
Deleting to Structured Trees

Pratyush Dayal and Neeldhara Misra(B)

Indian Institute of Technology, Gandhinagar, India
{pdayal,neeldhara.m}@iitgn.ac.in

http://www.iitgn.ac.in

Abstract. We consider a natural variant of the well-known Feedback

Vertex Set problem, namely the problem of deleting a small subset
of vertices or edges to a full binary tree. This version of the problem is
motivated by real-world scenarios that are best modeled by full binary
trees. We establish that both the edge and vertex deletion variants of the
problem are NP-hard. This stands in contrast to the fact that deleting
edges to obtain a forest or a tree is equivalent to the problem of finding a
minimum cost spanning tree, which can be solved in polynomial time. We
also establish that both problems are FPT by the standard parameter.

Keywords: Full Binary Trees · Feedback Vertex Set · NP-hardness

1 Introduction

The Feedback Vertex Set (FVS) problem asks for a smallest subset S of
vertices in an undirected graph G to be removed such that the graph, G \ S,
becomes acyclic. This problem was one of the first problems shown to be NP-
complete [6], and has applications to problems that arise in several areas. These
applications include, but are not limited to, operating systems, database systems
and VLSI chip design. Consequently, the FVS problem has been widely studied
in the context of exact, parameterized and approximation algorithms.

Several variations of the FVS theme have also emerged over the years. For
instance, one line of work considers the task of “deleting to specialized forests”,
such as forests of pathwidth one [3,8] or forests whose connected components
are stars of bounded degree [5]. In this case, the forests of pathwidth one turn
out to be graphs whose connected components are caterpillars.

Meanwhile, another line of work is the Tree Deletion Set (TDS) problem
that considers the issue of the connectivity of the structure after the solution
has been deleted. In particular, the TDS problem asks for a smallest subset of
vertices S such that G \ S is a tree [7,10]. We remark that the NP-completeness
of this TDS problem follows from a general result of Yannakakis [12]. To state
this result, recall that a property π is a class of graphs, and we will say that π

The authors acknowledge funding support from IIT Gandhinagar for PD and NM, and
SERB (Grant No. MTR/2017/001033/MS) for NM.

c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): COCOON 2019, LNCS 11653, pp. 128–139, 2019.
https://doi.org/10.1007/978-3-030-26176-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26176-4_11&domain=pdf
http://orcid.org/0000-0001-5173-2250
http://orcid.org/0000-0003-1727-5388
https://doi.org/10.1007/978-3-030-26176-4_11

Deleting to Structured Trees 129

is satisfied by, or is true for, a graph G if G ∈ π. A property is said to be non-
trivial if it is satisfied for at least one graph and false for at least one graph; it
is interesting if the property is true for arbitrarily large graphs and is hereditary
on induced subgraphs if the deletion of any node from a graph in π always results
in a graph that is in π. The result in question states that the problem of finding
a maximum connected subgraph satisfying a property π is NP-hard for any non-
trivial and interesting property that is hereditary on induced subgraphs.

In this work, we pose a variation of FVS that is in the spirit of a combination
of the variations that we have alluded to; here, however, we are looking for a
connected object with additional structure. Specifically, we consider the problem
of deleting to a full binary tree. We recall that a full binary tree is a tree that
has exactly one vertex of degree two and no vertex of degree more than three.
Consider the problem of optimally deleting to a full binary tree, posed in the
language of the theorem of Yannakakis [12] stated above, which is to find a
maximum connected subgraph that satisfies a certain property. Observe that
the property in question could be defined as the property of not having cycles,
having exactly one vertex of degree two and no vertex of degree more than three.
Note that this property is not hereditary on induced subgraphs: in particular,
the deletion of a leaf from a graph that has the property will lead to a violation
of the property. In our first result, we explicitly establish the NP-hardness of
this problem by reducing from a variant of the Independent Set problem.

In addition, we also consider the edge deletion version of the question above.
Recall that for a given connected graph on n vertices and m edges, deleting a
smallest subset of edges to obtain a tree is straightforward: it is clear that we
have to remove every edge that does not belong to a spanning tree, so the size
of the solution is always (m − (n − 1)). In fact, this problem can be solved in
polynomial time even when the edges have weights and we seek a subset of edges
of smallest total weight, whose removal results in a tree. It is straightforward to
see that any such solution is the complement of a maximum spanning tree and
thus, can be found in polynomial time.

In a somewhat surprising twist, we show that the problem of deleting a
subset of edges of minimum total weight to obtain a full binary tree is, in fact,
NP-complete. To establish some intuition for why this is true, we briefly sketch a
simple reduction from the problem of Exact Cover by 3-Sets to the closely
related problem of deleting edges to obtain a full ternary tree.

A ternary tree is a tree where every non-leaf vertex, except the root, is exactly
of degree four, while the root has degree three. Let F := {S1, . . . ,Sp} be a family
of sets of size three over the universe U := {x1, . . . , xq}. The goal is to find a
subfamily of disjoint sets whose union is U. We create a full ternary tree T with
p leaves labeled {t1, . . . , tp}, and set the weight of the edges of T to B, a quantity
that we will specify later. Then, we introduce for every element xi in the universe
a vertex vi that is adjacent to tj, if and only if xi ∈ Sj. The edges between the
leaves of T and the vertices corresponding to the elements of U have unit weights.
We also set B = 3p− q+ 1. It is easy to verify that this graph has a solution of
cost 3p − q if and only if the system U has an exact cover, as desired.

130 P. Dayal and N. Misra

It turns out that establishing the hardness of the problem of deleting to full
binary trees is non-trivial, and this is one of our main contributions. We reduce
from a fairly restrained version of the Satisfiability problem, the hardness of
which is inspired by a reduction in [1] and is of independent interest. We note
that we deal with the weighted versions of the problems considered, and we also
fix a choice of root vertex as part of the input. Finally, we also note that both the
problems we propose above are fixed-parameter tractable, when parameterized
by the solution size. To this end, we describe a natural branching algorithm and
remark that most preprocessing rules that work in a straightforward manner for
Feedback Vertex Set fail when applied as-is to our problem. In particular, it
is not trivial to delete degree-one vertices or short-circuit vertices of degree two.

We believe that the problem we propose and the study we undertake has con-
siderable practical motivation. One of the applications of FVS and related prob-
lems is to understand noisy datasets. For example, let us say that we expect the
data to have a certain structure, but errors in the measurement cause the data
at hand not to have the properties expected by said structures. In this context,
one approach will be to identify and eliminate the noise - for acyclic structures,
that could translate identifying a FVS of small cost. Therefore, for scenarios where
the data corresponds to full binary trees, for instances in the case of phylogenetic
trees, the problem we present here will be a more relevant model.

2 Preliminaries

We follow standard notation and terminology from parameterized complexity [2]
and graph theory [4]; we use [n] to denote the set {1, 2, . . . ,n}. We now turn to
the definitions of the problems that we consider.

Full Binary Tree Deletion by Vertices (FBT-DV)

Input: A graph G = (V,E), a vertex r ∈ V, vertex weights w : V → R
+,

and k ∈ Z
+.

Question: Does G have a subset S ⊆ V of total weight at most k such
that G \ S is a full binary tree rooted at r?

The problems of Full Binary Tree Deletion by Edges (FBT-DE),
Complete Binary Tree Deletion (by edges or vertices) and Binary Tree

Deletion (by edges or vertices) can be defined analogously. Our focus in this
contribution will be mainly on FBT-DV and FBT-DE.

The Multi-Colored Independent Set problem is the following.

Multi-Colored Independent Set (MCIS)

Input: A graph G = (V,E) and a partition of V = (V1, . . . ,Vk) into k

parts.
Parameter: k

Question: Does there exist a subset S ⊆ V such that S is independent
in G and for every i ∈ [k], |Vi ∩ S| = 1?

Deleting to Structured Trees 131

3 NP-hardness

In this section, we establish that the problems of deleting to full binary trees
via vertices or edges are NP-complete. We first describe the hardness for the
vertex-deletion variant.

Theorem 1. FBT-DV is NP-complete.

Proof. We reduce from Multi-Colored Independent Set [2, Corollary 13.8].
Let (G,k) be an instance of MCIS where G = (V,E) and further, let V =
(V1, . . . ,Vk) denote the partition of the vertex set V. We assume, without loss of
generality, that |Vi| = n for all i ∈ [k]. Specifically, we denote the vertices of Vi

by {vi
1, . . . , v

i
n}. We are now ready to describe the reduced instance of FBT-DV,

which we denote by (H, �).
To begin with, let H be a complete binary tree with 2nk leaves, where a

complete binary tree is a full binary tree with 2w vertices at distance w from
the root for all w ∈ [d − 1], where d the distance between the root and the leaf
furthest away from the root. We denote these leaf vertices as:

(∪1�i�k{a
i
1, . . . ,a

i
n}

) ⋃(∪1�i�k{b
i
1, . . . ,b

i
n}

)
,

where, for all i ∈ [k] and j ∈ [n], ai
j and bi

j are siblings, and their parent is
denoted by pi

j. We refer to this as the backbone, to which we will now add more
vertices and edges.

For each i ∈ [k] and j ∈ [n], we now introduce a third child of pi
j, which we

denote by ui
j. We refer to the u’s as the essential vertices, while its siblings (the

a’s and the b’s) are called partners. For all 1 � i � k, we also introduce two
guards, denoted by xi and yi, which are adjacent to all the essential vertices of
type i, that is, all ui

j for j ∈ [n]. Finally, we ensure that the graph induced on
the essential vertices is a copy of G, more precisely, we have:

(ur
i ,u

s
j) ∈ E(H) if and only if (vr

i , v
s
j) ∈ E(G) for all i ∈ [k] and j ∈ [n].

We set � = nk. This completes the construction. We now turn to a proof of
equivalence.

The Forward Direction. If S ⊆ V is a multi-colored independent set, then con-
sider the subset S∗ given by all the essential vertices corresponding to V\S, along
with the partner vertices ai

j for each (i, j), for which vi
j belongs to S. It is easy to

verify that the proposed set consists of nk vertices. Observe that the deletion of
S∗ leaves us with a full binary tree where each pi

j now has two children - either
two partner vertices (for vertices not in S) or one essential vertex along with
one partner vertex (for vertices in S). Further, each pair of guards of type i now
has an unique parent, which is the essential vertex corresponding to the vertex
given by S ∩ Vi. The essential vertices have degree exactly three because their
only other neighbors in H were essential vertices corresponding to neighbors in
G, but the presence of any such vertex in H \ S∗ will contradict the fact that S

induces an independent set in G. This concludes the argument in the forward
direction.

132 P. Dayal and N. Misra

The Reverse Direction. Let S∗ be a subset of V(H) such that H\S∗ is a full binary
tree. We claim that S∗ ∩ {pi

j | 1 � i � k and 1 � j � n} = ∅, since the deletion
of any parent of a partner vertex will result in the corresponding partner vertex
becoming isolated in H\S∗— which leads to a contradiction when we account for
the budget constraint on S∗. Since all the parents of partner vertices survive and
have degree four in H, it follows that at least one of its neighbors must belong to
S∗. In particular, we claim that for every i ∈ [k] and j ∈ [n], S∗ ∩ {ui

j,a
i
j,b

i
j} �= ∅.

Indeed, if this is not the case, then S∗ contains the parent of p
j
i, and it is easy

to verify that this leads to a situation where either H \ S∗ is disconnected or
one of the guard vertices has degree two and is not the root, contradicting the
assumption that H \ S∗ is a full binary tree.

From the discussion above, it is clear that S∗ picks at least n vertices of type
i for each 1 � i � k, and combined with the fact that |S∗| � nk, we note that S∗

does not contain any of the guard vertices. Our next claim is that for all i ∈ [k],
G \ S∗ contains at least one essential vertex of type i. If not, then S∗ contains
all the neighbors of the guards of type i, which makes them isolated in G \ S∗–a
contradiction.

For each 1 � i � k, consider the vertex in G corresponding to the essential
vertex that is not chosen by S∗ (in the event that there are multiple such vertices,
we pick one arbitrarily). We denote this collection of vertices by S. We claim that
S induces an independent set in G: indeed, if not, then any edge in G[S] is also
present in H \ S∗ and creates a cycle when combined with the unique path
connecting its endpoints via the backbone, which is again a contradiction. This
concludes the proof. 	

We now turn our attention to the edge-deletion variant. Here, we will find
it convenient to reduce from a structured version of exact satisfiability, where
the occurrences of the variables are bounded in frequency and also controlled in
terms of how they appear. We will turn to a formal description in a moment,
noting that here our reduction is similar to the one used to show that Linear-SAT
is NP-complete [1].

Theorem 2. FBT-DE is NP-complete.

We first describe the version of Satisfiability that we will reduce from. Our
instance consists of (4p + q) clauses which we will typically denote as follows:

C = {A1,B1,A′
1,B

′
1, · · · ,Ap,Bp,A′

p,B′
p} ∪ {C1, · · · ,Cq}

We refer to the first 4p clauses as the core clauses, and the remaining clauses
as the auxiliary clauses. The core clauses have two literals each, and also enjoy
the following structure:

∀i ∈ [p],Ai ∩ Bi = {xi} and A′
i ∩ B′

i = {xi}

We refer to the xi’s as the main variables and the remaining variables that
appear among the core clauses as shadow variables. The shadow variables occur

Deleting to Structured Trees 133

exactly once, and have negative polarity among the core clauses. Therefore, using
�(·) to denote the set of literals occurring amongst a subset of clauses, we have:

∣
∣
∣
∣
∣
�

(
p⋃

i=1

{Ai,Bi,A′
i,B

′
i}

)∣
∣
∣
∣
∣
= 6p.

The auxiliary clauses have the property that they only contain the shadow
variables, which occur exactly once amongst them with positive polarity. Also,
every auxiliary clause contains exactly four literals. Note that this also implies,
by a double-counting argument, that q = p. We say that a collection of clauses
is a chain if it has all the properties described above. An instance of Linear

Near-Exact Satisfiability (LNES) is the following: given a set of clauses
that constitute a chain, is there an assignment τ of truth values to the variables
such that exactly one literal in every core clause and two literals in every auxiliary
clause evaluate to true under τ?

For ease of discussion, given an assignment of truth values τ we often use
the phrase “τ satisfies a literal” to mean that the literal in question evaluates to
true under τ. For instance, the question from the previous paragraph seeks an
assignment τ that satisfies exactly one literal in every core clause and two literals
in every auxiliary clause. We also refer to such an assignment as a near-exact
satisfying assignment. The following observation is a direct consequence of the
definitions above.

Proposition 1. Let C be a collection of clauses that form a chain. For any
assignment of truth values τ, the main variables satisfy exactly two core clauses
and the shadow variables satisfy either one core clause or one auxiliary clause.

We first establish that LNES is NP-complete:

Lemma 1. Linear Near-Exact Satisfiability is NP-complete.

Proof. We reduce from (2/2/4)-SAT, which is the variant of Satisfiability

where every clause has four literals and every literal occurs exactly twice — in
other words, every variable occurs in exactly two clauses with positive polarity
and in exactly two clauses with negative polarity. The question is, if there exists
an assignment τ of truth values to the variables under which exactly two literals
in every clause evaluate to true. This problem is known to be NP-complete [11].

Let φ be a (2/2/4)-SAT instance over the variables V = {x1, . . . , xn} and
clauses C = {C1, . . . ,Cm}. For every variable xi, we introduce four new variables:
pi, ri and qi, si. We replace the two positive occurrences of xi with pi and ri,
and the two negated occurrences of xi with qi and si. We abuse notation and
continue to use {C1, . . . ,Cm} to denote the modified clauses. Also, introduce the
clauses: Ai = (xi,pi),Bi = (xi, ri),A′

i = (xi,qi),B′
i = (xi, si), for all 1 � i � n.

Note that these collection of clauses form a chain, as required. We use ψ to refer
to this formula. We now turn to the argument for equivalence.

In the forward direction, let τ be an assignment that sets exactly two literals
of every clause in φ to true. Consider the assignment ζ given by:

ζ(xi) = τ(xi), ζ(pi) = ζ(ri) = τ(xi); ζ(qi) = ζ(si) = 1 − τ(xi),

134 P. Dayal and N. Misra

for all 1 � i � n. It is straightforward to verify that ζ satisfies exactly one literal
in every core clause and exactly two literals in every auxiliary clause.

In the reverse direction, let ζ be an assignment for the variables of ψ that
satisfies exactly one literal in every core clause and exactly two literals in every
auxiliary clause. Define τ as the restriction of ζ on the main variables. Let C

be a clause in φ. To see that τ satisfies exactly two literals of C, note that the
following:

ζ(pi) = ζ(ri) = ζ(xi) = τ(xi); ζ(qi) = ζ(si) = 1 − ζ(xi) = 1 − τ(xi)

is forced by the requirement that ζ must satisfy exactly one literal in each core
clause. Therefore, if τ satisfies more or less than two literals of any clause C, then
that behavior will be reflected exactly in the auxiliary clause corresponding to C,
which would contradict the assumed behavior of ζ. We make this explicit with
an example for the sake of exposition. Let C from φ be the clause (x1, x3, x6, x7),
and let the clause constructed in ψ be (p1,q3,q6, r7). Suppose τ(x1) = τ(x7) =
τ(x6) = 1 and τ(x3) = 0. Then we have ζ(p1) = ζ(r7) = 1 and ζ(q6) = 0,
while ζ(q3) = 1. This demonstrates that ζ satisfies three literals in the auxiliary
clause corresponding to C, in one-to-one correspondence with the literals that
are satisfied by τ. This completes our argument. 	

We now turn to a proof of Theorem 2. The overall approach is the following.
We will introduce a complete binary tree whose leaves will be used to represent
variables using variable gadgets which will have obstructions that can be removed
in a fixed number of ways, each of which corresponds to a “signal” for whether the
variable is to be set to true or false. We will then introduce vertices corresponding
to clauses that will be attached to the variable gadgets in such a way that they
can only be “absorbed” into the rest of the structure precisely when exactly two
of its literals are receiving a signal indicating that they are being satisfied.

The Shadow Variables. An instance of the gadget that we construct for the
shadow variables is depicted in Fig. 1. We remark here that the notation used
for the vertices here is to enable our discussion of how the gadget works and is
not to be confused with the notation already used to denote the variables and
clauses of the LNES instance.

The vertices p and q are called the anchors of the gadget, while the vertices
x,y,a and b are called the drivers of the gadget. This is because, as we will see,
the behavior of the edges incident to these vertices determines the fate of the
variable—in terms of whether it “accepts” the vertex corresponding to the core
clause or the auxiliary clause to which it belongs. We refer to the vertex u in
the gadget as the negative point of entry, while the vertex v is called the positive
point of entry.

We refer to the edges incident on the vertices x,y,a and b as active edges
and the remaining edges (i.e, (p,u), (p, v), (q,w), (q, c) and (w, z)) as passive
edges. We say that a solution is nice if it does not contain any passive edges.
We also say that an instance G of FBT-DE contains a clean copy of the gadget

Deleting to Structured Trees 135

Fig. 1. The gadget corresponding to the shadow variables.

H if H appears in G as an induced subgraph, and further, dG(x) = dG(y) =
dG(a) = dG(b) = 2 while dG(w) = 4, dG(c) = 1 and none of the vertices of
H are chosen to be the target root vertex. We make the following observation
about the behavior of this gadget.

Claim. Let H be a vertex gadget for a shadow variable as defined above. Let
G be an instance of FBT-DE that contains a clean copy of H. Then, any nice
solution S contains exactly four edges among the edges of H.

Proof. Let F denote the set of active edges in G. Since dG(x) = dG(y) = dG(a) =
dG(b) = 2, we claim that any solution S must delete exactly four edges from F:
in particular, S contains exactly one of the edges incident to each of the vertices.
Indeed, if S deletes fewer edges than suggested then G \ S contains a degree two
vertex different from the root, which is a contradiction. On the other hand, if S

contains more than four edges from F, then at least one of these four vertices is
isolated in G\S, which contradicts our assumption that G\S is connected. This
clearly implies the claim, since all edges not considered are passive and a nice
solution does not contain these edges by definition. 	

We now analyze the possible behaviors of a solution localized to the gadget
in greater detail. We refer the reader to the full version of this paper for the
figures associated with this explanation.

The possibilities (xv,yv,aw,bv) and (xu,yu,au,bw) do not arise because
employing these deletions causes the entry point vertices to have degree four or
more in G \ S. Further, since the solution S does not involve any of the passive
edges, then we also rule out the following possibilities, since they all lead to a
situation where the degree of w is four or more in G \ S:

136 P. Dayal and N. Misra

� xv,yv,au,bv � xu,yu,au,bv � xu,yv,au,bv � xv,yu,au,bv

Recalling that dG(w) = 4 when H makes a clean appearance in G,
we also safely rule out the possibilities: (xv,yv,aw,bw), (xu,yu,aw,bw),
(xu,yv,aw,bw), (xv,yu,aw,bw). Note that they result in a situation where
the degree of w is exactly two in G \ S — since w is not the target root vertex,
this is a contradiction as well.

Observe that, given a nice solution S, in all the valid scenarios possible, either
dH\S(u) = 2 and dH\S(v) = 3, or dH\S(u) = 3 and dH\S(v) = 2. We say that
a shadow variable gadget has a negative signal in solutions where dH\S(u) = 2.
Similarly, we say that the gadget has a positive signal in the situations where
dH\S(v) = 2. We refer to the edges {(v, x), (v,y), (u,a), (w,b)} as the negative
witness and the edges {(u, x), (u,y), (v,b), (w,a)} as the positive witness for the
shadow variable gadgets. This concludes the description of the gadget meant for
shadow variables.

The Main Variables. We now turn our attention to the gadget corresponding
to the main variables. Here, we find it convenient to incorporate vertices rep-
resenting the core clauses that the main variables belong to also as a part of
the gadget. The construction of the gadget is depicted in Fig. 2. As before, the
notation used for the vertices here is to enable our discussion of how the gadget
works. With the exception of A,B,A′,B′, which indeed are meaningfully associ-
ated with the analogously named core clauses, the notation is not to be confused
with the notation already used to denote the variables and clauses of the LNES

instance.
The edges (z,u) and (z, v) are the passive edges of this gadget, while the

remaining edges are active. The vertex z is called the anchor of this gadget.
As before, a solution is nice if it does not contain any of the passive edges. We
say that an instance G of FBT-DE has a clean copy of H if H appears in G

as an induced subgraph and, further, dG(p) = dG(q) = dG(u) = dG(v) = 3,
dG(x) = dG(y) = 2, dG(B) = dG(A′) = 2, dG(A) = dG(B′) = 3, and none of
the vertices of H are chosen to be the target root vertex.

We reflect briefly on the nature of a nice solution S in instances that have a
clean copy of a main variable gadget H. First, since dG(x) = 2 and x is not the
target root vertex, we note that exactly one of (v, x) or (u, x) must belong to S.
Suppose (v, x) ∈ S. The removal of (v, x) makes v a vertex of degree two, and
since (z, v) is a passive edge and S is nice, (v,q) ∈ S is forced. Along similar lines,
we have that (u,p) /∈ S. Now, we argue that (q,B′) /∈ S. Indeed, if (q,B′) ∈ S,
then A′ has degree two from the deletions so far, and q is a degree-one vertex
with A′ as its sole neighbor. Recalling that A′ is not the target root vertex, we
are now forced to delete exactly one of the endpoints incident on A′, but both
possibilities lead us to a disconnected graph. Therefore, (q,B′) /∈ S. It is easy
to see that this forces (q,A′) ∈ S and further, (A,y) ∈ S. A symmetric line
of reasoning shows that if (u, x) ∈ S, then (p,u), (p,B) and (B′,y) are all in
S as well. We refer the reader to the full version of this paper for the figures

Deleting to Structured Trees 137

Fig. 2. The gadget corresponding to the main variables.

associated with this explanation. These two scenarios motivate the definitions
of positive and negative signals that we now make explicit.

With respect to a nice solution S, we say that a main variable gadget
has a negative signal if dH\S(v) = 2. Likewise, we say that the gadget has
a positive signal if dH\S(u) = 2. We will also refer to the set of edges
{(v, x), (v,q), (A′,q), (A,y)} as the positive witness of this gadget, and the neg-
ative witness is defined analogously.

We are now ready to discuss the overall construction. Let φ be an instance
of LNES with clauses given by:

C = {A1,B1,A′
1,B

′
1, · · · ,Ap,Bp,A′

p,B′
p} ∪ {C1, · · · ,Cp},

where the main variable common to Ai and Bi is denoted by xi and the auxiliary
variables in these two clauses are denoted by pi and ri, while the auxiliary
variables in the clauses A′

i and B′
i are denoted qi and si. We denote by Iφ :=

(G, r,w,k) the LNES instance that we will now construct based on φ.
First, we construct the smallest complete binary tree with at least (9p) leaves

and let ν be the root of this tree. We refer to this tree as the backbone of G. Let
the first 9p leaves of this tree be denoted by �1, . . . , �p;α1,β1, . . . ,α4p,β4p. For
each main variable xi, let Hi be the corresponding gadget. We identify the anchor
of Hi with �i. For each shadow variable, we introduce a gadget corresponding
to it, and identify the first anchor vertex in the gadget with αi and the second
anchor vertex with βi. For every core clause Ai, we add an edge between the
vertex A in the gadget corresponding to Ai and the negative entry point in the
gadget for the shadow variable contained in the clause Ai. We also do this in an
analogous fashion for the core clauses A′

i, Bi and B′
i.

Finally, for each auxiliary clause Ci, we introduce two vertices ωi and ω′
i. We

connect these vertices with the positive entry point into all gadgets corresponding

138 P. Dayal and N. Misra

to the shadow variables that belong to the clause Ci. Note that each of these
vertices have degree four. This completes the description of the construction of
the graph G. We note that all the gadgets present in G are clean by construction.
We now define the weight of every edge in the backbone and every passive edge
in the gadgets as (k+ 1), while the weights of the remaining edges are set to be
one. Finally, we set k := 28p and let r = ν—this concludes the description of
the instance Iφ. We defer the argument of the equivalence of the instances to
the full version of this paper.

4 FPT Algorithms

We observe that the problems considered here, namely FBT-DV and FBT-DE

are fixed-parameter tractable by the standard parameter. We briefly describe
a natural branching algorithm for FBT-DV while noting that an analogous
argument works for FBT-DE.

Let (G = (V,E),k, r,w) be an instance of FBT-DV. First, consider a vertex
v, different from the designated root, that has four or more neighbors. Choose
any four neighbors of v, say a,b, c,d, and branch on the set {v,a,b, c,d} and
we adjust the remaining budget by subtracting the respective weights of these
vertices. The exhaustiveness of this branching rule follows immediately from the
definition of a full binary tree. Along similar lines, we can also branch on the
designated root along with three of its neighbors at a time, if the root has degree
three or more, and also the closed neighborhoods of vertices of degree exactly
two. We abort any branches where we have exhausted the budget.

We say that a graph with a designated root vertex is nice if it is connected,
its maximum degree is three and the root is only vertex of degree two. Note
that the depth of the branching thus far is bounded by O(5k), and we branch
appropriately on disconnected instances, noting that only one of the components
can “survive”. Also, note that all the remaining instances are nice. If any of the
remaining graphs are also acyclic, then we are already done.

If not, then we branch on these graphs further as follows. We pre-process
vertices of degree three with a degree one neighbor by employing an appropriate
short-circuiting rule. We can then start a breadth-first search (BFS) from the
root vertex, noting that the depth of the BFS tree is at most (log2 n+ 1), since
every internal vertex in this tree has at least two children. Therefore, we may infer
that there exists a cycle of length O(log n), and we branch on all the vertices of
this cycle other than the root vertex. If the deletion of a vertex on the cycle leads
to a disconnected graph, then we abort the corresponding branch. Similarly, if
the deletion of a vertex on the cycle creates vertices of degree two in the resulting
graph, then we branch on the closed neighborhood of these degree two vertices
and discard any disconnected graphs until we arrive at a nice instance, at which
point we recurse in the fashion described here. The correctness of the overall
algorithm follows from the exhaustiveness of the branching rules. The fact that
the running time is FPT follows by a well-known argument [9].

Deleting to Structured Trees 139

Theorem 3. The problems FBT-DV and FBT-DE are FPT with respect to
solution size.

References

1. Arkin, E.M., et al.: Choice is hard. In: Elbassioni, K., Makino, K. (eds.) ISAAC
2015. LNCS, vol. 9472, pp. 318–328. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48971-0 28

2. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

3. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: An improved FPT
algorithm and a quadratic kernel for pathwidth one vertex deletion. Algorithmica
64(1), 170–188 (2012)

4. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, New York (2012)

5. Ganian, R., Klute, F., Ordyniak, S.: On structural parameterizations of the
bounded-degree vertex deletion problem. In: 35th Symposium on Theoretical
Aspects of Computer Science, STACS, pp. 33:1–33:14 (2018)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

7. Giannopoulou, A.C., Lokshtanov, D., Saurabh, S., Suchý, O.: Tree deletion set has
a polynomial kernel but no opto(1) approximation. SIAM J. Discrete Math. 30(3),
1371–1384 (2016)

8. Philip, G., Raman, V., Villanger, Y.: A quartic kernel for pathwidth-one vertex
deletion. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 196–207. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-7 19

9. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algo-
rithms for finding feedback vertex sets. ACM Trans. Algorithms 2(3), 403–415
(2006)

10. Raman, V., Saurabh, S., Suchý, O.: An FPT algorithm for tree deletion set. J.
Graph Algorithms Appl. 17(6), 615–628 (2013)

11. Ratner, D., Warmuth, M.: Finding a shortest solution for the N × N extension
of the 15-PUZZLE is intractable. In: Kehler, T.R.S. (ed.) Proceedings of the 5th
National Conference on Artificial Intelligence, pp. 168–172

12. Yannakakis, M.: The effect of a connectivity requirement on the complexity of
maximum subgraph problems. J. ACM 26(4), 618–630 (1979)

https://doi.org/10.1007/978-3-662-48971-0_28
https://doi.org/10.1007/978-3-662-48971-0_28
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-642-16926-7_19

	Deleting to Structured Trees
	1 Introduction
	2 Preliminaries
	3 NP-hardness
	4 FPT Algorithms
	References

