inequality, i.e., dij ≤ dil + dlj

holds for any i, j, l. We also assume that each supplier has enough amount of
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each provided product and then we do not buy a product from two different
suppliers.

TPP is NP-hard, since it contains the well-known traveling salesman problem
(TSP) as a special case, where each supplier provides only one different prod-
uct. TPP combines the optimization of routing decisions and supplier selections
together and fits well in many contexts, such as routing and scheduling problems.
It can be straightforwardly interpreted to machine scheduling problems [9]. An
application of the telecommunication network design was proposed in [17]. Many
problems in location based services can be formulated as a traveling purchaser
problem [12]. More applications of TPP can be found in [16] and [18].

Problem Variants. Due to the importance of TPP, many variants of it have
been widely studied. Motivated by a scheduling problem (to assign some jobs
to some machines), Gouveia et al. [9] considered TPP with two constraints: (I)
the maximum number of suppliers to be visited is limited to q, where we can
simply assume that q ≤ k since the distances satisfy the triangle inequality; (II)
the maximum number of products can be bought from each supplier is limited
to u. The two constraints are also called side-constraints. We will use TPP-S1
to denote TPP with only constraint (I) and TPP-S2 to denote TPP with both
two constraints (I) and (II). To model a problem in telecommunication network
designs, Ravi and Salman [17] introduced the traveling purchaser problem with
budget-constraint (TPP-B). In TPP-B, a budget B on the purchasing cost is
given, and the goal is to minimize the traveling cost such that we can buy all the
products within the budget B. Two heuristic algorithms for this problem were
studied in [14]. TPP with time windows can also be found in several real contexts
[6,11]. In this problem each supplier has a time window and it only serves in
this time window. Recently, a multi-vehicle variant of TPP, called MVTPP, was
introduced by Choi and Lee [5]. In MVTPP, the optimization has to be done over
a fleet of homogeneous vehicles instead of a single vehicle, each vehicle in the
fleet has the same capacity (the amount of product can be carried on). Several
constraints on MVTPP have also been studied, such as the constraint on the
traveling distance of each vehicle [4], the incompatibility constraint under which
some products are not allowed to be loaded on the same vehicle [13], and so on.
MVTPP is related to the vehicle routing problem [19].

In real-world instances of TPP, some values are small. Here are examples:
In the model of stocking products from suppliers by a supermarket, the number
of different products may be large while the number of suppliers may be small;
In the model where a person wants to purchase something in a weekend, the
number of potential shops in the city may be large while the number of things
to purchase may be small; In some problems, the number of sites to be visited
may also be small due to the time limitation and some other reasons; The model
from some scheduling problems in [9] also assumes that the number of products
is small compared to the number of suppliers. Motivated by the phenomenon of
small values of parameters in these problems, we study TPP and its variants in
parameterized complexity.
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Parameterized Complexity. Parameterized complexity has attracted much
attention in both theory and practice since the first introduction of it by Downey
and Fellows [7]. An instance of a parameterized problem consists of an instance
I of the original (NP-hard) problem and a parameter l. We want to design an
algorithm for the problem with running time in the form of f(l)poly(|I|), where
f(l) is a computable function on l only, and poly(|I|) is a polynomial function
on the input size. These kinds of algorithms are called fixed-parameter tractable
(FPT) algorithms. A parameterized problem is fixed-parameter tractable (FPT)
if and only if it has FPT algorithms. Under some reasonable assumptions, some
parameterized problems do not allow FPT algorithms, which are called W[1]-
hard. For FPT algorithms, the running time bound is exponential only on the
parameter l and not related to the whole instance size. When the parameter l is
small or a constant, FPT algorithms may run fast and solve practical problems
exactly in a short time.

In this paper, we will study TPP, TPP with side-constraints (TPP-S1 and
TPP-S2) and TPP with the budget-constraint (TPP-B) under three parameters:
the number k of products, the number m of suppliers and the maximum number
q of suppliers to be visited. For each parameterized problem, we will either
design fast FPT algorithms for it or prove the W[1]-hardness or W[2]-hardness,
where W[2]-hard problems may be harder than W[1]-hard problems under some
reasonable assumptions.

Our Contributions. To the best of our knowledge, this is the first paper that
contributes to the parameterized complexity of TPP and its variants. Our results
are summarized in Table 1.

Table 1. Our results in parameterized complexity

Problems Parameters

k = |K| m = |M| q

TPP FPT (Theorem 1) FPT (Theorem 4) W[2]-hard (Theorem 7)

TPP-S1 FPT (Theorem 2) FPT (Theorem 5) W[2]-hard (Theorem 7)

TPP-S2 FPT (Theorem 3) FPT (Theorem 6) W[2]-hard (Theorem 7)

TPP-B W[1]-hard (Theorem 8) FPT (Theorem 5) W[2]-hard (Theorem 7)

Our hardness results are obtained by reductions from two known hard prob-
lems: the set cover problem and the multi-subset sum problem. The main tech-
niques used to design our FPT algorithms are dynamic programming and color
coding. In fact, we will design two practical dynamic programming algorithms
for TPP, which run in time O(2k(m2 + mk)) and O(2m(m2 + mk)) respectively
and can be modified for TPP with several additional constraints without expo-
nentially increasing the running time bound. For TPP-S2 parameterized by k,
we need to use the color coding technique to design an FPT algorithm.



570 M. Xiao et al.

Our algorithms imply that TPP is polynomial-time solvable when k =
O(log m) or m = O(log k). This is the reason why we can solve TPP quickly
when one of k and m is small. Furthermore, the polynomial part of the running
time of most algorithms is small, which is linear on the input size of the problem,
because the input size of TPP is O(m2 + mk).

In practice, our dynamic programming algorithms are effective and easy to
implement. Compared with previous algorithms for TPP with additional con-
straints, our algorithms can quickly solve instances with one of k and m being a
small value. To show the advantage of our FPT algorithms in practice, we also
implement some of our FPT algorithms to test their experimental performances.
However, the experimental part is omitted due to the space limitation and it can
be found in the full version of this paper.

2 Algorithms for Small Number of Products

In this section, we will design an O(2k(m2 + mk))-time algorithm for TPP
and then modify it to an O(2kq(m2 + mk))-time algorithm for TPP-S1. Then
we give an O(u2m22k+qeqqO(log q) log m)-time algorithm for TPP-S2, where
e = 2.71828 . . . is a constant and it holds that q ≤ k. When we take k as
the parameter, the three problems are FPT.

2.1 TPP with Parameter k

First we consider TPP. For each subset K ⊆ K of products and each supplier
si ∈ M, we consider the subproblem Sub-TPP(K, si): buy all the products in K
from suppliers in a tour starting from home s0 and ending at si, while minimizing
the traveling and purchasing cost. Note that in this subproblem, we require that
we finally arrive at si even we may not buy any product from si. If we let K = K
and si = s0, then this problem becomes the original TPP problem. Our idea is
to solve Sub-TPP(K, si) for each K ⊆ K and si ∈ M in a dynamic programming
method. To solve Sub-TPP(K, si) efficiently, we will also solve a variant of Sub-
TPP(K, si), called Sub-TPP′(K, si): buy all the products in K from suppliers
in a tour starting from home s0 and ending at si such that at least one product
in K is bought from si, while minimizing the traveling and purchasing cost. In
Sub-TPP′(K, si), we have one more constraint that is to buy some product gj

from si. We can also assume that the product gj was bought when visit si for
the last time, i.e., we buy gj after arriving the final site si of our tour.

Let SOL[K, si] denote an optimal solution to Sub-TPP(K, si) (the informa-
tion of the tour and where to buy each product) and OPT [K, si] denote the total
traveling and purchasing cost of SOL[K, si]. Let SOL′[K, si] and OPT ′[K, si]
denote an optimal solution and the optimal cost to Sub-TPP′(K, si), respec-
tively. We have that OPT [K, si] ≤ OPT ′[K, si].

There are two cases for an optimal solution SOL[K, si]: after arriving the
final site si we buy at least one product gi0 ∈ K from si, and before arriving
the final site si we have already bought all the products in K. For the former
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case, we have that OPT [K, si] = OPT ′[K, si] and we can solve Sub-TPP(K, si)
by solving Sub-TPP′(K, si). For the latter case, we can see that OPT [K, si] =
OPT [K, sj ] + dji ≥ OPT [K, sj ] for some j, where sj is the last but one site
of the optimal tour in SOL[K, si], and we can solve Sub-TPP(K, si) by solving
Sub-TPP(K, sj). Thus, we have

OPT [K, si] = min{OPT ′[K, si],min
j �=i

{OPT [K, sj ] + dji}}. (1)

We will solve Sub-TPP(K, si) in order of increasing cardinality of K. For each
fixed K and all si ∈ M, we first solve Sub-TPP′(K, si) by using the following
recurrence relation

OPT ′[K, si] = min
gj∈K

{OPT [K\{gj}, si] + pij}, (2)

and then compute OPT [K, si] based on OPT ′[K, si] in a greedy method similar
to Dijkstra’s shortest path algorithm. Note that Eq. (2) allows many products
in K to be bought in supplier si (not just gj).

Assume that we have computed OPT ′[K, si] for a fixed K and all si ∈ M.
We are going to compute OPT [K, si] for all si ∈ M. Our algorithm will maintain
two subsets M1,M2 ⊆ M such that M2 = M \ M1, where for each si0 ∈ M1 we
have computed OPT [K, si0 ], and for each si0 ∈ M2 we have not. Initially, we
have M1 = ∅. The algorithm iteratively selects an element sj ∈ M2, compute
OPT [K, sj ] and move it from M2 to M1 until M2 becomes ∅. We select sj ∈ M2

such that

OPT ′[K, sj ] ≤ OPT ′[K, sr] for any sr ∈ M2, (3)

and compute OPT [K, sj ] by

OPT [K, sj ] = min{OPT ′[K, sj ], min
sr∈M1

{OPT [K, sr] + drj}}. (4)

Next we prove the correctness of (4). Consider a supplier si0 ∈ M2. If
OPT [K, si0 ] ≥ OPT ′[K, sj ], then we get that OPT [K, si0 ]+di0j ≥ OPT ′[K, sj ].
Otherwise we assume that OPT [K, si0 ] < OPT ′[K, sj ] and then OPT [K, si0 ] <
OPT ′[K, si0 ]. By (3) and (1), it holds that OPT [K, si0 ] = OPT [K, sil

] +
dilil−1 + · · · + di2i1 + di1i0 for some sil

∈ M1 and {sil−1 , si1−2 , . . . , si0} ⊆ M2.
By the triangle inequality, we get OPT [K, si0 ] ≥ OPT [K, sil

] + dili0 and
OPT [K, si0 ] + di0j ≥ OPT [K, sil

] + di1j . By (1) again, we get (4). After com-
puting OPT [K, sj ] according to (4), we move sj from M2 to M1.

We use A-k to denote the above algorithm for TPP. In this algorithm, we
first let OPT [∅, sj ] = d0j for each sj since the length of the shortest path from s0
to sj is d0j by the triangle inequality, and then compute OPT [K, sj ] for K �= ∅
in order of nondecreasing size by using the above method.

In this algorithm, we need to solve O(2km) subproblems Sub-TPP(K, si).
For each subproblem, we use |K| ≤ k basic computations to solve Sub-
TPP′(K, si) and use |M| = m basic computations to compute OPT [K, si] based
on OPT ′[K, si]. We have the following Theorem 1.
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Theorem 1. TPP can be solved in O(2km(m+k)) time and it is FPT by taking
the number k of products as the parameter.

2.2 TPP-S1 with Parameter k

Now we consider TPP-S1. In fact, the algorithm for TPP-S1 is modified from
the above algorithm for TPP. In our algorithm for TPP-S1, the subproblem has
one more input parameter (one more dimension) and the running time of it also
increases. For each subset K ⊆ K of products, each supplier si ∈ M and each
nonnegative integer q∗ ≤ q, we define the subproblem Sub-TPPS1(K, si, q

∗): buy
all the products in K from exactly q∗ suppliers in a tour starting from home s0
and ending at si, while minimizing the traveling and purchasing cost. The value
OPT [K, si, q

∗] of an optimal solution to Sub-TPPS1(K, si, q
∗), which is defined

to be ∞ if no solution exists, can be computed by the following recurrence
relation

OPT [K, si, q
∗] = min{min

j �=i
{OPT [K, sj , q

∗ − 1] + dji},

min
gi∈K

{OPT [K \ {gj}, si, q
∗] + pij}}. (5)

We can compute OPT [K, si, q
∗] in an order of increasing q∗ and the size of

K. The detailed steps of this algorithm are omitted since they are similar to
these of the algorithm for TPP. We need to compute O(2kmq) subproblems and
each subproblem takes O(m + k) basic computations.

Theorem 2. TPP-S1 can be solved in O(2kqm(m + k)) time and it is FPT by
taking the number k of products as the parameter.

2.3 TPP-S2 with Parameter k

Now we consider TPP-S2. Compared with TPP-S1, TPP-S2 has one more restric-
tion, which requires that at most u pieces of products can be bought from each
supplier. The algorithm for TPP-S1 parameterized by the number k of prod-
ucts, can not be directly modified to an algorithm for TPP-S2, since it is hard
to control the number of products purchased from each supplier. To get an FPT
algorithm for TPP-S2 parameterized by k, we need to use the color coding tech-
nique [2] together with dynamic programming.

For a graph G, we say that G is q-colored if each vertex of G is colored by
one of q different colors. For a q-colored graph G, if there is a path (resp., circle)
such that all the vertices of the path are colored with pairwise distinct colors,
we call it a colorful path (resp., colorful circle). We first solve a special case
of TPP-S2, called Colored-TPP-S2, in which the input graph is q-colored, and
we are asked to solve the TPP-S2 under the constraint that the traveling path
(circle) is colorful.

We use χ to denote the set of q colors used in the graph G and χ(si) denote
the color of supplier si. For each subset K ⊆ K of products, each supplier
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si ∈ M, each subset X ⊆ χ and each nonnegative integer u∗ ≤ u, we define
the subproblem Sub-TPPS2(K, si,X, u∗): buy all the products in K by trav-
eling from a colorful path starting from home s0 and ending at si, the set of
colors used in the colorful path is X, at most u products are bought from each
supplier, and exactly u∗ products are bought from supplier si, while minimizing
the traveling and purchasing cost. The value of an optimal solution to Sub-
TPPS2(K, si,X, u∗), which is defined to be ∞ if no solution exists, is denoted
by OPT [K, si,X, u∗].

It is not hard to see the result of Colored-TPP-S2 is equal to

min
si∈M,X⊆χ,u∗≤u

{OPT [K, si,X, u∗] + di0}. (6)

Our idea is to compute all OPT [K, si,X, u∗] in a dynamic programming way,
in order of nondecreasing values of |K|, |X| and u∗ by using the following two
state transition process.

When u∗ > 0, it holds the purchasing recurrence relation

OPT [K, si,X, u∗] = min
gj∈K

{OPT [K \ {gj}, si,X, u∗ − 1] + pij}. (7)

When u∗ = 0, it holds the traveling recurrence relation

OPT [K, si, X, 0] =

{
∞, if χ(si) �∈ X,

minsj∈M\{si}&u∗≤u{OPT [K, sj , X \ {χ(si)}, u∗] + dji}, otherwise.
(8)

Note that the number of sets K is 2k, the number of sets X is 2q, the number
of possible values for u∗ is u + 1, and si can be any candidate in M. Thus, the
number of subproblems Sub-TPPS2(K, si,X, u∗) is O(um2k+q). When u∗ �= 0,
we may use |K| ≤ k basic computations to compute OPT [K, si,X, u∗] by (7).
When u∗ = 0, we may use |M|(u + 1) = m(u + 1) basic computations to
compute OPT [K, si,X, u∗] by (8). Note that um ≥ k otherwise the problem has
no solution. So the total running time of the dynamic programming algorithm
for Colored-TPP-S2 is O(u2m22k+q).

Next we solve TPP-S2 by reducing it to Colored-TPP-S2. Consider an
instance of TPP-S2. We use M∗ to denote the set of suppliers visited in an
optimal solution to it. We randomly color vertices of the instance graph by
using q different colors with the same probability for each color. The probability
such that all vertices in M∗ get different colors is

|M∗|!( q
|M∗|

)

q|M∗| . (9)

Since |M∗| ≤ q, we know that

|M∗|!( q
|M∗|

)

q|M∗| ≥ q!
qq

. (10)
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By using the well-known inequality q! > (q/e)q, where e is the base of natural
logs, we know that the probability of all vertices in M∗ being colored with
different colors is at least e−q.

Thus, we can get a randomized algorithm of TPP-S2 by applying the random
coloring operation and then solving each Colored-TPP-S2. We repeat the random
coloring operation for eq times and then get a colored instance such that vertices
in M∗ are colored with different colors with a constant probability.

There is also a technique to derandomize the above coloring operation with
an additional running time factor of qO(log q) log m [15]. We have that

Theorem 3. TPP-S2 can be solved in O(u2m22k+qeqqO(log q) log m) time and
it is FPT by taking the number k of products as the parameter.

Note that we always assume q ≤ k due to the triangle inequality, and thus this
algorithm is an FPT algorithm for the problem with parameter k.

3 Algorithms for Small Number of Suppliers

In this section, we will design an O(2m(m2+mk))-time algorithm for TPP, TPP-
S1 and TPP-B, and then modify it to an O(2m(m2 + mk

√
k))-time algorithm

for TPP-S2. When we take m as the parameter, the four problems are FPT.

3.1 TPP with Parameter m

We still consider TPP first. In TPP, we have to decide two things, a tour of some
suppliers and a purchasing plan of products. A tour of suppliers is a permutation
of suppliers in the visiting order, and a purchasing plan of products is a decision
that decides to buy each product from which supplier. This problem is hard
because we need to optimize the traveling cost and purchasing cost at the same
time. However, if we have decided the suppliers where we should visit (the set
of which is M), then the problem can be reduced to the normal TSP problem.

In our algorithm, for each subset M ⊆ M of suppliers, we solve the subprob-
lem: find a tour (circle) starting and ending at home s0, visiting all suppliers in
M to buy all products in K, while minimizing the total cost of purchasing and
traveling. We use c(M) to denote the cost of an optimal solution to the above
subproblem, d(M) to denote the cost of a minimum tour starting and ending at
home s0 and visiting all suppliers in M , and p(M) to denote the optimal cost to
buy all products in K from suppliers only in M , where p(M) may be ∞ if some
product is not sold in any suppliers in M . Then for each M ⊆ M,

c(M) = d(M) + p(M). (11)

We compute c(M) for all M ⊆ M using (11).
The next target is to compute d(M) and p(M). For each M ⊆ M and

si ∈ M , we use OPT [M, si] to denote the minimum distance of a tour which
starts from home s0, visits all suppliers in M and ends at si. Then OPT [M, si]
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can be computed in a dynamic programming method by the following recurrence
relation (see [3,10])

OPT [M, si] = min
sj∈M\{si}

{OPT [M\{si}, sj ] + dji}. (12)

We get that

d(M) = min
sj∈M

{OPT [M, sj ] + dj0}. (13)

For a subset M ⊆ M, we use pM (gi) to denote the minimum price of product gi

in all suppliers in M , where pM (gi) = ∞ if no supplier in M provides gi. Then

p(M) =
∑

gi∈K
pM (gi). (14)

The whole algorithm is denoted by A-m for TPP. In this algorithm, to com-
pute OPT [M, si] we use |M | ≤ m basic computations in (12). It takes O(2mm2)
time to compute all values of OPT [M, si] for M ⊆ M and si ∈ M in a dynamic
programming method. For each fixed M , it takes at most m and mk basic com-
putations to compute d(M) in (13) and p(M) in (14), respectively. The values
of c(M) = d(M) + p(M) for all M can be computed in O(2mmk) time. In total,
this algorithm uses O(2mm2 + 2mmk) time.

Theorem 4. TPP can be solved in O(2mm(m+k)) time and it is FPT by taking
the number m of suppliers as the parameter.

3.2 TPP-S1 and TPP-B with Parameter m

The above algorithm can be easily modified for TPP-S1. We only need to com-
pute c(M) for |M | ≤ q. Then TPP-S1 can be solved in O(2mm(m + k)) time.
For TPP-B, the goal is to find an M such that d(M) is minimized under the
budget constraint p(M) ≤ B. We can also use the above algorithm to compute
d(M) and p(M) and solve TPP-B in the same time.

Theorem 5. TPP-S1 and TPP-B can be solved in O(2mm(m + k)) time and
they are FPT by taking the number m of suppliers as the parameter.

3.3 TPP-S2 with Parameter m

We can also modify the algorithm for TPP to an algorithm for TPP-S2. However,
we need one more technique to find a minimum cost matching on a bipartite
graph. In TPP-S2, we have a part of input q to indicate the maximum number
of suppliers can be visited and {ui}m

i=1 to indicate that at most ui products can
be bought from supplier si. For each M ⊆ M and |M | ≤ q, we still use d(M) to
denote the cost of a minimum tour starting and ending at home s0 and visiting
all suppliers in M , and p(M) to denote the optimal cost to buy all products in K
from suppliers only in M under the constraints in TPP-S2, where p(M) = ∞ if
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we can not buy all the products from M under the constraints. To solve TPP-S2,
we only need to find an M with |M | ≤ q such that the cost c(M) = d(M)+p(M)
is minimized. The above method to compute d(M) is still suitable for TPP-S2.
The hard part is to compute p(M).

We construct a bipartite graph H = (VK ∪ VM , E) and compute p(M) by
finding a minimum cost matching in H. For each product gi ∈ K we generate
a vertex ai in VK . For each supplier si ∈ M we generate ui different vertices in
VM , each of which is adjacent to each aj ∈ VK with the edge cost being the price
pij of product gj at supplier si. We can see that the minimum cost of a matching
of size |VK | = k in H is equal to p(M). By using the algorithm developed in [1],
the minimum cost matching can be found in O(k

√
km) time.

Theorem 6. TPP-S2 can be solved in O(2mm(m + k
√

k)) time and it is FPT
by taking the number m of suppliers as the parameter.

4 Parameterized by the Number q of Suppliers to be
Visited

In some real-world problems, usually the number q of suppliers to be visited
is small. It is natural to consider q as the parameter. Different from the above
two sections, this section will show that it is unlikely to have FPT algorithms
by proving the W[2]-hardness of TPP parameterized by q. We will reduce from
the well-known W[2]-hard problem: the set cover problem parameterized by the
solution size.

An instance of the set cover problem is given by (U, C), where U is the universe
of elements and C is a collection of subsets of U . The target of the problem is to
find a subset A ⊆ C of minimum size such that ∪A∈AA = U .

For an instance I = (U, C) of the set cover problem, we construct an instance
I ′ of TPP. In I ′, each product g is corresponding to an element g in U , and each
supplier s is corresponding to a set s in C. The price of a product g in a supplier
s is 0 if the corresponding element g is contained in the corresponding set s and
is ∞ otherwise. The distance between any two sites (home and suppliers) is 1.
We can see that I has a set cover of size at most q if and only if I ′ has a solution
with cost q + 1 (the purchasing cost is 0 and the traveling cost is q + 1).

Note that TPP-S1, TPP-S2 and TPP-B are general cases of TPP with more
constraints. The above reduction also implies the hardness of TPP-S1, TPP-S2
and TPP-B.

Theorem 7. TPP, TPP-S1, TPP-S2 and TPP-B are W[2]-hard by taking the
number q of suppliers to be visited as the parameter.

5 A Hardness Result for TPP-B

We have shown that TPP-B parameterized by m is FPT. The algorithm A-k for
TPP can not be modified to TPP-B. In this section, we will show that TPP-B
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parameterized by k is indeed W[1]-hard. Our proof is based on a reduction from
the multi-subset sum problem.

In the subset sum problem, we are given a set of integers U =
{x1, x2, . . ., x|U |} and two integers w and k, and the task is to find a subset
S ⊆ U such that |S| = k and the sum of the elements in S is equal to w. For
the multi-subset sum problem, the input is the same and the task is to find a
multi-subset S of U with k elements such that the sum of the elements in S is
equal to w (i.e., an integer in U can appear more than one time in S). It is known
that the subset sum problem with parameter k is W[1]-hard [8]. The proof in [8],
without any modification, can also prove the W[1]-hardness of the multi-subset
sum problem with parameter k.

For an instance I = (U = {x1, x2, . . ., x|U |}, w, k) of the multi-subset sum
problem, we construct an instance I ′ of TPP-B. In I ′, we have k different prod-
ucts to be bought and k|U | suppliers. We partition the suppliers into k groups
G1, G2, . . . , Gk, each group Gi has exactly |U | suppliers.

We use si,j (j = 1, 2, . . . , |U |) to denote the jth supplier in group Gi. Any
supplier in the same group Gi only sales one product gi. However, the price of
gi in supplier si,j is xj . Next we define the distance between each pair of sites.
Let X =

∑
x∈U x. The distance from home s0 to each supplier s1,j in group 1

is X − xj/2. For any i = 1, 2, . . . , k − 1, the distance from each supplier si,j1 in
group i to each supplier si+1,j2 in group i + 1 is X − (xj1 + xj2)/2. The distance
from each supplier sk,j in group k to home s0 is X − xj/2. Any other distance
between two sites not defined above is a very large number such that any optimal
solution will not choose the path. The budget b is w. See Fig. 1 for an illustration
for the construction.

Fig. 1. Reduction from the multi-subset sum problem

In I ′, an optimal solution will visit exact one supplier in each group. Assume
that in an optimal solution, we buy product gi with price yi in group i (i =
1, 2, . . . , k). Then the traveling cost is c1 = (X − y1/2) + (X − (y1 + y2)/2) +
(X − (y2 + y3)/2) + · · · + (X − yk/2) = (k + 1)X − ∑k

i=1 yi and the purchasing
cost is c2 =

∑k
i=1 yi. We can see that c1 + c2 = (k + 1)X is a constant. When the



578 M. Xiao et al.

purchasing cost reaches the budget w, the traveling cost reaches the optimal value
of (k +1)X −w. So the instance I of the multi-subset sum problem has a solution
of size k if and only if the instance I ′ of TPP-B has a solution with traveling cost
(k + 1)X − w.

Theorem 8. TPP-B is W[1]-hard by taking the number k of products as the
parameter.

6 Conclusion

To deal with NP-hard problems, approximation algorithms relax the accuracy,
heuristic methods loss the certainty (or accuracy), and parameterized algorithms
find certain tractable ranges. Parameterized algorithms restrict the exponential
part of the running time to parameters only. When the parameter is small,
parameterized algorithms can optimally solve problems in a short time. Many
real-world instances of TPP and its variants have the property of small param-
eters. In this paper, we establish the parameterized complexity of TPP with
additional constraints and different parameters. In practice, the experimental
results show the advantages of parameterized algorithms on instances with small
parameters.
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