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Abstract. The bounded delay buffer management problem, which was
proposed by Kesselman et al. (STOC 2001 and SIAM Journal on Com-
puting 33(3), 2004), is an online problem focusing on buffer management
of a switch supporting Quality of Service (QoS). The problem definition
is as follows: Packets arrive to a buffer over time and each packet is spec-
ified by the release time, deadline and value. An algorithm can transmit
at most one packet from the buffer at each integer time and can gain its
value as the profit if transmitting a packet by its deadline after its release
time. The objective of this problem is to maximize the gained profit. We
say that an instance of the problem is s-bounded if for any packet, an
algorithm has at most s chances to transmit it. For any s ≥ 2, Hajek
(CISS 2001) showed that the competitive ratio of any deterministic algo-
rithm is at least (1 +

√
5)/2 ≥ 1.618. Very recently, Veselý et al. (SODA

2019) designed an online algorithm matching the lower bound.
Böhm et al. (ISAAC 2016 and Theoretical Computer Science, 2019)

introduced the lookahead ability to an online algorithm, that is the algo-
rithm can gain information about future arriving packets, and showed
that for s = 2, there is an algorithm which achieves the competitive ratio
of (−1 +

√
13)/2 ≤ 1.303. Also, they showed that the competitive ratio

of any deterministic algorithm is at least (1 +
√

17)/4 ≥ 1.280. In this
paper, for the 2-bounded model with lookahead, we design an algorithm
with a matching competitive ratio of (1 +

√
17)/4.

1 Introduction

The online buffer management problem proposed by Aiello et al. [1] formu-
lates the management of buffers to store arriving packets in a network switch
with Quality of Service (QoS) support as an online problem. This problem has
received much attention among online problems and has been studied for the
last fifteen years, which leads to developing various variants of this problem (see
comprehensive surveys [17,26]). Kesselman et al. [23] proposed the bounded delay
buffer management problem as one of the variants, whose definition is as follows:
Packets arrive to a buffer over time. A packet p is specified by the release time
r(p), value v(p) and deadline d(p). An algorithm is allowed to transfer at most
one packet at each integer time. If the algorithm transmits a packet between
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its release time and deadline, it can gain its value as the profit. The objective
of this problem is to maximize the gained profit. The performance of an online
algorithm for this problem is evaluated using competitive analysis [11,27]. If for
any problem instance, the profit of an optimal offline algorithm OPT is at most
c times that of an online algorithm A, then we say that the competitive ratio of
A is at most c. We call a problem instance the s-bounded instance (or s-bounded
delay buffer management problem) in which for any packet p, d(p)−r(p)+1 ≤ s.
For any s ≥ 2, Hajek [19] showed that the competitive ratio of any deterministic
algorithm is at least (1+

√
5)/2 ≥ 1.618. Very recently, Veselý et al. [28] designed

an online algorithm matching the lower bound.
There is much research among online problems to reduce the competitive

ratio of an online algorithm for the original problems by adding extra abilities
to the algorithm. One of the major methods is called the lookahead ability, with
which an online algorithm can obtain information about arriving packets in
the near future. This ability is introduced to various online problems: the bin
packing problem [18], the paging problem [2,12], the list update problem [3],
the scheduling problem [25] and so on. Then, Böhm et al. [9,10] introduced the
lookahead ability to the bounded delay buffer management problem, that is, they
gave an online algorithm for this problem an ability to obtain the information
about future arriving packets and analyzed its performance.

Previous Results and Our Results. Böhm et al. [9,10] studied the 2-bounded
bounded delay buffer management problem with lookahead. They designed a
deterministic algorithm whose competitive ratio is at most (−1+

√
13)/2 ≤ 1.303.

Also, they proved that the competitive ratio of any deterministic algorithm is at
least (1 +

√
17)/4 ≥ 1.280.

In this paper, we show an online algorithm matching their lower bound for
this problem, that is, its competitive ratio is exactly (1 +

√
17)/4. Since the

original bounded delay buffer management problem has been solved completely
by Veselý et al. [28] just recently, the bounded delay buffer management problem
with lookahead is one of the most important variants which should be solved
among several variants of this problem. Our result will help to develop an optimal
algorithm for s-bounded instances.

Related Results. In the full version [10] of the paper [9], Böhm et al. studied
lower bounds on the competitive ratios of online algorithms with more general-
ized lookahead. Specifically, the lookahead ability in [9] at a time t enables an
online algorithm to obtain the information about packets p such that r(p) = t+1.
In [10], for a positive integer �, they considered the case where the ability at a
time t enables an online algorithm to obtain the information about packets p
such that r(p) ≤ t + �. They showed that a lower bound of any deterministic
algorithm is 1+

√
5+8�+4�2

2�+2 . Moreover, they proved that for any � ≥ 1, a lower
bound of any randomized online algorithm is 1.25.

As mentioned above, for the s-bounded delay model without lookahead,
Hajek [19] showed that the competitive ratio of any deterministic algorithm
is at least (1 +

√
5)/2 ≥ 1.618 in the case of s ≥ 2. Independently, this bound
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was also shown in [4,13,29]. Several deterministic algorithms have been devel-
oped [5,9,10,14,16,23] and very recently, Veselý et al. [28] designed an optimal
online algorithm. Moreover, in the case where an algorithm must decide which
packet to transmit on the basis of the current buffer situation, called the mem-
oryless case, some results were shown [5,14,16]. The agreeable deadline variant
has also been studied. In this variant, the larger the release times of packets are,
the larger their deadlines are. Specifically, for any packets p and p′, d(p) ≤ d(p′)
if r(p) < r(p′). The lower bound of (1+

√
5)/2 by Hajek [19] is applicable to this

variant. Li et al. [21,24] displayed an optimal algorithm, whose competitive ratio
matches the lower bound. The case in which for any packet p, d(p)−r(p)+1 = s
has also been studied, called the s-uniform delay variant, which is a specialized
variant of the agreeable deadline variant. The current best upper bound for this
variant is (1 +

√
5)/2 [21,24]. Also, in the case of s = 2, Chrobak et al. [15]

designed an optimal online algorithm whose competitive ratio is 1.377 [15].
The research on randomized algorithms for the bounded delay buffer man-

agement problem has also been conducted extensively [5,6,13,14,20–22]. In
the case in which s is general, the current best upper and lower bounds are
e/(e − 1) ≤ 1.582 [5,14,22] and 5/4 = 1.25 [13], respectively, against an obliv-
ious adversary were shown. Upper and lower bounds of e/(e − 1) [6,22] and
4/3 ≥ 1.333 [6], respectively, against an adaptive adversary were shown. For any
fixed s, lower bounds are the same with the bounds in the case in which s is
general while upper bounds are 1/(1−(1− 1

s )s) [22] against the both adversaries.
A generalization of the bounded delay buffer management problem has been

studied, called the weighted item collection problem [7,8,22]. In this problem,
an online algorithm does not know the deadline of each packet but knows the
relative order of the deadlines of packets. Many other variants of the buffer
management problem have been studied extensively (see e.g. [17,26]).

2 Model Description

We formally give the definition of the 2-bounded delay buffer management prob-
lem with lookahead, which is addressed in this paper. An input of this problem
is a sequence of phases. Time begins with zero and a phase occurs at an integer
time. Each phase consists of three subphases. The first occurring subphase is the
arrival subphase. At an arrival subphase, arbitrarily many packets can arrive to
a buffer. The buffer has no capacity limit and hence, all arriving packets can
always be accepted to the buffer. A packet p is characterized by the release time,
deadline and value, denoted by r(p), d(p) and v(p) respectively. Arrival times and
deadlines are non-negative integers and values are positive reals. d(p)− r(p) ≤ 1
holds because we focus on 2-bounded instances. The second subphase is the
transmission subphase. At a transmission subphase, an algorithm can transmit
at most one packet from its buffer if any packet. At the transmission subphase
at a time t, the algorithm can obtain the information about packets arriving
at time t + 1 using the lookahead ability. The third subphase is the expiration
subphase. At an expiration subphase, a packet which has reached its deadline is
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discarded from its buffer. That is, at the expiration subphase at a time t, all the
packets p in the buffer such that d(p) = t are discarded.

The profit of an algorithm is the sum of the values of packets transmitted by
the algorithm. The objective of this problem is to maximize the gained profit.
Let VA(σ) denote the profit of an algorithm A for an input σ. Let OPT be
an optimal offline algorithm. We say that the competitive ratio of an online
algorithm ON is at most c if for any input σ, VOPT (σ) ≤ VON (σ)c.

3 Matching Upper Bound

3.1 Notation and Definitions

We give definitions before defining our algorithm CompareWithPartialOPT
(CP ). For any integer time t and any algorithm A, BA(t) denotes the set of
packets in A’s buffer immediately before the arrival subphase at time t. That
is, each packet p in the set is not transmitted before t such that t > r(p) and
t ≤ d(p). Let us define an offline algorithm PO, which stands for a Partial OPT ,
which stores all the packets in the buffer of CP at a time and woks optimally
given a subinput from the time. For integer times t, t′ ≥ t and t′′ ∈ {t′, t′ + 1}
and an input σ, let PO(t, t′, t′′) be an offline algorithm such that the set of
packets in PO(t, t′, t′′)’s buffer immediately before the arrival subphase at time
t is equal to that of BCP (t)’s, and if the subinput of σ during time [t, t′] is given
to PO(t, t′, t′′), that is, packets p such that r(p) ∈ [t, t′] arrive to PO(t, t′, t′′)’s
buffer during time [t, t′], then PO(t, t′, t′′) is allowed to transmit t′′ − t + 1
packets only from time t to t′′ inclusive, that is, at t′′ − t + 1 transmission
subphases, and chooses the packets whose total profit is maximized. If there
exist packets with the same value in PO(t, t′, t′′)’s buffer, PO(t, t′, t′′) follows
a fixed tie breaking rule. Also, P (t, t′, t′′) denotes the set of t′′ − t + 1 packets
transmitted by PO(t, t′, t′′) during time [t, t′′]. Note that for any t and t′ ≥ t,
the following relations hold because of the optimality of packets transmitted by
PO(t, t′, t′′) during time [t, t′′]:

P (t, t′, t′) ⊆ P (t, t′ + 1, t′ + 1) (1)
P (t, t′, t′) ⊆ P (t, t′, t′ + 1) (2)

and
P (t + 1, t′, t′) ⊆ P (t, t′, t′). (3)
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We define for any t and i ≥ 0,

{mi(t)} = P (t, t + i, t + i)\P (t, t + i − 1, t + i − 1)

and any i ≥ 1,

{qi(t)} = P (t, t + i, t + i + 1)\P (t, t + i, t + i).

Also, we define

P (t, t − 1, t − 1) = ∅.

If mi(t) (qi(t)) does not exist, that is, the above equality is the empty set, then
we assume that a packet whose value is 0 is given. This assumption is used
to make the description of CP simpler and does not affect the performance of
CP . Moreover, if there exists a packet p such that both v(p) = v(q1(t)) holds
and either r(p) = t or p ∈ BCP (t), that is, CP can transmit p at t, then q0(t)
denotes p. Also, we define m01(t) ∈ arg max{m0(t),m1(t)}. Let V (t, t′, t′′) denote
the total value of packets in P (t, t′, t′′). That is, V (t, t′, t′′) =

∑
p∈P (t,t′,t′′) v(p).

We describe each value in the algorithm definition for ease of presentation as
follows: mi = mi(t), m01 = m01(t), qi = qi(t) and, R = (1 +

√
17)/4.

3.2 Idea Behind Algorithm Design

In this section, we explain the idea behind designing our algorithm CP for better
understanding. Suppose that CP decides which packet to transmit at a time t.
Let us assume that at t, the buffer of CP stores all the packets in the buffer of
OPT at t. We guarantee that this assumption holds at a time satisfying some
conditions in a lemma of the full version of this paper. Due to page limitations,
we omit all of the proofs in this paper. The full version of this paper is available
at https://arxiv.org/abs/1807.00121. If this assumption holds, CP is able to
detect two packets OPT transmits at times t and t + 1. To detect here means
that CP calculates which packets OPT transmits at these times cause the worst
situation with respect to the profit ratio. Let V be the maximum total value of
two packets which OPT transmits at t and t + 1. CP chooses packets p and p′

at t and t + 1, respectively, from packets which are revealed to CP at t such
that V ≤ R(v(p)+ v(p′)) holds. Note that p′ may arrive at t+1. Although both
CP ’s and OPT ’s buffers have the same packets at some time, the optimal choice
depends on the instance, which in turn depends on CP ’s choice and thus CP
might make a non-optimal choice in general. and hence, CP does not always
transmit the packets as the ones which OPT transmits although they have the
same packets at t. If CP could choose packets for each t = 0, 2, 4, . . . to satisfy
the above inequality, we could prove that the competitive ratio of CP is at most
R. However, this is impossible. For example, suppose that packets p0, p1 and
p2 are given at time 0 such that d(p0) = 0, d(p1) = 1 and d(p2) = 2 and no
other packets are given further. Also, suppose that CP transmits p1 and p2 at
times 0 and 1, respectively and OPT transmits p0, p1 and p2 at times 0, 1 and 2,

https://arxiv.org/abs/1807.00121
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respectively. In this case, CP does not transmit any packet at time 2 and thus,
we cannot prove the above inequality.

Thus, the length of a time interval which CP uses to evaluate its competitive
ratio is not fixed (such as 2 mentioned above) but variable as follows. Let us
assume again that at a time t, the buffer of CP stores all the packets in the
buffer of OPT at t. Also, suppose that CP decides which packet to transmit at
a time t′(≥ t) (the fact that t′ ≤ t+2 holds will be shown later by the definition
of CP ). By this assumption, CP can detect t′−t+2 packets transmitted by OPT
during the time [t, t′ +1] (in some special cases, CP can detect t′ − t+3 packets
transmitted by OPT during [t, t′ + 2]). Let V ′ be the maximum total value of
packets which OPT transmits during this time interval. CP chooses packets p
and p′ at t′ and t′+1, respectively, considering the total value U of packets which
CP already transmitted during time [t, t′ −1] such that V ′ ≤ R(U +v(p)+v(p′))
holds. For example, suppose that packets q0(0),m0(0) and m1(0) are given at
time 0 whose values satisfy the execution conditions of Case 1.2.3.1 in CP . If CP
transmits m0(0) and m1(0) at times 0 and 1, respectively, then CP can detect
that OPT transmits q0(0),m0(0) and m1(0) at times 0, 1 and 2, respectively. In
this case, t = t′ = 0 holds, and the above inequality holds by the condition of
Case 1.2.3.1.

The sequences of packets which OPT transmits during [t, t′ +1] (or [t, t′ +2])
are classified into three categories according to a packet p′ which CP transmits
at t′ + 1 (this fact will be proved in some lemmas of the full version of this
paper): (a) Packets which are given during [t, t′ + 1] satisfy some conditions and
OPT transmits specific packets whose total value is V (t, t′ +1, t′ +1). (b) If the
deadline of p′ is t′ + 1, then the total value of packets which OPT transmits
during [t, t′ + 1] is at most V (t, t′ + 1, t′ + 1). (c) If the deadline of p′ is t′ + 2,
then the total value of packets which OPT transmits during [t, t′ + 2] is at most
V (t, t′ +1, t′ +2). Please refer to Table 1. ‘Case’ column shows the names of cases
executed by CP at t. ‘Type’ column shows the categories of packet sequences
transmitted by OPT during [t, t′ +1] (or [t, t′ +2]). ‘t’ and ‘t+1’ in ‘CP ’ column
show packets which CP transmits at t and t+1, respectively. Similarly, ‘t’, ‘t+1’
and ‘t+2’ in ‘OPT ’ column show packets which CP detects at time t that OPT
transmits at t, t+1 and t+2, respectively. ‘Value’ column shows the total value
of the packets detected by CP . For example, packets detected at Case 1.2.3.1 are
classified into (c). CP transmits m0(t) and m1(t) at times 0 and 1, respectively.
CP can detect that OPT transmits q0(t)(= q1(t)),m0(t) and m1(t) at times 0,
1, and 2, respectively, and the total value of these packets is V (t, t + 1, t + 2).
On the other hand, suppose that packets satisfying the condition of Case 1.2.3.2
are given. In this case, at time t, if CP decides which packet to transmit at
t + 1, then a situation in which the above inequality does not hold can occur
whichever packet which arrives at or before t + 1 CP chooses. Note that if this
condition is satisfied, then this situation occurs not only for CP but also any
online algorithm, which causes the definition of CP lengthy. Hence, CP chooses
q0(t) as a packet for the transmission subphase at t, and decides which packet
to transmit for the transmission subphase of time t + 2 after making sure of
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packets at t+1 with lookahead. That is, CP executes Step 2 at the transmission
subphase at t + 1 to choose packets which CP transmits at t + 1 and t + 2.

Similarly to the case at time t, CP chooses packets at t + 1 considering the
value U = v(q0(t)) of the packet q0(t) which CP transmitted at t so that the
above inequality holds. Please refer to the row of Case 2.2.1 in Table 2, which is
described in the same manner as the previous one. Suppose that packets are given
satisfying the conditions of Case 2.2.1. If CP transmits m01(t) and m2(t) at times
t+1 and t+2, respectively, then CP can detect that OPT transmits m0(t),m1(t)
and m2(t) at times t, t + 1 and t + 2, respectively. These packets are classified
into (b) and the above inequality holds because of the condition of Case 2.2.1.
Unfortunately, suppose that packets satisfying the condition of Case 2.2.2.3 are
given. In this case, at t + 1, if CP decides which packet to transmit at t + 2,
then a situation in which the above inequality does not hold can also occur.
Note that if the conditions of Cases 1.2.3.2 and 2.2.2.3 are satisfied at times t
and t+1, respectively, then this situation occurs for any online algorithm. Thus,
CP chooses m0(t) as a packet for t + 1, and executes Step 3 at t + 2 to choose
packets which CP transmits at t+2 and t+3. Fortunately, as Table 3 shows, at
time t + 2, if CP chooses packets to transmit at t + 2 and t + 3 appropriately,
then the above inequality holds at any of Cases 3.1 - 3.2.3. Moreover, we will
prove that the buffer of CP stores all the packets in the buffer of OPT at t′ + 2
in a lemma of the full version (there exists some exception for a packet sequence
classified into (c)). Hence, in the next step, we can regard time t′ + 2 as a new
base time, which was time t in the above discussion, and evaluate the profit ratio
for each time interval recursively. In this way, CP is designed so that at each
time interval [t, t′ +1] (or [t, t′ +2]), the corresponding profit ratio is at most R,
that is, its competitive ratio is at most R.

Table 1. Packet prediction at Step 1 at time t

CP OPT

Case Type t t + 1 Value t t + 1 t + 2

1.1 a, b m0 V (t, t, t) m0

1.2.1 b m1 m0 V (t, t + 1, t + 1) m1 m0

1.2.2 b m0 m1 V (t, t + 1, t + 1) m0 m1

1.2.3.1 c m0 m1 V (t, t + 1, t + 2) q0 m0 m1

1.2.3.2 q0 (Step 2)

mi and qi denote mi(t) and qi(t) for ease of presentation. q0 = q1
by definition.
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Table 2. Packet prediction at Step 2 at time t + 1

CP OPT

Case Type t t + 1 t + 2 Value t t + 1 t + 2 t + 3

2.1 b q0 m0 m1 V (t, t + 2, t + 2) m0 m1 m2

2.2.1 b m01 m2 V (t, t + 2, t + 2) m0 m1 m2

2.2.2.1 a m01 V (t, t + 1, t + 1) m0 m1

2.2.2.2 c m01 m2 V (t, t + 2, t + 3) q0 m0 m1 m2

2.2.2.3 m0 (Step 3)

mi, m01 and qi denote mi(t), m01(t) and qi(t). q0 = q1 by definition.

Table 3. Packet prediction at Step 3 at time t + 2

CP OPT

Case Type t t + 1 t + 2 t + 3 Value t t + 1 t + 2 t + 3 t + 4

3.1 b q0 m0 m1 m2 V (t, t + 3, t + 3) m0 m1 m2 m3

3.2.1 b m2 m3 V (t, t + 3, t + 3) m0 m1 m2 m3

3.2.2 a m2 V (t, t + 2, t + 2) m0 m1 m2

3.2.3 c m2 m3 V (t, t + 3, t + 4) q0 m0 m1 m2 m3

mi, m01 and qi denote mi(t), m01(t) and qi(t). q0 = q1 by definition.

3.3 Algorithm

The executions of CP are divided into stages. Each stage consists of a single
transmission subphase, two consecutive transmission subphases, three consecu-
tive transmission subphases or four consecutive transmission subphases.

CP uses the internal variable st for holding the name of a packet which CP
transmits at a time t. st′ = null holds at first for any integer t′. CP uses the
constant tmp1 (tmp2) if at time t (t + 1), CP cannot decide which packet to
transmit at t + 1 (t + 2) in Case 1.2.3.2 (2.2.2.3). On the other hand, once the
name of a packet is set to st+1 at time t, CP certainly transmits the packet at
t + 1. It is applied to st+2 (st+3) which is set at t + 1 (t + 2).
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CompareWithPartialOPT (CP )

Initialize: For any integer time t′, st′ :=null.
Suppose that a stage starts at a time t.
Step 1 (the transmission subphase at t):

Execute the following cases (Case 1.1 - 1.2.3.2) and transmit the packet st. If
st+1 =null after this transmission (i.e., Case 1.1 is executed), then finish the
stage.
Case 1.1 (d(m0) = t or q0 does not exist): st := m0.
Case 1.2 (d(m0) �= t):
Case 1.2.1 (d(m1) = t): st := m1 and st+1 := m0.
Case 1.2.2 (d(m1) = t + 1): st := m0 and st+1 := m1.
Case 1.2.3 (d(m1) �= t + 1):
Case 1.2.3.1 V (t,t+1,t+2)

v(m0)+v(m1)
≤ R): st := m0 and st+1 := m1.

Case 1.2.3.2 V (t,t+1,t+2)
v(m0)+v(m1)

> R): st := q0 and st+1 := tmp1.
Step 2 (the transmission subphase at t + 1):

If st+1 =tmp1, then execute the following cases (Case 2.1 - 2.2.2.3). Transmit the
packet st+1. If st+2 =null after this transmission (i.e., Case 2.2.2.1 is executed),
then finish the stage.
Case 2.1 ( V (t,t+2,t+2)

v(q0)+v(m0)+v(m1)
≤ R): st+1 := m0 and st+2 := m1.

Case 2.2 ( V (t,t+2,t+2)
v(q0)+v(m0)+v(m1)

> R):
Case 2.2.1 (d(m2) = t + 2): st+1 := m01 and st+2 := m2.
Case 2.2.2 (d(m2) �= t + 2):
Case 2.2.2.1 (v(q2) �= v(q1)): st+1 := m01.
Case 2.2.2.2 (v(q2) = v(q1) and V (t,t+2,t+3)

v(q0)+v(m01)+v(m2)
≤ R): st+1 :=

m01 and st+2 := m2.
Case 2.2.2.3 (v(q2) = v(q1) and

V (t,t+2,t+3)
v(q0)+v(m01)+v(m2)

> R): st+1 := m0

and st+2 := tmp2.
Step 3 (the transmission subphase at t + 2):

If st+2 =tmp2, then execute the following cases (Case 3.1 - 3.2.3). Transmit the
packet st+2. If st+3 =null after this transmission (i.e., Case 3.2.2 is executed),
then finish the stage.
Case 3.1 ( V (t,t+3,t+3)

v(q0)+v(m0)+v(m1)+v(m2)
≤ R): st+2 := m1 and st+3 := m2.

Case 3.2 ( V (t,t+3,t+3)
v(q0)+v(m0)+v(m1)+v(m2)

> R):
Case 3.2.1 (d(m3) = t + 3): st+2 := m2 and st+3 := m3.
Case 3.2.2 (d(m3) �= t + 3 and v(q3) �= v(q1)): st+2 := m2.
Case 3.2.3 (d(m3) �= t + 3 and v(q3) = v(q1)): st+2 := m2 and

st+3 := m3.
Step 4 (the transmission subphase at t+3): Transmit st+3 and finish the
stage.
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3.4 Overview of the Analysis

For ease of analysis, we assume that if CP does not store any packet in its buffer
at the transmission subphase at a time t, no packets arrive at or after time t+1
any more, that is, the input is over. Note that CP stores no packets but OPT may
store one at t, that is, transmit it then. Since we consider a 2-bounded instance,
the buffers of OPT and CP are both empty after the expiration subphase at t.
This situation is equal to the one before the first packet arrives at time 0 and by
the definition of CP , we regard a time at which the buffers are empty as time
0. Therefore, this assumption does not affect the performance of CP .

Consider a given input σ. Let k denote the number of stages after σ is over.
Let τ be the last time at which CP transmits a packet. We partition the time
sequence [0, τ ] into k sequences Ti (i = 1, . . . , k) disjointly such that Ti consists of
times at which the executions of the ith stage are done. Specifically, if Ti = [ti, t′i],
then ti ≤ t′i, t1 = 0, t′k = τ and for any j = 2, . . . , k, tj = t′j−1 + 1. The size
of each Ti depends on times at which CP does the executions of the ith stage,
that is, which case CP executes at each time: Suppose that Ti = [t, t′], in which
t and t′ are integer times.

– If Case 1.1 is executed at t, then t′ = t.
– If Case 1.2.1, 1.2.2 or 1.2.3.1 is executed at t, then t′ = t + 1.
– If Case 1.2.3.2 is executed at t and Case 2.1, 2.2.1 or 2.2.2.2 at t + 1, then

t′ = t + 2.
– If Cases 1.2.3.2 and 2.2.2.1 are executed at t and t + 1, respectively, then

t′ = t + 1.
– If Cases 1.2.3.2 and 2.2.2.3 are executed at t and t + 1, respectively, and

Case 3.1, 3.2.1 or 3.2.3 is executed at t + 2, then t′ = t + 3.
– If Cases 1.2.3.2 and 2.2.2.3 are executed at t and t + 1, respectively, and

Case 3.2.2 is executed at t + 2, then t′ = t + 2.

For a time t, a packet whose release time is t and deadline is t + 1 is called a
2t-packet. If for a time t, CP transmits a 2t-packet p at t and OPT transmits
p at t + 1, then we call the time t + 1 an extra time (e-time, for short). On the
other hand, for each i = 1, . . . , k, let us define T ′

i , which is formally defined later,
each of which is a subsequence of the time sequence [0, τ ′], in which τ ′ is the last
time at which OPT transmits a packet. They are not always disjoint differently
from Ti. To analyze the performance of CP , for each i ∈ [1, k], we will compare
the total value of packets transmitted by CP during the time Ti with that by
OPT during the time T ′

i . T ′
i is defined as follows: For Ti = [t, t′] in which t and

t′(≥ t) are integer times, we define T ′
i = [t, t̂′], in which if t′ + 1 is an e-time,

then t̂′ = t′ + 1. Otherwise, t̂′ = t′. We give the lemma about T ′
i .

Lemma 1. A time in [0, τ ′] is contained in some T ′
i .

For any i, we define an offline algorithm OPTi to bound the value of packets
transmitted by OPT during time T ′

i = [t, t′], in which t and t′(≥ t) are integer
times. Roughly speaking, if t is not an e-time, then OPTi transmits the same
packet as a packet OPT transmits during T ′

i . If t is an e-time, then OPTi
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transmits the same packet as a packet OPT transmits during T ′
i except for t.

However, OPTi−1 transmits the same packet as OPT at t.
First, let us define packets in the buffer of OPTi for Ti = [t, t′]. If t = 1,

BOPTi
(t) = BOPT (t). If t ≥ 2 and t is not an e-time, then BOPTi

(t) = BOPT (t).
If t ≥ 2 and t is an e-time, then BOPTi

(t) = BOPT (t)\{p}, in which p is the 2t−1-
packet which OPT transmits at t. Then, for Ti = [t, t′] and T ′

i = [t, t̂′], we define
OPTi as follows: The subinput of σ during time T ′

i is given to OPTi, that is, pack-
ets p such that r(p) ∈ T ′

i arrive to OPTi’s buffer during time T ′
i according to their

release times. Then, OPTi is allowed to transmit t̂′ − t + 1 packets only from time
t to t̂′ inclusive, that is, at t̂′ − t+1 transmission subphases, and chooses the pack-
ets whose total profit is maximized. If there exist packets with the same value in
OPTi’s buffer, OPTi follows the same tie breaking rule as OPT .

We use PO(t, t′, t̂′) to define CP and can evaluate the profit of CP using the
profit of PO(t, t′, t̂′) during Ti. On the other hand, we bound the profit of OPT
using that of OPTi during T ′

i . Then, we evaluate the relations between the profit
of PO(t, t′, t̂′) and that of OPTi. For any i ∈ [1, k], let Vi denote the total value of
packets transmitted by CP during Ti. By definition, VCP (σ) =

∑k
i=1 Vi. On the

other hand, Lemma 1 indicates that a packet which OPT transmits is transmitted
at a time in some T ′

i′ by either OPTi′ or OPTi′−1. Also, by the definition of OPTi,
if t is not an e-time, OPTi transmits a packet at t whose value is at least that trans-
mitted by OPT . If t is an e-time, then OPTi−1 transmits a packet at t whose value
is at least that transmitted by OPT and OPTi may also transmit a packet. That
is, the total value of packets transmitted by OPTi over all i ∈ [1, k] is at least that
of OPT . For any i ∈ [1, k], let V ′

i denote the total value of packets transmitted by
OPTi during T ′

i . Hence, VOPT (σ) ≤ ∑k
i=1 V ′

i . Since

VOPT (σ)
VCP (σ)

≤
∑k

i=1 V ′
i

∑k
i=1 Vi

≤ max
i∈[1,k]

{
V ′

i

Vi

}

,

we will prove the following lemma:

Lemma 2. For any i ∈ [1, k], V ′
i /Vi ≤ (1 +

√
17)/4.

Therefore, we have the following theorem:

Theorem 1. The competitive ratio of CP is at most (1 +
√

17)/4.
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