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Preface

This volume contains the papers presented at the 25th International Computing and
Combinatorics Conference (COCOON 2019), held during July 29–31, 2019, in Xi’an,
China. COCOON 2019 provided a forum for researchers working in the areas of
algorithms, theory of computation, computational complexity, and combinatorics
related to computing.

The technical program of the conference included 55 contributed papers selected by
the Program Committee from 124 full submissions received in response to the call for
papers. All the papers were peer reviewed by at least three Program Committee
members or additional reviewers. The papers cover various topics, including algorithm
design, approximation algorithm, graph theory, complexity theory, problem solving,
optimization, computational biology, computational learning, communication network,
logic, and game theory. Some of the papers were selected for publication in special
issues of Algorithmica, Theoretical Computer Science (TCS), and Journal of Combi-
natorial Optimization (JOCO), with the journal version of the papers being in a more
complete form.

We would like to thank all the authors for contributing high-quality research papers
to the conference. We express our sincere thanks to the Program Committee members
and the additional reviewers for reviewing the papers. We thank Springer for pub-
lishing the proceedings in the Lecture Notes in Computer Science series. We thank
Xidian University for hosting COCOON 2019. We are also grateful to all members
of the Organizing Committee and to their supporting staff.

The conference-management system EasyChair was used to handle the submissions,
to conduct the electronic Program Committee meetings, and to assist with the assembly
of the proceedings.

June 2019 Ding-Zhu Du
Zhenhua Duan

Cong Tian
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Fully Dynamic Arboricity Maintenance

Niranka Banerjee(B), Venkatesh Raman, and Saket Saurabh

The Institute of Mathematical Sciences, HBNI,
CIT Campus, Taramani, Chennai 600 113, India

{nirankab,vraman,saket}@imsc.res.in

Abstract. Given an undirected graph, its arboricity is the minimum
number of edge disjoint forests, its edge set can be partitioned into. We
develop the first fully dynamic algorithms to determine the arboricity of
a graph under edge insertions and deletions. While our insertion algo-
rithm is based on known static algorithms to determine the arboricity,
our deletion algorithm is, to the best of our knowledge, new.

Our algorithms take Õ(m) time (Õ notation ignores logarithmic fac-
tors.) to insert or delete an edge where m is the number of edges in
the graph while the best static algorithm to compute arboricity takes
O(m3/2 log(n2/m)) time [7].

We complement our upper bound with a lower bound result of amor-
tized Ω(log n) for any algorithm that maintains a forest decomposition
of size arboricity of the graph under edge insertions and deletions.

1 Introduction

The arboricity of a graph is defined as the minimum number of edge disjoint
forests that the edges of the graph can be partitioned into [13]. A decomposition
of a graph of arboricity a has a such spanning forests and we call it an arboricity a
decomposition. Intuitively, it is a measure of sparseness of a graph. An equivalent
definition [13] for an arboricity a of a graph G = (V,E) is

max
{J⊆V,|J|≥2}

�|E(J)|/|J | − 1� (1)

where E(J) is the set of edges in the subgraph induced by the vertex set J ⊆ V .
For a given graph, a 2-approximation of the arboricity can be easily calcu-

lated in O(m+n) time [5], whereas more complex algorithms exist for calculating
the exact arboricity in O(m3/2 log(n2/m)) time [7]. Faster algorithms for com-
puting the arboricity are known for planar graphs. Grossi and Lodi [8] gave an
algorithm to show how to decompose a planar graph on n vertices into three edge
disjoint spanning forests in O(n log n) time. But they do not compute the exact
arboricity. In particular the algorithm fails to differentiate between a planar
graph of arboricity two or three.

In the world of dynamic graph algorithms, edges are inserted or deleted
over time, and the goal is to maintain some property of the graph under these
modifications in time faster than the static algorithm that starts from scratch.
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): COCOON 2019, LNCS 11653, pp. 1–12, 2019.
https://doi.org/10.1007/978-3-030-26176-4_1
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2 N. Banerjee et al.

A dynamic algorithm is fully dynamic if it is able to support both insertion
and deletion of edges; if it only supports insertions, it is called an incremental
algorithm and if it supports only deletions, it is called a decremental algorithm.

For dynamic graphs, the study of arboricity in the literature has been mainly
through works in orienting undirected graphs. An a-bounded orientation of a
graph G is an orientation of its edges where all out-degrees of vertices have
degree at most a. If a graph has arboricity a, by rooting each tree in the forest
decomposition arbitrarily and orienting each edge towards the root, we can get an
a-bounded orientation. It can also be shown that any graph with an a-bounded
orientation can be decomposed into 2a − 1 forests and hence this gives a 2-
approximation of arboricity [5].

Study on maintaining Δ-bounded orientations of a graph under edge inser-
tions and deletions was initiated by Brodal and Fagerberg in [2]. On insertion or
deletion of an edge, the goal was to reorient the edges of the graph efficiently so
that a Δ-bounded orientation or an approximation of it was maintained. There
has been subsequently a number of other works in this topic [1,9–11] but none
of them maintain the exact arboricity. So it was a natural question to look at
computing the exact arboricity of the graph in the dynamic setting. Erickson [6]
asks “whether there are efficient algorithms to maintain graph arboricity and/or
minimal forest decompositions in dynamic graphs”.

This paper is an attempt towards answering this and in the process we give
a new perspective on existing static algorithmic techniques by showing that, if
carefully implemented, they give a fully dynamic algorithm.

1.1 Our Results

We develop a fully dynamic algorithm for computing the exact arboricity of a
graph i.e. on every edge insertion or deletion of the graph we compute the exact
arboricity a of the graph by maintaining a decomposition into a edge disjoint
spanning forests.

While our insertion algorithm is based on a known static algorithm to deter-
mine the arboricity due to Roskind and Tarjan [15], we prove certain invariants
about the algorithm that helps to maintain the arboricity under deletion as well.
Both insertion and deletion take Õ(m) time in the worst case where m is the num-
ber of edges in the graph at that time. These bounds are an improvement over the
best static bounds of O(m3/2 log(n2/m)) time [7] for computing arboricity.

We complement our upper bounds with a lower bound result. We give an
amortized bound of Ω(log n) for the cost of answering the arboricity query under
edge insertions and deletions.

1.2 Previous Work, Methodology and Organization of the Paper

Let G be a graph of arboricity a given with the arboricity a decomposition of
its edges, to which an edge (u, v) is to be inserted. If u and v are in different
trees of a forest in the decomposition, then we have nothing more to do than
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adding that edge to that forest. Otherwise, first we try adding this to a forest
of the decomposition and remove an edge that is part of the cycle formed and
try inserting that edge into another forest. This process is repeated until the
endpoints of a new edge belong to two trees of a forest or somehow we can
conclude that the existing decomposition is not good enough to take this new
edge and that the arboricity of the graph increases. This process has the flavour
of finding an augmenting path in matchings. This idea of an updating algorithm
that uses augmenting sequences dates back to the classical static algorithm to
find arboricity due to Nash-Williams [12,13] and Tutte [17].

Our algorithm for dynamically maintaining arboricity can be put into larger
perspective. In the static setting, this is an instantiation of the matroid par-
titioning problem. In this problem, the goal is to partition the elements of a
matroid into as few independent sets as possible. In our setting, edges of the
given graph forms the universe of the matroid and the forests of the graph form
the independent sets. This matroid is usually known as graphic matroid. The
known algorithms for the matroid partitioning problem, given an independence
oracle for the matroid, also uses the idea of augmenting sequences in an appro-
priate auxiliary graph [3,4]. Some of the steps of our dynamic algorithm for
maintaining arboricity do extend to the dynamic variant of the matroid parti-
tioning problem, but we restrict ourselves to graphic matroids, as it allows us to
use some additional structural properties.

In Sect. 2.3, we give a brief description of the insertion algorithm by casting
this algorithm as an algorithm to find a specific path in an auxiliary graph
whose vertex set is the edge set of the given graph. We use this auxiliary graph
terminology for the insertion and deletion algorithm we describe later. A naive
implementation as in Sect. 2.3 results in an O(m2) insertion algorithm where
m is the number of edges in the original graph. In Sect. 3, we use ideas from
the static algorithm of Roskind and Tarjan [15] to improve the insertion time
to Õ(m). Deletion of an edge involves checking after deleting the said edge,
whether the arboricity of the graph decreases. In Sect. 4, we give a fully dynamic
algorithm that supports insertion and deletion in Õ(m) time, by first modifying
the insertion algorithm of Sect. 3 slightly. Finally in Sect. 5, we give a lower
bound of Ω(log n) for the cost of insertion into a graph with arboricity a.

2 Preliminaries

The following lemma follows easily from the alternate definition of arboricity
(expression (1) in the introduction), and we use it extensively in some of our
algorithms.

Lemma 1 �1 [15]. Let a be the arboricity of the given graph G(V,E). Given
a decomposition of the edges of G into a edge disjoint forests, the arboricity of
G ∪ (u, v) for some (u, v) /∈ E increases if there is a subset S ⊆ V containing
both u and v such that S forms a subtree in every forest of the decomposition.

This set S is referred to as a clump [15] which will be used later in the paper.
1 Proofs of results marked � are deferred to the full version.
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2.1 Data Structure

Throughout our upper bound results we will be using Link-Cut trees [16] as our
data structure to maintain the forest decomposition. In this data structure, one
can, in O(log n) time, for a graph on n vertices,

– find whether a pair of vertices are in the same tree in a forest,
– add an edge that joins two trees of a forest or delete an edge from a tree in

a forest or
– find the least common ancestor (lca) of any pair of vertices in a tree of the

forest,
– make a vertex u the root of a tree it belongs to, in a forest.

We begin the development of our algorithm by revising the classical static
algorithm due to Nash-Williams [12,13] and Tutte [17] to compute arboricity.

2.2 The Auxiliary Graph

Suppose for a graph G = (V,E), an edge disjoint forest structure is given and
its arboricity is a. On insertion of an edge (u, v) into the graph, we need to
determine whether the arboricity of the graph stays the same or increases, and
obtain the resulting optimal decomposition.

The insertion algorithm of Nash-Williams [12,13] and Tutte [17] essentially
looks for a certain kind of an “augmenting path”(defined below) and we find it
convenient to explain it using an auxiliary graph G′

ed = (V ′
ed, E

′
ed) with respect

to a decomposition of G into edge disjoint forests. A vertex of the directed graph
G′

ed = (V ′
ed, E

′
ed) represents an edge (u, v) (u, v ∈ V ) of the original graph. We

color the vertices of the graph G′
ed with two different colors. Specifically,

– C((u, v)) = red, if u and v are in the same component in every forest in the
decomposition of G,

– C((u, v)) = green, otherwise.

In G′
ed, ((a, b), (c, d)) is a directed edge (i.e. in E′

ed), if and only if (c, d) is on
the path from a to b in some tree of the forest decomposition. This means that
when (a, b) is added to a tree, (c, d) is an edge in the cycle formed. Note that in
this directed graph G′

ed, if there is a directed path from (u, v) to a vertex (edge
in G) marked green, then the path gives a way to insert (u, v) into the existing
decomposition. The path from (u, v) to this green vertex path is defined as our
“augmenting” path. It turns out that when there is no such path the arboricity
increases.

Theorem 1. � On insertion of an edge (u, v) in G, its arboricity increases if
and only if in the directed graph G′

ed = (V ′
ed, E

′
ed) there is no directed path from

(u, v) to any vertex marked green. If no such path exists, then the end points of
all the vertices (edges of G) reachable from (u, v) form a clump S.
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2.3 An Incremental Algorithm

The following pseudocode summarises our insertion algorithm and forms the
basis of the improved algorithms we develop later. In the improved algorithms,
we sometimes change the auxiliary graph, or find an augmenting path more
cleverly.

Algorithm 1.

1 Insert edge (u, v)
2 Check whether the auxiliary graph has a path from (u, v) to a green vertex
3 if Yes then
4 Arboricity remains same
5 Find augmenting path and fix decomposition
6 else
7 Arboricity increases
8 Insert (u, v) in a new forest.

As the auxiliary graph G′
ed can have up to m2 edges, and doing a BFS

(breadth-first-search) naively on G′
ed takes O(m2) time, we have the following

theorem. Note that the neighbors of a vertex x = (u, v) in G′
ed can be obtained

by finding, in each forest, the least common ancestor of u and v and following
the parent pointer from u and v to their least common ancestor and listing the
edges accessed in these paths.

Theorem 2 [4]. Given a graph G = (V,E) on n vertices and m edges with
arboricity a, along with an arboricity decomposition and an edge (u, v) to be
inserted, we can compute the arboricity of the modified graph G = (V,E ∪ (u, v))
in Õ(m2) time.

In Sects. 3 and 4 we will define auxiliary graphs G′
rt1 and G′

rt2 which will further
reduce the runtime of the algorithm.

3 Insertion in Õ(m) Time

Roskind and Tarjan [15] gave a faster static algorithm which translated in the
language of our auxiliary graph meant using a modification of G′

ed where the
neighbors of a vertex (u, v) are the edges which form a cycle with (u, v) but just
in the next forest, i.e. if (u, v) ∈ Fi, the ith forest(in some arbitrary ordering of
the forests), then there is a directed edge from (u, v) to (x, y) if (x, y) ∈ Fi+1

and is part of the cycle formed if (u, v) is inserted in Fi+1. If (u, v) ∈ Fa which
is the last forest or (u, v) /∈ G, then the neighbors of (u, v) in G′

ed come from
F1. We refer to this modified G′

ed graph as G′
rt1. We also modify the coloring

of vertices in G′
rt1: for an edge (u, v) ∈ G,C((u, v)) = green if (u, v) ∈ forest Fi

and u and v are in different components in Fi+1 and is red otherwise. For an
edge (u, v) /∈ G, C((u, v)) = green if u and v are in different components in F1

and is red otherwise.
In what follows, we state a series of lemmas, leading to the correctness of

Algorithm 1 using our auxiliary graph terminology.
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Lemma 2. � Let G be a graph with an optimal arboricity decomposition of
forests F1, F2, . . . Fa, and let (u, v) (which may or may not be an edge in G)
be such that there is no path from (u, v) to a vertex marked green in G′

rt1. Then

1. vertices u and v are in the same component in all the forests F1 to Fa.
2. Every edge in every u-v path in Fi, for all i from 1 to a, is reachable from

(u, v) in G′
rt1.

3. The end points of all edges in the u-v path in Fi are in the same component
as u and v in F(i+1 mod a) for i = 1 to a.

From Lemma 2, we have that if there is no path from (u, v) to a green vertex
in G′

rt1, then u and v are in the same component in all the forests (first part of
the lemma) and hence (u, v) is red in G′

ed. This leads to the following corollary,

Corollary 1. If (u, v) is a green vertex in G′
ed then there exists a path from

(u, v) to a green vertex in G′
rt1.

Next we will show that if (u, v) is a red vertex but has a path to a green
vertex in G′

ed, then there is such a path in G′
rt1. We prove this by showing the

following lemma strengthening Lemma 2.

Lemma 3. � Let G be a graph with an optimal arboricity decomposition of
forests F1, F2, . . . , Fa, and let (u, v) be such that there is no path from (u, v)
to a vertex marked green in G′

rt1. Let R((u, v)) be the set of all vertices in G′
rt1

reachable from (u, v) (note that every vertex in R(u, v) is marked red). Let S
denote the union of all the end points of vertices (i.e. edges of G) in G′

rt1. Then

– all vertices of S are in the same component in all the forests Fi (i = 1 to a).
– between any pair (a, b) of vertices of S, every path between a and b in every

forest contains vertices only from S. I.e. G[S], the induced subgraph on S,
forms a subtree in all the forests Fi (i = 1 to a).

Lemma 3 is crucially used in the following theorem which shows the correct-
ness of Algorithm 1.

Theorem 3. There exists a path from (u, v) to a green vertex in G′
ed if and

only if there exists a path from (u, v) to a green vertex in G′
rt1. Furthermore if

there is no such path, then the set of all end points of all vertices (i.e. edges of
G) reachable from (u, v) in G′

rt1 including u and v form a clump S.

Proof. As G′
rt1 is a subgraph of G′

ed and any green vertex in G′
rt1 is also a green

vertex in G′
ed, any path in G′

rt1 from (u, v) to a green vertex also exists in G′
ed

as a path from (u, v) to a green vertex. This shows one direction of the theorem
that if there exists a path from (u, v) to a green vertex in G′

rt1 then there exists
a path from (u, v) to a green vertex in G′

ed.
The proof of the converse part of the theorem follows from Lemma 3 because

if there is no path from (u, v) to a green vertex in G′
rt1, then there exists a clump

S (as in Lemma 3)and hence by Lemma 1 and Theorem 1, there can not be a
path from (u, v) to a green vertex in G′

ed as well. ��
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The outdegree of any vertex in G′
rt1 is at most n − 1 as a vertex’s neighbors

are only in one forest. This immediately implies that the number of edges in the
auxiliary graph is O(mn) and so our BFS algorithm to find the augmenting path
will take Õ(mn) time improving from Õ(m2).

The idea to improve the runtime to Õ(m) involves traversing through the
unvisited vertices of G′

rt1 only once in the BFS traversal. We show this in the
following lemma adapted from [15].

Lemma 4 [15]. In the BFS traversal starting from (u, v) in G′
rt1, a vertex ∈

G′
rt1 is seen only once.

Proof. Whenever a new edge (u, v) is being added to the forest decomposition,
we first make u the root of the trees they belong to in each of the forest decom-
positions F1 to Fa.

If u and v are in different components in F1 then the BFS stops. We start a
BFS traversal in G′

rt1 from vertex (u, v). Its neighbors are precisely those edges
in the u-v path in F1. We can return all these neighbors by following parent
pointers from v to u. We add these edges in the BFS queue in the order from u
to v. Let this path be u = x0, x1, x2, ..., xk, v = xk+1. To further explore BFS,
we need to find the neighbors of (u, x1), (x1, x2), . . . (xk, v) in G′

rt1 from F2. The
BFS traversal starts from (u, x1) and ends with (xk, v). Either u and x1 are in
different components in F2 in which case we stop or else we find the neighbors
of (u, x1) in F2. The algorithm now exploits the fact(follows from Theorem 1
that if we are exploring the neighbors in F(i+1 mod a) of the edge (xi, xi+1) in Fi

on the u-v path, then the neighbors of all edges (u, x0), (x0, x1) up to (xi−1, xi)
form a subtree in F(i+1 mod a). This ensures that to visit the new neighbors
of (xi, xi+1), we simply start in F2 from xi+1 and traverse the path to u via
parent pointers. We stop when we hit an already visited edge. This ensures that
everytime we explore neighbors of an edge, we explore only unvisited vertices of
G′

rt1. ��

Running Time: To make u the root of each tree takes Õ(a) total time using
Link-Cut trees. Each vertex is encountered exactly twice by the algorithm, once
on adding to the BFS queue and then on removing them from the queue. Using
Link-Cut trees adding vertices take O(1) time, while removing them and checking
whether they belong to different components take O(log n) time. Using Lemma 4
the runtime to find the augmenting path is proportional to the number of vertices
in G′

rt1 which is Õ(m).

Theorem 4. Given a graph G = (V,E), on n vertices and m edges with arboric-
ity a and an edge (u, v) to be inserted, we can compute the arboricity of the
modified graph G = (V,E ∪ (u, v)) in Õ(m) time.

4 Fully Dynamic Algorithm

To perform the deletion efficiently, we modify the insertion algorithm slightly so
that a specific invariant (described below) is maintained.



8 N. Banerjee et al.

We modify the auxiliary graph G′
rt1, calling it G′

rt2 and pay attention to the
order in which we visit the neighbors of a vertex in the BFS of G′

rt2 to implement
our new insertion algorithm.

Note that the way we defined G′
rt1 in Sect. 3, the edges in the ‘last’ forest

has neighbors in the first forest. So, as edges are inserted, the ‘last’ forest itself
can change. For example, if Fi was the last forest, its edges had neighbors in F1,
but when some new edges create the forest Fi+1, the neighbors of edges in Fi

are in Fi+1 and not in F1, the way we have defined G′
rt1. But note that we never

store G′
rt1, but only use it during BFS, and hence there is no need to update the

neighborhood.
However Roskind and Tarjan, in their (other) algorithm that computes

arboricity, found it convenient to keep the neighbors of edges in Fi in F1 even
after a new forest is created and the edges of Fi have neighbors in Fi+1. In
short G′

rt1 is augmented with additional edges as defined below. An edge in this
directed graph is directed from a vertex (a, b) in forest Fi, for some i, to a vertex
(c, d) if and only if (c, d) is on the path from a to b in some tree of Fi+1 or F1.
This graph is referred to as G′

rt2.
We also modify the coloring of vertices as below in G′

rt2: for an edge (u, v) ∈
G,C((u, v)) = green if (u, v) ∈ forest Fi and u and v are in different components
in Fi+1 or F1 and is red otherwise. For an edge (u, v) /∈ G, C((u, v)) = green if
u and v are in different components in F1 and is red otherwise.

Note that G′
rt2 is a supergraph of G′

rt1, and hence a theorem analogous to
Theorem 3 holds true even with this new auxiliary graph proving the correctness
of the insertion algorithm.

Theorem 5. � There exists a path from (u, v) to a green vertex in G′
rt1 if and

only if there exists a path from (u, v) to a green vertex in G′
rt2. If no such path

exists, then the union of all vertices of G which are part of the reachability vertex
set from (u, v) in G′

rt1 and G′
rt2 inclusive of u and v form a clump S.

We modify the BFS so that when an edge is inserted in forest Fi in the
process, we first check whether the edges of Fi that form a cycle can be inserted
in F1 (i.e. explore neighbors in F1 first). This process ensures that any new edge
is inserted in the first few forests if possible before inserting into the next forest.
In G′

rt2 we have increased the degree of every vertex by at most n, but Lemma 4
still holds true for the graph G′

rt2. The running time of the BFS algorithm
remains Õ(m).

It turns out this insertion algorithm satisfies the following stronger invariant
that is helpful for deletion. Towards that, we first define the notion of clumpi.
Let F1, F2, . . . Fj be the collection of edge disjoint forests at any point of time
in the algorithm (after inserting a subset of edges). A set S of vertices is said to
form a clumpi i ≤ j, if the induced subgraph G[S] is connected in each of the
forests F1, F2, . . . Fi.

Lemma 5. An edge e = (u, v) of a graph is present in forest Fi if and only if
before insertion of e in forest Fi, u and v are together in clumpi−1, but not in
any clumpi.
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Proof. Suppose e = (u, v) is in Fi. The algorithm maintains a decomposition
of forests by maintaining that the first i forests in the decomposition contains
as many edges as possible. Let us look at the insertion of an edge (x, y) which
pushes (u, v) to Fi. When (x, y) is inserted into the decomposition it first tries
to find a path from (x, y) to a green vertex with respect to the forest F1. If not,
then it tries to find a green vertex in F1 and F2. In general if there is no (x, y)
to green path in forests F1, ...Fi−1, then it tries to find a green path in forests
F1, F2, . . . , Fi if it exists.

The algorithm (x, y) did not find any green path in F1, . . . Fi−1 for it to push
(u, v) into any of the forests F1 to Fi−1. Hence, by Theorem 5, (x, y) is part of a
clumpi−1. As (u, v) was pushed into Fi, (u, v) was reachable from (x, y) in G′

rt2.
Therefore, in forests F1, . . . , Fi−1, u,v,x and y are all part of the same clump S.
The number of edges of S became at least (i − 1)(|S| − 1) + 1 (after insertion of
(u, v)). So (u, v) from S had to be inserted into Fi.

For (u, v), the same S now forms a clumpi−1. To show the second condition,
say an edge is present in Fi. Suppose before insertion of the edge in Fi the
endpoints were in some clumpi. But by Lemma 1 the edge can not be present
in forest Fi leading to a contradiction.

We now prove the converse. If the endpoints of an edge before insertion in
Fi is part of some clumpi−1 then it can not be present in any forest ≤ i − 1.
Again if the endpoints of the edge do not belong to any clumpi, then there is an
“augmenting” sequence (from Lemma 1 and Theorem 4) in F1, . . . , Fi. So the
edge will get inserted in any forest from F1, . . . , Fi. Combining both we get that
the edge will get inserted in forest Fi. ��
Before going into the algorithm we prove the following lemma, which prevents
us from exploring useless edges.

Lemma 6. Suppose an edge (u, v) gets deleted from forest Fi. If there are no
edges in forest Fi+1 that can merge the components containing u and v, then
there are no such edges in any forests from Fi+2 to Fa.

Proof. Suppose that there exists an edge, say (w, x) in Fi+2 such that w belongs
to the component of u and x the component of v in Fi. As (w, x) ∈ Fi+2, they
are part of the same clumpi+1 by Lemma 5 and hence a part of some clumpi.
Also as clumps form a subtree, the vertices w, x, u and v are part of the same
clumpi as well. As w and x are part of the same clumpi+1 all vertices in the path
from w to x in Fi are also part of the same clumpi+1. So there is at least one
clumpi+1 containing the endpoints of such an edge along with u and v. As the
decomposition is edge disjoint, the path between u and v in Fi+1 is separated
by at least one vertex w. Thus there is at least one edge in this path that goes
across the two new components in Fi. This contradicts that no edges of Fi+1

can merge the two components containing u and v. ��
Now we give our algorithm to delete an edge (u, v),

– Find the forest Fi, the edge (u, v) belong to. Delete (u, v) from forest Fi which
breaks the tree into two parts, one containing u and the other containing v.
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– For k ∈ [i + 1, ...,a] do the following,
– In Fk check if there is an edge going across the two newly formed com-

ponents of Fk−1. If not, stop and return the same decomposition.
– If there is such an edge (w, x), remove it from Fk and attach it to Fk−1

to attach the components containing u and v.
– If Fa is empty then report that arboricity decreases.

Theorem 6. Given a graph G = (V,E) with arboricity a and an edge (u, v)
to be deleted the above algorithm computes the arboricity of the modified graph
G = (V,E \ (u, v)) correctly in O(m log n) time.

Proof. Correctness: On deletion of an edge (u, v), to check whether the arboric-
ity of the graph is correctly maintained it is sufficient to check if Fa is non empty
after the deletion algorithm, then arboricity does not decrease. This is shown by
maintaining the invariant of Lemma 5 for each of the edges after deletion. Then
it follows that the end points of edges of Fa form a clumpa−1 which implies that
the arboricity has to be at least a.

Now we show how the algorithm maintains the invariant of Lemma 5 for
all edges of the graph and the correctness follows from there. The edges from
F1, ..., Fi are not touched by the algorithm and thus by default they maintain
the invariant. Before deletion of (u, v) we know by Lemma 5 that the endpoints
of all edges in Fk, k ∈ [i + 1, ...,a] are part of some clumpk−1.

We know that u and v are part of the same clumpi−1. If all edges of forest
Fi+1 are not in the same clumpk−1, then by Lemma 6, the decomposition remains
as is and there is no further work to be done. All such edges remain in forest
Fi+1 and the invariant of Lemma 5 is maintained. Otherwise, there is at least
one edge in Fi+1 such that the endpoints are in the same clumpi as both u and
v. This can be divided into two cases:

– There is no edge in Fi+1 that goes across the trees containing u and v after
deletion of (u, v). In this case again by Lemma 6 the decomposition remains
as is. The invariant of Lemma 5 is maintained.

– Otherwise, there is an edge in Fi+1 that goes across the two newly split trees
in Fi. The endpoints of such an edge has to be a part of the same clumpi

containing u and v (as by definition, clumps form a subtree). The algorithm
attaches this edge to Fi connecting the two trees containing u and v. For
this edge, the invariant of Lemma 5 is maintained as it can not still settle in
any level < i. At this point, the invariant continues to hold for edges in Fi+1

as each of the end points are in a clumpi containing u and v (as we have
deleted an edge and added an edge to the clump). This in turn splits Fi+1

into two components which is again merged similarly above, treating this like
a new edge deletion, and in a similar way we can show that the invariant is
maintained for every edge in subsequent forests where edges are deleted to
merge two components in the previous forest.

Implementation and Running Time: We look at data structures that help
us maintain each forest in the decomposition. Each of the forests, Fk, k ∈ [1, ...a]
is represented by dynamic link-cut tree data structure [16].
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For the algorithm, we need to update the link-cut tree data structure of
forest Fi after (u, v) is deleted. For each edge starting from Fi+1 we need to
check if the endpoints are in the same or different trees in Fi and possibly do
an insertion. For each such check we spend O(log n) time. The algorithm makes
such a check for each edge from Fi+1 to Fa at most once. Thus the total runtime
is O(m log n). ��
Combining both results of Sects. 3 and 4 we get,

Theorem 7. Given a graph G = (V,E) with arboricity a and an edge (u, v) to
be either inserted or deleted we can compute the arboricity of the modified graph
G = (V,E ∪ (u, v)) or G = (V,E \ (u, v)) correctly in Õ(m) time.

5 An Ω(logn) Lower Bound

Theorem 8 [14]. Consider any dynamic data structure that performs a sequence
of n edge insertions and deletions that maintain the forest structure starting from
an edgeless graph. Suppose the structure also supports queries of the form whether
a pair of vertices are in the same connected component. Then such a structure
requires Ω(n log n) expected time to support a sequence of n query and update
operations in the cell probe model of word size log n.

We use this observation to give a reduction to the problem of detecting whether
the arboricity of a graph is 1 or 2 to prove a similar lower bound.

Theorem 9. Any dynamic structure that maintains the arboricity of a graph
under edge insertions and deletions requires Ω(log n) amortized time per update
in the cell probe model of word size log n.

Proof. Given an instance I of the fully dynamic connectivity problem on forests
with n vertices, we create a graph I ′ on the same n vertices. Whenever an edge
{u, v} is added to I, we call the addition of edge {u, v} to I ′. Whenever an edge
{u, v} is deleted from I, we delete the same edge from I ′. The forest maintenance
property of the instance I ensures that these addition or deletion of edges always
ensures a forest is maintained in I ′ as well.

When a query between a pair of vertices u and v comes, we simply add the
edge {u, v} and ask whether the resulting graph has arboricity 1 or 2. If it is
1, then we declare that u and v are in different components of the forest, and
otherwise if arboricity is 2 then they are in the same component. We then delete
the edge {u, v} from the graph. This proves the correctness of the reduction. ��

6 Conclusion

We have initiated a study to compute arboricity in fully dynamic graphs. We
have recasted two of the existing algorithms in the language of an auxiliary graph
of the given graph and augmenting paths. It is an interesting open question as to
whether one can bridge the gap between an Õ(m) upper bound and an Ω(log n)
lower bound. Another interesting question would be to design faster dynamic
algorithms for special classes of graphs like for planar graphs under edge updates.
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Abstract. A “lattice animal” is an edge-connected set of cells on a
lattice. In this paper we consider the Tetrakis lattice, and provide the first
lower bound on λτ , the growth constant of polyaboloes (animals on this
lattice), proving that λτ ≥ 2.4345. The proof of the bound is based on a
concatenation argument and on calculus manipulations. If we also rely
on an unproven assumption, which is, however, supported by empirical
data, we obtain the conditional slightly-better lower bound 2.4635.

Keywords: Lattice animals · Polyaboloes · Concatenation ·
Growth constant

1 Introduction

Lattice animals are edge-connected sets of cells on a lattice. (One can regard the
lattice as a graph. In the dual graph, that is, in the cell-adjacency graph of the
original lattice, cells (faces) become sites (vertices). Hence, “site animals” are
also a common name for lattice animals made of connected cells.)

The study of lattice animals began in the mid 1950s in the community of
statistical physics. For example, Temperley [15] investigated the mechanics of
macro-molecules, and Broadbent and Hammersley [6] studied percolation pro-
cesses. Mathematicians began to show interest in lattice problems at about the
same time. Harary [10] composed a list of unsolved problems in the enumeration
of graphs, and Eden [8] analyzed cell growth problems.

Fixed animals are considered distinct if they have different shapes or orien-
tations. In this paper we consider only fixed animals, hence, we omit hereafter
the adjective “fixed” when we refer to lattice animals.

Most attention was given in the literature to the cubical lattices in two dimen-
sions (see Fig. 1(a)) and higher dimensions. Less attention was given to other
lattices, such as the triangular and hexagonal lattices in two dimensions.
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(a) Square lattice (b) Regular triangular lattice (c) Tetrakis lattice

Fig. 1. Two-dimensional lattices

The size of an animal is the number of cells it contains. Let (an) be an integer
sequence. The limit limn→∞ an+1/an, if it exists, is called the growth constant
of (an). In the context of sequences that enumerate lattice animals by size, the
existence of a growth constant was discussed for the first time for the square
lattice, on which animals are called polyominoes and the number of polyominoes
of size n is denoted by A(n). Klarner [11] showed that λ := limn→∞ n

√
A(n)

exists. Only three decades later, Madras [13] proved that limn→∞ A(n+1)/A(n)
exists, and, hence, is equal to λ. A main open problem in this area is to determine
the exact value of this elusive constant. The currently best-known lower and
upper bounds on λ are 4.0025 [5] and 4.6496 [12], respectively.

Similarly, a polyiamond of size n is an edge-connected set of n cells on the
regular two-dimensional triangular lattice (Fig. 1(b)), in which every cell is an
equilateral triangle. Let T (n) denote the number of polyiamonds of size n. The
existential results of Klarner [11] and Madras [13] extend to all periodic lattices,
and, in particular, to the triangular lattice. Hence, the sequence (T (n)) has a
growth constant, λT := limn→∞ T (n+1)/T (n). The currently best-known lower
and upper bounds on λT are 2.8424 [4] and 3.6108 [3], respectively.

In this paper, we consider animals on the Tetrakis lattice (see Fig. 1(c)), also
known as kisquadrille [7, §21]. Throughout the paper, we refer to these animals
as “polyaboloes.” It is important to note that we restrict ourselves to polyaboloes
that can be embedded in the Tetrakis lattice, forbidding triangle neighborhoods
like the one between the two dark-gray triangles in Fig. 4(c). Let τ(n) denote
the number of polyaboloes of size n. Figure 2 shows polyaboloes of size up to 3.
The first twenty elements of (τ(n)) appear as sequence A197467 in the On-
Line Encyclopedia of Integer Sequences [1], referring to these animals as “poly-
[4.8∧2]-tiles”; See also Grünbaum and Shephard [9, §§2.7,6.2,9.4]. More values
of this sequence are provided in the Appendix of this paper. By Klarner [11]
and Madras [13], we know that the sequence (τ(n)) has a growth constant,
that is, the limit λτ := limn→∞ τ(n + 1)/τ(n) = limn→∞ n

√
τ(n) exists. In

this paper, we set a lower bound on λτ , showing that λτ ≥ 2.4345. Under some
unproven assumption, which is, however, supported by empirical data, we obtain
a conditional improved lower bound, λτ ≥ 2.4635.
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(a) 4 moniaboloes (b) 6 diaboloes

(c) 12 triaboloes

Fig. 2. Polyaboloes of size up to 3

2 Preliminaries

As is shown in Fig. 1(c), the Tetrakis lattice contains cells of four distinct types,
which we denote as cells of Type 1 through Type 4. We also define a lexico-
graphic order on the cells of the lattice as follows: A triangle t1 is smaller than
triangle t2 �= t1 if either

1. The column of t1 is to the left of the column of t2; or
2. Both t1 and t2 are in the same column, and t1 lies below t2.

We say that a polyabolo is of Type i (for 1 ≤ i ≤ 4) if its lexicographically-
smallest triangle is of Type i, and denote by τi(n) the number of such polyaboloes
of size n. Furthermore, we split every Type-i polyaboloes into four complement-
ing Subtypes (i, j) polyaboloes (1 ≤ j ≤ 4), in which the lexicographically-
smallest triangle is of Type i (as before), and the lexicographically-largest tri-
angle is of Type j. We also denote by τi,j(n) (for 1 ≤ i, j ≤ 4) the number of
polyaboloes of Type (i, j) and size n.

A concatenation of two polyaboloes P1, P2 is the union of the cell set of P1

and the cell set of a translated copy of P2, such that the largest cell of P1 is
attached to the smallest cell of P2, and all cells of P1 are smaller than the
translates of cells of P2. It is easy to verify that the concatenation of a given
pair of polyaboloes is either impossible or unique; see Fig. 4 and Table 1.

3 Properties

First, we observe a close relationship between three of the types of polyaboloes.

Lemma 1. τ3(n + 2)
(ii)
= τ4(n + 1)

(i)
= τ1(n) (for n ≥ 1).
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Proof. Both claims are verified by observing the Tetrakis lattice. If t, the smallest
triangle of a polyabolo P , is of Type 4, then the only neighbor of t (within P )
is the lattice triangle lying immediately above t, which is of Type 1. Hence, we
can remove t from P , and obtain a unique Type-1 polyabolo of size smaller by
one. This creates a bijection between n-cell polyaboloes of Type 4 and (n−1)-cell
polyaboloes of Type 1. Claim (i) follows immediately.

Similarly, if t, the smallest triangle of a polyabolo P , is of Type 3, then the
only neighbor of t (within P ) is the lattice triangle lying immediately above t,
which is of Type 4. Hence, we can remove t from P , and obtain a unique
Type-4 polyabolo of size smaller by one. This creates a bijection between n-
cell polyaboloes of Type 3 and (n−1)-cell polyaboloes of Type 4. Claim (ii)
follows immediately as well. ��

Second, we note that the sequences enumerating polyaboloes of each type are
monotone increasing. (This is a universal property of animals on all lattices.)

Observation 1. τi(n) ≤ τi(n + 1), for 1 ≤ i ≤ 4 and all n ∈ N.

Indeed, consider n-cell polyaboloes of Type i. By stacking one more triangle
on top of the lexicographically-largest triangle of each such polyabolo, we create
polyaboloes of size n+1 of the same type and without repetitions. In fact, for
each Type i of polyaboloes, there exists a nominal size n0 = n0(i), such that for
all n ≥ n0, there exist polyaboloes of size n+1 that cannot be built this way:
All such polyaboloes whose largest triangle cannot be removed without breaking
the polyabolo into two pieces. Hence, τi(n) < τi(n + 1), for 1 ≤ i ≤ 4 and
all n ≥ n0(i).

Third, we find relations between the numbers of polyaboloes of different
types.

Corollary 1. τ3(n) ≤ τ4(n) ≤ τ1(n) (for every n ∈ N).

Proof. The claim follows from Lemma 1 and Observation 1. ��
Finally, we observe a simple equality of numbers of some polyaboloes of

different subtypes.

Observation 2. τi,j(n) = τ5−j,5−i(n), for 1 ≤ i, j ≤ 4 and all n ∈ N.

Observation 2 is easily justified by rotating the plane by 180◦.

4 The Bound

We are now ready to prove our main result, setting a lower bound on λτ .

Theorem 1. λτ ≥ 2.4345.
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Proof. We proceed with a concatenation argument tailored to the specific lattice
under consideration. Note that the only valid concatenation options are those
specified in Table 1. Hence, the only families of polyaboloes which are closed
under concatenation are those of Types (2,1), (3,1), (3,2), (4,2), (4,3), and (1,4).
Consider one such family of Type (i, j) (the exact values of i, j will be determined
later). By the same arguments used by Klarner [11] and Madras [13], we know
that the sequence (τi,j(n)) has a growth constant. In addition, we obviously have
that τi,j(n) ≤ τ(n). Using elementary facts from calculus, we conclude that the
growth constant of (τi,j(n)), which we denote by λτi,j , is at most λτ . Therefore,
any lower bound we set on λτi,j will also be a lower bound on λτ .

Table 1. Number of valid concatenation options for all cases of triangle j with triangle i

j \ i 1 2 3 4

1 0 1 1 0

2 0 0 1 1

3 0 0 0 1

4 1 0 0 0

Let P1, P2 be two polyaboloes of Type (i, j) and size n, and let Q be the
polyabolo of size 2n that is the result of concatenating P1 and P2. It is cru-
cial to observe that Q cannot be the result of concatenating any other pair of
polyaboloes, both of size n (but it may be represented as the concatenation
of polyaboloes of different sizes). However, there exist polyaboloes of size 2n,
which cannot be represented as the concatenation of any pair of polyaboloes of
size n, because their lexicographically-smallest (or largest) n triangles do not
form a connected set of triangles; see, for example, Fig. 3. (In our setting, there
is another possible reason for this: It may be the case that the lexicographically-
smallest (or largest) n triangles of a polyabolo of Type (i, j) and size 2n is not
a polyabolo of the same type.) Hence,

τ2
i,j(n) ≤ τi,j(2n).

By simple manipulations of this relation, we obtain that
(
τi,j(n)

)1/n ≤ (
τi,j(2n)

)1/(2n)
.

Thus,
(
τi,j(k)

)1/k
,
(
τi,j(2k)

)1/(2k)
,
(
τi,j(4k)

)1/(4k)
, . . . is monotone increasing for

any value of k, and, as a subsequence of
((

τi,j(n)
)1/n

)
, it converges to λτi,j as

well. Therefore, any term of the form
(
τi,j(n)

)1/n is a lower bound on λτi,j .
(See the Appendix for some of the available values of the sequences (τi,j(n)).)
Now, we simply choose the values of (i, j) that provide the best lower bound
out of the six options. It turns out that (1, 4) is the best choice. In particular,
λτ1,4 ≥ (τ1,4(36))1/36 = 815305811084771/36 ≥ 2.4345, and the claim follows. ��
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Fig. 3. A sample 16-triangle polyabolo which cannot be represented as the concatena-
tion of two 8-triangle polyaboloes

5 A Conditional Better Bound

If we refine the proof in the previous section to consider simultaneously all
possible concatenation options, we may achieve a better (higher) lower bound
on λτ . However, the refined proof requires a reasonable assumption which we
were unable to prove so far.

Assumption 1. τ1(n) ≥ τ2(n) for all n ∈ N.

Theorem 2. Under Assumption 1, we have that λτ ≥ 2.4635.

Proof. As in the proof of Theorem 1, we proceed with a concatenation argument.
Since not all pairs of polyaboloes of size n can be concatenated (as can be
seen in Table 1), let us count systematically those pairs of polyaboloes that
can be concatenated. It can easily be verified that pairs of polyaboloes can be
concatenated in at most one way. Here are two examples.

– A polyabolo whose largest triangle is of Type 2 cannot be concatenated at
all with a polyabolo whose smallest triangle is of Type 1 (see Fig. 4(a)).

– A polyabolo whose largest triangle is of Type 3 can be concatenated in one
way with a polyabolo whose smallest triangle is of Type 4 (see Fig. 4(b)).

Note that some “plausible” concatenations are in fact not allowed on our lattice.
For example, there is no way to concatenate a polyabolo whose largest triangle
is of Type 1 with a polyabolo whose smallest triangle is of Type 4. Indeed, the
former triangle can be attached to the latter triangle either to the left of it or
below it, but neither composition is valid (see Fig. 4(c)).

By rotational symmetry, the number of polyaboloes of size n, whose largest
(top-right) triangle is of Type j, is τ5−j(n). Indeed, such a rotation converts
triangles of Type 1 to triangles of Type 4 (and vice versa), and triangles of
Type 2 to triangles of Type 3 (and vice versa). Therefore, the total number of
concatenations of two polyaboloes of size n is

τ4(n)τ2(n) + τ4(n)τ3(n) + τ2
3 (n) + τ3(n)τ4(n) + τ2(n)τ4(n) + τ2

1 (n)

= τ2
1 (n) + τ2

3 (n) + 2τ4(n)(τ2(n) + τ3(n)).
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(a) No concatenations

→
(b) One concatenation

→
(c) An invalid concatenation

Fig. 4. Valid and invalid concatenations

Let P1, P2 be two polyaboloes of size n, which can be concatenated in some
way ξ (one of the options listed in Table 1), and yield a polyabolo Q of size 2n.
As observed in the proof of Theorem 1, the polyabolo Q can be represented
as the concatenation of two polyaboloes of size n only by the triple (P1, P2, ξ).
However, there exist polyaboloes of size 2n, which cannot be represented as
the concatenation of two polyaboloes of size n, because their lexicographically-
smallest (or largest) n triangles do not form a connected set of triangles. Hence,
we conclude that

τ2
1 (n) + τ2

3 (n) + 2τ4(n)(τ2(n) + τ3(n)) ≤ τ(2n). (1)

Let us now find a good lower bound on the number of concatenations. Denote
by xi(n) (for 1 ≤ i ≤ 4) the fraction of polyaboloes of Type i out of all
polyaboloes of size n, that is, xi(n) = τi(n)/τ(n). The left-hand side of Eq. (1)
can be rewritten as

(
x2
1(n) + x2

3(n) + 2x4(n)(x2(n) + x3(n))
)
τ2(n). (2)

Obviously, we have that

x4(n) = 1 − x1(n) − x2(n) − x3(n). (3)

Substituting Eq. (3) into the count of concatenations (Eq. (2)), we find that the
left-hand side of Relation (1) is equal to

(
x2
1(n) + x2

3(n) + 2(1 − x1(n) − x2(n) − x3(n))(x2(n) + x3(n))
)
τ2(n).
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Our next goal is to find a lower bound on the trivariate function

f(x1, x2, x3) := x2
1 + x2

3 + 2(1 − x1 − x2 − x3)(x2 + x3)

in the range [0, 1] × [0, 1] × [0, 1]. (In fact, the range is open on all sides since
there are polyaboloes of all four types for all values of n.) This minimization
problem is subject to the following constraints:

1. x1 + x2 + x3 ≤ 1: Obviously, the number of polyaboloes of Types 1, 2, and 3
cannot exceed the number of all polyaboloes. (Since all xis are nonnegative,
this constraint is actually weaker than constraints 2 and 3.)

2. x3 ≤ x4, that is, 2x3 ≤ 1 − x1 − x2: This follows from Corollary 1.
3. x4 ≤ x1, that is, 1 − x2 − x3 ≤ 2x1: This also follows from Corollary 1.

Subject to the above three constraints, the function f(x1, x2, x3) assumes
at (0, 1, 0) a minimum of 0, which is useless. Thus, we need to add a constraint
which keeps x2 away from 1, or keeps either x1 or x3 away from 0. Empirically
(see the Appendix), we see that the sequences (x1(n)) and (x2(n)) are monotone
increasing (and the limits of both are visually around 0.4), while x4(n) and x3(n)
are monotone decreasing (and their limits are visually around 0.15 and 0.05,
respectively), and the existing data suggest that x1(n) > x2(n) > x4(n) > x3(n)
for n ≥ 3. If we rely on Assumption 1 and add to the above the additional
constraint x1 ≥ x2, the function f(x1, x2, x3) now assumes a minimum of 1/4
at two points: (0.5,0.5,0) and (0.5,0,0). (The second minimum point seems to be
superfluous.) Hence,

1
4
τ2(n) ≤ τ(2n).

By simple manipulations of this relation, we obtain that

(1
4
τ(n)

)1/n ≤ (1
4
τ(2n)

)1/(2n)
.

This implies that the sequence
(
1
4τ(k)

)1/k
,
(
1
4τ(2k)

)1/(2k)
,
(
1
4τ(4k)

)1/(4k)
, . . . is

monotone increasing for any value of k, and, as a subsequence of
((

1
4τ(n)

)1/n
)
,

it converges to λτ as well. Therefore, any term of the form
(
1
4τ(n)

)1/n is a lower
bound on λτ . (See the Appendix for available values of the sequence (τ(n)).)
In particular, λτ ≥ ( 14τ(36))1/36 = (499003797597583/4)1/36 ≥ 2.4635, and the
claim follows. ��

6 Conclusion

In this paper, we prove a lower bound on the growth constant of polyaboloes on
the Tetrakis lattice, namely, that λτ ≥ 2.4345. Under some empirical assumption,
we obtain an improved conditional lower bound of 2.4635. Future work includes
improving the lower bound and finding a good upper bound on λτ .
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Appendix: Computing Elements of (τ (n))

We have implemented Redelmeier’s algorithm [14] for counting polyominoes,
and adapted it to the Tetrakis lattice.1 The algorithm was implemented in C
on a server with four 2.20 GHz Intel Xeon processors and 512 GB of RAM. The
software consisted of about 200 lines of code.

Table 2. Split of τ(36) into the 16 subtypes τi,j(36), 1 ≤ i, j ≤ 4

i \ j 1 2 3 4 Total

1 30,137,895,
510,778

11,148,998,
271,068

78,876,705,
335,638

81,530,581,
108,477

201,694,180,
225,961

2 29,162,541,
569,420

10,790,377,
951,489

76,306,266,
133,179

78,876,705,
335,638

195,135,890,
989,726

3 4,127,703,
521,100

1,529,507,
765,873

10,790,377,
951,489

11,148,998,
271,068

27,596,587,
509,530

4 11,148,998,
271,068

4,127,703,
521,100

29,162,541,
569,420

30,137,895,
510,778

74,577,138,
872,366

Grand total 499,003,797,597,583

0 1

3
2

n/2 + 1

n+3

n

n+2
n+1

2n+3

2n+4

n(n+2)−14n+7

2n+4

0

3
2
1

n/2 + 1

2n+34n+7 n(n+2)−1

n
n+1

2n+4 n+2

n+3

2n+4

)b()a(

Fig. 5. Cell IDs for Redelmeier’s Algorithm

Assume, for simplicity, that we wanted to count polyaboloes up to size n,
where n is divisible by 4. Then, we created the graph, dual of the portion of
1 Originally, the algorithm was proposed for counting polyominoes (site animals on
the square lattice). However, as was already noted elsewhere (see, e.g., [2]), this
algorithm can be adapted to any lattice, once it is formulated as an algorithm for
counting connected subgraphs of a given graph, that contain one marked vertex in
the graph. The reader is referred to the reference cited above for further details.
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Table 3. Counts of polyaboloes (values of τ(21)–τ(36) (in bold) are new)

n τ1(n) τ2(n) τ3(n) τ4(n) τ(n)

1 1 1 1 1 4

2 2 2 1 1 6

3 5 4 1 2 12

4 10 8 2 5 25

5 22 19 5 10 56

6 52 48 10 22 132

7 125 121 22 52 320

8 311 304 52 125 792

9 781 759 125 311 1,976

10 1,965 1,905 311 781 4,962

11 4,986 4,844 781 1,965 12,576

12 12,765 12,424 1,965 4,986 32,140

13 32,904 32,049 4,986 12,765 82,704

14 85,303 83,072 12,765 32,904 214,044

15 222,145 216,224 32,904 85,303 556,576

16 580,700 565,062 85,303 222,145 1,453,210

17 1,523,496 1,482,251 222,145 580,700 3,808,592

18 4,010,346 3,900,592 580,700 1,523,496 10,015,134

19 10,587,019 10,292,607 1,523,496 4,010,346 26,413,468

20 28,019,133 27,227,765 4,010,346 10,587,019 69,844,263

21 74,323,315 72,197,057 10,587,019 28,019,133 185,126,524

22 197,565,811 191,849,795 28,019,133 74,323,315 491,758,054

23 526,189,451 510,796,099 74,323,315 197,565,811 1,308,874,676

24 1,403,920,681 1,362,392,571 197,565,811 526,189,451 3,490,068,514

25 3,751,867,755 3,639,699,653 526,189,451 1,403,920,681 9,321,677,540

26 10,041,587,514 9,738,372,232 1,403,920,681 3,751,867,755 24,935,748,182

27 26,912,890,591 26,092,611,572 3,751,867,755 10,041,587,514 66,798,957,432

28 72,223,625,842 70,002,807,553 10,041,587,514 26,912,890,591 179,180,911,500

29 194,053,148,466 188,035,944,757 26,912,890,591 72,223,625,842 481,225,609,656

30 521,974,915,118 505,660,330,038 72,223,625,842 194,053,148,466 1,293,912,019,464

31 1,405,512,260,944 1,361,250,747,068 194,053,148,466 521,974,915,118 3,482,791,071,596

32 3,788,326,126,815 3,668,175,811,997 521,974,915,118 1,405,512,260,944 9,383,989,114,874

33 10,220,263,525,941 9,893,931,070,016 1,405,512,260,944 3,788,326,126,815 25,308,032,983,716

34 27,596,587,509,530 26,709,792,413,846 3,788,326,126,815 10,220,263,525,941 68,314,969,576,132

35 74,577,138,872,366 72,166,102,653,759 10,220,263,525,941 27,596,587,509,530 184,560,092,561,596

36 201,694,180,225,961 195,135,890,989,726 27,596,587,509,530 74,577,138,872,366 499,003,797,597,583

the Tetrakis lattice, that consists of n/2 columns, each of height 2n + 4. Cells
(triangles) of this portion of our lattice were numbered as is shown in Fig. 5(a). In
fact, the cell-adjacency graph was identical to the one shown in Fig. 5(b), where
a thick edge means that the two cells sharing this edge were not considered as
neighbors. In order to count polyaboloes of Types 1, 2, 3, or 4, we fixed their
smallest triangle at cell number n + 1, n + 2, n + 3, or n, respectively. This
ensured that animals of size n would never spill over the allocated portion of the
Tetrakis lattice.
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In fact, we needed to count only polyaboloes of two out of the four types,
as is implied by Lemma 1. Thus, we ran our program for counting polyaboloes
of Types 1 and 2, and computed counts of polyaboloes of Types 3 and 4 by
applying the lemma. Then, we summed up the results to finally obtain τ(n) =∑4

i=1 τi(n). The running times of our program were 27.5 and 26.25 days, for
computing τ1(n) and τ2(n) for 1 ≤ n ≤ 36, respectively, for a total of 53.75 days
for computing τ(n) for this range of n.

Table 2 provides the split of τ(36) into all 16 subtypes. Table 3 shows the
total counts of polyaboloes, produced by our program, extending significantly the
previously-published counts [1, Sequence A197467]. Figure 6 plots the known val-
ues of n

√
τ(n) and τ(n)/τ(n− 1) for 2 ≤ n ≤ 36, demonstrating the convergence

of the two sequences. Figure 7 plots the 36 known values of the sequences (xi(n))
(i = 1, . . . , 4), showing the tendencies of these sequences.

Fig. 6. Convergence of n
√

τ(n) and τ(n)/τ(n − 1)

Fig. 7. Empirical monotonicity and convergence of (xi(n)) (for 1 ≤ i ≤ 4)
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Abstract. In a (linear) parametric optimization problem, the objective
value of each feasible solution is an affine function of a real-valued param-
eter and one is interested in computing a solution for each possible value
of the parameter. For many important parametric optimization prob-
lems including the parametric versions of the shortest path problem, the
assignment problem, and the minimum cost flow problem, however, the
piecewise linear function mapping the parameter to the optimal objec-
tive value of the corresponding non-parametric instance (the optimal
value function) can have super-polynomially many breakpoints (points
of slope change). This implies that any optimal algorithm for such a
problem must output a super-polynomial number of solutions.

We provide a (parametric) fully-polynomial time approximation
scheme for a general class of parametric optimization problems for which
(i) the parameter varies on the nonnegative real line, (ii) the non-
parametric problem is solvable in polynomial time, and (iii) the slopes
and intercepts of the value functions of the feasible solutions are nonneg-
ative, integer values below a polynomial-time computable upper bound.
In particular, under mild assumptions, we obtain the first parametric
FPTAS for each of the specific problems mentioned above.
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1 Introduction

In a linear parametric optimization problem, the objective function value of
a feasible solution does not only depend on the solution itself but also on a
parameter λ ∈ R, where this dependence is given by an affine linear func-
tion of λ. The goal is to find an optimal solution for each possible param-
eter value, where, under some assumptions (e.g., if the set of feasible solu-
tions is finite), an optimal solution can be given by a finite collection of inter-
vals (−∞, λ1], [λ1, λ2], . . . , [λK−1, λK ], [λK ,+∞) together with one feasible solu-
tion for each interval that is optimal for all values of λ within the corresponding
interval.

The function mapping each parameter value λ ∈ R to the optimal objective
value of the non-parametric problem induced by λ is called the optimal value
function (or the optimal cost curve). The above structure of optimal solutions
implies that the optimal value function is piecewise linear and concave in the case
of a minimization problem (convex in case of a maximization problem) and its
breakpoints (points of slope change) are exactly the points λ1, . . . , λK (assuming
that K was chosen as small as possible).

There is a large body of literature that considers linear parametric optimiza-
tion problems in which the objective values of feasible solutions are affine-linear
functions of a real-valued parameter. Prominent examples include the parametric
shortest path problem [4,13,17,23], the parametric assignment problem [8], and
the parametric minimum cost flow problem [3]. Moreover, parametric versions of
general linear programs, mixed integer programs, and nonlinear programs (where
the most general cases consider also non-affine dependence on the parameter as
well as constraints depending on the parameter) are widely studied – see [16] for
an extensive literature review.

The number of breakpoints is a natural measure for the complexity of a para-
metric optimization problem since it determines the number of different solutions
that are needed in order to solve the parametric problem to optimality. More-
over, any instance of a parametric optimization problem with K breakpoints in
the optimal value function can be solved by using a general method of Eisner
and Severance [5], which requires to solve O(K) non-parametric problems for
fixed values of the parameter.

Carstensen [3] shows that the number of breakpoints in the optimal value
function of any parametric binary integer program becomes linear in the num-
ber of variables when the slopes and/or intercepts of the affine-linear functions
are integers in {−M, . . . , M} for some constant M ∈ N. In most parametric
problems, however, the number of possible slopes and intercepts is exponential
and/or the variables are not binary. While there exist some parametric opti-
mization problems such as the parametric minimum spanning tree problem [6]
or several special cases of the parametric maximum flow problem [2,7,15,22]
for which the number of breakpoints is polynomial in the input size even with-
out any additional assumptions, the optimal value function of most parametric
optimization problems can have super-polynomially many breakpoints in the
worst case – see, e.g., [4,19] for the parametric shortest path problem, [8] for the
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parametric assignment problem, and [20] for the parametric minimum cost flow
problem. This, in particular, implies that there cannot exist any polynomial-time
algorithm for these problems even if P = NP, which provides a strong motivation
for the design of approximation algorithms.

So far, only very few approximation algorithms are known for parametric
optimization problems. Approximation schemes for the parametric version of
the 0-1 knapsack problem have been presented in [9,12], and an approximation
for the variant of the 0-1 knapsack problem in which the weights of the items
(instead of the profits) depend on the parameter has recently been provided
in [10]. Moreover, an approximation scheme for a class of parametric discrete
optimization problems on graphs, whose technique could potentially be general-
ized to further problems, has been proposed in [11].

Our Contribution. We provide a (parametric) fully-polynomial time approxi-
mation scheme (FPTAS) for a general class of parametric optimization problems.
This means that, for any problem from this class and any given ε > 0, there
exists an algorithm with running time polynomial in the input size and 1/ε that
computes a partition of the set R≥0 of possible parameter values into polyno-
mially many intervals together with a solution for each interval that (1 + ε)-
approximates all feasible solutions for all values of λ within the interval.

Our FPTAS can be viewed as an approximate version of the well-known
Eisner-Severance method for parametric optimization problems [5]. It applies
to all parametric optimization problems for which the parameter varies on the
nonnegative real line, the non-parametric problem is solvable in polynomial time,
and the slopes and intercepts of the value functions of the feasible solutions are
nonnegative, integer values below a polynomial-time computable upper bound.
In particular, under mild assumptions, we obtain the first parametric FPTAS for
the parametric versions of the shortest path problem, the assignment problem,
and a general class of mixed integer linear programming problems over integral
polytopes, which includes the minimum cost flow problem as a special case. As
we discuss when presenting the applications of our method in Sect. 4, the number
of breakpoints can be super-polynomial for each of these parametric problems
even under our assumptions, which implies that the problems do not admit any
polynomial-time exact algorithms.

2 Preliminaries

In the following, we consider a general parametric minimization or maximization
problem Π of the following form:

min /max fλ(x) := a(x) + λ · b(x)
s. t. x ∈ X (1)

We assume that the functions a, b : X → N0 defining the intercepts and
slopes of the value functions, respectively, take only nonnegative integer values
and are polynomial-time computable. Moreover, we assume that we can compute
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a rational upper bound UB such that a(x), b(x) ≤ UB for all x ∈ X in polynomial
time. In particular, this implies that UB is of polynomial encoding length.1

For any fixed value λ ≥ 0, we let Πλ denote the non-parametric problem
obtained from Π by fixing the parameter value to λ. We assume that, for
each λ ≥ 0, this non-parametric problem Πλ can be solved exactly in poly-
nomial time by an algorithm alg. The running time of alg will be denoted
by Talg, where we assume that this running time is at least as large as the time
needed in order to compute the objective value fλ(x) = a(x) + λ · b(x) of any
feasible solution x of Πλ.2

The above assumptions directly imply that the optimal value function map-
ping λ ∈ R≥0 to the optimal objective value of the non-parametric problem Πλ

is piecewise linear, increasing, and concave (for minimization problems) or con-
vex (for maximization problems): Since there are at most UB + 1 possible inte-
ger values for each of a(x) and b(x), the function mapping λ to the objective
value fλ(x) = a(x) + λ · b(x) of a given feasible solution x ∈ X is one of at
most (UB+1)2 many different affine functions. Consequently, the optimal value
function given as λ �→ min /max{fλ(x) : x ∈ X} is the minimum/maximum of
finitely many affine functions. The finitely many values of λ at which the slope of
the optimal value function (or, equivalently, the set of optimal solutions of Πλ)
changes are called breakpoints of the optimal value function.

Even though all our results apply to minimization as well as maximization
problems, we focus on minimization problems in the rest of the paper in order
to simplify the exposition. All our arguments can be straightforwardly adapted
to maximization problems.

Definition 1. For α ≥ 1, an α-approximation (I1, x1), . . . , (Ik, xk) for an
instance of a parametric optimization problem Π consists of a cover of R≥0

by finitely many intervals I1, . . . , Ik together with corresponding feasible solu-
tions x1, . . . , xk such that, for each j ∈ {1, . . . , k}, the solution xj is an α-
approximation for the corresponding instance of the non-parametric problem Πλ

for all values λ ∈ Ij, i.e.,

fλ(xj) ≤ α · fλ(x) for all x ∈ X and all λ ∈ Ij .

An algorithm A that computes an α-approximation in polynomial time for
every instance of Π is called an α-approximation algorithm for Π.

A polynomial-time approximation scheme (PTAS) for Π is a family (Aε)ε>0

of algorithms such that, for every ε > 0, algorithm Aε is a (1+ε)-approximation

1 Note that, the numerical value of UB can still be exponential in the input size of
the problem, so there can still exist exponentially many different slopes b(x) and
intercepts a(x).

2 This technical assumption – which is satisfied for most relevant algorithms – is made
in order to be able to express the running time of our algorithm in terms of Talg. If
the assumption is removed, our results still hold when replacing Talg in the running
time of our algorithm by the maximum of Talg and the time needed for computing
any value fλ(x).
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algorithm for Π. A PTAS (Aε)ε>0 for Π is called a fully polynomial-time
approximation scheme (FPTAS) if the running time of Aε is additionally poly-
nomial in 1/ε.

3 An FPTAS

We now present our FPTAS for the general parametric optimization problem (1).
To this end, we first describe the general functioning of the algorithm before
formally stating and proving several auxiliary results needed for proving its cor-
rectness and analyzing its running time.

The algorithm, which is formally stated in Algorithm 1, starts by computing
an upper bound UB on the values of a(·) and b(·), which is possible in poly-
nomial time by our assumptions on the problem. It then starts with the initial
parameter interval [λmin, λmax], where λmin := 1

UB+1 is chosen such that an opti-
mal solution xmin of the non-parametric problem Πλmin is optimal for Πλ for all
λ ∈ [0, λmin] and λmax := UB + 1 is chosen such that an optimal solution xmax

of the non-parametric problem Πλmax is optimal for Πλ for all λ ∈ [λmax,+∞)
(see Lemma 3).

The algorithm maintains a queue Q whose elements ([λ�, λr], x�, xr) consist
of a subinterval [λ�, λr] of the interval [λmin, λmax] and optimal solutions x�, xr

of the respective non-parametric problems Πλ�
,Πλr

at the interval boundaries.
The queue is initialized as Q = {([λmin, λmax], xmin, xmax)}, where xmin, xmax

are optimal for Πλmin ,Πλmax , respectively.
Afterwards, in each iteration, the algorithm extracts an element

([λ�, λr], x�, xr) from the queue and checks whether one of the two solutions x�, xr

obtained at the boundaries of the parameter interval [λ�, λr] is a (1 + ε)-
approximate solution also at the other boundary of the interval. In this case,
Lemma 1 below implies that this boundary solution is a (1 + ε)-approximate
solution within the whole interval [λ�, λr] and the pair consisting of the inter-
val [λ�, λr] and this (1 + ε)-approximate solution is added to the solution set S.
Otherwise, [λ�, λr] is bisected into the two subintervals [λ�, λm] and [λm, λr],
where λm :=

√
λ� · λr is the geometric mean of λ� and λr. This means that an

optimal solution xm of Πλm
is computed and the two triples ([λ�, λm], x�, xm)

and ([λm, λr], xm, xr) are added to the queue in order to be explored.
This iterative subdivision of the initial parameter interval [λmin, λmax] can

be viewed as creating a binary tree: the root corresponds to the initialization,
in which the two non-parametric problems Πλmin and Πλmax are solved. Each
other internal node of the tree corresponds to an interval [λ�, λr] that is further
subdivided into [λ�, λm] and [λm, λr], which requires the solution of one non-
parametric problem Πλm

. In order to bound the total number of non-parametric
problems solved within the algorithm, it is, thus, sufficient to upper bound the
number of nodes in this binary tree.

We now prove the auxiliary results mentioned in the algorithm description
above. The first lemma shows that a solution that is optimal at one boundary
of a parameter interval and simultaneously α-approximate at the other interval
boundary must be α-approximate within the whole interval.
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Algorithm 1. An FPTAS for parametric optimization problems
input : an instance of a parametric optimization problem Π as in (1), ε > 0, an exact

algorithm alg for the non-parametric version of Π
output: a (1 + ε)-approximation for Π

1 Compute an upper bound UB such that a(x), b(x) ≤ UB for all x ∈ X
2 λmin ← 1

UB+1
; λmax ← UB+ 1

3 xmin ← alg(λmin); xmax ← alg(λmax)
4 Q ← {([λmin, λmax], xmin, xmax)} /* queue of intervals still to be considered */

5 S ← {([0, λmin], xmin), [λmax,+∞), xmax)} /* solution set */

6 while Q �= ∅ do
7 Extract some element ([λ�, λr], x�, xr) from Q
8 if fλ�

(xr) ≤ (1 + ε) · fλ�
(x�) then

9 S ← S ∪ {([λ�, λr], xr)}
10 else if fλr (x

�) ≤ (1 + ε) · fλr (x
r) then

11 S ← S ∪ {([λ�, λr], x�)}
12 else
13 λm ← √

λ� · λr

14 xm ← alg(λm)
15 Q ← Q ∪ {([λ�, λm], x�, xm), ([λm, λr], xm, xr)}

16 return S

Lemma 1. Let [λ, λ̄] ⊂ R≥0 be an interval, and let x, x̄ ∈ X be optimal solutions
of Πλ and Πλ̄, respectively. Then, for any α ≥ 1:

(1) If fλ̄(x) ≤ α · fλ̄(x̄), then fλ(x) ≤ α · fλ(x) for all x ∈ X and all λ ∈ [λ, λ̄].
(2) If fλ(x̄) ≤ α · fλ(x), then fλ(x̄) ≤ α · fλ(x) for all x ∈ X and all λ ∈ [λ, λ̄].

Proof. We only prove (1) – the proof of (2) is analogous.
Let fλ̄(x) ≤ α·fλ̄(x̄), i.e., a(x)+λ̄b(x) ≤ α·(a(x̄)+λ̄b(x̄)). Fix some λ ∈ [λ, λ̄].

Then λ = γλ + (1 − γ)λ̄ for some γ ∈ [0, 1] and, for each x ∈ X, we have:

fλ(x) = a(x) + λb(x)
= a(x) + (γλ + (1 − γ)λ̄) · b(x)
= γ · [a(x) + λb(x)] + (1 − γ) · [a(x) + λ̄b(x)]
≤ γ · [a(x) + λb(x)] + (1 − γ) · α · [a(x̄) + λ̄b(x̄)]
≤ γ · [a(x) + λb(x)] + (1 − γ) · α · [a(x) + λ̄b(x)]
≤ α · [a(x) + (γλ + (1 − γ)λ̄)b(x)]
= α · fλ(x)

Here, the first inequality follows by the assumption of (1), and the second inequal-
ity follows since x, x̄ are optimal solutions of Πλ and Πλ̄, respectively. 
�

The following lemma shows that a solution that is optimal for some value λ∗

of the parameter is always (1 + ε)-approximate in a neighborhood of λ∗.



An FPTAS for a General Class of Parametric Optimization Problems 31

Lemma 2. For λ∗ ∈ [0,∞) and ε > 0, let λ = 1
1+ε · λ∗ and λ̄ = (1 + ε) · λ∗.

Also, let x∗ be an optimal solution for Πλ∗ . Then fλ(x∗) ≤ (1+ ε) · fλ(x) for all
x ∈ X and all λ ∈ [λ, λ̄].

Proof. First, note that x∗ is (1 + ε)-approximate for Πλ̄: Let x̄ be an optimal
solution for Πλ̄. Then we have

fλ̄(x∗) = a(x∗) + λ̄ · b(x∗)
= a(x∗) + (1 + ε) · λ∗ · b(x∗)
≤ (1 + ε) · (a(x∗) + λ∗ · b(x∗))
= (1 + ε) · fλ∗(x∗)
≤ (1 + ε) · fλ̄(x̄),

where the last inequality is due to the monotonicity of the optimal cost curve.
Moreover, x∗ is (1 + ε)-approximate for Πλ: Let x be an optimal solution for
Πλ and let x0 be an optimal solution for Π0. Then, since λ = 1

1+ε · λ∗ =
1

1+ε · λ∗ + ε
1+ε · 0, we have

fλ(x∗) ≤ fλ∗(x∗)

≤ fλ∗(x∗) + ε · f0(x0)

= (1 + ε) ·
(

1
1 + ε

· fλ∗(x∗) +
ε

1 + ε
· f0(x0)

)

≤ (1 + ε) · fλ(x),

where the first inequality is due to the monotonicity of λ �→ fλ(x∗) and the
last inequality is due to the concavity of the optimal cost curve. Now, the claim
follows from applying Lemma 1. 
�
The next result justifies our choice of the initial parameter interval [λmin, λmax].

Lemma 3. Let λmin := 1
UB+1 and λmax := UB + 1 as in Algorithm 1. Then

the solution xmin = alg(λmin) is optimal for Πλ for all λ ∈ [0, λmin] and the
solution xmax = alg(λmax) is optimal for Πλ for all λ ∈ [λmax,+∞).

Proof. Let λ ∈ [λmax,+∞) and x ∈ X be an arbitrary solution. Since xmax

is optimal for Πλmax , we have fλmax(x
max) ≤ fλmax(x), i.e., a(xmax) + (UB +

1) · b(xmax) ≤ a(x) + (UB + 1) · b(x). Reordering terms, and using that 0 ≤
a(x), a(xmax) ≤ UB, we obtain that

b(xmax) − b(x) ≤ a(x) − a(xmax)
UB + 1

≤ UB
UB + 1

< 1.

Since b(xmax) − b(x) ∈ Z by integrality of the values of b, this implies that
b(xmax)−b(x) ≤ 0, i.e., b(xmax) ≤ b(x). Consequently, using that xmax is optimal
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for Πλmax , we obtain

fλ(xmax) = fλmax(x
max)

︸ ︷︷ ︸
≤fλmax (x)

+ (λ − λmax)︸ ︷︷ ︸
≥0

· b(xmax)
︸ ︷︷ ︸

≤b(x)

≤ fλmax(x) + (λ − λmax) · b(x)
= fλ(x).

Since x ∈ X was arbitrary, this proves the optimality of xmax for Πλ.
Now, consider the interval [0, λmin]. We know that xmin is optimal for Πλmin .

Analogously to the above arguments, we can show that a(xmin) ≤ a(x), i.e.,
f0(xmin) ≤ f0(x), for all x ∈ X. Thus, for any λ ∈ [0, λmin], we obtain fλ(xmin) ≤
fλ(x) by applying Lemma 1. 
�

We are now ready to show that Algorithm 1 yields an FPTAS for the para-
metric optimization problem (1):

Theorem 1. Algorithm 1 returns a (1 + ε)-approximation of the parametric
problem in time

O
(

TUB + Talg · 1
ε

· log UB
)

,

where TUB denotes the time needed for computing the upper bound UB and Talg

denotes the running time of alg.

Proof. In order to prove the approximation guarantee, we first note that, at
the beginning of each iteration of the while loop starting in line 6, the intervals
corresponding to the first components of the elements of Q ∪ S form a cover
of R≥0. Since Q = ∅ at termination, the approximation guarantee follows if we
show that, for each element (Î , x̂) in the final solution set S returned by the
algorithm, we have fλ(x̂) ≤ (1 + ε) · fλ(x) for all x ∈ X and all λ ∈ Î.

Consider an arbitrary element (Î , x̂) ∈ S. If (Î , x̂) = ([0, λmin], xmin) or
(Î , x̂) = ([λmax,+∞), xmax), then the solution x̂ is optimal for Πλ for all λ ∈ Î
by Lemma 3.

Otherwise, Î = [λ̂�, λ̂r] and (Î , x̂) was added to S within the while loop
starting in line 6, i.e., either in line 9 or in line 11. In this case, the solution x̂
must be optimal for Πλ̂�

or for Πλ̂r
: Whenever an element ([λ�, λr], x�, xr) is

added to the queue Q, the solution x� is optimal for Πλ�
and the solution xr is

optimal for Πλr
. Consequently, whenever ([λ�, λr], x�) or ([λ�, λr], xr) is added

to S, the contained solution is optimal for Πλ�
or for Πλr

, respectively. Thus,
if (Î , x̂) = ([λ̂�, λ̂r], x̂) was added to S in line 9 or 11, the solution x̂ satisfies
fλ(x̂) ≤ (1 + ε) · fλ(x) for all x ∈ X and all λ ∈ Î by the if-statement in the
previous line of the algorithm and Lemma 1.

We prove now the bound on the running time. Starting with the initial inter-
val [0, λmax], the algorithm iteratively extracts an element ([λ�, λr], x�, xr) from
the queue Q and checks whether the interval [λ�, λr] has to be further bisected
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into two subintervals [λ�, λm] and [λm, λr] that need to be further explored.
This process of bisecting can be viewed as creating a full binary tree: the
root corresponds to the initial element ([λmin, λmax], xmin, xmax), for which the
two non-parametric problems Πλmin and Πλmax are solved. Each other node
corresponds to an element ([λ�, λr], x�, xr) that is extracted from Q in some
iteration of the while loop, where x� and xr are optimal for Πλ�

and Πλr
,

respectively. If the interval [λ�, λr] is not bisected into [λ�, λm] and [λm, λr],
the corresponding node is a leaf of the tree, for which no non-parametric
problem is solved. Otherwise, the node corresponding to ([λ�, λr], x�, xr) is an
internal node, for which the optimal solution xm of the non-parametric prob-
lem Πλm

with λm =
√

λ� · λr is computed, and whose two children correspond
to ([λ�, λm], x�, xm) and ([λm, λr], xm, xr). In order to bound the total number
of non-parametric problems solved within the algorithm, it is, thus, sufficient to
bound the number of (internal) nodes in this full binary tree. This is done by
bounding the height of the tree.

In order to bound the height of the tree, we observe that due to Lemma 2,
the algorithm never bisects an interval [λ�, λr], for which λ� ≤ (1 + ε) · λr,
i.e., for which the ratio between λr and λ� satisfies λr

λ�
≤ 1 + ε. Also note that

λm =
√

λ� · λr and, thus, for any subdivision {[λ�, λm], [λm, λr]} of [λ�, λr] in
the algorithm, we have

λm

λ�
=

λr

λm
=

√
λr

λ�
=

(
λr

λ�

) 1
2

.

Hence, for both intervals [λ�, λm] and [λm, λr] in the subdivision, the ratio
between the upper and lower boundary equals the square root of the corre-
sponding ratio of the previous interval [λ�, λr].

This implies that an interval [λ�,k, λr,k] resulting from k consecutive subdi-
visions of an interval [λ�, λr] satisfies

λ�,k

λr,k
=

(
λ�

λr

) 1
2k

.

Thus, starting from the initial interval [λmin, λmax] = [ 1
UB+1 ,UB + 1], for

which the ratio is λmax
λmin

= (UB + 1)2, there can be at most
⌈
log2

(
log((UB+1)2)

log(1+ε)

)⌉

consecutive subdivisions until the ratio between the interval boundaries becomes
less or equal to 1 + ε, which upper bounds the height of the tree by⌈
log2

(
log((UB+1)2)

log(1+ε)

)⌉
+ 1.

Since any binary tree of height h has at most 2h−1 − 1 internal nodes, we
obtain an upper bound of

2

⌈
log2

(
log((UB+1)2)

log(1+ε)

)⌉
− 1 ∈ O

(
log UB

ε

)

for the number of internal nodes of the tree generated by the algorithm.
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Adding the time TUB needed for computing the upper bound UB at the
beginning of the algorithm, this proves the claimed bound on the running time.


�

4 Applications

In this section, we show that our general result applies to the parametric versions
of many well-known, classical optimization problems including the parametric
shortest path problem, the parametric assignment problem, and a general class of
parametric mixed integer linear programs that includes the parametric minimum
cost flow problem. As will be discussed below, for each of these parametric
problems, the number of breakpoints in the optimal value function can be super-
polynomial, which implies that solving the parametric problem exactly requires
the generation of a super-polynomial number of solutions.

Parametric Shortest Path Problem. In the single-pair version of the para-
metric shortest path problem, we are given a directed graph G = (V,R) together
with a source node s ∈ V and a destination node t ∈ V , where s �= t. Each
arc r ∈ R has a parametric length of the form ar + λ · br, where ar, br ∈ N0 are
nonnegative integers. The goal is to compute an s-t-path Pλ of minimum total
length

∑
r∈Pλ

(ar + λ · br) for each λ ≥ 0.
Since the arc lengths ar + λ · br are nonnegative for each λ ≥ 0, one can

restrict to simple s-t-paths as feasible solutions, and an upper bound UB as
required in Algorithm 1 is given by summing up the n − 1 largest values ar and
summing up the n − 1 largest values br and taking the maximum of these two
sums, which can easily be computed in polynomial time. The non-parametric
problem Πλ can be solved in polynomial time O(m+n log n) for any fixed λ ≥ 0
by Dijkstra’s algorithm, where n = |V | and m = |R| (see, e.g., [21]). Hence,
Theorem 1 yields an FPTAS with running time O (

1
ε · (m + n log n) · log nC

)
,

where C denotes the maximum among all values ar, br.
On the other hand, the number of breakpoints in the optimal value function

is at least nΩ(log n) in the worst case even under our assumptions of nonnegative,
integer values ar, br and for λ ∈ R≥0 [4,19].

Parametric Assignment Problem. In the parametric assignment problem,
we are given a bipartite, undirected graph G = (U, V,E) with |U | = |V | = n and
|E| = m. Each edge e ∈ E has a parametric weight of the form ae +λ · be, where
ae, be ∈ N0 are nonnegative integers. The goal is to compute an assignment Aλ

of minimum total weight
∑

e∈Aλ
(ae + λ · be) for each λ ≥ 0.

Similar to the parametric shortest path problem, an upper bound UB as
required in Algorithm 1 is given by summing up the n largest values ar and
summing up the n largest values br and taking the maximum of these two sums.
The non-parametric problem Πλ can be solved in polynomial time O(n3) for
any fixed value λ ≥ 0 (see, e.g., [21]). Hence, Theorem 1 yields an FPTAS
with running time O (

1
ε · n3 · log nC

)
, where C denotes the maximum among all

values ae, be.
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On the other hand, applying the well-known transformation from the shortest
s-t-path problem to the assignment problem (see, e.g., [14]) to the instances of the
shortest s-t-path problem with super-polynomially many breakpoints presented
in [4,19] shows that the number of breakpoints in the parametric assignment
problem can be super-polynomial as well (see also [8]).

Parametric MIPs over Integral Polytopes. A very general class of problems
our results can be applied to are parametric mixed integer linear programs (para-
metric MIPs) with nonnegative, integer objective function coefficients whose fea-
sible set is of the form P ∩ (Zp ×R

n−p), where P ⊆ R
n
≥0 is an integral polytope.

More formally, consider a parametric MIP of the form

min /max (a + λb)T x

s.t. Ax = d

Bx ≤ e

x ≥ 0

x ∈ Z
p × R

n−p

where A,B are rational matrices with n rows, d, e are rational vectors of the
appropriate length, and a, b ∈ N

n
0 are nonnegative, integer vectors. We assume

that the polyhedron P := {x ∈ R
n : Ax = d, Bx ≤ e, x ≥ 0} ⊆ R

n is an integral
polytope, i.e., it is bounded and each of its (finitely many) extreme points is an
integral point.

Since, for each λ ≥ 0, there exists an extreme point of P that is optimal for
the non-parametric problem Πλ, one can restrict to the extreme points when
solving the problem. Since x̄ ∈ N

n
0 for each extreme point x̄ of P and since

a, b ∈ N
n
0 , the values a(x̄) = aT x̄ and b(x̄) = bT x̄ are nonnegative integers. In

order to solve the non-parametric problem Πλ for any fixed value λ ≥ 0, we can
simply solve the linear programming relaxation min /max{(a+λb)T x : x ∈ P} in
polynomial time. This yields an optimal extreme point of P , which is integral by
our assumptions. Similarly, an upper bound UB as required in Algorithm 1 can
be computed in polynomial time by solving the two linear programs max{aT x :
x ∈ P} and max{bT x : x ∈ P} and taking the maximum of the two resulting
(integral) optimal objective values.

While Theorem 1 yields an FPTAS for any parametric MIP as above, it is
well known that the number of breakpoints in the optimal value function can be
exponential in the number n of variables [3,18].

An important parametric optimization problem that can be viewed as a spe-
cial case of a parametric MIP as above is the parametric minimum cost flow
problem, in which we are given a directed graph G = (V,R) together with a
source node s ∈ V and a destination node t ∈ V , where s �= t, and an integral
desired flow value F ∈ N0. Each arc r ∈ R has an integral capacity ur ∈ N0

and a parametric cost of the form ar + λ · br, where ar, br ∈ N0 are nonnega-
tive integers. The goal is to compute a feasible s-t-flow x with flow value F of
minimum total cost

∑
r∈R(ar + λ · br) · xr for each λ ≥ 0. Here, a large variety

of (strongly) polynomial algorithms exist for the non-parametric problem, see,
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e.g., [1]. An upper bound UB can either be obtained by solving two linear pro-
grams as above, or by taking the maximum of

∑
r∈R ar · ur and

∑
r∈R br · ur.

Using the latter and applying the enhanced capacity scaling algorithm to solve
the non-parametric problem, which runs in O((m · log n)(m + n · log n)) time on
a graph with n nodes and m arcs [1], Theorem 1 yields an FPTAS with running
time O (

1
ε · (m · log n)(m + n · log n) · log mCU

)
, where C denotes the maximum

among all values ar, br, and U := maxr∈R ur.
On the other hand, the optimal value function can have Ω(2n) break-

points even under our assumptions of nonnegative, integer values ar, br and for
λ ∈ R≥0 [20].

Acknowledgments. We thank Sven O. Krumke for pointing out a possible improve-
ment of the running time of a first version of our algorithm.
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Abstract. Let S be a set of n points and let w be a function that assigns
non-negative weights to points in S. The additive weighted distance
dw(p, q) between two points p, q ∈ S is defined as w(p) + d(p, q) + w(q)
if p �= q and it is zero if p = q. Here, d(p, q) is the geodesic Euclidean
distance between p and q. For a real number t > 1, a graph G(S, E) is
called a t-spanner for the weighted set S of points if for any two points p
and q in S the distance between p and q in graph G is at most t.dw(p, q)
for a real number t > 1. For some integer k ≥ 1, a t-spanner G for the
set S is a (k, t)-vertex fault-tolerant additive weighted spanner, denoted
with (k, t)-VFTAWS, if for any set S′ ⊂ S with cardinality at most k,
the graph G\S′ is a t-spanner for the points in S \S′. For any given real
number ε > 0, we present algorithms to compute a (k, 4 + ε)-VFTAWS
for the metric space (S, dw) resulting from the following: (i) points in S
are in the free space of the polygonal domain, (ii) points in S lying on a
terrain.

Keywords: Computational geometry · Geometric spanners ·
Approximation algorithms

1 Introduction

When designing geometric networks on a given set of points in a metric space,
it is desirable for the network to have short paths between any pair of nodes
while being sparse with respect to the number of edges. Let G(S,E) be an edge-
weighted geometric graph on a set S of n points in R

d. The weight of any edge
(p, q) ∈ E is the Euclidean distance |pq| between p and q. The distance in G
between any two nodes p and q, denoted by dG(p, q), is defined as the length of
a shortest (that is, minimum-weighted) path between p and q in G. The graph
G is called a t-spanner for some t ≥ 1 if for any two points p, q ∈ S we have
dG(p, q) ≤ t.|pq|. The smallest t for which G is a t-spanner is called the stretch
factor of G, and the number of edges of G is called its size.

Peleg and Schäffer [40] introduced spanners in the context of distributed
computing and by Chew [27] in a geometric context. Althöfer et al. [9] first
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attempted to study sparse spanners on edge-weighted graphs that have the
triangle-inequality property. The text by Narasimhan and Smid [39], hand-
book chapter [31], and Gudmundsson and Knauer [32] detail various results
on Euclidean spanners, including a (1 + ε)-spanner for the set S of n points in
R

d that has O( n
εd−1 ) edges for any ε > 0.

Many variations of sparse spanners have been studied, including spanners
of low degree [11,19,25,42], spanners of low weight [18,30,33], spanners of
low diameter [13,14], planar spanners [10,27,29,36], spanners of low chromatic
number [17], fault-tolerant spanners [3,16,28,35,37,38,43], low power spanners
[7,41,45], kinetic spanners [2,5], angle-constrained spanners [26], and combina-
tions of these [12,15,21–24]. When the doubling dimension of a metric space is
bounded, results applicable to the Euclidean settings are given in [44].

As mentioned in Abam et al., [4], the cost of traversing a path in a network
is not only determined by the lengths of the edges on the path but also by
the delays occurring at the nodes on the path. The result in [4] models these
delays with the additive weighted metric. Let S be a set of n points in R

d. For
every p ∈ S, let w(p) be the non-negative weight associated to p. The following
additive weighted distance function dw on S defining the metric space (S, dw)
is considered in [4] and by Bhattacharjee and Inkulu in [16]: for any p, q ∈ S,
dw(p, q) equals to 0 if p = q; otherwise, it is equal to w(p) + |pq| + w(q).

Recently, Abam et al. [6] showed that there exists a (2 + ε)-spanner with a
linear number of edges for the metric space (S, dw) that has bounded doubling
dimension in [34]. And, [4] gives a lower bound on the stretch factor, showing that
(2 + ε) stretch is nearly optimal. Bose et al. [20] studied the problem of computing
spanners for a weighted set of points. They considered the points that lie on the
plane to have positive weights associated to them; and defined the distance dw

between any two distinct points p, q ∈ S as d(p, q) − w(p) − w(q). Under the
assumption that the distance between any pair of points is non-negative, they
showed the existence of a (1 + ε)-spanner with O(n

ε ) edges.
A simple polygon PD containing h ≥ 0 number of disjoint simple polygonal

holes within it is termed the polygonal domain D. (When h equals to 0, the
polygonal domain D is a simple polygon.) The free space F(D) of the given
polygonal domain D is defined as the closure of PD excluding the union of the
interior of polygons contained in PD. Essentially, a path between any two given
points in F(D) needs to be in the free space F(D) of D. Given a set S of n points
in the free space F(D) defined by the polygonal domain D, computing geodesic
spanners in F(D) is considered in Abam et al. [1]. For any two distinct points
p, q ∈ S, dπ(p, q) is defined as the geodesic Euclidean distance along a shortest
path π(p, q) between p and q in F(D). [1] showed that for the metric space (S, π),
for any constant ε > 0, there exists a (5 + ε)-spanner of size O(

√
hn(lg n)2).

Further, for any constant ε > 0, [1] gave a (
√

10 + ε)-spanner with O(n(lg n)2)
edges when h = 0 i.e., the polygonal domain is a simple polygon with no holes.
Given a set S of n points on a polyhedral terrain T , the geodesic Euclidean
distance between any two points p, q ∈ S is the distance along any shortest
path between p and q on T . [6] showed that for a set of unweighted points on a
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polyhedral terrain, for any constant ε > 0, there exists a (2+ε)-geodesic spanner
with O(n lg n) edges.

For a network to be vertex fault-tolerant, i.e., when a subset of nodes is
removed, the induced network on the remaining nodes requires to be connected.
Formally, a graph G(S,E) is a k-vertex fault-tolerant t-spanner, denoted by
(k, t)-VFTS, for a set S of n points in R

d if for any subset S′ of S with size at
most k, the graph G \ S′ is a t-spanner for the points in S \ S′. Algorithms in
Levcopoulos et al. [37], Lukovszki [38], and Czumaj and Zhao [28] compute a
(k, t)-VFTS for the set S of points in R

d. These algorithms are also presented in
[39]. [37] devised an algorithm to compute a (k, t)-VFTS of size O( n

(t−1)(2d−1)(k+1) )

in O( n lg n
(t−1)4d−1 + n

(t−1)(2d−1)(k+1) ) time and another algorithm to compute a (k, t)-

VFTS with O(k2n) edges in O( kn lg n
(t−1)d ) time. [38] gives an algorithm to com-

pute a (k, t)-VFTS of size O( kn
(t−1)d−1 ) in O( 1

(t−1)d (n lgd−1 n lg k + kn lg lg n))
time. The algorithm in [28] computes a (k, t)-VFTS having O( kn

(t−1)d−1 ) edges in

O( 1
(t−1)d−1 (kn lgd n + nk2 lg k)) time with total weight of edges upper bounded

by a O( k2 lg n
(t−1)d ) multiplicative factor of the weight of MST of the given set of

points.
For a real number t > 1, a graph G(S,E) is called a t-spanner for the weighted

set S of points if for any two points p and q in S the distance between p and q in
graph G is at most t.dw(p, q) for a real number t > 1. For some integer k ≥ 1, a t-
spanner G for the set S is a (k, t)-vertex fault-tolerant additive weighted spanner,
denoted with (k, t)-VFTAWS, if for any set S′ ⊂ S with cardinality at most k,
the graph G \ S′ is a t-spanner for the points in S \ S′. In [16], Bhattacharjee
and Inkulu devised the following algorithms: one for computing a (k, 4 + 5ε)-
VFTAWS when the input points are located in R

d, and the other for computing
a (k, 4 + 14ε)-VFTAWS when the given points are located in a simple polygon.
In this paper, we extend the results in [16] for points in polygonal domains and
terrains.

Our Results. The spanners computed in this paper are first of their kind as
we combine vertex fault-tolerance with the additive weighted set of points in the
context of points are located either in a polygonal domain or on a terrain. Here,
we generalize the results obtained in [16] for points located in R

d and points
residing in a simple polygon. In specific, we devise the following algorithms for
computing (k, t)-VFTAWS, for any ε > 0 and k ≥ 1:

* Given a set S comprising of n points in the polygonal domain P that has h
simple polygonal holes while each point in S is associated with a non-negative
weight, we compute a (k, 4 + ε)-VFTAWS having O(k

√
hn

ε2 lg n) edges.
* Given a set S of n points located on a terrain with a positive weight associated

to each point, we compute a (k, 4 + ε)-VFTAWS having O(kn
ε2 lg n) edges.

The Euclidean distance between two points p and q is denoted by |pq|. The
distance between two points p, q in the metric space X is denoted by dX(p, q).
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The length of the shortest path between p and q in a graph G is denoted by
dG(p, q).

Section 2 details algorithm for (k, 4 + ε)-VFTAWS for points located in the
polygonal domain. Section 3 presents an algorithm to compute a (k, 4 + ε)-
VFTAWS when the input points are located on a terrain.

2 Vertex Fault-Tolerant Additive Weighted Spanner
for Points in a Polygonal Domain

We devise an algorithm to compute a geodesic (k, (4 + ε))-vertex fault-tolerant
spanner for a set S of n points lying in the free space D of the given polygonal
domain P while each input point is associated with a non-negative weight. The
polygonal domain P consists of a simple polygon and h simple polygonal holes
located interior to to that polygon. Our algorithm depends on the algorithm
given in [1] to compute a (5 + ε)-spanner for a set of unweighted points lying
in D. We decompose the free space D into simple polygons using O(h) splitting
segments such that no splitting segment crosses any of the holes of D and each of
the resultant simple polygons has at most three splitting segments bounding it.
As part of this decomposition, two vertical line segments are drawn, one upwards
and the other downwards, respectively from the leftmost and rightmost extreme
(along the x-axis) vertices of each hole. If any of the resulting simple polygons
has more than three splitting segments on its boundary, then that simple polygon
is further decomposed. To achieve efficiency, a splitting segment is chosen such
that it has around half of its bounding splitting segments on either of its sides.
This algorithm results in partitioning D into O(h) simple polygons. Further, a
graph Gd is constructed where each vertex of Gd corresponds to a simple polygon
of this decomposition. Each vertex v of Gd is associated with a weight equal to
the number of points that lie inside the simple polygon corresponding to v. Two
vertices are connected by an edge in Gd whenever their corresponding simple
polygons are adjacent to each other in the decomposition. We note that Gd is
a planar graph. Hence, we use the following theorem from [8] to compute a
O(

√
h)-separator R of Gd.

Theorem 1. Suppose G = (V,E) is a planar vertex-weighted graph with |V | =
m. Then, an O(

√
m)-separator for G can be computed in O(m) time. That is, V

can be partitioned into sets P,Q and R such that |R| = O(
√

m), there is no edge
between P and Q, and w(P ), w(Q) ≤ 2

3w(V ). Here, w(X) is the sum of weights
of all vertices in X.

We compute a O(
√

h)-separator R for the graph Gd using Theorem 1. Let
P,Q, and R be the sets into which the vertices of Gd is partitioned. For each
vertex r ∈ R, we collect the bounding splitting segments of the simple polygon
corresponding to r into H i.e., O(

√
h) splitting segments are collected into a set

H. For each splitting segment l in H, we proceed as follows. For each point p that
lies in the given simple polygon, we find the projection pl of p on l; we assign the
weight w(p)+dπ(p, pl) to point pl and include pl into the set Sl corresponding to
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points projected on to line l. We compute the (k, 4 + ε)-VFTAWS Gl for the set
Sl of points using the algorithm from [16] for additive weighted points located in
R

d. For every edge (r, s) in Gl, we introduce an edge (p, q) in G, where r (resp. s)
is the projection of p (resp. q) on l. Recursively, we compute vertex-fault tolerant
additive weighted spanner for points lying in simple polygon corresponding to P
(resp. Q). The recursion is continued till P (resp. Q) contains exactly one vertex.
We first prove that this algorithm computes a (k, (12 + ε))-vertex fault-tolerant
spanner. Further, we modify this algorithm to compute a (k, (4 + ε))-vertex
fault-tolerant spanner.

Lemma 1. The spanner G is a geodesic (k, (12+15ε))-vertex fault-tolerant addi-
tive weighted spanner for points in D.

Proof. Using induction on the number of points, we show that there exists a
(12 + 15ε)-spanner path between p and q in G \ S

′
. The induction hypothesis

assumes that for the number of points k′ < |S|, there exists a (12+15ε)-spanner
path between any two points belonging to G S. Consider a set S

′ ⊂ S such that
|S′ | ≤ k and two arbitrary points p and q from the set S \S

′
. Here, as described

above, P,Q, and R correspond to vertices of a planar graph Gd. The union of
simple polygons that correspond to vertices of P (resp. Q,R) is denoted with
poly(P ) (resp. poly(Q), poly(R)). Also, the set H is as described in the algorithm.
Based on the location of p and q, the following cases arise: (i) both p and q
are lying in P ′ ∈ {poly(P ), poly(Q), and poly(R)} and the geodesic Euclidean
shortest path between p and q does not intersect any splitting segment from the
set H, and (ii) p is lying in P ′ ∈ {poly(P ), poly(Q), poly(R)} and q is lying in
P ′′ ∈ {poly(P ), poly(Q), poly(R)} where P ′ �= P ′′. In case (i), if P ′ is a simple
polygon, then we can apply algorithm for simple polygons from [16] and obtain
a (4 + 14ε)-path between p and q. Otherwise, from the induction hypothesis,
there exists a (12+15ε)-path between p and q. In case (ii), a shortest path from
p and q intersects at least one of the O(

√
h) splitting segments in H, say l. Let

π(p, q) be a shortest path between p and q that intersects l at some point. Let
r be this point of intersection. Since Gl is a (k, (4 + 5ε))-VFTAWS, there exists
a path P ′ between pl and ql in Gl with length at most (4 + 5ε)dl,w(pl, ql). By
replacing each vertex xl of P ′ by x ∈ S such that xl is the projection of x on l,
gives a path between p and q in G \ S

′
. Thus, the length of the path dG\S′ (p, q)

is less than or equal to the length of the path P ′ in Gl. For every x, y ∈ S,

dπ,w(x, y) = w(x) + dπ(x, y) + w(y)
≤ w(x) + dπ(x, xl) + dπ(xl, yl) + dπ(yl, y) + w(y)
[by the triangle inequality]
= w(xl) + dπ(xl, yl) + w(yl)
[since the weight associated with projection zl of every point z is
w(z) + dπ(z, zl)]
= dl,w(xl, yl) (1)
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This implies,

dG\S′ (p, q) =
∑

xl,yl∈P

dπ,w(x, y)

≤
∑

xl,yl∈P

dl,w(xl, yl)

[from (1)]
≤ (4 + 5ε).dl,w(pl, ql) (2)
[since Gl is a geodesic (k, (4 + 5ε))-VFTAWS]
= (4 + 5ε) · [w(pl) + dl(pl, ql) + w(ql)]
= (4 + 5ε) · [w(pl) + dπ(pl, ql) + w(ql)]
[since P contains l, shortest path between pl and ql along l

is same as the geodesic shortest path between pl and ql]
= (4 + 5ε) · [w(p) + dπ(p, pl) + dπ(pl, ql) + dπ(ql, q) + w(q)] (3)
[since the weight associated with projection zl of every point z is
w(z) + dπ(z, zl)].

Since r is a point belonging to both l as well as to π(p, q),

dπ(p, pl) ≤ dπ(p, r) and dπ(q, ql) ≤ dπ(q, r). (4)

Substituting (4) into (3),

dG\S′(p, q) ≤ (4 + 5ε) · [w(p) + dπ(p, r) + dπ(pl, ql) + dπ(r, q) + w(q)]

≤ (4 + 5ε) · [w(p) + dπ(p, r) + w(r) + dπ(pl, ql) + w(r) + dπ(r, q) + w(q)]

[since the weight associated with every point is non-negative]

= (4 + 5ε) · [dπ,w(p, r) + dπ(pl, ql) + dπ,w(r, q)]

= (4 + 5ε) · [dπ,w(p, q) + dπ(pl, ql)]

[since π(p, q) intersects l at r, by optimal substructure property of shortest

paths, π(p, q) = π(p, r) + π(r, q)]. (5)
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Consider

dπ(pl, ql) ≤ dπ(pl, p) + dπ(p, q) + dπ(q, ql)

[since π follows triangle inequality]

≤ dπ(r, p) + dπ(p, q) + dπ(q, r)

[using (4)]

≤ w(r) + dπ(r, p) + w(p) + w(p) + dπ(p, q) + w(q) + w(q) + dπ(q, r) + w(r)

[since weight associated with every point is non-negative]

= dπ,w(p, r) + dπ,w(p, q) + dπ,w(r, q)

= dπ,w(p, q) + dπ,w(p, q)

[since π(p, q) intersects l at r, by optimal substructure property of shortest

paths, π(p, q) = π(p, r) + π(r, q)]

= 2dπ,w(p, q). (6)

Substituting (6) into (5), dG\S′(p, q) ≤ 3(4 + 5ε) · dπ,w(p, q). �	

We further improve the stretch factor of G by applying the refinement given
in [6] to the above-described algorithm. In doing this, for each point p ∈ S, we
compute the geodesic projection pγ of p on the splitting line γ and we construct
a set S(p, γ) as defined herewith. Let γ(p) ⊆ γ be {x ∈ γ : dγ,w(pγ , x) ≤
(1 + 2ε) · dπ(p, pγ)}. Here, for any p, q ∈ S, dγ,w(p, q) is equal to 0 if p = q;
otherwise, it is equal to w(p)+dγ(p, q)+w(q). We divide γ(p) into c pieces with
c ∈ O(1/ε2): each piece is denoted by γj(p) for 1 ≤ j ≤ c. For every piece j,
we compute the point p

(j)
γ nearest to p in γj(p). The set S(p, γ) is defined as

{p
(j)
γ : p

(j)
γ ∈ γj(p) and 1 ≤ j ≤ c}. For every r ∈ S(p, γ), the non-negative

weight w(r) of r is set to w(p)+ dπ(p, r). Let Sγ be ∪p∈SS(p, γ). We replace the
set Sl in computing G with the set Sγ and compute a (k, (4 + 5ε))-VFTAWS Gl

for the set Sl using the algorithm for points in R
d from [16]. Further, for every

edge (r, s) in Gl, we add the edge (p, q) to G such that r ∈ S(p, l) and s ∈ S(q, l).
The rest of the algorithm remains the same.

Theorem 2. Let S be a set of n points in a polygonal domain D with non-
negative weights associated to points via weight function w. For any fixed con-
stant ε > 0, there exists a (k, (4 + ε))-vertex fault-tolerant additive weighted
geodesic spanner with O(kn

√
h

ε2 lg n) edges for the metric space (S, dπ,w).

Proof. Let S(n) be the size of G. Our algorithm adds O(kn
√

h
ε2 ) edges at each

recursive level except for the last level. At every leaf node l of the recurrence tree,
we add O(knx

ε2 lg nx) edges, where nx is the number of points inside the simple
polygon corresponding to l. Hence, the number of edges of G is O(kn

√
h

ε2 lg n).
Next, we prove the stretch factor of the spanner. Consider any set S

′ ⊂ S
such that |S′ | ≤ k and two arbitrary points p and q from the set S \ S

′
. We

show that there exists a (4 + 14ε)-spanner path between p and q in G \ S
′
.
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If r /∈ l(p), then we set p′
l (resp. q′

l) equal to pl (resp. ql). Otherwise, p′
l (resp. q′

l)
is set as the point from S(p, l) (resp. S(q, l)) that is nearest to p (resp. q). (The
r is defined before the theorem statement.)

dl,w(p′
l, q

′
l) = w(p′

l) + dl(p′
l, q

′
l) + w(q′

l)
≤ w(p′

l) + dl(p′
l, r) + dl(r, q′

l) + w(q′
l)

[by the triangle inequality]
≤ w(p′

l) + dl(p′
l, r) + w(r) + w(r) + dl(r, q′

l) + w(q′
l)

[since the weight associated with each point is non-negative]
= w(p) + dπ(p, p′

l) + dl(p′
l, r) + w(r) + w(r) + dl(r, q′

l)
+ dπ(q′

l, q) + w(q)
[due to the assignment of the weight to the projection of any point]

(7)

From the triangle inequality, we know the following:

dπ(p, p′
l) + dl(p′

l, r) ≤ dπ(p, r), and (8)
dl(r, q′

l) + dπ(q′
l, q) ≤ dπ(r, q). (9)

Substituting (8) and (9) in (7),

dl,w(p′
l, q

′
l) ≤ w(p) + dπ(p, r) + w(r) + w(r) + dπ(r, q) + w(q)

= dπ,w(p, r) + dπ,w(r, q)

= dπ,w(p, q)

[since r ∈ l ∩ π(p, q), by the optimal substructure property of shortest

paths, π(p, q) = π(p, r) + π(r, q)]. (10)

Replacing pl (resp. ql) by p′
l (resp. q′

l) in inequality (2),

dG\S′ (p, q) ≤ (4 + 5ε).dl,w(p′
l, q

′
l)

≤ (4 + 5ε)dπ,w(p, q) [from (10)].

Thus, G is a geodesic (k, (4 + ε))-VFTAWS for S. �	

3 Vertex Fault-Tolerant Additive Weighted Spanner
for Points on a Terrain

In this section, we present an algorithm to compute a geodesic (k, (4 + ε))-
VFTAWS with O(kn lg n

ε2 ) edges for any given set S of n non-negative weighted
points lying on a polyhedral terrain T . We denote the boundary of T with ∂T .
The following distance function dT ,w : S × S → IR ∪ {0} is used to compute the
geodesic distance on T between any two points p, q ∈ S: dT ,w(p, q) = w(p) +
dT (p, q)+w(q). Here, w(p) (resp. w(q)) is the non-negative weight of p ∈ S (resp.
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q ∈ S). We denote a geodesic Euclidean shortest path between any two points
a and b on T with π(a, b). For any two points x, y ∈ ∂T , we denote the closed
region lying to the right (resp. left) of π(x, y) when going from x to y, including
the points lying on the shortest path π(x, y) with π+(x, y) (resp. π−(x, y)). The
projection pπ of a point p on the shortest path π between two points lying on
the polyhedral terrain T is defined as a point on π that is at the minimum
geodesic distance from p among all the points located on π. For three points
u, v, w ∈ T , the closed region bounded by shortest paths π(u, v), π(v, w), and
π(w, u) is termed sp-triangle, denoted with Δ(u, v, w). If the points u, v, w ∈ T
are clear from the context, we denote the sp-triangle with Δ. In the following,
we restate a Theorem from [6], which is useful for our analysis.

Theorem 3. For any set P of n points on a polyhedral terrain T , there exists a
balanced sp-separator: a shortest path π(u, v) connecting two points u, v ∈ ∂T such
that 2n

9 ≤ |π+(u, v) ∩ P | ≤ 2n
3 , or a sp-triangle Δ such that 2n

9 ≤ |Δ ∩ P | ≤ 2n
3 .

Thus, an sp-separator is either bounded by a shortest path (in the former
case) or by three shortest paths (in the latter case). Let γ be a shortest path that
belongs to an sp-separator. First, a balanced sp-separator as given in Theorem 3
is computed. The sets Sin and Sout comprising of points are defined as follows: if
the sp-separator is a shortest path then define Sin to be γ+(u, v)∩S; otherwise,
Sin is Δ ∩ S; points in S that do not belong to Sin are in Sout. For each p ∈ S,
we compute the projection pγ of p on every shortest path γ of sp-separator, and
associate a weight dT (p, pγ) with pγ . Let Sγ be a set defined as ∪p∈S pγ . Our
algorithm computes a (2+ ε)-spanner Gγ for the weighted points in Sγ . Further,
for each edge (pγ , qγ) in Gγ , an edge (p, q) is added to G, where pγ (resp. qγ) is
the projection of p (resp. q) on γ. The spanners for the sets Sin and Sout are
computed recursively, and the edges from these spanners are added to G. In the
base case, if |S| ≤ 3 then a complete graph on the set S is constructed. We
first obtain a (k, (12 + 15ε))-vertex fault-tolerant additive weighted spanner for
the set S of points lying on the terrain T . (This construction is later modified
to compute a (k, (4 + ε))-VFTAWS.) In specific, with every projected point pγ ,
instead of associating dT (p, pγ) as the weight of pγ , we associate w(p)+dT (p, pγ)
as the weight of pγ . The rest of the algorithm in constructing G remains the same
as in [6].

To prove the graph G is a geodesic (k, (12 + 15ε))-VFTAWS for the points
in S, we use induction on the number of points. Consider any set S′ ⊂ S such
that |S′| ≤ k and two arbitrary points p and q from the set S \ S′. We show
that there exists a path between p and q in G \ S′ such that dG(p, q) is at most
(12 + 15ε)dπ,w(p, q). The induction hypothesis assumes that for the number of
points k′ < |S| in a region of T , there exists a (12 + 15ε)-spanner path between
any two points belonging to the given region in G \ S′. As part of the inductive
step, we extend it to n points. For the case of both p and q are on the same side
of a bounding shortest path γ of the balanced separator, i.e., both are in Sin or
Sout, by induction hypothesis (as the number of points in Sin or Sout is less than
|S|), there exists a (12 + 15ε)-spanner path between p and q in G \ S′. The only
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case remains to be proved is when p lies on one side of γ and q lies on the other
side of γ, i.e., p ∈ Sin and q ∈ Sout or, q ∈ Sin and p ∈ Sout. W.l.o.g., we assume
that the former holds. Let r be a point on γ at which the geodesic shortest path
π(p, q) between p and q intersects γ. Since Gγ is a (k, (4+5ε))-VFTS, there exists
a path P between pγ and qγ in Gγ of length at most (4 + 5ε).dγ,w(pγ , qγ). Let
P ′ be the path obtained by replacing each vertex xγ of P by x ∈ S such that xγ

is the projection of x on γ. Note that the path P ′ is between nodes p and q in
G \S′. The length dG\S′(p, q) of path P ′ is less than or equal to the length of the
path P in Gγ . In the following, we show that dG\S′(p, q) ≤ (12 + 15ε)dT ,w(p, q).

For every x, y ∈ S,

dT ,w(x, y) = w(x) + dT (x, y) + w(y)
≤ w(x) + dT (x, xγ) + dT (xγ , yγ) + dT (yγ , y) + w(y)
[by the triangle inequality]
= w(xγ) + dT (xγ , yγ) + w(yγ)
[since the weight associated with projection zγ of every point z is
w(z) + dT (z, zγ)]
= dγ,w(xγ , yγ). (11)

This implies,

dG\S′(p, q) =
∑

xγ ,yγ∈P

dT ,w(x, y)

≤
∑

xγ ,yγ∈P

dγ,w(xγ , yγ)

[from (11)]

≤ (4 + 5ε).dγ,w(pγ , qγ) (12)
[since Gγ is a (k, (4 + 5ε))-vertex fault tolerant geodesic spanner]

= (4 + 5ε).[w(pγ) + dT (pγ , qγ) + w(qγ)]

[since γ is a shortest path on T , shortest path between any two

points on γ is a geodesic shortest path on T ]

= (4 + 5ε).[w(p) + dT (p, pγ) + dT (pγ , qγ) + dT (qγ , q) + w(q)] (13)
[since the weight associated with projection zγ is w(z) + dT (z, zγ)].

By the definition of projection of any point on γ, we know that

dT (p, pγ) ≤ dT (p, r) and dT (q, qγ) ≤ dT (q, r). (14)
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Substituting (14) into (13),

dG\S′(p, q) ≤ (4 + 5ε).[w(p) + dT (p, r) + dT (pγ , qγ) + dT (r, q) + w(q)]

≤ (4 + 5ε).[w(p) + dT (p, r) + w(r) + dT (pγ , qγ) + w(r) + dT (r, q) + w(q)]

[since the weight of every point is non-negative]

= (4 + 5ε).[dT ,w(p, r) + dT (pγ , qγ) + dT ,w(r, q)]

= (4 + 5ε).[dT ,w(p, q) + dT (pγ , qγ)] (15)
[since π(p, q) intersects γ at r]

paths π(p, q) = π(p, r) + π(r, q)].

Further,

dT (pγ , qγ) ≤ dT (pγ , p) + dT (p, q) + dT (q, qγ)
[by the triangle inequality]

≤ dT (r, p) + dT (p, q) + dT (q, r)
[using (14)]

≤ w(r) + dT (r, p) + w(p) + w(p) + dT (p, q) + w(q) + w(q)
+ dT (q, r) + w(r)

[since the weight of every point is non-negative]
= dT ,w(p, r) + dT ,w(p, q) + dT ,w(r, q)
= dT ,w(p, q) + dT ,w(p, q)
[since π(p, q) intersects γ at r]
= 2dT ,w(p, q). (16)

Substituting (16) into (15) yields, dG\S′(p, q) ≤ 3(4 + 5ε).dT ,w(p, q).
We improve the stretch factor of G by applying the same refinement as the

one used in the algorithm in Sect. 2. Again, we denote the graph resulted after
applying that refinement with G.

Theorem 4. Let S be a set of n weighted points on a polyhedral terrain T with
non-negative weights associated to points via weight function w. For any fixed
constant ε > 0, there exists a (k, (4 + ε))-vertex fault-tolerant additive weighted
geodesic spanner with O(kn

ε2 lg n) edges.

Proof. The argument for the number of edges is same as in the proof of Theo-
rem 2. To prove that the graph G is a geodesic (k, (4+14ε))-VFTAWS for the points
in S, we use induction on |S|. W.l.o.g., we assume that p ∈ Sin and q ∈ Sout. Let r
be the point at which the geodesic shortest path π(p, q) between p and q intersects
r. Since Gγ is a (k, (4+5ε))-VFTS, there exists a path R between pγ and qγ in Gγ

of length at most (4+5ε).dγ,w(pγ , qγ). By replacing each vertex xγ of R by x ∈ S
such that xγ is the projection of x on γ, yields a path R′ between p and q in G \S′.
The length dG\S′(p, q) of path R′ is less than or equal to the length of the path R
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in Gγ . If r /∈ γ(p), point p′
γ (resp. q′

γ) is set as pγ (resp. qγ). Otherwise, p′
γ (resp.

q′
γ) is set as the point in S(p, γ) (resp. S(q, γ)) that is nearest to p (resp. q).

dγ,w(p′
γ , q′

γ) = w(p′
γ) + dγ(p′

γ , q′
γ) + w(q′

γ)

≤ w(p′
γ) + dγ(p′

γ , r) + dγ(r, q′
γ) + w(q′

γ)

[by the triangle inequality]
≤ w(p′

γ) + dγ(p′
γ , r) + w(r) + w(r) + dγ(r, q′

γ) + w(q′
γ)

[since the weight of each point is non-negative]
= w(p) + dT (p, p′

γ) + dγ(p′
γ , r) + w(r) + w(r) + dγ(r, q′

γ)

+ dT (q′
γ , q) + w(q) (17)

[due to the association of weight to the projections of points].

From the triangle inequality, we know that dT (p, p′
γ) + dγ(p′

γ , r) ≤ dT (p, r), and
dγ(r, q′

γ) + dT (q′
γ , q) ≤ dT (r, q). Hence (17) is written as

dT ,w(p′
γ , q′

γ) ≤ w(p) + dT (p, r) + w(r) + w(r) + dT (r, q) + w(q)

= dT ,w(p, r) + dT ,w(r, q)
= dT ,w(p, q) (18)
[since π(p, q) intersects γ at r].

Replacing pγ (resp. qγ) by pγ
′ (resp. qγ

′) in inequality (12),

dG\S′(p, q) ≤ (4 + 5ε).dγ,w(p′
γ , q′

γ)

≤ (4 + 5ε)dT ,w(p, q) [from (18).]

Thus G is a geodesic (k, (4 + ε))-VFTAWS for S. �	
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1 CNRS, LaBRI, Université de Bordeaux, Talence, France
marthe.bonamy@u-bordeaux.fr
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Abstract. Given a k-coloring of a graph G, a Kempe-change for two
colors a and b produces another k-coloring of G, as follows: first choose
a connected component in the subgraph of G induced by the two color
classes of a and b, and then swap the colors a and b in the component.
Two k-colorings are called Kempe-equivalent if one can be transformed
into the other by a sequence of Kempe-changes. We consider two prob-
lems, defined as follows: First, given two k-colorings of a graph G, Kempe
Reachability asks whether they are Kempe-equivalent; and second,
given a graph G and a positive integer k, Kempe Connectivity asks
whether any two k-colorings of G are Kempe-equivalent. We analyze
the complexity of these problems from the viewpoint of graph classes.
We prove that Kempe Reachability is PSPACE-complete for any fixed
k ≥ 3, and that it remains PSPACE-complete even when restricted to
three colors and planar graphs of maximum degree six. Furthermore, we
show that both problems admit polynomial-time algorithms on chordal
graphs, bipartite graphs, and cographs. For each of these graph classes,
we give a non-trivial upper bound on the number of Kempe-changes
needed in order to certify that two k-colorings are Kempe-equivalent.
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1 Introduction

The technique of “Kempe-changes” has been introduced in 1879 by A.B. Kempe
in his attempt to prove the four color theorem [8]. Even though his proof turned
out to be incomplete, the Kempe-change technique is known to be powerful and
useful in, for example, the proof of the five color theorem and a short proof of
Brooks’ Theorem [10]. In addition, applications of the Kempe-change technique
can be found in theoretical physics [13,14], in the study of Markov chains [19],
and in timetables [15].
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Fig. 1. A sequence of Kempe-changes for 3-colorings, where “(a, b)-Kempe” indicates
a Kempe-change for two colors a and b, and the vertices in the gray area are recolored
from the immediate left 3-coloring.

Recall that for a positive integer k, a k-coloring of a graph G assigns a
color in {1, 2, . . . , k} to each vertex of G such that no two adjacent vertices
receive the same color. For a k-coloring of G, a Kempe-change for two colors
a, b ∈ {1, 2, . . . , k} first chooses a connected component C in the subgraph of
G induced by two color classes of a and b, and then swaps the colors a and
b in C. (See Fig. 1.) Two k-colorings of G are called Kempe-equivalent if one
can be transformed into the other by a sequence of Kempe-changes. If any two
k-colorings of a graph are Kempe-equivalent, then we say that the graph is
k-Kempe-mixing. The question whether certain graphs are k-Kempe-mixing has
been subject to much scrutiny. However, its complexity remains open, as pointed
out by van den Heuvel [7]:

Very little is known about the complexity of determining if a graph is
k-Kempe-mixing. The same holds for the “path”-version of the problem
(determining if two given k-colourings can be transformed into one another
by a sequence of Kempe chain recolourings).

We will refer to the former problem as Kempe Connectivity: Given a graph
and a positive integer k, the problem asks whether the graph is k-Kempe-mixing.
For example, the graph drawn in Fig. 1 is 3-Kempe-mixing, and hence all the
3-colorings (not only four 3-colorings in the figure) are Kempe-equivalent. On
the other hand, we will refer to the “path”-version as Kempe Reachability:
Given a graph and two k-colorings of the graph, the problem asks whether they
are Kempe-equivalent. Note that if the answer to an instance of Kempe Con-
nectivity is yes for a graph G and an integer k, then any instance of Kempe
Reachability given by G and two k-colorings of G is a yes-instance.
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1.1 Related Work

Most known results give sufficient conditions on the number k of colors for which
graphs are k-Kempe-mixing (i.e., the answer to Kempe Connectivity is yes).
One of the most prominent motivations for studying the Kempe-equivalence
of k-colorings is the Wang-Swendsen-Kotecký (WSK) algorithm [1,13,14] from
statistical mechanics, which is a Markov-chain Monte Carlo algorithm that sim-
ulates the antiferromagnetic Potts model at zero-temperature. For the WSK
algorithm to be valid, the Markov-chains need to be ergodic, which translates
to the requirement that certain graphs are k-Kempe-mixing. Hence the impor-
tance to give such sufficient conditions. Although we do not explain the details,
sufficient conditions are known for the triangular lattice [1,13] and the Kagomé
lattice [1,14] from the context of the antiferromagnetic Potts model; and for pla-
nar graphs [11,12], K5-minor-free graphs [9], and d-degenerate graphs [9] from
the context of graph theory.

Several papers clarified the complexity status of Coloring Reconfigura-
tion [2–5], which asks if two given k-colorings of a graph can be transformed
into each other by recoloring a single vertex at a time, while keeping k-colorings
during the transformation. This problem can be seen as a restricted variant of
Kempe Reachability, where the restriction is that we can apply a Kempe-
change only to a connected component consisting of a single vertex; we call such
a Kempe-change an elementary recoloring. For example, the rightmost Kempe-
change in Fig. 1 recolors only a single vertex, so it is an elementary recoloring;
while the other two Kempe-changes are not. Indeed, under elementary recolor-
ings, there is no transformation between the leftmost and rightmost 3-colorings
in the figure, because we cannot recolor any vertex in the triangle (using only
three colors). Conversely, any transformation under elementary recolorings can
be seen as a transformation under (unrestricted) Kempe-changes.

1.2 Our Contribution

The main purpose of this paper is to determine the polynomial-time solvability of
Kempe Connectivity and Kempe Reachability from the viewpoint of graph
classes. Furthermore, we give upper bounds on the Kempe-distance between any
two Kempe-equivalent k-colorings of a graph, where the Kempe-distance between
two k-colorings is the minimum number of Kempe-changes needed to transform
one into the other.

We prove that Kempe Reachability is PSPACE-complete for any fixed
k ≥ 3. Note that any instance of Kempe Connectivity (and hence Kempe
Reachability) with k ≤ 2 is a yes-instance [12]. Therefore, under standard
complexity assumptions, our hardness result gives a sharp threshold for the
polynomial-time solvability with respect to the number k of colors. In addition,
this result implies that there are pairs of Kempe-equivalent k-colorings of super-
polynomial Kempe-distances assuming PSPACE �= NP. By a more sophisticated
reduction, we show that Kempe Reachability is PSPACE-complete even when
restricted to 3-colorings of planar graphs of maximum degree six.
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We provide positive results for three subclasses of perfect graphs. We prove
that any instance of Kempe Connectivity (and hence Kempe Reachabil-
ity) on chordal graphs, bipartite graphs, or cographs is a yes-instance. We also
remark that there are no-instances for perfect graphs in general. Our proofs are
constructive, and give polynomial upper bounds on Kempe-distances. Note that
bipartite graphs are known to be k-Kempe-mixing for any k ≥ 2 [12], but no
explicit bound was given.

Due to the page limitation, we omit proofs for the claims marked with (∗).

2 Preliminaries

Let G be a simple graph with vertex set V (G) and edge set E(G). We denote
by χ(G) the chromatic number of G, that is, the minimum number k such that
G admits a k-coloring.

Let k be a positive integer. For a k-coloring of a graph G and two colors
a, b ∈ {1, 2, . . . , k}, consider the subgraph Ga,b of G induced by two color classes
of a and b. Then, each connected component in Ga,b is called an (a, b)-Kempe-
chain. A Kempe-change for two colors a and b (sometimes referred as an (a, b)-
Kempe-change) swaps two colors a and b assigned to the vertices in an (a, b)-
Kempe-chain. For two k-colorings f and f ′ of G, a sequence 〈f0, f1, . . . , fq〉 of
k-colorings of G is called a transformation from f to f ′ if f0 = f , fq = f ′, and
fi can be obtained from fi−1 by a single Kempe-change for some pair of colors,
for every i ∈ {1, 2, . . . , q}. The length of this transformation is q, that is, the
number of Kempe-changes. The k-Kempe-diameter of a graph G is defined to be
the maximum length of a shortest transformation between any two k-colorings
of G. If G is not k-Kempe-mixing, then we define the k-Kempe-diameter of G
as +∞.

3 PSPACE-Completeness

In this section, we first prove that Kempe Reachability is PSPACE-complete
for k = 3 and planar graphs, and then prove the PSPACE-completeness for any
fixed k ≥ 3 and general graphs. Recall that any instance of Kempe Reacha-
bility with k ≤ 2 is a yes-instance [12]. Therefore, our theorems give a sharp
complexity analysis with respect to the number k of colors.

Observe that Kempe Reachability can be solved in (most conveniently,
nondeterministic [18]) polynomial space, and hence it is in PSPACE. Therefore,
we will prove the PSPACE-hardness of the problem.

3.1 PSPACE-Hardness for k = 3 and Planar Graphs

We will give the following theorem in this subsection.

Theorem 1. Kempe Reachability is PSPACE-complete even for three colors
and planar graphs of maximum degree 6.
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As a proof of the theorem, we will give a polynomial-time reduction from
Nondeterministic Constraint Logic [6,20]. Our proof consists of two
stages. In the first stage, we introduce the “list” variant of Kempe Reach-
ability, and prove its PSPACE-hardness for three colors and planar graphs of
bounded bandwidth and maximum degree 4. The list constraint restricts the col-
ors that can be assigned to each vertex, and makes the construction and analysis
of gadgets easier. In the second stage, we remove the list constraint. To do so,
the bandwidth becomes unbounded, and the maximum degree increases to six;
while we can keep the planarity and the number of colors.

Definition of Nondeterministic Constraint Logic
We now define Nondeterministic Constraint Logic (NCL for short) [6,20],
as follows. An NCL “machine” M is specified by an undirected graph together
with an assignment of weights from {1, 2} to each edge of the graph. A con-
figuration of M is an orientation (direction) of the edges such that the sum of
weights of incoming arcs at each vertex is at least 2. We sometimes call a con-
figuration of M a valid orientation (or a valid configuration) of M to emphasize
the constraint of incoming weights. Figure 2(a) illustrates a configuration of an
NCL machine, where each weight-2 edge is depicted by a thick (blue) line and
each weight-1 edge by a thin (orange) line. Given an NCL machine M and its
two configurations Cs and Ct, it is known to be PSPACE-complete to determine
whether there exists a sequence of configurations of M which transforms Cs into
Ct, where every intermediate configuration is obtained from the previous one by
changing the direction of a single edge [6,20].

In fact, NCL remains PSPACE-complete even for planar graphs of bounded
bandwidth consisting only of two types of vertices, called “and nodes” and “or
nodes” [20]. A vertex of degree three is called an AND node if its three incident
edges have weights 1, 1 and 2. (See Fig. 2(b).) An and node v behaves as a
logical and, in the following sense: the weight-2 edge can be directed outward
for v if and only if both two weight-1 edges are directed inward for v. Note that,
however, the weight-2 edge is not necessarily directed outward even when both
weight-1 edges are directed inward. A vertex of degree three is called an OR
node if its three incident edges have weights 2, 2 and 2. (See Fig. 2(c).) An or
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Fig. 2. (a) A configuration of an NCL machine, (b) an and node v, and (c) an or node
w. (Color figure online)
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node w behaves as a logical or: one of the three edges can be directed outward
for w if and only if at least one of the other two edges is directed inward for
w. For example, the NCL machine in Fig. 2(a) consists of only and/or nodes.
From now on, we assume that such a graph is given as an input. We sometimes
call an edge in an NCL machine an NCL edge.

The First Stage: List Variant
We now introduce the list variant of the problem. Assume that each vertex v of
a graph G has a set L(v) ⊆ {1, 2, . . . , k} of colors, called the list of v. Then, a k-
coloring f of G is called a list coloring of G if f(v) ∈ L(v) holds for every vertex
v ∈ V (G). In the list variant of Kempe Reachability, an (a, b)-Kempe-change
for two colors a and b can be applied to an (a, b)-Kempe-chain C if and only if
all the vertices in C have both colors a and b in their lists.

Theorem 2. The list variant of Kempe Reachability is PSPACE-complete,
even restricted to planar graphs of bounded bandwidth and maximum degree 4,
and only two kinds of lists chosen from three colors.

Construction of Our Reduction for Theorem 2
Suppose that we are given an instance of NCL, that is, an NCL machine M
and two configurations Cs and Ct of M . We build a corresponding graph G, by
replacing each of NCL edges and and/or nodes with its corresponding gadget;
if an NCL edge e is incident to a node v, then we glue the corresponding gadgets
for e and v together by identifying a pair of vertices, called connectors between v
and e (or sometimes called (v, e)-connectors), as illustrated in Fig. 3. Thus, each
edge gadget has two pairs of connectors, and each and/or gadget has three pairs
of connectors. Our gadgets are all edge-disjoint, and share only connectors.

Figure 4 shows our three types of gadgets which correspond to NCL edges
and and/or nodes. Notice that our three gadgets are planar and of maximum
degree at most 4. Since M is assumed to be planar, the constructed graph G
is also planar and of maximum degree 4. In addition, the bandwidth of G is
bounded by a fixed constant, because the input NCL machine M is of bounded
bandwidth and each gadget consists of a constant number of edges.

(a)                                                                  (b)

v w Gadget
for v

Gadget
for w

Gadget for vw

Fig. 3. (a) An NCL edge vw, and (b) its corresponding gadgets, where the connectors
are depicted by (red) double-lined circles. (Color figure online)
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)c()b()a(
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v2 w1

w3
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connectors for
the weight-2 edge

Fig. 4. (a) Edge gadget, (b) and gadget, and (c) or gadget, where each gray area
represents a pair of connectors. In the and gadget, the top pair of connectors will be
identified with that of the weight-2 edge.

In Fig. 4, all vertices depicted by (both red and black) double-lined circles
have the list {1, 2}, while the other vertices have the list {1, 2, 3}. Thus, there
are only two kinds of lists chosen from three colors 1, 2 and 3. We make two list
colorings fs and ft of G which correspond to two given configurations Cs and
Ct of the NCL machine M . In our reduction, we construct the correspondence
between configurations of M and list colorings of G, as follows. We regard that
the direction of an NCL edge e = vw is inward for v if the two (v, e)-connectors
receive different colors. On the other hand, we regard that the direction of e = vw
is outward for w if the two (w, e)-connectors receive the same color. Note that
there are (in general, exponentially) many list colorings of G which correspond
to the same configuration of M . In contrast, the correspondence implies that no
two distinct configurations of M correspond to the same list coloring of G. We
arbitrarily choose two list colorings fs and ft of G which correspond to Cs and
Ct, respectively.

This completes the construction of our corresponding instance. The construc-
tion can be performed in polynomial time.

Correctness of Our Reduction
We first roughly explain the key behavior of gadgets. In Fig. 4, eight vertices u1,
u2, v′, v1, v2, w1, w2 and w3 are called gate vertices, that play an important
role. By coloring some gate vertices with the color 3, we can ensure that a (1, 2)-
Kempe-change remains local, and does not propagate throughout the graph. The
gate vertex can be colored with either 1 or 2 (and hence the (1, 2)-Kempe-change
can propagate further) if and only if its closest two connectors are colored as
the inward direction for that gadget (i.e., two connectors receive the same color
for the edge gadget, and receive different colors for node gadgets). Formally, the
following lemma completes the proof of Theorem 2.

Lemma 1 (∗). There exists a desired sequence of configurations of M between
Cs and Ct if and only if two list colorings fs and ft of G are Kempe-equivalent.
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The Second Stage: Removing the List Constraint
We now describe how to remove the list constraint. The key point for the removal
is to notice that it is not important to forbid the color 3 to be assigned to
the (double-lined circle) vertices having the list of size 2, but the same color
c ∈ {1, 2, 3} is forbidden at all such vertices in the whole graph G. Then, at
the gate vertices, the color c will control the propagations of Kempe-changes
swapping the other two colors. To accomplish this property, the easiest way is
to add a new vertex to G, and join it with all the (double-lined circle) vertices
having the list of size 2. However, this does not preserve the planarity, and
produces a high-degree vertex. Therefore, a more elaborate way is required.

(a) (b)

v1

u1 u2

u

v2

Fig. 5. (a) A vertex u in V2, and (b) its replacement without list.

)c()b()a(

w1 w2

Fig. 6. (a) A diamond, (b) a face of G whose boundary has four vertices from V2, and
(c) its replacement without the list constraint by a chain of diamonds.

Let V2 be the set of vertices in G that have the list of size 2. Notice that,
in our reduction, every vertex in V2 is of degree 2. We first replace each vertex
in V2 by the gadget as in Fig. 5. Observe that in any 3-coloring, the vertices u1

and u2 in Fig. 5(b) always receive the same color. Thus, u1 is recolored by a
Kempe-change if and only if u2 is. Similarly, both gray vertices v1 and v2 always
receive the same color in any 3-coloring. Therefore, if we can force that all such
gray vertices in the whole graph receive the same color c at any time during a
transformation, then it corresponds to forbidding the color c to be assigned to
any vertex in V2.
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For this purpose, we will use a diamond, as illustrated in Fig. 6(a). Note that
two vertices w1 and w2 always receive the same color in any 3-coloring. Consider
a plane embedding of G. For each face F of G, we link the gray vertices on the
boundary of F together using a chain of diamonds, as shown in Fig. 6(b) and
(c) for example. This can be done while preserving the planarity of the graph.
Additionally, the maximum degree is 6, which occurs when three diamond meet
at a single vertex. This completes the proof of Theorem 1. ��

3.2 PSPACE-Hardness for Any Fixed k ≥ 3

In this subsection, we prove the PSPACE-hardness of Kempe Reachability
for any fixed integer k ≥ 3, although we lose the planarity. We note that losing
the planarity is reasonable: It is known that any instance of the problem with
k colors is a yes-instance if a given planar graph admits a (k − 1)-coloring [12].
Therefore, any instance with k ≥ 5 is a yes-instance for planar graphs. For
general graphs, we give the following theorem.

Theorem 3 (∗). Kempe Reachability is PSPACE-complete for k colors,
where k ≥ 3 is an arbitrary fixed integer.

4 Classes of Perfect Graphs

In this section, we deal with three subclasses of perfect graphs, that is, chordal
graphs, bipartite graphs and cographs. We will show that any graph G belonging
to these graph classes is k-Kempe-mixing if k ≥ χ(G), and hence the answer to
Kempe Connectivity (and Kempe Reachability) is always yes. Further-
more, we will prove that the k-Kempe-diameter of G has a polynomial length.

Let us remark that there is an infinite family of perfect graphs such that
any graph G from this family is χ(G)-Kempe-mixing, but there is some integer
k > χ(G) such that G is not k-Kempe-mixing; such a graph G does not belong
to any graph class of chordal graphs, bipartite graphs or cographs. Recall that a
graph G is perfect if neither G nor its complement contain an induced odd cycle
of length at least five. We have the following proposition.

Proposition 1 (∗). There is a perfect graph G that is χ(G)-Kempe-mixing but
not (χ(G) + 1)-Kempe-mixing.

4.1 Chordal Graphs

A graph is chordal if it contains no induced cycle of length at least four. We
give the following theorem, which appeared in the PhD thesis of one of the
authors [16].

Theorem 4. Let G be a chordal graph with n vertices, and let k ≥ χ(G) be any
integer. Then, G is k-Kempe-mixing, and its k-Kempe-diameter is at most n.
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We give a constructive proof of Theorem 4. Our main tool is the well-known
characterization of chordal graphs in terms of perfect elimination orderings [17].
Let G be a chordal graph with n vertices. A linear ordering v1 ≺ v2 ≺ . . . ≺ vn
of the vertices of G is called a perfect elimination ordering (PEO), if for every i,
1 ≤ i ≤ n, the neighbors of vi in G that appear after vi in the ordering induce a
clique. A graph is chordal if and only if it admits a perfect elimination ordering.
Furthermore, such an ordering can be computed in linear time [17].

It suffices to prove the theorem for a connected chordal graph G. Let f and
g be any two k-colorings of G. We give an actual transformation from f to g of
length at most n. Let v1 ≺ v2 ≺ . . . ≺ vn be a PEO of the vertices of G. For
each i from n downto 1, if the current color of vi is different from its target color
g(vi), we exchange the current color with g(vi) via a single Kempe-change. The
procedure executes at most n Kempe-changes, and the following claim implies
that this sequence of Kempe-changes gives a transformation from f to g.

Lemma 2 (∗). The Kempe-change that assigns to vi its target color g(vi) does
not alter the color of any vertex vj, j > i.

4.2 Bipartite Graphs

It is already known that any bipartite graph G is k-Kempe-mixing for every
k ≥ χ(G) [12]. However, its k-Kempe-diameter was not analyzed. We thus give
the following theorem, whose proof is different from [12]. We note that our
constructive proof blow produces an actual transformation in polynomial time.

Theorem 5. Let G be a bipartite graph with n vertices, and let k ≥ χ(G) be
any integer. Then, G is k-Kempe-mixing and its k-Kempe-diameter is at most
3n/2.

Proof. It suffices to prove the theorem for a connected bipartite graph G. Let f
and g be any two k-colorings of G. To prove the theorem, we will construct a
transformation from f to g of length at most 3n/2.

Let A,B ⊆ V (G) be the bipartition of G; we assume without loss of generality
that |A| ≤ |B|, and hence |A| ≤ n/2. Choose an arbitrary color c. We first
transform f into f ′ via at most |A| Kempe-changes, where f ′ is a k-coloring of
G such that all vertices in A have the same color c. If all vertices v ∈ A satisfy
f(v) = c, then f is already a desired k-coloring. We thus consider the case where
there is at least one vertex in A which has a color other than c. In this case,
we perform a single Kempe-change that changes the color of v to c. We note
that this Kempe-change does not recolor any vertex in A which already has the
color c, because the distance from v to such a vertex is even. We apply such a
Kempe-change to each vertex v ∈ A having a color other than c, and hence we
can obtain a desired k-coloring f ′ of G via at most |A| Kempe-changes.

By the similar way, we can transform g into g′ via at most |A| Kempe-
changes, where g′ is a k-coloring of G such that all vertices in A have the same
color c. Note that we here chose the same color c for g′ as for f ′. Since the
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transformation is reversible, this gives a transformation from g′ to g via at most
|A| Kempe-changes.

Finally, we construct a transformation from f ′ to g′ of length at most |B|.
Assume that f ′ �= g′ holds, otherwise we are done. Then, there is at least one
vertex in B which has different colors in f ′ and g′. We perform a single Kempe-
change that changes the color of v from f ′(v) to g′(v). Notice that this Kempe-
change recolors only the single vertex v, because f ′(v) �= c, g′(v) �= c, and all
neighbors (in A) of v are colored with c. We apply such a Kempe-change to
each vertex v ∈ B having a color other than g′(v), and hence we can obtain the
k-coloring g′ via at most |B| Kempe-changes.

The total length of the transformation above is at most 2|A| + |B| ≤ 3n/2,
since |A| + |B| = n and |A| ≤ n/2. ��

We conclude this subsection by showing that forests (which are bipar-
tite and chordal) admit a better upper bound on the Kempe-diameter. For
two k-colorings f and g of a graph G, we denote by Δ(f, g) the number
of vertices whose color differs with respect to f and g, that is, Δ(f, g) :=
|{v ∈ V (G) : f(v) �= g(v)}|. Since Δ(f, g) ≤ |V (G)|, the following upper bound
is always at least as good as the ones from Theorems 4 and 5.

Theorem 6 (∗). Let G be a forest, and let k ≥ χ(G) be any integer. For any
two k-colorings f and g of G, there is a transformation from f to g of length at
most Δ(f, g).

4.3 Cographs

The class of cographs is also known as P4-free graphs. In this subsection, we give
the following theorem.

Theorem 7 (∗). Let G be a cograph with n vertices, and let k ≥ χ(G) be
any integer. Then, G is k-Kempe-mixing, and its k-Kempe-diameter is at most
2n log n.

Our proof of the theorem can be sketched as follows. Let G be any cograph
on n vertices. Using the recursive characterization of cographs, we prove the
following property by induction on n: For any k-coloring f and any χ(G)-coloring
g of G, there is a transformation from f to g of length at most max(1, n log n)
with only using colors appeared in f or g. Note that Theorem 7 follows from
this stronger property, simply by choosing some intermediate χ(G)-coloring.

5 Conclusion

We investigated the complexity of Kempe Reachability and Kempe Con-
nectivity on several classes of graphs. For the former problem, we gave a
sharp threshold on the polynomial-time solvability with respect to the number
k of colors, and also proved the PSPACE-completeness for 3-colorings on pla-
nar graphs of maximum degree six. For the latter problem, we proved that any
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instance on chordal graphs, bipartite graphs, or cographs is a yes-instance; thus
any instance of Kempe Reachability on these graphs is a yes-instance, too.
We also gave polynomial upper bounds on k-Kempe-diameters on these graphs.

Combining Theorem 1 with the results from [12] leaves open the complexity
status of Kempe Reachability for 4-colorings of planar graphs that admit no
3-coloring. Another interesting question is whether Kempe Reachability on
perfect graphs admits a polynomial-time algorithm.
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Abstract. A graph G = (V, E) is called a rectangle overlap graph if
there is a bijection between V and a set R of axis-parallel rectangles
such that two vertices in V are adjacent if and only if the corresponding
rectangles in R overlap i.e. their boundaries intersect.

In this article, assuming the Unique Games Conjecture to be true we
show that it is not possible to approximate theMinimumDominatingSet
(MDS) problem on rectangle overlap graphs with a factor (2 − ε) for any
ε > 0. Previously only APX hardness was known for this problem due to
Erlebach and Van Leeuwen (LATIN 2008) and Damian and Pemmaraju
(Inf. Process. Lett. 2006).We give anO(n5)-time 768-approximation algo-
rithm for theMDS problem on stabbed rectangle overlap graphs i.e. overlap
graphs of rectangles intersecting a common straight line. Here n denotes
the number of vertices of the input graph.

Our second result is the first constant factor approximation for MDS
problem on stabbed rectangle overlap graphs which is a strict generalisa-
tion of a graphclass considered by Bandyapadhyay et al. (MFCS 2018).

1 Introduction and Results

An overlap representation R of a graph G = (V,E) is a family of sets {Ru}u∈V

such that uv ∈ E if and only if Ru ∩ Rv �= ∅, Ru � Rv and Rv � Ru. When R is a
collection of geometric objects, it is said to be a geometric overlap representation
of G. Particular cases of relevance to this paper are when R is a collection of real
intervals, in which case it is called an interval overlap representation and when
R is a collection of axis-parallel rectangles, in which case, it is called a rectangle
overlap representation. A graph G is an interval overlap graph (respectively a
rectangle overlap graph) if G has an interval overlap representation (respectively
a rectangle overlap representation). Similarly, a geometric intersection represen-
tation R of a graph G = (V,E) is a family of objects {Ru}u∈V such that uv ∈ E
if and only if Ru ∩ Rv �= ∅. The notions of rectangle intersection representation
and rectangle intersection graphs are defined accordingly.

A dominating set of a graph G = (V,E) is a subset D of vertices V such
that each vertex in V \ D is adjacent to some vertex in D. The Minimum
Dominating Set (MDS) problem is to find a minimum cardinality dominating
set of a graph. It is not possible to approximate the MDS problem on general
graphs with n vertices within (1−α) lnn unless NP ⊆ DTIME(nO(log log n)) [6].

c© Springer Nature Switzerland AG 2019
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Fig. 1. (a) A set of diagonally anchored rectangles (b) A set of stabbed rectangles.

Erlebach and Van Leeuwen [10] proved that the MDS problem is APX-hard
on rectangle intersection graphs. Their reduction procedure can be modified to
show that the MDS problem remains APX-hard on rectangle overlap graphs.
The same result also follows from Damian and Pemmaraju [8]. In this paper, we
prove the following theorem.

Theorem 1. Assuming the Unique Games Conjecture to be true, it is not pos-
sible to have a polynmial time (2 − ε)-approximation algorithm for the MDS
problem on rectangle overlap graphs, even if a rectangle overlap representation
is given as input.

It is a challenging open question to determine if there is a constant factor
approximation algorithm for the MDS problem on rectangle intersection graphs
and rectangle overlap graphs. Erlebach et al. [10] gave an O(c3)-approximation
for the MDS problem on intersection graphs of rectangles with aspect-ratio at
most c. The MDS problem admits PTAS on the intersection graphs of non-
piercing1 rectangles [11]. Damian-Iordache and Pemmaraju [9] gave a (2 + ε)-
approximation for the MDS problem on interval overlap graphs. Bousquet et
al. [3] studied the parametrized complexity of the MDS problems on interval
overlap graphs.

A set R of rectangles is a set of diagonally anchored rectangles if there is a
straight line l with slope −1 such that intersection of any R ∈ R with l is exactly
one corner of R. See Fig. 1(a) for an example. Surprisingly, the MDS problem
remains NP-Hard on intersection graphs of diagonally anchored rectangles [16].
Bandyapadhyay et al. [1] gave a (2 + ε)-approximation algorithm for the same.

In this paper, we consider the following generalisation of interval overlap
graphs and intersection graphs of diagonally anchored rectangles. A set R of
rectangles is stabbed if there is a straight line that intersects all rectangles in R.
See Fig. 1(b) for an example. A graph G is a stabbed rectangle overlap graph if
G has a stabbed rectangle overlap representation. We prove the following.

Theorem 2. Given a stabbed rectangle overlap representation of a graph G =
(V,E), there is an O(|V |5)-time 768-approximation algorithm for the MDS prob-
lem on G.

1 Two rectangles R and R′ are non-piercing if both R \ R′ and R′ \ R are connected.
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Fig. 2. A graph which is a stabbed rectangle overlap graphs but neither an interval
overlap graph nor an intersection graph of diagonally anchored rectangles.

We note that interval overlap graphs and intersection graphs of diagonally
anchored rectangles are both strict subclasses of stabbed rectangle overlap
graphs. Figure 2(a) is an example of a graph which is a stabbed rectangle overlap
graph (representation shown in Fig. 2(b)) but neither an interval overlap graph
nor an intersection graph of diagonally anchored rectangles [7]. We also note that
approximation algorithms for optimization problems like Maximum Indepen-
dent Set and Minimum Hitting Set on “stabbed” geometric objects have
been studied [4,5,7,13,15].

In Sect. 2, we prove Theorem1 and in Sect. 3, we prove some lemmas required
to prove Theorem2. Then in Sect. 4, we prove Theorem2.

Throughout this paper, ILP stands for Integer Linear Program and LP stands
for Linear Program. Moreover, OPT (Q) and OPT (Ql) denote the cost of the
optimum solution of an ILP Q and LP Ql respectively.

2 Proof of Theorem 1

A vertex cover of a graph G = (V,E) is a subset C of V such that each edge in
E has an endvertex which lies in C. The Minimum Vertex Cover problem is
to find a minimum cardinality vertex cover of a graph. Assuming Unique Games
Conjecture to be true, the Minimum Vertex Cover has no polynomial time
(2−ε)-approximation algorithm for any ε > 0 [14]. We shall reduce theMinimum
Vertex Cover problem to the MDS problem on rectangle overlap graphs.

Given a graph G = (V,E), construct another graph G′ = (V ′, E′) as fol-
lows. Define V ′ = V ∪ E. Define E′ = {uv : u, v ∈ V } ∪ {ue : u ∈ V, e ∈
E and u is an endvertex of e in G}. Observe that, G has a vertex cover of
size k if and only if G′ has a dominating set of size k.

Therefore, we will be done by showing that G′ is a rectangle overlap graph.
Let V = {v1, v2, . . . , vn} and for each vi ∈ V define Rvi

= [i, n+1]× [−i, 0] (See
Fig. 3(c) for illustration). Observe that, for i < j, the bottom boundary of Rvi

intersects the left boundary of Rvj
at a point.

Notice that, each vertex u ∈ V ′ \ V , has degree two and is adjacent to
exactly two vertices of V . For each vertex u ∈ V ′ \ V , introduce a rectangle
Ru which overlaps only with Rvi

and Rvj
where {vi, vj} is the set of vertices

adjacent to u with i < j. This is possible as Ru can be kept around the unique
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Fig. 3. Reduction procedure for Theorem1. (a) Input graph G, (b) The graph G′ and
(c) rectangle overlap representation of G′.

intersection point of the bottom boundary of Rvi
and the left boundary of Rvj

(see Fig. 3(c) for illustration). Formally, for each u ∈ V ′ \ V , define Ru = [p −
ε, p + ε] × [q − ε, q + ε] where ε = 1

|V | and (p, q) is the intersection point of
the bottom boundary of Rvi

and the left boundary of Rvj
. Observe that the

set of rectangles R′ = {Rvi
: vi ∈ V } ∪ {Ru : u ∈ V ′ \ V } is a rectangle overlap

representation of G′. This completes the proof.

3 Necessary Lemmas to Prove Theorem 2

To prove Theorem2, we need to study two related problems described below and
prove two lemmas.

The Local Vertical Segment Covering (LVSC) Problem: In this problem,
the inputs are a set H of disjoint horizontal segments intersecting a common
straight line and a set V of disjoint vertical segments. The objective is to select
a minimum number of horizontal segments that intersect all vertical segments.
Throughout this article, we let LVSC(V,H) denote an LVSC instance.

The Local Horizontal Segment Covering (LHSC) Problem: In this prob-
lem, the inputs are a set H of disjoint horizontal segments all intersecting a com-
mon straight line and a set V of disjoint vertical segments. The objective is to
select a minimum number of vertical segments that intersect all horizontal seg-
ments. Throughout this article, we let LHSC(V,H) denote an LHSC instance.

Lemma 1. Let C be an ILP formulation of an LVSC(V,H) instance. There is
an O(n5) time algorithm to compute a set D ⊆ H which gives a feasible solution
of C and |D| ≤ 8 · OPT (Cl) where n = |V ∪ H| and Cl is the relaxed LP
formulation of C.

Lemma 2. Let C be an ILP formulation of an LHSC(V,H) instance. There is
an O(n5) time algorithm to compute a set D ⊆ V which gives a feasible solution
of C and |D| ≤ 8 · OPT (Cl) where n = |V ∪ H| and Cl is the relaxed LP
formulation of C.
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To prove Theorem2 (the main result of this paper), the above lemmas are
enough. However, to prove Lemma1 we need to study the stabbing segment with
rays (SSR) problem introduced by Katz et al. [12].

The Stabbing Segment with Rays (SSR) Problem. In this problem, the
inputs are a set R of disjoint leftward-directed rays and a set V of disjoint vertical
segments. The objective is to select a minimum number of leftward-directed rays
that intersect all vertical segments. Throughout this article, we let SSR(R, V )
denote an SSR instance. We shall prove the following lemma in Sect. 3.1.

Lemma 3. Let C be an ILP formulation of an SSR(R, V ) instance. There is
an O((n + m) log(n + m)) time algorithm to compute a set D ⊆ R which gives
a feasible solution of C and |D| ≤ 2 · OPT (Cl) where n + m = |V ∪ H| and Cl is
the relaxed LP formulation of C.

We shall prove Lemma1 in Sect. 3.2 using Lemma3. To prove Lemma2, we
need to study the stabbing rays with segments (SRS) problem also introduced
by Katz et al. [12].
The Stabbing Rays with Segments (SRS) problem: In this problem, the
inputs are a set R of disjoint leftward-directed rays and a set V of disjoint vertical
segments. The objective is to select a minimum number of vertical segments that
intersect all leftward-directed rays. Throughout this article, we let SRS(R, V )
denote an SRS instance. We shall prove the following lemma.

Lemma 4. Let C be an ILP formulation of an SRS(R, V ) instance. There is an
O(n log n) time algorithm to compute a set D ⊆ V which gives a feasible solution of
C and |D| ≤ 2 · OPT (Cl) where n = |V | and Cl is the relaxed LP formulation of C.

Due to space constraints, the proofs of Lemmas 4 and 2 are omitted.

3.1 Proof of Lemma 3

In this section, we represent a leftward-directed ray by simply a ray and a vertical
segment by a segment in short. Let R be a set of disjoint rays and V be a set of
disjoint vertical segments. We assume each segment intersects at least one ray
in R and no two segments in V has the same x-coordinate.

To prove Lemma3, first we present an iterative algorithm consisting of three
main steps. The first step is to include all rays r ∈ R in heuristic solution S
whenever some segments in V intersect precisely a single ray r in that iterative
step. In the next step, delete all segments intersecting any ray in S from V .
In the final step, find a ray in R \ S whose x-coordinate of the right endpoint
is the smallest among all rays in R \ S and delete it from R (when there are
multiple such rays, choose anyone arbitrarily). We repeat the above three steps
until V is empty. The above algorithm takes O((|R| + |V |) log(|R| + |V |)) time
(using segment trees [2]) and outputs a set S of rays such that all segments in
V intersect at least one ray in S.

We describe the above algorithm formally in Algorithm1. Below we introduce
some notations used to describe the algorithm. We assign token Tr = {r} for
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each r ∈ R initially. For i ≥ 1, let Ri, Vi, Si be the set of rays, the set of segments
and the heuristic solution constructed by this Algorithm1, respectively at the
end of ith iteration. A ray r ∈ Ri is critical if there is a segment v ∈ Vi such
that r is the only ray in Ri that intersects v. We describe a discharging technique
below.

Let D be a subset of R. A ray r ∈ D lies between two rays r′, r′′ ∈ D if the
y-coordinate of r lies between those of r′, r′′. A ray r ∈ D lies just above (resp.
just below) a ray r′ ∈ D if y-coordinate of r is greater (resp. smaller) than that
of r′ and no other ray lies between r, r′ in D. Two rays r, r′ ∈ D are neighbours
of each other if r lies just above or below r′.

Discharging Method: Let r ∈ Ri−1\Si be a ray whose x-coordinate of the right
endpoint is the smallest. The phrase “r discharges the token to its neighbours”
in the ith iteration means the following operations in the given order.

(i) Let r′ lie just above r and r′′ lie just below r in Ri−1 \ Si. For all x ∈ Tr

(x and r not necessarily distinct) do the following. If there is a segment in
Vi that intersects x, r′ and r then assign Tr′ = Tr′ ∪ {x} and if there is a
segment in Vi that intersects x, r′′ and r then Tr′′ = Tr′′ ∪ {x}.

(ii) Make Tr = ∅ after performing the above step.

Algorithm 1. SSR-Algorithm
Input: A set R of leftward-directed rays and a set V of vertical segments.
Output: A subset of R that intersects all segments in V .

1: Tr = {r} for each r ∈ R and i ← 1, V0 ← V, R0 ← R, S ← ∅, S0 ← ∅ �
Initialisation.

2: while Vi−1 �= ∅ do
3: S ← S ∪ {r : r ∈ Ri−1, r is critical after (i − 1)th iteration} and Si ← S.

� Critical ray collection.
4: Vi ← the set obtained by deleting all segments from Vi−1 that intersect a ray

in Si.
5: Find a r ∈ Ri−1 \ Si whose x-coordinate of the right endpoint is the smallest.
6: r discharges the token to its neighbours.
7: Ri ← The set obtained by deleting {r} ∪ Si from Ri−1.

� Discharging token step.
8: i ← i + 1;
9: end while
10: return S

We have the following lemma whose proof will appear in the extended version
of the paper.

Lemma 5. Let S is the set returned by SSR-algorithm with rays R and seg-
ments V as input. Then (a) for a ray r, there are at most two tokens containing
r, and (b) |S| ≤ 2|OPT |, where OPT is an optimum solution of SSR(R, V ).

The proof of Lemma3 shall follow directly from the proof of Lemma5. The
proof of Lemma1 in the next section shall use Lemma3.
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3.2 Proof of Lemma 1

Let l be the straight line that intersects all horizontal segment in H. Notice that
if l is a horizontal line then any vertical line segment intersects at most one
horizontal line segment in H. This is because horizontal lines in H are disjoint.
But, in this case, there is nothing to prove.

Therefore, without loss of generality, we assume that l passes through the
origin. at an angle in [π2 , π). For a vertical segment v ∈ V , let N(v) denote the
set of horizontal segments intersecting v, A(v) be the set of horizontal segments
that intersect v above l and B(v) = N(v) \ A(v). Observe that for a vertical
segment v and a horizontal segment h ∈ B(v), h intersects v on or below l.

Based on these consider the following ILP formulation, Q, of the LVSC(V,H)
instance. For each horizontal segment h ∈ H let xh ∈ {0, 1} denote the variable
corresponding to h. Objective is to minimize

∑

h∈H

xh with constraints

∑

h∈A(v)

xh +
∑

h∈B(v)

xh ≥ 1, ∀v ∈ V

Let Ql be the relaxed LP formulation of Q and Ql = {xh : h ∈ H} be an
optimal solution of Ql. Since Ql consists of n variables where n = |H|, solving
Ql takes O(n5) time [17]. Now we define the following sets.

V1 =

⎧
⎨

⎩
v ∈ V :

∑

h∈A(v)

xh ≥ 1
2

⎫
⎬

⎭
, V2 =

⎧
⎨

⎩
v ∈ V :

∑

h∈B(v)

xh ≥ 1
2

⎫
⎬

⎭

H1 =
⋃

v∈V1

A(v),H2 =
⋃

v∈V2

B(v)

Based on these, we consider the following two integer programs Q′ and Q′′.

minimize
∑

h∈H1

x′
h

subject to
∑

h∈A(v)

x′
h ≥ 1,∀v ∈ V1

x′
h∈{0,1},

Q′ h ∈ H1

minimize
∑

h∈H2

x′′
h

subject to
∑

h∈B(v)

x′′
h ≥ 1,∀v ∈ V2

x′′
h∈{0,1},

Q′′ h ∈ H2

Let Q′
l and Q′′

l be the relaxed LP formulation of Q′ and Q′′ respectively.
Clearly, the solutions of Q′ and Q′′ gives a feasible solution for Q. Hence
OPT (Q) ≤ OPT (Q′) + OPT (Q′′). For each xh ∈ Ql, define yh = min{1, 2xh}
and define Yl = {yh}xh∈Ql

. Notice that Yl gives a feasible solution to Q′
l and

Q′′
l . Therefore, OPT (Q′

l) + OPT (Q′′
l ) ≤ 2 · OPT (Ql). We have the following

claim.

Claim. OPT (Q′) ≤ 2 · OPT (Q′
l) and OPT (Q′′) ≤ 2 · OPT (Q′′

l ).
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To prove the first part, note that for each segment v ∈ V1, A(v) is non-empty
and for each h ∈ A(v), h intersects v above the line l (the straight line which
intersects all segments in H). Since all segments in H1 intersect the straight line
l we can consider the horizontal segments in H1 as leftward-directed rays and all
vertical segments in V1 lie above l. Hence, solving Q′ is equivalent to solving an
ILP formulation, say E , of the problem of finding a minimum cardinality subset
of leftward-directed rays in H1 that intersects all vertical segments in the set
V1. Hence solving E is equivalent to solving an SSR instance with H1 and V1 as
input. By Lemma3, we have that

OPT (Q′) = OPT (E) ≤ 2 · OPT (El) ≤ 2 · OPT (Q′
l)

where El is the relaxed LP formulation of E . Hence we have proof of the first
part. For the second part, using similar arguments as above, we can show that
solving Q′′ is equivalent to solving an SSR instance and therefore by Lemma3,
we have that OPT (Q′′) ≤ 2 · OPT (Q′′

l ). Hence the proof of the claim follows.
By Lemma 3, we can solve both Q′ and Q′′ in polynomial time. Let D′ and

D′′ be solutions of Q′ and Q′′, respectively. Clearly, D′ ∪D′′ is a feasible solution
to the LVSC(V,H) instance. Hence,

|D′ ∪ D′′| ≤ 4(OPT (Q′
l) + OPT (Q′′

l )) ≤ 8 · OPT (Ql)

Hence we have the proof of Lemma1. Proof of Lemma2 is similar as above and
therefore will only appear in the extended version of the paper. We prove our
main result in the next section using Lemmas 1 and 2.

4 Proof of Theorem 2

Let R be a stabbed rectangle overlap representation of a graph G = (V,E) and
l be the line that intersects all rectangles in R. We shall also refer to l as the
cutting line.

For a vertex u ∈ V , let Ru denote the rectangle corresponding to u in R.
Without loss of generality, we assume that the coordinates of all corner points
of all the rectangles in R are distinct and that the cutting line passes through
the origin at an angle in [π2 , π) with the positive x-axis.

Each rectangle Ru consists of four boundary segments i.e. left segment, top
segment, right segment and bottom segment. Without loss of generality, we
assume that the cutting line intersects eactly two boundary segments of each
rectangle in R. For a vertex u ∈ V , let N(u) denote the set of rectangles that
overlaps with Ru in R. Let N ′(u) be the set of rectangles in N(u) having a
boundary segment that intersects both the cutting line and some boundary seg-
ment of Ru that does not cut the boundary line. See Fig. 4(a) for an example.
Now define N ′′(u) = N(u) \ N ′(u). We have the following observation.

Observation A. For a rectangle Ru ∈ R and a rectangle X ∈ N ′′(u), there
is a boundary segment of Ru that intersects the cutting line and some boundary
segment of X.
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Fig. 4. (a) In this example Rv1 ∈ N ′(u) and Rv2 ∈ N ′′(u). (b) Nomenclature for the
four boundary segments of a rectangle.

Proof. Observe that X contains two boundary segments, say s1 and s2, such
that none of s1, s2 intersects the cutting line. Since any two rectangles intersect
exactly twice and since X ∈ N ′′(u), Ru intersects both s1 and s2. If s1 and s2
belong to opposite sides of the cutting line, then both s1 and s2 are horizontal or
both of them are vertical. In either case, Ru must have a boundary segment t that
intersect both s1, s2 and the cutting line. Consider the case when both s1 and
s2 lie below the cutting line. Then there exists w ∈ {s1, s2} which is a vertical
segment and z ∈ {s1, s2} \ {w} which is a horizontal segment. Hence, Ru must
have a horizontal boundary segment w′ that intersects w and a vertical boundary
segment z′ that intersects z. If neither w′ nor z′ intersects the cutting line, then
observe that the top-right corner of Ru must lie below the cutting line, implying
that Ru does not intersect the cutting line. This is a contradiction. Similarly,
the case when both s1, s2 lie above the cutting line also leads to a contradiction.

��

We shall denote the left segment of a rectangle Ru ∈ R also as
the segment-0 of Ru. Similarly segment-1, segment-2 and segment-3 of
Ru shall refer to the top segment, the right segment and the bottom
segment of Ru, respectively. See Fig. 4(b) for an illustration. Let S =
{(0, 1), (0, 3), (1, 0), (1, 2), (2, 1), (2, 3), (3, 0), (3, 2)}. Since no two horizontal seg-
ments or two vertical segments intersect, we have the following observation.

Observation B. If two rectangles Ru, Rv ∈ R overlap there must be a pair
(i, j) ∈ S such that segment-i of Ru intersects segment-j of Rv.

Based on the above observation, we partition the sets N ′(u) and N ′′(u)
in the following way. For each rectangle Ru ∈ R and (i, j) ∈ S, a rectangle
Rv ∈ N ′(u) belongs to the set X ′

u(i, j) if and only if (i, j) is the smallest pair in
the lexicographic order such that (a) segment-i of Ru intersects the segment-j
of Rv and (b) segment-j of Rv intersects the cutting line.

Similarly, for each rectangle Ru ∈ R and (i, j) ∈ S, a rectangle Rv ∈ N ′′(u)
belongs to the set X ′′

u(i, j) if and only if (i, j) is the smallest pair in the lex-
icographic order such that (a) segment-i of Ru intersects the segment-j of Rv

and (b) segment-i of Ru intersects the cutting line. The next observation follows
from the above definitions.
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Observation C. For each Ru ∈ R, {X ′
u(i, j)}(i,j)∈S is a partition of N ′(u) and

{X ′′
u (i, j)}(i,j)∈S is a partition of N ′′(u).

For each Ru ∈ R, define the sets S ′
u = {(i, j) ∈ S : X ′

u(i, j) �= ∅} and
S ′′

u(i, j) = {(i, j) ∈ S : X ′′
u(i, j) �= ∅}. Recall that according to our assumption,

each rectangle intersects the cutting line exactly two times. Since the boundary
segment of a rectangle intersects exactly two boundary segments of another
rectangle, we have the following observation.

Observation D. For each Ru ∈ R, |S ′
u| ≤ 4 and |S ′′

u | ≤ 4.

Let Q denote the following ILP formulation of the MDS problem on G and
Ql be the corresponding relaxed LP formulation.

minimize
∑

Rv∈R
xv

subject to
∑

(i,j)∈S′
u

∑

Rv∈X′
u(i,j)

xv +
∑

(i,j)∈S′′
u

∑

Rv∈X′′
u (i,j)

xv ≥ 1, ∀Ru ∈ R

xv ∈ {0, 1}, ∀Rv ∈ R
Q

Let Ql = {xv : Rv ∈ R} be an optimal solution of Ql. By ObservationD,
for each rectangle Ru ∈ R, we have |S ′

u| + |S ′′
u | ≤ 8. Hence, there is a pair

(i, j) ∈ S ′
u ∪ S ′′

u such that either
∑

Rv∈X′
u(i,j)

xv ≥ 1
8 or

∑

Rv∈X′′
u (i,j)

xv ≥ 1
8 . For each

pair (i, j) ∈ S, define

A′(i, j) =

⎧
⎨

⎩
Ru ∈ R : (i, j) ∈ S ′

u,
∑

Rv∈X′
u(i,j)

xv ≥ 1
8

⎫
⎬

⎭

B′(i, j) =
⋃

Ru∈A′(i,j)

X ′
u(i, j)

A′′(i, j) =

⎧
⎨

⎩
Ru ∈ R : (i, j) ∈ S ′′

u ,
∑

Rv∈X′′
u (i,j)

xv ≥ 1
8

⎫
⎬

⎭

B′′(i, j) =
⋃

Ru∈A′′(i,j)

X ′′
u (i, j)

For each Rv ∈ R, let Tv = {(i, j) ∈ S : Rv ∈ B′(i, j) or Rv ∈ B′′(i, j)}.

Observation E. For each Rv ∈ R, we have that |Tv| ≤ 12.
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Based on these we have the following two ILP formulations for each pair
(i, j) ∈ S.

minimize
∑

Rv∈B′(i,j)
x′
v

subject to
∑

Rv∈X′
u(i,j)

x′
v ≥ 1,∀Ru ∈ A′(i, j)

x′
v∈{0,1},
Q′(i,j) Rv ∈ B′(i, j)

minimize
∑

Rv∈B′′(i,j)
x′′
v

subject to
∑

Rv∈X′′
u (i,j)

x′′
v ≥ 1,∀Ru ∈ A′′(i, j)

x′′
v ∈{0,1},
Q′′(i,j) Rv ∈ B′′(i, j)

For each pair (i, j) ∈ S, let Q′
l(i, j) and Q′′

l (i, j) be the relaxed LP
formulation of Q′(i, j) and Q′′(i, j), respectively. Observe that OPT (Q) ≤∑

(i,j)∈S
(OPT (Q′(i, j)) + OPT (Q′′(i, j))).

For each xv ∈ Ql, define yv = min{1, 8xv} and Yl = {yv}xv∈Ql
. Due to

ObservationsC and D, Yl gives a feasible solution to Q′
l(i, j) and Q′′

l (i, j) for
all (i, j) ∈ S. Therefore, OPT (Q′

l(i, j)) ≤ 8 · OPT (Ql) and OPT (Q′′
l (i, j)) ≤

8 · OPT (Ql) for all (i, j) ∈ S. Now we have the following lemma.

Lemma 6. For each (i, j) ∈ S there is a set D′(i, j) ⊆ B′(i, j) such that D′(i, j)
gives a feasible solution of Q′(i, j) and |D′(i, j)| ≤ 8 · OPT (Q′

l(i, j)).

Proof. For any (i, j) ∈ S, solving Q′(i, j) is equivalent to finding a minimum
cardinality subset D of B′(i, j) such that each rectangle Ru ∈ A′(i, j) over-
laps a rectangle in D ∩ X ′

u(i, j). Notice that, for each Ru ∈ A′(i, j) the set
X ′

u(i, j) is non-empty. Moreover for each Rv ∈ X ′
u(i, j), the segment-j of Rv

intersects the cutting line and segment-i of Ru. Let S = {segment-i of Ru : Ru ∈
A′(i, j)}, T = {segment-j of Rv : Rv ∈ B′(i, j)}.

Solving Q′(i, j) is equivalent to the problem finding a minimum cardinality
subset D of T such that every segment in S intersect at least one segment
in D. Moreover, every segment in T intersects the cutting line. Without loss
of generality we can assume that S consists of vertical segments. Therefore T
consists of horizontal segments all intersecting the cutting line. Hence solving
Q′(i, j) is equivalent to solving the LVSC(S, T ) instance. Hence by Lemma1,
we have a feasible solution (say D′(i, j)) for Q′(i, j) such that |D′(i, j)| ≤ 8 ·
OPT (Q′

l(i, j)). ��

Using similar arguments as in the proof of Lemma6, we can prove that solv-
ing Q′′(i, j) is equivalent to solving an instance of the local horizontal segment
covering problem. Then using Lemma2 we can prove the following lemma.

Lemma 7. For each (i, j) ∈ S there is a set D′′(i, j) ⊆ B′′(i, j) such that
D′′(i, j) gives a feasible solution of Q′′(i, j) and |D′′(i, j)| ≤ 8 · OPT (Q′′

l (i, j)).
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For each pair (i, j) ∈ S,
due to Lemmas 6 and 7, we have a feasible solution D′(i, j) of Q′(i, j) and a
feasible solution D′′(i, j) such that |D′(i, j)| ≤ 8 ·OPT (Q′

l(i, j)) and |D′′(i, j)| ≤
8 ·OPT (Q′′

l (i, j)). Let D be the union of D′(i, j)’s and D′′(i, j) for all (i, j) ∈ S.
Using ObservationE we have

|D| =
∑

(i,j)∈S
(|D′(i, j)| + |D′′(i, j)|)

≤ 8 ·
∑

(i,j)∈S
(OPT (Q′

l(i, j)) + OPT (Q′′
l (i, j)))

≤ 768 · OPT (Ql) ≤ 768 · OPT (Q)

This completes the proof of Theorem2. The next corollary follows from Theo-
rem2.

Corollary 1. Let R be a stabbed rectangle intersection representation of a graph
G = (V,E) such that no two rectangles in R contain each other. There is an
O(|V |5)-time 768-approximation algorithm for the MDS problem on G.

Acknowledgement. This research was partially funded by the IFCAM project
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Abstract. We study the scheduling problem with calibrations. We are
given a set of n jobs that need to be scheduled on a set of m machines.
However, a machine can schedule jobs only if a calibration has been per-
formed beforehand and the machine is considered as valid during a fixed
time period of T , after which it must be recalibrated before running
more jobs. In this paper, we investigate the batch calibrations, calibra-
tions occur in batch and at the same moment. It is then not possible
to perform any calibrations during a period of T . We consider different
cost function depending on the number of machines we calibrate at a
given time. Moreover, jobs have release time, deadline and unit process-
ing time. The objective is to schedule all jobs with the minimum cost
of calibrations. We give a dynamic programming to solve the case with
arbitrary cost function. Then, we propose several faster approximation
algorithm for different cost function.

1 Introduction

The scheduling with calibrations was initially motivated from the Integrated
Stockpile Evaluation (ISE) program to test nuclear weapons periodically.
Because of sensitive application, the calibrations are expensive and need to be
performed at an appropriated moment. This motivation can be extended to the
scenarios where the machines need to be calibrated periodically to ensure the
quality of the products. Calibrations have applications in many areas, including
robotics [9,12,15], pharmaceuticals [3,7,14], and digital cameras [2,6,17].
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The initial scheduling problem is as follows [8]. We are given a set of n jobs that
need to be scheduled on a set of m identical machines. Each job j has a release time
rj , a deadline dj and a processing time pj . In this paper, we consider unit size jobs,
i.e. pj = 1, for all j. A job is scheduled if it is processed entirely inside its interval
[rj , dj). However, we can schedule jobs only if we perform calibrations beforehand.
Acalibration activates instantaneously themachine for a period ofT timeunits and
the machine can start to process jobs as soon as it is calibrated. After T time units,
the machine cannot schedule any jobs unless we perform another calibration. The
goal is to find a feasible schedule such that all jobs are scheduled with the minimum
number of calibrations. We denote this problem by O.

In some contexts, it may be possible to calibrate multiple machines simulta-
neously. The large expense of calibrations often involves experts or machinery
that must be hired and transported to the machines before calibrations can be
performed. As long as multiple machines are in the same location, the experts
and machinery can be used to calibrate all of them without a significant increase
in cost. After the experts leave, a minimum period is needed before they can come
back. In this paper, we consider that the minimum period is T .

1.1 Related Works

Bender et al. [8] first proposed the theoretical framework of the scheduling prob-
lem with calibrations. In the seminal work, they studied the case where jobs
have unit processing time, and proposed an optimal polynomial time algorithm
when a single machine is available and a 2-approximation algorithm for the mul-
tiple machines case. Fineman et al. [13] considered a generalization where jobs
have arbitrary processing time. They observed that minimizing calibrations for
jobs with deadlines generalizes the well-known machine minimization problem
when T is arbitrarily large, the problem is to minimize the number of machines.
Chau et al. [10] worked on the case where jobs arrive in online fashion. They
aim to find a tradeoff between the total flow-time (the elapsed time between the
release time of a job and until its completion) and the total calibration costs.
They gave several online approximation results on different settings of single or
multiple machines for weighted or unweighted jobs and also a dynamic program-
ming for the offline problem. Angel et al. [1] developed dynamic programming
algorithms for generalizations where there are multiple kinds of calibrations (dif-
ferent lengths of calibration), or when calibrations are not instantaneous. They
also give several properties that we will use throughout the paper. Wang [16]
studied a variant with time slot cost, where scheduling a job incur a cost that
depends on its starting time.

One scheduling problem, which has similitude with our problem, is that of min-
imizing the number of idle periods. In this problem, it is expensive to turn on a
machine that is in idle state and it has the flexibility to keep the machine in active
state, while the problem with calibrations has the notion of paying a cost for a
fixed constant-sized period of activity. The problem of minimizing the number of
idle periods has been proved to be polynomial time solvable when jobs have unit
processing time in single machine case [4,5] as well as multiple machine case [11],
and also when jobs have arbitrary processing time but on a single machine [5].
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1.2 Our Problem

In this paper, we study a variant of the problem where calibrations can only occur
simultaneously. In other words, at a given time t, we can decide to calibrate a
fixed number x ≤ m of machines, and no calibration can occur in [t, t + T ).
In the following, we refer to B for the batch calibration scheduling problem. We
model the costs of the calibrations by a function f(x) where x is the number of
calibrations that occur in a given time. Typically, the cost function is a concave
function, i.e. it is expensive to call an expert to calibrate the machines, but it
is cheaper to calibrate an extra machine. Consider a scenario where it costs b
to call an expert to come to the factory, and each calibration on a machine has
a unit cost. The cost function can be modeled as f(x) = x + b where x is the
number of machines we calibrate at a given time and b is the travel cost of the
expert.

1.3 Our Contributions and Organization of the Paper

We first show that the problem can be solved in polynomial time via dynamic
programming for arbitrary cost function f(x) in Sect. 3. We then propose several
fast approximation algorithms:

– An optimal algorithm when f(x) = b in Sect. 4,
– A 4-approximation algorithm when f(x) = x in Sect. 5,
– A (b + m)/(b + 1)-approximation algorithm when f(x) = x + b in Sect. 6.

Finally we conclude in Sect. 7.

2 Preliminaries

We first define a restricted set of times that a calibration can start as well as
the starting time of jobs. We use the properties from [1]. It can be shown that
in an optimal solution, there are a polynomial numbers of time steps in which a
calibration can start. In fact, it is sufficient to consider that the starting time of
calibrations can start at a distance at most n before a deadline of a job where n
is the number of jobs. We denote the set of starting time of calibrations as Ψ .

Definition 1 (Definition 1 [1]). Let Ψ :=
⋃

i{di − n, di − n + 1, . . . , di}.
Proposition 1 (Proposition 1 [1]). There exists an optimal solution in which
each calibration starts at a time in Ψ .

Once the starting time of the calibrations are set, we are able to define a set
of time steps in which jobs can be scheduled. In particular, jobs are scheduled
as soon as the machine is calibrated, as well as right after their release time. We
denote this set Φ.
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Definition 2 (Definition 3 [1]). Let Φ := {t + a | t ∈ Ψ, a = 0, . . . , n} ∪⋃
i{ri, ri + 1, . . . , ri + n}.

Proposition 2 (Proposition 7 [1]). There exists an optimal solution in which
the starting times and completion times of jobs belong to Φ.

Note that the above definitions and propositions hold for single machine as
well as for the multiple machine case. Throughout the paper, we use sj to denote
the starting time of job j.

Definition 3. A schedule S is defined by a set of calibrations and each calibra-
tion ci ∈ S is defined by a triplet (Ji, ti,mi), i.e. the jobs in Ji ⊆ J are scheduled
on machine mi in the time interval [ti, ti + T ).

Definition 4. The edf (Earliest Deadline First) policy is to schedule the job
with the smallest deadline among the pending jobs.

In the sequel, we consider that all schedules follow the edf policy. When
several machines are available at the same time slot, we consider each machine
in increasing order of index while applying the edf policy. Without loss of gen-
erality, we assume that jobs are sorted in non-decreasing order of deadlines, i.e.,
d1 ≤ d2 ≤ . . . ≤ dn.

3 An Optimal Polynomial Time Algorithm for Arbitrary
Cost Function

We inspire from the dynamic programming proposed by Demaine et al. in [11].
First, we define the dynamic programming table in Definition 5, then we enu-
merate the different cases to build the schedule.

Definition 5 (See Fig. 1). Let C(t1, t2, e, s, k, q, l1, l2) be the minimum cost of
a schedule such that:

– jobs from {j | j ≤ k, rj ∈ [t1, t2)} are scheduled in [t1, t2)
– the first batch of calibrations starts at time e with l1 machines and ends after

t1 (t1 < e + T )
– the last batch of calibrations starts at time s with l2 machines and starts before

t2 (s ≤ t2)
– there are q reserved machines at time-slot [t2 − 1, t2)
– only the calibrations that start in [t1, t2) are considered for the cost
– at least one batch of calibrations overlaps with [t1, t2)

Optimality: To compute the schedule associated to C(t1, t2, e, s, k, q, l1, l2), we
consider the job k that has the largest deadline among the jobs in {1, 2, . . . , k}.
Suppose that job k is scheduled at time t′ and we suppose that t′ is maxi-
mal among all optimal solutions. We claim that jobs scheduled after k must
be released after t′; otherwise, we could swap the scheduled times of k and of
such a job, which is feasible because k has the latest deadline among the jobs,
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number of machines

timet1 t2e s

ql2
l1

batch of l1 calibrations

batch of l2 calibrations

length of the schedule

q reserved time slots at time t2 − 1

Fig. 1. Illustration of Definition 5. This corresponds to a schedule associated to
C(t1, t2, e, s, k, q, l1, l2).

thus we get a feasible schedule with same cost, but with a larger t′, a contra-
diction. In this way, we reach two subproblems with intervals [t1, t′ + 1) and
[t′ + 1, t2).

We distinguish 3 different cases to compute such a value (See Fig. 2 for an
illustration of different cases): the job k is scheduled in the first batch of calibra-
tions, in the last, or in the middle. Moreover, when dividing the problem into
two subproblems, we need to consider whether a same calibration are in both
subproblems. Formally, if a job k is scheduled at time t′, the batch calibrations
that allow us to schedule job k are either fully in the first subproblem (the batch
calibrations ends at time t′ + 1), or the batch calibrations start in the first sub-
problem and end in the second subproblem. Finally, we denote e′ (resp. s′ be
the starting

We consider the 3 different cases as well as the sub-cases in the following. To
simplify notation, we use C ′ to denote C(t1, t2, e, s, k, q, l1, l2).

Case 1: job k is scheduled in the first calibration.
As mentioned previously, we have two subcases.
Case 1.1: job k is not scheduled at the last time slot of the calibration
C ′ = mint′ C(t1, t′ + 1, e, e, k − 1, 1, l1, l1) + C(t′ + 1, t2, e, s, k − 1, q, l1, l2) if
t′ + 1 < e + T
Case 1.2: job k is scheduled at the last time slot of the calibration
C ′ = C(t1, t′+1, e, e, k−1, 1, l1, l1)+C(t′+1, t2, e

′, s, k−1, q, l′, l2) if t′+1 = e+T

Case 2: job k is not scheduled in the first calibration, and not in the last
calibration.
Case 2.1: job k is not scheduled at the last time slot of the calibration
C ′ = mint′,e′,l′ C(t1, t′ + 1, e, e′, k − 1, 1, l1, l

′) + C(t′ + 1, t2, e
′, s, k − 1, q, l′, l2) if

t′ + 1 < e′ + T
Case 2.2: job k is scheduled at the last time slot of the calibration
C ′ = mint′,e′,s′,l′,l′2 C(t1, t′ +1, e, e′, k−1, 1, l1, l

′)+C(t′ +1, t2, s
′, s, k−1, q, l′2, l2)

if t′ + 1 = e′ + T
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Case 3: job k is scheduled in the last calibration.
Case 3.1: job k is not scheduled at the last time slot of the schedule
C ′ = mint′ C(t1, t′ + 1, e, s, k − 1, 1, l1, l2) + C(t′ + 1, t2, s, s, k − 1, q, l2, l2) if
t′ + 1 < t2
Case 3.2: job k is scheduled at the last time slot of the schedule
C ′ = (t1, t2, e, s, k − 1, q + 1, l1, l2) if t′ + 1 = t2

number of machines

timet1 t2e s

ql2
l1

case 1.1
case 1.2

case 2.1
case 2.2

case 3.1
case 3.2

Fig. 2. Illustration of different cases of the Dynamic Programming

Initial Cases
For the initial cases, we distinguish two cases where only one batch of calibrations
overlaps with the considered interval, or two batches of calibrations overlap with
the interval. Moreover, we need to ensure that the time slot [t2 −1, t2) is covered
by a batch of calibrations.

There is only one batch of calibrations
C(t1, t2, e, e, 0, q, l1, l1) = f(l1) if t1 ≤ e < t2 ≤ e + T and q ≤ l1
C(t1, t2, e, e, 0, 0, l1, l1) = f(l1) if t1 ≤ e < e + T < t2
C(t1, t2, e, e, 0, q, l1, l1) = 0 if e < t1 < t2 ≤ e + T and q ≤ l1
C(t1, t2, e, e, 0, 0, l1, l1) = 0 if e < t1 < e + T < t2

There are two batches of calibrations
C(t1, t2, e, s, 0, q, l1, l2) = f(l1)+f(l2) if t1 ≤ e and e+T ≤ s and s < t2 ≤ s+T
and q ≤ l2
C(t1, t2, e, s, 0, 0, l1, l2) = f(l1) + f(l2) if t1 ≤ e and e + T ≤ s and s + T < t2
(and q ≤ l2)
C(t1, t2, e, s, 0, q, l1, l2) = f(l2) if e < t1 and e + T ≤ s and s < t2 ≤ s + T and
q ≤ l2
C(t1, t2, e, s, 0, 0, l1, l2) = f(l2) if e < t1 and e + T ≤ s and s + T < t2 (and
q ≤ l2)
C(t1, t2, e, e, 0, q, l1, l1) = +∞ for all other cases.

Note that it is not necessary to consider 3 or more batches of calibrations in
the initial case because no job will be assigned to the calibrations in the middle.
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Algorithm 1. Multi-Lazy-Binning (MLB)
1: Jobs in J are sorted in non-decreasing order of deadline
2: while J �= ∅ do
3: t ← maxi∈J di, k ← 0
4: for i ∈ J do

5: t′ ← di −
⌈

|{j≤i,j∈J }|
m

⌉

6: if t > t′ then
7: t ← t′, k ← i
8: end if
9: end for

10: u ← t +
⌈

dk−t
T

⌉
× T

11: Calibrate all m machines at time t (until time u)
12: Schedule jobs from t to u by applying the edf policy and remove them from J .
13: end while

Theorem 1. The running time of the Dynamic Programming is O(n15m5)
where n is the number of jobs and m is the number of machines.

Proof. According to Proposition 1, the starting time of a calibration lies in Ψ
while the starting time of a job lies in Φ, which both have size O(n2), in particular
the values of e, s lie in Ψ and t1, t2, lie in Φ. k can take any value from 0 to n
and q, l1, l2 are the number of machines which are less than m. Therefore the
size of the table is O(n9m3).

To compute a specific value of the table, we need to look at all the values of t′

(the starting time of job k), and there are O(n2) values. By summing the running
time of all cases, we need to look at the values of e′, s′, l′, l′2. So the running time is
O(n6m2). Thus the computing time of the dynamic programming is O(n15m5). ��

4 f(x) = b

In this section, we consider the case where calibrating has a constant cost and
is independent on the number of machines we use. Therefore, it is never unprof-
itable to use all available machines. The idea is to use a similar algorithm to the
Lazy-Binning algorithm in [8]. We delay each batch calibrations as late as pos-
sible until it is not possible and we calibrate all machines. A formal description
can be found in Algorithm1.

Theorem 2. Algorithm1 computes the minimum number of batch calibrations.

Proof. Without loss of generality, we suppose that the optimal solution uses all
machines in each batch calibrations.

We show how to transform our problem to an equivalent one using the algo-
rithm proposed by Bender et al. [8].

Since we have m machines, we can simply consider that each initial time-slot
becomes m time-slots in the new instance, i.e., for each time slot t in the initial
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problem, we divide it into m identical time slots denoted as t1, t2, . . . , tm. We
consider that each job has a processing time of 1/m in order to fit into the new
time slots. The release time and deadline remain the same. Finally, we add the
constraint that the calibrations can only occur at some time t1 (and not at time
ti for i > 1). So we have a new scheduling problem on a single machine. Since we
calibrate all machines at a given time t, it means that we also calibrate all the
consecutive time-slots t1, t2, . . . , tm, . . . , (t+T − 1)1, . . . , (t+T − 1)m. See Fig. 3
for an illustration. By using the algorithm in [8], we get the minimum number of
calibrations (number of batches calibration for our problem). Thus, it is optimal
for our problem.

timet t+ T

timet1 tm· · ·
(t+ T − 1)1

· · ·
(t+ T − 1)m

· · ·

timet t+ T

machine

t1

tm

(t + T − 1)1

(t + T − 1)m· · ·

· · ·

...
...

Fig. 3. Illustration of Theorem 2. We start from the initial scheduling problem with
calibrations. Suppose that the machine is calibrated at time t, we divide each time slot
into m equal time slots (second schedule). Then we make the correspondence between
each new time slot of the second schedule with each time slot and the machine in the
batch calibration scheduling problem (third schedule)

Now we show that with the resulting schedule, we can build a feasible solution
for our problem.

Each new time slot corresponds to a machine, if a job is scheduled at the
time slot ti, it means this job is scheduled at time t on machine i in the initial
problem. ��

5 f(x) = x

In this section, we propose a 4-approximation algorithm when the cost function
is f(x) = x in Algorithm 2. First, we show that we can transform any feasible
solution for the initial scheduling problem (problem O) into another feasible
solution for the batch scheduling problem (problem B) by loosing a factor of 2,
i.e. by using at most twice more calibrations.



86 V. Chau et al.

High Level Idea: Given a schedule, we find the first moment where two calibra-
tions ci, ck on two different machines share a non-empty time interval and such
that they do not start at the same time, i.e. we have [ti, ti +T ) ∩ [tk, tk +T ) 
= ∅
and mi 
= mk. Without loss of generality, we assume that ti < tk. We modify
the calibration ck and create two new calibrations c1k and c2k such that:

– the jobs in Jk that were scheduled before (resp. after) ti + T are assigned to
calibration c1k (resp. c2k) and we denote the set of jobs J1

k (resp. J2
k ).

– c1k = (J1
k , ti,mk)

– c2k = (J2
k , ti + T,mk)

A formal description is given in Algorithm2.
Note that if the calibration c2k overlaps with the next calibration on the same

machine, we change the starting time of the next calibration without modify-
ing the scheduled jobs and the assignment of jobs may be changed accordingly
(see Algorithm 3).

An illustration of a such transformation can be found in Fig. 4.

machines

timet

machines

timet

a b h

t′

t′

t′ + T

t′ + T

a b h

c1k c2k

ck

ci

ci

ck+1

ck+1

Fig. 4. Illustration of Algorithm 2. Calibrations ci and ck overlap and do not start at
the same moment. We split the calibration ck into two calibrations c1k and c2k such that
the calibrations c1k and ci start at the same moment. Calibration c2k starts right after
calibration c1k ends. Finally, if calibration c2k overlaps with the next calibration, say
ck+1, we delay the calibration ck+1, but the jobs remains unchanged: for example the
job h did not change its starting time, but change the calibration in which it belongs
to (from calibration ck+1 to c2k)

We denote the optimal solution of batch calibration problem as OPTB, and
the optimal solution of original calibration problem as OPTO. Since the objective
is to minimize the number of calibrations, the cost of a solution S can be written
as |S|.
Lemma 1. For any set of jobs, we have |OPTO| ≤ |OPTB| when the cost func-
tion of batch calibrations problem is f(x) = x.
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Algorithm 2. Batch calibrations
Require: Schedule S
1: while There exist two calibrations ci and ck that overlap on two different machines

µ and µ′ do
2: Let denote ci = (Ji, ti, µ) and ck = (Jk, tk, µ

′) with ti ≤ tk < ti + T
3: Find the first calibration that overlaps with a previous calibration on another

machine
4: k∗ ← arg mink{ti < tk < ti + T}
5: J1

k ← {j | j ∈ ck∗ and sj < tk + T}
6: J2

k ← {j | j ∈ ck∗ and sj ≥ tk + T}
7: c1k∗ = (J1

k , ti,mk)
8: c2k∗ = (J2

k , ti + T,mk)
9: S ← {S \ ck∗} ∪ c1k∗ ∪ c2k∗

10: Modify S such that it becomes feasible (See Algorithm 3)
11: end while
12: return S

Algorithm 3. Feasibility
Require: Schedule S
1: for each machine µ ∈ [1, . . . ,m] do
2: while there exists ci = (Ji, ti, µ) and ck = (Jk, tk, µ) such that ti ≤ tk < ti + T

do
3: J ← {j | sj ∈ [tk, ti + T ), j ∈ Jk} // Set of jobs scheduled in [tk, ti + T )
4: ci ← (Ji ∪ J, ti, µ)
5: ck ← (Jk \ J, ti + T, µ)
6: Update schedule S
7: end while
8: end for
9: return S

Proof. The set of feasible solutions of problem O is denoted by FO while the
set of feasible solutions of problem B is denoted by FB. In fact, any feasible
solution for the problem B is also a feasible solution for the problem O, so we
have Fb ⊆ Fo. Therefore, we have minS∈FO |S| ≤ minS′∈FB |S′| and the lemma
follows. ��

We now prove that only the calibrations from the initial solution can be
considered in Algorithm 2. In fact, for each calibration from the initial solution,
we add an extra calibration.

Lemma 2. Only calibrations from the initial solution can be doubled in
Algorithm2.

Proof. It is sufficient to prove that the newly added calibrations will not be
doubled, i.e. we will not create an additional calibration from a newly added
calibration. Suppose that a calibration ck is the first calibration to overlap with
a former calibration ci on another machine. From the construction of the calibra-
tions c1k and c2k, we know that the calibration c1k and the calibration ci start at
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the same moment. Since the calibration ck was the first to overlap with another
calibration, the calibration c1k will never be considered because it starts before
the calibration ck.

Suppose that the algorithm considers the calibration c2k. It means that there is a
calibration ci′ overlaps with and starts before the calibration c2k. By construction,
we know that the calibration c2k starts right after the calibration ci ends. So the
calibration ci′ also overlaps with calibration ci. The algorithm should have chosen
the calibration ci′ instead of calibration c2k, so we have a contradiction. ��
Theorem 3. Algorithm2 is a 4-approximation algorithm.

Proof. Algorithm 2 depends on the schedule given in the input. Let S (resp.
ALG) be the schedule given as input (resp. output) in Algorithm2. From
Lemma 2, we know that each calibration in S can be doubled only once. So
the solution returned by the algorithm cannot have more than 2|S| calibrations.
Thus we have |S| ≤ |ALG| ≤ 2|S|. Bender et al. [8] proposed a 2-approximation
algorithm for the problem O, so |OPTO| ≤ |S| ≤ 2|OPTO|.

|ALG| ≤ 2|S| ≤ 4|OPTO|
Finally, from Lemma 1, we have |OPTO| ≤ |OPTB|, so |OPTB| ≤ |ALG| ≤
4|OPTO| ≤ 4|OPTB|. ��

6 f(x) = x + b

We use the algorithm proposed in Sect. 4 and show that the approximation ratio
depends on the cost function of batch calibrations.

Theorem 4. The Multi-Lazy-Binning (MLB) algorithm (Algorithm1) is a (b+
m)/(b + 1)-approximation algorithm when the cost function is f(x) = x + b,
where m is the number of machines.

Proof. Let KMLB (resp. KOPTB) be the number of batches of calibrations in the
schedule returned by Algorithm 1 (MLB) (resp. the optimal solution of problem
B with f(x) = x + b). According to the Theorem 2, MLB uses the minimum
number of batches, so KMLB ≤ KOPTB . The cost of the Algorithm 1 is (b +
m)KMLB because it calibrates all the machines at each batch, while the cost
of the optimal solution is at least (b + 1)KOPTB . Therefore, the approximation
ratio ρ of the Algorithm 1 can be bounded as follows:

ρ ≤ (b+m)KMLB

(b+1)KOPTB = bKMLB

(b+1)KOPTB + mKMLB

(b+1)KOPTB ≤ b+m
b+1 . ��

7 Conclusion

We show that the scheduling problem with batch calibrations can be solved in
polynomial time. However, since the running time is high, we propose some fast
approximation algorithms for several special case. A natural question is whether
there exists a fast constant approximation algorithm for arbitrary cost function.
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Abstract. We present polynomial families complete for the well-studied
algebraic complexity classes VF, VBP, VP, and VNP. The polynomial fam-
ilies are based on the homomorphism polynomials studied in the recent
works of Durand et al. (2014) and Mahajan et al. [10]. We consider three
different variants of graph homomorphisms, namely injective homomor-
phisms, directed homomorphisms and injective directed homomorphisms
and obtain polynomial families complete for VF, VBP, VP, and VNP under
each one of these. The polynomial families have the following properties:

– Thepolynomial families complete forVF,VBP, andVP aremodel inde-
pendent, i.e. they do not use a particular instance of a formula, ABP
or circuit for characterising VF, VBP, or VP, respectively.

– All the polynomial families are hard under p-projections.

Keywords: Algebraic complexity theory · Homomorphism

1 Introduction

Valiant [1] initiated the systematic study of the complexity of algebraic com-
putation. There are many interesting computational problems which have an
algebraic flavour, for example, determinant, rank computation, discrete log and
matrix multiplication. These algebraic problems as well as many other problems,
which do not prima facie have an algebraic flavour, can be reduced to the prob-
lem of computing certain polynomials. Valiant’s work spurred the study of such
polynomials and led to a classification of these polynomials as easy to compute
and possibly hard to compute. His work also formalised the notion of a model of
computation of polynomials.

He introduced various models of computation of polynomials. An arithmetic
circuit is one such model of computation which has been well-studied. An arith-
metic circuit is a DAG whose in-degree 0 nodes are labelled with variables
(X = {x1, . . . , xn}) or field constants (from, some field, say F). All the other
nodes are labelled with operators +,×. Each such node computes a polynomial
in a natural way. The circuit has an out-degree zero node, called the output gate.
The circuit is said to compute the polynomial computed by its output gate. The
size of the circuit is the number of gates in it.
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Any multivariate polynomial p(X) ∈ F[x1, . . . , xn] is said to be tractable if
its degree is at most poly(n) and there is a poly(n) sized circuit computing it.
The class of such tractable polynomial families is called VP.

Many other models of computation have been considered in the literature such
as arithmetic formulas and algebraic branching programs (ABPs). An arithmetic
formula is a circuit in which the underlying DAG is a tree. The class of polynomial
families computable bypolynomial sized arithmetic formulas is calledVF. The class
of polynomial families computed by polynomial sized ABPs is called VBP.

Another important class of polynomials studied in the literature (and defined
in [1]) is VNP. It is known that VF ⊆ VBP ⊆ VP ⊆ VNP.

In [1], it was shown that the Permanent polynomial is complete1 for the class
VNP2. It was also shown that the syntactic cousin of the Permanent polynomial,
namely the Determinant polynomial, is complete for VBP. For the longest time
there were no natural polynomials which were known to be complete for VP.

Bürgisser in [2] proposed a candidate VP-complete polynomial which was
obtained by converting a generic polynomial sized circuit into a VP-hard poly-
nomial (similar to how the Circuit Value Problem is shown to be hard for P).
Subsequently Raz in [3] gave a notion of a universal circuit and presented a VP-
complete polynomial arising from the encoding of this circuit into a polynomial.
More recently, Mengel [4] as well as Capelli et al. [5] proposed characterisations of
polynomials computable in VP. In these and other related works, the VP-complete
polynomial families were obtained using the structure of the underlying circuit.
(See for instance [6] and references therein for other related work.)

In the Boolean setting, consider the following two problems: (1) {G =
(V,E) | G has a hamiltonian cycle} and (2) {〈M,x, 1t〉 | M accepts x
in at most t steps on at least one non-deterministic branch}. Both the problems
are known to be NP-complete, but unlike the first problem, the second problem
essentially codes the definition of NP into a decision problem. In that sense, the
second problem is dependent on the model used to define NP, but the first one is
independent of it. It is useful to have many problems like the first one that are NP-
complete, as each such problem conveys a property of the class of NP-complete
languages which is not conveyed by its definition.

In the Boolean world the study of NP-complete problems was initiated by
the influential works of Cook and Levin [7,8]. Over the years we have discovered
thousands of NP-complete problems. Similarly, many natural problems have also
been shown to be P-complete. See for instance [9] which serves as a compendium
of P-complete problems. Most of these problems are model independent.

1 The hardness is shown with respect to p-projection reductions. We will define them
formally in Sect. 2.

2 Valiant [1] raised the question of whether the Permanent is computable in VP. This
question is equivalent to asking whether VP= VNP, which is the algebraic analogue
of the P vs. NP question.
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In contrast, in the arithmetic world there is a paucity of circuit-description-
independent VP-complete problems. Truly circuit-description-independent VP-
complete polynomial families were introduced in the works of Durand et al. [6]
and Mahajan et al. [10]. We extend their works by giving more such families of
polynomials complete for VP. Along the way we obtain such polynomial families
complete for VF, VBP, and VNP as well.

At the core of our paper are homomorphism polynomials, variants of which
were introduced in [6] and [10]. (In fact, in [11,12], some variants of homo-
morphism polynomials were defined and they were studied in slightly different
contexts.) Informally, a homomorphism polynomial is obtained by encoding a
combinatorial problem of counting the number of homomorphisms from one
graph to another as a polynomial. Say we have two graphs, G and H, then
the problem of counting the number of a certain set of homomorphisms, say
H, from the graph G to H can be algebrised in many different ways. One
such way is to represent the counting problem as the following polynomial.
fG,H,H =

∑
φ∈H

∏
(u,v)∈E(G) Y(φ(u),φ(v)), where Y = {Y(a,b) | (a, b) ∈ E(H)}

and H is a set of homomorphisms from G to H3.
Our work essentially builds on the ideas defined and discussed in the works of

[6,10]. Although [10] and [13] provide homomorphism polynomial families com-
plete for all the important algebraic complexity classes, [6] raises an interesting
question, which remains unanswered even in [10] and [13].

The question is: do there exist homomorphism polynomial families complete
for algebraic classes such as VP or VNP when H is restricted to only injective
homomorphims (or only directed homomorphisms)? We explore this direction
and answer this question positively. This helps us to obtain a complete picture
of the work initiated in [6,10].

We consider three sets of homomorphisms, namely injective homomorphisms
(denoted as IH), directed homomorphisms (denoted as DH) and injective
directed homomorphisms (denoted as IDH). Naturally, when we consider DH
or IDH, we assume that G and H are directed graphs. We then design pairs
of classes of graphs which help us obtain polynomials such that they are com-
plete for the following complexity classes: VF, VBP, VP, and VNP. Like in [6,10]
our polynomials are also model independent, i.e. the graph classes we use can
be defined without knowing anything about the exact structure of the formula,
ABP, or the circuit. We also show the hardness in all the cases under more
desirable p-projections.

Our constructions do not rely on tree-width/path-width bounded graphs (as
the constructions of [10]) and also our upper bound proofs do not use techniques
such as the result of Baur and Strassen (like the way it is used in [6]). We believe
this makes some of our constructions and proofs slightly simpler as compared
to the known constructions and proofs. Moreover, this makes our constructions
and proofs conceptually different from those in [6,10].

3 Note that if we set all Y variables to 1, then this polynomial essentially counts the
number of homomorphisms from G to H.
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We are able to characterise all the well-studied arithmetic complexity classes
using variants of homomorphism polynomials. This provides a unified way of
giving characterisation for these classes. The table below (Table 1) shows the
known results regarding the homomorphism polynomials prior to our work and
also summarises the results in this paper.

There are two other definitions of homomorphism polynomials stud-
ied in the literature. One such variant from [6] defines homomorphism
polynomials with additional X variables as follows: f̂G,H,H(Y ) =
∑

φ∈H(
∏

u∈V (G) X
α(u)
φ(u) )(

∏
(u,v)∈E(G) Y(φ(u),φ(v))), where α : V (G) → {0, 1}. Yet

another variant from [6,10] defines homomorphism polynomials using additional

Z variables as ˆ̂
fG,H,H(Y ) =

∑
φ∈H(

∏
u∈V (G) Zu,φ(u))(

∏
(u,v)∈E(G) Y(φ(u),φ(v))).

Since the overall goal in these works is to design polynomials complete for com-
plexity classes, it is reasonable to compare our results with those in [6,10] without
worrying about the different variations of homomorphism polynomials across the
entries of Table 14.

Table 1. Comparison between our work and previous work. A cell containing the
symbol � represents the polynomial family designed in this paper

VP VBP and VF VNP

c-reductions p-projections p-projections p-projections

InjDirHom - [6], � � �
InjHom - � � �
DirHom [6] � [6], � �
Hom [6] [10] [10] [6,13]

The table gives the list of our results. We start with some notations and
preliminaries in the following section. In Sect. 3 we present the details regarding
VP-complete polynomial families. In Sect. 4 we present the results regarding
VNP, VBP and VF-complete polynomial families.

2 Preliminaries

For any integer n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. For any set S,
we use |S| to denote the cardinality of the set.

Graph Theoretic Notions. A cycle graph on n nodes, denoted as Cn, is a
graph that has n nodes say v0, . . . , vn−1, and n edges, namely {(v(i mod n),
v(i+1 mod n) | 0 ≤ i ≤ n − 1}. We assume that the cycle graph is undirected
unless stated otherwise. A spiked cycle graph on n+1 (n ≥ 3) nodes, denoted as

4 We do not use c-reductions in this work. They are more general than p-reductions.
The formal definition can be found in [6].
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Sn, is a cycle graph Cn with an additional edge (v, u), where u is an additional
node which is not among v0, . . . , vn−1, and v ∈ {v0, . . . , vn−1}. We call the nodes
v0, . . . , vn−1 the cycle nodes and we call the additional node u a spiked node. For
a graph G, a cycle graph Cn is said to be attached to a node v of G, if one of
the nodes of Cn is identified with the node v. A spiked cycle graph Sn is said to
be attached to a node v of G, if a node at distance 2 from the spiked node of Sn

is identified with v (Fig. 1).

u

v4 v3

v0 v2

v1

G
v

u

(a) Spiked cycle S5, spiked node u. (b) S5 is attached to node v in G

Fig. 1. S5 attached to v in G. The distance between spiked node u and v is 2.

Algebraic Circuit Complexity Classes. Let F be any characteristic 0 field.
From now on we will only work with characteristic 0 fields. Various algebraic
circuit complexity classes have been studied in literature, see for instance [2] for
the formal definitions of VF, VBP, VP, and VNP.

Projection Reductions. We say that a family of polynomials {fn}n∈N is a
p-projection of another family of polynomials {gn}n∈N if there is a polynomially
bounded function m : N → N such that for each n ∈ N, fn can be obtained from
gm(n) by setting its variables to one of the variables of fn or to field constants.

Normal Form Circuits and Formulas. In this section we present some
notions regarding normal form circuits. We say that an arithmetic circuit is
multiplicatively disjoint if the graphs corresponding to the subcircuits rooted at
the children of any multiplication gate are vertex disjoint. We use a notion of
a normal form of a circuit as defined in [6]. We recall the notion of universal
circuit family in normal form as defined in [6]. (Universal circuit families were
defined in [3].)

Definition 1 ([6]). A family of universal circuits {Dn}n∈N in normal form is
a family of circuits such that for each n ∈ N, Dn has the following properties:

– It is a layered circuit in which each × gate (+ gate) has fan-in 2 (unbounded
fan-in resp.).

– Without loss of generality the output gate is a + gate. Moreover, the circuit
has an alternating structure, i.e. the children of + (×) gates are × (+, resp.)
gates, unless the children are in-degree 1 gates, in which case they are input
gates.

– The input gates have out-degree 1. They all appear on the same layer, i.e. the
length of any input gate to output gate path is the same.
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– Dn is multiplicatively disjoint.
– Input gates are labelled by variables and no constants appear at the input gate.
– The depth of Dn is 2c	log n
, for some constant c. The number of variables,

v(n), and size of the circuit, s(n), are both polynomial in n.
– The degree of the polynomial computed by the circuit is n.

We now recall a notion of a parse tree of a circuit [6,14].

Definition 2 ([14]). The set of parse trees of a circuit C, T (C), is defined
inductively based on the size of the circuit as follows.

– A circuit of size 1 has itself as its unique parse tree.
– If the circuit size is more than 1, then the output gate is either a × gate or a

+ gate.
(i) if the output gate g of the circuit is a × gate with children g1, g2 and say
Cg1 , Cg2 are the circuits rooted at g1 and g2 respectively, then the parse trees
of C are obtained by taking a node disjoint copy of a parse tree of Cg1 and a
parse tree of Cg2 along with the edges (g, g1) and (g, g2).
(ii) if the output gate g of the circuit is a + gate, then the parse trees of C
are obtained by taking a parse tree of any one of the children of g, say h, and
the edge (g, h).

Note that a parse tree computes a monomial. For a parse tree T , let fT be the
monomial computed by T . Given a circuit C (or a formula F ), the polynomial
computed by C (by F , resp.) is equal to

∑
T∈T (C) fT (

∑
T∈T (F ) fT , resp.).

We use the following fact about parse trees proved in [14].

Proposition 1 ([14]). A circuit C is multiplicatively disjoint if and only if any
parse tree of C is a subgraph of C. Moreover, a subgraph T of C is a parse tree if:

– T contains the output gate of C.
– If g is a × gate in T , with children g1, g2 then the edges (g, g1) and (g, g2)

appear in T .
– If g is a + gate in T , it has a unique child in T , which is one of the children

of g in C.
– No edges other than those added by the above steps belong to C.

Graph Homomorphism, Its Variants and Homomorphism Polynomi-
als. Given two undirected graphs G and H, we say that φ : V (G) → V (H) is a
homomorphism from G to H if for any edge (u, v) ∈ E(G), (φ(u), φ(v)) ∈ E(H).
The homomorphism is said to be an injective homomorphism if additionally
for any node a ∈ V (H), |φ−1(a)| ≤ 1. Given two directed graphs G,H,
φ : V (G) → V (H) is said to be a directed homomorphism from G to H if
for any directed edge (u, v) ∈ E(G), (φ(u), φ(v)) is a directed edge in E(H). A
homomorphism is called an injective directed homomorphism if it is an injective
as well as directed homomorphism.
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Definition 3. Let G,H be two undirected graphs. Let Y = {Y(a,b) | (a, b) ∈
E(H)} be a set of variables. Let IH be a set of injective homomorphisms from
G to H. Then the injective homomorphism polynomial fG,H,IH is defined as fol-
lows: fG,H,IH(Y ) =

∑
φ∈IH

∏
(u,v)∈E(G) Y(φ(u),φ(v)). If G,H are directed graphs

and DH (IDH) is a set of directed (injective directed, respectively) homo-
morphisms from G to H then fG,H,DH(Y ) =

∑
φ∈DH

∏
(u,v)∈E(G) Y(φ(u),φ(v))

(fG,H,IDH(Y ) =
∑

φ∈IDH
∏

(u,v)∈E(G) Y(φ(u),φ(v)), respectively) is said to be the
directed (injective directed, respectively) homomorphism polynomial.

3 Polynomial Families Complete for VP

In this section we present the details regarding VP-complete polynomial families.
We start with some definitions of graph classes.

Definition 4 (Balanced Alternating-Unary-Binary tree). A balanced
alternating-unary-binary tree with k layers, denoted as ATk, is a layered tree
in which the layers are numbered from 1, . . . , k, where the layer containing the
root node is numbered 1 and the layer containing the leaves is numbered k. The
nodes on an even layer have exactly two children and the nodes on an odd layer
have exactly one child. Figure 2(a) shows an example ATk for k = 5.

Definition 5 (Block tree). Let BTk,s denote an alternately-unary-binary
block tree, which is a graph obtained from ATk by making the following modifi-
cations: each node u of ATk is converted into a block Bu consisting of s nodes.
The block corresponding to the root node is called the root block. The blocks
corresponding to the nodes on the even (odd) layers are called binary (unary,
respectively) blocks. If v is a child of u in ATk then Bv is said to be a child of
Bu in BTk,s.

After converting each node into a block of nodes, we add the following edges:
say B is a unary block and block B′ is its child, then for each node u in B and
each node v in B′ we add the edge (u, v). Moreover, if B is a binary block and
B′, B′′ are its children, then we assume some ordering of the s nodes in these
blocks. Say the nodes in B,B′, B′′ are {b1, . . . , bs}, {b′

1, . . . , b
′
s}, and {b′′

1 , . . . , b′′
s}

respectively, then we add edges (bi, b
′
i) and (bi, b

′′
i ) for each i ∈ [s]. Figure 2(b)

shows a block tree BTk,s, where k = 5 and s = 3.

Let k1 = 3 < k2 < k3 be three distinct fixed odd numbers such that k3 >
k2 + 2.

Definition 6 (Modified-Alternating-Unary-Binary tree). We attach a
spiked cycle Sk1 to the root of ATk. We attach a spiked cycle Sj×k2 (Sj×k3 respec-
tively) to each left child node (right child node respectively) in every odd layer
j > 1. We call the graph thus obtained to be a modified alternating-unary-binary
tree and denote it by MATk.

Definition 7 (Modified Block tree). We start with BTk,s and make the fol-
lowing modifications: we keep only one node in the root block and delete all the
other nodes from the root block. We then attach a spiked cycle Sk1 to the only
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r

(a) AT5, with r )b(.toorehtsa BT5,3.

Fig. 2. Examples of ATk and BTk,s

node in root block. We attach a spiked cycle Sj×k2 (Sj×k3 respectively) to each
left child node (right child node respectively) in every odd layer j > 1. We call
the graph thus obtained a modified block tree, MBTk,s.

We identify each node in graphs MATk, MBTk,s as either a core node or a
non core node. We formally define this notion.

Definition 8 (Core nodes and Non-core nodes). A non-core node is any
node in MATk (or MBTk,s) which was not already present in ATk (or BTk,s

respectively). Any node which is not a non-core node is a core node.

3.1 Injective Homomorphisms

Consider the universal circuit family {Dn} in normal form as in Definition 1. Let
m(n) = 2c	log n
 + 1 be the number of layers in Dn and let s(n) be its size.

Theorem 1. The family fGn,Hn,IH(Y ) is complete for class VP under
p-projections, where Gn is MATm(n) and Hn is MBTm(n),s(n).

As the first step towards proving this theorem, we perform a few more
updates to the normal form circuits we designed for polynomials in VP. From
the definition of Dn, we know that any parse tree of Dn is isomorphic to ATm(n).
From such a circuit Dn, we construct another circuit D′

n, which has all the prop-
erties that Dn has and additionally the underlying graph of D′

n is a subgraph of
the block tree BTm(n),s(n), for m(n), s(n) as mentioned above. Formally,

Lemma 1. For every n ∈ N, given any circuit Dn with m(n) = 2c	log n
 + 1
layers and size s(n) in the normal form as in Definition 1, there is another circuit
D′

n such that it has all the properties that the circuit Dn has and additionally it
has the following properties:

– The polynomial computed by D′
n is the same as the polynomial computed

by Dn.
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– Every parse tree of D′
n is isomorphic to ATm(n).

– The underlying graph of D′
n is a subgraph of the block tree BTm(n),s(n).

– The size of D′
n is poly(s(n)).

The proof of this lemma appears in [15]. From the construction of D′
n, we

also get the following properties.

Proposition 2. At most s(n) copies of any + gate of Dn will appear in D′
n,

where s(n) is the size of Dn. Moreover, every copy of + gate in D′
n will be used

at most once.

We now prove Theorem 1 by first showing the hardness of the polynomial
fGn,Hn,IH(Y ) and then proving that it can be computed in VP.

VP Hardness of f Gn ,Hn ,IH(Y ). We now show that if fn(X) is a polynomial
computed in VP, then it is a p-projection of fGn,Hn,IH(Y ). Let Gn, Hn be the
source and target graphs defined in Theorem1.

Let fn be any polynomial in VP and Dn be the normal form universal circuit
computing fn with m(n) = 2c	log n
 + 1 layers and size s(n). We convert this
circuit into D

′
n as specified at the start of this section. As observed earlier, it still

computes the polynomial computed by Dn. Let G′
n be the underlying graph of

the circuit D
′
n. As D

′
n is multiplicatively disjoint every parse tree of the circuit

is a subgraph of G′
n and is of the form ATm(n).

If a spiked cycle is attached to a node v in layer � of a layered graph then we
will say that all the nodes of the cycle belong to the same layer �.

Let φ : Gn → Hn be any injective homomorphism. Let us use φi to denote
the action of this homomorphism restricted to layer i on Gn. Let φ̃i denote
∪1≤j≤iφi, i.e. the action of φ up to layer i. We will prove the following lemma
inductively.

Lemma 2. Let φ be an injective homomorphism from Gn to Hn. For any i ∈
[m(n)], φ̃i(Gn) is simply a copy5 of the graph MATi inside Hn with the following
additional properties: (i) the root of MATi is mapped to the root of Hn. (ii) for
any i ∈ [m(n)], a core node u in layer i is mapped to a node in Bu at layer i.

The lemma can be proved using induction on i ∈ [m(n)] (See [15] for details). We
will now show that using this lemma we are done. We saw that G′

n is embedded
in BTm,q as a subgraph, where m = 2c	log n
 + 1 and q = s(n).

We wish to set variables such that the monomial computed by each injective
homomorphism is the same as the monomial computed by the corresponding
parse tree. This can be achieved simply by setting variables as follows: Let e be
an edge between two core nodes of Hn. If such an edge is not an edge in G′

n then
set it to 0. (This carves out the graph G′

n inside Hn.) If such an edge is an edge
associated with the leaf node, then locate the corresponding node in D′

n. It will
be an input gate in D′

n. If the label of that input gate is x, then set this edge to

5 It is a layer preserving isomorphic copy which maps the root node of MATi to the
root of Hn.
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x. If e is any other edge that appears in G′
n, then set it to 1. (This allows for the

circuit functionality to be realised along the edges of Hn.) Finally, suppose e is
an edge between two non-core nodes (or between a core and a non-core node),
i.e. along one of the attached cycles, then set it to 1. (This helps in suppressing
the cycle edges in the final computation.)

This exactly computes the sum of all parse trees in the circuit D
′
n, which

shows that any polynomial computed in VP is also computed as a p-projection
of fGn,Hn,IH(Y ).

fGn,Hn,IH(Y) is in VP. The source graph Gn and target graph Hn are as
described in the construction. We have already observed in Lemma2 that all
injective homomorphisms from Gn to Hn respect the layers. Therefore, it suffi-
cies to compute only such layer respecting homomorphisms.

Construction of the Circuit Computing fGn,Hn,IH(Y ). The construction
of the circuit, say Cn, is done from the bottom layer (i.e. from the leaves) to
the top layer (i.e. to the root). For any core node u ∈ V (MATm(n)) at layer �
of Gn and any core node a in block Bu at layer � in Hn, we have a gate 〈u, a〉
in our circuit Cn at layer �. Let us denote the sub-graph rooted at u in Gn by
G(u) and that rooted at a in Hn to be H(a). Let IH(u,a) be the set of injective
homomorphism from sub-graph G(u) to H(a) where u is mapped to a. Let f〈u,a〉
be the polynomial computed at the gate 〈u, a〉.

We will describe the inductive construction of the circuit Cn starting with
the leaves. We know that there is a spiked cycle Sk2×m(n) or Sk3×m(n) attached
to each node at layer m(n) in Gn

6. For any spiked cycle Sk attached at a node
x in Hn, let σx

Sk
(Y ) denote the monomial obtained by multiplying all the Y

variables along the edges in Sk attached at x in Hn. Let u be a left (or right)
child node in Gn at layer m(n) and a be some node in Bu at layer m(n) in Hn,
then we set 〈u, a〉 = σa

Sk2×m(n)
(Y ) (or 〈u, a〉 = σa

Sk3×m(n)
(Y ), respectively).

Suppose we have a left (or right) child node, say u, at layer i in Gn which has
only one child, say u′ at layer i + 1 in Gn. We know that there is a spiked cycle
Sk2×i (or Sk3×i respectively) attached to u if it is the left (right respectively)
child node. Let a be any node in Bu at layer i in Hn. Say a has t children,
a1, . . . , at in Hn. Inductively, we have gates 〈u′, aα〉 for all 1 ≤ α ≤ t. We set

〈u, a〉 =
t∑

α=1

〈u′, aα〉 × Y(a,aα) × σa
Sk2×i

(Y ) or (1)

〈u, a〉 =
t∑

α=1

〈u′, aα〉 × Y(a,aα) × σa
Sk3×i

(Y ) (2)

depending on whether u is a left child or a right child of its parent in Gn respec-
tively. Suppose u in layer i in Gn has a left child u1 and a right child u2 in layer
i + 1. Let a be any node in the block Bu in Hn. Let a1 and a2 be the left child
and right child of a in Hn respectively. It is easy to see that a1 resides in the

6 Recall that m(n) = 2c�logn�+1, which is odd. Also this is without loss of generality.
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block Bu1 in Hn and a2 resides in the block Bu2 in Hn. Inductively, we have
gates 〈u1, a1〉 and 〈u2, a2〉. We set

〈u, a〉 = 〈u1, a1〉 × Y(a,a1) × 〈u2, a2〉 × Y(a,a2) (3)

This completes the description of Cn. The details regarding the correctness of
Cn appears in [15].

3.2 Directed and Injective Directed Homomorphisms

We start with the definitions of the following directed graph classes.

Definition 9 (Directed Balanced Alternating-Unary-Binary tree,
Directed Block tree). Let ATd

k and BTd
k,s denote the directed versions of ATk

and BTk,s, respectively. The directions on the edges go from the root (block)
towards the leaves (leaf blocks).

Let k′
1 = 5 < k′

2 < k′
3 < k′

4 ∈ N be four distinct fixed mutually co-prime
numbers.

Definition 10 (Modified Directed Alternating-Unary-Binary tree). We
attach a directed cycle Ck′

1
to the root of ATd

k. We attach a directed cycle Ck′
2

to each node in every even layer in ATd
k. We attach a directed cycle Ck′

3
(Ck′

4

respectively) to each left child node ( right child node respectively) in every odd
layer (except the root node at layer 1) in ATd

k. We call the graph thus obtained
to be a modified directed alternating-unary-binary tree, MATd

k.

Definition 11 (Modified Directed Block tree). We consider BTd
k,s and

make the following modifications: we keep only one node in the root block node
and delete all the other nodes from the root block node. We attach a directed cycle
Ck′

1
to the only node in the root block of BTd

k,s. We attach a directed cycle Ck′
2

to each node in every even layer in BTd
k,s. We attach a directed cycle Ck′

3
(Ck′

4

respectively) to each left child node ( right child node respectively) in every odd
layer (except the root node at layer 1) in BTd

k,s. We call the graph thus obtained
to be a modified directed block tree and denote it by MBTd

k,s.

We identify each node in graphs MATd
k, MBTd

k,s as either a core node or a
non core node just like we did in the undirected case. We have the following
theorem (proof appears in [15]).

Theorem 2. The families fGn,Hn,DH(Y ), fGn,Kp(n),DH(Y ) and fGn,Hn,IDH(Y )
are complete for class VP under p-projections where Gn is MATd

m(n), Hn is
MATd

m(n),s(n) and Kp(n) is the complete graph obtained from Hn by adding all
directed edges between every pair of nodes of Hn, where p(n) is the number of
nodes of Hn.
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Remark 1. We get a VP-complete polynomial family when the right-hand-side
graph is a complete graph and H = DH. It would be interesting to get this
feature even when H = IH or IDH. It is easy to see that in the case of H = IH
or IDH, if the right-hand-side graph is a complete graph, then the current proof
can be easily modified to prove VP-hardness. On the other hand, the containment
of these families in VP is not straightforward in this case. It is worth noting
however that all our constructions ensure that the graphs are model independent
in all three cases, i.e. when H equals IH,DH and IDH.

4 Polynomial Families Complete for VNP, VBP and VF

In this section, we present the results related to the homomorphism polynomial
families complete for VNP, VBP and VF. At the core of our VNP-complete poly-
nomials lies the Permanent polynomial, which is known to be VNP-complete.
Whereas at the core of our VBP and VF polynomials is the IMMk,n polynomial,
which is defined to be the (1, 1)th entry of the matrix arising from the multipli-
cation of n matrices of dimension k. IMMk,n is known to be VBP-complete
for large k and VF-complete for k = O(1) (See [16] for more details). For
every complexity class C ∈ {VNP,VBP,VF} and for any homomorphism class
H ∈ {IH,DH, IDH}, we come up with a pair of graph families ΠH,C such that
the homomorphism polynomial defined with respect to H and ΠH,C is complete
for the class C. Formally, we show the following. (See [15] for proof details.)

Theorem 3. Let C ∈ {VNP,VBP,VF}.
There exist graph families {GC

n} and {HC
n} such that f{GC

n},{HC
n},IH is com-

plete for the class C.
If H ∈ {DH, IDH}, then there exist directed graph families {GC

n} and {HC
n}

such that f{GC
n},{HC

n},H is complete for the class C.
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Abstract. In this study, we consider the chance-constrained submodular
knapsack problem: Given a set of items whose sizes are random variables
that follow probability distributions, and a nonnegative monotone sub-
modular objective function, we are required to find a subset of items
that maximizes the objective function subject to that the probability of
total item size exceeding the knapsack capacity is at most a given thresh-
old. This problem is a common generalization of the chance-constrained
knapsack problem and submodular knapsack problem.

Specifically, we considered two cases: the item sizes follow normal dis-
tributions, and the item sizes follow arbitrary but known distributions.
For the normal distribution case, we propose an algorithm that finds a
solution that has an expected profit of at least 1−e−1 −O(ε) to the opti-
mal. For the arbitrary distribution case, we propose an algorithm that
finds a solution that has the same approximation factor but satisfies the
relaxed version of the constraint, which relaxes both the knapsack capac-
ity and overflow probability. Here, both algorithms are built on the same
strategy: reduce the chance constraint to a multidimensional knapsack
constraint by guessing parameters, and solve the reduced multidimen-
sional knapsack constrained submodular maximization problem by the
continuous relaxation and rounding method.

Keywords: Chance-constrained knapsack problem ·
Submodular maximization · Approximation algorithm

1 Introduction

1.1 Background and Motivation

The knapsack problem is one of the most fundamental combinatorial optimiza-
tion problems: Given a set of items associated with sizes and profits, find a
maximum profit subset of items whose total size is at most a given capacity of a
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knapsack. If the item sizes follow probability distributions, the problem is called
a stochastic knapsack problem.

In this study, we consider the chance-constrained knapsack problem [7] (aka.
bounded overflow probability model [2]), which is an important variant of the
stochastic knapsack problem. In this variant, we are required to find a maximum-
profit set of items subject to that the probability of the total item size violating
the knapsack capacity is at most a given threshold ρ. Regarding the different
probability distributions of item size, several results have been obtained. Goel
and Indyk [5] studied the problem for the Poisson, exponential, and Bernoulli
distributions and proposed PTASes and QPTASes. Goyal and Ravi [7] proposed
a PTAS for the normal distribution case by reducing the problem to a two-
dimensional knapsack problem. Recently, Shabtai, Raz, and Shavitt [17] pro-
posed a FPTAS for the normal distribution case by utilizing dynamic program-
ming and a polyhedral structure. Bhalgat, Goel, and Khanna [2] considered
online version of the problem (i.e., the realized item size is immediately revealed
when it is inserted to the knapsack), and proposed adaptive and non-adaptive
policies that achieve PTASes for arbitrary-distribution case by slightly relaxing
the overflow probability and knapsack capacity. For the same setting, Li and
Yuan [13] also proposed an adaptive policy that achieves a PTAS.

As described above, there are many existing studies for the problem; how-
ever, all the existing models only consider linear objective functions. The pur-
pose of this study is to generalize the objective function to a monotone submod-
ular function. A (monotone) submodular function is an important class of dis-
crete functions that naturally arises in combinatorial optimization [6,8], machine
learning [9], and economics [15]. The problem of maximizing a monotone sub-
modular function is NP-hard even under a cardinality constraint [16]; however,
subject to several constraints, such as the cardinality constraint [16], knapsack
constraint [10,18], matroid constraint [3,19], etc. [4,12,20], the problem admits
polynomial time approximation algorithms. In particular, since the knapsack-
constrained monotone submodular maximization problem has been applied to
the online advertising problems [1,14] in which the cost (i.e., size) is uncertain,
it would be beneficial to consider this generalization.

1.2 Contributions

Formally, our problem, chance-constrained submodular knapsack problem, is
defined as follows. Let N = {1, . . . , n} be a finite set of items. Each item i ∈ N
has stochastic size Xi, which is a random variable that follows a known distri-
bution. Without loss of generality, we assume that the knapsack capacity is one.
Let ρ ∈ R>0 be a given probability threshold, and f : 2N → R≥0 be a monotone
submodular function. Then, our problem is formulated by

maximize
S⊆N

f(S)

subject to Pr

(∑
i∈S

Xi > 1

)
≤ ρ.

(1)



Chance-Constrained Submodular Knapsack Problem 105

For this problem, we obtain the following results.

Theorem 1. Suppose that size Xi of item follows a normal distribution. Then,
for any ε > 0, there exists an algorithm that runs in polynomial-time and returns
a feasible solution with the expected profit of at least (1−e−1 −O(ε))OPT, where
OPT is the optimal value.

Theorem 2. Suppose that size Xi of item follows an arbitrary but known distri-
bution. Then, for any ε > 0, there exists an algorithm that runs in polynomial-
time and returns a solution with the expected profit of at least (1−e−1−O(ε))OPT
if relaxing the knapsack capacity to 1+O(ε) and the overflow probability to factor
ρ + O(ε), where OPT is the optimal value.

We prove these theorems by the same strategy: Convert the chance-constraint
to a multiple deterministic knapsack constraint and apply an algorithm for mul-
tiple knapsack constrained monotone submodular maximization.

For the normal distribution case, we employ the technique of Goyal and
Ravi [7] to achieve the first part: By guessing the expectation of the size of an
optimal solution, the problem reduces to a two-dimensional knapsack problem,
where the dimensions correspond to the mean and the variance. For the second
part, instead of the LP relaxation used in Goyal and Ravi, we employ Kulik,
Shachnai, and Tamir’s approximation algorithm for submodular knapsack prob-
lem [10]. This method separates items into “light” items and “heavy” items, and
solve the residual problem by a continuous greedy algorithm [20].

For the arbitrary distribution case, we employ the technique called the Pois-
son approximation established by Li and Yuan [13]. The key theorem of the
Poisson approximation (Lemma3 in this paper) shows that the size distribution
of a solution to the problem is well-approximated by a compound Poisson dis-
tribution. Then, as same as the normal distribution case, the problem is reduced
to a multiple knapsack problem, where the dimension of the knapsack depends
on the accuracy of the distribution approximation. Then, we solve the multi-
ple knapsack constrained submodular maximization problem by the continuous
relaxation and rounding. It should be emphasized that the existing techniques for
the stochastic knapsack problem with an arbitrary item size distribution [2,13]
cannot be used since these only considered the online version problem.

2 Preliminaries

Let N be a finite set. A function f : 2N → R is normalized if f(∅) = 0. In
the rest of the paper, we assume that the objective function f is normalized.
A function f : 2N → R is monotone if for all A ⊆ A′ ⊆ N , f(A) ≤ f(A′). A
function f : 2N → R is submodular if it satisfies the diminishing return property:
For all i ∈ N and A ⊆ A′ ⊆ N , f(A ∪ {i}) − f(A) ≥ f(A′ ∪ {i}) − f(A). For a
subset T ⊆ N and a function f : 2N → R, the marginal function fT : 2N\T → R

is defined by fT (S) := f(S ∪ T ) − f(S). If f is monotone submodular, fT is also
monotone submodular.
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For a submodular function f : 2N → R, the corresponding continuous relax-
ation, called the multilinear extension F : [0, 1]N → R, is defined as follows [3]:

F (x) = EŜ∼x[f(Ŝ)] =
∑
S⊆N

f(S)
∏
i∈S

xi

∏
j∈N\S

(1 − xj), (2)

where Ŝ is a random subset where each i ∈ N is included to the subset with
probability xi independently. An important property of the multilinear extension
of submodular function is that F (x) is concave along any nonnegative direction.

The multilinear extension is widely used for submodular maximization prob-
lems. The following theorem shows that the multilinear extension is approxi-
mately maximized in polynomial time.

Theorem 3 (Feldman, Naor, and Schwartz [4]). Let f : 2N → R≥0 be a
monotone submodular function and P ⊆ [0, 1]N be a downward-closed polytope
with a separation oracle. For any ε > 0, there exists a polynomial time algo-
rithm that produces a fractional solution x ∈ P such that F (x) ≥ (1 − e−1 −
O(ε))maxx∗∈P F (x∗). 	

Evaluating the multilinear extension is #P-hard; however, we can arbitrary accu-
rately estimate its value in polynomial time via random sampling [20].

Kulik, Shachnai, and Tamir [10] showed that a monotone submodular func-
tion is approximately maximized under a d = O(1)-dimensional knapsack con-
straint in polynomial time. Since our result heavily relies on their method, we
briefly summarize their result. Consider a d-dimensional knapsack problem with
item sizes c1, . . . , cn ∈ R

d. An item i ∈ N is light if all the entries in ci is at
most ε3 to the capacity; otherwise heavy. Note that an optimal solution contains
at most d/ε3 heavy items. If the problem contains no heavy items, a fractional
solution is rounded to an integral solution by preserving the objective value.

Theorem 4 (Kulik, Shachnai, and Tamir [10]). Let f : 2N → R≥0 be a
monotone submodular function and x ∈ [0, 1]N be a fractional solution to a
d-dimensional knapsack constraint without heavy items. For any ε > 0, there
exists a polynomial time algorithm that produces a random subset S such that
E[f(S)] ≥ (1 − O(ε))F (x). 	

By finding an approximate continuous solution using Theorem3, and round-
ing the solution using Theorem4, we can obtain (1 − e−1 − O(ε))-approximate
solution to the d-dimensional knapsack constrained submodular maximization
problem in polynomial time.

3 Normal Distribution Case

In this section, we propose an algorithm for the normal distribution case, i.e., for
each item i ∈ N , its size Xi follows a normal distribution N (ai, σ

2
i ) with mean

ai and variance σ2
i . We first show how to reformulate the chance constraint by

a two-dimensional knapsack constraint. Then we propose an algorithm to solve
the problem.
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Algorithm 1. Algorithm for the normal distribution case.
Input: Given a item set N , where size of each item is normally distributed with mean
ai and variance σ2

i . A monotone submodular set function f . An input parameter ε.
Overflow probability ρ. N1 = �log1+ε mini∈N{ai}�,
1: for each T ⊆ N such that |T | ≤ dε−3 do
2: Compute aT and bT , D = ∅
3: Ensure 1 − aT ≥ 0 and (1 − aT )

2 − bT ≥ 0, otherwise terminate this iteration
4: for each μ = aT + (1 + ε)k, k = N1, . . . , 0, such that (1 − μ)2 − bT ≥ 0 do
5: Solve the two-dimensional knapsack problem whose residual capacity is L̄ =

(μ − aT , (1 − μ)2 − bT ) and return D
6: Return the S = D ∪ T with best f(S)

3.1 Problem Reformulation

The constraint in Eq. (1) can be equivalently written as Pr
(∑

i∈S Xi ≤ 1
) ≥

1 − ρ. Let ZS =
∑

i∈S(Xi − ai)/
√∑

i∈S σ2
i . Then, the constraint is represented

by Pr
(
ZS ≤ (1 − ∑

i∈S ai)/
√∑

i∈S σ2
i

)
≥ 1 − ρ. Since ZS follows the stan-

dard normal distribution with mean zero and variance one, using the cumulative
distribution function φ of the standard normal distribution, it can be further
equivalently written as φ−1(1 − ρ)

√∑
i∈S σ2

i ≤ 1 − ∑
i∈S ai. Let S∗ be an opti-

mal solution and μ∗ =
∑

i∈S∗ ai. If we know the value of μ∗, the constraint is
safely replaced by

∑
i∈S∗ bi ≤ (1 − μ∗)2, where bi = φ−1(1 − ρ)σ2

i . This inspires
us to solve the following problem

maximize
S⊆N

f(S)

subject to
∑

i∈S ai ≤ μ∑
i∈S bi ≤ (1 − μ)2

(3)

by guessing μ∗ with μ. Given an estimated value μ, this problem is a deterministic
two-dimensional submodular knapsack problem.

3.2 Proposed Algorithm

We propose an algorithm for the problem (Algorithm1). In the algorithm, we
first guess a subset T ⊆ N . Let fT (S) = f(S ∪ T ) − f(S), aT =

∑
i∈T ai,

and bT =
∑

i∈T b2i . Then, we guess μ by enumerating μ = (1 + ε)k + aT for
each k. Here, we obtain a residual knapsack problem whose objective function
is fT and the capacity is (μ − aT , (1 − μ)2 − bT ). We define heavy items H and
light items L according to this capacity (i.e., i is light if ai ≤ ε3(μ − aT ) and
bi ≤ ε3((1 − μ)2 − bT )). Then, we remove all the heavy items from the instance,
and solve the problem using the multilinear relaxation and rounding (Theorems 3
and 4). We then output the best solution among the process.

We analyze the performance of this algorithm. Let S∗ be an optimal solution
and OPT be the optimal value of the original problem in Eq. (1).
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Lemma 1. Consider the case when T ⊆ S∗ and μ−aT ≤ μ∗ −aT ≤ (1+ ε)(μ−
aT ). Then, the solution obtained in line 6 of Algorithm1 satisfies

E[f(D)] ≥ (1 − e−1 − O(ε))(OPT − f(T ) − fT (S∗ ∩ H)). (4)

Proof. We define x̂ by x̂j = 1/(1 + ε) if j ∈ S∗ ∩ L, otherwise x̂j = 0. Note
that x̂ = 1S∗∩L/(1 + ε), where 1S∗∩L is the indicator vector of S∗ ∩ L. Then,
x̂ is a feasible solution to the residual knapsack problem with these parameters
because ∑

j∈L

aj x̂j =
∑

j∈L∩S∗
aj x̂j =

∑
j∈L∩S∗

aj
1

1 + ε
≤ μ∗ − aT

1 + ε
≤ μ − aT

where the last inequality comes from μ∗ − aT ≤ (1 + ε)(μ − aT ), and∑
j∈L

bj x̂j =
∑

j∈L∩S∗
bj x̂j =

∑
j∈L∩S∗

bj
1

1 + ε
≤ (1 − μ∗) − bT

1 + ε
≤ (1 − μ)2 − bT

where the last inequality is due to μ ≤ μ∗. The objective value at x̂ is

FT (x̂) ≥ 1
1 + ε

FT (1S∗∩L) =
1

1 + ε
fT (S∗ ∩ L), (5)

because of the concavity of multilinear extension along any nonnegative direc-
tion. By the submodularity, we have

fT (S∗ ∩ L) ≥ OPT − f(T ) − fT (S∗ ∩ H) (6)

Therefore, by Theorems 3 and 4, we obtain the lemma. 	

Lemma 2. Consider the case when T ⊆ S∗ and μ−aT ≤ μ∗ −aT ≤ (1+ ε)(μ−
aT ). The cardinality of S∗ ∩ H is less than (2 + ε)ε−3.

Proof. If item j is heavy, either aj > ε3(μ − aT ) ≥ ε3/(1 + ε)(μ∗ − aT ) or
b2j > ε3((1 − μ)2 − bT ) ≥ ε3/(1 + ε)((1 − μ∗)2 − bT ) holds. Therefore, by the
standard counting argument, there are at most (2 + ε)/ε3 heavy items. 	


Now we are ready to present the proof of Theorem 1.

Proof (Proof of Theorem 1). Let S∗ = {o1, o2, . . . , ok} be an optimal solution,
where {oi}k

i=1 are sorted in the decreasing order in their marginal profits, that is
fSi−1(oi) ≥ fSi

(oi+1) where Si = {o1, o2, . . . , oi}. If |S∗| ≤ dε−3e, we can find the
optimal solution by enumerating subset T . Therefore, in the following, we assume
that |S∗| > dε−3e and T takes the first dε−3e items of S∗. Let f(T ) = αOPT
for some α. By submodularity and Lemma 2, we have

fT (S∗ ∩ H) ≤ f(T )
dε−3e

|S∗ ∩ H| ≤ e−1(1 + ε)αOPT

By combining with Lemma 1, we obtain

αOPT + (1 − e−1 − O(ε))(OPT − αOPT − fT (S∗ ∩ H))

≥ (1 − e−1 − O(ε))OPT.
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We analyze the complexity of our algorithm. There are at most O(ndeε−3
) dif-

ferent sets of T and O(log1+ε 1/amin) different choices of μ. Thus, the algorithm
solves the multidimensional submodular knapsack problem at most polynomi-
ally many times. The multidimensional submodular knapsack problem is solved
in polynomial time by the continuous relaxation and rounding is performed in
polynomial time [10]. Therefore, the complexity of algorithm is polynomial.

4 Arbitrary Distribution Case

In this section, we propose an algorithm for arbitrary distribution case. As same
as the normal distribution case, we reformulate the chance-constraint by a mul-
tiple knapsack constraint. To handle arbitrary distribution, we apply the dis-
cretization technique, called the Poisson approximation [2,13].

4.1 Problem Reformulation

We first introduce the compound Poisson distribution [11,13]. Consider a
K-dimensional nonnegative vector V = (V1, V2, . . . , VK) ∈ R

K
≥0 and let λ =∑

k Vk. Define Y =
∑M

i=1 Yi where M ∼ Poisson(λ) and Yi’s are independent
random variables where Pr(Yi = k) = Vk/λ and Pr(Yi = 0) = 0. Then, we say
that Y follows a compound Poisson distribution corresponding to V . The most
important property here is Le Cam’s Poisson approximation theorem.

Lemma 3 (Le Cam’s Poisson Approximation Theorem [11], rephrased
in [13, Lemma 2.5]). Let X1,X2, . . . be independent random variables taking
integer values in {0, 1, . . . ,K}, and let X =

∑
i Xi. Let πi = Pr(Xi = 0) and

V = (V1, . . . , VK) for Vk =
∑

i Pr(Xi = k). Suppose λ =
∑

i πi =
∑

k Vk < ∞
Let Y be the compound Poisson distribution corresponding to vector V . Then,
the total variation distance between X and Y is bounded as follows:

Δ(X,Y ) =
∑
k≥0

|Pr(X = k) − Pr(Y = k)| ≤ 2
∑

i

2π2
i . 	


This theorem implies that the sum of any bounded integer-valued random vari-
able is approximated by a compound Poisson distribution. Intuitively, we apply
this theorem to Xi and guess the signature (i.e., V ) by enumeration. In the
following, we discretize the values of Xi to apply the theorem.

Without loss of generality, we assume that the input size Xi of item i is in
range [0, 2]. Otherwise, we put all the probability mass outside of the range to
Pr(Xi = 2); this does not change the solution to the problem. We say that an
item i is big if the expected size E[Xi] is greater than ε10; otherwise, i is small.
By Lemma 4 below, there are at most 3/ε11 big items added into the knapsack.

Lemma 4 (A variation of [13, Lemma 2.1]). Suppose each item i has a
nonnegative size Xi randomly taken from [0, 2]. For any subset S ⊆ N and
any 0 < ε < 1/2, if Pr(X(S) > 1) ≤ 1 − ε, the total expected size of S is
E[X(S)] ≤ 3/ε. 	
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Next, we discretize the value of Xi. For an item i, we say it realizes to big
size if Xi > ε4, otherwise small size. If Xi realizes to small size, we define the
corresponding discretized size X̃i as a Bernoulli random variable that takes 0 or
ε4. We can find a value 0 ≤ δ ≤ ε4 such that Pr(Xi ≥ δ | Xi ≤ ε4)ε4 = E[Xi |
Xi ≤ ε4]. That is to let the discretized size X̃i = 0 if 0 ≤ Xi < δ; otherwise
X̃i = ε4. Then, the probability Pr(X̃i = 0) and Pr(X̃i = ε4) are set accordingly
such that E[X̃i | Xi ≤ ε4] = E[Xi | Xi ≤ ε4]. If Xi realizes to big size, we
define the corresponding discretized size by X̃i = �Xi/ε5�ε5. Note that there are
d = O(1/ε5) different discretized sizes. With the above discretization, we have
the following lemma.

Lemma 5 (A variation of [13, Lemma 2.2]). Let a set S of item where
E[X(S)] ≤ 3/ε, and let 0 ≤ β ≤ 1 + O(ε). We have the following results

– Pr(X(S) ≤ β) ≤ Pr(X̃(S) ≤ β + O(ε)) + O(ε)
– Pr(X̃(S) ≤ β) ≤ Pr(X(S) ≤ β + O(ε)) + O(ε) 	


The probability of item i after size discretization is denoted as π̃i(s) where s
(s = 0) is the discretized input size. We define a signature of an item as

Sg(i) = (π̄i(s1), π̄i(s2), . . . , π̄i(sd))

where π̄i(s) = �π̃i(s)(n/ε6)�(ε6/n). Note that Sg is a d = O(1/ε5) dimensional
vector. For a subset S ⊆ N , the signature is defined as Sg(S) =

∑
i∈S Sg(i). By

Lemma 4, the number of different signature is at most (3n/ε11)O(1/ε5) = nO(1/ε5).
Furthermore, let X̄i be a random variable of input size for item i such that
Pr(X̄i = s) = π̄b(s) and Pr(X̄i = 0) be the rest of probability mass.

The properties of signatures and their corresponding compound Poisson dis-
tributions are shown below.

Lemma 6 (Monotonicity [13, Lemma 2.6]). Let S1 and S2 be two sets such
that Sg(S1) ≤ Sg(S2) (element-wise). Then, their corresponding compound Pois-
son distribution variables Y1 and Y2 satisfy Pr(Y1 > β) ≤ Pr(Y2 > β) for any
β ≥ 0. 	

Now we prove the following lemma.

Lemma 7. Let S1 and S2 be a set of small items where E[X̃(S1)] ≤ 3/ε and
E[X̃(S2)] ≤ 3/ε. If Sg(S1) ≤ Sg(S2), for any β ≥ 0, we have Pr(X̃(S1) > β) ≤
Pr(X̃(S2) > β) + O(ε).

Proof. Let us consider the total variation distance of two variables as
�(X1,X2) =

∑
s |Pr(X1 = s) − Pr(X2 = s)|. Since the probability distribution

of item is discretized by ε6/n and there are at most O(1/ε5) different discrete
sizes, we can conclude that �(X̃i, X̄i) ≤ O(ε/n).

Let Y be the compound Poisson distribution corresponding to Sg(S). Then,
by Le Cam’s Poisson approximation theorem (Lemma 3), we have �(X̄(S), Y ) ≤
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2
∑

j∈S π2
j , where πj = Pr(X̄j = 0). Note that S1 is a set of small items,

and Y1 is the corresponding compound Poisson random variable. We then have
�(X̄(S1), Y1) =

∑
j∈S1

(Pr(X̄j = 0))2 ≤ O(ε), because

Pr(X̄i = 0) ≤ Pr(X̃i = 0) = Pr(X̃i ≥ ε4) ≤ E[X̃i]/ε4 ≤ ε6

where the last inequality is from the definition of small item E[X̃b] ≤ ε10, and∑
i∈S1

Pr(X̄i = 0) ≤
∑
i∈S1

Pr(X̃i ≥ ε4) ≤ E[X̃(S1)]/ε4 ≤ 3/ε5,

where the last inequality comes from E[X̃(S1)] ≤ 3/ε. With similar analysis, we
also have �(X̄(S2), Y2) ≤ O(ε). By Lemma 6, we have that for any β > 0,

Pr(X̃(S1) > β) ≤ Pr(X̄(S1) > β) + �(X̄(S1), X̃(S1))
≤ Pr(Y1 > β) + �(X̄(S1), Y1) + O(ε)
≤ Pr(Y2 > β) + O(ε)
≤ Pr(X̄(S2) > β) + �(X̄(S2), Y2) + O(ε)

≤ Pr(X̃(S2) > β) + O(ε)

	

Corollary 1. Given two sets S1 and S2 of small items where E[X̃(S1)] ≤ 3/ε

and E[X̃(S2)] ≤ 3/ε. If Sg(S1) ≤ Sg(S2) and any big item set B, we have
Pr(X̃(S1) + X(B) > β) ≤ Pr(X̃(S2) + X(B) > β) + O(ε) for any β > 0. 	

Now we apply this corollary to reduce the chance constraint to a multidimen-
sional knapsack constraint with discretization. We first guess a subset B of big
items, which has only n3/ε11 candidates, and consider the remaining problem
that does not contain any big items. Since the remaining problem has no big
items, the Poisson approximation preserves the probability within accuracy O(ε).

More precisely, let S∗ be an optimal solution, and consider the case when
B ⊆ S∗ is the big items in the optimal solution. By Corollary 1, we know that
for any set S with Sg(S) ≤ Sg(S∗), S ∪ B is a feasible solution by differing
probability at most O(ε). This inspires us to solve the following problem

maximize fB(S)
subject to Sg(S) ≤ Sg (7)

by guessing the signature of X̃(S∗ \ B) by Sg. Note that this problem is the d-
dimensional knapsack constrained monotone submodular maximization problem.
Therefore, as same as in Sect. 1, we can utilize the continuous relaxation and
rounding to obtain a solution.
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Algorithm 2. Algorithm for Arbitrary Distribution
Input: Given a item set N , where size of each item is realized from arbitrary distribu-
tion. A submodular set function f . An input parameter ε and dimension of knapsack
d. Overflow probability ρ.

1: Apply size and probability discretization to all the items
2: for each subset of big items B such that E[X(B)] < 3/ε do
3: for each possible signature Sg do
4: for each subset T with |T | ≤ dε−3e do
5: Divide the rest items into light item set L and heavy item set H
6: Consider the optimization with only light item set L by removing H
7: Compute a solution S by the continuous relaxation and rounding method
8: Check the feasibility of set S ∪ B ∪ T .

9: Return the best possible set S ∪ B ∪ T .

4.2 Proposed Algorithm

We propose an algorithm for the problem (Algorithm2). We first guess a subset
B ⊆ N of the big items of an optimal solution. Then, we solve the d-dimensional
knapsack problem by the continuous relaxation and rounding method — we first
guess the signatures Sg of the remaining problem and the subset T ⊆ N \ B in
the optimal solution. By removing the heavy items from the instance, we solve
the residual knapsack problem by the continuous relaxation, and obtain a subset
by the rounding. We then output the best solution among the process.

The analysis of the algorithm is given as follows.

Proof (Proof of Theorem 2). We consider the case when B is the set of big items
in the optimal solution, Sg is the signature of S∗ \ B, and T ⊆ S∗ \ B is the
first dε−3e items in the decreasing order of the marginal profit as in the normal
distribution case.

We first show that S ∪ T ∪ B is feasible to the relaxed capacity and overflow
probability. By Lemma 5, we have

Pr(X(S ∪ T ∪ B) > 1 + O(ε)) ≤ Pr(X̃(S ∪ T ) + X(B) > 1 + O(ε)) + O(ε)

Furthermore, by Corollary 1 and Lemma 5,

Pr(X̃(S ∪ T ) + X(B) > 1 + O(ε)) ≤ Pr(X̃(S∗ \ B) + X(B) > 1 + O(ε)) + O(ε)
≤ Pr(X(S∗) > 1) + O(ε).

Thus, Pr(X(S ∪ T ∪ B) > 1 + O(ε)) ≤ ρ + O(ε).
We then prove the approximation guarantee. We put f(B) = βOPT for

some β and OPT ∗ = (1 − β)OPT . Let fB(T ) = αOPT for some α By the
continuous relaxation and rounding method, we obtain a random solution S such
that E[fB∪T (S)] ≥ (1−e−1 −O(ε))FB∪T (x̄∗), where x̄∗ is the optimal fractional
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solution. We then know FB∪T (x̄∗) ≥ fB∪T (L∗), where L∗ = L ∩ (S∗ \ (B ∪ T )).
The expected profit to obtained by the algorithm is

E[fB∪T (S)] + f(B) + fB(T )

≥ βOPT+ αOPT∗ + (1 − e−1 − O(ε))(OPT∗ − αOPT∗ − fB∪T ((S∗ \ (B ∪ T )) ∩ H))

≥ βOPT+ αOPT∗ + (1 − e−1 − O(ε))(OPT∗ − αOPT∗ − e−1αOPT∗)

≥ (1 − e−1 − O(ε))OPT

Here, the first inequality is due to Lemma 1, the second inequality comes from
submodularity and the fact that the number of heavy items in the residual
knapsack is less than ε−3d. 	


At last, we analyze the complexity of Algorithm2. The number of big item
sets is bounded by nO(1/ε11), the number of signatures is bounded by nO(1/ε5),
and there are at most O(ndε−3e) different set T . Thus, the algorithm solves the
residual d = O(1/ε5) dimensional knapsack problem polynomially many times.
Solving such residual knapsack problem requires polynomial time; hence, the
complexity of proposed algorithm is polynomial.

5 Conclusions

In this study, we considered the problem of maximizing monotone submodular
function subject to a chance-constraint. Specifically, we proposed algorithms for
two cases: the distributions of items follow normal distributions, and arbitrary
but known distributions. For the normal distribution case, for any ε > 0, the
proposed algorithm runs in polynomial time and gives a solution whose expected
profit is at least (1 − e−1 − O(ε)) to the optimal. For the arbitrary distribution
case, for any ε > 0, the proposed algorithm runs in polynomial time and gives a
solution whose expected profit is at least (1−e−1−O(ε) and violates the relaxed
knapsack constraint with at most the relaxed overflow probability.
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Abstract. The expander graph constructions and their variants are the
main tool used in gap preserving reductions to prove approximation
lower bounds of combinatorial optimisation problems. In this paper we
introduce the weighted amplifiers and weighted low occurrence of Con-
straint Satisfaction problems as intermediate steps in the NP-hard
gap reductions. Allowing the weights in intermediate problems is rather
natural for the edge-weighted problems as Travelling Salesman or
Steiner Tree. We demonstrate the technique for Travelling Sales-
man and use the parametrised weighted amplifiers in the gap reductions
to allow more flexibility in fine-tuning their expanding parameters. The
purpose of this paper is to point out effectiveness of these ideas, rather
than to optimise the expander’s parameters. Nevertheless, we show that
already slight improvement of known expander values modestly improve
the current best approximation hardness value for TSP from 123

122
([9]) to

117
116

. This provides a new motivation for study of expanding properties of
random graphs in order to improve approximation lower bounds of TSP
and other edge-weighted optimisation problems.

1 Introduction

The Travelling Salesman problem (TSP) is undoubtedly one of the most
famous combinatorial optimisation problems. In its standard version, we are
given an edge-weighted (undirected) graph and the goal is to find a closed tour
with a minimum cost that visits each vertex at least once. This is equivalent
to the Graphic Travelling Salesman problem where exactly one visit per
vertex is allowed and the cost between any two vertices corresponds to their
shortest path.

The shortest-path metric of the Graphic TSP plays an important role in
understanding of complexity for the Metric TSP problem. The approximabil-
ity of the Metric TSP is a long-standing open problem, Christofides’s approx-
imation algorithm with ratio 1.5 [4] hasn’t been improved for more than three
decades. It is generally believed that the approximation ratio can be close to 4/3
due to known integrality gap for the Held-Karp LP relaxation [8].
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In the last decade, some significant progress has been done in the Graphic
TSP. Gharan et al. [6] made first breakthrough with an (1.5−ε)-approximation
algorithm where ε being of the order of 10−12. Following that, Mömke and
Svensson [11] obtained a significantly better approximation factor of 14(

√
2−1)

12
√
2−13

≈
1.461, which was improved further to 13

9 ≈ 1.444 by Mucha [12]. To our best
knowledge, currently the best known approximation ratio is 1.4 due to [15]. The
overview about this recent development can also be found in [16].

However, there is still a significant gap between the ratio of the best approx-
imation algorithm and the approximation ratio that provably can’t be achieved
unless P = NP. The first APX-hardness result showed the NP-hardness to approx-
imate the TSP problem within 1 + ε without any explicit value for ε (Papadim-
itrious and Yannakakis, [13]). The first explicit value 5381/5380 was set by Enge-
bretsen [5], further improved to 3813/3812 by Böckenhauser et al. [1] and 220/219
by Papadimitrious and Vempala [14]. The further progress in the reductions and
amplifiers increased the threshold to 185/184 by Lampis [10] and to our best
knowledge the currently best value is 123/122 by Karpinski et al. [9].

Main Contribution. The main novelty of this paper is using weighted ampli-
fiers and weighted low occurrence of Constraint Satisfaction problems
(CSP) as intermediate steps in the NP-hard gap reductions to the Travel-
ling Salesman problem. Allowing the weights in intermediate problems to
TSP (or the Steiner Tree problem) is rather natural, as the problems them-
selves are using edge weights. We demonstrate the technique for TSP and use
the parametrised weighted amplifiers in the gap reductions to allow more flexi-
bility in fine-tuning their expanding parameters. In this paper we don’t aim to
optimise the parameters of amplifiers that provably exist, but show that already
slight improvement of known values modestly improve the hardness of approxi-
mation for TSP from the current best value 123

122 [9] to the new value 117
116 . This

provides a new motivation for study of expanding properties of random graphs in
order to improve approximation lower bounds of TSP and other edge-weighted
optimisation problems.

Preliminaries

All graphs in this paper are undirected and connected. Let G = (V,E) be
an edge-weighted graph with cost edge-function c : E → R

+. For an edge
e = {u, v} ∈ E we also use the notation uv as an shorthand. A tour in the
graph G is an alternating sequence of vertices and edges, starting and ending at
a vertex, where each vertex is incident with the previous and the following edge
in the sequence. If a starting and ending vertex is the same, the tour is closed.

Any solution of TSP is a closed tour, hence an Eulerian multigraph (edges
are taken with their multiplicities if they are used multiple times) spanning V .
A quasi-tour T in G is a multiset of edges from E such that all vertices in G are
balanced with respect to T (each vertex from V is incident with even number
of edges from T , possibly 0); hence each such connected component in G is an
Eulerian multigraph (or an isolated vertex).
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MAX-E3-LIN-2
Our inapproximability results for the Travelling Salesman problem use
reductions from H̊astad’s NP-hard gap type result for MAX-E3-LIN-2, the Max-
imum Satisfiability problem for linear equations modulo 2 with exactly 3 vari-
ables per equation [7] (more details can be found in Appendix). In fact, H̊astad’s
tight inapproximability results can be stated in the form in which every variable
occurs the same number of times in the system of equations, see e.g. [2].

Theorem 1. For every ε ∈ (
0, 1

4

)
and every fixed sufficiently large integer

k ≥ k(ε), the following partial decision subproblem Q(ε, k) of MAX-E3-LIN-2
is NP-hard: given an instance of MAX-E3-LIN-2 with m equations and exactly
k occurrences of each variable, to decide if at least (1− ε)m or at most (12 + ε)m
equations are satisfied by the optimal assignment.

The results of such form were already used to prove the inapproximability
results for other optimisation problems, e.g., the Steiner Tree problem [3].

For some optimisation problems it is more convenient to use reductions if all
equations of MAX-E3-LIN-2 have the same right hand side. The NP-hard gap
results in such a case can be easily enforced if we allow flipping some occurrences
of variables, so also the literal x (:= 1 − x) can be used for a variable x. The
canonical gap versions Qb(ε, 2k), for any fixed b = 0 or b = 1, of MAX-E3-LIN-2
are as follows:

The Qb(ε, 2k) problem, b ∈ {0, 1}
Input: An instance of MAX-E3-LIN-2 with m equations of the form x⊕y⊕z = b,
each variable occurring exactly k times as unnegated and k times negated.
Task: To decide if at least (1 − ε)m or at most ( 12 + ε)m equations are satisfied
by the optimal assignment.

The corresponding ‘fixed occurrence’ NP-hard gap result reads as follows (see
[2] for the details of the following theorem):

Theorem 2. For every ε ∈ (0, 1
4 ) and every sufficiently large integer k, k ≥

k(ε), the partial decision subproblems Q0(ε, 2k) and Q1(ε, 2k) of MAX-E3-LIN-2
are NP-hard.

Weighted Amplifiers
Amplifier graphs are useful in proving inapproximability results for CSPs in
which every variable appears a bounded (and, typically, very low) number of
times. Such CSPs are often used as intermediate steps in proving approxima-
tion hardness results for many combinatorial optimisation problems. For prob-
lems like Travelling Salesman, or Steiner Tree which are based on edge
weights, it is natural to consider the intermediate low degree CSPs with their
edge weights as well.

For a graph G = (V,E), a cut is a partition of V into two subsets U
and U := V \ U . The cut set E(U,U) is defined as E(U,U) = {uv ∈
E, u ∈ U and v ∈ U} and the cut size as |E(U,U)|. If edges are weighted
with p : E → R

+, then p(E(U,U)) is weight of the cut set E(U,U), hence
p(E(U,U)) =

∑
uv∈E,u∈U,v∈U p(uv).
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Definition 1. Let G = (V,E) be a graph with edge weights p : E → R
+, and

D ⊆ V , |D| ≥ 2. We say that a weighted graph (G, p) is an amplifier for D if
for every vertex set A ⊆ V

p(E(A,A)) ≥ min{|D ∩ A|, |D ∩ A|}.

The vertices of the given set D are called the contacts, the rest of the vertices
(= V \ D) is the set of checkers. We say that an amplifier (G, p) for the set D
is a d-regular amplifier if, additionally, all contacts have degree (d − 1) and all
checkers have degree d (in G).

In full generality, one could also allow distinct weights for vertices of D to
replace the sizes |D ∩ A|, |D ∩ A| with their weighted version, but for our
purposes the vertices of D are uniformly weighted each with weight 1.

2 Intermediate Weighted CSPs

In this section we extend the NP-hard gap results from a system of linear equa-
tions with exactly 3 variables to a low occurrence version of w-MAX-3-LIN-2, a
weighted hybrid system of linear equations over Z2 with either 2 or 3 variables.
Similarly to MAX-E3-LIN-2, the task of the w-MAX-3-LIN-2 problem is to find
an assignment that maximizes weight of the satisfied equations in the hybrid
system.

To prove the NP-hard gap results for the w-MAX-3-LIN-2 problem, we extend
H̊astad’s results for MAX-E3-LIN-2 using the amplifiers defined in Sect. 1.
Reduction from Q(ε, k) to w-MAX-3-LIN-2
Let ε ∈ (0, 1

4 ), and k > 0 be an integer such that the problem Q(ε, k) is NP-hard.
Let an instance I of Q(ε, k) be given, denote by ν(I) the set of variables of I,
ν := |ν(I)|. Let’s assume that G = (V,E) with the edge weights p : E → R

+ be
an amplifier for a set D ⊆ V with |D| = k.
Now we describe a gap preserving reduction from Q(ε, k) to the w-MAX-3-LIN-2
problem with an amplifier (G, p) as a parameter. The instance I of Q(ε, k) is
transformed to a weighted hybrid instance J of w-MAX-3-LIN-2.

• For each variable x ∈ ν(I) take a copy of the amplifier (G, p), let (Gx, p)
denote that copy:
– Inside (Gx, p) the vertices correspond to the variables in J and each edge
vv′ represents the equation v ⊕ v′ = 0 with weight p(vv′) in J .
The contact vertices of (Gx, p) represent k occurrences of the variable x in
the equations of I. Distinct occurrences of a variable x in I are represented
by the distinct contact vertices in Gx.

• Every equation x ⊕ y ⊕ z = b from I, b ∈ {0, 1}, also belongs to J with
weight 1.

Remark 1. Observe that the above reduction from an instance I of Q(ε, k) to
an instance J of w-MAX-3-LIN-2 preserves the NP-hard gap of Q(ε, k). Indeed,
there is a simple dependence of an optimal value for J on that of I.
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In the following we show that if we look at these problems as Minimum
Unsatisfiability problems, where OPT′ is the corresponding minimum weight
of unsatisfied equations over all assignments, then OPT′(I) = OPT′(J). Clearly,
any assignment to variables from ν(I) generate an assignment to variable of J
in a natural way; the value of a variable x ∈ ν(I) is assigned to all variables of
Gx. Such assignments to variables of J are called standard. Hence, obviously
OPT′(J) ≤ OPT′(I).

The observation that the optimum OPT′(J) is achieved on standard assign-
ments is based on the amplifier’s properties. Any assignment ϕ to the variables
of J can be converted to a standard one in such a way that the weight of unsatis-
fied equations doesn’t increase as follows: consider a variable x from ν(I). Assign
to all variables in Gx the same value as it is assigned to the majority of con-
tact vertices in Gx by the assignment ϕ. The fact that (Gx, p) is the amplifier
ensures that the weight of unsatisfied equations in J doesn’t increase. Now if
we repeat the same operation for each variable from ν(I), one after another, the
result will be a standard assignment without increase of the weight of unsatisfied
equations in J . Consequently, OPT′(J) is achieved on the standard assignments.
But for every standard assignment the weight of unsatisfied equations of J is
the same as the number of unsatisfied equations of I by that assignment, hence
OPT′(I) = OPT′(J).

Reduction from Qb(ε, 2k) to w-MAX-3-LIN-2
Now we slightly modify the previous reduction from Q(ε, k) to deal with the
instances of Qb(ε, 2k) for any fixed b = 0 or b = 1.

Let ε ∈ (0, 1
4 ) and k > 0 be an integer such that Qb(ε, 2k) is NP-hard.

Assume that G = (V,E) with edge weights p : E → R
+ is an amplifier for a set

D ⊆ V with |D| = 2k. Let {V u, V n} be a partition of V balanced in D, namely
|D ∩ V u| = |D ∩ V n| = k. Denote further Gu and Gn the induced subgraph
of G with the vertex sets V u and V n, respectively. In what follows we describe
the reduction from Qb(ε, 2k) to w-MAX-3-LIN-2 parametrised by an amplifier
(G, p) for D ⊆ V with |D| = 2k and with chosen balanced partition {V u, V n}
of V .

Let an instance I of Qb(ε, 2k) be given, ν(I) be the set of variables of I,
ν = |ν(I)|.
• For each variable x from ν(I) take a copy of an amplifier (G, p), let Gx denote

such a copy.
– Any edge vv′ inside either Gu

x or Gn
x represents the cycle equation v⊕v′ = 0

taken with weight p(vv′).
– Any edge between v ∈ V u

x and v′ ∈ V n
x in Gx represents the matching

equation v ⊕ v′ = 1 taken with weight p(vv′).
• The contact vertices of Gu

x (resp. Gn
x) represent k occurrences of unnegated

(resp. negated) variable x in the equations of I. Every equation x⊕ y ⊕ z = b
from I, b ∈ {0, 1}, also belongs to J with weight 1.

This way we produce an instance J of the w-MAX-3-LIN-2 problem. Any
assignment to variables from ν(I) generates an assignment to variables of J in a
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natural way: the value of a variable x is assigned to all variables of Gu
x, and the

value opposite to x, x = 1−x, is assigned to all vertices of Gn
x . Such assignment

to the variables of J is called standard. Similarly to the previous reduction,
any assignment to variables of J can be converted to a standard one without
increasing the weight of unsatisfied equations as it follows from properties of an
amplifier.

3 The Weighted Bi-wheel Amplifiers

The previous reductions were based on a theoretical model of amplifiers with
required properties, without proving their existence. In this section we introduce
a class of weighted graphs with such expanding properties that generalise the
bi-wheel amplifiers from [9]. Further we describe in the details the properties of
the instances of the subproblem of w-MAX-3-LIN-2, called the Hybrid bi-wheel
instances.

Definition 2. Let an integer k > 0 and a rational number τ > 1 be such that
τk is an integer. The weighted (2k, τ)-bi-wheel amplifier Wk,τ = (V,E),
p : E → R

+, is a (weighted) 3-regular amplifier with a specific balanced partition
constructed as follows: Take two disjoint cycles, each on τk vertices (connected
in consecutive order), V u = {1u, 2u, . . . , (τk)u} and V n = {1n, 2n, . . . , (τk)n},
respectively. Select the sets of k contacts Du ⊆ V u and Dn ⊆ V n as Du =
{cu

1 , cu
2 , . . . , cu

k}, Dn = {cn
1 , cn

2 , . . . , cn
k}. The remaining vertices of both cycles,

V u \ Du and V n \ Dn, are checkers.
To complete the construction, consider a perfect matching between the check-

ers of these two cycles where each matching edge has one vertex in the first cycle
V u \ Du and another one in the second cycle V n \ Dn.

We assume that in each cycle of the bi-wheel consecutive contacts are sepa-
rated by a chain of several (at least 1) checkers. Hence, in particular, τ ≥ 2.

Remark 2. Let us denote by Cu (Cn, resp.) the set of edges contained in the
first (the second, resp.) cycle in Wk,τ , so Cu = {{iu, (i + 1)u} : i = 1, 2, . . . , τk}
and Cn = {{in, (i + 1)n}} : i = 1, 2, . . . , τk} (the vertex τk + 1 is the vertex 1),
and by M ⊆ E the associated perfect matching on the set of checkers. Clearly,
|Cu| = |Cn| = τk, |M| = |V u \ Xu| = |V n \ Xn| = (τ − 1)k.

In this paper we consider only bi-wheel amplifiers (Wk,τ , p) whose weights
have uniform cycle weight pc for all cycle edges of both Cu and Cn, and another
uniform matching weight pm for all matching edges from M.

Now we are ready to describe the specific properties of the Hybrid bi-wheel
instances of w-MAX-3-LIN-2 based on a fixed (2k, τ)-bi-wheel amplifier Wk,τ

with weights pc and pm.
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Theorem 3. For every ε ∈ (0, 1
4 ) and b ∈ {0, 1} there exist instances of

w-MAX-3-LIN-2, called Hybrid(Wk,τ , p), with the following properties:

(i) each variable of the system equations Hybrid(Wk,τ , p) occurs exactly 3 times;
(ii) m equations are of the form x ⊕ y ⊕ z = b, each of weight 1;
(iii) 3τm equations are of the form x ⊕ y = 0 each of weight pc;
(iv) 3

2m(τ − 1) equations are of the form x ⊕ y = 1 each of weight pm,

for which it is NP-hard to decide whether there is an assignment to the variables
that leaves unsatisfied equations of weight at most εm, or every assignment to
the variables leaves unsatisfied equations of weight at least (0.5 − ε)m.

The reduction from Hybrid(Wk,τ , p), presented later in Sect. 4, is a gap pre-
serving reduction to TSP parametrised by a (2k, τ)-bi-heel amplifier with cycle
weights pc and matching weights pm. The trade-off between parameters pc, pm

and τ is crucial for quality of approximation lower bounds.

Definition 3. We call the triple (pc, pm, τ) admissible if for every k0 there exists
k ≥ k0 and a (2k, τ)-bi-wheel that is an amplifier with cycle weights pc and
matching weights pm.

The bi-wheel amplifiers introduced by Berman and Karpinski [9] are based
on the fact that the triple (pc = 1, pm = 1, τ = 7) is admissible. This leads to
NP-hardness to approximate TSP to within any constant approximation ratio
less than 123

122 . They also observed [9] that their proof (of amplification properties)
doesn’t seem to work with τ = 6 instead τ = 7. However, there is an opportunity
for fine-tuning here if we allow non-integral τ . If, e.g., 90% of pairs of consecutive
contacts in bi-wheel cycles are separated by 6 checkers, and 10% of such pairs are
separated by a chain of 5 checkers only, then the proof of required amplification
properties still works. The detailed explanation together with all computations
for wheel amplifiers can be found in the paper [2]. The proof for bi-wheels is
very similar, so along these lines one can argue that the triple (pc = 1, pm = 1,
τ = 6.9) is admissible. This itself would (very modestly) improve on the lower
approximation bound for TSP given in [9].

Introducing weighted amplifier graph constructions seems to have paid off
even more compared to improvement of parameters for unweighted amplifiers.
In this case we have more freedom in fine-tuning the approximation hardness
lower bounds obtained in parametric way, if we can prove that bi-wheel amplifiers
with certain parameters (pc, pm, τ) exist.

Let us explain trade-off between parameters (pc, pm, τ) of bi-wheels in a sim-
ple scenario with pm = 1 fixed. Our contribution allows to use weighted ampli-
fiers with pc < 1 (strengthening of amplifiers) or with pc > 1 (relaxing of ampli-
fiers). One can achieve amplifiers with pc < 1 by increasing τ from τ = 7. On the
other hand, to relax to pc > 1 can be achieved with τ < 7. These ideas indicate
importance to better understand the exact trade-off between (pc, pm, τ) triples
for bi-wheel amplifiers that provably exist.

In this paper we don’t include too many new results on expanding properties
of random graphs, we rather demonstrate effectiveness of weighted parametrised
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amplifiers and address the question of fine-tuning in (pc, pm, τ) triples for bi-
wheel amplifiers. We sketch how these ideas will modestly improve known lower
bounds for TSP if we allow bi-wheel with pc < 1.

Theorem 4. The triple (pc = 1
2 , pm = 1, τ = 11) is admissible, hence for every

large enough k ≥ k0 there is a (2k, 11)-bi-wheel that is an amplifier with cycle
weights pc = 1

2 and matching weights pm = 1.

4 Gap Preserving Reduction from Hybrid(Wk,τ , p)
to TSP

In this section we describe a gap preserving reduction from the system of equa-
tions Hybrid(Wk,τ , p) to the Travelling Salesman problem. In the reduction
we suppose that all equations of Hybrid(Wk,τ , p) with three variables are of
the form x ⊕ y ⊕ z = 0 to simplify a discussion later (hence Hybrid(Wk,τ , p)
was obtained via reduction from Q0(ε, 2k)). We also introduce a real parame-
ter θ > 0 set to θ = 1

max{1, pm} , in order to simultaneously capture different
scenarios pm ≤ 1 and pm > 1.

The gap preserving reduction is similar to the reduction presented in [9], the
main difference is in using a parametrised weighted (2k, τ)-bi-wheel amplifier
(Wk,τ , p) introduced in Sect. 3. We use the concept of forced edges introduced
by Lampis in [10] (used also in [9]). The idea is based on the observation that we
are able to stipulate that some edges, called forced edges, are to be used at least
once in any valid tour. It can be achieved by replacing such an edge with a path
of many edges of the same total weight. With this trick we may assume without
loss of generality that we can force some edges to be used at least once (see [9]
for the details). If u and v are vertices that are connected by a forced edge e,
we write {u, v}F or simply uvF . The construction contains some forced edges,
all other edges in the constructed graph are unforced edges with edge weight 1.

We start with an instance I of Q0(ε, 2k) with ν variables, m equations of the
form x ⊕ y ⊕ z = 0 and use the reduction from Sect. 2 to create an instance
J of Hybrid(Wk,τ , p). Using the same notation as in Theorem 3 we construct
an instance G[J ] of TSP in the following way: for each copy Wj := (Wk,τ , p),
1 ≤ j ≤ ν, of a (2k, τ)-bi-wheel we construct a subgraph of G[J ]:

(i) each variable x of the bi-wheel Wj , corresponds to a vertex x in the subgraph,
(ii) for each cycle equation x ⊕ y = 0, we create an unforced edge xy with

weight 1.

Now we add the edges among the vertices of ‘bi-wheel’ subgraphs using two
types of gadgets:

• a 3-variable gadget H3Q:
for each equation j, 1 ≤ j ≤ m, of the form x⊕ y ⊕ z = 0 we add a 3-variable
gadget H3Q

j connecting the contacts x, y, z, where each contact vertex x, y,
and z is part of its own (2k, τ)-bi-wheel. Each gadget H3Q

j contains two new
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vertices γl, γr for every vertex γ ∈ {x, y, z} and two additional vertices el
j and

er
j , see Fig. 1 how the vertices are connected. All edges {γα, γ}F with α ∈ {r, l}

and γ ∈ {x, y, z} are forced edges with weight w({γα, γ}F ) = 0.5 + pcθ. All
remaining edges of H3Q

j are unforced with weight 1.
• a matching gadget H2M :

for each equation xu
t ⊕ xn

q = 1 we add a matching gadget H2M connecting
the checkers xu

t and xn
q via two forced edges {xu

t , xn
q }1F and {xu

t , xn
q }2F , each

of the same weight 2pcθ (Fig. 2).

At the end of the construction, we add a new central vertex s that is connected
to every gadget H3Q

j with two forced edges {el
j , s}F and {er

j , s}F , both with
weight 0.5, w({eα

j , s}F ) = 0.5 for both α ∈ {r, l}.
Observe that the construction doesn’t need gadgets for the cycle edges, the

connections between the matching edge gadgets are sufficient to encode these
constraints.

x

xl xr

bi-wheel Gx . . .

y

yl yr

bi-wheel Gy . . .

z

zl zr

bi-wheel Gz . . .

elj erj

s

0.50.5

0.5 + pcθ

Fig. 1. An example of a 3-variable gadget H3Q
j including the central vertex s, which

is not part of the gadget. Thick lines represent forced edges.

xu
t

xn
q

pc

pm

Fig. 2. A gadget H2M inside the bi-wheel Gx for the equations xu
t ⊕ xn

q = 1 contains
only two forced edges, represented as thick lines.
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Now in the following we describe in the details the properties of the gap
preserving reduction from the Hybrid(Wk,τ , p)} to the Travelling Salesman
problem.

Local Edge Cost. To count the cost c(T ) of a tour T , we use the local edge
cost counting based on the ideas from [9]: the cost w(uv) of any edge uv of T is
split into two nonnegative parts, one attached to u and the second one to v. If an
edge uv doesn’t contain s then cost is split equally with contribution 0.5w(uv)
for each vertex, but for edges of the form us, the full cost contributes to u, and
none to s.

Let T be a multi-set of edges from E that defines a quasi-tour in G[J ](V,E).
Then for a set V ′ ⊆ V , the local edge cost of V ′ is formally defined as

cT (V ′) =
∑

u∈V ′\{s}

∑

uv∈T

0.5w(uv) +
∑

eα
j ∈V ′

∑

eα
j s∈T

0.5w(eα
j s).

Note that for two vertex sets V1, V2 we have cT (V1∪V2) ≤ cT (V1)+cT (V2) (with
equality for disjoint sets), and cT (V ) =

∑
e∈T w(e).

In Subsect. 4.2 we also use the full local cost of the quasi-tour T for the set
V ′, c∗

T (V ′), which is defined as follows: if #T (V ′) is the number of connected
components induced by T which are fully contained in V ′, then

c∗
T (V ′) = cT (V ′) + 2#T (V ′).

Intuitively, c∗
T (V ′) captures the cost of the full tour restricted to V ′: it includes

the local edge cost and the cost of a connection of the components on V ′ of the
lowest possible price (using two unforced edges), to the rest of the tour.

4.1 How to Construct a Tour from an Assignment

Given an instance J of the Hybrid(Wk,τ , p) and an assignment ϕ to its variables,
we describe a construction of a tour T in G[J ] with cost related to ϕ.

Lemma 1. Let J be an instance of Hybrid(Wk,τ , p) from Theorem3. If there
exists an assignment ϕ to the variables of J with unsatisfied equations of total
weight Δ, then there exists a tour in G[J ] with cost at most

(
3
2
(τ − 1)(4pcθ + 1) + 6pcθ + 10

)
m + 2ν + Δ.

4.2 How to Define an Assignment from a Tour

Now we need to prove the opposite direction of the gap preserving reduction:
given a tour in G[J ] the task is to define an assignment to the variables of the
system equations I of Hybrid(Wk,τ , p) such that weight of unsatisfied equations
is in a correlation with cost of a given tour.
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Lemma 2. If there is a tour in G[J ] with cost
(

3
2
(τ − 1)(4pcθ + 1) + 6pcθ + 10

)
m + Δ − 2,

then there is an assignment to the instance J that leaves unsatisfied equations of
weight at most Δ · max{1, pm} = Δ

θ , where θ = 1
max{1, pm} .

The high-level idea of the proof is to partition the vertex set of G[J ] into
the gadget-based subgraphs similarly as in the proof of Lemma1. For each such
subgraph we give a lower bound on the local edge cost of any quasi-tour restricted
to it, which in fact corresponds to cost of the tour constructed in Lemma 1. If a
given quasi-tour behaves inside a gadget differently, its cost must be obviously
higher. The difference between the tour’s local edge cost and the lower bound is
called the credit of the gadget. Based on the tour we define an assignment for
J and show that the total sum of credits can be used to bound from above the
weight of unsatisfied equation, where the total sum of credits is at most Δ.

Theorem 5. If (pc, pm, τ) is an admissible triple then it is NP-hard to approxi-
mate the Travelling Salesman problem to within any constant approximation
ratio less than

1 +
1

3(τ − 1)(4pc + max{1, pm}) + 12pc + 20max{1, pm} .

Proof. Let ε ∈ (0, 1
4 ). Consider a (2k, τ)-bi-wheel with large enough k, which is

an amplifier with cycle weights pc and matching weights pm. We have instances
of Hybrid(Wk,τ , p) with ν copies of a bi-wheel (Wk,τ , p), m equations of the form
x⊕y⊕z = 0 each of weight 1, 3τm equations of the form x⊕y = 1 each of weight
pm with the following NP-hard gap results: It is NP-hard to decide whether there
is an assignment to the variables that leaves unsatisfied equations of weight at
most εm, or every assignment to the variables leaves unsatisfied equations of
weight at least (0.5−ε)m. Due to Lemmas 1 and 2 we now know that for produced
instances G[J ] of TSP it is NP-hard to decide whether there is a tour with cost
at most

(
3
2 (τ − 1)(4pcθ + 1) + 6pcθ + 10

)
m + 2ν + εm, where θ = 1

max{1, pm} or
all tours have cost at least

(
3
2 (τ −1)(4pcθ +1)+6pcθ +10

)
m+(0.5− ε)m · θ −2.

The ratio between these two cases can get arbitrarily close to

1 +
1

3(τ − 1)(4pc + max{1, pm}) + 12pc + 20max{1, pm}
by appropriate choices of ε > 0 and large enough k. ��

Therefore, using the constants of admissible triples from Theorem 4 we can
conclude

Corollary 1. It is NP-hard to approximate the Travelling Salesman prob-
lem within any constant approximation ratio less than 117

116 .



126 M. Chleb́ık and J. Chleb́ıková

5 Conclusion

The methods of this paper provide a new motivation for the study of expand-
ing properties of random graphs. As we have demonstrated, introducing the
parametrised weighted amplifiers and weighted low occurrence Constraint
Satisfaction problems as intermediate steps in the NP-hard gap reductions,
allows more flexibility in fine-tuning their expanding parameters. We show that
already slight improvement of known expander values modestly improve the
hardness of approximation for TSP from the current best value 123

122 [9] to the
new value 117

116 . The introduced method of weighted amplifiers (or expanders)
can be of independent interest. Such technique could be used in the gap preserv-
ing reductions for other edge-weighted optimisation problems to improve their
approximation hardness results.
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Abstract. We consider a natural variant of the well-known Feedback
Vertex Set problem, namely the problem of deleting a small subset
of vertices or edges to a full binary tree. This version of the problem is
motivated by real-world scenarios that are best modeled by full binary
trees. We establish that both the edge and vertex deletion variants of the
problem are NP-hard. This stands in contrast to the fact that deleting
edges to obtain a forest or a tree is equivalent to the problem of finding a
minimum cost spanning tree, which can be solved in polynomial time. We
also establish that both problems are FPT by the standard parameter.

Keywords: Full Binary Trees · Feedback Vertex Set · NP-hardness

1 Introduction

The Feedback Vertex Set (FVS) problem asks for a smallest subset S of
vertices in an undirected graph G to be removed such that the graph, G \ S,
becomes acyclic. This problem was one of the first problems shown to be NP-
complete [6], and has applications to problems that arise in several areas. These
applications include, but are not limited to, operating systems, database systems
and VLSI chip design. Consequently, the FVS problem has been widely studied
in the context of exact, parameterized and approximation algorithms.

Several variations of the FVS theme have also emerged over the years. For
instance, one line of work considers the task of “deleting to specialized forests”,
such as forests of pathwidth one [3,8] or forests whose connected components
are stars of bounded degree [5]. In this case, the forests of pathwidth one turn
out to be graphs whose connected components are caterpillars.

Meanwhile, another line of work is the Tree Deletion Set (TDS) problem
that considers the issue of the connectivity of the structure after the solution
has been deleted. In particular, the TDS problem asks for a smallest subset of
vertices S such that G \ S is a tree [7,10]. We remark that the NP-completeness
of this TDS problem follows from a general result of Yannakakis [12]. To state
this result, recall that a property π is a class of graphs, and we will say that π
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is satisfied by, or is true for, a graph G if G ∈ π. A property is said to be non-
trivial if it is satisfied for at least one graph and false for at least one graph; it
is interesting if the property is true for arbitrarily large graphs and is hereditary
on induced subgraphs if the deletion of any node from a graph in π always results
in a graph that is in π. The result in question states that the problem of finding
a maximum connected subgraph satisfying a property π is NP-hard for any non-
trivial and interesting property that is hereditary on induced subgraphs.

In this work, we pose a variation of FVS that is in the spirit of a combination
of the variations that we have alluded to; here, however, we are looking for a
connected object with additional structure. Specifically, we consider the problem
of deleting to a full binary tree. We recall that a full binary tree is a tree that
has exactly one vertex of degree two and no vertex of degree more than three.
Consider the problem of optimally deleting to a full binary tree, posed in the
language of the theorem of Yannakakis [12] stated above, which is to find a
maximum connected subgraph that satisfies a certain property. Observe that
the property in question could be defined as the property of not having cycles,
having exactly one vertex of degree two and no vertex of degree more than three.
Note that this property is not hereditary on induced subgraphs: in particular,
the deletion of a leaf from a graph that has the property will lead to a violation
of the property. In our first result, we explicitly establish the NP-hardness of
this problem by reducing from a variant of the Independent Set problem.

In addition, we also consider the edge deletion version of the question above.
Recall that for a given connected graph on n vertices and m edges, deleting a
smallest subset of edges to obtain a tree is straightforward: it is clear that we
have to remove every edge that does not belong to a spanning tree, so the size
of the solution is always (m − (n − 1)). In fact, this problem can be solved in
polynomial time even when the edges have weights and we seek a subset of edges
of smallest total weight, whose removal results in a tree. It is straightforward to
see that any such solution is the complement of a maximum spanning tree and
thus, can be found in polynomial time.

In a somewhat surprising twist, we show that the problem of deleting a
subset of edges of minimum total weight to obtain a full binary tree is, in fact,
NP-complete. To establish some intuition for why this is true, we briefly sketch a
simple reduction from the problem of Exact Cover by 3-Sets to the closely
related problem of deleting edges to obtain a full ternary tree.

A ternary tree is a tree where every non-leaf vertex, except the root, is exactly
of degree four, while the root has degree three. Let F := {S1, . . . ,Sp} be a family
of sets of size three over the universe U := {x1, . . . , xq}. The goal is to find a
subfamily of disjoint sets whose union is U. We create a full ternary tree T with
p leaves labeled {t1, . . . , tp}, and set the weight of the edges of T to B, a quantity
that we will specify later. Then, we introduce for every element xi in the universe
a vertex vi that is adjacent to tj, if and only if xi ∈ Sj. The edges between the
leaves of T and the vertices corresponding to the elements of U have unit weights.
We also set B = 3p− q+ 1. It is easy to verify that this graph has a solution of
cost 3p − q if and only if the system U has an exact cover, as desired.
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It turns out that establishing the hardness of the problem of deleting to full
binary trees is non-trivial, and this is one of our main contributions. We reduce
from a fairly restrained version of the Satisfiability problem, the hardness of
which is inspired by a reduction in [1] and is of independent interest. We note
that we deal with the weighted versions of the problems considered, and we also
fix a choice of root vertex as part of the input. Finally, we also note that both the
problems we propose above are fixed-parameter tractable, when parameterized
by the solution size. To this end, we describe a natural branching algorithm and
remark that most preprocessing rules that work in a straightforward manner for
Feedback Vertex Set fail when applied as-is to our problem. In particular, it
is not trivial to delete degree-one vertices or short-circuit vertices of degree two.

We believe that the problem we propose and the study we undertake has con-
siderable practical motivation. One of the applications of FVS and related prob-
lems is to understand noisy datasets. For example, let us say that we expect the
data to have a certain structure, but errors in the measurement cause the data
at hand not to have the properties expected by said structures. In this context,
one approach will be to identify and eliminate the noise - for acyclic structures,
that could translate identifying a FVS of small cost. Therefore, for scenarios where
the data corresponds to full binary trees, for instances in the case of phylogenetic
trees, the problem we present here will be a more relevant model.

2 Preliminaries

We follow standard notation and terminology from parameterized complexity [2]
and graph theory [4]; we use [n] to denote the set {1, 2, . . . ,n}. We now turn to
the definitions of the problems that we consider.

Full Binary Tree Deletion by Vertices (FBT-DV)
Input: A graph G = (V,E), a vertex r ∈ V, vertex weights w : V → R

+,
and k ∈ Z

+.
Question: Does G have a subset S ⊆ V of total weight at most k such
that G \ S is a full binary tree rooted at r?

The problems of Full Binary Tree Deletion by Edges (FBT-DE),
Complete Binary Tree Deletion (by edges or vertices) and Binary Tree
Deletion (by edges or vertices) can be defined analogously. Our focus in this
contribution will be mainly on FBT-DV and FBT-DE.

The Multi-Colored Independent Set problem is the following.

Multi-Colored Independent Set (MCIS)
Input: A graph G = (V,E) and a partition of V = (V1, . . . ,Vk) into k

parts.
Parameter: k

Question: Does there exist a subset S ⊆ V such that S is independent
in G and for every i ∈ [k], |Vi ∩ S| = 1?
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3 NP-hardness

In this section, we establish that the problems of deleting to full binary trees
via vertices or edges are NP-complete. We first describe the hardness for the
vertex-deletion variant.

Theorem 1. FBT-DV is NP-complete.

Proof. We reduce from Multi-Colored Independent Set [2, Corollary 13.8].
Let (G,k) be an instance of MCIS where G = (V,E) and further, let V =
(V1, . . . ,Vk) denote the partition of the vertex set V. We assume, without loss of
generality, that |Vi| = n for all i ∈ [k]. Specifically, we denote the vertices of Vi

by {vi
1, . . . , v

i
n}. We are now ready to describe the reduced instance of FBT-DV,

which we denote by (H, �).
To begin with, let H be a complete binary tree with 2nk leaves, where a

complete binary tree is a full binary tree with 2w vertices at distance w from
the root for all w ∈ [d − 1], where d the distance between the root and the leaf
furthest away from the root. We denote these leaf vertices as:

(∪1�i�k{a
i
1, . . . ,a

i
n}

) ⋃(∪1�i�k{b
i
1, . . . ,b

i
n}

)
,

where, for all i ∈ [k] and j ∈ [n], ai
j and bi

j are siblings, and their parent is
denoted by pi

j. We refer to this as the backbone, to which we will now add more
vertices and edges.

For each i ∈ [k] and j ∈ [n], we now introduce a third child of pi
j, which we

denote by ui
j. We refer to the u’s as the essential vertices, while its siblings (the

a’s and the b’s) are called partners. For all 1 � i � k, we also introduce two
guards, denoted by xi and yi, which are adjacent to all the essential vertices of
type i, that is, all ui

j for j ∈ [n]. Finally, we ensure that the graph induced on
the essential vertices is a copy of G, more precisely, we have:

(ur
i ,u

s
j ) ∈ E(H) if and only if (vr

i , v
s
j ) ∈ E(G) for all i ∈ [k] and j ∈ [n].

We set � = nk. This completes the construction. We now turn to a proof of
equivalence.

The Forward Direction. If S ⊆ V is a multi-colored independent set, then con-
sider the subset S∗ given by all the essential vertices corresponding to V\S, along
with the partner vertices ai

j for each (i, j), for which vi
j belongs to S. It is easy to

verify that the proposed set consists of nk vertices. Observe that the deletion of
S∗ leaves us with a full binary tree where each pi

j now has two children - either
two partner vertices (for vertices not in S) or one essential vertex along with
one partner vertex (for vertices in S). Further, each pair of guards of type i now
has an unique parent, which is the essential vertex corresponding to the vertex
given by S ∩ Vi. The essential vertices have degree exactly three because their
only other neighbors in H were essential vertices corresponding to neighbors in
G, but the presence of any such vertex in H \ S∗ will contradict the fact that S

induces an independent set in G. This concludes the argument in the forward
direction.
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The Reverse Direction. Let S∗ be a subset of V(H) such that H\S∗ is a full binary
tree. We claim that S∗ ∩ {pi

j | 1 � i � k and 1 � j � n} = ∅, since the deletion
of any parent of a partner vertex will result in the corresponding partner vertex
becoming isolated in H\S∗— which leads to a contradiction when we account for
the budget constraint on S∗. Since all the parents of partner vertices survive and
have degree four in H, it follows that at least one of its neighbors must belong to
S∗. In particular, we claim that for every i ∈ [k] and j ∈ [n], S∗ ∩ {ui

j,a
i
j,b

i
j} �= ∅.

Indeed, if this is not the case, then S∗ contains the parent of p
j
i, and it is easy

to verify that this leads to a situation where either H \ S∗ is disconnected or
one of the guard vertices has degree two and is not the root, contradicting the
assumption that H \ S∗ is a full binary tree.

From the discussion above, it is clear that S∗ picks at least n vertices of type
i for each 1 � i � k, and combined with the fact that |S∗| � nk, we note that S∗

does not contain any of the guard vertices. Our next claim is that for all i ∈ [k],
G \ S∗ contains at least one essential vertex of type i. If not, then S∗ contains
all the neighbors of the guards of type i, which makes them isolated in G \ S∗–a
contradiction.

For each 1 � i � k, consider the vertex in G corresponding to the essential
vertex that is not chosen by S∗ (in the event that there are multiple such vertices,
we pick one arbitrarily). We denote this collection of vertices by S. We claim that
S induces an independent set in G: indeed, if not, then any edge in G[S] is also
present in H \ S∗ and creates a cycle when combined with the unique path
connecting its endpoints via the backbone, which is again a contradiction. This
concludes the proof. 	


We now turn our attention to the edge-deletion variant. Here, we will find
it convenient to reduce from a structured version of exact satisfiability, where
the occurrences of the variables are bounded in frequency and also controlled in
terms of how they appear. We will turn to a formal description in a moment,
noting that here our reduction is similar to the one used to show that Linear-SAT
is NP-complete [1].

Theorem 2. FBT-DE is NP-complete.

We first describe the version of Satisfiability that we will reduce from. Our
instance consists of (4p + q) clauses which we will typically denote as follows:

C = {A1,B1,A′
1,B

′
1, · · · ,Ap,Bp,A′

p,B′
p} ∪ {C1, · · · ,Cq}

We refer to the first 4p clauses as the core clauses, and the remaining clauses
as the auxiliary clauses. The core clauses have two literals each, and also enjoy
the following structure:

∀i ∈ [p],Ai ∩ Bi = {xi} and A′
i ∩ B′

i = {xi}

We refer to the xi’s as the main variables and the remaining variables that
appear among the core clauses as shadow variables. The shadow variables occur
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exactly once, and have negative polarity among the core clauses. Therefore, using
�(·) to denote the set of literals occurring amongst a subset of clauses, we have:

∣
∣
∣
∣
∣
�

(
p⋃

i=1

{Ai,Bi,A′
i,B

′
i}

)∣
∣
∣
∣
∣
= 6p.

The auxiliary clauses have the property that they only contain the shadow
variables, which occur exactly once amongst them with positive polarity. Also,
every auxiliary clause contains exactly four literals. Note that this also implies,
by a double-counting argument, that q = p. We say that a collection of clauses
is a chain if it has all the properties described above. An instance of Linear
Near-Exact Satisfiability (LNES) is the following: given a set of clauses
that constitute a chain, is there an assignment τ of truth values to the variables
such that exactly one literal in every core clause and two literals in every auxiliary
clause evaluate to true under τ?

For ease of discussion, given an assignment of truth values τ we often use
the phrase “τ satisfies a literal” to mean that the literal in question evaluates to
true under τ. For instance, the question from the previous paragraph seeks an
assignment τ that satisfies exactly one literal in every core clause and two literals
in every auxiliary clause. We also refer to such an assignment as a near-exact
satisfying assignment. The following observation is a direct consequence of the
definitions above.

Proposition 1. Let C be a collection of clauses that form a chain. For any
assignment of truth values τ, the main variables satisfy exactly two core clauses
and the shadow variables satisfy either one core clause or one auxiliary clause.

We first establish that LNES is NP-complete:

Lemma 1. Linear Near-Exact Satisfiability is NP-complete.

Proof. We reduce from (2/2/4)-SAT, which is the variant of Satisfiability
where every clause has four literals and every literal occurs exactly twice — in
other words, every variable occurs in exactly two clauses with positive polarity
and in exactly two clauses with negative polarity. The question is, if there exists
an assignment τ of truth values to the variables under which exactly two literals
in every clause evaluate to true. This problem is known to be NP-complete [11].

Let φ be a (2/2/4)-SAT instance over the variables V = {x1, . . . , xn} and
clauses C = {C1, . . . ,Cm}. For every variable xi, we introduce four new variables:
pi, ri and qi, si. We replace the two positive occurrences of xi with pi and ri,
and the two negated occurrences of xi with qi and si. We abuse notation and
continue to use {C1, . . . ,Cm} to denote the modified clauses. Also, introduce the
clauses: Ai = (xi,pi),Bi = (xi, ri),A′

i = (xi,qi),B′
i = (xi, si), for all 1 � i � n.

Note that these collection of clauses form a chain, as required. We use ψ to refer
to this formula. We now turn to the argument for equivalence.

In the forward direction, let τ be an assignment that sets exactly two literals
of every clause in φ to true. Consider the assignment ζ given by:

ζ(xi) = τ(xi), ζ(pi) = ζ(ri) = τ(xi); ζ(qi) = ζ(si) = 1 − τ(xi),
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for all 1 � i � n. It is straightforward to verify that ζ satisfies exactly one literal
in every core clause and exactly two literals in every auxiliary clause.

In the reverse direction, let ζ be an assignment for the variables of ψ that
satisfies exactly one literal in every core clause and exactly two literals in every
auxiliary clause. Define τ as the restriction of ζ on the main variables. Let C

be a clause in φ. To see that τ satisfies exactly two literals of C, note that the
following:

ζ(pi) = ζ(ri) = ζ(xi) = τ(xi); ζ(qi) = ζ(si) = 1 − ζ(xi) = 1 − τ(xi)

is forced by the requirement that ζ must satisfy exactly one literal in each core
clause. Therefore, if τ satisfies more or less than two literals of any clause C, then
that behavior will be reflected exactly in the auxiliary clause corresponding to C,
which would contradict the assumed behavior of ζ. We make this explicit with
an example for the sake of exposition. Let C from φ be the clause (x1, x3, x6, x7),
and let the clause constructed in ψ be (p1,q3,q6, r7). Suppose τ(x1) = τ(x7) =
τ(x6) = 1 and τ(x3) = 0. Then we have ζ(p1) = ζ(r7) = 1 and ζ(q6) = 0,
while ζ(q3) = 1. This demonstrates that ζ satisfies three literals in the auxiliary
clause corresponding to C, in one-to-one correspondence with the literals that
are satisfied by τ. This completes our argument. 	


We now turn to a proof of Theorem 2. The overall approach is the following.
We will introduce a complete binary tree whose leaves will be used to represent
variables using variable gadgets which will have obstructions that can be removed
in a fixed number of ways, each of which corresponds to a “signal” for whether the
variable is to be set to true or false. We will then introduce vertices corresponding
to clauses that will be attached to the variable gadgets in such a way that they
can only be “absorbed” into the rest of the structure precisely when exactly two
of its literals are receiving a signal indicating that they are being satisfied.

The Shadow Variables. An instance of the gadget that we construct for the
shadow variables is depicted in Fig. 1. We remark here that the notation used
for the vertices here is to enable our discussion of how the gadget works and is
not to be confused with the notation already used to denote the variables and
clauses of the LNES instance.

The vertices p and q are called the anchors of the gadget, while the vertices
x,y,a and b are called the drivers of the gadget. This is because, as we will see,
the behavior of the edges incident to these vertices determines the fate of the
variable—in terms of whether it “accepts” the vertex corresponding to the core
clause or the auxiliary clause to which it belongs. We refer to the vertex u in
the gadget as the negative point of entry, while the vertex v is called the positive
point of entry.

We refer to the edges incident on the vertices x,y,a and b as active edges
and the remaining edges (i.e, (p,u), (p, v), (q,w), (q, c) and (w, z)) as passive
edges. We say that a solution is nice if it does not contain any passive edges.
We also say that an instance G of FBT-DE contains a clean copy of the gadget
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Fig. 1. The gadget corresponding to the shadow variables.

H if H appears in G as an induced subgraph, and further, dG(x) = dG(y) =
dG(a) = dG(b) = 2 while dG(w) = 4, dG(c) = 1 and none of the vertices of
H are chosen to be the target root vertex. We make the following observation
about the behavior of this gadget.

Claim. Let H be a vertex gadget for a shadow variable as defined above. Let
G be an instance of FBT-DE that contains a clean copy of H. Then, any nice
solution S contains exactly four edges among the edges of H.

Proof. Let F denote the set of active edges in G. Since dG(x) = dG(y) = dG(a) =
dG(b) = 2, we claim that any solution S must delete exactly four edges from F:
in particular, S contains exactly one of the edges incident to each of the vertices.
Indeed, if S deletes fewer edges than suggested then G \ S contains a degree two
vertex different from the root, which is a contradiction. On the other hand, if S

contains more than four edges from F, then at least one of these four vertices is
isolated in G\S, which contradicts our assumption that G\S is connected. This
clearly implies the claim, since all edges not considered are passive and a nice
solution does not contain these edges by definition. 	


We now analyze the possible behaviors of a solution localized to the gadget
in greater detail. We refer the reader to the full version of this paper for the
figures associated with this explanation.

The possibilities (xv,yv,aw,bv) and (xu,yu,au,bw) do not arise because
employing these deletions causes the entry point vertices to have degree four or
more in G \ S. Further, since the solution S does not involve any of the passive
edges, then we also rule out the following possibilities, since they all lead to a
situation where the degree of w is four or more in G \ S:
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� xv,yv,au,bv � xu,yu,au,bv � xu,yv,au,bv � xv,yu,au,bv

Recalling that dG(w) = 4 when H makes a clean appearance in G,
we also safely rule out the possibilities: (xv,yv,aw,bw), (xu,yu,aw,bw),
(xu,yv,aw,bw), (xv,yu,aw,bw). Note that they result in a situation where
the degree of w is exactly two in G \ S — since w is not the target root vertex,
this is a contradiction as well.

Observe that, given a nice solution S, in all the valid scenarios possible, either
dH\S(u) = 2 and dH\S(v) = 3, or dH\S(u) = 3 and dH\S(v) = 2. We say that
a shadow variable gadget has a negative signal in solutions where dH\S(u) = 2.
Similarly, we say that the gadget has a positive signal in the situations where
dH\S(v) = 2. We refer to the edges {(v, x), (v,y), (u,a), (w,b)} as the negative
witness and the edges {(u, x), (u,y), (v,b), (w,a)} as the positive witness for the
shadow variable gadgets. This concludes the description of the gadget meant for
shadow variables.

The Main Variables. We now turn our attention to the gadget corresponding
to the main variables. Here, we find it convenient to incorporate vertices rep-
resenting the core clauses that the main variables belong to also as a part of
the gadget. The construction of the gadget is depicted in Fig. 2. As before, the
notation used for the vertices here is to enable our discussion of how the gadget
works. With the exception of A,B,A′,B′, which indeed are meaningfully associ-
ated with the analogously named core clauses, the notation is not to be confused
with the notation already used to denote the variables and clauses of the LNES
instance.

The edges (z,u) and (z, v) are the passive edges of this gadget, while the
remaining edges are active. The vertex z is called the anchor of this gadget.
As before, a solution is nice if it does not contain any of the passive edges. We
say that an instance G of FBT-DE has a clean copy of H if H appears in G

as an induced subgraph and, further, dG(p) = dG(q) = dG(u) = dG(v) = 3,
dG(x) = dG(y) = 2, dG(B) = dG(A′) = 2, dG(A) = dG(B′) = 3, and none of
the vertices of H are chosen to be the target root vertex.

We reflect briefly on the nature of a nice solution S in instances that have a
clean copy of a main variable gadget H. First, since dG(x) = 2 and x is not the
target root vertex, we note that exactly one of (v, x) or (u, x) must belong to S.
Suppose (v, x) ∈ S. The removal of (v, x) makes v a vertex of degree two, and
since (z, v) is a passive edge and S is nice, (v,q) ∈ S is forced. Along similar lines,
we have that (u,p) /∈ S. Now, we argue that (q,B′) /∈ S. Indeed, if (q,B′) ∈ S,
then A′ has degree two from the deletions so far, and q is a degree-one vertex
with A′ as its sole neighbor. Recalling that A′ is not the target root vertex, we
are now forced to delete exactly one of the endpoints incident on A′, but both
possibilities lead us to a disconnected graph. Therefore, (q,B′) /∈ S. It is easy
to see that this forces (q,A′) ∈ S and further, (A,y) ∈ S. A symmetric line
of reasoning shows that if (u, x) ∈ S, then (p,u), (p,B) and (B′,y) are all in
S as well. We refer the reader to the full version of this paper for the figures
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Fig. 2. The gadget corresponding to the main variables.

associated with this explanation. These two scenarios motivate the definitions
of positive and negative signals that we now make explicit.

With respect to a nice solution S, we say that a main variable gadget
has a negative signal if dH\S(v) = 2. Likewise, we say that the gadget has
a positive signal if dH\S(u) = 2. We will also refer to the set of edges
{(v, x), (v,q), (A′,q), (A,y)} as the positive witness of this gadget, and the neg-
ative witness is defined analogously.

We are now ready to discuss the overall construction. Let φ be an instance
of LNES with clauses given by:

C = {A1,B1,A′
1,B

′
1, · · · ,Ap,Bp,A′

p,B′
p} ∪ {C1, · · · ,Cp},

where the main variable common to Ai and Bi is denoted by xi and the auxiliary
variables in these two clauses are denoted by pi and ri, while the auxiliary
variables in the clauses A′

i and B′
i are denoted qi and si. We denote by Iφ :=

(G, r,w,k) the LNES instance that we will now construct based on φ.
First, we construct the smallest complete binary tree with at least (9p) leaves

and let ν be the root of this tree. We refer to this tree as the backbone of G. Let
the first 9p leaves of this tree be denoted by �1, . . . , �p;α1,β1, . . . ,α4p,β4p. For
each main variable xi, let Hi be the corresponding gadget. We identify the anchor
of Hi with �i. For each shadow variable, we introduce a gadget corresponding
to it, and identify the first anchor vertex in the gadget with αi and the second
anchor vertex with βi. For every core clause Ai, we add an edge between the
vertex A in the gadget corresponding to Ai and the negative entry point in the
gadget for the shadow variable contained in the clause Ai. We also do this in an
analogous fashion for the core clauses A′

i, Bi and B′
i.

Finally, for each auxiliary clause Ci, we introduce two vertices ωi and ω′
i. We

connect these vertices with the positive entry point into all gadgets corresponding
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to the shadow variables that belong to the clause Ci. Note that each of these
vertices have degree four. This completes the description of the construction of
the graph G. We note that all the gadgets present in G are clean by construction.
We now define the weight of every edge in the backbone and every passive edge
in the gadgets as (k+ 1), while the weights of the remaining edges are set to be
one. Finally, we set k := 28p and let r = ν—this concludes the description of
the instance Iφ. We defer the argument of the equivalence of the instances to
the full version of this paper.

4 FPT Algorithms

We observe that the problems considered here, namely FBT-DV and FBT-DE
are fixed-parameter tractable by the standard parameter. We briefly describe
a natural branching algorithm for FBT-DV while noting that an analogous
argument works for FBT-DE.

Let (G = (V,E),k, r,w) be an instance of FBT-DV. First, consider a vertex
v, different from the designated root, that has four or more neighbors. Choose
any four neighbors of v, say a,b, c,d, and branch on the set {v,a,b, c,d} and
we adjust the remaining budget by subtracting the respective weights of these
vertices. The exhaustiveness of this branching rule follows immediately from the
definition of a full binary tree. Along similar lines, we can also branch on the
designated root along with three of its neighbors at a time, if the root has degree
three or more, and also the closed neighborhoods of vertices of degree exactly
two. We abort any branches where we have exhausted the budget.

We say that a graph with a designated root vertex is nice if it is connected,
its maximum degree is three and the root is only vertex of degree two. Note
that the depth of the branching thus far is bounded by O(5k), and we branch
appropriately on disconnected instances, noting that only one of the components
can “survive”. Also, note that all the remaining instances are nice. If any of the
remaining graphs are also acyclic, then we are already done.

If not, then we branch on these graphs further as follows. We pre-process
vertices of degree three with a degree one neighbor by employing an appropriate
short-circuiting rule. We can then start a breadth-first search (BFS) from the
root vertex, noting that the depth of the BFS tree is at most (log2 n+ 1), since
every internal vertex in this tree has at least two children. Therefore, we may infer
that there exists a cycle of length O(log n), and we branch on all the vertices of
this cycle other than the root vertex. If the deletion of a vertex on the cycle leads
to a disconnected graph, then we abort the corresponding branch. Similarly, if
the deletion of a vertex on the cycle creates vertices of degree two in the resulting
graph, then we branch on the closed neighborhood of these degree two vertices
and discard any disconnected graphs until we arrive at a nice instance, at which
point we recurse in the fashion described here. The correctness of the overall
algorithm follows from the exhaustiveness of the branching rules. The fact that
the running time is FPT follows by a well-known argument [9].
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Theorem 3. The problems FBT-DV and FBT-DE are FPT with respect to
solution size.
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Abstract. In this paper, we study the Boolean function parameters sen-
sitivity (s), block sensitivity (bs), and alternation (alt) under specially
designed affine transforms and show several applications. For a function
f : Fn

2 → {0, 1}, and A = Mx + b for M ∈ F
n×n
2 and b ∈ F

n
2 , the result

of the transformation g is defined as ∀x ∈ F
n
2 , g(x) = f(Mx + b).

As a warm up, we study alternation under linear shifts (when M is
restricted to be the identity matrix) called the shift invariant alterna-
tion (the smallest alternation that can be achieved for the Boolean func-
tion f by shifts, denoted by salt(f)). By a result of Lin and Zhang [12],
it follows that bs(f) ≤ O(salt(f)2s(f)). Thus, to settle the Sensitiv-
ity Conjecture (∀ f, bs(f) ≤ poly(s(f))), it suffices to argue that
∀ f, salt(f) ≤ poly(s(f)). However, we exhibit an explicit family of
Boolean functions for which salt(f) is 2Ω(s(f)).

Going further, we use an affine transform A, such that the correspond-

ing function g satisfies bs(f, 0n) ≤ s(g), to prove that for F (x, y)
def
=

f(x ∧ y), the bounded error quantum communication complexity of F
with prior entanglement, Q∗

1/3(F ) is Ω(
√

bs(f, 0n)). Our proof builds on
ideas from Sherstov [17] where we use specific properties of the above
affine transformation. Using this, we show the following.
(a) For a fixed prime p and an ε, 0 < ε < 1, any Boolean function f

that depends on all its inputs with degp(f) ≤ (1 − ε) log n must

satisfy Q∗
1/3(F ) = Ω

(
nε/2

log n

)
. Here, degp(f) denotes the degree of

the multilinear polynomial over Fp which agrees with f on Boolean
inputs.

(b) For Boolean function f such that there exists primes p and q with
degq(f) ≥ Ω(degp(f)δ) for δ > 2, the deterministic communication
complexity - D(F ) and Q∗

1/3(F ) are polynomially related. In particu-
lar, this holds when degp(f) = O(1). Thus, for this class of functions,
this answers an open question (see [2]) about the relation between
the two measures.

Restricting back to the linear setting, we construct linear transformation
A, such that the corresponding function g satisfies, alt(f) ≤ 2s(g) + 1.
Using this new relation, we exhibit Boolean functions f (other than the
parity function) such that s(f) is Ω(

√
sparsity(f)) where sparsity(f) is

the number of non-zero coefficients in the Fourier representation of f .
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1 Introduction

For a Boolean function f : {0, 1}n → {0, 1}, sensitivity of f on x ∈ {0, 1}n,
is the maximum number of indices i ∈ [n], such that f(x ⊕ ei) �= f(x) where
ei ∈ {0, 1}n with exactly the ith bit as 1. The sensitivity of f (denoted by s(f))
is the maximum sensitivity of f over all inputs. A related parameter is the block
sensitivity of f (denoted by bs(f)), where we allow disjoint blocks of indices
to be flipped instead of a single bit. Another parameter is the deterministic
decision tree complexity (denoted by DT(f)) which is the depth of an optimal
decision tree computing the function f . The certificate complexity of f (denoted
by C(f)) is the non-deterministic variant of the decision tree complexity. The
parameter s(f) was originally studied by Cook et al. [5] in connection with the
CREW-PRAM model of computation. Subsequently, Nisan and Szegedy [13]
introduced the parameters bs(f) and C(f) and conjectured that for any function
f : {0, 1}n → {0, 1}, bs(f) ≤ poly(s(f)) - known as the Sensitivity Conjec-
ture. Later developments, which revealed several connections between sensitiv-
ity, block sensitivity and the other Boolean function parameters, demonstrated
the fundamental nature of the conjecture (see [9] for a survey and several equiv-
alent formulations of the conjecture).

Shi and Zhang [19] studied the parity complexity variants of bs(f),C(f) and
DT(f) and observed that such variants have the property that they are invariant
under arbitrary invertible linear transforms (over F

n
2 ). They also showed exis-

tence of Boolean functions where under all invertible linear transforms of the
function, the decision tree depth is linear while their parity variant of decision
tree complexity is at most logarithmic in the input length.

Our Results: While the existing studies focus on understanding the Boolean
function parameters under the effect of arbitrary invertible affine transforms, in
this work, we study the relationship between the above parameters of Boolean
functions f : Fn

2 → {0, 1}, under specific affine transformations over F
n
2 . More

precisely, we explore the relationship of the above parameters for the function
g : F

n
2 → {0, 1} and f , where g is defined as g(x) = f(Mx + b) for specific

M ∈ F
n×n
2 and b ∈ F

n
2 (where is M not necessarily invertible). We show the

following results, and their corresponding applications, which we explain along
with the context in which they are relevant.

Boolean Functions Under Shifts: We study the parameters when the trans-
formation is very structured - namely the matrix M is the identity matrix and
b ∈ F

n
2 is a linear shift. More precisely, we study fb(x) def= f(x + b) where b is the

shift. Observe that all the parameters mentioned above are invariant under shifts.
A Boolean function parameter which is neither shift invariant nor invariant under
invertible linear transforms is the alternation, a measure of non-monotonicity of
Boolean function (see Sect. 2 for a formal definition). To see this for the case of
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shifts, if we take f as the majority function on n bits, then there exists shifts
b ∈ {0, 1}n where alt(fb) = Ω(n) while alt(f) = 1.

A recent result related to Sensitivity Conjecture by Lin and Zhang [12]
shows that bs(f) ≤ O(s(f)alt(f)2). This bound for bs(f), implies that to settle
the Sensitivity Conjecture, it suffices to show that alt(f) is upper bounded
by poly(s(f)) for all Boolean functions f . However, the authors [6] ruled this out,
by exhibiting a family of functions where alt(f) is at least 2Ω(s(f)).

Observing that the parameters s(f), bs(f) are invariant under shifts, we define
a new quantity shift-invariant alternation, salt(f), which is the minimum alter-
nation of any function g obtained from f upon shifting by a vector b ∈ {0, 1}n

(Definition 1). By the aforementioned bound on bs(f) of Lin and Zhang [12], it
is easy to observe that bs(f) ≤ O(s(f)salt(f)2). We also show that there exists
a family of Boolean functions f with bs(f) = Ω(s(f)salt(f)) (Proposition 3).

It is conceivable that salt(f) is much smaller compared to alt(f) for a Boolean
function f and hence that salt(f) can potentially be upper bounded by poly(s(f))
thereby settling the Sensitivity Conjecture. However, we rule this out by
showing the following stronger gap, about the same family of functions demon-
strated in [6].

Proposition 1. There exists an explicit family of Boolean functions for which
salt(f) is 2Ω(s(f)).

Boolean Functions Under Affine Transformations: We now generalize
our theme of study to the affine transforms over F

n
2 . In particular, we explore

how to design affine transformations in such a way that block sensitivity of the
original function (f) is upper bounded by the sensitivity of the new function (g).
Let the sensitivity of f on a denoted as s(f, a) = | {i | f(a ⊕ ei) �= f(a), i ∈ [n]} |
and block sensitivity of f on a, denoted bs(f, a), be the maximum number of
disjoint blocks {Bi | Bi ⊆ [n]} such that f(a ⊕ eBi

) �= f(a).

Lemma 1. For any f : Fn
2 → {−1, 1} and a ∈ {0, 1}n, there exists an affine

transform A : Fn
2 → F

n
2 such that for g(x) = f(A(x)), (a) bs(f, a) ≤ s(g, 0n),

and (b) g(x) = f((xi1 , xi2 , . . . , xin
)⊕a) where i1, . . . , in ∈ [n] are not necessarily

distinct.

The above transformation is used in Nisan and Szegedy (Lemma 7 of [13]) to show
that bs(f) ≤ 2deg(f)2. Here, deg(f) is the degree of the multilinear polynomial
over reals that agrees with f on Boolean inputs. We show another application
of Lemma 1 in the context of two party quantum communication complexity,
a model for which was introduced by Yao (we defer the details of the model
to Sect. 2). The measure of interest in this setting is the communication cost
for computing a function F : {0, 1}n × {0, 1}n → {0, 1} which we denote as
Q∗

1/3(F ). The corresponding analog in the classical setting is the bounded error
randomized communication model where the two parties communicate with 0, 1
bits and share an unbiased random source. We define R1/3(F ) as the minimum
cost randomized protocol computing F with error at most 1/3 and D(F ) as
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the minimum cost deterministic protocol computing F . It can be shown that
Q∗

1/3(F ) ≤ R1/3(F ) ≤ D(F ).
One of the fundamental goals in quantum communication complexity is to

see if there are functions where their randomized communication complexity is
significantly larger than their quantum communication complexity. It has been
conjectured by Shi and Zhu [18] that this is not the case in general (which they
called the Log-Equivalence Conjecture). In this work, we are interested in the
case when F (x, y) is of the form f(x ∧ y) where f : {0, 1}n → {0, 1} and x ∧ y is
the string obtained by bitwise AND of x and y.

Question 1. For f : {0, 1}n → {0, 1}, let F : {0, 1}n × {0, 1}n → {0, 1}
be defined as F (x, y) = f(x ∧ y). Is it true that for any such F , D(F ) ≤
poly(Q∗

1/3(F ))?

Since R1/3(F ) ≤ D(F ), answering the above question in positive would show that
the classical randomized communication model is as powerful as the quantum
communication model for the class of functions F (x, y) = f(x∧y). This question
for such restricted F has also been proposed by Klauck [10] as a first step towards
answering the general question (see also [2]). In this direction, Razborov [15]
showed that for the special case when f is symmetric, F (x, y) = f(x ∧ y) satisfy
D(F ) ≤ O(Q∗

1/3(F )2). In the process, Razborov developed powerful techniques
to obtain lower bounds on Q∗

1/3(F ) which were subsequently generalized by
Sherstov [16], Shi and Zhu [18]. Subsequently, in a slightly different direction,
Sherstov [17] showed that instead of computing F (x, y) = f(x ∧ y) alone, if we
consider F to be the problem of computing both of F1(x, y) = f(x ∧ y) and
F2(x, y) = f(x ∨ y), then D(F ) = O(Q∗

1/3(F )12) for all Boolean functions f

where Q∗
1/3(F ) = max

{
Q∗

1/3(F1), Q∗
1/3(F2)

}
and D(F ) = max {D(F1),D(F2)}.

Using Lemma 1, we build on the ideas of Sherstov [17] and obtain a lower bound
for Q∗

1/3(F ) where F (x, y) = F1(x, y) = f(x ∧ y).

Theorem 2. Let f : {0, 1}n → {−1, 1} and F (x, y) = f(x∧y), then, Q∗
1/3(F ) =

Ω
(√

bs(f, 0n)
)
.

In this context, we make an important comparison with a result of Sherstov [17].
He proved that for F ′(x, y) = fb(x ∧ y), where b ∈ {0, 1}n is the input on which
bs(f, x) is maximum, Q∗

1/3(F
′) = Ω(

√
bs(f)) ≥ Ω(

√
bs(f, 0n)) (Corollary 4.5

of [17]). Notice that F and F ′ differ by a linear shift of f with b.1 Moreover,
Q∗

1/3(F ) can change drastically even under such (special) linear shifts of f . For
example, consider f = ∧n. Since bs(f) is maximized at 1n, b = 1n. Hence,
the function F ′ is the disjointness function for which Q∗

1/3(F
′) = Ω(

√
n) [15]

whereas, Q∗
1/3(F ) = O(1). The same counterexample also shows that Q∗

1/3(F ) =

Ω(
√
bs(f)) cannot hold for all f . Since the lower bounds shown on quantum

1 More importantly, this b in Corollary 4.5 of [17] cannot be fixed to 0n for all Boolean
functions to conclude Theorem 2.
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communication complexity are on different functions, Theorem 2 is incomparable
with the result of Sherstov (Corollary 4.5 of [17]).

Using Theorem 2, for a prime p, we show that if f has small degree when
expressed as a polynomial over Fp (denoted by degp(f)), the quantum commu-
nication complexity of F is large.

Theorem 3. Fix a prime p. Let f : {0, 1}n → {−1, 1} where f depends on all
the variables. Let F (x, y) = f(x∧y). For any 0 < ε < 1 if degp(f) ≤ (1−ε) log n,

then we have Q∗
1/3(F ) = Ω

(
nε/2

log n

)
.

Observe that, though Theorem 2 does not answer Question 1 in positive for
all functions, we could show a class of Boolean function for which D(F ) and
Q∗

1/3(F ) are polynomially related. More specifically, we show this for the set
of all Boolean functions f such that there exists two distinct primes p, q with
degp(f) and degq(f) are sufficiently far apart.

Theorem 4. Let f : {0, 1}n → {−1, 1} with F (x, y) = f(x ∧ y). Fix 0 < ε < 1.
If there exists distinct primes p, q such that degq(f) = Ω(degp(f)

2
1−ε ), then

D(F ) = O(Q∗
1/3(F )2/ε).

By the result of Gopalan et al. (Theorem 1.2 of [7]), any Boolean function f with
degp(f) = o(log n) must have degq(f) = Ω(n1−o(1)) thereby satisfying the condi-
tion of Theorem 4. Hence, for all such functions, Theorem 4 answers Question 1
in positive. Observe that the same can also be derived from Theorem 3.

We remark that Theorem 2 is to viewed as an improvement over the method of
using block sensitivity (Corollary 4.5 of [17]) in proving quantum communication
complexity lower bounds. Theorems 3 and 4 is obtained as a consequence of this
improvement hence is an application of how Boolean function parameters change
under structured affine transforms (Lemma 1).

Boolean Functions Under Linear Transforms: We now restrict our study
to linear transforms. Again, the aim is to design special linear transforms which
transforms the parameters of interest in this study. In particular, in this case,
we show linear transforms for which we can upper bound the alternation of
the original function in terms of the sensitivity of the resulting function. More
precisely, we prove the following lemma:

Lemma 2. For any f : Fn
2 → {0, 1}, there exists an invertible linear transform

L : Fn
2 → F

n
2 such that for g(x) = f(L(x)), alt(f) ≤ 2s(g) + 1.

We show an application of the above result in the context of sensitivity. Nisan
and Szegedy [13] showed that for any Boolean function f , s(f) ≤ 2deg(f)2.
However, the situation is quite different for deg2(f) - noticing that for f being
parity on n variables, deg2(f) = 1 and s(f) = n - the gap can even be
unbounded. Though parity may appear as a corner case, there are other func-
tions like the Boolean inner product function2 IPn whose F2-degree is con-
stant while sensitivity is Ω(n) thereby ruling out the possibility that s(f) ≤
2 IPn(x1, x2, . . . , xn, y1, y2, . . . , yn) =

∑
i xiyi mod 2.
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deg2(f)2. It is known that if f is not the parity on n variables (or its nega-
tion), deg2(f) ≤ log sparsity(f) [1]. Hence, as a structural question about the
two parameters, we ask: for f other than the parity function, is it true that
s(f) ≤ poly(log sparsity(f)). Observe that IPn has high sparsity and hence does
not rule this out. We use Lemma 2, which is in the theme of studying alternation
and sensitivity in the context of linear transformations, to improve this gap and
show that there is a family of functions where this gap is exponential.

Theorem 5. There exists a family of functions {gk | k ∈ N} such that s(gk) ≥√
sparsity(gk)

2 − 1.

2 Preliminaries

In this section, we define the notations used followed by description of the clas-
sical and quantum communication models.

Define [n] = {1, 2, . . . , n}. For S ⊆ [n], define eS ∈ {0, 1}n to be the indicator
vector of the set S. For x, y ∈ {0, 1}n, we denote x ∧ y (resp. x ⊕ y) ∈ {0, 1}n

as the string obtained by bitwise AND (resp. XOR) of x and y. We use xi to
denote the ith bit of x. We now define the Boolean function parameters we use.

Sensitivity, Block Sensitivity and Certificate Complexity: For a Boolean
function f : {0, 1}n → {0, 1} and a ∈ {0, 1}n, we define, (1) the sensitivity of
f on a as s(f, a) = | {i | f(a ⊕ ei) �= f(a), i ∈ [n]} |, (2) the block sensitivity of f
on a, bs(f, a) to be the maximum number of disjoint blocks {Bi | Bi ⊆ [n]} such
that f(a ⊕ eBi

) �= f(a) and, (3) the certificate complexity of f on a, C(f, a) to
be the size of the smallest set S ⊆ [n] such that fixing f according to a on the
location indexed by S causes the function to become constant. For φ ∈ {s, bs,C},
we define φ(f) = maxa∈{0,1}n φ(f, a) and are respectively called the sensitivity,
the block sensitivity and the certificate complexity of f . By definition, the three
parameters are shift invariant, by which we mean ∀ b ∈ {0, 1}n, φ(fb) = φ(f) for
φ ∈ {s, bs,C} where fb(x) def= f(x⊕ b). Also, it can be shown that s(f) ≤ bs(f) ≤
C(f).

Alternation: For x, y ∈ {0, 1}n, define x ≺ y if ∀i ∈ [n], xi ≤ yi. We define
a chain C on {0, 1}n as (0n = x(0), x(1), . . . , x(n−1), x(n) = 1n) such that for all
i ∈ [n], x(i) ∈ {0, 1}n and x(i−1) ≺ x(i). We define alternation of f for a chain
C, denoted alt(f, C) as the number of times the value of f changes in the chain.
We define alternation of a function alt(f) as max chain C alt(f, C).

Degree, Decision Tree Depth and Sparsity: Every Boolean function f can
be expressed uniquely as a multilinear polynomial p(x) in F[x1, . . . , xn] over any
field F such that p(x) = f(x) ∀x ∈ {0, 1}n. Fix a prime p. We denote deg(f)
(resp. degp(f)) to be the degree of the multilinear polynomial computing f over
reals (resp. Fp). A decision tree T is a rooted tree with non-leaf nodes labeled
by variables and leaf nodes labeled by Boolean values. For any input x, starting
from the root, there is natural path leading to a leaf based on the value of the
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variable queried. Depth of a decision tree is the length of the longest path from
root to any leaf. A decision tree T computes f if for every input x, there is a
path leading to a leaf labeled f(x). We define DT(f) as the depth of a decision
tree computing f of minimum depth. It is known that for all Boolean functions
f , degp(f) ≤ deg(f) ≤ DT(f) ≤ bs(f)3. For more details on DT(f) and other
related parameters, see the survey by Buhrman, de Wolf [3] and Hatami et al. [9].
Sparsity of a Boolean function f : {0, 1}n → {−1, 1} (denoted by sparsity(f)) is
the number of non-zero Fourier coefficients in the Fourier representation of f .
For more details on this parameter, see [14].

Communication Models: We first describe the two party classical communi-
cation model, introduced by Yao. Given a function F : {0, 1}n×{0, 1}n → {0, 1},
Alice is given an x ∈ {0, 1}n and Bob is given y ∈ {0, 1}n. They can communi-
cate with each other and their aim is to compute F (x, y) while communicating
minimum number of bits. We call the procedure employed by Alice and Bob to
computing f as the protocol. We define D(F ) as the minimum cost of a deter-
ministic protocol computing F . For more details on classical communication
complexity of Boolean functions, refer [11].

We now describe the quantum communication complexity, again introduced
by Yao. Similar to the classical model, both the parties have to come up with
a quantum protocol where they communicate qubits via a quantum channel and
compute f while minimizing the number of qubits exchanged (which is the cost
of the quantum protocol) in the process. In this model, we allow protocols to have
prior entanglement. We define Q∗

1/3(F ) as the minimum cost quantum protocol
computing F with prior entanglement. For a precise definition of the model and
the protocol cost, see Sect. 2.6 of [17] (see also [15] for a detailed treatment).
The important relation that we require is the following lower bound on Q∗

1/3(F )
due to Sherstov [17].

Corollary 1 (Corollary 4.5 of [17]). Let f : {0, 1}n → {−1, 1} be given. Then
for some z ∈ {0, 1}n, the matrix F ′ = [fz(x∧y)]x,y = [f(. . . , (xi∧yi)⊕zi, . . .)]x,y

obeys Q∗
1/3(F

′) = Ω(
√

bs(f)).

3 Warm Up: Alternation Under Shifts

In this section, as a warm-up, we study sensitivity and alternation under linear
shifts (when the matrix M is the identity matrix). We introduce a parameter,
shift-invariant alternation (salt). We then show the existence of Boolean func-
tions whose shift-invariant alternation is exponential in its sensitivity (Proposi-
tion 1) thereby ruling out the possibility that salt(f) can be upper bounded by
a polynomial in s(f) for all Boolean functions f .

Recall from the introduction that the parameters s, bs and C are shift invari-
ant while alt is not. We define a variant of alternation which is invariant under
shifts.

Definition 1 (Shift-invariant Alternation). For f : {0, 1}n → {0, 1}, the
shift-invariant alternation (denoted by salt(f)) is defined as minb∈{0,1}n alt(fb).



Sensitivity, Affine Transforms and Quantum Communication Complexity 147

A Family of Functions with salt(f) = Ω(2s(f)): We now exhibit a family of
functions F where for all f ∈ F , salt(f) ≥ 2s(f) thereby ruling out the possibility
that salt(f) can be upper bounded by a polynomial in s(f). The family F is the
same class of Boolean functions for which alternation is at least exponential in
sensitivity due to [6].

Definition 2 (Definition 1 from [6]. See also Proof of Lemma A.1 of [8]).
Consider the family defined as follows: F = {fk | fk : {0, 1}2k−1 → {0, 1}, k ∈
N}. The Boolean function fk is computed by a decision tree which is a full binary
tree of depth k with 2k leaves. A leaf node is labeled as 0 (resp. 1) if it is the left
(resp. right) child of its parent. All the nodes (except the leaves) are labeled by a
distinct variable.

We remark that Gopalan et al. [8] demonstrates an exponential lower bound
on tree sensitivity (introduced by them as a generalization of the parameter
sensitivity) in terms of decision tree depth for the same family of functions
in Definition 2. We remark that, in general, lower bound on tree sensitivity need
not imply a lower bound on alternation. For instance, if we consider the Majority
function3 Majn, the tree sensitivity can be shown to be Ω(n) while alternation
is 1.

The authors [6] have shown that for any f ∈ F , there exists of a chain of
large alternation in f . However, this is not sufficient to argue existence of a
chain of large alternation under every linear shift. We now proceed to state an
exponential lower bound on salt(f) in terms of s(f) for all f ∈ F . The proof is
omitted due to lack of space.

Proposition 1. For fk ∈ F , salt(fk) ≥ 2Ω(s(fk)).

A Family of Functions with bs(f) = Ω(s(f)salt(f)): Lin and Zhang [12]
showed that for any Boolean function f : {0, 1}n → {0, 1}, bs(f) =
O(alt(f)2s(f)). This immediately gives the following proposition.

Proposition 2. For any f : {0, 1}n → {0, 1}, bs(f) ≤ O(salt(f)2s(f)).

We now exhibit a family of functions for which bs(f) is Ω(s(f)salt(f)). Before
proceeding, we show a tight composition result for alternation of Boolean func-
tions when composed with ORk (which is the k bit Boolean OR function).
For functions f1, . . . , fk where each fi : {0, 1}n → {0, 1}, define the func-
tion ORk ◦ f : {0, 1}nk → {0, 1} as ∨k

i=1fi(x(i)) where for each i ∈ [k],
x(i) = (x(i)

1 , . . . , x
(i)
n ) ∈ {0, 1}n is input to the function fi.

Lemma 3. Consider k Boolean functions f1, . . . , fk where each fi : {0, 1}n →
{0, 1} satisfy, fi(0n) = fi(1n) = 0. Then, alt(ORk ◦ f) =

∑k
i=1 alt(fi).

Using Lemma 3 we now argue the existence of a family of Boolean functions
where bs(f) = Ω(s(f)salt(f)). The proof of the proposition has been omitted
due to lack of space.
3 Majn(x) = 1 ⇐⇒ ∑

i xi ≥ 
n/2�.
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Proposition 3. There exists a family of Boolean functions for which bs(f) ≥
s(f)·salt(f)

4 .

4 Affine Transforms: Lower Bounds on Quantum
Communication Complexity

In this section, we study the affine transformation in its full generality applied to
block sensitivity and sensitivity, and use it to prove Theorems 3 and 4 from the
introduction. We achieve this using affine transforms as our tool (Sect. 4.1), by
which we derive a new lower bound for Q∗

1/3(F ) in terms of bs(f, 0n) (Sect. 4.2).
Using this and a lower bound on bs(f, 0n) (Proposition 5), we show that for any

Boolean function f , and any prime p, Q∗
1/3(F ) ≥ Ω

(√
DT(f)

degp(f)

)
. This immediately

implies that if there is a p such that degp(f) is constant, then D(F ) ≤ 2DT(f) ≤
O(Q∗

1/3(F )2) thereby answering Question 1 in positive for such functions. We
relax this requirement and show that if there exists distinct primes p and q
for which degp(f) and degq(f) are not very close, then D(F ) ≤ poly(Q∗

1/3(F ))
(Theorem 4).

4.1 Upper Bound for Block Sensitivity via Affine Transforms

In this section, we describe our main tool. Given an f : {0, 1}n → {0, 1} and
any a ∈ {0, 1}n, we exhibit an affine transform A : F

n
2 → F

n
2 such that for

g(x) = f(Ax), bs(f, a) ≤ s(g, 0n).
Before describing the affine transform,wenote that a linear transform is already

known to achieve a weaker bound of bs(f) ≤ O(s(g)2) due to Sherstov [17].

Proposition 4 (Lemma 3.3 of [17]). For any f : Fn
2 → {0, 1}, there exists a

linear transform L : Fn
2 → F

n
2 such that for g(x) = f(Lx), bs(f) = O(s(g)2).

We now prove Lemma 1 which describes an affine transform improving the
bound on bs(f) in the above proposition to linear in s(g). This affine trans-
form has already been used in Nisan and Szegedy (Lemma 7 of [13]) to show
that bs(f) ≤ 2deg(f)2. Since the exact form of g is relevant in the subsequent
arguments, we explicitly prove it here bringing out the structure of the affine
transform that we require.

Proof (Proof of Lemma 1). Let bs(f, a) = k and {B1, . . . , Bk} be the sen-
sitive blocks on a. Since the blocks are disjoint, {Bi | i ∈ [k]} viewed as
vectors over F

n
2 are linearly independent. Hence, there is a linear trans-

form L : F
n
2 → F

n
2 such that L(ei) = Bi for i ∈ [k].4 Define A(x) =

L(x) ⊕ a. For g(x) = f(A(x)), s(g, 0n) = | {i | g(0n) �= g(0n ⊕ ei), i ∈ [n]} | =
| {i | f(a) �= f(a ⊕ L(ei)), i ∈ [n]} | = bs(f, a) which completes the proof of main
statement and (a). Now, (b) holds as the sensitive blocks are disjoint. ��
4 For completeness of definition of L, for i �∈ [k], we define L(ei) = 0n.
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4.2 From Block Sensitivity Lower Bound at 0n to Quantum
Communication Lower Bounds

We now prove Theorem 2, which lower bounds Q∗
1/3(F ) in terms of bs(f, 0n).

Proof (of Theorem 2). We first state a weaker version of this result - Corollary 1
from Sect. 2. This result is based on a powerful method of proving quantum
communication lower bounds due to Razborov [15] and Klauck [10], says that
for a Boolean function g : {0, 1}n → {−1, 1} with G(x, y) = g(x ∧ y), if there
exists an z ∈ {0, 1}n such that zi = 0 for i ∈ [k] and g(z ⊕ e1) = g(z ⊕ e2) =
. . . = g(z ⊕ ek) �= g(z), then Q∗

1/3(G) = Ω(
√

k). This immediately implies

that for any g : {0, 1}n → {−1, 1}, Q∗
1/3(G) = Ω

(√
s(g, 0n)

)
. Given an f ,

we now describe a g : {0, 1}n → {−1, 1} such that Q∗
1/3(F ) ≥ Q∗

1/3(G) and

Q∗
1/3(G) = Ω(

√
bs(f, 0n)) as follows thereby completing the proof.

Applying Lemma 1 with a = 0n to f , we obtain g(x) = f(xi1 , xi2 , . . . , xin
).

We note that F and G can be viewed as a 2n×2n matrix with (x, y)th entry being
f(x∧y) and g(x∧y) respectively. By construction of g, using the observation that
the matrix G appears as a submatrix of F , Q∗

1/3(F ) ≥ Q∗
1/3(G). This observation

is used in Sherstov (for instance, see proof of Theorem 5.1 of [17]) without giving
details. For completeness, we give the details here. Let S = {i1, . . . in} ⊆ [n] of
size k. For j ∈ S, let Bj = {t | it = j}. Hence g depends only on these k input
variables of S and all the variables with indices in Bj are assigned the variable
xj . This implies that g(x) = f(⊕j∈SxjeBj

).
We now exhibit a submatrix of F containing G. Consider the submatrix

of F with rows and columns restricted to W = {a1eB1 ⊕ a2eB2 ⊕ . . . akeBk
|

(a1, a2 . . . , ak) ∈ {0, 1}k}. For u, y ∈ W , F (u, y) = f(u ∧ y) = f((u1eB1 ⊕ . . . ⊕
ukeBk

)∧ (y1eB1 ⊕ . . .⊕ ykeBk
)). But this equals f(u1 ∧ y1eB1 ⊕ . . .⊕uk ∧ ykeBk

)
since Bjs are disjoint. Hence, by definition of g, F (u, y) = f(u ∧ y) = g(u ∧ y).

For the g obtained, as reasoned before, we must have Q∗
1/3(G) ≥

Ω(
√
s(g, 0n)). Hence, by (a) of Lemma 1, as a = 0n, we have Q∗

1/3(G) ≥
Ω(

√
bs(f, 0n)). ��

4.3 Putting Them Together

We are now ready to prove Theorems 3 and 4. A critical component of our proof
is the following stronger connection between DT(f) and bs(f, 0n). Buhrman and
de Wolf, in their survey [3], showed that DT(f) ≤ bs(f) · deg(f)2 where the
proof is attributed to Noam Nisan and Roman Smolensky. The same proof can
be adapted to show the following strengthening of their result.

Proposition 5. For any f : {0, 1}n → {0, 1}, and any prime p, DT(f) ≤
bs(f, 0n) · degp(f)2.

We now give a proof of Theorems 3 and 4.
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Proof (of Theorem 3). Applying Theorem 2 and Proposition 5, we have

Q∗
1/3(F ) ≥ Ω

(√
DT(f)

degp(f)

)
. As observed in Gopalan et al. [7], by a modification to

an argument in the proof of Nisan and Szegedy (Theorem 1 of [13]), it can be
shown that deg(f) ≥ n

2degp(f) . Since, DT(f) ≥ deg(f), we have DT(f) ≥ n

2degp(f) .

Hence, Q∗
1/3(F ) = Ω

( √
n

degp(f)2
degp(f)/2

)
= Ω

(
nε/2

(1−ε) log n

)
where the last lower

bound follows upon applying the bound on degp(f). ��
As a demonstrative example, we show a weaker lower bound on quantum

communication complexity with prior entanglement for the generalized inner
product function GIPn,k(x, y) def= ⊕n

i=1

∧k
j=1(xij ∧ yij) when k = 1

2 log n. We
remark that a lower bound of Ω(n) is known for the inner product function [4].

Note that GIPn,k can be expressed as f ◦ ∧, where f(z) def= ⊕n
i=1

∧k
j=1 zij ,

with deg2(f) = k. Applying Theorem 3 with ε = 1/2 and p = 2, we have
Q∗

1/3(GIPn, 12 log n) = Ω
(

n1/4

log n

)
. Though this bound is arguably weak, Theorem 3

gives a non-trivial lower bound for all those Boolean functions f with small
degp(f) for some prime p.

Using the above results, we now prove Theorem 4.

Proof (of Theorem 4). Applying, Theorem 2 and Proposition 5, we get

that for any prime t, Q∗
1/3(F ) ≥ Ω

(√
DT(f)

degt(f)

)
. By hypothesis, degp(f) ≤

O(degq(f)
1−ε
2 ) ≤ O(DT(f)

1−ε
2 ) implying that for t = p, D(F ) ≤ 2DT(f) ≤

O(Q∗
1/3(F )2/ε) ��

5 Linear Transforms: Sensitivity versus Sparsity

Continuing in the theme of affine transforms, in this section, we first establish an
upper bound on alternation of a function in terms of sensitivity of the function
after application of a suitable linear transform. Using this, we show the existence
of a function whose sensitivity is asymptotically as large as square root of sparsity
(see introduction for a motivation and discussion).

Proof (of Lemma 2). Let 0n ≺ x1 ≺ x2 . . . ≺ xn = 1n be a chain C of maximum
alternation in the Boolean hypercube of f . Since chain C has maximum alterna-
tion, there must be at least (alt(f) − 1)/2 many zeros and (alt(f) − 1)/2 many
ones when the xis are evaluated on f . Note that the set of n distinct inputs
x1, x2, . . . , xn seen as vectors in F

n
2 are linearly independent and hence forms a

basis of Fn
2 . Hence there exists a invertible linear transform L : Fn

2 → F
n
2 taking

standard basis vectors to the these vectors, i,e. L(ei) = xi for i ∈ [n].
To prove the result, we now show that s(g, 0n) ≥ alt(f)−1

2 . The neighbors
of 0n in the hypercube of g are {ei | i ∈ [n]} and each of them evaluates to
g(ei) = f(L(ei)) = f(xi) for i ∈ [n]. Since there are at least (alt(f) − 1)/2 many
zero and at least these many ones among xis when evaluated by f , there must



Sensitivity, Affine Transforms and Quantum Communication Complexity 151

be at least (alt(f) − 1)/2 many neighbors of 0n which differ in evaluation with
g(0n) (independent of the value of g(0n)). Hence s(g) ≥ s(g, 0n) ≥ alt(f)−1

2 which
completes the proof. ��
We now describe the family of functions and argue an exponential gap between
sensitivity and logarithm of sparsity, as stated in Theorem 5.

Proof (of Theorem 5). We remark that for the family of functions fk ∈ F (Def-
inition 2), alt(fk) ≥ 2(log sparsity(fk))/2 − 1 [6].

We now use this family F to describe the family of functions gk. For every
fk ∈ F , let gk(x) = fk(L(x)) such that alt(fk) ≤ 2s(gk) + 1 as guaran-
teed by Lemma 2. Since, we have alt(fk) ≥ 2(log sparsity(fk))/2 − 1, it must be

that s(gk) ≥ 1
2 (alt(fk) − 1) ≥ 1

2 (2(log sparsity(fk))/2 − 2) ≥
√

sparsity(fk)

2 − 1 As
the parameter sparsity does not change under invertible linear transforms [14],
s(gk) ≥ 0.5

√
sparsity(fk) − 1 = 0.5

√
sparsity(gk) − 1. ��
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Abstract. In this paper we address the issue of exactly learning boolean
functions. The notion of exact learning introduced by [2] endows a learner
with access to oracles that can answer two types of queries: membership
queries and equivalence queries, in which however, equivalence queries are
unrealistically strong and cannot be really carried out. Thus we investi-
gate exact learning without equivalence queries and provide some posi-
tive results of exactly learning disjunctions and DNFs as follows (without
equivalence queries).

We present a general result for exactly properly learning disjunctions
if probability mass of negative inputs and probabilities that all bits are
assigned to 0 and 1 are all positive. Moreover, with at most n member-
ship queries, we can reduce sample and time complexity.

We present a general result for exactly properly learning the class of
s-DNFs with random examples, and obtain two concrete results under
uniform distributions. First, the class of l-term s-DNFs with l1 log 2l-
terms can be exactly learned using O(2s+l1s lnn) examples in time lin-
ear in (( 2en

s
)s, 2s+l1s lnn). Second, if assume each literal appears in at

most d terms, the class of l-term s-DNFs with l1 log 4sd-terms can be

exactly learned using O(2s+l1 · e l
sd s lnn) examples in time linear in

(( 2en
s
)s, 2s+l1 · e l

sd s lnn).

1 Introduction

In computational learning theory one of main learning models is the PAC model
[11], in which a boolean function class C is learnable if there is an efficient learner
that, given many training random examples labeled by C ∈ C, can output a
hypothesis f satisfying Prx[C(x) �= f(x)] < ε. In this model there have been
many results for learning a large variety of boolean functions, such as [5,8,10,11].

Another model of exact learning introduced by [2] endows a learner with
access to oracles answering two types of queries: membership queries and equiv-
alence queries, and requires the output hypothesis should be functionally equiv-
alent to the target function for all instances. On a membership query the learner
can inquire any instance x and receive C(x), and on an equivalence query
the learner submits a hypothesis h and receives a differing-input x such that
h(x) �= C(x) if h is not of same functionality as C. Under this definition, there
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): COCOON 2019, LNCS 11653, pp. 153–165, 2019.
https://doi.org/10.1007/978-3-030-26176-4_13
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are some results of learning DNFs such as [3,4,7,9]. It is noted that equivalence
queries are unrealistically strong, underlying which the motivation is to draw
PAC learning results since a function class that is exactly learnable under this
definition is also PAC learnable.

Due to the unreality of equivalence queries, it is of great appeal to achieve
exact learnability without equivalence queries (with random examples or mem-
bership queries). To our knowledge, there is no previous positive works towards
this strong goal and thus we will try to touch this appealing problem.

Our Results. We provide some positive results of exactly learning disjunctions
and DNFs (some are proper). Usually a learning result involves an accuracy ε
and a confidence δ. Since we now deal with exact learning, there is no ε in all
results in this paper and for simplicity we omit δ (by considering it as a constant)
in this section and will specify it in the formal descriptions in later sections.

Exactly Learning Disjunctions. Exact learnability means that training
examples can uniquely determine a target function. So there are two necessary
conditions for achieving exact learning of disjunctions. First a set of training
examples labeled by a disjunction should contain some of label 0, since other-
wise there are many distinct disjunctions consistent with the examples. Precisely,
let D denote any distribution over x and this necessary condition requires that
for each target function C, Prx←D[C(x) = 0] should be noticeable so that enough
negative inputs of C can be sampled. Thus any set of disjunctions that is exactly
learnable has to be related to D. For any number 0 < μD ≤ 1, we use CμD

to
denote the class of all disjunctions C satisfying Prx←D[C(x) = 0] ≥ μD.

Second for many sampling of x from D, if some bit of x is always assigned to
0 or always to 1, there are at least two disjunctions consistent with the training
examples. To see this assume C does not contain xi and xi = 0 in all given
examples. Then both C and C ∨ xi are consistent with the examples, which
results in the impossibility of exact learning. So the second necessary condition
is that each bit of x can be both assigned to 0 and 1 with positive probability
under D. Let 0 < pD < 1 denote a upper bound for probabilities that all bits
are assigned to 0 or to 1. Then our first result can be stated as follows.

Proposition 1. CμD
can be exactly properly learned using O( 1

1−pD

1
μD

ln n) ran-
dom examples in time linear in (n, 1

1−pD

1
μD

ln n) under D.

When restricted to learning s-disjunctions over x, each of which contains at
most s literals, under uniform distributions U , in this scenario, pU = 1

2 , μU ≥
2−s and thus we have that s-disjunctions can be exactly properly learned using
O(2s ln n) examples in time linear in (n, 2s ln n) under uniform distributions.

We then consider to get rid of pD and reduce the sample and time complexity
in Proposition 1 in the membership query model and have the second result.

Proposition 2. CμD
can be exactly properly learned using O( 1

μD
) random

examples and at most n membership queries in time linear in (n, 1
μD

) under
D.
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Exactly Learning DNFs. We then consider exact learning of DNFs. By view-
ing each term (i.e. a conjunction over x) of a target DNF as a variable, the
DNF is a disjunction of all its terms. This shows we can employ Proposi-
tion 1 to learn it. We use Fs,μD

to denote the class of all s-DNFs C satisfying
Prx←D[C(x) = 0] ≥ μD > 0, in which an s-DNF is a DNF in which each term
contains at most s literals. Also there are totally less than (2en

s )s terms of at
most s-literals over x, and let 0 < p′

D < 1 denote a upper bound for probabili-
ties that all these terms are equal to 0 or 1. Then our general result for learning
DNFs is as follows.

Proposition 3. Fs,μD
can be exactly properly learned using O( 1

1−p′
D

1
μD

·s ln n)

examples in time linear in ((2en
s )s, 1

1−p′
D

1
μD

· s ln n) under D.

Then we focus on uniform distributions U , under which p′
U ≤ 1 − 2−s.

Then we would like to quantify μU . However, as we will show in general for an
s-DNF C, the value of Prx←U [C(x) = 0] can be quite arbitrary, ranging from
2−n to 1

2 . So there is no meaningful quantity for μU which can be substituted
in Proposition 3 even under uniform distributions. So we consider subclasses of
s-DNFs, for which meaningful quantities for μU can be given.

The first one is the class of all l-term s-DNFs, each in which has at most
l1 log 2l-terms and we denote it by Fs,l,l1 . For instance, for l = poly(n), Fs,l,l1

consists of all l-term s-DNFs, each of which contains l1 O(log n)-terms. (When l1
is not large, we can roughly say that Fs,l,l1 consists of all l-term s-DNFs, in each
of which there are not many narrow terms.) So we will show for any C ∈ Fs,l,l1 ,
either C is constant-1 or Pr[C(x) = 0] ≥ 2−l1−1, which brings μU ≥ 2−l1−1 for
those non-constant-1 functions in Fs,l,l1 . Then we have the following result.

Proposition 4. Fs,l,l1 can be exactly learned using O(2s+l1s ln n) examples in
time linear in ((2en

s )s, 2s+l1s ln n) under uniform distributions.

We then investigate whether this result can be improved. It can be seen that
one way to improve it is to make it still hold while l1 could denote the number
of those terms containing literals fewer than log 2l. We will show constant 2 in
the bound log 2l is not essential and to make the argument sound, any one more
than 1 works and however any one less than 1 cannot. That is, the bound cannot
be reduced smaller, say log l

10 , log l√
n
.

Then we introduce a condition that each literal appears in at most d terms
and call this d-appearance. We remark that this condition is mild since usually
a literal will not appear in all terms. Then we employ the Local Lemma to
deduce that any such l-term s-DNF C with l1 log 4sd-terms is either constant-1
or Pr[C(x) = 0] ≥ 2−l1 · e− l2

sd . This brings the following result.

Proposition 5. l-term s-DNFs with d-appearance and l1 log 4sd-terms can be
exactly learned using O(2s+l1 ·e l

sd s ln n) examples in time linear in ((2en
s )s, 2s+l1 ·

e
l

sd s ln n) under uniform distributions.
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When l
sd is a large constant, the sample and time complexity are of same

magnitude as Proposition 4, while now the bound log 4sd can be less than log l.

Organization. In Sect. 2 we present preliminaries. In Sects. 3 and 4 we present
the results of learning disjunctions and DNFs respectively.

2 Preliminaries

We use [n] to denote the integers in [1, n]. For any set S, we use |S| to denote
its cardinal number. For any two sets S1, S2, we use S1 + S2 to denote S1 ∪ S2

if their intersection is empty.
A literal denotes a boolean variable or its negation. A disjunction of x is an

OR of some literals of (x1, · · · , xn, x1, · · · , xn), where xi denotes the negation of
xi, equal to 1 − xi, 1 ≤ i ≤ n. An s-disjunction is an OR of at most s literals.

A DNF is an OR of some conjunctions, each of which is an AND of some
literals of (x1, · · · , xn, x1, · · · , xn). An s-conjunction is an AND of at most s
literals. We also call a conjunction a term. If a DNF contains at most l terms,
we say it is a l-term DNF, and moreover, if each of all its conjunctions contains
at most s literals, we say it is a l-term s-DNF. We also call s the width of the
conjunctions and DNF.

Chernoff Bound. Let X =
∑n

i=1 Xi where all Xi are independently distributed

in [0, 1]. Then for any 0 < ε < 1, Pr[X < (1 − ε)E[X]] ≤ e− ε2
2 E[X].

2.1 Exact Learning Without Equivalence Queries

Let C denote a class of boolean functions. In the random examples model, a
labeled example is a pair (x, f(x)), where x ∈ {0, 1}n, f ∈ C. A training sample
labeled by f is of the form ((x1, f(x1)), · · · , (xm, f(xm))).

Definition 1 (Exact Learning). An algorithm L is called an exact learner for
C under distribution D over {0, 1}n, if it is given a training sample in which
each x is sampled from D independently and its label is f(x) for some unknown
f ∈ C, δ ∈ (0, 1), with probability at least 1 − δ, L outputs a function h such
that f(x) = h(x) for all x ∈ {0, 1}n. If h is also in C, we say L properly learns
C. We refer to δ as the confidence parameter.

If L is additionally given oracle access to f and it can inquire f with any
input x and receives f(x), we call L exactly learns C with membership queries.

3 Exactly Properly Learning Disjunctions

In Sect. 3.1 we present the exactly learning result for disjunctions with random
examples. In Sect. 3.2 we present the result with membership queries.
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3.1 Learning Disjunctions with Random Examples

Recall that [11] shows how to PAC properly learning disjunctions to any error ε
(originally it aims at conjunctions but we adapt its idea to disjunctions). That
is, initially set the unknown target function to be the OR of all literals. Then
given many labeled examples, scan each one with label 0, in which if a literal is
assigned to 1, then delete it from the OR representation. Lastly the remaining
disjunction (which is an OR of literals including ones in the target function) is
consistent with all examples with label 0. Since including more literals in the OR
will not affect label 1, it is also consistent with all examples with label 1. Then
using the VC theory to specify sample complexity and running this strategy, the
output hypothesis is with desired accuracy.

We extend this strategy by further deleting those literals in the remaining
representation but not in the target function. Assume each variable is assigned
to 0 and to 1 with positive probability. If a literal appears with values both 0
and 1 among the examples with label 0, it cannot be in the target function, since
one of its assignments 0/1 results in label 1. In contrast, a literal in the target
function should always appear with value 0 among these examples.

Thus we have there are two necessary conditions for exact learning. Let C
be the target function and D be the unknown distribution over x. The first
condition is that the negative points of C have positive probability mass, i.e.
Prx←D[C(x) = 0] > 0, and actually it should be at least noticeably more than
0 such that many examples with label 0 can be sampled. Otherwise, the given
random examples are all with label 1 and thus there are more than one disjunc-
tion consistent with them and thus we definitely cannot exactly learn C. The
second condition is that for x ← D, each literal should have positive probability
mass on 0 and 1, since otherwise among all examples with label 0 there is no
way to distinguish it from the very literals in C, resulting in the impossibility of
exact learning. We specify the two conditions more precisely as follows.

Let C be a disjunction of some literals of (x1, · · · , xn, x1, · · · , xn), where xi

denotes the ith bit of x and xi denotes 1 − xi, 1 ≤ i ≤ n. Let S1 ⊂ [n] consist of
all those i ∈ [n] satisfying xi appears in C, and S2 ⊂ [n] consist of those i ∈ [n]
satisfying xi appears in C. W.l.o.g. S1 ∩ S2 = ∅. So C(x) = ∨i∈S1xi

∨ ∨i∈S2xi,
where ∨ and

∨
denote OR. We introduce notations μD, CμD

and pD as follows.

– For any 0 < μD ≤ 1, let CμD
denote the class of all disjunctions C satisfying

Prx←D[C(x) = 0] ≥ μD.
– Let pi = Prx←D[xi = 1] and 1 − pi = Prx←D[xi = 0] for each i. Let pD be

maxi∈[n](max(pi, 1 − pi)). We require 0 < pD < 1.

So when given random examples from D with 0 < pD < 1, what we consider
to learn is CμD

. Let δ denote the confidence parameter. Let (x1, b1), · · · , (xm, bm)
be m examples where xk ← D and bk = C(xk), k ∈ [m] and C is the unknown
target disjunction. We first present the following claim.

Claim 1. In m = O( 1
1−pD

1
μD

ln n
δ ) examples (the constant in O is larger than

8), with probability 1 − O( δ
n ), there are at least O( 1

1−pD
ln n

δ ) ones with label 0.
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Proof. Let n′ = mμD

2 . Define a random variable ξk = 1 if C(xk) = 0 and ξk = 0
else for each k. Let Y =

∑m
k=1 ξk and E[Y ] ≥ 2n′. By the Chernoff bound, for

any 0 < ε′ < 1, Pr[Y < (1 − ε′)E[Y ]] < e− ε′2
2 E[Y ].

Choose ε′ = 1
2 . Then Pr[Y < n′] < e− 1

4n′ ≤ ( δ
n )

1
1−pD = O( δ

n ). Since n′ =
O( 1

1−pD
ln n

δ ), the claim holds. �

So in the following we take m = O( 1
1−pD

1
μD

ln n
δ ). By Claim 1, there are at

least n′ = O( 1
1−pD

ln n
δ ) examples with label 0. W.l.o.g. denote these examples

by (x1, 0), · · · , (xn′
, 0). Then we have the following fact.

Claim 2. Given n′ = O( 1
1−pD

ln n
δ ) training examples (xk, 0) for k ∈ [n′], if

i ∈ S1 then xk
i = 0 for all k (xk

i denotes the ith bit of xk), if i ∈ S2 then xk
i = 1

for all k, and if i /∈ S1+S2, then except for probability δ
2n , there are two distinct

j, k ∈ [n′] such that xj
i = 1 and xk

i = 0.

Proof. Since C(x) = ∨i∈S1xi

∨ ∨i∈S2xi, the results for i ∈ S1 and i ∈ S2 are
obvious. Then we consider the case that i /∈ S1 + S2. In this case values of
xi are independent of labels. Since each such bit xi is valued with 0 or 1 in a
random example with probability bounded by pD, denoted 1− ξ for some ξ, it is
always valued with 0 or always valued with 1 in all the examples with probability
(1 − ξ)O( 1

1−pD
ln n

δ ) = (1 − ξ)O( 1
ξ ln n

δ ) = ( δ
n )O(1) ≤ δ

2n . The clam holds. �
By Claim 2 we have that for all i /∈ S1 +S2, taking the union failure bounds,

except for probability δ/2, xi can be valued both 0 and 1 in the examples. Thus
by checking all values of xk

i for k ∈ [n′], i ∈ [n], we can determine whether i is
in S1 or S2 or not in S1 + S2. That is, for each i: if the values of xk

i are 0 for all
k then i ∈ S1; if the values of xk

i are 1 for all k then i ∈ S2; otherwise, i is not
in S1 + S2. Lastly, we can recover C as C(x) = ∨i∈S1xi

∨ ∨i∈S2xi.
We remark that the total failure probability comes from Claim 2 and Claim 1

which is less than δ, and the learning strategy only needs to scan all examples to
make decisions and thus runs in linear time. Thus we have the following result.

Proposition 6. For any distribution D with 0 < pD < 1, the class CμD

with μD > 0 can be exactly properly learned to any confidence δ using
O( 1

1−pD

1
μD

ln n
δ ) examples in time linear in (n, 1

1−pD

1
μD

ln n
δ ) under D.

Then consider a specific case that D is the uniform distribution U and C is
an s-disjunction over x for any s ≤ n, i.e. |S1 + S2| ≤ s. Thus μU ≥ 2−s and
pU = 1

2 for the class of s-disjunctions. Thus we have the following corollary.

Corollary 1. The class of s-disjunctions can be exactly properly learned to
any confidence δ using O(2s ln n

δ ) examples in time linear in (n, 2s ln n
δ ) under

uniform distributions.
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3.2 Learning with Membership Queries

Now we try to get rid of the parameter pD and reduce the sample and time
complexity in Proposition 6 in the membership query model. Since for C ∈ CμD

,
for any given 1

μD
ln 1

δ random examples, no one is labeled with 0 with probability

(1 − μD)
1

μD
ln 1

δ < δ. Thus with probability 1 − δ, there is at least an example
with label 0. Denote it by (xj , 0).

Recall C(x) = ∨i∈S1xi

∨ ∨i∈S2xi. Exactly learning C is equivalent to decid-
ing the membership of all i in S1, S2. For each i, if xj

i = 0 then either i ∈ S1 or
i /∈ S1 + S2, and if xj

i = 1 then either i ∈ S2 or i /∈ S1 + S2.
Then membership queries can help for further deciding the membership of

all i. That is, for any i belonging to the first case, the learner inquires the oracle
with y where y equals xj but with xj

i flipped. If the oracle replies with 0, i
cannot be in S1 and thus does not belong to S1 + S2, and if it replies with 1, i
must belong to S1. Similarly, for any i belonging to the second case, the learner
inquires the oracle with y where y equals xj but with xj

i flipped. If the oracle
replies with 0, i cannot be in S2 and thus does not belong to S1 + S2, and if it
replies with 1, i must belong to S2.

Thus by proposing at most n queries, the learner can decide membership of
all i in S1, S2. So we have the following result.

Proposition 7. For any distribution D, the class CμD
with μD > 0 can be

exactly properly learned to any confidence δ using 1
μD

ln 1
δ examples and at

most n membership queries in time linear in (n, 1
μD

ln 1
δ ) under D.

4 Exactly Learning s-DNFs

In this section we present the results of exactly learning s-DNFs. In Sect. 4.1 we
give a general result. In Sects. 4.2 and 4.3 we present two concrete results when
s-DNFs satisfy mild conditions under uniform distributions.

4.1 Learning s-DNFs Under Any Distributions

Let C : {0, 1}n → {0, 1} denote a l-term s-DNF. That is, C is an OR of at most
l conjunctions of width at most s. Let C1, · · · , Cl denote its l terms, each of
which is a conjunction of at most s literals of x.

Note there are totally less than
∑s

i=0

(
2n
i

) ≤ ( 2en
s )s distinct s-conjunctions

over x. We denote them by C ′
1, · · · , C ′

N for N ≤ (2en
s )s, and all Ci of C belong to

them. Viewing each C ′
i as a variable, C is a disjunction of l ones of {C ′

i : i ∈ [N ]}.
So we can apply the result of learning disjunctions to exactly learn C.

Let D be any distribution over x. To apply Proposition 6, we need to refer
to the counterparts of pD, μD therein. That is, let μD be any number in (0, 1]
and Fs,μD

denote the class of all s-DNFs C satisfying Prx←D[C(x) = 0] ≥ μD.
So for any D, what we attempt to learn is Fs,μD

.
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Similarly assume Prx[C ′
i = 1] = pi and Prx[C ′

i = 0] = 1−pi for i ∈ [N ]. Then
let p′

D denote maxi∈[N ](max(pi, 1 − pi)). (p′
D is the counterpart of pD, since all

C ′
i are viewed as variables.)

Note that to apply Proposition 6 it requires p′
D < 1. For p′

D < 1, both
pi, 1 − pi should be less than 1 for all i, which means no C ′

i is a constant. Since
each C ′

i is an AND of at most s literals of x, for C ′
i not being a constant, it

suffices to require that no bit of x can be determined by some other bits. In the
statement of the result below, we just require that it should be satisfied p′

D < 1
for D instead of focusing on various specific cases of D satisfying p′

D < 1.
Lastly, the n in Proposition 6 is now changed to N ≤ (2en

s )s. Since C ∈ Fs,μD

can be viewed as a disjunction of l variables Ci out of N ones, we can exactly
learn C by the proposition. Note that the learned C is an OR of some C ′

i,
indicating it is still an s-DNF, and it is exactly identical to the original C. So
we have the following result.

Proposition 8. The class of s-DNFs Fs,μD
with μD > 0 can be exactly properly

learned to any confidence δ using O( 1
1−p′

D

1
μD

· s ln n
δ ) examples in time linear in

((2en
s )s, 1

1−p′
D

1
μD

· s ln n
δ ) under D with p′

D < 1.

Also turn to the specific case that D is the uniform distribution U . Let
us evaluate p′

U . For any s-conjunction C ′
i, since C ′

i contains at most s literals,
Pr[C ′

i = 1] ≥ 2−s,Pr[C ′
i = 0] ≤ 1 − 2−s. Thus p′

U ≤ 1 − 2−s.
As for μU , in general for an s-DNF C, the value of Prx[C(x) = 0] can range

broadly. For instance, if C = xi then Prx[C(x) = 0] = 1
2 , and if C =

∨m
i=1 xi

then Prx[C(x) = 0] = 1
2m for any m ∈ [n]. This shows we cannot provide a

meaningful lower bound to substitute μU under uniform distributions.
Conversely, given any 2−n < μU < 1/2, choose m ≈ log 1

μU
and thus any

disjunction C over m literals, considered as a 1-DNF, admits Prx[C(x) = 0] ≈
μU . This asserts the existence of s-DNFs Fs,μU

for quite arbitrary μU . So we
have the following result which still needs to contain the parameter μU .

Proposition 9. The class of s-DNFs Fs,μU
with μU > 0 can be exactly prop-

erly learned to any confidence δ using O(2s 1
μU

s ln n
δ ) examples in time linear in

((2en
s )s, 2s 1

μU
s ln n

δ ) under uniform distributions.

In the following two subsections we will present concrete quantities for μU

when s-DNFs satisfy some mild conditions.

4.2 Learning s-DNFs with Not Many Narrow Terms Under
Uniform Distributions

We consider how to provide a lower bound for μU when C satisfies a mild condi-
tion. Recall C =

∨l
i=1 Ci and each Ci is a conjunction of at most s literals and

l < ( 2en
s )s. Let l1 denote the number of those Ci which widths are at most log 2l

(the constant 2 is not essential and any one more than 1 also works). Let Fs,l,l1
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denote the class of all l-term s-DNF C with at most l1 log 2l-terms (when l1 is
not large, Fs,l,l1 consists of all C which do not have many narrow terms).

We estimate μU for Fs,l,l1 . For each C in the class, first consider C is not
constant-1. Divide all the conjunctions Ci of C to two parts in which one consists
of those Ci’s each of which contains at most log 2l literals and the other consists
of those Ci’s each of which contains more literals. Then for each Ci in the second
part, Prx[Ci = 1] < 2− log 2l = 1

2l . Thus the total probability that at least one Ci

in the second part is 1 for uniform x is less than 1
2 . Namely, all Ci in the second

part are 0 with probability at least 1
2 . W.l.o.g. denote these Ci by D1, · · · ,Dl2

for some l2 ≤ l, and Prx←U [Di = 0,∀i ∈ [l2]] ≥ 1
2 . If the second part is empty,

just consider Di = 0,∀i ∈ [l2] with probability 1.
Let C1, · · · , Cl1 denote those Ci in the first part. Then we have the following

claim that estimates the conditional probability that all C1, · · · , Cl1 are 0 when
all D1, · · · ,Dl2 are 0 for uniform x.

Claim 3. For any non-constant-1 C ∈ Fs,l,l1 , if the first part of C is not empty,
Prx←U [Cj = 0,∀j ∈ [l1]|Di = 0,∀i ∈ [l2]] ≥ 1

2l1
.

Proof. First we have the following formula (in which [0] denotes the empty set).

Pr
x←U

[Cj = 0,∀j ∈ [l1]|Di = 0,∀i ∈ [l2]]

=
l1∏

k=1

Pr
x←U

[Ck = 0|Di = 0,∀i ∈ [l2], Cj = 0,∀j ∈ [k − 1]]
(1)

We consider Prx←U [Ck = 0|Di = 0,∀i ∈ [l2], Cj = 0,∀j ∈ [k − 1]] for each
k. If the condition that Di = 0,∀i ∈ [l2], Cj = 0,∀j ∈ [k − 1] can completely
determine the value of Ck, then on this condition Ck is always 1 or always 0.
Since C is not constant-1, Ck cannot be 1. In fact, when the conditional event
occurs, if Ck = 1, then C = 1. When the event does not occur, there is one
of {Di, Cj ,∀i ∈ [l2],∀j ∈ [k − 1]} which is 1, which also ensures C = 1. Thus
Ck = 0 with probability 1 on the occurrence of the conditional event.

Otherwise, that Di = 0,∀i ∈ [l2], Cj = 0,∀j ∈ [k − 1] cannot determine the
value of Ck. This means there are at least two possibilities for the values of the
involved literals in Ck. Since there is one which results in Ck = 1 (note Ck = 1
if and only if all involved literals are 1), we have Prx←U [Ck = 0|Di = 0,∀i ∈
[l2], Cj = 0,∀j ∈ [k − 1]] ≥ 1

2 .
Combining the two cases, the value of Eq. 1 is at least

∏l1
k=1

1
2 = 1

2l1
. �

Claim 4. For any C in Fs,l,l1 , either C is constant-1 or Prx←U [C(x) = 0] ≥
2−l1−1.

Proof. If C is not constant-1, then when the first part of C is not empty, by
Claim 3, Prx←U [C = 0] = Prx←U [Di = 0,∀i ∈ [l2]] · Prx←U [Cj = 0,∀j ∈
[l1]|Di = 0,∀i ∈ [l2]] ≥ 2−l1−1. When the first part is empty, Pr[C = 0] =
Pr[Di = 0,∀i ∈ [l2]] ≥ 1

2 . The claim holds. �
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So Fs,l,l1 excluding constant-1 functions admits μU ≥ 2−l1−1. By Proposi-
tion 9, any non-constant-1 C in Fs,l,l1 can be exactly properly learned to any
confidence δ using O(2s+l1s ln n

δ ) examples in time linear in ((2en
s )s, 2s+l1s ln n

δ )
under uniform distributions.

On the other hand, if C is constant-1, for O(2s+l1s ln n
δ ) random examples,

they are always labeled with 1. When detecting this, we can output a constant-1
function as the output hypothesis.

Thus a learner can learn C as follows. When it finds all given random exam-
ples are of label 1, it outputs a constant-1 function and otherwise it adopts the
strategy in Sect. 4.1 to obtain a hypothesis. If C is constant-1, then the learner
learns always exactly. If C is not, these examples contain many with label 0
with probability 1− δ, and on this condition it learns C exactly as Proposition 9
shows. So (substituting δ with δ

2 ) we have the following result.

Proposition 10. The class of Fs,l,l1 can be exactly learned to any confidence
δ using O(2s+l1s ln n

δ ) examples in time linear in ((2en
s )s, 2s+l1s ln n

δ ) under uni-
form distributions.

Although Proposition 10 does not contain l explicitly in sample and time
complexity, it is actually embodied since l < (2en

s )s. Note the learned hypothesis
may not be in Fs,l,l1 . We then present concrete quantities of sample and time
complexity for different magnitudes of s (consider constant l1 for simplicity and
the quantities when l1 = O(log n) or l1 = nα for α < 1 can be given similarly).

– If s = logc n for some integer c > 0, the sample complexity and learning-time
are now O(2log

c n logc n ln n
δ ) and linear in (nlogc n, 2log

c n logc n ln n
δ ).

– If s = O(n), say n
16 , the sample complexity is O(2

n
16 n ln n

δ ) and the learning-
time is less than a linearity in (2

7
16n, n ln n

δ ) since ( 2en
s )s = (32e)n/16 < 2

7
16n.

This means that all n
16 -DNFs with a constant number of terms of width log 2l

can be exactly learned roughly using O(2
n
16 ) examples in time O(2

7
16n) (in

contrast to exactly determining such DNFs via total 2n inputs).
– Consider the most general case of s = n. Then the sample complexity is

O(2nn ln n
δ ). Now N is the number of all distinct conjunctions over x (2n lit-

erals), which is in the magnitude of 21.5n. Thus the learning-time is approx-
imately a linearity in 21.5n. (To collect statistical information via random
examples instead of via membership queries, it is probably reasonable to
allow time complexity more than 2n for the most general case.)

4.3 Learning Under Bounded-Appearance of All Literals

In Sect. 4.2 we presented the learning result for Fs,l,l1 , in which each C is a
l-term s-DNF with l1 terms of width at most log 2l. It can be seen that one way
to improve this result is to make it still hold while l1 is only restricted to be the
number of those terms of width smaller than log 2l. Namely, we could still learn
C when the number of its narrower terms is not many (in contrast to learning
C in Sect. 4.2 when the number of its narrow terms is not many).
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As shown in Sect. 4.2, the constant 2 in the width bound log 2l is not essential
and to make the argument sound, any one more than 1 works, but any one less
than 1 cannot work. So the width bound cannot be reduced smaller, say log l

10 ,
log l√

n
. (Although this is not notable in terms of magnitude, we think whether

the constant can be reduced to less than 1 is still of theoretical interest.)
Then our task is to obtain a smaller width bound. To do this, we introduce

a more condition for C that each literal appears in at most d terms, d < l. We
call this d-appearance for all literals. We remark that this condition is mild since
usually a literal will not appear in all terms.

We also divide all terms Ci of C to two parts in which one consists of those
Ci that involve at most log 4sd literals and the other consists of those Ci that
involve more. (We will show 4sd can be less than l.) Then for each Ci in the
second part, Prx[Ci = 1] < 2− log 4sd = 1

4sd . Note that now we cannot obtain the
probability that all these Ci output 1 by counting the union probability l2

4sd for
l2 = l − l1 since it can be larger than 1. Instead, we would like to apply The
Local Lemma to evaluate this probability.

Still denote these Ci in the second part by D1, · · · ,Dl2 . For convenience, let
Ai denote the event that Di(x) = 1, i ∈ [l2]. Then the probability that all Di

are 0 can be represented as Pr[
∧l2

i=1 Ai]. (If the second part of C is empty, take
Pr[

∧l2
i=1 Ai] = 1.) Then we introduce the Lemma.

Theorem 5 (The Local Lemma [6]). Let A1, · · · , An be events in an arbitrary
probability space. Suppose each event Ai is mutually independent of a set of
all the other events Aj but at most d, and Pr[Ai] ≤ p for all 1 ≤ i ≤ n. If
ep(d + 1) ≤ 1 then Pr[

∧n
i=1 Ai] ≥ ∏n

i=1(1 − 1
d+1 ).

The statement of the Lemma here is referred to [1] (Lemma 5.1.1 and Corol-
lary 5.12 in Chapter 5). Returning to our setting, in general each Di contains
at most s literals, each appearing in at most d terms. So each Ai is mutually
independent of all other Aj but at most sd ones. Also Pr[Ai] < 1

4sd for all i and
e · 1

4sd · (sd + 1) < 1. Thus by the Lemma, we have the following claim.

Claim 6. Pr[
∧l2

i=1 Ai] > e− l2
sd ≥ e− l

sd .

Proof. If the second part of C is empty, Pr[
∧l2

i=1 Ai] = 1. Otherwise, it follows
from The Local Lemma that Pr[

∧l2
i=1 Ai] ≥ ∏l2

i=1(1 − 1
sd+1 ) > e− l2

sd . �
Let us compare Claim 6 to the result in Sect. 4.2 that Prx←U [Di = 0,∀i ∈

[l2]] ≥ 1
2 , in the notations of Ai, i.e. Pr[

∧l2
i=1 Ai] > 1

2 . In Sect. 4.2, the width
cannot be less than log l, while now the width log 4sd can be less than log l, i.e.
4sd < l, and actually Pr[

∧l2
i=1 Ai] here can be more than a constant when l

sd is
any large constant or can be e−√

n when l
sd =

√
n. When l = poly(n), d equals

O(poly(n)/s) = poly(n), which means each literal is allowed to appear in poly(n)
terms and so the condition is quite mild.

Following the route in Sect. 4.2, we evaluate the probability that all Ci in the
first part are 0 on the condition of

∧l2
i=1 Ai for uniform x. Still let C1, · · · , Cl1

denote all ones in the first part. Then we have the following claim.
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Claim 7. For any l-term s-DNF C with d-appearance and l1 terms width at
most log 4sd, either C is constant-1 or Prx←U [C(x) = 0] ≥ 2−l1 · e− l

sd .

Proof. If C is not constant-1, using the argument of Claim 3, we have
Prx←U [Cj = 0,∀j ∈ [l1]|Di = 0,∀i ∈ [l2]] ≥ 1

2l1
(if the first part is not empty).

In the notations Ai, Prx←U [Cj = 0,∀j ∈ [l1]|
∧l2

i=1 Ai] ≥ 1
2l1

. Combining it with
Claim 6 and Claim 4 (if the first part is empty), this claim holds. �

Then by the argument in Sect. 4.2 we have the following result.

Proposition 11. The class of l-term s-DNFs with d-appearance and l1 log 4sd-
terms can be exactly learned to any confidence δ using O(2s+l1 ·e l

sd s ln n
δ ) exam-

ples in time linear in (( 2en
s )s, 2s+l1 · e

l
sd s ln n

δ ) under uniform distributions.

When l
sd is a large constant, the sample and time complexity are of same

magnitude as Proposition 10, while now the width log 4sd can be less than log l.
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Abstract. Norinori is a logic game similar to Sudoku. In Norinori, a
grid of cells has to be filled with either black or white cells so that the
given areas contain exactly two black cells, and every black cell shares an
edge with exactly one other black cell. We propose a secure interactive
physical algorithm, relying only on cards, to realize a zero-knowledge
proof of knowledge for Norinori. It allows a player to show that he or she
knows a solution without revealing it. For this, we show in particular that
it is possible to physically prove that a particular element is present in a
list, without revealing any other value in the list, and without revealing
the actual position of that element in the list.

Keywords: Zero-knowledge proofs ·
Card-based secure two-party protocols · Puzzle · Norinori

1 Introduction

Sudoku, introduced under this name in 1986 by the Japanese puzzle company
Nikoli, and similar games such as Akari, Takuzu, Makaro, and Norinori have
gained immense popularity in recent years. Many of them have been proved
to be NP-complete [1,5,9,10]. In 2007, Gradwohl, Naor, Pinkas, and Rothblum
proposed the first physical zero-knowledge proof protocols for Sudoku [7]. Their
protocol only use several cards and allow a prover to prove to a verifier that he
knows a solutions of a Sudoku grid. More precisely, a zero-knowledge proof of
knowledge is a protocol that allows a prover P to convince a verifier V that she
knows the solution w of an instance of a computational problem. Such a protocol
has the following properties:
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Correctness. If P knows w, then P can convince V .
Extractability. If P does not know w, then P cannot convince V , except with

some small probability (here will have perfect Extractability, that is the prob-
ability that V does not detect a wrong grid is zero). This implies the stan-
dard soundness property, which ensures that if there exists no solution of the
puzzle, then the prover is not able to convince the verifier regardless of the
prover’s behavior.

Zero-Knowledge. V cannot obtain any information about w. To prove that
a protocol satisfies the zero-knowledge property, it is sufficient to exhibit a
probabilistic polynomial time algorithm M(I), not knowing w, such that the
outputs of the protocol and the outputs of M(I) follow the same probability
distribution.

Recently, a novel protocol for Sudoku using fewer cards and with no soundness
error was then proposed [14]. Physical protocols for other games, such as Hanjie,
Akari, Kakuro, KenKen, Takuzu, and Makaro, have been designed [2–4]. In this
article, we propose the first interactive physical zero-knowledge proof protocol for
Norinori.

Norinori: It is a pencil puzzle published in the famous puzzle magazine Nikoli.
The puzzle instance is a rectangular grid of cells. The grid is partitioned into
rooms, that is, areas surrounded by bold lines. The goal of the puzzle is to shade
certain cells so that they become black, according to the following rules [12]:

1. Room condition: Each room must contain exactly two black cells.
2. Pair condition: The black cells come in pairs: each black cell must be adjacent

to exactly one, and only one, other black cell.

In Fig. 1, we give a simple example of a Norinori game. It is easy to verify that
both constraints are satisfied in the solution on the right part of the figure. We
note that in a solution the number of black cells is exactly twice the number of
rooms.

Fig. 1. Example of a Norinori grid and its solution.

Solving Norinori was shown to be NP-complete via a reduction from PLA-
NAR 1-IN-3-SAT in [1]. Hence, it is possible to construct a cryptographic zero-
knowledge proof of this game by using the generic cryptographic zero-knowledge
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proofs for all problems in NP given in [6]. However, this construction requires
cryptographic primitives and is not very efficient.

Contributions: Our aim in this paper is to design an interactive physical protocol
that uses only cards and envelopes for Nornori. This paper is not just another
paper that proposed a physical zero-knowledge protocol for a Nikoli’s game but
we want to extend the physically verifiable set of functions that we are able
to solve using only physical material. For instance, we know how to guarantee
the presence of all numbers in some set without revealing their order [7], how
to guarantee that two numbers are distinct without revealing their respective
values [2], or how to prove that a number is the largest in a list, without revealing
any value in the list [3]. In this paper, by providing a physical zero-knowledge
proof for the Nikoli puzzle Norinori, we show in particular that it is possible to
physically prove that a particular element is present in a list, without revealing
any other value in the list, and without revealing the actual position of that
element in the list.

Outline: In the next section, we introduce some notations and explain simple
physical subprotocols that we use in our protocol for Norinori. In Sect. 3, we con-
struct our zero-knowledge protocol for Norinori, before giving a security analysis
in Sect. 4 and concluding in Sect. 5.

2 Preliminaries

In this section, we present some notations and introduce shuffling operations and
a subprotocol that will be used later.

2.1 Physical Objects

The physical cards used in this paper are given in Table 1. We assume that
the back sides of all cards are identical1, and the face sides of all the cards of
each type (such as , ♣ , � , S , 1 , . . .) are also identical. We use the notation
(c1, c2, . . . , ck) to represent a sequence of k face-down cards ? ? . . . ? . We
also consider a pile of cards ? consisting of � face-down cards and express it
as a vector p. Moreover, a sequence of k piles ( ? , ? , . . . , ? ) is expressed
as a k-tuple of vectors (p1,p2, . . . ,pk).

2.2 Pile-Scramble Shuffle

Pile-Scramble Shuffle [8] is a shuffle operation for piles: for a sequence of k
piles (p1,p2, . . . ,pk), applying a Pile-Scramble Shuffle results in (pπ−1(1),pπ−1(2)

, . . . ,pπ−1(k)), where π ∈ Sk is a uniformly distributed random permutation,
and Sk is the symmetric group of degree k. A Pile-Scramble Shuffle can be
implemented by physical cases, for instance by using a big box where we place
all the cases that contain the pile of cards and we blindly shuffle them.
1 It means that the cards face down are indistinguishable from each other.
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Table 1. Names of cards.

Face side Back side Name

? White card

♣ ? Black card

� ? Maker card

S ? Starting card

1 2 3 4 ? Number card

2.3 Pile-Shifting Shuffle

Pile-Shifting Shuffle (which is also called Pile-Shifting Scramble) [13] cyclically
shuffles piles of cards. That is, given a sequence of k piles, each of which consists
of the same number of face-down cards, denoted by (p1,p2, . . . ,pk), applying
a Pile-Shifting Shuffle results in (pr+1,pr+2, . . . ,pr+k), where r is uniformly ran-
domly generated from Z/kZ and is unknown to everyone. To implement a Pile-
Shifting Scramble, we use physical cases that can store a pile of cards, such as
boxes or envelopes. One possible implementation is to place the different pile of
cards in cases that are linked together in a circle in order to form a cycle. Then
we just have to physically shuffle the cases, for instance by turning the circle.

2.4 Card Choosing Protocol

In this subsection, we describe the Card Choosing Protocol, which is immediately
obtained by borrowing the idea behind the Chosen Cut [11]. This protocol is used
as a subprotocol in our construction in Sect. 3.

Given a sequence of k face-down cards (c1, c2, . . . , ck), the Card Choosing
Protocol enables the prover P to choose a designated card secretly. More pre-
cisely, for some i such that 1 ≤ i ≤ k, P can choose the i-th card without
revealing any information about i to the verifier V . The protocol proceeds as
follows:

1. P holds k − 1 white cards and one black card. Then, P puts them with their
faces down below the cards (c1, c2, . . . , ck), such that only the i-th card is the
black card:

?
c1

?
c2

. . . ?
ci−1

?
ci

?
ci+1

. . . ?
ck

? ? . . . ? ?
♣

? . . . ?

2. Regarding cards in the same column as a pile, apply a Pile-Shifting Shuffle
to the sequence of piles (which is denoted by 〈 · | . . . |· 〉):

〈
?
c1

?

∣∣∣∣∣∣
?
c2

?

∣∣∣∣∣∣ . . .

∣∣∣∣∣∣
?
ck

?

〉
→

?
cr+1

?
cr+2

. . . ?
cr+k

? ? . . . ? ,
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where r ∈ Z/kZ is a uniformly distributed random value.
3. Reveal all the cards in the second row. Then, one black card appears, and

the card above the revealed black card is the i-th card:

? ? . . . ? ?
ci

? . . . ?

. . . ♣ . . .

Thus, P can show the designated card to V .

Because all the opened cards are shuffled in Step 2, V does not learn any infor-
mation about the index i of the chosen card and is sure that only one card was
designated.

3 Zero-Knowledge Proof for Norinori

We are now ready to describe our construction of a zero-knowledge proof for
Norinori. For a puzzle instance of board size m × n including exactly t rooms,
assume that the prover P knows the solution. Our protocol consists of three
phases, namely:

1. Setup phase,
2. Pair Verification phase,
3. Room Verification phase.

It is important to perform the phases in this order. The Room Verification
phase has to be the last one and the Setup phase the first phase.

Setup Phase: This phase has two steps:

1. P puts one face-down card on each cell according to the solution. That is, a
black card is placed on every cell where a black square exists in the solution,
and white cards are placed on all the other cells. For example, for the puzzle
instance in Fig. 1, the cards are placed as follows:

?
♣

?
♣

? ?
♣

?
♣

? ? ?
♣

? ?

?
♣

? ?
♣

? ?
♣

?
♣

? ? ? ?
♣

? ? ?
♣

?
♣

?

These cards are P ’s input, and we assume that P knows his or her input.
This implies that if the cards conform to the solution, P knows the solution.
Note that 2 × t black cards and m × n − (2 × t) white cards on a board of
dimension m × n including exactly t rooms.
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2. Next, remembering that m is the number of rows and n is the number of
columns, V takes 2 × m + 2 × n + 3 white cards and one starting card. Then,
V puts these cards around the m × n “matrix” above to expand it to an
(m + 1) × (n + 1) “matrix” as follows, where the starting card is placed at
the top-left corner:

S
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?

(1)

Pick each row from top to bottom to make a sequence of cards:

?
S

m × n + 2 × m + 2 × n + 3 cards︷ ︸︸ ︷
? ? ? ? ? ? . . . ? ?

Notation: For any black card (whose location is known only to P ) in the matrix,
we define its four adjacent cards called north, east, west, and south cards:

?
north

?
west

?
♣

?
east

?
south

Pair Verification Phase: The verifier V verifies that P ’s input satisfies the
Pair condition. If P has placed the cards correctly, every black card will have
exactly one black card among its adjacent cards. The verification of the Pair
condition is to guarantee this, and it proceeds as follows:

1. P selects a black card mentally from the card sequence, and performs the
Card Choosing Protocol to choose that card:

? . . . ? ? ? . . . ?

. . . ♣ . . .

Then, V opens the card chosen by P to make sure that the chosen card is
black:

↓
? . . . ? ♣ ? . . . ?

. . . ♣ . . .
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After confirming that the card is black, V replaces it by a marker card:

↓
? . . . ? � ? . . . ?

. . . ♣ . . .

This operation prevents P from choosing the same black card again at later
verifications.

2. V picks the four adjacent cards of the chosen black card. Because the sequence
of cards was shifted cyclically, V can find such four cards, namely, the north,
east, west, and south cards, by counting the distances2:

?
west

?
north

?
east

?
south

3. V puts number cards 1 2 3 4 in this order below these cards, and turns
them over:

? ? ? ?

1 2 3 4
→

? ? ? ?

? ? ? ?

4. P regards cards in the same column as a pile and applies a Pile-Scramble
Shuffle to the sequence of piles:〈

?

?

∣∣∣∣∣ ?

?

∣∣∣∣∣ . . .

∣∣∣∣∣ ?

?

〉
→

? ? ? ?

? ? ? ?

5. V reveals the top row and checks that there is exactly one black or one marker
card:

♣
? ? ? ?

or
�

? ? ? ?

After checking it, the cards in the top row are turned over.
6. P applies a Pile-Scramble Shuffle to the piles again, and reveals the bottom

row:〈
?

?

∣∣∣∣∣ ?

?

∣∣∣∣∣ . . .

∣∣∣∣∣ ?

?

〉
→

? ? ? ?

? ? ? ?
→

? ? ? ?

2 3 4 1

Because the number cards indicate the original order, V can place each top
card back in the original position in the card sequence:

? ? . . . ?
north

. . . ?
west

� ?
east

. . . ?
south

. . . ?

Turn over the face-up marker card. Note that P knows the locations of the
other black cards and the starting card.

2 For example, if the size of the puzzle board is 3 × 4, the north card is the fifth card
away from the chosen card to the left, and the south card is the sixth card away
from it to the right.
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P and V repeat Steps 1 to 6 above 2 × t − 1 times more; recall that 2 × t is the
number of black cards3. Furthermore, as a targeted black card is replaced by a
marker card, V is convinced that 2t black cards are verified.

Next, P and V place the card sequence back on the puzzle board, as follows:

1. P chooses the starting card in the card sequence by performing a Card Choos-
ing Protocol:

↓
? . . . ? S ? . . . ?

. . . ? . . .

2. Shift the cards so that the starting card is leftmost:

S ? ? ? ? ? ? . . . ?

From the Card Choosing Protocols, the order of the cards is the same as
the order of the card sequence generated in the Setup phase (although 2t
black cards have been replaced by marker cards), and hence P and V can
reconstruct the puzzle-board placement (1) by reversing the operations of the
Setup phase.

Room Verification Phase: In this phase, V verifies the Room condition. To
this end, the following is performed for each of the t rooms:

1. V picks all the cards from the room. Note that, regardless of the size of the
targeted room, exactly two of the cards should be marker cards.

2. P shuffles the cards and reveals them.
3. V checks that exactly two marker cards appear.

If all phases have been passed, then the verifier accepts the proof by out-
putting 1.

Performance Analysis. Let us mention the performance of our protocol in terms
of the numbers of shuffles and cards. The total number of shuffles is 7 × t + 1
(where t is the number of rooms), and the total number of required cards is
2 × m × n + 4 × m + 4 × n + 2 × t + 12, whose distribution is shown in Table 2
(where we have an m × n board).

3 One might think that t times would suffice if any black card found in Step 5 was
replaced by a marker card; however, this is not the case because we need to check
that such a found black card also has exactly one black card among its adjacent
cards.
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Table 2. Numbers of cards required to execute our protocol.

Type of card # of cards

White card ( ) 2 × m × n + 4 × m + 4 × n − 2 × t + 6

Black card ( ♣ ) 2 × t + 1

Marker card ( � ) 2 × t

Starting card ( S ) 1

Number card ( 1 2 3 4 ) 4

4 Security Analysis

We can easily see that our protocol satisfies the three properties of a zero-
knowledge proof, as follows:

Correctness: If the prover P places the cards according to the solution in the
Setup phase, P ’s input passes all verifications. Therefore, P who knows the
solution, can always convince the verifier V .

Extractability: If P ’s input is invalid, V can detect it in the Verification phases.
Therefore, if P does not know the solution, P cannot convince V .

Zero-knowledgeness: Since all the cards have been shuffled before they are
opened, V learns nothing about the solution.

More precisely, we prove the following lemmas.

Lemma 1 (Correctness). If the prover P has a solution for the Norinori puz-
zle, then P can always convince the verifier V (i.e., V outputs 1).

Proof. We show that for a prover P with a solution, the verifier V never outputs
0. We look at the three phases:

Setup: In this phase the verifier just needs to check that the cards given by
P correspond to size of the board. After that, V needs to place some extra
cards and place all the cards in order to form a sequence. If P does not give
the right number of cards, it is clear that he does not know the solution since
he does not even know the puzzle itself.

Pair Verification: In this phase the goal of the verifier is to be convinced that
all black cells come in pairs. If P knows a solution then he can place correctly
the black cells. Hence the verifier never founds more than one marked or black
card when he is opening the four adjacent cards of a black card. The only
remaining uncertainty is whether P used exactly 2t black cards or more.

Room Verification: In this last phase, the verifier discovers exactly two black
cards by room only if the prover knows a solution. As there are t rooms, this
also proves that there were exactly 2t black cards to begin with.

Lemma 2 (Perfect Extractability). If the prover does not know a solution
for the Norinori puzzle, then the verifier V always rejects (i.e., V outputs 0)
regardless of the prover P ’s behavior.
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Proof. It is important to notice that the order of our 3 phases is crucial and
the fact that we can use the same cards for all the steps to ensure that we have
no soundness error. In our proof, we consider two cases: the Pair condition is
violated or the Room condition is violated.

Pair Condition: If the solution given by P does not satisfy the Pair condition,
it means that some black cards do not come in pairs: some black cell are
adjacent to more than one black card, or some black cells are isolated. We
have three possible cases (modulo rotations and symmetries) that can occur:
1. There are 3 aligned black cards as follows: ♣ ♣ ♣
2. There are 3 black cards that form an “L” as follows: ♣

♣ ♣
3. A single black card is surrounded by white cards.

In the first two cases, when V opens the four adjacent cards of a black card,
he detects that there is strictly more than one extra black card in the neigh-
borhood. This shows that the prover does not have a solution that satisfies
the Pair condition. Similarly, in case of an isolated black card, the neighbor-
hood will show only white cards. Overall, the verifier is convinced after this
phase if and only if all black cards come in pairs.

Room Condition: If the solution given by P does not satisfy the Room con-
dition, it means that a room contains one or no black card, or that a room
contains three or more black cards. Both situation are detected by the verifier
that opens all the cards in all the rooms.

Lemma 3 (Zero-knowledge). During an execution of our protocol, the veri-
fier V learns nothing about P ’s Norinori solution.

Proof. In order to prove this, we have to describe an efficient simulator that
simulates any interaction between a cheating verifier and a real prover. The
simulator does not have a correct solution, but it does have an advantage over
the prover: when shuffling decks, it is allowed to swap the packets for different
ones. We thus show how to construct a simulator for each challenge.

Setup: V learns only the size of the board when he receives P ’s inputs, which
is a known data already publicly available in the puzzle grid.

Pair Condition: In this phase the verifier does not learn any information
except the number of black cards, which is 2 × t. This is not a secret infor-
mation since it is a known data already publicly available in the puzzle grid.
It is sufficient to show that all distributions of opening values are simulated
without knowing the prover’s solution.
Now, from [8,11,13], respectively, we know that the subprotocols Pile-
Scramble Shuffle, Pile-Shifting Shuffle and Card Choosing Protocol are zero-
knowledge.
Note also, that during this verification phase, there is no need for the simu-
lator to respect the Room condition. Thus a possible simulator is as follows:
the simulator places at least one black card randomly on the grid. Then, for
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each pair verification, the simulator designates a black card and, at the Pile-
Scramble step, P replaces the four adjacent cards by a single black and three
white cards, e.g., as follows:

♣
1 2 3 4

For the first step, the Card Choosing Protocol ensures that V does not learn
anything: indeed it reveals that there is at least one black card on the board,
but nothing about its position. Hence this subprotocol does not leak any
information and is indistinguishable from the simulator.
For Step 4, the fact that P uses the Pile-Scramble Shuffle to the sequence of
piles implies that their order is uniformly distributed and then can be sim-
ulated without knowing the solution. Therefore the position of the adjacent
black cell is not leaked either.
At Step 6, using the Pile-Scramble Shuffle, the simulator replaces the initial
cards (not even switching the tested black card by a marked card, see in
the next phase). Note that the fact that we can replace the verified cards in
their initial position without leaking any information comes from the usage
of Pile-Scramble Shuffle in Step 6 and the usage of Card Choosing Protocol
in the next step. It allows us to use the same cards for the next verification4.

Room Condition: This phase is similar to a room/row/column condition in
Sudoku [7, Protocol 3]: since P shuffles all the cards within a room before
revealing them, this is indistinguishable from a simulation putting randomly
two marked cards among white ones. Thus V only learns that there were
exactly two black cards in each rooms.

5 Conclusion

In this paper, we have designed an interactive zero-knowledge proof protocol for
the famous puzzle, Norinori. Our protocol is quite simple and easy to implement
by humans. By solving this Nikoli’s puzzle, we also demonstrate that it is possible
to physically prove that a particular element is present in a list, without revealing
any other value in the list, and without relvealing the actual position of that
element in the list. This functionality could be used to construct zero-knowledge
proof protocols for other puzzles.

An interesting open problem is to design a more efficient protocol in terms
of the numbers of cards and shuffles.
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Abstract. We consider the problem of obtaining parameterized lower
bounds for the size of arithmetic circuits computing polynomials with
the degree of the polynomial as the parameter. In particular, we consider
the following special classes of multilinear algebraic branching programs:
(1) Read Once Oblivious Algebraic Branching Programs (ROABPs); (2)
Strict interval branching programs; and (3) Sum of read once formulas
with restricted ordering.

We obtain parameterized lower bounds (i.e., nΩ(t(k)) lower bound for
some function t of k) on the size of the above models computing a mul-
tilinear polynomial that can be computed by a depth four circuit of size
g(k)nO(1) for some computable function g.

Our proof is an adaptation of the existing techniques to the param-
eterized setting. The main challenge we address is the construction of
hard parameterized polynomials. In fact, we show that there are polyno-
mials computed by depth four circuits of small size (in the parameterized
sense), but have high rank of the partial derivative matrix.

1 Introduction

Parameterized Complexity is a multi-dimensional study of computational prob-
lems which views the complexity of a problem in terms of both the input size
and an additional parameter. This leads to a finer classification of computational
problems, and a relaxed notion of tractability, given by a f(k)poly(n) bound
on the running time for decision problems with parameter k, known as fixed-
parameter tractability or FPT. This was first studied by Downey and Fellows in
their seminal work [8] where they developed parameterized complexity theory,
and paved the way for extensive study of parameterized algorithms. The notion
of intractability in parameterized complexity is captured by the W-hierarchy of
classes [8].

Algebraic Complexity Theory is concerned with complexity of computing
polynomials using elementary arithmetic operations such as addition and multi-
plication over an underlying ring or field. Valiant [25] formalized the notions of
algebraic complexity theory and posed proving lower bound on the size of arith-
metic circuits computing explicit polynomials as the primary challenge for the
area. Following Valiant’s work, there has been intense research efforts in the past
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four decades to prove lower bounds on the size of special classes of arithmetic cir-
cuits such as constant depth circuits, multilinear formula and non-commutative
models. (See [23,24] for a survey.) Despite several techniques, the best known
size lower bound for general arithmetic circuit is only super linear [3].

Given the lack of progress towards proving lower bounds on arithmetic cir-
cuits and the success of parameterized complexity theory in refining the notion
of tractability, it is worthwhile exploring the feasibility of parameterizations
of polynomials. Engels [9] initiated development of a parameterized theory for
algebraic complexity classes and suggested suitable notions of tractability and
reductions. The attempt in [9] was more at obtaining a complexity classification
in the form of complete problems for a generic parameter. Müller [18] was the
first to introduce parameterizations on polynomials in the context of designing
parameterized algorithms problems on polynomials such as testing for identity of
polynomials given as arithmetic circuits (ACIT). ACIT is one of the fundamental
problems in algebraic complexity theory and has close connections to the cir-
cuit lower bound problem [15]. Müller studied parameters such as the number
of variables in the polynomial, multiplication depth of the circuit computing the
polynomial etc and obtained efficient randomized parameterized algorithms for
ACIT. It may be noted that ACIT is non-trivial with these parameters since a
polynomial can potentially have nΩ(k) monomials where k is any of these param-
eters. In [6] Chauhan and Rao studied ACIT with degree as the parameter and
obtained a randomness efficient parameterized algorithm for ACIT. It may be
noted that polynomials with the degree bounded by the parameter are widely
used in developing efficient parameterized algorithms [1,4,10] and in express-
ing properties of graphs [5]. For example, in [10] the polynomial representing
homomorphisms between two graphs has indeed degree equal to the parameter,
i.e. the number of vertices in the pattern graph. It may be noted that effi-
cient computation of the polynomial defined in [10] by arithmetic formulas leads
to space-efficient algorithms for detecting homomorphisms between graphs of
bounded treewidth. In [12] the authors along with Prakash studied polynomials
parameterized by the degree and showed limitations of an existing approach in
obtaining deterministic parameterized algorithms for ACIT. In this article, we
explore the possibility of obtaining parameterized lower bounds for the size of
arithmetic circuits with degree as the parameter.

Let n be the number of variables and k be a parameter (e.g., degree of
the polynomial). Throughout the article, t(k) denotes a computable function
that depends only on the parameter, e.g., t(k) = 2k, t(k) = 22

k

, t(k) =
√

k
etc. Any circuit is said to be of fpt size if the size of the circuit is bounded by
t(k)nO(1) for some computable t. By a parameterized lower bound, we mean a
lower bound of the form nΩ(t(k)) for a computable function t. It may be noted
that the task of proving parameterized lower bounds is more challenging than
classical lower bounds. In the case of degree as a parameter, most of the existing
lower bounds of the form nΩ(

√
k) (e.g., [11,13,17]) for constant depth circuits

are already parameterized lower bounds. In contrast, the lower bounds for other
special classes such as multilinear formula [20,21] do not translate easily.
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To understand the primary challenge in translating the results in [20,21]
to the parameterized setting we need to delve a bit on the techniques used for
proving lower bounds. Raz [21] used the notion of partial derivative matrix under
a partition of variables with equal parts (See Sect. 2 for a detailed definition) as
a measure of complexity. The idea is to show existence of such partitions where
polynomials computed by a multilinear formula of small size will have small
rank for the partial derivative matrix. Then for any polynomial that has large
rank under every partition, a natural lower bound on the size follows. However,
the analysis done in [21] or subsequent works [7,20,22] do not carry forward
when parameterized by the degree. Similarly the construction of the polynomial
family with high rank partial derivative matrix in [21] and subsequent works do
not generalize to the parameterized setting.

In this article we address the challenge of translating lower bounds for the size
of multilinear restrictions of arithmetic circuits to parameterized lower bounds.

Results. Our primary result is a parameterized family of polynomials
(Theorem 1) such that under every equal sized bi-partition of the variables,
the rank of the partial derivative matrix is the maximum possible up to a factor
that depends only on the parameter. Further, we demonstrate a simple param-
eterized family of polynomials that can be written as a sum of three read once
formulas such that under any partition of the variables into two equal parts, the
rank of the partial derivative matrix is high (Theorem 2). As a consequence, we
obtain parameterized lower bounds for the size of an ROABP (Theorem 3), a
strict-interval ABP (Corollary 1) and sum of ROPs with restricted ordering of
variables (Theorem 6) against the constructed hard polynomial.

Finally, we obtain a parameterized version of the separation between read-3
ABPs and ROABPs given in [16] (Theorem 4). This is done by constructing a
parameterized variant of the hard polynomial given in [16] (Theorem 2).

2 Preliminaries

In this section we give all basic definitions related to arithmetic circuit. Let
F denote a field. Most of the arguments in this article work for any F. Let
X = {x1, . . . , xn} denote the set of variables.

An arithmetic circuit is a model for computing polynomials using the basic
operations + and ×. An arithmetic circuit C is a directed acyclic graph, where
every node (called a gate) has in-degree two or zero. The gates of in-degree zero
are called input gates and are labeled from X ∪ F, where X = {x1, . . . , xn} is
the set of variables called inputs and F is the underlying field. Internal gates
of C are labeled by either + or ×. Gates of out-degree zero are called output
gates. Typically an arithmetic circuit will have a single output gate. Every gate
in the circuit C is associated with a unique polynomial in F[X]. The polynomial
computed by the circuit is the polynomial associated at its output gate.

The complexity of arithmetic circuits is measured in terms of size and depth.
Size is defined as the number of + and × operations in the circuit. Depth of
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the circuit represents the length of the longest path from the output node (root)
to an input node (leaf) of the circuit. Since a constant depth arithmetic circuit
where fan-in of every gate is bounded by 2 (or even a constant) cannot even
read all of the inputs, we assume unbounded fan-in in the case of constant depth
circuits. Arithmetic circuits of constant depth have received wide attention [23].

An arithmetic circuit C is said to be syntactic multilinear if for every product
gate f = g×h in C, the set of variables that appear under the sub-circuit rooted
at g is disjoint from that of h. Naturally, a syntactic multilinear circuits computes
a multilinear polynomial.

An arithmetic circuit where the underlying graph is a tree is known as arith-
metic formula. An arithmetic formula is said to be read once (ROF for short)
if every variable appears as a label in at most one leaf. Polynomials computed
by ROFs are known as Read-once polynomials (ROPs for short). It may also be
noted that ROFs are a proper subclass of syntactic multilinear formulas.

An algebraic branching program (ABP) P is a directed acyclic graph with
a source vertex s of in-degree 0 and a sink vertex t of out-degree 0. The rest
of the vertices can be divided into layers L1, L2, . . . , Lr−1 between s and t, s
being the only vertex in L0, the first layer, and t being the only vertex in the
last layer �r. Edges in P are between vertices of consecutive layers. Every edge
e is labelled by either a constant from F or a variable from X. For a directed
path ρ in P , let w(ρ) denote the product of edge labels in ρ. For any pair of
nodes u, v in P let [u, v]P denote the polynomial

∑
ρ is a u→v path w(ρ). The

polynomial computed by P is [s, t]P . The size of an ABP is the total number
of nodes and edges in it and the depth of an ABP is the total number of layers
in it excluding the layers containing s and t. Read-once ABPs are such that
every input variable is read at most once along any path from s to t. Read-once
Oblivious ABPs (ROABPs) are such that input variables are read at most once,
in a fixed order, along any path from s to t, and any variable occur as a label in
at most one layer of the program.

Let π be a permutation of the variables. An interval in π is a set of the
form {π(i), π(i + 1), . . . , π(j)} for some i < j. Arvind and Raja [2] studied a
restriction of multilinear ABPs called as interval ABPs where every node in the
ABP computes a polynomial whose variable set forms an interval in {1, . . . , n}.
In this article, we consider a restriction of interval ABPs which we call as strict
interval ABPs. A syntactically multilinear ABP P is said to be a π strict interval
ABP, if for any pair of nodes (a, b) in P , the index set Xab of the variables
occurring on all paths from a to b is contained in some π interval Iab in [n] and
for any node c the intervals Iab and Ibc are non-overlapping.

For a polynomial p ∈ X, let var(p) denote the set of variables that p is
dependent on and deg(p) denote its degree.

Partial Derivative Matrix of a Polynomial. Nisan [19] defined the partial
derivative matrix of a polynomial and considered its rank as a complexity mea-
sure for non-commutative polynomials and proved exponential lower bounds for
the size of non-commutative formulas. Raz [21] considered a variant of the partial
derivative matrix and proved super polynomial size lower bounds for multilinear
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formulas. We describe the partial derivative matrix introduced by Raz [21] in
more detail. Let X = {x1, . . . , xn} be the set of variables where n is even. A
partition of X is an injective function ϕ : X → Y ∪ Z, where Y and Z are
two disjoint sets of variables. A partition ϕ is said to be an equi-partition if
|Y | = |Z| = n/2. In the remainder of the article, we assume that the number of
variables n is an even number.

Definition 1 [21]. Let f ∈ F[x1, . . . , xn] be a polynomial of degree d, ϕ : X →
Y ∪Z be a partition of the input variables of f . Then the partial derivative matrix
of f with respect to ϕ, denoted by Mfϕ is a 2|Y | × 2|Z| matrix where the rows
are indexed by the set of all multilinear monomials μ in the variables Y , and
columns indexed by the set of all multilinear monomials ν in variables in Z. For
monomials μ and ν respectively in variables Y and Z, the entry Mfϕ(μ, ν) is the
coefficient of the monomial μν in f .

For a multilinear polynomial p ∈ F[X] and an equi-partition ϕ, let rankϕ(p) be
the rank of the matrix Mpϕ over F. The following fundamental properties of the
rank of a partial derivative matrix was given by Raz [21].

Lemma 1 [21]. Let f1 and f2 be multilinear polynomials. Then
rankϕ(f1 + f2) ≤ rankϕ(f1) + rankϕ(f2) and if var(f1) ∩ var(f2) = ∅ then
rankϕ(f1f2) = rankϕ(f1)rankϕ(f2).

Lemma 2. For any equi-partition ϕ : X → Y ∪ Z, and any multilinear polyno-
mial p of degree k, we have rankϕ(p) ≤ (k/2 + 1)

(
n/2
k/2

)
.

3 Construction of Hard Parameterized Polynomials

This section is devoted to the construction of two parameterized polynomial
families f = (fn,2k)k≥0 and h = (h2n,k). The first family is computable by a
depth four circuit of fpt (i.e., t(k)nO(1) for a computable t) size and the second
family is a sum of three ROFs. Further, for any partition ϕ, rankϕ(f) is the
maximum possible value up to a factor that depends only on the parameter and
rankϕ(h) is the maximum possible value up to a constant factor in the exponent.

A Full Rank Polynomial: It may be noted that for a multilinear polynomial
g of degree k in n variables, the maximum possible value of rankϕ(g) over all
partitions ϕ is at most (k/2 + 1)

(
n/2
k/2

)
. Though it is possible to construct poly-

nomials that achieve this bound under a fixed partition ϕ, it is not immediate if
there is a polynomial g computed by small circuits that is full rank under every
equipartition. In the following, we give the description of a multilinear polyno-
mial of degree k that has rank nk/2/t(k) where t is a function that depends only
on k. We assume that 2k|n. Suppose V1 ∪ · · · ∪ V2k = X be a partition of the
variable set X = {x1, . . . , xn} such that |Vi| = |Vj | for 1 ≤ i < j ≤ 2k. For con-
venience let Vi = {xi,1, . . . , xi,n/2k}, where we assume a natural ordering among
the variables.
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Let M be the set of all possible perfect matchings on G = K2k, the complete
graph on 2k vertices. Let ζM for M ∈ M, ωi,j 1 ≤ i < j ≤ n/k be formal
variables. Let G be any extension of F containing {ωi,j} ∪ {ζM | M ∈ M}. We
define a parameterized family of polynomial f = (fn,2k), fn,2k ∈ G[x1, x2, . . . , xn]
as follows:

f(x1, x2, . . . , xn) =
∑

M∈M
ζM

∏

(i,j)∼M

(1 + p(Vi ∪ Vj)),

where p is a n/k variate quadratic multilinear polynomial defined as

p(v1, . . . , vn/k) =
∑

k<�

ωk,�vkv�.

Note that fn,2k is a degree 2k polynomial in n variables. When n and k are
clear from the context, we use f to denote fn,2k. Let G = F({ζM |M ∈ M} ∪
{ωi,j | 1 ≤ i < j ≤ n/k}), i.e the rational function field of the polynomial ring
F[{ζM |M ∈ M} ∪ {ωi,j | 1 ≤ i < j ≤ n/k}]. In the remainder of the section,
we argue that the polynomial family f defined above has almost full rank under
every partition ϕ : X → Y ∪ Z, such that |Y | = |Z| = |X|/2.

Definition 2. Consider a partition function ϕ : X → Y ∪Z such that |Y | = |Z|
and V ⊆ X. The set V is said to be �-unbalanced with respect to ϕ if |X|

2 −
|ϕ(X) ∩ Z| = � = |ϕ(X) ∩ Y | − |X|

2 .

It may be noted that � can be positive or negative accordingly as |ϕ(X) ∩ Y | >
|ϕ(X) ∩ Z| or otherwise. Our first observation is, even if the set V = Vi ∪ Vj is
�-unbalanced for � < n/4k, i ≤ q ≤ [2k], rankϕ(p(Vi, Vj)) remains large:

Lemma 3. If Vi ∪Vj is � unbalanced with respect to a partition ϕ : X → Y ∪Z,
then rankϕ(p(Vi, Vj)) = Ω(n/2k − |�|).
Proof. Without loss of generality, suppose that � > 0, Vi ∪ Vj = {v1, . . . , vn/k}
and

ϕ(vi) =

{
yi if i ≤ n/2k + �

zi−(n/2k+�) otherwise.

Since p is a quadratic polynomial, the rows of Mp(Vi,Vj)ϕ are indexed by mono-
mials ∅, y1, . . . yn/2k+�, yiyj , 1 ≤ i < j ≤ n/2k + � and columns are indexed by
∅, z1, . . . , zn/2k−�, zizj , 1 ≤ i < j ≤ n/2k − �. The rows and columns indexed
by degree 2 monomials will have a rank of at most 2. Thus it is required to
show that the submatrix of Mp(Vi,Vj)ϕ with rows indexed by ∅, y1, . . . yn/2k+�

and columns indexed by ∅, z1, . . . , zn/2k−� has rank Ω(n/2k − |�|).
The (yi, zj)th entry of Mp(Vi,Vj)ϕ contains ωi,n/2k+j . By suitably substi-

tuting the variables ωi,n/2k+j with values from F, we see that the subma-
trix of Mp(Vi,Vj)ϕ restricted to rows and columns indexed respectively by
∅, y1, . . . yn/2k+� and ∅, z1, . . . , zn/2k−� has rank Ω(n/2k − |�|). 
�
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Theorem 1. For the parameterized polynomial family f = (fn,2k)n,k≥0 as
above,

rankϕ(fn,2k) = Ω(
nk

(2k)2k
)

for every equi-partition ϕ : X → Y ∪ Z and k > 3.

Proof. Let ϕ be an equi-partition of X. Note that by the definition of f , it is
enough to show that for all equi-partitions ϕ, there exists an optimal matching
N such that rankϕ(fN ) = Ω( nk

(2k)2k ), where fN =
∏

(i,j)∈N p(Vi, Vj). Since fN

is multilinear, it is enough to prove that ∀(i, j) ∈ N , rankϕ(p(Vi, Vj)) = Ω( n
k2 ).

Our argument is an iterative construction of the required matching.
We begin with some notations. Let D(Vi) = |ϕ(Vi) ∩ Y | − |Vi|

2 . Let Yi =
ϕ(Vi) ∩ Y, Zi = ϕ(Vi) ∩ Z. We know ∀i ∈ [2k], |Vi| = n

2k . So, D(Vi) = |Yi| − n
4k

is the imbalance of ϕ. Since 0 ≤ |Yi| ≤ |Vi| = n
2k , D(Vi) ∈ [−n

4k , n
4k ].

Let M ∈ M. For each edge e = (i, j) in the matching M , we associate a
weight with respect to ϕ: wt(e) = |D(Vi) + D(Vj)|. The weight of the match-
ing M , denoted by wt(M), is the sum of the weights of the edges in M , i.e.,
wt(M) =

∑
e∈M wt(e). In the following, we give an iterative procedure, that

given a matching M produces a matching N with the required properties. The
procedure in each iteration, obtains a new matching of smaller weight than the
given matching. The crucial observation then is, matchings that are weight opti-
mal with respect to the procedure outlined below indeed have the required prop-
erty. We say that a matching M is good with respect to ϕ, if ∀ e = (i, j) ∈ M ,
wt(e) ≤ n/2k−n/(2k(k−1)). Note that if M is good then for every edge (i, j) ∈
M , we have Vi ∪ Vj is �-unbalanced for some � with |�| ≤ n/2k − n/(2k(k − 1)).
Then, by Lemma 3 we have rankϕ(fM ) ≥ n/(2k(k − 1)).

Suppose that the matching M is not good. Let e = (i, j) ∈ M be an edge
such that wt(e) > n/2k − n/2k(k − 1). If there are multiple such edges, e is
chosen such that wt(e) is the maximum, breaking ties arbitrarily. Note that we
can assume that D(Vi) and D(Vj) are of the same sign, else we would have
wt(e) ≤ n/4k. Without loss of generality, assume that both D(Vi) and D(Vj) to
be non-negative, i.e., wt(e) = D(Vi) + D(Vj). Since ϕ is an equi-partition, we
have

∑

m∈[2k]

D(Vm) =
∑

m∈[2k]

(
|Ym| − n

4k

)
= 0 =⇒

∑

m∈[2k]\{i,j}
D(Vm) = −wt(e)

i.e.,
∑

e′∈M\{e}
sgn(e′)wt(e′) <

−n

2k
+

n

2k(k − 1)
,

where sgn(e) is ±1 depending on the sign of wt(e). By averaging, there is an
e1 ∈ M such that sgn(e1)wt(e1) < −n

2k(k−1) + n
2k(k−1)2 . Suppose e1 = (i1, j1). Let

D(Vi) = a, D(Vj) = b, D(Vi1) = c, D(Vj1) = d. Since c + d < 0, it must be that
either c < 0 or d < 0. The new matching is constructed based on the values of
a, b, c and d.
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Case 1 Suppose c, d < 0. Then, |a + b| + |c + d| > |a + c| + |b + d|. We replace
the edges (i, j) and (i1, j1) by (i, i1), (j, j1) to get a new matching M ′.
We have wt(M ′) < wt(M).

Case 2 Either c ≥ 0 and d < 0 or c < 0 and d ≥ 0. Without loss of generality,
assume that c ≥ 0 and d < 0. Suppose c > n

4k − n
2k(k−1) + n

2k(k−1)2 ,
then we have d < −n

2k(k−1) + n
2k(k−1)2 − c < −n

4k which is impossible as
|d| ≤ n

4k . Therefore, we have c ≤ n
4k − n

2k(k−1) + n
2k(k−1)2 . If c > a, b,

then a + b < 2c ≤ n
2k − n

k(k−1) + n
k(k−1)2 . For k > 3, this is impossible

since wt(e) > n
2k − n

2k(k−1) . We consider the following sub-cases:
Subcase (a) a > c. Then a+ b > c+ b, replace the edges (i, j) and (i1, j1) with

the edges (i, j1) and (i1, j) to get the new matching M ′.
Subcase (b) b > c. Then a+ b > a+ c, replace (i, j) and (i1, j1) with the edges

(i, i1) and (j, j1) to get the new matching M ′.

For the new matching M ′ obtained from M as above, we have one of the following
properties:

– It has smaller total weight than M , i.e., wt(M ′) < wt(M), or
– If M has a unique maximum weight edge, then the weight of any edge in M ′

is strictly smaller than that in M , i.e. maxe′∈M ′ wt(e′) < wt(e), or
– The number of edges that have maximum weight in M ′ is strictly smaller

than that in M , i.e., |{e′′ | wt(e′′) = maxe′∈M ′ wt(e′)}| < |{e′′ | wt(e′′) =
maxe′∈M wt(e′)}|.
Since all of the invariants above are finite, by repeating the above procedure

a finite number of times we get a matching N ∈ M such that any of the above
steps are not applicable. That is, for every e′ ∈ N , wt(e′) ≤ n/2k − n/2k(k − 1).

Thus for every edge (i, j) ∈ N , we have rankϕ(p(Vi, Vj) = Ω(n/2k(k−1)) and
rankϕ(fN ) = Ω(nk/(2k)2k). By the construction of the polynomial and Lemma
1, we have rankϕ(f) ≥ maxM∈M{rankϕ(fM )} = Ω(nk/(2k)2k), as required. 
�
A High Rank Sum of Three ROFs: In [16], Kayal et al. showed that there is
a polynomial that can be written as sum of three ROFs such that any ROABP
computing it requires exponential size. The lower bound proof in [16] is based on
the construction of a polynomial using three edge disjoint perfect matchings on
n vertices. We need a 3-regular mildly explicit family of expander graphs defined
in [14]. Let G = (G(q))q>0, prime be a family of 3 regular expander graphs where
a vertex x in G(q) is connected to x+1, x−1 and x−1 where all of the operations
are modulo q. When q is clear from the context, we denote G(q) by G. Let G′

be the double cover of G, i.e., G′ = (V1, V2, E
′) is the bipartite graph such that

V1, V2 are copies of V and u ∈ V1, v ∈ V2, (u, v) ∈ E′ ⇐⇒ (u, v) ∈ E. It is
known from [14] that the set of edges in E′ can be viewed as the union of 3 edge
disjoint perfect matchings. In [16], Kayal et al. construct a polynomial for each
of these matchings and the hard polynomial is obtained by taking the sum of
these three polynomials. This polynomial has degree n/2 and is unsuitable in
the parameterized context.
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We construct a polynomial h from G′ similar to the one in [16], but having
degree-k. Suppose M1 ∪ M2 ∪ M3 = E′ be disjoint perfect matchings. We divide
the n edges in each of the Mi into k

2 parts of n
k edges each. Suppose Mi =

Bi1∪Bi2∪· · ·∪Bik/2. The division is done arbitrarily. So, for each edge (i, j) ∈ M ,
we consider a monomial xixj , and the final polynomial is the following:

h(x1, . . . , x2n) =
∑

i∈[3]

wi

⎛

⎝
∏

j∈[ k
2 ]

∑

(u,v)∈Bij

xuxv

⎞

⎠ ,

where M1,M2 and M3 are the edge-disjoint matchings such that Mi =∏
j∈[ k

2 ]
Bij , Bij being the jth partition of edges in the matching Mi and w1, w2

and w3 are formal variables. For a partition ϕ : X → Y ∪ Z, and an edge
(u, v) ∈ Mi, (u, v) is said to be bichromatic with respect to ϕ if either ϕ(xu) ∈ Y
and ϕ(xv) ∈ Z or ϕ(xu) ∈ Z and ϕ(xv) ∈ Y . For a set of edges A over
{x1, . . . , xn} let beϕ(A) be the number edges in A that are bichromatic with
respect to ϕ. For a graph G = (V,E), let beϕ(G) denote beϕ(E).

Let D denote the uniform distribution on the set of all partitions ϕ : X →
Y ∪ Z such that |Y | = |Z|. In the following we state the desired property of the
polynomial h:

Theorem 2. Let h be the polynomial defined as above. Then there is a constant
c > 0 such that for every equi-partition ϕ of X, over the rational function field
F(w1, w2, w3)

rankϕ(h) ≥
(n

k

)ck

.

Proof. Let Y ⊆ X = {x1, . . . , xn}, |Y | = n
2 such that ϕ : X → Y ∪ Z. By the

expander property of G (see [16]), the number of edges from Y to Z is lower
bounded by E(Y,Z) ≥ (2+10−4)

2 · |Y | = (1+ε)n
2 for a fixed ε > 0. (See [16] for

details.)
Now, each perfect matching has n

2 edges, so the graph has 3n
2 edges. By

averaging, we get that there is a matching Mi, 1 ≤ i ≤ 3 such that the number
of bichromatic edges in Mi is at least (1+ε)n

6 . Without loss of generality, suppose
i = 1. Let h1 =

∏
j∈[ k

2 ]

∑
(u,v)∈B1j

xuxv, i.e., the polynomial corresponding to
M1. Clearly, if the bichromatic edges in M1 are distributed evenly across all
sets in the partition B11, . . . , B1k/2, rankϕ(h1) = (((1 + ε)/3k)n)k/2. However,
this is not possible in general. Nevertheless, we get a smaller but good enough
bound by a simple averaging argument. Let beϕ(Mi) =

∑
j∈[ k

2 ]
beϕ(Bij). We

have beϕ(M1) ≥ (1+ε)n
6 . Let α = |{j | beϕ(B1,j) ≥ n/20k}|. Then

(1 + ε)n
6

≤ beϕ(M1) ≤ α
n

k
+ (k/2 − α)

n

20k

i.e.,
(1 + ε)n

6
≤ α

n

k
+ (k/2 − α)

n

20k

=⇒ α ≥ (23 + 20ε)
114

k.
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Note that rankϕ(
∑

(u,v)∈B1j
xuxv) = beϕ(B1j) and hence we have rankϕ(h1) ≥

( n
20k )α =

(
n
k

)ck for some constant c > 0 as required. 
�

4 Lower Bounds

In this section we prove parameterized lower bounds for some special classes of
syntactic multilinear ABPs. In particular, we prove lower bounds for the size of
ROABPs, strict interval ABPs and a sum of restricted class of ROPs.

4.1 ROABP

In this section we prove a parameterized lower bound for the size of any ROABP
computing the polynomials defined in Sect. 3. The lower bound argument follows
from the fact that for any polynomial computed by an ROABP P , there exists
an equi-partition ϕ of variables such that rankϕ(P ) is bounded by the size of the
ROABP [19].

Theorem 3. Any ROABP computing the polynomial family f = (fn,2k) requires
size Ω(nk/(2k)2k).

Proof. Let P be an ROABP of size S computing f . Consider an ordering from
left to right of the variables occurring in the ROABP, x1, x2, . . . , xn. We can
define the equi-partition ϕ : X → Y ∪ Z such that,

ϕ(xi) =

{
yi, if i ≤ n/2
zi−n/2 otherwise.

Now, let Li be a layer in P such that incoming edges to Li are labelled with a
linear polynomial in xi. Then, we can represent f as

f(x1, . . . , xn) =
∑

j∈Ln/2

[s, vj ]P · [vj , t]P .

By definition of ϕ, for all vj ∈ Ln/2, rankϕ([s, vj ]P · [vj , t]P ) = 1.
Then, rankϕ(f) ≤ |Ln/2| ≤ S. By Theorem 1, rankϕ(f) = Ω(nk/(2k)2k),

therefore we have S = Ω(nk/(2k)2k) as required. 
�
Combining Theorem 3 with Theorem 2 we get:

Theorem 4. An ROABP computing the family of polynomials h defined in
Sect. 3 required size nΩ(k).

Proof. Follows from the proof of Theorem 3 that for any size S ROABP com-
puting the polynomial h, there is an equi-partition ϕ such that rankϕ(h) ≤ S.
Then by Theorem 2, we have S = nΩ(k) as required. 
�
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4.2 Strict Interval ABPs

In this section we prove a parameterized lower bound against the polynomial
family f defined in Sect. 3 for the size of strict interval ABPs. Without loss of
generality, assume that π is the identity permutation. Let P be a π strict-interval
ABP computing the polynomial f . As a crucial ingredient in the lower bound
proof, we show that using the standard divide and conquer approach, a strict-
interval ABP can be transformed into a depth four circuit with n

√
k blow up in

the size. To begin with, we need the following simple depth reduction for strict
interval ABPs computing degree k polynomials. Proof is omitted.

Lemma 4. Let P be a syntactic multilinear ABP of size S computing a homoge-
neous degree k polynomial g on n variables. Then there is a syntactic multilinear
ABP P ′ of depth k + 1 and size O(S · k) computing g such that:

1. Every node in the ith layer of P ′ computes a homogeneous degree i polynomial.
2. If P is strict interval then so is P ′.

Using Lemma 4 we can obtain a parameterized version of depth reduction to
depth four circuits:

Lemma 5. Let g(x1, . . . , xn) be a multilinear polynomial of degree k computed
by a syntactic multilinear branching program P of size S. Then

g(x1, . . . , xn) =
T∑

i=1

√
k∏

j=1

fi,j (1)

for some T = SO(
√

k) and fi,j is a degree
√

k multilinear polynomial computed
by a sub-program of P for i ∈ {1, . . . , T}, j ∈ {1, . . . ,

√
k}.

Now, to prove the claimed lower bound for the size of strict interval ABPs, all
we need is given a polynomial f computed by an strict interval ABP of size S,
an equi-partition ϕ of X such that rankϕ(f) � nk.

Lemma 6. Let f be a polynomial computed by a strict interval ABP of size S.
Then there is a partition ϕ such that rankϕ(f) ≤ SO(

√
k)n

√
k.

Proof. Without loss of generality, assume that P is a strict interval ABP with
respect to the identity permutation. Let ϕmid : X → Y ∪ Z be the partition

ϕmid(xi) =

{
yi, if i ≤ n/2,

zi−n/2 otherwise.

Consider the representation for f as in (1). Then for every 1 ≤ i ≤ T , for all
but one j, we have either ϕmid(var([ij , ij+1])) ⊆ Y or ϕmid(var([ij , ij+1])) ⊆ Z.

Therefore, rankϕmid
([s, i1]P ·∏

√
k−2

m=1 [im, im+1]P · [i√k−1, t]P ) ≤ n
√

k, for every ij ∈
Lj

√
k. By sub-additivity of rankϕ, we have rankϕ(f) ≤ SO(

√
k)n

√
k for ϕ = ϕmid.


�
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The required lower bound is immediate now.

Corollary 1. Any strict-interval ABP computing the polynomial f has size
nΩ(

√
k).

4.3 Rank Bound for ROPs by Graph Representation

The reader might be tempted to believe that the lower bound arguments in the
preceding sections might be applicable to more general models such as sum of
ROFs and sum of ROABPs or even multilinear formulas. However, as we have
seen in Sect. 3, there is a sum of three ROFs that has high rank under every
partition. Thus our approach using rankϕ as a complexity measure is unlikely to
yield lower bounds for even sum of ROFs, which is in contrast to the classical
setting, where exponential lower bounds against models such as sum of ROFs
and sum of ROABPs follow easily.

In this section, we develop a new method of analyzing rank of degree k
polynomials computed by ROFs. Let p ∈ F[X] be the polynomial computed by
a ROF Φ. We want to construct a graph Gp = (X,Ep) corresponding to p so
that rankϕ(p) can be related to certain parameters of the graph. A v in Φ is
said to be a maximal-degree-two gate if v computes a degree two polynomial,
and the parent of v computes a polynomial whose degree is strictly greater than
two. Further, v is said to be a maximal-degree-one gate if v computes a linear
form and the parent of v computes a polynomial of degree strictly greater than
one. A gate v at depth 1 is said to be a high degree gate if the degree of the
polynomial computed at v is strictly greater than two. Let V2 denote the set
of all maximal-degree-two gates in Φ, V1 denote the set of all maximal-degree-
one gates and V0 denote the set of all high degree gates in Φ at depth one. Let
atomic(Φ) = V0 ∪ V1 ∪ V2. The following is a straightforward observation:

Observation 1. Let Φ be an ROF and v be a maximal-degree-two gate in Φ.
Then the polynomial Φv computed is of the form Φv =

∑s
i=1 �i1�i2 , where �ij

1 ≤ i ≤ s, j ∈ {1, 2} are variable disjoint linear forms for some s > 0 such that
each of the �ij

is dependent on at least one variable.

For a linear form � =
∑r

j=1 αij
xij

, let path(�) be the simple undirected
path (xi1 , xi2), (xi2 , xi3), . . . , (xir−1 , xir

). In the case when r = 1, path(�) is just
single vertex. Similarly, for a subset S ⊆ X of variables, let path(S) denote the
path (xi1 , xi2), (xi2 , xi3), . . . , (xir−1 , xir

) where S = {xi1 , . . . , xir
}, i1 < i2 <

. . . < ir. For two variable disjoint linear forms � and �′, let path(��′) be the
path obtained by connecting the last vertex in path(�) to the first vertex of
path(�′) by a new edge. Now, we define a graph Gp = (X,Ep) where vertices
correspond to variables xu ∈ X and the set of edges Ep defined as follows. For
each v ∈ atomic(Φ) we add the following edges to Ep:

Case 1 Φv =
∑r

i=1 �i1�i2 for some r > 0 add path(�i1�i2) to Gp for every
1 ≤ i ≤ t.

Case 2 Φv =
∏

i∈S xi or Φv =
∑

i∈S cixi, where S ⊆ X, cis are constants from
F, add path(S) to Gp.
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It may be noted that the graph Gp is not unique as it depends on the given
minimal ROF Φ computing f . In the following, we show that for a given partition
ϕ, we bound the rankϕ(p) in terms of the number of bichromatic edges beϕ(Gp).
We have:

Theorem 5. Let p ∈ F[X1, . . . , Xn] be a multilinear polynomial of degree k
computed by a ROF Φ. Then, for any equi-partition ϕ : X → Y ∪ Z, rankϕ(p) ≤
(4beϕ(Gp))

k
2 .

Proof. The proof is by induction on the structure of Φ. The base case is when
the root gate of Φ is in atomic(Φ). Consider a node v ∈ atomic(Φ).

Case 1 Φv =
∑

(i,j)∈S xixj . If ϕ(xi), ϕ(xj) are not in the same partition,
then each monomial xixj contributes 1 towards rankϕ(p). At the same
time, the edge (xi, xj) added to Ep is bichromatic, so each monomial
contributes 1 towards the measure beϕ(Gp) as well.

Case 2 Φv =
∑

(a,b)∈T �a�b. If, for some xi, xj ∈ var(�a), ϕ(xi), ϕ(xj) are
in different partitions, then the linear form �a contributes 2 towards
rankϕ(�a). If the same holds true for �b, then �a�b would together con-
tribute 4 towards rankϕ(p) and ≥ 2 towards the measure beϕ(Gp).

Case 3 Φv =
∑

i∈W1
cixi or Φv =

∏
i∈W2

xi for some W1,W2 ⊆ X. The first
case has been considered already. For the second case, if ∃xa, xb ∈
W2 such that ϕ(xa), ϕ(xb) are in different partitions, the polynomial
computed by the gate v will contribute a 1 towards rankϕ(p) and at
least 1 towards beϕ(Gp), otherwise it contributes 0.

Thus we have verified that the statement is true when the root gate v of Φ
is contained in atomic(Φ). Suppose p = p1opp2 for op ∈ {+,×} where p1 and
p2 are variable disjoint and are computed by ROFs. By induction hypothesis,
rankϕ(pj) ≤ (4beϕ(Gpj

))
kj
2 where kj = deg(fj). As beϕ(Gp) = beϕ(Gp1) +

beϕ(Gp2) and k = k1 + k2 (op = ×) or k = max{k1, k2} (op = +) we have,
rankϕ(f) ≤ (4beϕ(Gp))

k
2 as required. 
�

Recall that bisection of an undirected graph G = (V,E) is a set S ⊆ V such that
|S| = |V |/2. The size of a bisection S is the number of edges across S and S,
i.e., |{(u, v) | (u, v) ∈ E, u ∈ S, v /∈ S}|. The following is an immediate corollary
to Theorem 5:

Theorem 6. Let G be a graph on n vertices such that there is a bisection of
G of size n1−ε. Suppose p1, . . . , ps be ROFs such that Gpi

is a sub-graph of G.
Then, if p = p1 + · · · + pS we have S = (nΩ(k)/t(k)), where t is a computable
function on k.

Proof. Let C = (S, S) be the cut and size(C) denote the number of edges across
the cut. Define a partition ϕ : X → Y ∪ Z as follows:

ϕ(xi) ∈
{

Y if i ∈ S,

Z otherwise.
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Then by Theorem 5, rankϕ(pi) ≤ beϕ(Gpi
))

k
2 . Since Gpi

is a sub-graph of G,
we have beϕ(Gp)) ≤ size(C) ≤ n1−ε. Therefore, rankϕ(pi) ≤ Ok(n(1−ε)k/2). By
sub-additivity, we have rankϕ(f) ≤ SOk(n(1−ε)k/2) where Ok is up to a factor
that depends only on a function of k. By Theorem 1, we get S = Ω(nεk/2). 
�

5 Conclusions

Our results demonstrate the challenges in translating classical arithmetic circuit
lower bounds to the parameterized setting, when the degree of the polynomial
is the parameter. We get a full rank polynomial that can be computed by depth
four arithmetic circuits of fpt size, whereas in the classical setting, full rank poly-
nomials cannot be computed by multilinear formulas of polynomial size [21]. This
makes the task of proving parameterized lower bounds for algebraic computation
much more challenging task. Given the application of polynomials whose degree
is bound by a parameter in the design of efficient parameterized algorithms for
many counting problems, we believe that this is a worthy research direction to
pursue.

Further, we believe that our results are an indication that study of parame-
terized complexity of polynomials with degree as the parameter could possibly
shed more light on the use of algebraic techniques in parameterized algorithms.
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Abstract. We consider the problem of assigning applicants to posts
when each applicant has a strict preference ordering over a subset of
posts, and each post has all its neighbors in a single tie. That is, a
post is indifferent amongst all its neighbours. Each post has a capacity
denoting the maximum number of applicants that can be assigned to
it. An assignment M , referred to as a matching, is said to be popular,
if there is no other assignment M ′ such that the number of votes M ′

gets compared to M is more than the number of votes M gets compared
to M ′. Here votes are cast by applicants and posts for comparing M
and M ′. An applicant a votes for M over M ′ if a gets a more preferred
partner in M than in M ′. A post p votes for M over M ′ if p gets more
applicants assigned to it in M than in M ′. The number of votes a post
p casts gives rise to two models. Let M(p) denote the set of applicants p
gets in M . If |M(p)| > |M ′(p)|, p can cast |M(p)| − |M ′(p)|-many votes
in favor of M , or just one vote. The two models are referred to as the
multi-vote model and one-vote model in this paper.

We give a polynomial-time algorithm to determine the existence of a
popular matching in the multi-vote model, and to output one if it exists.
We give interesting connections between the two models. In particular,
we show that a matching that is popular in the one-vote model is also
popular in the multi-vote model, however the converse is not true. We
also give a polynomial-time algorithm to check if a given matching is
popular in the one-vote model, and if not, then output a more popular
matching.

1 Introduction

We consider the problem of assigning a set of applicants A to a set of posts P ,
where applicants have preferences over posts. Formally, the input to our problem
is a bipartite graph G = (A ∪ P,E) with a capacity c(p) associated with every
post p. A post can be assigned any number of applicants up to a maximum of
c(p). Every edge has a rank associated with it; if edge (a, p) has rank i then p is
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): COCOON 2019, LNCS 11653, pp. 193–205, 2019.
https://doi.org/10.1007/978-3-030-26176-4_16
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the ith choice post for a. Applicant a prefers post p over p′ if the rank of edge
(a, p) is smaller than the rank of edge (a, p′). An assignment or a matching M
in this setting is a subset of E such that each applicant has at most one edge
incident to it in M and a post p has at most c(p) edges incident to it in M .

We compare a matching M with another matching N based on the number
of votes each of them gets compared to the other. An applicant a prefers a
matching M to a matching N if either (i) a is matched in M and unmatched in
N or (ii) a prefers M(a) to N(a); otherwise a is indifferent between M and N .
Here, M(a) denotes the post a is matched to in M . Similarly, a post p prefers
a matching M to a matching N if and only if |M(p)| > |N(p)|. Thus posts are
indifferent among all their neighbors.

There are two different models possible depending on the number of votes
that a post casts – we denote them by the multi-vote model and the one-vote
model. If |M(p)| > |N(p)|, in the multi-vote model, the post p gives |M(p)| −
|N(p)| votes to the matching M when comparing M and N . In contrast, in the
one-vote model, the post gives only one vote to M when comparing M and N .
Irrespective of the way in which a post votes, a matching M is more popular
than a matching N , if M gets more votes than N . A matching M is popular if
there exists no other matching more popular than M . Our goal is to compute a
popular matching in the instance.

Cseh et al. [5] introduced this model of two-sided preferences (applicants and
posts both have preferences) with one-sided ties (posts are indifferent amongst
all the neighbours) in the one-to-one setting, where all posts have unit capacities.
They show a polynomial-time algorithm for the popular matchings problem in
this model. As mentioned in [5], the model of two-sided preferences and one-
sided ties can be considered to be in between the one-sided preference list model
(studied by Abraham et al. [1]) and the two-sided preferences model, well-known
as the stable marriage model [8]. Since Cseh et al. study the problem in the one-
to-one setting, the multi-vote and one-vote models coincide.

The many-to-one setting considered in our paper is a natural generaliza-
tion motivated by practical scenarios like student course allocation. This setting
allows courses to be indifferent between students, however, gives them vote(s) to
distinguish between matchings. A multi-vote model is relevant when courses get
votes proportional to their capacities, whereas the one-vote model is relevant
when every course gets just one vote. The multi-vote model considered by us
has been previously used in the context of popular matchings in the two-sided
preference list model in [3,11,12].

Our main contribution in this paper is a polynomial-time algorithm for the
many-to-one popular matchings problem in the two-sided preferences with one-
sided ties model for the multi-vote model. We state our main result as Theorem 1
below. Throughout, we use m and n to denote the number of edges and vertices
in G respectively. Let Ĉ denote the sum of capacities of all posts in G.

Theorem 1. Given an instance G = (A ∪ P,E) of the many-to-one two-sided
preferences with one-sided ties problem, there exists an O(

√
Ĉn2)-time algorithm
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to decide the existence of a popular matching in G in the multi-vote model, and
to compute one if it exists.

We note that the algorithm for the many-to-one problem in multi-vote model
closely follows the algorithm for the one-to-one problem [5]; however, subtle
changes are required in the algorithm as well as for the proofs. We remark that
even in the one-to-one setting there is no known characterization of popular
matchings in this model. However, it is natural to ask, given a matching M in
G, determine if M is popular. Our next theorem is an efficient algorithm to
decide whether M is popular in the multi-vote model. The same algorithm can
be used to decide whether M is popular in G in the one-to-one setting.

Theorem 2. Given an instance G = (A ∪ P,E) of the many-to-one two-sided
preferences with one-sided ties problem, there exists an O(mn) time algorithm
to decide whether a given matching M is popular in the multi-vote model in G.

We remark that the standard technique of cloning (that is, making c(p) copies
of a post p) to reduce the many-to-one problem to the one-to-one setting does not
work. Consider a simple example where there are three applicants {a1, a2, a3}
and a single post p with c(p) = 3. It is clear that only the matching which matches
all applicants to p is a popular matching. An approach of cloning will create three
clones p1, p2, p3, each with unit capacity, and set the preference of each applicant
to be p1 followed by p2, and then followed by p3. Note that the three copies of
the post p are indifferent among all the three applicants. It is well-known that
this instance does not admit a popular matching (see Abraham et al. [1] and
Cseh et al. [5]).

Many-to-One Popular Matchings in the One-Vote Model: In light of
Theorem 1, it is natural to determine the complexity of computing a popular
matching in the one-vote model (if it exists). We leave this question open; how-
ever, we show interesting connections between the two models, and present an
algorithm to check if a given matching is popular in the one-vote model.

The following example illustrates that an instance that admits a popular
matching in the multi-vote model may not admit a popular matching in the one-
vote model. Consider an instance with A = {a1, . . . , a6} and P = {p1, p2, p3},
each post having a capacity of two. Applicants a1, a2 prefer p1 followed by p2
followed by p3, whereas each of a3, . . . , a6 prefers p1 followed by p2. It can be ver-
ified that the matching M = {(a1, p3), (a2, p3), (a3, p2), (a4, p2), (a5, p1), (a6, p1)}
is a popular matching in the multi-vote model. However, the instance does not
admit a popular matching in the one-vote model. For any matching N , we can
obtain a more popular matching N ′ by promoting the matched partners of p3 (or
unmatched applicants) to p2, the matched partners of p2 to p1, and leaving the
applicants in N(p1) unmatched. Thus four applicants prefer N ′ over N whereas
two applicants (who are unmatched in N ′) prefer N over N ′. The only possible
post that gets fewer applicants in N ′ as compared to N is the post p3 which
gives one vote to N over N ′ due to the one-vote model. Thus, N ′ is more popular
than N and since this happens for every matching, the instance does not admit
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a popular matching in the one-vote model. Interestingly, it turns out that any
matching popular in the one-vote model is also popular in the multi-vote model.
Our next result is an algorithm to decide whether a given matching is popular
in the one-vote model.

Theorem 3. Given an instance G = (A ∪ P,E) of the many-to-one two-sided
preferences with one-sided ties problem, there exists an O(mn2) time algorithm
to decide whether a given matching M is popular in the one-vote model in G.

Background: A polynomial-time algorithm for the popular matchings problem
in the one-sided preferences model is given by [1]. In the stable marriage setting,
where both applicants and posts have strict preferences, a popular matching
always exists and a maximum cardinality popular matching can be found in
polynomial-time [10]. When ties are allowed in the stable marriage setting, the
problem is NP-complete [2]. Cseh et al. [5] consider the problem in a restricted
form of stable marriage setting where ties are allowed only on the posts’ side,
and show that the NP-completeness result still holds. They also show that a
further restriction where every post has all its neighbours in a single tie makes
the problem polynomial-time solvable. Subsequent to their work, Chang and
Lai [4] consider the problem of deleting a set of applicants in an instance of
the two-sided preferences with one-sided ties instance such that the resulting
instance admits a popular matching.

2 Preliminaries

For a vertex u ∈ V, we let nbr(u) denote the neighbours of u in G. If there is a
different graph, say H under consideration, we explicitly use nbrH(u) to denote
the neighbours of u in H. Given a matching M in the many-to-one setting, a
post p is under-subscribed if |M(p)| < c(p); if |M(p)| = c(p) we say that p is
fully-subscribed. For convenience, we will call an applicant unmatched in M as
under-subscribed. We recall a well-known result from matching theory.

Dulmage-Mendelsohn Decomposition [6]: Any maximum matching M in a bipar-
tite graph G = (A ∪ P,E) decomposes the vertex set A ∪ P into three pair-wise
disjoint sets even (E), odd (O), and unreachable (U) as defined below.

– Even: A vertex v ∈ A ∪ P is even if v has an even length alternating path
w.r.t. M starting at an under-subscribed vertex. Any under-subscribed vertex
is even since it has an zero length path starting at itself.

– Odd: A vertex v ∈ A∪P is odd if v has an odd length alternating path w.r.t.
M starting at an under-subscribed vertex.

– Unreachable: A vertex v ∈ A ∪ P is unreachable in M if it is neither even
nor odd.

It is known that these sets are invariant of the maximum matching M . Further-
more, a maximum matching in G does not contain any edge whose end points
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are OO or OU . Finally, in the many-to-one setting G does not contain any edge
whose end points are EE . We refer the reader to [6,9,13] for a proof.

In several proofs we require to consider the symmetric difference M ⊕ M ′

of two matchings M and M ′. In the many-to-one setting M ⊕ M ′ is a set of
connected components. It is useful to decompose the component into a maximal
collection of edge-disjoint alternating paths and cycles. We refer the reader to
[11,12] for details of constructing such a decomposition.

Labeling of Edges w.r.t. a Matching: It is useful to label the edges not in the
matching M with the vote of the applicant for that edge versus the matched edge.
An edge (a, p) /∈ M gets the label +1 if either a is unmatched in M or a prefers
p over M(a). Otherwise the edge (a, p) gets the label −1. We remark that the
labels on the edges do not capture the votes of the posts. Let Δm(M,M ′) (resp.
Δ1(M,M ′)) denote the number of votes that M gets when compared to M ′ in
the multi-vote model (resp. one-vote model). We write M �m M ′ if M is more
popular than M ′ in the multi-vote model, that is Δm(M,M ′) > 0. Analogously,
we write that M �1 M ′ if M is more popular than M ′ in the one-vote model,
that is Δ1(M,M ′) > 0.

3 Many-to-One Multi-vote Popular Matching

In this section, we describe a polynomial-time algorithm for the popular match-
ing problem in multi-vote model. The input instance is a bipartite graph
G = (A ∪ P,E) with c(p) associated with every post p ∈ P .

Overview of the Algorithm: We associate two posts f(a) and s(a) with each
applicant a, similar to [1] and [5]. Here f(a) is the most preferred post of a.
We call a post p an f -post if p is f(a) for some applicant a; else we call p a
non-f -post. To determine s(a), we construct the graph G1 on rank-1 edges of
G. Let M1 be a maximum matching of G1. Decompose the vertices of G as odd,
even and unreachable with respect to M1 in G1. For every applicant a, s(a) is
the most preferred even post of a in G1 w.r.t. M1. Note that s(a) may not exist
for some applicant. Let ra be the rank of s(a) in a’s preference list, if s(a) exists,
otherwise define ra = ∞. Algorithm 1 gives the detailed steps of our algorithm.

As in [5], we maintain three sets of posts X, Y , and Z. The set X is initialized
to the set of all f -posts and Y is initialized to all non-f -posts. The set Z is
initialized to be empty. In every iteration of the algorithm, we reconstruct the
graph H. At the start of each iteration, the edge-set of H is empty. We add edges
to H as described in lines 5 to 10 of Algorithm 1 and find a maximum matching
M . We use M to partition the vertices as odd, even and unreachable. For every
even post in Y , we freeze the rank-1 edges incident to it, if any, by storing them
in a set S, and then move the post to Z after appropriately adjusting its capacity
(lines 14 to 18). As mentioned in [5], the posts in Z are the unwanted posts. In
the one-to-one setting [5] an f -post never moves to the set Z. In the many-to-one
setting, however, an f -post may move to the set Z, hence we need the set S. We
show that the edges in set S must belong to every popular matching of G, if one
exists. We quit the while loop when there is no even post in Y .
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Algorithm 1. Popular matching in many-to-one multi-vote model.
1: A′ = A, X = set of f -posts in G, Y = P \ X, Z = ∅, S = ∅.
2: while true do
3: H is the empty graph on A′ ∪ P .
4: for a ∈ A′ \ nbr(Z) do
5: if f(a) ∈ X then add the edge (a, f(a)) to H.

6: for every p ∈ X such that degree(p) in H is < c(p) do
7: delete p from X and add p to Y .

8: for each a ∈ A′ do
9: let p be a’s most preferred post in Y.

10: if the rank of p in a’s preference list is ≤ ra, then add (a, p) to H.

11: compute a max. matching M in H and a decomposition of vertices w.r.t M .
12: for each even post p ∈ Y do
13: if p is an f -post then
14: add all rank-1 edges incident on p to the set S.
15: remove edges in S from G and delete the corr. applicants from A′.
16: move p to Z and set c(p) to c(p)− # of rank-1 edges incident on p in M .
17: else if p is a non-f -post then
18: move p to Z.

19: If all posts in Y are odd or unreachable then quit the while loop.

20: for each a ∈ nbr(Z) ∩ A′ do
21: add the edge (a, p) where p is a’s most preferred post in Z.

22: for a ∈ A′ do, if s(a) does not exist and nbr(a) ⊆ X, add unique last resort post
�(a). Add the edge (a, �(a)).

23: compute maximum matching M in H by augmentation.
24: if M matches all applicants in A′ then return M ∪ S else return “No popular

matching in multi-vote model”.

At the end of the while loop, all the posts in X and Y are odd or unreachable
in M . After the while loop, the algorithm adds edges to the posts in Z. For
applicants a such that s(a) does not exist and nbr(a) ⊆ X, we add a unique last
resort post �(a) and add the edge (a, �(a)). Note that the posts �(a) belong to
the set Y . Finally, we augment the matching using these additional edges and
call the resultant matching M . If M matches all the applicants, we declare it
to be popular in the multi-vote model, else we declare that G does not admit a
popular matching.

Running Time: The main while loop of Algorithm 1 is executed at most |P |
times and in each iteration the most expensive step is to compute a many-to-one
maximum cardinality matching in H. This can be done by Gabow’s algorithm [7]
in time O(

√
Ĉn) time where Ĉ is the sum of capacities of all posts. Thus justifies

the running time of Algorithm 1 in Theorem 1.

Properties of the Algorithm: Here we claim useful properties about
Algorithm 1. All omitted proofs appear in the full-version. We first prove that a
high demand f -post does not move to the set Z.
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Lemma 1. Let p be an f-post and k denote the number of applicants that treat
p as its rank-1 post. If k ≥ c(p) then, p does not move to the set Z during the
course of the algorithm.

Below we provide justification for the applicants for whom we add dummy
last-resort posts. Note that these applicants may be left unmatched in the match-
ing output by our algorithm, which we claim to be popular.

Lemma 2. Let a be an applicant such that s(a) is defined. If a is left unmatched
in a matching M , then M is not popular in the multi-vote model.

Lemma 3. Let a be an applicant such that s(a) is not defined and nbr(a) 	⊆ X
after the while loop of Algorithm 1. If a is left unmatched by M output by our
algorithm, then M is not popular in the multi-vote model.

3.1 Proof of Correctness

We prove that G has a popular matching if and only if the graph H constructed
in Algorithm 1 has an A-complete matching (that matches all applicants). We
prove the sufficiency here, the proofs of necessity appear in the full version.

Recall the labeling of unmatched edges with respect to a matching as
described in Sect. 2. Let X,Y and Z be the sets at the end of Algorithm 1.
We denote by M(X) the set of applicants who are matched to posts in X. Sim-
ilarly define M(Y ) and M(Z). We use the following lemma from [5], see [5] for
a proof.

Lemma 4 [5]. If M is the matching output by Algorithm 1, then the labels on
the edges satisfy the following properties.

– The edges in (M(X) × Y ) ∪ (M(Y ) × Z) gets −1 label.
– The edges in M(L) × L for L = X,Y, and Z gets −1 label.
– If an edge (a, p) gets labeled +1, then (a, p) ∈ (M(Y )×X) ∪ (M(Z)×(X∪Y )).

Let M be the matching output by Algorithm 1. Let M ′ be any other matching in
the graph G. We decompose M ⊕ M ′ into a collection of edge-disjoint alternating
paths and cycles. For brevity, we denote the paths and cycles obtained after the
decomposition by M ⊕ M ′.

Lemma 5. Let M be the matching output by Algorithm 1 and M ′ be any match-
ing in G.

– In any alternating cycle in M ⊕ M ′, the number of edges labeled −1 is at
least the number of edges that are labeled +1.

– In any alternating path in M ⊕ M ′, the number of edges labeled +1 is at
most 2 more than the number of edges that are labeled −1.

– In any even-length alternating path in M ⊕ M ′, the number of edges labeled
−1 is at least the number of edges that are labeled +1.
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Proof. Let Q be a cycle in M ⊕ M ′. There are two cases depending on whether
Q contains a post in Z.

– The cycle Q does not contain a post in Z. In this case, we claim that Q cannot
have two consecutive M ′ edges labeled +1. Let 〈a1, p1, a2, p2〉 be a path in
the cycle Q. Here M ′(a1) = p1,M

′(a2) = p2 and M(a2) = p1. If the edge
(a1, p1) is labeled +1, then edge (a2, p2) must be labeled −1. Let (a1, p1) be
a +1 edge. By Lemma 4, M(a1) ∈ Y and p1 ∈ X. Since p1 ∈ X, (a2, p1) is a
rank-1 edge. Therefore (a2, p2) is a −1 edge. Thus, in this case, for every +1
edge, there is a −1 edge in the cycle Q.

– If the cycle Q contains a post in Z, there can be two consecutive +1 edges. We
will show that for every two consecutive +1 edges there exists two consecutive
−1 edges. Let 〈ai, pi, ai+1, pi+1, ai+2, pi+2〉 be a path within Q as shown in the
Fig. 1. The red edges are matched in M . From Lemma 4, the posts pi ∈ X,
pi+1 ∈ Y and pi+2 ∈ Z. By the Step 4 of Algorithm 1, there is no edge
between ai and a vertex in the set Z. Since Q is a cycle, to reach pi+2, we
must use a post in Y and subsequently reach pi+2 in Z. Such a path must
contain two consecutive −1 edges to reach the post pi+2.

ai

ai+1

ai+2

pi

pi+1

pi+2

+1

+1

Fig. 1. A path in the alternating cycle Q in M ⊕ M ′. (Color figure online)

In any alternating path Q, there can be a sub-path with two consecutive
+1 edges. However, the weight of the path Q cannot exceed 2. To see this, we
note that, once we have two +1 edges in the path, we must be at an applicant
a ∈ M(X). An applicant in M(X) does not have a +1 edge incident on it
(because it is matched to its rank-1 post). Thus to have one more +1 edge in the
path, it must traverse to vertex either in Y or in Z. Any path from an applicant
in M(X) to a post in Y (Z) is at least −1 (resp. −2). Thus the total weight of
an alternating path cannot exceed 2.

Let 〈p1, a1, p2, a2, . . . , pk〉 be an even length alternating path. The post pk
and p1 are under-subscribed in M and M ′ respectively. The post pk must be in
set Z as it is under-subscribed in M . If the post p1 is in set Z, the number of
edges labeled −1 are at least the number of edges labeled +1. Similarly, if the
post p1 ∈ Y (X), then the number of edges labeled −1 at least one more (resp.
at least two more) than the number of edges labeled +1. �
Lemma 6. The matching M output by Algorithm 1 is multi-vote popular.
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Multi-vote versus One-Vote: We remark that, in the decomposition of M ⊕
M ′ into a collection of edge-disjoint paths and cycles, the same post p may
appear as an end-point at multiple paths. However, since we are in the multi-
vote model, this is not an issue, since the post casts multiple votes. We remark
that Lemma 6 does not hold for the one-vote model.

4 Verifying Popularity

In this section we consider the problem of verifying whether a given matching M
is popular in the multi-vote model. We consider the same question in the one-
vote model. For the multi-vote model, we have already presented an algorithm
to compute a popular matching if one exists. However, there is no known char-
acterization of a popular matching for the two-sided preferences with one-sided
ties model even in the one-to-one setting. Furthermore our verification algorithm
in the multi-vote model is useful for the verification algorithm for the one-vote
model. In fact, for the one-vote model, we assume that our input is a matching
that is popular in the multi-vote model.

4.1 Multi-vote Model

To verify whether a given matching M is popular in the multi-vote model, we
build a directed weighted graph in which we check for negative weight cycles.
We describe the construction of the graph in Algorithm 2.

Algorithm 2. Verify whether a matching M is popular in the multi-vote model.
1: H = (V, F ) where V = {s, t} ∪ P ∪ {�(a) | a ∈ A} and F = ∅.
2: For every matched post p ∈ P , add edge (s, p) with weight 1 to F .
3: For every under-subscribed post p ∈ P , add edge (p, t) with weight −1 to F .
4: for every matched applicant a ∈ A do
5: Add edge (�(a), t) with weight 0 to F .
6: Add edge (M(a), �(a)) with weight 1 to F .
7: for every p in the preference list of a do
8: if a prefers M(a) over p then
9: Add edges (M(a), p) with weight 1 to F .

10: else
11: Add edges (M(a), p) with weight −1 to F .

12: for every unmatched applicant a ∈ A do
13: Add edge (s, �(a)) with weight 0 to F .
14: For every p in the preference list of a, add edges (�(a), p) with weight −1 to F .

15: Add edge (t, s) with weight 0 to F .
16: if H contains a negative weight cycle then
17: Output “M is not popular in the multi-vote model”. Return.
18: else
19: Output “M is popular in the multi-vote model”. Return.

We prove the correctness of the construction using the following lemma.



202 K. Gopal et al.

Lemma 7. A matching M in the many-to-one two-sided preferences with one-
sided ties instance G is popular in the multi-vote model if and only if H con-
structed in Algorithm 2 has no negative weight cycle.

We comment on the running time of the algorithm. Negative cycles can be
detected using the Bellman-Ford Algorithm. H has O(n) vertices and O(m)
edges. Thus verification of popularity in the multi-vote model can be done in
O(mn) time. This justifies Theorem 2.

4.2 One-Vote Model

Before we discuss our verification algorithm for one-vote model, we prove that a
matching M that is one-vote popular is also multi-vote popular.

Lemma 8. If G admits a popular matching M in the one-vote model then M
is also a popular matching in the multi-vote model.

Proof (Sketch). If M is one-vote popular but not multi-vote popular, then
M ′ �m M . We decompose M ⊕ M ′ into a collection of edge-disjoint paths and
cycles. We show that, if for any path or cycle Q, M⊕Q �m M then M⊕Q �1 M ,
contradicting that M is popular in the one-vote model. �

We are given a matching M which is popular in the multi-vote model. Our
goal is to verify whether M is popular in the one-vote model. We first label the
posts similar to [5] as L1, L2, L3 w.r.t. M as follows.

Labeling of Vertices w.r.t. a Multi-vote Popular Matching M :

1. Initialize L1 = L2 = ∅ and L3 = set of all posts under-subscribed in M .
2. For each 5-length alternating path ρ = 〈ai, pi, ai+1, pi+1, ai+2, pi+2〉 having

two +1 edges (see Fig. 1), add pi to L1, pi+1 to L2 and pi+2 to L3.
3. Let p ∈ P be a post that is not a part of any 5 length alternating path with

two +1 edges. Repeat the following rules until there are no more posts to be
added via below rules:

– Suppose none of the applicants in M(p) have a +1 edge incident on them
and also one of the applicants in M(p) is in nbr(L3): Add p to L2.

– If an applicant in M(p) has a +1 edge to a post in L2, then add p to L3.
4. For each p such that no applicant in M(p) has a +1 edge incident to it:

– If M(p) ∩ nbr(L3) = ∅, then add p to L1.
5. For each p not yet in L2 ∪ L3 and there exists an applicant in M(p) which

has a +1 edge to a vertex in L1:
– Add p to L2.

As observed in [5], the labeling of the vertices ensures that Lemma 4 holds
when X,Y,Z are replaced by L1, L2, L3 respectively. Using this labeling on the
vertices and the fact that M is multi-vote popular, we show the following struc-
ture on any matching M ′ (if it exists) which is more popular than M in the
one-vote model.
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Lemma 9. Let M be a popular matching in the multi-vote model. Let M ′ �1 M
such that M ⊕ M ′ = C is edge minimal. Then, C = Q1 ∪ Q2 where Q1 and Q2

are two edge disjoint alternating paths starting at a post p ∈ L3 and ending at
two vertices v1 and v2 belonging to M(L1) ∪ L3 and v1 	= v2 	= p.

Lemma 10 gives another observation on the set of paths in C = M ⊕M ′. Define
D (to be deleted) as the set of edges as defined by (1), (2) (3) below.

(1) All the −1 edges of the form M(L2) × L1, M(L3) × (L1 ∪ L2).
(2) All the +1 edges of the form M(L3) × L1.
(3) All the unmatched edges in the set M(L1)×L1, M(L2)×L2, and M(L3)×L3.

Note that all these edges are labeled −1.

Lemma 10. Let M be a popular matching in the multi-vote model and assume
that M ′ �1 M . Let M ⊕M ′ = C, where C is a set of two edge disjoint paths Q1

and Q2 both of which start at a post p ∈ L3. The paths Q1 and Q2 do not use
the edges in set D.

We are now ready to give our algorithm (Algorithm 3) to verify whether
a matching M is popular in the one-vote model. The input is a matching M
that is popular in the multi-vote model. The algorithm first labels the posts as
L1, L2, L3 w.r.t. M and deletes “unnecessary edges” in the first three steps. For
each post p ∈ L3, it constructs a flow network. Using the flow network, the goal
is to explore L3 � M(L1) paths and L3 � L3 paths. The deleted edges and
the flow network construction ensures (i) every L3 � M(L1) path has weight
+2, (ii) every L3 � L3 path has weight 0 and (iii) the paths that we find are
edge-disjoint and end at distinct posts.

Algorithm 3. Verify whether a matching M is popular in one-vote model.
Require: M is popular in the multi-vote model.
1: Delete all the −1 edges of the form M(L2) × L1, M(L3) × (L1 ∪ L2).
2: Delete all the +1 edges of the form M(L3) × L1.
3: Delete all the unmatched edges in the set M(L1)×L1, M(L2)×L2, and M(L3)×L3.

Note that all these edges are labeled −1.
4: Let GM be the graph constructed above.
5: for each post p ∈ L3 construct the flow network HM (p) as follows: do
6: Add (s, p) edge with capacity |M(p)|.
7: Direct all the matched edges in GM from P to A.
8: Direct all the unmatched edges in GM from A to P .
9: For each under-subscribed post p′ 	= p, add an edge (p′, t) with capacity 1.

10: For each applicant a ∈ M(L1), add an edge (a, t) with capacity 1.
11: Compute the max-flow from s to t in HM (p). If max-flow value is greater than

1, then output “M is not popular in one-vote model”. Return.

12: Output “M is popular in one-vote model”. Return.



204 K. Gopal et al.

Lemma 11. Let M be a matching that is popular in the multi-vote model. Algo-
rithm 3 correctly verifies whether M is popular in the one-vote model.

Proof. Assume that Algorithm 3 returns “M is not popular in one-vote model”.
This is because, for some post p ∈ L3, it found a flow of at least two in the flow
network HM (p). Due to the construction of the flow network and the deletion
of edges, this implies that there exists at least two edge disjoint paths from p
which are of the form L3 � M(L1) or L3 � L3. For an L3 � M(L1) path, the
weight is +2 and we lose the vote of the applicant at which the path ends. Thus
we gain +1 along such a path. For an L3 � L3 path, the weight is 0 and we
gain the vote of the post at which the path ends. Thus the gain along such a
path is at least +1. Switching along at least two such paths gives us a matching
M ′, which, when compared with M , gets at least two votes along the two or
more edge-disjoint paths and loses the vote of p. Thus, M ′ �1 M and hence the
output is correct.

Now let the algorithm return “M is popular in the one-vote model”. By
Lemmas 9 and 10 it is sufficient to explore paths starting at p ∈ L3 which do
not use any of the deleted edges. Thus if our algorithm did not find any such
paths, M is popular in the one-vote model. �

Running Time: The algorithm computes a max-flow for each post p ∈ L3,
which takes O(mn) time where m and n are respectively the number of edges
and vertices in GM . The number of vertices in L3 are O(n). Therefore the total
time is O(mn2). This justifies Theorem 3.
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Abstract. Gene duplications are a dominant force in creating genetic
novelty, and studying their evolutionary history is benefiting various
research areas. The gene duplication model, which was introduced more
than 40 years ago, is widely used to infer duplication histories by resolv-
ing the discordance between the evolutionary history of a gene family
and the species tree through which this family has evolved. Today, for
many gene families lower bounds on the number of gene duplications that
have occurred along each edge of the species tree, called duplication sce-
narios, can be derived, for example from genome duplications. Recently,
the gene duplication model has been augmented to include duplication
scenarios and to address the question of whether such a scenario is feasi-
ble for a given gene family. Non-feasibility of a duplication scenario for a
gene family can provide a strong indication that this family might not be
well-resolved, and identifying well-resolved gene families is a challenging
task in evolutionary biology. However, genome duplications are often fol-
lowed by episodes of gene losses, and lost genes can explain non-feasible
duplication scenarios. Here, we address this major shortcoming of the
augmented duplication model, by proposing a gene duplication model
that incorporates duplication-loss scenarios. We describe efficient algo-
rithms that decide whether a duplication-loss scenario is feasible for a
gene family; and if so, compute a gene tree for the family that infers the
minimum duplication-loss events satisfying the scenario.

Keywords: Gene tree · Species tree · Duplication-loss ·
Reconciliation · Feasibility

1 Introduction

Gene duplication events are widely viewed as the dominant evolutionary source of
raw material for new genes creating genetic novelty in organisms [23,26]. Duplica-
tion events give rise to operationally undistinguishable duplicate copies of a gene.
One of the duplicate copies can then evolve into a gene with a novel function, while
the other copy may maintain the original genes function. However, duplicate copies
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do not always establish new functions but result in a gene loss. The evolutionary
histories by which gene duplication and subsequent loss occurred is full of complex-
ities and present a primary research tool for studying how functional innovations
of genes have evolved the way they are today. Potential applications of such stud-
ies are widespread and affecting a vast variety of fundamental biological research
areas such as molecular biology, microbiology, and biotechnology [19]. For exam-
ple, evolutionary histories of gene duplications provide a comprehensive way to
describe the dynamics of gene family evolution [9,18] and are also a popular tool
to differentiate between orthologous and paralogous genes [1,2], a primary task in
the functional determination of genes [17].

The groundwork for inferring gene duplication and loss events has been laid
by the gene duplication model. This model, which has been pioneered by Good-
man et al. [13] nearly 40 years ago, has become a common choice for practitioners
and is the focus of this work. The gene duplication model is taking a gene tree
and a corresponding species tree, representing the evolutionary histories of genes
and species respectively, where both trees are rooted and full binary. The gene
tree represents the history of a set of genes belonging to the same family, and
the species tree is the history of the species hosting the genes. There is often
a discord between the gene tree and the species tree originating from complex
histories of gene duplication and loss events, but discord can also arise from
other evolutionary events, such as deep coalescence [27] or lateral gene transfer
[20]. The gene duplication model is reconciling the gene tree with the species tree
under the assumption that discordance originates from gene duplication and loss
events. A reconciliation of the gene tree is an embedding of the gene tree into the
species tree from which gene duplications and losses can be inferred. An exam-
ple is depicted in Fig. 1 (Left hand box). Following the parsimony principle, the
gene duplication model seeks a reconciliation that infers the minimum number
of duplication and loss events. The interested reader is referred to [8,12] for a
more detailed treatment of the gene duplication model.

Today, lower bounds on the number of gene duplications that have occurred
along the edges of a species tree, called duplication scenarios, can be estimated,
for example, from whole genome duplications [5,25]. Recently, the gene duplica-
tion model has been augmented to include duplication scenarios to address the
question of whether a gene family is feasible under a given duplication scenario
[22]. For example, naturally, every reconciliation of gene (family) tree infers a
duplication scenario, and thus the gene family is feasible. However, not every
duplication scenario can be inferred from reconciliations for a gene family, in
which case the gene family is non-feasible. The feasibility problem is to decide
whether a duplication scenario is feasible, which can be solved in linear time
[28]. Non-feasibility of a duplication scenario for a gene family can provide a
strong indication that this family might not be well-resolved, and identifying
well-resolved gene families is a challenging task in evolutionary biology. How-
ever, a common criticism of the feasibility problem is that genome duplications
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are often followed by episodes of losses, which is not considered. This major
drawback of the feasibility problem is leading to reconciliations that are non-
feasible but can be explained by genes that have been lost. Estimates on losses
are available for several gene families, e.g., [10]. Further, studying gene families
is an ongoing and central effort in evolutionary biology that is likely to produce
many more credible estimates on gene duplication and loss events.

Here, to overcome the drawback of the feasibility problem, we modify the
augmented duplication model to also consider gene loss. Based on this modi-
fied model we introduce the duplication-loss feasibility problem that considers
lower bounds on the overall number of duplication and loss events. To solve the
duplication-loss feasibility problem, we describe a linear-time algorithm. Further,
if the problem is feasible, we describe a polynomial-time algorithm that com-
putes a gene tree that has a feasible reconciliation with the minimum overall
duplication and loss count.

Fig. 1. Left hand box. An example of a feasible duplication-loss scenario. The rec-
onciliation of a gene tree G and its corresponding species tree S with three species a,
b and c is shown. Through the embedded gene tree the following events are inferred:
gene duplication (squares), loss (blue crosses), and speciation (others). The scenario
for S is given: lower bounds, in green, on the number of duplication-loss events for each
edge, and the number of gene copies sampled from each species, in blue with #. The
provided reconciliation shows that the gene tree, or the corresponding gene family, is
feasible for the given scenario. E.g., the reconciliation infers for the edge incident to
leaf a three duplication events and one loss event, which is larger than the required
lower bound of three for this edge. In addition, the gene tree G is under all feasible gene
trees, a tree with the minimum overall number of duplication and loss events. Right
hand box. A non-feasible duplication-loss scenario is depicted. (Color figure online)

The gene duplication model from Goodman et al. [13] infers gene duplication
and subsequent loss events by reconciling possible discord between a gene tree
its corresponding species tree under the assumption that the discord originates
only from gene duplication and loss. An example of reconciliation is depicted
in Fig. 1. Following the parsimony principle, for inferring the duplication-loss
inference, the gene duplication model is using the unique reconciliation that
results in the minimum overall number of inferred duplications [6,11,12,15]. This
unique reconciliation can be specified by the least common ancestor mapping,
which maps every gene in the gene tree to the most recent species in the species
tree that possibly could have contained this gene, called its host-species. In the
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gene tree a gene that has a child with the same host-species is a gene duplication.
Visually, we say that such gene duplication happened on the edge connecting
the host-species to its ancestor.

The mapping and the gene duplications are linear-time computable [28].
There is a rich literature of extensions and variants of the gene duplication
model, which can, in most cases, be efficiently computed [8,12]. A gene loss is
an event that can be inferred from a reconciliation map as a gene lineage from
species tree node s carrying on to only one child of s instead of both of them.
Figure 1 indicates such events via blue crosses. For example, the pink gene lin-
eage that appeared in the parent of species tree leaves a and b carries on only
to the right child of this node and thus a loss is inferred within the other child
(see a blue cross in leaf a). While computationally highly complex, probabilistic
models for gene/species tree reconciliation, as well as gene sequence evolution,
have also been developed [1,3].

Recently, the gene duplication model was augmented by also providing lower
bounds on the number of gene duplications that have occurred along the edges of
the species tree, termed a duplication scenario [22]. Using this augmented model
the question of whether a duplication scenario is feasible for a given gene family
could be decided in linear time. A scenario is feasible for a gene family, if there
exists a gene tree for the family such reconciling this tree infers duplications that
satisfy the lower bounds of the duplication scenario.

Contribution. To address the missing factor of gene losses in the previously
explored duplication scenarios, we formulate a novel feasibility problem based on
the standard duplication-loss model. This problem, referred to as duplication-loss
feasibility (DLF), takes a species tree annotated with the lower bounds on the
number of events (duplications and losses) that have occurred along each species
tree branch; and asks whether there exists a gene tree that satisfies these lower
bounds. Note that such a gene tree must have for each species tree leaf s a fixed
pre-determined number of leaves that map into s; otherwise, when the number
of gene leaves is not fixed, the problem is trivial and not biologically relevant.

In spite of the added complexity of the employed reconciliation model, we
demonstrate that this feasibility problem can be solved in linear time. The cor-
rectness of this algorithm follows from the important and non-trivial properties
of the feasible gene trees, which we introduce in this work.

Further, we study a parsimonious modification of the feasibility problem,
called MinDLF, that asks to find a gene tree that is not only feasible for the
given scenario but also incurs the minimum possible number of events overall.
To address this problem we present a dynamic programming formulation that
solves MinDLF in O(mn3) time. Here n is the size of the species tree and m is
the size of the gene tree.

2 Preliminaries

We recall needed basic definitions and introduce two feasibility problems.
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2.1 Basic Definitions

We follow the basic definitions and notation from [14,27]. A (rooted phylogenetic)
tree T = 〈V (T ), E(T )〉 is a connected acyclic graph where exactly one of its
nodes has a degree of two (root), and the remaining nodes have a degree of one
(leaves) or three. The nodes with a degree of at least two are called internal.
L(T ) denotes the set of all leaves in T , and |T | := |L(T )|. By � we denote the
partial order in a tree T where a � b if b is a node on the path between a and
the root of T . Note, a ≺ b is equivalent to a � b and a �= b. The least common
ancestor (LCA) of a and b in T is denoted by lca(a, b). If a is not the root of
T , then the parent of a, denoted by par(a), is the least node v such that a ≺ v.
The root of T is denoted by root(T ). Nodes a and b with the same parent are
called a sibling of each other. A sibling of a is denoted by sib(a). T (a) denotes
the maximal subtree of T rooted at node a.

Fig. 2. Reconciling G1 = (a, d) and G2 = ((((a, b), c), d), a) with S = (((a, b), c), d). E1

and E2 display embeddings of G1 and G2 into S respectively. There is one duplication
(square) at the root of G2 and the remaining internal nodes of both gene trees are
speciation nodes (marked in red) In G1, a leaf a visits nodes a, ab and abc in S, while in
G2, the top leaf a visits a, ab, abc and abcd. Further, there are two gene losses (crosses)
assigned to b and c in S when reconciling with G1 and three gene losses assigned to
b, c and d in S for G2, respectively. Here, DL(G1, S) = 2 and DL(G2, S) = 4. (Color
figure online)

A species tree is a rooted tree whose leaves are called species. Here, we assume
that the set of species is fixed. A gene tree is a rooted tree whose leaves (genes)
are labeled by species. The labeling is interpreted as follows: a leaf is a gene and
the label is the species from which the gene was sampled. Note, leaves in the
gene tree have the same label when the respective genes are sampled from the
same species.

In phylogenetic tree reconciliation a gene tree G is embedded into its cor-
responding species tree S. The embedding is determined by the lca-mapping
M : V (G) → V (S) that is defined recursively as follows: (i) if g is a leaf then
M(g) is the label of g, i.e., g maps into its species (a leaf from S) – and (ii)
M(g) := lca(M(g′),M(g′′)) if g has two children g′ and g′′. We write that a node
g maps to s, which means M(g) = s.

An internal node g is called a duplication assigned to a node M(g) if M(g) =
M(g′) for a child g′ of g. Every internal non-duplication node in G is called
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a speciation (node). By δGs and σG
s we denote the number of duplication and

speciation nodes mapped to s, respectively. Note that σs = 0 if s is a leaf.
To model how a gene tree is embedded into its species tree, we first determine

how genes (i.e., the nodes of G) correspond to the nodes of the species tree. Now,
we define the set of species nodes visited by a given node g ∈ V (G). First, if g
is the root then g visits only M(g). For a non-root node g, g visits every node s
such that M(g) � s ≺ M(par(g)) if par(g) is a speciation, and every node s such
that M(g) � s � M(par(g)), otherwise. Now, for each g, we assign one gene loss
to a node s if both sib(s) and par(s) are visited by g. The number of gene losses
assigned to a node s is denoted by λG

s . See an example in Fig. 2.
Finally, we define the duplication-loss cost function [24,27], denoted

DL(G,S), as the total number of gene duplication and loss events assigned to
the nodes of S. For a more detailed introduction to the model please refer to
[15,21,24].

Note that here, for convenience, we assign duplication and loss events to
species tree nodes; however, typically, we think of these events as occurring on
the species tree edges that enter these nodes (i.e., parent edges). Therefore, Fig. 1
shows event counts assigned to edges rather than nodes.

2.2 Feasibility Problems

Here we define two feasibility problems. We assume that the species tree S is
fixed. First, we need to define the notion of a scenario (see Fig. 1), which is a pair
of functions that determine the number of events assigned to each node of the
species tree and the number of genes present in each species. Formally, by the
event-count constraint (on S) we denote any function γ : V (S) → {0, 1, . . . } and
by gene counts (on S) we denote any non-zero function g# : L(S) → {0, 1, . . . }.

Problem 1 (DLF). Given: a species tree S, an event-count constraint γ, and
gene counts g#. Question: does exist a gene tree G such that (1) for each leaf s
from S, G has exactly g#(s) leaves labeled s, and, (2) for each node s from S,
γ(s) ≤ δGs + λG

s .

A gene tree satisfying (1) and (2) will be called feasible (for S, γ, and g#).

Problem 2 (MinDLF). Given: a species tree S, an event-count constraint γ, and
gene counts g#. Problem: reconstruct a feasible gene tree G with the minimal
DL(G,S) if such a tree exists.

3 Elementary Properties of Embeddings

We prove embedding properties that are elementary to solve the feasibility prob-
lems.

Figure 3 provides insight into the following lemma. Each colored edge in that
figure represents a gene tree edge (or its part) and is also referred to as a gene
lineage. Note that each duplication event creates one additional gene lineage
“below” it. By βG

s , we denote the number of non-duplication nodes that visit s.
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Fig. 3. A general situation of embedding gene tree lineages into an internal species
tree node s with children s1 and s2. Note that the values of β’s, σ’s, δ’s and λ’s are
uniquely determined by the lca-mapping between a given gene tree and its species tree.
Gene losses are marked by blue crosses. See also Lemma 1. (Color figure online)

Lemma 1. Let G be a gene tree and S be a species tree. For an internal node
s from S with two children s1 and s2, we have1:

λsi = βsib(si) − δsib(si) − σs, (1)
βs = βs1 + βs2 − δs1 − δs2 − σs, (2)
δs ∈ {0, 1, . . . , βs − 1}, (3)

δs > 0 ⇒ σs > 0. (4)

4 Algorithm for DLF

In this section we present the algorithm to solve DLF. First, we define a classi-
cal rooted subtree pruning and regrafting tree-rearrangement (rooted-SPR) and
then two rules for transforming feasible gene trees. Having this, we limit our
search for a feasible tree to a special case of gene trees. Finally, we present the
algorithm for solving DLF.

The rooted-SPR operation is defined as follows [7]. Let g be a non-root node
of gene tree G. For g′ in G by rSPR(G, g, g′) we denote the tree obtained from
G by deleting the edge connecting g with its parent and

– if g′ is not the root, by adding a new node v which subdivides the edge
connecting g′ with its parent, adding a new edge from v to g, and suppressing
the non-root node of degree two or the root if its degree is one;

– otherwise, by adding a new root v and two edges connecting v with g and the
previous root, and suppressing the non-root node of degree two.

Now we define two rules for transforming a feasible gene tree G.

1 When it is clear from the context, the superscript G is omitted for clarity in γ, σ, δ
and β.
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Rule I The reducible expression (redex) here is a pair of two speciation nodes
g and g′ from G such that g is earlier in the prefix order than g′.
Condition: M(par(g)) = M(g) = M(g′). The rule transforms G into
G′ = rSPR(G, sib(g), g′).

Rule II The redex is a pair 〈g, c〉, where g is a non-root speciation node and
c is a child of g. Condition: M(par(g)) � M(g). The rule transforms G
into G′′ = rSPR(G, c, root(G)).

Observe, that the requirement that g and g′ are ordered in Rule I (any linear
order is sufficient) is needed to ensure that any sequence of rule transformations
is finite. Proofs of the next two lemmas follow from the definition of rules.

Lemma 2. Let 〈g, g′〉 be a redex of Rule I in G. Then,

– the parent of g is a duplication in G,
– all event assignments are the same including β and σ, i.e., δG = δG

′
, λG =

λG′
, σG = σG′

, and βG = βG′
,

– and the number of duplications nodes above g that map into M(g) (i.e., all
duplications d : d � g,M(d) = M(g)) is decreased by one.

Lemma 3. Let 〈g, c〉 be a redex of Rule II. Let M(g) = s and r = M(root(G)).
Then,

– for each r � v � s, λG′′
sib(v) = λG

sib(v) + 1 and βG′′
v = βG

v + 1,

– for each child s′ of s, λG′′
s′ = λG

s′ + 1,
– δG

′′
r = δGr + 1 and βG′′

r = βG
r + 1,

– σG′′
s = σG

s − 1,
– and the remaining values of the above functions are the same.

Lemma 4. If G is feasible then G′ is feasible. The same holds for G′′.

Proof. It follows from Lemmas 2 and 3 that the transformation does not decrease
the number of gene duplications and losses assigned to a species node. �
Lemma 5. If a given instance of DLF has a feasible solution, then there is a
feasible gene tree in which (1) no two speciation nodes map into the same species
tree node, and (2) a parent of each non-root speciation is a duplication mapped
to the same node.

Proof. Note that both conditions are satisfied if the tree has no redex of any
rule. Thus, we transform G by Rules I and II until there is no redex left. It
should be clear that the maximal sequence of reductions is finite. By Lemma 4,
this procedure yields a feasible gene tree satisfying both properties. �

This implies that the search for a feasible tree can be limited to the trees
that satisfy the following conditions.
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Algorithm 1. Solution to DLF
1: Input: A species tree S with γ : V (S) → {0, 1, . . . } (events lower bounds) and g# : L(S) →

{0, 1, . . . } (gene-count). For an internal node s of S, let s1 and s2 denote the children of
s. Output: True iff there is a feasible tree for S, g#, and γ.

2: Function dlf∗(s, d0, d1, d2):
3: b1 := dlf(s1, d1); b2 := dlf(s2, d2)
4: If b1 = −∞ or b2 = −∞: Return −∞. # Non-feasible solution

5: If d0 = 1 and (b1 = 0 or b2 = 0): Return −∞. # Speciation req.

6: If (b1 ≤ d1 ∧ d1 = 1) or (b2 ≤ d2 ∧ d2 = 1): Return −∞ # Child duplication req.
7: e1 := d1 + b2 − d2 − d0; e2 := d2 + b1 − d1 − d0; # Initial DL counts at s1 & s2
8: Δ1 := d1; Δ2 := d2; # Initial duplication counts at s1 and s2
9: If b1 − 2 ≥ γ(s1) − e1 > 0 and d1 = 1: Δ1 := Δ1 + γ(s1) − e1 # Add dupl.
10: Else If b2 − 2 ≥ γ(s2) − e2 > 0 and d2 = 1: Δ2 := Δ2 + γ(s2) − e2
11: If Δ1 + b2 − Δ2 − d0 < γ(s1) or Δ2 + b1 − Δ1 − d0 < γ(s2): Return −∞
12: Return b1 + b2 − d0 − Δ1 − Δ2

13: Function dlf(s, d):
14: If s is a leaf: Return g#(s).

15: Return max{dlf∗(s, d, 0, 0), dlf∗(s, d, 1, 0), dlf∗(s, d, 0, 1), dlf∗(s, d, 1, 1)}.

16: # Main body starts here

17: Let r be the least common ancestor of all leaves s with g#(s) > 0.
18: For every node s outside the subtree rooted at r: If γ(s) > 0: Return False
19: If dlf(r, 1) ≤ γ(r): Return False # Dupl. at the top node

20: Return True

Lemma 6. Assume that a given instance of DLF has a feasible solution G and
let r = M(root(G)). Then, there is a feasible gene tree in which, (1) for each
internal node s �= r either δs ≥ 1 = σs or δs = 0 = σs, and (2) if r is not a leaf
then σr = 1.

We say that a gene tree is s-feasible for a node s ∈ S if for each leaf l from
S(s), G has exactly g#(l) leaves labeled l, and for each node s′ strictly below s,
γ(s′) ≤ δGs′ + λG

s′ . Note that the last condition does not have to hold for s.

Lemma 7. In Algorithm 1, for d ∈ {0, 1} and a node s, dlf(s, d) returns the
maximal value2 of βs in the set of all s-feasible trees under the assumption that
a speciation node maps to s if and only if d = 1.

Lemma 8. In Algorithm 1, for di ∈ {0, 1} and an internal node s0 with children
s1 and s2, dlf∗(s0, d0, d1, d2) returns the maximal value of βs in the set of all s-
feasible trees under the assumption that a speciation node maps to si if and only
if di = 1, for each i.

Theorem 1 (Correctness). Given a species tree S, event-count constraint γ
and gene-counts g# Algorithm 1 returns true if and only if there is a feasible
gene tree for S, γ and g#.

2 We assume that the maximum is −∞ if the set of s-feasible trees is empty.
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Proof. Let r be the node as defined in line 17. First, outside the tree rooted at
r there are no events allowed; therefore, the constraint must be 0, otherwise, no
feasible solution exists. Next, by Theorem 1, if the returned value of dlf(s, d)
is −∞ then there is no feasible solution. Otherwise, there is an r-feasible gene
tree. It remains to check whether the event-count constraint for r is satisfied. As
k = dlf(s, d) is the maximal value of βr for an r-feasible tree (by Lemma 7), we
create k − 1 duplications at r (see Lemma 1 Eq. (3). Thus, the requirement is
k ≥ γ(r) (see line 19). �
Theorem 2 (Complexity). Algorithm 1 requires O(n) time and space, where
n is the size of the species tree.

Proof. There are three traversals of S: one for computing r in line 17, the second
for checking the constraints outside S(r) and the last one for the recursive calls
of dlf and dlf∗. The memory is needed for the recursive calls and for a fixed
number of local variables per each visited node s. �

5 Algorithm for MinDLF

Here we propose a dynamic programming algorithm for solving our second prob-
lem. We start with several needed definitions, and then show the algorithm for
the minimal cost inference. Finally, we describe the solution to MinDLF.

A non-root gene node g that visits a non-root species node s is called a
mid-lineage of s if either g visits par(s) or the parent of g is a speciation that
maps to par(s). It is not difficult to see the number of mid-lineages of s can be
calculated as σpar(s) + λsib(s) or, equivalently, βs − δs (see Lemma 1 or Fig. 3 and
the gene lineages above duplications – they illustrate the lineages that we refer
to as mid-lineages). The latter expression gives the number of mid-lineages for
node M(root(G)), which is 1.

For an s-feasible tree, the partial DL cost is the total number of events
assigned to the nodes strictly below s (i.e., excluding s). We assume that the
minimal partial cost is +∞ if there is no s-feasible tree satisfying the corre-
sponding conditions.

Our algorithm is composed of two dynamic programming formulas. The next
two lemmas describe their properties.

Lemma 9. For a node s, P (s, b, p) is the minimal partial DL cost in the set of
all s-feasible gene trees G such that (1) b is the number of non-duplication nodes
that visit s (i.e., βG

s ), and, (2) for an internal node s, p is the lower bound for
the number of speciation nodes mapped to s (i.e., σG

s ≥ p).

P ∗ has properties that are similar to P . However, in contrast, P ∗ incorporates
the event-count constraint and the cost contribution of s.

Lemma 10. For a node s, P ∗(s, b, l) is the minimal DL cost calculated as the
number of events assigned to any node in S(s) in the set of all s-feasible gene
trees G such that the event-constraint is satisfied by s (i.e., γ(s) ≤ λG

s + δGs ), l
is the number of losses assigned to s, and b is the number of mid-lineages of s.
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Algorithm 2. MinDLF cost
1: Input: The same as in Alg. 1. Output: The minimal DL cost of a feasible tree for

S, g# and γ if exists and −∞, otherwise.
2: Let m =

∑
g g

#(g) and r be the LCA of all leaves s with g#(s) > 0.
3: For every node s ∈ V (S) \ V (S(r)): If γ(s) > 0: Return +∞
4: Return P ∗(r, 1, 0), where P : V (S) × {0, 1, . . . , m} × {0, 1} → {0, 1, . . . } ∪ {+∞}

and P ∗ : V (S) × {0, 1, . . . , m}2 → {0, 1, . . . } ∪ {+∞} are defined below.
5: For any node s, if s is internal its children are denoted s1 and s2:

P (s, b, p) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 s is a leaf and g#(s) = b,

+∞ s is a leaf and g#(s) �= b,

+∞ s is internal, p = 1 and b = 0,

min q∈{p,...,b}
l∈{0,...,b−q}

P ∗(s1, b − l, l) + P ∗(s2, q + l, b − q − l) otherwise.

6: For any node s, P ∗(s, 0, l) =

{
l γ(s) ≤ l and

∑
s′∈L(S(s)) g

#(s′) = 0,

+∞ otherwise,

and, if b > 0, P ∗(s, b, l) = min0≤d<m

{
d + l + P (s, b + d, [[d > 0]]) γ(s) ≤ l + d,

+∞ otherwise.

Here, for a predicate a, [[a]] is 1 if a is satisfied, and 0 otherwise.

Theorem 3 (Correctness). The minimal cost of a feasible tree is given by
P ∗(r, 1, 0), where r is the LCA of all leaves s with g#(s) > 0.

Proof. The proof follows immediately from Lemma 10 as r, being the map of
every gene tree root satisfying the gene-count constraint, has exactly one mid-
lineage and no losses. Additionally, the event-constraints has to be zero for any
node outside S(r) (see line 3). �
Theorem 4 (Complexity). Algorithm 2 requires O(|S|m3) time and O(|S|m2)
space, where m =

∑
g g

#(g).

Proof. The time complexity follows from the construction of P , where for each
internal node from S and each b ≤ m, we need two nested loops with up to m
steps each to compute the minimum value in the last case of the definition in
line 5. For the space complexity, we need 2|S|m and |S|m2 memory to store P
and P ∗, respectively. �
Finally, we can solve MinDLF. Given the dynamic programming algorithm, we
infer a feasible gene tree that minimizes the cost by using the standard back-
tracking technique. For example, the gene tree G from Fig. 1 is the tree with the
minimal DL cost among all feasible gene trees for S inferred from Algorithm 2
using backtracking. Note that DL(G,S) = 11, while the event-constraint gives
the lower bound 10. In this case, there is no feasible gene tree with precisely 10
events.
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6 Conclusion

Gene families play a significant role in the systematic analysis of protein func-
tion, diversity of multicellular organisms, and related areas [4,16,18]. Therefore,
categorizing genes into credible families is an ongoing and central topic in phy-
logenetics. Recently, as part of this effort, the classic gene duplication model has
been augmented by incorporating the knowledge of whole genome duplications
[22]. A linear-time algorithm based on this model allowed then the refinement of
gene families. While promising, the augmented model has the major drawback
of not incorporating gene losses. Here, we are overcoming this shortcoming by
including losses into the augmented model and providing efficient algorithms
that support practitioners in carefully refining gene families.
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8. Chauve, C., El-Mabrouk, N., Guéguen, L., Semeria, M., Tannier, E.: Duplica-
tion, rearrangement and reconciliation: a follow-up 13 years later. In: Chauve, C.,
El-Mabrouk, N., Tannier, E. (eds.) Models and Algorithms for Genome Evolution.
Computational Biology, vol. 19, pp. 47–62. Springer, London (2013). https://doi.
org/10.1007/978-1-4471-5298-9 4

9. Chen, K., Durand, D., Farach-Colton, M.: NOTUNG: a program for dating gene
duplications and optimizing gene family trees. J. Comput. Biol. 7(3–4), 429–447
(2000)

10. Dujon, B., et al.: Genome evolution in yeasts. Nature 430, 35–44 (2004)
11. Eulenstein, O.: Vorhersage von Genduplikationen und deren Entwicklung in

der Evolution. Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität Bonn,
Germany (1998)

https://doi.org/10.1007/978-1-4020-2330-9
https://doi.org/10.1007/978-1-4471-5298-9_4
https://doi.org/10.1007/978-1-4471-5298-9_4
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Abstract. We show that both Cutwidth and Imbalance are fixed-
parameter tractable when parameterized by the twin-cover number of
the input graph. We further show that Imbalance is NP-complete for
split graphs and therefore chordal graphs, but linear-time solvable for
proper interval graphs, which equals the complexity of Cutwidth on
these classes.

Both results follow from a new structural theorem, that every instance
of Cutwidth or Imbalance has an optimal ordering of a restricted form.
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1 Background

The Imbalance problem was introduced by Biedl, et al. [2]. Given a linear layout
of a graph G (i.e., an ordering of its vertices), the imbalance of each vertex is the
absolute value of the difference in the sizes of its neighbourhood to its left and
to its right. The imbalance of the layout is the sum of the imbalances of each
vertex. An instance of the Imbalance problem consists of an n-vertex graph G
and an integer k; a solution determines whether there exists a linear layout of G
that has imbalance at most k (and, ideally, finds such a layout). This problem
arises naturally for several graph-drawing applications, which require such an
ordering [17,18,22,27,28]. (See the next section for a more formal definition of
the problem.)

A related problem, Cutwidth, asks to determine the minimal size of a max-
imal cut; i.e., a set { (vi, vj) | i ≤ c < j, (vi, vj) ∈ E }, for some c ≥ 1, c < |V |.
Aside from the superficial resemblance of these two problems, Lokshtanov, et
al. [21] showed that the imbalance of any graph is at least twice its cutwidth.
We show a deeper relationship between the two problems; for many classes of
graphs, a layout that optimizes imbalance also optimizes cutwidth. As a corol-
lary, Imbalance and Cutwidth have the same complexity on these graphs.

The Imbalance problem was shown to be NP-complete for bipartite graphs
with degree at most 6, for weighted trees [2], and for graphs of degree at most 4
[29]. Biedl et al. provide a pseudo-polynomial time algorithm for weighted trees,
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which runs in linear time on unweighted trees. Gaspers et al. [11] showed that
Imbalance is equivalent to the Graph Cleaning problem, which yielded a
O(n�k/2�(n + m)) time parametermized algorithm where k is the solution size.
Lokshtanov, et al. [21] improved this result, and showed that Imbalance is
fixed-parameter tractable (FPT) when parameterized by the solution size k by
constructing an algorithm that runs in time O(2O(k log k) ·nO(1)), or the treewidth
of the graph tw(G) and the maximum degree of the graph Δ(G) by constructing
an algorithm that runs in time O(Δ(G)O(tw(G)) · tw(G)! · n) where tw(G) is the
treewidth of G. Fellows et al. showed that Imbalance is FPT when parameter-
ized by the size of a minimum vertex cover of the graph [8]. Bakken [1] showed
that Imbalance is FPT by the neighbourhood diversity of the graph.

Cutwidth has received more attention than Imbalance. Cutwidth is
solvable in polynomial time on trees by Yannakakis [30]. Heggernes et al. showed
that Cutwidth is NP-complete for split graphs, but has a linear time solution
on proper interval graphs and threshold graphs [13]. Therefore, for all graph
classes containing split graphs, e.g., chordal graphs, the problem is NP-complete.
These tractable graph classes are all subsets of permutation graphs, and the
complexity of Cutwidth on interval graphs, a subclass of both permutation
and chordal graphs, was left as an open problem. Cutwidth was shown to be
polynomially-solvable for superfragile graphs [20], a restricted subclass of inter-
val graphs. Heggernes et al. later showed that Cutwidth has a linear time
solution on proper interval bipartite graphs [14]. Thilikos et al. showed that
Cutwidth is FPT when parameterized by the size of the solution [24,25], and
Giannopoulous provided a simpler algorithm [12]. Fellows et al. [8] showed that
Cutwidth is FPT when parameterized by the size of the minimum vertex cover
of the graph vc(G), which runs in time O(22

O(vc(G)) ·nO(1)). Cygan et al. [7] later
improved this result and showed that Cutwidth parameterized by the size of a
minimum vertex cover of the graph does not admit a polynomial kernel unless
NP⊆coNP/poly.

We improve the fixed parameterized complexity results for these problems
proved by [8]. We show that Imbalance and Cutwidth are FPT parameter-
ized by the twin-cover number of the graph, a generalization of the vertex cover
defined in the next section. A graph with bounded twin-cover number may have
arbitrarily large vertex cover number [10], so that a bounded twin-cover number
describes more graphs than the same bound on the vertex cover. This improve-
ment is obtained by observing that sets of true twins (vertices with the same
closed neighbourhood) must appear consecutively in some optimal ordering of
each of these problems, a fact that may be useful in solving these problems on
other classes of graphs. The observation allows the ILP approach used for graphs
of bounded vertex cover to work as it did in [8]. We show that Imbalance is
NP-complete for split graphs (a large sub-class of chordal graphs), while showing
we can solve Imbalance on proper interval graphs in linear time. We also note
that for graphs which are both k-trees and proper interval graphs, the cutwidth
of G is exactly twice the imbalance of G. We also show that there is a polyno-
mial time solution to Imbalance on superfragile graphs. We conjecture that for
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All Graphs

Bipartite AT-Free Chordal

Proper
Interval

Bipartite [�]

Bipartite
Δ ≤ 6 [2] Interval Split [*]

Proper
Interval [*] Threshold [�]

Fig. 1. The relationship between graph classes. Imbalance is NP-complete for shaded
classes, unknown for hatched classes, and linear for the rest. Results that appear in this
work are marked with [*]. Classes marked with [�] are conjectured results. An arrow
from class A to class B indicates that class A is contained within class B.

proper interval bipartite graphs, as well as threshold graphs, there is an order-
ing which minimizes both the imbalance and the cutwidth of G simultaneously.
Figure 1 illustrates the relationship between the classes described above.

2 Preliminaries

All graphs in this work are finite, undirected, and without multiple edges or
loops. For a graph G = (V,E), we will denote n = |V | and m = |E|. The
following definitions are standard.

A complete graph is a graph whose vertices are pairwise adjacent.
An independent set is a set I ⊆ V of vertices with no edges among them (i.e.,

(I × I) ∩ E = ∅).
The open neighbourhood of a vertex v, denoted N(v), is the set

{ u ∈ V | (v, u) ∈ E } of vertices adjacent to v. The closed neighbourhood of
a vertex, denoted N [v], is the open neighbourhood of the vertex along with
the vertex itself, i.e. N [v] = N(v) ∪ {v}.

A vertex v is simplicial if N(v) is a complete graph.
A set of vertices X ⊆ V is a separator if G(V − X) is disconnected. Such a set

X is a clique separator if it is both a separator and a complete graph.
Two vertices u and v are twins if they have the same neighbours, except possibly

for each other; that is, N(u)\{v} = N(v)\{u}. Equivalently, u and v are twins
if each w ∈ V \{u, v} satisfies (w, u) ∈ E if and only if (w, v) ∈ E. Two twins
u and v are true twins they have an edge between them; i.e., N [u] = N [v].

For a subset S ⊆ V , a vertex v ∈ S is universal to S if S ⊆ N(v). We will
use U(S) to denote the set of universal vertices for S ⊆ V , i.e., U(S) =
{ v | v ∈ S and S ⊆ N(v) }.



222 J. Gorzny and J. F. Buss

A vertex cover of G is a set C ⊆ V that covers every edge; i.e., E ⊆ C × V . The
minimum size of a vertex cover is denoted vc(G).

A twin cover of G is a set T ⊆ V such that for every edge (u, v) ∈ E, either
{u, v} ∩ T 	= ∅ or u and v are twins. The minimum size of a twin cover
is denoted tc(G). Since every vertex cover is a twin cover, tc(G) ≤ vc(G);
however, the difference vc(G) − tc(G) may be arbitrarily large [10].

An ordering of (a subset of) the vertices of a graph is a sequence
〈v1, v2, . . . , vk〉, with each vi distinct. We shall freely use set operations and
notation on orderings, and also the following.

σ(i) denotes the ith vertex in σ, for 1 ≤ i ≤ |σ|.
σπ denotes the concatenation of (disjoint) orderings σ and π.
The relation <σ is defined by u <σ v iff u precedes v in σ. Relations >σ, ≤σ

and ≥σ are defined analogously. We extend these to sets of vertices: e.g.,
x <σ {y, z} iff x <σ y and x <σ z.

For an element x of σ, σ<x denotes the ordering induced by σ on the set
{ y ∈ V | y <σ x }. The orderings σ≤x, σ>x, and σ≥x are defined analogously.
More generally, for a set X ∈ V , σX denotes the ordering induced by σ on X.

Definition 1 (Imbalance, cutwidth). Let G = (V,E) be a graph and σ an
ordering of V.

1. For v ∈ V, let predσ (v) and succσ (v) respectively denote the number of
neighbours of v that precede (resp. succeed) v in σ. That is, predσ (v) =
|σ<v ∩ N(v)| and succσ (v) = |σ>v ∩ N(v)|.
The imbalance of v with respect to σ, denoted φσ(v), is |succσ (v) − predσ (v)|.
The cutwidth after v with respect to σ, denoted cσ(v), is cσ(v) =
|{ (x, y) ∈ E | x ≤σ v and v <σ y }|.

2. The imbalance of σ is im(σ) =
∑

v∈σ φσ(v).
The cutwidth of σ is cw(σ) = maxv∈σ{cσ(v)}.

3. im(G), the imbalance of G, is the minimum of im(σ) over all orderings σ
of V.
cw(G), the cutwidth of G is the minimum of cw(σ) over all orderings σ of V.

We shall consider various classes of graphs.

A chordal graph is a graph with no induced cycle of size at least four. All classes
considered here are sub-classes of the chordal graphs.

An interval graph is one in which each vertex v may be identified with an
interval Iv of the real (or rational) line, such that (u, v) ∈ E if and only
if Iu ∩ Iv 	= ∅ (i.e., two vertices are adjacent if and only if their respective
intervals intersect). An interval graph is proper if no interval contains another;
i.e., Iu 	⊆ Iv for every u 	= v. All interval graphs are chordal; a chordal graph
is interval iff it contains no asteroidal triple [19]. An interval graph is proper
iff it contains no claw [26].

A split graph is graph whose vertex set can be partitioned into a clique and an
independent set. All split graphs are chordal [23].
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3 True Twins, Minimal Imbalance, and Parameterization
by Twin-Cover

We shall show that for each of the Cutwidth and Imbalance problems, there
is an optimal order for which the sets of twins of a graph are grouped together.
This enables the ILP approach from the parameterization of these problems by
vertex cover to be applied to the more general parameter twin-cover.

Let Z be a clique in G, and let Z ∪ A ∪ B be a partition of V (G). We wish
to consider layouts that have the form σAτσB , where τ orders Z. For z ∈ Z, we
define its preferred position p(z) in such a layout.

– If |N(z) ∩ A| > |Z| + |N(z) ∩ B|, let p(z) = |A|.
– If |N(z) ∩ A| + |Z| < |N(z) ∩ B|, let p(z) = |A| + |Z| = |V | − |B|.
– Otherwise, let p(z) = |N(z)|/2.

When p(z) is an integer, placement of z at location p(z) gives it its minimum
possible imbalance in any layout of the considered form. When p(z) = j + 1

2
(necessarily, deg(z) is odd), then either position j or j + 1 gives z its minimum
inbalance im(z) = 1.

Lemma 1. Let Z be a clique in G, let Z ∪ A ∪ B be a partition of V (G), and
σA and σB arbitrary layouts of A and B, respectively. For z ∈ Z, define p(z) as
above.

Suppose that σ is an ordering of Z with non-decreasing p() values; i.e., when-
ever x <σ y we have p(x) ≤ p(y). Then the imbalance of σAσσB is the minimum
possible imbalance over layouts of the form σAτσB.

Proof. Consider a layout σAτσB, and consider a series of exchanges of consecu-
tive elements that ends at σAσσB. Suppose that, at some step, x ∈ Z and y ∈ Z
occur consecutively the layout, at positions q and q + 1. There are four cases.

1. p(x) < p(y). The requirement on σ is that x <σ y. No exchange is desired.
2. p(x) ≥ q +1. Exchanging x and y improves the imbalance of x; thus the total

imbalance is no greater.
3. p(y) ≤ q. Exchanging x and y improves the imbalance of y; thus the total

imbalance is no greater.
4. p(x) = p(y) = q + 1

2 . Both x and y are indifferent to a swap; the imbalance is
the same either way.

Therefore, the final order σAσσB has imbalance no more than the initial order
σAτσB . Since τ was arbitrary, this must be the optimal imbalance. �
Corollary 2. Let Z be the connected union of two sets of twins, which occur
consecutively an a layout. Then there is a layout of the same (or smaller) imbal-
ance in which the two sets are separated from one another.

Proof. The function p() takes on at most two values; by Lemma 1, the imbalance
is minimized by putting the twins with the lower value to the left. If p() takes
only one value, then any order of Z has the same total imbalance. �
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Theorem 3. For any graph G, there exists an imbalance-optimal ordering σ
of V such that each set of true twins appears consecutively in σ.

Proof. In an ordering σ, let a component of a set of true twins M be a maximal
subset of M that appears consecutively in σ. Suppose that σ has a separated
set of true twins, and let M be the separated set of true twins of σ that has the
rightmost vertex. Let U1 and U2 be the two rightmost components of a set of true
twins in σ; let u be the rightmost vertex of U1 and v be the leftmost vertex of U2.
Let Y = σ>u ∩ σ<v = y1, . . . , y� be the vertices between u and v. (Since u and
v are not adjacent, � ≥ 1.) Let Y1 = y1, . . . , yi be the maximal initial sequence
of Y that forms a component of some set of true twins containing y1, and let
Y� = yk . . . , y� be the maximal initial sequence of Y that forms a component of
some set of true twins containing y�.

We may assume y� ∈ N(v) as otherwise we can swap U2 left until it is imme-
diately to the right of one of its neighbours. Similarly y1 ∈ N(u), as otherwise
we can swap U1 right until it is immediately to the left of one of its neighbours.

For w ∈ {u, v}, let Lw, Rw and Bw be the neighbours of w that lie respectively
to the left of, to the right of, and between u and v; that is, Lu = N(u) ∩ σ<u,
Lv = N(v) ∩ σ<u, Ru = N(u) ∩ σ>v, Rv = N(v) ∩ σ>v, Bu = N(u) ∩ Y , and
Bv = N(v)∩Y . Since u and v are true twins, Lu = Lv, Bu = Bv, and Ru = Rv.

We wish to show that σ can be modified to an ordering π, either by shifting
U2 to the left (and shifting y� to the right), or by shifting U1 to the right (and
shifting y1 to the left), such that π � σ and im(π) ≤ im(σ).

We consider several cases.

Case 1: Y1 = Y�. In this case, we are done by Corollary 2, taking Z = U1∪U2∪Y .

Case 2: Y1 	= Y�. In this case, let Y ′ = N(u) ∩ (Y \ (Y1 ∪ Y�)) = N(v) ∩ (Y \
(Y1 ∪ Y�)).
Case 2a: |Lv| + 1 + |Y1| + |Y ′| ≥ |Rv| + |Y�|.

Consider σ′ obtained from σ by moving Y� to follow U2. We will show that
im(σ′) = im(σ), as required. Clearly, φσ′(x) = φσ(x) for all vertices x except
possibly x ∈ Y� and x ∈ U2. Therefore it remains to be shown that φσ′(Y�) +
φσ′(U2) ≤ φσ(Y�) + φσ(U2).

Observe that |Lv| + 1 + |Y1| + |Y ′| = predσ(v) − |Y�| and |Rv| = succσ(v).
Thus the assumption of the case yields

|Lv| + 1 + |Y1| + |Y ′| ≥ |Rv| + |Y�| ⇒ predσ(v) − |Y�| ≥ succσ(v) + |Y�|
⇒ predσ(v) > predσ(v) − |Y�| ≥ succσ(v) + |Y�|
⇒ predσ(U2) > succσ(U2) + |U2| − 1 + |Y�| ≥ succσ(U2) + |Y�|.

where |U2| ≥ 1. Since v improves and has more neighbours to its left in σ,
so does every vertex in U2; therefore, φσ′(U2) = φσ(U2) − 2 · |Y�| · |U2|. Since
φσ′(Y�) ≤ φσ(Y�) + 2 · |U2| · |Y�|, φσ′(Y�) + φσ′(U2) ≤ φσ(Y�) + φσ(U2). We have
moved U2 |Y�| vertices closer to u.
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Case 2b: |Lv| + 1 + |Y1| + |Y ′| < |Rv| + |Y�|.
Case 2b(i): |Ru| + 1 + |Y ′| + |Y�| ≥ |Lu| + |Y1|. This case is analogous*1 to
Case 2a, except that U1 is swapped with Y1.

Case 2b(ii): |Ru| + 1 + |Y ′| + |Y�| < |Lu| + |Y1|. From our case assumptions,
|Lu| + |Y1| > |Ru| + 1 + |Y ′| + |Y�| > |Lu| + |Y1|, which is a contradiction; this
case is impossible.

Therefore we can always move U1 and U2 closer together. This can be
repeated for all sets of true twins in G. �
Corollary 4. Imbalance is fixed-parameter tractable when parameterized by
the twin-cover number of the graph.

Proof. For a graph G with a twin cover X of size tc(G), the vertices in X
cover of all edges except those between twins. Let e = {u, v} be an uncovered
edge; because u and v are twins, N(v) = N(u); because e exists, N [u] = N [v].
Therefore, we can contract all true twins in G to get a graph G′ with vc(G′) =
tc(G). Now we can apply the fixed parameter algorithm for bounded vertex cover
to get an optimal ordering, replacing all vertices obtained via a contraction with
the corresponding set of true twins, as there is an optimal ordering with these
vertices consecutive by Theorem 3, trying all possible orderings of the vertex
cover of G′, which has size vc(G′) = tc(G), as input to the ILP of [8]. �

A graph G is superfragile if G can be constructed with two operations:
(1) adding a universal clique to a union of disjoint cliques, and (2) taking the
union of disjoint superfragile graphs [20]. A superfragile graph is an interval
graph (and thus chordal). Using Theorem 3, we have the following.

Corollary 5 (*). If G is a superfragile graph, then im(G) can be computed in
O(n2) time.

The proof of the next theorem is similar to the proof of Theorem 3, and
yields the following corollary using the same approach as in Corollary 4.

Theorem 6 (*). For any graph G, there exists an optimal-cutwidth ordering σ
of V such that each set of true twins appears consecutively in σ.

Corollary 7 (*). Cutwidth is fixed-parameter tractable when parameterized
by the twin-cover number of the graph.

4 Split Graphs

In this section we show that the complexity of Imbalance equals the complexity
of Cutwidth for split graphs using a similar reduction found in [13].

Lemma 8 (*). Let σ be a layout of V (G) for some graph. If N(x) = {u, v} for
some vertices u, v where u <σ v, then there is an ordering σ′ such that σ′ = σ
except that x is between u and v in σ′ and im(σ′) ≤ im(σ).
1 The statements marked with a * are proved in the full version of the paper.
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Theorem 9. Imbalance minimization on split graphs is NP-complete.

Proof. The proof is by reduction from imbalance minimization on general
graphs, which is NP-complete [2]. Let (G, k) be an instance of the imbal-
ance minimization problem; let n = |V (G)| and m = |E(G)|. We create
an instance G′ of imbalance minimization on split graphs, with vertex set
V (G′) = V (G) ∪ Kn ∪ Im+n(n−1), where Kn is a clique and Im+n(n−1) an inde-
pendent set. Each v ∈ Im corresponds to an edge e = xy ∈ E(G), and we add
edges between v and x ∈ Kn and y ∈ Kn. Make each v ∈ Kn adjacent to
n − 1 private neighbours Dv = d1v, . . . , dn−1

v in the remainder of Im+n(n−1). The
resulting instance is (G′, k + n(n − 1)).

Suppose that G has an ordering σ such that im(σ) ≤ k. Let σ′ be an ordering
of Kn such that vu is in the same position in σ′ as u is in σ. For every e = xy ∈
E(G) such that x <σ y, place ve=xy between x and y in σ′. For each vx ∈ Kn,
place |N(vx) ∩ Kn ∩ σ>vx

| vertices from Dx anywhere to the left of vx; place
the rest of Dx anywhere to the right of vx. The resulting order σ′ is an ordering
with im(σ′) ≤ k + n(n − 1) as each vertex present in σ has the same imbalance
(every new edge introduced by the clique is offset by a vertex of Dx), the new
edge vertices are perfectly balanced, and there are n(n − 1) pendants each with
imbalance 1.

Suppose instead that we have an optimal ordering σ′ of G′ such that im(σ′) ≤
k + n(n − 1). Observe that any vertex ve, representing e = xy, can be placed
between vx and vy without changing the imbalance of σ′ by Lemma 8. Thus we
may assume that every vertex ve has imbalance 0. Since the n(n − 1) pendents
necessarily contribute exactly n(n − 1) to the total imbalance of the graph,
the vertices representing vertices of G must contribute at most k to the total
imbalance of σ′. Therefore, we can get an ordering σ of G such that im(σ) ≤ k by
taking the vertices of G as they appear in σ′ as each vx only has enough pendants
to offset the edges introduced by the clique vertices, not the edge vertices, too.

�

5 Proper Interval Graphs

In this section, we show that Imbalance can be solved in linear time for proper
interval graphs. An ordering σ of a graph G is called a regular labelling of G
if for every edge uv ∈ E(G) with f(u) < f(v), V (u, v) = {x ∈ V (G)|f(u) ≤
f(x) ≤ f(v)} is a clique of G. Such an order is also called a Proper Interval
order (PI order). Regular orders of proper interval graphs are optimal for other
linear layout problems, including Cutwidth [16].

Theorem 10 ([15]). A graph G is a unit interval graph if and only if G has a
regular labelling.

Theorem 11 ([16]). Let G be proper interval graph, and let σ be a regular
labelling of G. Then cw(σ) = cw(G).
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The results are easier to prove in the context of PI-orders which are obtained
from Lexicographic Breadth First Search (LBFS); we therefore require the fol-
lowing established facts. Two vertices x, y are unrelated with respect to a vertex
z if there exists an (x−z)-path P that misses y and a (y−z)-path Q that misses
x. A vertex x is admissible if no pair of vertices is unrelated with respect to x.

Lemma 12 ([6]). Let σ be an ordering of an interval graph generated by LBFS.
Then σ(n) is simplicial and admissible.

The algorithm LBFS+ is Lexicographic Breadth First Search (LBFS) with
a tie-breaking rule. Let σR denote the reverse of σ; i.e., 〈v1, v2, . . . , vk〉R =
〈vk, vk−1, . . . , v1〉.
Theorem 13 ([4]). Let G be a proper interval graph with PI-order σ. Then
LBFS+(σ) = σR.

Corollary 14 (*). For every regular ordering σ of a proper interval graph, both
σ and σR are LBFS orderings. Therefore, σ(1) and σ(n) are simplicial and
admissible vertices.

The main result of this section is the next theorem.

Theorem 15. Let G be a proper interval graph. If σ is a regular ordering of G,
then im(σ) = im(G).

Proof. We establish the following stronger result, via induction.

Lemma 16. Let G be a proper interval graph. Let σ be a regular ordering of a
proper interval graph. Then, im(σ) = im(G). Further, if x = σ(1) and y = σ(n),
for any ordering σ′, we have φσ′(N [x]) ≥ φσ(N [x]), φσ′(N [y]) ≥ φσ(N [y]), and
also φσ′(M) ≥ φσ(M) for each set M which is either a clique-separator or a
block of simplicial vertices of G − (N [x] ∪ N [y]).

The proof is by induction on �, the number of maximal cliques of G. If � = 1,
then G is a clique and the hypothesis holds as any ordering is optimal. If � = 2,
i.e., G has two maximal cliques, then the result holds as well by Theorem 3
and the observation that im(G) is minimized by placing the universal clique
separating U(G) in the centre of the ordering, as it is in σ.

If G has � = 3, partition V (G) into disjoint sets V = X∪N(X)∪M∪N(Y )∪Y ,
where X is the set of twins of x, Y is the set of twins of y, and M = V \ (X ∪
N(X)∪Y ∪N(Y )). If |M | > 0, it must be that all m ∈ M are twins (as otherwise
there are more than 3 maximal cliques). Since each of the three parts of G is a
set of true twins, by Theorem 3 we need only consider the ordering of the parts;
the given one is minimal as it puts each set between its neighbours, except N [X]
and N [Y ], which only have one neighbouring set.
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Assume the lemma holds for proper interval graphs with �′ ≥ 3, and consider
a proper interval graph with � = �′ + 1 ≥ 4. Let σ be a regular ordering of G,
x = σ(1), and y = σ(n). Observe that σ = {x} · N(x) · M1 · · · · · M� · N(y) · {y}.
Consider G′ = G − N [x], and observe that G′ has one fewer maximal clique
(N [x]). Let σ′ = σ − N [x]; by induction, im(σ − N [x]) = im(G′) as σ − N [x]
is still a regular ordering. Let G′′ = G − N [y]; again G′′ has one fewer maximal
clique than G (N [y]). Let σ′′ = σ − N [y]; by induction im(σ − N [y]) = im(G′′)
as σ − N [y] is still a regular ordering.

Since � ≥ 4, there is a clique separator Mj such that if m ∈ Mj , d(x,m) ≥ 2
and d(m, y) ≥ 2: take the minimal clique separator that separates the rightmost
x′ ∈ N(X) from the leftmost y′ ∈ N(y), where N [x′] 	= N [x] and N [y′] 	=
N [y]. (If no such separator existed, there would be at least two maximal cliques
containing N(x) ∩ N(y), and taking a simplicial vertex from each along with a
vertex in N(y) and y itself would form an induced claw, a contradiction.)

Observe that σ′
≤Mj

agrees with σ≤Mj
and σ′′

≥Mj
agrees with σ≥Mj

. Since
Mi � N [x], φσ(Mi) = φσ′′(Mi) and by induction, φσ′′(Mi) is minimum for
all Mi ⊆ σ′′

≥Mj
. Similarly, Mi � N [y], φσ(Mi) = φσ′(Mi) and by induc-

tion, φσ′(Mi) is minimum for all Mi ⊆ σ′′
≤Mj

. Additionally, N [x] � N [y],
φσ(N [x]) = φσ′(N [x]) and by induction φσ′(N [x]) is minimum. Lastly, N [y] �

N [x], φσ(N [y]) = φσ′(N [y]) and by induction φσ′(N [y]) is minimum. Let σ∗ be
such that im(σ∗) = im(G); then

im(G) = im(σ∗) = φσ∗(N [x]) + φσ∗(N [y]) + Σ1≤i≤�φσ∗(Mi)
= φσ∗(N [x]) + Σ1≤i≤jφσ∗(Mi) + Σj<i≤�φσ∗(Mi) + φσ∗(N [y])
≥ φσ′(N [x]) + Σ1≤i≤jφσ′(Mi) + Σj<i≤�φσ′′(Mi) + φσ′′(N [y])
= im(σ) ≥ im(G),

as required. �
The following theorem proves the next corollary and establishes the linear

time complexity of Imbalance on proper interval graphs, as LBFS+ can be
implemented to run in linear time.

Theorem 17 ([5]). A graph G is a proper interval graph if and only if the third
LBFS+ sweep on G is a PI-order.

Corollary 18 (*). Imbalance can be solved in linear time for proper interval
graphs.

5.1 Proper Interval ∩ k-Trees

A k-tree is a graph that can be obtained by starting with a k + 1 clique and
repeatedly adding vertices so that each new vertex added has precisely k neigh-
bours which formed a clique. All k-trees are chordal (e.g., [3]) and have no clique
of size greater than k + 1. In this section, we show that proper interval graphs
which are also k-trees have imbalance equal to exactly twice their cutwidth.
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The main result for this section is a corollary of the following lemma.

Lemma 19 (*). Let G be a proper interval graph which is also a k-tree. Let σ
be a regular ordering of G. Then 2 · cw(σ) ≥ im(σ).

Lemma 20 ([21]). Let G = (V,E) be a graph with treewidth tw(G), path-
width pw(G), cutwidth cw(G), and imbalance im(G). Then tw(G) ≤ pw(G) ≤
cw(G) ≤ im(G)

2 . Furthermore, Δ(G) ≤ im(G) where Δ(G) is the maximum
degree of G.

Corollary 21 (*). Let G be a proper interval graph and a k-tree. Then im(G) =
2 · cw(G).

6 Conclusion

We have shown that the complexity of Imbalance equals the complexity of
Cutwidth on split graphs, proper interval graphs, and graphs of bounded twin-
cover. We believe that Imbalance can be solved in linear time on proper inter-
val bipartite graphs and threshold, but leave these classes as future work. Both
problems are fixed-parameter tractable parameterized by the treewidth of the
graph, but it is an open question as to whether these problems yield parameter-
ized algorithms when parameterized by the modular-width of the graph [9]. The
modular-width of a graph is a generalization of the twin-cover number (and the
neighbourhood diversity) which is not comparable to treewidth. The complexity
of both problems remains open for some restricted graph classes, like cographs,
and trivially perfect graphs, which form a proper subset of cographs but is a
superset of superfragile graphs.

Acknowledgements. The authors would like to thank Therese Biedl for helpful con-
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Abstract. For a graph G, the density of G, denoted D(G), is the max-
imum ratio of the number of edges to the number of vertices ranging
over all subgraphs of G. For a class F of graphs, the value D(F) is the
supremum of densities of graphs in F . A k-edge-colored graph is a finite,
simple graph with edges labeled by numbers 1, . . . , k. A function from the
vertex set of one k-edge-colored graph to another is a homomorphism if
the endpoints of any edge are mapped to two different vertices connected
by an edge of the same color. Given a class F of graphs, a k-edge-colored
graph H (not necessarily with the underlying graph in F) is k-universal
for F when any k-edge-colored graph with the underlying graph in F
admits a homomorphism to H. Such graphs are known to exist exactly
for classes F of graphs with acyclic chromatic number bounded by a con-
stant. The minimum number of vertices in a k-uniform graph for a class
F is known to be Ω(kD(F)) and O(k�D(F)�). In this paper we close the
gap by improving the upper bound to O(kD(F)) for any rational D(F).

Keywords: Universal graph · Homomorphism bound · Edge coloring ·
Graph density · Maximum average degree

1 Introduction

All graphs considered in this paper are finite, nonempty and contain no loops
or multiple edges. By a class of graphs we mean a nonempty set of graphs closed
under isomorphisms. For every positive integer k, the set {1, . . . , k} is denoted
by [k].

A k-edge-colored graph G is a pair (G, c), where G is a graph, called an under-
lying graph of G, and c is a mapping from E(G) to [k], called a k-edge-coloring of
G. A k-edge-colored graph over G is a k-edge-colored graph with the underlying
graph G.

Let G1 = (G1, c1) and G2 = (G2, c2) be two k-edge-colored graphs. A map-
ping h : V (G1) → V (G2) is a homomorphism of G1 to G2 if, for every two
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vertices u and v that are adjacent in G1, h(u) and h(v) are adjacent in G2 and
c1(uv) = c2(h(u)h(v)). In other words, a homomorphism of G1 to G2 maps every
colored edge in G1 into an edge of the same color in G2.

A k-edge-colored graph H is k-universal1 for a class F of graphs if every
k-edge-colored graph over any graph in F admits a homomorphism to H. We
denote by λF (k) the minimum possible number of vertices in a k-universal graph
for F . We set λF (k) = ∞ if such a graph does not exist.

Observe that λF (1) is the maximum chromatic number of all graphs in F .
Although this parameter is of great importance in graph theory, this paper is
focused on the behavior of λF (k) when k tends to infinity. In particular, the case
k = 1 differs significantly from the case k � 2. Only the latter one is the subject
of this paper.

The concept of finding a small k-universal graph for a certain class of graphs
first arose in 1998, when Alon and Marshall [2] used it to obtain a result on Cox-
eter groups. They showed for the class of planar graphs P that λP(k) is between
k3+3 and 5k4. They also generalized their ideas for graphs with bounded acyclic
chromatic number. An acyclic coloring of a graph G is an assignment of colors
to the vertices of G such that adjacent vertices have different colors and every
subgraph of G with vertices in at most 2 colors is acyclic. The acyclic chromatic
number of a graph G, denoted χa(G), is the minimum number of colors in an
acyclic coloring of G. For a class F of graphs, if the acyclic chromatic number
of the graphs in F is bounded by a constant, we write χa(F) = maxG∈F χa(G)
(and set χa(F) = ∞ otherwise). Alon and Marshall [2] showed that for every
graph class F with χa(F) = r < ∞, we have λF (k) � rkr−1. Plugging in the
famous result of Borodin [3] that χa(P) � 5 gives λP(k) � 5k4.

A concept similar to homomorphisms of edge colorings was considered by
Raspaud and Sopena [9]. They show that for every oriented planar graph �G

there exists an oriented graph �H on at most 80 vertices, such that �G maps
homomorphically to �H, where a homomorphism of an oriented graph �G to an
oriented graph �H is a mapping h : V (�G) → V ( �H) such that for every directed
edge uv ∈ E(�G), there is an edge from h(u) to h(v) in �H. This concept is also
known under the name oriented coloring. A simple consequence of this result is
that there exists a single graph �H on at most 80 vertices, to which every oriented
planar graph maps homomorphically. Later, Nešetřil and Raspaud [8] proved a
theorem about mixed graphs (i.e. graphs with both oriented and unoriented
colored edges) that implies both the results of Alon and Marshall and those of
Raspaud and Sopena (see also [4]).

Universal graphs were recently analyzed further by Guśpiel and Gutowski [5].
We now shortly summarize their results. First, they show that for every k � 2, a
class F of graphs admits a k-universal graph if and only if the acyclic chromatic
number of graphs in F is bounded by a constant. In particular, this means that F
either admits a k-universal graph for all k � 2 or for no k � 2. Next, they analyze
the asymptotic behavior of λF (k). It happens that λF (k) can be much smaller
than O

(
kχa(F)−1

)
and is more closely related to the density of the graphs in F .

1 In literature, universal graphs are also called homomorphism bounds.
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For a graph G, the density of G, denoted D(G), is the maximum ratio of the
number of edges to the number of vertices over all subgraphs of G. For a class F
of graphs, its density D(F) is the supremum of the densities of the graphs in F .
A simple argument gives D(F) � χa(F) − 1 and there are examples of classes
of graphs with bounded density and unbounded acyclic chromatic number. The
main result of [5] is the following theorem:

Theorem 1 ([5]). Let F be a class of graphs with χa(F) = r < ∞ and
�D(F)� = d. Then, for the constant c = 8dr4

(
8dr4

d

)
, we have

kD(F) � λF (k) � ck�D(F)�,

for all k � 2.

Since D(F) � χa(F) − 1, the above upper bound is asymptotically no worse
than the one by Alon and Marshall (although the latter is usually much better
for small k’s). For any class of graphs with density being an integer, the bounds
of Theorem 1 are asymptotically tight. For example, we get that λP(k) = Θ

(
k3

)
.

In this paper, we continue the study of the asymptotics of λF (k). The paper
[5] concludes with the question whether λF (k) is always Θ

(
kD(F)

)
. Our next

theorem confirms this hypothesis for D(F) being a rational number and provides
evidence that it should hold in general.

Theorem 2. Let F be a class of graphs with χa(F) = r < ∞ and D(F) bounded
from above by a quotient s/t of natural numbers. Then, for the constant c =
2s

(
8r4s

)t(8r4st
s

)
, we have

kD(F) � λF (k) � cks/t, (1)

for all k � 2.

The immediate consequences of Theorem 2 for a class F with χa(F) < ∞ are:

(1) λF (k) = Θ
(
kD(F)

)
, if D(F) is a rational number,

(2) λF (k) = o
(
kD(F)+ε

)
for every ε > 0.

Our proof of Theorem 2 uses the techniques from [5] in a new way. In partic-
ular, the proof requires additional ideas that allow us to work with nonintegral
graph densities. It is known that a graph with small density admits an orienta-
tion with small indegree. We employ a more fine-grained concept of fractional
orientations to have a better control over the construction size. This technique
seems to be quite interesting on its own and we hope that it can be used in other
problems related to edge densities or other nonintegral graph parameters.

2 Universal Graph Construction

In this section, we collect several tools from [5] and apply them in a new way to
obtain the main theorem. First, we introduce the terminology for orientations of
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graphs. An orientation of a graph G is an assignment of direction to each edge
of G, which turns G into an oriented graph �G. For a vertex v, the number of
edges oriented towards v is called the indegree of v. An orientation �G of G is a
d-orientation if every vertex of �G has indegree at most d.

The paper [5] makes use of a simple observation, attributed to Hakimi [6],
that for an integer d, a graph G admits a d-orientation if and only if D(G) � d.
Not surprisingly, d may be relaxed to be a rational number s/t. First, we replace
the original graph with a multigraph that contains t copies of each edge. Now,
for a vertex v, instead of orienting at most d edges towards v in G, we orient at
most s edges towards v in this multigraph. We formalize this idea in the following
lemma:

Lemma 3. For every graph G and a quotient s/t of natural numbers, we have
D(G) � s/t if and only if there exist orientations �G1, ..., �Gt of G such that for
every v ∈ V (G)

t∑

i=1

degin�Gi
(v) � s. (2)

Proof. Assume that the orientations �G1, ..., �Gt of G have the property (2). Let
H be a subgraph of G. For every i = 1, ..., t, we have

|E(H)| �
∑

v∈V (H)

degin�Gi
(v).

Summing up over the i’s, we get

t · |E(H)| �
∑

v∈V (H)

t∑

i=1

degin�Gi
(v) � |V (H)| · s.

Therefore, |E(H)|/|V (H)| � s/t.
For the other direction, we assume that D(G) � s/t and apply Hall’s Theo-

rem to a bipartite graph B constructed as follows. The vertex set of B contains
s copies of each vertex of G and t copies of each edge of G. For each v ∈ V (G)
and e ∈ E(G) such that v is incident with e, we add an edge in B between every
copy of v and every copy of e.

We show that B admits a matching of all edge copies by checking the Hall’s
condition for every set X of edge copies. Every such X induces a subgraph of
G with at least |X|/t edges and, according to the density bound, at least |X|/s
vertices. As every vertex of G has s copies in B, the set X is incident with at
least |X| vertices of B, and by Hall’s Theorem the required matching indeed
exists.

Now, given a matching in B, we construct the orientations �G1, ..., �Gt as fol-
lows: in the i-th orientation, every edge e is oriented towards the vertex whose
copy is paired in the matching with the i-th copy of e. The bound on the sum
of indegrees of v ∈ V (G) in all orientations follows from the fact that there are
s copies of v. ��
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Apart from the acyclic coloring, we use two other kinds of colorings. The first
one, the star coloring of a graph, is an assignment of colors to the vertices of the
graph such that:

(i) every two adjacent vertices get different colors,
(ii) every subsequent four vertices on any path in the graph get at least 3 dif-

ferent colors.

In other words, a star coloring is a proper coloring such that, for any two colors,
every connected component in the graph induced by vertices of these two colors
has at most one vertex of degree higher than one. Observe that any star coloring
of G is an acyclic coloring of G. Conversely, Albertson, Chappell, Kierstead,
Kündgen and Ramamurthi [1] showed that any acyclic coloring with r colors
can be used to construct a star coloring with at most 2r2 − r colors.

The other coloring we need is called out-coloring and is a technical tool from
[5]. This concept appeared in almost the same form under the name in-coloring
in [1], and earlier without name in Nešetřil and Ossona de Mendez [7]. Let �G be
an orientation of a graph G. We use the following notions: if uv is an edge of �G,
then u is a parent of v; if uv and vw are edges of �G, then u is a grandparent of w.
An out-coloring of an oriented graph is an assignment of colors to the vertices
of the graph such that:

(i) every two adjacent vertices get different colors,
(ii) every two distinct parents of a single vertex get different colors,
(iii) a vertex gets different colors from any of its grandparents.

Out-colorings are closely related to star colorings (and acyclic colorings, in con-
sequence). Indeed, every out-coloring of �G is a star coloring of G. Moreover, [5]
contains an easy construction of an out-coloring of �G from a star coloring of G.

The upper bound of [5] is an explicit construction of a k-universal graph.
Lemma 11 in [5] contains the details of the construction. We present it in a
slightly modified form:

Lemma 4 ([5]). For every k � 2, d and q there exists a k-edge-colored graph
H on at most q

(
q
d

)
kd vertices such that for every k-edge-colored graph G with a

d-orientation that admits an out-coloring with q colors there exists a homomor-
phism of G to H.

This lemma is the starting point of the proof of Theorem 2. In order to use it,
we need to make an observation regarding the details of its proof. We now recall
these details from [5].

The first step of the proof of Lemma 4 is the definition of H. The vertex set of
H is the set of all (q+1)-tuples of the form (i, x1, ..., xq) such that i ∈ [q], xj ∈ [k]
for all j ∈ [q] and among x1, ...xq there are at most d values different from k. In
the next step of the proof, a k-edge-colored graph G = (G, cG) is fixed, together
with a d-orientation �G and an out-coloring f with at most q colors. Finally, a
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homomorphism h of G to H is defined. A vertex u ∈ V (G) is mapped by h to
the tuple (f(u), x1, ..., xq) ∈ V (H), where for each i ∈ [q]

xi =

{
cG(up) if u has a parent p in �G with f(p) = i,
k otherwise.

Notice that there are at most q
(
q
i

)
ki different tuples that a vertex with indegree

i in �G can be mapped to. Let Vi be the set of all such tuples, for every i � d.
We obtain the following strengthening of Lemma 4:

Lemma 5. For integers k � 2, d and q there exist a k-edge-colored graph H and
sets V0 ⊆ ... ⊆ Vd = V (H) such that:

(P1) for every k-edge-colored graph G = (G, cG) and for every d-orientation �G
of G that admits an out-coloring with q colors there exists a homomorphism
h of G to H such that for every vertex v ∈ V (G) with indegree i in �G we
have h(v) ∈ Vi,

(P2) the size of each set Vi satisfies |Vi| � q
(
q
i

)
ki.

After these preparations, we are ready to construct a k-universal graph on
O

(
ks/t

)
vertices.

Lemma 6. Let F be a class of graphs with density bounded from above by a quo-
tient s/t of natural numbers and let q be an integer such that every s-orientation
of every graph in F admits an out-coloring with q colors. For any k � 2, the
following holds:

λF (k) � 2sqt

(
qt

s

)
ks/t.

Proof. Let k0 =
⌈
k1/t

⌉
and let g be a one-to-one mapping from [k] to [k0]t. After

putting k = k0 and d = s, Lemma 5 supplies us with a k0-edge-colored graph
H0 = (H0, cH0) and a sequence V0 ⊆ ... ⊆ Vs of subsets of V (H0) with properties
(P1) and (P2). We construct a k-universal graph H = (H, cH) for F as follows.
The vertex set of H is given by:

V (H) =
⋃

i1,...,it∈{0,...,s}
i1+...+it=s

Vi1 × ... × Vit .

We note that V (H) is a subset of V (H0)t and the size of V (H) is bounded by:

∑

i1,...,it∈{0,...,s}
i1+...+it=s

t∏

j=1

q

(
q

ij

)⌈
k1/t

⌉ij
� qt

(
qt

s

) (
k1/t + 1

)s

� qt

(
qt

s

)
2sks/t.

An edge between (u1, ..., ut), (v1, ..., vt) ∈ V (H) exists if and only if uivi is an
edge in H0 for every i ∈ [t] and (cH0(u1v1), ..., cH0(utvt)) is contained in the
range of g. In such a case we put:

cH((u1, ..., ut)(v1, ..., vt)) = g−1((cH0(u1v1), ..., cH0(utvt))).
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Now, let G = (G, cG) be a k-edge-colored graph with G ∈ F . To construct a
homomorphism of G to H, we start with defining c1, ..., ct to be k0-edge-colorings
of G such that for every uv ∈ E(G)

g(cG(uv)) = (c1(uv), ..., ct(uv)).

Next, let �G1, ..., �Gt be the s-orientations of G provided by Lemma 3. Applying
Lemma 5 to the k0-edge-colored graph (G, cj) and the s-orientation �Gj , we get
a homomorphism hj : (G, cj) → H0. We want the mapping defined by

h(v) = (h1(v), ..., ht(v))

to be a homomorphism of G to H.
To see that h(v) ∈ V (H), note that the bound (2) of Lemma 3 together with

property (P1) yields h(v) ∈ Vi1 × ... × Vit for some i1, ..., it with i1 + ... + it = s.
To see that h preserves an edge uv ∈ E(G), first note that each hi preserves it,
so that hi(u)hi(v) ∈ E(H0) and ci(uv) = cH0(hi(u)hi(v)). The tuple

(cH0(h1(u)h1(v)), ..., cH0(ht(u)ht(v))) = (c1(uv), ..., ct(uv)) = g(cG(uv))

is contained in the range of g, therefore the vertices

h(u) = (h1(u), ..., ht(u)), h(v) = (h1(v), ..., ht(v))

are connected by an edge in H. Its color is given by

cH((h1(u), ..., ht(u))(h1(v), ..., ht(v)))

= g−1((cH0(h1(u)h1(v)), ..., cH0(ht(u)ht(v))))

= g−1((c1(uv), ..., ct(uv)))
= cG(uv),

which concludes the proof. ��
Now we are ready to prove our main theorem.

Proof of Theorem 2. Note that the lower bound in (1) appears already in
Theorem 1. For the upper bound, first recall that one of the results in [1] says
that every graph in F admits a star coloring with at most 2r2 − r colors. By
applying Lemma 10 from [5], we get that every s-orientation of every graph
from F admits an out-coloring with at most 8r4s colors. We apply Lemma 6
with q = 8r4s and obtain a k-universal graph for F of the desired size. ��
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Abstract. Broadcasting is one of the basic primitives of communication
in usual networks. It is a process of information dissemination in which
one informed node of the network, called the originator, distributes the
message to all other nodes of the network by placing a series of calls
along the communication lines. The network is modeled as a graph. The
broadcast time of a given vertex is the minimum time required to broad-
cast a message from the originator to all other vertices of the graph. The
broadcast time of a graph is the maximum time required to broadcast
from any vertex in the graph. Many papers have investigated the con-
struction of minimum broadcast graphs, the cheapest possible broadcast
network architecture (having the fewest communication lines) in which
broadcasting can be accomplished as fast as theoretically possible from
any vertex. Since this problem is very difficult, numerous papers give
sparse networks in which broadcasting can be completed in minimum
time from any originator. In this paper, we improve the existing upper
bounds on the number of edges by constructing sparser graphs and by
presenting a minimum time broadcast algorithm from any originator.

1 Introduction

In today’s world, due to massively parallel processing communication between
different processors in a large network is of main concern. One of the main
problems of information dissemination in large networks is called broadcasting.
Broadcasting is the message dissemination problem in a connected network in
which initially one informed node, called the originator, must distribute the
message to all other nodes of the network. In this paper, we investigate the
problem of designing sparse networks in which fast broadcasting is possible. Our
study focuses on the classical broadcast model under the following assumptions.

– The process is split into discrete time units.
– Initially, only one node, called the originator has the information.
– In each time unit, every informed node can only call at most one uninformed

neighbor.
– The process terminates when every node in the network is informed.
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): COCOON 2019, LNCS 11653, pp. 240–253, 2019.
https://doi.org/10.1007/978-3-030-26176-4_20
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A network can be modeled as a graph. The broadcast scheme from the originator
v in the graph G is a sequence of parallel calls from v. Each call, expressed by
a directed edge, defines the sender and the receiver. The broadcast scheme also
defines a directed spanning tree of G rooted at v, which is the broadcast tree of
originator v. The minimum number of time units required to broadcast from v
in the graph G is the broadcast time of vertex v and denoted by b(G, v). And
the maximum broadcast time from any vertex in G is the broadcast time of G,
denoted by b(G) = max{b(G, u), u ∈ V }.

Note that in each time unit, the number of informed vertices is at most
doubled because every vertex can only inform at most one vertex in a single
time unit. Thus, b(G) ≥ �log n� for an arbitrary graph G.

A graph G on n vertices is called a broadcast graph if b(G) = �log n�. A
broadcast graph with the minimum number of edges is called a minimum broad-
cast graph (mbg). The broadcast function B(n) denotes the number of edges in
mbg on n vertices. From the application perspective, mbgs are the “cheapest”
graphs with the fastest broadcasting. In this research area, there are two major
topics.

– Given a graph G and a vertex v, determine the optimal broadcast scheme
originating from v in G and the value of b(G, v). It is called the broadcast
time problem.

– Given an natural number n, construct a minimum broadcast graph on n
vertices and determine the value of B(n), called the minimum broadcast graph
problem.

The broadcast time problem in general is NP-hard [22]. The minimum broadcast
graph problem is even more difficult. The exact value of B(n) is known only
for n ≤ 15 [7], n = 17 [18], n = 18, 19 [3,23], n = 20, 21, 22 [17], n = 26
[20,24], n = 27, 28, 29, 58, 61 [20], n = 30, 31 [3], n = 63 [16], n = 127 [9], and
n = 1023, 4095 [21]. Knödel graphs [5,15], hypercubes [7], and recursive circulant
graphs [19] give the exact value for n = 2m. Knödel graphs also give the exact
value for n = 2m − 2 [5,14].

Determining the exact values of B(n) is very difficult. Thus, the line of
research in this area studies the construction of broadcast graphs (not neces-
sarily minimum), which implies upper bounds on B(n). The broadcast graph
constructions include compounding method [1,2,10,12], ad-hoc constructions
[8,12], vertex addition methods [3,9,11,13], and vertex deletion methods [3,12].

In this paper, we follow the compounding construction and improve the gen-
eral upper bound on B(n) for even 2m−2

m+3
2 < n ≤ 2m−8. The previously best

bound for this interval is B(n) ≤ 1
2 (m − 1)n [15]. Our improvement is no less

than n
4 . Section 2 reviews the important graphs being used in our construction.

Section 3 gives a trivial compounding construction. Section 4 constructs our new
graph. Section 5 proves that the newly constructed graph is a broadcast graph
by demonstrating a broadcast algorithm from any originator. We also compare
the new upper bound with the existing bounds.
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2 Important Graphs

Definition 1. A hypercube Qk of dimension k, for any k ∈ N is a graph on 2k

vertices, where each vertex is represented by a binary string of length k and two
vertices are adjacent if and only if the two strings have Hamming distance 1.

In 1975, Knödel defined a class of broadcast graphs on even number of vertices
[15]. We follow the equivalent definition given in [12,14].

Definition 2. A Knödel graph KGn = (V,E) is defined for even values of
n, where the vertex set is V = {v0, v1, v2, ..., vn−1} and the edge set is E =
{(vx, vy)|x + y ≡ 2s − 1 mod n, 1 ≤ s ≤ �log n	}, where 0 ≤ x, y ≤ n − 1.

We recall the construction of a broadcast graph H from [12,14]. Let s ≥ 4 and
1 ≤ t ≤ s − 2. A graph H on 2s − 2t vertices consists of 2t−1 copies of a Knödel
graph KG2s−t+1−2. In each copy, the vertices are labeled from 0 to 2s−t+1−3. All
vertices with the same even label further form a hypercube Qt−1 of dimension
t − 1 on 2t−1 vertices. Thus, H has two types of vertices: half of the vertices are
of degree s − t, and the other half of the vertices are of degree s − 1. Thus, the
number of edges of broadcast graph H is

1
2
(
n

2
(s − t) +

n

2
(s − 1)) =

n

2
(s − t + 1

2
)

For more details of the construction and the broadcast algorithm, see [12].

3 Trivial Compounding

Before constructing the new broadcast graph, we introduce a compounding based
on two existing broadcast graphs with similar number of vertices (in the same
interval of two consecutive powers of 2). This compounding is trivial, straight
forward, and well-known in this research area.

Let G1 = (V1, E1) and G2 = (V2, E2) be two broadcast graphs on n1 and n2

vertices respectively, with �log(n1+n2)� = �log max(n1, n2)�+1, and n1 ≥ n2. To
construct a broadcast graph T = (V,E), we connect every v ∈ V2 with a distinct
vertex in V1. Since n1 ≥ n2, there are some vertices in graph G1 without any
neighbor in graph G2. We connect each of these vertices with an arbitrary vertex
in graph G2. This construction is similar to the broadcast graph construction
in [6] and [4]. It is clear that the number of vertices in T is n = n1 + n2 and
the number of edges is e = |E1| + |E2| + max(n1, n2) = |E1| + |E2| + n1. This
construction adds n1 edges between G1 and G2, such that every vertex in G1 is
adjacent to at least one vertex in G2 and every vertex in G2 is also adjacent to
at least one vertex in G1. Two vertices v and u connected by this construction
are trivially adjacent. And v is u’s trivial neighbor or vice versa. We introduce a
new notation for the trivial compounding.

Definition 3. Let T be a binary operator on two graphs G1 and G2, construct-
ing the trivially compounded graph T described above.
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Compounding of graphs G1 and G2 results in the graph T .

T = G1 T G2

We assume that A1 and A2 are two broadcast algorithms for two different arbi-
trarily selected originators in graphs G1 and G2, respectively. Algorithm 1 is the
broadcast algorithm originating from any vertex in graph T .

Algorithm 1. Broadcast algorithm γ

Input : Graph T = (V,E) constructed above and an arbitrary originator
v ∈ V .

Output: The broadcast time, b(T, v).
1 begin
2 b(T, v) ←− 0;
3 Informed ←− {v};
4 Uninformed ←− V \ {v}; /* Initialization */
5 if v ∈ G1 then
6 u ←− v’s neighbor in G2;
7 Informed ←− Informed ∪ {u};
8 Uninformed ←− Uninformed \ {u};
9 b(T, v) ←− b(T, v) + 1; /* First time unit */

10 b(T, v) ←− b(T, v) + max(A1(G1, v), A2(G2, u));
11 else
12 u ←− v’s neighbor in G1;
13 Informed ←− Informed ∪ {u};
14 Uninformed ←− Uninformed \ {u};
15 b(T, v) ←− b(T, v) + 1; /* First time unit */
16 b(T, v) ←− b(T, v) + max(A1(G1, u), A2(G2, v));
17 end
18 end

Observation 1. The graph T constructed above is a broadcast graph.

Proof. We proof the observation by verifying the broadcast time b(T, v) = �log n�
from an arbitrary originator v of graph T . b(T, v) is increased by one on line 9
or 15. Then, the algorithm calls A1 and A2. By the assumption, G1 and G2

are broadcast graphs, A1 and A2 are broadcast algorithms and return �log n1�
and �log n2� broadcast times respectively. Thus, the return value is b(T, v) =
1 + max(�log n1�, �log n2�) given by line 10 or 16.

Again by the assumption, the number of vertices in T is n and �log n� =
�log(n1 + n2)� = �log max(n1, n2)� + 1, which is b(T, v). Thus, T is a broadcast
graph. �
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4 A New Graph Construction

We are now ready to construct a new broadcast graph, IBC on n vertices for
even 2m−1 + 2 ≤ n ≤ 2m − 2, where m ≥ 5. IBC stands for imbalanced com-
pounding because in the trivial compounding, the two broadcast graphs used
in our construction are of different orders. The strategy of the construction is
simple. First, we construct a sequence of the broadcast graphs H described in
Sect. 2 (also in [12,14]). The total number of vertices in all graphs H is equal
to n. And the broadcast time of any H is exactly one time unit more than its
nearest successor in the sequence. Then, the trivial compounding combines all
graphs H to form a connected graph. We give the details of IBC construction
below.

Since 2m−1 + 2 ≤ n ≤ 2m − 2 is an even integer, n has the form

n = 2m − 2k1 − 2k2 − · · · − 2kp

where 1 ≤ kp < kp−1 < · · · < k2 < k1 ≤ m − 2 and 1 ≤ p ≤ m − 2.
We further decompose n in order to use the broadcast graph H under the

assumption k1 ≤ m − 3 and hence 2m − 2m−2 + 2 ≤ n ≤ 2m − 2. Each H is on
n = 2s − 2t vertices, for some s and t, s ≥ 4 and 1 ≤ t ≤ s − 2.

n = (2m−1 − 2k1) + (2m−2 − 2k2) + · · · + (2m−p+1 − 2kp−1) + (2m−p+1 − 2kp)
(1)

Note that if p = 1, the value of n = 2m − 2k1 and Eq. (1) has only the first
term. The new graph IBC is the same as the graph H. No trivial compounding
is required. This obvious case is also excluded from the following discussions. So,
the range of ki and p is slightly different. And we further assume that n is even,
n = 2m − 2k1 − 2k2 − · · · − 2kp , m ≥ 5, 1 ≤ kp < kp−1 < · · · < k2 < k1 ≤ m − 3,
and 2 ≤ p ≤ k1 ≤ m − 3 without any further specification in the rest of the
paper.
Under the assumption, each term in Eq. (1) is the number of vertices in H.

n = 2m−1 − 2k1

︸ ︷︷ ︸

H1

+ 2m−2 − 2k2

︸ ︷︷ ︸

H2

+ · · · + 2m−p+1 − 2kp−1

︸ ︷︷ ︸

Hp−1

+ 2m−p+1 − 2kp

︸ ︷︷ ︸

Hp

,

=
p−1
∑

i=1

2ki−1(2m−i−ki+1 − 2) + 2kp−1(2m−p−kp+2 − 2) (2)

where Hi is the graph H on 2m−i−2ki vertices for 1 ≤ i ≤ p. Then, we recursively
define the graph

Ti =
{

Hp if i = p;
Hi T Ti+1 if 1 ≤ i ≤ p − 1.

(3)

The new graph

IBC = T1

Counting the exact number of edges in IBC is not trivial (Fig. 1).
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H1

H2

Fig. 1. An IBC on n = 52 vertices. m = 6, p = 2, k1 = 3, and k2 = 2. The 24 vertices
on the top are in H1, while the 28 vertices at the bottom belong to H2. Dotted lines
are the edges in Knödel graphs. Dashed lines are the compounded edges of H. And the
solid lines are the trivial compounded edges.
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Lemma 1. Let IBC be a graph on n vertices constructed above, the number of
edges in IBC is

e =
1
2
(
1
2
n(m − 1)

+
1
2

p−1
∑

i=1

(2m−i − 2ki)(m − ki)

+
1
2
(2m−p+1 − 2kp)(m − kp)

+
p−1
∑

i=1

(2ki −
p

∑

j=i+1

2j))

Proof. We prove the lemma by induction on p.

Base Case: When p = 2, IBC consists of H1 on 2m−1 − 2k1 vertices, H2 on
2m−1 − 2k2 vertices, and a trivial compounding between them. For H1, 1

2 (2m−1 −
2k1) vertices are of degree m−1−k1 and the same number of vertices are of degree
m − 2. Similarly for H2, 1

2 (2m−1 − 2k2) vertices are of degree m − 1 − k2 and the
same number of vertices are of degree m − 2. Thus, the total sum of all degrees of
graphs H1 and H2 before counting the edges of trivial compounding is

1
2
(2m−1 − 2k1)(m − k1 − 1) +

1
2
(2m−1 − 2k1)(m − 2)

+
1
2
(2m−1 − 2k2)(m − k2 − 1) +

1
2
(2m−1 − 2k2)(m − 2)

=
1
2
n(m − 2) +

1
2
(2m−1 − 2k1)(m − k1 − 1) +

1
2
(2m−1 − 2k2)(m − k2 − 1)

Then the trivial compounding adds one to the degree of each vertex in both
graphs H1 and H2. Since H2 has more vertices than H1 and each vertex must
have a trivial neighbor, then, this will add (2m−1 − 2k2) − (2m−1 − 2k1) to the
sum of the degrees. Thus, the total number of edges is

e =
1
2
(
1
2
n(m − 2)

+
1
2
(2m−1 − 2k1)(m − 1 − k1)

+
1
2
(2m−1 − 2k2)(m − 1 − k2)

+ n + 2k1 − 2k2)
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=
1
2
(
1
2
n(m − 2)

+
1
2
(2m−1 − 2k1)(m − 1 − k1)

+
1
2
(2m−1 − 2k2)(m − 1 − k2)

+
n

2
+

1
2
(2m−1 − 2k1) +

1
2
(2m−1 − 2k2) + 2k1 − 2k2)

=
1
2
(
1
2
n(m − 1)

+
1
2
(2m−1 − 2k1)(m − k1)

+
1
2
(2m−1 − 2k2)(m − k2)

+ 2k1 − 2k2)

Inductive Hypothesis: Assume that Lemma 1 is true for p = r, where 2 <
r ≤ m − 3, which means

e =
1
2
(
1
2
n(m − 1)

+
1
2

r−1
∑

i=1

(2m−i − 2ki)(m − ki)

+
1
2
(2m−r+1 − 2kr )(m − kr) (4)

+
r−1
∑

i=1

(2ki −
r

∑

j=i+1

2j)) (5)

Inductive Step: When p = r+1, the last term of Eq. (2) is further decomposed
into 2m−r − 2kr + 2m−r − 2kr+1 , representing Hp and Hp+1. After constructing
the whole graph on n vertices, half of the vertices in Hr and Hr+1 are of degree
m − 1; the other half of the vertices in Hr are of degree m − kr; and the other
half of the vertices in Hr+1 are of degree m − kr+1. Thus, Eq. (4) is split into
1
2 (2m−r − 2kr )(m − kr) + 1

2 (2m−r − 2kr+1)(m − kr+1).
The trivial compounding further adds 1

2 (2kr+1 −2kr ) edges to the compound-
ing of Hr and Hr+1. And since each Ti contains Hr+1, each term in the summa-
tion on Eq. (5) has one additional term −2kr+1 . Thus, when p = r + 1,
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e =
1
2
(
1
2
n(m − 1)

+
1
2

r
∑

i=1

(2m−i − 2ki)(m − ki)

+
1
2
(2m−r − 2kr+1)(m − kr+1)

+
r

∑

i=1

(2ki −
r+1
∑

j=i+1

2j))

which completes the proof. �

5 Broadcast Algorithm

Assume the broadcast algorithm for the graph H from any originator v in [12] is
C(H, v). Algorithm 2 is a �log n� time broadcast algorithm for the graph IBC.
The If statement on line 4 is the termination condition for the recursion. When
this statement is executed, the recursion calls C(H, v) and halts. The cases in
step 7 and 12 are distinguished because the vertex v can be either in Ht+1 or
Tt+2. If v is in Ht+1, u is the trivial neighbor in Tt+2. In the next iteration, the
algorithm broadcasts from v in Ht+1 and from u in Tt+2. And it is vice versa if
v is in Tt+2.

Theorem 1. Algorithm γ′ completes the broadcast from any originator in graph
IBC on n vertices in �log n� iterations and returns b(IBC, v) = �log n�.
Proof. We prove the theorem by induction on p, which is the number of additions
in Eq. (2) (the number of trivial compoundings) plus 1, or the number of 0’s
minus 1 in the binary representation of n.

Base Case: When p = 2, IBC consists of H1 on 2m−1 −2k1 vertices and H2 on
2m−1 − 2k2 vertices. Assume the originator v is in H1 without loss of generality,
the condition on line 8 is true and algorithm γ′ executes line 9 to line 12 in
the first iteration. Thus, v informs its trivial neighbor u in H2 in the first time
unit. Then, algorithm γ′ calls C(H1, v) and C(H2, u), the broadcast algorithm
in [12] from v and u in H1 and H2 respectively in the second iteration. Both of
the algorithms return m − 1 broadcast time. Thus, the total broadcast time is
m − 1 + 1 = m = �log n�.
Inductive Hypothesis: Assume when p = r, γ′ returns b(IBC, v) = �log n�
for 2 < r ≤ m−3. This implies that in the last (r−1)-th iteration, line 5 returns
b(IBC, v) ←− C(Hr, v). Since Hr is on 2m−r+1 − 2kr vertices,

C(Hr, v) = m − r + 1 (6)
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Algorithm 2. Broadcast algorithm γ′

Input : A graph IBC = (V,E), an originator v ∈ V , and the broadcast
time t from the previous iteration, equals to 0 initially.

Output: Broadcast time b(IBC, v)
1 begin
2 Informed ←− {v};
3 Uninformed ←− V \ {v};
4 if v ∈ Hp then
5 b(IBC, v) ←− C(Hp, v); /* The termination condition. And

C(H, v) is the broadcast scheme on H from v given in
[12]. */

6 end
7 if v ∈ Ht+1 then
8 u ←− v′s trivial neighbor in Tt+2;
9 Informed ←− Informed ∪ {u};

10 Uninformed ←− Uninformed \ {u};
11 b(IBC, v) ←− t + 1 + max(γ′(Tt+2, u, t + 1), C(Ht+1, v));
12 else
13 u ←− v′s trivial neighbor in Ht+1;
14 Informed ←− Informed ∪ {u};
15 Uninformed ←− Uninformed \ {u};
16 b(IBC, v) ←− t + 1 + max(γ′(Tt+2, v, t + 1), C(Ht+1, u));
17 end
18 return b(IBC, v)
19 end

Inductive Step: When p = r + 1, the only difference is that the algorithm will
run one extra iteration. In the second last (r − 1)-th iteration, if the increment
on b(IBC, v) is δ (assume v ∈ Tr+1 and u ∈ Hr without loss of generality) line
16 will call the algorithm again and

δ = 1 + max(γ′(Tr+1, u, r), C(Hr, v))

In the last iteration, the algorithm returns C(Hr+1, u) = m − r because Hr+1

is on 2m−r − 2kr+1 vertices. And we know C(Hr, v) = m − r since Hr is on
2m−r − 2kr vertices. Thus, δ = m − r + 1 which is the same as the Eq. (6).
Therefore, the total broadcast time b(IBC, v) = m = �log n�. �
Summarizing Theorem 1 and Lemma 1, we obtain our upper bound on B(n).
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Theorem 2.

B(n) ≤ 1
2
(
1
2
n(m − 1)

+
1
2

p−1
∑

i=1

(2m−i − 2ki)(m − ki)

+
1
2
(2m−p+1 − 2kp)(m − kp)

+ 2kp−1 − 2kp

+
p−1
∑

i=1

(2ki −
p

∑

j=i+1

2j))

Let NB be the new upper bound given by Theorem 2 and

OB =
1
2
(m − 1)n

in [15]. The comparison shows that NB is a better upper bound and

OB − NB ≥ 1
2
(2m−1 − 2m−3 − 2m−3) +

1
2
(2m−2 + 2m−3)

= 2m−2 + 2m−4

The tedious calculation is given in the Appendix.

6 Conclusion

In this paper, we constructed a new broadcast graph based on the broadcast
graph H defined in [12]. The new construction applies the trivial compounding
on a sequence of broadcast graph H and improves the upper bound on B(n) for
2m − 2

m+3
2 < n ≤ 2m − 8. In the future, we can try to compound the sequence

of H in a better way instead of just using the trivial compounding. This will
reduce the number of edges because the trivial compounding is too simple and
adds to many redundant edges.

Another work can also be done in the future is the comparison between the
new upper bound NB and the bound OB′ given by [10], which is the best bound
on B(n) when 2m−1 + 1 ≤ n ≤ 2m − 2

m+3
2 . Currently, we only know that NB is

better than OB′ in some of the intervals, but the intervals are not continuous.
Therefore, we can further investigate the comparison in the future.
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Appendix: Comparison

By our assumption kp < · · · < k1 ≤ m − 3, ki is strictly larger than ki+1. Then
in general ki ≤ m − i − 2 for 1 ≤ i ≤ p. Similarly, since 1 ≤ kp < · · · < k1,
p − i + 1 ≤ ki for 1 ≤ i ≤ p. Thus, p − i + 1 ≤ ki ≤ m − i − 2, where 1 ≤ i ≤ p.

OB − NB

=
1
2
n(m − 1) − 1

2
(
1
2
n(m − 1) +

1
2

p−1
∑

i=1

(2m−i − 2ki)(m − ki)

+
1
2
(2m−p+1 − 2kp)(m − kp) +

p−1
∑

i=1

(2ki −
p

∑

j=i+1

2kj ))

=
1
4
n(m − 1) − 1

4

p−1
∑

i=1

(2m−i − 2ki)(m − ki)

− 1
4
(2m−p+1 − 2kp)(m − kp) − 1

2

p−1
∑

i=1

(2ki −
p

∑

j=i+1

2kj ))

=
1
4
n(m − 1) − 1

4

p−1
∑

i=1

(2m−i − 2ki)(m − ki)

− 1
4
(2m−p+1 − 2kp)(m − kp) − 1

2
(2k1 −

p−1
∑

i=2

(i − 2)2ki − (p − 1)2kp)

By substituting n =
∑p−1

i=1 (2m−i − 2ki) + 2m−p+1 − 2kp ,

=
1

4

p−1∑

i=1

(2m−i − 2ki)(m− 1) +
1

4
(2m−p+1 − 2kp)(m− 1) − 1

4

p−1∑

i=1

(2m−i − 2ki)(m− ki)

− 1

4
(2m−p+1 − 2kp)(m− kp) − 1

2
(2k1 −

p−1∑

i=2

(i− 2)2ki − (p− 1)2kp)

=
1

4

p−1∑

i=1

(2m−i − 2ki)(ki + 1) +
1

4
(2m−p+1 − 2kp)(kp + 1)

− 1

2
2k1 +

1

2

p−1∑

i=2

(i− 2)2ki +
1

2
(p− 1)2kp
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Since ki ≥ 1,

≥ 1
2

p−1
∑

i=1

(2m−i − 2ki) +
1
2
(2m−p+1 − 2kp)

− 1
2
2k1 +

1
2

p−1
∑

i=2

(i − 2)2ki +
1
2
(p − 1)2kp

=
1
2
(2m−1 − 2k1 − 2k1) +

1
2

p−1
∑

i=2

(2m−i − 2ki) +
1
2
(2m−p+1 − 2kp)

+
1
2

p−1
∑

i=2

(i − 2)2ki +
1
2
(p − 1)2kp

=
1
2
(2m−1 − 2k1 − 2k1) +

1
2
(2m−2 + 2m−3 + 2m−p−2)

+
1
2

p−1
∑

i=2

(i − 2)2ki +
1
2
(p − 1)2kp

≥ 1
2
(2m−1 − 2k1 − 2k1) +

1
2
(2m−2 + 2m−3)

As k1 ≤ m − 3,

OB − NB ≥ 1
2
(2m−1 − 2m−3 − 2m−3) +

1
2
(2m−2 + 2m−3)

= 2m−2 + 2m−4

Thus, our new upper bound is a better upper bound on B(n) when 2m−2
m+3

2 <
n ≤ 2m − 8.
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Abstract. A plane graph is a planar graph with a fixed planar embed-
ding in the plane. In an orthogonal drawing of a plane graph each vertex
is drawn as a point and each edge is drawn as a sequence of vertical
and horizontal line segments. A bend is a point at which the drawing of
an edge changes its direction. A necessary and sufficient condition for a
plane graph of maximum degree 3 to have a no-bend orthogonal drawing
is known which leads to a linear-time algorithm to find such a drawing
of a plane graph, if it exists. A planar graph G has a no-bend orthogonal
drawing if any of the plane embeddings of G has a no-bend orthogonal
drawing. Since a planar graph G of maximum degree 3 may have an
exponential number of planar embeddings, determining whether G has a
no-bend orthogonal drawing or not using the known algorithm for plane
graphs takes exponential time. The best known algorithm takes O(n2)
time for finding a no-bend orthogonal drawing of a biconnected planar
graph of maximum degree 3. In this paper we give a linear-time algo-
rithm to determine whether a biconnected planar graph G of maximum
degree 3 has a no-bend orthogonal drawing or not and to find such a
drawing of G, if it exists. We also give a necessary and sufficient con-
dition for a biconnected planar graph G of maximum degree 3 to have
a no-bend “orthogonally convex” drawing D; where any horizontal and
vertical line segment connecting two points in a facial polygon P in D
lies totally within P . Our condition leads to a linear-time algorithm for
finding such a drawing, if it exists.
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1 Introduction

Automatic graph drawings have numerous applications in VLSI circuit layout,
networks, computer architecture, circuit schematics etc. [6,12,14]. Among vari-
ous drawing styles, “orthogonal drawings” of planar graphs have attracted much
attention due to their practical applications, specially in circuit schematics,
entity relationship diagrams, data flow diagrams etc. [3,9,13].
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Fig. 1. (a)-(c) Three plane embeddings of a planar graph G which have no no-bend
orthogonal drawing, (d) a planar embedding Γ of G which has a no-bend orthogonal
drawing, and (e) a no-bend orthogonal drawing of Γ .

An orthogonal drawing of a planar graph G is a drawing of G in which each
vertex is mapped to a point, each edge is drawn as a sequence of alternate hor-
izontal and vertical line segments, and any two edges do not cross except at
their common ends. A bend is a point where an edge changes its direction in
a drawing. Figure 1(e) illustrates an orthogonal drawing without bends of the
planar graph in Fig. 1(d). Every planar graph of the maximum degree four has
an orthogonal drawing, but may need bends. Finding an orthogonal drawing of
a planar graph of maximum degree four with the minimum number of bends is
an NP-hard problem [5]. However, polynomial algorithms are known for finding
bend-minimum orthogonal drawings of plane graphs (with fixed embedding) of
maximum degree four and some restricted classes of planar graphs of maximum
degree 3 [1,7–9,13]. Di Battista et al. [7] gave an O(n5logn)-time algorithm
to find a bend-minimum orthogonal drawing of a planar graph G of maximum
degree 3. Later Chang and Yen [1] gave an algorithm for bend-minimum orthogo-
nal drawings of planar graphs of maximum degree 3 that runs in O(n17/7) time.
Recently Didimo et al. [8] gave an O(n2)-time algorithm for bend-minimum
orthogonal drawings of planar graphs of maximum degree 3.

An orthogonal drawing D of a plane graph is a no-bend orthogonal drawing
if D has no bend. Not every biconnected plane graph has a no-bend orthog-
onal drawing. The biconnected plane graphs in Fig. 1(a)-(c) have no no-bend
orthogonal drawing. Rahman et al. [11] gave a linear-time algorithm to deter-
mine whether a biconnected plane graph Γ with Δ ≤ 3 has a no-bend orthogonal
drawing or not and to find a no-bend orthogonal drawing of Γ , if it exists, where
Δ denotes the maximum degree of a graph.
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A planar graph is said to have a no-bend orthogonal drawing if at least one of
its plane embeddings has a no-bend orthogonal drawing. For the plane embed-
dings Γ1, Γ2, and Γ3 in Figs. 1(a), 1(b), 1(c) respectively of a planar graph G
there is no no-bend orthogonal drawing. But for the plane embedding in Fig.
1(d) of the same planar graph G, there exists a no-bend orthogonal drawing as
illustrated in Fig. 1(e), and hence G has a no-bend orthogonal drawing. Since a
planar graph G may have an exponential number of planar embeddings, finding
no-bend orthogonal drawings of planar graphs is not a trivial problem. Similar
problems are solvable in polynomial times for restricted classes of planar graphs
with the maximum degree at most 3. One can find a no-bend orthogonal drawing
of a planar graph G of maximum degree 3, if G has, in O(n2) time using the
algorithm by Didimo et al. [8] for finding a bend-minimum orthogonal drawing
of a planar graph of maximum degree 3. Rahman et al. [3,4] gave linear-time
algorithms for determining whether series parallel graphs and subdivisions of tri-
connected cubic planar graphs have no-bend orthogonal drawings and for finding
drawings if they exists. In this paper we give a linear-time algorithm that can
check whether a biconnected planar graph of maximum degree 3 has a no-bend
orthogonal drawing and can find a drawing if it exists.

In an orthogonal drawing of a plane graph Γ each inner face of Γ is drawn
as rectilinear polygon. A rectilinear polygon P is called orthogonally convex if
every horizontal or vertical segment connecting two points in P lies totally within
P . An orthogonally convex drawing is an orthogonal drawing where each inner
face is an orthogonally convex polygon. Chang and Yen [2] gave a necessary
and sufficient condition for a biconnected plane graph of maximum degree 3 to
have a no-bend orthogonally convex drawing and gave a linear-time algorithm
to find such a drawing, if it exists. Hasan and Rahman [6] gave a necessary
and sufficient condition for a subdivision of a triconnected cubic planar graph
to have a no-bend orthogonally convex drawing and a linear-time algorithm to
find a drawing if such one exists. In this paper we give a linear-time algorithm
to determine whether a biconnected planar graph G of maximum degree 3 has a
no-bend orthogonally convex drawing or not, and to find a no-bend orthogonally
convex drawing of G, if it exists.

The rest of this paper is organized as follows. In Sect. 2, we give some termi-
nologies and previous results. In Sect. 3, we describe a necessary and sufficient con-
dition for a biconnected planar graph G of maximum degree 3 to have a no-bend
orthogonal drawing which leads to a linear-time algorithm to find such a drawing,
if it exists. In Sect. 4, we give a linear-time algorithm for no-bend orthogonally con-
vex drawings of biconnected planar graphs of maximum degree 3. Finally, Sect. 5
concludes the paper.

2 Preliminaries

In this section we give some definitions and present some preliminary results.
Let G = (V,E) be a connected simple graph with vertex set V and edge set

E. The degree d(v) of a vertex v is the number of neighbors of v in G. We call
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a vertex of degree k in G a k-vertex of G. We denote the maximum degree of a
graph G by Δ(G) or simply by Δ. We sometimes denote a graph of maximum
degree k by k-graph. A graph G is called cubic if d(v) = 3 for every vertex v.
For V ′ ⊆ V , G - V ′ denotes a graph obtained from G by deleting all vertices in
V ′ together with all edges incident to them. For a subgraph G′ of G, we denote
by G − G′ the graph obtained from G by deleting all vertices in G′.

Subdividing an edge (u, v) of a graph G is the operation of deleting the edge
(u, v) and adding a path u(= w0), w1, w2, . . . , wk, v(= wk+1) passing through
new vertices w1, w2, . . . , wk, k ≥ 1, of degree 2. A graph G is called a subdivision
of a graph G′ if G is obtained from G′ by subdividing some of the edges of G′.
The connectivity κ(G) of a graph G is the minimum number of vertices whose
removal results in a disconnected graph or a single-vertex graph K1. We say
that G is k-connected if κ(G) ≥ k. A subdivision of a triconnected cubic graph
is biconnected, and the degree of any vertex is either 2 or 3. A drawing of a planar
graph divides the plane into a set of connected regions, called faces. A subdivision
of a triconnected cubic planar graph holds the following fact regarding faces [4].

Fact 1. Let G be a subdivision of a triconnected cubic planar graph. Let Γ1 and
Γ2 be two different arbitrary plane embeddings of G. Then every face in Γ1 is a
face in Γ2 and vice versa.

A contour of a face F is the cycle formed by vertices and edges along the
boundary of F . Such a cycle is also called a facial cycle. The contour of the
outer face Fo is denoted as Co. If G is biconnected, all facial cycles are simple
cycles. Let G be a planar graph, and Γ be an arbitrary plane embedding of G.
The contour of a face of Γ is a cycle of G, and is simply called a face or a facial
cycle of Γ . We denote by Fo(Γ ) the outer face of Γ . For a cycle C of Γ , we call
the plane subgraph of Γ inside C (including C) the inner subgraph ΓI(C) for
C, and call the plane subgraph of Γ outside C (including C) the outer subgraph
ΓO(C) for C. Any face of Γ is either in ΓI(C) or in ΓO(C) for C. We call a face
(or a cycle) inner if it is not Fo(or Co). If an inner face or inner cycle contains a
vertex on the boundary of Fo, then we call it boundary face or boundary cycle.
If an inner face or inner cycle does not intersect with the boundary of Fo, then
we call it non-boundary face or non-boundary cycle.

An edge which is incident to exactly one vertex of a cycle C and located
outside C is called a leg of C. The vertex of C to which a leg is incident is called
a leg-vertex of C. A cycle C in Γ is called a k-legged cycle of Γ if C has exactly
k legs and there is no edge which joins two vertices on C and is located outside
C. We say that cycles C and C ′ in Γ are independent if ΓI(C) and ΓI(C ′) have
no common vertex. A set S of cycles is independent if every pair of cycles in S
are independent. A k-legged cycle C in Γ is called a regular k-legged cycle if the
plane graph Γ − ΓI(C) has a cycle. Similarly an edge of Γ which is incident to
exactly one vertex of a cycle C in Γ and located inside C is called a hand of
C. The vertex of C to which a hand is incident is called a hand-vertex of C. A
cycle C is called a k-handed cycle if C has exactly k hands in Γ and there is no
edge which joins two vertices on C and is located inside C. We call a k-handed
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cycle C a regular k-handed cycle if Γ − ΓO(C) contains a cycle. A path P on a
k-legged cycle C such that P includes exactly two consecutive leg-vertices x and
y of C, and x and y are the two endpoints of P is called a contour path of the
cycle C. Therefore, each k-legged cycle has exactly k contour paths. Similarly
a path P on a k-handed cycle C such that P includes exactly two consecutive
hand vertices x and y of C, and x and y are the two endpoints of P is called
a contour path of the cycle C. Thus each k-handed cycle has exactly k contour
paths. If a contour path intersects (i.e., shares some edges with) the outer cycle,
we call it boundary contour path. In fact, each boundary contour path is a sub
path of Co.
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Fig. 2. Illustration of flipping operations and induced faces in a biconnected planar
graph of maximum degree 3.

A planar graph G that is a subdivision of a triconnected cubic planar graph
has a fixed number different planar embeddings. Let G be a biconnected planar
graph of maximum degree 3, and Γ be an arbitrary plane embedding of G.
Assume that G is not a subdivision of a triconnected cubic planar graph. If Γ
does not have any regular 2-legged cycle, then Γ has at most two inner faces and
it is trivial to make a decision whether G has a no-bend orthogonal drawing or
not as well as a no-bend orthogonally convex drawing or not. We thus assume
that Γ has a regular 2-legged cycle. In Γ for any 2-legged cycle or for any
2-handed cycle C, leg or hand vertices of C is a separation pair called a flipping
pair like vertices (v2, v3) in Fig. 2. In a planar embedding Γ1 of a biconnected
planar graph G with Δ ≤ 3, flipping ΓI(C) of any 2-legged cycle C or flipping
ΓO(C) of any 2-handed cycle C with respect to respective flipping pairs is called a
flipping operation of cycle C that may create a new embedding Γ2 as illustrated
in Fig. 2. In a planar embedding of a planar graph shown in Fig. 2(a), three
flippings are done simultaneously with respect to flipping pairs (v2, v3), (v19, v20),
and (v21, v22), that creates a new planar embedding shown in Fig. 2(b). G may
have an exponential number of different planar embeddings that are for each
face of Γ as outer face additionally for flipping the 2-legged and 2-handed cycles
with respect to the flipping pairs. The following Lemma can be observed for a
biconnected planar graph with the maximum degree 3, whose proof is omitted.
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Lemma 1. Let G be a biconnected planar graph of maximum degree 3. Let Γ1

and Γ2 be two different arbitrary plane embeddings of G. Let F be a face in Γ1

with the set Vf of all flipping pair vertices on F and let V ′ be the set of vertices
on F which are neither on a 2-legged cycle nor on a 2-handed cycle. Then, there
exists at least one face F ′ in Γ2, that contains all the vertices of Vf and V ′.

We call a face F ′ that contains all the vertices of Vf and V ′ in mentioned
Lemma 1 an induced face of F . The faces F ′

1, F
′
2, F

′
3, F4 in Fig. 2(b) are induced

faces for the faces F1, F2, F3, F4 in Figure 2(a), respectively.
Rahman et al. [11] gave a linear-time algorithm to check whether a bicon-

nected plane graph Γ of Δ ≤ 3 has a no-bend orthogonal drawing and to find
out a drawing if such one exists, as stated in the following lemma.

Lemma 2. Assume that Γ is a biconnected plane graph with Δ ≤ 3. Γ has an
orthogonal drawing without bends if and only if Γ satisfies the following condi-
tions.

(or1) There are four or more 2-vertices of Γ on Co(Γ ),
(or2) every 2-legged cycle contains at least two 2-vertices of Γ , and
(or3) every 3-legged cycle contains at least one 2-vertex of Γ .

3 No-Bend Orthogonal Drawings

In this section we give a necessary and sufficient condition for a biconnected
planar graph G of maximum degree 3 to have a no-bend orthogonal drawing.
We also give an algorithm to draw such a drawing, if G has.
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Fig. 3. Figure (a) illustrates X, Figures (b)-(c) illustrate Y , Figures (d)-(e) illustrate
Z, and Figure (f) illustrates W types cycles, 2-vertices are represented by white circles.

Before stating our claims, we need to give some definitions.
Let F be a face in an arbitrary plane embedding Γ of G. We call a 2-legged

cycle or a 2-handed cycle C in Γ of type X if C has leg or hand vertices on F
such that one contour path of each cycle C in X contains four or more 2-vertices
and other contour path contains at least two vertices except the leg or hand
vertices. In Fig. 3(a), a cycle v1v2v10v11v5v6v7v8v9 is such a cycle for F . We call
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a 2-legged cycle or a 2-handed cycle C in Γ of type Y if C has leg or hand
vertices on F such that any cycle C in Y satisfies one of the following properties
(a) and (b).

(a) One contour path contains four or more 2-vertices and the other contour
path contains exactly one vertex except the leg or hand vertices as illus-
trated by the shaded region (Cycle v12v13v21v20v19v18v17v16) in Fig. 3(b).

(b) None of the two contour paths contains more that three 2-vertices but at
least one contour path contains exactly three 2-vertices. If only one contour
path contains exactly three 2-vertices, then the other one contains at least
one vertex except the leg or hand vertices as illustrated by the shaded region
(Cycle v22v23v30v25v26v27v28v29) in Fig. 3(c).

We call a 2-legged cycle or a 2-handed cycle C in Γ of type Z if C has leg or hand
vertices on F such that any cycle C in Z satisfies one of the following properties
(a) and (b).

(a) One contour path has three or more 2-vertices and another contour path
contains no vertex except the leg or hand vertices as illustrated by the
shaded region (Cycle v32v33v34v35v36v37) in Fig. 3(d).

(b) Both contour paths contain not more than two 2-vertices but at least one
contour path contains exactly two 2-vertices as illustrated by the shaded
region (Cycle v40v42v43v44v45v46v41) in Fig. 3(e).

We call a 2-legged cycle or a 2-handed cycle C in Γ of type W if C has exactly
one 2-vertex on each contour path such that their leg or hand vertices are on F ,
as illustrated by shaded region (Cycle v49v52v51v50) in Fig. 3(f).

Let Cs be a set of independent 2-legged and 2-handed cycles such that each
element of Cs is one of the type X, Y , Z, and W . Let nX , nY , nZ , and nW

denote the number of elements in Cs of type X, Y , Z, and W respectively. Let
p denote the number of 2-vertices on F independent from the elements in X, Y ,
Z, and W .

We now give the following necessary and sufficient condition for a biconnected
planar graph G with Δ ≤ 3 to have a no-bend orthogonal drawing.

Theorem 1. Let G be a biconnected planar graph of maximum degree 3 and Γ
be an arbitrary plane embedding of G. Let k be an integer such that k = 2 or
k = 3. Then G has a no bend orthogonal drawing if and only if Γ satisfies the
following conditions (i) − (iii).

(i) There exists at least one face F in Γ for which there is a set of independent
2-legged and 2-handed cycles such that 4(nX)+3(nY )+2(nZ)+nW +p ≥ 4,

(ii) every k-handed cycle C for which ΓI(C) contains F , has at least (4 − k)
vertices of degree 2, and

(iii) every k-legged cycle C for which ΓO(C) contains F , has at least (4 − k)
vertices of degree 2.

To prove Theorem 1 we need the following two lemmas, whose proofs are
omitted.
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Lemma 3. Let G be a biconnected planar graph with Δ ≤ 3 and let Γ1 and Γ2

be two different arbitrary plane embeddings of G. Let F be the face of Γ1 and let
F ′ be the outer face in Γ2, such that F = F ′ or F ′ is an induced face of F in
Γ2. Assume that, C is a k-legged cycle in Γ1 for k = 2 or 3, such that ΓI(C)
contains F . If C is a k-legged cycle in Γ1, then C is a k-handed cycle in Γ2, and
vice versa.

Lemma 4. Let G be a biconnected planar graph of Δ ≤ 3, and let Γ1 and Γ2 be
two different arbitrary plane embeddings of G. Let F be the face of Γ1 and let F ′

be the outer face in Γ2, such that F = F ′ or F ′ is an induced face of F in Γ2.
Assume that C is a k-legged cycle for k = 2 or 3 in Γ1, such that ΓI(C) does
not contain F . If C is a k-legged cycle in Γ1, then C is a k-legged cycle in Γ2.
If C is a k-handed cycle in Γ1, then C is a k-handed cycle in Γ2.

We now prove Theorem 1.

Outline of the Proof of Theorem 1
Necessity: Let G be a biconnected planar graph of maximum degree 3 and Γ
be an arbitrary plane embedding of G. Assume that a planar embedding Γ ′ of
G has a no-bend orthogonal drawing. Then Γ ′ satisfies Conditions (or1)− (or3)
of Lemma 2. Let F be the outer face of Γ ′. We now show that in Γ there exists
a face that satisfies Conditions (i) to (iii) of Theorem 1. We have two cases to
consider.
Case 1: F exists in Γ .
In this case we show that the face F satisfies Conditions (i)− (iii) of Theorem 1
in Γ .

(i) SinceΓ ′ has ano-bend orthogonal drawingD, byCondition (or1) of Lemma 2
the outer faceF ofΓ ′ has at least four 2-vertices.Among the 2-vertices at least
four 2-vertices remain at corners of D whose angles are 270◦ in the outer face
made by the contour of the outer face F . We consider such 2-vertices as corner
vertices. Let C be a 2-legged cycle in D that has an edge on the outer face. By
Condition (or2) of Lemma 2, C has at least two 2-vertices. It can be observed
that C is one of the type X, Y , Z and W . Let Cs be the set of independent
2-legged cycles which have edges on the outer face of D. If the elements of
Cs contains four or more corner vertices, then one can show from the count
of nX , nY , nZ , and nW that F in Γ ′ satisfies Condition (i) in Theorem 1. If
the elements in Cs have t ≤ 4 corner vertices in D, then we can observe that
the outer face F must have at least 4 − t corner vertices that are not on the
elements in Cs. In this case p ≥ 4 − t. Then one can easily observe that, F
in Γ ′ satisfies the Condition (i) in Theorem 1. Since F exists in Γ , F in Γ
satisfies the Condition (i) in Theorem 1.

(ii) Assume for a contradiction that, Γ has a 3-handed cycle C and ΓI(C)
contains F but no 2-vertex. Then by Lemma 3, in Γ ′, C is a 3-legged cycle
without any vertex of degree 2, a contradiction with the Condition (or3) of
Lemma 2. That is, every 3-handed cycle C for which ΓI(C) contains F has
at least one vertex of degree 2. Similarly, every 2-handed cycle C for which
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ΓI(C) contains F has at least two vertices of degree 2. Thus for k = 2 or
k = 3, every k-handed cycle C for which ΓI(C) contains F has at least
4 − k vertices of degree 2.

(iii) Assume for a contradiction that Γ has a 3-legged cycle C such that ΓO(C)
contains F and C does not contain any 2-vertex. Then by Lemma 4, in
Γ ′, C is a 3-legged cycle without any vertex of degree 2, a contradiction
with the Condition (or3) of Lemma 2. That is, every 3-legged cycle C for
which ΓO(C) contains F has at least one vertex of degree 2. Similarly every
2-legged cycle C for which ΓO(C) contains F has at least two vertices of
degree 2. Hence for k = 2 or k = 3, every k-legged cycle C for which ΓO(C)
contains F has at least 4 − k vertices of degree 2.

Case 2: F does not exist in Γ .
In this case we show that an induced face F ′(�= F ) of F in Γ satisfies Con-

ditions (i) − (iii) of Theorem 1.

(i) Γ ′ has a no-bend orthogonal drawing whose outer face is F . F does not
exist in Γ . By Lemma 1, there is an induced face F ′ for F in Γ . In Γ ′, let
Vf be the set of all flipping pair vertices on F for the 2-legged cycles Cs,
and V ′ be the set of vertices on F that are independent to the cycles Cs.
By Lemma 1, in Γ ′, all the vertices of Vf and V ′ lie on F ′. The difference
one can see that, not all contour paths on F ′ remain same to all contour
paths on F for Cs. Since F in Γ ′ satisfies Condition (i) of Theorem 1, F ′

in Γ satisfies the Condition (i) of Theorem 1.
(ii) Assume that Γ ′ has a 2-legged cycle C. By Condition (or2) Lemma 2, C

has at least two vertices of degree 2. In Γ , if the induced face F ′ as above,
resides in ΓI(C), then by Lemma 3, C is a 2-handed cycle in Γ , and the
2-handed cycle C has at least two vertices of degree 2. Thus we can say
that, every 2-handed cycle C for which ΓI(C) contains F ′ has at least
two vertices of degree 2. Similarly every 3-handed cycle C for which ΓI(C)
contains F ′ has at least one vertex of degree 2. That is, every k-handed
cycle C for which ΓI(C) contains F ′ has at least 4 − k vertices of degree 2.

(iii) Assume that Γ ′ has a 2-legged cycle C. By Condition (or2) Lemma 2, C
has at least two vertices of degree 2. In Γ , if the induced face F ′ for F ,
resides in ΓO(C), then by Lemma 4, C is the 2-legged cycle in Γ , and
the 2-legged cycle C has at least two vertices of degree 2. Every 2-legged
cycle C for which ΓO(C) contains F ′ has at least two vertices of degree 2.
Similarly, every 3-legged cycle C for which ΓO(C) contains F ′ has at least
one vertex of degree 2. That is, every k-legged cycle C for which ΓO(C)
contains F ′ has at least 4 − k vertices of degree 2.

Sufficiency: Assume that Γ has a face F satisfying Conditions (i) − (iii) of
Theorem 1. It is sufficient to show that G has a planar embedding which satisfies
the condition in Lemma 2. Let Γ ′ be a planar embedding of G whose outer face
is F . We have two cases to consider.
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Case 1: Γ ′ has four 2-vertices at the outer face.

(i) Γ ′ has four vertices of degree 2 on the outer face, then it is obvious to the
Condition (or1) in Lemma 2.

(ii) Since Γ satisfies the Condition (ii) of Theorem 1, that is every 2-handed
cycle C whose ΓI(C) contains F must have at least two 2-vertices in Γ . If
such a cycle C exists in Γ , then C is a 2-legged cycle in Γ ′, that has at
least two 2-vertices.

(iii) Since Γ satisfies the Condition (iii) of Theorem 1, that is every 3-handed
cycle C whose ΓI(C) contains F must have at least one 2-vertex in Γ . If
such a cycle C exists in Γ , then C is a 3-legged cycle in Γ ′, that has at
least one 2-vertex.

Case 2: Γ ′ does not have four 2-vertices at the outer face.
Assume that Γ ′ does not have four 2-vertices on the outer face of Γ ′. We can

make another embedding Γ ′′ from Γ ′ by flipping any one or two independent
2-legged cycles Ck whose leg vertices are on the outer faces of both Γ ′ and Γ ′′

in such a such a way that Fo(Γ ′′) contains at least four 2-vertices as illustrated
in Fig. 1(d). We will now show that Γ ′′ satisfies the Conditions (or1) − (or3) of
Lemma 2

(i) We have already seen from the case 1 that, Γ ′ satisfies the Condition (or2)
of Lemma 2. Since Γ ′′ is obtained from Γ ′ by flipping any one or two
independent 2-legged cycles Ck whose leg vertices are on the outer faces of
both Γ ′ and Γ ′′, in such a such a way that Fo(Γ ′′) contains four 2-vertices.
It is obvious that Γ ′′ satisfies the Condition (or1) of Lemma 2.

(ii) Γ ′′ is obtained from Γ ′ by flipping any one or two independent 2-legged
cycles Ck, in such a way that they have edges at the outer faces in both Γ ′

and Γ ′′. It can be trivially observed that any 2-legged cycle in Γ ′′ is a 2-
legged cycle in Γ ′. It has already been proved in case 1 that every 2-legged
cycle has at least two 2-vertices in Γ ′. Hence Γ ′′ satisfies the Condition
(or2) of Lemma 2.

(iii) The only difference between Γ ′′ and Γ ′ is with respect to the 2-legged cycles
that have edges on the outer faces in both Γ ′′ and Γ ′. It can be trivially
observed that any 3-legged cycle in Γ ′′ is a 3-legged cycle in Γ ′. It has
already been proved in Case 1 that every 3-legged cycle has at least one
vertex of degree 2 in Γ ′. Hence Γ ′′ satisfies the Condition (or3) of Lemma 2.

Let G be a biconnected planar graph of maximum degree 3 and Γ be an
arbitrary plane embedding of G. Traversing the contours of all faces in Γ , similar
like approaches are described in [2,4,10,12], one can check in linear time whether
there exists a face F in Γ that satisfies the Conditions (i) − (iii) in Theorem 1.
If a face F in Γ satisfies the Conditions (i) − (iii) of Theorem 1, then G has
a planar embedding Γ ′ which satisfies the conditions in Lemma 2. In Γ ′ the
outer face is F or an induced face F ′ of F . Hence using the drawing algorithm
of Rahman et al. [11], one can also find a no-bend orthogonal drawing of the
planar embedding Γ ′ of G in linear time. The whole process runs in linear time
in total. Thus the following theorem holds.



264 M. M. Hasan and M. S. Rahman

Theorem 2. Let G be a biconnected planar graph of maximum degree 3. Then
one can determine in linear time whether G has a no-bend orthogonal drawing
or not and find a drawing of G, if it exists.

4 No-Bend Orthogonally Convex Drawings

In this section, we give a necessary and sufficient condition for a biconnected
planar graph G of maximum degree 3 to have a no-bend orthogonally convex
drawing, that can be checked in linear time. We also give a linear-time drawing
algorithm if any drawing exists.

Let G be a biconnected planar graph of maximum degree 3, and Γ be an
arbitrary plane embedding of G, and Γ has two or more independent regular
2-legged and 2-handed cycles. Let CU be the set of all independent 2-legged
and 2-handed cycles that have at least two 2-vertices on every cycle but all the
2-vertices of every cycle in CU lie on exactly one contour path of the respective
cycle. We add a dummy vertex d on the outer face of Γ , and connect the dummy
vertex with all the leg and hand vertices of CU , call the graph Γ+. Let Γ+

o be
a planar embedding of Γ+, where the vertex d is on the outer face of Γ+

o . Now
we delete the vertex d from Γ+

o , and call the obtained plane graph Γo. We can
prove the following Theorem 3 whose proof is omitted.

Theorem 3. Let G be a biconnected planar graph of maximum degree 3, and
let Γ be an arbitrary plane embedding of G. Suppose that, Γ has two or more
independent regular 2-legged and 2-handed cycles. G has a no bend orthogonally
convex drawing if and only if Γ+

o can be obtained and the outer face of Γo satisfies
the condition of a biconnected planar graph of maximum degree 3 for having a
no-bend orthogonal drawing.

By Theorem 2, we can determine whether Γo has a no-bend orthogonal draw-
ing in linear time. Hence the following theorem holds.

Theorem 4. Let G be a biconnected planar graph of maximum degree 3. Then
one can determine in linear time whether G has a no-bend orthogonally convex
drawing or not and can also find a drawing of G in linear time, if it exists.

5 Conclusions

In this paper we have presented two different necessary and sufficient condi-
tions for biconnected planar graphs G with Δ ≤ 3 to have no-bend orthogonal
drawings and to have no-bend orthogonally convex drawings. We have also given
linear-time algorithms for finding out no-bend orthogonal drawings and no-bend
orthogonally convex drawings of planar graphs if they exist.
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Abstract. In this paper we propose two novel variants of the well-known
Steiner tree problem in graphs that are motivated by applications in
secure strategic telecommunication network design. Both network opti-
mization models ask for a tree of minimal total edge cost that connects
a pre-specified set of terminal nodes to a dedicated root node by option-
ally including intermediate Steiner nodes. Two types of privacy conflicts
between pairs of conflicting terminals are considered: (I) The path from
the root to a terminal must not include the conflicting terminal, and
(II) conflicting terminals have to be on separate branches of the tree.
We develop non-compact integer programming formulations and elabo-
rate branch-and-cut algorithms. We incorporate problem specific valid
inequalities that are crucial in order to solve these problems, and estab-
lish dominance relationships between these cuts and the induced poly-
hedra. The effectiveness of the cutting planes with respect to the dual
bound and the performance of the exact algorithm are assessed on a
diverse set of SteinLib-based test instances.

Keywords: Steiner tree problem · Integer programming ·
Branch-and-cut · Information privacy conflicts · Telecommunications

1 Introduction

In the strategic design of telecommunication infrastructure, the protection of data
privacy is an important concern. The physical network structure is crucial in order
to prevent from unwanted information leaks. A common requirement of informa-
tion senders, and receivers, is that specific third party network participants must
not be able to tap the network path used to route privacy-sensitive information
packages. Protective measures such as data depersonalization, encryption tech-
nologies, and protocol changes are often not sufficient in order to prevent from
attacks such as eavesdropping, traffic analysis, and camouflage marketing. Appli-
cations can be found when connecting facilities of high-tech industry, military, or
government agencies to backbone networks and so forth.
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In this work, we address the case of centralized networks with minimal con-
nectivity requirements. That is, we design tree topologies in which exactly one
path exists between two customers in the network. These structures are com-
monly modeled using rooted Steiner trees in which given customers, called ter-
minals, are sought to be connected to a central distributor. Intermediate nodes,
called Steiner nodes, may be used in order to minimize the overall network cost.

We present topological concepts that allow the a priori specification of privacy
conflicts between pairs of conflicting customers. More precisely, the following two
types of restrictions are incorporated into the strategic network design model. In
a first path-critical model, we embed the customer requirement that a conflicting
customer is not allowed to be physically situated on its unique connecting path
to the distributor. Furthermore, we suggest a branch-critical model in which
the two paths connecting two customers that are in a privacy conflict to the
distributor have to be disjoint. The latter requirement is more restrictive than
the former since it forbids both customers from being on a common network
branch. In both cases we assume that the distributor is considered neutral and
serves either as source, destination, or both types of transmission.

The Steiner tree problem (STP) was introduced in Dreyfus and Wagner [1971]
and is one of the prominent NP-hard combinatorial optimization problems listed
by Karp [1972]. The most efficient exact approaches are based on branch-and-
cut Gamrath et al. [2017]; Koch and Martin [1998]. Catalogues of mathematical
programming formulations for the STP are given in Goemans and Myung [1993]
and Polzin and Daneshmand [2001]. An overview on existing heuristic approaches
is given in Duin and Voß [1994]. Several STP variants have been studied in the
literature (e.g., Di Puglia Pugliese et al. [2016]; Johnson et al. [2000]; Leggieri
et al. [2014]; Voß [1999]).

In this paper, we devise two exact algorithms based on integer programming
for the novel models with complicating privacy side constraints. Our methods
are built upon cut-set formulations. In order to strengthen the obtained dual
bounds that are obtained from the solution of the linear relaxations during the
branch-and-bound method, we develop effective problem-specific cutting planes.
Our computational analysis shows the efficiency of our techniques for a broad
range of privacy conflict densities on diverse classes of test instances derived
from the literature. Our main contributions are as follows:

1. Introduction of two novel variants of the Steiner tree problem that incorporate
customer privacy conflicts.

2. Introduction of cut-set based integer-programming formulations and of
problem-specific valid inequalities.

3. Theoretical analysis of polyhedral formulation strengths through projection
results.

4. Development of branch-and-cut algorithms and computational evaluation of
algorithmic performance for a diverse set of test instances.

The optimization models are formally presented in Sect. 2, followed by our math-
ematical formulations in Sect. 3. Section 4 is devoted to the cutting plane tech-
niques and we provide the results of our computational evaluation in Sect. 5,
before closing with a conclusion in Sect. 6.
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2 Privacy-Oriented Optimization Models

Before recalling the definition of the Steiner tree problem we introduce some
notation. We refer to the vertex set of a (directed) graph G by V [G], and to its
edge (arc) set by E[G] (A[G]), respectively. For a (directed) tree B, we define the
graph representing the unique (directed) path connecting node i to j by Pi,j(B).

Let T be the set of terminals (or customer nodes), W the set of Steiner
nodes, r the root node, V the set of all nodes (i.e., V = W ∪̇ T ∪̇ {r}), and
V ′ = V \ {r}. The set E ⊆ 2V contains all possible edges. We denote the
non-negative cost of an edge e = {i, j} ∈ E by ce. The classical Steiner tree
problem in graphs (STP) consists of finding a tree B of minimal total edge costs
c(B) =

∑
e∈E[B] ce, such that T ∪{r} ⊆ V [B] ⊆ V and E[B] ⊆ E. Note that the

STP is often defined without the root node, which is equivalent to replacing r
by an additional terminal node. However, the root plays an important role when
considering privacy conflict requirements.

2.1 STP with Path-Privacy Conflicts

Consider an instance of the STP and CP ⊆ 2T a set of path-privacy conflicts.
Then the STP with path-privacy conflicts (STP+CP) asks for a solution B such
that for two conflicting customers in {i, j} ∈ CP , we have i /∈ V [Pr,j(B)] and
j /∈ V [Pr,i(B)]. In other words, the conflicting terminals cannot both be on any
unique path from the root r to any vertex in the tree. In Fig. 1 an optimal
solution for an STP instance with 8 customers, 4 Steiner nodes and E = 2V

is depicted (left), along with an optimal solution for a corresponding STP+CP
instance with CP = {{1, 2}, {3, 4}, {6, 8}} (center).

Fig. 1. Optimal solutions for the classical STP (left), the STP+CP (center) and the
STP+CB (right) with eight terminals and three privacy conflicts.
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2.2 STP with Branch-Privacy Conflicts

Consider an instance of the STP and CB ⊆ 2T a set of branch-privacy con-
flicts. Then the STP with branch-privacy conflicts (STP+CB) asks for a solu-
tion B such that, for two conflicting customers in {i, j} ∈ CB , we have
V [Pr,i(B)] ∩ V [Pr,j(B)] = ∅. In other words, the two unique paths in B that
connect i and j to r have to be node disjoint. In this case, the customers only
fully trust the root node regarding the information routing. Every other node in
the network is considered a potentially insecure point of transmission. Note that
in the STP+CB, no two conflicting terminals are allowed to be contained in the
same connected component when removing r from the Steiner tree. Note that a
branch-privacy constraint for terminals i and j dominates a corresponding path-
privacy constraint. That is, the former requirement is stronger since a feasible
solution for the STP+CB with {i, j} ∈ CB satisfies the requirement associated
with {i, j} ∈ CP , but not vice versa. The impact of branch privacy conflicts
(CB = {{1, 2}, {3, 4}, {6, 8}}) is illustrated by the optimal STP+CB solution in
Fig. 1 (right). The STP+CB is related to the hop-constrained Steiner tree prob-
lem (STP+H) (see, for instance, Voß [1999]). In contrast to the STP+H, where
a fixed given number of hops, or edges, must not be exceeded in order to reach
a terminal from r, the STP+CB does not allow two conflicting terminals to be
connected in G\r via paths of any length. Both the STP+CP and the STP+CB
are NP-hard since they reduce to the STP when CP = CB = ∅.

3 Integer Programming Formulations

In this section, we develop mathematical formulations for the STP+CP and the
STP+CB based on directed trees, or arborescences, that are rooted in r. Our
formulations are cut-set based and therewith non-compact. Binary edge variables
are used for each edge e ∈ E in order to encode the undirected Steiner tree: xe

takes value one if e is installed in the network and zero otherwise. We recall that
there is a one-to-one correspondence between the (undirected) trees rooted in r
and the arborescences with root r. To incorporate the arborescence structure in
our formulations, let A be the set of arcs obtained from all possible orientations
of edges in E; i.e., A = {(i, j) ∈ V 2 : {i, j} ∈ E}. For each arc a ∈ A, we
define a binary arc variable xa that is equal to one if a is used in the network
and zero otherwise. The arborescence representation allows us to derive stronger
formulations for the privacy-oriented models, which is also known to apply to
the STP per se (Polzin and Daneshmand 2001). Let a− denote the tail node i
of an arc a = (i, j) and a+ its head node j. We define δ−(U) (δ+(U)) to be
the set of arcs in A with head (tail) in U and tail (head) in V \ U for U ⊆ V .
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The following non-compact cut-set based formulation for the STP was suggested
by Wong [1984].

(F ) min
∑

e∈E

ceye (1a)

s.t. xi,j + xj,i = yi,j ({i, j} ∈ E) (1b)
∑

a∈δ−(i)

xa = 1 (i ∈ T ) (1c)

∑

a∈δ−(S)

xa ≥ 1 (S ∩ T �= ∅, S ⊆ V ′) (1d)

xa ∈ {0, 1} (a ∈ A) (1e)
ye ∈ {0, 1} (e ∈ E) (1f)

Linking inequalities (1b) ensure that if an arc between two nodes is chosen to be
in the directed Steiner tree, the corresponding edge is also selected. Additionally,
they forbid directed subtours of length 2. Node in-degree inequalities (1c) force
the sum of arcs entering each terminal to one. Inequalities (1d) are called Steiner
cut constraints and ensure the 1-connectivity within the solution network. Note
that edge variables ye will take integer values if arc variables are integer feasible.
It is known that the formulation (F ) is equally strong as a multi-commodity flow
formulation, but computationally superior when implemented carefully (Koch
and Martin 1998). Stronger flow-based formulations are known to yield even
higher solve times for the LP-relaxations (e.g., common-flow formulations (Polzin
and Daneshmand 2001)) and are not considered to be of practical use.

In the following, we extend formulation (F ) to obtain formulations for the
STP+CP and the STP+CB. To this end, let Pi,j(G\r) denote the set of directed
paths from i to j in G \ r (i �= j). Then path-privacy requirements can be
integrated into formulation (F ) by adding the following path-privacy inequalities.

∑

a∈A[P ]

xa ≤ |A[P ]| − 1 (P ∈ Pi,j , {i, j} ∈ CP ) (2)

Inequalities (2) enforce that not all arcs of a directed path (not including r)
that connects i and j can be selected in a solution simultaneously. Note that
we obtain two inequalities for each conflict by considering paths starting at i
and j separately. These cover inequalities are related to inequalities used for the
STP+H in Costa et al. [2009] in order to forbid integer-feasible solutions, and
they have also been separated in the fractional case in Hill and Schwarze [2018]
for another STP variant. We denote the formulation for the STP+CP obtained
by adding the exponential number of model inequalities (2) to (F ) by (FCP ).
More generally, we use (F(I1),...,(Ik)) for the formulation obtained from (F ) by
adding inequalities (I1), . . . , (Ik); hence, for instance, (FCP ) = (F(2)).

The STP+CB can be formulated by adding the following branch-privacy
inequalities to (F ).

∑

a∈δ−(S)

xa ≥ 2 (S ⊆ V ′ : {i, j} ⊆ S, {i, j} ∈ CB) (3)
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Inequalities (3) force two conflicting terminals to be connected from r by two dis-
joint directed paths. They are a special case of capacitated connectivity inequal-
ities known for vehicle routing problems, which ensure that the vehicle capac-
ity is respected on each tour. These general versions have also been used to
formulate capacitated minimum spanning tree problems. The in-degree of a
Steiner node may exceed 1 when imposing inequalities (3). To see this, con-
sider a STP+CB instance with T = {4, 5}, W = {1, 2, 3} and CB = {T}. Then
B = (T ∪W ∪{r}, {{r, 1}, {r, 2}, {1, 3}, {2, 3}, {3, 4}, {3, 5}}) is an optimal solu-
tion for (F ) with inequalities (3) if ce = 0 for e ∈ E(B) and ce = 1 otherwise.
Thus, the following Steiner in-degree inequalities are necessary.

∑

a∈δ−(i)

xa ≤ 1 (i ∈ W ) (4)

Note that inequalities (4) are also needed for the STP in the case of zero edge
weights. Zero-cost Steiner subtours may also appear which can be identified and
removed efficiently a posteriori in an integer-feasible solution. We denote the
formulation obtained from (F ) by adding inequalities (3) and inequalities (4) by
(FCB). We note that the use of arc variables in our formulations above technically
allows us to consider directed variants of the STP+CP and the STP+CB, too.

4 Cutting Planes

In this section we develop valid inequalities that tighten formulations (FCP ) and
(FCB) and we establish relationships based on the achieved polyhedral strength.
Furthermore, we describe techniques needed to ensure computational efficiency
in practice. We use P (D) to denote the polyhedron described by a formulation
D when replacing binary variables by continuous variables with interval domain
[0, 1]; e.g., P (F ) = {(x, y) ∈ [0, 1]|A| × [0, 1]|E| : (1b), (1c), (1d)

4.1 Valid Inequalities

We first focus on valid inequalities for the STP, followed by cuts for the STP+CP
and the STP+CB. Due to the dominance relation between the STP+CP and
the STP+CB described in Sect. 2, any valid inequality for (FCP ) is also valid
for (FCB) when assuming that CB = CP which we will formally specify in a
theorem at the end of this subsection.

STP The following flow-balance inequalities are known to be valid for formula-
tion (F ) (Polzin and Daneshmand 2001).

∑

a∈δ−(i)

xa ≤
∑

a∈δ+(i)

xa (i ∈ W ) (5)

Inequalities (5) ensure that the number of arcs leaving a Steiner node is at least
the number of entering arcs. Formulation (F(5)) is denoted F +FB in Polzin and
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Daneshmand [2001]. Moreover, the Steiner node flow can be further balanced by

xi,j ≤
∑

(k,i)∈δ−(i):k �=j

xa ((i, j) ∈ A, i ∈ W ). (6)

Note that model inequalities (4) in (FCB) are valid for (FCP ). We refer to
(F(4),(5),(6)) as (F+) and we assume that δ−(r) = ∅. In the following, we
establish polyhedral relationships between formulations. Following Polzin and
Daneshmand [2001], we say that a formulation D is strictly stronger than for-
mulation D′ if P (D) ⊆ P (D′) and there exists a problem instance such that
P (D) ⊂ P (D′); we denote this relation by D � D′.

STP+CP Inequalities (2) can be lifted by considering variables of forward and
backward arcs on a path from i to j ({i, j} ∈ CP ). Note that it is necessary to
maintain the path direction property in order to avoid forbidding both nodes
being on different branches. Therefore, we impose the path direction by only
allowing backward arcs that are not incident with i as follows.

∑

(i,l)∈A[P ]

xi,l +
∑

(k,l)∈A[P ]:k �=i

(xk,l + xl,k) ≤ |A[P ]| − 1 (P ∈ Pi,j , {i, j} ∈ CP ) (7)

Lemma 1. (F+

(7)) � (F+

(2)).

Proof. P (F+

(2)) ⊇ P (F+

(7)): {a ∈ A[P ]} ⊆ {(i, l) ∈ A[P ]}∪{(k, l) ∈ A[P ] : k �= i}.

P (F+

(7)) �= P (F+

(2)): Let CP = {{1, 2}, {2, 3}}. Inequalites (7) are violated by the

fractional solution for (F+

(2)) in Fig. 2 (left) for P = ({1, 2, 4}, {(1, 4), (4, 2)}). �
Instead of focusing on forbidding paths that connect conflicting terminals {i, j} ∈
CP , we can also directly enforce alternative connectivity with respect to r. The
following path-privacy connectivity inequalities impose a directed path from r to
i in the network that is obtained after removing j from G.

∑

a∈δ−(S):a− �=j

xa ≥ 1 (i ∈ S, S ⊆ V ′ \ {j}, {i, j} ∈ CP ) (8)

The number of cut sets is exponential in |V |. For each S and each conflict in
CP , we obtain two inequalities depending on the choice of j. Inequalities (8) are
stronger than inequalities (7) which is expressed by the following lemma.

Lemma 2. (F+

(8)) � (F+

(7)).

Proof. Rewrite (7) as −(
∑

(i,l)∈A[P ] xi,l +
∑

(k,l)∈A[P ]:k �=i(xk,l + xl,k)) +
|A[P ]| ≥ 1; since

∑
(i,l)∈A[P ] xi,l +

∑
(k,l)∈A[P ]:k �=i(xk,l + xl,k) ≤ |A[P ]| −

∑
a∈δ−((V [P ]\{i})\A[P ]) xa (using (1c) and (4)),

∑
a∈δ−(V [P ]\{i})\A[P ]) xa ≥ 1

implies (7); having {Pi,j \ i : {i, j} ∈ CP } = {S ⊆ V ′ \ {j} : {i, j} ∈ CB},
P (F+

(8)) ⊆ P (F+

(7)) holds. P (F+

(8)) �= P (F+

(7)): Inequalities (8) are violated for

S = {2, 4, 5} and {i = 2, j = 3} ∈ CP by the solution for (F+

(7)) given in Fig. 2
(right) since xr,2 + xr,4 + xr,5 + x1,2 + x1,4 + x1,5 = 0.5 < 1. �
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Fig. 2. Fractional solutions with arc-variable values for formulation (F+

(2)
) that violate

inequalities (7) (left), and for formulation (F+

(7)
) that violate inequalities (8) (right).

Let CP (i) ⊂ T denote the set of terminals that are in path-privacy con-
flict with i ∈ T . Then inequalities (8) can be generalized by requiring root-
connectivity for each terminal i ∈ T after removing all conflicting terminals in
CP (i). ∑

a∈δ−(S):a− /∈CP (i)

xa ≥ 1 (i ∈ S, S ⊆ V ′ \ CP (i), i ∈ T ) (9)

Inequalities (9) collapse to inequalities (1d) in the case that CP (i) = ∅.

Lemma 3. (F+

(9)) � (F+

(8)).

Proof. P (F+

(8)) ⊇ P (F+

(9)) since {j} ⊆ CP (i). P (F+

(8)) �= P (F+

(9)): The weight of
a minimal (r,2)-cut after removing either node 1 or node 3 in Fig. 3 (left) equals
1. However, the cut weight after removing both terminals in CP (2) equals 0.5.
Hence, a corresponding cut with S = {2, 4, 5} is violated for i = 2. �

STP+CB Let HB denote the conflict graph with respect to the conflict relation
given by CB ; i.e., GB = (T,CB). Let Q denote the set of all maximal cliques
in GC . Then, for Q ∈ Q, the number of branches emerging from r in order
to connect terminals in Q must be at least |Q|. Therefore, the following clique
connectivity inequalities can be used to strengthen (F+

CB).
∑

a∈δ−(Q)

xa ≥ |Q| (Q ∈ Q, S ⊆ V ′ : Q ⊆ S) (10)

Note that Inequalities (10) imply the installation of at least as many root tree
branches in a solution as the cardinality of a largest conflict clique. Thus, the
following root out-degree inequality is a special case of inequalities (10) when
S = V ′ and Q = argmaxQ′∈Q{|Q′|}.

∑

a∈δ+({r})
xa ≥ max

Q∈Q
|Q| (11)
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Lemma 4. (F+

(10)) � (F+

(3)).

Proof. CB ⊆ Q =⇒ P (F+

(3)) ⊇ P (F+

(10)). P (F+

(10)) �= P (F+

(3)) since the frac-

tional solution for (F+

(3)) depicted in Fig. 3 (right) (CB = {{1, 2}, {1, 3}, {2, 3}})
violates inequality (10) for S = Q = {1, 2, 3}. �

Fig. 3. Fractional solutions with arc-variable values for formulation (F+

(8)
) that violate

inequalities (9) (left), and for formulation (F+

(3)
) that violate inequalities (10) (right).

Theorem 1. Assume that CP = CB. Then it holds that
(F+

(10)) � (F+

(3)) � (F+

(9)) � (F+

(8)) � (F+

(7)) � (F+

(2)) � (F+) � (F ).

Proof. Follows from Lemmata 1-4, relation between STP+CP and STP+CB
((F+

(3)) � (F+

(9))), and Polzin and Daneshmand [2001]. �

4.2 Cut Generation

It is well-known that branch-and-cut algorithms for the STP that are based on
formulation (F ) suffer from an extensive number of model cuts (1d) in practice.
To overcome this computational challenge, Koch and Martin [1998] suggest sev-
eral techniques that aim at generating multiple diverse and at the same time
effective connectivity cuts. In the following, we describe our approach which
incorporates the ideas of the authors. Note that these techniques do not improve
the dual bounds obtained by formulation (F ) and solely speed up convergence
of the cutting plane method.

• We use the following slightly different, but equivalent, version of inequali-
ties (1d) which enforces connectivity for each terminal node separately. This
may result in the separation of multiple cuts.

∑

a∈δ−(S)

xa ≥ 1 (i ∈ S, S ⊆ V ′, i ∈ T ) (12)
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• Forward and backward cuts: When separating inequalities (12), we compute
two minimal cuts: The r − i cut and the i − r cut which are of equal weight
but may differ in terms of cut sets.

• Steiner node connectivity: Similar to cut inequalities (12), we derive the
following connectivity cuts for each Steiner node which ensure connectivity
dependent on whether the node is used in the tree or not.

∑

a∈δ−(S)

xa ≥
∑

a∈δ−({i})
xa (i ∈ S, S ⊆ V ′, i ∈ W ) (13)

• Cut ranking: We limit ourselves to the 15 most violated connectivity cuts.
Moreover, we add at most 15 conflict cuts of each type in each round.

• Connected component connectivity. Whenever the support graph w.r.t. y is
disconnected then we add dynamically connectivity inequalities (1d) in which
S contains the component nodes (especially during the first rounds).

• Certainly, two conflicting terminals cannot be adjacent in any feasible solu-
tion for the STP+CP and the STP+CB, which leads to the following edge
variable fixing cuts: yi,j = 0 ({i, j} ∈ (CP ∪ CB)). Using inequalities (1c),
the latter can be rewritten as

∑
a∈δ−({i,j}) xa ≥ 2. They can be expressed

by two model inequalities (8) obtained from S = {i} and S = {j}, and are
therefore redundant for (FCP ). Note that they correspond to inequalities (3)
when S = {i, j}. We add these |CP | (or |CB |) cuts in advance.

• Flow-balance inequalities (5) are added to the initial formulation, but inequal-
ities (6) are separated dynamically.

• Only the theoretically strongest inequalities are separated during the branch-
and-cut algorithm.

The separation problem for connectivity inequalities (8), (9), (12), (13) corre-
sponds to finding a cut of minimal weight in the support graph. Capacitated
connectivity inequalities (3), (10), and model inequalities (1d) can be separated
similarly on an auxiliary network. For inequalities (10), we explicitly compute
the set of all maximal cliques Q using the Bron-Kerbosch algorithm. Path cover
inequalities (2) and (7) can be separated using truncated enumeration as sug-
gested in Hill and Schwarze [2018].

5 Computational Study

To evaluate the performance of our approaches we perform a computational
analysis on a diverse set of instances1. We use IBM ILOG CPLEX 12.80 as
branch-and-bound framework (generic cuts disabled) and run our algorithm on
an Intel Core i7-7600 2.80 GHz machine with 16 GB RAM. We derive 390
instances with up to 100 nodes from 30 base STP instances from Beasley
[1989]2 (Steinbk, k ∈ {3, 4, 5, 16, 17, 18}) and the SteinLib3 (Koch et al. 2001)
1 The test instances can be obtained from the authors upon request.
2 http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/steininfo.html.
3 http://steinlib.zib.de.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html
http://steinlib.zib.de
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(from test sets PUC, ES20FST, P4Z, and P4E). We randomly draw pairs of con-
flict nodes from T using a uniform distribution with three different seeds. For
γ ∈ {0, 0.25, 0.5, 0.75, 1.0}, we incrementally generate �γ|T |� conflicts for sparse
instances (|E[G]| < 0.5

(
n
2

)
) and �γ|T |(|T | − 1)/2� conflicts for dense instances.

That is, for a base instance and a seed, the conflicts obtained from γ2 contain
all conflicts for γ1 if γ1 ≤ γ2. The node of highest degree in G with lowest index
is assigned to be the root node r.

In the following, we provide an analysis of the effectiveness of the techniques
suggested in Sect. 4 at the root node of the branch-and-bound tree and within
the branch-and-cut method. In our experiments, we do not see an advantage in
separating STP+CP cuts when solving an STP+CB instance. We force each cut
to stay in subsequent linear programs (LPs) since letting CPLEX manage the
cuts tends to increase the solution times. Cut separation time did not exceed
10% of the total run time. Table 1 summarizes the results obtained for both
models. The first three columns indicate the density of G (Type), the privacy
conflict rate (γ), and the number of instances in this category (#). Columns
* contain the number of instances that could be solved to optimality for the
corresponding formulation. The cumulative run time in seconds is given in col-
umn t(s). Columns ΔLB

0 and ΔLB state the average relative improvement of
the lower bound compared to the base formulation at the root node and after
at most one hour of branch-and-cut, respectively.

Table 1. Root node cutting plane impact and branch-and-cut effectiveness for
STP+CP and STP+CB by density of G and different privacy conflict rates γ.

Instances STP+CP STP+CB

Type γ # (F+
CP

) (F+
(9)) (F+

CB
) (F+

(10))

* t(s) ΔLB
0 * t(s) ΔLB * * t(s) ΔLB

0 * t(s) ΔLB *

Sparse 0 13 6 79 0 6 66 1.8 8 6 65 0 6 69 1.8 8

0.25 39 26 284 0 26 285 1.7 36 16 62 0 16 66 1 16

0.5 39 24 348 0 24 325 1.4 33 15 99 0.1 16 102 0.8 16

0.75 39 27 408 0 27 335 1.5 34 10 138 0.5 16 111 1.6 16

1 39 27 460 0 27 321 1.5 34 8 228 0.9 15 114 2 15

All 169 110 1579 0 110 1332 1.5 145 55 592 0.3 69 462 1.4 71

Dense 0 17 5 159 0 5 157 0 5 17 176 0 17 157 0 17

0.25 51 38 2534 0.4 46 1003 0.4 51 17 3089 6.4 21 1948 7.9 21

0.5 51 41 4151 0.3 47 924 0.4 51 10 4825 19 20 3798 20.2 20

0.75 51 40 5392 0.4 51 860 0.4 51 7 5828 46.6 25 4490 47.4 25

1 51 39 6124 0.6 48 842 0.7 51 6 7094 199.9 51 24 199.9 51

All 221 163 18360 0.4 197 3786 0.4 209 57 21012 62.8 134 10417 63.6 134

All All 390 273 19939 0.2 307 5118 0.9 354 112 21604 35.7 203 10879 36.6 205

It can be seen that the number of problems that are solved at the root
node increases notably (STP+CP: 12.5%; STP+CB: 81.3%). Furthermore, cor-
responding LPs can be solved significantly faster for the stronger formulations
(STP+CP: 74.3%; STP+CB: 49.6%). Except for sparse STP+CP instances, the
dual bounds are raised. Most notably, for dense STP+CB instances we observe
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an average increase of 62.8%, compared to an overall average increase of 18%.
Note that optimality gaps can be closed at the root node for 97.1% of all dense
full-conflict instances. Moreover, our cutting plane techniques resulted in an
overall reduction of the number of cut separation rounds (78.5%). Finally, the
branch-and-cut algorithms (without any initial upper bound provided) solve
71.7% of the instances to optimality. Note that without inequalities (4)-(6) and
the improvements described in Subsection 4.2, the STP base instances cannot
be solved efficiently at all.

6 Conclusion

We studied two new Steiner tree problem variants that find application in strate-
gic telecommunication network planning. Customer privacy requirements were
incorporated by enforcing additional topological constraints in cost-optimal net-
works. In order to solve the resulting combinatorial problems we developed
mathematical formulations based on integer programming which were used in
a branch-and-cut algorithm. We developed cutting plane techniques that are
essential regarding computational efficiency. Polyhedral relationships between
the cuts theoretically support their importance. A computational analysis was
conducted using a diverse set of problem instances. We could show that our
algorithmic enhancements significantly improve the obtained results compared
to our initial approaches. Finally, we could compute optimal networks for more
than 70% of the test instances. We see potential for further strengthening of our
algorithms in the development of effective heuristic primal methods in order to
obtain stronger upper bounds.
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Abstract. The evacuation planning for mine water-inrush is of great
importance for personal and property security, and the research of this
field in 3D scenarios can provide intuition vision for the geographic space
and contribute to the evacuation plan and implementation. In this paper,
based on 3D mine model, we address a multi-objective optimization prob-
lem for evacuation path planning in mine water-inrush scenario, namely
the global-optimized multi-path finding problem, which aims to minimize
the global evacuation time-consuming and balance the evacuation loads
of the emergency exits. Based on the auxiliary graph transformation,
we propose a 3-phase heuristic referred to the classical problem, Mini-
mum Weighted Set Cover. We finally conduct extensive experiments to
evaluate the performance of the proposed algorithm, whose results indi-
cate the heuristic outperform the existing alternatives in terms of the
utilization as well as timeliness.

Keywords: Mine water-inrush · 3D model ·
Multi-objective optimization · Evacuation path planning

1 Introduction

With the rise of various hazards and risk raised by the global technology develop-
ment, disaster avoiding and evacuation planning have drawn much attention due
to its huge potential applications. The research on evacuation planning primarily
contains risk management [1], escape routes planning [2,3], emotion mechanism
of escape behavior [4,5] and escape virtual simulation [6,7].

Escape routes/paths planning is one of the most important problems in evac-
uation planning for accidents, which is to compute the optimal evacuation paths
to minimize the escaping time. The problem in underground mine scenarios has
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been paid much attention all these years which focused on the cases of fire and
explosion [8,9]. For the escape routes finding problem of coal mines in water-
inrush case, the existing research concentrated on 2D mine environment and
can be classified into two kinds by the pair of number of the involved evac-
uators and that of the emergency exits: one is one-source to one-destination
model (finding the escape route from one evacuator to one exit) and the other
one is one-source to multi-destination (constructing multi-path from one evac-
uator to several exits). Both of the two kinds has been effectively solved based
on the classical algorithms for solving the shortest path problem, the Dijkstra
algorithm [10,11], the Floyd-Warshall algorithm [12], the first k shortest paths
[13–15], and dynamic programming [16]. For one-source to one-destination, in
[13,14], the authors studied the first k shortest paths problem whose goal is to
find another k − 1 suboptimal paths such that there is an alternative when the
shortest one is impassable because of the water spread or congested on account
of traffic load. Furthermore, many efforts are made to investigate on one-source
to multi-destination in terms of modified or hybrid classical algorithms. In [15],
the authors introduced a new variant of k shortest paths problem in a time-
schedule network with constraints on arcs and they solved the problem based on
the modified Dijkstra algorithm to find shortest paths and enumerate all paths.
In [16], the authors considered a path networks with vulnerable links and they
proposed a framework based on dynamic programming based on known link
disruption probabilities and knowledge of transition probabilities for recovering.

It can be found that a 2D mine laneway model which cannot provide intuition
vision for the geographic space and may effect the guideline of evacuation work.
Furthermore, in the practical evacuation process, the mine personnel with a
certain number locate in different places which may create the congestion on
the feasible exits. But the above existing related literatures ignored the critical
issue or cannot formally solve it in the problem. In this paper, based on a 3D
geological mine model, we introduce an evacuation routes planning problem
for the scenarios with a set of mining personnel and a set of feasible escaping exits
(multi-source to multi-destination), with the consideration of the traffic
load/utilization of the exits in the solution. The objective of the problem is
to find multi-path connecting each personnel position and its most suitable exit
for the goal of global optimization. The list of our contributions is as follows.

(i) We introduce a new evacuation path planning problem in 3D mine water-
inrush, the global-optimized multi-path finding (GMF) problem, and prove
its NP-hardness.

(ii) We propose a global-optimized strategy to determine the evacuation paths
starting at the personnel initial location such that the time consumed by
the latest escaped mine worker is minimized and the escaping load of each
exit can be balanced.

(iii) We conduct the simulations and evaluate the performance of the proposed
algorithm in terms of utilization and timeliness.

The rest of the paper is organized as follows. Section 2 analyzes modeling
of 3D mine laneway model and formulates problem definitions and its hardness
proof. Section 3 introduces the framework of the 3-phase solution for GMF prob-
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lem and describes the related algorithms. Simulation results and corresponding
discussions are given in Sect. 4. Section 5 concludes this paper.

2 Modeling of Mine Network Using the Graph Concept
and Problem Formulation

2.1 The Spatial Hierarchy Analysis of Mine Network

In this paper, we consider a 3D laneway model in mine water-inrush scenarios,
G = (V,E), where V = V (G) = {v1, · · · , vn} is the set of predetermined obser-
vation vertices, E = E(G) is the set of bidirectional edges, and for each vi ∈ V ,
vi = (IDi, xi, yi, zi) and for each ek ∈ E, ek = (IDi, IDj) (1 ≤ i < j ≤ n).
For any vertex subset V ′ ⊆ V , G[V ′] is the subgraph of G induced by V ′. Simi-
larly, G[E′] is the subgraph of G induced by an edge subset E′ ⊆ E. Important
notations in the vertex set of 3D connected graph G are as follows: (a.) Water-
bursting nodes where water-inrush occurred; (b.) Source nodes where the
personnel located at the water-inrush moment and will start to escape from; (c.)
Destination nodes in mine laneway which are safe for personnel evacuation,
e.g. the pithead, the throat of a mine, or mine refuge; (d.) Impassable nodes
which cannot be passable for evacuation, i.e. silting-up obstacles or submerged
objects raised by water-inrush. Note that the obstacles considered here are a
part and do not represent all possible types.

In practice of mining, the laneways are constructed in system structure, i.e.
there are several relatively complete and independent components, which are
relevant to each other via bend channels (similar to the corridors in a build-
ing). Such a mining sub-element of laneways is deployed in certain range of
height, e.g., (−700 m, −500 m). Thus a 3D laneway model G can be regarded
as an equivalent multi-layer 3D model via decomposing G into several relatively
independent subgraph G1, G2, ..., GL based on the spatial geometry speciality,
i.e., G1 is composed of the vertices with z-axis value in the range of (−600 m,
−500 m) and those in the range of (−700 m, −600 m) belong to G2. Thus a
given 3D laneway model G can be reformulated into G = {< G1, G2, E1,2 >
,< G2, G3, E2,3 >, ..., < GL−1, GL, EL−1,L >}. The endpoints in all El−1,l sets
(2 ≤ l ≤ L) are called as turning points.

2.2 The Traffic Capacity Analysis of Mine Network

When the water-inrush happens, the laneway is the main carrier of the trapped
workers. And the traffic capacity of the laneway is affected by the following
primary influence factors: Laneway types related to the section shape, slope (β1),
passibility influenced by the obstacles and the vehicle of the escape persons(β2),
water height (β3), and geometric length (length(ek)). Here the other influence
factors like wind velocity are assumed to be negligible. Then the traffic capacity
of laneway can be expressed in term of the equivalent length/edge weight and
the calculation of the edge weight is according to the equation: weight(ek) =
length(ek) · β1(ek)β2(ek)β3(ek), 1 ≤ k ≤ |E|. Thus the mine laneway can be
further modeled as a 3D connected and edge-weighted graph G = (V,E,W ),
and Gl can be rewrote as Gl = (Vl, El,Wl), where 1 ≤ l ≤ L.
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2.3 Problem Definitions and Hardness Results

In this paper, we consider the global evacuation planning problem in mine water-
inrush, which is the overall construction of evacuation-paths for all the personnel
in mine model. The problem is investigated from two points of view: the one is for
each mine worker, to decide its globally ideal escape exit and the escaping path;
the other one is for each escape exit, to assign relatively balanced escape count,
i.e. to balance the escape loads of all the exits in order to take full advantage of
them. Our problem in mine water-inrush evacuation is defined as follows.

Definition 1 (Global-optimized Multi-path Finding (GMF) Problem).
Given a 3D mine laneway model, a 3D connected and edge-weighted graph G =
(V,E,W ), and two vertex subsets, S ⊆ V is the set of source nodes (personnel
locations), D ⊆ V is the set of destination nodes (escape exits), the global-
optimized multi-path finding problem is to find the evacuation paths from nodes
in S to the nodes in D such that the whole evacuation delay can be minimized
and the evacuation efficiency can be maximized.

Here the whole evacuation delay is defined as the elapsed time consumed by
the latest trapped worker. And the evacuation efficiency is for the evacuation
exits (the nodes in D) and is represented by the balance performance among the
personnel evacuation to all the exits, i.e. maximizing the evacuation efficiency is
equivalent to minimizing the maximal difference between the average personnel
evacuation times consumed by the mine workers to any pair of exits.

Based on two important and classical NP-hard problems, Set Cover and
Minimum Weighted Set Cover problems, the hardness proof of our problem
is given as follows.

Theorem 1. GMF Problem in Mine Water-inrush Evacuation is NP-hard.

Fig. 1. Bipartite graph transformation of laneway model

Proof. To proof the hardness of GMF Problem, we consider a special case of
it: the lengths of the paths between all pair of a root and a leaf are equivalent,
max∀di∈D,∀si∈S length(di, sj), is the same value.
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Based on the mathematical formulation of our problem, the forest P to be
found has to meet the three conditions except (iii) in this case for the reason
that (iii) is a default satisfying condition, i.e. the path lengths between all pair
of roots and leaves are equal. Thus via transforming these isometric paths into
one-hop edges as shown in Fig. 1, for each node di ∈ D, di can be used to
represent accessible nodes in S, i.e. S(di) ⊆ S. Thus the problem becomes to
finding a conditional (condition (iv)) set cover in the bipartite graph G∗[D,S],
i.e. finding a sub-collection C ⊆ F (here F = {S(d1), S(d2), ..., S(d|D|)}) such
that

⋃
di∈D S(di) = S.

This special version of Global-optimized Multi-path Finding Problem is
equivalent to Minimum Weighted Set Cover Problem, which is proven to be
NP-hard [17]. Therefore, GMF Problem is NP-hard in general. ��

3 Global-Optimized Evacuation Paths Algorithm

In this section, we propose the global-optimized algorithm for GMF Problem,
which performs three distinct phases to compute evacuation paths from multiple
sources to their most suitable destinations: (1.) Transform G = (V,E,W ) into
a new 2D graph G∗ = (V ∗, E∗,W ∗) via extraction process; (2.) Find a forest
P∗ in G∗ with the root set of P is a subset of D∗ and the leaf set of P∗ is S∗

such that the whole path length between a root and a leaf can be minimized
and the leaf numbers of roots can be balanced; (3.) Recover the evacuation
network/forest P in G based on P∗.

3.1 Auxiliary Graph G∗ Induction

In the first phase, we construct a 2D logical graph G∗ for the election process of
shortest paths from the original graph G, whose details are as follows.

(i) The vertex set V ∗: For each vi ∈ V , vi = (IDi, xi, yi, zi), a corresponding
node is generated in V ∗, i.e. V ∗ = {vi = (IDi)|∀vi ∈ V, 1 ≤ i ≤ n}. Note
that the new node in V ∗ need not change any properties of the original node
vi, thus we continue to adopt vi denote the new node. The same procedure
may be easily adapted to obtain D∗ and S∗.

(ii) The edge set and edge-weight set E∗ and W ∗: For each ek ∈ E, ek =
(IDi, IDj), a corresponding edge is generated in Etemp and the edge-weight
is remained, i.e. Etemp = {ek = (IDi, IDj)|∀ek ∈ E, 1 ≤ k ≤ |E|} and
W temp = {weight(ek)|∀ek ∈ Etemp, 1 ≤ k ≤ |Etemp|}.
Based on the temporary graph Gtemp = (V ∗, Etemp,W temp) and D∗, S∗, we
operation an extraction process to obtain the set of candidate shortest
paths P and E∗,W ∗. For each pair (di, sj), where ∀di ∈ D∗ and ∀sj ∈ S∗,
we find a candidate shortest path, which will be joined into P and all the
edges on it (and their corresponding weights) constitute E∗ (and W ∗). The
finding process is stated as follows:
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a. Locate di, sj ’s layer numbers: di ∈ Gtemp
li

and sj ∈ Gtemp
lj

. Here
according to the properties of the laneway structure, the assumption that
di’s location is not lower than the position of sj (i.e. li ≤ lj) can be
established.
b. If li = lj : Dijkstra Algorithm can be executed on (Gtemp

li
, di, sj) to

obtain SP (di, sj).
c. If li < lj : Firstly determine the turning points in Etemp

lj−1,lj
for sj in its

own layerGtemp
lj

; Secondly calculate the shortest paths between sj to these
turning points and choose the shortest one as the segment of SP (di, sj);
Thirdly record the destination of the shortest segment as tj , and utilize
the similar way to find the second segment of SP (di, sj) in Gtemp

lj−1 . Repeat
the process until the last segment with the destination di is found in the
layer Gtemp

li
.

3.2 MWSC-based Strategy to Construct Global Optimized
Multi-path in G∗

This phase is based on MWSC algorithm and computing global optimized multi-
path in G∗ between the nodes in D∗ and the nodes in S∗, as shown in Algo-
rithm 1. In the phase, we firstly sort all the paths of P in the non-decreasing order
of their lengths to obtain an ordered path set PO = {path1, path2, · · · , pathq}
as shown in step 2 in Algorithm 1. According to the ordered path lengths in
PO, we construct a global optimal forest/multi-path to minimize the longest
shortest path in the solved forest, which is a binary search process as shown
by steps 3–13. The binary search is starting from Mid = � 1+q

2 	, and in each
iteration, we temporarily remove all the paths path ∈ P whose length satisfies
length(pathMid) ≤ length(path), and check if the subgraph of G∗ induced by P
without those edges can still construct a MWSC which is verified by function
Greedy-Forest(G∗[P ],D∗, S∗) (steps 15–27 in Algorithm 1). If a MWSC can be
constructed, we update P and obtain a MWSC Forest on the subgraph of G∗

induced by the updated P , and proceed with the decreased Mid. Otherwise, we
keep those edges in P and proceed with the increased Mid.

To balance the leaf numbers among all the roots of the solved forest, the crite-
ria of greedy selection of Greedy-Forest(G∗[P ],D∗, S∗) is the difference between
the leaf number of each root and the average leaf number of all the roots avrNL.
Note that in G∗, each node di in D∗ can be regarded as a subset of S∗, which is
composed of its reachable nodes in S∗.

3.3 Paths Reduction for G from the Multi-path in G∗

Based on the forest P∗ in G∗ with the root set D∗ and the leaf set S∗, we transfer
P∗ into an equivalent forest P from D to S in original graph G in this phase. In
the logical graph, the association information for vertex set V has been restored
and the coordinate information for V has been masked, which has not changed
any association properties of the original node. Thus the phase is to restore the
masked information of forest P∗ for the original graph G as follows.
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Algorithm 1. Global Optimized Multi-path Computation Algorithm
(G∗, P,D∗, S∗)

1: Set P∗ ← ∅, avrNL(=
∑

di∈D∗ numofleaf(di)

|D∗| ), Min = Max = Mid = 0.
2: Sort the paths in P according to their weights in the non-decreasing order and

store the order in PO = {path1, path2, · · · , pathq}, and Min = 1, Max = q
3: while Min ≤ Max do
4: Mid = �Min+Max

2
�, Ptemp = {path|path ∈ P and length(pathMid) ≤

length(path)}
5: P ← P \ Ptemp, di ← di \ {sj ∈ Ptemp} (∀di ∈ Ptemp), D

∗ ← D∗ \ {di|∀di ∈
D∗ and |di| = 0}

6: Apply the greedy forest construction function Greedy-Forest(G∗[P ], D∗, S∗)
to find whether a forest can be constructed in G∗[P ] rooted at D∗ and with leaves
in S∗

7: if Greedy-Forest(G∗[P ], D∗, S∗) returns False then
8: Min = Mid
9: P ← P

⋃
Ptemp, di ← di

⋃{sj ∈ Ptemp} (∀di ∈ Ptemp), D∗ ←
D∗ ⋃{di|∀di ∈ D∗ ∩ Ptemp}

10: else
11: Max = Mid, P∗ = Greedy-Forest(G∗[P ], D∗, S∗)
12: end if
13: end while
14: Return P∗.
15: function Greedy-Forest((G∗[P ], D∗, S∗))
16: S ← S∗, D ← D∗, Forest ← ∅
17: while D 
= ∅ do
18: Select a element di ∈ D that minimizes |numofleaf(di)−avrNL

|di
⋂ S| |

19: if numofleaf(di) > avrNL then
20: di ← {The first avrNL nearest leaf nodes in di}
21: end if
22: di ← di

⋂ S, D ← D − {di}, S ← S − di, Forest ← Forest
⋃{di}

23: end while
24: if S 
= ∅ then Return False
25: else Return Forest
26: end if
27: end function

(i) The vertex set of forest P, V [P]: For each vi = (IDi) ∈ V [P∗], V [P] ←
V [P]

⋃{vi = (IDi, xi, yi, zi)}. The same restoring procedure is adapted to
obtain D and S as well.

(ii) The edge set of P, E[P]: For each ek ∈ E[P∗], E[P] ← E[P]
⋃{ek}.
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4 Simulation and Discussion

4.1 Simulation Plan

In this simulation, we will investigate the influence of the following two important
parameters on our algorithm: the number of source nodes, m and the number of
impassable nodes, o. In particular, we will consider two group of setting for each
performance factor: (i) o is fixed as 25 and m varies from 10 to 40 by the step
of 5; (ii) m is fixed as 25 and o varies from 10 to 40 by the step of 5. For each
parameter setting, we run 50 instances and compute their average for evaluation.

Since the problem is NP-hard, it is unlikely for us to compare an output
of the algorithms with an optimal solution. Instead, we employ the theoretical
bound of the problem for comparison, which is the performance factor generated
by the shortest path(SP) algorithm for each source nodes. And we study the
average characteristic behavior of the proposed algorithm and evaluate their
average performance in terms of the utilization factor, the average length factor
and the global length factor.

(i) The utilization factor reflects the utilizing balance of each destination,
which can be calculated as dividing the sum of the difference between the
number of the escaping persons of each escape exit and the average escaping
number of all the escape exits by the number of effective destinations, i.e.∑

di∈D∗ |numofleaf(di)−avrNL|
|D∗| . For a path-finding algorithm, the lower the

utilization factor, the better the performance of the path-finding algorithm.
(ii) The average length factor stands for the whole shortest property of the

planned escaping paths, which is valued as the result of dividing the total
sum of all the differences between each planned path and the shortest path
with the same source and destination by the number of escaping paths,

i.e.
∑

∀di∈D,∀sj∈S(length(di,sj)−SP (di,sj))∑
∀di∈D,∀sj∈S SP (di,sj)

, where p is the number of obtained

paths by our algorithm, length(di, sj) is the path length between di and sj
and SP (di, sj) is the length of shortest path between them.

(iii) The global length factor stands for the global shortest property of the
planned escaping paths, which is valued as the result of the difference
between the length of the longest path generated by our algorithm and
the length of the longest one among the shortest paths, i.e.
|max∀di∈D,∀sj∈S length(di,sj)−max∀di∈D,∀sj∈S SP (di,sj)|

max∀di∈D,∀sj∈S SP (di,sj)
. For the SP algorithm,

the average and global length factors are both 0 which is the lower bound
of all the path-finding algorithms.

4.2 Performance of Proposed Algorithms for GMF Problem

Firstly, we focus on the impact of the number of source nodes, m and the number
of impassable nodes, o on the the utilization factor in Fig. 2. Overall in the two
figures, the utilization factors of our algorithm with the variation of m and o
are both obviously lower than those of the SP algorithm. In Fig. 2(a), we can
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(a) The utilization factor vs. m (b) The utilization factor vs. o

Fig. 2. Performance on the utilization factor

observe that with the increasing of m, the factor of our algorithm stays below
that of the SP algorithm and its fluctuation is within the stable and tolerable
range, i.e. [0, 0.7]. Furthermore, we also find that the number of personnel has no
appreciable impact on the utilization factor of our algorithm, while the poorer
performance on the utilization factor of the SP algorithm is more apparent with
the growth of the personnel number. Next, we study how the utilization factor
is affected by the number of impassable nodes o. As shown in Fig. 2(b), we can
learn that the factor of our algorithm has no obvious change as o grows, while the
factor of the SP algorithm presents obvious ups and downs with the growth of
o. The reason is that the variation of the number of impassable nodes has direct
influence on the topological structure of the laneway model, and the utilization
factor gained from our algorithm can be guaranteed into a reasonable range for
what topological structure the laneway model has.

(a) The average length factor vs. m (b) The average length factor vs. o

Fig. 3. Performance on the average length factor

Secondly, we investigate the impact of the number of source nodes, m and the
number of impassable nodes, o on the the average length factor. From Fig. 3(a)
and (b), we can observe that the number of source nodes m has more influence on
this factor of our solutions than the number of impassable nodes o. Reasons are
as follow: Firstly, the increasing number of obstacles or collapse may lead to the
impassability of initial feasible segments. Thus it may raises that the passable
segments become longer to some extent, and then it causes the average length of
the generated paths becomes larger as well. Secondly, due to the consideration of
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the balanced utilization of each destination, the path assignment scheme changes
with the change of the topological structure of the laneway model. It is worth
noting that with the rise of the number of personnel, the gap between the average
length of the escaping networks generated by our algorithm and that by SP
algorithm tends to be gradually narrowing.

(a) The global length factor vs. m (b) The global length factor vs. o

Fig. 4. Performance on the global length factor

Thirdly, comparing with the variation trend of the average length factor, the
trend of the global length factor becomes more apparent as m and o increases.
Seen from Fig. 4(a), the difference between the global escaping time-consumption
obtained from our solution and that from SP scheme is getting smaller with the
rising of the personnel number. And when m is larger than 30, the difference
is getting 0 which indicates our strategy can enhance the utilization efficiency
of the escaping exits with the minimization guarantee of the global escaping
time-consumption. On the contrary, as shown Fig. 4(b), the difference between
the global escaping time-consumption obtained from our solution and that from
SP scheme is getting larger with the change of the topological structure of the
laneway model, and the difference can be controlled in a steady STATE when
o ≥ 30. This reason is similar with that of the influence of o on the average length
factor.

To conclude, our algorithm outperforms the SP algorithm on the performance
of the escaping exit utilization. Furthermore, the number of personnel has more
influence on our algorithm than the number of impassable nodes on the length
factor. Although there exists a gap on the global and average path length of the
generated escaping network between our algorithm and the SP algorithm, with
the rise of the number of personnel, the gap is tending to be gradually narrowing.
Therefore, our strategy can enhance the utilization efficiency of the escaping exits
and guarantee a tolerable range of the global escaping time-consumption.

5 Conclusions

In this paper, we have proposed a new problem the Global-optimized Multi-path
Finding (GMF) Problem in Mine Water-inrush Evacuation, which has two opti-
mization objects, maximizing exit utilization and minimizing the global escaping
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delay. Based on the classical problem, Minimum Weighted Set Cover (MWSC)
Problem, we proposed a 3-phase heuristic algorithm for GMF problem. Based on
our simulation results, our algorithm outperforms the shortest path algorithm
on one of the most important performance factors, the utilization efficiency of
the escaping exits. And our solution can guarantee that the deviation of the
global escaping delay from the shortest delay is in a reasonable range.

Future Works. Despite our through studies conducted in this paper, we believe
there are lots of room for further investigation. In this paper, we consider one
of the multi-objective optimization problems on mine emergency application
and we can further take other multi-objective evacuation plan problems, i.e.
maximizing the utilization of the prioritized exits’ utilization and minimizing the
whole escaping delay. In addition, we plan to investigate intelligent evacuation
multi-path plan problems in more application scenarios.
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Abstract. Given a set P of n points on which facilities can be placed
and an integer k, we want to place k facilities on some points so that the
minimum distance between facilities is maximized. The problem is called
the k-dispersion problem. In this paper we consider the 3-dispersion prob-
lem when P is a set of points on a plane. Note that the 2-dispersion
problem corresponds to the diameter problem. We give an O(n) time
algorithm to solve the 3-dispersion problem in the L∞ metric, and an
O(n) time algorithm to solve the 3-dispersion problem in the L1 met-
ric. Also we give an O(n2 logn) time algorithm to solve the 3-dispersion
problem in the L2 metric.

Keywords: Dispersion problem · Facility location

1 Introduction

The facility location problem and many of its variants have been studied [9,10].
Typically, given a set of points on which facilities can be placed and an integer
k, we want to place k facilities on some points so that a designated function on
distance is minimized. By contrast in the dispersion problem, we want to place
facilities so that a designated function on distance is maximized.

The intuition of the problem is as follows. Assume that we are planning to
open several chain stores in a city. We wish to locate the stores mutually far
away from each other to avoid self-competition. So we wish to find k points so
that the minimum distance between them is maximized. See more applications,
including result diversification, in [7,17,18].

Now we define the max-min k-dispersion problem. Given a set P of n possible
points, a distance function d for each pair of points (we assume that d is a
symmetric nonnegative function satisfying d(p, p) = 0 for all p ∈ P ), and an
integer k with k � n, we wish to find a subset S ⊂ P with |S| = k such that
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the cost cost(S) = min{u,v}⊂S{d(u, v)} is maximized. Such a set S is called a k-
dispersion of P . This is the max-min version of the k-dispersion problem [17,19].
For the max-sum version see [4–8,12,15,17], and for a variety of related problems
see [4,8]. The max-min k-dispersion problem is NP-hard even when the triangle
inequality is satisfied [11,19]. An exponential time exact algorithm for the max-
min k-dispersion problem is known [2]. The running time is O(nωk/3 log n), where
ω < 2.373 is the matrix multiplication exponent.

A geometric version of the problem in D-dimensional space can be solved
in O(kn) time for D = 1 (if the order of points in P on the line is given)
and is NP-hard for D = 2 [19]. The running time for D = 1 was improved to
O(n log log n) [3] (if the order of points in P on the line is given) by the sorted
matrix search method [13] (see a good survey for the sorted matrix search method
in [1, Section 3.3]), then O(n) [2] by a reduction to the path partitioning prob-
lem [13]. Ravi et al. [17] proved that the max-min k-dispersion problem cannot
be approximated within any constant factor in polynomial time, and cannot be
approximated within a factor of two in polynomial time when the distance sat-
isfies the triangle inequality, unless P = NP. They also gave a polynomial-time
algorithm with approximation ratio two when the triangle inequality is satisfied.

In this paper we consider the case k = 3, namely the max-min 3-dispersion
problem, when a set P of n points lie on a plane. Note that the 2-dispersion of P
corresponds to the diameter of P , and one can compute it in O(n log n) time [14].

We first study the case where d is the L∞ metric. We give an algorithm to
compute the 3-dispersion of P in O(n) time.

Then we study the case where d is the L1 metric. We show that a similar
algorithm can compute the 3-dispersion of P in O(n) time.

Finally we study the case where d is the L2 metric. We give an algorithm
to compute the 3-dispersion of P in O(n2 log n) time. By slightly improving
the algorithm we can also compute the 3-dispersion of P in dimension D in
O(Dn2 + Tn log n) time where T is the time to compute the diameter of n
points in dimension D.

The remainder of this paper is organized as follows. Section 2 gives an O(n)
time algorithm to solve the 3-dispersion problem if d is the L∞ metric. Section 3
gives an O(n) time algorithm to solve the 3-dispersion problem if d is the L1

metric. Section 4 gives an O(n2 log n) time algorithm to solve the 3-dispersion
problem if d is the L2 metric. Finally Sect. 5 is a conclusion.

2 3-Dispersion in L∞ Metric

In this section we give an O(n) time algorithm to solve the 3-dispersion problem
if P is a set of n points on a plane and d is the L∞ metric.

Let P = {p1, p2, · · · , pn} and assume x(p1) ≥ x(p2) ≥ · · · ≥ x(pn). Let
S = {pa, pb, pc} be a 3-dispersion of P . We say that a pair (pu, pv) in P is type-H
if d(pu, pv) = |x(pu)− x(pv)|, and type-V otherwise. We have the following four
cases for S. Let E = {(pa, pb), (pb, pc), (pc, pa)}.
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Case 1: All three pairs in E are type-H.

Case 2: Two pairs in E are type-H and one pair in E is type-V.

Case 3: Two pairs in E are type-V and one pair in E is type-H.

Case 4: All three pairs in E are type-V.
Our algorithm computes three points having the maximum cost for each case,

then chooses the maximum one among those four solutions, as a 3-dispersion.
Now we consider how to compute a 3-dispersion S restricted for each case.

Case 1: All three pairs in E are type-H.
The solution consists of (1) the leftmost point pn in P , (2) the rightmost

point p1 in P , and (3) the point pm in P which is the closest points to the
midpoint between p1 and pn.

One can find pn and p1 in O(n) time, then find pm in O(n) time.
Thus we can compute a 3-dispersion S = {p1, pm, pn} of P in O(n) time if S

is Case 1.

Case 2: Two pairs in E are type-H and one pair in E is type-V .
Let S = {pa, pb, pc} be a 3-dispersion with x(pa) ≤ x(pb) ≤ x(pc), and assume

that S is Case 2.
Either (pa, pb) or (pb, pc) is type-V . Note that if (pa, pc) is type-V then either

(pa, pb) or (pb, pc) is also type-V , a contradiction. Assume (pb, pc) is type-V . The
other case is symmetrical. Let Pi = {p1, p2, · · · , pi} be the subset of P consisting
of the rightmost i points in P . We have the following two lemmas.

Lemma 1. There is a 3-dispersion S = {pa, pb, pc} such that pa is the leftmost
point pn in P .

Proof. Otherwise let S′ be {pn, pb, pc}, which is derived from S by replacing
pa with the leftmost points pn in P . Since (pa, pb) and (pa, pc) are type-H,
cost(S′) ≥ cost(S) holds. If cost(S′) = cost(S) then the claim is satisfied. If
cost(S′) > cost(S) then S is not a 3-dispersion, a contradiction. (Note that S′

may not be Case 2.)

Lemma 2. There is a 3-dispersion S = {pa, pb, pc} satisfying the following. Let
pi = pb. If y(pb) ≤ y(pc) then pb is a lowest point in Pi and pc is a highest point
in Pi. If y(pb) > y(pc) then pb is a highest point in Pi and pc is a lowest point
in Pi.

Proof. Assume that y(pb) ≤ y(pc) but pb is not the lowest point p� in Pi. Then
let S′ be {pa, p�, pc}, which is derived from S by replacing pb with p�. Since
(pb, pc) is type-V , now cost(S′) ≥ cost(S) holds. If cost(S′) = cost(S) then the
claim is satisfied for some Pb′ with b′ < b. If cost(S′) > cost(S) then S is not a
3-dispersion, a contradiction. (Note that S′ may not be Case 2.)

Similar for the other case.
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pa

pb

pc

Fig. 1. An illustration for Case 2.

Let hi be the highest point in Pi and �i the lowest point in Pi.
If {pa, pb, pc} is a 3-dispersion of P , x(pa) ≤ x(pb) ≤ x(pc), (pb, pc) is type-V

and {pa, pb, pc} is Case 2, then pa = pn, and {pb, pc} = {hi, �i} for pb = pi. See
Fig. 1.

We first compute min{d(pa, pi), d(hi, �i)} for each i, then choose the maxi-
mum one among them satisfying pi ∈ {hi, �i}. It corresponds to a 3-dispersion
{pa, pb, pc} of P , since d(pa, pi) = min{d(pa, pb), d(pa, pc)} and d(hi, �i) =
d(pb, pc).

We can compute a 3-dispersion {pa, pb, pc} by binary search as follows.
First we sort P by x-coordinates in O(n log n) time.
By scanning P from right to left we can compute the highest point hi and

the lowest point �i in each Pi with 1 ≤ i ≤ n in O(n) time in total. We also
compute d(pn, pi) for each i with 0 < i < n in O(n) time in total.

Now we compute maxi min{d(pa, pi), d(hi, �i)}. Clearly d(pa = pn, pi) is
monotonically decreasing with respect to i and d(hi, �i) is monotonically increas-
ing with respect to i. Then by binary search we can compute the optimal i with
S = {pa = pn, hi, �i} having the maximum cost min{d(pn, pi), d(hi, �i)} in log n
stages. Each stage of the binary search requires O(1) time.

Thus we can compute a 3-dispersion S in O(n log n) time in total if S is Case 2.

Case 3: Two pairs in E are type-V and one pair in E is type-H.
Similar to Case 2. Swap x and y axes.

Case 4: All three pairs in E are type-V.
Similar to Case 1. Swap x and y axes.
We have the following lemma.

Lemma 3. If P is a set of n points on a plane and d is the L∞ metric then
one can solve the max-min 3-dispersion problem in O(n log n) time.

We can improve the running time to O(n) by removing the sort in Cases 2
and 3. The binary search proceeds as follows. In the j-th stage we have a set I of
points having consecutive x-coordinates containing optimal pi and |I| = n/2j−1.
We find the median pj′ in I in O(n/2j−1) time by the linear-time median-finding
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algorithm. Then find the highest point hj and the lowest point �j in the right half
points of I consisting of n/2j points in O(n/2j) time. By the two points hj and
�j above and the hi, �i of a suitable preceding stage i we can compute the hj′ , �j′

of current Pj′ in constant time. Depending on the result of d(pa, pj′) < d(hj′ , �j′)
we proceed to the next stage with suitable parameters.

We have the following theorem.

Theorem 1. If P is a set of n points on a plane and d is the L∞ metric then
one can solve the max-min 3-dispersion problem in O(n) time.

We cannot simply generalize the algorithm to 3-dimension since there
is an example in which any 3-dispersion has no points with an extreme
coordinate value. Let P = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0), (0,−1, 0),
(0, 0,−1), (0.9,−0.9, 0), (0, 0.9,−0.9), (−0.9, 0, 0.9)} then the 3-dispersion of P
is {(0.9,−0.9, 0), (0, 0.9,−0.9), (−0.9, 0, 0.9)}, and none of which has an extreme
coordinate value.

We now give an O(n log n) time algorithm to solve the 3-dispersion problem
in 3-dimension.

We say a pair (pu, pv) in P is type-X if d(pu, pv) = |x(pu) − x(pv)|, type-
Y if d(pu, pv) = |y(pu) − y(pv)| and |y(pu) − y(pv)| > |x(pu) − x(pv)|, type-Z
otherwise.

Let P = {p1, p2, · · · , pn} be the set of points in 3-dimensional space, and let
S = {pa, pb, pc} be the 3-dispersion of P .

We have 33 cases for S. Let E = {(pa, pb), (pb, pc), (pc, pa)}.
Case 1: (pa, pb) is type-X, (pa, pc) is type-Y and (pb, pc) is type-Z.

We have eight subcases for S depending on the order of pa, pb, pc on each
coordinate.

Case 1(a): x(pa) ≤ x(pb), y(pa) ≤ y(pc), and z(pb) ≤ z(pc). (The other cases
are similar so omitted.)

Fix pa. We wish to compute three points {pa, pb, pc} with the maximum d
satisfying min{x(pb) − x(pa), y(pc) − y(pa)} = d, and z(pc) − z(pb) ≥ d. Each
candidate value for d is the distance between pa and a point in P , so the number
of such values is at most n. By binary search we are going to find the maximum
such d. We now need some definitions.

We sort the points with their x-coordinates in O(n log n) time. Similarly
sort the points with their y-coordinates. Assume that P = {p1, p2, · · · , pn} =
{p

′
1, p

′
2, · · · , p

′
n}, x(p1) ≥ x(p2) ≥ · · · ≥ x(pn), and y(p

′
1) ≥ y(p

′
2) ≥ · · · ≥ y(p

′
n).

Let Bi = {p|x(p) ≥ x(pi)} and Cj = {p|y(p) ≥ y(p
′
j)}. We compute a table

TB as a preprocessing step so that TB(i) = min{z(p)|p ∈ Bi}. Similarly we
compute a table TC as a preprocessing step so that TC(j) = max{z(p)|p ∈ Cj}.
We need O(n) time for these tables.

We maintain the set Pb of candidates for pb. Initially we set Pb = {p|x(p) >
x(pa)}. Similarly we maintain the set Pc of candidates for pc. Initially we set
Pc = {p|y(p) > y(pa)}.
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The binary search proceeds the following way.
Let pb′ be the point in Pb having the median of x-coordinate, and p

′
c′ be

the point in Pc having the median of y-coordinate. Let d
′
= min{x(pb′) −

x(pa), y(p
′
c′) − y(pa)}. Assume d

′
= x(pb′) − x(pa). (The other case is sim-

ilar.) If TC(c′) − TB(b′) ≥ d
′
then there exists (pa, pb, pc) satisfying (1)

min{x(pb) − x(pa), y(pc) − y(pa)} ≥ d
′
, and (2) z(pc) − z(pb) ≥ d

′
. Now b′ ≥ b

and c′ ≥ c hold. In this case we can halve the size of the two candidate sets Pb
and Pc, respectively. If TC(c′) − TB(b′) < d

′
then there is no {pa, pb, pc} with

cost d′, so b′ < b holds for a 3-dispersion {pa, pb, pc}, and we can halve the size
of the candidate set Pb.

Thus by binary search we can find the maximum d in at most 2 log n stages.
In each stage we can compute TC(c′) − TB(b′) in O(1) time.

We need to compute above for each possible pa. Thus the running time for
Case 1 is O(n log n).

The other cases are similar so omitted. Since the number of cases is a constant
the total running time is O(n log n).

3 3-Dispersion in L1

In this section we give an O(n) time algorithm to solve the 3-dispersion problem
when P is a set of n points on a plane and d is the L1 metric.

We consider four coordinate systems each of which is derived from the original
coordinate system by rotating 45, 135, 225 or 315◦ clockwise around the origin.
We can observe that there is a 3-dispersion of P containing a point having
extreme x-coordinate in one of those four coordinate systems. Note that each
coordinate system has two extreme points for x-coordinates. We only explain 45◦

case with the point having the minimum x-coordinate. Other cases are similar.
Let x′ and y′ be the coordinates of the rotated coordinate system. Let P =

{p1, p2, · · · , pn} and assume x′(p1) ≥ x′(p2) ≥ · · · ≥ x′(pn). Let S = {pa, pb, pc}
be the 3-dispersion of P with x′(pa) ≤ x′(pb) ≤ x′(pc) and pa = pn is the point
having the minimum x′-coordinate.

We say two points (pu, pv) with x′(pu) ≤ x′(pv) in P are type-U (upward) if
y(pu) ≤ y(pv), and type-D (downward) otherwise.

We compute the optimal i∗, which is the i with the maximum
min{d(pa, pi), diam(Pi)}, where pi is the i-th farthest point from pa in the L1

metric and diam(Pi) is the diameter of Pi where Pi = {p1, p2, · · · pi} is the subset
of P consisting of the i farthest points from pn = pa in P . Let pb and pc be the
points corresponding to the diameter of Pi. See Fig. 2. If pb and pc are type-U
then pb is the point with the minimum y′(pb) in Pi and pc is the point with the
maximum y′(pb) in Pi. If pb and pc are type-D then pb is the point pi with the
minimum x′(pb) in Pi and pc is the point p1 with the maximum x′(pc) in Pi.

Similar to the L∞ metric case, we can compute a max-min 3-dispersion of P
in O(n) time, by binary search with the linear-time median-finding algorithm.

Now we have the following theorem.
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Fig. 2. Illustrations for the diameter of Pi in the L1 metric with (a) type-U and (b)
type-D.

Theorem 2. If P is a set of n points on a plane and d is the L1 metric then
one can solve the max-min 3-dispersion problem in O(n) time.

4 3-Dispersion in L2 Metric

In this section we design an O(n2 log n) time algorithm to solve the 3-dispersion
problem when P is a set of n points on a plane and d is the L2 metric.

Let S = {pa, pb, pc} be a 3-dispersion of P , and assume that d(pb, pc) is the
shortest one among {d(pa, pb), d(pb, pc), d(pc, pa)}, d(pa, pb) ≤ d(pa, pc) and pb is
the i-th farthest point from pa in P . Let Pi = {p1, p2, · · · , pi} be the subset of
P consisting of the i farthest points from pa. We have the following lemma. Let
diam(P ) be the diameter of P .

Lemma 4. d(pb, pc) = diam(Pi).

Proof. Otherwise there are pb′ , pc′ ∈ Pi with diam(Pi) = d(pb′ , pc′). Let S′ =
{pa, pb′ , pc′}. Now d(pa, pb) ≤ d(pa, pb′), d(pa, pb) ≤ d(pa, pc′), and d(pb, pc) <
d(pb′ , pc′) hold. Thus cost(S) < cost(S′), a contradiction.

Thus if we compute i maximizing min{d(pa, pi), diam(Pi)} for each pa, then
choose the maximum one, it corresponds to a 3-dispersion of P .

For a fixed pa we can compute the optimal i∗ with the maximum
min{d(pa, pi∗), diam(Pi∗)} by binary search, as follows.
Clearly d(pa, pi) is monotonically decreasing with respect to i and diam(Pi)

is monotonically increasing with respect to i.
First we sort the points in P by the distance from pa. Then we are going to

find the optimal i∗. First set I = [1, n].
In the j-th stage we check for the median i in I consisting of n/2j−1 num-

bers containing i∗, whether d(pa, pi) < diam(Pi) or not. For the check we first
compute the convex hull Cj of Pi by constructing the convex hull of suitable
n/2j points in O((n/2j) log n) time, then possibly merging it to suitable Cj′

with j
′

< j in O(n) time. Using Cj we can compute diam(Pi) in O(n) time.
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p1

p2

p6

p5

p7

p3

p4

Fig. 3. A 3-dispersion may contain no corner points of the convex hull of P .

Depending on the result of d(pa, pi) < diam(Pi) we proceed to the next stage
with suitable parameters.

Since the number of stages is at most log n, the total running time for a fixed
pa is O(n log n).

We have the following theorem.

Theorem 3. If P is a set of n points on a plane and d is the L2 metric then
one can solve the max-min 3-dispersion problem in O(n2 log n) time.

If any P has a 3-dispersion with at least one point on the corner points of the
convex hull of P then we can check pa only for the corner points of the convex
hull of P . However there is a counterexample. See Fig. 3, in which {p5, p6, p7} is
a 3-dispersion. Note that the dotted circles have centers at p6 and p7 with radius
d(p5, p6) = d(p6, p7) = d(p7, p5) and so d(p6, p7) > d(p2, p7) = d(p3, p6) holds.

By generalizing the algorithm to dimension D we have the following theorem.

Theorem 4. If P is a set of n points in dimension D and d is the L2 metric
then one can solve the max-min 3-dispersion problem in O(Dn2+Tn log n) time,
where T is the time to compute the diameter of n points in dimension D.

Note that for a fixed pa we need to compute medians in O(Dn)+O(Dn/2)+
O(Dn/22) + · · · = O(Dn) time.

One can compute the diameter of n points in 3-dimension in O(n log n)
time [16]. So we can compute a 3-dispersion of n points in 3-dimension in
O(n2 log2 n) time, which is faster than the O(nωk/3 log n) time algorithm [2]
for k = 3. The diameter of n points in dimension D can be computed in time
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O(n2−a(k)(log n)1−a(k)), where a(k) = 2−(k+1) [20]. So we can compute the
3-dispersion of n points in dimension D in o(n3) time for any D.

5 Conclusion

In this paper we have designed some algorithms to solve the 3-dispersion problem
for a set of points on a plane. We have designed O(n) time algorithms to solve
the 3-dispersion problem when d is the L∞ metric or the L1 metric. Also we
have designed an O(n2 log n) time algorithm to solve the 3-dispersion problem
when d is the L2 metric.

Given a set P of points on a plane the diameter problem finds a pair (u, v)
of points in P with the maximum d(u, v). Thus the diameter corresponds to the
2-dispersion of P . There is a linear time reduction from the diameter problem to
the 3-dispersion problem with the L2 metric, as follows. Given P we append a
dummy point p′ so that it is far enough from P . Then a 3-dispersion of P ∪{p′}
always contains p′ and the other two points correspond to the diameter of P . It
is known that any algorithm to solve the diameter problem requires Ω(n log n)
time [14]. Thus any algorithm to solve the 3-dispersion problem with the L2

metric requires Ω(n log n) time. Therefore there is a chance to either design a
faster algorithm to solve the 3-dispersion problem with the L2 metric, or show
a greater lower bound.

For a set P of points in a metric space we can compute the 3-dispersion
of P as follows. By replacing (+, ·) to (max,min) in the matrix multiplication
algorithm we can compute maxc{min{d(pa, pc), d(pb, pc)}} for each pa, pb ∈ P in
O(nω) time. So we can compute min{d(pa, pb),maxc{min{d(pa, pc), d(pb, pc)}}}
for each pa, pb ∈ P in O(nω) time, then choose the maximum one among them
as a 3-dispersion. Thus we can compute a 3-dispersion of n points in a metric
space in O(nω) time, where ω < 2.373.
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Abstract. In a graph, a matching cut is an edge cut that is a matching.
Matching Cut is the problem of deciding whether or not a given graph
has a matching cut, which is known to be NP-complete. While Match-
ing Cut is trivial for graphs with minimum degree at most one, it is
NP-complete on graphs with minimum degree two.

In this paper, we show that, for any given constant ε > 0, Match-
ing Cut is NP-complete in the class of n-vertex (bipartite) graphs with
minimum degree δ > n1−ε. We give an exact branching algorithm to
solve Matching Cut for graphs with minimum degree δ ≥ 3 in time
O∗(λn), where λ is the positive root of the polynomial xδ+1 − xδ − 1.
This is a very fast exact exponential time algorithm for Matching Cut
on graphs with large minimum degree; for instance, the running time is
O∗(1.0099n) on graphs with minimum degree δ ≥ 469. Complementing
our hardness results, we show that, for any fixed constant 1 < c < 4,
Matching Cut is solvable in polynomial time for graphs with very large
minimum degree δ ≥ 1

c
n.

1 Introduction

In a graph G = (V,E), a cut is a partition V = X ∪̇Y of the vertex set into
disjoint, non-empty sets X and Y , written (X,Y ). The set of all edges in G
having an endvertex in X and the other endvertex in Y , also written (X,Y ), is
called the edge cut of the cut (X,Y ). A matching cut is an edge cut that is a
(possibly empty) matching. Another way to define matching cuts is as follows
[5,8]. A partition V = X ∪̇ Y of the vertex set of the graph G = (V,E) into
disjoint, non-empty sets X and Y , is a matching cut if and only if each vertex in
X has at most one neighbor in Y and each vertex in Y has at most one neighbor
in X.
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): COCOON 2019, LNCS 11653, pp. 301–312, 2019.
https://doi.org/10.1007/978-3-030-26176-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26176-4_25&domain=pdf
https://doi.org/10.1007/978-3-030-26176-4_25


302 S.-Y. Hsieh et al.

Graham [8] studied matching cuts in graphs in connection to a number theory
problem called cube-numbering. In [6], Farley and Proskurowski studied match-
ing cuts in the context of network applications. Patrignani and Pizzonia [14]
pointed out an application of matching cuts in graph drawing. Matching cuts
have been used by Araújo et al. [1] in studying good edge-labellings in the context
of WDM (Wavelength Division Multiplexing) networks.

Not every graph has a matching cut; the Matching Cut problem is the
problem of deciding whether or not a given graph has a matching cut:

Matching Cut
Instance: A graph G = (V,E).
Question: Does G have a matching cut?

Obviously, disconnected graphs and graphs having a bridge have a matching cut.
In particular, Matching Cut is trivial for graphs with minimum degree at most
one. It is known, however, Matching Cut is NP-complete on (bipartite) graphs
with minimum degree two and on (bipartite) graphs with minimum degree three
(see [12]). This paper considers the computational complexity of the Matching
Cut problem in graphs of large minimum degree.

1.1 Previous Results

Graphs admitting a matching cut were first discussed by Graham in [8] under
the name decomposable graphs. The first complexity and algorithmic results for
Matching Cut have been obtained by Chvátal, who proved in [5] that Match-
ing Cut is NP-complete, even when restricted to graphs of maximum degree
four, and is solvable in polynomial time for graphs with maximum degree at
most three. These results triggered a lot of research on the computational com-
plexity of Matching Cut in graphs with additional structural assumptions;
see [3,4,10,12–14]. In particular, the NP-hardness of Matching Cut has been
further strengthened for planar graphs of maximum degree four [3] and bipartite
graphs of minimum degree three and maximum degree four [12]. Moreover, it fol-
lows from Bonsma’s result [3] and a simple reduction observed by Moshi [13] that
Matching Cut remains NP-complete on bipartite planar graphs of minimum
degree two and maximum degree eight. Recently, Le and Le [11] proved that
Matching Cut is NP-complete on graphs of diameter d for any fixed integer
d ≥ 3 and on bipartite graphs of diameter d for any fixed integer d ≥ 4.

On the positive side, some polynomially solvable cases have been identified:
graphs of maximum degree 3 [5], graphs without chordless cycle of length at
least five (including chordal and chordal bipartite graphs) [13], claw-free graphs
(including line graphs) [3], graphs of diameter 2 [4,11], bipartite graphs of diam-
eter at most 3 [11]. In [10], the cases of graphs of maximum degree 3 and of
claw-free graphs have been extended to a larger class in which Matching Cut
is still solvable in polynomial time.

Parameterized and exact exponential algorithms for Matching Cut on
graphs without any restriction have been considered in [2,9,10]. Kratsch and
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Le [10] provided the first exact branching algorithm for Matching Cut run-
ning in time O∗(1.4143n)1 and noted that Matching Cut cannot be solved for
n-vertex graphs in 2o(n) time, if the Exponential Time Hypothesis (ETH) is true.
Recently, the running time has been improved in [9] to O∗(1.3803n). We note
that the running time analysis of these branching algorithms highly depends on
the minimum degree ≥ 2 of the input graphs. This fact was the main motivation
of the present work.

1.2 Our Contributions

We prove that Matching Cut is NP-complete, even when restricted to (bipar-
tite) n-vertex graphs of minimum degree at least n1−ε for any fixed constant
ε > 0. This hardness result is somehow surprising, as, intuitively, Matching
Cut would be easy for very dense graphs, graphs with very large minimum
degree. We show that the exact branching algorithms in [9,10] solving Match-
ing Cut can be simplified for graphs with large minimum degree δ, which
results in a running time O∗(λn), where λ is the positive root of the polyno-
mial xδ+1 −xδ −1. For δ ≥ 4, this running time is O∗(1.3248n), improving upon
the previous best known O∗(1.3803n)-time algorithm [9]. It is quite interesting
to note that, for δ ≥ 469, our exact algorithm solves an NP-complete problem in
time O∗(1.0099n)! Complementing our hardness results, we show that Match-
ing Cut can be solved in polynomial time in graphs with minimum degree at
least 1

cn, where 1 < c < 4 is a fixed constant.

1.3 Notation and Terminology

Let G = (V,E) be a graph with vertex set V (G) = V and edge set E(G) = E.
An independent set (a clique) in G is a set of pairwise non-adjacent (adjacent)
vertices. The neighborhood of a vertex v in G, denoted NG(v), is the set of all
vertices in G adjacent to v; the closed neighborhood of v is NG[v] = NG(v)∪{v}.
If the context is clear, we simply write N(v) and N [v]. Set deg(v) = |N(v)|, the
degree of the vertex v, and δ(G) = min{deg(v) | v ∈ V (G)}, the minimum degree
of G. For a subset W ⊆ V , the W -neighbors of a vertex v are the vertices in
N(v) ∩ W , G[W ] is the subgraph of G induced by W , and G − W stands for
G[V \W ]. The complete graph and the path on n vertices is denoted by Kn and
Pn, respectively; K3 is also called a triangle. The complete bipartite graph with
one color class of size p and the other of size q is denoted by Kp,q.

Given a graph G = (V,E) and a partition V = X ∪̇ Y , it can be decided
in linear time if (X,Y ) is a matching cut of G. This is because (X,Y ) is a
matching cut of G if and only if the bipartite subgraph BG(X,Y ) of G with
the color classes X and Y and edge set (X,Y ) is P3-free. That is, (X,Y ) is a
matching cut of G if and only if the non-trivial connected components of the
bipartite graph BG(X,Y ) are edges. We say that S ⊂ V is monochromatic if,
for any matching cut (X,Y ) of G (if any), S ⊆ X or else S ⊆ Y . Observe that

1 Throughout the paper we use the O∗ notation which suppresses polynomial factors.
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(the vertex set of) any Kn with n ≥ 3, and any Kp,q with p ≥ 2, q ≥ 3, in
G is monochromatic. A bridge in a graph is an edge whose deletion increases
the number of the connected components. Since disconnected graphs and graphs
having a bridge have a matching cut, we may assume that all graphs considered
are connected and 2-edge connected.

When an algorithm branches on the current instance of size n into r sub-
problems of sizes at most n − t1, n − t2, . . . , n − tr, then (t1, t2, . . . , tr) is called
the branching vector of this branching, and the unique positive root of the char-
acteristic polynomial xn − xn−t1 − xn−t2 − · · · − xn−tr , denoted τ(t1, t2, . . . , tr),
is called its branching number. The running time of a branching algorithm is
O∗(λn), where λ = maxi λi and λi is the branching number of branching rule
i, and the maximum is taken over all branching rules. We refer to [7] for more
details on exact branching algorithms.

1.4 Structure of the Paper

The paper is organized as follows. In Sect. 2 we show that Matching Cut is
NP-complete when restricted to graphs with minimum degree δ ≥ n1−ε, for any
fixed constant ε > 0. The same result holds also for bipartite graphs. In Sect. 3 we
describe the fast exact branching algorithm solving Matching Cut for graphs
with large minimum degree. In Sect. 4 we show that Matching Cut can be
solved in polynomial time for graphs with very large minimum degree at least
1
cn for any fixed constant 1 < c < 4. We conclude the paper with Sect. 5.

2 Hardness Results

If G has a vertex v with deg(v) ≤ 1, then ({v}, V (G)\{v}) is clearly a matching
cut of G. It is known that Matching Cut is NP-complete for graphs with min-
imum degree two. It is quite easy to see that, for any constant c ≥ 2, Match-
ing Cut is NP-complete for graphs with minimum degree c: Given a graph
G = (V,E), let G′ be obtained from G and |V | cliques Qv, v ∈ V , each of size c
by joining edges between v and all vertices in Qv. Then, G′ has minimum degree
c and G has a matching cut if and only if G′ has a matching cut (this is because
the cliques Qv ∪ {v}, v ∈ V , are monochromatic).

Our main result in this section says that Matching Cut remains NP-
complete on graphs with very large minimum degree, even on such bipartite
graphs. This is somehow surprising as one might expect that it would be easy
to check if a very dense graph has a matching cut.

Theorem 1. Let ε > 0. Matching Cut is NP-complete on n-vertex graphs
with minimum degree at least n1−ε. Moreover, Matching Cut remains
NP-complete on n-vertex bipartite graphs with minimum degree at least n1−ε.

Proof. Given an n-vertex graph G = (V,E) with δ = δ(G) ≥ 2 and ε > 0, let
G′ = (V ′, E′) be obtained from t = 	n 1−ε

ε 
 copies of G by making all t copies of
any vertex v ∈ V to a clique. More precisely, writing V = {v1, . . . , vn} we have;
see also Fig. 1.
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– V ′ = V 1 ∪ . . . ∪ V t, where
• V s = {vs

1, . . . , v
s
n} is the sth copy of the vertex set V , 1 ≤ s ≤ t.

– E′ = E1 ∪ . . . ∪ Et ∪ F1 ∪ . . . ∪ Fn, where
• Es = {vs

i v
s
j | 1 ≤ i, j ≤ n, vivj ∈ E} is the sth copy of the edge set E,

1 ≤ s ≤ t, and
• Fi = {vs

i v
s′
i | 1 ≤ s, s′ ≤ t, s �= s′}, 1 ≤ i ≤ n.

Thus, G′[V s] = (V s, Es), 1 ≤ s ≤ t, are the t copies of G and for each
1 ≤ i ≤ n, the set Qi = {v1

i , . . . , vt
i} of the t copies of vi ∈ V induces a clique in

G′ (with the edge set Fi).

vi

G G

v1i

G [V 1]

v2i

G [V 2]

. . .

vti

G [V t]

Fig. 1. The graphs G and G′.

Clearly, given ε > 0 and G, G′ can be constructed in polynomial time t ·
O(nt2) = O(n3 1−ε

ε +1). Moreover, G has a matching cut if and only if G′ has a
matching cut: first, if (X,Y ) is a matching cut of G, then (X ′, Y ′) with

X ′ =
⋃

1≤i≤n : vi∈X

Qi and Y ′ =
⋃

1≤i≤n : vi∈Y

Qi

obviously, by definition of G′, is a matching cut of G′. Second, if (X ′, Y ′) is a
matching cut of G′, then for each 1 ≤ i ≤ n, the clique Qi is contained in X ′ or
else in Y ′ (as Qi is monochromatic). Hence, (X,Y ) with

X = {vi | 1 ≤ i ≤ n,Qi ⊆ X ′} and Y = {vi | 1 ≤ i ≤ n,Qi ⊆ Y ′}
is a matching cut of G.

Now, G′ has n′ = tn vertices. Hence t ≥ n
1−ε

ε = (n′/t)
1−ε

ε , implying t ≥
(n′)1−ε. Therefore, G has minimum degree δ′ = δ + t − 1 > t ≥ (n′)1−ε. Thus,
the first part of the theorem is proved.

For the second part, let ε > 0 and let G = (V,E) be a bipartite graph
with bipartition V = U ∪ W and minimum degree δ = δ(G) ≥ 2. The previous
construction can be modified to obtain a desired bipartite graph G′ = (U ′ ∪
W ′, E′) consisting of 2t copies of G as follows. Write U = {u1, . . . , up},W =
{w1, . . . , wq}. Thus, n = p + q is the vertex number of G.
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– Let t = 	(2n)
1−ε

ε 
.
– U ′ = U1 ∪ . . . ∪ U t ∪ W t+1 ∪ . . . ∪ W 2t, and
– W ′ = W 1 ∪ . . . ∪ W t ∪ U t+1 ∪ . . . ∪ U2t, where

• Us = {us
1, . . . , u

s
p} is the sth copy of the color class U , 1 ≤ s ≤ 2t,

• W s = {ws
1, . . . , w

s
q} is the sth copy of the color class W , 1 ≤ s ≤ 2t.

– E′ = E1 ∪ . . . ∪ E2t ∪ FU
1 ∪ . . . ∪ FU

p ∪ FW
1 ∪ . . . ∪ FW

q , where
• Es = {us

i w
s
j | 1 ≤ i ≤ p, 1 ≤ j ≤ q, uiwj ∈ E} is the sth copy of the edge

set E, 1 ≤ s ≤ 2t,
• FU

i = {us
i u

s′
i | 1 ≤ s ≤ t, t + 1 ≤ s′ ≤ 2t}, 1 ≤ i ≤ p, and

• FW
j = {ws

jw
s′
j | 1 ≤ s ≤ t, t + 1 ≤ s′ ≤ 2t}, 1 ≤ j ≤ q.

Thus, G′[Us∪W s] = (Us∪W s, Es), 1 ≤ s ≤ 2t, are the 2t copies of G and for
each 1 ≤ i ≤ p, the set QU

i = {u1
i , . . . , u

t
i}∪{ut+1

i , . . . , u2t
i } of the 2t copies of ui ∈

U induces a complete bipartite subgraph, viz., a bi-clique, in G′ (with the edge
set FU

i ) and for each 1 ≤ j ≤ q, the set QW
j = {w1

j , . . . , wt
j} ∪ {wt+1

j , . . . , w2t
j }

of the 2t copies of wj ∈ W induces a bi-clique in G′ (with the edge set FW
j ).

Similarly to the first part, it can be seen that G has a matching cut if and only
if G′ has a matching cut. (Observe that in any matching cut (X ′, Y ′) of G′, any
bi-clique QU

i and QW
j is contained in X ′ or else in Y ′ as it is monochromatic.)

Due to space limitation, the detailed proof is given in the full version.
The obtained bipartite graph G′ has n′ = 2tn vertices and minimum degree

δ′ = δ + t > t ≥ (2n)
1−ε

ε ≥ (n′)1−ε. �

3 A Very Fast Exact Exponential Time Algorithm
for Graphs with Large Minimum Degree

In [10], the first exact algorithm solving Matching Cut for n-vertex graphs has
the running time O∗(1.4143n). This branching algorithm has been improved to
O∗(1.3803n) in [9]. We remark that the branching steps, hence the time complex-
ity of the proposed algorithms, strongly depend on the minimum degree δ ≥ 2
of the input graphs. In this section, we observe that the algorithms proposed
in [9,10] can be simplified for input graphs with minimum degree δ ≥ 3 that
results in an exact algorithm with running time O∗(λn), where λ is the positive
root of the polynomial xδ+1−xδ −1 = 0. For graphs with minimum degree δ ≥ 4,
this running time is O∗(1.3248n), improved upon the mentioned O∗(1.3803)-time
algorithm. For graphs with large minimum degree δ ≥ 469, the running time is
O∗(1.0099n); see also the Table 1 below. Recall that, by Theorem 1, Matching
Cut remains NP-complete on graphs with minimum degree δ ≥ c for arbitrary
large constant c. The idea of our algorithm is as follows [10]. If the input graph
G = (V,E) has a matching cut (X,Y ), then some vertex a is contained in X and
some vertex b is contained in Y . The algorithm is a branching algorithm and
will be executed for all possible pairs a, b ∈ V , hence O(n2) times. To do this set
A := {a}, B := {b}, and F := V \ {a, b} and call the branching algorithm. At
each stage of the algorithm, A and/or B will be extended or it will be determined
that there is no matching cut separating A and B, that is a matching cut (X,Y )
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Table 1. Roots λ (rounded up) of xδ+1 − xδ − 1 = 0 for some concrete minimum
degree δ.

δ 3 4 25 199 469 6165 7747

λ 1.3803 1.3248 1.0976 1.0199 1.0099 1.0011 1.0009

with A ⊆ X and B ⊆ Y . We describe our algorithm by a list of reduction and
branching rules given in preference order, i.e., in an execution of the algorithm
on any instance of a subproblem one always applies the first rule applicable to
the instance, which could be a reduction or a branching rule. A reduction rule
produces one instance/subproblem while a branching rule results in at least two
instances/subproblems, with different extensions of A and B. Note that G has
a matching cut that separates A from B if and only if in at least one recursive
branch, extensions A′ of A and B′ of B are obtained such that G has a matching
cut that separates A′ from B′. Typically a rule assigns one or more free vertices,
vertices of F , either to A or to B and removes them from F , that is, we always
have F := V \ (A ∪ B).

The algorithm first applies Reduction Rules (R1)–(R4) given in [10]; the
correctness of these rules is easy to see.

(R1) If a vertex in A has two B-neighbors, or a vertex in B has two A-neighbors
then STOP: “G has no matching cut separating A, B”.
If v ∈ F , |N(v) ∩ A| ≥ 2 and |N(v) ∩ B| ≥ 2 then STOP: “G has no
matching cut separating A, B”.
If there is an edge xy in G such that x ∈ A and y ∈ B and N(x)∩N(y)∩F �=
∅ then STOP: “G has no matching cut separating A, B”.

(R2) If v ∈ F and |N(v) ∩ A| ≥ 2 then A := A ∪ {v}.
If v ∈ F and |N(v) ∩ B| ≥ 2 then B := B ∪ {v}.

(R3) If v ∈ A has two adjacent F -neighbors w1, w2 then A := A ∪ {w1, w2}.
If v ∈ B has two adjacent F -neighbors w3, w4 then B := B ∪ {w3, w4}.

(R4) If there is an edge xy in G such that x ∈ A and y ∈ B then add N(x) ∩ F
to A (if N(x) ∩ F �= ∅), and add N(y) ∩ F to B (if N(y) ∩ F �= ∅).

If none of these reduction rules can be applied then

– the A,B-edges of G form a matching cut in G[A ∪ B] = G − F due to (R1),
– every vertex in F is adjacent to at most one vertex in A and at most one

vertex in B due to (R2),
– the neighbors in F of any vertex in A and the neighbors in F of any vertex

in B form an independent set due to (R3), and
– every vertex in A adjacent to a vertex in B has no neighbor in F and every

vertex in B adjacent to a vertex in A has no neighbor in F .

Clearly these properties hold for the instance (G,A,B) if none of the Rules
(R1)–(R4) can be applied.

In contrast to the previous two algorithms in [9,10], our algorithm consists of
only two branching rules, which are based on the following fact. See also Fig. 2.
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Lemma 1. Let a ∈ A be a vertex with two (non-adjacent) neighbors u and v in
F . Then

(B1) G has a matching cut separating A and B if and only if G has a matching
cut separating A ∪ {u} and B ∪ (N [v] ∩ F ) or a matching cut separating
A ∪ {v} and B.

(B2) If N(v) ∩ B �= ∅, then G has a matching cut separating A and B if and
only if G has a matching cut separating A ∪ {u} and B ∪ (N [v] ∩ F ) or a
matching cut separating A ∪ (N [v] ∩ F ) and B.

Proof. (B1): Let (X,Y ) be a matching cut of G such that A ⊆ X and B ⊆ Y .
If v ∈ X, then (X,Y ) clearly separates A ∪ {v} and B. If v ∈ Y , then, as v is
adjacent to a ∈ A ⊆ X, u must belong to X and N [v] ∩ F must belong to Y .
Thus, (X,Y ) is a matching cut separating A∪{u} and B∪(N [v]∩F ). Conversely,
it is clear that any matching cut separating A∪{u} and B∪(N [v]∩F ), or A∪{v}
and B is particularly a matching cut separating A and B.

(B2): Assume N(v) ∩ B �= ∅, and let (X,Y ) be a matching cut of G such
that A ⊆ X and B ⊆ Y . By (B1), it remains to consider the case where v ∈ X.
In this case, as v has a neighbor in B ⊆ Y , N [v] ∩ F must belong to X. Thus,
(X,Y ) is a matching cut separating A ∪ {u} and B ∪ (N [v] ∩ F ) or separating
A ∪ (N [v] ∩ F ) and B. �

Fig. 2. When the branching rules (B1) and (B2) are applicable.

To determine the branching vectors which correspond to our branching rules,
we set the size of an instance (G,A,B) as its number of free vertices, i.e., |V (G)|−
|A| − |B|.

Let a ∈ A with |N(a) ∩ F | ≥ 2, and choose two neighbors u �= v in F of a.
Due to Reduction Rule (R3), u and v are non-adjacent. Due to Reduction Rule
(R2), N(v) ∩ A = {a}.

– If N(v) ∩ B = ∅, we branch into two subproblems according to (B1): First,
add u to A and add N [v] ∩ F = N [v] \ {a} to B. Second, add v to A. Hence
the branching vector is (δ + 1, 1).
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– If N(v) ∩ B �= ∅, we branch into two subproblems according to (B2): First,
add u to A and add N [v] ∩ F to B. Second, add N [v] ∩ F to A. Due to
Reduction Rule (R2), we have |N(v) ∩ B| = 1, hence the branching vector is
(δ, δ − 1).

Note that, for δ ≥ 3, the branching number of the branching vector (δ, δ − 1)
is smaller than the branching number of the branching vector (δ + 1, 1). Conse-
quently, the running time of our algorithm for n-vertex graphs with minimum
degree δ ≥ 3 is O∗(λn), where λ is the branching number of the branching vector
(δ + 1, 1), that is, λ is the positive root of xδ+1 − xδ − 1 = 0.

It remains to show that if none of the reduction rules and none of the branch-
ing rules is applicable to an instance (G,A,B) then the graph G has a matching
cut (X,Y ) such that A ⊆ X and B ⊆ Y .

In fact, in this case, (A, V (G)\A) is a matching cut of G: First, every vertex
in V (G)\A has at most one neighbor in A; this is clear because none of Reduction
Rules (R1)–(R4) is applicable. Second, if some vertex a ∈ A has at least two
neighbors outside A, then no such neighbor is in B (as Reduction Rule (R4) is
not applicable). So, a has two non-adjacent neighbors in F = V (G)\(A∪B), and
Branching Rule (B1) or (B2) is applicable, a contradiction. Thus, every vertex
in A has at most one neighbor outside A. Therefore, (A, V (G)\A) is a matching
cut of G as claimed.

To conclude, we obtain the following result:

Theorem 2. Matching Cut can be solved in time O∗(λn) for n-vertex graphs
with minimum degree δ ≥ 3, where λ is the positive root of the polynomial xδ+1−
xδ − 1.

Perhaps, it is important to note that our algorithm labels the vertices of the
input graph G by either A or B but never changes the graph G. Hence, the
minimum degree δ of G remains unchanged in all subproblems. This is not the
case by other minimum degree-based branching algorithms, like those computing
the minimum independent set; cf. [7].

4 Polynomial-Time Solvable Cases: Graphs with Very
Large Minimum Degree

In this section, we show that Matching Cut can be solved in polynomial time
on graphs with large enough minimum degree. By Theorem 1, one can hope
for polynomial-time results in terms of minimum degree only for graphs with
δ ≥ 1

cn for some fixed constant c > 1. Examples of such dense graphs include
Dirac graphs and Ore graphs. Graphs G with n vertices and δ(G) ≥ 1

2n are called
Dirac graphs. Ore graphs are those graphs such that, for any two non-adjacent
vertices x and y, deg(x) + deg(y) ≥ n. Dirac graphs are particularly Ore graphs
but not vice versa. Dirac and Ore graphs are well-studied classical graph classes,
especially in the longest path and cycle community.

Our polynomial-time result is the following theorem.
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Theorem 3. Let 0 < c1 < 2 and c2 ≥ 0 be two arbitrary fixed constants.
Matching Cut is polynomial-time solvable for n-vertex graphs, in which any
two non-adjacent vertices x and y satisfy deg(x) + deg(y) ≥ 1

c1
n − c2.

Proof. Our strategy is to decide in polynomial time, given two disjoint vertex
subsets A and B of the input graph G, if G admits a matching cut separating
A and B, i.e., A is one part and B is in the other part of the matching cut.

First our algorithm applies Reduction Rules (R1)–(R4) mentioned in Sect. 3
to the current instance (in the order of the rules). In addition, we need one new
reduction rule; recall from Sect. 3 that F = V (G) \ (A ∪ B).

(R5) If there are vertices u, v ∈ F with a common neighbor in A and |N(u) ∩
N(v) ∩ F | ≥ 2, then A := A ∪ {u, v} ∪ (N(u) ∩ N(v) ∩ F ).

Reduction Rule (R5) is safe: Assume that (X,Y ) is a matching cut of G with
A ⊆ X and B ⊆ Y . Since |N(u) ∩ N(v) ∩ F | ≥ 2, u, v,N(u) ∩ N(v) ∩ F and the
common neighbor a ∈ A of u and v are contained in a monochromatic K2,q for
some q ≥ 3. Hence u, v,N(u) ∩ N(v) ∩ F all must belong to X as a ∈ A ⊆ X.
Thus, (X,Y ) is a matching cut separating A ∪ {u, v} ∪ (N(u) ∩ N(v) ∩ F ) and
B. The other direction is obvious: any matching cut of G separating A∪{u, v}∪
(N(u) ∩ N(v) ∩ F ) and B clearly separates A and B, too. We have seen that
Reduction Rule (R5) is correct.

Now, let G = (V,E) be an n-vertex graph satisfying the condition in the
theorem, and recall that we may assume that G is 2-edge connected. Hence
every matching cut (X,Y ) of G, if any, must contain at least two edges. Our
algorithm will check, for each choice of two edges a1b1, a2b2 ∈ E, if G has a
matching cut containing a1b1 and a2b2. To do this we start with A := {a1, a2},
B := {b1, b2} and apply rules (R1)–(R5) as long as possible. If (R1) is applicable,
then clearly G has no matching cut containing a1b1 and a2b2. So let us assume
that (R1) was never applied and none of (R2), (R3), (R4) and (R5) is applicable.

Then, as (R1) was never applied, b1 is the only neighbor in B of a1 and a2

is the only neighbor in A of b2. As (R4) is not applicable, |A| ≥ |N [a1] \ {b1}| =
deg(a1) and |B| ≥ |N [b2] \ {a2}| = deg(b2). Since a1 and b2 are non-adjacent,
we therefore have

|A| + |B| ≥ 1
c1

n − c2. (1)

It follows from |F | = n − |A| − |B| and (1) that

|F | ≤
(

1 − 1
c1

)
n + c2. (2)

Now, as (R2) is not applicable, every vertex in F has at most one neighbor in
A (and at most one neighbor in B). So, if every vertex in A has at most one
neighbor in F , then (A,B ∪ F ) is a matching cut of G separating A and B.

Thus, it remains the case that some vertex v ∈ A has two neighbors x, y in
F . Then x and y are non-adjacent as (R3) is not applicable. Recall that v is the
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only neighbor in A of x and of y, and each of x and y has at most one neighbor
in B. Now, as (R5) is not applicable, |N(x) ∩ N(y) ∩ F | ≤ 1, and so we have
|F | ≥ |N [x]| + |N [y]| − 4 = deg(x) + deg(y) − 2. Hence

|F | ≥ 1
c1

n + c2 − 2. (3)

By (2) and (3), 1
c1

n + c2 − 2 ≤
(
1 − 1

c1

)
n + c2. Since 0 < c1 < 2, we therefore

have n ≤ 2c1
2−c1

. Thus, G has bounded size. Hence, we can determine if G has a
matching cut or not in constant time.

Observe that rule (R1) can be applied in constant time and applies at most
once. Each of the other rules applies at most n times because it removes at least
one vertex from F . Thus, the running time for the application of the rules is
roughly n · O(m) = O(nm). Since we have at most O(m2) many choices for the
edges a1b1, a2b2, we conclude that it can be decided in time O(n·m3) if G has a
matching cut. �

Consider a graph G with minimum degree δ ≥ 1
cn, where 1 < c < 4 is a given

constant. Then, for every two vertices x and y in G, deg(x)+deg(y) ≥ 2δ ≥ 1
c′ n

with c′ = c/2 < 2. Hence Theorem 3 leads to the following result:

Corollary 1. Let 1 < c < 4 be a fixed constant. Matching Cut is in
polynomial-time solvable for n-vertex graphs with minimum degree at least 1

cn.

4.1 Dirac and Ore Graphs

In this subsection, we show that there is a good characterization for Dirac graphs
and Ore graphs having a matching cut. It turns out that Ore graphs having a
matching cut are particularly 1

2n-regular Dirac graphs. Ore graphs having a
matching cut can be characterized as follows.

Theorem 4. An Ore graph G has a matching cut if and only if G is a co-
bipartite graph with a bipartition into cliques A and B such that every vertex in
A is adjacent to exactly one vertex in B and vice versa.

Due to space limitation, we leave the proof of Theorem 4 for the full version.
Theorem 4 implies that Matching Cut can be solved in quadratic time on Ore
graphs, hence also on Dirac graphs.

5 Conclusion

We showed that Matching Cut remains NP-complete for graphs with
unbounded minimum degree. For n-vertex graphs with minimum degree δ ≥ 3,
however, we provided an exact branching algorithm to solve Matching Cut in
time O∗(λn) time, where λ is the positive root of the polynomial xδ+1 − xδ − 1.
For large minimum degree δ ≥ 469, the running time is O∗(1.0099n), and for
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δ ≥ 7747, the running time is O∗(1.0009n). So, one might ask the question: is
such an NP-hard problem really hard?

For graphs with very large minimum degree, Matching Cut becomes eas-
ier. We showed that, for any fixed constant 1 < c < 4, Matching Cut is
polynomial-time solvable for graphs with minimum degree at least 1

cn. We leave
the question open if Matching Cut can be solved in polynomial time for graphs
with minimum degree at least 1

cn, where c ≥ 4 is any fixed constant.
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Abstract. Suppose that we are given an independent set I0 of a graph
G, and an integer l ≥ 0. Then, we are asked to find an independent set of
G having the maximum size among independent sets that are reachable
from I0 by either adding or removing a single vertex at a time such that
all intermediate independent sets are of size at least l. We show that
this problem is PSPACE-hard even for bounded pathwidth graphs, and
remains NP-hard for planar graphs. On the other hand, we give a linear-
time algorithm to solve the problem for chordal graphs. We also study the
parameterized complexity of the problem with respect to the following
three parameters: the degeneracy d of an input graph, a lower bound l
on the size of independent sets, and a lower bound s on the size of a
solution reachable from I0. We show that the problem is fixed-parameter
intractable when only one of d, l, and s is taken as a parameter. On the
other hand, we give a fixed-parameter algorithm when parameterized by
s + d; this result implies that the problem parameterized only by s is
fixed-parameter tractable for planar graphs, and for bounded treewidth
graphs.

1 Introduction

Recently, the reconfiguration framework [10] has been intensively applied to a
variety of search problems (See, e.g., surveys [8,19]). For example, the indepen-
dent set reconfiguration problem is one of the most well-studied reconfigu-
ration problems [2,3,9,11–13,15–17,23]. For a graph G, a vertex subset I ⊆ V (G)
is an independent set of G if no two vertices in I are adjacent in G. Suppose
that we are given two independent sets I0 and Ir of G, and imagine that a token
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I0Ir I′ 1 I2 I3 = Ir

not reachable

Fig. 1. A sequence 〈I0, I1, I2, I3〉 of independent sets under the TAR rule for the lower
bound l = 1, where the vertices in independent sets are colored with black .

(coin) is placed on each vertex in I0. Then, for an integer lower bound l ≥ 0,
independent set reconfiguration under the TAR rule is the problem of
determining whether we can transform I0 into Ir via independent sets of size at
least l such that each intermediate independent set can be obtained from the
previous one by either adding or removing a single token.1 In the example of
Fig. 1, I0 can be transformed into Ir = I3 via the sequence 〈I0, I1, I2, I3〉, but
not into I ′

r, when l = 1.
Like this problem, many reconfiguration problems have the following basic

structure: we are given two feasible solutions of an original search problem,
and are asked to determine whether we can transform one into the other by
repeatedly applying a specified reconfiguration rule while maintaining feasibility.
These kinds of reconfiguration problems model several “dynamic” situations of
systems, where we wish to find a step-by-step transformation from the current
configuration of a system into a more desirable one.

However, it is not easy to obtain a more desirable configuration for an input of
a reconfiguration problem, because many original search problems are NP-hard.
Furthermore, there may exist (possibly, exponentially many) desirable configu-
rations; even if we cannot reach a given target from the current configuration,
there may exist another desirable configuration which is reachable. Recall the
example of Fig. 1, where both Ir and I ′

r have the same size three (which is larger
than that of the current independent set I0), but I0 can reach only Ir.

Our Problem

In this paper, we propose a new variant of reconfiguration which asks for a
more desirable configuration that is reachable from the current one. As the first
example of this new variant, we consider independent set reconfiguration
because it is one of the most well-studied reconfiguration problems.

Suppose that we are given a graph G, an integer lower bound l ≥ 0, and an
independent set I0 of G. Then, we are asked to find an independent set Isol of
G such that |Isol| is maximized and I0 can be transformed into Isol under the

1 TAR stands for Token Addition and Removal, and there are two other well-studied
reconfiguration rules called TS (Token Sliding) and TJ (Token Jumping) [13]. We
omit the details in this paper.
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TAR rule for the lower bound l. We call this problem the optimization variant
of independent set reconfiguration (denoted by Opt-ISR). To avoid con-
fusion, we call the standard independent set reconfiguration problem the
reachability variant (denoted by Reach-ISR).

Note that Isol is not always a maximum independent set of the graph G. For
example, the graph in Fig. 1 has a unique maximum independent set of size four
(consisting of the vertices on the left side), but I0 cannot be transformed into
it. Indeed, Isol = I3 for this example when l = 1.

Related Results

Although Opt-ISR is being introduced in this paper, some previous results for
Reach-ISR are related in the sense that they can be converted into results for
Opt-ISR. We present such results here.

Ito et al. [10] showed that Reach-ISR under the TAR rule is PSPACE-
complete. On the other hand, Kamiński et al. [13] proved that any two indepen-
dent sets of size at least l + 1 are reachable under the TAR rule with the lower
bound l for even-hole-free graphs.

Reach-ISR has been studied well from the viewpoint of fixed-parameter
(in)tractability. Mouawad et al. [17] showed that Reach-ISR under the TAR
rule is W[1]-hard when parameterized by the lower bound l and the length of a
desired sequence (i.e., the number of token additions and removals). Lokshtanov
et al. [16] gave a fixed-parameter algorithm to solve Reach-ISR under the TAR
rule when parameterized by the lower bound l and the degeneracy d of an input
graph.

From our problem setting, one may be reminded of the concept of local search
algorithms [1,20]. To the best of our knowledge, known results for this concept
do not have direct relations to our problem, because they are usually evalu-
ated experimentally. In addition, note that our problem assumes that an initial
independent set I0 is given as an input. In contrast, a local search algorithm is
allowed to choose the initial solution, sometimes randomly.

Our Contributions

In this paper, we study Opt-ISR from the viewpoints of polynomial-time solv-
ability and fixed-parameter (in)tractability.

We first study the polynomial-time solvability of Opt-ISR with respect to
graph classes, as summarized in Fig. 2. More specifically, we show that Opt-ISR
is PSPACE-hard even for bounded pathwidth graphs, and remains NP-hard even
for planar graphs. On the other hand, we give a linear-time algorithm to solve
the problem for chordal graphs. We note that our algorithm indeed works in
polynomial time for even-hole-free graphs (which form a larger graph class than
that of chordal graphs) if the problem of finding a maximum independent set is
solvable in polynomial time for even-hole-free graphs; currently, its complexity
status is unknown.

We next study the fixed-parameter (in)tractability of Opt-ISR, as summa-
rized in Table 1. In this paper, we consider mainly the following three parameters:
the degeneracy d of an input graph, a lower bound l on the size of independent
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P (linear time)

PSPACE-h.
NP-h.

general

ycarenegeddednuobladrohc

bounded pathwidth

bounded treewidthplanar
[Thm 1]

[Thm 2]

[Thm 3]

interval

k-tree

tree

caterpillar

(k : bounded)

split

Fig. 2. Our results with respect to graph classes.

Table 1. Our results with respect to parameters.

(no parameter) Lower bound l Solution size s

(no parameter) – NP-hard for fixed l
(i.e., no FPT, no
XP) [Corollary 1]

W[1]-hard, XP (i.e.,
no FPT)
[Theorems 4 and 5]

Degeneracy d PSPACE-hard for
fixed d (i.e., no
FPT, no XP)
[Theorem 2]

NP-hard for fixed
d+ l (i.e., no FPT,
no XP) [Corollary 1]

FPT [Theorem 6]

sets, and the size s of a solution reachable from a given independent set I0. As
shown in Table 1, we completely analyze the fixed-parameter (in)tractability of
the problem according to these three parameters; details are explained below.

We first consider the problem parameterized by a single parameter. We show
that the problem is fixed-parameter intractable when only one of d, l, and s is
taken as a parameter. In particular, we prove that Opt-ISR is PSPACE-hard
for a fixed constant d and remains NP-hard for a fixed constant l, and hence
the problem does not admit even an XP algorithm for each single parameter d
or l under the assumption that P �= PSPACE or P �= NP. On the other hand,
Opt-ISR is W[1]-hard for s, and admits an XP algorithm with respect to s.

We thus consider the problem taking two parameters. However, the problem
still remains NP-hard for a fixed constant d + l, and hence it does not admit
even an XP algorithm for d + l under the assumption that P �= NP. Note that
the combination of l and s is meaningless, since l + s ≤ 2s. On the other hand,
we give a fixed-parameter algorithm when parameterized by s + d; this result
implies that Opt-ISR parameterized only by s is fixed-parameter tractable for
planar graphs, and for bounded treewidth graphs.

We omit proofs for the claims marked with (∗) due to the page limitation.
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2 Preliminaries

In this paper, we consider only simple graphs, without loss of generality. For
a graph G, we denote by V (G) and E(G) the vertex set and edge set of G,
respectively. For a vertex v ∈ V (G), let NG(v) = {w ∈ V (G) : vw ∈ E(G)},
and let NG[v] = NG(v) ∪ {v}. The set NG(v) is called the (open) neighborhood
of v in G, while NG[v] is called the closed neighborhood of v in G. For a graph
G and a vertex subset S ⊆ V (G), G[S] denotes the subgraph of G induced
by S, that is, V (G[S]) = S and E(G[S]) = {vw ∈ E(G) : v, w ∈ S}. For a
vertex subset V ′ ⊆ V (G), we simply write G \ V ′ to denote G[V (G) \ V ′]. We
denote by A � B the symmetric difference between two sets A and B, that is,
A � B = (A \ B) ∪ (B \ A).

We now formally define our problem Opt-ISR. For an integer l ≥ 0 and
two independent sets Ip and Iq of a graph G such that |Ip| ≥ l and |Iq| ≥ l, a
sequence I = 〈I1, I2, . . . , I�〉 of independent sets of G is called a reconfiguration
sequence between Ip and Iq under the TAR rule if I satisfies the following three
conditions:

(a) I1 = Ip and I� = Iq;
(b) Ii is an independent set of size at least l for each i ∈ {1, 2, . . . , �}; and
(c) |Ii � Ii+1| = 1 for each i ∈ {1, 2, . . . , � − 1}.

To emphasize the lower bound l on the size of any independent set, we sometimes
write TAR(l) instead of TAR. Note that any reconfiguration sequence is reversible,
that is, 〈I�, I�−1, . . . , I1〉 is a reconfiguration sequence between Iq and Ip under
the TAR(l) rule. We say that two independent sets Ip and Iq are reachable under
the TAR(l) rule if there exists a reconfiguration sequence between Ip and Iq

under the TAR(l) rule. We write Ip
l� Iq if Ip and Iq are reachable under the

TAR(l) rule.
Our problem aims to optimize a given independent set under the TAR rule.

Specifically, the optimization variant of independent set reconfiguration
(Opt-ISR for short) is defined as follows:

Input: A graph G, an integer l ≥ 0, and an independent set
I0 of G such that |I0| ≥ l.

Task: Find an independent set Isol of G such that I0
l� Isol

and |Isol| is maximized.

We denote by a triple (G, l, I0) an instance of Opt-ISR, and call a desired
independent set Isol of G a solution to (G, l, I0). Note that a given independent
set I0 may itself be a solution. Opt-ISR simply outputs a solution to (G, l, I0),
and does not require the specification of an actual reconfiguration sequence from
I0 to the solution.

We close this section with noting the following observation which says that
Opt-ISR for an instance (G, 0, I0) is equivalent to finding a maximum indepen-
dent set of G.
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Lemma 1 (∗). Every maximum independent set Imax of a graph G is a solution
to an instance (G, 0, I0) of Opt-ISR, where I0 is any independent set of G.

3 Polynomial-Time Solvability

In this section, we study the polynomial-time solvability of Opt-ISR.

3.1 Hardness Results

Lemma 1 implies that results for the maximum independent set problem can
be applied to Opt-ISR for l = 0. For example, we have the following theorem,
because maximum independent set remains NP-hard for planar graphs [7].

Theorem 1. Opt-ISR is NP-hard for planar graphs and l = 0, where l is a
lower bound on the size of independent sets.

For an integer d ≥ 0, a graph G is d-degenerate if every induced subgraph of
G has a vertex of degree at most d [14]. The degeneracy of G is the minimum
integer d such that G is d-degenerate. It is known that the degeneracy of any
planar graph is at most five [14], and hence we have the following corollary.

Corollary 1. Opt-ISR is NP-hard for 5-degenerate graphs and l = 0, where l
is a lower bound on the size of independent sets.

This corollary implies that Opt-ISR admits neither a fixed-parameter algo-
rithm nor an XP algorithm when parameterized by d + l under the assump-
tion that P �= NP, where d is the degeneracy of an input graph and l is a
lower bound on the size of independent sets. We will discuss the fixed parameter
(in)tractability of Opt-ISR more deeply in Sect. 4.

We then show that Opt-ISR is PSPACE-hard even if the pathwidth of an
input graph is bounded by a constant. We first define the pathwidth of a graph,
as follows [21]. A path-decomposition of a graph G is a sequence 〈X1,X2, . . . , Xt〉
of vertex subsets of V (G) such that

(a) for each vertex u of G, there exists a subset Xi such that u ∈ Xi;
(b) for each edge vw of G, there exists a subset Xj such that v, w ∈ Xj ; and
(c) for any three indices a, b, c such that a < b < c, Xa ∩ Xc ⊆ Xb holds.

The pathwidth of G is the minimum value p such that there exists a path-
decomposition 〈X1,X2, . . . , Xt〉 of G for which |Xi| ≤ p + 1 holds for all
i ∈ {1, 2, . . . , t}. A bounded pathwidth graph is a graph whose pathwidth is
bounded by a fixed constant.

The following theorem is the main result of this subsection.

Theorem 2 (∗). Opt-ISR is PSPACE-hard for bounded pathwidth graphs.
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3.2 Linear-Time Algorithm for Chordal Graphs

A graph G is chordal if every induced cycle in G is of length three [4]. The main
result of this subsection is the following theorem.

Theorem 3. Opt-ISR is solvable in linear time for chordal graphs.

This theorem can be obtained from the following lemma; we note that a
maximum independent set Imax of a chordal graph can be found in linear time [6],
and the maximality of a given independent set can be checked in linear time.

Lemma 2. Let (G, l, I0) be an instance of Opt-ISR such that G is a chordal
graph, and let Imax be any maximum independent set of G. Then, a solution Isol
to (G, l, I0) can be obtained as follows:

Isol =
{

I0 if I0 is a maximal independent set of G and |I0| = l;
Imax otherwise.

Proof. We first consider the case where I0 is a maximal independent set of G
and |I0| = l. In this case, we cannot remove any vertex from I0 because |I0| = l.
Furthermore, since I0 is maximal, we cannot add any vertex in V (G) \ I0 to I0
while maintaining independence. Therefore, G has no independent set I ′ (�= I0)
which is reachable from I0, and hence Isol = I0.

We then consider the other case, that is, I0 is not a maximal independent set
of G or |I0| > l. Observe that it suffices to consider the only case where |I0| > l
holds; if |I0| = l and I0 is not maximal, then we can obtain an independent set
I ′′
0 of G such that |I ′′

0 | = l +1 and I0
l� I ′′

0 by adding some vertex in V (G) \ I0.
To prove Isol = Imax, we below show that I0

l� Imax holds if |I0| > l.
Let I ′

0 ⊆ I0 be any independent set of size l+1. Then, I0
l� I ′

0 holds, because
we can obtain I ′

0 from I0 by removing vertices in I0 \ I ′
0 one by one. Similarly,

let I ′ ⊆ Imax be any independent set of size l + 1; we know that I ′ l� Imax

holds. Kamiński et al. [13] proved that any two independent sets of the same
size l + 1 are reachable under the TAR(l) rule for even-hole-free graphs. Since
any chordal graph is even-hole free, we thus have I ′

0
l� I ′. Therefore, we have

I0
l� I ′

0
l� I ′ l� Imax, and hence we can conclude that I0

l� Imax holds as
claimed. �

We note that Lemma 2 indeed holds for even-hole-free graphs, which contain
all chordal graphs. However, the complexity status of the maximum indepen-
dent set problem is unknown for even-hole-free graphs, and hence we do not
know if we can obtain Imax in polynomial time.

4 Fixed Parameter Tractability

In this section, we study the fixed parameter (in)tractability of Opt-ISR. We
take the solution size of Opt-ISR as the parameter. More formally, for an
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instance (G, l, I0), the problem Opt-ISR parameterized by solution size s asks
whether G has an independent set I such that |I| ≥ s and I0

l� I. We may
assume that s > l; otherwise we are dealing with a yes-instance because I0
itself is a solution. We sometimes denote by a 4-tuple (G, l, I0, s) an instance of
Opt-ISR parameterized by solution size s.

4.1 Single Parameter: Solution Size

We first give an observation that can be obtained from independent set. Because
independent set is W[1]-hard when parameterized by solution size s [18],
Lemma 1 implies the following theorem.

Theorem 4. Opt-ISR is W [1]-hard when parameterized by solution size s.

This theorem implies that Opt-ISR admits no fixed-parameter algorithm
with respect to solution size s under the assumption that FPT �= W[1]. However,
it admits an XP algorithm with respect to s, as in the following theorem.

Theorem 5. (∗). Opt-ISR parameterized by solution size s can be solved in
time O(s3n2s), where n is the number of vertices in a given graph.

4.2 Two Parameters: Solution Size and Degeneracy

As we have shown in Theorem 4, Opt-ISR admits no fixed-parameter algo-
rithm when parameterized by the single parameter of solution size s under the
assumption that FPT �= W[1]. In addition, Theorem 2 implies that the problem
remains PSPACE-hard even if the degeneracy d of an input graph is bounded
by a constant, and hence Opt-ISR does not admit even an XP algorithm with
respect to the single parameter d under the assumption that P �= PSPACE. In
this subsection, we take these two parameters, and develop a fixed-parameter
algorithm as in the following theorem.

Theorem 6. Opt-ISR admits a fixed-parameter algorithm when parameterized
by s + d, where s is the solution size and d is the degeneracy of an input graph.

Before proving the theorem, we note the following corollary which holds
for planar graphs, and for bounded treewidth graphs. Recall that Opt-ISR is
intractable (from the viewpoint of polynomial-time solvability) for these graphs,
as shown in Theorems 1 and 2.

Corollary 2. Opt-ISR parameterized by solution size s is fixed-parameter
tractable for planar graphs, and for bounded treewidth graphs.

Proof. Recall that the degeneracy of any planar graph is at most five. It is known
that the degeneracy of a graph is at most the treewidth of the graph. Thus, the
corollary follows from Theorem 6. �
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Outline of Algorithm

As a proof of Theorem 6, we give such an algorithm. We first explain our idea and
the outline of the algorithm. Our idea is to extend a fixed-parameter algorithm
for Reach-ISR when parameterized by l + d [16].

Consider the case where an input graph G consists of only a fixed-parameter
number of vertices, that is, |V (G)| can be bounded by some function of s+d. Then,
we apply Theorem 5 to the instance and obtain the answer in fixed-parameter time
(Lemma 4). We here use the fact (stated by Lokshtanov et al. [16, Proposition 2])
that a d-degenerate graph consists of a small number of vertices if it has a small
number of low-degree vertices (Lemma 3).

Therefore, it suffices to consider the case where an input graph has many
low-degree vertices. In this case, we will kernelize the instance: we will show
that there always exists a low-degree vertex which can be removed from an input
graph without changing the answer (yes or no) to the instance. Our kernelization
has two stages. In the first stage, we focus on “twins” (two vertices that have the
same closed neighborhoods), and prove that one of them can be removed without
changing the answer (Lemma 5). The second stage will be executed only when
the first stage cannot kernelize the instance into a sufficiently small size. The
second stage is a bit involved, and makes use of the Sunflower Lemma by Erdös
and Rado [5].

Graphs Having a Small Number of Low-Degree Vertices

We now give our algorithm. Suppose that (G, l, I0, s) is an instance of Opt-ISR
parameterized by solution size such that G is a d-degenerate graph. We assume
that |I0| < s; otherwise (G, l, I0, s) is a yes-instance because I0 itself is a solution.

We start with noting the following property for d-degenerate graphs, which
is a little bit stronger claim than that of Lokshtanov et al. [16, Proposition 2];
however, the proof is almost the same as that of [16].

Lemma 3. Suppose that a graph G is d-degenerate, and let D ⊆ V (G) be the
set of all vertices of degree at most 2d in G. Then, |V (G)| ≤ (2d + 1)|D|.
Proof. Suppose for a contradiction that |V (G)| = (2d+1)|D|+ c holds for some
integer c ≥ 1. Then, |V (G) \ D| = 2d|D| + c, and hence we have

|E(G)| =
1
2

∑
v∈V (G)

|NG(v)| ≥ 1
2

∑
v∈V (G)\D

(2d + 1)

=
1
2
(2d + 1)(2d|D| + c) = d|V (G)| +

1
2
c > d|V (G)|.

This contradicts the fact that |E(G)| ≤ d|V (G)| holds for any d-degenerate
graph G [14]. �

Let D = {v ∈ V (G) : |NG(v)| ≤ 2d}, and let D′ = D \ I0. We introduce a
function f(s, d) which depends on only s and d; more specifically, let f(s, d) =
(2d + 1)!((2s + d + 1) − 1)2d+1. We now consider the case where G has only a
fixed-parameter number of vertices of degree at most 2d.
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Lemma 4. If |D′| ≤ f(s, d), then Opt-ISR can be solved in fixed-parameter
time with respect to s and d.

Proof. Since D′ = D \I0 and |I0| < s, we have |D| ≤ |D′|+ |I0| < f(s, d)+s. By
Lemma 3 we thus have |V (G)| ≤ (2d + 1)|D| < (2d + 1)(f(s, d) + s). Therefore,
|V (G)| depends only on s and d. Then, this lemma follows from Theorem 5. �

First Stage of Kernelization

We now consider the remaining case, that is, |D′| > f(s, d) holds. The first stage
of our kernelization focuses on “twins,” two vertices having the same closed
neighborhoods, and removes one of them without changing the answer.

Lemma 5. Suppose that there exist two vertices bi and bj in D′ such that
NG[bi] = NG[bj ]. Then, (G, l, I0, s) is a yes-instance if and only if (G \
{bi}, l, I0, s) is.

Proof. We note that bi /∈ I0 and bj /∈ I0, because D′ = D \ I0. Then, the
if direction clearly holds, and hence we prove the only-if direction. Suppose
that (G, l, I0, s) is a yes-instance, and hence G has an independent set Isol such
that |Isol| ≥ s and I0

l� Isol. Then, there exists a reconfiguration sequence
I = 〈I0, I1, . . . , I� = Isol〉. Since NG[bi] = NG[bj ], we know that bi and bj are
adjacent in G and hence no independent set of G contains bi and bj at the same
time. We now consider a new sequence I ′ = 〈I ′

0, I
′
1, . . . , I

′
�〉 defined as follows:

for each x ∈ {0, 1, . . . , �}, let

I ′
x =

{
Ix if bi /∈ Ix;
(Ix \ {bi}) ∪ {bj} otherwise.

Since each Ix, x ∈ {0, 1, . . . , �}, is an independent set of G and NG[bi] = NG[bj ],
each I ′

x forms an independent set of G. In addition, since |Ix−1 � Ix| = 1 for
all x ∈ {1, 2, . . . , �}, we have |I ′

x−1 � I ′
x| = 1. Therefore, I ′ is a reconfiguration

sequence such that no independent set in I ′ contains bi. Since |I ′
�| = |I�| =

|Isol| ≥ s, we can conclude that (G \ {bi}, l, I0, s) is a yes-instance. �
We repeatedly apply Lemma 5 to a given graph, and redefine G as the result-

ing graph; we also redefine D and D′ according to the resulting graph G. Then,
any two vertices bi and bj in D′ satisfy NG[bi] �= NG[bj ]. If |D′| ≤ f(s, d), then
we have completed our kernelization; recall Lemma 3. Otherwise, we will execute
the second stage of our kernelization described below.

Second Stage of Kernelization

In the second stage of the kernelization, we use the classical result of Erdös and
Rado [5], known as the Sunflower Lemma. We first define some terms used in
the lemma. Let P1, P2, . . . , Pp be p non-empty sets over a universe U , and let
C ⊆ U which may be an empty set. Then, the family {P1, P2, . . . , Pp} is called
a sunflower with a core C if Pi \ C �= ∅ holds for each i ∈ {1, 2, . . . , p}, and
Pi ∩ Pj = C holds for each i, j ∈ {1, 2, . . . , p} satisfying i �= j. The set Pi \ C is
called a petal of the sunflower. Note that a family of pairwise disjoint sets always
forms a sunflower (with an empty core). Then, the following lemma holds.



Incremental Optimization of Independent Sets 323

Lemma 6 (Erdös and Rado [5]). Let A be a family of sets (without duplicates)
over a universe U such that each set in A is of size at most t. If |A| > t!(p−1)t,
then there exists a family S ⊆ A which forms a sunflower having p petals.
Furthermore, S can be computed in time polynomial in |A|, |U |, and p.

We now explain the second stage of our kernelization, and make use of
Lemma 6. Let b1, b2, . . . , b|D′| denote the vertices in D′, and let A = {NG[b1],
NG[b2], . . . , NG[b|D′|]} be the set of closed neighborhoods of all vertices in D′. In
the second stage, recall that NG[bi] �= NG[bj ] holds for any two vertices bi and
bj in D′, and hence no two sets in A are identical. We set U =

⋃
bi∈D′ NG[bi].

Since each bi ∈ D′ is of degree at most 2d in G, each NG[bi] ∈ A is of size at
most 2d + 1. Notice that |A| = |D′| > f(s, d) = (2d + 1)!((2s + d + 1) − 1)2d+1.
Therefore, we can apply Lemma 6 to the family A by setting t = 2d + 1 and
p = 2s+d+1, and obtain a sunflower S ⊆ A with a core C and p petals in time
polynomial in |A|, |U |, and p = 2s+d+1. Notice that |A| ≤ n and |U | ≤ n, and
hence we can obtain S in time polynomial in n. Let S = {b′

1, b
′
2, . . . , b

′
p} ⊆ D′ be

the set of p vertices whose closed neighborhoods correspond to the sunflower S,
that is, S = {NG[b′

1], NG[b′
2], . . . , NG[b′

p]} ⊆ A. We finally obtain the following
lemma, as the second stage of the kernelization.

Lemma 7 (∗). Let b′
q be any vertex in S. Then, (G, l, I0, s) is a yes-instance if

and only if (G \ {b′
q}, l, I0, s) is.

We can repeatedly apply Lemma 7 to G until the resulting graph has the
corresponding vertex subset D′ such that |D′| ≤ f(s, d). Then, by Lemma 4 we
have completed our kernelization. This completes the proof of Theorem 6.

5 Conclusion

In this paper, we have introduced a new variant of reconfiguration, and studied
Opt-ISR as the first example of the variant. As shown in Fig. 2 and Table 1,
we have studied the problem from the viewpoints of polynomial-time solvability
and the fixed-parameter (in)tractability, and shown several interesting contrasts
among graph classes and parameters. In particular, we gave a complete analysis
of the fixed-parameter (in)tractability with respect to the three parameters.
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12. Ito, T., Kamiński, M., Ono, H., Suzuki, A., Uehara, R., Yamanaka, K.: On the
parameterized complexity for token jumping on graphs. In: Gopal, T.V., Agrawal,
M., Li, A., Cooper, S.B. (eds.) TAMC 2014. LNCS, vol. 8402, pp. 341–351.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06089-7 24
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Abstract. For a graph G and a positive integer d, a set S ⊆ V (G) is a
fair set with the fairness factor d if for every vertex in G, at most d of its
neighbors are in the S. In the Π-Vertex Deletion problem, the aim is
to find in a given graph a set S of minimum size such that G\S satisfies
the property Π. We look at Π-Fair Vertex Deletion problem where
we also want S to be a fair set.

It is known that the general Π-Fair Vertex Deletion problem
where Π is expressible by a first order formula and is also given as input
is W [1]-hard when parameterized by treewidth. Our first observation
is that if we also parameterize by the fairness constant d, then Π-Fair
Vertex Deletion is FPT (fixed-parameter tractable) even if Π-Vertex
Deletion can be expressed by a Monadic Second Order (MSO) formula.
As a corollary we get an FPT algorithm for Fair Feedback Vertex Set
(FFVS) and Fair Vertex Cover (FVC) parameterized by solution size.

We then do a deep dive on FVC and more generally Π-Fair Vertex
Deletion problems parameterized by solution size k when Π is charac-
terized by a finite set of forbidden graphs. We show that these problems
are FPT and develop a polynomial kernel when d is a constant. While
the FPT algorithms use the standard branching technique, the fairness
constraint introduces challenges to design a polynomial kernel. En route,
we give a polynomial kernel for a special instance of Min-ones-SAT and
Fair q-hitting set, a generalization of q-hitting set, with a fairness con-
straint on an underlying graph structure on the universe. These could
be of independent interest.

To complement our FPT results, we show that Fair Set and Fair
Independent Set problems are W [1]-hard even in 3-degenerate graphs
when the fairness factor is 1. We also show that FVC is polynomial-time
solvable when d = 1 or 2, and NP-hard for d ≥ 3, and that FFVS is
NP-hard for all d ≥ 1.

Keywords: Vertex deletion problems · Parameterized complexity ·
Kernelization · W-hardness

1 Introduction and Motivation

Vertex deletion problems are extensively studied in multiple paradigms of algo-
rithms and complexity. Given a graph class Π, in Π-Vertex Deletion, the
c© Springer Nature Switzerland AG 2019
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objective is to find in a given graph, the minimum number of vertices whose
deletion results in a graph in graph class Π. Many well-studied problems like
Vertex Cover and Feedback Vertex Set can be modeled as Π-Vertex
Deletion. For example, Π is the class of edgeless graphs in the case of Vertex
Cover and the class of acyclic graphs in the case of Feedback Vertex Set.
The result by Lewis and Yannakakis showed that for the hereditary graph classes
that are not trivial, Π-Vertex Deletion is NP-complete [13].

Recently, there is an interest on these vertex deletion problems where along
with optimizing the vertex deletion set, we want the deletion set to be fair in
the sense that it does not have too many vertices from the neighborhood of any
vertex [9,10,15].

We formalize this below. Given a graph G = (V,E) and a positive integer
d, a set S ⊆ V is fair if it contains at most d vertices from the neighborhood
of each vertex. That is, for each vertex v ∈ G, |N(v) ∩ S| ≤ d. We call d the
fairness factor of S. Given a set S ⊆ V (G), checking whether S is a fair set can
be done in polynomial time by going over the neighborhoods of all the vertices
in G. If for some vertex v, |N(v)∩S| > d, we say that the fairness constraint for
v with respect to S is violated.

Π-Fair Vertex Deletion

We define Π-Fair Vertex Deletion problem as follows:
Π-Fair Vertex Deletion
Input: A graph G = (V,E) and k, d ∈ N.
Question: Does there exist a set S ⊆ V (G) of at most k vertices such that
G[V −S] belongs to a hereditary graph class Π and for each vertex v ∈ V (G),
|N(v) ∩ S| ≤ d?

Using Π-Fair Vertex Deletion, we can define Fair Vertex Cover (FVC)
and Fair Feedback Vertex Set (FFVS) where Π is the class of edgeless
graphs and acyclic graphs respectively.

1.1 Previous Work and Deconstructing Hardness

In [15], the general problem Π-Fair Vertex Deletion where Π can be
expressed by a first order formula φ, also given as input, is shown to be hard
for the parameterized complexity class W [1], when parameterized by the sum
of treedepth and the size of the minimum feedback vertex set in the graph. In
the same paper, an FPT algorithm is presented when Π can be expressed by a
Monadic Second Order (MSO) logic formula given as input, parameterized by
the neighborhood diversity of the graph. Knop et al. [10] showed that Π-Fair
Vertex Deletion where Π can be expressed by a formula with one free vari-
able is FPT parameterized by the twin cover number of the graph. They also
showed that Fair Vertex Cover is W [1]-hard when parameterized by both
treedepth and feedback vertex set of the input graph. Fair edge deletion problems
were also studied in [11,14].
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Since Π-Fair Vertex Deletion problems like FVC are W [1]-hard param-
eterized by the minimum feedback vertex set of the graph, they are W [1]-hard
parameterized by the treewidth t of the graph as the latter is a smaller param-
eter. But we note that in the reduction used in the proofs, the fairness factor d
is in Ω(n). Inspired by the parameter ecology program of Fellows et al. [7], we
feel that, in these problems it is more natural to consider d also as a parameter.

1.2 Our Results

We first show that Π-Fair Vertex Deletion is FPT parameterized by t + d
if Π-Vertex Deletion can be expressed even by an MSO logic formula of
constant length. This includes the fair version of a huge class of well-studied ver-
tex deletion problems like Feedback Vertex Set, Odd Cycle Transver-
sal, Cluster Vertex Deletion. Unfortunately, the FPT algorithms obtained
above have a large exponential dependence on k in the running time. Hence we
study two classic problems Fair Vertex Cover and Fair Feedback Ver-
tex Set and give dynamic programming algorithms with much better running
time parameterized by t + d. As a corollary, we get an FPT algorithm for FFVS
parameterized by solution size as well. We remark that the standard reduction
rules of FFVS don’t seem to have an easy implementation to maintain the fair-
ness constraint, and hence we do not know of other FPT algorithms for FFVS
parameterized by solution size.

We then take a closer look at Fair Vertex Cover and more generally Π-
fair vertex deletion where the graph class Π has a finite forbidden set F .
We call the forbidden set F a q-forbidden set if the vertex set of each graph in
F is of size at most q. In a graph G, we say a subset S ⊆ V (G) hits all graphs
in F when for all induced subgraphs H of G such that H is isomorphic to some
member in F , S ∩ V (H) �= ∅.

Fair q-Forbidden Set Vertex Deletion
Input: Given a graph G = (V,E), a q-forbidden set F where q, k, d ∈ N.
Question: Does there exist a subset S ⊆ V (G) of at most k vertices such
that S hits all the occurrences of graphs in family F in G and for each vertex
v ∈ V (G), |N(v) ∩ S| ≤ d?

We define a hitting set variant with fairness and use it to solve Fair q-
Forbidden Set Vertex Deletion.
Fair q-Hitting Set
Input: Given a graph G = (V,E), a family F of subsets of V (G) of size at
most q with |F| = m and |V (G)| = n where q, k, d, n,m ∈ N.
Question: Does there exist a subset S ⊆ V (G) of at most k vertices such
that S hits all the sets in F and for each vertex v ∈ V (G), |N(v) ∩ S| ≤ d?

The problem is different from the normal q-Hitting Set as there is a graph
on the universe elements and the problem requires to pick a fair set from the
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universe. We give an O�(qk) 1FPT algorithm for Fair q-Hitting Set parame-
terized by solution size k. As Fair q-Forbidden Set Vertex Deletion can
be reduced to Fair q-Hitting Set, we also have an FPT algorithm for the
former.

The more challenging task is to design a polynomial kernel for Fair q-
Hitting Set as here again the standard reduction rules for q-Hitting Set do not
keep track of the fairness constraint. We obtain our kernel by reducing the prob-
lem instance to a Min-ones-SAT instance formula where all the clauses are
constant-sized and each clause is either monotone or anti-monotone. In Min-
ones-SAT, we are given a CNF formula and we need to find out the satisfying
assignment for the formula such that minimum number of variables set to true.
We show that this variant of Min-ones-SAT has a polynomial kernel param-
eterized by number of variables set to true. The latter result is of independent
interest as in contrast, the general Min-ones-SAT problem even when all the
clauses are of size 3 does not have a polynomial kernel [12] under same param-
eterization, unless NP ⊆ coNP/poly. The FVC problem can also be thought of
as a special instance of Fair q-Forbidden Set Vertex Deletion with the
q-Forbidden Set being the single edge K2. For FVC we obtain a much better
kernel through a different technique.

Finally we complement our FPT results with some hardness results. We show
that Fair Set (defined below) and Fair Independent Set are W [1]-hard even
in 3-degenerate graphs, with fairness factor 1 when parameterized by solution
size.
Fair Set
Fair Set
Input: A graph G = (V,E) and k, d ∈ N.
Question: Does there exist a set S ⊆ V (G) of at least k vertices such that
for each vertex v ∈ V (G), |N(v) ∩ S| ≤ d?

We note that the Fair Set can be seen as a special case of (σ, ρ) dominating
set [17] where the sets σ and ρ = {0, 1, . . . , d}. The (σ, ρ) dominating set is
shown to be FPT when parameterized by treewidth when the sets σ and ρ are
finite or cofinite [18] with running time O∗((st)s−2st) where t is the treewidth of
the graph and s is the number of states in the sets. As the number of states in the
Fair Set can be shown to be d + 1, the problem is FPT parameterized by sum
of treewidth t and fairness factor d with running time O∗(((d+1)t)d−1(d+1)t).

A Fair Dominating Set is a dominating set which is also a fair set. A
problem very closely related to Fair Dominating Set named [1, j] dominating
set has been studied recently [1] where it is shown to be W [1]-hard in graphs of
degeneracy j+1 and FPT in nowhere dense graphs parameterized by the solution
size. We note that in the W [1]-hardness reduction, the [1, j] dominating set is
also a fair dominating set with fairness j and the FPT algorithm for nowhere
dense graphs can be easily extended to Fair Dominating Set.

1 O∗ notation ignores polynomial factors.
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Concerning the solvability of FVC and FFVS for specific values of d, we note
that FVC and FFVS are NP-hard when d = 3 and d = 4 respectively as Vertex
Cover is NP-hard in cubic graphs [8] and Feedback Vertex Set is NP-hard
on graphs with degree at most 4 [16]. For FVC, we show that the problem is
polynomial-time solvable when d = 1 or 2. For FFVS, we complete the picture
by showing that the problem is NP-hard even when d ∈ {1, 2, 3}.

We end this section with the following observation, which essentially says that
when the parameter is the solution size, Π-Fair Vertex Deletion problems
are interesting only when d ≤ k.

Observation 1. When d ≥ k, the Π-Fair Vertex Deletion problem turns
into the standard Π-Vertex Deletion problem as every vertex has at most
k ≤ d neighbors in the solution. Hence when d ≥ k, Π-Fair Vertex Dele-
tion is FPT when parameterized by solution size k whenever the corresponding
Π-Vertex Deletion problem (without the fairness constraint) is FPT when
parameterized by solution size.

2 Preliminaries

Given a graph G = (V,E), V and E denote its vertex-set and edge-set, respec-
tively. For a graph G = (V,E), we define G[V ′] to be the graph induced on
vertex set V ′ ⊆ V . For sets V and V , we denote V \ V ′ as V − V ′. If V ′ is
singleton, say {a}, then we denote V − {a} as V − a. Next, G \ V ′ denotes the
graph induced on vertex set V − V ′. For a vertex v ∈ V , G − v denotes graph
induced on vertex set V − v. For a vertex v ∈ V , the open neighborhood of the
vertex is denoted by N(v) and closed neighborhood of the vertex is denoted by
N [v], that is N(v) = {u|(u, v) ∈ E(G) and u �= v} and N [v] = N(v) ∪ {v}. We
use standard notation and terminology from the book of [6] for graph-related
terms which are not explicitly defined here.

Definition 1 (Degeneracy). A graph G = (V,E) is said to be d′-degenerate
if there exists an ordering of V such that each vertex has at most d′ neighbors
to its right in the ordering. The minimum such possible d′ a graph can have is
called its degeneracy.

The basic definitions related to parameterized complexity, Monadic Second
Order logic, tree decomposition, nice tree decomposition, treewidth, cluster ver-
tex deletion set, sunflower and Sunflower Lemma can be found in [4].

3 FAIR VERTEX DELETION Parameterized by
Treewidth + Fairness Factor

Theorem 1 (Courcelle’s theorem [3]). Given an MSO formula φ, an n-
vertex graph G and a tree decomposition of G of width t, there exists an algorithm
that verifies whether φ is satisfied in G in time f(|φ|, t) · n for some computable
function f and |φ| denoting the length of encoding of φ as a string.
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Theorem 2. The Π-Fair Vertex Deletion is FPT parameterized by the
sum of treewidth and fairness factor if the corresponding Π-Vertex Deletion
problem can be expressed by an MSO formula of constant length.

Proof. Let φ1 be the constant length formula expressing the Π-Vertex Dele-
tion. We can express the fairness property with fairness factor d by the following
MSO logic formula φ2

φ2 := ∃S ∀u ∈ V �v1, . . . , vd+1 ∈ S such that {(u, v1), . . . , (u, vd+1)} ∈ E (1)

It can be seen that the length of the formula φ2 is linear in d. Let φ′
1 and

φ′
2 be the formula strings obtained after removing the prefix ∃S from φ1 and

φ2 respectively. The Π-Fair Vertex Deletion problem can be expressed by
MSO formula φ = ∃S(φ′

1∧φ′
2) which is of length linear in d. Hence by Courcelle’s

theorem, the result follows. �
Most of the Π-Vertex Deletion problems like Vertex Cover and Feed-

back Vertex Set can be expressed by a constant length MSO formula. Hence
the above theorem gives FPT algorithms for these problems. But the running
time of these FPT algorithms have huge exponents. So we focus on FVC and
FFVS and give better FPT algorithms using dynamic programming on tree
decompositions.

Theorem 3. (�) 2 FVC can be solved in running time O∗(2ω(d+1)3ω) on graphs
of treewidth ω if a tree decomposition of width ω is given as input.

In Fair Vertex Cover problem on a graph having a cluster vertex deletion
size k, if a fair solution exists, then the treewidth of the graph can be proved to
be at most k + d. This gives the following corollary.

Corollary 1. (�) FVC is FPT parameterized by the sum of cluster vertex dele-
tion size and fairness factor.

Theorem 4. (�) FFVS can be solved in running time O∗((ω(d + 1))2ω) on
graphs of treewidth ω if a tree decomposition of width ω is given as input.

Corollary 2. (�) FFVS is FPT parameterized by solution size k.

Corollary 3. (�) FFVS is FPT parameterized by cluster vertex deletion size.

We use the Cut and Count Technique introduced by Cygan et al. [5] to get
an improved algorithm for FFVS.

Theorem 5. (�) Given a tree decomposition of the graph G of width ω, there is
a randomized algorithm running in O∗(3ω(d + 1)3ω) time that either states that
there exists an FFVS of size at most k or that it could not verify this hypothesis.
If there indeed exists such a set, the algorithm will return “unable to verify” with
probability at most 1/2.
2 The proofs of Theorems, Lemmas and safeness of Reduction Rules marked � with

some omitted details can be found in full version of the paper.



Deconstructing Parameterized Hardness of Fair Vertex Deletion Problems 331

4 FAIR q-HITTING SET Parameterized by Solution Size

4.1 FPT Algorithm

We first give a O�(qk) algorithm for Fair q-Hitting Set via the standard
branching technique.

Theorem 6. (�) Fair q-Hitting Set can be solved in O�(qk) time.

We can give a parameter preserving reduction for Fair q-Forbidden Set
Vertex Deletion to Fair q-Hitting Set as follows. Given the finite forbidden
set F , we can construct a family F ′ containing at most q-sized subsets S ⊆ V (G)
such that G[S] is isomorphic to a member of F . Even though F ′ is not explicitly
given, since q is a constant, we can find the family of induced subgraphs of G
that are isomorphic to at least an element of the q-forbidden set F in O(nq)
time. Hence if there exists a member H of F ′ which is not hit, we can find it in
polynomial time and one of the vertices of the corresponding subgraph H has
to go in the solution. This gives rise to the following corollary.

Corollary 4. Fair q-Forbidden Set Vertex Deletion is FPT parameter-
ized by solution size k with running time O�(qk).

Since FVC is a special case of Fair q-Forbidden Set Vertex Deletion
with the forbidden set being an edge, we have the following corollary.

Corollary 5. FVC can be solved in O�(2k) running time.

4.2 Polynomial Kernel

We noticed that the standard Sunflower Lemma based reduction rules used to
obtain a kernel for q-Hitting Set do not work when we bring fairness con-
straints. Hence we take a different approach by casting the problem as a special
case of the well studied Min Ones-SAT problem.

A clause of a formula in the conjunctive normal form (CNF) is monotone if
all its literals are positive. If all its literals are negative, we call it anti-monotone.
Let us define the following problem.
Min-Ones-Monotone/Anti-Monotone l-SAT
Input: A CNF formula φ on n variables and m clauses such that all the
clauses have at most l variables and are either monotone or anti-monotone.
Question: Does there exist an assignment A with at most k variables set to
true that satisfies φ?

Theorem 7. Min-Ones-Monotone/Anti-Monotone 	-SAT parameterized
by k has a polynomial kernel for constant 	.
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Proof. Let φ = φ1 ∧ φ2 where φ1 is the conjunction of all the monotone clauses
in φ and φ2 is the conjunction of all the anti-monotone clauses in φ. Let a and
b be the maximum size of the clauses in φ1 and φ2, respectively. We have the
following reduction rules.

Reduction Rule 1: Since φ1 is a monotone formula, it can be treated as a
set system with the universe being the variables and the family of sets being
the monotone clauses. Suppose that in this corresponding set system of the
formula φ1, there exists a sunflower S = {C1, . . . , Ck+1} with the core set of
positive literals Y = {xy1 , . . . , xyp

}. If Y is empty, then we return NO. Else in
the formula φ we remove all the clauses Ci with i ∈ [k + 1] and add the clause
CY = xy1 ∨ . . . ∨ xyq

. If |Y | = 1, we set the corresponding variable to true in all
the clauses in the formula.

Claim. (�) Reduction Rule 1 is safe and can be performed in polynomial time.

Reduction Rule 2 (�): Let xv be a variable that is present only in negative
form in φ, then delete all the clauses containing xv.

Claim. If reduction rules 1 and 2 are not applicable, then φ has O((a!ka · a2)b)
clauses.

Proof. Look at the number N of monotone clauses of size a′ ∈ [a] in φ. If
N > a′!ka′

, then by Sunflower Lemma there exists a sunflower in φ. Hence we
can apply Reduction Rule 1 which is not the case. Hence the number of monotone

clauses is at most
a∑

a′=1

a′!ka′ ≤ a!ka · a. Let M be the set of variables appearing

in these clauses. We have |M | ≤ a!ka · a2.
Now we look at the anti-monotone clauses of φ. There are at most

(
M
b

)

clauses here containing only variables in M . In the rest of the clauses there
exists a variable that is occurring only in the anti-monotone clauses of φ and
hence only in negative form in φ. Reduction rule 2 would remove all such clauses.

Hence the number of clauses in φ is bounded by a!ka ·a+
(
a!ka·a2

b

)
= O((a!ka ·

a2)b). �
When a, b ≤ l are constants, the input size is polynomial in k. �
Theorem 8. There is a polynomial kernel for Fair q-Hitting Set parameter-
ized by the solution size k when both q and the fairness factor d are constants.

Proof. Let l = max{q, d + 1}. Given an instance (G,F , k) of Fair q-Hitting
Set, we construct an instance of Min-Ones-Monotone/Anti-Monotone l-
SAT which is the formula φ as follows:

For each vertex u ∈ V , we have a variable xu. We define two types of clauses:

– Monotone clauses: For each set S ∈ F with S = {u1, . . . , uq}, we define the
clause CS = xu1 ∨ . . . ∨ xuq

.
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– Anti-monotone clauses: For each vertex u ∈ V (G), we look at the open neigh-
borhood set N(u). For all sets D ⊆ N(u) of size d+1, say D = {v1, . . . , vd+1},
we construct a clause CD = xv1 ∨ . . . ∨ xvd+1 .

If we look at any (d+1)-sized set from the open neighbourhood of any vertexu ∈ V ,
at least one of the vertices cannot be in the solution as otherwise it violates the
fairness of vertex u. This is captured by the anti-monotone clauses CD.

The formula φ is the conjunction of all the clauses CS and CD. Note that
since |N(u)| ≤ n−1, the number of clauses is O(m+nd+1 ·n) which is polynomial
in n and m for a constant d. Let the formula formed by the conjunction of all
the monotone clauses be φ1 and by all the anti-monotone clauses be φ2. Note
that here a = q and b = d + 1.

Claim. (�) There is a solution of size k for Fair q-Hitting Set instance
(G,F , k) if and only if there is a solution of size k for Min-Ones-
Monotone/Anti-Monotone l-SAT instance φ.

From Theorem 7, we have formula φ′ of size O((q!kq · q2)d+1). Since both
the problems are NP-complete, there is a polynomial time reduction from Min-
Ones-Monotone/Anti-Monotone SAT back to Fair q-Hitting Set. We
use this reduction on φ′ to get a Fair q-Hitting Set instance of size |φ′|O(1) =
O(((q!kq · q2)d+1)O(1)) which is polynomial in k when q and d are constants. �

As FVC is a special case of Fair q-Hitting Set with q = 2, we have

Corollary 6. FVC parameterized by solution size k has a kernel of size
O(kO(d)).

4.3 Improved Kernel for FVC Parameterized by Solution Size

For FVC, we observe that we can get an improved kernel by modifying the
classical Buss kernel [2] for Vertex Cover.

We apply the following reduction rules in sequence, only once.

Reduction Rule 1. Delete all isolated vertices in (G, k).

The above reduction rule is safe as isolated vertices do not cover any edge.

Reduction Rule 2. (�) Let H be the set of vertices in G having degree greater
than d. If |H| > k or H is not a fair set, then return No. Else delete all the
isolated vertices in G[V −H]. Add d+1 many pendant vertices adjacent to each
v ∈ H. Return the resulting graph as (G′, k).

Reduction Rule 3. (�) Let (G, k) be an input instance on which reduction
rules 1 and 2 are not applicable. Let H be the set of vertices in G having degree
greater than d. If there are more than k · d edges in G[V − H], then return No.

Reduction Rule 4. (�) Let (G, k) be an input instance on which reduction
rules 1 and 2 are not applicable. If G has more than 3kd+2k vertices or 2k2d+
kd + k + k2 + kd2 edges, then return No.
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The reduction rules lead to the following theorem.

Theorem 9. (�) There exists a kernel for FVC with O(kd) vertices and O(k2d)
edges.

5 Hardness Results

5.1 W[1]-Hardness for Fair Set

Theorem 10. Fair Set with d = 1 is W [1]-hard when parameterized by solu-
tion size k for graphs with degeneracy three.

Proof. We give a reduction from the Multicolored Independent Set prob-
lem known to be W [1]-hard [4] defined as follows.

Multicolored Independent Set
Input: A graph G = (V,E) and partition of (V1, . . . , Vk) of V for k ∈ N.
Question: Does there exist a set S ⊆ V of k vertices such that S forms an
independent set and for each vertex Vi, |Vi ∩ S| = 1?

Let (G,V1, . . . , Vk) be the Multicolored Independent Set instance. With-
out loss of generality, assume that G[Vi] is an independent set for all i ∈ [k]. We
construct an instance (G′, k + 2, 1) of Fair Set with d = 1 as follows:

We start constructing G′ with the same vertex set of G. For each class Vi,
we introduce a vertex vi and make it adjacent to all the vertices in Vi. For each
edge ej = (u, v) ∈ E(G), we add a vertex ej in G′ and add edges (u, ej) and
(ej , v). We also add a vertex s adjacent to all edge vertices ej for j ∈ [m] and
the vertices v1, v2, . . . , vk. Finally we add vertices t adjacent to s and t′ adjacent
to t.

Claim. (�) (G,V1, . . . , Vk) is a yes instance for Multicolored Independent
Set if and only if (G′, k + 2, 1) is a yes instance for Fair Set.

Now we look at the degeneracy of the graph G′. We give the degeneracy order
where we first put edge vertices e1, . . . , em, then all the vertices in V1, . . . , Vk and
then vertices v1, . . . , vk, s, t, t′ in that order. It can be verified that the degeneracy
of the graph is 3 from this order. �

A fair independent set is an independent set which is also a fair set. The
reduction in Theorem 10 can be slightly modified to give a W [1]-hardness result
for Fair Independent Set problem.

Theorem 11. The Fair Independent Set problem is W [1]-hard parameter-
ized by solution size k for graphs with degeneracy three.
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5.2 NP-Hardness of FVC and FFVS

Theorem 12. (�) FVC is polynomial-time solvable when d = 1, 2 and is NP-
hard when d ≥ 3.

Proof. Since vertex cover is NP-hard on subcubic graphs [8], we know that FVC
is NP-hard for graph with d ≥ 3.

Case d = 1: Let S denote the set of all vertices of the graph G with degree
more than 1. All the vertices v ∈ S have to go into the solution of Fair Vertex
Cover as otherwise the fairness of v is violated. Hence if S is not a fair set, return
No. Since the vertices in G\S has degree at most 1, it consists of isolated vertices
and edges. Note that the endpoints of the isolated edges have no neighbors to
S as well. Create set T by picking an arbitrary vertex from every isolated edge.
We an easily see that T ∪ S is the minimum sized Fair Vertex Cover in G.

Case d = 2: Let S denote the set of all vertices of the graph G with degree
more than 2. All the vertices v ∈ S have to go into the solution of Fair Vertex
Cover as otherwise the fairness of v is violated. Hence if S is not a fair set,
return No. Since the vertices in G \ S has degree at most two, it has isolated
vertices, paths and cycles. Note that since all the vertices of a cycle has degree
two, there is no edge from any vertex in cycle to S. Hence we can arbitrarily
pick alternate vertices of the cycles in G \ S into the solution.

Look at a path P = (v1, v2, . . . , vl) in G \ S with l > 2. Since all the internal
vertices of P have degree two, there are no edges from any such vertex to S.
If l is odd, picking all vertices v2i which are internal vertices will cover all the
edges of P . If l is even, picking all vertices v2i expect vl and the vertex vl−1

will cover all the edges of P without violating any fairness constraint. Hence all
the edges of G are covered except isolated edges in G \ S. Look at any isolated
edge (u, v). If u or v does not have any edges to S, then pick the corresponding
vertex into the solution. Hence assume that both u and v have edges to S. Since
u and v has degree at most two, they have a unique neighbor in S, nu and nv

respectively. Note that G[S] is has degree at most two as otherwise fairness is
violated for some vertex. If nu or nv is a degree two vertex in G[S], then the
corresponding vertex u or v cannot go into the solution as fairness of nu or nv is
violated. Hence both nu and nv are either isolated vertices in G[S] or endpoints
of some path in G[S].

Let A denote the isolated edges (u, v) in G \ S remaining to be covered and
B denote set of vertices nu where u is an endpoint of these edges. The problem
reduces to picking exactly one endpoint of each isolated edge in G \ S such
that for all vertices v ∈ B, the number of vertices pick is at most one or two
depending on whether v is an endpoint of a path or an isolated edge respectively.
To solve this problem, we construct a bipartite graph H = (A,B′) from G with
B′ = B∪I where I is a copy of all the isolated vertices in G[S] which are present
in B. We add edges (a, b) for a ∈ A and b ∈ B′ when (a0, b0) ∈ E where a0 is
one of the endpoints of the edge a and b0 ∈ B is the corresponding original
vertex in S.
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Claim. (�) There is a matching saturating A in H if and only if there is a solution
for Fair Vertex Cover in G.

Hence we have a polynomial-time algorithm for FVS with d = 2 since we can
find the above matching if it exists in polynomial time. �

Since Feedback Vertex Set is NP-hard on graphs with maximum degree
4 [16], we know that FFVS is NP-hard when d ≥ 4. We complete the picture
with the following theorem where we give a reduction from 3-SAT.

Theorem 13. (�) FFVS is NP-hard for d ∈ {1, 2, 3}.

6 Conclusion

We initiated a systematic study on various Π-Fair Vertex Deletion problems
under various parameterizations. An open problem is to give a polynomial kernel
for FFVS parameterized by solution size. Also finding FPT algorithms for other
Π-Fair Vertex Deletion problems like Fair Odd Cycle Transversal
remains open.
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On 1-Factorizations of Bipartite Kneser
Graphs
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Abstract. It is a challenging open problem to construct an explicit 1-
factorization of the bipartite Kneser graph H(v, t), which contains as
vertices all t-element and (v − t)-element subsets of [v] := {1, . . . , v} and
an edge between any two vertices when one is a subset of the other. In this
paper, we propose a new framework for designing such 1-factorizations,
by which we solve a nontrivial case where t = 2 and v is an odd prime
power. We also revisit two classic constructions for the case v = 2t +
1—the lexical factorization and modular factorization. We provide their
simplified definitions and study their inner structures. As a result, an
optimal algorithm is designed for computing the lexical factorizations.
(An analogous algorithm for the modular factorization is trivial.)

Keywords: Graph Theory: 1-factorization · Modular factorization ·
Lexical factorization · Bipartite Kneser graph · Perpendicular array

1 Introduction

The bipartite Kneser graph H(v, t) (t < v/2) has as vertices all t-element and
(v − t)-element subsets of [v] := {1, . . . , v} and an edge between any two vertices
when one is a subset of the other. Because it is regular and bipartite, each
bipartite Kneser graph admits a 1-factorization due to Hall’s Marriage Theorem
[7]. (A 1-factor of a graph G is a subgraph in which each node of G has degree 1,
and a 1-factorization of G partitions the edges of G into disjoint 1-factors.) For
the special case v = 2t + 1, the graph H(2t + 1, t) is also known as the middle
level graph and it admits two explicit 1-factorizations – the lexical factorization
[10] (see Subsect. 1.2) and modular factorization [4] (see Sect. 4). However, to
the best of our knowledge, for decades it remains a challenging open problem to
design explicit 1-factorizations for the general bipartite Kneser graphs.

In this paper, we propose a natural framework to attack the open problem
(Sect. 2). It attempts to find a special kind of 1-factorizations called resolvable 1-
factorizations. We noticed that the lexical and modular factorizations and any 1-
factorization of H(2t+1, t) are resolvable. We also checked (by a C++ program)
that there are no resolvable 1-factorization for (v, t) = (6, 2). Therefore, we can
only expect for solving part of the open problem using this framework.
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As our main result, Theorem 1 states that finding a resolvable 1-factorization
of H(v, t) is equivalent to designing a special type of combinatorial designs, called
perpendicular arrays [2,3]. In particular, CPA(t, t + d, 2t + d), where d = v − 2t.
According to this theorem and by using the known perpendicular arrays found
in [17,18], we obtain the first resolvable 1-factorizations of H(v, t) when t = 2
and v is an odd prime power or when (v, t) ∈ {8, 3}, {32, 3}. On the other
direction, we use the lexical and modular factorizations to obtain the first explicit
constructions of CPA(t, t + 1, 2t + 1), which are known to be existed in [12].

In addition to the construction of the new factorizations, we conduct a com-
prehensive study of the two previously known factorizations of the middle level
graph, which serves as part of an ongoing effort to solve the general case.

In Sect. 3, we unveil an inner structure of the lexical factorization, which leads
to not only the first constructive proof for the fact that the lexical factorization
is well-defined, but also an optimal algorithm for the following problem: Given
i and a t-element subset A, find the unique A′ such that (A,A′) belongs to the
i-th 1-factor of the lexical factorization. The case i = t + 1 of this problem was
studied in [16]. For i ≤ t it becomes more difficult and a trivial algorithm takes
O(v2) time in the RAM model (where an atomic operation on a word accounts
O(1) time). We improve it to optimal O(v) time in this paper. (An O(v) time
algorithm for this problem on modular factorization is trivial.)

In Sect. 4, we propose an intuitive definition of the modular factorization,
which establishes an interesting connection between this factorization and the
inversion number of permutations (see section 5.3 of [11]). As it is simpler than
the original definition in most aspects, a few existing results about the modular
factorization become more transparent with this new definition.

Also, we prove properties called variation laws for the known 1-factorizations.
We will see the alternative definitions, inner structure, and variation laws are

important for understanding the existing 1-factorizations. They have not been
reported in literature and obtaining them requires nontrivial analysis.

1.1 Motivation and Related Work

A 1-factor of the bipartite Kneser graph is also known as an antipodal matching
in the subset lattice. It is strongly related to the set inclusion matrix introduced
in [19], which has connections to t-design in coding theory (see [1,5] and the
references within). See [16] for its another application in coding theory.

The 1-factorization problem of the middle level graph was motivated by the
middle level conjecture, which states that all the middle level graphs are Hamilto-
nian. It was hoped that people can find two 1-factors which form a Hamiltonian
cycle [10]. Yet after extensive studies for thirty years the conjecture itself was
settled by Mütze [13]; see also [6] for a recent and shorter proof and see [14] for
an optimal algorithm for computing such a Hamiltonian cycle. Moreover, Mütze
and Su [15] settles the Hamiltonian problem for all the bipartite Kneser graphs.

We give new applications of the 1-factorizations of H(v, t) in hat-guessing
games. We show that an optimal strategy in the unique-supply hat-guessing
games [8] can be designed from a 1-factorization of H(v, t). To make the strategy
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easy to play, such a 1-factorization must be simple or at least admit an explicit
construction. The details can be found in the full version of this paper [9].

1.2 Preliminaries

The subset lattice is the family of all subsets of [v], partially ordered by inclusion.
Let Pt denote the t-th layer of this subset lattice, whose members are the t-
element subsets of [v]. Throughout the paper, denote d = v − 2t. Let the words
clockwise and counterclockwise be abbreviated as CW and CCW respectively.

A representation of the edges of H(v, t). We identify each edge (A,A′) of
H(v, t) by a permutation ρ of t �’s, t �’s, and d ×’s: the (positions of) t ‘�’s
indicate the t elements in A; the t ‘�’s indicate the t elements that are not in
A′ (recall that A′ has v − t elements); and the ‘×’s indicate those in A′ − A. We
do not distinguish the edges with their corresponding permutations.

Denote [t�, t�, d×] as the multiset of 2t + d characters with t ‘�’s, t ‘�’s,
and d ‘×’s. Giving a 1-factorization of H(v, t) is equivalent to giving a labeling
function f from the

(
2t+d
t,t,d

)
permutations of [t�, t�, d×] to 1, . . . ,

(
t+d
d

)
so that

(a) f(ρ) �= f(σ) for those pairs ρ, σ who admit the same positions for t �’s; and
(b) f(ρ) �= f(σ) for those pairs ρ, σ who admit the same positions for t �’s.

If (a) and (b) hold, for fixed i, all edges labeled by i constitute a 1-factor, denoted
by Ff,i, and Ff,1, . . . , Ff,(t+d

d ) constitute a 1-factorization of H(v, t).
An example of the labelling function that satisfies (a) and (b) is given in [10]:

The lexical factorization [10]. Let ρ = (ρ1, . . . , ρ2t+1) be any permutation
of [t�, t�, 1×]. Arrange ρ1, . . . , ρ2t+1 in a cycle in CW order. For any ρj that
equals �, it is positive if there are strictly more �’s than �’s in the interval that
starts from the unique × and ends at ρj in CW order. The number of positive�’s modular (t + 1) is defined to be fLEX(ρ) (here, we restrict the remainder to
[t + 1] by mapping 0 to t + 1). See Fig. 1. It is proved in [10] that fLEX satisfies
the above conditions (a) and (b). We provide in Sect. 3 a more direct proof for
this. The lexical factorization is {L1, . . . ,Lt+1}, where Li = FfLEX,i.

fLEX fLEX fLEXfLEX

Fig. 1. Illustration of the definition of fLEX. In the graph, the solid circles indicate
positive �’s. Note that the positions of �’s are identical in all the permutations drawn
here. As we see, the four permutations are mapped to different numbers under fLEX.

Note: The original definition [10] of fLEX(ρ) actually calculates the number of
nonnegative �’s rather than positive �’s. For ρj = �, it is said nonnegative if
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there the number of �’s is no less than the number of �’s in the interval that
starts from the unique × and ends at ρj in CW order. Nevertheless, it is clear
that the number of nonnegative �’s is the same as the number of positive �’s.

Note: The original definition [10] use L0 to denote Lt+1. In this paper, however,
we choose Lt+1 instead of L0 to make it consistent with the case d > 1.

2 Construct “resolvable” 1-Factorizations of H(v, t)

This section introduces resolvable 1-factorizations of H(v, t) and constructs some
of them using combinatorial designs called perpendicular arrays (defined below).

Definition 1. Assume {gA | A ∈ Pt} is a group of functions where gA is a
bijection from AC = [v] − A to [t + d] for every A ∈ Pt. Assume γ is a bijection
from the set of all d-element subsets of [t+d] to 1, . . . ,

(
t+d
d

)
. We define a labeling

function fγ,g on the edges of H(v, t) as follows: fγ,g(A,A′) := γ(gA(A′ − A)).

Note 1: Throughout, we use gA(X) to denote
⋃

x∈X gA(x) for any X ⊆ AC .

Note 2: Function fγ,g satisfies condition (a) trivially. Yet in most cases it does
not satisfy condition (b) and hence does not define a 1-factorization of H(v, t).

Definition 2. Let f be the labelling function of a 1-factorization of H(v, t). We
say f is resolvable if there are {gA | A ∈ Pt} and γ as mentioned in Definition 1
such that f(A,A′) ≡ γ(gA(A′ − A)). In this case, we call gA’s for A ∈ Pt the
resolved functions of f and we say the 1-factorization defined by f is resolvable.

Remark 1. Among other merits which make the resolvable 1-factorizations more
interesting than the general ones, a resolvable 1-factorization takes only (t + d)
over

(
t+d
d

)
fraction of storing space comparing to a general 1-factorization.

The following two lemmas are easy; proofs are given in the full version [9].

Lemma 1 1. Any 1-factorization of H(v = 4, t = 1) is resolvable.
2. Any 1-factorization of H(2t + 1, t), including the lexical factorization and

modular factorization, is resolvable. (This claim is actually trivial.)
3. No 1-factorization of H(6, 2) is resolvable. (Will be proved by a program.)

As shown by Lemma 1, there could be H(v, t)’s without a resolvable 1-
factorization, hence we are not always able to design a resolvable 1-factorization
of H(v, t). Nevertheless, the first two claims of Lemma 1 and the results given
in the rest part of this section point out that for several cases we can do so.

Lemma 2. Given {gA | A ∈ Pt} and γ as above, the following are equivalent:

(i) function fγ,g(A,A′) satisfies condition (b); and
(ii) When A1 �= A2 and (A1, A

′
1), (A2, A

′
2) are two edges in H(v, t), then

gA1(A
′
1 − A1) = gA2(A

′
2 − A2) implies that A′

1 �= A′
2.
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By Lemma 2, it is independent with the choice of γ whether fγ,g(A,A′)
defines a 1-factorization of H(v, t). Therefore, if we want to design a resolvable
1-factorization, the difficulty lies in and only lies in designing {gA | A ∈ Pt}.

By Lemma 2 and Definition 1, H(v, t) has a resolvable factorization if and
only if there exist resolved functions {gA | A ∈ Pt} such that for A1 �= A2,
gA1(A

′
1 − A1) = gA2(A

′
2 − A2) implies A′

1 �= A′
2. The following theorem shows

that finding such functions is equivalent to designing some perpendicular arrays.
A perpendicular array [2,3] with parameters t, k, v, denoted by PA(t, k, v), is

a
(
v
t

) × k matrix over [v], where each row has k distinct numbers and each set
of t columns contain each t-element subset of [v] as a row exactly once.

For d ≥ 0, a PA(t, t+d, 2t+d) is complete, hence denoted by CPA(t, t+d, 2t+
d), if each (t + d)-element subset of [2t + d] is also contained in exactly one row.

Theorem 1. H(2t+d, t) has a resolvable 1-factorization ⇔ ∃CPA(t, t+d, 2t+d).

Proof. ⇒: Assume f is the labeling function of a resolvable 1-factorization of
H(v = 2t + d, t). Then, f(A,A′) ≡ γ(gA(A′ − A)) for some resolved functions
{gA | A ∈ Pt} and a bijection γ as mentioned in Definition 1.

We construct a matrix M over [v] as follows. For each A ∈ Pt, we build a
row (a(A)

1 , . . . , a
(A)
t+d) in M , where a

(A)
i = g−1

A (i) (which belongs to AC and thus
belongs to [v]). As Pt has

(
v
t

)
elements, the size of matrix M is

(
v
t

)
by k = t+ d.

We now verify that M is a PA(t, t + d, 2t + d). First, since g−1
A is bijective,

a
(A)
1 , . . . , a

(A)
t+d are distinct and so each row of M contains k = t + d distinct

numbers. Next, for any t columns i1, . . . , it, we show that

{a
(A1)
i1

, . . . , a
(A1)
it

} �= {a
(A2)
i1

, . . . , a
(A2)
it

} (1)

for any distinct A1, A2 ∈ Pt. Assume {j1, . . . , jd} = [t + d] − {i1, . . . , it}.
Let A′

1 = A1

⊎{g−1
A1

(j1), . . . , g−1
A1

(jd)} and A′
2 = A2

⊎{g−1
A2

(j1), . . . , g−1
A2

(jd)}.
Clearly, gA1(A

′
1−A1) = {j1, . . . , jd} = gA2(A

′
2−A2), thus A′

1 �= A′
2 by Lemma 2.

Thus [v] − A′
1 �= [v] − A′

2. Because {j1, . . . , jd}
⊎{i1, . . . , it} = [t + d], we

know AC
1 = {g−1

A1
(j1), . . . , g−1

A1
(jd)}

⊎{g−1
A1

(i1), . . . , g−1
A1

(it)}, which implies that
[v] − A′

1 = {g−1
A1

(i1), . . . , g−1
A1

(it)}. Similarly, [v] − A′
2 = {g−1

A2
(i1), . . . , g−1

A2
(it)}.

Altogether, {g−1
A1

(i1), . . . , g−1
A1

(it)} �= {g−1
A2

(i1), . . . , g−1
A2

(it)}, i.e., (1) holds.
Next, we argue that M is a CPA(t, t+d, 2t+d). This reduces to proving that

each row of M forms a distinct (t + d)-element subset of [2t + d], which follows
from the fact that the row constructed from A is a permutation of AC .

⇐: Assume M is a CPA(t, t + d, 2t + d). First, we construct {gA | A ∈ Pk}.
For any row (a1, . . . , at+d) of M , assuming that AC = {a1, . . . , at+d}, define
gA(ai) = i for i ∈ [t + d]. Obviously, each gA for A ∈ Pk is defined exactly once.

Below we verify that when A1 �= A2, equality gA1(A
′
1 − A1) = gA2(A

′
2 − A2)

would imply A′
1 �= A′

2. According to Lemma 2, this further implies that for
any γ as mentioned in Definition 1, fγ,g(A,A′) is a labeling function satisfying
conditions (a) and (b), and hence H(2t + d, t) has a resolvable 1-factorization.
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Suppose to the opposite that gA1(A
′ − A1) = gA2(A

′ − A2) = {j1, . . . , jd}.
Assume {i1, . . . , it} = [t+d]−{j1, . . . , jd}. Because gA1(A

′ −A1) = {j1, . . . , jd},
we know gA1([v] − A′) = {i1, . . . , it}, so [v] − A′ = {g−1

A1
(i1), . . . , g−1

A1
(it)}.

Similarly, because gA2(A
′ − A2) = {j1, . . . , jd}, we get [v] − A′ =

{g−1
A2

(i1), . . . , g−1
A2

(it)}. Moreover, because M is a PA(t, t + d, 2t + d) where
{g−1

A1
(i1), . . . , g−1

A1
(it)} and {g−1

A2
(i1), . . . , g−1

A2
(it)} appear in two rows of M in the

columns indexed by i1, . . . , it, these two sets are distinct. Thus [v]−A′ �= [v]−A′.
Contradiction. �

2.1 Applications of Theorem 1

Lemma 3 1. For t = 1, there is always a PA(t, 2t + d, 2t + d). (trivial)
2. [17] For t = 2 and an odd prime power 2t + d, there is a PA(t, 2t + d, 2t + d).
3. [18] For t = 3 and 2t + d ∈ {8, 32}, there is a PA(t, 2t + d, 2t + d).

The following lemma is trivial; proof can be found in full version [9].

Lemma 4. Any t+d columns of a PA(t, 2t+d, 2t+d) form a CPA(t, t+d, 2t+d).

Lemma 4 points out a way to construct a CPA(t, t+d, 2t+d). Yet it is unknown
whether every CPA(t, t+d, 2t+d) can be constructed this way. We conjecture so.
If so, finding resolvable 1-factorizations reduces to finding PA(t, 2t + d, 2t + d)’s.

The following is a corollary of Lemmas 3, 4, and Theorem 1.

Corollary 1. Graph H(2t+d, t) has a resolvable 1-factorization when 1. t = 1,
or 2. (t = 2 and 2t+d is an odd prime power), or 3. (t = 3 and 2t+d ∈ {8, 32}).

The constructions of PA(t, 2t + d, 2t + d) for those pairs of (t, d) discussed
in Lemma 3 are explicit and quite simple (see [17,18]). Also, our construction
of the resolvable 1-factorization of H(2t + d, t) using a CPA(t, t + d, 2t + d) is
extremely simple (as shown in the proof of Theorem 1). As a result, the resolvable
1-factorizations of H(2t+d, t) mentioned in this corollary are explicit and simple.

Perpendicular arrays have not been studied extensively in literature. In addi-
tion to the existence results mentioned in Lemma 3, there do exist PA(3, 5, 5)
and PA(t, t + 1, 2t + 1) (t ≥ 1) and some other perpendicular arrays. Yet the
construction of PA(t, t+1, 2t+1) (in [12]) is not explicit and thus not too useful
(regarding that we are only interested in explicit factorizations of H(2t + 1, t)).
A PA(3, 5, 5) is also useless to us since 5 < 2 × 3. Because a CPA(t, t + d, 2t + d)
automatically implies a resolvable 1-factorization of H(v, t), we hope that our
results motivate more study on the perpendicular arrays in the future.
Another application of Theorem 1—construction of CPA(t, t + 1, 2t + 1). As
shown in Lemma 1, the lexical and modular factorization of H(2t + 1, t) are
both resolvable. The resolved functions of fLEX and fMOD will be demonstrated
in the next sections. Using these resolved functions and applying the proof of
Theorem 1, we can easily construct two CPA(t, t + 1, 2t + 1)s. Therefore, as
byproducts, we obtain (the first) explicit constructions of (complete) PA(t, t +
1, 2t + 1) (note that [12] only showed the existence of PA(t, t + 1, 2t + 1)).
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3 Revisit the Lexical Factorization

Recall fLEX in Subsect. 1.2, which is a labeling function of H(2t + 1, t). In this
section, we first give {gA} of γ so that fLEX = fγ,g. Based on this formula we
then show that fLEX satisfies (a) and (b) and thus that it indeed defines a 1-
factorization. Moreover, by applying fLEX = fγ,g, we design optimal algorithms
for solving two fundamental computational problems about this factorization
(P1 and P2 below). Finally, we introduce a group of variation laws of fLEX.

P1. Given A ∈ Pt and i ∈ {1, . . . , t + 1}, how do we find the unique A′ so that
(A,A′) ∈ Li? In other words, given number i and the positions of �’s in ρ
and suppose fLEX(ρ) = i, how do we determine the position of × in ρ?

P2. Given a A′ ∈ Pt+1 and i ∈ {1, . . . , t + 1}, how do we find the unique A so
that (A,A′) ∈ Li? In other words, given number i and the positions of �’s
in ρ and suppose fLEX(ρ) = i, how do we determine the position of × in ρ?

3.1 Preliminary Lemmas

The two lemmas given in this subsection are trivial; proofs can be found in [9].
Given S = (s1, . . . , sv), the j-th (0 ≤ j < v) cyclic-shift of S is S(j) :=

(s1+j , . . . , sv+j), where subscripts are taken modulo v (and restricted to [v]).

Lemma 5. Given any sequence S of t of right parentheses ‘)’ and t + 1 left
parentheses ‘(’. There exists a unique cyclic-shift S(j) of S whose first 2t paren-
theses are paired up when parenthesized, and we can compute j in O(t) time.

Example 1. Assume t = 9, S = (1(2)3)4)5(6(7(8)9)10(11)12)13(14(15)16(17(18)19.
The unique cyclic-shift in which the first 2t parentheses are paired up is:

S(14) =
(

15

)

16

(

17

(

18

)

19

(

1
(2)3

)

4

)

5

(

6

(

7
(8)9

)

10

(

11

)

12

)

13

(

14

.

Definition 3. Given S = (s1, . . . , s2t+1), t of which are ‘)’ and t + 1 are ‘(’. It
is said canonical if its first 2t parentheses are paired up when parenthesized.

Definition 4. (Indices of the 2t+1 parentheses). For any canonical paren-
theses sequence S, we index the t+1 left parentheses in S by 0, . . . , t according to
the following rule: The smaller the depth, the less the index; and index
from right to left for those under the same depth. Here, depth is defined
in the standard way; it is the number of pairs of matched parentheses that cover
the fixed parenthesis. Moreover, we index the t right parentheses in such a
way that any two paired parentheses have the same index.

For S(14) above, the depth and index are shown below (index on the right).()
︸︷︷︸
0

( ()
︸︷︷︸
1

(
()︸︷︷︸
2

)

︸ ︷︷ ︸
1

)

︸ ︷︷ ︸
0

( (
()︸︷︷︸
2

)

︸ ︷︷ ︸
1

()
︸︷︷︸
1

)

︸ ︷︷ ︸
0

(
︸︷︷︸
0

;
()
︸︷︷︸
3

( ()
︸︷︷︸
7

(
()︸︷︷︸
9

)

︸ ︷︷ ︸
6

)

︸ ︷︷ ︸
2

( (
()︸︷︷︸
8

)

︸ ︷︷ ︸
5

()
︸︷︷︸
4

)

︸ ︷︷ ︸
1

(
︸︷︷︸
0

.
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This definition of indices is crucial to the next lemma and the entire section.
For convenience, denote by depth(si), index(si) the depth and index of si.

Lemma 6. When S is canonical, for any sl = ( and sr =), there are more )’s
than (’s in the cyclic interval {sl+1, . . . , sr} if and only if index(sl) ≥ index(sr).

3.2 Finding Resolved Functions {gA} of fLEX

Parenthesis representation. We can represent any A ⊆ [v] by a sequence of
parentheses S = (s1, . . . , sv) where sx = ‘)’ if x ∈ A and sx = ‘(’ if x /∈ A.
For example, A = {3, 4, 5, 9, 10, 12, 13, 16, 19} is represented by the S given in
Example 1 above. Notice that if A ∈ Pt, its associate sequence S contains t ‘)’s.

Definition 5. Fix A ∈ Pt and let S denote its parentheses sequence. We
abuse index(sx) to mean the index of sx in the unique canonical cyclic-shift
of S (uniqueness is by Lemma 5). For any x ∈ AC (hence sx = ‘(’), define
gA(x) := index(sx) mod (t + 1)(∈ [t + 1]) (restrict to [t + 1] by mapping 0 to
t + 1).

Because left parentheses have distinct indices, gA is a bijection as required.

Theorem 2. Let γ be the natural bijection from all the 1-element subsets of
[t + 1] to [t + 1], which maps {x} to x. Define {gA | A ∈ Pt} as in Definition 5.
Then, fLEX = fγ,g. In other words, fLEX(A,A ∪ {x}) ≡ gA(x) (x ∈ AC).

Proof. Build the parentheses sequence S = (s1, . . . , s2t+1) of A and the permuta-
tion ρ = (ρ1, . . . , ρ2t+1) of [t�, t�, 1×] corresponding to edge (A,A∪{x}). Recall
that fLEX(A,A∪{x}) := p mod (t+1) ∈ [t+1], where p is the size of P = {ρr =� | there are more �s than �s in the cyclic interval (ρx+1, . . . , ρr)}. Observe
that S can be constructed from ρ by replacing �,�,× to ‘)’, ‘(’, ‘(’. So, {sr =
‘)’ | there are more ‘)’s than ‘(’s in cyclic interval (sx+1, . . . , sr)}, which equals
{sr = ‘)’ | index(sx) ≥ index(sr)} by Lemma 6 (indices refer to those in the
canonical cyclic-shift of S), has the same size as P , so index(sx) = p. Further by
Definition 5, gA(x) = index(sx) mod (t + 1)(∈ [t + 1]) = fLEX(A,A ∪ {x}). �
Theorem 3. fLEX satisfies conditions (a) and (b).

Fig. 2. fLEX(ρ∗) mod (t + 1) + fLEX(ρ) mod (t + 1) = t. The dashed line indicates ρ∗.
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Proof. Because fLEX equals fγ,g, applying Note 2 below Definition 1, this labeling
function satisfies condition(a). Below we prove that it also satisfies condition (b).

Define the dual of ρ, denoted by ρ∗, to be another permutation of [t�, t�, 1×]
which is constructed from ρ by swapping the �’s with �’s. As illustrated in
Fig. 2, we have (i): fLEX(ρ∗) mod (t + 1) + fLEX(ρ) mod (t + 1) = t for any ρ.

Consider t + 1 distinct permutations ρ0, . . . , ρt sharing the same positions of
�’s. Then, (ρ0)∗, . . . , (ρt)∗ share the same positions of �’s. Using condition (a),
fLEX((ρ0)∗), . . . , fLEX((ρt)∗) are distinct. So t − fLEX((ρ0)∗) mod (t + 1), . . . , t −
fLEX((ρt)∗) mod (t+1) are distinct. So fLEX(ρ0) mod (t+1), . . . , fLEX(ρt) mod (t+
1) are distinct by (i), i.e., fLEX(ρ0), . . . , fLEX(ρt) are distinct. Thus (b) holds. �
Remark 2. In the original proof of Theorem 3 in [10], it proves the existence of
bijections gA’s (A ∈ Pt) such that fLEX = fγ,g, yet how to define such gA’s is
neither explicitly given, nor implicitly given. As we have seen in Definition 4,
giving this definition is not easy, even though the definition of fLEX is known.

There are two advantages of having explicit {gA}. First, the ideas we used
in defining gA could be useful in finding resolvable 1-factorizations for the case
v > 2t+1. Second, to solve P1 and P2 (in the next subsection), it seems necessary
to have an explicit definition of {gA} for the efficiency of computation.

3.3 Linear Time Algorithms for P1 and P2

Problem P1 admits a trivial O(t2) time solution as follows. Given the positions
of �’s in ρ and the number i, we can enumerate the position of the unique ×
among the remaining t + 1 positions and compute fLEX(ρ) in O(t) time, until
that the computed value is i. Problem P2 can be solved symmetrically.

Applying the results in Subsect. 3.2, we can solve P1 much more efficiently.
Briefly, using those indices of parentheses in Definition 4, we can compute fLEX()
for all permutations ρ0, . . . , ρt in which the positions of �’s are as given alto-
gether, and then find ρj so that fLEX(ρj) = i. See the details in Algorithm 1.

Input: A set A ∈ Pt and a number i ∈ [t + 1].
Output: The set A′ = A ∪ {z} so that (A, A′) ∈ Li.

(Integer z indicates the position of × so that fLEX(ρ) = i.)
1 Compute the parentheses sequence S of A.

2 Compute the unique j so that the first 2t parentheses are paired up in S(j).

3 Compute the indices of all parentheses in S′ = S(j) according to Definition 4.
4 Find s′

z−j =′ (′ in S with index (i mod (t + 1)) and output A′ = A ∪ {z}.

Algorithm 1. Computing the unique A′ such that (A,A′) ∈ Li.

Theorem 4 1. Given a canonical S′, we can compute the indices of all paren-
theses in S′ in O(t) time. Therefore, Algorithm 1 solves P1 in O(t) time.

2. An instance (A′, i) of P2 reduces to the instance ([v] − A′, j) of P1, where
i mod (t + 1) + j mod (t + 1) = t. Thus P2 can be solved in O(t) time.

The proof of Theorem 4 is trivial and is omitted due to space limits.
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3.4 Variation Laws of fLEX

We prove some variations laws of fLEX as summarized in Lemma 7, which are
comparable to the laws of modular factorization given below in Lemma 9.

Lemma 7 (Variation laws of fLEX)

1. fLEX(ρ) �= t + 1 ⇔ there is a CW-balanced � ⇔ there is a CCW-balanced �.
2. fLEX(ρ) �= t ⇔ there is a CW-balanced � ⇔ there is a CCW-balanced �.
3. When fLEX(ρ) �= t + 1, let ρ×�� (ρ��×) be constructed from ρ by swapping

× with the CW first CW-balanced � (the CCW first CCW-balanced �).

Then,

fLEX(ρ×��) = fLEX(ρ��×) = (fLEX(ρ) − 1) mod (t + 1)(∈ [t + 1]).

4. When fLEX(ρ) �= t, let ρ×�� (ρ��×) be constructed from ρ by swapping ×
with the CW first CW-balanced � (the CCW first CCW-balanced �).
Then,

fLEX(ρ×��) = fLEX(ρ��×) = (fLEX(ρ) + 1) mod (t + 1)(∈ [t + 1]).

4 Revisit the Modular Factorization

This section presents a new and simpler definition of the modular factorization.
When a number modulo t+1 in this section, the remainder is restricted to [t+1].

The modular factorization [4]. The modular factorization was originally
given by t+1 1-factors M1, . . . ,Mt+1 where Mi was defined as follows. Consider
A ∈ Pt. Let ΣA indicate the sum of elements in A. Let y = (ΣA+i) mod (t+1)(∈
[t+1]). Then, Mi(A) := A∪{z}, where z is the y-th largest element in [v]−A.

Take t = 3, v = 7, and A = {2, 4, 6} for example:
For i = 1, we have y = 13 = 1 (mod 4) and z = 7. So M1(A) = {2, 4, 6, 7}.
For i = 2, we have y = 14 = 2 (mod 4) and z = 5. So M2(A) = {2, 4, 5, 6}.
For i = 3, we have y = 15 = 3 (mod 4) and z = 3. So M3(A) = {2, 3, 4, 6}.
For i = 4, we have y = 16 = 4 (mod 4) and z = 1. So M4(A) = {1, 2, 4, 6}.

Note 1. It is proved in [4] that Mi is a 1-factor for each i (1 ≤ i ≤ t + 1).
Moreover, it is obvious that all the 1-factors M1, . . . ,Mt+1 are pairwise-disjoint.

Note 2. The origins of modular factorization are murky, said by the authors of
[4], who credited it to Robinson, who asked if it is the same as the lexical one.

Note 3. Assume Mi(A) = A′. We can compute A from i and A′ symmetrically.
Let x = (ΣA′ +i) mod (t+1)(∈ [t+1]) where ΣA′ indicates the sum of elements
in A′. Then A = A′ −{z}, where z is the x-th smallest element in A′ [4]. So, the
problems on modular factorizations analogous to P1 and P2 are easy to solve.

The original definition of the modular factorization above does not explicitly
give its labeling function. Such a labeling function will be needed in analyzing
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#(× )=3(mod 4)#(× )=4(mod 4)#(× )=5=1(mod 4)

fMODfMODfMOD fMOD

#(× )=6=2(mod 4)

Fig. 3. Illustration of the definition of fMOD. The four permutations drawn here share
the same positions of �’s, and they are mapped to different numbers under fMOD.

the variation laws of the above modular factorization in Lemma 9 below and
hence we state it Lemma 8. However, our definition of the modular factorization
is not given by Lemma 8. The proof of Lemma 8 can be found in [9].

Consider any permutation ρ = (ρ1, . . . , ρ2t+1) of [t�, t�, 1×]. For each i ∈
[2t + 1], the position of ρi is i. Let Oρ

1 , . . . , O
ρ
t be the positions of t �’s in ρ

and T ρ
1 , . . . , T ρ

t the positions t �’s. Denote by rank�
�(ρ) the rank of × when

enumerating all �’s and × in ρ from ρ2t+1 back to ρ1. So, rank�
�(ρ) − 1 is the

number of �’s with positions larger than the position of ×. Denote by rank��(ρ)
the rank of × when enumerating all �’s and × in ρ from ρ2t+1 back to ρ1.

Lemma 8. The labeling function of {M1, . . . ,Mt+1} is given by fmod, where

fmod(ρ) := rank�
�(ρ) − Σt

j=1O
ρ
j (mod t + 1)(∈ [t + 1]), or

fmod(ρ) := 1 + Σt
j=1T

ρ
j − rank��(ρ) (mod t + 1)(∈ [t + 1]).

We now introduce a labeling function fMOD and proves that fMOD ≡ fmod+C
for some constant C. Thus we give an alternative yet equivalent definition of the
modular factorization, which is {FfMOD,1, . . . , FfMOD,t+1}.

Definition 6. Assume ρ = (ρ1, . . . , ρ2t+1) is any permutation of [t�, t�, 1×].
Arrange ρ1, . . . , ρ2t+1 in CW order. We count the number of tuples (×,�,�)
which are located in CW order within this cycle of characters (positions may be
inconsecutive) (such a tuple is an inversion when we cut the sequence at ×).
Taken modulo (t+1), the remainder, restricted to [t+1], is fMOD(ρ). See Fig. 3.

By Definition 6, we establish an interesting connection between the modular
factorization and the inversion number of permutations (Sect. 5.3 of [11]).

Let ρ×→� be constructed from ρ, which swaps × with its CW next �.
Let ρ×→� be constructed from ρ, which swaps × with its CW next �.
Let ρ�←× be constructed from ρ, which swaps × with its CCW next �.
Let ρ�←× be constructed from ρ, which swaps × with its CCW next �.

Lemma 9. (Variation laws of fmod and fMOD).

fMOD(ρ×→�) = fMOD(ρ�←×) = fMOD(ρ) − 1 (mod t + 1), (2)

fMOD(ρ×→�) = fMOD(ρ�←×) = fMOD(ρ) + 1 (mod t + 1). (3)

fmod(ρ×→�) = fmod(ρ�←×) = fmod(ρ) − 1, (mod t + 1) (4)

fmod(ρ×→�) = fmod(ρ�←×) = fmod(ρ) + 1. (mod t + 1). (5)



On 1-Factorizations of Bipartite Kneser Graphs 349

Proof of Lemma 9 is given in [9]. Its corollary below is trivial; proof omitted.

Corollary 2. Because fmod and fMOD have the same variation law, there is a

constant C so that fMOD ≡ fmod + C. Specifically,
{

C = 0, t is even;
C = (t + 1)/2, t is odd.

At last, we point out that the resolved functions of fmod or fMOD can easily
be deduced according to the original definition of modular factorization.
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Abstract. The bounded delay buffer management problem, which was
proposed by Kesselman et al. (STOC 2001 and SIAM Journal on Com-
puting 33(3), 2004), is an online problem focusing on buffer management
of a switch supporting Quality of Service (QoS). The problem definition
is as follows: Packets arrive to a buffer over time and each packet is spec-
ified by the release time, deadline and value. An algorithm can transmit
at most one packet from the buffer at each integer time and can gain its
value as the profit if transmitting a packet by its deadline after its release
time. The objective of this problem is to maximize the gained profit. We
say that an instance of the problem is s-bounded if for any packet, an
algorithm has at most s chances to transmit it. For any s ≥ 2, Hajek
(CISS 2001) showed that the competitive ratio of any deterministic algo-
rithm is at least (1 +

√
5)/2 ≥ 1.618. Very recently, Veselý et al. (SODA

2019) designed an online algorithm matching the lower bound.
Böhm et al. (ISAAC 2016 and Theoretical Computer Science, 2019)

introduced the lookahead ability to an online algorithm, that is the algo-
rithm can gain information about future arriving packets, and showed
that for s = 2, there is an algorithm which achieves the competitive ratio
of (−1 +

√
13)/2 ≤ 1.303. Also, they showed that the competitive ratio

of any deterministic algorithm is at least (1 +
√

17)/4 ≥ 1.280. In this
paper, for the 2-bounded model with lookahead, we design an algorithm
with a matching competitive ratio of (1 +

√
17)/4.

1 Introduction

The online buffer management problem proposed by Aiello et al. [1] formu-
lates the management of buffers to store arriving packets in a network switch
with Quality of Service (QoS) support as an online problem. This problem has
received much attention among online problems and has been studied for the
last fifteen years, which leads to developing various variants of this problem (see
comprehensive surveys [17,26]). Kesselman et al. [23] proposed the bounded delay
buffer management problem as one of the variants, whose definition is as follows:
Packets arrive to a buffer over time. A packet p is specified by the release time
r(p), value v(p) and deadline d(p). An algorithm is allowed to transfer at most
one packet at each integer time. If the algorithm transmits a packet between
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): COCOON 2019, LNCS 11653, pp. 350–362, 2019.
https://doi.org/10.1007/978-3-030-26176-4_29
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its release time and deadline, it can gain its value as the profit. The objective
of this problem is to maximize the gained profit. The performance of an online
algorithm for this problem is evaluated using competitive analysis [11,27]. If for
any problem instance, the profit of an optimal offline algorithm OPT is at most
c times that of an online algorithm A, then we say that the competitive ratio of
A is at most c. We call a problem instance the s-bounded instance (or s-bounded
delay buffer management problem) in which for any packet p, d(p)−r(p)+1 ≤ s.
For any s ≥ 2, Hajek [19] showed that the competitive ratio of any deterministic
algorithm is at least (1+

√
5)/2 ≥ 1.618. Very recently, Veselý et al. [28] designed

an online algorithm matching the lower bound.
There is much research among online problems to reduce the competitive

ratio of an online algorithm for the original problems by adding extra abilities
to the algorithm. One of the major methods is called the lookahead ability, with
which an online algorithm can obtain information about arriving packets in
the near future. This ability is introduced to various online problems: the bin
packing problem [18], the paging problem [2,12], the list update problem [3],
the scheduling problem [25] and so on. Then, Böhm et al. [9,10] introduced the
lookahead ability to the bounded delay buffer management problem, that is, they
gave an online algorithm for this problem an ability to obtain the information
about future arriving packets and analyzed its performance.

Previous Results and Our Results. Böhm et al. [9,10] studied the 2-bounded
bounded delay buffer management problem with lookahead. They designed a
deterministic algorithm whose competitive ratio is at most (−1+

√
13)/2 ≤ 1.303.

Also, they proved that the competitive ratio of any deterministic algorithm is at
least (1 +

√
17)/4 ≥ 1.280.

In this paper, we show an online algorithm matching their lower bound for
this problem, that is, its competitive ratio is exactly (1 +

√
17)/4. Since the

original bounded delay buffer management problem has been solved completely
by Veselý et al. [28] just recently, the bounded delay buffer management problem
with lookahead is one of the most important variants which should be solved
among several variants of this problem. Our result will help to develop an optimal
algorithm for s-bounded instances.

Related Results. In the full version [10] of the paper [9], Böhm et al. studied
lower bounds on the competitive ratios of online algorithms with more general-
ized lookahead. Specifically, the lookahead ability in [9] at a time t enables an
online algorithm to obtain the information about packets p such that r(p) = t+1.
In [10], for a positive integer �, they considered the case where the ability at a
time t enables an online algorithm to obtain the information about packets p
such that r(p) ≤ t + �. They showed that a lower bound of any deterministic
algorithm is 1+

√
5+8�+4�2

2�+2 . Moreover, they proved that for any � ≥ 1, a lower
bound of any randomized online algorithm is 1.25.

As mentioned above, for the s-bounded delay model without lookahead,
Hajek [19] showed that the competitive ratio of any deterministic algorithm
is at least (1 +

√
5)/2 ≥ 1.618 in the case of s ≥ 2. Independently, this bound
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was also shown in [4,13,29]. Several deterministic algorithms have been devel-
oped [5,9,10,14,16,23] and very recently, Veselý et al. [28] designed an optimal
online algorithm. Moreover, in the case where an algorithm must decide which
packet to transmit on the basis of the current buffer situation, called the mem-
oryless case, some results were shown [5,14,16]. The agreeable deadline variant
has also been studied. In this variant, the larger the release times of packets are,
the larger their deadlines are. Specifically, for any packets p and p′, d(p) ≤ d(p′)
if r(p) < r(p′). The lower bound of (1+

√
5)/2 by Hajek [19] is applicable to this

variant. Li et al. [21,24] displayed an optimal algorithm, whose competitive ratio
matches the lower bound. The case in which for any packet p, d(p)−r(p)+1 = s
has also been studied, called the s-uniform delay variant, which is a specialized
variant of the agreeable deadline variant. The current best upper bound for this
variant is (1 +

√
5)/2 [21,24]. Also, in the case of s = 2, Chrobak et al. [15]

designed an optimal online algorithm whose competitive ratio is 1.377 [15].
The research on randomized algorithms for the bounded delay buffer man-

agement problem has also been conducted extensively [5,6,13,14,20–22]. In
the case in which s is general, the current best upper and lower bounds are
e/(e − 1) ≤ 1.582 [5,14,22] and 5/4 = 1.25 [13], respectively, against an obliv-
ious adversary were shown. Upper and lower bounds of e/(e − 1) [6,22] and
4/3 ≥ 1.333 [6], respectively, against an adaptive adversary were shown. For any
fixed s, lower bounds are the same with the bounds in the case in which s is
general while upper bounds are 1/(1−(1− 1

s )s) [22] against the both adversaries.
A generalization of the bounded delay buffer management problem has been

studied, called the weighted item collection problem [7,8,22]. In this problem,
an online algorithm does not know the deadline of each packet but knows the
relative order of the deadlines of packets. Many other variants of the buffer
management problem have been studied extensively (see e.g. [17,26]).

2 Model Description

We formally give the definition of the 2-bounded delay buffer management prob-
lem with lookahead, which is addressed in this paper. An input of this problem
is a sequence of phases. Time begins with zero and a phase occurs at an integer
time. Each phase consists of three subphases. The first occurring subphase is the
arrival subphase. At an arrival subphase, arbitrarily many packets can arrive to
a buffer. The buffer has no capacity limit and hence, all arriving packets can
always be accepted to the buffer. A packet p is characterized by the release time,
deadline and value, denoted by r(p), d(p) and v(p) respectively. Arrival times and
deadlines are non-negative integers and values are positive reals. d(p)− r(p) ≤ 1
holds because we focus on 2-bounded instances. The second subphase is the
transmission subphase. At a transmission subphase, an algorithm can transmit
at most one packet from its buffer if any packet. At the transmission subphase
at a time t, the algorithm can obtain the information about packets arriving
at time t + 1 using the lookahead ability. The third subphase is the expiration
subphase. At an expiration subphase, a packet which has reached its deadline is
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discarded from its buffer. That is, at the expiration subphase at a time t, all the
packets p in the buffer such that d(p) = t are discarded.

The profit of an algorithm is the sum of the values of packets transmitted by
the algorithm. The objective of this problem is to maximize the gained profit.
Let VA(σ) denote the profit of an algorithm A for an input σ. Let OPT be
an optimal offline algorithm. We say that the competitive ratio of an online
algorithm ON is at most c if for any input σ, VOPT (σ) ≤ VON (σ)c.

3 Matching Upper Bound

3.1 Notation and Definitions

We give definitions before defining our algorithm CompareWithPartialOPT
(CP ). For any integer time t and any algorithm A, BA(t) denotes the set of
packets in A’s buffer immediately before the arrival subphase at time t. That
is, each packet p in the set is not transmitted before t such that t > r(p) and
t ≤ d(p). Let us define an offline algorithm PO, which stands for a Partial OPT ,
which stores all the packets in the buffer of CP at a time and woks optimally
given a subinput from the time. For integer times t, t′ ≥ t and t′′ ∈ {t′, t′ + 1}
and an input σ, let PO(t, t′, t′′) be an offline algorithm such that the set of
packets in PO(t, t′, t′′)’s buffer immediately before the arrival subphase at time
t is equal to that of BCP (t)’s, and if the subinput of σ during time [t, t′] is given
to PO(t, t′, t′′), that is, packets p such that r(p) ∈ [t, t′] arrive to PO(t, t′, t′′)’s
buffer during time [t, t′], then PO(t, t′, t′′) is allowed to transmit t′′ − t + 1
packets only from time t to t′′ inclusive, that is, at t′′ − t + 1 transmission
subphases, and chooses the packets whose total profit is maximized. If there
exist packets with the same value in PO(t, t′, t′′)’s buffer, PO(t, t′, t′′) follows
a fixed tie breaking rule. Also, P (t, t′, t′′) denotes the set of t′′ − t + 1 packets
transmitted by PO(t, t′, t′′) during time [t, t′′]. Note that for any t and t′ ≥ t,
the following relations hold because of the optimality of packets transmitted by
PO(t, t′, t′′) during time [t, t′′]:

P (t, t′, t′) ⊆ P (t, t′ + 1, t′ + 1) (1)
P (t, t′, t′) ⊆ P (t, t′, t′ + 1) (2)

and
P (t + 1, t′, t′) ⊆ P (t, t′, t′). (3)
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We define for any t and i ≥ 0,

{mi(t)} = P (t, t + i, t + i)\P (t, t + i − 1, t + i − 1)

and any i ≥ 1,

{qi(t)} = P (t, t + i, t + i + 1)\P (t, t + i, t + i).

Also, we define

P (t, t − 1, t − 1) = ∅.

If mi(t) (qi(t)) does not exist, that is, the above equality is the empty set, then
we assume that a packet whose value is 0 is given. This assumption is used
to make the description of CP simpler and does not affect the performance of
CP . Moreover, if there exists a packet p such that both v(p) = v(q1(t)) holds
and either r(p) = t or p ∈ BCP (t), that is, CP can transmit p at t, then q0(t)
denotes p. Also, we define m01(t) ∈ arg max{m0(t),m1(t)}. Let V (t, t′, t′′) denote
the total value of packets in P (t, t′, t′′). That is, V (t, t′, t′′) =

∑
p∈P (t,t′,t′′) v(p).

We describe each value in the algorithm definition for ease of presentation as
follows: mi = mi(t), m01 = m01(t), qi = qi(t) and, R = (1 +

√
17)/4.

3.2 Idea Behind Algorithm Design

In this section, we explain the idea behind designing our algorithm CP for better
understanding. Suppose that CP decides which packet to transmit at a time t.
Let us assume that at t, the buffer of CP stores all the packets in the buffer of
OPT at t. We guarantee that this assumption holds at a time satisfying some
conditions in a lemma of the full version of this paper. Due to page limitations,
we omit all of the proofs in this paper. The full version of this paper is available
at https://arxiv.org/abs/1807.00121. If this assumption holds, CP is able to
detect two packets OPT transmits at times t and t + 1. To detect here means
that CP calculates which packets OPT transmits at these times cause the worst
situation with respect to the profit ratio. Let V be the maximum total value of
two packets which OPT transmits at t and t + 1. CP chooses packets p and p′

at t and t + 1, respectively, from packets which are revealed to CP at t such
that V ≤ R(v(p)+ v(p′)) holds. Note that p′ may arrive at t+1. Although both
CP ’s and OPT ’s buffers have the same packets at some time, the optimal choice
depends on the instance, which in turn depends on CP ’s choice and thus CP
might make a non-optimal choice in general. and hence, CP does not always
transmit the packets as the ones which OPT transmits although they have the
same packets at t. If CP could choose packets for each t = 0, 2, 4, . . . to satisfy
the above inequality, we could prove that the competitive ratio of CP is at most
R. However, this is impossible. For example, suppose that packets p0, p1 and
p2 are given at time 0 such that d(p0) = 0, d(p1) = 1 and d(p2) = 2 and no
other packets are given further. Also, suppose that CP transmits p1 and p2 at
times 0 and 1, respectively and OPT transmits p0, p1 and p2 at times 0, 1 and 2,

https://arxiv.org/abs/1807.00121
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respectively. In this case, CP does not transmit any packet at time 2 and thus,
we cannot prove the above inequality.

Thus, the length of a time interval which CP uses to evaluate its competitive
ratio is not fixed (such as 2 mentioned above) but variable as follows. Let us
assume again that at a time t, the buffer of CP stores all the packets in the
buffer of OPT at t. Also, suppose that CP decides which packet to transmit at
a time t′(≥ t) (the fact that t′ ≤ t+2 holds will be shown later by the definition
of CP ). By this assumption, CP can detect t′−t+2 packets transmitted by OPT
during the time [t, t′ +1] (in some special cases, CP can detect t′ − t+3 packets
transmitted by OPT during [t, t′ + 2]). Let V ′ be the maximum total value of
packets which OPT transmits during this time interval. CP chooses packets p
and p′ at t′ and t′+1, respectively, considering the total value U of packets which
CP already transmitted during time [t, t′ −1] such that V ′ ≤ R(U +v(p)+v(p′))
holds. For example, suppose that packets q0(0),m0(0) and m1(0) are given at
time 0 whose values satisfy the execution conditions of Case 1.2.3.1 in CP . If CP
transmits m0(0) and m1(0) at times 0 and 1, respectively, then CP can detect
that OPT transmits q0(0),m0(0) and m1(0) at times 0, 1 and 2, respectively. In
this case, t = t′ = 0 holds, and the above inequality holds by the condition of
Case 1.2.3.1.

The sequences of packets which OPT transmits during [t, t′ +1] (or [t, t′ +2])
are classified into three categories according to a packet p′ which CP transmits
at t′ + 1 (this fact will be proved in some lemmas of the full version of this
paper): (a) Packets which are given during [t, t′ + 1] satisfy some conditions and
OPT transmits specific packets whose total value is V (t, t′ +1, t′ +1). (b) If the
deadline of p′ is t′ + 1, then the total value of packets which OPT transmits
during [t, t′ + 1] is at most V (t, t′ + 1, t′ + 1). (c) If the deadline of p′ is t′ + 2,
then the total value of packets which OPT transmits during [t, t′ + 2] is at most
V (t, t′ +1, t′ +2). Please refer to Table 1. ‘Case’ column shows the names of cases
executed by CP at t. ‘Type’ column shows the categories of packet sequences
transmitted by OPT during [t, t′ +1] (or [t, t′ +2]). ‘t’ and ‘t+1’ in ‘CP ’ column
show packets which CP transmits at t and t+1, respectively. Similarly, ‘t’, ‘t+1’
and ‘t+2’ in ‘OPT ’ column show packets which CP detects at time t that OPT
transmits at t, t+1 and t+2, respectively. ‘Value’ column shows the total value
of the packets detected by CP . For example, packets detected at Case 1.2.3.1 are
classified into (c). CP transmits m0(t) and m1(t) at times 0 and 1, respectively.
CP can detect that OPT transmits q0(t)(= q1(t)),m0(t) and m1(t) at times 0,
1, and 2, respectively, and the total value of these packets is V (t, t + 1, t + 2).
On the other hand, suppose that packets satisfying the condition of Case 1.2.3.2
are given. In this case, at time t, if CP decides which packet to transmit at
t + 1, then a situation in which the above inequality does not hold can occur
whichever packet which arrives at or before t + 1 CP chooses. Note that if this
condition is satisfied, then this situation occurs not only for CP but also any
online algorithm, which causes the definition of CP lengthy. Hence, CP chooses
q0(t) as a packet for the transmission subphase at t, and decides which packet
to transmit for the transmission subphase of time t + 2 after making sure of
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packets at t+1 with lookahead. That is, CP executes Step 2 at the transmission
subphase at t + 1 to choose packets which CP transmits at t + 1 and t + 2.

Similarly to the case at time t, CP chooses packets at t + 1 considering the
value U = v(q0(t)) of the packet q0(t) which CP transmitted at t so that the
above inequality holds. Please refer to the row of Case 2.2.1 in Table 2, which is
described in the same manner as the previous one. Suppose that packets are given
satisfying the conditions of Case 2.2.1. If CP transmits m01(t) and m2(t) at times
t+1 and t+2, respectively, then CP can detect that OPT transmits m0(t),m1(t)
and m2(t) at times t, t + 1 and t + 2, respectively. These packets are classified
into (b) and the above inequality holds because of the condition of Case 2.2.1.
Unfortunately, suppose that packets satisfying the condition of Case 2.2.2.3 are
given. In this case, at t + 1, if CP decides which packet to transmit at t + 2,
then a situation in which the above inequality does not hold can also occur.
Note that if the conditions of Cases 1.2.3.2 and 2.2.2.3 are satisfied at times t
and t+1, respectively, then this situation occurs for any online algorithm. Thus,
CP chooses m0(t) as a packet for t + 1, and executes Step 3 at t + 2 to choose
packets which CP transmits at t+2 and t+3. Fortunately, as Table 3 shows, at
time t + 2, if CP chooses packets to transmit at t + 2 and t + 3 appropriately,
then the above inequality holds at any of Cases 3.1 - 3.2.3. Moreover, we will
prove that the buffer of CP stores all the packets in the buffer of OPT at t′ + 2
in a lemma of the full version (there exists some exception for a packet sequence
classified into (c)). Hence, in the next step, we can regard time t′ + 2 as a new
base time, which was time t in the above discussion, and evaluate the profit ratio
for each time interval recursively. In this way, CP is designed so that at each
time interval [t, t′ +1] (or [t, t′ +2]), the corresponding profit ratio is at most R,
that is, its competitive ratio is at most R.

Table 1. Packet prediction at Step 1 at time t

CP OPT

Case Type t t + 1 Value t t + 1 t + 2

1.1 a, b m0 V (t, t, t) m0

1.2.1 b m1 m0 V (t, t + 1, t + 1) m1 m0

1.2.2 b m0 m1 V (t, t + 1, t + 1) m0 m1

1.2.3.1 c m0 m1 V (t, t + 1, t + 2) q0 m0 m1

1.2.3.2 q0 (Step 2)

mi and qi denote mi(t) and qi(t) for ease of presentation. q0 = q1
by definition.
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Table 2. Packet prediction at Step 2 at time t + 1

CP OPT

Case Type t t + 1 t + 2 Value t t + 1 t + 2 t + 3

2.1 b q0 m0 m1 V (t, t + 2, t + 2) m0 m1 m2

2.2.1 b m01 m2 V (t, t + 2, t + 2) m0 m1 m2

2.2.2.1 a m01 V (t, t + 1, t + 1) m0 m1

2.2.2.2 c m01 m2 V (t, t + 2, t + 3) q0 m0 m1 m2

2.2.2.3 m0 (Step 3)

mi, m01 and qi denote mi(t), m01(t) and qi(t). q0 = q1 by definition.

Table 3. Packet prediction at Step 3 at time t + 2

CP OPT

Case Type t t + 1 t + 2 t + 3 Value t t + 1 t + 2 t + 3 t + 4

3.1 b q0 m0 m1 m2 V (t, t + 3, t + 3) m0 m1 m2 m3

3.2.1 b m2 m3 V (t, t + 3, t + 3) m0 m1 m2 m3

3.2.2 a m2 V (t, t + 2, t + 2) m0 m1 m2

3.2.3 c m2 m3 V (t, t + 3, t + 4) q0 m0 m1 m2 m3

mi, m01 and qi denote mi(t), m01(t) and qi(t). q0 = q1 by definition.

3.3 Algorithm

The executions of CP are divided into stages. Each stage consists of a single
transmission subphase, two consecutive transmission subphases, three consecu-
tive transmission subphases or four consecutive transmission subphases.

CP uses the internal variable st for holding the name of a packet which CP
transmits at a time t. st′ = null holds at first for any integer t′. CP uses the
constant tmp1 (tmp2) if at time t (t + 1), CP cannot decide which packet to
transmit at t + 1 (t + 2) in Case 1.2.3.2 (2.2.2.3). On the other hand, once the
name of a packet is set to st+1 at time t, CP certainly transmits the packet at
t + 1. It is applied to st+2 (st+3) which is set at t + 1 (t + 2).
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CompareWithPartialOPT (CP )

Initialize: For any integer time t′, st′ :=null.
Suppose that a stage starts at a time t.
Step 1 (the transmission subphase at t):

Execute the following cases (Case 1.1 - 1.2.3.2) and transmit the packet st. If
st+1 =null after this transmission (i.e., Case 1.1 is executed), then finish the
stage.
Case 1.1 (d(m0) = t or q0 does not exist): st := m0.
Case 1.2 (d(m0) �= t):
Case 1.2.1 (d(m1) = t): st := m1 and st+1 := m0.
Case 1.2.2 (d(m1) = t + 1): st := m0 and st+1 := m1.
Case 1.2.3 (d(m1) �= t + 1):
Case 1.2.3.1 V (t,t+1,t+2)

v(m0)+v(m1)
≤ R): st := m0 and st+1 := m1.

Case 1.2.3.2 V (t,t+1,t+2)
v(m0)+v(m1)

> R): st := q0 and st+1 := tmp1.
Step 2 (the transmission subphase at t + 1):

If st+1 =tmp1, then execute the following cases (Case 2.1 - 2.2.2.3). Transmit the
packet st+1. If st+2 =null after this transmission (i.e., Case 2.2.2.1 is executed),
then finish the stage.
Case 2.1 ( V (t,t+2,t+2)

v(q0)+v(m0)+v(m1)
≤ R): st+1 := m0 and st+2 := m1.

Case 2.2 ( V (t,t+2,t+2)
v(q0)+v(m0)+v(m1)

> R):
Case 2.2.1 (d(m2) = t + 2): st+1 := m01 and st+2 := m2.
Case 2.2.2 (d(m2) �= t + 2):
Case 2.2.2.1 (v(q2) �= v(q1)): st+1 := m01.
Case 2.2.2.2 (v(q2) = v(q1) and V (t,t+2,t+3)

v(q0)+v(m01)+v(m2)
≤ R): st+1 :=

m01 and st+2 := m2.
Case 2.2.2.3 (v(q2) = v(q1) and

V (t,t+2,t+3)
v(q0)+v(m01)+v(m2)

> R): st+1 := m0

and st+2 := tmp2.
Step 3 (the transmission subphase at t + 2):

If st+2 =tmp2, then execute the following cases (Case 3.1 - 3.2.3). Transmit the
packet st+2. If st+3 =null after this transmission (i.e., Case 3.2.2 is executed),
then finish the stage.
Case 3.1 ( V (t,t+3,t+3)

v(q0)+v(m0)+v(m1)+v(m2)
≤ R): st+2 := m1 and st+3 := m2.

Case 3.2 ( V (t,t+3,t+3)
v(q0)+v(m0)+v(m1)+v(m2)

> R):
Case 3.2.1 (d(m3) = t + 3): st+2 := m2 and st+3 := m3.
Case 3.2.2 (d(m3) �= t + 3 and v(q3) �= v(q1)): st+2 := m2.
Case 3.2.3 (d(m3) �= t + 3 and v(q3) = v(q1)): st+2 := m2 and

st+3 := m3.
Step 4 (the transmission subphase at t+3): Transmit st+3 and finish the
stage.



An Optimal Algorithm for 2-Bounded Delay Buffer Management 359

3.4 Overview of the Analysis

For ease of analysis, we assume that if CP does not store any packet in its buffer
at the transmission subphase at a time t, no packets arrive at or after time t+1
any more, that is, the input is over. Note that CP stores no packets but OPT may
store one at t, that is, transmit it then. Since we consider a 2-bounded instance,
the buffers of OPT and CP are both empty after the expiration subphase at t.
This situation is equal to the one before the first packet arrives at time 0 and by
the definition of CP , we regard a time at which the buffers are empty as time
0. Therefore, this assumption does not affect the performance of CP .

Consider a given input σ. Let k denote the number of stages after σ is over.
Let τ be the last time at which CP transmits a packet. We partition the time
sequence [0, τ ] into k sequences Ti (i = 1, . . . , k) disjointly such that Ti consists of
times at which the executions of the ith stage are done. Specifically, if Ti = [ti, t′i],
then ti ≤ t′i, t1 = 0, t′k = τ and for any j = 2, . . . , k, tj = t′j−1 + 1. The size
of each Ti depends on times at which CP does the executions of the ith stage,
that is, which case CP executes at each time: Suppose that Ti = [t, t′], in which
t and t′ are integer times.

– If Case 1.1 is executed at t, then t′ = t.
– If Case 1.2.1, 1.2.2 or 1.2.3.1 is executed at t, then t′ = t + 1.
– If Case 1.2.3.2 is executed at t and Case 2.1, 2.2.1 or 2.2.2.2 at t + 1, then

t′ = t + 2.
– If Cases 1.2.3.2 and 2.2.2.1 are executed at t and t + 1, respectively, then

t′ = t + 1.
– If Cases 1.2.3.2 and 2.2.2.3 are executed at t and t + 1, respectively, and

Case 3.1, 3.2.1 or 3.2.3 is executed at t + 2, then t′ = t + 3.
– If Cases 1.2.3.2 and 2.2.2.3 are executed at t and t + 1, respectively, and

Case 3.2.2 is executed at t + 2, then t′ = t + 2.

For a time t, a packet whose release time is t and deadline is t + 1 is called a
2t-packet. If for a time t, CP transmits a 2t-packet p at t and OPT transmits
p at t + 1, then we call the time t + 1 an extra time (e-time, for short). On the
other hand, for each i = 1, . . . , k, let us define T ′

i , which is formally defined later,
each of which is a subsequence of the time sequence [0, τ ′], in which τ ′ is the last
time at which OPT transmits a packet. They are not always disjoint differently
from Ti. To analyze the performance of CP , for each i ∈ [1, k], we will compare
the total value of packets transmitted by CP during the time Ti with that by
OPT during the time T ′

i . T ′
i is defined as follows: For Ti = [t, t′] in which t and

t′(≥ t) are integer times, we define T ′
i = [t, t̂′], in which if t′ + 1 is an e-time,

then t̂′ = t′ + 1. Otherwise, t̂′ = t′. We give the lemma about T ′
i .

Lemma 1. A time in [0, τ ′] is contained in some T ′
i .

For any i, we define an offline algorithm OPTi to bound the value of packets
transmitted by OPT during time T ′

i = [t, t′], in which t and t′(≥ t) are integer
times. Roughly speaking, if t is not an e-time, then OPTi transmits the same
packet as a packet OPT transmits during T ′

i . If t is an e-time, then OPTi
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transmits the same packet as a packet OPT transmits during T ′
i except for t.

However, OPTi−1 transmits the same packet as OPT at t.
First, let us define packets in the buffer of OPTi for Ti = [t, t′]. If t = 1,

BOPTi
(t) = BOPT (t). If t ≥ 2 and t is not an e-time, then BOPTi

(t) = BOPT (t).
If t ≥ 2 and t is an e-time, then BOPTi

(t) = BOPT (t)\{p}, in which p is the 2t−1-
packet which OPT transmits at t. Then, for Ti = [t, t′] and T ′

i = [t, t̂′], we define
OPTi as follows: The subinput of σ during time T ′

i is given to OPTi, that is, pack-
ets p such that r(p) ∈ T ′

i arrive to OPTi’s buffer during time T ′
i according to their

release times. Then, OPTi is allowed to transmit t̂′ − t + 1 packets only from time
t to t̂′ inclusive, that is, at t̂′ − t+1 transmission subphases, and chooses the pack-
ets whose total profit is maximized. If there exist packets with the same value in
OPTi’s buffer, OPTi follows the same tie breaking rule as OPT .

We use PO(t, t′, t̂′) to define CP and can evaluate the profit of CP using the
profit of PO(t, t′, t̂′) during Ti. On the other hand, we bound the profit of OPT
using that of OPTi during T ′

i . Then, we evaluate the relations between the profit
of PO(t, t′, t̂′) and that of OPTi. For any i ∈ [1, k], let Vi denote the total value of
packets transmitted by CP during Ti. By definition, VCP (σ) =

∑k
i=1 Vi. On the

other hand, Lemma 1 indicates that a packet which OPT transmits is transmitted
at a time in some T ′

i′ by either OPTi′ or OPTi′−1. Also, by the definition of OPTi,
if t is not an e-time, OPTi transmits a packet at t whose value is at least that trans-
mitted by OPT . If t is an e-time, then OPTi−1 transmits a packet at t whose value
is at least that transmitted by OPT and OPTi may also transmit a packet. That
is, the total value of packets transmitted by OPTi over all i ∈ [1, k] is at least that
of OPT . For any i ∈ [1, k], let V ′

i denote the total value of packets transmitted by
OPTi during T ′

i . Hence, VOPT (σ) ≤ ∑k
i=1 V ′

i . Since

VOPT (σ)
VCP (σ)

≤
∑k

i=1 V ′
i

∑k
i=1 Vi

≤ max
i∈[1,k]

{
V ′

i

Vi

}

,

we will prove the following lemma:

Lemma 2. For any i ∈ [1, k], V ′
i /Vi ≤ (1 +

√
17)/4.

Therefore, we have the following theorem:

Theorem 1. The competitive ratio of CP is at most (1 +
√

17)/4.
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6. Bienkowski, M., Chrobak, M., Jeż, �L.: Randomized competitive algorithms for
online buffer management in the adaptive adversary model. Theoret. Comput. Sci.
412(39), 5121–5131 (2011)

7. Bienkowski, M., et al.: Collecting weighted items from a dynamic queue. Algorith-
mica 65(1), 60–94 (2013)

8. Bienkowski, M., et al.: A Φ-competitive algorithm for collecting items with increas-
ing weights from a dynamic queue. Theoret. Comput. Sci. 475, 92–102 (2013)
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Abstract. Most optimization problems are notoriously hard. Consider-
able efforts must be spent in obtaining an optimal solution to certain
instances that we encounter in the real world scenarios. Often it turns
out that input instances get modified locally in some small ways due
to changes in the application world. The natural question here is, given
an optimal solution for an old instance IO, can we construct an optimal
solution for the new instance IN , where IN is the instance IO with some
local modifications. Reoptimization of NP-hard optimization problem
precisely addresses this concern. It turns out that for some reoptimiza-
tion versions of the NP-hard problems, we may only hope to obtain an
approximate solution to a new instance. In this paper, we specifically
study the reoptimization of path vertex cover problem. The objective in
k-path vertex cover problem is to compute a minimum subset S of the
vertices in a graph G such that after removal of S from G there is no
path with k vertices in the graph. We show that when a constant num-
ber of vertices are inserted, reoptimizing unweighted k-path vertex cover
problem admits a PTAS. For weighted 3-path vertex cover problem, we
show that when a constant number of vertices are inserted, the reop-
timization algorithm achieves an approximation factor of 1.5, hence an
improvement from known 2-approximation algorithm for the optimiza-
tion version. We provide reoptimization algorithm for weighted k-path
vertex cover problem (k ≥ 4) on bounded degree graphs, which is also an
NP-hard problem. Given a ρ-approximation algorithm for k-path vertex
cover problem on bounded degree graphs, we show that it can be reopti-
mized within an approximation factor of (2 − 1

ρ
) under constant number

of vertex insertions.

Keywords: Reoptimization · Approximation algorithms ·
Path vertex cover

1 Introduction

Most combinatorial optimization problems are NP-hard. Efficient algorithms to
find an optimal solution for such problems are not known. By efficient, we mean
running in time polynomial in the input size. Hence, we resort to approximation
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algorithms which aim to efficiently provide a near-optimal solution. For mini-
mization problems, a ρ-approximation algorithm (ρ > 1) efficiently outputs a
solution of cost at most ρ times the optimum, where ρ is called the approxima-
tion ratio. A family of (1+ε) approximation algorithms (∀ε > 0) with polynomial
running times is called a polynomial time approximation scheme (PTAS).

In many practical applications, the problem instance can arise from small
perturbations in the previous instance of an optimization problem. A naive
approach is to work on the new problem instance from scratch using known
ρ-approximation algorithm. But, with some prior knowledge of the solution for
old instance, can we perform better? The computational paradigm of reopti-
mization addresses this question.

We consider the case where one has devoted a substantial amount of time
to obtain an exact solution for the NP-hard optimization problem. Now, the
goal is to reoptimize the solution whenever the modified instance is known. A
reoptimization problem Reopt(π) can be built over any optimization problem π.
An input instance for Reopt(π) is a triple (IN , IO, OPT (IO)), where IO is an
old instance, IN is a modified instance and OPT (IO) is an optimal solution for
π on IO.

Suppose IN is a hard instance obtained via some perturbations in IO and
assume that we have an optimal solution of IO. The natural question is, can we
find an optimal solution of IN? For most of the cases this may not be the case and
it is not difficult to show that, if the optimization problem is path vertex cover
and the perturbation is a single vertex insertion, then even possessing OPT (IO)
does not help to find an optimal solution for IN efficiently, unless P = NP .
Hence, the objective of an efficient algorithm for Reopt(π) is to either achieve a
better approximation ratio or improve the running time of the known approxi-
mation algorithm. In this paper, the optimization problem we consider for reop-
timization is the path vertex cover problem. This problem has its applications
in traffic control and secure communication in wireless networks [7]. We briefly
explain the optimization problem below:

A path of order k in a graph is a simple path containing k vertices. For a given
graph G = (V,E), S ⊆ V is a feasible k-path vertex cover iff every path of order k
in G contains at least one vertex from S. The problem of finding a feasible k-path
vertex cover on a graph is known as k-path vertex cover problem (k-PV CP ).
This problem has two variants: weighted and unweighted. The goal in unweighted
k-PV CP is to find a feasible subset of minimum cardinality whereas in weighted
k-PV CP , the objective is to find minimum weighted subset of vertices that
covers all the paths of order k or more.

2 Related Work and Contributions

For any fixed integer k ≥ 2, the k-path vertex cover problem (k-PV CP ) is known
to be NP-complete for an arbitrary graph G and also it’s NP-hard to approximate
it within a factor of 1.3606, unless P = NP [2]. However, unweighted and weighted
k-path vertex cover problems on trees have polynomial time algorithms [2,3]. The
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problem has been studied in [6] as k-path traversal problem which presents a
log(k)-approximation algorithm for the unweighted version. For k = 2, the k-
PV CP corresponds to the conventional vertex cover problem. The 3-PV CP is a
dual problem to the dissociation number of the graph. Dissociation number is the
maximum cardinality of a subset of vertices that induce a subgraph with max-
imum degree at most 1. [8] provides a 2-approximation algorithm for weighted
3-PV CP and there is a 3-approximation algorithm for 4-PV CP [4].

For the reoptimization version, G. Ausiello et al. present an algorithm for
reoptimizing unweighted vertex cover problem. Following the approach in [5],
Sect. 4 shows that reoptimization of unweighted k-PV CP admits a PTAS under
the constant number of vertex insertions. Also respectively extending it to the
case where old solution is an approximated solution on IO. In Sect. 5, we extend
the reoptimization paradigm for weighted vertex cover problem in [5] to weighted
k-PV CP . Using the results from Sect. 5, we show in Sect. 6 that weighted 3-
PV CP can be reoptimized with an approximation factor of 1.5 under constant
number of vertex insertions. In Sect. 7, we present an algorithm for reoptimiza-
tion version of weighted k-PV CP (k ≥ 4) on bounded degree graphs under
constant number of vertex insertions. For a given ρ-approximation algorithm for
weighted k-PV CP (k ≥ 4), the algorithm achieves an approximation ratio of
(2 − 1

ρ ) for such graphs.

3 Preliminaries

In this paper, the graphs we consider are simple undirected graphs. A graph G
is a pair of sets (V,E), where V is the set of vertices and E is the set of edges
formed by unordered pairs of distinct vertices in V . For a vertex v ∈ V , we denote
the set of neighbours of v in G by NG(v), where NG(v) = {u ∈ V | (u, v) ∈ E}.
For any S ⊆ V , we define NG(S) to be the neighbouring set of S in G, where
NG(S) ⊆ (V − S) and ∀u ∈ NG(S) ∃v ∈ S such that (u, v) ∈ E. For any S ⊆ V ,
we use G[S] to represent the subgraph induced on the vertex set S in G. Let
V (G) and E(G) denote the vertex set and edge set of G respectively. A degree
of a vertex is the number of edges incident on it. We use Δ(G) to denote the
maximum degree of the vertices in graph G. In the case of weighted graphs, with
every vertex we associate a positive weight function f : V → R

+. For any v ∈ V ,
let w(v) be the weight of the vertex and for any subset S ⊆ V , the weight of the
subset w(S) is

∑
v∈S w(v). Size of a graph is defined as the number of vertices

in it. A constant-size graph is a graph where number of vertices are constant
and independent of input parameters of the algorithm. Two graphs are said to
be disjoint if they do not share any common vertices.

Let G = (V,E) and GA = (VA, EA) be two graphs where V ∩ VA = ∅. Given
a set of attachment edges Ea ⊆ (V × VA), insertion of GA into G yields the
undirected graph G′ = (V ′, E′), where V ′ = V ∪ VA and E′ = E ∪ EA ∪ Ea.
Thus, a constant number of vertex insertions can be realized as a constant-size
graph insertion. We define a vertex insertion in G as a special case of graph
insertion where the inserted graph GA is a single vertex v /∈ V [G]. In general,
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we denote OPT (G) as the optimal solution and ALG(G) as the solution output
by an algorithm for the corresponding problem on G.

Let π denote the optimization problem and Reopt(π) is the reoptimization
version of it. The π we consider in this paper is the k-path vertex cover problem.
The input instance of Reopt(π) is a triple (GO, GN , OPT (GO)), where GO is
the old graph, GN is the new graph and OPT (GO) is an optimal solution for π
on GO. Let Aρ(π) be a known ρ-approximation algorithm for π.

Lemma 1. Minimum unweighted k-path vertex cover problem on graphs with
maximum degree Δ(G) ≥ 3 is NP-complete.

Proof. k-path vertex cover is in NP as enumerating over all paths of order k
would verify a k-path vertex cover instance, where runtime of verification is
O(nk). We will show it is NP-hard by reducing vertex cover problem for cubic
graphs to it, which is known to be NP-complete [9]. Applying the same reduction
given in Theorem 1 of [2], for the input instance of a cubic graph G we get the
reduced graph instance G′. Since the proof of reduction given in Theorem 2 of
[2] is independent of the Δ(G) and Δ(G′) = Δ(G) + 1 = 4, hence the reduction
implies NP-hardness for k-path vertex cover on bounded degree graphs too.

Corollary 1. Minimum weighted k-path vertex cover for bounded degree graphs
is NP-hard.

4 Reoptimization of Unweighted k-PV CP

Let π be unweighted k-PV CP . We consider the reoptimization version Reopt(π)
where a constant-size graph GA = (VA, EA) is inserted to the old graph GO =
(VO, EO) to yield the new graph GN = (VN , EN ). Let |VA| = c. For a given ε,
we design an algorithm Unwtd-kpath for Reopt(π) that outputs ALG(GN ) as a
solution.

Algorithm 1. Unwtd-kpath(GO, GN , OPT (GO), ε)
1: VA = V (GN ) − V (GO)
2: c = |VA|
3: m = �c/ε�
4: S1 = V (GN )
5: for each subset X of V (GN ) where |X| ≤ m do
6: if(X covers all k-paths in GN and |X| < |S1|)
7: S1 = X

8: S2 = OPT (GO) ∪ VA

9: ALG(GN ) = min(|S1|, |S2|)
10: return ALG(GN )

Theorem 1. Unwtd-kpath for Reopt(π) under constant-size graph insertion
admits a PTAS.
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Proof. Since OPT (GN )∩V (GO) and OPT (GO)∪VA is a feasible k-path vertex
cover on GO and GN respectively, we get

|OPT (GO)| ≤ |OPT (GN )| ≤ |OPT (GO)| + c · · · (1)

If OPT (GN ) has size at most m, it would have been found in step 7 of Unwtd-
kpath. We know,

|ALG(GN )| ≤ |OPT (GO)| + c = |S2|
and S2 is picked when |OPT (GN )| ≥ m ≥ c

ε . Thus, approximation factor for
ALG(GN ) using inequality (1) and above observation is,

|ALG(GN )|
|OPT (GN )| ≤ |OPT (GO)| + c

|OPT (GN )| ≤ |OPT (GN )| + c

|OPT (GN )| ≤ 1 + ε

Further, we analyze the runtime. Enumerating all possible k-paths in a graph of n
vertices takes O(nk) time. Thus for a given set X, we can decide in polynomial
time whether all paths of order k are covered by the set. There are O(nm)
subsets of size at most m, where n = |VN |. The runtime of Algorithm 1 is
O(nm ·nk) = O(n

c
ε ·nk), and hence a valid PTAS. Note that the runtime can be

improved by using color coding algorithm for finding a k-path [1], which runs in
O(2knO(1)) time.

Substituting |OPT (GO)| by an α-approximate solution in the proof, we get
the following corollary:

Corollary 2. Given an α-approximate solution for GO, there is (α + ε)-
approximate solution for π on GN , where GN is obtained via a constant-size
graph insertion to GO

5 Subroutine for Reoptimization of Weighted k-PV CP

Let πk be weighted k-PV CP . Aρ(πk) be a known ρ-approximation algorithm
for πk. In reoptimization version of the problem Reopt(πk), a new graph GN is
obtained by inserting a graph GA to GO.

Definition. A family F = {F | F ⊆ VN} is called a good family if it satisfies
the following two properties:

• Property 1: ∃ F ∈ F such that F ⊆ OPT (GN ) and,
• Property 2: ∀ F ∈ F , F covers all the k-paths which contains at-least one

vertex from V (GA) in graph GN .

We provide below a generic algorithm that works on the good family F . This
family of sets will be constructed in different ways for different problems. The
details are provided in the respective sections.

An algorithm for Reopt(πk) constructs the good family F and feeds it to the
subroutine Construct-Sol. The algorithm Construct-Sol iteratively prepares a
solution Si for each set Fi ∈ F . The inputs to the algorithm Construct-Sol are:
modified graph GN , inserted graph GA, old optimal solution OPT (GO)), a good
family F and Aρ(πk).
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Algorithm 2. Construct-Sol(GN , GA, OPT (GO),F , Aρ(πk))
1: for i = 1 to |F| do
2: S1

i = OPT (GO) ∪ Fi

3: G′ = GN [(VN − V (GA)) − Fi]
4: Run Aρ(πk) on G′ and denote the output set as S2

i

5: S2
i = S2

i ∪ Fi

6: Si = minWeight(S1
i , S2

i )

7: ALG(GN ) = minWeight(S1, S2, . . . , S|F|)
8: return ALG(GN )

Lemma 2. If OPT (G) is an optimal solution for weighted k-PV CP for G, then
for any S ⊆ OPT (G), w(OPT (G[V − S])) ≤ w(OPT (G)) − w(S).

Proof. If F is a feasible k-path cover for G[V ], then for any V ∗ ⊆ V , F ∩ V ∗ is
a feasible k-path cover for G[V ∗].

OPT (G)−S is a feasible solution for G[V −S] because (V −S)∩OPT (G) =
OPT (G) − S. Since S ⊆ OPT (G), w(OPT (G) − S) = w(OPT (G)) − w(S).
Hence, w(OPT (G[V − S])) ≤ w(OPT (G)) − w(S).

Theorem 2. The algorithm Construct-Sol outputs a solution ALG(GN ) with
an approximation factor of (2− 1

ρ ), running in O(|V (GN )|2 · |F|·T (Aρ(πk), GN ))
steps, where ρ is the approximation factor of a known Aρ(πk).

Proof. A graph GA is inserted to GO to yield the new graph GN . By property
1 of the good family F , the optimal solution for GN must include at least one
set in F = {F1, . . . , Fψ}, where ψ = |F|. Thus, at least one Si(1 ≤ i ≤ ψ) is
prepared by the subroutine.

Let OPT (GN )i be the optimal solution which includes Fi and not (V (GA)−
Fi). We prepare ψ number of solutions for the graph GN .

S1
i is a feasible k-path cover for GN , where feasibility follows from property

2 of the family. We can write the following inequalities:

w(OPT (GO)) ≤ w(OPT (GN )i)
w(S1

i ) = w(OPT (GO) ∪ Fi) ≤ w(OPT (GO)) + w(Fi)

From above two inequalities,

w(S1
i ) ≤ w(OPT (GN )i) + w(Fi) · · · (2)

Another solution S2
i is prepared. From Lemma 2 and construction of S2

i , we
can write the following inequality:

w(S2
i ) ≤ ρ(w(OPT (GN )i) − w(Fi)) + w(Fi) · · · (3)

Since ρ > 1, adding (ρ − 1) × (1) and (2), we get

(ρ − 1)w(S1
i ) + w(S2

i ) ≤ (2ρ − 1)(w(OPT (GN )i))
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Minimum weighted subset between S1
i and S2

i is chosen to be Si. Then,

(ρ − 1)w(Si) + w(Si) ≤ (2ρ − 1)(w(OPT (GN )i))

=⇒ ∀i ∈ [1, ψ], w(Si) ≤ (2 − 1
ρ
)(w(OPT (GN )i)) · · · (4)

We have prepared a set of ψ number of solutions that is, {S1, S2, · · · , Sψ}.
By definition of OPT (GN )i and property 2 of good family F , we get that, if
Fi ⊆ OPT (GN ), then w(OPT (GN )i) = w(OPT (GN )). By the property 1 of F ,
there exists an Fi such that Fi ⊆ OPT (GN )i. Hence, the following inequality
for such an i holds true:

w(Si) ≤
(

2 − 1
ρ

)

(w(OPT (GN )i)) =
(

2 − 1
ρ

)

(w(OPT (GN )))

We know, ∀i ∈ [1, ψ], w(ALG(GN )) ≤ w(Si). So,

w(ALG(GN )) ≤
(

2 − 1
ρ

)

(w(OPT (GN )))

Thus, algorithm Construct-Sol outputs a solution with an approximation factor
of (2 − 1

ρ ). Note that step 3 of the algorithm takes O(|VN |2) time. Moreover,
if the running time of Aρ(πk) on input graph GN is T (Aρ(πk), GN ), then the
running time of algorithm Construct-Sol is O(|V (GN )|2 · ψ · T (Aρ(πk), GN )).

6 Reoptimization of Weighted 3-PV CP

Let π3 be weighted 3-PV CP . A constant-size graph GA = (VA, EA) is inserted
to GO to yield the new graph GN = (VN , EN ). Let T (A2(π3), GN ) denote the
runtime of 2-approximation algorithm [8] for π3. Let |VN | = n.

Algorithm 3. Wtd-3path(GN , GA, OPT (GO), A2(π3))
1: F = ∅
2: for all X ⊆ (VA = V (GA)) and X is a 3-path cover for GA do
3: VI = Set of isolated v in GA[VA − X] and NGN (v) ∩ V (GO) 
= ∅
4: EI = Set of isolated (u, v) in GA[VA −X] and NGN ({u, v})∩V (GO) 
= ∅
5: for all (u, v) ∈ EI do
6: X = X ∪ NGO ({u, v})

7: Y = NGN (VA) − X
8: for all Y ′ ⊆ Y , |Y ′| ≤ |VI | do
9: if(Y − Y ′) is a 3-path cover for GN [VI ∪ Y ]

10: X ′ = X ∪ (Y − Y ′)
11: X ′ = X ′ ∪ NGO (Y ′)
12: F = F ∪ {X ′}
13: return Construct-Sol(GN , GA, OPT (GO), F , A2(π3))
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Theorem 3. Algorithm Wtd-3path is a 1.5 approximation for Reopt(π3) under
constant-size graph insertion.

Proof. The algorithm works in 3 phases to construct the good family F . The
algorithm prepares a subset X for each feasible 3-path cover X for GA because
the optimal solution for GN must contain one subset among the feasible X’s.
In the first phase, if an edge in GA[VA − X] has a neighbour in GO, it must be
included in X.

Let Y = NGN
(VA)−X. In the second phase, GN [VI ∪Y ] is made free from all

3-paths by removing a feasible subset Y −Y ′. In the third phase, the neighbours
of the vertices in Y ′ are included in X ′ because such a neighbour will form 3-path
with the vertices in Y ′ and VI .

Since we consider all feasible subsets X and feasible Y − Y ′ for the cor-
responding X, the constructed family F satisfies both the properties of good
family. Thus from Theorem 2 and A2(π3), we get the desired approximation.
Further, we analyze the running time. Let c = |V (GA)|. The maximum cardi-
nality of Y is n. Then, the steps 3 to 12 in the algorithm run in O(n3nc+1)
because |Y ′| ≤ c. Thus |F| ∈ O(c2 · 2c · nc+4). Hence the algorithm Wtd-3path
runs in O(nc+6 · 2c · T (A2(π3), G)).

7 Reoptimization of Weighted k-PV CP (k ≥ 4)
for Bounded Degree Graphs

A graph free from 2-paths contains only isolated vertices. A graph that does not
have any 3-path contains isolated vertices and isolated edges. But, in the case of
graphs that are free from k-paths (k ≥ 4), star graph is a possible component.
As the number of subsets needed to be considered for preparation of F would
be exponential in the vertex degree, we restrict the reoptimization of weighted
k-PV CP (k ≥ 4) to bounded degree graphs. Lemma 1 shows that the problem
on bounded degree graphs is NP-complete.

The local modification which we consider for reoptimization is constant-size
graph insertion. Let GO = (VO, EO) be the old graph. Given GO, constant-size
graph GA = (VA, EA) and attachment edges Ea, the new graph GN = (VN , EN )
is obtained. Let |VN | = n and |VA| = c. Let the maximum degree of the graph GN

be Δ. We use Pk(G,V ′) to denote the collection of k-paths in graph G containing
at least one vertex from V ′ ∩V (G). For a set of vertices V ′, a graph is said to be
V ′-connected graph if every connected component in the graph contains at least
one vertex from V ′. Let Aρ(πk) be a ρ-approximation algorithm for weighted
k-PV CP (πk) and T (Aρ(πk), GN ) be the running time of Aρ(πk) on GN .

Definition. We define a variation of BFS on a graph G, where traversal starts
by enqueuing a set of vertices V ′ instead of a single root vertex. Initially, all the
vertices in V ′ are at the same level and unvisited. Now the unvisited nodes are
explored in breadth first manner. In this variation, we obtain the BFS forest
for the input (G,V ′), where the vertices of V ′ are at level 1 and the subsequent
levels signify the order in which the vertices are explored.
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Consider the BFS forest obtained from VA in GN . We use Li to denote the
set of vertices at level i (i ≥ 0) of the BFS forest. Let Sj =

⋃j
i=0 Li, where

L0 = ∅ and L1 = VA. Then Li = NGN
(Si−1) for i ≥ 2. Note that this BFS

forest has |VA| number of disjoint BFS trees, where the trees have distinct root
vertices from VA.

Lemma 3. In a BFS forest obtained after performing BFS traversal from a
set of vertices VA ⊆ V in a graph G = (V,E) having no k-paths, the number of
vertices at each level is at most |VA|Δ(Δ − 1)� k−5

2 �.

Proof. Consider the case when BFS is performed from a single vertex set VA =
{v1} to obtain a BFS tree. For any level i, |Li| ≤ Δ(Δ − 1)i−2. Thus the
statement holds true for i ≤ k−1

2 �. For the case when i > k−1
2 �, let j =

i − k−3
2 �. We claim that there exists a vertex v in Lj such that v is a common

ancestor for all the vertices in Li. Assume to contrary that the claim is false.
If |Li| = 1 the claim is trivially true. Otherwise we have two distinct vertices
vx and vy ∈ Li such that they have the lowest common ancestor in Lj′ , where
1 ≤ j′ ≤ j − 1 = i − k−1

2 �. This imposes a path 〈vi, · · · v, · · · vj〉 of order
k−1

2 � + 1 + k−1
2 � ≥ k. But it contradicts the fact that G has no paths of order

k or more. Hence |Li| ≤ Δ(Δ − 1)i−j−1 = Δ(Δ − 1)� k−5
2 �.

Now, when BFS is performed for the case when |VA| > 1, the BFS forest
obtained has |VA| number of disjoint BFS trees where each tree satisfies the
above argument. Hence the number of vertices in each level in the BFS forest
is at most |VA|Δ(Δ − 1)� k−5

2 �

Algorithm 4. Construct-F (X,V, L, level, VA, GN ,F , k)
1: F = F ∪ {X ∪ L}
2: if level ≥ k − 1
3: return F
4: b = (|VA|Δ(Δ − 1)� k−5

2 �)
5: for each non-empty subset V ′ of L and |V ′| ≤ b do
6: if GN [V ∪ V ′] is a k-path free VA-connected graph

7: X ′′ = X ∪ (L − V ′)
8: V ′′ = V ∪ V ′

9: L′′ = NGN (V ′′) − X ′′

10: F = Construct-(X ′′, V ′′, L′′, level + 1, VA, GN , F , k)

11: return F

Theorem 4. Algorithm Wtd-kpath is a (2 − 1
ρ ) approximation for Reopt(πk)

under graph insertion and runs in O(nO(1) · 2k(Δ+1)b · T (Aρ(πk), GN )), where
b = |VA|Δ(Δ − 1)� k−5

2 � and ((Δ + 1)b) ∈ O(log n).
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Algorithm 5. Wtd-kpath(GN , GA, OPT (GO), Aρ(πk), k)
1: Initialization: F = ∅, level = 1, X = ∅ and V = ∅.
2: F = Construct-F (X, V, V (GA), level, V (GA), GN , F , k)
3: ALG(GN ) = Construct-Sol(GN , GA, OPT (GO), F , Aρ(πk))
4: return ALG(GN )

Proof. We first prove that for every call to the function
Construct-F (X,V, L, level, VA, GN ,F , k), the following invariants on V , X and
L are maintained:

• V ⊆ Slevel and GN [V ] is a k-path free VA-connected graph.
• X is the set of neighbours of V in GN [Slevel]
• L is the set of neighbours of V in graph GN that are also in Llevel+1, i.e.

L = NGN
(V ) − Slevel.

The above invariants trivially hold true during the first call to the function
Construct-F . Assuming the invariants to be true during a call to Construct-
F , we show that the subsequent recursive calls maintain the invariants. Note
that the parameter ‘level’ is incremented to level + 1 during the recursive call.
GN [V ∪ V ′] = GN [V ′′] is a k-path free VA-connected subgraph in GN . Also,
V ′′ ⊆ Slevel+1 because V ⊆ Slevel and L ⊆ Llevel+1. The invariance property of
X and L implies X ′′ = X∪(L−V ′) is the set of neighbours of V ′′ in GN [Slevel+1].
From previous observation about X ′′ and V ′′, we get that L′′ = NGN

(V ′′)−X ′′ is
the set of neighbours of V ′′ in GN which are also in Llevel+2. Thus, the invariants
are maintained.

Note that X covers all the paths in Pk(GN [Slevel], VA). X ∪ L is a k-path
cover for GN because the paths in Pk(GN , VA) − Pk(GN [Slevel], VA) contain at
least one vertex from L. Thus, {X ∪ L} is included in F to satisfy property 2 of
good family.

By Lemma 3, it is sufficient to consider non empty subsets V ′ of size at most
(|VA|Δ(Δ−1)� k−5

2 �) from subsequent level L to construct V ′′. For each recursive
call, the case when V ′ or L is empty is handled in the step 1. A VA-connected
graph that has no k-paths will have a maximum level of k−1 in the BFS forest.
The algorithm explores all feasible subsets V ′ for each level ≤ k − 1. Thus
the property 1 of good family holds true for F , because the family includes all
possibilities for {X ∪ L} that covers Pk(GN , VA). Thus, the constructed family
F is indeed a good family.

Let RT (l) be the running time of the function Construct-F , where l is the
parameter ‘level’. Let C = Σi=b

i=1

(
Δb
i

)
. Observe that |L| ≤ (Δ · b) due to the

construction of L′′ in the previous recursion. As we are choosing sets of size at
most b from L, we get the recursion RT (l) = O(nO(1) ·Ck ·RT (l+1)) for 1 ≤ l ≤
(k − 1) and RT (k) = O(nO(1)). Thus step 6 in Wtd-kpath runs in O(nO(1) · Ck)
time. In each function call, |F| is incremented by one element. Thus, |F| ≤ 2kb

because |V ′′| ≤ b for each level. Note that C ≤ 2bΔ. Hence using Theorem 2,
the algorithm Weighted-kpath runs in O(nO(1) · Ck · 2kb · T (Aρ(πk), GN )) =
O(nO(1) · 2k(Δ+1)b · T (Aρ(πk), GN )) and achieves the desired approximation.
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Using 3-approximation algorithm for weighted 4-PV CP [4] and Theorem 4,
we get the following corollary:

Corollary 3. Algorithm Wtd-kpath is a (53 )-approximation for Reopt(π4)
under constant-size graph insertion, where Δ ∈ O(1) and Aρ(π4) is A3(π4).

It is not hard to show that a greedy algorithm for πk will output a n-
approximation. Also reducing πk to minimum weighted subset selection problem
and using the Theorem 15.3 in [10], we get a k-approximation algorithm for πk.
Hence, we get the following corollaries:

Corollary 4. Algorithm Wtd-kpath is a (2 − 1
n )-approximation for Reopt(πk)

under constant-size graph insertion, where Δ ∈ O(1) and Aρ(πk) is An(πk).

Corollary 5. Algorithm Wtd-kpath is a (2 − 1
k )-approximation for Reopt(πk)

under constant-size graph insertion, where Δ ∈ O(1) and Aρ(πk) is Ak(πk).

Note that the algorithm only explores the vertices till level k − 1 that is, the
vertices in the set Sk−1. Thus, |F| is at most 2|Sk−1|. Therefore, the algorithm
will also run efficiently for the scenarios where the graph GA is attached to a
‘sparse’ part of GO, that is for |Sk−1| ∈ O(log n).

Corollary 6. Algorithm Wtd-kpath is a (2 − 1
ρ )-approximation for Reopt(πk)

under graph insertion, where |Sk−1| ∈ O(log n).

8 Concluding Remarks

In this paper, we have given a PTAS for reoptimization of unweighted k-PV CP
under constant number of vertex insertions. When constant-size graph is inserted
to the old graph, we have presented 1.5-approximation algorithm for reoptimiza-
tion of weighted 3-PV CP . Restricting our inputs to bounded degree graphs, we
have presented a (2− 1

k )-approximation for reoptimization of weighted k-PV CP
under constant-size graph insertion. For the reasons we mentioned in Sect. 7, our
technique for reoptimization of weighted k-PV CP (k ≥ 4) cannot be extended
to arbitrary graphs. Hence, reoptimization of weighted k-PV CP (k ≥ 4) for
arbitrary graphs under constant number of vertex insertions is an intriguing
open problem.

Acknowledgment. We thank Narayanaswamy N S for enlightening discussions on
the problem.
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Abstract. We show that a simple local search gives a PTAS for the
Feedback Vertex Set (FVS) problem in minor-free graphs. An efficient
PTAS in minor-free graphs was known for this problem by Fomin, Loksh-
tanov, Raman and Sauraubh [13]. However, their algorithm is a combina-
tion of many advanced algorithmic tools such as contraction decomposi-
tion framework introduced by Demaine and Hajiaghayi [10], Courcelle’s
theorem [9] and the Robertson and Seymour decomposition [29]. In stark
contrast, our local search algorithm is very simple and easy to implement.
It keeps exchanging a constant number of vertices to improve the current
solution until a local optimum is reached. Our main contribution is to
show that the local optimum only differs the global optimum by (1 + ε)
factor.

Keywords: Feedback vertex set · PTAS · Local search ·
Minor-free graphs

1 Introduction

Given an undirected graph, the Feedback Vertex Set (FVS) problem asks for a
minimum set of vertices whose removal makes the graph acyclic. This problem
arises in a variety of applications, including deadlock resolution, circuit testing,
artificial intelligence, and analysis of manufacturing processes [12]. Due to its
importance, the problem has been studied for a long time. It is one of Karp’s
21 NP-complete problems [18] and is still NP-hard even in planar graphs [30]. It
is one of the two problems that motivates the development of the seminal con-
traction decomposition framework for designing polynomial time approximation
schemes1 (PTASes) for many optimization problems in planar graphs [10].
1 A polynomial-time approximation scheme for a minimization problem is an algorithm

that, given a fixed constant ε > 0, runs in polynomial time and returns a solution
within 1 + ε of optimal.
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In general graphs, the current best approximation ratio for the FVS problem
is 2 due to Becker and Geiger [4] and Bafna, Berman and Fujito [3]. For some
special classes of graphs, better approximation algorithms are known. Klein-
berg and Kumar [19] gave the first PTAS for the FVS problem in planar graphs,
followed by an efficient PTAS2 by Demaine and Hajiaghayi [10] which is general-
izable to bounded genus graphs and single-crossing-minor-free graphs. Recently,
Cohen-Addad et al. [8] gave a PTAS for the weighted version of this prob-
lem in bounded-genus graphs. By generalizing the contraction decomposition of
Demaine and Hajiaghayi to minor-free graphs, Fomin, Lokshtanov, Raman and
Sauraubh [13] obtained a PTAS for the FVS problem in this class of graphs.
A graph is H-minor-free, or simply minor-free, if it excludes some fixed graph
H as a minor. We note that the class of minor-free graphs are vastly bigger
than planar graphs and bounded-genus graphs. A typical example is the com-
plete bipartite graph K3,n which has unbounded genus but is K5-minor-free. In
Sect. 5, we show that in some sense, minor-free graphs are the limit for which
we are still able to obtain a PTAS for this problem.

A common theme in all known algorithms is complication in both implemen-
tation and analysis. The algorithm of Kleinberg and Kumar [19] is obtained by
recursively applying the planar separator theorem by Lipton and Tarjan [22] and
analyzing several special cases. The algorithm by Demaine and Hajiaghayi [13]
employs the primal-dual relationship of planar graphs to decompose the graphs
into several bounded treewidth instances, then applies dynamic programming
(DP) to solve the FVS problem on bounded treewidth graphs. DP on bounded
treewidth graphs is a very strong algorithmic tool. However, the implementa-
tion details typically are quite complicated. Additionally, the NP-hardness com-
plexity of finding a tree decomposition of minimum width in planar graphs is
still a long standing open problem. The algorithm of Cohen-Addad et al. [8] for
bounded-genus graphs is not simpler and has worst running time; however, it can
work with node-weighted graphs. Given the complicated nature of the algorithms
for planar and bounded-genus graphs, it is not surprising that the technical level
of the algorithm by Fomin, Lokshtanov, Raman and Sauraubh [13] for minor-free
graphs is much higher. It uses advanced tools such as Courcelle’s theorem [9] and
the Robertson and Seymour decomposition [29]. We note that the decomposi-
tion of Robertson and Seymour was built through a series of papers which span
20 years with several hundred pages [28,29]. Thus, even understanding Robert-
son and Seymour decomposition is a real challenge, let alone implementing it.
All of this motivates our current work.

We show that a simple local search algorithm gives a PTAS for the FVS prob-
lem in minor-free graphs. The algorithm is depicted in Algorithm 1. Intuitively,
the local search algorithm starts with an arbitrary solution for the problem and
tries to change a constant number (depending on ε) of vertices in the current
solution to obtain a better solution. The algorithm outputs the current solution
when it cannot obtain a better solution in this way.

2 A PTAS is efficient if the running time is of the form 2poly(1/ε)nO(1).
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Local search is among the most successful heuristics in combinatorial opti-
mization, partly due to its simplicity. It has been applied to scheduling, graph
coloring, graph partitioning, Hopfield networks; we refer readers to the mono-
graph by Michiels, Aarts and Korst [23] for more details. However, one of the
hardest questions regarding local search is the performance guarantee. We pro-
vide an answer this question for the FVS problem. The analysis of our algorithm
is simple, but non-trivial: it only uses two well-known properties of H-minor-free
graphs as black boxes, namely sparsity and separability, and can be described in
about four pages. A key ingredient in our analysis is the introduction of Steiner
vertices into the construction of exchange graphs which is different from all pre-
vious works [5,6,25]; we defer further details of this discussion to Subsect. 1.1.

Algorithm 1. LocalSearch(G, ε)
1: S ← an arbitrary solution of G
2: c ← a constant depending on ε
3: while there is a solution S′ such that |S \ S′| ≤ c, |S′ \ S| ≤ c and |S′| < |S| do
4: S ← S′

5: output S

Theorem 1. For any fixed ε > 0, there is a local search algorithm that finds an
(1 + ε)-approximate solution for the FVS problem in H-minor-free graphs with
running time O(nc) where c = poly(|V (H)|)

ε2 .

Beside simplicity, our algorithm has two other interesting properties. First, to
run the algorithm, we do not need to know beforehand whether the graph under
consideration is minor-free or not; it will give a PTAS in case the graph is minor-
free. All known algorithms discussed above need to test topological properties
of the graph, such as planarity, genus-boundedness or minor-freeness, to be able
to decide whether the algorithms are applicable. Except for planarity, other
testings are quite expensive [17,24]. Second, the dependency of the exponent of
the running time in our algorithm on the size of the minor is poly(|V (H)|), or
O(|V (H)|3/2) precisely while the constant behind the big-O in the running time
of the algorithm by Fomin, Lokshtanov, Raman and Sauraubh [13] is a tower
function of |V (H)|. Even when |V (H)| = 5, the constant is still bigger than the
size of the universe [17].

Perhaps the only drawback of our result is the running time dependency
on ε, which is roughly nO( 1

ε2
). However, our result should be seen as the first

step toward theoretically understanding of the power of local search for the
FVS problem: as long as we are willing to pay for computational time, we are
guaranteed to get better approximation ratio. For APX-hard problems, such as
the FVS problem, there is a limit to which, if one increases the neighborhood size,
the gain in approximation is zero or negligible. Thus, a natural question is: when
the input has some structural properties, would it be possible to obtain better
approximation ration when the neighborhood size increases? A yes answer to this
question would be quite significant in practice because real instances typically
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have some structural properties and the local search algorithm does not need
to test such properties. Our Theorem 1 provides a yes answer to this question,
when the structure of the input is minor-free. Also, in practice, one often runs
local search with c = 4 or 5 (c is in line 2 of Algorithm 1.). It will be interesting
to know, even in planar graphs, when c = 4 or 5, what is the approximation
guarantee we can obtain? Indeed, there have been some recent work [2,26] toward
this direction for optimization problems admitting local search PTASes (with
the same running time as our algorithm in Theorem 1). Our Theorem 1 says
that there has to be a constant c such that when we apply local search to planar
graphs with c, we will beat the best known 2-approximation algorithm for general
graphs [3,4]. We leave the problem of determining the exact constant c as an
open problem for future research. Finally, we would like to point out that local
search was experimentally applied to the FVS problem with good results [27,31].
In a certain sense, our result helps justifying for them.

To complement our positive result, we provide several negative results. The
work of Har-Peled and Quanrud [16] shows that local search provides PTASes for
several problems, including vertex cover, independent set, dominating set and
connected dominating set, in graphs with polynomial expansion (all of these
problems are known to have PTASes in minor-free graphs.). Minor-free graphs
are a special case of graphs with polynomial expansion. Thus, their work gives a
hope that local search can be used to generalize known PTASes for optimization
problems from minor-free graphs to graphs of polynomial expansion. However,
our first negative result refuses this hypothesis. By a simple reduction, we show
that the FVS problem is APX-hard in 1-planar graphs. Note that 1-planar graphs
also a special case of graphs of polynomial expansion. Second, we show that two
closely related variants of the FVS problem, namely: odd cycle transversal and
subset feedback vertex set, do not have such simple local search PTASes, even
in planar graphs. We remark that these two problems are not known to have
PTASes in planar graphs.

1.1 Our Analysis Technique

To better put our technique into context, we briefly discuss previous work. Chan
and Har-Peled [6] and Mustafa and Ray [25] independently showed that a simple
local search gives PTASes for many geometric problems. Cabello and Gajser [5]
observed that the same local search can be used to design PTASes for the maxi-
mum independent set, the minimum vertex cover and minimum dominating set
problems in minor-free graphs. Cohen-Addad, Klein and Mathieu [7] showed
that local search yields PTASes for k-means, k-median and uniform uncapaci-
tated facility location in minor-free graphs. In analyzing local search algorithms,
one typically relies on an exchange graph constructed from the optimal solution3

O and the local search solution L. For independent set and vertex cover, the
exchange graph is the subgraph induced by O ∪ L, and for other problems, the

3 For k-means and k-median, the exchange graph is constructed from L and a nearly
optimal solution O′, which is obtained by removing some vertices of O.
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exchange graph is obtained by contracting each vertex of V (G) \ (O ∪ L) to a
nearest vertex in O∪L. Then local properties of these problems naturally appear
in the exchange graphs: if we consider a small neighborhood R in the exchange
graph and replace the vertices of L in R with the vertices of O in R and its the
boundary, the resulting vertex set is still a feasible solution. By decomposing the
exchange graph into small neighborhoods, we can bound the size of L by the
size of O and the total size of the boundaries of these neighborhoods.

However, the FVS problem does not have such local properties and hence,
just simply deleting vertices and contracting edges do not give us an exchange
graph. This is because for a cycle C in the original graph, the vertex of L that
covers C may be inside of some neighborhood but the vertex of O that covers
C may be outside of that neighborhood. One may try to argue the boundary of
the neighborhood could cover C. But unfortunately, the boundary may not be
helpful since the crossing vertices of C and the boundary may not be in both
solutions and then they may be deleted or contracted to other vertices.

To solve this problem, we construct an exchange graph with the following
property: for any cycle C of the original graph, in our exchange graph, there is
(i) a vertex in O∩L∩C, or (ii) an edge between a vertex in O∩C and a vertex in
L∩C, or (iii) another cycle C ′ such that vertices in C ′ is a subset of vertices in C
and C ′ ∩ (O∪L) = C ∩ (O∪L). Property (i) and/or (ii) are typically achieved in
previous analyses [5,7] by vertex deletion or edge contraction. It is property (iii)
that is specific to our problem and is a main challenge. To additionally achieve
this property, we need to introduce vertices, called Steiner vertices, that are not
in both solutions, into the exchange graph. Meanwhile, we need to guarantee
that the number of such vertices is linear to the size of O ∪ L. The linear size
bound is essential to the correctness of our algorithm and we prove this size
bound by a structural lemma (Lemma 1) which may be of independent interest.

In summary, this is the first time Steiner vertices are proved useful in ana-
lyzing local search due to the non-local nature of the FVS problem. Given that
many optimization problems, such as minor covering and packing problems [13],
exhibit the same non-local properties, we believe that our technique is useful in
studying the local search algorithm for these problems as well.

2 Preliminaries

For a graph G, we denote the vertex set and the edge set of G by V (G) and
E(G), respectively. For a subgraph H of G, the boundary of H is the set of
vertices that are in H but have at least one incident edge that is not in H. We
denote by int(H) the set of vertices of H that are not in the boundary of H.
The degree of a vertex is the number of its incident edges.

A graph H is a minor of G if H can be obtained from G by a sequence
of vertex deletions, edge deletions and edge contractions. G is H-minor-free, if
G does not contain a fixed graph H as a minor. We sometimes call H-minor-
free graphs minor-free graphs when the order of H is not relevant. It is well
known [20,21] that H-minor-free graph is sparse; an H-minor-free graphs with
n vertices has at most O(σHn) edges where σH = |V (H)|√log |V (H)|.



380 H. Le and B. Zheng

A balanced separator of a graph is a set of vertices whose removal partitions
the graph roughly in half. A separator theorem typically provides bounds for
the size of each part and the size of the balanced separator. Usually, the size
of the balanced separator is sublinear w.r.t. the size of the graph. Separator
theorems have been found for planar graphs [22], bounded-genus graphs [15],
and minor-free graphs [1].

An r-division is a decomposition of a graph, which was first introduced by
Frederickson [14] for planar graphs to speed up planar shortest path algorithms.

Definition 1. For an integer r, an r-division of a graph G is a collection of
edge-disjoint subgraphs of G, called regions, with the following properties:

1. Each region contains at most r vertices and each vertex is contained in at
least one region.

2. The number of regions is at most cdiv
n
r .

3. The number of boundary vertices, summed over all regions, is at most cdiv
n√
r
.

where cdiv is a constant.

We say a graph is r-divisible if it has an r-division. A graph is divisible if it is
r-divisible for every r. Given any r and a planar graph G, Frederickson [14] gave
a construction for the r-division of G that only relies on the planar separator
theorem [22]. It is straightforward to extend the construction to any family of
graphs with balanced separators of sublinear size. Since H-minor-free graphs are
known to have balanced separators [1], H-minor-free graphs are divisible with
cdiv = poly(|V (H)|).

3 Exchange Graphs Imply PTASes by Local Search

In this section, we show that if for a minor-free graph G, we can construct
another graph, called exchange graph, such that it is divisible, then Algorithm 1
is a PTAS for the FVS problem. Let O be an optimal solution of the FVS
problem and L be the output of the local search algorithm. We say a vertex
u a solution vertex if u ∈ O ∪ L and a Steiner vertex otherwise. Unlike prior
works [5,16], we allow Steiner vertices in our exchange graphs.

Definition 2. A graph Ex is an exchange graph for optimal solution O and
local solution L of the FVS problem in a graph G if it satisfies the following
properties:

(1) L ∪ O ⊆ V (Ex) ⊆ V (G).
(2) |V (Ex)| ≤ cex(|L| + |O|) for some constant cex.
(3) For every cycle C of G, there is (3a) a vertex of C in O∩L or (3b) an edge

uv ∈ E(Ex) between a vertex u ∈ L ∩ C and a vertex v ∈ O ∩ C or (3c) a
cycle C ′ of Ex such that V (C ′) ⊆ V (C) and C ∩ (O ∪ L) = C ′ ∩ (O ∪ L).

We now prove Theorem 1 given that we can construct a divisible exchange
graph for G. The details of the construction will be given in Sect. 4.
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Proof of Theorem 1. We set the constant c in line 2 of Algorithm 1 to be 1/δ2

where δ = ε
2cdivcex(2+ε) = O( ε

cdivcex
). Note that cdiv and cex are constants in

Definition 1 and Definition 2, respectively. Since in each iteration, the size of the
solution is reduced by at least one, there are at most n iterations. Since each
iteration can be implemented in nO(c) time by enumerating all possibilities, the
total running time is nO(c) = nO(1/ε2). We now show that the output L has size
at most (1 + ε)|O|.

Let Ex be a divisible exchange graph for O and L. We find an r-division
of Ex for r = c = �1/δ2�. Let B be the multi-set containing all the boundary
vertices in the r-division. By the third property in Definition 1, |B| is at most
cdiv

|V (Ex)|√
r

. By the second property in Definition 2, |V (Ex)| ≤ cex(|O| + |L|).
Thus, |B| ≤ cdivcexδ(|O| + |L|). In the following, we will show that:

|L| ≤ |O| + 2|B| (1)

If so, we have:

|L| ≤ |O| + 2cdivcexδ(|O| + |L|) = |O| +
ε

2 + ε
(|O| + |L|)

that implies |L| ≤ (1 + ε)|O|.
To prove Eq. (1), we study some properties of Ex. For any region Ri of the

r-division, let Bi be the boundary of Ri and Mi = (L \ Ri) ∪ (O ∩ Ri) ∪ Bi.

Claim. Mi is a feedback vertex set of G.

Proof. For a contradiction, assume that there is a cycle C of G that is not
covered by Mi. Then C does not contain any vertex of L\Ri, O∩Ri and Bi. So
C can only be covered by some vertices of (L \ O) ∩ int(Ri) and some vertices
of O \ (L ∪ Ri). This implies that C does not contain any vertex of O ∩ L and
there is no edge in Ex between C ∩ O and C ∩ L. By the third property of
exchange graph, there must be a cycle C ′ in Ex such that V (C ′) ⊆ V (C) and
C ∩ (O∪L) = C ′ ∩ (O∪L). Let u be the vertex of (L \O) ∩ int(Ri) in C and v
be the vertex of O \ (L ∪ Ri) in C. Then cycle C ′ contains both u and v, which
implies C ′ crosses the boundary of Ri, that is C ′ ∩ Bi 	= ∅. Let w be a vertex in
C ′ ∩ Bi, then w also belongs to C in G. This implies Mi contains a vertex of C,
a contradiction. ��

By the construction of Mi, we know the difference between L and Mi is
bounded by the size of the region Ri, that is r. Recall that c = r = 1/δ2. Since
L is the output of Algorithm 1, it cannot be improved by changing at most r
vertices. Thus, we have |L| ≤ |Mi|. By the construction of Mi, this implies

|L ∩ Ri| ≤ |Mi ∩ Ri| ≤ |O ∩ int(Ri)| + |Bi|.

Thus, we have:

|L ∩ int(Ri)| ≤ |L ∩ Ri| ≤ |O ∩ int(Ri)| + |Bi|.
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Since int(Ri) and int(Rj) are vertex-disjoint for any two distinct i and j, by
summing over all regions in the r-division, we get

|L| − |B| ≤
∑

i

|L ∩ int(Ri)| ≤
∑

i

(|O ∩ int(Ri)| + |Bi|) ≤ |O| + |B|.

This proves Eq. (1). ��

4 Exchange Graph Construction

Recall that σH = |V (H)|√log |V (H)| is the sparsity of H-minor-free graphs.
In this section, we will show that H-minor-free graphs have divisible exchange
graphs for the FVS problem with cex = O(σH). We construct the exchange graph
in three steps:

Step 1 We delete all edges in G that are incident to vertices of O∩L. We then
remove all components that do not contain any solution vertex. Note that the
removed components are acyclic.

Step 2 Let v ∈ V (G) \ (O ∪ L) be a non-solution vertex of degree at most 2.
Recall that isolated vertices are removed in Step 1. If v has degree 1, we
simply remove v from G. If v has degree 2, we remove v from G and add
an edge between two neighbors of v in G. We can view this step in terms of
contraction: we contract edges that have an endpoint that is not a solution
vertex and has degree at most two until there is no such an edge left. Since L
and O are feedback vertex sets of G, every cycle after the contraction must
contain a vertex in L and a vertex in O. Since edges incident to vertices of
O ∩ L are removed, there is no self-loop after this step.

Step 3 We keep the graph simple by removing all but one edge in each maximal
set of parallel edges.

Let K be the resulting graph. Since K is a minor of G, it is H-minor-free and
thus, divisible. It remains show that K satisfies three properties in Definition 2.
Property (1) is obvious because we never delete a vertex in L ∪ O from K. To
show property (3), let C be a cycle of G. If any edge of C is removed in Step
1, C must contain a vertex in O ∩ L; implying (3a). Thus, we can assume that
no edge of C is deleted after Step 1. Since contraction does not destroy cycles,
after the contraction in Step 2, there is a cycle C ′ such that V (C ′) ⊆ V (C).
If |V (C ′)| = 2 (C ′ is a cycle of two parallel edges), then (3b) holds. Thus, we
can assume that every edge of C ′ remains intact after removing parallel edges.
But that implies (3c) since we never remove solution vertices from G. Thus, K
satisfies property (3).

The most challenging part is showing property (2) in Definition 2, that is,
|V (K)| ≤ O(σH)(|L| + |O|). By Step 2, we have:

Observation 2. Every Steiner vertex of K has degree at least 3.

Since O∪L is a feedback vertex set of K, K \(O∪L) is a forest F containing
only Steiner vertices. For each tree T in F , we define the degree of T , denoted
by degK(T ), to be the number of edges in K between T and O ∪ L.
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Claim. |V (T )| ≤ degK(T ).

Proof. Let T ′ be obtained from T by adding every edge uv to T where u ∈ V (T )
and v ∈ O ∪ L. Observe that no vertex in (O ∪ L) \ (O ∩ L) can be adjacent to
more than one vertex in T since otherwise, there would be a cycle that contains
vertices from L or O only, contradicting that L and O are feedback vertex sets.
Since vertices in L ∩ O are isolated in K, T ′ must be a tree. Let �(T ′) be the
number of leaves of T ′. By Step 2, leaves of T ′ are vertices in O ∪ L. Thus,
degK(T ) = �(T ′). Since every internal vertices of T ′ has degree at least three,
|V (T )| ≤ �(T ′) which implies the claim. ��

We contract each tree T of F into a single Steiner vertex sT . Let K ′ be the
resulting graph. We observe that:

Observation 3. K ′ is simple.

Proof. Since every cycle of K must contain a vertex from L and a vertex from
O, there cannot be any solution vertex in K that is adjacent to more than one
vertex of a tree T of F . So there cannot be parallel edges in K ′. ��

To bound the size of K ′, we need the following structural lemma. We remark
that this lemma holds for general graphs.

Lemma 1. For a graph G and any two disjoint nonempty vertex subsets A and
B, let D = V (G) \ (A ∪ B). If (i) D is an independent set, (ii) every vertex in
D has degree at least 3 in G and (iii) every cycle C contains at least one vertex
in A and at least one vertex in B, then |V (G)| ≤ 2(|A| + |B|).
Proof. We remove every edge that only has endpoints in A ∪ B and let the
resulting graph be G′. Then G′ is a bipartite graph with A ∪ B in one side and
D in the other side since D is an independent set. Let DA (DB) be the subset of
D containing every vertex that has at least two neighbors in A (B). Since every
vertex of D has degree at least 3, we have DA ∪ DB = D.

Let HA be the subgraph of G′ induced by A ∪ DA. Then HA is acyclic since
otherwise every cycle of HA would correspond to a cycle in G that does not
contain any vertex in B. We now construct a graph H∗

A on vertex set A. For
each vertex v ∈ DA, we choose any two neighbors x and y of v in A and add
an edge between x and y in H∗

A. By construction, there is a one-to-one mapping
between edges of H∗

A and vertices of DA.
Since HA is acyclic, H∗

A is also acyclic. Thus, |E(H∗
A)| ≤ V (H∗

A) = |A|. That
implies |DA| ≤ |A|. By a similar argument, we can show that |DB | ≤ |B|. Thus,
|D| = |DA ∪ DB | ≤ |A| + |B| which implies the lemma. ��

Let Z be an arbitrary component of K ′ that contains at least one Steiner ver-
tex. Then two sets V (Z)∩O and V (Z)∩Lmust be disjoint since any vertex inO∩L
is isolated in K ′. If any of two sets V (Z)∩O and V (Z)∩O, say V (Z)∩O, is empty,
then Z must be a tree. By Step 2, leaves of Z are in L. Thus, |V (Z)| ≤ |V (Z)∩L|
since internal vertices of Z have degree at least 3. Otherwise, both V (Z) ∩O and
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V (Z) ∩ O are non-empty. Let X be the set of Steiner vertices in Z. By the con-
struction of K ′, X is an independent set of Z. By Observation 2, every vertex of X
has degree at least 3. So we can apply Lemma 1 to X, V (Z)∩O and V (Z)∩L, and
obtain |V (Z)| ≤ 2(|V (Z)∩O|+|V (Z)∩L|) = 2(|V (Z)∩O|+|V (Z)∩(L\O)|). Note
that this bound holds trivially if Z does not contain any Steiner vertex. In both
cases, |V (Z)| ≤ 2(|V (Z) ∩O| + |V (Z) ∩ (L \O)|). Summing over all components
of K ′, we have |V (K ′)| ≤ 2(|V (K ′)∩O|+ |V (K ′)∩ (L\O)|) ≤ 2(|O|+ |L|). Since
K ′ is a minor of G, it is also H-minor-free. Thus, |E(K ′)| = O(σH |V (K ′)|) =
O(σH)(|O| + |L|). We now ready to bound the size of V (K). We have:

|V (K) \ (O ∪ L)| =
∑

T∈F

|V (T )| ≤
∑

T∈F

degK(T ) (Claim 4)

=
∑

T∈F

degK′(sT )

≤ |E(K ′)| ( since {sT |T ∈ F} is an independent set)
= O(σH)(|O| + |L|)

(2)

That implies V (K) ≤ O(σH)(|O| + |L|). Thus K satisfies property (2) in Defi-
nition 2 with cex = O(σH).

5 Negative Results

In this section, we show some negative results for the FVS problem and two
closely related problems: odd cycle transversal and subset feedback vertex set.
The odd cycle transversal (also called bipartization) problem asks for a minimum
set of vertices in an undirected graph whose removal results in a bipartite graph.
Given an undirected graph and a subset U of vertices, the subset feedback vertex
set problem asks for a minimum set S of vertices such that after removing S the
resulting graph contains no cycle that passes through any vertex of U .

We first show that the FVS problem is APX-hard in 1-planar graphs. A graph
is 1-planar if it can be drawn in the Euclidean plane such that every edge has
at most one crossing.

Theorem 4. Given a graph G, we can construct an 1-planar graph H in poly-
nomial time, such that G has a feedback vertex set of size at most k if and only
if H has a feedback vertex set of size at most k.

Proof. Consider a drawing of G on the plane where each pair of edges can cross
at most once. For each crossed edge e in G, we subdivide e into edges so that
there is exactly one crossing per new edge. Let H be the resulting graph. By
construction, H is 1-planar. Since we only subdivide edges, there is a one-to-one
mapping between cycles of G and cycles of H. Observe that any feedback vertex
set of G is also a feedback vertex set of H.

For any subdividing vertex v in the optimal feedback vertex set of H that is
not the original vertex of v, we can replace v by one of the endpoint of the edge
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that v subdivides. Thus, if H has a feedback vertex set of size k, G has feedback
vertex set of size at most k, which implies the lemma. ��

Since the FVS problem is APX-hard in general graphs (by an approximation
preserving reduction [18] from vertex cover problem, which is APX-hard [11]),
Theorem 4 implies that FVS is APX-hard in 1-planar graphs. In the full version
of the paper, we show by examples that the simple local search with constant-size
exchanges cannot give a constant approximation for the odd cycle transversal
and the subset feedback vertex set problems in planar graphs.
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Abstract. The functional k-means problem involves different data from
k-means problem, where the functional data is a kind of dynamic data
and is generated by continuous processes. By defining a new distance with
derivative information, the functional k-means clustering algorithm can
be used well for functional k-means problem. In this paper, we mainly
investigate the seeding algorithm for functional k-means problem and
show that the performance guarantee is obtained as 8(ln k + 2). More-
over, we present the numerical experiment showing the validity of this
algorithm, comparing to the functional k-means clustering algorithm.

Keywords: Functional k-means problem · k-means problem ·
Approximation algorithm

1 Introduction

In machine learning and computational geometry, the k-means problem is one
of the most classic problems, which aims to separate the given data sets into
k parts according to the minimization of the sum of squared distances. The
Lloyd’s algorithm [10,12], also known as k-means, is a very popular algorithm for
k-means problem. Based on Lloyd’s algorithm, there are several approximation
algorithms designed, such as k-means++ [3], k-means|| [2].

Different from the characteristic in k-means problem where the given data
are real vectors, the functional data in functional k-means problem are a kind
of dynamic data, which are generated by continuous processes [6,13]. Based on
this continuity property, there are several categories of clustering methods for
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functional k-means problem, such as two-stage methods [1,9,14], model-based
clustering methods [5], non-parametric clustering methods [4,16], etc. For more
information, one can refer to [8]. Recently, Meng et al. [11] define a new distance
between two functional data involving the derivative information, and apply the
k-means method to solve this functional k-means problem. However, there is
no theoretical analysis to show how good this method can achieve. Our main
contribution in this paper is to design one approximation algorithm for func-
tional k-means problem, based on the distance defined in [11] and the seeding
algorithm. And the approximation factor is obtained as 8(ln k + 2).

The rest of this paper is organized as follows. In Sect. 2, we present the
functional k-means problem and some basic notations. We introduce the seeding
algorithm and the main result for functional k-means problem in Sect. 3. In
Sect. 4, the proof to show the correctness of the algorithm is given. In Sect. 5,
the numerical experiment about the seeding algorithm for functional k-means
problem is presented. The final remarks are concluded in Sect. 6.

2 Preliminaries

In this section, the definition of functional k-means problem, some symbols and
notations, as well as some important results are mainly introduced.

In general, given two real numbers T1, T2 such that T1 ≤ T2, for any t ∈
T = [T1, T2], the function x(t) : T → R is defined as a functional curve, which is
described using one real valued function of T . Then the d-dimensional functional
data X(t) = (x1(t), x2(t), . . . , xd(t))T called functional sample can be given,
where x1(t), x2(t), . . . , xd(t) all are functional curves with the same ground set
T . And we use Fd(t) to denote all the d-dimensional functional samples with
T as the ground set of their functional curves. Therefore, given two functional
samples Xi(t) = (xi

1(t), x
i
2(t), . . . , x

i
d(t))

T and Xj(t) = (xj
1(t), x

j
2(t), . . . , x

j
d(t))

T

in Fd(t), one can define their similarity metric as follows,

d(Xi(t),Xj(t)) =

√
√
√
√

d∑

p=1

[
∫

T

(xi
p(t) − xj

p(t))2dt +
∫

T

(Dxi
p(t) − Dxj

p(t))2dt], (1)

where Dxi
p(t) means the first order derivative of the p-th functional curve in

the i-th functional sample. Moreover, the metric given in (1) can be proved to
be a distance metric [11]. Then, we can define the distance from one functional
sample X(t) ∈ Fd(t) to some functional sample set Γ (t) ⊆ Fd(t) in the following
way,

d(X(t), Γ (t)) = min
Y (t)∈Γ (t)

d(X(t), Y (t)).

Moreover, we use X(t)Γ (t) to denote one closest functional sample in Γ (t) to
X(t), i.e.,

X(t)Γ (t) ∈ arg min
Y (t)∈Γ (t)

d(X(t), Y (t)).
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Given a set Γ (t) in Fd(t) with n functional samples and an integer k, as well
as a k functional sample set Ω(t) in Fd(t) (also called center set of functional
samples or center set for short), one can define the loss or cost of Ω(t) over Γ (t)
as the sum of the squared similarity distances over each functional sample of
Γ (t) to the functional sample set Ω(t), i.e.,

Φ(Γ (t), Ω(t)) =
∑

X(t)∈Γ (t)

d2(X(t), Ω(t)).

The functional k-means problem is to find one optimal center set Ω(t)∗
Γ (t) to

minimize the loss function, i.e.,

Ω(t)∗
Γ (t) ∈ arg min

|Ω(t)|=k,Ω(t)⊆Fd(t)

⎛

⎝
∑

X(t)∈Γ (t)

d2(X(t), Ω(t))

⎞

⎠ .

In the following part, we still apply Ω(t)∗
Γ (t) to denote one optimal cluster-

ing set of Γ (t), and Φ∗(Γ (t)) to denote its optimal cost, i.e., Φ∗(Γ (t)) =
Φ(Γ (t), Ω(t)∗

Γ (t)). Specially, when k = 1, the functional sample center of Γ (t)
denoted by μ(Γ (t)) can be computed by μ(Γ (t)) = 1

n

∑

X(t)∈Γ (t)

X(t) in [11]. A

proof in novel way will be given in Lemma 1.
Given any k-functional sample clustering Ω(t) = {Q1(t), Q2(t), . . . , Qk(t)},

Γ (t) can be separated into k parts depending on the closest distance to the
functional sample in Ω(t), which consists of k functional sample clusters. In
fact, for any Qi(t) ∈ Ω(t), the cluster Γ i

Ω(t)(t) is used to denote the functional
samples clustered to this center in the following way,

Γ i
Ω(t)(t) = {X(t) ∈ Γ (t) : d(X(t), Qi(t)) ≤ d(X(t), Qj(t)),∀Qj(t) ∈ Ω(t), j �= i}.

In this way, one can present the loss function as follows,

Φ(Γ (t), Ω(t)) =
∑

X(t)∈∪k
i=1Γ i

Ω(t)(t)

d2(X(t), Ω(t)).

Specially, for the optimal functional sample center Ω(t)∗
Γ (t), there also exist

k clusters of Γ (t). In the following part, we will denote these clusters by
Γ 1(t)∗, Γ 2(t)∗, . . . , Γ k(t)∗.

Moreover, for any Δ(t) ⊆ Γ (t), Φ(Δ(t), Ω(t)) =
∑

X(t)∈Δ(t) d2(X(t), Ω(t)) is
used to denote the contribution of Δ(t) to the cost. Specially, if Δ(t) = {X(t)}
with only one functional sample, we can write it as Φ(X(t), Ω(t)).

Now, we show a novel proof of the case for functional 1-mean problem, which
is different from the one given in [11].

Lemma 1. Given any functional sample set Γ (t) = {X1(t),X2(t), . . . , Xn(t)}
with n functional samples in Fd(t), then for any X(t) ∈ Fd(t), we have

n∑

i=1

d2(Xi(t),X(t)) =
n∑

i=1

d2(Xi(t), μ(Γ (t))) + nd2(μ(Γ (t)),X(t)),
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where μ(Γ (t)) =
∑

X(t)∈Γ (t)

X(t)/n.

Proof. First, applying the definition of the metric between functional samples,
one can obtain that

n∑

i=1

d2(Xi(t),X(t))

=
n∑

i=1

d∑

l=1

[∫

T

(xi
l(t) − xl(t))2dt +

∫

T

(Dxi
l(t) − Dxl(t))2dt

]

=
n∑

i=1

d∑

l=1

[∫

T

(xi
l(t) − μl(Γ (t)) + μl(Γ (t)) − xl(t))2dt

+
∫

T

(Dxi
l(t) − Dμl(Γ (t)) + Dμl(Γ (t)) − Dxl(t))2dt

]

=
n∑

i=1

d∑

l=1

[∫

T

(xi
l(t) − μl(Γ (t)))2dt +

∫

T

(Dxi
l(t) − Dμl(Γ (t)))2dt

]

+
n∑

i=1

d∑

l=1

[∫

T

(μl(Γ (t)) − xl(t))2dt +
∫

T

(Dμl(Γ (t)) − Dxl(t))2dt

]

+ 2
n∑

i=1

d∑

l=1

[∫

T

(xi
l(t) − μl(Γ (t))(μl(Γ (t)) − xl(t))dt

+
∫

T

(Dxi
l(t) − Dμl(Γ (t))(Dμl(Γ (t)) − Dxl(t))dt

]

=
n∑

i=1

d2(Xi(t), μ(Γ (t))) + nd2(μ(Γ (t)),X(t))

+ 2
n∑

i=1

d∑

l=1

[∫

T

(xi
l(t) − μl(Γ (t))(μl(Γ (t)) − xl(t))dt

+
∫

T

(Dxi
l(t) − Dμl(Γ (t))(Dμl(Γ (t)) − Dxl(t))dt

]

. (2)

Thus, the proof can be elucidated if we prove that the last two terms of the right
hand in (2) is zero, i.e.,

2
n∑

i=1

d∑

l=1

[∫

T

(xi
l(t) − μl(Γ (t))(μl(Γ (t)) − xl(t))dt

+
∫

T

(Dxi
l(t) − Dμl(Γ (t))(Dμl(Γ (t)) − Dxl(t))dt

]

= 0. (3)
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In fact, by the definition of μ(Γ (t)), for any l ∈ {1, 2, . . . , d}, we obtain with not
much effort that

μl(Γ (t)) =
1
n

n∑

j=1

xj
l (t).

Then, we get the following results,
n∑

i=1

(xi
l(t) − μl(Γ (t))) =

n∑

i=1

(xi
l(t) − 1

n

n∑

j=1

xj
l (t)) = 0,

and
n∑

i=1

D(xi
l(t) − μl(Γ (t))) = D

n∑

i=1

(xi
l(t) − μl(Γ (t))) = 0.

Therefore, (3) can be proved according to the commutation property of summa-
tion and integrals. �	

At last, it is easy to verify the following property.

Property 1. Given any functional sample set Γ (t) in Fd(t), and two clusterings
Ω(t) and Ω(t)′ in Fd(t) such that Ω(t) ⊆ Ω(t)′, then

Φ(Γ (t), Ω(t)) ≥ Φ(Γ (t), Ω(t)′).

That is, when the elements of a clustering becomes more, the contribution of
Γ (t) to the new clustering cannot be increased.

3 The Seeding Algorithm and Our Main Result

In this section, we will mainly present the seeding algorithm for the functional k-
means problem, which is generalized from both the Lloyd’s method for functional
k-means problem and k-means++ for k-means problem. From Step 1 to Step
5, one notices that the initial functional sample clustering Ω(t) are chosen from
the functional sample set Γ (t) with very specific probabilities, rather than being
sampled at random without any rules like Lloyd’s method. Then, the initial
functional samples Γ (t) can be separated into k clusters from Step 6 to Step 8,
depending on the closest similarity metric distance. In the following processes
from Step 9 to Step 11, we renew the functional sample clustering by applying
the result to functional 1-mean problem. In fact, the updated clustering cannot
increase the value of loss function. This can be explained by the Lloyd’s method
for k-means problem [7]. Therefore, this algorithm makes enough improvement in
each cycle until the clustering is no longer changed. Moreover, if one can bound
the cost function of the first clustering, the return clustering can be found with
this property, too.

Then, we present our main result as follows.

Theorem 1. Suppose that Ω(t) is constructed in Algorithm 1 for Γ (t) ⊆ Fd,
then the corresponding cost function satisfies

E[Φ(Γ (t), Ω(t))] ≤ 8(ln k + 2)Φ∗(Γ (t)).
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Algorithm 1. The seeding algorithm for functional k-means problem
Input: A set of n functional samples Γ (t) ⊆ Fd, and Ω(t) := ∅.
Output: An approximate functional k-means Ω(t) of Γ (t).

1: Choose the first functional sample center Q1(t) uniformly at random from Γ (t),
then set Ω(t) := Ω(t) ∪ {Q1(t)};

2: for i from 2 to k do
3: Choose the functional sample center Qi(t) from Γ (t) with probability

d2(Qi(t),Ω(t))∑
X(t)∈Γ (t) d2(X(t),Ω(t))

;

4: Set Ω(t) := Ω(t) ∪ {Qi(t)};
5: end for
6: for i from 1 to k do
7: Set the cluster Γ i

Ω(t)(t) := {X(t) ∈ Γ (t) : d2(X(t), Ω(t)) = d2(X(t), Qi(t))};
8: end for
9: for i from 1 to k do

10: Update the functional sample clustering Ω(t) by setting Qi(t) := μ(Γ i
Ω(t)(t)),

which is the center functional sample of Γ i
Ω(t)(t);

11: end for
12: Repeat Step 6 to Step 11 until Ω(t) no longer change;
13: Return Ω(t).

4 Proof of Correctness

In this section, we mainly discuss that the set Ω(t) returned by Algorithm 1 is
an 8(ln k + 2)-approximate functional k clustering for functional k-means prob-
lem, and the main proof follows k-means++ for k-means problem. In fact, the
returned set Ω(t) used in this part is just the one obtained in seeding part
(from Step 1 to Step 5). From Algorithm 1, we know that the first center
of functional sample is chosen uniformly from Γ (t). Since the group of clus-
ters Γ 1(t)∗, Γ 2(t)∗, . . . , Γ k(t)∗ is a division of Γ (t), the chosen center obviously
belongs to one of these groups. That is, there exists one joint cluster to Ω(t). If
we cluster all the functional samples of this joint cluster to the chosen center,
rather than its optimal functional 1-mean, we show that the value of loss func-
tion in the former case is exact twice as the one in the latter case in the following
lemma, and its proof is presented in the supplementary material.

Lemma 2. Let Δ(t) be an arbitrary functional sample cluster of Γ (t) with
respect to Ω∗(t), and suppose that Ω(t) = {Q(t)} is a functional sample cluster-
ing with only one center, which is chosen uniformly from Δ(t), then

E(Φ(Δ(t), Ω(t)) = 2Φ(Δ(t), Ω(t)∗
Γ (t)).

In the following lemma, we further give the bound when only one new func-
tional sample center is added to the current center set.

Lemma 3. Let Δ(t) is an arbitrary functional sample cluster of Γ (t) with
respect to Ω(t)∗

Γ (t). Suppose that Ω(t) is any clustering of Γ (t) with less than k
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centers. If we choose one center Q(t) from Δ(t) at random with probability

d2(Q(t), Ω(t))
∑

X(t)∈Γ (t) d2(X(t), Ω(t))
,

and add Q(t) to Ω(t), we have

E[Φ(Δ(t), Ω(t)′)] ≤ 8Φ(Δ(t), Ω(t)∗
Γ (t)),

where Ω(t)′ = Ω(t) ∪ {Q(t)}.
By Lemma 3, one knows that if the k center functional samples are chosen

from each cluster of Γ (t) with respect to Ω(t)∗
Γ (t), the approximation rate can

be obtained as a factor. The left question is what about the case that more
than two center functional samples are chosen in the same cluster? We will
solve this problem in the following lemma. Given any clustering of Γ (t), for
the convenience of discussing this special case, we will separate the functional
sample clusters of Γ (t) given by Ω(t)∗

Γ (t) into joint and disjoint clusters to Γ (t).
If Γ i(t)∗ ∩ Ω(t) �= ∅ for some i ∈ {1, 2, . . . , k}, we call Γ i(t)∗ a joint functional
sample cluster of Ω(t). Otherwise, it is named as a disjoint cluster of Ω(t). And
we use nΩ(t) to denote the number of the disjoint functional sample clusters
of Ω(t), NΩ(t) = {X(t) ∈ Γ i(t)∗ : Γ i(t)∗ ∩ Ω(t) �= ∅} to denote the functional
samples in the disjoint clusters, and DΩ(t) = Γ (t)−NΩ(t) to mean the functional
samples in the joint clusters.

Lemma 4. Let Ω(t) be any functional sample clustering of Γ (t). Now we add
m (≤ nΩ(t)) functional samples Q1(t), Q2(t), . . . , Qm(t) from Γ (t) to Ω(t), where
for each Qi(t), i = 1, 2, . . . ,m, its chosen probability is

d2(Qi(t), Ω(t))
∑

X(t)∈Γ (t) d2(X(t), Ω(t))
.

If we set Ω(t)′ = Ω(t) ∪ {Q1(t), Q2(t), . . . , Qm(t)}, we have

E(Φ(Γ (t), Ω(t)′)) ≤ [Φ(DΩ(t), Ω(t)) + 8Φ(NΩ(t), Ω(t)∗
Γ (t))] · (1 + Hm)

+
nΩ(t) − m

nΩ(t)
Φ(NΩ(t), Ω(t)),

where Hm = 1 + 1
2 + · · · + 1

m .

Its proof is presented in the supplementary material.
Now, we finish the proof of Theorem 1 by using above lemmas.

Proof of Theorem 1. Let Ω(t) be the functional sample clustering obtained
from Step 1 to Step 5 in Algorithm 1, and suppose that the current functional
clustering Ω1(t) = {Q(t)} just has one functional sample center. By Algorithm 1,
we know this center should be chosen from some optimal cluster Δ(t). Then,
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DΩ1(t) = Δ(t), NΩ1(t) = Γ (t) \ Δ(t), and there are nΩ1(t) = k − 1 disjoint
optimal clusters. Thus, by Lemmas 2 and 4, we obtain the following result,

E[Φ(Γ (t), Ω(t))]
Lemma 4≤

[

Φ(Δ(t), Ω1(t)) + 8Φ(Γ (t), Ω(t)∗
Γ (t)) − 8Φ(Δ(t), Ω(t)∗

Γ (t))
]

· (1 + Hk−1)
Lemma 2=

[

2Φ(Δ(t), Ω(t)∗
Γ (t)) + 8Φ(Γ (t), Ω(t)∗

Γ (t)) − 8Φ(Δ(t), Ω(t)∗
Γ (t))

]

· (1 + Hk−1)
≤ 8Φ(Γ (t), Ω(t)∗

Γ (t)) · (1 + Hk−1)

≤ 8Φ(Γ (t), Ω(t)∗
Γ (t)) · (1 + ln k).

�	

5 Numerical Experiments

In this section, we test the seeding algorithm (Algorithm 1) on the data sets
Simudata [15] and Sdata [11], comparing to the functional k-means clustering
algorithm provided in the reference [11]. Below we describe the two data sets.

– Simudata
This data set has two clusters with respective to functions X1(t) = uh1(t) +
(1 − u)h2(t) + ε(t) and X2(t) = uh1(t) + (1 − u)h3(t) + ε(t), where h1(t) =
max(6−|t−11|, 0), h2 = h1(t−4), h3 = h1(t+4), u is random number drawn
uniformly from [0, 1], and ε(t) is a white noise with expectation E[ε(t)] =
0 and variance Var[ε(t)] = 1. Each cluster includes 100 functional curves
generated by observation points t = 1, 1.2, 1.4, . . . , 21.

– Sdata
This data set has three clusters with respective to functions X1(t) = cos(1.5
πt) + ε(t), X2(t) = sin(1.5πt) + ε(t), and X3(t) = sin(πt) + ε(t), where ε(t) is
a white noise with expectation E[ε(t)] = 0 and variance Var[ε(t)] = 1. Each
cluster includes 100 functional curves on [0, 1].

In order to calculate the derivatives, we smooth the functional data by the
three order polynomial fit technology. We use two measures, namely, adjusted
rand index (ARI) and Davies Bouldin index (DBI) to evaluate the effectiveness
of the two algorithms. ARI is an external clustering validation index, defined as
follows.

ARI :=
RI − E(RI)

max(RI) − E(RI)

where RI is the Rand index which is defined as the number of pairs of objects
that are either in the same group or in different groups in both the partition
returned by the algorithm and the real partition divided by the total number
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Table 1. Comparison of Algorithm 1 and the functional k-means algorithm in [11]

Data set Method ARI DBI Initial cost Returned cost Time (s)

Simudata SeedAlg 0.8642 0.8112 2949 1549 56

FuncAlg 0.8642 0.8151 6403 1551 64

Sdata SeedAlg 0.6601 1.2030 1513 701 184

FuncAlg 0.6675 1.2052 2650 701 240

of pairs of objects. It is easy to see that ARI has a value between −1 and 1.
A larger ARI indicates higher consistence between the clustering result and the
real class labels, especially, the value 1 of ARI indicates the clustering result
is same to the real class labels. DBI is an internal clustering validation index,
defined as follows.

DBI :=
1
n

n∑

i=1

max
j �=i

(
Si + Sj

Mij

)

,

where Si is the average value of the Euclidean distances from all points in the
cluster i to the centroid of this cluster, and Mij is the Euclidean distance between
the centroids of clusters i and j. The smaller DBI is, the less between-cluster
similarity is. We also show the costs of the initial and returned solutions, as well
as the running times of the algorithms. Since the two algorithms we compare
are random, we run them for 10 times and compute the average values for all
measures. Results are shown in Table 1 where the notations SeedAlg and FuncAlg
represent Algorithm 1 and the functional k-means algorithm in [11] respectively.

From the results, we can observe that the clustering accuracies of the two
algorithms are very close, since the relative differences of the ARIs, DBIs, and
returned costs of these two algorithms are less than 1.2%. Nevertheless, the
seeding algorithm we provide is competitive in efficiency, since it can product a
better initial solution and consumes less time.

6 Conclusions

By defining a new distance with derivative information, the functional k-means
clustering algorithm can be used well for functional k-means problem. In this
paper, we first introduce a novel proof for functional 1-mean problem. Then
we apply the seeding algorithm to functional k-means problem and obtain that
the performance guarantee is O(log k). In future, we will focus on the parallel
seeding algorithm and local search method for functional k-means problem.
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Problems in Metric Space
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Abstract. Dealing with data on uncertainty has appealed to many
researchers as there may be many stochastic problems in a realistic sit-
uation. In this paper, we study two basic uncertainty models: Existen-
tial Uncertainty Model where the location of each node is fixed while it
may be absent with some probability, and the Locational Uncertainty
Model where each node must be present, but the situation is uncer-
tain. We consider the problem of estimating the expectation and the
tail bound distribution of the diameter, and obtain an improved FPRAS
(Fully Polynomial Randomized Approximation Scheme) which requires
much fewer samples. In the meanwhile, we prove some problems in the
two uncertainty models can’t be approximated within any factor unless
NP ⊆ BPP by simple reductions.

Keywords: FPRAS · Stochastic diameter ·
Hardness for approximation

1 Introduction

Models: As mentioned before, we focus on two stochastic geometry models, the
existential uncertainty model and locational uncertainty model. We’ll show the
precise definition of these two models below:

Definition 1 (Locational Uncertainty Model). We are given a metric space P.
The location of each node v ∈ V is a random point in the metric space P and the
probability distribution is given as the input. Formally, we use the term nodes
to refer to the vertices of the graph, points to describe the locations of the nodes
in the metric space. We denote the set of nodes as V = {v1, ..., vn} and the set
of points as P = {s1, ..., sm}, where n = |V | and m = |P |. A realization r can
be represented by an n-dimensional vector (r1, ..., rn) ∈ Pn where point ri is the
location of node vi for 1 ≤ i ≤ n. Let R denote the set of all possible realizations.
We assume that the distributions of the locations of nodes in the metric space
P are independent, thus r occurs with probability Pr[r] =

∏
i∈[n] pviri

, where pvs

represents the probability that the location of node v is point s ∈ P.
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Definition 2 (Existential Uncertainty Model).A closely related model is the exis-
tential uncertainty model where the location of a node is a fixed point in the given
metric space, but the existence of the node is probabilistic. In this model, we use pi to
denote the probability that node vi exists (if exists, its location is si). A realization
r can be represented by a subset S ⊂ P and Pr[r] =

∏
si∈S pi

∏
si /∈S(1 − pi).

Problem Formulation. The natural problems in the above models are to esti-
mate the expectation and the tail bound of distribution of certain combinatorial
objects, denoted by E(Obj) and P(Obj ≥ 1) (or the form P(Obj ≤ 1)). More
accurately, take the expectation of diameter (the longest distance between two
realized points) as an example. Note the expectation E(D), and D(r) be the
longest distance between two points in the realization r. The precise definition
of the E(D) is:

E(D) =
∑

r∈R
Pr[r]D(r)

Similarly, note the probability that the diameter is no less than the given thresh-
old, i.e. P(D ≤ 1). And what we estimate in this paper is E(D) and P(D ≤ 1).
The P(D ≥ 1) has been shown unapproximable [13].

Preliminaries. The most useful techniques in the estimation are the straight-
forward Monte Carlo strategy. We repeat the experiment and obtain the average
of the experiment results, and use the average as the estimation of the true value.
The number of samples required by this algorithm is suggested by the following
standard Chernoff bound.

Lemma 1 (Chernoff bound). Let random variables X1,X2, ...,XN be indepen-
dent random variables taking on values between 0 and U. Let X = 1

N

∑N
i=1 Xi

and μ = E(X). Then for any ε > 0, we have P ((1 − ε)μ ≤ X ≤ (1 + ε)μ) ≥
1 − 2e−N µ

U ε2/4.

Then if we want to get an (1± ε) approximation with probability 1− 1
poly(N) ,

the number of samples needs to be O( U
με2 lnN).

Call one realization of all nodes in both models one sample. So the main
target of our algorithm in this paper is to bound the value U

μ and use as fewer
samples as possible.

Take the Locational Uncertainty Model as an example. To simplify the argu-
ment of the running time, we assume the running time of experimenting with
one node is nearly the same whatever its locational distribution is. However, it’s
difficult to argue that how much time it will take to do an experiment with one
node. So we take one realization as one sample and use the necessary number of
samples as the evaluation criterion of our algorithms.

Our Contributions. Recall that the fully polynomial randomized approxi-
mation scheme (FPRAS) for a problem f is randomized algorithm A that
takes an input instance x, a real number ε > 0, returns A(x) such that
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P [(1 − ε)f(x) ≤ A(x) ≤ (1 + ε)f(x)] ≥ 3
4 and its running time is polynomial in

both the size of the input n and 1/ε.
We designed the FPRAS for E(D) and P (D ≥ 1) in both models which are

the best of our knowledge.
Huang et al. [13] gives the FPRAS for E(closet pair) and P(Closet pair ≤ 1)

(denote by P(C ≤ 1) later). The FPRAS for P (C ≤ 1) can be used to estimate
P (D ≥ 1) with some trivial operations. In the existential uncertainty model,
suppose there are m nodes, we improve the FPRAS from needing O(m6

ε4 lnm)
independent samples to O(m

ε4 lnm). As for a locational uncertainty model with
m nodes and n points, we improve the FPRAS from needing O(m6

ε4 lnm) samples
to O(m3

ε4 lnm).
As for the E(D), note that we can get an FPRAS for E(D) by the FPRAS

for P (D ≥ 1), but it will need O(m8

ε4 lnm) independent samples. We give the
first direct FPRAS for E(D) in this paper which only needs O(m2

ε2 ln2m) samples
in the worst case and need O(m2

ε2 lnm) samples in the best situation for both
models. This direct FPRAS doesn’t need to estimate P (D ≥ 1) anymore.

Moreover, we’ll show some problems can’t be approximated unless NP ⊆
BPP, which answers one of the open problems given in [13]. The main results of
unapproximation are shown in the below Table 1:

Table 1. Results for unapproximated problems

Unapproximable value Model NPC problem for reduction

P(k-th closest pair ≤ 1) Loc Max 2-SAT

P(k-th longest m-nearest neighbor ≤ 1) Loc Maximum clique

P(k-clustering ≥ 1) Loc 3-coloring

P(Minimum cycle cover ≥ 1) Loc 3-coloring

P(Minimum spanning tree ≥ 1) Loc 3-coloring

E(k-th longest m-nearest neighbor) Loc Vertex cover

P(k-clustering ≥ 1) Exis Independent set

We will show the non-approximation of E(k-th longest m-nearest neighbor)
in Locational model and P(k-clustering ≥ 1) in Existential model in Sect. 4. The
exact definition and brief proof for other problems will be shown in the appendix
due to space constraints.

Related Work. The uncertain or imprecise data has been studied extensively
recently [7,9]. Consider the locational data collected by the Global-Positioning
Systems (GPS), there are always some random measurement errors [27]. For
another example, if we use a sensor network to monitor the living habits or
migration of certain animals, there will also be some noise among the data we
collected as the sensors won’t be perfect [8,17,22]. Some people study the impre-
cise data in a model where each point may be in some region [4,23,26,29].
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The existential uncertainty model and the locational uncertainty modes we
mentioned before have been studied extensively in recent years (e.g. [1–3,14,17]).
It’s worth mentioning that when all the points follow the same distribution, it’s
a classic topic in stochastic geometry literature [5,6,27]. The asymptotics expec-
tation for certain combinatorial problems (such as MST) is the main interest in
that topic. The general locational uncertain model is also of fundamental inter-
est in the area of wireless networks. There is a survey [12] and you can see more
references about the stochastic model and wireless networks there.

There have been many works under the term stochastic geometry in the above
uncertainty model and many other different stochastic models. For example,
Huang et al. [14] initiate the study of constructing ε-kernel coresets for uncertain
points in the above two models. The convex hull [11,20], minimum enclosing ball
problem [24], shape fitting [19], MST [5] and many other problems have also been
studied on the imprecise data.

The study of estimating the expectation of objects in the model is started
by Kamousi, Chan and Suri [15,16]. They showed that the expectation of some
values, such as nearest neighbor (NN) graph, the Gabriel graph (GG) and so on,
can be solved in polynomial time. And they designed FPRAS for E(MST) and
E(the closest pair) in the existential uncertainty model.

Huang et al. [13] gives the FPRAS for the expected values of closest pair,
minimum spanning tree, k-clustering, minimum perfect matching, and minimum
cycle cover in both models by several powerful techniques. And they also consider
the problem of estimating the probability that the length of closest pairs at most,
or at least, a given threshold.

Most recently, Li and Deshpande [18] observe that the expected value is
inadequate in some problems and study the maximization of the expected utility
of the solution for some given utility function. The initial motivation for the
study is the stochastic shortest-path problem, which has been studied extensively
[21,25,28].

2 The Expectation of Diameter

Existential Uncertainty Model: Let’s show the FPRAS of E(D) in the Exis-
tential Uncertainty Model. First, let us show the meaning of the signals we use.
Let U be the complete set of the points. And S〈≥ j〉 means that there are at
least j points realized in the set of points S. Suppose we have m points in total
(we use m to describe the complexity of samples we need later). Then there are
l =

(
m
2

)
different pairs of points. W.l.o.g, suppose the lengths of the l pairs are

distinct. And we sort them in ascending order of their length and index them.
Let ei represent the i-th pair, and di is its length. We have d1 < d2 < ... < dl.
And for a pair ei = (u, v), P (ei|α) represent the probability that both u and v
are realized conditioning on event(α).

What we want to estimate is indeed E(D|U〈≥ 2〉), because the diameter
doesn’t make sense if there is only one or zero point realized. Now let us introduce
the algorithm.
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First, for pair ei = (u, v), we can calculate P (ei|U〈≥ 2〉) = P (ei,U〈≥2〉)
P (U〈≥2〉) =

P (ei)
P (U〈≥2〉) = PuPv

P (U〈≥2〉) , which can be calculated easily by the following lemma:

Lemma 2. For a set of points C and j ∈ Z, we can compute P (C〈≥ j〉) in
polynomial time. Moreover, there exists a poly-time sampler to sample present
points from C conditioning on C〈≥ j〉 (Or C〈j〉).
Proof. The idea is essentially from [10]. W.l.o.g, we assume that the points in C
are x1, x2, ..., xn. We denote the event that among the first a points, at least b
points are present by E(a, b) and denote the probability of E(a, b) by P(a, b).
Note that our goal is to compute P(n, j), which can be solved by the following
dynamic program:

1. If a < b, P(a,b) = 0. If a = b, P(a,b) =
∏

1≤l≤a Pl. If b = 0, P(a,b) = 1.
2. For a > b and b > 0, P(a,b) = PaP (a − 1, b − 1) + (1 − Pa)P (a − 1, b).

We can also use this dynamic program to construct an efficient sampler. Consider
the point xn, with probability PnP (n−1, j −1)/P (n, j), we make it present and
then recursively consider the point xn−1, conditioning on the event E(n−1, j−1).
With probability (1−Pn)P (n− 1, j)/P (n, j), we discard it and then recursively
sample conditioning on the event E(n − 1, j).

The proof of P (C〈j〉) (i.e. there are exactly j points present in C) is similar
and we skip it.

Now continue our algorithm.
There exists a set of pairs S =

{
ei|P (ei|U〈≥ 2〉) ≥ 1

m2

}
. S is non-empty, or

P (U〈≥ 2〉|U〈≥ 2〉) = 1 = P (∪iei|U〈≥ 2〉) ≤ lP (ei|U〈≥ 2〉) < 1. Let Y be the
largest index among all the pairs in S. Recall that the l-th pair is the longest
one. If dY ≥ 1

lnmdl, then E(D|U〈≥ 2〉) ≥ P (D ≥ dY |U〈≥ 2〉)dY ≥ 1
m2lnmdl. By

chernoff bound, we only need to take O(m2

ε2 ln2m) independent samples. This is
the worst case of our algorithm.

Now consider the other situation, i.e. dY < 1
lnmdl. Then we have a set of

points H = {u|∃v ∈ U, (u, v) ∈ S}. It’s obvious that ∀u, v ∈ H, d(u, v) < 3
lnmdn

due to the Triangle inequality. As if d(u, v) ≥ 3
lnmdl, suppose (u, u′) ∈ S, (v, v′) ∈

S. Let u′′ = u if Pu > Pu′ , or u′′ = u′. And get v′′ by the similar approach.
Then P ((u′′, v′′)|U〈≥ 2〉) ≥ 1

m2 and d(u′′, v′′) > 1
lnmdl, which is impossible.

(Remark: We can understand this property as those points with a relatively
high probability of realization are surrounded by a small sphere.)

Suppose x is one of the points that have the largest probability of realization
among U(if there are more than one points with largest probability, choose
one arbitrarily), then we have the following property: d(x,H) < 2

lnmdl. The
definition of d(x,H) is d(x,H) = max

u∈H
d(x, u). Let H ′ = H ∪ {x}. And we can

construct a set of points H ′′ =
{
u|u = x or d(u, x) < 4

lnmdn

}
. It’s obvious that

H ⊆ H ′ ⊆ H ′′. If H ′′ = U , we need only O(m2

ε2 ln2m) independent samples. Else,
we can use the following algorithm.

For any point t, let P (α|t) represent the probability of event(α) conditioning
on that point t is realized, and P (α|t) correspond to the probability of event(α)



402 D. Liu

Algorithm 1. construct event
1: S0 = U/H ′′, N0 = ∅,i=0
2: while Si is not empty do
3: ti = arg max

u∈Si

d(u, H ′)

4: Si+1 ← Si/ {ti}
5: Ni+1 ← Ni ∪ {ti}
6: i←i+1

7: Output:Si, ti and Ni for all i

conditioning on that t is not realized. P (t|α) represents the probability that t
is realized conditioning on event(α). Let |S0| denote the size of S0. Then we
have that E(D|U〈≥ 2〉) =

∑|S0|−1
i=0 E(D|U〈≥ 2〉, ti, Ni−1〈0〉)P (ti, Ni−1〈0〉|U〈≥

2〉) + E(D|N|S0|−1〈0〉,H ′′〈≥ 2〉)P (H ′′〈≥ 2〉, N|S0|−1 < 0 > |U〈≥ 2〉).
All of the probability can be calculated easily. What we need to get is the

expected value in each part. E(D|N|S0|−1〈0〉,H ′′〈≥ 2〉) can be seen as we recurse
our original problem into a smaller problem. Then for each i, we have the fol-
lowing lemma:

Lemma 3. We only need O(m
ε2 logm) independent samples to estimate

E(D|U <≥ 2 >, ti, Ni−1 < 0 >).

Proof. Let Ui = U/Ni = U/({ti} ∪ Ni−1). We can rewrite E(D|U〈≥
2〉, ti, Ni−1〈0〉) = E(D|ti, Ni−1〈0〉, Ui〈≥ 1〉). We have a sampler condition on
event(ti, Ni−1 < 0 >,Ui <≥ 1 >) according to Lemma 1. And recall that x is
the point that has the largest probability of realization, it’s obvious that x ∈ Ui.
Then P (x|Ui〈≥ 1〉) ≥ 1/m. Let Di represent the maximum value of Diameter
condition on event(ti, Ni−1〈0〉, Ui〈≥ 1〉). We have d(ti, x) ≥ 2∗d(ti,H

′)
6 ≥ Di/6

condition on event(ti, Ni−1〈0〉, Ui〈≥ 1〉). Then E(D|ti, Ni−1〈0〉, Ui〈≥ 1〉) ≥
d(ti, x)P (x|Ui〈≥ 1〉) ≥ d(ti, x)/m ≥ Di/(6m). And by Chernoff bound, we
proved this lemma.

Let T(m) represent the independent samples we need to estimate E(D|U <≥
2 >) with |U | = m. We have the following recursive relation in the best case:
T (m) = T (m − |S0|) + O(|S0| ∗ m

ε2 lnm). Then we have T (m) = O(m2

ε2 lnm).

Locational Uncertainty Model: Our algorithm is almost the same as the
existential model with the assumption that at for each point, there is only one
node that may be realized at this point. In principle, if more than one node
may be realized at the same point, we can create multiple copies of the point
co-located at the same place. We can’t use the Monte Carlo method directly
only when all points with high probability to be realized are ’wrapped in a small
ball’, we can use the similar algorithm like Algorithm 1 to do the recursion
and get the same required complexity as the existential model. For example, we
can run the while loop only once and get a sub-problem with size m − 1.
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Theorem 1. There is an FPRAS for estimating the expected distance between
the longest pair of nodes both existential and locational uncertainty models. It
needs O(m2

ε2 ln2m) independent samples in the worst case and O(m2

ε2 lnm) in the
best case in both models.

3 The Tail Bound of Distribution

ExistentialUncertaintyModel:Now let us introduce the FPRAS of P(D ≥ 1).
We can construct a set of points H ′ =

{
u|Pu ≥ ε

m

}
, and H = U/H ′. We have that

P (D ≥ 1) =
∑|H|

i=0 P (D ≥ 1,H〈i〉). We’ll show that we only need to estimate
∑2

i=0 P (D ≥ 1,H〈i〉) as the remaining is negligible.
Call a set of points S connected if ∀u ∈ S, Pu ≥ ε

m ∧ ∃v ∈ S, d(u, v) ≥ 1.
Call a point u∈ S is unique in S, if let S′ = S/ {u}, S′ is not connected. Let
C = {u|u ∈ H ′ ∧ ∃v ∈ H ′, d(u, v) ≥ 1}. It’s obvious that the C we constructed
is connected.

Lemma 4. For connected non-empty set S with all points unique, P (D ≥ 1|S〈≥
2〉) ≥ ε

2m .

Proof. It’s obvious that S must have even points according to the definition.
Call pair (u, v) a match if d(u, v) ≥ 1. Suppose S has 2k points, then S has
exactly k matches. Index the 2k points subject to that ui and uk+i is a match
and Pui

≥ Pui+k
. Let Sa,b denote the subset of points with index in [a, b].

Then we have P (D ≥ 1|S〈≥ 2〉) =
∑k

i=1 P (D ≥ 1|ui, S1,i−1〈0〉, Si+1,2k〈≥
1〉)P (ui, S1,i−1〈0〉, Si+1,2k〈≥ 1〉|S〈≥ 2〉).

When i ≤ k, P (D ≥ 1|ui, S1,i−1〈0〉, Si+1,2k〈≥ 1〉) ≥ ε
m , and we can get

P (ui, S1,i−1〈0〉, Si+1,2k〈≥ 1〉|S〈≥ 2〉) ≥ P (ui+k, S1,i+k−1〈0〉, Si+k+1,2k〈≥ 1〉).
And notice

∑2k−1
i=1 P (ui, S1,i−1 < 0 >,Si+1,2k〈≥ 1〉|S〈≥ 2〉) = 1. Thus we proved

this lemma.

Lemma 5. We can estimate P (D ≥ 1,H〈0〉) with O(m
ε4 lnm) independent sam-

ples.

Proof. Then in order to prove this lemma, we only need to show that P (D ≥
1|S〈≥ 2〉) ≥ ε

2m for any non-empty connected set S by Mathematical induction.
Now prove Lemma 5. When |S| = 2, then P (D ≥ 1|S〈≥ 2〉) = 1 ≥ ε

2m .
Suppose P (D ≥ 1|S〈≥ 2〉) ≥ ε

2m when |S| ≤ n for any connected S and some
integer n, then consider the situation when |S| = n + 1. When all points in C
are unique, then we have P (D ≥ 1|S〈≥ 2〉) ≥ ε

2m by Lemma 4. If there exists
some point u that are not unique, we have P (D ≥ 1|S〈≥ 2〉) = P (D ≥ 1|u, S〈≥
1〉)P (u|S〈≥ 2〉)+P (D ≥ 1|u, S〈≥ 2〉)P (u|S〈≥ 2〉). Both P (D ≥ 1|u, S〈≥ 1〉) and
P (D ≥ 1|u, S〈≥ 2〉) are no less than ε

2m . And P (u|S〈≥ 2〉) + P (u|S〈≥ 2〉) = 1,
thus we proved P (D ≥ 1|S〈≥ 2〉) ≥ ε

2m when |S| = n + 1.
Then by Monte carlo directly, we proved this lemma.
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Now let’s show how to estimate P (D ≥ 1,H〈1〉). Observe that P (D ≥
1,H〈1〉) =

∑
u∈H P (D ≥ 1, u,H/ {u} 〈0〉). For point u in H, denote Gu =

{v|v ∈ H ′, d(u, v) ≥ 1}. We can calculate P (Gu〈≥ 1〉, u,H/ {u} 〈0〉) exactly in
linear time. We can use the value of

∑
u∈H P (Gu〈≥ 1〉, u,H/ {u} 〈0〉) as an esti-

mation of P (D ≥ 1,H〈1〉) because of the following claim.

Claim.
∑

u∈H P (Gu〈≥ 1〉, u,H/ {u} 〈0〉) ≤ P (D ≥ 1,H〈1〉) ≤ ∑
u∈H P (Gu〈≥

1〉, u,H/ {u} 〈0〉) + 2εP (D ≥ 1,H〈0〉).
Proof. Since we only miss the summation probability of these events: there are
two points x, y in H ′/Gu realized with d(x, y) ≥ 1 and there are no points
present in Gu. Write down the expression:

∑
u∈H P (D ≥ 1, u,H/ {u} 〈0〉, Gu〈0〉).

Denote the set of realization we may miss by M . Each realization r in M can
be transferred to the event(D ≥ 1,H〈0〉) by making the only present point in
H absent. We denote the realization after the transform r′. We have P (r′) ≥
m
2εP (r). And given r′, there are at most m different realizations can be trans-
formed into it. We have P (D ≥ 1,H〈1〉) =

∑
u∈H P (Gu〈≥ 1〉, u,H/ {u} 〈0〉) +∑

r∈M P (r) ≤ ∑
u∈H P (Gu〈≥ 1〉, u,H/ {u} 〈0〉)+2ε

∑
r′ P (r′) ≤ ∑

u∈H P (Gu〈≥
1〉, u,H/ {u} 〈0〉) + 2εP (D ≥ 1,H〈0〉).

Call the argument method of this claim ARG, which will be useful later.

As for P (D ≥ 1,H〈2〉) =
∑

u,v∈H P (D ≥ 1, u, v,H/ {u, v} 〈0〉). Given u, v
∈ H. If d(u, v) ≥ 1, P (D ≥ 1, u, v,H/ {u, v} 〈0〉) = PuPvP (H/ {u, v} 〈0〉) which
can be calculated directly. And

∑
u,v∈H∧d(u,v)<1 P (D ≥ 1, u, v,H/ {u, v} 〈0〉) ≤

2ε(P (D ≥ 1,H〈0〉) + P (D ≥ 1,H〈1〉)) by the similar argument of ARG,
which means it’s negligible. So we can use the value of

∑
u,v∈H∧d(u,v)≥1 P (D ≥

1, u, v,H/ {u, v} 〈0〉) as an estimation of P (D ≥ 1,H〈2〉).
So far we have shown how to estimate

∑2
i=0 P (D ≥ 1,H〈i〉). The last thing

we have to do is to show
∑|H|

i=3 P (D ≥ 1,H〈i〉) is negligible. In fact, we can prove
P (D ≥ 1,H〈2+ i〉) ≤ (2ε)iP (D ≥ 1,H〈2〉) with the similar method with ARG.
So

∑
i≥3 P (D ≥ 1,H〈i〉) ≤ is negligible compared with

∑2
i=0 P (D ≥ 1,H〈i〉).

Theorem 2. There is an FPRAS for estimating the probability of the distance
between the furthest pair of nodes is at least 1 in the existential uncertainty model
with only O(m

ε4 lnm) independent samples.

Locational Uncertainty Model: Please pay attention that the node and point
have different meaning in the locational model. And recall that we assume that
at for each point, there is only one node that may be realized at this point.
Suppose we have n nodes and m points. Huang et al. [13] has given a FPRAS
for P (D ≥ 1) which needs O(m6

ε4 lnm) independent samples. And we improved
it and only need O(m3

ε4 lnm) independent samples.
The thought of FPRAS for P (D ≥ 1) in locational uncertainty model is

exactly the same as the existential model, while we need a little bit more samples
because of the difference of the two models.
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Call a point u not-alone in a point set H, if ∃v ∈ H, st. d(u, v) ≥ 1∧ u, v
correspond to different nodes. And we call the set H single if H doesn’t contain
any not-alone points.

Let H =
{
u|Pu ≥ ε

m2

}
. F = V/H. So similarly, P (D ≥ 1) =

∑|F |
i=0 P (D ≥

1, F 〈i〉). And we also only need to estimate
∑2

i=0 P (D ≥ 1, F 〈i〉) as
∑|F |

i=3 P (D ≥
1, F 〈i〉) is negligible by the similar argument with ARG.

Lemma 6. We can estimate P (D ≥ 1, F 〈0〉) by O(m3

ε4 lnm) independent sam-
ples.

Proof. 1. It’s obvious that if H is single, then P (D ≥ 1, F 〈0〉) = 0.
2. If H is not single, with the following Algorithm 2, we can estimate P (D ≥

1, F 〈0〉) by O(m3

ε4 lnm) independent samples.

Algorithm 2. Estimate P (D ≥ 1, F 〈0〉)
1: S0 = H, N0 = ∅,i=0
2: while Si not-single do
3: find arbitrary not-alone point ti
4: Si+1 ← Si/ {ti}
5: Ni+1 ← Ni ∪ {ti}
6: i←i+1
7: Estimate P (D ≥ 1|ti, Ni〈0〉, F 〈0〉)
8: Output:The summation of P (D ≥ 1|ti, Ni〈0〉, F 〈0〉) for all i

Note that we can estimate P (D ≥ 1|ti, Ni〈0〉, F 〈0〉) with O(m2

ε4 lnm) for any
given i. And i ≤ m, thus we finish the proof.

As for the term P (D ≥ 1|F 〈1〉). For point u ∈ F corresponds to node ni,
then we can either estimate P (D ≥ 1|u, F/ {u} 〈0〉) with O(m2

ε4 lnm) independent
samples if there are d(u, v) ≥ 1 for v ∈ H ∧ v corresponds to a different node
nj , or this value can be neglected by the similar argument with ARG, as there
will must be a point u′ ∈ H which also corresponds to ni st. P (u′) ≥ 1

m . Thus
we can estimate P (D ≥ 1, F 〈1〉) with O(m3

ε4 lnm) samples.
Similarly, we can estimate P (D ≥ 1|F 〈2〉) by enumerating point pairs (u, v) ∈

H, and let
∑

u,v∈H,d(u,v)≥1 P (u, v) be the estimation of P (D ≥ 1|F 〈2〉). There
are at most O(m2) pairs.

Theorem 3. There is an FPRAS for estimating the probability of the distance
between the furthest pair of nodes is at least 1 in the Locational Uncertainty
Model with only O(m3

ε4 lnm) independent samples.



406 D. Liu

4 Examples for Unapproximable Values

k-th Longest m-Nearest Neighbor: The precise description of this problem is
under any realization, for each node, find the distance to its m-nearest neighbor,
then compute the k-th longest one among these distances. Huang et al. [13] gives
a FPRAS for this value in the existential model. And we’ll show that this value
can’t be approximated in the locational uncertainty model unless NP ⊆ BPP .

Lemma 7. Given the undirect graph G, we can construct a Locational Uncer-
tainty Model G’. Then there is a vertex cover of size k iff E((n − k)th Longest
(n + m − 1)Nearest Neighbor) > 0 in G′.

Proof. Suppose for one point, there may be more than one node realized at it.
Now let’s show how to construct such an G′ according to G. Suppose there are
n vertices and m edges in G. Construct n points and n + m nodes in G′. Divide
the n+m nodes into two disjoint sets S1 and S2, with |S1| = n, |S2| = m. The
i-th node in S1 can only be present at i-th point with probability equals 1. The n
points in G′ correspond to the n vertices in G each, the m nodes in S2 correspond
to the m edges in G. Then if vertex vj is one of the end point of edge ei in G, the
corresponding node can be present at the corresponding point with probability
1/2 in G′. As for the distance of point pairs in G′, the distance of each pair is
M, which can even be +∞.

Under such a construction, it’s obvious that E((n − k)th Longest (n + m −
1)Nearest Neighbor) = M * p with p > 0 strictly if and only if there exists a
vertex cover with size k. Note that when p > 0, E((n − k)th Longest (n + m −
1)Nearest Neighbor) can be infinitely large.

Then if there exists a FPRAS or any other approximation algorithms for E(k-
th Longest m-Nearest Neighbor) with finite approximation ratio and guaranteed
accuracy, we can construct a Locational Uncertainty Model G′ according to
Lemma 7. Run the algorithm on G′, and we can judge if there is a k-vertex
cover in G by comparing the output of the algorithm with zero, and get the
accurate result with guaranteed accuracy, which means NP ⊆ BPP .

Theorem 4. E(k-th Longest m-Nearest Neighbor) in Locational Uncertainty
Model is imapproximable within any finite ratio and guaranteed accuracy unless
NP ⊆ BPP.

k-clustering Problem: Not only in locational uncertainty model, the similar
thought can also be used in the existential uncertainty model. In the determin-
istic kclustering problem, we want to partition all points into k disjoint subsets
such that the spacing of the partition is maximized, where the spacing is defined
to be the minimum of any d(u, v) with u, v in different subsets. We have the
following lemma:

Lemma 8. Given an undirect graph G, we can construct a Existential Uncer-
tainty Model G’, subject to there exists an independent set of k vertices G iff
P (k − clustering ≥ 1) > 0 in G’.
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Proof. Suppose there are n vertices in G, then there will also be n nodes in
G′. And there is a bijection between them. Each node will be present with
probability 1/2. As for the distance of nodes in G′, for pair (ni, nj) in G′, if
there is an edge between the corresponding vertices in G, then d(ni, nj) = 0.9,
else d(ni, nj) = 1.8.

Then if there is an independent set of size k in G, the output of the approx-
imation algorithms for the P (k − clustering ≥ 1) in G′ should be more than 0
strictly with guaranteed accuracy, or the approximation ratio will be ∞.

Theorem 5. P (k − Clustering ≥ 1) in Existential Uncertainty Model is imap-
proximable within any finite ratio and guaranteed accuracy unless NP ⊆ BPP.

5 Conclusion

In this paper, we studied the expectation and the tail bound of distribution of
stochastic diameter, and prove some values can’t be approximated. One remain-
ing open problem is if there is FPRAS for k-Clustering problem and kth Closest
Pair problem, or they are also imapproximable. And studying the threshold
probabilities P(Obj ≥ 1) and P(Obj ≤ 1) for other values is also an interesting
topic.
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A Appendix

A.1 k-th Closest Pair

k-th closest pair means for all pairs of nodes, find the k-th closest one among
them. We know that Max 2-SAT is a NP-Complete problem. Given a 2CNF
with n clauses and a integer k < n, we would like to ask whether there is an
assignment such that at least k clauses are satisfied. Let P(kC ≤ 1) represent
P(k-th Closest Pair ≤ 1). We will show that

Lemma 9. Given the 2CNF and the integer k, we can construct a Locational
Uncertainty Model G. Then there is an assignment such that at least k clauses
are satisfied iff P (kC ≤ 1) > 0 in G.

Proof. Suppose there are n clauses and m variables in the 2-CNF. And there
is no clause containing both variable xi and xi for some i. Corresponding to
each variable xi, there are one node ui and two possible points Ai and Bi for
realization of ui. We have PuiAi

= PuiBi
= 1

2 . Then PuiAj
= PuiBj

= 0 for i �= j.
Then for each clause ci, there will be one node vi and two possible points Ci

and Di. We also have PviCi
= PviDi

= 1
2 .
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We can set a bijection that xi = true iff ui is realized to Ai. Then xi = true
iff ui is realized to Bi.

Then we should give the distance of the pairs of points. We let the distance
of any pairs of points be 1.8 for initialization. For the clause ci = [xt ∪ xs]. The
distance of two pairs (Ci, At) and (Di, As) should be changed to 0.9.

To see that even if both xt and xs are true, the clause ci = [xt ∪ xs] can
only contributes one pair with distance ≤1 in one possible realization. And for
another example, if ci = [xt∪xs], we can let the distance of (Ci, At) and (Di, Bs)
to be 0.9.

And what we should pay attention is that even if we have two same clauses
ci and cj , we still need to change the distance of four different pairs of points in
G be 0.9, each clause corresponds to two pairs.

Then if there is an assignment such that at least k clauses are satisfied,
there will be a realization that each node is realized in the corresponding point
according to assignment and bijection. And there will be one possible realization
that the k nodes corresponding to the k satisfied clauses are realized in the points
whose closest pair = 0.9. Then P (kC ≤ 1) > 0. And the reversal direction is
similar.

Having proved this lemma, we can have the theorem below:

Theorem 6. P(kC ≤ 1) in Locational Uncertainty Model is imapproximable
within any finite ratio and guaranteed accuracy unless NP ⊆ BPP.

A.2 kth Longest m-Nearest Neighbor

Lemma 10. Given the undirect graph G, we can construct a Locational Uncer-
tainty Model G’. Then there is a clique of size k iff P(longest k-1 nearest neighbor ≤
1) > 0 in G′.

Proof. Let k be the size of clique we want to find. And there are n vertices in
G. We will have k nodes in G′, denoted by {x1, ..., xk}. And we have k family
of points S1, ..., Sk. Each family Si has n points. And the node xi can be only
realized at the n points in Si with random probability, i.e. PxiAj

= 1
n for point

Aj ∈ Si.
As for the distance of pairs of nodes. For pair (u, v) when u and v are in the

same family, let d(u, v) = 0.9. (In fact the distance of pair in the same family
is not important, as there will be only one node realized in the same family).
We want each vertex u in G corresponds to k points in G′, and the k points are
separated in the k disjoint family. Then there will be a bijection between the n
points in one family and the n vertices in G. Then consider pair (ui, vj) with
ui in Si, vj in Sj and i �= j. Denote the corresponding vertex u of ui and v of
vj in G, if (u, v) is an edge in G, then let d(ui, vj) = 0.9, else d(ui, vj) = 1.8.
(Remark: Even if u == v in G, d(ui, vj) = 1.8). Then all the pairs will have a
distance and will meet the triangle inequality.

Theorem 7. P(kmNN ≤ 1) in Locational Uncertainty Model is imapproximable
within any finite ratio and guaranteed accuracy unless NP ⊆ BPP.
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A.3 K-clustering

We have shown that P (k−clustering ≥ 1) is hard to approximate in Existential
Uncertainty Model, now we show it’s also unapproximated in Locational Model.
Note P (k − clustering ≥ 1) by P (kCL ≥ 1) later.

Lemma 11. Given an undirect graph G, we can construct a Locational Uncer-
tainty Model G′, subject to G is 3-colorable iff P(kCL ≥ 1) > 0 in G′.

Proof. Suppose there a n vertices in G. We can construct G′ with n nodes, and
there is a bijection between these n vertices and n nodes. We have 3 family of
points, noted by S1, S2, S3. And each family contains n points, where there also
is a bijection between n vertices in G and n points in Si for all i ∈ {1, 2, 3}.

For each vertex xi in G, it has bijection relationships with node ui and three
points Ai, Bi, Ci, where Ai, Bi, Ci are in the three different family. Then we let
ui can only be realized in Ai, Bi, Ci, with probability 1

3 each.
As for the distance of pairs of points. For pair (u, v) with u and v are in

different family, let d(u, v) = 1.8. For pair (ui, ut) in the same family, let xi has
the bijection relation with ui and xt for ut. If there is an edge (xi, xt) in G, then
d(ui, ut) = 0.9, else d(ui, ut) = 1.8.

Theorem 8. P(kCL ≥ 1) in Locational Uncertainty Model is imapproximable
within any finite ratio and guaranteed accuracy unless NP ⊆ BPP.

A.4 Minimum Cycle Cover and MST Problem

In the deterministic version of the cycle cover problem, we are asked to find a
collection of node-disjoint cycles such that each node is in one cycle and the
total length is minimized. Here we assume that each cycle contains at least
two nodes. If a cycle contains exactly two nodes, the length of the cycle is two
times the distance between these two nodes. And we still starts from 3-coloring
problem to show that P(Minimum Cycle Cover ≥ 1) is imapproximable. We
denote Minimum Cycle Cover by MCC below.

With the same construction in A.3, we have following lemmas and theorems:

Lemma 12. Given an undirect graph G, we can construct a Locational Uncer-
tainty Model G′, subject to G is 3-colorable iff P(MCC ≥ 1.8n) > 0 in G′.

Lemma 13. Given an undirect graph G, we can construct a Locational Uncer-
tainty Model G′, subject to G is 3-colorable iff P(MST ≥ 1.8n) > 0 in G′.

With this lemma, we can have the following theorem:

Theorem 9. P(MCC ≥ 1) and P(MST ≥ 1) in Locational Uncertainty Model
are imapproximable within any finite ratio and guaranteed accuracy unless NP ⊆
BPP.
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20. Löffler, M., van Kreveld, M.: Approximating largest convex hulls for imprecise
points. J. Discrete Algorithms 6, 583–594 (2008)

21. Loui, R.P.: Optimal paths in graphs with stochastic or multidimensional weights.
Commun. ACM 26(9), 670–676 (1983)

22. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sen-
sor networks for habitat monitoring. In: Proceedings of the 1st ACM International
Workshop on Wireless Sensor Networks and Applications, pp. 88–97. ACM (2002)
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Abstract. The Ramsey number rk(p, q) is the smallest integer N that
satisfies for every red-blue coloring on k-subsets of [N ], there exist p
integers such that any k-subset of them is red, or q integers such that
any k-subset of them is blue. In this paper, we study the lower bounds
for small Ramsey numbers on hypergraphs by constructing counter-
examples and recurrence relations. We present a new algorithm to prove
lower bounds for rk(k + 1, k + 1). In particular, our algorithm is able
to prove r5(6, 6) ≥ 72, where there is no lower bound on 5-hypergraphs
before this work. We also provide several recurrence relations to calculate
lower bounds based on lower bound values on smaller p and q. Combin-
ing both of them, we achieve new lower bounds for rk(p, q) on arbitrary
p, q, and k ≥ 4.

Keywords: Ramsey number · Lower bounds · Hypergraph

1 Introduction

At least how many guests you have to invite for a party to make sure there are
either certain number of people know each other or certain number of people do
not know each other? The answer is the classical Ramsey number. Ramsey theory
generally concerns unavoidable structures in graphs, and has been extensively
studied for a long time [4,7,14]. However, determining the exact Ramsey number
is a notoriously difficult problem, even for small p and q. For example, it is only
known that the value of r2(5, 5) is between 43 to 48 inclusively, and for r2(10, 10),
people merely know a much rougher range from 798 to 23556 [10,13,15].

As for the hypergraph case of k ≥ 3, our understanding of Ramsey number is
even less. The only known exact value of Ramsey number is r3(4, 4) = 13, with
only loose lower bounds for other values of p, q, and k [9,11]. Although some
progresses have been made for r4(p, q), and particularly, lower bound for r4(5, 5)
has been continuously pushed forward in the past thirty years, the recurrence
relations remain the same, i.e., one can immediately obtain better lower bounds
for p, q ≥ 6 by substituting into improved bound for r4(5, 5), but there is no
other way to push them further [12,16].

Another fruitful subject in Ramsey theory is the asymptotic order of Ram-
sey number. Using the so-called Stepping-up Lemma introduced by Erdős and
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): COCOON 2019, LNCS 11653, pp. 412–424, 2019.
https://doi.org/10.1007/978-3-030-26176-4_34
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Hajnal, the Ramsey number rk(p, n) is lower bounded by the tower function
tk(c · f(n)) defined by t1(x) = x, ti+1(x) = 2ti(x), where f(n) is some function
on n and c is a constant depending on p [3,6]. Recent research improves the
orders of r4(5, n) and r4(6, n) and leads to similar bounds for rk(k + 1, n) and
rk(k +2, n) [2]. We point out that their lower bounds for rk depends on rk−1. In
other words, to get a lower bound for rk(p, q), one must provide the lower bounds
for some rk−1(p′, q′). More importantly, when focusing on Ramsey numbers on
small p, q values, the Stepping-up Lemma cannot be applied directly. We refer
readers to Chapter 4.7 in [6] for details.

It is well known that directly improving the lower bounds for Ramsey num-
ber is extremely hard, since it requires tremendous computing resources [5]. A
possible method to attack this is to use recurrence relations based on the ini-
tial values. However, calculating a good initial value itself can be way beyond
our reach. For instance, a simple attempt to push the current best lower bound
r2(6, 6) ≥ 102 could be constructing a CNF (Conjunctive Normal Form) whose
satisfying assignment is equivalent to a 6-clique free and 6-independent-set free
graph on 102 vertices. This CNF has size (the number of literals in the formula)
about 1010, but state-of-the-art SAT solvers are only capable of solving CNF
with size no more than 106, and is almost sure to not terminate in reasonable
time [1,17].

Contributions. We prove several recurrence relations in the form of rk(p, q) ≥
d · (rk(p − 1, q) − 1) + 1, where d depends on p, q, and k. Two of them are for
arbitrary integer k ≥ 4. To the best of our knowledge, this is the first recurrence
relation on rk(p, q) not depending on rk−1(p, q), but for arbitrary k. To build our
proof, we introduce a method called pasting, which constructs a good coloring by
combining colorings on smaller graphs. The recurrence relations are proven by
inductions, where several base cases are proven by transforming to an equivalent
CNF and solved by a SAT solver. Additionally, to obtain a good initial values
of the recurrence relations, a new algorithm for constructing counter-example
hypergraphs is proposed, which efficiently proves a series of lower bounds for
Ramsey number on k-hypergraphs including r5(6, 6) ≥ 72: the first non-trivial
result of lower bounds on 5-hypergraphs. The algorithm is based on local search
and is easy to implement. Combining both techniques, we significantly improve
the lower bounds for r4(p, q) and achieve new non-trivial lower bounds for rk(p, q)
on arbitrary p, q, and k ≥ 5.

Roadmap. The rest of this paper is organized as follows. In Sect. 2 we introduce
fundamental definitions. The basic forms of recurrence relations are given in
Sect. 3. In Sect. 4 we present proofs for the recurrence relations on several small
values of k, followed by two recurrence relations on arbitrary k in Sect. 5. Finally,
we summarize some of our new lower bounds in Sect. 6. The formal recurrence
relations are given in Theorem 1, 2, 3, 4, and 5. Our algorithm for calculating
lower bounds for rk(k + 1, k + 1) is deferred to the full version of this paper.
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2 Preliminaries

In this section, basic notations in Ramsey theory are introduced, followed by a
sketch of our proof procedure. Then we propose our key definitions and several
useful conclusions.

2.1 Notations

A k-uniform hypergraph G(V,E; k) is a tuple of vertex set V and a set E of
hyperedges such that each hyperedge in E is a k-subset of V , where each e ∈ E
is called a k-hyperedge. If the context is clear, G(V,E) or G is used instead.
A complete k-uniform hypergraph consists of all possible k-subsets of V as its
hyperedge set. Since we only deal with k-uniform hypergraphs, we may use k-
graph (or graph) and edge for short. Given a vertex set V with |V | ≥ k, we use
V (k) to denote the complete k-uniform hypergraph.

A coloring is a mapping χ(k) : E → {red,blue} that maps all k-hyperedges
in E to red or blue. We write χk(e) = red for coloring some edge e ∈ E with
red under χk. Given G(V,E; k), we say χ(k) is a (p, q; k)-coloring of G if there is
neither red p-clique nor blue q-clique in G. We also use χ instead of χ(k) if there
is no ambiguity. A p-clique is a complete subgraph induced by p vertices, and a
red (resp. blue) p-clique is a clique where all edges are red (resp. blue).

The Ramsey number rk(p, q) is the minimum integer N that satisfies there is
no (p, q; k)-coloring for G(V,E; k) on |V | = N vertices. In other words, for any
coloring on G, there is either a red p-clique or a blue q-clique.

2.2 A Proof Procedure

We prove recurrence relations in the form of rk(p, q) ≥ d · (rk(p − 1, q) − 1) + 1
by the following procedure Pasting:

1. Given integer d, for each i ∈ [d], let Gi(Vi, Ei) be a graph on rk(p − 1, q) − 1
vertices with (p − 1, q; k)-coloring χi.

2. Add an edge for every k-subset of
⋃

i∈[d] Vi if there is no edge on it. Denote
the set of added edges as E. Let the complete graph after adding all edges be
G(

⋃
i∈[d] Vi, (

⋃
i∈[d] Ei)

⋃
E).

3. Construct χ′ on E such that χ := (
⋃

i∈[d] χi)
⋃

χ′ on G satisfies that each
p-clique of

⋃
i∈[d] Vi contains a blue edge and each q-clique of it contains a

red edge.
4. It can be concluded that rk(p, q) ≥ d · (rk(p − 1, q) − 1) + 1 since χ is a

(p, q; k)-coloring for G and
∣
∣
∣
⋃

i∈[d] Vi

∣
∣
∣ = d · (rk(p − 1, q) − 1).

The non-trivial step in Pasting is Step 3 (coloring construction), which will
be discussed in details in Sects. 4 and 5. Pasting(k, p, q, d) is successful if χ =
(
⋃

i∈[d] χi)
⋃

χ′ can be found.
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2.3 Primal Cardinality Vector

Observe that the coloring construction cannot depend on the order of Gi dues
to symmetry, thus a primal order shall be fixed and our coloring depends only
on the sequence of cardinalities of the intersections in non-increasing order. We
introduce the following concepts concerning this.

Let V1, V2, . . . , Vd be d disjoint sets each with cardinality rk(p−1, q)−1, and
let V be

⋃
i∈[d] Vi. For any σ-subset X ⊆ V , define cardinality vector v̂(X) =

(v̂1, v̂2, . . . , v̂d) where v̂i = |X ⋂
Vi|. Let v̂(1), v̂(2), . . . , v̂(d) be the sequence after

sorting the v̂i’s in a non-increasing order.

Definition 1. Given V , X, and {v̂(i) | i ∈ [d]} as above, define primal cardinal-
ity vector of X as v(X) = (v1, v2, . . . , vπ(X)), where vi = v̂(i) for all i ∈ [π(X)],
and π(X) satisfies either (i) π(X) = d or (ii) v̂(π(X)) > 0 and v̂(π(X)+1) = 0.

In a word, v(X) is a sequence of all positive coordinates of the cardinality vector
v̂(X) in a non-increasing order. Observe that when σ = |X| = k, X corresponds
to some edge e(X) in G, and v(X) = (v1, v2, . . . , vπ(X)) essentially means that
e(X) has vi endpoints in the i-th subgraph (in a non-increasing order of the car-
dinalities of intersections). Usually primal cardinality vector v shows up without
indicating which set X it corresponds to, and we refer π(v) to the length of v.

The following remark captures the idea we proposed at the beginning of this
subsection.

Remark 1. In Step 3 of Pasting, ∀e1, e2 ∈ E, χ′(e1) = χ′(e2) if v(e1) = v(e2).

We will write v(e) instead of v(X) when X corresponds to edge e. In this
case, abusing the notation slightly, we write χ(v(e)) as the color under χ on edge
e, since all edges with the same primal cardinality vector v are in same color.
Furthermore, we write χ(v) = c where c is red or blue for assigning all edges
with primal cardinality vector v to color c. For any i ∈ [π(X)], vi(X) is the i-th
coordinate of v(X).

Remark 2. For any non-trivial σ-subset X, ∀τ -subset Y ⊆ X, it must be that:
(i)

∑
i∈[π(X)] vi(X) = σ > 0, (ii)

∑
i∈[π(Y )] vi(Y ) = τ ≤ σ, (iii) π(X) ≥ π(Y ),

and (iv) ∀i ∈ [π(Y )], vi(X) ≥ vi(Y ).

Proof. The first three bullets are simple cardinality properties. To show that
property (iv) holds, let j be the smallest index with vj(Y ) > vj(X). If j = 1,
there is no way to fit the largest subset of Y into any subset of X. Else if j > 1,
the only way to fit Yj into a subset of X is to swap it with some Yi (i < j), but
vi(Y ) ≥ vj(Y ) > vi(X), then Yi cannot fit into the i-th subset of X. �	
Definition 2. Given two primal cardinality vectors v1 and v2, define partial
order between them as: v1 ≤c v2 if and only if (i) π(v1) ≤ π(v2) and (ii)
∀i ∈ [π(v1)], v1i ≤ v2i. If equalities in (i) and (ii) do not hold at the same
time, then v1 <c v2.1

1 v2 ≥c v1 reads “v2 contains v1”.
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One can easily show that reflexivity, antisymmetry and transitivity for any par-
tial order hold for ≤c. Under this definition, with Remark 2 and subsets enu-
meration we can immediately conclude the following:

Corollary 1. Given V =
⋃

i∈[d] Vi, G = V (k) and X ⊆ V , we have ∀Y ⊆
X,v(Y ) ≤c v(X), and ∀v′ ≤c v(X), ∃Y ⊆ X with v(Y ) = v′. Specifically, Y
corresponds to an edge e(Y ) of G when

∑
i∈[π(v′)] v

′
i = k, and e(Y ) is an edge

of X(k).

Given any subset of V , observe that there are at most d different subsets to
be intersected with. As a result, we only concern subsets with primal cardinality
vectors in the following set:

Definition 3. Define Vs(d) as the set of all primal cardinality vectors v such
that π(v) ≤ d and

∑
i∈[π(v)] vi = s.

Remark 3. ∀d ≥ s,Vs(d) = Vs(s).

Based on Corollary 1, we conclude this section with the following corollary:

Corollary 2. Given integers p, q, k, d, V =
⋃

i∈[d] Vi, and G = V (k), the
following four statements are equivalent:

1. ∃χ such that ∀v ∈ Vp(d) (resp. ∀v ∈ Vq(d)), ∃v′ ∈ Vk(d) such that v′ ≤c v
and χ(v′) = blue (resp. red).

2. ∃χ such that ∀p-subset (resp. q-subset) X ⊆ V , ∃k-hyperedge e of X(k) such
that χ(e) = blue (resp. red).

3. Pasting(k, p, q, d) is successful.
4. rk(p, q) ≥ d · (rk(p − 1, q) − 1) + 1.

3 Forms of Recurrences

We prove rk(p, q) ≥ d · (rk(p − 1, q) − 1) + 1 for three different forms of d under
different conditions: (1) d = 2, (2) d = p − 1, and (3) d = � q−1

k−2�. Form (3)
requires the strongest condition but its proof turns out to be simpler. For forms
(1) and (2), we show that to prove recurrence relation on given k and arbitrary
p, q, it is sufficient to prove the base case on p and q, i.e., prove the case on
p = p0, q = q0 for some constants p0, q0.

Firstly we show that for a given integer d, if rk(p0, q0) ≥ d · (rk(p0 − 1, q0) −
1) + 1 is given by Pasting, then rk(p, q) ≥ d · (rk(p − 1, q) − 1) + 1.

Lemma 1. Given integer d, if Pasting(k, p0, q0, d) is successful, then ∀p ≥
p0, q ≥ q0, Pasting(k, p, q, d) is successful, which is rk(p, q) ≥ d · (rk(p − 1, q) −
1) + 1.

Proof. The proof relies on Corollary 2. Let χ0 be a (p0, q0; k)-coloring fed to
Pasting. We have ∀v ∈ Vp0(d), ∃v′ ∈ Vk(d) such that v′ ≤c v and χ0(v′) =
blue. Meanwhile, by Corollary 1 we know that ∀p ≥ p0,∀u ∈ Vp(d), ∃v ∈
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Vp0(d) such that v ≤c u. By transitivity it must be that v′ ≤c u. This means
∀p ≥ p0,∀u ∈ Vp(d), ∃v′ ∈ Vk(d) such that v′ ≤c u and χ0(v′) = blue. Using
the same reasoning we get ∀q ≥ q0,∀u ∈ Vq(d), ∃v′ ∈ Vk(d) such that v′ ≤c v
and χ0(v′) = red, and the conclusion follows. �	

Secondly we give the following lemma showing that the induction from the
base case to arbitrary p, q also holds for form (2).

Lemma 2. Given p0 ≥ q0 + 1, if Pasting(k, p0, q0, p0 − 1) is successful, then
∀p ≥ p0, q ≥ q0, Pasting(k, p, q, p − 1) is successful, which is rk(p, q) ≥ (p − 1) ·
(rk(p − 1, q) − 1) + 1.

We give the sketch of the proof here, followed by two lemmas to integrate the
formal proof.

Proof (Proof sketch of Lemma 2). The proof contains two parts. First, we need
to show that Pasting(k, p0, q0, p0 − 1) is successful implies that ∀p ≥ p0, Past-
ing(k, p, q0, p−1) is successful. Then we prove that for arbitrary fixed p, ∀q ≥ q0,
Pasting(k, p, q, p − 1) is successful. Combining both of these we can conclude the
proof. �	
Lemma 3. Given p0 ≥ q0 + 1, if Pasting(k, p0, q0, p0 − 1) is successful, then
∀p ≥ p0, Pasting(k, p, q0, p − 1) is successful.

Proof. By Corollary 2, if Pasting(k, p0, q0, p0 −1) is successful, we have that ∃χ0

such that the following two statements hold:

∀v ∈ Vp0(p0 − 1) ∃v′ ∈ Vk(p0 − 1), v′ ≤c v ∧ χ0(v′) = blue. (1)
∀v ∈ Vq0(p0 − 1) ∃v′ ∈ Vk(p0 − 1), v′ ≤c v ∧ χ0(v′) = red. (2)

By induction on p, it remains to prove the inductive step: Pasting(k, p0 +
1, q0, p0) is successful, which is equivalent to that ∃χ1 such that the following
two statements hold:

∀v ∈ Vp0+1(p0) ∃v′ ∈ Vk(p0), v′ ≤c v ∧ χ1(v′) = blue. (3)
∀v ∈ Vq0(p0) ∃v′ ∈ Vk(p0), v′ ≤c v ∧ χ1(v′) = red. (4)

We prove that any χ0 satisfies (1) and (2) also satisfies (3) and (4). First
we prove that (1) implies (3), then we prove that (2) implies (4). Noticing that
p0, q0 ≥ k+1, otherwise the hypergraph is trivial. So by Remark 3 we know that
Vk(p0 − 1) = Vk(p0) = Vk(k).

For the first implication, by Definition 3, Vp0+1(p0) = Vp0+1(p0 − 1)
⋃

V′

where V′ = {v | π(v) = p0,
∑

i∈[π(v)] vi = p0 + 1} = 1p0 + e1.2 Thus ∀v ∈
Vp0+1(p0), there are two cases: (i) if v ∈ Vp0+1(p0 −1), then let u := v−eπ(v);
(ii) else if v = 1p0 + e1, let u := 1p0−1 + e1. In either case we have u ∈
2 Conventionally, 1n is a vector of length n with all coordinates being 1; ei is a vector

with the i-th coordinate being 1 and others being 0.
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Vp0(p0 − 1) and u ≤c v. Also, by (1) we know that ∃v′ ∈ Vk(k) such that
v′ ≤c u and χ0(v′) = blue, so by transitivity v′ ≤c u ≤c v, we have that χ0

satisfies (3). For the second implication, since p0 ≥ q0 +1, by Remark 3 we have
Vq0(p0) = Vq0(p0 − 1) = Vq0(q0), then (2) is equivalent to (4).

As a result, χ1 satisfies (3) and (4), by which we finish the induction and
conclude the proof. �	
Lemma 4. Given integers p, q0, if Pasting(k, p, q0, p−1) is successful, then ∀q ≥
q0, Pasting(k, p, q, p − 1) is successful.

Proof. Since p is fixed, by Lemma 1 with d = p − 1, we have that Past-
ing(k, p′, q0, p−1) is successful for any p′ ≥ p, q ≥ q0. In particular, the conclusion
holds for p′ = p and any q ≥ q0 �	

By the proof sketch of Lemma 2, with Lemmas 3 and 4 we finish the proof
of Lemma 2.

4 Recurrences for Small k

In this section, we give our main results on recurrence relations for small k,
followed by their proofs and the relation to the satisfiability problem.

4.1 Main Results on Small k

Theorem 1. For any integer p ≥ 6 and q ≥ 5, r4(p, q) ≥ 2r4(p−1, q)−1 holds.
Furthermore, if q ≥ 7 then r4(p, q) ≥ (p − 1) · (r4(p − 1, q) − 1) + 1 holds.

Theorem 2. There exists a constant c ≥ 25, such that given integer k ≥ 5 and
k ≤ c, for any integer p ≥ k+2 and q ≥ k+2, rk(p, q) ≥ (p−1)·(rk(p−1, q)−1)+1
holds.

Theorem 3. There exists a constant c ≥ 25, such that given integer k �= 9 and
8 ≤ k ≤ c, for any integer p ≥ k + 2 and q ≥ k + 1, rk(p, q) ≥ (p − 1) · (rk(p −
1, q) − 1) + 1 holds.

The difference between Theorems 2 and 3 is the base cases of q, which are
k + 2 and k + 1 respectively. Note that the right-hand side of the recurrence
relation in Theorem 3 on initial values is rk(k + 1, k + 1): the first non-trivial
Ramsey number on k-hypergraphs.

4.2 Proof Sketch

Before proving the above theorems, we take a detour to revisit Corollary 2. We
show that Statement 1 in Corollary 2 can be interpreted in a slightly different way.
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Lemma 5. Define Pp(d) = {v | ∑
i∈[π(v)] vi = p, π(v) ≤ d, v1 ≤ p − 2}. Define

Qq(d) = {v | ∑
i∈[π(v)] vi = q, π(v) ≤ d, v1 ≤ q − 1}. Given integers p, q, k,

d, V =
⋃

i∈[d] Vi, and G = V (k) as before, the following two statements are
equivalent:

1. ∃χ such that ∀v ∈ Pp(d), ∃v′ ∈ Vk(d) such that v′ ≤c v and χ(v′) = blue.
Moreover, χ also satisfies that ∀v ∈ Qq(d), ∃v′ ∈ Vk(d) such that v′ ≤c v
and χ(v′) = red.

2. ∃χ such that ∀p-subset (resp. q-subset) X ⊆ V , ∃k-hyperedge e of X(k) such
that χ(e) = blue (resp. red).

Proof. Given p-subset X ⊆ V , if ∃i ∈ [d] such that |X ∧ Vi| ≥ p − 1, X(k)

must contain a blue edge, because χi is a (p − 1, q; k)-coloring on Vi
(k) and X(k)

contains some (p − 1)-clique, which cannot be a red clique. Analogously, any q-
subset Y intersecting with any Vi on more than q−1 vertices necessarily contains
a red edge, because any Vi

(k) has a (p, q; k)-coloring. �	
This lemma enables us to consider only a proper subset of the previous

primal cardinality vector set, leading to a simpler proof of our theorems. We
give a simple proof of Theorem 1, and we prove Theorems 2 and 3 in the next
subsection.

Proof (Proof of Theorem 1). Firstly we prove that for any integer p ≥ 6 and
q ≥ 5, r4(p, q) ≥ 2r4(p − 1, q) − 1. By Lemma 1, it is sufficient to prove that
r4(6, 5) ≥ 2(r4(5, 5) − 1) + 1. We give a (6, 5; 4)-coloring as follows:

χ
(4)
1 = {χ(3, 1) = red, χ(2, 2) = blue}.

To prove χ
(4)
1 is a (6, 5; 4)-coloring, by Lemma 5, we need to check the following:

– ∀v ∈ P6(2),∃v′ ≤c v, such that χ
(4)
1 (v′) = blue. This is true because P6(2) =

{(4, 2), (3, 3)}, both ≥c (2, 2).
– ∀v ∈ Q5(2),∃v′ ≤c v, such that χ

(4)
1 (v′) = red. Since Q5(2) = {(4, 1), (3, 2)},

each of them ≥c (3, 1).

Thus we proved r4(6, 5) ≥ 2r4(5, 5) − 1.
Now we need to prove that for any integer p ≥ 6 and q ≥ 7, r4(p, q) ≥

(p− 1)(r4(p− 1, q)− 1)+1 by starting with proving the case of p = 6, q = 7. We
give a (6, 7; 4)-coloring as following:

χ
(4)
2 = {χ(3, 1) = χ(1, 1, 1, 1) = red} ∪ {χ(2, 2) = χ(2, 1, 1) = blue}.

The following needs to be checked:

– ∀v ∈ P6(5), we have 2 ≤ v1 ≤ 4, thus either (2, 2) ≤c v or (2, 1, 1) ≤c v,
which are blue.

– ∀v ∈ Q7(5), it must be that either v1 ≥ 3 and 2 ≤ π(v) ≤ 3 or π(v) ≥ 4. The
first case ≥c (3, 1) and the second case ≥c (1, 1, 1, 1), which are both red.
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By the same reasoning, one can show that χ
(4)
2 is also a (7, 7; 4)-coloring and an

(8, 7; 4)-coloring. Since now the recurrence relation holds for p = 8, q = 7, we
can apply Lemma 2 to get ∀p ≥ 8, q ≥ 7, r4(p, q) ≥ (p− 1) · (r4(p− 1, q)− 1)+1.
Combining all these cases we proved the theorem. �	

4.3 Automated Theorem Proving

The “∃∀” structure of Statement 1 in Lemma 5 reminds us of Propositional
Logic Satisfiablity (SAT). In fact, a (p, q; k)-coloring χ serves as a certificate of
the proof for theorem rk(p, q) ≥ d · (rk(p− 1, q)− 1)+1. Thus it is nature to use
automated theorem proving instead of proving it by hand. As we saw in the proof
of Theorem 1, even the simplest case is time-consuming to verify, regardless of
how to find that coloring.

Definition 4. A Conjunctive Normal Form (CNF) is a conjunction of clauses,
such that each clause is a disjunction of literals, where a literal can be positive of
negative variable. A satisfying assignment of CNF is a mapping from all variables
to true or false such that every clause has at least one true literal. A SAT solver
takes a CNF as input and outputs a satisfying assignment or UNSAT if the CNF
is unsatisfiable.

We give the procedure to prove rk(p, q) ≥ d · (rk(p − 1, q) − 1) + 1 for fixed
p, q, then Lemmas 1 and 2 can be applied to prove it for arbitrary p, q:

1. For every v ∈ Pp(d), construct a clause Cp(v) as follow: For every u ∈ Vk(d),
if u ≤c v, add a positive variable x(u) in Cp(v).

2. For every v ∈ Qq(d), construct a clause Cq(v) as follow: For every u ∈ Vk(d),
if u ≤c v, add a negative variable ¬x(u) in Cq(v).

3. Use SAT solver to solve the constructed CNF:

F =

⎛

⎝
⋃

v∈Pp(d)

Cp(v)

⎞

⎠
⋃

⎛

⎝
⋃

v∈Qq(d)

Cq(v)

⎞

⎠ .

4. If a satisfying assignment α is found, we construct a (p, q; k)-coloring χ as
follows: if α(x(u)) = true, set χ(u) := blue; if α(x(u)) = false, set χ(u) :=
red.

It is easy to show that this procedure is a correct proof when SAT solver
returns a satisfying assignment: ∀v ∈ Pp(d), ∃u ∈ Vk(d) such that u ≤c v and
χ(u) = blue, because ∃x(u) ∈ Cp(v) such that x(u) = true; similarly, ∀v ∈
Qq(d), ∃u ∈ Vk(d) such that u ≤c v and χ(u) = red, because ∃x(u) ∈ Cq(v)
such that x(u) = false. So by Lemma 5 we proved the recurrence relation holds
for p and q.
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Proof (Proof of Theorem 2 and Theorem 3). We use the latest version of SAT
solver from [8] to solve the following two kinds of CNFs:

F1 =

⎛

⎝
⋃

v∈Pk+2(k+1)

Cp(v)

⎞

⎠
⋃

⎛

⎝
⋃

v∈Qk+2(k+1)

Cq(v)

⎞

⎠ .

F2 =

⎛

⎝
⋃

v∈Pk+3(k+2)

Cp(v)

⎞

⎠
⋃

⎛

⎝
⋃

v∈Qk+2(k+2)

Cq(v)

⎞

⎠ .

Our SAT solver returns satisfying assignments on all 5 ≤ k ≤ 25. The satis-
fying assignment of F1 is a proof for the recurrence relation of case p = k+2, q =
k + 2. While that of F2 is a proof for the case p = k + 3, q = k + 2. Therefore,
by Lemma 2 we proved Theorem 2.

We do the same for the CNF corresponding to p = k + 2, q = k + 1 on all
8 ≤ k ≤ 25, and get satisfying assignments on all k except for k = 9 returning
UNSAT, thus (with Lemma 2) proved Theorem 3. �	

Given more time on constructing more CNFs on larger k, it is almost sure
that lower bound for c in Theorem 3 can be improved. As a result, we give the
following conjecture as the c-unbounded version of Theorem 3.

Conjecture 1. Given integer k ≥ 10, for any integer p ≥ k + 2 and q ≥ k + 1,
rk(p, q) ≥ (p − 1) · (rk(p − 1, q) − 1) + 1.

5 Recurrences for Arbitrary k

In this section, we give two recurrence relations for arbitrary k. The recurrence
forms align with forms (2) and (3) in Sect. 3.

Theorem 4. Given even integer k ≥ 4, for any integers p ≥ k + 2, q ≥ k + 1,
rk(p, q) ≥ 2 ·(rk(p−1, q)−1)+1 holds. Given odd integer k ≥ 5, for any integers
p ≥ k + 2, q ≥ k + 2, the same recurrence relation holds.

The proof of Theorem 4 can be found in the full version of this paper.

Theorem 5. Given any integer k ≥ 4, for any integers p ≥ k + 2, q ≥ k + 1,
rk(p, q) ≥ d · (rk(p − 1, q) − 1) + 1 holds, where d = � q−1

k−2�.
Proof. If d ≤ 2, this is implied by Theorem 4. Now assume d ≥ 3. Define coloring
as follows: χ(k)(v) = red if and only if v = (k − 1, 1); otherwise χ(k)(v) = blue.
We show that under such χ(k), ∀v ∈ Pp(d), ∃v′ ∈ Vk(d) such that v′ ≤c v
and χ(k)(v′) = blue; and ∀v ∈ Qq(d), ∃v′ ∈ Vk(d) such that v′ ≤c v and
χ(k)(v′) = red.

Firstly, for any v ∈ Pp(d), there are two cases. The first case is that if
π(v) ≥ 3, then ∃u ∈ Vk(d), such that π(u) = π(v) and v ≥c u, so χ(k) =
blue. The existence of such u can be proven by induction on p: ∀v ∈ Pp(d),
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∃v′ ∈ Pp−1(d) such that v ≥c v′ and π(v′) = π(v), because either vπ(v) ≥ 2 or
∃i ∈ [π(v)− 1], vi > vi+1 (since v �= 1k). For the first one we set v′ := v−eπ(v),
and set v′ := v − ei for the second one. We do this until p reaches k, and
the conclusion followed by transitivity. The second case is that π(v) = 2. This
is straightforward since v1 ≤ p − 2 (Lemma 5), it must be v2 ≥ 2. Just let
u2 = max(v2−�p−k

2 �, 2) and u1 = k−u2, we have u1 ≥ u2 ≥ 2 and χ(k)(u) = blue
by definition.

Secondly, ∀v ∈ Qq(d), by the Pigeonhole principle, it must be v1 ≥ � q−1
d � +

1 = k − 1. Additionally, by Lemma 5 we have v1 ≤ q − 1, thus v2 ≥ 1, so
(v1, v2) ≥c (k − 1, 1). Since χ(k)(k − 1, 1) = red by definition, we proved that
∀v ∈ Qq(d), ∃u ∈ Vk(d), such that v ≥c u and χ(k)(u) = red.

Combining both we proved the theorem. �	

6 Improved Lower Bounds

We summarize some of our improved lower bounds for Ramsey numbers on
hypergraphs in this section.

6.1 4-hypergraph

Previous best lower bounds for Ramsey number on 4-hypergraphs can be found
in [16] and [11]. We point out that some of their values are based on [12] whose
calculation of r4(7, 7) is wrong. The following lower bounds values in the “Pre-
vious” column are re-calculated in a corrected way using their methods. We also
add a “Reference” column for the method we use to derive our results. Some
representative results are displayed below.

Previous Our Result Reference

r4(5, 6) ≥ 37 67 Theorem 1 or 4

r4(6, 6) ≥ 73 133 Theorem 4 or 5

r4(6, 7) ≥ 361 661 Theorem 2

r4(6, 13) ≥ 23041 50689 Theorem 5

r4(7, 7) ≥ 2161 3961 Theorem 2

r4(8, 8) ≥ 105841 194041 Theorem 2

Using our constructive algorithm (see the full version of this paper), a coloring
for proving r4(5, 5) ≥ 34 can be found. The subsequent lower bounds can be
obtained using the corresponding recurrence relations.
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6.2 5-hypergraph

Before this work, there is no constructive lower bounds for Ramsey numbers on
5-hypergraphs.

Using our constructive algorithm, a coloring for proving r5(6, 6) ≥ 72 can
be found, which serves as a certificate of the lower bound. Subsequently, lower
bounds for r5(p, q) can be calculated using our Theorems 3 and 5.

6.3 ≥ 6-hypergraph

Previously, there is neither constructive nor recursive lower bounds for Ramsey
number on ≥ 6-hypergraphs.

The base case of the recurrence relation is rk(k+1, k+1) ≥ rk(k+1, k) = k+1.
For any k ≥ 6, lower bounds for rk(p, q) can be calculated using our Theorems 2,
3, 4 and 5.
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Abstract. This paper considers the task of learning how to make a
prognosis of a patient based on his/her micro-array expression levels.
The method is an application of the aggregation method as recently pro-
posed in the literature on theoretical machine learning, and excels in its
computational convenience and capability to deal with high-dimensional
data. This paper gives a formal analysis of the method, yielding rates
of convergence similar to what traditional techniques obtain, while it is
shown to cope well with an exponentially large set of features. Those
results are supported by numerical simulations on a range of publicly
available survival-micro-array data sets. It is empirically found that the
proposed technique combined with a recently proposed pre-processing
technique gives excellent performances. All used software files and data
sets are available on the authors’ website http://user.it.uu.se/∼liuya610/
index.html.

Keywords: Survival analysis · Bioinformatics · Machine learning ·
Data mining

1 Introduction

Learning how to make a prognosis of a patient is an important ingredient to
the task of building an automatic system for personalised medical treatment. A
prognosis here is understood as a useful characterisation of the (future) time of
an event of interest. In cancer research, a typical event is the relapse of a patient
after receiving treatment. The traditional approach to process observed event
times is addressed in the analysis of survival data, see e.g. [12] for an excellent
review of this mature field in statistics. Most of those techniques are based on
parametric or semi-parametric assumptions on how the data was generated.

Probably the most prevalent technique is Cox’ Proportional Hazard (PH)
approach, where inference is made by maximising a suitable partial likelihood
function. This approach has proven to be very powerful in many applications
of survival analysis, but it is not clear that the basic assumption underlying
this technique holds in the analysis of micro-array data sets. Specifically, the
proportional hazard assumption is hard to verify and might not even be valid.
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This in turn jeopardises the interpretation of the results. This is especially so
since the data has typically a high dimensionality while typically a few (com-
plete) cases are available, incurring problems of ill-conditioning. Many authors
suggested fixes to this problem. Some of such work proposed in the early 2000,
was studied numerically and compared in [3]. In applied work, one often resorts
to a proper form of pre-processing in order to use Cox’ PH model, see e.g. [18].

Since prognosis involves essentially a form of prediction, it is naturally to
phrase this problem in a context of modern machine learning. This insight
allowed a few authors to come up with algorithms which are deviating from
a likelihood-based approach.

This work takes this route even further. It studies the question how can new
insights in machine learning help to build a more powerful algorithm? As dictated
by the application, we are especially interested in dealing with high-dimensional
data. That is, cases where many (O(104)) co-variates might potentially be rel-
evant, while only relatively few cases (O(102)) are available. Furthermore, we
are not so much interested in recovering the mechanisms underlying the data
since that is probably too ambitious a goal. Instead, we merely aim at making a
good prognosis. It is this rationale that makes the present technique essentially
different from likelihood-based, or penalised likelihood-based approaches as e.g.
the PH-L1 [8,16] or the Danzig Selector for survival analysis [1], and points us
resolutely to methods of machine learning and empirical risk minimisation.

The contribution of this work is threefold. Firstly, discussion of the appli-
cation of prognosis leads us to formulate a criterion which does not resort to a
standard approach of classification, function approximation or maximum (par-
tial) likelihood inference. Secondly, we point to the use of aggregation methods
in a context of bioinformatics, give a subsequent algorithm (APTER) and derive
a competitive performance guarantee. Thirdly, we present empirical evidence
which supports the theoretical insights, and affirms its use for the analysis of
micro-array data for survival analysis. The experiments can be reproduced using
the software made public at http://user.it.uu.se/∼liuya610/index.html.

1.1 Organization and Notation

This paper is organized as follows. The next section discusses the setting of
survival analyses and the aim of prognosis. Section 3 describes and analyses
the proposed algorithm. Section 4 gives empirical results of this algorithms on
artificial and micro-array data sets. Section 4 concludes with a number of open
questions.

This paper follows the notational convention to represent deterministic single
quantities as lower-case letters, vectors are denoted in bold-face, and random
quantities are represented as upper-case letters. Expectation with respect to
any random variable in the expression is denoted as E. The shorthand notation
En[·] denotes expectation with respect to all n samples seen thus far, while
En−1[·] denotes expectation with respect to the first n−1 samples. En[·] denotes
expectation with respect to the nth sample only, such that the rules of probability
imply that En[·] = En−1E

n[·].

http://user.it.uu.se/~liuya610/index.html
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The data is represented as a set of size n of tuples {(xi, Yi, δi)}n
i=1. Let 0 <

Y1 ≤ Y2 ≤ · · · ≤ Yn be an ordered sequence of observed event times associated to
n subjects. An event can be either a failure with time Ti, or a (right) censoring
time Ci, expressed as the time elapse from t0. In this paper we assume that
all n subjects share the same time of origin t0. It will be convenient to assume
that each subject has a failure and right censoring time with values Ti and Ci

respectively. Then only the minimum time can be observed, or Yi = min(Ti, Ci).
It will be convenient to define the past event set P (t) ⊂ {1, . . . , n} at time t. That
is, P (t) denotes the set of all subjects which have experienced an event strictly
before time t. Let for i = 1, . . . , n the indicator δi ∈ {0, 1} denote whether
the event (failure) is directly observed (δi = 1), or if the subject i is censored
(δi = 0), or δi = I(Yi < Ci). Then P (t) = {i : Yi < t, δi = 1}. Furthermore,
associate to each subject i = 1, . . . , n a co-variate xi ∈ R

d of dimension d. In the
present setting, d = O(1000), while n = O(100) at best.

2 Prognosis in Survival Analysis

In this section we formalize the task of learning how to make a prognosis, based
on observed cases. The general task of prognosis in survival analysis can be
phrased as follows:

Definition 1 (Prognosis). Given a subject with co-variate x∗ ∈ R
d, what can

we say about the value of its associated T∗?

Motivated by the popular essay by S.J. Gould1, we like to make statements
as ‘my co-variates indicate that with high probability I will outlive 50% of the
subjects suffering the same disease’, or stated more humanely as ‘my co-variates
indicate that I belong to the good half of the people having this disease’. The
rationale is that this problem statement appears easier to infer than estimating
the full conditional hazard or conditional survival functions, while it is more
informative than single median survival rates.

Specifically, we look for an expert f : R
d → R which can decide for any

2 different subjects 0 < i, j ≤ n which one of them will fail first. In other
words, we look for an f such that for as many couples (i, j) as possible, one
has (Ti − Tj) (f(xi) − f(xj)) ≥ 0. Since Tk is not observed in general due to
censoring, the following (re-scaled) proxy is used instead

n∑

i=1

1
|P (Yi)|

∑

j∈P (Yi)

I (f(xi) < f(xj)) , (1)

where I(z) = 1 if z holds true, and equals zero otherwise. In case |P (Yi)| = 0, the
ith summand in the sum is omitted. This is standard practice in all subsequent
formulae. Note that this quantity is similar to the so called Concordance Index
1 ‘The Median Isn’t the Message’ as in http://www.prognosis.org/what does it mean.

php.

http://www.prognosis.org/what_does_it_mean.php
http://www.prognosis.org/what_does_it_mean.php
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(Cn) as proposed by Harell [9]. The purpose of this paper is to propose and ana-
lyze an algorithm for finding such f from a large set {f}, based on observations
and under the requirements imposed by the specific setup.

If given one expert f : Rd → R, its ‘loss’ of a prognosis of a subject with
co-variate x∗ ∈ R

d and time of event Y∗ would be

�∗(f) =
1

|P (Y∗)|
∑

k∈P (Y∗)

I (f(x∗) ≤ f(xk)) . (2)

That is, �∗(f) is the fraction of samples which experience an event before the
time Y∗ associated to the subject with the co-variate x∗, although they were prog-
nosis with a higher score by expert f . Now we consider having m experts {fi}m

i=1,
and we will learn which of them performs best. We represent this using a vector
p ∈ R

m with pi ≥ 0 for all i = 1, . . . ,m, and with 1T
mp = 1. Then, we will use

this weighting of the experts to make an informed prognosis of the event to occur
at T∗, of a subject with co-variate x∗ ∈ R

d. Its associated loss is given as

�∗(p) =

m∑

i=1

pi

⎛

⎝ 1

|P (T∗)|
∑

k∈P (T∗)

I (fi(x∗) ≤ fi(xk))

⎞

⎠ . (3)

This represents basically which expert is assigned most value to for making a
prognosis. For example, in lung-cancer we may expect that an expert based on
smoking behaviour of a patient has a high weight. Note that we include the ′ =′

case in (3) in order to avoid the trivial cases where f is constant. So, we have
formalised the setting as learning such p in a way that the smallest possible loss
�∗(p) will be (or can be expected to be) made.

3 The APTER Algorithm

When using a fixed vector p̂, we are interested in the expected loss of the rule.
The expected loss of the nth sample (xn, Tn) becomes L(p̂) = E

n�n(p̂) =

E
n

⎡

⎣
m∑

i=1

p̂i
1

|P (Tn)|
∑

k∈P (Tn)

I (fi(xn) ≤ fi(xk))

⎤

⎦ . (4)

Note that bounds will be given for this quantity which are valid for any xn ∈ R
d

which may be provided. In order to device a method which guarantees properties
of this quantity, we use the mirror averaging algorithm as studied in Tsybakov,
Rigollet, Juditsky in [11]. This algorithm is based on ideas set out in [14]. It
is a highly interesting result of those authors that the resulting estimate has
better properties in terms of oracle inequalities compared to techniques based
on sample averages. Presently, such fast rate is not obtained since the involved
loss function is not exponentially concave as in [11], Definition 4.1. Instead of
this property, we resort to use of Hoeffding’s inequality which gives us a result

with rate O(
√

lnm
n ). In order to give a formal guarantee of the algorithm, the

following property is needed:
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Algorithm 1. APTER: Aggregate Prognosis Through Exponential Re-weighting
(0) Let p0

i = 1
m

for i = 1, . . . , m.
for all k = 1, . . . , n do

(1) The prognosis associated to the m experts {fi}m
i=1 are scored whenever any

new event (censored or not) is recorded for a subject k ∈ {1, . . . , n} at time Yk as

�k(fi) =
1

|P (Yk)|
∑

l∈P (Yk)

I (fi(xk) ≤ fi(xl)) (5)

and the cumulative loss is Lk(fi) =
∑k

s=1 �s(fi).
(2) The vector pk is computed for i = 1, . . . , m as follows

pk
i =

exp(−νLk(fi))∑m
j=1 exp(−νLk(fj))

. (6)

end for
(3) Aggregate the hypothesis {pk}k into p̂ as follows:

p̂ =
1

n

n−1∑

k=0

pk. (7)

Definition 2. For any t = 1, . . . , n and i = 1, . . . ,m we have that

En

[
g

(
Ln(fi)

n

)]
= En[g(�t(fi))]. (8)

for any regular function g : R → R.

This essentially means that we do not expect the loss to be different when it
is measured at different points in time (different subjects).

Theorem 1 (APTER). Given m experts {fi}m
i=1, and the loss function � as

defined in Eq. (3). Then run the APTER algorithm with ν =
√

2 lnm
n resulting

in p̂. Then

En−1

[
L(p̂) − min

i=1,...,m
L(fi)

]
≤

√
2 ln m

n
. (9)

This result is in some way surprising. It says that we can get competitive per-
formance guarantees without a need for explicitly (numerically) optimizing the
performance over a set of hypothesis. Note that an optimization formulation lies
on the basis of a maximum (partial) likelihood method or a risk minimization
technique as commonly employed in a machine learning setting. There is an
implicit link with optimization and aggregation through the method of mirror
descent, see e.g. [10] and [2]. The lack of an explicit optimization stage results
in the considerable computational speedups. Note further that the performance
guarantee degrades only as

√
log(m) in terms of the number of experts m.
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3.1 Choice of Experts and APTERp

The following experts are used in the application in micro-array case studies.
Here, we use simple uni-variate rules. That is, the experts are based on individual
features (gene expression levels) of the data set. The rationale is that a single
gene expression might well be indicative for the observed behaviours.

Let ei be the ith unit vector, and let ± denote both the positive as well as the
negated version. Then, the experts {fi} are computed as fi(x) = ±eT

i x, so that
m = 2d, and every gene expression level can both be used for over-expression or
under-expression.

In practice however, evidence is found that the following set of experts result
in better performance: fi(x) = sieT

i x, where the sign si ∈ {−1, 1} is given by
whether the ith expression has a concordance index with the observed outcome
larger or equal to 0.5, as estimated on the set used for training. This means that
m = d. This technique is referred to as APTERp. Note that this subtlety needs
also to be addressed in the application of Boosting methods.

3.2 Pre-processing Using SIS and ISIS

It is found empirically that pre-processing using the Iterative Sure Independence
Screening ISIS as described in [5] improves the numerical results. However, the
rational for this technique comes from an entirely different angle. That is, it is
conceived as a screening technique for PH-L1-type of algorithms.

Let m = (m1, . . .md)T ∈ R
d be defined as m =

∑n
i=1 Yixi. For any given

γ ∈ (0, 1), define the set Mγ as [5]: Mγ = {1 ≤ i ≤ d :}, where |mi| is among the
first [γn] largest entries of m.

Here, [γn] denotes the integer part of γn. This set then gives the indices
of the features which are retained in the further analysis. It is referred to as
Sure Independence Screening (SIS) [5]. In the second step, APTER is applied
using only the retained features. Note that in the paper [5], one suggests instead
using a Cox partial Likelihood approach with a SCAD penalty (for numerical
comparison with such scheme, see the next section).

An extension of SIS is Iterative SIS (ISIS), see [5]. The idea is to pick up
important features, missed by SIS. This goes as follows: rather than having a
single pre-processing (SIS) step, the procedure is repeated as follows. At the end
of a SIS-APTER step, a new (semi-) response vector Y ′ can be computed by
application of the found regression coefficients. This new response variables can
then be reused in a SIS step, resulting in fresh [γn] features. This procedure is
repeated until one has enough distinct features.

Since [γn] features are then given as input to the actual training procedure,
we will refer to this value as m in the experiments, making this connection
between screening and training more explicit.

4 Empirical Results

This section present empirical results supporting the claim of efficiency. First,
we describe the setup of the experiments.
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4.1 Setup

The following measure of quality (the Concordance index or Cn, see e.g [15]) of
a prognostic index scored by the function f : Rd → R is used. Let again the
data be denoted as {(xi, Yi, δi)}n

i=1, where xi are the co-variates, Yi contains the
survival- or censoring time, and δi is the censoring indicator as before. Consider
any f : Rd → R, then Cn is defined as

Cn(f) =

∑
i:δi=0

∑
Yj>Yi

I(f(xi) < f(xj))

|ε| . (10)

Here |ε| denotes the number of the pairs which have Yi < Yj when Yi is not
censored. The indicator function I(π) = 1 if π holds, and equals 0 otherwise.
That is, if Cn(f) = 1, one has that f scores a higher prognostic index to the
subject with will experience the event later (‘good’). A Cn(f) = 0.5 says that
the prognostic index given by f is arbitrary with respect to event times (‘bad’).
Observe that this measure is not quite the same as �n(f) or Ln(f) as were used
in the design of the APTER algorithm. Note that this function goes along the
lines of the Area under the ROC curve or the Mann-Whitney statistic, adapted
to handling censored data.

The data is assigned randomly to training data of size nt = �2n/3� and test
data of size n − nt. The training data is used to follow the training procedures,
resulting in f̂ . The test data is used to compute the performance expressed
as Cn(f̂). The results are randomised 50 times (i.e. a random assignments to
training and test set), and we report the median value as well as ± the variance.
The parameter ν > 0 is tuned in the experiments using cross-validation on the
data set which is used for training. It was found that proper tuning of this
parameter is crucial for achieving good performance.

The following ten algorithms are run on each of these data sets:

(a) APTER: The approach as given in Algorithm 1 where experts {fi, f
′
i} are

taken as fi(x) = eT
i x and f ′

i(x) = −eT
i x. In this way we can incorporate

positive effects due to over-expression and under-expression of a gene. This
means that m = 2d.

(b) APTERp: The approach as given in 1 where experts {fi} are given as fi(x) =
sieT

i x where the sign si ∈ {−1, 1} is given by the Cn of the ith expression
with the observed effect, estimated on the set used for training. This means
that m = d.

(c) MINLIPp: The approach based on ERM and si as discussed in [17].
(d) MODEL2: Another approach based on ERM as discussed in [17].
(g) PLS: An approach based on pre-processing the data using PLS and appli-

cation of Cox regression, as described in [3].
(f) PH-L1: An approach based on a L1 penalized version of Cox regression, as

described in [8].
(g) PH-L2: An approach based on a L2 penalized version of Cox regression, as

described in [7].
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(h) ISIS-APTERp: An approach which uses ISIS as pre-processing, and applies
APTERp on the resulting features [5].

(i) ISIS-SCAD: An approach which uses ISIS as pre-processing, and applies
SCAD on the resulting features [5].

(j) Rankboost: An approach based on boosting the c-index [6].

Those algorithms are applied to an artificial data set (as described below)
as well as on a host of real-world data sets (as can be found on the website).
Those data sets are publicly available, and all experiments can be reproduced
using the code available at2.

4.2 Artificial Data

The technique is tested on artificial data which was generated as follows. A
disjunct training set and test set, both of size 100 ‘patients’ was generated. For
each ‘patient’, d features are sampled randomly from a standard distribution, so
that xi ∈ R

d. We say that we have only k informative features when an event
occurs at time Ti computed for i = 1, . . . , n as Ti = − log Zi

10 exp(∑k
j=1 xi,j) , where Zi

is a random value generated from a uniform distribution on the unit interval
[0, 1], and xi,j is the jth co-variate for the ith patient. The right-censoring time
is randomly generated from the exponential distribution with rate 0.1. After
application of the censoring rule, we arrive at the survival time Yi.

In a first experiment, d is fixed as 100, but only the first k ≤ d features have
an effect on the outcome (‘informative’). Figure 1a shows the evolution of the
performance (Cn(f̂)) for increasing values of k. In a second experiment we fix
k = 10, and record the performance for increasing values of d, investigating the
effect of a growing number of ambient dimension on the performance of APTER.
Results are displayed in Fig. 1b.
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Fig. 1. Comparison of the numerical results obtained on the artificial data sets (a)
when keeping d = 100 fixed, and (b) when keeping k = 10 fixed. (c) The evolution of
the ‘C-index error’ Cerr obtained by APTERp for different values of (n, m).

2 The software is available at http://user.it.uu.se/∼liuya610/index.html.

http://user.it.uu.se/~liuya610/index.html
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Thirdly, we investigate how well the numerical results align with the result
of Theorem 1. We take results of APTER using uni-variate experts, so that
m = 2d. The “c-index error” (Cerr) is given for different values of d and n. Cerr
is computed as the difference between the Cn obtained by APTER - denoted as
f̂ - and the Cn of the single “best” expert fj(xi) = xi,j :

Cerr = max
j

Cn(fj) − Cn

(
f̂
)

. (11)

This formula is similar to equation (9). The numerical performances are displayed
in Fig. 1c. This figure indicates that Cerr increases logarithmically in d, and in
terms of 1√

n
. This supports the result of Theorem 1.

4.3 Real Datasets

In order to benchmark APTER and its variations against state-of-the-art
approaches, we run the algorithms on a wide range of large-dimensional real
data sets. The data set are collected in a context of bioinformatics, and a full
description of this data can be found on the website. The experiments are divided
into three categories: (i) The algorithms are run on 8 micro-array data sets, in
order to asses performance on typical sizes for those data sets. Here we see
that there is no clear overall winner amongst the algorithms, but the proposed
algorithm (ISIS-APTERp) does do repeatedly very well, and performs best on
most (3) data sets. Results are given in Table 1. (ii) In order to see whether
the positive performance is not due to irregularities of the data, we consider
the following null experiment. Consider the AML data set, but lets shuffle the
observed phenotype (the observed Y ) between different subjects. So any rela-
tion between the expression level and the random phenotype must be due to
plain chance (by construction). We see in Fig. 2 that indeed the distribution of

Table 1. Numerical results of the experiments of 10 different methods on 8 micro-array
datasets.

NSBCD DBCD DLBCD Veer Vijver Beer AML FL

APTER 0.73 0.69 0.58 0.65 0.44 0.60 0.58 0.70

APTERp 0.77 0.74 0.59 0.68 0.62 0.73 0.60 0.73

MINLIPp 0.74 0.71 0.59 0.65 0.61 0.69 0.55 0.70

MODEL2 0.75 0.74 0.62 0.67 0.61 0.74 0.56 0.72

PLS 0.78 0.74 0.53 0.58 0.62 0.66 0.57 0.66

PH-L2 0.69 0.73 0.65 0.64 0.61 0.73 0.54 0.69

PH-L1 0.69 0.74 0.60 0.60 0.65 0.69 0.61 0.67

Rankboost 0.75 0.72 0.62 0.62 0.65 0.71 0.53 0.67

ISIS-SCAD 0.69 0.72 0.65 0.68 0.62 0.72 0.63 0.71

ISIS-APTERp 0.78 0.76 0.62 0.66 0.62 0.75 0.59 0.74
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Fig. 3. Boxplots of the numerical
results obtained on the FL data set.
Results are expressed in terms of the
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the methods based on this shuffled data nears a neutral Cn on the test set of
0.50. This means that the 10% improvement as found in the real experiment
(see table) is substantial with respect to the randomization, and are not due to
chance alone. (iii) The results of the algorithm is compared on the micro-array
data set as reported in [4], and analysed further in [13]. Here we found that
the obtained performance is significantly larger than what was reported earlier,
while we do not have to resort to the clustering pre-processing as advocated in
[4,13]. This data has a very high dimensionality (d = 44.928) and has only a few
cases (n = 191). Results are given in the lat row of Table 1 and the box plots of
the performances due to the 50 randomization, are given in Fig. 3.

Finally, we discuss the application of the method on the same high dimen-
sional (d = 44.928) data set as before, but we study the impact of the parameter
m given to ISIS, which returns in turn the data to be processed by APTERp.
The performances for different values of m are given in Fig. 4a. The best perfor-
mance is achieved for m = 800, which is the value which was used in the earlier
experiment reported in Fig. 3. Here we compare only to a few other approaches,
namely the PH-L1, MINLIPp and MODEL2 approach which make all use of an
explicit optimisation scheme. Panel Fig. 4b reports the time needed to perform
training/ tuning and randomisation corresponding to a fixed value of m. Panel
Fig. 4c reports the size of the memory used up for the same procedure. Here it is
clearly seen that APTERp results in surprisingly good performance, given that it
uses up less computations and memory. It is even so that the optimisation-based
techniques cannot finish for large m in reasonable time or without problems
of the memory management, despite the fact that a very efficient optimisation
solver (Yalmip) was used to implement those.

4.4 Discussion of the Results

These results uncover some interesting properties of the application of the pro-
posed algorithms in this bio-informatics setting.

First of all, the APTER and APTERp methods are orders of magnitudes
faster (computationally) compared to the bulk of methods based on optimization
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Fig. 4. results of the choice of m in ISIS, based on the Follicular Lymphoma data set
[4,13]. (a) Performance expressed as Cn(f̂) on the test sets (medium of 50 random-
ization). (b) Computation time for running tuning, training and randomisation for a
fixed value of m. (c) Usage of memory of the same procedure.

formulations (either using Maximum (penalized) Partial Likelihood, Empirical
Risk Minimization or multivariate pre-processing techniques). This does not affect
the performance in any way, contrary to what intuition would suggest. In fact,
the performance on typical micro-array data of the vanilla APTER or APTERp

(without ISIS) is often amongst the better.
Secondly, inclusion of pre-processing with ISIS - also very attractive from

a computational perspective - is boosting up significantly the performance of
APTER. We have no theoretical explanation for this, since ISIS was designed
to complement L1 or Danzig-selector approaches. While the authors of ISIS
advocate the used of a SCAD norm, we find that APTERp is overall a better
choice for the mentioned data sets.

Furthermore, the empirical results indicate that the statistical performance
is preserved by using APTERp combined with ISIS, and may even improve
over performances obtained using existing approaches. This is remarkable since
the computational power is orders of magnitude smaller than most existing
approaches based on (penalised) PL of ERM. We find also that empirical results
align quite closely the theoretical findings as illustrated with an experiment on
artificial data.

5 Conclusions

This paper presents statistically and computationally compelling arguments for
a method based on aggregation can be used for analysis of survival data in
high dimensions. Theoretical findings are complemented with empirical results
on micro-array data sets. We feel that this result is surprising not only in that
it outperforms methods in ERM or (penalised) PL, but provides as well a tool
with much lower computational complexity as the former ones since no direct
optimization is involved. We present empirical, reproducible results which sup-
port this claim of efficiency. This analysis presents many new opportunities, both
applied (towards Genome Wide Analysis, or GWAs) as well as theoretical (can
we improve the rates of convergence by choosing other loss functions?).
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Abstract. The neighborhood packing number of a graph is the max-
imum number of pairwise vertex disjoint closed neighborhoods in the
graph. This number is a lower bound on the domination number of the
graph. We show that the domination number of a graph of girth at least
7 is bounded from above by a (quadratic) function of its closed neighbor-
hood packing number, and further that no such bound exists for graphs
of girth at most 6. We then show that as girth of the graph increases,
the upper bound on the domination number drops as a function of girth.
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1 Packing and Covering: The Erdős–Pósa Framework

A celebrated result by Paul Erdős and Lajos Pósa [2] says that there exists a
function f : N → R such that given any k ∈ N, every graph contains either k
disjoint cycles or a set of vertices of size at most f(k) whose deletion will render
G acyclic. There is nothing sacrosanct about cycles in this result. Indeed, we
may consider any class G of graphs, and given an arbitrary graph G, we may
consider the largest number of disjoint copies of graphs in G that can be packed
in G against the least number of vertices in G that cover all such graphs in G.
Formally, a class of graphs G is said to have the Erdős–Pósa property if there
exists a function f : N → R such that given any k ∈ N and any graph G, either
G contains k disjoint subgraphs, each isomorphic to a graph in G, or there exists
a subset V ′ ⊆ V (G) of size at most f(k) such that G − V ′ has no subgraph
isomorphic to any graph in G. Note that f depends only on G.

Many well known combinatorial results fit into the Erdős–Pósa mold. For
instance, by taking G to be a singleton set containing an edge and f(k) = k − 1,
König’s theorem (which says that the sizes of maximum matching and minimum
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vertex cover are equal in bipartite graphs) can be rephrased as “given any k ∈ N,
every bipartite graph G contains either k disjoint subgraphs from G or a set of
f(k) vertices that meets all subgraphs in G that are isomorphic to any graph
in G.” Note that this result holds for all graphs (not necessarily bipartite) with
the same G and f(k) = 2(k − 1). Such Erdős–Pósa results have been obtained
for several graph classes. See the survey by Raymond and Thilikos [4] for a
summary of similar results. In this paper, we take G to be the collection of all
closed neighborhoods.

2 Preliminaries

For n ∈ N, [n] denotes the set {1, 2, . . . , n}. All graphs in this paper are simple
and undirected. For a graph G, V (G) and E(G) denote the vertex set and edge
set of G, respectively. For a vertex v of G, the (open) neighborhood of v, denoted
by N(u), is the set of all vertices in V that are adjacent to v; the elements of N(v)
are called the neighbors of v; and we denote by N [v], the closed neighborhood of v,
defined as N [v] = N(u) ∪ {v}. For a subset V ′ ⊆ V (G), N(V ′) = (∪v∈V ′N(v)) \
V ′, and N [V ′] = ∪v∈V ′N [v′].

For a graph G, a set S ⊆ V (G) is said to be a closed neighborhood packing (or
packing, for short), in G if for every distinct x, y ∈ S, we have N [x] ∩ N [y] = ∅.
The closed neighborhood packing number ρ(G) of G is the size of a largest closed
neighborhood packing in G.

The dual of the notion of a closed neighborhood packing is that of a dom-
inating set, a set of vertices that “covers” or “hits” all closed neighborhoods
in a graph. We say that a vertex “dominates” itself and all its neighbors, i.e,
v ∈ V (G) dominates all vertices in N [v], and similarly, a subset V ′ ⊆ V (G) of
vertices dominates all vertices in N [V ′]. A subset D ⊆ V (G) is said to be a dom-
inating set of G if N [D] = V (G), i.e., if D dominates the entire vertex set V (G).
Or equivalently, D ⊆ V (G) is a dominating set of G if for every v ∈ V (G) \ D,
at least one of the neighbors of v is in D. The domination number γ(G) of G is
the size of a smallest dominating set.

The girth of G is the length of a shortest cycle in G. For a vertex v of G,
we denote by dG(v), the degree of v in G and by Δ(G), the maximum degree of
a vertex in G. The following lemma is very well-known and straightforward to
prove. For the sake of completeness, we provide a proof below.

Lemma 1. For a graph G,

(i) γ(G) ≥ ρ(G), and
(ii) γ(G) ≥ |V (G)|

Δ(G)+1 .

Proof. (i) If S is a closed neighborhood packing in G of size ρ(G), then every
dominating set of G must contain either v or one of its neighbors for every
v ∈ S. Since N [v]s are pairwise disjoint for v ∈ S, we get γ(G) ≥ |S| = ρ(G).

(ii) Let D be a dominating set of G of size γ(G). Since each vertex in D domi-
nates at most Δ(G)+1 vertices, and since every vertex in V (G) is dominated
by D, we have |V (G)| ≤ |D|(Δ(G) + 1). 
�
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The first part of the above lemma says that the domination number γ(G)
is bounded from below by the closed neighborhood packing number ρ(G). Our
results show that γ(G) is bounded from above by a function of ρ(G) for graphs
of girth at least 7, and that no such bound exists for graphs of girth less than 7.

3 Main Result

Theorem 1. Given any k ∈ N, every graph of girth at least 7 has a closed
neighborhood packing of size k + 1 or a dominating set of size at most k2 + k.

Proof. Let G be a graph of girth at least 7 and assume that every closed neigh-
borhood packing in G has size at most k, i.e., ρ(G) ≤ k. Let S be a maximal
closed neighborhood packing in G. Then |S| ≤ ρ(G). First, observe that N [S]
is a dominating set of G, because if v ∈ V (G) \ N [S] has no neighbor in N [S],
then S ∪ {v} will be a closed neighborhood packing in G, which contradicts the
maximality of S. Note that S dominates N [S] and N [S] \ S = N(S) dominates
V \ N [S]. Therefore, we can remove from N(S) the vertices that do not domi-
nate any vertex in V (G) \ N [S], and we will still be left with a set of vertices
that together with S dominates the entire vertex set V (G). For every v ∈ S,
let N∗(v) = {u ∈ N(v) | N(u) ∩ V \ N [S] �= ∅}. That is, every vertex in N∗(v)
dominates at least one vertex outside of N [S], and on the other hand, every ver-
tex in V \N [S] is dominated by N∗(v) for some v ∈ S. Hence, D = S ∪N∗(S) is
a dominating set of G, where N∗(S) = ∪v∈SN∗(v). We claim that |N∗(v)| ≤ k
for every v ∈ S so that |D| = |S| +

∑
v∈S |N∗(v)| ≤ k + k2, which proves the

theorem.

Fig. 1. S is a maximum closed neighborhood packing;D is a dominating set; |N∗(vi)| =
|X(vi)| for every vi ∈ S.

Consider v ∈ S. Every vertex in N∗(v) has at least one neighbor in V \N [S];
corresponding to every x ∈ N∗(v), fix one of its neighbors, say x′ in V \ N [S].
Let X(v) be the set of all such vertices (See Fig. 1). That is, every vertex in
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N∗(v) has exactly one representative in X(v). Since no two distinct vertices
x1, x2 ∈ N∗(v) can have a common neighbor apart from v (because such a
common neighbor along with x1, v, x2 would form a 4-cycle), the x′ vertices
that we fix for each vertex in N∗(v) are all distinct. That is, we have a distinct
x′ ∈ X(v) corresponding to each x ∈ N∗(v) and hence |X(v)| = |N∗(v)|. We
shall show that |X(v)| ≤ k. No two distinct x′

1, x
′
2 ∈ X(v) are adjacent, for

otherwise v, x1, x
′
1, x

′
2, x2 would form a cycle of length 5; nor can x′

1 and x′
2

have a common neighbor, say y, for otherwise v, x1, x
′
1, y, x′

2, x2 would form a
cycle of length 6. Therefore, N [x′

1] ∩ N [x′
2] = ∅ for every distinct pair of vertices

x′
1, x

′
2 ∈ X(v). In other words, X(v) is a closed neighborhood packing and hence

|X(v)| ≤ k. Hence, |N∗(v)| ≤ k and the theorem follows. 
�
The proof of Theorem 1 can be easily converted into an approximation algo-

rithm (with an approximation ratio of opt+1) for the Dominating Set problem
on graphs of girth at least 7. Here, opt denotes the value of an optimum solution
for the Dominating Set problem. That is, for a graph G, opt = γ(G).

Corollary 1. There is a polynomial time algorithm that takes as input a graph
G of girth at least 7, and returns a dominating set of G of size γ(G)(γ(G) + 1).

Proof. The algorithm works as follows. Given a graph G on n vertices with
girth at least 7, find a maximal closed neighborhood packing S in G such that
|X(v)| ≤ |S| for every v ∈ S, where X(v) is as defined in the proof of Theorem 1.
To do this, greedily find a maximal closed neighborhood packing S in G. For
v ∈ S, X(v) is a closed neighborhood packing. So, if |X(v)| > |S| for some v ∈ S,
then set S = X(v) and grow S into a maximal closed neighborhood packing and
start over. Keep updating S this way until we get a maximal closed neighborhood
packing S such that |X(v)| ≤ |S| for every v ∈ S. Note that this process will
terminate in at most n steps as |S| increases with each update. Assume from
now on that we have found a packing S with the required property. Let |S| = k.
Then, γ(G) ≥ k. Construct a dominating set D = S ∪N∗(S) as described in the
proof of Theorem 1. Then, |D| ≤ k2 + k = k(k + 1) ≤ γ(G)(γ(G) + 1). 
�

3.1 The Case of Girth 6 or Smaller

Since Theorem 1 applies only to graphs of girth at least 7, it is pertinent to
examine whether the domination number can be bounded from above as a func-
tion of the closed neighborhood packing number for graphs of girth at most 6.
We provide two different counter examples to show that it cannot be done. The
first is the family of incidence graphs of projective planes of finite order. (See
Chapter 5 of [3] for a detailed introduction to projective planes and incidence
graphs.) A projective plane of order n consists of a set P of n2 + n + 1 points
and a set L of n2 + n + 1 lines with the following properties:

(i) For any two distinct points, there is exactly one line incident with both of
them.
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(ii) For any two distinct lines, there is exactly one point incident with both of
them.

(iii) There are four points such that no line is incident with more than two of
them.

(iv) Every point is incident with exactly n + 1 lines.
(v) Every line is incident with exactly n + 1 points.

It can be shown that projective planes of order n exists if n is the power of a
prime, i.e., if n = qm for some prime number q and m ∈ N.

The incidence graph of a projective plane Pn of order n with point set P
and line set L is the bipartite graph G(Pn), where V (G(Pn)) = P ∪ L and
vertex p ∈ P is adjacent to vertex � ∈ L if and only if point p is incident with
line � in Pn. By property (i), any two distinct vertices p, p′ ∈ P have a unique
common neighbor in L, and hence N(p) ∩ N(p′) �= ∅; and by property (ii),
any two distinct vertices �, �′ ∈ L have a (unique) common neighbor in P , and
hence N(�) ∩ N(�′) �= ∅. Therefore, any closed neighborhood packing in G(Pn)
contains at most one p ∈ P and at most one � ∈ L, and thus ρ(G(P)) ≤ 2.
Properties (i) and (ii) also imply that G(Pn) has no 4-cycle, for existence of a 4-
cycle would mean that G(Pn) has a pair of vertices with two common neighbors;
and that G(Pn) has a 6-cycle—formed by three distinct vertices in P and the
three common neighbors of pairs of those vertices. This shows that the girth of
G(Pn) is 6. By properties (iv) and (v), every vertex in G(Pn) has degree n + 1.
Therefore, by Lemma 1, γ(G(Pn)) ≥ 2(n2 + n + 1)/(n + 1 + 1) ≥ 2n − 1.

Our next counter example is somewhat similar to the above one, but of
smaller girth. For n ∈ N, the bipartite graph Gn is defined as follows. We have
the bipartition V (Gn) = X ∪ Y , such that X = ∪i∈[n]Xi and Y = ∪i∈[n]Yi,
where Xi = {xi1, xi2, . . . , xin} and Y = {yi1, yi2, . . . , yin} for every i ∈ [n]. Thus
|X| = |Y | = n2. For each i, j, j′ ∈ [n], xijyij′ is an edge. That is, for each i,
the subgraph of Gn induced by Xi ∪ Yi is isomorphic to the complete bipartite
graph Kn,n. In addition, for each i, i′, j ∈ [n], xijyi′j is an edge. It can be seen
that the girth of Gn is 4, each vertex has degree 2n − 1 and |V (Gn)| = 2n2.
Thus, by the second part of Lemma 1, γ(Gn) ≥ n. Now, observe that for (i, j) �=
(i′, j′), both yij′ and yi′j are common neighbors of xij and xi′j′ . Therefore, any
closed neighborhood packing in Gn can contain at most one vertex from X and
similarly, at most one vertex from Y , and hence ρ(Gn) ≤ 2.

These families of graphs demonstrate the following result.

Theorem 2. There exists no function f : N → R such that γ(G) ≤ f(ρ(G)) for
all graphs G of girth at most 6.

4 Further Results

Observe from the proof of Theorem 1 that the quadratic term in the upper
bound on |D| comes from the upper bound we obtained for |N∗(S)|. If it can
be shown that |N∗(S)| is asymptotically smaller than k2, consequently we will
obtain a better bound for |D|. We shall show that this can be done, but with a
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stronger premise. We will have to exclude cycles of length greater than 7 to show
the existence of a o(k2) sized dominating set. Specifically, we prove the following
theorem.

Theorem 3. Given any k ∈ N, every graph of girth at least 17 has a closed
neighborhood packing of size k + 1 or a dominating set of size at most (k/2)(1 +√

4k − 3) + 2k.

The proof of this theorem relies on the following lemma.

Lemma 2 (Reiman [5]). If a graph H on n vertices has no 4-cycles, then
|E(H)| ≤ (n/4)(1 +

√
4n − 3).

Proof (Proof of Theorem 3). Let G be a graph of girth at least 17, and assume
that ρ(G) ≤ k. Let S be a closed neighborhood packing in G of size ρ(G), and let
N∗(v),X(v) for every v ∈ S and N∗(S) be as defined in the proof of Theorem 1.
Consider v ∈ S. Let x1 and x2 be two distinct vertices in X(v). As argued
earlier, x1 and x2 are not adjacent and they do not have a common neighbor.
Now suppose that neither x1 nor x2 is adjacent to any vertex in N(v′) for every
v′ ∈ S, v �= v′. Then, (S \ {v}) ∪ {x1, x2} will be a closed neighborhood packing
of size ρ(G)+1, which is not possible. Therefore, for every v ∈ S, X(v) contains
at most one vertex which has no neighbor in N(v′) for every v′ ∈ S, v �= v′.
In other words, for every v ∈ S, there are at least |X(v)| − 1 edges between
X(v) and ∪v′∈S:v′ �=vN∗(v′). On the other hand, since G is of girth 17, for every
v, v′ ∈ S, v �= v′ there can be at most one edge between X(v) and N∗(v′). Notice
that more than one such edge would constitute a cycle of length at most 8.

Construct an auxiliary graph H on |S| vertices as follows. Corresponding
to every v ∈ S, introduce a vertex hv in V (H), and corresponding to every
v, v′ ∈ S, v �= v′, introduce an edge hvhv′ in E(G) if there is an edge in G between
either X(v) and N∗(v′) or X(v′) and N∗(v). Since there are least |X(v)|−1 edges
in G between X(v) and ∪v′∈S:v′ �=vN∗(v′), each hv has degree at least |X(v)|−1.
Now observe that if H has a cycle of length 4, then G will have a cycle of length
at most 16. Since the girth of G is at least 17, we can conclude that H has no
4-cycle. Therefore, by Lemma 2, |E(H)| ≤ (|S|/4)(1 +

√
4|S| − 3). Hence,

∑

v∈S

(|X(v)| − 1) ≤
∑

v∈S

dH(hv) = 2|E(H)| ≤ 2(|S|/4)(1 +
√

4|S| − 3).

Now, since |S| = ρ(G) ≤ k, and as argued in the proof of Theorem 1, |X(v)| =
|N∗(v)| for every v ∈ S, and hence

∑

v∈S

|X(v)| = |N∗(S)|, we get |N∗(S)| − k ≤
(k/2)(1 +

√
4k − 3). Therefore, D = S ∪ N∗(S) is a dominating set of G of size

at most (k/2)(1 +
√

4k − 3) + 2k. 
�

4.1 Generalizing Theorem 3

As is clear from the proof of Theorem 3, the bound on |D| hinges on the number
of edges of the auxiliary graph H. Also, note that if H has a cycle of length g,
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then G will have a cycle of length at most 4g. Therefore, if it can be shown that
|E(H)| ≤ f(k) for some function f : N → R, provided that H is g-cycle free for
some g (or, under a stronger assumption that the girth of H is at least g+1), then,
as shown in the proof of Theorem 3, we will have |N∗(S)|−k ≤ 2|E(H)| ≤ 2f(k).
This will immediately imply that γ(G) ≤ |S ∪ N∗(S)| ≤ 2(f(k) + k), provided
that G is of girth at least 4g + 1.

The problem now boils down to answering the following question: what is
the maximum number of edges in a graph on k vertices and girth g + 1? This
number is often denoted by ex(k, {C3, C4, . . . , Cg}). Observe that if a graph on
k vertices has e edges and average degree d, then d = 2e/k. In light of this
observation, the above question can be considered in a dual form: what is the
least number of vertices in a graph of girth g + 1 and average degree at least d?
The following result due to Alon, Hoory and Linial answers this question.

Lemma 3 (Alon, Hoory, Linial [1]). The number of vertices k in a graph of
girth g + 1 and average degree at least d ≥ 2 satisfies k ≥ n0(d, g + 1), where

n0(d, 2r + 1) = 1 + d

r−1∑

i=0

(d − 1)i (1)

and

n0(d, 2r + 2) = 2
r∑

i=0

(d − 1)i. (2)

In the above lemma, the right side of (1) is greater than (d−1)r. To see this,
note that

n0(d, 2r + 1) = 1 + d

r−1∑

i=0

(d − 1)i

= 1 +
d[(d − 1)r − 1]

(d − 1) − 1

> 1 +
d[(d − 1)r − 1]

d
= (d − 1)r.

That is, when the girth is 2r + 1, the number of vertices k ≥ n0(d, 2r + 1) >
(d − 1)r. Equivalently, 2e/k = d < k1/r + 1, which implies e < (k/2)(k1/r + 1).
In other words,

ex(k, {C3, C4, . . . , C2r}) <
1
2
k1+(1/r) +

1
2
k. (3)

Similarly, from (2), we get d < (k/2)1/r + 1, or in other words,

ex(k, {C3, C4, . . . , C2r+1}) <
1

21+(1/r)
k1+(1/r) +

1
2
k. (4)
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Now, getting back to the original problem, if a graph G has girth at least
4g+1 and ρ(G) ≤ k, then the corresponding auxiliary graph H (on ρ(G) vertices)
has girth at least g + 1, and hence

|E(H)| ≤ ex(k, {C3, C4, . . . , Cg}) < f(k) =

{
1
2 (k2/g + k), if g is even, and
(k
2 )1+(2/(g−1)) + 1

2k, if g is odd.

Then, as argued earlier, γ(G) ≤ 2f(k) + 2k. We thus have the following result.

Theorem 4. Given any k, g ∈ N, g ≥ 3, every graph of girth at least 4g +1 has
a closed neighborhood packing of size k + 1 or a dominating set of size at most
k1+(2/g) + 3k, if g is even, and 2(k/2)1+(2/(g−1)) + 3k, if g is odd.

References

1. Alon, N., Hoory, S., Linial, N.: The Moore bound for irregular graphs. Graphs and
Combinatorics 18(1), 53–57 (2002)
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Abstract. A class of reachability reduction problem is raised in the area
of computer network security and software engineering. We revisit the
reachability reduction problem on vertex labeled graphs in which labels
are representing multiple roles. In this paper, reachability reduction is
modeled based on a kind of graph cut problem aiming to disconnect
those reachable label pairs specified in advance by edge deletion while
minimizing the number of pairs have to be disconnected, and followed
by some potential applications where our model can be applied. Based
on our unified model, we provide a comprehensive complexity analysis of
this problem under different conditions, to provide the hardness hierarchy
of reachability preserved cut problem. Result in this paper implies that
reachability reduction is typically at least harder in directed graph than
its undirected counterpart, even beyond NP under generalized inputs.

Keywords: Reachability reduction · Graph cut · Complexity

1 Introduction

Reducing reachability of a graph is to delete some edges from it so that any
source node cannot reach the rest of the graph. A simple understanding of graph
reachability reduction could be performing a partial graph cut. In the setting
of classic graph cut, the goal is to find some edges such that deleting them will
disconnect the graph into several components. The traditional concern on the
cut is to minimize the sum of edge costs. However, as stated in [1], it is difficult
to quantify the edge costs which usually indicate un-parametrizable preferences
in practice. Instead, we consider more on the effect of applying some cut, that
is, to prevent the reachability of several pairs and preserve that of other pairs as
much as possible.

In fact, It has a broad application in many fields of science and engineer-
ing, especially computer science. For example, in the area of network secu-
rity, an effective way to prevent network security attack (e.g., identity snowball
attack [1,2]) is to reduce the reachability of the network. Similarly, to achieve
the denial of malicious ddos attacks, it is also a alternative way to reduce some
c© Springer Nature Switzerland AG 2019
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reachability by link breaking (e.g., bad flow removing [3]). The major concern
here as argued in [3], the hard constraint is to remove the undesired flow by edge
deletion, meanwhile, the other good flow should be preserved as much as possi-
ble. In software engineering, a huge body of literature studies discovering logical
causality or sufficient condition of finite-state models (such as non-deterministic
automata network [4,5], etc.), which is to find a set of transitions such that
disabling them could prevent the reachability to some specific states exactly.
Another application would be in the area of database, side effect minimizing
problem is a fundamental problem in the topic of data provenancing [6]. In
such context, deleting any result tuple of a database query can be understood
as prevent the reachability of its generating tuple pairs by deleting tuples in
those corresponding join paths. The goal of minimizing the side-effect is just to
preserve several necessary reachable tuple pairs as possible.

To understand this class of reachability reduction problem, we propose a
unified model to depict graph reachability reduction in this paper. We provide a
comprehensive analysis on the complexity of its different fragments so that this
series of problems can be better understood.

1.1 Model

Vertex Labeled Graph. A vertex labeled graph G is a quintuple (V,E,L, ρ), in
which V is the vertex set {v1, v2, . . . , vn}, E is the edge set {e1, e2, . . . , em}, L is
the given label set {b1, . . . , bl}, and label mapping ρ : V → L assigns each vertex
a label from L. Especially, when ρ is a bijection, then the input graph could be
regarded as a classic graph without labels. Given a path P of G, any label b is
said to be contained in P if path P contains at least a vertex labeled by b.

Label Reachable Set. Given a vertex labeled graph G = (V,E,L, ρ), a natural
pair-wise label reachable set S ⊆ L2 could be found in G, such that (bi, bj) ∈ S if
there is at least a path in G which contains both bi and bj . We can also generalize
such a pair-wise reachable set in a different granularity to r-ary label reachable
set S ⊆ Lr such that b̄ = (b1, . . . , br) ∈ S if there is at least a path in G which
contains all the labels from b̄. Note that, labels in G could follow any order.
Obviously, the label reachable set is fixed once given a vertex labeled graph G,
which is denoted as S(G). If G is a connected graph with n vertices and ρ is a
bijection, then |S(G)| = nr for each r ≥ 2. In fact, the input of BFR problem [3]
is just a non-uniform case of label reachable set when ρ is a bijection.

To study complexity and algorithm of this problem, we next define the deci-
sion and optimization versions of its cut problem.

Decision Version: exact reachability preserved cut. Given a vertex
labeled graph G = (V,E,L, ρ) where S(G) is the r-ary label reachable set
of G, a negative set S− ⊆ S(G) and a positive set S+ ⊆ S(G) \ S−, an
exact reachability preserved cut is an edge set C ⊆ E such that for
G′ = (V,E \ C) obtained by removing the edges in C from G where

(a) S− ∩ S(G′) = ∅, and (b) S+ ⊆ S(G′).
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It is easy to see for any graph G, a negative set and a positive set, it is not pos-
sible that there always exists a corresponding exact reachability preserved
cut. Therefore, we usually want to find a maximum reachability preserved
cut, which is the optimization version of the cut problem defined as follows.

Optimization Version: maximum reachability preserved cut. Given a ver-
tex labeled graph G = (V,E,L, ρ) where S(G) is the r-ary label reachable
set of G, a negative set S− ⊆ S(G) and a positive set S+ ⊆ S(G) \ S−, a
maximum reachability preserved cut is an edge set C ⊆ E such that for
G′ = (V,E \ C) obtained by removing the edges in C from G, we have

(a)S− ∩ S(G′) = ∅, and (b)|S+ ∩ S(G′)| is maximum.

Obviously, condition (b) is the only difference between exact reachability

preserved cut and maximum reachability preserved cut. And we denote
the reachability preserving cut problem as r-RP-cut when the label reachable
set is defined as an r-ary one, e.g., 2-RP-cut and 2-MRP-cut when r is 2.

1.2 Related Work

Reachability preserved cut is a new problem in the realm of cut problems. Since
Ford and Fulkerson [7] proposed the famous max-flow min-cut theorem for net-
work flow, the cut problem has been extensively investigated for decades. The
general objective of the cut problem is to find a set of edges with optimal cost
whose deletion disconnects the given graph. By the different definition of cost,
related work could be mainly categorized as following.

Minimum cut is to find a cut to partition the given graph into two or more
disjoint components by deleting as few edges as possible [8]. Minimum k-cut [9]
is to partition the given graph into at least k connected components. Minimum
multi-cut problem is to find the multi-cut with the minimum total cost for a graph
when each edge in the graph is associated with a positive cost. This problem can
be reduced to the traditional minimum (S, T )-cut problem in undirected graphs
and has been proved to be NP-hard [10] as well.

Maximum cut is to find a cut with the maximum size in a graph [11],
its weighted version is one of the 21 NP-complete problems in Karp’s famous
work [12]. Same as the minimum cut, maximum cut is to disconnect a graph
with maximum cost rather than minimizing the side effect.

Sparsest cut is to bipartition the vertices of a graph into S and V − S while
minimizing the sparsity ratio, i.e., the number of edges across S and V − S to
the number of vertices in the smaller half of the partition [13]. Balanced cut is
an important variant [14], but still not related to our problem.

All the aforementioned cut problems focus on disconnecting a given graph,
but do not take the reachability preservation into account, since our goal is to
cut off specific vertex pairs while minimizing the side-effect on other reachable
pairs. It also follows in the other related work, such as reachability cuts [15]
for the vehicle routing problem, local cut [16], minimum feedback arc set [17],
maximum acyclic subgraph [18] and so on.
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2 Results for Undirected Graphs

For undirected graphs, we show the polynomially intractable and tractable cases
at the domination position, then the theory bounds of other cases follow imme-
diately. We here provide the proof sketches.

Theorem 1. If the input vertex labeled graph G is undirected and ρ is a bijec-
tion, then

(a) when the underlying graph of G is a forest, r-RP-cut (r ≥ 2) is NP-complete
if |S−| = 1 and S+ ∪ S− = S(G);

(b) when the underlying graph of G is a connected graph, 2-MRP-cut, the optimal
version, is NP-complete even if S− is complete bipartite and S+ ∪ S− =
S(G); (That is, given r > 0, decide if there is a cut C such that all pairs
in S− can be cut off while preserving at least r pairs from S+, i.e., |S+ ∩
S(G(V,E \ C))| ≥ r)

(c) when the underlying graph of G is a forest (with no common label in two
disjoint connected components), 2-MRP-cut is PTime if |S−| is of constant
size.

Proof. (i) Reachability checking of multiple vertices in an undirected graph could
be easily carried out by a depth-first search in polynomial time, then r-RP-cut
is trivially in NP.

We build a simple reduction from 3sat to the exact reachability
preserved cut problem, which is well known in NP-complete, then the hard-
ness of the exact reachability preserved cut problem follows immediately.
Given a 3sat instance φ which is a 3dnf with n existential variables and m clauses,
we build a vertex labeled graph Gφ as follows.

For each variable xi in φ, build a tree rooted by label x, and fork to two
sub-trees rooted at ‘−’ and ‘+’ respectively. The leaves in the sub-tree rooted at
‘+’ correspond to the clauses including xi, and the leaves in the sub-tree rooted
at ‘−’ correspond to the clauses including x̄i.

Initially, S(Gφ) has the following pairs

(i, j), (x/i,+/−), (x, i), (+,−).

The idea is that we intent to cut off label pair (+,−) to guarantee a valid
assignment on variables, while preserving all the label pairs (x, i), so that every
clause is satisfied by the corresponding assignment of variables. However, the
problem is that the destroy of edges connecting 0 and 1 in each variable tree will
impact the reachability from x to ci. To make up the pairs potentially dead in
the solution cut, for each variable tree, duplicate the two sub-trees rooted at +
and −, while swapping labels + and − in the duplication (Fig. 1). Then, build
another tree and distribute all the labels j belonging to the same variable gadget
to all the tree vertices. Moreover, add two edges e1 and e2 into Gφ, with label
pairs (x,−) and (x,+), so that they will survive from the solution cut. At last,
let

S− = {(+,−)} and S+ = S(Gφ) \ S−.
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Fig. 1. Undirected graph Gφ for 3sat instance φ = (x1 + x̄2 + x3)(x1 + x2 + x̄4)(x̄2 +
x̄3 + x4)(x̄1 + x2 + x4).

One can easily verify that a 3sat instance φ is satisfiable if and only if there
is a 2-RP-cut in Gφ such that (+,−) is never reachable while every (x, i) is still
in S+.

(ii) We build a reduction from monotone-3sat to 2-MRP-cut, which is in NP-
complete, then the hardness of the 2-MRP-cut problem with arbitrary S+ and
S− follows immediately.

Roughly speaking, the instance of monotone-3sat is also a 3cnf formula. The
only difference is that each clause contains either 3 negative variables or 3 positive
ones, e.g., instance φ = (x1 + x2 + x3)(x̄1 + x̄2 + x̄4)(x2 + x3 + x4)(x̄1 + x̄2 + x̄4)
is a monotone 3cnf formula.

Given an instance φ of monotone 3sat, for its variables x1, . . . , xn, create n
vertices v1, . . . , vn in Gφ, then add another two vertices +0 and −0, and connect
every vi to +0 and −0.

Additionally, take an integer z > max{m,n}, append to + and − by mz4

distinct vertices, respectively, say +1, . . . ,+mz4−1 and −1, . . . ,−mz4−1.
The idea is that we expect to guarantee the consistency of assignment on

variables by cutting all the possible paths from + to −.
For each clause ci = (xj + xk + xl), add edges

(i0, vj), (i0, vk), (i0, vl).

After this, we append z4 − 1 distinct vertices, i1, . . . , iz4−1, to each vertex i0
(Fig. 2).

Fig. 2. The undirected graph Gφ built for monotone-3sat instance (x1 + x2 + x3)(x̄1 +
x̄2 + x̄4)(x2 + x3 + x4)(x̄1 + x̄2 + x̄4).
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Obviously, S(Gφ) initially has pairs of 5 types, which are shown below

(+p,−q): for p, q ∈ [
0,mz4

)

(vp, vq): for p, q ∈ [1, n)
(+p, iq): for ci is positive clause
(−p, iq): for ci is negative clause
(ip, jq): for any ci and cj

Then define S− (since S+ = S(Gφ) \ S− is required). Let

D = {(ip, jq)| exactly one of ci and cj is positive},

D+ = {(+p, iq)| ci is negative},

D− = {(−p, iq)| ci is positive},

Dx = {(+p,−q)| ∀p, q}.

Then let

S− = D ∪ D+ ∪ D− ∪ Dx.

Note that S− is complete bipartite, i.e., exactly two groups of vertices.
At last, let

r = (mz4 + m+z4)2 + (mz4 + (m − m+)z4)2

i.e.,

r =
[
(m + m+)2 + (m + m−)2

]
z8.

One can verify that the monotone-3-sat instance φ is satisfiable if and only
if there is a cut for Gφ which will cut off all the pairs in S− while preserving at
least k pairs in S+. The key idea of this reduction is that “if isolate at least one
i0, then there won’t be a makeup enough to n8 by all the vertices corresponding
to variables (at most n2 · 2mz4 
 z8)”. Therefore, for the ‘+0’ part and ‘−0’
part, any ip should not be cut off. The correctness of assignment on the variables
of φ will be guaranteed by cutting off all the reachable pairs from S−.

(iii) We will provide an optimal algorithm with time complexity O(|V |+ |E|)
in the next section.

The Theorem is established based on the above proofs.

Note that the Theorem 1 is surprising since the part (ii) implies an important
result for simple graphs as follows,

Corollary 1. Given a connected classic graph G = (V,E) without label and
reachable vertex pairs to separate, the problem of finding a cut C ⊆ E maximizing
reachable vertex pairs survived in G(V,E \ C) is NP-complete.

Moreover, part (iii) of the theorem identifies a class of cases that can be
solved optimally in polynomial time, which will be explained in the next section
and an efficient algorithm with a linear time complexity is proposed.
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3 Results for Digraphs

Now we show that directed graphs make this problem harder than undirected
graphs. This is caused by the fact that the number of possible maximal connected
components could be exponential with respect to the number of directed edges
(think about a “chain”), and reachability checking is somehow harder in directed
graphs if input ρ is not a bijection.

Theorem 2. In a weakly connected DAG, for each r ≥ 2, the r-RP-cut problem
is NP-hard even if |S−| = 1 and S+ ∪ S− = S(G).

Proof. We modify the reduction in part (ii) of Theorem 1 to directed version as
shown in Fig. 3.

Fig. 3. The DAG Gφ built for monotone-3sat instance (x1+x2+x3)(x̄1+ x̄2+ x̄4)(x2+
x3 + x4)(x̄1 + x̄2 + x̄4).

Given an instance φ of 3sat, for variables x1, . . . , xn, create n vertices
v1, . . . , vn without label and two another vertices with label + and −, then
connect + to every vi, connected each vi to −. The idea is that we expect to
guarantee the consistency of assignment on variables by cut all the possible paths
+ to −.

For negative clause ci = (xj + xk + xl), add paths

i → vj , i → vk, i → vl.

For positive clause ci = (x̄j + x̄k + x̄l), add paths

vj → i, vk → i, vl → i.

Obviously, S(Gφ) initially has pairs of another 3 types, besides pair (+,−),
as follows

(+, i): ci is a positive clause;
(i,−): ci is a negative clause;
(i, j): negative ci shares a variable in positive cj .

At last, set S− = {(+,−)} and S+ = S(Gφ) \ S−.
The idea of this reduction is that the destroy of paths from + to − will

impact the pair-wise reachability of that 3 types above, and it is to mimic xi
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taking assignment of 1 that edge +, vi survived from cut, otherwise taking 0.
And if there is a path ‘+ → i’ or ‘i → −’ survived after cutting G, then ci is
true since at least one of its 3 variables is satisfied.

Note that, all the pairs of form (i, j) is preserved by monotone property,
correctness follows immediately. Intuitively, the proper survival makes all the
clauses true. So, if there is a 2-RP-cut preserving S+, then we can find a valid
corresponding assignment making the monotone-3sat instance formula true.

We claim that, this reduction runs in time of O(m), where m is the number
of clauses.

One can verify that a monotone-3sat instance φ is satisfiable if and only if
there is a 2-RP-cut in Gφ which exactly cuts the only pair (+,−) of S− while
preserving pairs of S+.

For the exact upper bound of Reachability preserved cut problem, we show
that if the input graph is a directed graph, then it is so hard inside the Polynomial
Hierarchy for the general case, even beyond NP but never exceeds NPNP . That
means we cannot expect to use Integer (Linear) Programming to model and
solve it approximately, since IPL is a problem in NP. Moreover, to the best
of our knowledge, there is no sub-linear approximation ratio of any complete
problem in NPNP . We may not expect a good approximation of this problem
in the future for such generalized version, unless P = NP .

Theorem 3 (Lower bound for the general exact reachability

preserved cut problem). If the vertex labeled graph G is a weakly con-
nected DAG, both S+ and S− are of polynomial size, then the general exact
reachability preserved cut problem is NPNP -complete.

Proof. We show that condition ‘r-ary’ makes the exact reachability
preserved cut problem much harder. However, it is easy to verify that r-
RP-cut is still bounded in NPNP . For the lower bound, we use the ∃∀-3sat
problem belonging to NPNP -complete. Given an instance ∃x̄∀x̄′ φ(x̄, x̄′) where
φ(x̄, x̄′) is a 3dnf formula, the question is whether there is an assignment of the
existential variables in x̄ which is a mapping from x̄ to {0, 1}n such that for all
the possible assignments of universal variables in x̄′, the 3dnf formula φ(x̄, x̄′) is
always true, i.e., it is a tautology.

Given gadget Gi for each variable xi, suppose xi occurs in clauses
ci′ , cj′ , . . . , cl′ and x̄i occurs in clauses ci, cj , . . . , cl. Then Gi contains two dis-
joint paths, both starting with label A and ending with label B. One connects
labels −i′,−j′, . . . ,−l′, and the other connects labels −i,−j, . . . ,−l, as shown
in Fig. 4.

Fig. 4. Gadget Gi.
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For any variable xi, connect its corresponding gadget Gi with its subsequent
Gi+1 with 4 disjoint paths as shown in Fig. 5.

Fig. 5. Connecting gadget Gi with its subsequent Gi+1.

Gi.B → j → Gi+1.A, Gi.B → j + 1 → Gi+1.A
′

Gi.B
′ → j + 2 → Gi+1.A, Gi.B

′ → j + 3 → Gi+1.A
′

we then require that (For simplicity, we define S+ by using non-uniform nota-
tions. At the end of the proof, we will show a simple uniform modification.)

– for each variable, S+ should contain such 4 paths;
– for each universal variable, e.g., xi+1, S+ should include 16 paths containing

all the combinations of {j, j + 1, j + 2, j + 3} and {j + 5, j + 6, j + 7, j + 8};

The idea here is to restrict the two paths inside Gi+1 which should not be cut,
so as to mimic arbitrary assignment of both 0 and 1 of universal variable.

After connecting all the gadgets one by one, append a starting label S at
the front of G1 by two disjoint paths s → a → G1.A and s → b → G1.A

′,
then append an ending label T at the end of Gm also by two disjoint paths
Gm.B → c → T and Gm.B′ → d → T . We also require S+ includes the 4
disjoint paths and another pair (S, T ).

Then, append S by another redundant path

−1 → −2 · · · → −m

to make sure such a path is in the initial set S(Gφ).
The entire constructed directed graph Gφ is shown in Fig. 6.

Fig. 6. Directed graph Gφ.

Finally, let S− = {(−1,−2, . . . ,−m)}, note that it is valid since S− ⊆ S(Gφ).
The overall idea is that reachability of (S, T ) makes sure that one and only

one path of A → B and A′ → B′ could be cut for each existential variable, and
cut (−1,−2, . . . ,−m) is to guarantee at least one clause of the 3dnf formula is
satisfied under any assignment on universal variables. If there is no assignment
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on the existential variables making the 3dnf formula φ to be a tautology, then
every possible cut in Gφ preserving S+ is not able to destroy (−1,−2, . . . ,−m)
of S−.

At last, to uniform S+ to the form of m-ary, we can add enough distinct
dummy labels, at most 2m, in front of S and at the end of T . We can use
these dummies to rewrite S+ easily. Nevertheless, this reduction could be done
in O(n + m) time obviously.

One can verify that an ∃∀-3sat instance φ is satisfiable if and only if there is
an r-RP-cut in Gφ to cut off all the pairs of S− while preserving S+ entirely. �
So we know that under a very generalized input, the case of directed graphs is
much harder than that of undirected graphs.

4 Conclusions

The reachability reduction problem can be modeled as reachability preserved
cut on vertex labeled graphs. Based on the unified model, we show a theoret-
ical complexity analysis and find that it is polynomially intractable in several
cases from NP-complete to ΣP2-complete. And for the cases in directed graphs
(even DAG), it is harder than the undirected graph cases. Moreover, a surprising
finding is for classic graphs, on which reachability reducing is still NP-complete.
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Abstract. Peer assessments, in which people review the works of peers
and have their own works reviewed by peers, are useful for assessing
homework, reviewing academic papers and so on. In conventional peer
assessment systems, works are usually allocated to people before the
assessment begins; therefore, if people drop out (abandoning reviews)
during an assessment period, an imbalance occurs between the number
of works a person reviews and that of peers who have reviewed the work.
When the total imbalance increases, some people who diligently complete
reviews may suffer from a lack of reviews and be discouraged to partici-
pate in future peer assessments. Therefore, in this study, we adopt a new
adaptive allocation approach in which people are allocated review works
only when requested and propose an algorithm for allocating works to
people, which reduces the total imbalance. To show the effectiveness of
the proposed algorithm, we provide an upper bound of the total imbal-
ance that the proposed algorithm yields. In addition, we experimentally
compare the proposed adaptive allocation to existing nonadaptive allo-
cation methods.

Keywords: Peer assessment · Task allocation · Allocation algorithm

1 Introduction

Peer assessments, in which people review the works of peers and have their
own works reviewed by peers, are useful for reviewing homework and academic
papers. Particularly, peer assessment is effective when the number of participants
is large, such as in a massive open online course (MOOC), in which people can
attend various lectures on the Internet. Lecturers and teaching assistants (TAs)
alone are unable to review large volumes of works [10,13,14].

However, some reports indicate that people are not willing to participate
in peer assessments; one reason is that people are disheartened by the lack of
reviews [2,12]. Therefore, we need to develop methods of peer assessment that
allow people to receive sufficient feedback based on the number of reviews to
increase the number of people who participate in peer assessments.
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D.-Z. Du et al. (Eds.): COCOON 2019, LNCS 11653, pp. 456–468, 2019.
https://doi.org/10.1007/978-3-030-26176-4_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26176-4_38&domain=pdf
https://doi.org/10.1007/978-3-030-26176-4_38


Give and Take: Adaptive Balanced Allocation for Peer Assessments 457

A major reason for the existence of insufficient review numbers is that peers
dropout without reviewing allocated works [2,8]. In existing peer assessment
systems, each person is usually asked to review a predefined number of works,
and works are allocated to people before the peer assessments start. If a cer-
tain number of people drop out of the review process, an imbalance occurs
between the number of works a person reviews (termed the “reviewing num-
ber”) and the number of peers who review the work of the same person (termed
the “reviewed number”). When the total imbalance increases, people who dili-
gently finish reviews may suffer from a lack of reviews and be discouraged to
participate in future peer assessments.

To address this problem, we develop a new adaptive allocation approach in
which people are allocated works only when requested. People can request one
work to review at any time; they can request second and subsequent works to
review only after they have finished the review of the previously requested work.
This rule is more suitable for a realistic situation in which some people drop out
during peer assessments.

Under the above approach, our goal is to reduce the sum of the absolute
values of the differences between the reviewing number and reviewed number of
each person, termed RR imbalance (reviewing-reviewed imbalance).

We propose an allocation algorithm called the RRB (reviewing-reviewed bal-
anced) allocation algorithm, which reduces the RR imbalance, which means that
it is highly possible that the work of one person will be reviewed (Taken) as
many times as that same person reviews the works of others (Given). It can be
expected that this algorithm resolves dissatisfaction about the lack of reviews
and incentivizes people to review the works of their peers.

To demonstrate the usefulness of the RRB algorithm, we theoretically prove
that the RRB algorithm guarantees an upper bound of the RR imbalance, which
does not depend on the number of people; instead, it depends on the maximum
reviewing number among people. In practical situations, the maximum reviewing
number usually does not increase, even if the number of people grows. There-
fore, our results show that the average difference between the reviewing number
of each person and the reviewed number decreases as the number of people
increases. This property is desirable in MOOC settings from the viewpoint of
fairness among people.

However, unfairness still remains up to the amount of the upper bound. To
reduce the RR imbalance, extra effort is required. For instance, in MOOC set-
tings, lecturers and TAs could perform extra reviews for people whose reviewing
number is above their reviewed number at the end of the peer assessment. In this
case, the obtained upper bound can be used to estimate the number of reviews
the lecturers and TAs need to perform.

To show the effectiveness of the RRB algorithm, we experimentally compare
its performance with that of the existing nonadaptive allocation.

The remainder of this paper is organized as follows. In Sect. 2, we introduce
the related works. We describe the problem definitions in this research in Sect. 3.
In Sect. 4, we describe the RRB algorithm. In Sect. 5, we prove the upper bound
of the RR imbalance by the RRB algorithm. We present the experimental results
in Sect. 6, and finally, we conclude this work and suggest future work in Sect. 7.
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2 Related Work

Crowdsourcing has attracted much attention, and studies on crowdsourcing and
peer assessment are closely related [18]. Many task allocation methods have been
proposed for crowdsourcing [1,6,11,19]; however, there have been few proposals
for task allocation methods in peer assessments. The difference between task
allocations for crowdsourcing and those for peer assessment is the strength of
the incentive provided; crowdsourcing can use clear incentives, such as money,
that are unavailable in peer assessment situations. Consequently, dropout is more
likely to occur in peer assessments; thus, peer assessment research must consider
the effect of dropout.

Estévez-Ayres et al. [9] proposed an allocation mechanism to avoid lack of
reviews due to dropout and confirmed its usefulness through a simulation. They
assumed that some people were willing to review other works even when their
reviewing number exceeded their reviewed number. We do not assume such opti-
mistic person characteristics in this study.

There are some methods for improving the quality of reviews in peer assess-
ments. A method of automatically assessing review content (automated meta-
reviewing) that prompts the reviewer to correct and improve review content
has been proposed [15]. In addition, another method was proposed in which the
reviewee scores the reviewer on his or her review content [3]. Increasing the qual-
ity of the rubrics (reviewing standards) used in peer assessments leads directly
to improved review quality; therefore, some studies have verified the effect of
rubrics [4,10]. In addition, many studies exist that aggregate reviewer scores in
peer assessments; these studies apply quality control research in the context of
crowdsourcing [5,7,14,16,17]. The above studies are orthogonal to our study;
hence, we can combine their methodologies and results with ours.

3 Problem Setting

Initially, we explain our problem setting intuitively through Fig. 1. In this
research, to deal with realistic situations in which some people drop out dur-
ing the peer assessment process, we propose an allocation algorithm that uses
an adaptive allocation approach. Under this approach, people are allocated a new
work only when they request one, and they can request an additional work to
review only after they have finished the review of the previous work. In addition,
we assume that people always complete the requested review. This assumption
is considered to be valid because people who are not willing to review do not
request a work in the first place.

In Fig. 1, we assume that there are five people, a, b, c, d, and e, and each vertex
represents a person. First, a requests a work; then, the work of d is allocated to
a. This allocation is denoted by the directed edge from a to d. We assume that
no person can review his or her own work and that each person can review a
given work only once. After the first allocation, the next allocation occurs when
another person requests a work, and then, a directed edge is drawn. These steps
are repeated under an adaptive allocation approach.
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Fig. 1. Example of adaptive allocation behavior.

Let V be a set of people, Ei be the edge set and Gi be the graph created
up to the i-th allocation. Note that E0 = ∅. The RR imbalance (reviewing-
reviewed imbalance) in graph G1, which consists of single edge, is the sum of all
the absolute values of the differences between the reviewing number (outdegree)
and the reviewed number (indegree) as follows: |1 − 0| + |0 − 0| + |0 − 0| + |0 −
1| + |0 − 0| = 2. Now, let us assume that there are seven allocations during this
peer assessment. The final RR imbalance in graph G7 is |2 − 2| + |2 − 0| + |1 −
0| + |1 − 2| + |1 − 3| = 6. In this study, we propose an allocation algorithm that
reduces the RR imbalance at the end of a peer assessment.

Some definitions are provided below. Let a person doing the i-th request
under the adaptive allocation approach be xi ∈ V . A work by a person yi(�= xi) ∈
V is allocated to xi before a person xi+1 can request a work. This allocation
is represented by a directed edge from xi to yi. In the graph Gi, let the set
of people whose works are allocated to person v ∈ V be Ni(v) and N̄i(v) =
V \ {Ni(v) ∪ {v}}; then, yi+1 ∈ N̄i(xi+1). Moreover, use N ′

i(v) to denote the
set of people who review the work of person v ∈ V . The reviewing number
(outdegree) of person v in graph Gi is defined as δ+i (v)(= |Ni(v)|), and the
reviewed number (indegree) is defined as δ−

i (v)(= |N ′
i(v)|).

We explain the above definitions using Fig. 1. In Fig. 1, we assume five people,
a, b, c, d, and e; thus, V = {a, b, c, d, e}. Initially, person a requests a work, and
the work of person d is allocated to a; therefore, x1 and y1 are a and d, respec-
tively. The edge set E1 of the graph G1(V,E1) contains only one directed edge
from a toward d. In addition, N1(a) = {d}, N̄1(a) = {b, c, e} and N ′

1(a) = {}, and
the node a has an outdegree of 1 and an indegree of 0; consequently, δ+1 (a) = 1
and δ−

1 (a) = 0.
Our goal is to reduce the RR imbalance when the last allocation is done

during the peer assessment period. The RR imbalance is defined as the sum
of the absolute values of the difference between the reviewing number and the
reviewed number for all people. That is, when the t-th allocation is finished, RR
imbalance It(V ) can be calculated by the following equation:

It(V ) =
∑

v∈V

|δ+t (v) − δ−
t (v)|
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Fig. 2. Example of RRB behavior.

4 Algorithm

In this section, we propose an allocation algorithm to reduce the RR imbalance,
termed the RRB algorithm. A theoretical analysis of the RRB algorithm is given
in Sect. 5, and experiments to evaluate the performance of the RRB algorithm
are presented in Sect. 6.

The RRB algorithm adopts a greedy approach to reduce the RR imbalance.
We propose an algorithm which selects a person whose difference between review-
ing number and reviewed number is the maximum at each request.

Algorithm 1. The RRB algorithm
INPUT: V � a set of people
INPUT: 〈x1, . . . , xt〉 � the sequence of people who request a work
OUTPUT: 〈y1, . . . , yt〉 � the sequence of people whose works are reviewed
1: for i ← 0 to t − 1 do
2: yi+1 ∈ arg max

v∈N̄i(xi+1)

(δ+i (v) − δ−
i (v))

3: end for

Note that yi+1 is selected randomly when multiple candidates exist.
We provide an intuitive explanation of the above algorithm using Fig. 2.

In this figure, it is assumed that there are five people, a, b, c, d, and e, whose
requesting order is 〈a, d, b, a, c, d, c〉. First, the difference between the reviewing
number and the reviewed number of every person is 0; therefore, the work is
randomly allocated to a. Let us assume that the work of e is randomly selected.
Next, because the difference between the reviewing number and reviewed number
of a is the maximum, the work of a is allocated to d. Subsequently, a’s difference
between reviewing number and reviewed number becomes 0, while for d, the
difference becomes 1. Therefore, the work of d is preferentially allocated in the
next step. In Fig. 2, the above allocation is repeated, showing intuitively how
the RRB algorithm aims to reduce the RR imbalance.
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5 Theoretical Analysis for the RRB Algorithm

In this section, we show that when the maximum outdegree of graph Gi is k and
the number of people exceeds k2 + k + 1, the RRB algorithm ensures that the
upper bound of the RR imbalance in the graph Gi is O(k2). The upper bound
does not depend on the total number of people n; it depends only on the max-
imum number of reviews performed by any one reviewer. When an enormous
number of people exist, such as in an MOOC, k is expected to be consider-
ably smaller than n because one person cannot review works by everyone. In
other words, the proposed algorithm should be extremely effective on MOOCs.
Although we assume that the number of people is larger than k2 + k + 1, this
is equivalent to the assumption that the total number of people is larger than
the square of the reviewing number of any one person. It is natural to use this
assumption when many people are participating. In the following section, after
presenting two lemmas, we prove our assertion of the upper bound.

Lemma 1. For a vertex subset V ′ ⊆ V of graph Gi, suppose that the following
inequality holds for all vertices v ∈ V ′:

δ+i (v) − δ−
i (v) ≤ 0

We define the set of edges from V \ V ′ to V ′ as EI ⊆ Ei and the set of edges
from V ′ to V \ V ′ as EO ⊆ Ei. Then, the following equation is satisfied:

Ii(V ′) = |EI | − |EO|
Proof. From the assumption, |δ+i (v) − δ−

i (v)| = δ−
i (v) − δ+i (v) ≥ 0 is satisfied

for any v ∈ V ′. Therefore, the RR imbalance on V ′ is as follows:

Ii(V ′) =
∑

v∈V ′
δ−
i (v) − δ+i (v) =

∑

v∈V ′
δ−
i (v) −

∑

v∈V ′
δ+i (v)

Here, we define the edge set in V ′ as E′ ⊆ Ei, and the following two equations
are satisfied:

∑

v∈V ′
δ−
i (v) = |E′| + |EI |

∑

v∈V ′
δ+i (v) = |E′| + |EO|

Hence, Ii(V ′) = (|E′| + |EI |) − (|E′| + |EO|) = |EI | − |EO| ��
Lemma 2. The maximum outdegree maxv∈V {δ+i (v)} in Gi is defined as ki.
Assuming that n > k2

i + ki + 1, the case that the RR imbalance increases with
the i + 1-th allocation, or Ii+1(V ) > Ii(V ), is limited to the following case, and
the increment is 2.

δ+i (xi+1) − δ−
i (xi+1) ≥ 0 and δ+i (yi+1) − δ−

i (yi+1) = 0
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Proof. We separate the cases as follows:

0. δ+i (xi+1) − δ−
i (xi+1) < 0 & δ+i (yi+1) − δ−

i (yi+1) > 0
1. δ+i (xi+1) − δ−

i (xi+1) ≥ 0 & δ+i (yi+1) − δ−
i (yi+1) > 0

2. δ+i (xi+1) − δ−
i (xi+1) < 0 & δ+i (yi+1) − δ−

i (yi+1) ≤ 0
3. δ+i (xi+1) − δ−

i (xi+1) ≥ 0 & δ+i (yi+1) − δ−
i (yi+1) < 0

4. δ+i (xi+1) − δ−
i (xi+1) ≥ 0 & δ+i (yi+1) − δ−

i (yi+1) = 0

Adding the edges (xi+1, yi+1) means that δ+i (xi+1) and δ−
i (yi+1) are incre-

mented by 1. That is, δ+i (xi+1)−δ−
i (xi+1) increases by 1 and δ+i (yi+1)−δ−

i (yi+1)
decreases by 1. Therefore, it is obvious that the RR imbalance decreases for
case 0. Next, in cases 1 and 2, the RR imbalance does not change because
either |δ+i (xi+1) − δ−

i (xi+1)| or |δ+i (yi+1) − δ−
i (yi+1)| increases by 1, but the

other decreases by 1. In case 3, because the RRB algorithm chooses a yi+1 that
meets δ+i (yi+1) − δ−

i (yi+1) < 0, we require the condition that δ+i (v) − δ−
i (v) ≤

δ+i (yi+1) − δ−
i (yi+1) < 0 for any v ∈ N̄i(xi+1). That is, |δ+i (v) − δ−

i (v)| ≥ 1 for
any v ∈ N̄i(xi+1). Here, because |Ni(xi+1)| ≤ ki, |N̄i(xi+1)| ≥ n − ki − 1, the
RR imbalance on N̄i(xi+1) satisfies the following inequality:

Ii(N̄i(xi+1)) ≥ n − ki − 1 (1)

In contrast, the number of edges from Ni(xi+1) to N̄i(xi+1) is at most k2
i because

|Ni(xi+1)| ≤ ki; therefore, the following inequality holds by Lemma 1:

Ii(N̄i(xi+1)) ≤ k2
i (2)

From the above two inequalities (1 and 2), n − ki − 1 ≤ k2
i . However, this

contradicts the assumption of Lemma 2 n > k2
i +ki+1. Therefore, case 3 cannot

occur.
In addition, the RR imbalance increases by two in case 4. Thus, we complete

the proof of Lemma 2. ��
Theorem 1. We assume that n > k2

i + ki + 1. After the i-th allocation based
on the RRB algorithm is completed, the RR imbalance in graph Gi satisfies the
following condition:

Ii(V ) ≤ 4k2
i − 4ki + 2

Proof. We provide an outline of the proof and prove Theorem 1 using math-
ematical induction. First, using Lemma 2, we show two conditions where the
RR imbalance increases during the i + 1-th allocation. Then, we divide the per-
son sets into {xi+1}, Ni(xi+1) and N̄i(xi+1) and consider the number of edges
between sets and in each set to derive the upper bound of the RR imbalance.

We begin our proof of Theorem 1 by mathematical induction on the number
of allocations i. The proposition clearly holds when i = 1. We assume that the
proposition holds in the case of i = l(≥ 2). 1 ≤ kl ≤ kl+1; thus, the condition
when 4k2

l −4kl+2 ≤ 4k2
l+1−4kl+1+2 is satisfied. Then, when the RR imbalance
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does not increase in the l + 1-th allocation—that is, when Il+1(V ) ≤ Il(V ) is
satisfied—the following condition is met:

Il+1(V ) ≤ Il(V ) ≤ 4k2
l − 4kl + 2 ≤ 4k2

l+1 − 4kl+1 + 2

Therefore, from Lemma 2, we should consider only the following equation:

δ+l (xl+1) − δ−
l (xl+1) ≥ 0 & δ+l (yl+1) − δ−

l (yl+1) = 0 (3)

In addition, if δ+l (xl+1) = kl, then kl+1 = kl + 1 holds. From Lemma 2, the
RR imbalance increment is at most 2. Consequently, the following holds:

Il+1(V ) ≤ (4k2
l − 4kl + 2) + 2 ≤ 4(kl + 1)2 − 4(kl + 1) + 2 = 4k2

l+1 − 4kl+1 + 2

Therefore, we need to consider only the following case:

δ+l (xl+1) ≤ kl − 1 (4)

Since the vertex set of graph Gl is {xl+1} ⊕ N̄l(xl+1) ⊕ Nl(xl+1) (see Fig. 3),
Il(V ) = Il({xl+1})+Il(N̄l(xl+1))+Il(Nl(xl+1)). Subsequently, the values on the
right side of the expression can be calculated individually.

1. Il({xl+1}): We consider the edge sets E1, E2, and E3 in Fig. 3. From condi-
tions (3) and (4), the following condition holds:

Il({xl+1}) = |δ+l (xl+1) − δ−
l (xl+1)| = δ+l (xl+1) − δ−

l (xl+1) ≤ δ+l (xl+1) ≤ kl − 1

2. Il(N̄l(xl+1)): We consider the edge sets E2, E4, and E5 and the edges in
N̄l(xl+1) in Fig. 3. From condition (3), the RRB algorithm selects a y+1 that
meets δ+l (yl+1) − δ−

l (yl+1) = 0. Then, because the RRB algorithm chooses a
v ∈ N̄l(xl+1) with the maximum δ+l (v)−δ−

l (v), the following condition holds:

∀v ∈ N̄l(xl+1), δ+l (v) − δ−
l (v) ≤ 0 (5)

Therefore, from Lemma 1, the RR imbalance on N̄l(xl+1) is less than |E4| (the
number of edges from Nl(xl+1) to N̄l(xl+1)). From condition (4), |Nl(xl+1)| ≤
kl − 1 holds. Then, because the maximum outdegree is kl, the following is
satisfied:

Il(N̄l(xl+1)) ≤ |E4| ≤ kl(kl − 1) (6)

3. Il(Nl(xl+1)): We consider the edge sets E1, E3, E4, and E5 and the edges in
Nl(xl+1) in Fig. 3. We utilize the fact that the RR imbalance on Nl(xl+1) is
less than the sum of the outdegree and indegree in Nl(xl+1)—which can be
written as follows:

Il(Nl(xl+1)) =
∑

v∈V

|δ+l (v) − δ−
l (v)| ≤

∑

v∈V

(δ+l (v) + δ−
l (v))

From condition (4), because |Nl(xl+1)| ≤ kl − 1, the outdegree is less than
kl(kl − 1), and the indegree is the sum of the edges from {xl+1}, Nl(xl+1)
and N̄l(xl+1).
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(a) Edges from {xl+1} (E1): From condition (4), the number of edges is less
than kl − 1.

(b) Edges between Nl(xl+1): From condition (4), |Nl(xl+1)| ≤ kl − 1. Then,
the number of edges is less than (kl − 1)(kl − 2) because no self-loop
occurs.

(c) Edges from N̄l(xl+1) (E5): From condition (5) and Lemma 1, the following
is satisfied:

Il(N̄l(xl+1)) = |E4| − (|E2| + |E5|) ≥ 0

Therefore, from condition (6), |E5| ≤ |E2| + |E5| ≤ |E4| ≤ kl(kl − 1)
holds.

Hence, the sum of the indegree is less than (kl−1)+(kl−1)(kl−2)+kl(kl−1) =
2k2

l − 3kl + 1. Then, the sum of the outdegree and indegree is less than
kl(kl − 1) + 2k2

l − 3kl + 1 = 3k2
l − 4kl + 1, and Il(Nl(xl+1)) ≤ 3k2

l − 4kl + 1.

Fig. 3. Grouping for proof of Theorem 1.

Therefore, after the l-th allocation, the following condition holds:

Il(V ) ≤ kl − 1 + kl(kl − 1) + 3k2
l − 4kl + 1 = 4k2

l − 4kl

The RR imbalance increment is 2 from Lemma 2, and kl = kl+1 because of con-
dition (4); thus, the following condition is satisfied after the l + 1-th allocation:

Il+1(V ) ≤ 4k2
l − 4kl + 2 = 4k2

l+1 − 4kl+1 + 2

which concludes the proof of Theorem 1. ��
Based on the above proof, when using the RRB algorithm, the upper bound

of the RR imbalance in the graph Gi is O(k2), when the maximum outdegree of
graph Gi is k and the number of people exceeds k2 + k + 1. By Theorem 1, even
if the number of people is large, when k = 5, we can know beforehand that the
upper bound becomes 4 · 52 − 4 · 5 + 2 = 82.
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6 Experiments

We experimentally compare the proposed algorithm under the adaptive alloca-
tion approach to an algorithm under the existing nonadaptive allocation app-
roach using two types of data. First, we describe the data characteristics, and
then, we describe a baseline and present the experimental results.

6.1 Experimental Data

We create experimental data based on the data published by Canvas Network1.
These data are comprised of de-identified data from March 2014 - September
2015 of Canvas Network open courses. In our experiments, we refer to those data
whose class ID is 770000832960949 and whose assignment ID is 770000832930436
(denoted as data 1) and those data whose class ID is 770000832945340 and
assignment ID is 770000832960431 (denoted as data 2). Figure 4 shows a plot of
the number of reviewers for each number of reviews from the datasets.

Then, we generate the requesting order because we cannot read it from the
Canvas Network data. The requesting order is generated as follows. We set the
probability that reviewer xi+1 is the same as the previous reviewer xi to P and
arrange the reviewers according to this probability. Note that when the previous
reviewer xi cannot review another work, the reviewer xi+1 is randomly selected
regardless of xi. For example, when P = 0, reviewer xi+1 is randomly chosen
regardless of the previous reviewer xi, and when P = 1, reviewer xi+1 is selected
to be the previous reviewer xi.

(a) data 1 (b) data 2

Fig. 4. The number of reviewers for each number of reviews.

6.2 Baseline

As a baseline, we utilize random allocations so that both the reviewing number
and the reviewed number for all people are the same before the assessment starts.
We denote this algorithm as Random. Most of the existing peer assessment

1 https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/
XB2TLU.

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/XB2TLU
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/XB2TLU
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systems adopt this allocation approach2,3. Note that we allow for new works to
be allocated to people who wish to review more than the predefined number of
works, similar to the study in [9]. In this experiment, we set the number of works
allocated to one person to 3.

(a) RR imbalance on data 1 (b) RR imbalance on data 2

Fig. 5. Experimental results (Color figure online)

6.3 Experimental Results

For each method, we generate 100 data points and apply the algorithms to
these data; then, we obtain the average value of the RR imbalance. The results
are shown in Fig. 5. The vertical axis represents the RR imbalance, and the
horizontal axis represents the probability value P . The two types of lines plotted
in each figure represent the following.

– RRB: Imbalance using the RRB algorithm (blue)
– Random: Imbalance using Random (orange)

The result shows that the proposed algorithm greatly outperforms the baseline.
We can confirm that the upper bound of the RR imbalance described in Sect. 5
is established because the maximum reviewing number is 4 in the both data, and
the upper bound of RR imbalance is 50. In addition, we can also see that the
performances of the proposed algorithm slightly deteriorate when probability P
is high; that is, the same reviewers continue reviewing.

7 Conclusion

In this study, we propose an allocation algorithm to achieve fair peer assessments
with respect to the number of reviews using an adaptive allocation approach
and considering a situation where dropout can occur during peer assessment.
We analyze the RRB algorithm theoretically and show its robustness. In future
work, we plan to propose a framework that could be useful throughout the peer
assessment process, including aggregating reviewer scores.
2 https://www.coursera.org.
3 https://www.edx.org.

https://www.coursera.org
https://www.edx.org
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Abstract. We investigate the expressive power and complexity ques-
tions for the LIKE operator in SQL. The languages definable by a single
LIKE pattern and generalizations are related to a well-known hierarchy
of classes of formal languages, namely the dot-depth hierarchy introduced
by Cohen and Brzozowski. Then we turn to natural decision problems
and show that membership is likely easier for LIKE patterns than for
more powerful regular expressions. Equivalence is provably harder for
general regular expressions. More complex conditions based on LIKE
patterns are also considered.

1 Introduction

Regular expressions conveniently support the analysis of software defects involv-
ing strings stored in a data base and the subsequent selection of test data for
checking the effectiveness of data cleansing. As an example take a list of values
separated by a special symbol. When manipulating strings of this form, it might
happen that separator symbols are stored consecutively or strings start with a
separator. This data corruption possibly leads to problems when displaying the
data or generating export files.

The full power of regular expressions is not required in many situations
encountered in practice. A very restricted variant of regular expressions we will
consider here are patterns for the LIKE operator available in SQL (Structured
Query Language) [1]. It admits defining patterns including constants and wild-
card symbols representing single letters or arbitrary strings. Since our investiga-
tions are motivated by defect analysis and test data selection, which by definition
may not modify data, we assume that new auxiliary columns for holding inter-
mediate values cannot be defined.

Continuing the example given above, we can select corrupt strings in an
obvious way even by LIKE patterns. After data cleansing, the same selections
can verify the correctness of the resulting data. It is known that LIKE pattern
matching can define star-free languages only [4, Section 4.2]. In Sect. 3 we will
explore what classes of languages known from the literature are characterized
by LIKE patterns and their boolean combinations.

A more extensive set of operations than those available with the LIKE opera-
tor (including concatenation and closure) is employed in classical regular expres-
sions studied in Theoretical Computer Science. An even more powerful set of

c© Springer Nature Switzerland AG 2019
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operations is offered by practical regular expressions, which may contain back
references [2]. The additional power of classical or practical regular expressions
is not for free. There decision problems appear to be more complex, with equiva-
lence of practical regular expressions even undecidable. These theoretical results
are supported by the observation that selections based on LIKE patterns can be
significantly more efficient than those utilizing regular expressions.

2 Preliminaries

For basic definitions related to formal languages, finite automata, and computa-
tional complexity we refer to [13].

The star-free languages are those regular languages obtained by replacing the
star-operator with complement in regular expressions. Cohen and Brzozowski
[5] defined a hierarchy of star-free languages according to the notion of dot-
depth. For an alphabet Σ = {a1, . . . , ak} the family E0 consists of the basic
languages {a1}, . . . , {ak}, {ε} (where ε denotes the empty string). If X is a family
of languages, then we denote by B(X) the boolean closure of X and by M(X)
the closure of X under concatenation. Define the following hierarchy of language
families:

B1 = B(E0)
Mn = M(Bn) for n ≥ 1
Bn = B(Mn−1) for n ≥ 2

Obviously, these families form a hierarchy:

E0 ⊆ B1 ⊆ M1 ⊆ B2 ⊆ M2 · · ·

The dot-depth d(R) for a language R is defined to be n if R ∈ Bn+1 \ Bn. In
[5] its is shown that the hierarchy is strict up to dot-depth 2 (B3), leaving open
whether the upper levels can be separated. This open problem was resolved in
[3] by showing that the hierarchy is strict.

The LIKE operator of SQL admits defining patterns in WHERE clauses
which can be matched against string valued columns. Each symbol represents
itself except for certain meta-characters, among which the most important is
% as a wildcard matching zero or more characters. Symbol is a substitute
for an arbitrary single character. Similarly, as further syntactic enhancements
(character sets and complements of such sets), the wildcard can be seen as a
(very convenient) shorthand for an enumeration of patterns for every symbol in
the alphabet. If wildcard symbols are required in a pattern, an escape symbol
can be declared that enforces a literal interpretation of % and .

The more powerful operator SIMILAR TO or the Oracle R© function REG-
EXP LIKE implement general regular expression matching in SQL (the latter
even for extended regular expressions).
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The following table compares different notations of the variants Practical
Regular Expressions (PRE), Classical Regular Expressions (CRE) [13], Star-
Free Expressions (SFE), and LIKE Patterns1:

PRE CRE SFEs LIKE Patterns

letter x x x x x

empty string impl. ε ε impl.

union | ∪, + ∪, + n/a

concatenation impl. impl., ◦, · impl., ◦, · impl.

closure ∗ ∗ n/a n/a

any character . Σ Σ

any string .∗ Σ∗ ∅ %

CRE and SFE include a notation for the empty set, which is not relevant for
practical purposes and thus does not have a counterpart in PRE or LIKE pat-
terns. PRE may include as “syntactic sugar” the notations [α1α2 . . . αn] for the
set of characters {α1, α2, . . . , αn} and [α1−αn] for the range of consecutive char-
acters α1 to αn (this assumes some specific encoding). Notation [ˆα1α2 . . . αn]
and [ˆα1 −αn] denote the complements of these sets of characters. Other exten-
sions are the notation e? that denotes zero or one occurrence of expression e
and e{n} that denotes exactly n occurrences. None of these operators increases
the expressive power of regular expressions, but they may lead to significantly
shorter expressions than possible with CRE.

One extension of PRE that goes beyond regular languages is the use of back
references. The k-th subexpression put into parentheses can be referenced by \k,
which matches the same string as matched by the subexpression.

For CRE the membership problem asks whether the entire input text matches
a given pattern. In practice we are more interested on one or even all substrings
within the input text matching the pattern. From the latter set of substrings the
answer to the decision problem can easily be derived and lower bounds above
polynomial time carry over (notice that the number of substrings of a text of
length n is

(
n+1
2

)
= Θ(n2)). We can enforce a match of a PRE α with the entire

input text by enclosing it into “anchors” and matching with ˆα$. Conversely, the
CRE Σ∗αΣ∗ simulates the PRE α. We conclude that upper and lower bounds
for CRE membership and PRE matching coincide.

Since LIKE patterns are rather restricted (see Sect. 3) we also consider
boolean formulas containing LIKE patterns (LIKE expressions) and boolean
formulas without negations (monotone LIKE expressions).

1 By ‘impl.’ we denote the implicit notation of the empty string or concatenation by
juxtaposition of neighboring symbols. Σ is not part of the syntax of CRE or SFE
but a common abbreviation.
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Definition 1. A language L ⊆ Σ∗ is LIKE-characterizable if it is a set of
strings satisfying a boolean combination of LIKE pattern matching conditions.

We summarize known complexity results for some decision problems related
to regular expressions:

PRE CRE SFE

matching,
membership

NP-complete [2,
Thm. 6.2]

NL-complete [9,
Thm. 2.2]

P-complete [12, Thm. 1]

equivalence undecidable [6,
Thm. 9]

PSPACE-
compl. [11,
Lem. 2.3]

NSPACE

(
22
. .
.2 )}

g(n)

g(n) = n [14] (u. b.)
g(n) = c·n

(log∗ n)2
[7] (l. b.)

non-emptiness ∈ ALOGTIME
(see CRE)

∈ ALOGTIME
[12, Intr.]

see equivalence

3 Expressive Power

In this section we briefly discuss the power of LIKE patterns and LIKE expres-
sions in comparison to the dot-depth hierarchy as defined in [5].

It is clear that the languages of family E0 can be characterized by LIKE
patterns of the form ai. Family B1 is incomparable to the languages characterized
by LIKE patterns: For an alphabet Σ with |Σ| ≥ 2 the language L1 = {a1, ε}
is clearly in B1 (a boolean combination of basic languages), but a LIKE pattern
characterizing a finite language can contain different words via only, which does
not allow for words of the different lengths. Thus L1 cannot be characterized by
a LIKE pattern. Conversely, the LIKE pattern 00 defines the language L2 =
{00}, which cannot be expressed as a boolean combination of basic languages.
Monotone LIKE expressions can describe all finite languages, but also all co-finite
languages. Therefore, B1 is properly contained in the languages characterized by
monotone LIKE expressions (separation by L2).

Every language in family B2 can be denoted in the form

�⋃

k=1

⎛

⎝

⎡

⎣
m(k)⋂

i=1

wk,i
0 Σ∗wk,i

1 Σ∗ · · · Σ∗wk,i
s(k,i)

⎤

⎦ ∩
⎡

⎣
n(k)⋂

j=1

uk,j
0 Σ∗uk,j

1 Σ∗ · · · Σ∗uk,j
t(k,j)

⎤

⎦

⎞

⎠

with wk,i
p , uk,j

q words and m(k), n(k), �, s(k, i), t(k, j) non-negative integers [5,
Lemma 2.8]. This representation translates directly to a LIKE expression. Given
a LIKE expression, every pattern containing wildcards can be replaced by an
enumeration of patterns substituting the alphabet symbols for wildcards. All
negations can be moved to the LIKE operators applying De Morgan’s laws. The
resulting expression characterizes a set in B2.
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We are thus led to the following observation:

Observation 1. The class of LIKE-characterizable languages coincides with the
class of languages of dot-depth 1.

An example of a star-free language shown to be of dot-depth 2 (and therefore
not LIKE-characterizable) is (0 + 1 + 2)∗02∗ from [5, Lemma 2.9].

Finally, we sketch why monotone LIKE expressions are weaker than general
LIKE expressions. We claim that monotone LIKE expressions cannot express
that strings are formed over a proper subset Σ′ of the underlying alphabet Σ
(which we assume to contain at least two symbols). Suppose a monotone LIKE
expression e can express this restriction. Choose a string w over Σ′ which is
longer than e. Then w matches e and at least one symbol of w matches wildcards
only. This symbol can be substituted by a symbol from Σ \ Σ′. The resulting
string still matches e, contradicting the assumption.

4 Computational Complexity

We first introduce a syntactical transformation of patterns that will simplify the
subsequent algorithms.

Definition 2. A LIKE pattern is called normalized, if it contains none of the
substrings % and %%.

Consider an arbitrary string w ∈ {%, }∗ consisting of wildcards. If w matches
a string over the base alphabet, then a string w′ containing the same number of
the symbol and a trailing % if and only if w contains % matches as well. Since
w′ is normalized we obtain:

Proposition 1. For every LIKE pattern there is an equivalent normalized LIKE
pattern.

Normalization cannot in general identify equivalent patterns. As an example take
the patterns %01% and %0%1% over the binary alphabet {0, 1}. Obviously, any
string matching the first pattern matches the second. But the converse is also
true, because there is a left-most 1 between the two constants of the pattern
(including the 1) and it is preceded by a 0. Over the alphabet {0, 1, 2}, the
patterns are separated by 021.

Lemma 1. LIKE patterns can be normalized in deterministic logarithmic space.

Proof. If the pattern contains to wildcard, it is normalized. A pattern con-
taining at least one wildcard can be written as x0w0 · · · xnwnxn+1 where
w0, . . . , wn ∈ {%, }+ and x0 · · · xn+1 ∈ Σ∗ for the underlying alphabet Σ.

A deterministic Turing machine M scans the input and directly outputs any
symbol from Σ. For every string wi of consecutive wildcards, the number m of
occurrences of is counted and a flag is maintained indicating the presence of
%. At the end of wi, machine M outputs m symbols and an optional % if the
flag is set.

Since M has to store counters bounded by the input length, it can do so in
logarithmic space if the counters are encoded in binary notation. ��
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Theorem 1. Matching with a LIKE pattern can be done in deterministic loga-
rithmic space.

Proof. If the pattern contains no %, in a single scan the constant symbols in
the pattern are compared and for every in the pattern a symbol in the text is
skipped.

By Lemma 1 we can assume that any LIKE pattern containing % has the form
p = a1%a2% · · · %an where ai ∈ Σ∗ ∗. We first argue that a greedy matching
strategy suffices for checking whether p matches a text t. Suppose in a given
matching i is minimal with the property that ai could be matched further to the
start of the text (but after ai−1). Then a new match can be obtained by moving
ai to the first occurrence. Carrying out this operation for all ai leads to a greedy
matching.

For every ai a left-most match can be determined by comparing the constant
part and shifting the position in the text if a mis-match occurs. Once an ai has
been matched, it is not necessary to reconsider it by the argument above.

In logarithmic space pointers into pattern and text can be stored and by
scanning p and t in parallel a greedy matching can be determined. ��

We have the following (weaker) lower bound for the membership problem:

Theorem 2. Matching with a LIKE pattern cannot be done by constant-depth,
polynomial-size, unbounded fan-in circuits (it is not in AC0).

Proof. Recall from [8] that the majority predicate on n binary variables is 1
if and only if more than half of the input values are 1. We map a given input
x for the majority predicate to the pattern %(1%)�(|x|+1)/2�. String x matches
the pattern only if x contains at least 	(|x| + 1)/2
 > |x|/2 symbols 1, which is
majority. By the result [8, Theorem 4.3] this predicate is not in AC0. ��

Since the evaluation of boolean formulas is possible in logarithmic space [10],
we obtain from Theorem 1:

Corollary 1. Matching with a LIKE expression can be done in deterministic
logarithmic space.

Considering equivalence of LIKE patterns, a test using syntactical properties
alone seems to be impossible because of the example given above.

Based on Theorem 1 we can obtain the following upper bound:

Corollary 2. Equivalence of LIKE patterns is in nondeterministic logarithmic
space.

Proof. Guess a separating text symbol by symbol and match with the given
patterns in logarithmic space. By the closure under complement of NL [13, The-
orem 8.27] the result follows. ��
Theorem 3. Nonemptiness of monotone LIKE expressions is complete in NP.
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Proof. For membership in NP consider a string w matching a given expression
e. We claim that there is no loss of generality in assuming |w| ≤ |e|. We fix a
matching of w by e. For every OR in expression e there has to be at least one
sub-expression matching w. We delete the other sub-expression and continue this
process until there is no OR left obtaining e′. Clearly |e′| ≤ |e|. Now we mark
every symbol of w matched by a constant or . At most |e′| symbols of w will
thus be marked and the others have to be matched by %. Deleting these symbols
yields a string w′ matching e with |w′| ≤ |e′| ≤ |e|. The NP algorithm simply
consists in guessing a string w with |w| ≤ |e|, writing it onto the work tape, and
checking membership according to Corollary 1.

For hardness we reduce the satisfiability problem of boolean formulas in
3-CNF (3SAT) to the nonemptiness problem. It is well-known that 3SAT is
complete in NP [13]. Let

F = (α1 ∨ β1 ∨ γ1) ∧ · · · ∧ (αm ∨ βm ∨ γm)

be a formula in CNF over variables x1, . . . , xn. The idea is to enumerate all
satisfied literals in a string that matches a monotone LIKE expression. We form
a set of LIKE patterns over the alphabet {x1, . . . , xn, x̄1, . . . , x̄n} that are joined
by AND:

– n (there are exactly n literals).
– For 1 ≤ i ≤ n an OR of the patterns xi and x̄i (for every variable at least

one literal is true).
– For every clause αk ∨ βk ∨ γk an OR of the patterns αk, βk, and γk (at least

one literal is true in every clause).

Suppose that F is satisfied by some assignment of boolean values to x1, . . . , xn.
Concatenate the satisfied literal for each variable to form a string to be matched.
This string clearly matches all patterns defined above. Conversely, if a string
matches all patterns it contains at least one literal per variable by the second
item. The length restriction to n symbols implies that exactly one literal per
variable is included. These literals define a truth assignment in the obvious way
and by the third item every clause is satisfied by this assignment. ��
Lemma 2. For a deterministic Turing machine M with input w and space
bound s(|w|), a LIKE expression e with the following properties can be con-
structed:

1. All LIKE conditions are negative.
2. The LIKE expression e is of size O(s2(|w|).
3. If M accepts w within space s(|w|), there is a single string matching e.
4. If M does not accept w within space s(|w|), the language described by e is

empty.

Proof. Without loss of generality we assume that M accepts with a blank tape
and the tape head on the left-most tape cell. We denote the input length by
n = |w|.
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In order to simplify the presentation we first use arbitrary LIKE conditions.
We encode a computation of M as a sequence of configurations over the alphabet
Γ ∪ Q (tape alphabet and set of states). A configuration uqv encodes the tape
inscription uv, current state q and head position on the first symbol of v. A com-
putation consisting of k steps is encoded as #c0#c1# · · · #ck#. Configuration
c0 is q0w followed by s(n) − n blanks and for i ≥ 1 configuration ci−1 yields ci

by M ’s transition function. We therefore identify the following patterns:

1. #c0#% (start configuration).
2. %#caccept# (accepting configuration).
3. For every δ(qi, b) = (qj , c, L) negative patterns aqib

s(n)def with def �= qjac.
4. For every δ(qi, b) = (qj , c, R) negative patterns aqib

s(n)def with def �= acqj .
5. Negative patterns abc s(n)d with a, b, c ∈ Γ ∪ {#} and b �= d (portions of the

tape not affected by the computation).

For each of the patterns in item 1 and 2 we can substitute (s(n) + 2)(|Γ | + |Q|)
equivalent negative patterns that exclude all but one symbol from Γ ∪ Q ∪ {#}
at position i with 1 ≤ i ≤ s(n) + 2 from the start resp. end of the string. ��
Lemma 3. Inequivalence of LIKE expressions can be decided nondeterministi-
cally in linear space.

Proof. For two given expressions guess a string symbol by symbol and mark
in every pattern the positions reachable by matching the guessed string. When
a separating string has been found, both expressions are evaluated and it is
checked that exactly one of the expressions matches. ��

The previous lemmas can be summarized in the following way:

Theorem 4. Equivalence of monotone as well as of arbitrary LIKE expressions
is complete in PSPACE.

Proof. By Savitch’s theorem [13, Theorem 8.5] the upper bound from Lemma3
yields deterministic algorithm in quadratic space. For the lower bound we observe
that complementing the expression from Lemma 2 for a polynomial space Turing
machine M results in a monotone expression that describes all strings if and only
if M does not accept its input. ��

5 Discussion

We investigated the expressive power and computational complexity of the LIKE
operator. For the more powerful monotone and general LIKE expressions we
classified the complexity of nonemptiness and equivalence in terms of well-known
complexity classes. In case of membership we could establish the upper bound
L (deterministic logarithmic space). This is believed to be of lower complexity
than the general membership problem for CRE, which is complete in NL [9].
Membership for a single LIKE pattern is not decidable by the highly parallel
AC0 circuits. It remains open, what the exact complexity of the latter problem
and inequivalence is.
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Abstract. We consider the dynamic graph coloring problem restricted
to the class of interval graphs. At each update step the algorithm is pre-
sented with an interval to be colored, or a previously colored interval
to delete. The goal of the algorithm is to efficiently maintain a proper
coloring of the intervals with as few colors as possible by an online algo-
rithm. In the incremental model, each update step presents the algo-
rithm with an interval to be colored. The problem is closely connected
to the online vertex coloring problem of interval graphs for which the
Kierstead-Trotter (KT) algorithm achieves the best possible competitive
ratio. We first show that a sub-quadratic time direct implementation of
the KT-algorithm is unlikely to exist conditioned on the correctness of
the Online Boolean Matrix Vector multiplication conjecture due to Hen-
zinger et al. [9]. We then design an incremental algorithm that is subtly
different from the KT-algorithm and uses at most 3ω − 2 colors, where
ω is the maximum clique in the interval graph associated with the set of
intervals. Our incremental data structure maintains a proper coloring in
amortized O(log n+Δ) update time where n is the total number of inter-
vals inserted and Δ is the maximum degree of a vertex in the interval
graph.

1 Introduction

The graph coloring problem is an extensively studied problem. Similarly, main-
tenance of data structures for dynamic graphs has been extensively studied.
The dynamic graph coloring problem is as follows: There is an online update
sequence of insertion or deletion of edges or vertices and the goal is to main-
tain proper coloring after every update. Several works [1,13,14] and [5] pro-
pose heuristic and experimental results on the dynamic graph coloring problem.
To the best of our knowledge, the only formal analysis of data structures for
dynamic graph coloring are [3,4,15], and [2]. Bhattacharya et al. give the cur-
rent best fully dynamic randomized algorithm which maintains Δ + 1 vertex
coloring in O(log Δ) expected amortized update time [4]. They also give the
current best deterministic algorithm which maintains Δ + o(Δ) vertex coloring
in O(polylogΔ) amortized update time [4].
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In this work we study dynamic data structures for coloring of interval graphs
when the input is an online update sequence of intervals. The goal is to effi-
ciently maintain a proper coloring with as few colors as possible by an online
algorithm. In our dynamic model, at each update step an interval is inserted or
deleted. Thus, a single update may insert or delete many edges in the underlying
interval graph. This is different from the commonly studied case in the area of
dynamic graph algorithms where on each update an edge is inserted or deleted.
In the incremental model intervals are inserted one after the other and we aim to
efficiently maintain a proper coloring using as few colors as possible after every
update. Our approach is to consider efficient implementations of well-studied
online algorithms for interval coloring. Note that an online algorithm is not
allowed to re-color a vertex during the execution of the algorithm. On the other
hand, an incremental algorithm is not restricted in anyway during an update
step except that we desire that the updates be done as efficiently as possible.
Naturally, an online algorithm is a good candidate for an incremental algorithm
as it only assigns a color to the current interval, and does not change the colour
of any of the other intervals. Online algorithms for interval coloring and its vari-
ants is a rich area with many results. Epstein et al. studied online graph coloring
for interval graphs [7]. They studied four variants of the problem: online inter-
val coloring with bandwidth, online interval coloring without bandwidth, lazy
online interval coloring with bandwidth, and lazy online interval coloring with-
out bandwidth. For online interval coloring with bandwidth, Narayanaswamy
presented an algorithm with competitive ratio 10 [12] and Epstein et al. showed
a lower bound of 3.2609 [7]. For lazy online interval coloring with bandwidth and
lazy online interval coloring without bandwidth, Epstein et al. proved that com-
petitive ratio can be arbitrarily bad for any online algorithm [7]. For the online
interval coloring problem, Kierstead and Trotter presented a 3 competitive algo-
rithm and they also proved that their result is tight [10]. In other words, The
online algorithm (KT-algorithm) due to Kierstead and Trotter [10] is known to
have the optimum competitive ratio. The tightness is by showing the existence
of an adaptive adversary that forces an online algorithm to use 3ω − 2 colors
where ω is the maximum clique size in the interval graph formed by the given
set of n intervals. On the other hand, the KT-algorithm uses at most 3ω −2 col-
ors. The KT-algorithm computes a proper coloring by assigning to each vertex a
color which is 2-tuple denoted by (level,offset). The value of level is in the range
[0, ω − 1] and the value of offset is from the set {1, 2, 3}. Further, all the vertices
whose level value is 0 form an independent set. Therefore, an efficient imple-
mentation of KT-algorithm gives us an incremental algorithm that maintains a
proper coloring with at most 3ω − 2 colors.

Our Work: In Sect. 2.2, we show that we are unlikely to be able to design a
sub-quadratic implementation of the KT-algorithm. The reason for this is that
the level value assigned to an interval depends on the size of the maximum clique
in the graph induced by the intervals intersecting with it. We show a reduction
from the Online Boolean Matrix-Vector Multiplication (OMv) problem [9] to
the problem of computing the induced subgraph of the neighbours of a vertex.
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By the conjecture on the OMv problem, it is unlikely to have a sub-quadratic
algorithm for the Induced Subgraph Computation problem. Thus, we believe
that any algorithm that depends on computing an induced subgraph is unlikely
to have a sub-quadratic dynamic algorithm, even when the graph is an inter-
val graph. We design an incremental algorithm which avoids this limitation by
using a different approach to compute level value for an interval. Thus, we differ
from KT-algorithm in computing the level value for an interval. However, our
algorithm uses the same number of colors as the KT-algorithm. Our incremental
algorithm (Theorem 1) supports insertion of a sequence of intervals in amortized
O(log n+Δ) update time. We have also considered the fully dynamic framework
in which an interval that has already been colored can be deleted, apart from the
insertions. At the end of each update, our aim is to maintain a 3ω − 2 coloring
of the remaining set of intervals, where ω is the maximum clique in the interval
graph associated with the remaining set of intervals. Our fully dynamic algo-
rithm supports insertion of an interval in O(log n + Δ log ω) worst case update
time and deletion of an interval in O(Δ2 log n) worst case update time, and this
will be included in the journal version of the work. Finally, the question of sig-
nificant interest to us is whether the dependence on Δ can be sub-linear in the
incremental case and whether it can be sub-quadratic in the fully dynamic case.
Another interesting direction is the nature of the trade-off between the number
of colors used and the update time if we allow a change of color assigned to an
interval.

2 Preliminaries

I denotes a set of intervals and the associated interval graph [8] is denoted
by G(I). For an undirected graph G, ω(G) denotes the size of the maximum
cardinality clique in G, Δ(G) denotes the maximum degree of a vertex in G
and χ(G) denotes the chromatic number of G. It is well-known that for interval
graphs ω(G) = χ(G). When the context is clear we denote ω(G) = χ(G) as ω
and Δ(G) as Δ.

2.1 Kierstead-Trotter Algorithm - Overview

Let σ = v1, v2, v3, . . . , vn be the ordering of vertices of an interval graph G =
G(I). Each vertex in σ is presented to an online algorithm as the corresponding
interval. Let I denote the set of intervals corresponding to the vertices and vertex
vj corresponds to the interval Ij ∈ I. We also refer to each vertex and interval
along with a subscript whose range is from 1 to n. For example, when we use vj

or Ij we mean the j-th vertex in σ. Throughout the paper, vj will be the vertex
corresponding to the interval Ij . For a given vertex vi from σ the algorithm
computes a color based on the color given to the vertices v1, . . . , vi−1. The color
assigned to a vertex v is a tuple of two values and is denoted as (p(v), o(v)). In
Step I, the first value called the level or position of the presented vertex denoted
by p(v), is computed, and in Step II the second value, called the offset denoted
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by o(v), is computed from the set {1, 2, 3}. The key property is that for each
edge {u, v}, the tuple (p(u), o(u)) is different from (p(v), o(v)).

Step I: For r ≥ 0, let Gr(vi) denote the induced subgraph of G on the ver-
tex set {vj |vj ∈ V (G), j < i, p(vj) ≤ r, (vi, vj) ∈ E(G)}. Define p(vi) =
min{r|ω(Gr(vi)) ≤ r}.

Key Properties maintained by Step I [10]:

– For each vertex vi, p(vi) ≤ ω − 1.
– Property P: The set {v|p(v) = 0} is an independent set. For each i, 1 ≤ i ≤

ω − 1, the subgraph of G induced on {vj | p(vj) = i} has maximum degree at
most 2.

Step II: Since there are at most two neighbours of vi such that their level is
p(vi), o(vi) is chosen to be the smallest value from the set {1, 2, 3} different from
the offset of these neighbours whose level is p(vi).

Analysis: All the vertices in level 0 form an independent set, and for all these
vertices the offset value is 1. For the vertices in levels 1 to ω − 1, maximum
degree is 2. Therefore, the algorithm uses at most 3 colors to color all the vertices
belonging to a particular level l where 1 ≤ l ≤ ω − 1. Hence, total colors used
by the algorithm is 1 + 3(ω − 1) = 3ω − 2.

Crucial Step in the Implementation of KT-Algorithm: Given a vertex
vi, the subgraph Gr(vi) is the induced subgraph among the neighbours of vi

which have level value at most r. Computing Gr(vi) is a very crucial step in
KT-algorithm for different values of r starting from r = 0 until the value of
r for which ω(Gr(vi)) ≤ r is true. In Sect. 3 we show that the search for such
an r can be done without computing the induced subgraphs Gr(vi), r ≥ 0. The
motivation for this line of research is the result in Sect. 2.2.

2.2 KT-Algorithm Must Avoid Computing Induced Subgraphs

In this Section we show that the problem of computing the induced subgraph of
the closed neighbourhood of a set of vertices is unlikely to have a sub-quadratic
time algorithm. The input to the Induced Neighbourhood Subgraph Computation
problem consists of the adjacency matrix M of a directed graph and a set S of
vertices. The aim is to compute the graph induced by Nout(S)∪S and output the
subgraph as adjacency lists. Here Nout(S) is the set of those vertices which have a
directed edge from some vertex in S. In other words, there is a directed edge from
vj to vk iff the entry M [k][j] is 1. Next we show that Induced Neighbourhood
Subgraph Computation problem is at least as hard as the following problem.

Online Boolean Matrix-Vector Multiplication [9]: The input for this online
problem consists of an n × n matrix M , and a sequence of n boolean column
vectors v1, . . . , vn, presented one after another to the algorithm. For each 1 ≤
i ≤ n − 1, the online algorithm should output M · vi before vi+1 is presented to
the algorithm. Note that in this product, a multiplication is an AND operation
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and the addition is an OR operation. According to the OMv conjecture, due to
Henzinger et al. [9], the Online Boolean Matrix-Vector Multiplication problem
does not have a O(n3−ε) algorithm for any ε > 0. The current best algorithm
for the Online Boolean Matrix-Vector Multiplication problems has an expected
running time of O( n3

2
√

log n ) [11].
We now show that an algorithm to solve the Induced Neighbourhood Sub-

graph Computation problem can be used to solve the Online Boolean Matrix-
Vector Multiplication problem. Let A be an algorithm for the Induced Neigh-
bourhood Subgraph Computation problem with a running time of O(n2−ε), for
some ε > 0. Then, we use algorithm A to solve the Online Boolean Matrix-
Vector Multiplication problem in O(n3−ε) time as follows: Let M be the input
matrix for the Online Boolean Matrix-Vector Multiplication problem and let
V1, . . . Vn be the column vectors presented to the algorithm one after another.
For the column vector Vi, let set Si = {vj |Vi[j] = 1, 0 ≤ j ≤ n − 1}. To compute
M · Vi, we invoke A on input {M,Si}. Let GSi

denote the induced subgraph on
Nout(Si) ∪ Si ⊆ V computed by the algorithm A. Note that GSi

is an induced
subgraph of the directed graph whose adjacency matrix is M . To output the
column vector M · Vi, we observe that the j-th row in the output column vec-
tor is 1 if and only if vj ∈ GSi

and there is an edge (u, vj) in GSi
such that

u ∈ Si. Given that GSi
has been computed in O(n2−ε) time, it follows that the

number of edges in GSi
is O(n2−ε) and consequently the column vector M · Vi

can be computed in O(n2−ε) time. Therefore, using the O(n2−ε) algorithm A we
can solve Boolean Matrix-Vector Multiplication problem in O(n3−ε) time. If we
believe that the OMv conjecture is indeed true, then it follows that the Induced
Neighbourhood Subgraph Computation problem cannot have a n2−ε algorithm
for any ε > 0. This conditional lower bound on the Induced Neighbourhood
Subgraph Computation problem deters us from coming up with a direct imple-
mentation of the KT algorithm for the incremental setting of the online interval
coloring problem. In the following section we design an online interval coloring
algorithm that avoids an explicit computation of the induced subgraph on the
neighbourhood of an input interval.

3 An Incremental Data Structure for Interval Coloring

In this section we present an incremental algorithm which is essentially an imple-
mentation of the KT-algorithm [10]. The subtle difference is that our algorithm
has a different definition of the level value of an interval. The level value that
we assign is at most the level value assigned by the KT-algorithm, and thus
our algorithm uses the same number of colors as the KT-algorithm. Let W =
{0, 1, . . . , ω − 1}. We use L(vi) ∈ W to denote the level value computed by our
algorithm and p(vi) to denote the level value computed by the KT-algorithm.
To compute the offset value o(vi) we use the same approach as KT-algorithm
as described in Sect. 2.1. We design appropriate data structures to compute the
level L(v) and the offset o(v) associated with a vertex v.

For a set of intervals J , define the set levels(J ) = {L(vj) ∈ W|Ij ∈ J } to
be set of levels assigned to intervals in J . Recall from Sect. 2 that vj is the j-th
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vertex in σ. Let t be a non-negative real number and It be the set of all intervals
in I which contain the point t. Define ht = min({y ∈ W|y /∈ levels(It)}) i.e. ht

is the smallest non-negative integer which is not the level value for any interval
containing t. If ht ≥ 1, then the Supporting Line Segment (SLS) at t is defined
to be the set et = {(t, 0) . . . (t, ht − 1)}, and ht is called the height of SLS et.

3.1 Insertion

We show in Lemma 2 that the level L(vi) of interval Ii, which is given by the
maximum height of the SLS at any point contained in Ii, is at most p(vi). We
prove in Lemma 3 that level values computed by our algorithm satisfy Property
P (described in Sect. 2.1). We also prove using Lemma 1 that the L(vi) can be
computed based on the height of the SLS at finite set of points in interval Ii.
This proof is one of our key contributions. In particular, we show that the finite
set of points that we need to consider in interval Ii is the set of endpoints of
the intervals intersecting with Ii. For n intervals we have at most 2n distinct
endpoints and we denote this set of endpoints by E . Therefore, on insertion of
interval Ii, we first compute the set S of endpoints which are in Ii. We then
query the height of the SLS at each of the points in S and take the SLS with
maximum height to compute L(vi).

Insertion Algorithm: Let Ii = [li, ri] be the interval that is inserted in the
current update step. Our algorithm computes the color (L(vi), o(vi)) by imple-
menting Step 1 and Step 2 as described below:

1. Computing L(vi):
Step 1: Insert li and ri into the set E .
Step 2: Compute S = E ∩ Ii. For each t ∈ S, compute ht, the height of the
SLS et at t. Let L(vi) = max

t∈S
ht.

Step 3: Update the SLS et for each point t ∈ S.
2. Computing o(vi): We prove in Lemma 3 that level values computed by our

algorithm in Step I satisfy Property P. From Property P, vi has at most two
neighbours whose levels are L(vi). We compute o(vi) to be that value from
the set {1, 2, 3} that is different from the offset values of the neighbours of vi

which have the level L(vi).

Proof of Correctness: As mentioned before the description of the algorithm,
the correctness of the insertion algorithm follows from the Lemmas 1, 2, and 3.
In the following Lemma, we show that it is sufficient to use the endpoints of the
intervals to compute the level of an interval.

Lemma 1. Let t be a non-negative real number and let It be the set of intervals
that contain t. Then there exists at least one endpoint in the set E which is
contained in each interval in It. Further, the height of the SLS at this endpoint
is at least the height of the SLS at t.
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Proof. If t is an endpoint of an interval, then t ∈ E and hence the Lemma is
proved. Suppose t is not an endpoint. Let lt denote the largest left endpoint
among all the intervals in It and rt denotes the smallest right endpoint among
all the intervals in It. By definition, lt ∈ E and rt ∈ E . Since It is a set of
intervals, it follows that lt and rt are present in all the intervals in It. Further,
since both lt and rt are present in each interval in It, it follows that the set of
intervals that contain them is a superset of It. Therefore, the height of the SLS
at lt and rt is at least the height of the SLS at t. Hence the Lemma. �	

From the description in Sect. 2.1 we know that the level of vi computed by
the KT-algorithm is given by p(vi) = min{r|ω(Gr(vi)) ≤ r}. In our algorithm,
we define L(vi) to be the maximum height of the SLS at any point contained in
vi. In the following Lemma we prove L(vi) ≤ p(vi).

Lemma 2. For each i ∈ [n], p(vi) is at least the maximum height of the SLS at
any point in the interval Ii.

Proof. By definition, L(vi) is the maximum height of SLS at any point contained
in vi. By the definition of the height of an SLS at a point t, we know that for
each 0 ≤ r ≤ ht − 1 there is an interval v ∈ It such that L(v) = r, and all
these intervals form a clique of size ht. Therefore, it follows that GL(vi)(vi) has
a clique of size at least L(vi). Therefore, it follows that p(vi) ≥ L(vi). Hence the
Lemma. �	

Lemma 3. Our algorithm satisfies Property P and thus uses at most 3ω − 2
colors.

Proof. We first prove that the set {vj |L(vj) = 0} is an independent set. Suppose
not, and let two vertices vi and vj be adjacent and both have level values 0.
Without loss of generality, let us assume that vi appeared before vj in σ. There-
fore, at the time when vj is presented to the algorithm, there is an endpoint
of vi contained in vj where the height of the SLS is non-zero. Therefore, the
insertion algorithm does not assign L(vj) to be 0. Therefore, {v|L(v) = 0} is an
independent set. Further, for each 1 ≤ l ≤ ω − 1, the same argument is used
to show that for each pair of intervals Ii and Ik corresponding to two distinct
vertices in {vj | L(vj) = l}, Ii 
⊆ Ik. We prove that for each l, 1 ≤ l ≤ ω − 1,
the subgraph of G induced on {vj |L(vj) = l} has maximum degree at most 2.
Suppose not, and if some vertex is of degree 3 in level l. We know that for two
vertices with the same level value, the corresponding intervals cannot have a
containment relationship between them. Therefore, it follows that the vertex of
degree 3 is in a clique of 3 vertices in level l. Let vi, vj , and vk be the clique of 3
vertices in level l. The intervals corresponding to the three vertices are such that
one of the intervals is contained in the union of the other two. Therefore, one of
the 3 intervals contains a point t for which the SLS has height l+1. Consequently,
all the 3 intervals cannot be assigned the same level value. Therefore, for each
level l, the maximum vertex degree in the graph induced on {vj |L(vj) = l} is at
most 2.
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Since we have proved that the level value computed by our algorithm satisfies
Property P, we use the same procedure as KT-algorithm (described in Sect. 2.1)
to compute the offset value. From Lemma 2, we know that for any interval vi,
we have L(vi) ≤ p(vi). Therefore, maximum level value of any vertex is ω − 1.
For level 0 we use one color and for every other level we use 3 colors. Therefore,
total colors used by our algorithm is 3(ω − 1) + 1 = 3ω − 2. Hence the Lemma.

�	

3.2 Implementation of the Incremental Algorithm

We use the following data structures in our incremental algorithm.

1. I of type Interval Tree: Every interval Ii is of the form [li, ri] where li
denotes the left endpoint of the interval and ri denotes the right endpoint
of the interval. We maintain all the vertices corresponding to the intervals in
I in an interval tree I. For every vi, along with maintaining the endpoints
{li, ri}, we also maintain the level L(vi) and offset o(vi).

2. Vt of type dynamic array, V ′
t of type dynamic array, and Zt of type

doubly linked list: We maintain the supporting line segment et at point
t and the height of supporting line segment ht using dynamic arrays Vt, V ′

t

and doubly linked list Zt. If the supporting line segment et intersects with
an interval whose level value is i then we set Vt[i] to 1, otherwise we set
Vt[i] to 0. We define the height ht of the supporting line segment et as the
index of the first 0 in Vt. To maintain ht, we define a doubly linked list Zt

which stores every index i in Vt where Vt[i] is 0 in the increasing order of
the value of i. Note that the value stored at the head node of Zt is ht. We
augment Zt with another dynamic array V ′

t . For an index i, if Vt[i] is 0 then
V ′

t [i] stores a pointer to the node in Zt which stores the index i. If Vt[i] is
1 then V ′

t [i] stores NULL. Therefore, using the dynamic array V ′
t , insert,

delete, and search operation in Zt can be performed in constant time. Since
our algorithm is incremental, the dynamic arrays only expand. Insertion into
a dynamic array takes amortized constant time [6]. The size of the array Vt is
the length of Vt. During insertion, whenever size of Vt is increased, size of V ′

t

is also increased and appropriate nodes are inserted in Zt. A Query for the
value of ht can be answered in constant time by returning the value stored
in head node of Zt. Due to an insert if ht changes, then we need to change
the head node of Zt to the next node in the list and delete the previous head
node of Zt. This operation also takes constant time.

3. E of type Interval Tree: We maintain the set of endpoints (E) as an interval
tree. For every interval Ii = [li, ri], we maintain the left endpoint and the right
endpoint as interval [li, li] and [ri, ri] respectively in E .

4. T of type Map with domain as integers and range as Interval Tree:
We use the interval tree T [h] for maintaining the intervals at level h to enable
allocation of the offset values to the intervals whose level is h.
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3.3 Analysis of the Incremental Algorithm

Let Ii = [li, ri] be the interval inserted in the current update step. We analyse
our algorithm by computing the time required in every step.

1. Computing L(vi):
Step 1: Ii = [li, ri] is inserted into I. Let I l

i = [li, li]. We check if I l
i is present

in E by an intersection query. This query takes O(log n) time in the worst
case.

– If I l
i is in E . Then proceed to Step 2.

– If I l
i is not in E . We use the procedure GET-SLS (I, li) to create the SLS

eli at endpoint li. The procedure GET-SLS works as follows :
It performs an intersection query on I with I l

i . The query returns all
the intervals in I which contains I l

i . Let IIl
i

denote the set returned
by the intersection query. The worst case time required for this query
is O(log |I| + |IIl

i
|). We create dynamic arrays Vli and V ′

li
, each of size

max(levels(IIl
i
)). For every i in the range [0,max(levels(IIl

i
))], we set

Vli [i] = 1 if i ∈ levels(IIl
i
) and Vli [i] = 0 otherwise. For every Vli [i] = 0,

we insert a node to the doubly linked list Zli storing index i and store
the pointer to that node in V ′

li
[i]. For every Vli [i] = 1, we store a NULL

in V ′
li
[i]. Time taken for creating the dynamic arrays and the associated

linked list is O(max(levels(IIl
i
))). Since max(levels(IIl

i
)) ≤ ω, time taken

for the operations on dynamic arrays and associated linked list is O(ω).
Total time taken by procedure GET-SLS (I, li) is O(log |I| + |IIl

i
|) +

O(ω) = O(log |I| + |IIl
i
| + ω). At any level, eli intersects with at most 2

intervals and we have ω many levels. Hence, |IIl
i
| = O(ω). Again, |I| ≤

2n. Therefore, time taken by procedure GET-SLS in the worst case is
O(log n + ω).

Same processing is repeated for Ir
i = [ri, ri]. Therefore, we have the following

Lemma.

Lemma 4. Worst case time taken by Step 1 in computing L(vi) of interval vi

is O(log n + ω).

Step 2: We use procedure MAX-HEIGHT-OF-SLS-IN-INTERVAL(E , vi) for
this step. The procedure works as follows: It performs an intersection query of
Ii=[li, ri] on E . This query returns the set S of all the endpoints that intersect
with Ii. The worst case time taken by intersection query is O(log |E| + |S|).
Further, finding the height of the SLS at one endpoint in S takes constant time.
Therefore, finding the maximum height of the SLS at any point in S takes time
O(|S|). Let h denote the maximum height for any endpoint t ∈ S. Therefore,
the level value of Ii, L(vi) is set to h. Since Δ is the maximum degree in the
graph, any interval Ii can intersect with at most Δ intervals. Therefore, |S| =
O(Δ). Again, |E| ≤ 2|I| ≤ 2n. Thus the worst case time taken by Step 2 is
O(log n + Δ). Therefore, we have the following Lemma.

Lemma 5. Worst case time taken by Step 2 in computing L(vi) of vertex vi is
O(log n + Δ).
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Step 3: We use procedure UPDATE-END-POINTS (S,L(vi)) to perform this
step. The procedure works as follows:

We use the set S and the level value L(vi) of vi computed in Step 2 to update
the endpoints. Let l = L(vi). For every endpoint t ∈ S we do the following: We
check the length of Vt which is the size of the array Vt in constant time.

(a) Case A: If l < len(Vt). In this case, we set Vt[l] to 1. We use the pointer
in V ′

t [l] to delete the node in Zt storing the value l and set V ′
t [l] to NULL.

If deleted node in Zt was the head node, then we update the head node to
the next node in Zt and thus the value of ht also gets updated. All these
operations take constant time in the worst case.

(b) Case B: If l ≥ len(Vt). In this case, we use the standard doubling technique
for expansion of dynamic arrays [6] until len(Vt) becomes strictly greater
than l. We also expand V ′

t along with Vt and insert appropriate nodes to
Zt. Following the standard analysis for dynamic array expansion as shown
in [6], one can easily show that all these steps take amortized constant time.
Once len(Vt) > l, the remaining operations are same as in the case A.

To analyse the time required in Step 3, we observe that every update must
perform the operations as described in case A. We refer to these operations
as task M (M stands for mandatory). Some updates have to perform additional
operations as described in case B. We refer to these operations as task A(A
stands for additional). The time taken by each update to perform task M is
|S| ×O(1) = O(|S|). Since Δ is the maximum degree, hence |S| ≤ Δ. Therefore,
every update takes O(Δ) time to perform task M in the worst case. To analyse
the time required to perform task A, we crucially use the fact that our algorithm
is incremental and hence only expansions of the dynamic arrays take place.
Since ω is the size of the maximum clique, it follows that the maximum size
of a dynamic array throughout the entire execution of the algorithm is upper
bounded by 2ω. Over a sequence of n insertions, the total number of endpoints
is upper bounded by 2n. Therefore, we maintain at most 4n dynamic arrays.
For every such array, total number of inserts in the array and the associated
doubly linked list is at most 2ω in the entire run of the algorithm. An insertion
into the dynamic array takes constant amortized time and insertion into doubly
linked list takes constant worst case time. Therefore, during the entire run of
the algorithm total time required to perform task A on one dynamic array and
its associated doubly linked list is O(ω). This implies that during the entire run
of the algorithm total time spent on task A over all the updates is ≤ 4n × O(ω).
Let T be total time spent on Step 3 at the end of n insertions. This is the sum
of the total time for task A and the total time in task M. Therefore,

T ≤ 4n × O(ω) + n × O(Δ)
T ≤ 4n × O(Δ) + n × O(Δ) [since ω ≤ Δ + 1]
Therefore, T = O(nΔ) and we have the following Lemma.

Lemma 6. The Amortized time taken by Step 3 in computing L(vi) of vertex
vi is O(Δ).
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2. Computing o(vi):
We have assigned level L(vi) to interval Ii. We use the map T to assign color
to interval Ii. If T [L(vi)] is NULL, then we create an interval tree T [L(vi)]
with vi as the first node. This takes constant time. Otherwise, T [L(vi)] gives
us the interval tree which stores all the intervals at level L(vi). We perform
an intersection query on T [L(vi)] with Ii to obtain all the intervals that
intersect with Ii. From Property P, the maximum intervals returned by the
above query is 2. Therefore, worst case time taken by the intersection query
is O(log |I| + 2) = O(log n + 2) = O(log n). o(vi) is the smallest color from
{1, 2, 3} not assigned to any of the at most two neighbours of vi in level L(vi).

Thus we have the following Lemma.

Lemma 7. Computing the offset value of the vertex vi with level value L(vi)
takes O(log n) time in the worst case.

The amortized update time of our incremental algorithm is given by the
following theorem.

Theorem 1. There exist an incremental algorithm which supports insertion of
a sequence of n intervals in amortized O(log n + Δ) time per update.

Proof. For interval graphs, it is well known that ω = χ(G) ≤ Δ + 1. Therefore,
using Lemmas 4, 5, 6 and 7, we conclude that total time taken by our incremental
algorithm for insertion of n intervals is:

T = Total time for Step 1 + Total Time for Step 2 + Total Time for Step 3 +
Total time for computing offset

T = n × O(log n + ω) + n × O(log n + Δ) + n × O(Δ) + n × O(log n)
T = O(n log n + nΔ)
Therefore, the amortized update time over a sequence of n interval insertions

is O(log n + Δ). �	
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Abstract. In this paper, we study the Maximum Happy Vertices and
the Maximum Happy Edges problems (MHV and MHE for short). Very
recently, the problems attracted a lot of attention and were studied in
Agrawal ’17, Aravind et al. ’16, Choudhari and Reddy ’18, Misra and
Reddy ’17. Main focus of our work is lower bounds on the computational
complexity of these problems. Established lower bounds can be divided
into the following groups: NP-hardness of the above guarantee parame-
terization, kernelization lower bounds (answering questions of Misra and
Reddy ’17), exponential lower bounds under the Set Cover Conjec-
ture and the Exponential Time Hypothesis, and inapproximability
results. Moreover, we present an O∗(�k) randomized algorithm for MHV
and an O∗(2k) algorithm for MHE, where � is the number of colors used
and k is the number of required happy vertices or edges. These algorithms
cannot be improved to subexponential taking proved lower bounds into
account.

1 Introduction

In this paper, we study Maximum Happy Vertices and Maximum Happy
Edges. The problems are motivated by a study of algorithmic aspects of homo-
phyly law in large networks and were introduced by Zhang and Li in 2015 [21].
The law states that in social networks people are more likely to connect with
people they like. Social network is represented by a graph, where each vertex cor-
responds to a person of the network, and an edge between two vertices denotes
that the corresponding persons are connected within the network. Furthermore,
we let vertices have a color assigned. The color of a vertex indicates type, char-
acter or affiliation of the corresponding person in the network. An edge is called
happy if its endpoints are colored with the same color. A vertex is called happy
if all its neighbours are colored with the same color as the vertex itself. Equiv-
alently, a vertex is happy if all edges incident to it are happy. Formal definition
of Maximum Happy Vertices and Maximum Happy Edges is the following.
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Maximum Happy Vertices (MHV)
Input: A graph G, a partial coloring of vertices p : S → [�] for some

S ⊆ V (G) and an integer k.
Question: Is there a coloring c : V (G) → [�] extending partial coloring p such

that the number of happy vertices with respect to c is at least k?

Maximum Happy Edges (MHE)
Input: A graph G, a partial coloring of vertices p : S → [�] for some

S ⊆ V (G) and an integer k.
Question: Is there a coloring c : V (G) → [�] extending partial coloring p such

that the number of happy edges with respect to c is at least k?

Recently, MHV and MHE have attracted a lot of attention and were studied
from parameterized [1–4,18] and approximation [19–22] points of view as well
as from experimental perspective [17].

NP-hardness of MHVand MHE was proved by Zhang and Li even in case
when only three colors are used. Later, Misra and Reddy [18] proved NP-
hardness of both MHV and MHE on split and on bipartite graphs. However,
MHV is polynomially time solvable on cographs and trees [2,18]. Approxima-
tion results for MHV are presented in Zhang et al. [22]. They showed that
MHV can be approximated within 1

Δ+1 , where Δ is the maximum degree of

the input graph, and MHE can be approximated within 1
2 +

√
2
4 f(�), where

f(�) = (1−1/�)
√

�(�−1)+1/
√
2

�−1+1/2� . From parameterized point of view the following
parameters were studied: pathwidth [1,3], treewidth [1,3], neighbourhood diver-
sity [3], vertex cover [18], distance to clique [18], distance to threshold graphs
[4]. Kernelization questions were studied in works [1,13]. Agrawal [1] provided
a O(k2�2) kernel for MHV where � is the number of colors used and k is the
number of desired happy vertices. Independently, Gao and Gao [13] present
2k�+k + k� + k + � kernel for general case and 7(k� + k) + � − 10 in case of
planar graphs.

Short summary of our results can be found below.

No polynomial kernels: If NP �⊆ coNP/poly then there are no poly-
nomial kernels for MHV parameterized by ver-
tex cover, and no polynomial kernels for MHE
under the following parameterizations: number
of uncolored vertices, number of happy edges,
and distance to almost any reasonable graph
class. Moreover, under NP �⊆ coNP/poly, there
is no O((kd�)2−ε) and no O((kdh)2−ε) bitsize
kernel for MHV. Note that these results answer
question from [18]: “Do the Maximum Happy
Vertices and Maximum Happy Edges prob-
lems admit polynomial kernels when parameter-
ized by either the vertex cover or the distance to
clique parameters?”
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Above guarantee: Above-greedy versions of MHV and MHE are
NP-complete even for budget equal 1.

Exponential lower bounds: Assuming the Set Cover Conjecture, MHV and
MHE do not admit O∗((2 − ε)n′

) algorithms,
where n′ is the number of uncolored vertices in
the input graph. Even with � = 3, there is no
2o(n+m) algorithm for MHV and MHE, unless
ETH fails.

Innaproximability: Unless P = NP, MHV does not admit
approximation algorithm with factors O(n

1
2−ε),

O(m
1
2−ε), O(h1−ε), O(�1−ε), for any ε > 0.

Algorithms: We present O∗(�k) randomized algorithm for
MHV and O∗(2k) algorithm for MHE. Running
time of this algorithms match with the corre-
sponding lower bounds. We should note that an
algorithm with the running time of O∗(2k) for
MHE was also presented by Aravind et al. in [3].

2 Preliminaries

Basic Notation. We denote the set of positive integer numbers by N. For each
positive integer k, by [k] we denote the set of all positive integers not exceeding
k, {1, 2, . . . , k}. We use � for the disjoint union operator, i.e. A�B equals A∪B,
with an additional constraint that A and B are disjoint.

We use traditional O-notation for asymptotical upper bounds. We addition-
ally use O∗-notation that hides polynomial factors. Many of our results con-
cern the parameterized complexity of the problems, including fixed-parameter
tractable algorithms, kernelization algorithms, and some hardness results for cer-
tain parameters. For detailed survey in parameterized algorithms we refer to the
book of Cygan et al. [7].

Throughout the paper, we use standard graph notation and terminology,
following the book of Diestel [11]. All graphs in our work are undirected simple
graphs. We may refer to the distance to G parameter, where G is an arbitrary
graph class. For a graph G, we say that a vertex subset S ⊆ V (G) is a G
modulator of G, if G becomes a member of G after deletion of S, i.e. G \ S ∈ G.
Then, the distance to G parameter of G is defined as the size of its smallest G
modulator.

Graph Colorings. When dealing with instances of Maximum Happy Ver-
tices or Maximum Happy Edges, we use a notion of colorings. A coloring of
a graph G is a function that maps vertices of the graph to the set of colors. If
this function is partial, we call such coloring partial. If not stated otherwise, we
use � for the number of distinct colors, and assume that colors are integers in
[�]. A partial coloring p is always given as a part of the input for both problems,
along with graph G. We also call p a precoloring of the graph G, and use (G, p)
to denote the graph along with the precoloring. The goal of both problems is to
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extend this partial coloring to a specific coloring c that maps each vertex to a
color. We call c a full coloring (or simply, a coloring) of G that extends p. We
may also say that c is a coloring of (G, p). For convenience, introduce the notion
of potentially happy vertices, both for full and partial colorings.

Definition 1. We call a vertex v of (G, p) potentially happy, if there exists a
coloring c of (G, p) such that v is happy with respect to c. In other words, if u
and w are precolored neighbours of v, then p(u) = p(w). We denote the set of
all potentially happy vertices in (G, p) by H(G, p).

By Hi(G, p) we denote the set of all potentially happy vertices in (G, p) such
that they are either precolored with color i or have a neighbour precolored with
color i:

Hi(G, p) = {v ∈ H(G, p) | N [v] ∩ p−1(i) �= ∅}.

In other words, if a vertex v ∈ Hi(G, p) is happy with respect to some coloring
c of (G, p), then necessarily c(v) = i.

For a graph with precoloring (G, p), by h = |H(G, p)| we denote the number
of potentially happy vertices in (G, p). Note that if c is a full coloring of a graph
G, then |H(G, c)| is equal to the number of vertices in G that are happy with
respect to c.

Due to lack of space, we omit proofs of some theorems and lemmata. We
mark such theorems and lemmata with the ‘�’ sign. Missing proofs can be found
in the full version of the paper.

3 Polynomial Kernels for Structural Graph Parameters

In this section, we study existence of polynomial kernels for MHV or MHE under
several parameterizations. We start with proving lower bounds for structural
graph parameters. We provide reductions to both MHV and MHE from the
following problem.
Bounded Rank Disjoint Sets [4]
Input: A set family F over a universe U with every set S ∈ F having size

at most d, and a positive integer k.
Question: Is there a subfamily F ′ of F of size at most k such that every pair

of sets S1, S2 in F ′ we have S1 ∩ S2 = ∅?

Theorem 1 ([12]). Bounded Rank Disjoint Sets parameterized by kd does
not admit a polynomial compression even if every set S ∈ F consists of exactly
d elements and |U | = kd, unless NP ⊆ coNP/poly.

The following two theorems answer open questions posed in [18].

Theorem 2. Maximum Happy Vertices parameterized by the vertex cover
number does not admit a polynomial compression, unless NP ⊆ coNP/poly.



494 I. Bliznets and D. Sagunov

Proof. We give a polynomial reduction from the Set Packing problem, such
that the vertex cover number of the constructed instance of MHV is at most
the size of the universe of the initial instance of Set Packing plus one. Since
Bounded Rank Disjoint Sets is a special case of Set Packing, from The-
orem 1 the theorem statement will then follow. The reduction is as follows.

Given an instance (U = [n],F = {S1, S2, . . . , Sm}, k) of Set Packing, con-
struct an instance (G, p, k) of MHV. For each i ∈ U , introduce vertex ui in
G and left it uncolored. For each set Sj ∈ F , introduce a vertex sj in G and
precolor it with color j, i.e. p(sj) = j. Thus, the set of colors used in precoloring
p is exactly [m]. Then, for each i ∈ [n] and j ∈ [m] such that i ∈ Sj , introduce
an edge between ui and sj in G. Additionally, introduce two vertices t1 and t2 to
G and precolor them with colors 1 and 2 respectively. Then, introduce an edge
(t1, t2) to G and for every i ∈ [n] and j ∈ [2], introduce an edge (ui, tj) in G.
Thus, vertices t1 and t2 never become happy and ensure that ui never become
happy for any i ∈ [n]. Finally, set the number of required happy vertices to k.
Observe that {u1, . . . , un} ∪ {t1} forms a vertex cover of G, hence the vertex
cover number of G is at most n + 1.

We now claim that (U,F , k) is a yes-instance of Set Packing if and only
if (G, p, k) is a yes-instance of MHV. Let Si1 , Si2 , . . . , Sik be the answer to
(U,F , k), i.e. Sip ∩ Siq = ∅ for every distinct p, q ∈ [k]. Since Si1 , Si2 , . . . , Sik

are disjoint, si1 , si2 , . . . , sik do not have any common neighbours in G. Hence,
we can extend coloring p to coloring c in a way that si1 , si2 , . . . , sik are happy
with respect to c (c(ui) is then, in fact, the index of the set containing ui, i.e.
ui ∈ Sc(ui)). At least k vertices become happy in G, hence (G, p, k) is a yes-
instance of MHV.

In the other direction, let c be a coloring of G extending p so that at least
k vertices in G are happy with respect to c. Only vertices that can be happy
in (G, p) are vertices of type si, hence there are vertices si1 , si2 , si3 , . . . , sik that
are happy in G with respect to c. Since these vertices are precolored with pair-
wise distinct colors and are simultaneously happy, they may have no common
neighbours in G. This implies that the corresponding sets of the initial instance
Si1 , Si2 , . . . , Sik are pairwise disjoint. Hence, they form an answer to the initial
instance (U,F , k) of Set Packing. This completes the proof. ��
Theorem 3. Maximum Happy Edges parameterized by the number of uncol-
ored vertices or by the number of happy edges does not admit a polynomial com-
pression, unless NP ⊆ coNP/poly.

Proof. As in the proof of Theorem 2, we again provide a polynomial reduction
from Bounded Rank Disjoint Sets and then use Theorem 1. In this proof
though, we will use the restricted version Bounded Rank Disjoints Sets
problem itself (and not the Set Packing problem), formulated in Theorem 1.
That is, we will use the constraint that all sets in the given instance are of the
same size d, and the size of the universe |U | is equal to kd. We note that the
following reduction has very much in common with the reduction described in
the proof of Theorem 2. ��
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Given an instance ([n],F = {S1, S2, . . . , Sm}, k) of Bounded Rank Dis-
joint Sets with n = kd and |Si| = d for every i ∈ [m], we construct an instance
(G, p, k′) of MHE. We assume that each element of the universe [n] is contained
in at least one set, otherwise the given instance is a no-instance. Firstly, as in
the proof of Theorem 2, for each element of the universe i ∈ [n], introduce a cor-
responding vertex ui in G. For each set Sj , j ∈ [m], introduce not just one, but
n corresponding vertices sj,1, sj,2, . . . , sj,n. Then again, similarly to the proof
of Theorem 1, for each i, j such that i ∈ Sj , introduce edges between ui and
each vertex sj,t corresponding to the set Sj , i.e. n edges in total. To finish the
construction of G, introduce every possible edge (ui, uj) in G.

Thus, V (G) = {ui | i ∈ [n]} ∪ {sj,t | j ∈ [m], t ∈ [n]} and E(G) = {(ui, sj,t) |
i ∈ Sj , t ∈ [n] ∪ {(ui, uj) | i, j ∈ [n], i �= j}. Then, precolor the vertices of
G in the usual way, i.e. set p(sj,t) = j for every j ∈ [m] and t ∈ [n], and
leave each vertex ui uncolored. Finally, we set the number of required happy
edges to k′ = n2 + k

(
d
2

)
= (kd)2 + k

(
d
2

)
. Construction of (G, p, k′) is done in

polynomial time. Observe that the number of uncolored vertices in (G, p, k)
equals the size of the universe n, and the number of required happy edges is
polynomial of n. Hence, existence of a polynomial kernel respectively to any of
these two parameters for MHE contradicts the statement of Theorem 1. We
argue that the initial instance is a yes-instance if and only if (G, p, k′) is a yes-
instance of MHE.

We prove first that if ([n],F , k) is a yes-instance, then (G, p, k′) is a yes-
instance. Let ([n],F , k) be a yes-instance of the restricted version of Bounded
Rank Disjoint Sets, and let Si1 , Si2 , . . . , Sik be the instance solution. As
usual, extend p to a coloring c of G by setting c(ui) to the index of the set in
the solution containing ui, i.e. c(ui) = it for some t ∈ k and i ∈ Sc(ui). Since
Si1 , Si2 , . . . , Sik are disjoint, and their total size equals the size of the universe,
such coloring c always exists uniquely for a fixed solution of ([n],F , k). We claim
that there are exactly k′ happy edges in G with respect to c.

All edges in G are either of type (ui, sj,t) or of type (ui, uj). Consider edges
of type (ui, sj,t) for a fixed i ∈ [n]. Happy edges among them are those with
c(sj,t) = c(ui). Since c(sj,t) = p(sj,t) = j and i ∈ Sc(ui), these edges are exactly
(ui, sc(ui),t). Hence, there are n happy edges of this type for a fixed i ∈ [n] and
n2 happy edges of this type in total. It is left to count the number of happy edges
of the clique, i.e. edges of type (ui, uj). Observe that each ui is colored with a
color corresponding to a containing set of the answer. Since each set is of size d,
the vertices ui are split by color into k groups of size d. Each group contributes
exactly

(
d
2

)
happy edges, and no edge connecting vertices from different groups

is happy. Thus, there are exactly k
(
d
2

)
happy edges of type (ui, uj) in G with

respect to c. We get that exactly n2 + k
(
d
2

)
edges of G are happy with respect

to c, hence (G, p, k′) is a yes-instance of MHE.
In the other direction, let (G, p, k′) be a yes-instance of MHE, and let c be an

optimal coloring of G extending p. At least k′ edges are happy in G with respect to
c. Let us show that exactly k′ edges are happy in G with respect to c.

Claim 1. In any optimal coloring c of G extending p, i ∈ Sc(ui) for each i ∈ [n].
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Proof of Claim 1. Suppose it is not true, and c is an optimal coloring of (G, p)
and i /∈ Sc(ui) for some i ∈ [n]. For each j with i ∈ Sj , ui is adjacent to n vertices
sj,t, which are precolored with color j. None of edges (ui, sj,t) are happy with
respect to c, since j �= c(ui). The only other edges incident to ui are n − 1 edges
of the clique. Thus, ui is incident to at most n − 1 happy edges.

Choose arbitrary j with i ∈ Sj , and put c(ui) = j. ui becomes incident to at
least n happy edges. Happiness of edges not incident with ui has not changed.
Thus, the change yields at least one more happy edge. A contradiction with the
optimality of c. �

Claim 2. In any optimal coloring c of G extending p, there are at most k
(
d
2

)

happy edges of type (ui, uj) in G with respect to c.

Proof of Claim 2. The vertices ui are split into groups containing vertices of the
same color by c, so the happy edges of type (ui, uj) are exactly the edges inside
the groups. By Claim 1, each ui is colored with a color corresponding to a set
containing i in c. Hence, each group contains vertices corresponding to elements
of the same set, and thus contains at most d vertices. So each ui is incident
to at most d − 1 happy edges of type (ui, uj), and in total there are at most
n · (d − 1)/2 = k

(
d
2

)
such happy edges in G with respect to c. �

From Claims 1 and 2 follows that at most n2 + k
(
d
2

)
= k′ edges are happy in

G with respect to c. And as seen in the proof of Claim 2, the only way that yields
exactly k′ happy edges is when ui are split by color into disjoint groups of size
d, each containing vertices corresponding to a set of the initial instance. Hence,
if c yields k′ happy edges in G, {Sc(ui) | i ∈ [n]} is a solution to ([n],F , k). Thus,
([n],F , k) is a yes-instance of Bounded Rank Disjoint Sets. This finishes
the whole proof. ��
Definition 2. We call a graph family G uniformly polynomially instantiable, if
there is an algorithm that, given positive integer n as input, outputs a graph G,
such that |V (G)| ≥ n and G ∈ G, in poly(n) time.

Corollary 1 (�). For any uniformly polynomially instantiable graph family G,
Maximum Happy Edges, parameterized by the distance to graphs in G, does
not admit a polynomial compression, unless NP ⊆ coNP/poly.

In the rest of the section we study kernel bitsize lower bounds for MHV,
parameterized by either k + � or k + h, where h is the number of potentially
happy vertices. This relates to the result of Agrawal in [1], where the author
showed that MHV admits a polynomial kernel with O(k2�2) vertices. We show
that, for any d > 0 and any ε > 0, there is no kernel of bitsize O(kd · �2−ε)
for MHV. Similarly, we show that there is no kernel of bitsize O(kd · h2−ε) for
MHV. To prove these lower bounds, we refer to the framework of weak cross-
compositions, that originates from works of Dell and van Mekelbeek [10], Dell
and Marx [9] and Hermelin and Wu [15]. These results are finely summarized by
Cygan et al. in the chapter on lower bounds for kernelization [6]. We recall the
notion of weak cross-compositions.
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Definition 3 ([6,9,15]). Let L ⊆ Σ∗ be a language and Q ⊆ Σ∗×N be a param-
eterized language. We say that L weakly-cross-composes into Q if there exists a
real constant d ≥ 1, called the dimension, a polynomial equivalence relation R,
and an algorithm A, called the weak cross-composition, satisfying the following
conditions. The algorithm A takes as input a sequence of x1, x2, . . . , xt ∈ Σ∗

that are equivalent with respect to R, runs in time polynomial in
∑t

i=1 |xi|, and
outputs one instance (y, k) ∈ Σ∗ × N such that:

(a) for every δ > 0 there exists a polynomial p(·) such that for every choice of t

and input strings x1, x2, . . . , xt it holds that k ≤ p(maxt
i=1 |xi|) · t

1
d+δ, and

(b) (y, k) ∈ Q if and only if there exists at least one index i such that xi ∈ L.

The framework of weak cross-compositions is used for proving conditional
lower bounds on polynomial compression bitsize. This is formulated in the fol-
lowing theorem.

Theorem 4 ([6,9,15]). If an NP-hard language L admits a weak cross-
composition of dimension d into a parameterized language Q. Then for any ε > 0,
Q does not admit a polynomial compression with bitsize O(kd−ε), unless NP ⊆
coNP/poly.

Dell and Marx [9] use this framework to show that the Vertex Cover prob-
lem parameterized by the solution size does not admit a kernel with subquadratic
bitsize. Their result is the following.

Lemma 1 ([6,9]). There exists a weak cross composition of dimension 2 from
an NP-hard problem Multicolored Biclique into the Vertex Cover prob-
lem parameterized by the solution size. In fact, this weak cross-composition A,
given instances x1, x2, . . . , xt of Multicolored Biclique as input, outputs an
instance (G, k′) of Vertex Cover satisfying

– |V (G)| ≤ p(maxt
i=1 |xi|) · √

t, and
– |V (G)| − k′ ≤ q(maxt

i=1 |xi|),
for some polynomials p and q.

The bound for |V (G)|−k′ is given because one can look at an instance (G, k′)
of Vertex Cover as at an instance (G, |V (G)| − k′) of Independent Set.
Then, the solution parameter of Independent Set is bounded with polynomial
of the maximum input size, independently of the number of instances t. We are
ready to prove the theorem.

Theorem 5 (�). For any fixed constant d and any ε > 0, Maximum Happy
Vertices does not admit polynomial compressions with bitsizes O((kd · �)2−ε)
and O((kd · h)2−ε), where h is the number of potentially happy vertices, unless
NP ⊆ coNP/poly.
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4 Parameterization Above Guarantee

This section concerns the above guarantee parameter for MHV and MHE. By
guarantee we mean the number of happy vertices or edges that can be obtained
with a trivial extension of the precoloring given in input. The definition of trivial
extensions follows.

Definition 4. For a graph with precoloring (G, p), we call a full coloring c a
trivial extension of p, if p can be extended to c by choosing a single color i and
assigning color i to every uncolored vertex. In other words, p(v) = c(v) for every
v ∈ p−1([�]), and c(u) = c(v) for every u, v /∈ p−1([�]).

We formulate the version of MHV where the above guarantee parameter equals
one.
Above Guarantee Happy Vertices
Input: A graph G, a partial coloring p : S → [�] for some S ⊆ V (G) and

integer k, such that there is a trivial extension of p that yields
exactly k happy vertices in G.

Question: Is (G, p, k + 1) a yes-instance of MHV?

The Above Guarantee Happy Edges is formulated analogously. We show
that both these problems cannot be solved in polynomial time, unless P = NP.
We start with Above Guarantee Happy Vertices. To prove that it is com-
putationally hard, we provide a chain of polynomial reductions. An intermediate
problem in this chain is the Weighted MAX-2-SAT problem.
Weighted MAX-2-SAT
Input: A boolean formula in 2-CNF with integer weights assigned to its

clauses, an integer w.
Question: Is there an assignment of the variables of φ satisfying clauses of

total weight at least w in φ?

Lemma 2 (�). Weighted MAX-2-SAT is NP-complete even when the inputs
φ and w satisfy

1. The total weight of all positive clauses (i.e., clauses containing at least one
positive literal) of φ equals w − 1;

2. Each clause of φ is assigned either weight 1 or weight 13;
3. Each variable appears exactly three times in φ, at least once positively in a

clause containing also a negative literal, and at least once negatively in a
clause containing also a positive literal.

The chain continues with the following version of the Independent Set
problem.
Independent Set Above Coloring
Input: A graph G, properly colored with � colors: V (G) = V1�V2�. . .�V�.

Question: Is there an independent set of size at least
�

max
i=1

|Vi| + 1 in G?
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Lemma 3 (�). Independent Set Above Coloring is NP-complete for � = 3.

Theorem 6 (�). Above Guarantee Happy Vertices is NP-complete even
when � = 3.

We now turn onto Above Guarantee Happy Edges. We provide a reduc-
tion from the following well-known NP-complete problem.
Exact 3-Cover (X3C) [14, 16]
Input: An integer n, a collection S = {S1, S2, . . . , Sm} of three-element

subsets of [3n].
Question: Is there an exact cover of [3n] with elements of S, i.e. is there a

sequence i1, i2, . . . , in, such that Si1 ∪ Si2 ∪ . . . ∪ Sin = [3n]?

Theorem 7 (�). Above Guarantee Happy Edges is NP-complete.

5 ETH and Set Cover Conjecture Based Lower Bounds

In this section, we show lower bounds for exact algorithms for MHV and MHE,
based on the popular Exponential Time Hypothesis and the Set Cover Conjec-
ture. We start with the Set Cover Conjecture and the following problem.
Set Partitioning
Input: An integer n, a set family F = {S1, S2, . . . , Sm} over a universe

U with |U | = n.
Question: Is there a sequence of pairwise disjoint sets Si1 , Si2 , . . . , Sik in F ,

such that
k⊔

j=1

Sij = U?

Theorem 8 ([5]). For any ε > 0, Set Partitioning cannot be solved in time
O∗((2 − ε)n), unless the Set Cover Conjecture fails.

Theorem 9 (�). For any ε > 0, Maximum Happy Vertices cannot be solved
in time O∗((2 − ε)n′

), where n′ is the number of uncolored vertices, unless the
Set Cover Conjecture fails.

Theorem 10 (�). For any ε > 0, Maximum Happy Edges cannot be solved
in time O∗((2 − ε)n′

), where n′ is the number of uncolored vertices, unless the
Set Cover Conjecture fails.

We now turn onto ETH-based lower bounds.

Theorem 11 (�). Maximum Happy Vertices with � = 3 cannot be solved in
time 2o(n+m), unless ETH fails.

We now prove another computational lower bound for MHV that is based on
the reduction from Independent Set to MHV discussed above in the proofs of
Theorems 5 and 6. This reduction also implies some approximation lower bounds.
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Theorem 12 (�). Maximum Happy Vertices cannot be solved in O(no(k))
time, unless ETH fails. Also, for any ε > 0, Maximum Happy Vertices cannot
be approximated within O(n

1
2−ε), O(m

1
2−ε), O(h1−ε) or O(�1−ε) in polynomial

time, unless P = NP.

Theorem 13 (�). Maximum Happy Edges with � = 3 cannot be solved in
time 2o(n+m), unless ETH fails.

6 Algorithms

In this section, we present two algorithms solving MHV or MHE. We start with
a randomized algorithm for MHV that runs in O∗(�k) time and recognizes a
yes-instance and finds the required coloring with a constant probability. The
algorithm is based on the following lemma.

Lemma 4 (�). Let (G, p) be a graph with precoloring, and P =
�⋃

i=1

Hi(G, p).

Let c be a coloring that yields the maximum possible number of happy vertices in
(G, p), and let H = H(G, c) be the set of these vertices. Then |H ∩ P | ≥ 1

� · |P |.
Theorem 14 (�). There is a O∗(�k) running time randomized algorithm for
Maximum Happy Vertices.

Note that by Theorem 12, no algorithm with running time O(�o(k)) exists
for MHV, unless ETH fails. Similarly, no O(�o(k)) running time randomized
algorithm exists for MHV under the randomized ETH [8]. The algorithm given
above is optimal in that sence.

We now turn onto MHE and give an exact algorithm with O∗(2k) running
time for this problem. In its turn, this algorithm optimal in a sence that no 2o(k)

running time algorithm exists for MHE under ETH (see Theorem 13). The algo-
rithm relies on the following kernelization result. We note that this kernelization
result and an algorithm with the running time of O∗(2k) was already presented
by Aravind et al. in [3]. We believe that our kernelization algorithm is short and
somewhat simpler, since it relies on a single reduction rule.

Theorem 15 ([3], �). Maximum Happy Edges admits a kernel with at most
k uncolored vertices.

Theorem 16 ([3], �). There is a O∗(2k) running time algorithm for Maximum
Happy Edges.
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Abstract. The decision problem for Propositional Projection Temporal
Logic (PPTL) has been solved successfully, however time complexity of
the procedure is increased exponentially to the length of the formula. To
solve the problem, a Labeled Unified Complete Normal Form is intro-
duced as an intermediate form to rewrite a PPTL formula into its equiv-
alent Labeled Normal Form, based on which the Labeled Normal Form
Graph is constructed and an efficient decision procedure for PPTL is
formalized with the time complexity linear to the length of the formula
and the size of the power set of the atomic propositions in the formula.

Keywords: Projection Temporal Logic · Decision procedure ·
Labeled Unified Complete Normal Form · Labeled Normal Form Graph

1 Introduction

Projection Temporal Logic (PTL) [1–3] is an extension of Interval Temporal
Logic (ITL) [4] by introducing a new projection construct, (P1, . . . , Pm) prj Q,
and supporting both finite and infinite time. Within the PTL framework, a uni-
fied model checking approach [5] is advocated, which employs an executable
subset of PTL with a framing technique, named Modeling, Simulation and Ver-
ification Language (MSVL) [3], to model systems, and uses Propositional Pro-
jection Temporal Logic (PPTL), the propositional subset of PTL, formulas to
specify desired properties. PPTL has the expressive power of the full regular
language [6], and hence enables us to verify more properties of the computer
systems [7–9] compared to available methods [10,11].

The decision problem for Propositional Projection Temporal Logic (PPTL)
has been solved successfully based on the techniques of Normal Form (NF) and
Normal Form Graph (NFG) in recently years [13–15], however, time complexities
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of the available decision procedures are very high. For example, let the NF of
formula P be (pe ∧ ε)∨ ∨n

i=1(pi ∧ ©P ′
i ), then the NF of ¬P is ¬P ≡ ¬pe ∧ ε∨∨

Δ⊆Ψ (true∧∧
j∈Δ pj∧

∧
k∈Ψ−Δ ¬pk∧©(true∧∧

j∈Δ ¬P ′
j)), where Ψ = {1, .., n}.

Intuitively, the NF of ¬P is computed by enumerating the composition of each pj ,
¬pk and ©¬P ′

j with the time complexity of O(2n), where 1 ≤ j ≤ n, 1 ≤ k ≤ n,
j �= k, and pj ∧ ©P ′

j is a future product in the NF of P . However, if negation
operators are nested in many layers, e.g., ¬...¬︸ ︷︷ ︸

L

P , the size of the future products

in the NF increases exponentially to the nested layers of negation operators, i.e.,

O(2..
.n }L), which greatly impacts the efficiency for verifying the software and

hardware systems with PPTL.
To solve the problem, in this paper, we are motivated to formalize an efficient

decision procedure for PPTL. To this end, a Labeled Unified Complete Normal
Form (LCCNF) is introduced as an intermediate form while rewriting a PPTL
formula into its equivalent Labeled Normal Form (LNF). With the new approach,
the time complexity for transforming a PPTL P into its LNF is O(L∗2|Φ|), where
L is the length of P , and Φ is the set of atomic propositions in P . Based on the
LNF, the Labeled Normal Form Graph (LNFG) for describing models of a PPTL
formula is constructed, and the efficiency of the decision procedure for PPTL is
greatly improved.

The rest of paper is organized as follows. In the next section, the syntax
and semantics of PPTL are briefly introduced. In Sect. 3, the unified complete
normal form and normal form graph are introduced. In Sect. 4, the techniques
of LCCNF, LNF and LNFG are presented, and the improved decision procedure
for PPTL is given. Finally, conclusions are drawn in Sect. 5.

2 Propositional Projection Temporal Logic

Propositional Projection Temporal Logic (PPTL) is an extension of Proposi-
tional Interval Temporal Logic (PITL) [4] with infinite models and a new pro-
jection construct prj . In this section, the syntax and semantics of PPTL are
briefly introduced. More details can be found in literature [1].

Syntax. Let Φ be a finite set of atomic propositions, and B = {true, false} the
boolean domain. The formulas P of PPTL are inductively defined as follows:

P ::= p |¬P | P1 ∧ P2 | © P | P+ | (P1, . . . , Pm) prj P

where p ∈ Φ is an atomic proposition; © (next), + (chop-plus) and prj (projec-
tion) are temporal operators, and ¬ and ∧ are identical to those in the classical
propositional logic. A formula is called a state formula if it contains no tempo-
ral operators. The conventional constructs true, false, ∧, → as well as ↔ are
defined as usual. Furthermore, we use the following abbreviations:

ε
def= ¬ © true ε

def= ¬ ε

P ∗ def= ε∨P+ P ;Q def= (P,Q) prj ε

�P
def= true ;P �P

def= ¬�¬P
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Semantics. A state s over Φ is a mapping from Φ to B, i.e., s : Φ→B. We use
notation s[p] to denote the valuation of p at state s. An interval (i.e., model) σ is
a non-empty sequence of states σ = <s0, . . . , s|σ|>, which |σ| denotes the length
of σ and is ω if σ is infinite, or the number of states minus one if σ is finite.
Let N0 be the set of non-negative integers and Nω = N0 ∪ {ω}, we extend the
comparison operators, =, <,≤, to Nω by considering ω = ω, and for all i ∈ N0,
i < ω. Moreover we define � as ≤ −{(ω, ω)}. We use notation σ(i..j) to mean
that a subinterval <si, . . . , sj> of σ with 0 ≤ i � j ≤ |σ|. The concatenation of a
finite interval σ = <s0, . . . , s|σ|> with another interval σ′ = <s′

0, . . . , s
′
|σ′|> (may

be infinite) is denoted by σ •σ′ and σ •σ′ = <s0, . . . , s|σ|, s′
0, . . . , s

′
|σ′|>. Further,

let σ = <s0, . . . , s|σ|> be an interval and r1, . . . , rh be integers (h ≥ 1) such that
0 ≤ r1 ≤ . . . ≤ rh � |σ|, the projection of σ onto r1, . . . , rh is the interval (called
projected interval) σ ↓ (r1, . . . , rh) = <st1 , . . . , stl>, (t1 < t2 < . . . < tl), where
t1, . . . , tl is obtained from r1, . . . , rh by deleting all duplicates. For example,
<s0, s1, s2, s3, s4, s5> ↓ (0, 2, 2, 2, 4, 4, 5) = <s0, s2, s4, s5>.

An interpretation for PPTL is a triple I = (σ, i, j), where σ is an interval,
i ∈ N0 and j ∈ Nω, and 0 ≤ i � j ≤ |σ|. We use notation (σ, i, j) to mean that a
formula is interpreted over a subinterval <si, . . . , sj> of σ with the current state
being si. The satisfaction relation (|=) for PPTL formulas is defined as follows:

I|=p iff si[p] = true, for any given atomic proposition p.
I|=¬P iff I � P .
I|=P ∧ Q iff I|=P and I|=Q.
I|= © P iff i < j and (σ, i + 1, j)|=P .
I|=P+ iff there exist finite many integers i = r0 ≤ . . . ≤ rm−1 � rm = j

such that (σ, rl−1, rl)|=P for all 1 ≤ l ≤ m, or there exist infinite
many integers i = r0 ≤ r1 ≤ r2 ≤ . . . such that liml→∞ rl = ∞ and for
all 1 ≤ l, (σ, rl−1, rl)|=P .

I|=(P1, ..., Pm) prj Q iff there exist integers i = r0 ≤ . . . ≤ rm−1 ≤ rm � j
such that (σ, rl−1, rl)|=Pl for all 1 ≤ l ≤ m, and (σ′, 0, |σ′|)|=Q for
one of the following σ′:
(1) rm < j and σ′ = σ ↓ (r0, . . . , rm) • σ(rm+1..j).
(2) rm = j and σ′ = σ ↓ (r0, . . . , rh) for some 0 ≤ h ≤ m.

A formula P is satisfied by an interval σ, denoted by σ |=P , if (σ, 0, |σ|) |= P .
A formula P is called satisfiable if σ |= P for some σ. A formula P is valid,
denoted by |= P , if σ |=P for all σ. Usually, we denote |=�(P ↔ Q) by P ≡ Q
and |=�(P → Q) by P �Q. The following are some useful logic laws, where
m > 1 and ps is a state formula, and the related proofs can be found in [12].
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L1 ©(P ∧ Q) ≡ ©P ∧ ©Q L2 ©(P∨Q) ≡ ©P∨ © Q
L3 ©P ≡ ε ∧ ©P L4 ε ∧ ©P ≡ false
L5 ©(P ;Q) ≡ ©P ;Q L6 ¬ © P ≡ ε∨ © ¬P
L7 ε prj Q ≡ Q L8 P prj ε ≡ P
L9 ε ;P ≡ P L10 P ; ε ≡ P ∧� ε
L11 (P1∨P2);Q ≡ (P1 ;Q)∨(P2 ;Q) L12 P ;(Q1∨Q2) ≡ (P ;Q1)∨(P ;Q2)
L13 (ps ∧ P ;Q) ≡ ps ∧ (P ;Q) L14 (P1, . . . , Pm) prj ε ≡ (P1 ; . . . ;Pm)

L15 (P ∧ ε prj © Q) ≡ (P ∧ ε ;Q) L16 P+ ≡ P∨(P ∧ ε ;P+)
L17 (ps ∧ P1, . . . , Pm) prj Q ≡ ps ∧ (P1, . . . , Pm) prj Q
L18 (P1, . . . , Pm) prj ps ∧ Q ≡ ps ∧ (P1, . . . , Pm) prj Q
L19 (P1 ∧ ε, P2 . . . , Pm) prj © Q ≡ (P1 ∧ ε ;(P2, . . . , Pm) prj Q)
L20 (P1, . . . , Pm) prj (Q1∨Q2) ≡ ((P1, . . . , Pm) prj Q1)∨((P1, . . . , Pm) prj Q2)
L21 (P1, . . . , (Pi∨P ′

i ), . . . , Pm) prj Q ≡ ((P1, . . . , Pi, . . . , Pm) prj Q)
∨((P1, . . . , P

′
i , . . . , Pm) prj Q)

3 Improved Method for Constructing NFG

The techniques of Normal Form (NF) and Normal Form Graph (NFG) [14] are the
basis of the decision procedure of PPTL formulas. In this section, we present an
efficient method for computing NFs and constructing NFGs of PPTL formulas.

3.1 Unified Complete Normal Form

The Complete Normal Form (CNF) was introduced in [16] to compute the normal
form (NF) for negation formulas. In this subsection, we put forward a special
kind of CNF, named Unified CNF (UCNF), to accelerate computing NF for all
PPTL formulas. In the following, we first give the definition of UCNF, and then
prove that any PPTL formula can be rewritten into its equivalent UCNF.

Definition 1. Let Γ1 and Γ2 be any two sets of PPTL formulas, the conjunc-
tion of Γ1 and Γ2, denoted by Γ1 ∧ Γ2, is defined as:

Γ1 ∧ Γ2 =

⎧
⎨

⎩

{P ∧ Q | P ∈ Γ1, Q ∈ Γ2}, if Γ1 �= ∅ and Γ2 �= ∅

Γ1, if Γ2 = ∅

Γ2, if Γ1 = ∅

Definition 2 (Unified Complete Normal Form). Let Φ be the finite set
of atomic propositions of PPTL and Ψ the set of min-products over Φ, i.e.,
Ψ =

∧
p∈Φ{p,¬p}. For any PPTL formula P , the unified complete normal form

of P can be defined as follows:

P ≡
∨|Ψ1|

j=1
(ωj ∧ ε)∨

∨|Ψ |
i=1

(ωi ∧ ©P ′
i ),

where Ψ1 ⊆ Ψ , ωj ∈ Ψ1, ωi ∈ Ψ and P ′
i (1 ≤ i ≤ |Ψ |) is a general PPTL formula.

We call the product of the form ωj ∧ ε terminal product, whereas the product of
the form ωi ∧ ©P ′

i future product. Besides, we call P ′
i the successor formula of P .
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It is readily to prove that |Ψ | = 2|Φ|, and for any ωi, ωj ∈ Ψ ,
∨

i	=j ωi ∧ ωj ≡
false, and

∨|Ψ |
i=1 ωi ≡ true. In the following, we employ the specific symbols Φ

and Ψ to represent the finite set of atomic propositions of PPTL and the set of
min-products over Φ respectively in default.

We claim that any PPTL formula P can be rewritten into its equivalent
UCNF with the time complexity O(L ∗ 2|Φ|), where L is the length of formula
P . The fact concludes in the following theorem.

Theorem 1. Any PPTL formula P can be rewritten into its equivalent UCNF
P ≡ ∨|Ψ1|

j=1(ωj ∧ ε)∨ ∨|Ψ |
i=1(ωi ∧ ©P ′

i ) with the time complexity O(L ∗ 2|Φ|).

Proof. We first prove the existence of the UCNF, and then analyze the time
complexity of the rewriting process. Make an induction on the structure of P :

Base Case: P is an atomic proposition p.

p ≡ ∨|Ψ1|
j=1 ωj ∧ ε∨ ∨|Ψ1|

i=1 ωi ∧ ©true ∨∨|Ψ2|
i=1 ωi ∧ ©false

where Ψ1 = {ω|ω ∈ Ψ, and ω→p}, Ψ2 = Ψ − Ψ1.

Induction Step: Suppose the theorem holds for formulas Pk(1 ≤ k ≤ m) and
Q. Let the UCNFs of Pk be Pk ≡ ∨|Ψ1

k |
jk=1 ωjk ∧ ε∨∨|Ψ |

i=1(ωi ∧ ©P k′
i ), we have

• P is next formula ©P1: ©P ≡ ∨|Ψ |
i=1 ωi ∧ ©P .

• P is conjunction formula P1 ∧ P2:

P1 ∧ P2 ≡ ∨|Ψ1|
j=1 ωj ∧ ε∨∨|Ψ |

i=1 ωi ∧ ©(P 1′
i ∧ P 2′

i )

where Ψ1 = Ψ1
1 ∩ Ψ1

2 .
• P is chop formula P1 ;P2:

P1 ;P2 ≡ (
∨|Ψ1

1 |
j1=1 ωj1 ∧ ε∨∨|Ψ |

i=1(ωi ∧ ©P 1′
i ));P2

≡ ∨|Ψ1|
j=1 ωj ∧ ε∨∨|Ψ1

1 |
i=1 ωi ∧ ©(P 2′

i ∨(P 1′
i ;P2))

∨ ∨|Ψ2|
i=1 ωi ∧ ©(P 1′

i ;P2)

where Ψ1 = Ψ1
1 ∩ Ψ1

2 , Ψ2 = Ψ − Ψ1
1 .

• P is chop-plus formula P1
+ :

P1
+ ≡ P1∨(P1 ∧ ε ;P+

1 )

≡ ∨|Ψ1
1 |

j=1 ωj ∧ ε∨ ∨|Ψ |
i=1 ωi ∧ ©(P ′

i∨(P 1′
i ;P+

1 ))

• P is negation formula ¬P1: ¬P1 ≡ ∨|Ψ1′|
j=1 ωj ∧ ε∨ ∨|Ψ |

i=1 ωi ∧ ©¬P ′
i , where

Ψ1′ = Ψ − Ψ1.
• P is projection formula (P1, . . . , Pm) prj Q: Similarly to the proof of Lemma

1 in literature [13].
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Now we review the transformation process. Obviously, atomic proposition
p and next formula ©P1 can be written into their UCNFs directly with the
time complexity O(|Ψ |). For other composite formulas P , we first need to trans-
form the subformulas of P into their UCNFs, and then traverse each ω in Ψ
and check whether the corresponding terminal products and future products of
its sub-formulas should be properly composed and added to the result UCNF
according to the structure of P . In consideration of computing the UCNFs of
the subformulas, the total time consumed in computing the UCNF of P is
O(L ∗ |Ψ |) = O(L ∗ 2|Φ|).

3.2 Normal Form Graph

For any formula P , let the UCNF of P be
∨|Ψ1|

j=1(ωj ∧ ε)∨∨n
i=1(ωi ∧ ©P ′

i ).
Intuitively, the UCNF of P characterizes under what circumstances P can be
satisfied, that is, P can be satisfied if and only if either there exists a ωj (1 ≤ j ≤
|Ψ1|) holding over a single-state interval, or there exists a ωi ∧ ©P ′

i (1 ≤ i ≤ n)
holding over an interval with length greater than zero such that pi must hold at
the first state and its associated P ′

i must hold over the remainder of the interval.
Thus, if we repeatedly rewrite P, P ′

i and their successor formulas into UCNFs,
a normal form graph (NFG) showing the decomposition relationships of PPTL
formulas and their UCNFs can be constructed. For more details of the NFG,
please refer to literature [13].

Three examples of NFGs of PPTL formulas are shown in Fig. 1. In an NFG,
root note is denoted by a double circle, ε node by a circle with a black dot in it,
and each of other nodes by a single circle. Each edge is denoted by a directed arc
connecting two nodes. Intuitively, the NFG of a formula P describes all models
of P , i.e., each finite path from root node to node ε corresponds to a finite
model of P ; each infinite path emanating from root node may (not definitely)
correspond to an infinite model of P . Along a path, each edge describes a state
in the corresponding model of the path if any.

For instance, as we can see in Fig. 1(a), formula p∧( ε∨�©p) can be satisfied
by a single state finite interval with the atomic proposition p holding at the only
state, or by an infinite model with the atomic proposition p holding at every
state. For simplicity, while drawing the NFG, we usually use the simplified state
formula labeled on an edge instead of enumerating each min-product, e.g., the
formula true labeled on the edge 〈� © p, p ∧ � © p〉 stands for p,¬p labeled on
the edge, i.e., there exist two edges from node � © p to node p ∧ � © p labeled
with p and ¬p respectively.

However, the NFG of a PPTL formula P describing models of P is not always
true for formulas containing chop construct. For instance, formula � © p ;q is
equivalent to false, but there exists an infinite path in its NFG as shown in
Fig. 1(c). Obviously, the NFG of formula �©p ;q is isomorphic to that of formula
�©p as shown in Fig. 1(b), and along the infinite path the decomposition of �©
p ;q occurs always on sub-formula � © p and never on q, which in fact describes
an infinite model of �©p but not �©p ;q, and hence must be removed. To solve
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Fig. 1. NFGs of formulas p ∧ ( ε∨� © p), � © p and � © p ;q

the problem, literature [15] introduces the techniques of Labeled Normal Form
(LNF) and Labeled Normal Form Graph (LNFG) to trace the decomposition of
chop formulas, and identify and remove the infinite paths describing the wrong
models of PPTL formulas.

4 Improved Decision Procedure for PPTL

The decision procedure for PPTL is based on the technique of LNFG, which in
turn is constructed with the LNFs of PPTL formulas [15]. Following the idea of
computing UCNF, in this section, we employ the labeled UCNF to accelerate
computing the LNFs to improve the efficiency of the decision procedure.

4.1 Labeled Unified Complete Normal Form

For each strongly connected component (SCC) ΩP in the NFG of PPTL formula
P , it is not hard to prove that there exists a corresponding SCC ΩP ;Q in the
NFG of formula P ;Q, within which the decomposition of P ;Q always occurs on
sub-formula P and never on Q. In the NFG of a chop formula, such a SCC is
called a chop decomposition cycle (CDC). Each CDC is named with a unique
decomposition cycle identifier (DCI) ‘[k]’ (k ∈ N0), and all the nodes in a CDC
share a same DCI. Further, when a node R directly comes out from a CDC [k],
we bound it with a special mark [−k], i.e., (R)[−k], which is called boundary
decomposition cycle identifier (BDCI).

The PPTL formula possibly with some subformulas bounded with DCI [k] or
[−k] (k ∈ N0) is called labeled PPTL formula. For any PPTL formula R, we use
symbol R̃ to denote any labeled formula of R with some subformulas R′ possibly
bounded with [k] or [−k], i.e., (R′)[k] or (R′)[−k]. Note that, DCI and BDCI
do not belong to the logical system, and do not participate into logic calculus,
they just help to construct LNFGs for PPTL formulas. The equivalence between
two labeled PPTL formulas relies on the equivalence of the corresponding PPTL
formulas obtained by removing all DCIs and BDCIs.

To ensure each node in a CDC shares a same DCI [k] as well as to compute the
label of each node correctly during constructing the LNFG for a PPTL formula,
we introduce the DCI to trace the decomposition of each chop formula when
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rewriting it into its UCNF. The UCNF equipped with DCI is called Labeled
Unified Complete Normal Form (LUCNF) defined as follows.

Definition 3 (Labeled Unified Complete Normal Form). For any labeled
PPTL formula R̃, the LUCNF of R̃ is identical to the LUCNF of R̃\{[−k]}
(k ∈ N0), i.e., the formula of R̃ with all the occurrences of BDCI [−k] removed.
The LUCNF of R̃\{[−k]} is inductively defined as follows:

• R̃\{[−k]} is p, ©P , (P1, . . . , Pm) prj Q or P+: the LUCNF of R̃\{[−k]} is
identical to the UCNF of R.

• R̃ is a chop formula (P ;Q) or (P ;Q)[k]: let the UCNFs of P and Q be

P ≡ ∨|Ψ1
1 |

j1=1 ωj1 ∧ ε∨∨|Ψ1 1|
i1=1 (ωi1 ∧ ©P ′

i1
)∨ ∨|Ψ1 2|

k1=1 (ωk1 ∧ ©P ′
k1

),

Q ≡ ∨|Ψ1
2 |

j2=1 ωj2 ∧ ε∨∨|Ψ |
i2=1(ωi2 ∧ ©Q′

i2
),

where Ψ1 1 ∪ Ψ1 2 = Ψ , nodes P 1′
i1

(1 ≤ i1 ≤ |Ψ1 1|) locate in the SCCs of the
NFG of P . The LUCNF of formulas P ;Q is defined as

P ;Q ≡ (
∨|Ψ1

1 |
j1=1 ωj1 ∧ ε∨∨|Ψ1 1|

i1=1 (ωi1 ∧ ©P ′
i1

)∨ ∨|Ψ1 2|
k1=1 (ωk1 ∧ ©P ′

k1
));Q

≡ ∨|Ψ1|
j=1 ωj ∧ ε∨ ∨|Ψ1

1 1|
i1=1 ωi1 ∧ ©((P ′

i1
;Q)[ki1 ]∨Q′

i1
)

∨∨|Ψ1
1 2|

k1=1 ωk1 ∧ ©((P ′
k1

;Q)∨Q′
i1

)∨ ∨|Ψ2
1 1|

i1=1 ωi1 ∧ ©(P ′
i1

;Q)[ki1 ]

∨∨|Ψ2
1 2|

k1=1 ωk1 ∧ ©(P ′
k1

;Q)

where Ψ1 = Ψ1
1 ∩ Ψ1

2 , Ψ1
1 1 = Ψ1 1 ∩ Ψ1

1 , Ψ2
1 1 = Ψ1 1 − Ψ1

1 1, Ψ1
1 2 = Ψ1 2 ∩ Ψ1

1 ,
Ψ2
1 2 = Ψ1 2 − Ψ1

1 2; each [ki1 ] (ki1 ∈ N0, ωi1 ∈ Ψ1 1) is the DCI of the CDC of
which (P ′

i1
;Q) locates in. The LUCNF of formula (P ;Q)[k] is defined as

(P ;Q)[k] ≡ ((
∨|Ψ1

1 |
j1=1 ωj1 ∧ ε∨∨|Ψ1 10|

i1=1 (ωi1 ∧ ©P ′
i1

)
∨∨|Ψ1 2+|

k1=1 (ωk1 ∧ ©P ′
k1

));Q)[k]

≡ ∨|Ψ1|
j=1 ωj ∧ ε∨ ∨|Ψ1

1 10|
i1=1 ωi1 ∧ ©((P ′

i1
;Q)[k]∨Q′

i1
[−k])

∨∨|Ψ1
1 2+|

k1=1 ωk1 ∧ ©((P ′
k1

;Q)[−k]∨Q′
i1

[−k])

∨∨|Ψ2
1 10|

i1=1 ωi1 ∧ ©(P ′
i1

;Q)[k]∨ ∨|Ψ2
1 2+|

k1=1 ωk1 ∧ ©(P ′
k1

;Q)[−k]

where Ψ1 10 is the set of mini-products to which the corresponding successor
formula (P ′

i1
;Q) locates in a same CDC with (P ;Q); Ψ1 = Ψ1

1 ∩ Ψ1
2 , Ψ1 2+ =

Ψ1 2∪Ψ1 1−Ψ1 10, Ψ1
1 10 = Ψ1 10∩Ψ1

1 , Ψ2
1 10 = Ψ1 10−Ψ1

1 10, Ψ1
1 2+ = Ψ1 2+∩Ψ1

1 ,
Ψ2
1 2+ = Ψ1 2+ − Ψ1

1 2+.
• R̃\{[−k]} is a conjunction formula P̃ ∧ Q̃: the LUCNF of R̃\{[−k]} is the

conjunction of the LCCNFs of P̃ and Q̃ by applying Theorem 1.
• R̃\{[−k]} is a negation formula ¬P̃ : the LCNF of R̃\{[−k]} is the negation

of the LUCNF of P̃ by applying Theorem 1.

Theorem 2. Any labeled PPTL formula P̃ can be rewritten into its equivalent
LUCNF.

Proof. Direct consequence of Theorem 1 and definition of LUCNF.
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4.2 Labeled Normal Form and Labeled Normal Form Graph

In case of a labeled PPTL formula having been rewritten into its equivalent
LUCNF, we need to further transform the LUCNF into the LNF to construct
the LNFG for the decision procedure of PPTL. In the following, we first give
the definition of LNF and argue that the LUCNF of any labeled PPTL formula
can be rewritten into its equivalent LNF, then present the formal definition of
LNFG.

Definition 4. A labeled formula R is called a min-conjunctive labeled PPTL
formula if it is generated by the following grammar:

L ::= p | P ;Q | (P ;Q)[k] | (P )[−k] | P+ | © P | (P1, . . . , Pm) prj Q
R ::= L | ¬L | R1 ∧ R2

where p is an atomic proposition; P,Q, P1, . . . , Pm are PPTL formulas.

Definition 5 (Labeled Normal Form). Let Φ be the finite set of atomic
propositions of PPTL and Ψ the set of min-products over Φ. For any labeled
PPTL formula P̃ , the labeled normal form of P̃ can be defined as follows:

P̃ ≡
∨|Ψ1|

j=1
(ωj ∧ ε)∨

∨n

i=1
(ωi ∧ ©P

′
i),

where Ψ1 ⊆ Ψ , ωi ∈ Ψ and P
′
i(1 ≤ i ≤ n) is a min-conjunctive labeled PPTL

formula. We call the product of the form ωj ∧ ε terminal product, whereas the
product of the form ωi ∧ ©P

′
i future product.

While rewriting a LUCNF into its equivalent LNF, the terminal products
∨|Ψ1|

j=1(ωj∧ ε) keep unchanged. For each future product ωi∧©P̃ ′
i (1 ≤ i ≤ |Ψ |), by

classical propositional calculus, P̃ ′
i can be written into an equivalently disjunctive

normal form
∨m

k=1 P
′
ik

, by logical Law L2, ωi ∧ ©P̃ ′
i≡

∨m
k=1(ωi ∧ ©P

′
ik

), it is
replaced with the future products

∨m
k=1(ωi ∧ ©P

′
ik

) in the LNF of P .

Definition 6 (Labeled Normal Form Graph). For any labeled PPTL for-
mula P̃ , the labeled normal form graph of P̃ is a directed graph, G = (C̃L(P̃ ),
ẼL(P̃ ), v0, Vf ), where C̃L(P̃ ) denotes the set of nodes and ẼL(P̃ ) denotes the
set of directed edges among C̃L(P̃ ), v0 ∈ C̃L(P̃ ) is the root (or initial) node
named by P̃ , and Vf denotes the set of pairs of nodes and their finite labels.
Each node is specified by a labeled PPTL formula; each edge is a directed arc
labeled with a state formula ω ∈ Ψ from node Q̃ to node R̃ and identified by a
triple 〈Q̃, ω, R̃〉; each node Q̃ and its label {[k1], . . . , [km]} (m ≥ 1), i.e., the set
of DCIs of Q̃, is depicted by a pair (R̃, {[k1], . . . , [km]}) in Vf . The sets C̃L(P̃ ),
ẼL(P̃ ) and Vf can be defined inductively as follows:
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(1) P̃ ∈ C̃L(P̃ ).
(2) For every node Q̃ ∈ C̃L(P̃ )\{ε, false}, if node Q̃ needs finite label, say

{[k1], . . . , [km]}, according to Definition 7, (Q̃, {[k1], . . . , [km]}) ∈ Vf . Fur-
ther, let the LNF of Q̃ be Q̃ ≡ ∨|Ψ1|

j=1(ωj ∧ ε)∨ ∨n
i=1(ωi ∧ ©Q

′
i), then

ε ∈ C̃L(P̃ ), and 〈Q̃, ωj , ε〉 ∈ ẼL(P̃ ) for each j(1 ≤ j ≤ |Ψ1|); Q
′
i ∈ C̃L(P̃ ),

and 〈Q̃, ωi, Q
′
i〉 ∈ ẼL(P̃ ) for all i(1 ≤ i ≤ n).

Definition 7. The finite label of node R̃ is computed inductively according to
the structure of R̃ as follows:

– If R̃ is (P ;Q)[k], the finite label of R̃ is {[k]}.
– If R̃ is (P )[−k], the finite label of R̃ is {[−k]}.
– If R̃ is P̃ ∧ Q̃, let the finite labels of P̃ and Q̃ be Γ

˜P and Γ
˜Q respectively, the

finite label Γ of R̃ is Γ = (Γ
˜P ∪ Γ

˜Q)\{[k]|[k] ∈ Γ
˜P ∪ Γ

˜Q, [−k] ∈ Γ
˜P ∪ Γ

˜Q},
i.e., Γ is the union of Γ

˜P and Γ
˜Q under the constraint that for any k ∈ N0,

if [k] and [−k] both occur in Γ
˜P ∪ Γ

˜Q, then only [−k] is remained.

– If R̃ is none of the above cases, R̃ does not need finite label.

Based on the Definition 6, algorithm Lnfg for constructing the LNFG of a
given labeled PTL formula P̃ is presented in Table 1. In the algorithm, three
global sets ΓN , ΓC and ΓS , which help to rewrite a labeled chop formula into
its LNF, are initialized to empty. Then, global variable DCISeed, which works
as a seed to generate the unique DCI for each CDC, is set to 0. Subsequently,
function ComAtomProd is employed to compute the set of min-products over
the set atom propositions in P̃ . Further, functions Lucnf and Lnf are used
in sequence to rewrite a node R̃ into its LNF Moreover, functions GetFL is
employed to compute the finite label for the given node. These functions can be
easily formalized according to Definitions 2–7 and Theorem 1, so their code is
omitted here.

4.3 Decision Procedure for PPTL

In the LNFG of a labeled PPTL formula P̃ , a cycle ΠC = 〈P̃1, . . . , P̃h, P̃1〉 (h ≥ 1)
is called an F cycle if there exists a DCI [k] such that all the nodes P̃i (1 ≤ i ≤ h)
are labeled with the same DCI [k], otherwise, the cycle ΠC is called an acceptable
cycle. Further, a finite acceptable path, Π = 〈P, p0, P̃0, . . . , P̃m−1, pm, ε〉, is an
alternate sequence of nodes and edges from the root P to node ε; while an
infinite acceptable path, Πω = 〈P, p0, P̃0, . . . , P̃h, ph+1, . . .〉, is an infinite alternate
sequence of nodes and edges emanating from the root node and cannot finally
enter into infinite circles among nodes all labeled with a same DCI [k].

It has been proved in [15] that the LNFG of a PPTL formula P enjoys the
following properties: (1) Each F cycle in the LNFG corresponds to a CDC; (2)
For any node R̃ in the LNFG, if R̃ is reachable to neither node ε nor an acceptable
cycle in the LNFG of P , then R̃ ≡ false; (3) Each finite (infinite) acceptable
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Table 1. Algorithm for constructing LNFG of a labeled PPTL formula

function Lnfg(P̃ )
/*precondition: P̃ is any labeled PPTL formula*/
/*postcondition: Lnfg(P̃ ) computes LNFG of P̃ , G = (C̃L(P̃ ), ẼL(P̃ ), v0, Vf )*/
begin function

C̃L(P̃ ) = {P̃}; ẼL(P̃ ) = φ; v0 = P̃ ; Vf = φ; mark[P̃ ] = 0;
ΓN = ΓC = ΓS = Φ; /*The three sets help to compute LUCNF*/
DCISeed = 0; /*The variable helps to compute LUCNF*/
Ψ = ComAtomProd(P̃ ); /*The set of min-products of atom propositions in P̃*/
while there exists R̃ ∈ C̃L(P̃ )\{ε, false} and mark[R̃] == 0 do

mark[R̃] = 1;
if GetFL(R̃) �= Φ then /*Add finite label to R̃*/

Vf = Vf ∪ {(R̃,GetFL(R̃))};
Q̃ = Lucnf(Ψ, R̃); /*Rewrite R̃ into LUCNF*/
Q̃ = Lnf(Q̃); /*Rewrite the LUCNF of R̃ into LNF*/
AddE = AddN = 0;
case

Q̃ is
∨|Ψ1|

j=1(ωj ∧ ε): AddE=1;
Q̃ is

∨n
i=1(ωi ∧ ©Q

′
i): AddN=1;

Q̃ is
∨|Ψ1|

j=1(ωj ∧ ε) ∨ ∨n
i=1(ωi ∧ ©Q

′
i): AddE=AddN=1;

end case
if AddE == 1 then

C̃L(P̃ ) = C̃L(P̃ ) ∪ {ε};
ẼL(P ) = ẼL(P ) ∪ ⋃Ψ1

j=1{〈R̃, ωj , ε〉}
if AddN == 1 then

for i = 1 to n do
if Q̃′

i /∈ CL(P ) then
C̃L(P̃ ) = C̃L(P̃ ) ∪ {Q

′
i};

mark[Q
′
i] = 0; /*Q

′
i needs decomposed*/

end for
ẼL(P̃ ) = ẼL(P̃ ) ∪ ⋃n

i=1{〈R̃, ωi, Q
′
i〉}

end while
return G;

end function

Table 2. Algorithm for checking the satisfiability of a PPTL formula

function CheckPptl(P )
/*precondition: P is any PPTL formula*/
/*postcondition: CheckPptl(P ) returns true if P is satisfiable, otherwise false*/
begin function

G = Lnfg(P );
G′ = Simplify(G);
if G′ is not empty then return true;
else return false;

end function
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path corresponds to a finite (infinite) model of P . With the properties of LNFG, a
decision procedure for PPTL is formalized in Table 2, where algorithm Simplify
is used to remove the redundant nodes by property (2) of LNFG and its details
can be found in [15].

5 Conclusion

In this paper, we present a novel way to compute the normal form and labeled
normal form as well as construct the LNFG. Compared with the existing method,
the time complexity of the new way for rewriting a PPTL formula into its equiv-

alent LNF improves from O(2..
.n }L) to O(L ∗ 2|Φ|). Accordingly, the efficiency

of the decision procedure for PPTL, which is based on the LNFG, is greatly
enhanced. In the near future, we will apply the improved decision procedure
to refine the model checking tool MSV to verify more complicate software and
hardware systems.
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Abstract. In this work we investigate energy complexity, a Boolean
function measure related to circuit complexity. Given a circuit C over
the standard basis {∨2, ∧2, ¬}, the energy complexity of C, denoted by
EC(C), is the maximum number of its activated inner gates over all
inputs. The energy complexity of a Boolean function f , denoted by
EC(f), is the minimum of EC(C) over all circuits C computing f .

Recently, Dinesh et al. [3] gave EC(f) an upper bound in terms of
the decision tree complexity, EC(f) = O(D(f)3). They also showed that
EC(f) ≤ 3n−1, where n is the input size. For the lower bound, they show
that EC(f) ≥ 1

3
psens(f), where psens(f) is the positive sensitivity. They

asked whether EC(f) can be lower bounded by a polynomial of D(f).
We improve both the upper and lower bounds in this paper. For upper
bounds, We show that EC(f) ≤ min{ 1

2
D(f)2 +O(D(f)), n+2D(f)−2}.

For the lower bound, we answer Dinesh et al.’s question by proving
that EC(f) = Ω(

√
D(f)). For non-degenerated functions, we also give

another lower bound EC(f) = Ω(logn) where n is the input size. These
two lower bounds are incomparable to each other. Besides, we exam-
ine the energy complexity of OR functions and ADDRESS functions, which
implies the tightness of our two lower bounds respectively. In addition,
the former one answers another open question in [3] asking for non-trivial
lower bound for energy complexity of OR functions.

Keywords: Energy complexity · Decision tree · Boolean function ·
Circuit complexity
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1 Introduction

Given a gate basis B and a circuit C over B, the energy complexity of C, defined as
ECB(C), is the maximum number of activated gates (except input gates) in C over
all possible inputs. Spontaneously, the energy complexity of a Boolean function
f : {0, 1}n → {0, 1} over gate basis B is defined as ECB(f) := minC ECB(C),
where C is a circuit over B computing f .

When B is composed of threshold gates, this model simulates the neuron
activity [10,11], as the transmission of a ‘spike’ in neural network is similar
with an activated threshold gate in the circuit. A natural question readily comes
up: can Boolean functions be computed with rather few activated gates over
threshold gate basis? In order to answer this question, or more precisely, to give
lower and upper bounds, plenty of studies were motivated [1,4,5,9,10].

Despite motivated by neurobiology in modern world, tracing back into his-
tory, this concept is not brand-new. Let ECB(n) be the maximum energy com-
plexity among all Boolean functions on n variables over basis B, i.e., the max-
imum ECB(f) among all possible f : {0, 1}n → {0, 1}. Vaintsvaig [8] proved
that asymptotically, if B is finite, the lower and upper bounds of ECB(n) are n
and 2n/n respectively. Then this result was further refined by the outstanding
work from Kasim-Zade [6], which states that ECB(n) could be Θ(2n/n), between
Ω(2n/2) and O(

√
n2n/2), or between Ω(n) and O(n2).

When it comes to a specific gate basis, a natural thought is to discuss the
energy complexity over the standard Boolean basis B = {∨2,∧2,¬}. (From now
on we use EC(f) to represent ECB(f) for the standard basis.) Towards this,
Kasim-zade [6] showed that EC(f) = O(n2) for any n variable Boolean function
f by constructing an explicit circuit, which was further improved by Lozhkin
and Shupletsov [7] to 4n and then (3 + ε(n))n where limn→∞ ε(n) = 0.

Recently, Dinesh, Otiv, Sarma [3] discovered a new upper bound which relates
energy complexity to decision tree complexity, a well-studied Boolean function
complexity measure. In fact, they proved that for any Boolean function f :
{0, 1}n → {0, 1}, psens(f)

3 ≤ EC(f) ≤ min
{
O(D(f)3), 3n − 1

}
holds, where the

function psens(f) is defined as the positive sensitivity of f , i.e., the maximum of
the number of sensitive bits i ∈ {1, 2, . . . , n} with xi = 1 over all possible inputs x
[3]. However, positive sensitivity may give weak energy complexity lower bounds
for some rather fundamental functions. For example, the positive sensitivity of
OR function f(x1, ..., xn) = x1 ∨ ... ∨ xn is only 1. Therefore, Dinesh et al. asked
2 open problems on this issue:

1. Does the inequality D(f) ≤ poly(EC(f)) always hold?
2. Give a non-trivial lower bound of the energy complexity for OR function.

Throughout this paper, we use completely different method to achieve better
bounds from both sides, which explores a polynomial relationship between energy
complexity and decision tree complexity and answers two open problems asked
by Dinesh et al. Furthermore, we also construct an explicit circuit computing OR
function to match this lower bound.
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First, in Sect. 3 we show the upper and lower bounds of energy complexity
by decision tree complexity:

Theorem 1. For any Boolean function f : {0, 1}n → {0, 1},

EC(f) ≤ 1
2
D(f)2 + O(D(f)).

Theorem 2. For any Boolean function f : {0, 1}n → {0, 1},

EC(f) = Ω(
√
D(f)).

Second, in Sect. 4 we also show upper and lower bounds of energy complexity
with respect to the number of variables.

Theorem 3. For any Boolean function f : {0, 1}n → {0, 1},

EC(f) ≤ n − 2 + 2D(f) ≤ 3n − 2.

Theorem 4. For any non-degenerated Boolean function f : {0, 1}n → {0, 1},

EC(f) = Ω(log2 n).

Note that these lower bounds are incomparable with each other, since for
any non-degenerated Boolean function f : {0, 1}n → {0, 1}, we have Ω(log2 n) ≤
D(f) ≤ O(n) and this result is essentially tight from both sides.

Finally, in order to show the tightness of lower bounds, we examine the energy
complexity of two specific function classes: OR functions and EXTENDED ADDRESS
functions (see the definition of EXTENDED ADDRESS in Sect. 2).

Proposition 1. For any positive integer n, EC(ORn) = Θ(
√

n).

Proposition 2. For any positive integer n and an arbitrary Boolean function
g : {0, 1}n → {0, 1}, EC(EADDRn,g) = Θ(n).

Note that D(ORn) = n and the number of variables in EADDRn,g is n + 2n,
which shows that the lower bounds in Theorems 2 and 4 are tight.

2 Preliminaries

In the following context, we denote (0, . . . , 0
︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

n−i

) as ei, {1, 2, . . . , n} as

[n], and the cardinality of set S as |S| or #S.
A Boolean function f is a function mapping {0, 1}n to {0, 1}, where n is

a positive integer. We say a Boolean function f : {0, 1}n → {0, 1} depends on
m variables if there exists S ⊆ [n], |S| = m and for any i ∈ S, there exists
x ∈ {0, 1}n such that f(x) 	= f(x ⊕ ei); and when f depends on all n variables,
we say f is non-degenerated.

We define a new Boolean function class called EXTENDED ADDRESS function,
which is an extension of the well-known ADDRESS function.
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Definition 1. Given integer n, the address function ADDRn : {0, 1}n+2n →
{0, 1} is defined as ADDRn(x1, .., xn, y0, . . . , y2n−1) = yx1x2...xn

.

Definition 2. Given integer n and an arbitrary Boolean function g : {0, 1}n →
{0, 1}, we define the extended address function EADDRn,g : {0, 1}n+2n → {0, 1}
as

EADDRn,g(x1, .., xn, y0, . . . , y2n−1) =

{
yx1x2...xn

, g(x1, . . . , xn) = 1
ȳx1x2...xn

, g(x1, . . . , xn) = 0.

Following from [2], a (deterministic) decision tree is a rooted ordered binary
tree, where each internal node is labeled with a variable xi and each leaf is
labeled with value 0 or 1. Given an input x, the tree is evaluated as follows.
First, we start at the root. Then continue the process until we stop:

– if we reach a leaf v, then stop;
– otherwise query xi, which is the labelled variable on current node,

• if xi = 0, then move to its left child,
• if xi = 1, then move to its right child.

The output of the evaluation is the value on the final position. A decision tree
is said to compute f , if for any input x the output after evaluation is f(x). The
complexity of a decision tree T , denoted by D(T ), is its depth, i.e., the number of
queries, made on the worst-case input. The decision tree complexity of a Boolean
function f , denoted by D(f), is the minimum D(T ) among all decision trees T
computing f .

A Boolean circuit C over a basis B is a directed acyclic graph which has an
output gate, input gates with in-degree 0 representing variables, and other gates
among the circuit basis B. For convenience, we have several definitions related
with circuit gates here. For two gates u, v in a Boolean circuit, we say

– u is an inner gate if and only if u is not an input gate.
– u is activated under input x if and only if u outputs 1 when the input of the

circuit is x.
– u is deactivated under input x if and only if u outputs 0 when the input of

the circuit is x.
– u is an incoming gate of v if and only if u is an input of v.
– u covers v if and only if there exists a directed path in circuit from v to u.

The circuit basis we mainly discuss is the standard basis B = {∨2,∧2,¬},
which means ∨-gate with fan-in 2, ∧-gate with fan-in 2 and ¬-gate with fan-in 1.
The fan-out of all kinds of gates is unlimited. Particularly, a circuit over standard
basis is called monotone if it does not contain any ¬-gate. For convenience, from
now on, Boolean circuits and energy complexity are over the standard basis if
not specified. In addition, if a circuit C computes g : {0, 1}n → {0, 1} which
depends on m variables, we say C depends on m input gates.

Next we give energy complexity a mathematical definition.



520 X. Sun et al.

Definition 3. For a Boolean circuit C and an input x, the energy complexity
of C under x (denoted by EC(C, x)) is defined as the number of activated inner
gates in C under the input x. Define the energy complexity of C as EC(C) =
maxx∈{0,1}n{EC(C, x)} and the energy complexity of a Boolean function f as

EC(f) = min
C|C(x)=f(x)
∀x∈{0,1}n

EC(C).

Remark 1. W.l.o.g, the first and third structures in Fig. 1 are forbidden in the
circuit, since we can replace them by the second or fourth one without increasing
the energy complexity. So we can assume that any ¬-gate in the circuit has a
non-¬ incoming gate and any two ¬-gates do not share a same incoming gate.

Fig. 1. Substructures related to ¬-gates

3 Upper Bounds of Energy Complexity

In this section, we will show upper bounds of energy complexity with respect
to decision tree complexity, which improves the result in [3]. We first prove
Theorem 3, then prove Theorem 1.

Proof (Theorem 3). Since D(f) ≤ n, n + 2(D(f) − 1) ≤ 3n − 2 holds naturally.
Now suppose T is a decision tree of f with depth D(f). Denote the node set of
T (including leaves) as S, where vroot ∈ S is the root, vleft , vright ∈ S are the left
and right children of vroot respectively. We also define F : S \{vroot} → S, where
F (v) is the father of node v in T . Furthermore, define vbs : S → {x1, . . . , xn} ∪
{0, 1}, where vbs(v) indicates the label on node v, i.e., vbs(v) = xi means v is
labelled with xi and vbs(v) = 0 (or 1) means v is a leaf with value 0 (or 1).
Define S0 = {v ∈ S | vbs(v) = 0} and S̃ = S\ ({vroot} ∪ S0).

Based on T , a circuit C can be constructed such that EC(C) ≤ n+2(D(f)−1)
as follows. First, define all gates in C: the input gates are gx1 , . . . , gxn

; the ¬-gates
are g¬

x1
, . . . , g¬

xn
and the ∧-gates are g∧

v , v ∈ S̃; furthermore, C contains a unique
∨-gate g∨ as output gate with fan-in size #{v ∈ S | vbs(v) = 1}. Actually, g∨

is a sub-circuit formed by #{v ∈ S | vbs(v) = 1} − 1 ∨-gates. These gates are
connected in following way:

1. For all i ∈ [n], the input of g¬
xi

is gxi
.

2. For all v ∈ S̃\{vleft , vright}, if v is the right child of F (v), the input of g∧
v is

g∧
F (v) and gvbs(F (v)); otherwise, the input of g∧

v is g∧
F (v) and g¬

vbs(F (v)).
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3. Merge g∧
vleft

with g¬
vbs(vroot )

; and merge g∧
vright

with gvbs(vroot ).
4. The input of g∨ is all the gates in {g∧

v | vbs(v) = 1}.

See Fig. 2 as an example, where vbs(vroot) = x1, vbs(vleft) = x2, vbs(vright) =
x3, vbs(v1) = vbs(v2) = x4, vbs(v3) = vbs(v5) = vbs(v8) = 1, vbs(v4) =
vbs(v6) = vbs(v7) = 0 and S0 = {v4, v6, v7}, S̃ = {vleft , vright , v1, v2, v3, v5, v8}.

Fig. 2. Decision tree T and circuit C

The construction of C implies several facts:

– Under any input, g∧
u1

, . . . , g∧
uk−1

is activated if g∧
uk

is activated, where ui =
F (ui+1).

– For sibling nodes u,w ∈ S, that g∧
u is activated implies g∧

w is deactivated,
since one of g∧

u , g∧
w receives gvbs(F (u)) as input and the other uses g¬

vbs(F (u)),
which means they can not output 1 simultaneously.

These facts imply there are at most D(f) − 1 activated ∧-gate under any input.
Furthermore, at most one gate in {g∧

v | vbs(v) = 1} is activated. It is easy to
construct a circuit computing ORm for g∨, whose energy complexity is no more
than �log m when promised that the input bits include at most one 1. Thus,
the contribution from g∨ is no more than

⌈
log

(
#{v ∈ S | vbs(v) = 1}

)⌉
≤ D(f) − 1.

Also, the ¬-gates in C contribute at most n to the whole energy complexity under
any input. Thus, EC(C) ≤ n + 2(D(f) − 1).

To justify that circuit C actually computes f , it suffices to show g∧
v outputs 1

if and only if v is queried in T during the evaluation process under some input.
The proof goes as follows:
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– First, for vleft and vright , the claim holds immediately.
– Then assume that for any node whose depth is less than k in T , the claim

holds. Consider any v ∈ T of depth k. Without loss of generality, assume
v is the left child of F (v); then the input of g∧

v is g∧
F (v) and g¬

vbs(F (v)). Let
xi = vbs(F (v)).

• When g∧
v is activated, g∧

F (v) is activated and xi = 0. By induction, F (v) is
queried in T and the chosen branch after querying is left, which is exactly
v.

• When g∧
v is deactivated, either g∧

F (v) is deactivated or xi = 1. If it is the
former case, then by induction F (v) is not queried; thus v will not as well.
Otherwise if g∧

F (v) is activated and xi = 1, then F (v) is queried and the
chosen branch should be right; thus v, which is the left child, will not be
queried.

Thus by induction on the depth of nodes in T , the claim holds for all g∧
v , which

completes the proof of Theorem 3.

Proof (Theorem 1). Suppose T is a decision tree of f with depth D(f). Then
by Theorem 3, there is a circuit with energy complexity n + 2(D(f) − 1) con-
structed directly from T , where n comes from the ¬-gates of all variables.
In order to reduce the number of ¬-gates, we introduce D(f) additional vari-
ables y1, y2, . . . , yD(f) in each level of T as a record log of the evaluation pro-
cess on the tree, where yi = 0 means in the i-th level of T , it chooses the
left branch, and yi = 1 means to choose the right branch. For example, in
Fig. 3 these additional variables are computed by y1 = x1, y2 = ȳ1x2 + y1x3,
y3 = ȳ1ȳ2x4 + ȳ1y2x5 + y1ȳ2x6 + y1y2x7, etc. Given the value of all yi’s, the
output of f can be determined by reconstruct the evaluation path in T ; thus f
can be viewed as a function on yi’s. Therefore, define

yD(f)+1 =
∑

z∈∏{yi,ȳi}
f(z)

D(f)∏

i=1

zi.

Then given any input x, after determine all yi’s, yD(f)+1 = f(x). Now construct
a circuit using these temporary variables. (See Fig. 4 as an example of the gates
for second level of the decision tree.) Notice that for any 1 ≤ k ≤ D(f) − 1,
to compose yk+1, an OR2k gadget is required in the k-th level sub-circuit, which
induces a k-level of ∨-gates. After computing yk+1, we also need two additional
levels of gates to compute ȳk+1 and

∏k+1
i=1 zi, zi ∈ {yi, ȳi}. In order to compute

yD(f)+1, an OR2D(f) gadget is required, which brings a D(f)-level sub-circuit of
∨-gates. Thus summing up all sub-circuits, the circuit depth is

∑D(f)−1
i=1 (i+2)+

D(f) = 1
2D(f)2 + O(D(f)).

For any fixed k, 1 ≤ k ≤ D(f), only one of all 2k cases in
∏k

i=1 zi, zi ∈ {yi, ȳi}
is true, thus each level of the circuit provides at most one activated gate. Then
the whole energy complexity is 1

2D(f)2 + O(D(f)).
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4 Lower Bounds of Energy Complexity

In this section we will give two theorems on lower bounds of energy complexity.
The first one relates decision tree complexity to energy complexity by an intri-
cately constructed decision tree with respect to a given circuit. The second one
provides a lower bound depending on the number of variables. In the meantime,
we will offer cases where these bounds are tight. We will use the following two
lemmas (since their proofs are trivial, we omit them):

Lemma 1. If C is a monotone circuit depending on m inputs, EC(C) ≥ m − 1.

Lemma 2. If C is a circuit with k ¬-gates, then EC(C) ≥ k.

Fig. 3. A decision tree with
temporary variables

Fig. 4. Sub-circuit representing the second level of
the decision tree

Now we can give the proofs of the main results in this section.

Proof (Theorem 2). For any Boolean function f : {0, 1}n → {0, 1} and any
circuit C computing f , suppose EC(C) = o(

√
D(f)) and let m be the number

of ¬-gates in C, then m = o(
√

D(f)) by Lemma 2. List all the ¬-gates with
topological order ¬1,¬2, . . . ,¬m such that for any 1 ≤ i < j ≤ m, ¬i does
not cover ¬j . Suppose the set of all variables (input gates) covered by ¬i is

S̃i, then Si is defined as S̃i\
(⋃i−1

j=1 S̃j

)
. (See also the left side of Fig. 5.) Define

Sm+1 = [n]\
(⋃m

j=1 S̃j

)
. Also let ki be the number of elements of Si; thus Si =

{xi,j | j ∈ [ki]}. Notice that the set collection S1, S2, . . . , Sm+1 is a division of
all variables.

Consider the query algorithm by the order xi,j , where xi,j precedes xi′,j′ if
and only if (i < i′) ∨ (i = i′ ∧ j < j′). This algorithm induces a decision tree T ′

with depth n immediately. (See also the middle part of Fig. 5.)
Since T ′ may be redundant, the simplification process goes as follows: From

the root to leaves, check each node whether its left sub-tree and right sub-tree
are identical. If so, this node must be inconsequential when queried upon. Thus
delete this node and its right sub-tree, and connect its parent to its left child.
(See also the right side of Fig. 5.)
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Fig. 5. Circuit C, its induced decision tree T ′, and the simplified decision tree T

After this process, the new decision tree T satisfies:

– In any path from the root to a leaf, if xi,j is queried before xi′,j′ , i is not
greater than i′.

– Any sub-tree of T is non-degenerated, i.e., all queried variables are sensitive
in the sub-tree.

– The depth of T is no smaller than D(f) since T is a decision tree of f .

Let the longest path in T be P and SP be the set of variables on P; thus
|SP | ≥ D(f). Then choose an input x̂ which matches the value of variables on
path P. Now suppose |S1 ∩ SP | ≥ Ω(

√
D(f)), then the sub-circuit under ¬1

is a monotone circuit depending on at least |S1 ∩ SP | input gates. Thus the
energy complexity in this sub-circuit is Ω(

√
D(f)) by Lemma 1, which is a

contradiction. Therefore |S1 ∩ SP | = o(
√

D(f)). Then set variables in S1 to the
same value in x̂. Thus the restricted circuit has fewer ¬-gates and computes a
restricted f function whose decision tree is a sub-tree of T with depth at least
|SP | − o(

√
D(f)). Now consider |S2 ∩ SP | in the restricted circuit and the same

analysis follows. Continue this restriction process until the value of all ¬-gates
are determined.

By then, the depth of the decision tree is still at least |SP |−m×o(
√

D(f)) ≥
D(f)−o(D(f)). Thus the remaining monotone circuit depends on at least D(f)−
o(D(f)) input gates. By Lemma 1, the energy complexity is at least D(f) −
o(D(f)) = Ω(

√
D(f)), which is a contradiction.

The tightness of this lower bound is shown in EC(ORn) = Θ(
√

n) in Propo-
sition 1 as D(ORn) = n.

Proof (Theorem 4). Assume C is an arbitrary circuit computing f . It suffices to
show EC(C) ≥ 1

2 log2 n. Since f is non-degenerated, the output gate must cover
all input gates. Since the fan-in of ∧2,∨2,¬ gate is no more than 2, a k-depth
circuit can cover at most 2k input gates. Thus removing all gates, of which the
shortest path to output gate is less than log n in C, some input gate xi will be
disconnected with the output gate.

Choose an input x̂ satisfying f(x̂) = 0, f(x̂⊕ei) = 1. Note that when inputted
x̂, the output of C is different from that when inputted x̂ ⊕ ei. Therefore, there
exists a path P from input gate xi to output gate under x̂, such that the value
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of any gate on P changes after flipping xi. Let � be the length of path P, then
� ≥ log n. Also, when inputted x̂ and x̂ ⊕ ei, the total number of activated inner
gates in P is �. It follows immediately

EC(C) ≥ max
{

EC(C, x̂),EC(C, x̂ ⊕ ei)
}

≥
(
EC(C, x̂) + EC(C, x̂ ⊕ ei)

)

2
≥ �

2
≥ log n

2
.

The tightness of this lower bound is shown by EC(EADDRn,g) = Θ(n) in
Proposition 2 as EADDRn,g : {0, 1}n+2n → {0, 1} is non-degenerated.

5 Tight Bounds of Energy Complexity on Specific
Functions

In this section, we discuss two specific function classes, ORn and EXTENDED
ADDRESS, to obtain the tightness of lower bounds of energy complexity. Pre-
cisely, ORn function shows the lower bound in Theorem 2 is tight, and EXTENDED
ADDRESS function corresponds with the lower bound in Theorem 4.

First, we discuss the energy complexity of the ORn function and prove Propo-
sition 1. Given integer n, ORn : {0, 1}n → {0, 1} is defined as

ORn(x1, x2, . . . , xn) = x1 ∨ x2 ∨ · · · ∨ xn.

Proof (Proposition 1). The lower bound follows from D(ORn) = n and Theorem 2.
To prove EC(ORn) = O(

√
n), a circuit is constructed as follows (see Fig. 6):

1. Divide all n variables into
√

n blocks, each block contains
√

n variables. For
variables in the first block, use

√
n − 1 ∨-gates to connect them as an OR√

n

function and mark the output gate of the sub-circuit as g1.
2. Add a ¬-gate h1 linked from g1; and for each variable in the second block,

feed it into a ∧-gate together with h1. Then use
√

n − 1 ∨-gates to connect
these

√
n ∧-gates and mark the output gate of the sub-circuit as g′

2.
3. Add a ∨-gate which has incoming gates g1 and g′

2; and insert a ¬-gate h2

linked from g2. For each variable in the second block, connect it with h2 by
a ∧-gate. Then use

√
n − 1 ∨-gates to connect these

√
n ∧-gates.

4. Repeat this process until all blocks are constructed. Then g√
n shall be the

output gate of the whole circuit.

The main idea is to view each block as a switch so that if it has an activated
gate then it can “switch of” all blocks behind it with low cost. Consider a
specific input x. If x = 0n, then the activated gates are hi’s, whose number is√

n. Otherwise if x 	= 0n, then at least one bit is 1. Suppose all variables in the
first k − 1 blocks are 0 and in the k-th block there exists a value-1 input bit.
Then in the first k − 1 blocks, only ¬-gates h1, . . . , hk−1 are activated. And in
the k-th OR√

n sub-circuit, at most
√

n − 1 gates are activated. Thus gi, i ≥ k is
activated, indicating hi, i ≥ k is deactivated. Therefore, all variables in blocks
after k-th block are “switched off”. To sum up, all the activated gates are among
gi’s, g′

i’s, hi’s, and k-th OR√
n gadget. So the energy complexity is Θ(

√
n).
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Fig. 6. ORn circuit

Second, we discuss the EXTENDED ADDRESS function, which is defined in Def-
inition 2, thus complete the proof of Theorem 4. Note that although ADDRESS
function in itself verifies Theorem 4, the low-energy circuit for ADDR actually
gives rise to tight bounds of the more generalized EADDRn,g function.

Lemma 3. For any positive integer n, EC(ADDRn) = Θ(n).

Proof. The lower bound can be deduced from Theorem 4. It suffices to prove the
upper bound by construction. Let T be the natural decision tree of ADDRn, where
all the nodes in the i-th (i ≤ n) level of T are labelled with xi, and yj ’s are
queried in (n + 1)-th level. Thus, T is a full binary tree with depth n + 1. Now
consider the circuit C constructed in Theorem 3 based on T . Note that the out-
put of g¬

yi
are not received by any gate as input. Thus these redundant gates can

be safely removed; and the remaining circuit C′ still computes ADDRn. Therefore,
EC(ADDRn) ≤ EC(C′) ≤ 2

(
D(ADDRn) − 1

)
+ #{¬-gates in C ′} = 3n. ��

Proof (Proposition 2). Apply the construction in Lemma 3, and prepare two
copies of the circuit computing ADDRn and denote them as C0 and C1. Then
modify them into a new circuit C′ for EADDRn,g as follows:

1. ∀x ∈ {0, 1}n, if g(x) = 0, change yx’s input gate in C1 into constant input
gate 0; otherwise, change yx’s input gate in C0 into constant input gate 1.

2. ∀i ∈ [n], merge xi’s input gate in C0, C1 together as xi’s new input gate.
3. Add a ¬-gate g̃ linked from the output gate of C0.
4. Add a ∨-gate h̃ as the new output gate, which takes g̃ and the output gate

of C1 as input.



Energy Complexity and Other Boolean Function Measures 527

Thus C′ has exactly n+2n input gates. To show C′ actually computes EADDRn,g,
it suffices to consider an arbitrary x ∈ {0, 1}n. If g(x) = 0, sub-circuit C1 outputs
yx which becomes 0 after modification, and C0 still outputs yx; thus after g̃ and
h̃, C ′ gives ȳx correctly. Similar argument holds when g(x) = 1.

It is also easy to verify that EC(C′) is bounded by EC(C0) and EC(C1):

EC(EADDRn,g) ≤ EC(C′) ≤ max
x

(
EC(C0, x) + EC(C1, x)

)
+ 2

≤ EC(C0) + EC(C1) + 2 = O(n).

6 Conclusion and Open Problems

Throughout this paper, we build polynomial relationship between energy com-
plexity and other well-known measures of Boolean functions. Precisely, we prove
that EC(f) ≤ min{ 1

2D(f)2+O(D(f)), n+2D(f)−2} and EC(f) = Ω(
√

D(f)), as
well as a logarithmic lower bound in terms of the input size for non-degenerated
functions. We also show the tightness of lower bounds by examining OR functions
and EADDR functions. However, some fascinating problems still remain open.

1. Two Boolean functions f, g : {0, 1}n → {0, 1} are called co-isomorphic if
there exists a subset S ⊆ [n] such that ∀ x ∈ {0, 1}n, f(x) = 1−g(x

⊕
i∈S ei).

For example, ANDn and ORn are co-isomorphic, with a quadratic separation
between their energy complexity: EC(ANDn) = Θ(n) and EC(ORn) = Θ(

√
n).

What is the largest gap between two co-isomorphic Boolean functions?
2. Is the upper bound EC(f) = O(D(f)2) tight?

Acknowledgement. The authors want to thank Krishnamoorthy Dinesh for answer-
ing some questions with [3].
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Abstract. Basing on the two-player Voronoi game introduced by Ahn
et al. [1] and the multi-player diffusion game introduced by Alon
et al. [2] on grids, we investigate the following one-round multi-player
discrete Voronoi game on grids and trees. There are n players playing
this game on a graph G = (V, E). Each player chooses an initial vertex
from the vertex set of the graph and tries to maximize the size of the
nearest vertex set. As the main result, we give sufficient conditions for
the existence/non-existence of pure Nash equilibrium in 4-player Voronoi
game on grids and only a constant gap leaves unknown. We further con-
sider this game with more than 4 players and construct a family of
strategy profiles, which are pure Nash equilibrium on sufficiently nar-
row graphs. Besides, we investigate the game with 3 players on trees and
design a linear time/space algorithm to decide the existence of a pure
Nash equilibrium.

Keywords: Game theory · Nash equilibrium · Location game ·
Graph theory

1 Introduction

1.1 Model Description

Consider the following scene: Several investors plan to set up laundries in a city
and each of them is permitted to manage only one. There are some residents
in the city whose addresses have been obtained by the investors. Residents in
the city would only choose the nearest laundry and if the nearest ones of some
residence are not unique, he/she will choose one of them randomly. In this game,
the investors try to attract more customers by locating their laundry at an
advantageous position and the payoff of each investor is the number of residents
who are certain to choose his/her laundry. Our goal is to determine whether
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there exists a stable profile in which no investor would change his/her choice to
improve the payoff.

In previous works, there are two ways to model this problem:

Voronoi Game. The competitive facility location game is a well-studied topic in
game theory. Ahn et al. introduced the Voronoi diagram to characterize players’
payoff and proposed the Voronoi game [1]. In the Voronoi game, two players
alternately locate their facilities. After locating, each player will control the area
closer to one of the facilities. The aim of the two players is to maximize the area
controlled by them, respectively. Cheong et al. then modified this model and
introduced the one-round Voronoi game [10]. In their version, the first player
locates n facilities first. Then, the second player locates n facilities. Their locating
is only allowed to perform in one round. Dürr et al. introduced an interesting
multi-player version on graphs, where each player can only choice one facility
[11]. A small modification in the model of Dürr et al. is that a “tie” vertex, who
has k nearest facilities, contributes 1/k to the payoff of the k players.

Diffusion Game. A similar model is raised by Alon et al. [2] which describes the
following competitive process with k players on graph G = (V,E). Let player-i’s
influenced set Ii = ∅ for all i ∈ [k], at the beginning. The game contains several
rounds. In round-0, each player-i chooses a vertex vi ∈ V as the initial vertex
simultaneously, and vi is gathered by Ii. In round-(t + 1) for t ≥ 0, if some
vertex v is not gathered by any Ij for all j ∈ [k] until the round-t but has a
neighbor gathered in Ii, then v is gathered by Ii in this round. However, if some
v is gathered by more than one set in any round, including round-0, v will be
deleted from G and all influenced set after this round. The process iterates until
each Ii is invariant after some round and the payoff of each player-i is |Ii|.

We investigate a one-round discrete version of Voronoi games with k players
on a given graph G denoted by Γ (G, k), which is also a simplified version of
diffusion games. Note that in diffusion games, the duplicate vertices, i.e., the
vertices gathered by more than one player, are deleted immediately after each
round. In our model, the duplicate vertices will be deleted at the end of the
game. The game is also in the Voronoi style, i.e., the owner of each vertex could
be determined by which initial vertex is the nearest one from it. We describe
the one-round discrete Voronoi game in an equivalent but more natural way.
First, each player chooses a vertex simultaneously in a given graph as the initial
vertex. The payoff of each player is the number of vertices, which have smaller
distance to this player’s initial vertex than to all the others. Note that the only
difference between this model with the model of Dürr et al. is that “tie” vertices
will contribute nothing to the payoff of any player.

Remark. It is easy to see that a diffusion game and a one-round Voronoi game
are equivalent on paths, circles and trees. But in the general case, they could be
totally different. Figure 1 is an example.

In game theory, the concept Nash equilibrium, named after John Forbes Nash
Jr., takes a central position. In a Nash equilibrium, no player can improve the
payoff by change the choice unilaterally. John Nash proved every game with
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Fig. 1. The results of these games are different in a grid graph with 2 players. The left
one is the result of the diffusion game, while the right one is the result of our model.

finite number of players and a finite strategy space has a mixed-strategy Nash
equilibrium in his famous paper [13]. If we just allow pure strategies, in which
each player can only make a deterministic choice, the existence of a Nash equilib-
rium cannot be ensured. In this paper, we investigate this existence in one-round
discrete Voronoi games on grids and trees.

1.2 Our Results

In this paper, we consider the one-round Voronoi game on girds or trees. First,
we show that there always exists a pure Nash profile for sufficiently narrow grids
when k �= 3 by a family of constructions.

Theorem 1. For any k ∈ Z
+ (k �= 3) and sufficiently large integers m,n, there

exists a pure Nash equilibrium in Γ (Gridn×m, k) if m ≤ n/�k/2�.
Furthermore, we attempt to characterize the existence of a pure Nash for

small k. The results are enumerated as following:

1. In Γ (Gridn×m, k) with k ≤ 2, there always exists a pure Nash equilibrium;
2. In Γ (Gridn×m, 3), there exists no pure Nash equilibrium;
3. For Γ (Gridn×m, 4), we prove the following theorem.

Theorem 2. In Γ (Gridn×m, 4) (n ≥ m) where n and m are sufficiently large,
if 4 | n and m is odd, there exists a pure Nash profile if m ≤ n/2 + 2	√n� + 1,
and does not exist if m ≥ n/2 + 2	√n� + 5. Otherwise, there exists a pure Nash
profile if m ≤ n/2, and does not exist if m > n/2 + 6.

Then, we consider the game on a tree. The case with two players on a tree
is solved in [14]. In this paper we solve the case with 3 players:

Theorem 3. In Γ (T, 3) where T is a tree with size n, there exists a pure Nash
equilibrium if and only if there exists a vertex v such that n−st(i1, v)−st(i2, v) ≥
max{st(j1, v), st(j2, v)} and st(i2, v) ≥ st(j1, v), where i1 and i2 are the children
of v with maximum and second maximum st(·, v), and jk is the child of ik with
maximum st(·, v) (k = 1, 2). Here, st(v1, v2) represents the number of vertices
in the subtree with root v1, when the tree is rebuilt as a rooted tree with root v2.

Furthermore, if such a vertex v exists, then (i1, v, i2) is a Nash equilibrium,
and we can design an algorithm to determine whether a pure Nash equilibrium
exists in O(n) time/space.
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1.3 Related Works

Ahn et al. proved that the first player has a winning strategy in Voronoi games
on a circle or a line segment [1]. Teramoto et al. showed it is NP-hard to decide
whether the second player can win in a 2-player discrete Voronoi game on graphs
[15]. Durr and Thang studied a one-round, multi-player version and proved it is
also NP-hard to decide the existence of a pure Nash equilibrium in a discrete
Voronoi game on a given graph [11]. Besides, several works focus on a one-round
2-player discrete version and try to compute a winning strategy for each player
efficiently [3–8].

For diffusion games, it is also proved as a NP-hard problem to decide whether
there exists a pure Nash equilibrium with multi-player on general networks [12].
Roshanbin et al. studied this game with 2 players [14] and showed the existence
or nonexistence of a pure Nash equilibrium in paths, cycles, trees and grids.
Especially, on a tree with 2 players, there is always a Nash equilibrium under
the diffusion game model. Bulteau et al. proved a pure Nash equilibrium does not
exist on Gridn×m where n,m ≤ 5 with 3 players and got some extra conclusions
about the existence of pure Nash equilibrium in several special graph classes [9].

1.4 Organization

In Sect. 2, we define some notations and concepts used in the latter sections. We
discuss about this game on grids and trees in Sect. 3 and Sect. 4 respectively. In
Sect. 5, we summarize all results and raise some ideas about the future work on
this topic. Due to the space limitation, we just show our proof ideas for each
important lemma and theorem. The complete proofs are available in the full
version of this paper.

2 Preliminaries

Denote [n,m] as the set {n, n+1, . . . ,m}, and [n] as [1, n] for integers n,m (n ≤
m). An (undirected) graph is an ordered pair G = (V,E) where V is a set of
vertices and E is a set of edges. We say v1, . . . , v� is a path if ∀i (vi, vi+1) ∈ E(G).
We say vertices v, w ∈ V (G) are connected if there exists a path between v and w
in G. For convenience of discussions, we denote that v(G) = |V | and e(G) = |E|
for a graph G = (V,E).

We indicate a grid with a set of integer pairs. Define Gridn×m := (V,E) with
the vertex set V = [n]× [m] and an edge set E. For vertices v1, v2 ∈ V , L1 norm
distance between them is defined as ‖v1 − v2‖1 := |x1 − x2| + |y1 − y2|, where
v1 = (x1, y1) and v2 = (x2, y2). Then the edge set E of Gridn×m is

{(v1, v2) | ‖v1 − v2‖1 = 1} .

A graph T = (V,E) is called a tree if v(T ) = e(T ) + 1 and every 2 vertices
v, w ∈ V (T ) are connected. We also define a function st(w, v) (w, v ∈ V (T )), as
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the number of vertices in the subtree rooted at vertex w when T is rebuilt as a
rooted tree with root v.

A one-round multi-player Voronoi game, denoted by Γ (G, k), processes on
the undirected graph G with k players. Each player, player-i for example, can
choose one vertex vi from G. vi is called initial vertex of player-i and we also
say player-i takes vi. Player-i will influence the vertices in

Ii := {v ∈ V (G) | ∀j ∈ [k]\{i}(‖v − vi‖1 < ‖v − vj‖1)},

where vj is the player-j’s initial vertex. In this game the payoff of player-i is Ui :=
|Ii|. The aim of each player is to maximize the payoff in the game, respectively.
Obviously, the vertex set influenced by a specific player totally depends on every
player’s initial vertex. So, a strategy profile is defined as a tuple of vertices
p := (v1, v2, . . . , vk) where vi is player-i’s initial vertex. The influenced vertex
set and payoff of player-i in some strategy profile p are donated as Ii(p) and
Ui(p). When a strategy profile p is implied in context, we use tuple (vi, v−i) to
emphasize the player-i’s choice where v−i represents the others’ choices. We say
a strategy profile v is pure Nash equilibrium if

∀i ∈ [k] ∀v′
i ∈ V (G) (Ui(vi, v−i) ≥ Ui(v′

i, v−i)).

Namely, no player can improve the payoff by moving the initial vertex in non-
cooperative cases. In this paper, we always use the corresponding initial vertex
vi to represent player-i, and (xi, yi) to represent the position of vi.

3 Voronoi Games on Grids

3.1 Voronoi Game on the Narrow Grids

In this section, we discuss the case in which k players (k �= 3) take part in a
Voronoi game on Gridn×m. As the main result, a family of pure Nash equilibrium
constructions will be given for narrow grids.

Bulteau et al. study multi-player diffusion games on graphs, which is equiv-
alent to Voronoi games on some special kinds of graph classes, such as paths,
circles and trees. Bulteau et al. construct a profile on paths and prove that a
pure Nash equilibrium always exists in a game on Pathn, a path with n vertices,
with k players, except the case where k = 3 and n ≥ 6. When the number of
players k is even, they set the initial vertices {vi}1≤i≤k as:

vi :=
{ 	n

k � · i + min{i, n mod k} if i is odd,
vi−1 + 1, if i is even.

For the case with odd number players, Bulteau et al. reduce it to the even
case. By constructing the pure Nash-equilibria (v′

1, . . . , v
′
k+1) for Pn+1, they get

a pure Nash-equilibria, (v1, . . . , vk) := (v′
1, . . . , v

′
k−2, v

′
k − 1, v′

k+1 − 1), on Pathn.
We find that such construction on path sometimes works on grids. Note

we might treat a grid as a path when the ratio of the width to the height is
sufficiently large (Fig. 2).
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1 2 3 4 1 2 3 4

Fig. 2. Basing on the construction of Bulteau et al., construct a Nash in Γ (Grid17×5, 4).

For the odd m, we just embed the construction by Bulteau et al. into the
middle row (i.e., the (m + 1)/2-th row). Whereas, for the even m we would
also embed it into one of the two middle rows (i.e., the m/2-th or (m + 2)/2-th
row). But in the latter case, we can only promise the pure Nash-property when
(n+k mod 2) mod (k+k mod 2) = 0 holds. To fix it, we Stretch or Compress
a pure Nash equilibrium profile. More precisely, we show the process to construct
a pure Nash equilibrium profile v as following, where the routines Compress
and Stretch are given in Algorithm 1:

Case 1: If k is even, consider the parity of m.
Case 2.1: If m is odd, construct v as:

vi :=
{

(	n
k � · i + min{i, n mod k}, m+1

2 ), if i is odd;
(xi−1 + 1, m+1

2 ), if i is even.

Case 2.2: If m is even, define r := n mod k.
Case 2.2.1: In the case where r = 0, construct a pure Nash equilib-
rium profile v for Γ (Gridn×(m+1), k).
Case 2.2.2: Otherwise, stretch or compress the profile in the follow-
ing way:

Case 2.2.2.1: If r ≤ k/2 holds, construct a pure Nash equilib-
rium v′ for Γ (Grid(n−r)×m, k) and construct v by Stretch(n −
r,m, k, v′, r).
Case 2.2.2.2: Otherwise, construct a pure Nash profile v′ for
Γ (Grid(n+k−r)×m, k). Then, construct v by Compress(n + k −
r,m, k, v′, k − r).

Case 2: If k is odd but k �= 3, construct a pure Nash equilibrium profile v′

for Γ (Grid(n+1)×m, k + 1). Then, construct {vi}1≤i<k as

vi :=
{

v′
i if i ≤ k − 2

(xi−1 − 1, yi−1) otherwise

For convenience, we use a superscript to represent the profile. Namely, vi =
(xv

i , yv
i ) means that player-i’s initial vertex is located at (xv

i , yv
i ) in profile v.
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Algorithm 1. Stretch or compress a profile
function Stretch(n, m, k, v′, i)

return Stretch-or-Compress(n, m, k, v′, i, 1)

function Compress(n, m, k, v′, i)
return Stretch-or-Compress(n, m, k, v′, i, −1)

function Stretch-or-Compress(n, m, k, v′, i, soc)
for j ← 1 to k/2 do

a ← soc · min{i, j − 1}
v2j−1 ← (xv′

2j−1 + a, yv′
2j−1 + [a is odd])

v2j ← (xv′
2j + a, yv′

2j + [a is odd])

return v

For our constructed strategy profile, the positions of the initial vertices are
specific. Thus, the payoff of each players can be calculated, and the payoff of
their changes can be predicted, wherever the changes are located. Actually, only
constant number of initial vertices need to be checked due to the symmetry of
our construction. For each of them, we claim most changes of them cannot be a
pure Nash, which can be asserted by some lemmas given in the following section.
Thus, the number of changes that need to be checked is quite limited and it is
an tedious but feasible task to check all of them.

3.2 Non-existence Conditions

In this section, we give 3 sufficient conditions for the non-existence of pure Nash
profiles, Lemmas 1, 2 and 3. They will be used as tools to find an boost and
certify a profile is not a pure Nash.

Intuitively, we can perceive if an initial vertex v1 moves closer to another
initial vertex v2, it will snatch some vertices from I2. If some change makes an
initial vertex closer to all the other initial vertex, it may be an boost. The first
lemma is a formal statement for such idea.

Lemma 1. For some player occupying vi = (xi, yi), v′
i = (xi + 1, yi + 1) is an

boost of vi if xj + yj > x′
i + y′

i holds for all j ∈ [k]\{i}.
It can be generalized due to the symmetry of grids. Namely, after reflecting

coordinates along a dimension or rotating the grid by 90◦, it also hold. The
statement about such generalization will be omitted in this paper.

The second lemma shows the profile in which all the initial vertices are
bounded by a small block cannot be pure Nash equilibrium.

Lemma 2. In Γ (Gridn×m, k) where k ≥ 3 and n,m are sufficiently large, the
profile is not pure Nash equilibrium if for some constant c there exists no distinct
i, j ∈ [k] such that xi − xj > c or yi − yj > c.
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Without loss of generality, assume v1 is the minimal-payoff one among all
initial vertex, which implies U1 ≤ nm/k. We “merge” the other initial vertices
and treat roughly it as a 2-player Voronoi game. Note that such merging is
reasonable since the initial vertices are close to each other. Thus, v1 can always
move to some position and get the payoff of almost a half of the total vertex
number, which is a significant boost for v1 when k ≥ 3 holds.

The third lemma describes another non-Nash case, where the 4 players are
divided into 2 pairs, initial vertices in each pair are constantly close and all initial
vertex is constantly close to a slash.

Lemma 3. In Γ (Gridn×m, 4) where n,m are sufficiently large, a profile v is
not a pure Nash where ‖v1 − v2‖1, ‖v3 − v4‖1 and |(x1 + y1) − (x3 + y3)| (or
|(y1 − x1) − (y3 − x3)|) are upper bounded by a constant.

The basic idea to prove Lemma 3 is as following. Suppose that {v1, v2} con-
tains the leftmost and the topmost initial vertices. Thus, there exists a position
v = (x, y) such that x + y > xi + yi and y − x > yi − xi hold for all i ∈ [4], and
‖v − v1‖ can be bounded by a constant. If vertex pair {v1, v2} is (1/4+ ε) ·m-far
from the upper bound, position v can provide payoff of at least (1/4+ ε/2) ·nm,
which is sufficient to improve the minimal-payoff initial vertex. Similarly, vertex
pair {v1, v2} cannot be too far from the left boundary, as well as pair {v3, v4}
cannot be too far from the bottom or the right boundary. In this case, we show
there exists a position providing the payoff of at least 3nm/8 − o(nm).

3.3 Voronoi Game on Grids Within 4 Players

Naturally, it is a good start point to consider the cases with a few players. In this
section, we answer the question that if there exists a pure Nash in Γ (Gridn×m, k)
when k ≤ 4.

In the first non-trivial case Γ (Gridn×m, 2), there is always a pure Nash equi-
librium. If the grid has more than one centroid, v1 and v2 take a pair of adjacent
centroids; Otherwise, v1 takes the centroid and v2 an adjacent vertex of v1. It
is easy to verify the pure Nash-property. For the case Γ (Gridn×m, 3), we prove
the following conclusion.

Theorem 4. For any sufficiently large integer n,m, there exists no pure Nash
equilibrium in Γ (Gridn×m, 3).

Roughly said, either there exists a player who can get closer to the others,
or the 3 players are close to each others when k = 3. Thus, the profile in neither
the 2 cases can be a pure-Nash due to Lemmas 1 and 2.

Next, we discuss a much more challenging case Γ (Gridn×m, 4). Intuitively,
to construct a pure Nash profile, a “isolated” initial vertex, i.e. an initial vertex
with no neighbor one, should be avoid, otherwise some initial vertex could get
closer to the others. Unfortunately, the intuition is not so precise. We find that
in the following special case every initial is isolated, but neither of them could
get closer to all the other initial vertex simultaneously in the style of Lemma 1:
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the case where the topmost, leftmost, rightmost and bottommost initial vertices
are distinct. We say an initial vertex is a controller if such initial vertex is both
the leftmost and the topmost one. This concept can also generalized due to the
symmetry of grids. The condition of such special case is equivalent to there exists
no controller. As the first step, we deal with this special case:

Lemma 4. In Γ (Gridn×m, 4) where n,m are sufficiently large, a profile is not
pure Nash equilibrium if there is no controller.

The related position of the leftmost initial vertex v3 = (x3, y3) and the right-
most one v4 = (x4, y4) is discussed first. As the result, an boost can be easily
found, unless x3+y3 < x4+y4 and y3−x3 > y4−x4 hold. Next, we consider the
positions the topmost initial vertex v2 and the bottommost one v1, and analyze
the following two cases: (1) the case where y2−x2 ≥ y3−x3 and y1+x1 ≤ y3+x3

hold; (2) the case where y2 − x2 > y3 − x3, y3 + x3 < y1 + x1, y4 − x4 > y1 − x1

and y4+x4 > y2+x2 holds. For the first case, the key point is that v3 can snatch
significant payoff improvement from either v1 or v2, since (y2−x2)−(y3−x3) ≤ 2
and (y3 +x3)− (y1 +x1) ≤ 2 must hold (otherwise Lemma 1 will show an boost
for v1 or v2). In the second case, there always exists a player who can improve
the payoff, except all the players are close to each other, which cannot be a pure
Nash due to Lemma 2. The result that profiles in these 2 cases cannot be a pure
Nash can be generalized due to the symmetry of grids, which finishes the proof.

After excluding the special case, we prove Lemmas 5 and 6 to show profiles
with some initial vertex isolated cannot be a pure Nash.

Lemma 5. In Γ (Gridn×m, 4) where n,m are sufficiently large, the profile is not
pure Nash equilibrium, if there exists a controller and the distance between any
2 players’ initial vertices is not shorter than 2.

Lemma 6. In Γ (Gridn×m, 4) where n,m are sufficiently large, the profile is not
pure Nash equilibrium if ‖v1 − v2‖1 = 1 and ‖v3 − v4‖1 > 1.

By utilizing Lemma 1 and investigating potential boosts of a controller, it
not a hard task to prove Lemma 5. To prove Lemma 6, assume x2 = x1 + 1 and
y1 = y2 hold without loss of generality. We divide a grid in the following way
(Fig. 3):

Fig. 3. The grid is divided into P1, P2, P3 and P4.

Due to Lemma 1, we find the following facts: (1) If v3 and v4 are located in
the same part, the profile is not a pure-Nash unless ‖v3 − v4‖1 = 1; (2) If v3



538 X. Sun et al.

and v4 are located in 2 opposite parts, i.e. P1, P3 or P2, P4, the profile is not a
pure-Nash unless ‖v3 − v4‖1 ≤ 5; (3) Otherwise, the profile is not a pure-Nash
unless ‖v3 − v4‖1 ≤ 5. Furthermore, condition ‖v3 − v4‖1 > 1, Lemmas 2 and 3
imply respectively profiles in all the 3 cases cannot be pure Nash profiles.

Then, we prove Lemma 7 and give a non-existence condition of pure Nash
profiles for this game.

Lemma 7. In Γ (Gridn×m, 4) (n ≥ m) where n and m are sufficiently large and
‖v1 − v2‖1 = 1 and ‖v3 − v4‖1 = 1 hold, in the case where 4 | n and m is odd,
there does not exist a pure Nash profile if m ≥ n/2 + 2	√n� + 5 holds. In the
other cases, there does not exist a pure Nash profile if m > n/2 + 6.

To inherit notations P1, . . . , P4, we abandon restriction n ≥ m temporarily.
First, assume x2 = x1 + 1 and y1 = y2 hold. If both v3 and v4 are located in P1,
v1 and v2 cannot be (1/4 + ε)m-far from the bottom boundary in a pure Nash
profile, due to a similar argument to the one mentioned in the proof sketch of
Lemma 2. We consider v′

1 = (x1 − 1, y1 + 1) and v′
2 = (x2 + 1, y2 + 1). Note

that U1(v′
1, v−1) = U1 + (x1 − 1 − y1) and U2(v′

2, v−2) = U2 + (n − x1 − y2),
which implies v′

1 and v′
2 are both not boosts only if y2 ≥ (n − 1)/2 holds.

Due to the symmetry of girds, such argument works for most of the cases to
give a n > m/2 + 6 bound, except the one where both v3 and v4 are located
in P2 (or P4) and y3 = y4 holds. Second, suppose y3 = y4 and v3, v4 ∈ P2

hold. We consider v′
2 = (x2 + 1, y2 + 1) and v′′

2 = (x2 + 1, y2 − 1). Note that
U2(v′

2, v−2) = U2 + (m − 2y2) and U2(v′′
2 , v−2) = U2 + (2y2 − m + y2 − 2), which

implies v1, v2 must be located roughly on the middle row in a pure Nash profile,
as well as v3, v4 for the same reason. Up to now, the structure is simple enough
such that it becomes feasible to show Lemma 7 by more detailed analysis.

Meanwhile, we can construct a pure Nash-profile if the grid is sufficiently
narrow according to Theorem 1. Besides, when 4 | n and m is odd, our construc-
tion can be ensured as a pure Nash in a loosened condition, as the following
lemma stated.

Lemma 8. In Γ (Gridn×m, 4) (n ≥ m) where n,m are sufficiently large, 4 | n
and m is odd, there exists a pure Nash profile if m ≤ n/2 + 2	√n� + 1 holds.

Combining all the results in this section and Lemma 8, our main result The-
orem 2 can be shown.

4 Voronoi Game on Trees

In this section, we discuss the Voronoi game on trees among 3 players. For the
limit of pages, we only show the algorithm induced by Theorem 3. The complete
proof of Theorem 3 is in the full version of this paper.

The main idea towards Theorem 3 is that if there exists a Nash equilibrium
on a tree with 3 players, then their positions must induce a Path3 on the tree.
Based on this conclusion, it is easy to verify the group of conditions in Theorem 3
is sufficient and necessary.
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This theorem can induce an efficient algorithm as a judgment. See details
in Algorithm 2, where each valv,i(v ∈ V (T ), i = 1, 2) represents the value of
st(w, v), where w is a neighbor of v with the i-th maximum st(·, v), and each
labv,i(v ∈ V (T ), i = 1, 2) records the vertex w. If there is a Nash equilibrium, the
algorithm will return a triple of three different vertices as a solution, otherwise
it will return −1.

The correctness of this algorithm is promised by Theorem 3. Now let us
analyze its performance. Let n = v(T ). The main space cost of this algorithm is
the tree structure and the arrays {valv,i} and {labv,i}, so it is O(n). For the time
cost, it is easy to see that the two arrays {valv,i} and {labv,i} can be computed
by a dynamic programming on the tree T within O(n) time. Combine the O(n)
time cost by Algorithm 2, the total time cost is O(n) too.

Algorithm 2. Nash equilibrium on a tree T with 3 players
for v ∈ V (T ) do

sti1 ← valv,1
sti2 ← valv,2
if lablabv,1,1 = v then

stj1 ← vallabv,1,2

else
stj1 ← vallabv,1,1

if lablabv,2,1 = v then
stj2 ← vallabv,2,2

else
stj2 ← vallabv,2,1

if (v(T ) − sti1 − sti2 ≥ max{stj1, stj2}) ∧ (sti2 ≥ stj1) then
return (labv,1, v, labv,2)

return −1

5 Conclusion

In this paper, we consider one-round multi-player Voronoi games on grids and
trees. First, we answer such a question: is there a pure Nash equilibrium in
a one-round k-player Voronoi game processing on Gridn×m (n ≥ m)? For the
game on sufficiently large grids within 4 players, we provide almost complete
characterization of the existence of a pure Nash equilibrium. Besides, we raise
a method to construct a pure Nash equilibrium profile for the game with k
(k �= 3) players on sufficiently narrow grids. Second, for the game on a tree with
3 players, we give a sufficient-necessary condition for the existence of a pure Nash
equilibrium, as well as a linear time/space algorithm to check the condition.

The non-existence condition of a pure Nash in Γ (Gridn×m, k) where k > 4
is unknown. We conjecture our construction is optimal, i.e., there exists no pure
Nash if n ≥ m > n/�k/2� + o(n) holds. For the case of tree, it is worth thinking
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how to determine whether there exists a pure Nash equilibrium with 4 players.
It is also interesting to determine whether there is a Nash equilibrium with
multi-players on other graph classes.
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Abstract. In mechanism design, fairness is one of the central criteria
for analyzing mechanisms. Recently, a new fairness concept called envy-
freeness of a group toward a group (GtG-EFness) has received atten-
tion, which requires that no group of agents envies any other group. In
this paper, we consider GtG-EFness in more general combinatorial auc-
tions, including several subclasses of the multi-unit auction domain (unit-
demand, diminishing marginal values, and all-or-nothing), and reveal the
tight bound of the competitive ratios. In particular, we prove that the
tight bound of the competitive ratio is 1/k (where k is the number of
items) for the general combinatorial auction domain. We also clarify the
relationship with Walrasian equilibria and conclude that no group envies
any other group in any Walrasian equilibrium.

Keywords: Combinatorial auctions · Competitive analysis ·
Envy-freeness

1 Introduction

Since fairness is one of the central criteria for evaluating mechanisms, several
concepts concerned with it have been studied so far. In particular, a concept
called envy-freeness has been scrutinized in economics [5]. A mechanism is envy-
free if no individual (agent) envies any other individual. This concept has also
attracted considerable attention from computer scientists, who are interested in
designing and analyzing fair resource allocations, e.g., [6,12].

Todo et al. [14] proposed an extension of traditional envy-freeness called
envy-freeness of a group toward a group (GtG-EFness), which requires that no
group of agents envies any other group. In domains with complementarities,
such as combinatorial auctions or task scheduling, an agent or a group of agents
might desire a set of items/tasks that are assigned to other agents. Assuming
monetary transfers are possible, it would be fair to allocate a set of items/tasks
to a set of agents that is willing to pay more. Thus, GtG-EFness seems to be
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D.-Z. Du et al. (Eds.): COCOON 2019, LNCS 11653, pp. 541–553, 2019.
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a natural extension of traditional envy-freeness and can open up interesting
research directions in mechanism design with monetary transfers.

Many open problems remain on GtG-EF mechanisms. In particular, almost
all the results presented in [14] are on a very restricted case called the single-
minded combinatorial auction domain. This restriction is useful for simplifying
theoretical analysis, but agents’ preferences are much more complicated in real
application fields. When agents are single-minded, we can safely assume a winner
never has envy. On the other hand, if an agent is not single-minded, even if she
wins something, she still might envy another agent who obtained more desirable
items, or equally desirable items by paying less.

In this paper, we analyze the worst-case performances of GtG-EF mechanisms
using a competitive ratio, which is the ratio of the welfare obtained by the
mechanism to the Pareto efficient welfare in the worst-case. We address several
domains beyond the single-minded combinatorial auction domain, in particular,
the multi-unit auction domain, in which multiple identical items are going to be
sold. In this domain, agents’ preferences can be more concisely represented than
in the general combinatorial auction domain (i.e., k vs. 2k, where k indicates the
number of items). The multi-unit auction domain is crucial in practice because it
can represent many applications, such as telecommunication spectrum auctions
in which identical channels are auctioned, job scheduling on multiple machines,
and the assignment of the rights to use finite/infinite identical resources.

We consider several subclasses of the multi-unit auction domain, i.e., unit-
demand, diminishing marginal values, and all-or-nothing domains, as well as the
general combinatorial auction domain. We obtain the tight bounds of the com-
petitive ratio of GtG-EF mechanisms in those domains, considering two incentive
concepts of strategy-proofness and false-name-proofness [19]. In particular, we
prove that the tight bound of the competitive ratio is 1/k for the general combi-
natorial auction domain. We believe this work is an important first step toward
a fair mechanism design for real market environments.

We then shed light on the relationship between GtG-EFness and a notion on
market-clearing called Walrasian equilibrium, which has been discussed in both
economics and computer science literatures. Informally, a Walrasian equilibrium
is a pair of an assignment of items and a vector of item prices in which all agents’
utilities are maximized. We prove that in any Walrasian equilibrium, no group
of agents envies any other group in the general combinatorial auction domain.

2 Related Works

Many works have addressed envy-freeness in computer science and economics.
Foley [5] proposed envy-freeness in resource allocations. Haake et al. [8] charac-
terized the allocation rules of envy-free mechanisms by a property called local
efficiency. For unlimited-supply multi-unit auctions, Goldberg and Hartline [6]
discussed strategy-proof and envy-free auctions and analyzed their competitive
ratios. Cohen et al. [2] showed that incentive conditions and envy-freeness can-
not coexist in combinatorial auctions with capacitated valuations, where agents
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have a limit on the number of items they may receive. Tsuruta et al. [16] studied
the relation with false-name-proofness in the allocation of a divisible object.

Vind [18] and Varian [17] proposed an extension of envy-freeness called coali-
tion fairness, which requires that no group envies any other group of the same
size. Coalition fairness, which is a conventional concept in economic theory, has
been attracting less attention than traditional envy-freeness. One reason might
be that coalition fairness is too specific since it restricts the scope of envy-freeness
within same-sized groups. On the other hand, GtG-EFness puts no restriction
on the size of groups. In this sense, GtG-EFness can be considered an extension
of coalition fairness. GtG-EFness also resembles Walrasian equilibrium. Gul and
Stacchetti [7] discussed Walrasian equilibrium in economies that satisfy the gross
substitutes condition. Conen and Sandholm [3] showed that Walrasian equilib-
rium always exists, even in the general combinatorial auction domain, if non-
linear pricing is allowed. Quite recently, such group fairness has also been studied
in (indivisible) resource allocation without monetary transfers [1,4,11,13].

3 Model

Consider a set of (identical or heterogeneous) items K = {g1, . . . , gk} for sale
and a set of agents (bidders) N = {1, . . . , n}. Each agent i ∈ N has her value
function vi ∈ V that maps a set of items into �. Here V is a set of possible
value functions (value domain). We assume a quasi-linear, private value model
with no allocative externality; the utility of agent i, who obtains a set of items
(bundle) Bi ⊆ K and pays ti, is represented as vi(Bi) − ti. We also assume vi is
normalized so that vi(∅) = 0 holds.

Let v = (v1, . . . , vn) ∈ V n be a value profile. An (direct revelation, deter-
ministic) auction mechanism M(f, t) consists of an allocation rule and a transfer
(payment) rule. An allocation rule is defined as f : V n → X, where X is a set
of the possible assignments of items over N . For an assignment x ∈ X, let xi

indicate the bundle allocated to agent i. Note that an assignment x ∈ X must
satisfy allocation feasibility;

⋃
i∈N xi ⊆ K ∧ ∀i, j(	= i), xi ∩ xj = ∅. A transfer

rule is defined as t : V n → �. For a mechanism M(f, t) and a value profile v,
let fi(v) and ti(v) respectively denote the bundle allocated to agent i and the
amount agent i must pay. We use notations f(vi, v−i) and t(vi, v−i) to represent
the assignment and transfer when agent i declares value function vi and the
other agents declare value profile v−i.

We restrict our attention to mechanisms that satisfy individual rationality
(IR) with non-positive transfer. IR means that no agent obtains negative util-
ity by reporting her true value. Formally, ∀i ∈ N , ∀v, vi(fi(v)) − ti(v) ≥ 0.
We also assume a mechanism is almost anonymous across agents; the results
obtained from a mechanism are invariant under the permutation of the identi-
fiers of agents except for the case of ties. This paper also discusses two incentive
constraints: strategy-proofness and false-name-proofness (for a detailed discus-
sion, see Yokoo et al. [19] for example). A mechanism is strategy-proof if for
every agent, reporting her true value is a weakly dominant strategy.
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Definition 1. A mechanism M(f, t) is strategy-proof if ∀i, ∀v−i, ∀vi, ∀v′
i,

vi(fi(vi, v−i)) − ti(vi, v−i) ≥ vi(fi(v′
i, v−i)) − ti(v′

i, v−i).

Definition 2. A mechanism M(f, t) is false-name-proof if for all agents, truth-
telling only using one identifier is a weakly dominant strategy.

Notice that false-name-proofness implies strategy-proofness by definition.
Here we define the five value domains. The first two are for combinatorial auc-

tions with k heterogeneous items, and the last three are for multi-unit auctions
with k identical items.

General Combinatorial Auction (GCA)1 Domain: the value domain V is
a set of all value functions that satisfy free-disposal and are normalized with
no allocative externalities. We say a value function vi satisfies free-disposal if
∀Bi ⊆ B′

i ⊆ K, vi(Bi) ≤ vi(B′
i) holds.

Single-Minded Combinatorial Auction (SMCA) Domain: the value
domain V is a set of all single-minded (SM) value functions. A value function
vi is SM if there exists a bundle Bi ⊆ K s.t., vi(Bi) > 0, vi(B′

i) = vi(Bi) for all
B′

i ⊇ Bi, and vi(B′′
i ) = 0 for all B′′

i 	⊇ Bi.

Unit-Demand (UD) Domain: the value domain V is a set of all UD value
functions. A value function vi is UD if there exists a non-negative value wi such
that for all Bi ⊆ K, vi(Bi) = wi if |Bi| ≥ 1 and 0 otherwise.

Diminishing Marginal Values (DMV) Domain: the value domain V is a
set of all value functions that have DMV. A value function vi has DMV if it has
an associated non-increasing sequence of k non-negative values (marginal values)
wi,1 ≥ . . . ≥ wi,k such that for all Bi ⊆ K, vi(Bi) =

∑|Bi|
j=1 wi,j .

All-or-Nothing Values (ANV) Domain: the value domain V is a set of all
the value functions that have ANV. A value function vi has ANV if it has an
associated positive number ki ∈ {1, . . . , k} and a non-negative value wi such
that for every Bi, vi(Bi) = wi if |Bi| ≥ ki and 0 otherwise.

Next we introduce canonical envy-freeness and its extension. We refer to
the canonical one as the envy-freeness of an individual toward an individual
(ItI-EFness), and the extended concept as the envy-freeness of a group toward
another group (GtG-EFness). A mechanism M(f, t) is ItI-EF if ∀i, ∀j 	= i, ∀v,
vi(fi(v)) − ti(v) ≥ vi(fj(v)) − tj(v). Todo et al. [14] proposed the following
extension.

Definition 3. A mechanism M(f, t) is GtG-EF if ∀v, ∀C,S ⊆ N ,
∑

i∈C

[
vi(fi(v)) − ti(v)

] ≥ V ∗(C,
⋃

j∈S

fj(v)) −
∑

j∈S

tj(v),

where V ∗(C,B) is the surplus for a set of agents C when a set of items B ⊆ K
is optimally allocated to C.
1 We abbreviate the GCA domain as GCA interchangeably, and the others as well.
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Intuitively, this concept implies that no group of agents envies any other
group. Todo et al. [14] completely characterized GtG-EF mechanisms in SMCA
by introducing a condition called locally efficient bundle assignment with
split/merger (LEBA-SM). Before introducing it, let us first define permutation
with split/merger; an assignment x′ is a permutation with split/merger of another
assignment x if

⋃
i∈N x′

i =
⋃

i∈N xi.

Definition 4. An assignment x is a LEBA-SM w.r.t. v if
∑

i∈N vi(xi) ≥∑
i∈N vi(x′

i) for any x′, where x′ is a permutation with split/merger of x.

In other words, an LEBA-SM x maximizes the social welfare among all pos-
sible assignments that allocate the same set

⋃
i∈N xi ⊆ K of items to N .

Theorem 1 (Todo et al., [14]). In SMCA, there is a transfer rule t s.t.,
M(f, t) is GtG-EF if and only if f(v) is an LEBA-SM w.r.t. v for every v.

For the proofs in Section 4, the following corollary is useful, which can be
easily derived from Theorem 1.

Corollary 1. In any domain V , if there exists a transfer rule t s.t. a mechanism
M(f, t) is GtG-EF, then f(v) is an LEBA-SM w.r.t. v for all value profile v ∈ V .

We evaluate mechanisms based on competitive analysis, which is commonly
used in recent algorithmic mechanism design literature.

Definition 5. A mechanism M(f, t) has a competitive ratio of c if

infv∈V

∑
i∈N vi(fi(v))

maxx∈X

∑
i∈N vi(xi)

≥ c.

The denominator is the social welfare by a Pareto efficient assignment, which
maximizes the social welfare when agents’ utilities are assumed to be trans-
ferrable. When a mechanism always produces a Pareto efficient assignment, it
achieves the optimal competitive ratio of one. For example, both the Vickrey-
Clarke-Groves (VCG) and the first-price combinatorial auction (FPCA) mecha-
nisms have the optimal competitive ratio.

However, these well-known mechanisms are not always strategy-proof and
GtG-EF simultaneously. Precisely, even in SMCA, VCG is not GtG-EF but
strategy-proof, and FPCA is not strategy-proof but GtG-EF.

Example 1. Consider two items, {g1, g2}, and three agents, {1, 2, 3}, whose val-
ues are drawn from the SMCA domain: agent 1 values 8 on g1, agent 2 values 7
on g2, and agent 3 values 10 on {g1, g2}.

In VCG, agent 1 wins g1 and pays 3, and agent 2 wins g2 and pays 2. Thus,
agent 3 envies the set of winners {1, 2}, since her value on {g1, g2} is strictly
greater than the sum of the transfers 3 + 2 = 5.

In FPCA, the assignment of items is identical to VCG. Each winner pays her
reported value on the bundle she receives. In the above example, since agent 1
pays 8 and agent 2 pays 7, agent 3 does not envy the winners. However, agent 1
can increase her utility by reporting 3 + ε rather than her true value of 8.
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Thus, FPCA is an optimal GtG-EF mechanisms without incentive require-
ments in SMCA. However, the tight bound of GtG-EF and strategy-proof (or
false-name-proof) mechanisms remains open in SMCA, although a non-trivial
mechanism called average-max minimal-bundle (AM-MB, Ito et al. [10]) is GtG-
EF and strategy-proof, which has a competitive ratio of 1/k in GCA, including
SMCA. In the rest of this paper, we first examine the upper bounds of the three
subclasses of the multi-unit auction domains (UD, DMV, and ANV). Then,
instead of considering the general multi-unit auction domain, we focus on GCA.
Actually, the bounds of the general multi-unit auction domain are identical to
those of GCA. The obtained results are summarized in Table 1.

Table 1. Tight bounds of competitive ratios achieved by GtG-EF mechanisms. SP and
FNP denote strategy-proofness and false-name-proofness.

Domain w/o SP w/ SP w/ FNP

SMCA [14] 1 Open Open

UD 1 1 1

DMV (Theorems 2 and 4) 1 1/k 1/k

ANV (Theorems 3 and 4) 1/k1/k 1/k 1/k

GCA (Theorem 5) 1/k 1/k 1/k

4 Multi-unit Auctions

This section analyzes GtG-EF mechanisms in the three multi-unit auction
domains defined above, where k identical items are going to be sold.

First, as an exercise, we examine the tight bounds of the competitive ratio
for UD. The analysis for UD is quite easy, since VCG is simultaneously GtG-
EF, strategy-proof, and false-name-proof and has a competitive ratio of 1. More
precisely, GtG-EFness is equivalent to ItI-EFness in UD. Thus, all entries in the
UD row of Table 1 have the tight bound of 1.

4.1 Diminishing Marginal Values

Omitting the incentive issues, the (k + 1)-st price auction mechanism, which
is also known as the uniform-price auction, satisfies GtG-EFness because every
winner pays the same amount of transfer per unit, a.k.a., the market-clearing
price. Since the mechanism always produces a Pareto efficient assignment, it
achieves the optimal competitive ratio. However, after taking either strategy-
proofness or false-name-proofness into account, no mechanism can achieve the
optimal ratio, i.e., the following theorem holds.

Theorem 2. In DMV, any mechanism that is simultaneously GtG-EF and
strategy-proof has a competitive ratio of at most 1/k.
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Proof. We assume for a contradiction that a GtG-EF and strategy-proof mecha-
nism M(f, t) has a competitive ratio of (1/k)+ ε (ε > 0). Consider three agents,
{1, 2, 3}, and the following k value profiles defined by parameter s (1 ≤ s ≤ k).
We call each profile Profile s.

– Agent 1’s value is the same for all profiles. She has a marginal value of α + γ
on the first item and zero on additional items with arbitrary constant α > 0,
where γ satisfies α+γ

kα+γ < 1
k + ε. Here, γ is chosen so that agent 1 wins one

item in all of these profiles.
– Agent 2 has a marginal value ws

2,j for the j-th item s.t., ws
2,j = α +

2(s(s+1)/2)−jδ, where constant δ (> 0) is chosen s.t., γ > 2(k(k+1)/2)−1δ holds.
In other words, for each profile, the additional term 2(s(s+1)/2)−jδ for the j-th
item is 1/2 of the one for the (j−1)-th item. By increasing parameter s, these
marginal values also increase.

– Agent 3’s value is the same for all the profiles; she has a marginal value of α
on each item.

Figure 1 corresponds to the case where k = 3, γ = 1, and δ = 2−6. Assuming
that the competitive ratio exceeds 1/k, in each of these profiles, allocating either
no item or just one is not allowed.

First, we show that for Profiles s ≥ 2, i.e., except for Profile 1, allocating
two items is impossible. For example, consider the situation described in Fig. 1.
In Profile 3, when two items are allocated, both agents 1 and 2 win one item
(Fig. 1(a)) from Corollary 1. Then agent 1 pays at least α + 2−2 to avoid envy
from agent 2 toward a set of agents {1, 2}. Also from ItI-EFness, agents 1 and
2 pay the same amount. Thus, the utility of agent 2 is at most 2−1 − 2−2. On
the other hand, in Profile 1, agent 2 wins at least one item. When she wins one
item in Profile 1 (Fig. 1(e)), she pays at most α + 2−6 from IR. Thus, in Profile
3, if agent 2 underbids her values and creates a situation identical to Profile 1,
her utility increases from 2−1 −2−2 to 2−1 −2−6. This contradicts the condition
of strategy-proofness. Also, when agent 2 wins two items in Profile 1 (Fig. 1(f)),
she pays at most 2α+2−6 +2−7 from IR. Thus, in Profile 3, if agent 2 underbids
her values and creates a situation identical to Profile 1, her utility increases from
2−1 − 2−2 to 2−1 + 2−2 − 2−6 − 2−7. This contradicts the condition of strategy-
proofness. Thus, in Profile 3, allocating two items is impossible. From a similar
argument, allocating two items is impossible for Profiles s ≥ 2. In Fig. 1, (a)
and (d) are impossible.

Next, we show that for Profiles s ≥ 3, i.e., except for Profile 1 and 2, allocating
exactly three items is not allowed. Again, consider the situation described in
Fig. 1. In Profile 3, when three items are allocated, agent 1 wins one item and
agent 2 wins two items (Fig. 1(b)) from Corollary 1. Here, agent 1 must pay at
least α + 2−3 to avoid envy from agent 2 toward a group {1, 2}. Then, agent
2 must pay at least 2α + 2−3 to avoid envy from a set of agents {1, 3} toward
agent 2. Thus, the utility of agent 2 is at most 2−1 + 2−2 − 2−3. On the other
hand, in Profile 2, agent 2 must win two items (i.e., the situation must be (c)
in Fig. 1), since we already proved that (d) is impossible. Here, agent 2 pays
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at most 2α + 2−4 + 2−5 from IR. Thus, in Profile 3, if agent 2 underbids her
values and creates a situation identical to Profile 2, her utility increases from
2−1 + 2−2 − 2−3 to 2−1 + 2−2 − 2−4 − 2−5. This contradicts the condition of
strategy-proofness. Thus, in Fig. 1, (b) is impossible. From a similar argument,
allocating exactly three items is impossible for Profiles s ≥ 3.

Using a similar argument, we can prove that for each s ≥ s′, allocating
exactly s′ items is impossible. Then, for Profile k, no allocation is possible. For
example, in Fig. 1, no allocation is possible for Profile 3. This contradicts the
assumption that the competitive ratio exceeds 1/k. ��

Profile 1

Profile 2Profile 3
agent 2

agent 1

agent 2
agent 2

agent 3

(a)
agent 2

agent 1

agent 2
agent 2

agent 3

(b)

agent 2

agent 1

agent 2 agent 2

agent 3

(c)

agent 2

agent 1

agent 2 agent 2

agent 3

(d)

agent 2

agent 1

agent 2 agent 2 agent 3

(f)

agent 2

agent 1

agent 2 agent 2 agent 3

(e)

Fig. 1. Proof of Theorem 2 for k = 3, γ = 1, and δ = 2−6.

4.2 All-or-Nothing Values

In ANV, the value of an agent may have complementarity across items. For an
auction mechanism, complementarity often causes difficulties. This is also true
for a GtG-EF mechanism; even without any incentive issues, the competitive
ratio of any GtG-EF mechanism is at most 1/k.

Theorem 3. In ANV, any GtG-EF mechanism has a competitive ratio of at
most 1/k.

Proof. Consider a GtG-EF mechanism that is going to sell k items to 2k −
2 agents. Based on a numerical sequence (ci)i=2,...,k defined by a recurrence
relation ci = 2ci−1 + 1 and c2 = 1, the agents’ values are defined as follows:

– Agent 1 values α + ck + 1 on one item with a sufficiently large constant α.
– Agent i ∈ {2, . . . , k} values iα + ci on i items.
– Agent j ∈ {k + 1, . . . , 2k − 2} values α on one item.

Figure 2 corresponds to k = 4. Note that the optimal social welfare is kα + ck +
ck−1 + 1, which occurs when agents 1 and k − 1 win.

From Corollary 1, an assignment must be an LEBA-SM. Thus, only the
following k cases are possible. Case 1: only agent 1 wins one item. Case 2: agent
1 wins one item and an agent in {k +1, . . . , 2k −2} (wlog., agent k +1) wins one
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item. Case s (3 ≤ s ≤ k): agent 1 wins one item and agent s−1 wins s−1 items.
We then show that Cases 2, . . . , k do not occur in the GtG-EF mechanism.

In Case 2, both agents 1 and k+1 must pay the same amount from ItI-EFness.
Then, the sum of the transfers is at most 2α from IR. Thus, agent 2 with value
2α + 1 on two items envies the set of winners, which violates GtG-EFness.

In Case s (3 ≤ s ≤ k), agent s − 1 pays at most (s − 1)α + cs−1 from
IR. Furthermore, to avoid envy from agent s toward the winners (i.e., 1 and
s − 1), the sum of the transfers is at least sα + cs. Therefore, agent 1 must
pay at least α + cs − cs−1 and then her utility is at most ck − cs + cs−1 + 1 =
ck − cs−1. On the other hand, the total value on the s − 1 items by a set of
agents {1, k + 1, . . . , k + s − 2} is (s − 1)α + ck + 1, and the transfer of agent
s − 1 is at most (s − 1)α + cs−1. Thus, if this set of agents obtains s − 1 items
that are currently assigned to agent s − 1, their total utility becomes at least
ck − cs−1 + 1, which is strictly larger than their current utility ck − cs−1 (here,
the utilities of agents k + 1, . . . , k + s − 2 are 0). This implies that the set of
agents {1, k + 1, . . . , k + s − 2} envies agent s − 1.

As a result, for the above value profile, Case 1 occurs; only agent 1 wins. The
ratio (α + ck)/(kα + ck + ck−1 + 1) converges to 1/k for sufficiently large α. ��

In contrast to the result on DMV, this result seems quite negative because an
optimal GtG-EF mechanism achieves only 1/k of the Pareto efficient welfare in
the worst case in ANV, even without any incentive issues. This also implies that
LEBA-SM does not characterize the allocation rules of GtG-EF mechanisms,
since a Pareto efficient allocation satisfies LEBA-SM. A characterization of GtG-
EF mechanisms in ANV remains open.

Case 1

agent 3 agent 4agent 2agent 1 agent 5 agent 6

1 item 2 items 3 items 4 items 1 item 1 item
Case 2

agent 3 agent 4agent 2agent 1 agent 5 agent 6
envy

1 item 2 items 3 items 4 items 1 item 1 item

Case 3

agent 3 agent 4agent 2agent 1 agent 5 agent 6
envy

1 item 2 items 3 items 4 items 1 item 1 item
Case 4

agent 3 agent 4agent 2agent 1 agent 5 agent 6
envy

1 item 2 items 3 items 4 items 1 item 1 item

Fig. 2. Proof of Theorem 3 for k = 4.

5 General Combinatorial Auctions

In the previous section, we identified the upper bounds of 1/k for DMV (with
strategy-proofness/false-name-proofness) and ANV, but we have not yet proved
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that they are tight. Nor have we obtained an upper bound for the general multi-
unit auction domain. In this section, by considering a more general domain, i.e.,
the GCA domain, we answer the above questions.

We show that the following average-max (AM) mechanism is GtG-EF,
strategy-proof and false-name-proof, and has a competitive ratio of 1/k. Since
GCA includes ANV, the ratio 1/k remains valid as an upper bound. Thus, AM
gives a tight lower bound for GCA. Since AM can be applied for the multi-unit
auction domain, it also gives a tight lower bounds for DMV (with strategy-
proofness/false-name-proofness) and ANV. Furthermore, the general multi-unit
auction domain includes ANV, and GCA includes the general multi-unit auction
domain. Since the tight bounds of ANV and GCA are identical, they are also
applicable to the general multi-unit auction domain.

Definition 6 (Average-Max). For each agent i ∈ N and each bundle Bi ⊆ K,
compute average value avi(Bi) = vi(Bi)/|Bi| for every agent i and every bundle
Bi. An agent i with the highest average value is the winner, and obtains a bundle
xi that solves the following maximization problem:

xi = arg maxBi⊆K{vi(Bi) − |Bi| · āv−i}, (1)

where āv−i = maxj �=i,Bj⊆K avj(Bj). She pays |xi| · āv−i.

First, note that AM is strategy-proof and false-name-proof in GCA. AM is
obviously strategy-proof, since its allocation rule is monotone and the winner’s
transfer does not depend on her value. It is also straightforward to show that
AM is false-name-proof. In AM, there is always only one winner. Furthermore,
the winner’s transfer never decreases as the number of identifiers grows. Thus,
agents have no incentive to use multiple identifiers.

Theorem 4. In GCA, AM is GtG-EF and has a competitive ratio of 1/k.

Proof. First, we show that AM is GtG-EF. Assume group C envies another
group S. The only winner, denoted as S := {l}, in AM obtains her most desirable
bundle under the unit price āv−i, i.e., l 	∈ C. The payment of l for bundle xl is
at least as large as V ∗(C, xl), which guarantees that C do not envy l.

Next, we examine the competitive ratio. In AM, there is always exactly one
winner, who has the highest average valuations among all agents. When she
obtains the bundle on which her average value is maximum, the ratio is obviously
at least 1/k. On the other hand, if the winner wins another bundle, say B, it must
contain at least two items to solve the maximization problem in Eq. 1. Thus, the
ratio is never smaller than 1/k. Furthermore, there exists a value profile in GCA
where the ratio of AM becomes essentially 1/k. The following is one example of
such a value profile: agent 1 has a value of 1 + ε for item g1, and agent 2 has a
value of k for a bundle {g1, . . . , gk}. AM allocates g1 to agent 1, and the ratio is
(1 + ε)/k. ��

Since AM is also false-name-proof, the following holds.
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Theorem 5. In GCA, the tight bound of the competitive ratio achieved by GtG-
EF and false-name-proof mechanisms is 1/k.

AM is a modified version of AM-MB, which allows us to allocate items to
more than one agent, while AM always chooses only one winner. As we stated
in Section 2, AM-MB is also GtG-EF and strategy-proof and has a competitive
ratio of 1/k. However, it is known that AM-MB is not false-name-proof. To the
best of our knowledge, AM is the first mechanism that is both GtG-EF and
false-name-proof with a non-zero competitive ratio.

6 Relation with Walrasian Equilibrium

In this section, we clarify the relationship between GtG-EFness and a notion on
market clearing called Walrasian equilibrium, which has been widely discussed
in economics literature. A Walrasian equilibrium is a pair of an assignment of
items and a vector of item prices that maximizes all agents’ utilities. In this
sense, the idea of Walrasian equilibrium closely resembles GtG-EFness.

Definition 7. A pair of an assignment and a price vector (x, p) is a Walrasian
equilibrium for v ∈ V n if ∀g ∈ K\⋃

i∈N xi, pg = 0 and ∀i ∈ N,∀Bi ⊆ K, vi(xi)−∑
g∈xi

pg ≥ vi(Bi) − ∑
g′∈Bi

pg′ .

Theorem 6. In GCA, no group of agents envies any other group of agents in
any Walrasian equilibrium.

Proof. We assume for a contradiction that a group C envies another group S
in a Walrasian equilibrium (x, p). It does not matter in the argument below
whether C and S intersect. Let x∗

i be the optimal assignment of items
⋃

j∈S xj

to the set of agents C, i.e., V ∗(C,
⋃

j∈S xj) =
∑

i∈C vi(x∗
i ). Note that a strict

subset of
⋃

j∈S xj may maximize the total welfare of the set of agents C, i.e.,⋃
i∈C x∗

i ⊆ ⋃
j∈S xj . Thus,

∑
i∈C

∑
g∈x∗

i
pg ≤ ∑

j∈S

∑
g∈xj

pg holds. Since (x, p)
is a Walrasian equilibrium, ∀i ∈ C, vi(xi) − ti ≥ vi(x∗

i ) − ∑
g∈x∗

i
pg, where

ti =
∑

g∈xi
pg. Summing this inequality over all the agents in C, we have

∑
i∈C

[
vi(xi) − ti

] ≥ ∑
i∈C

[
vi(x∗

i ) − ∑
g∈x∗

i
pg

]

≥ V ∗(C,
⋃

j∈S xj) − ∑
j∈S

∑
g∈xj

pg

= V ∗(C,
⋃

j∈S xj) − ∑
j∈S tj ,

which contradicts the assumption that C envies S. ��
There is a value profile s.t., no Walrasian equilibrium exists (e.g., see Gul and

Stacchetti [7]). However, when the market size is sufficiently small (precisely,
|K| = 1), we can easily see that a Walrasian equilibrium always exists.

From this observation, by withholding some item, we can guarantee the exis-
tence of a Walrasian equilibrium on the set of allocated items and their prices.
Let MK′ be a modified environment in which only the set of items K ′ ⊆ K
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is going to be sold and the remaining items K \ K ′ are never sold. Let vK′
be

the value profile for environment MK′ derived from the original value profile v:
∀i ∈ N,∀Bi ⊆ K ′, vK′

i (Bi) = vi(Bi). We then construct a class of mechanisms
that satisfies GtG-EFness in GCA.

Definition 8. Given v, choose a set of items K ′ ⊆ K s.t. there is a Walrasian
equilibrium in the modified environment MK′ . Set the price of each item g as
follows; the equilibrium price of g in MK′ if g ∈ K ′, and ∞ otherwise. For each
agent, allocate the bundle that maximizes her utility under the price vector. An
agent’s transfer equals the sum of the prices of the items that she obtains.

As a corollary of Theorem 6, the following statement holds.

Corollary 2. In GCA, any mechanism described in Definition 8 is GtG-EF.

Interestingly, in GCA, AM and AM-MB can be described in Definition 8.
For example, AM can be described as follows. Given value profile v, choose
l = arg maxi∈N avi(Bi) and K ′ = xi, where xi is the solution of Eq. 1. Then
allocate K ′ to agent l and set p s.t., pg = āv−l if g ∈ K ′.

7 Conclusions

One interesting future direction of GtG-EF mechanisms is to completely charac-
terize them in several domains, including GCA. Also, to achieve better compet-
itive ratios, considering randomized mechanisms is a natural direction. Further-
more, we have not obtained the tight bound of the competitive ratio of GtG-EF
and strategy-proof (or false-name-proof) mechanisms in SMCA. There remains
a large gap between the lower and upper bounds; the AM gives the lower bound
1/k, while the upper bound obtained in Todo et al. [14] is 2/3. Considering
envy-freeness in dynamic auctions [9,15] would also be an interesting extension.
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Abstract. A mixed dominating set of a graph G = (V, E) is a mixed set
D of vertices and edges, such that for every edge or vertex, if it is not in
D, then it is adjacent or incident to at least one vertex or edge in D. The
mixed domination problem is to find a mixed dominating set with a min-
imum cardinality. It has applications in system control and some other
scenarios and it is NP -hard to compute an optimal solution. This paper
studies approximation algorithms and hardness of the weighted mixed
dominating set problem. The weighted version is a generalization of the
unweighted version, where all vertices are assigned the same nonnega-
tive weight wv and all edges are assigned the same nonnegative weight
we, and the question is to find a mixed dominating set with a minimum
total weight. Although the mixed dominating set problem has a simple
2-approximation algorithm, few approximation results for the weighted
version are known. The main contributions of this paper include:
1. for we ≥ wv, a 2-approximation algorithm;
2. for we ≥ 2wv, inapproximability within ratio 1.3606 unless P = NP

and within ratio 2 under UGC;
3. for 2wv > we ≥ wv, inapproximability within ratio 1.1803 unless

P = NP and within ratio 1.5 under UGC;
4. for we < wv, inapproximability within ratio (1 − ε) ln |V | unless

P = NP for any ε > 0.

Keywords: Approximation algorithms · Inapproximability ·
Domination

1 Introduction

Domination is an important concept in graph theory. In a graph, a vertex dom-
inates itself and all neighbors of it, and an edge dominates itself and all edges
sharing an endpoint with it. The Vertex Dominating Set problem [10] (resp.,
Edge Dominating Set problem [22]) is to find a minimum set of vertices to
dominate all vertices (resp., a minimum set of edges to dominate all edges) in
a graph. These two domination problems have many applications in different
fields. For example, in a network, structures like dominating sets play an impor-
tant role in global flooding to alleviate the so-called broadcast storm problem.
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A message broadcast only in the dominating set is an efficient way to ensure
that it is received by all transmitters in the network, both in terms of energy
and interference [17]. More applications and introduction to domination prob-
lems can be found in the literature [9].

Domination problems are rich problems in the field of algorithms. Both
Vertex Dominating Set and Edge Dominating Set are NP -hard [7,22].
There are several interesting algorithmic results about the polynomial solvabil-
ity on special graph [14,23], approximation algorithms [5,6,12], parameterized
algorithms [20,21] and so on.

In this paper, we consider a related domination problem, called the Mixed
Domination problem. Mixed domination is a mixture concept of vertex domina-
tion and edge domination, and Mixed Domination requires to find a set of edges
and vertices with the minimum cardinality to dominate other edges and vertices
in a graph. Mixed Domination was first proposed by Alavi et al. based on some
specific application scenarios and it was named as the Total Covering prob-
lem initially [2]. Although we prefer to call this problem a “domination problem”
at present, it has some properties of “covering problems” and can also be treated
as a kind of covering problems. For applications of Mixed Domination, a direct
application in system control was introduced by Zhao et al. [23]. They used it to
minimize the number of phase measurement units (PMUs) needed to be placed
and maintain the ability of monitoring the entire system. We can see that Mixed
Domination has drawn certain attention since its introduction [3,11,14,15,23].

Mixed Domination is NP -hard even on bipartite and chordal graphs and
planar bipartite graphs of maximum degree 4 [15]. Most of known algorithmic
results of Mixed Domination are about the polynomial-time solvable cases on
special graphs. Zhao et al. [23] showed that this problem in trees can be solved
in polynomial time. Lan et al. [14] provided a linear-time algorithm for Mixed
Domination in cacti, and introduced a labeling algorithm based on the primal-
dual approach for Mixed Domination in trees. Recently, Mixed Domination
was studied from the parameterized perspective [11]. Several parameterized com-
plexity results under different parameters have been proved.

In terms of approximation algorithms, domination problems have also been
extensively studied. It is easy to observe that a maximum matching in a graph
is a 2-approximation solution to Edge Dominating Set. But for Vertex
Dominating Set, the best known approximation ratio is log |V | + 1 [12]. As a
combination of Edge Dominating Set and Vertex Dominating Set, Mixed
Domination has a simple 2-approximation algorithm [8].

We will study approximation algorithms for weighted mixed domination
problems. A mixed dominating set contains both edges and vertices. Mixed
Domination does not distinguish them in the solution set, and only considers
the cardinality. However, edge and vertex are two different elements and they
may have different contributions or prices in practice. In the application example
in [23], we select vertices and edges to place phase measurement units (PMUs)
on them to monitor their mixed neighbors’ state variables in an electric power
system. The price to place PMUs on edges and vertices may be different due to
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the different physical structures. It is reasonable to distinguish edge and vertex
by setting different weights to them. So we introduce the following weighted
version problem.

Weighted Mixed Domination (WMD)
Instance: A single undirected graph G = (V,E), and two nonnegative values
wv and we.
Question: To find a vertex subset VD ⊆ V and an edge subset ED ⊆ E such
that
(i) any vertex in V \ VD is either an endpoint of an edge in ED or adjacent to a
vertex in VD;
(ii) any edge in E \ ED has at least one endpoint that is either an endpoint of
an edge in ED or a vertex in VD;
(iii) the value wv|VD| + we|ED| is minimized under the above constraints.

In Weighted Mixed Domination, all vertices (resp., edges) receive the
same weight. Although the weight function may not be very general, the
hardness of the problem increases dramatically, especially in approximation
algorithms. It is easy to see that the 2-approximation algorithm for the
unweighted version in [8] cannot be extended to the weighted version. In fact,
for most domination problems, the weight version may become much harder.
For example, it is trivial to obtain a 2-approximation algorithm for Edge
Dominating Set. But for the weighted version of Edge Dominating Set, it
took years to achieve the same approximation ratio [6]. In order to obtain more
tractability results for Weighted Mixed Domination, we consider two cases:
Vertex-Favorable Mixed Domination (VFMD) and Edge-Favorable
Mixed Domination (EFMD). If we add one more requirement wv ≤ we in
Weighted Mixed Domination, then it becomes Vertex-Favorable Mixed
Domination. Edge-Favorable Mixed Domination is defined in a similar
way by adding a requirement we ≤ wv. In fact, we will further distinguish two
cases of Vertex-Favorable Mixed Domination to study its complexity. We
summarize our main algorithmic and complexity results for Weighted Mixed
Domination in Table 1, where ε is any value > 0.

This paper is organized as follows. Sections 2 and 3 introduce some basic
notations and properties. Section 4 deals with Vertex-Favorable Mixed
Domination. The results for the case that 2wv ≤ we are obtained by proving
its equivalence to the Vertex Cover problem. The case that wv ≤ we < 2wv

is harder. Our 2-approximation algorithm is based on a linear programming for
Vertex Cover. The lower bounds are obtained by a nontrivial reduction from
Vertex Cover. The lower bounds for Edge-Favorable Mixed Domination
and the proofs of some lemmas are omitted due to the space limitation, which
can be found in the full version of this paper.
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Table 1. Upper and lower bounds on approximating WMD

Problems Approximation ratio

Upper bounds Lower bounds

VFMD 2wv ≤ we 2 (Theorems 2 and 5) 10
√

5 − 21 − ε if P �= NP
(Theorem 3)

2 − ε under UGC
(Theorem 3)

wv ≤ we < 2wv 5
√

5 − 10 − ε if P �= NP
(Theorem 6)

1.5 − ε under UGC
(Theorem 6)

EFMD wv > we – (1 − ε) ln n if P �= NP
[19]

2 Preliminaries

In this paper, a graph G = (V,E) stands for an undirected simple graph with
a vertex set V and an edge set E. We use n = |V | and m = |E| to denote the
sizes of the vertex set and edge set, respectively. Let X be a subset of V . We use
G−X to denote the graph obtained from G by removing vertices in X together
with all edges incident to vertices in X. Let G[X] denote the graph induced by
X, i.e., G[X] = G − (V \ X). For a subgraph or an edge set G′, we use V (G′) to
denote the set of vertices in G′.

In a graph, a vertex dominates itself, all of its neighbors and all edges taking
it as one endpoint; an edge dominates itself, the two endpoints of it and all other
edges having a common endpoint. A mixed set of vertices and edges D ⊆ V ∪ E
is called a mixed dominating set, if any vertex and edge are dominated by at
least one element in D. For a mixed set D of vertices and edges, a vertex (resp.,
edge) in D is called a vertex element (resp., edge element) of D, and the set of
vertex elements (resp., edge elements) may be denoted by VD (resp., ED).Thus
VD = V (G) ∩ D. The set of vertices that appear in any form in D is denoted
by V (D), i.e., V (D) = {v ∈ V (G)|v ∈ D or v is adjacent to an edge in D}. It
holds that VD ⊆ V (D). Mixed Domination is to find a mixed dominating set
of the minimum cardinality, and Weighted Mixed Domination is to find a
mixed dominating set D such that wv|VD| + we|ED| is minimized. A weighted
instance is a graph with each vertex assigned the same nonnegative weight wv

and each edge assigned the same nonnegative weight we. In a weighted instance,
for a mixed set D of vertices and edges (it may only contain vertices or edges),
we define w(D) = wv|D ∩ V | + we|D ∩ E|.

A vertex set in a graph is called a vertex cover if any edge has at least one
endpoint in this set and a vertex set is called an independent set if any pair
of vertices in it are not adjacent in the graph. The Vertex Cover problem is
to find a vertex cover of the minimum cardinality. We may use Smd, Swmd and
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Svc to denote an optimal solution to Mixed Domination, Weighted Mixed
Domination and Vertex Cover, respectively.

3 Properties

We introduce some basic properties of Mixed Domination and Weighted
Mixed Domination in this section.

Lemma 1. Any mixed dominating set of a graph contains all isolating vertices
(i.e. the vertices of degree 0) as vertex elements.

This lemma follows from the definition of mixed dominating sets directly.
Based on this lemma, we can simply include all isolating vertices in the graph
to the solution set and assume the graph has no isolating vertices. We have
said that Mixed Domination is also related to covering problems. Next, we
reveal some relations between Mixed Domination and Vertex Cover. By
the definitions of vertex covers and mixed dominated sets, we get

Lemma 2. In a graph without isolating vertices, any vertex cover is a mixed
dominating set.

Recall that for a mixed dominating set D, we use V (D) to denote the set of
vertices appearing in D. On the other hand, we have that
Lemma 3. For any mixed dominating set D, the vertex set V (D) is a vertex
cover.

Recall that Swmd and Svc denote an optimal solution to Weighted Mixed
Domination and Vertex Cover respectively. It is easy to get the following
results from above lemmas.

Corollary 1. For any mixed dominating set D, it holds that

2|D| ≥ |VD| + 2|ED| ≥ |Svc|.
Lemma 4. Let G be an instance of Vertex-Favorable Mixed Domination
having no isolating vertices. For any mixed dominating set D and vertex cover
C in G, it holds that

w(Swmd) ≤ w(C) and w(Svc) ≤ 2w(D).

Corollary 2. Let G be an instance of Vertex-Favorable Mixed Domina-
tion having no isolating vertices. It holds that

w(Swmd) ≤ w(Svc) ≤ 2w(Swmd).

Lemma 4 and Corollary 2 imply the following result.

Theorem 1. For any α ≥ 1, given an α-approximation solution to Vertex
Cover, a 2α-approximation solution to Vertex-Favorable Mixed Domina-
tion on the same graph can be constructed in linear time.

Vertex Cover allows 2-approximation algorithms and then we have that

Corollary 3. Vertex-Favorable Mixed Domination allows polynomial-
time 4-approximation algorithms.
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4 Vertex-Favorable Mixed Domination

We have obtained a simple 4-approximation algorithm for Vertex-Favorable
Mixed Domination. In this section, we improve the ratio to 2 and also show
some lower bounds. We will distinguish two cases to study it: 2wv ≤ we; wv ≤
we < 2wv.

4.1 The Case that 2wv ≤ we

This is the easier case. In fact, we will reduce this case to Vertex Cover and
also reduce Vertex Cover to it, keeping the approximation ratio. Thus, for
this case we will get the same approximation upper and lower bounds as that of
Vertex Cover.

Lemma 5. Let G be a graph having no isolating vertices. Any minimum vertex
cover Svc in G is also an optimal solution to Weighted Mixed Domination
with we ≥ 2wv in G.

Lemma 6. For a weighted instance G having no isolating vertices, if it holds
that we ≥ 2wv, then any α-approximation solution to Vertex Cover is also
an α-approximation solution to Weighted Mixed Domination in G.

The best known approximation ratio for Vertex Cover is 2. Theorem 6
implies that

Theorem 2. Weighted Mixed Domination with 2wv ≤ we allows
polynomial-time 2-approximation algorithms.

For lower bounds, we show a reduction from another direction.

Lemma 7. Let G be an instance having no isolating vertices, where we ≥ 2wv.
For any α-approximation solution D to Weighted Mixed Domination in G,
the vertex set V (D) is an α-approximation solution to Vertex Cover in G.

Proof. Let Swmd and Svc be an optimal solution to Weighted Mixed Domina-
tion and Vertex Cover, respectively. By Lemma 5, we have that w(Swmd) =
w(Svc). Then w(D) ≤ αw(Swmd) = αw(Svc) = αwv|Svc|. Note that w(D) =
wv|Dv| + we|De| ≥ wv|Dv| + 2wv|De| and |V (D)| ≤ |Dv| + 2|De|. Thus,
|V (D)| ≤ α|Svc|. Furthermore, V (D) is a vertex cover by Lemma 3. We know
that V (D) is an α-approximation solution to Vertex Cover. �	

Dinur and Safra [4] proved that it is NP -hard to approximate Vertex
Cover within any factor smaller than 10

√
5 − 21. Khot and Regev [13] also

prove that Vertex Cover cannot be approximated to within 2 − ε for any
ε > 0 under UGC. Those results and Lemma 7 imply

Theorem 3. For any ε > 0, Weighted Mixed Domination with 2wv ≤ we

is not (10
√

5 − 21 − ε)-approximable in polynomial time unless P = NP , and
not (2 − ε)-approximable in polynomial time under UGC.
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4.2 The Case that wv ≤ we < 2wv

To simplify the arguments, in this section, we always assume the initial graph
has no degree-0 vertices. Note that we can include all degree-0 vertices to the
solution set directly according to Lemma 1, which will not affect our upper and
lower bounds.

Upper Bounds. We show that this case also allows polynomial-time 2-
approximation algorithms. Our algorithm is based on a linear programming
model for Vertex Cover. Note that we are not going to build a linear pro-
gramming for our problem Weighted Mixed Domination directly. Instead,
we use a linear programming for Vertex Cover.

Linear programming is a powerful tool to design approximation algo-
rithms for Vertex Cover and many other problems. Lemma 4 and Theorem 1
reveal some connections between Weighted Mixed Domination and Ver-
tex Cover. Inspired by these, we investigate approximation algorithms for
Weighted Mixed Domination starting from a linear programming model for
Vertex Cover. For a graph G = (V,E), we assign a variable xv ∈ {0, 1} for
each vertex v ∈ V to denote whether it is in the solution set. We can use the
following integer programming model (IPVC) to solve Vertex Cover:

min
∑

v∈V xv

s.t. xu + xv ≥ 1,∀uv ∈ E
xv ∈ {0, 1},∀v ∈ V.

If relax the binary variable xv to 0 ≤ xv ≤ 1, we get a linear relaxation for
Vertex Cover, called LPVC. We will use X ′ = {x′

v|v ∈ V } to denote a feasible
solution to LPVC and w(X ′) to denote the objective value under X ′ on the graph
G. LPVC can be solved in polynomial time. However, a feasible solution X ′ to
LPVC may not be corresponding to a feasible solution to Vertex Cover since
the values in X ′ may not be integers. A feasible solution X ′ to LPVC is half
integral if x′

v ∈ {0, 1
2 , 1} for all x′

v ∈ X ′. Nemhauser and Trotter [16] proved
some important properties for LPVC.

Theorem 4 [16]. Any basic feasible solution X ′ to LPVC is half integral. A
half-integral optimal solution to LPVC can be computed in polynomial time.

We use X ∗ = {x∗
v|v ∈ V } to denote a half-integral optimal solution to LPVC.

We partition the vertex set V into three parts V1, V 1
2

and V0 according to X ∗,
which are the sets of vertices with the corresponding value x∗

v being 1, 1
2 and 0,

respectively. There are several properties for the half-integral optimal solution.

Lemma 8 [16]. For a half-integral optimal solution, all neighbors of a vertex in
V0 are in V1, and there is a matching of size |V1| between V0 and V1.

Lemma 8 implies that (V0, V1, V 1
2
) is a crown decomposition (see [1] for the

definition) and a half-integral optimal solution can be used to construct a 2-
approximation solution and a 2k-vertex kernel for Vertex Cover.
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Lemma 9. For a half-integral optimal solution X to LPVC, we use G 1
2

to
denote the subgraph induced by The size of a minimum vertex cover in G 1

2
is at

least |V 1
2
| − m, where m is the size of a maximum matching in G 1

2
.

We are ready to describe our algorithm now. Our algorithm is based on a
half-integral optimal solution X ∗ to LPVC. We first include all vertices in V1 to
the solution set as vertex elements, which will dominate all vertices in V0 ∪ V1

and all edges incident on vertices in V1. Next, we consider the subgraph G[V 1
2
]

induced by V 1
2
. We find a maximum matching M in G[V 1

2
] and include all edges

in M to the solution set as edge elements. Last, for all remaining vertices in V 1
2

not appearing in M , include them to the solution set as vertex elements. The
main steps of the whole algorithm are listed in Algorithm2.

1. Compute a half-integral optimal solution X ∗ for the input graph G and let
{V1, V 1

2
, V0} be the vertex partition corresponding to X ∗.

2. Include all vertices in V1 to the solution set as vertex elements and delete V0∪V1

from the graph (the remaining graph is the induced graph G[V 1
2
]).

3. Find a maximum matching M in G = G[V 1
2
] and include all edges in M to the

solution set as edge elements.
4. Add all remaining vertices in V 1

2
\V (M) to the solution set as vertex elements.

Algorithm 2. The main steps of the 2-approximation algorithm

We prove the correctness of this algorithm. First, the algorithm can stop
in polynomial time, because Step 1 uses polynomial time by Theorem4 and
all other steps can be executed in polynomial time. Second, we prove that the
solution set returned by the algorithm is a mixed dominating set.

All vertices in V0 ∪ V1 and all edges incident on vertices in V0 ∪ V1 are
dominated by vertices in V1 because the graph has no degree-0 vertices and X ∗

is a feasible solution to LPVC. All vertices and edges in G[V 1
2
] are dominated

because all vertices in V 1
2

are included to the solution set either as vertex elements
or as the endpoints of edge elements. We get the following lemma.

Lemma 10. Algorithm2 runs in polynomial time and returns a mixed domi-
nating set.

Last, we consider the approximation ratio. Lemma 8 implies that the size of
a minimum vertex cover in the induced subgraph G[V0 ∪ V1] is at least |V1|. By
Lemma 9, we know that the size of a minimum vertex cover in the induced sub-
graph G[V 1

2
] is at least |V 1

2
| − m, where m is the size of a maximum matching in

G 1
2
. So the size of a minimum vertex cover of G is at least |V1| + |V 1

2
| − m, i.e.,

|Svc| ≥ |V1| + |V 1
2
| − m. (1)
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Let D denote an optimal mixed dominating set in G. By Corollary 1, we have
that |VD| + 2|ED| ≥ |Svc|. By this and 2wv > we, we have that

w(D) = |VD|wv + |ED|we >
we

2
|VD| + we|ED| ≥ we

2
|Svc|. (2)

Let D′ denote a mixed dominating set returned by Algorithm 2. We have
that

w(D′) = |V1|wv + mwe + (|V 1
2
| − 2m)wv

≤ (|V1| + |V 1
2
| − m)we by wv ≤ we

≤ |Svc|we by (1)
≤ 2w(D). by (2)

Theorem 5. Weighted Mixed Domination with wv ≤ we < 2wv allows
polynomial-time 2-approximation algorithms.

Lower Bounds. In this section, we give lower bounds for Weighted Mixed
Domination with wv ≤ we < 2wv. These hardness results are also obtained
by a reduction preserving approximation from Vertex Cover. Lemma 1
shows that an α-approximation algorithm for Vertex Cover implies a 2α-
approximation algorithm for Vertex-Favorable Mixed Domination. For
Weighted Mixed Domination with we ≥ 2wv, we have improved the expan-
sion from 2α to α in Lemma 7. For Weighted Mixed Domination with
wv ≤ we < 2wv, it becomes harder. We will improve the expansion from 2α
to 2α − 1.

Lemma 11. For any α ≥ 1, if there is a polynomial-time α-approximation algo-
rithm for Weighted Mixed Domination with wv ≤ we < 2wv, then there
exists a polynomial-time (2α−1)-approximation algorithm for Vertex Cover.

Proof. For each instance G = (V,E) of Vertex Cover, we construct |V |
instances Gi = (Vi, Ei) of Weighted Mixed Domination with wv ≤ we < 2wv

such that a (2α − 1)-approximation solution to G can be found in polynomial
time based on an α-approximation solution to each Gi.

For each positive integer 1 ≤ i ≤ |V |, the graph Gi = (Vi, Ei) is constructed
in the same way. Informally, Gi contains a star T of 2n + 1 vertices and an
auxiliary graph G′

i such that the center vertex c0 of the star T is connected to
all vertices in G′

i, where G′
i contains a copy of G, an induced matching Mi with

size |Mi| = i, and a complete bipartite graph between the vertices of G and
the left part of the induced matching Mi. This is to say, Vi = V ∪ {aj}i

j=1 ∪
{bj}i

j=1 ∪ {cj}2n
j=0 and Ei = E ∪ Mi ∪ Hi ∪ Fi, where Mi = {ajbj}i

j=1, Hi =
{vaj |v ∈ V, j ∈ {1, . . . , i}}, and Fi = {c0u|u ∈ Vi \ {c0}}. We give an illustration
of the construction of Gi for i = 3 in Fig. 1. In the graphs Gi, the values of wv

and we can be any values satisfying wv ≤ we < 2wv.
Let τ be the size of a minimum vertex cover of G. We first show that we

can get a (2α − 1)-approximation solution to G in polynomial time based on an
α-approximation solution to Gτ .
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We define a function w∗(G′) on subgraphs G′ of G as follows. For a subgraph
G′ of G,

w∗(G′) = min
D∈D

{wv|V (G′) ∩ VD| +
1
2
we|V (G′) ∩ V (ED)|}.

It is easy to see that

1a

1b

2a

2b

3a

3b

G

3M

3G

T

0c

Fig. 1. An illustration of the construction of G3

Lemma 12. Let Swmd be an optimal solution to Weighted Mixed Domina-
tion on G. It holds that

w(Swmd) ≥ w∗(G),

and for any subgraph G′ of G and any subgraph G1 of G′, it holds that

w∗(G′) ≥ w∗(G1) + w∗(G′ − V (G1)).

Let Dτ be an optimal solution to Gτ and Svc be a minimum vertex cover of G.
By Lemma 12 and the definition of the function w∗(), we know that

w(Dτ ) ≥ w∗(Gτ ) ≥ w∗(T ) + w∗(G′
τ ).

Note that T is a star and then w∗(T ) = wv. For G′
τ , we know that the size of a

minimum vertex cover of it is at least 2τ because Mτ is an induced matching of
size τ that needs at least τ vertices to cover all edges and the size of a minimum
vertex cover of G is τ . By Lemma 3 and we < 2wv, we know that w∗(G′

τ ) ≥ τwe.
Thus, w(Dτ ) ≥ wv + τwe.

On the other hand, D′
τ = {c0} ∪ M ′ is a mixed dominating set with w(D′

τ ) =
wv + τwe, where M ′ is a perfect matching between Svc and {aj}τ

j=1 with size
|M ′| = τ . So we have

w(Dτ ) = wv + τwe.

Let D∗
τ be an α-approximation solution to Gτ . We consider two cases. Case 1:

the vertex c0 is not a vertex element in D∗
τ . We will show that the whole vertex

set V of G is of size at most (2α − 1)τ , which implies that the whole vertex set
is a (2α − 1)-approximation solution to G. For all the degree-1 vertices {cj}2n

j=1
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in Gτ , Since all the degree-1 vertices {cj}2n
j=1 in Gτ should be dominated and

their only neighbor c0 is not a vertex element in the mixed dominating set, we
know that {cj}2n

j=1 ⊆ V (D∗
τ ) ∩ V (T ). For G′

τ , an induced subgraph of Gτ , the
size of a minimum vertex cover of it is at least 2τ . Let D′′

τ ⊆ D∗
τ be the set of

vertices and edges in G′
τ . By we < 2wv, we know that w(D′′

τ ) ≥ τwe. Thus,

w(D∗
τ ) ≥ 2nwv + τwe > (n + τ)we.

On the other hand, we have that

w(D∗
τ ) ≤ αw(Dτ ) = α(wv + τwe) ≤ α(1 + τ)we.

Therefore, (n + τ)we < α(1 + τ)we. Thus, n < α + ατ − τ ≤ (2α − 1)τ .
Case 2: the vertex c0 is a vertex element in D∗

τ . For this case, we show that
Uτ = V (D∗

τ ) ∩ V (G) is a vertex cover of G with size at most (2α−1)τ +(2α−1).
Since w(D∗

τ ) ≤ α(wv + τwe) and wv ≤ we < 2wv, we know that |V (D∗
τ )| is at

most α(2 + 2τ). Since Mτ is an induced matching and T is a star, we know that
V (D∗

τ ) contains at least τ vertices in Mτ and at least one vertex in T . Therefore,

|Uτ | ≤ α(2 + 2τ) − τ − 1 = (2α − 1)τ + 2α − 1.

We know that Uτ is a (2α−1+ε)-approximation algorithm for G, where ε = 2α−1
τ .

In fact, we can also get rid of ε in the above ratio by using one more trick. We
let G′ be 2�α copies of G, and construct Gi in the same way by taking G′ as G.
The size of the minimum vertex cover of G′ is 2�ατ now. For this case, we will
get |Uτ | ≤ (2α − 1)2�ατ + 2α − 1. Due to the similarity of each copy of G in
G′, we know that for each copy of G the number of vertices in Uτ ∩ V (G) is at
most (2α − 1)τ + 2α−1

2�α� . The number of vertices is an integer. So we know that
Uτ ∩ V (G) is a vertex cover of G with size at most (2α − 1)τ .

However, it is NP -hard to compute the size τ of the minimum vertex cover of
G. we cannot construct Gτ in polynomial time directly. Our idea is to compute Ui

for each Gi with i ∈ {1, · · · , |V (G)|} and return the minimum one Ui∗ . Therefore,
Ui∗ is a vertex cover of G with size |Ui∗ | ≤ |Uτ |. �	

Vertex Cover cannot be approximated within any factor smaller than
10

√
5 − 21 in polynomial time unless P = NP [4] and cannot be approximated

within any factor smaller than 2 in polynomial time under UGC [13]. These
results and Lemma 11 imply that

Theorem 6. For any ε > 0, Weighted Mixed Domination with wv ≤ we <
2wv is not (5

√
5−10−ε)-approximable in polynomial time unless P = NP , and

not ( 32 − ε)-approximable in polynomial time under UGC.

5 Concluding Remarks

Domination problems are important problems in graph theory and graph algo-
rithms. In this paper, we give several approximation upper and lower bounds
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on Weighted Mixed Domination, where all vertices have the same weight
and all edges have the same weight. For the general weighted version of Mixed
Domination such that each vertex and edge may receive a different weight, the
hardness results in this paper show that it will be even harder and we may not
be easy to get significant upper bounds. For further study, it will be interesting
to reduce the gap between the upper and lower bounds in this paper.
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Abstract. The traveling purchaser problem (TPP), a generalization of
the traveling salesman problem, is to determine a tour of suppliers and
purchase needed products from suppliers, while minimizing the travel-
ing and purchasing cost. This problem finds applications in the routing
and scheduling contexts and its variants with different constraints have
been widely studied. Motivated by the phenomenon that most real-world
instances of TPP have a small parameter (such as the number of sup-
pliers, the number of products to purchase and others), we study TPP
and its variants from the view of parameterized complexity. We show
that TPP and some variants are fixed-parameter tractable by taking the
number k of products or the number m of suppliers as the parameter, and
W[2]-hard by taking the number q of visited suppliers as the parameter.
Furthermore, we implement some of our fixed-parameter tractable algo-
rithms to show that they are practically effective when the parameters
are not very large.

1 Introduction

The traveling purchaser problem (TPP) is a single vehicle routing problem that
has been widely studied. In this problem, we need to buy several products from
some suppliers and the objective is to minimize the total amount of traveling and
purchasing costs. Let s0 denote the home, which is the starting and ending point
of the tour. We use M = {s0, s1, s2, . . . , sm−1} to denote the set of suppliers
together with the home and K = {g1, g2, . . . , gk} to denote the set of products
to purchase, where |M| = m and |K| = k. The input of the problem consists of an
m×k matrix P = {pij} to indicate the price of product gj at supplier si, where we
may let pi0j0 be ∞ or empty if a supplier si0 does not provide product gj0 , and an
m×m matrix D = {dij} to indicate the traveling costs (distances) from site si to
site sj . The goal is to find a tour (cycle) starting and ending at home s0, visiting
a subset of the suppliers in M to buy all products in K, while minimizing the
composed cost of traveling and purchasing. For the distances between sites, our
problem does not require that dij = dji (the symmetry assumption). However,
we assume that the distances satisfy the triangle inequality, i.e., dij ≤ dil + dlj

holds for any i, j, l. We also assume that each supplier has enough amount of
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each provided product and then we do not buy a product from two different
suppliers.

TPP is NP-hard, since it contains the well-known traveling salesman problem
(TSP) as a special case, where each supplier provides only one different prod-
uct. TPP combines the optimization of routing decisions and supplier selections
together and fits well in many contexts, such as routing and scheduling problems.
It can be straightforwardly interpreted to machine scheduling problems [9]. An
application of the telecommunication network design was proposed in [17]. Many
problems in location based services can be formulated as a traveling purchaser
problem [12]. More applications of TPP can be found in [16] and [18].

Problem Variants. Due to the importance of TPP, many variants of it have
been widely studied. Motivated by a scheduling problem (to assign some jobs
to some machines), Gouveia et al. [9] considered TPP with two constraints: (I)
the maximum number of suppliers to be visited is limited to q, where we can
simply assume that q ≤ k since the distances satisfy the triangle inequality; (II)
the maximum number of products can be bought from each supplier is limited
to u. The two constraints are also called side-constraints. We will use TPP-S1
to denote TPP with only constraint (I) and TPP-S2 to denote TPP with both
two constraints (I) and (II). To model a problem in telecommunication network
designs, Ravi and Salman [17] introduced the traveling purchaser problem with
budget-constraint (TPP-B). In TPP-B, a budget B on the purchasing cost is
given, and the goal is to minimize the traveling cost such that we can buy all the
products within the budget B. Two heuristic algorithms for this problem were
studied in [14]. TPP with time windows can also be found in several real contexts
[6,11]. In this problem each supplier has a time window and it only serves in
this time window. Recently, a multi-vehicle variant of TPP, called MVTPP, was
introduced by Choi and Lee [5]. In MVTPP, the optimization has to be done over
a fleet of homogeneous vehicles instead of a single vehicle, each vehicle in the
fleet has the same capacity (the amount of product can be carried on). Several
constraints on MVTPP have also been studied, such as the constraint on the
traveling distance of each vehicle [4], the incompatibility constraint under which
some products are not allowed to be loaded on the same vehicle [13], and so on.
MVTPP is related to the vehicle routing problem [19].

In real-world instances of TPP, some values are small. Here are examples:
In the model of stocking products from suppliers by a supermarket, the number
of different products may be large while the number of suppliers may be small;
In the model where a person wants to purchase something in a weekend, the
number of potential shops in the city may be large while the number of things
to purchase may be small; In some problems, the number of sites to be visited
may also be small due to the time limitation and some other reasons; The model
from some scheduling problems in [9] also assumes that the number of products
is small compared to the number of suppliers. Motivated by the phenomenon of
small values of parameters in these problems, we study TPP and its variants in
parameterized complexity.
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Parameterized Complexity. Parameterized complexity has attracted much
attention in both theory and practice since the first introduction of it by Downey
and Fellows [7]. An instance of a parameterized problem consists of an instance
I of the original (NP-hard) problem and a parameter l. We want to design an
algorithm for the problem with running time in the form of f(l)poly(|I|), where
f(l) is a computable function on l only, and poly(|I|) is a polynomial function
on the input size. These kinds of algorithms are called fixed-parameter tractable
(FPT) algorithms. A parameterized problem is fixed-parameter tractable (FPT)
if and only if it has FPT algorithms. Under some reasonable assumptions, some
parameterized problems do not allow FPT algorithms, which are called W[1]-
hard. For FPT algorithms, the running time bound is exponential only on the
parameter l and not related to the whole instance size. When the parameter l is
small or a constant, FPT algorithms may run fast and solve practical problems
exactly in a short time.

In this paper, we will study TPP, TPP with side-constraints (TPP-S1 and
TPP-S2) and TPP with the budget-constraint (TPP-B) under three parameters:
the number k of products, the number m of suppliers and the maximum number
q of suppliers to be visited. For each parameterized problem, we will either
design fast FPT algorithms for it or prove the W[1]-hardness or W[2]-hardness,
where W[2]-hard problems may be harder than W[1]-hard problems under some
reasonable assumptions.

Our Contributions. To the best of our knowledge, this is the first paper that
contributes to the parameterized complexity of TPP and its variants. Our results
are summarized in Table 1.

Table 1. Our results in parameterized complexity

Problems Parameters

k = |K| m = |M| q

TPP FPT (Theorem 1) FPT (Theorem 4) W[2]-hard (Theorem 7)

TPP-S1 FPT (Theorem 2) FPT (Theorem 5) W[2]-hard (Theorem 7)

TPP-S2 FPT (Theorem 3) FPT (Theorem 6) W[2]-hard (Theorem 7)

TPP-B W[1]-hard (Theorem 8) FPT (Theorem 5) W[2]-hard (Theorem 7)

Our hardness results are obtained by reductions from two known hard prob-
lems: the set cover problem and the multi-subset sum problem. The main tech-
niques used to design our FPT algorithms are dynamic programming and color
coding. In fact, we will design two practical dynamic programming algorithms
for TPP, which run in time O(2k(m2 + mk)) and O(2m(m2 + mk)) respectively
and can be modified for TPP with several additional constraints without expo-
nentially increasing the running time bound. For TPP-S2 parameterized by k,
we need to use the color coding technique to design an FPT algorithm.
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Our algorithms imply that TPP is polynomial-time solvable when k =
O(log m) or m = O(log k). This is the reason why we can solve TPP quickly
when one of k and m is small. Furthermore, the polynomial part of the running
time of most algorithms is small, which is linear on the input size of the problem,
because the input size of TPP is O(m2 + mk).

In practice, our dynamic programming algorithms are effective and easy to
implement. Compared with previous algorithms for TPP with additional con-
straints, our algorithms can quickly solve instances with one of k and m being a
small value. To show the advantage of our FPT algorithms in practice, we also
implement some of our FPT algorithms to test their experimental performances.
However, the experimental part is omitted due to the space limitation and it can
be found in the full version of this paper.

2 Algorithms for Small Number of Products

In this section, we will design an O(2k(m2 + mk))-time algorithm for TPP
and then modify it to an O(2kq(m2 + mk))-time algorithm for TPP-S1. Then
we give an O(u2m22k+qeqqO(log q) log m)-time algorithm for TPP-S2, where
e = 2.71828 . . . is a constant and it holds that q ≤ k. When we take k as
the parameter, the three problems are FPT.

2.1 TPP with Parameter k

First we consider TPP. For each subset K ⊆ K of products and each supplier
si ∈ M, we consider the subproblem Sub-TPP(K, si): buy all the products in K
from suppliers in a tour starting from home s0 and ending at si, while minimizing
the traveling and purchasing cost. Note that in this subproblem, we require that
we finally arrive at si even we may not buy any product from si. If we let K = K
and si = s0, then this problem becomes the original TPP problem. Our idea is
to solve Sub-TPP(K, si) for each K ⊆ K and si ∈ M in a dynamic programming
method. To solve Sub-TPP(K, si) efficiently, we will also solve a variant of Sub-
TPP(K, si), called Sub-TPP′(K, si): buy all the products in K from suppliers
in a tour starting from home s0 and ending at si such that at least one product
in K is bought from si, while minimizing the traveling and purchasing cost. In
Sub-TPP′(K, si), we have one more constraint that is to buy some product gj

from si. We can also assume that the product gj was bought when visit si for
the last time, i.e., we buy gj after arriving the final site si of our tour.

Let SOL[K, si] denote an optimal solution to Sub-TPP(K, si) (the informa-
tion of the tour and where to buy each product) and OPT [K, si] denote the total
traveling and purchasing cost of SOL[K, si]. Let SOL′[K, si] and OPT ′[K, si]
denote an optimal solution and the optimal cost to Sub-TPP′(K, si), respec-
tively. We have that OPT [K, si] ≤ OPT ′[K, si].

There are two cases for an optimal solution SOL[K, si]: after arriving the
final site si we buy at least one product gi0 ∈ K from si, and before arriving
the final site si we have already bought all the products in K. For the former
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case, we have that OPT [K, si] = OPT ′[K, si] and we can solve Sub-TPP(K, si)
by solving Sub-TPP′(K, si). For the latter case, we can see that OPT [K, si] =
OPT [K, sj ] + dji ≥ OPT [K, sj ] for some j, where sj is the last but one site
of the optimal tour in SOL[K, si], and we can solve Sub-TPP(K, si) by solving
Sub-TPP(K, sj). Thus, we have

OPT [K, si] = min{OPT ′[K, si],min
j �=i

{OPT [K, sj ] + dji}}. (1)

We will solve Sub-TPP(K, si) in order of increasing cardinality of K. For each
fixed K and all si ∈ M, we first solve Sub-TPP′(K, si) by using the following
recurrence relation

OPT ′[K, si] = min
gj∈K

{OPT [K\{gj}, si] + pij}, (2)

and then compute OPT [K, si] based on OPT ′[K, si] in a greedy method similar
to Dijkstra’s shortest path algorithm. Note that Eq. (2) allows many products
in K to be bought in supplier si (not just gj).

Assume that we have computed OPT ′[K, si] for a fixed K and all si ∈ M.
We are going to compute OPT [K, si] for all si ∈ M. Our algorithm will maintain
two subsets M1,M2 ⊆ M such that M2 = M \ M1, where for each si0 ∈ M1 we
have computed OPT [K, si0 ], and for each si0 ∈ M2 we have not. Initially, we
have M1 = ∅. The algorithm iteratively selects an element sj ∈ M2, compute
OPT [K, sj ] and move it from M2 to M1 until M2 becomes ∅. We select sj ∈ M2

such that

OPT ′[K, sj ] ≤ OPT ′[K, sr] for any sr ∈ M2, (3)

and compute OPT [K, sj ] by

OPT [K, sj ] = min{OPT ′[K, sj ], min
sr∈M1

{OPT [K, sr] + drj}}. (4)

Next we prove the correctness of (4). Consider a supplier si0 ∈ M2. If
OPT [K, si0 ] ≥ OPT ′[K, sj ], then we get that OPT [K, si0 ]+di0j ≥ OPT ′[K, sj ].
Otherwise we assume that OPT [K, si0 ] < OPT ′[K, sj ] and then OPT [K, si0 ] <
OPT ′[K, si0 ]. By (3) and (1), it holds that OPT [K, si0 ] = OPT [K, sil

] +
dilil−1 + · · · + di2i1 + di1i0 for some sil

∈ M1 and {sil−1 , si1−2 , . . . , si0} ⊆ M2.
By the triangle inequality, we get OPT [K, si0 ] ≥ OPT [K, sil

] + dili0 and
OPT [K, si0 ] + di0j ≥ OPT [K, sil

] + di1j . By (1) again, we get (4). After com-
puting OPT [K, sj ] according to (4), we move sj from M2 to M1.

We use A-k to denote the above algorithm for TPP. In this algorithm, we
first let OPT [∅, sj ] = d0j for each sj since the length of the shortest path from s0
to sj is d0j by the triangle inequality, and then compute OPT [K, sj ] for K �= ∅
in order of nondecreasing size by using the above method.

In this algorithm, we need to solve O(2km) subproblems Sub-TPP(K, si).
For each subproblem, we use |K| ≤ k basic computations to solve Sub-
TPP′(K, si) and use |M| = m basic computations to compute OPT [K, si] based
on OPT ′[K, si]. We have the following Theorem 1.
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Theorem 1. TPP can be solved in O(2km(m+k)) time and it is FPT by taking
the number k of products as the parameter.

2.2 TPP-S1 with Parameter k

Now we consider TPP-S1. In fact, the algorithm for TPP-S1 is modified from
the above algorithm for TPP. In our algorithm for TPP-S1, the subproblem has
one more input parameter (one more dimension) and the running time of it also
increases. For each subset K ⊆ K of products, each supplier si ∈ M and each
nonnegative integer q∗ ≤ q, we define the subproblem Sub-TPPS1(K, si, q

∗): buy
all the products in K from exactly q∗ suppliers in a tour starting from home s0
and ending at si, while minimizing the traveling and purchasing cost. The value
OPT [K, si, q

∗] of an optimal solution to Sub-TPPS1(K, si, q
∗), which is defined

to be ∞ if no solution exists, can be computed by the following recurrence
relation

OPT [K, si, q
∗] = min{min

j �=i
{OPT [K, sj , q

∗ − 1] + dji},

min
gi∈K

{OPT [K \ {gj}, si, q
∗] + pij}}. (5)

We can compute OPT [K, si, q
∗] in an order of increasing q∗ and the size of

K. The detailed steps of this algorithm are omitted since they are similar to
these of the algorithm for TPP. We need to compute O(2kmq) subproblems and
each subproblem takes O(m + k) basic computations.

Theorem 2. TPP-S1 can be solved in O(2kqm(m + k)) time and it is FPT by
taking the number k of products as the parameter.

2.3 TPP-S2 with Parameter k

Now we consider TPP-S2. Compared with TPP-S1, TPP-S2 has one more restric-
tion, which requires that at most u pieces of products can be bought from each
supplier. The algorithm for TPP-S1 parameterized by the number k of prod-
ucts, can not be directly modified to an algorithm for TPP-S2, since it is hard
to control the number of products purchased from each supplier. To get an FPT
algorithm for TPP-S2 parameterized by k, we need to use the color coding tech-
nique [2] together with dynamic programming.

For a graph G, we say that G is q-colored if each vertex of G is colored by
one of q different colors. For a q-colored graph G, if there is a path (resp., circle)
such that all the vertices of the path are colored with pairwise distinct colors,
we call it a colorful path (resp., colorful circle). We first solve a special case
of TPP-S2, called Colored-TPP-S2, in which the input graph is q-colored, and
we are asked to solve the TPP-S2 under the constraint that the traveling path
(circle) is colorful.

We use χ to denote the set of q colors used in the graph G and χ(si) denote
the color of supplier si. For each subset K ⊆ K of products, each supplier
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si ∈ M, each subset X ⊆ χ and each nonnegative integer u∗ ≤ u, we define
the subproblem Sub-TPPS2(K, si,X, u∗): buy all the products in K by trav-
eling from a colorful path starting from home s0 and ending at si, the set of
colors used in the colorful path is X, at most u products are bought from each
supplier, and exactly u∗ products are bought from supplier si, while minimizing
the traveling and purchasing cost. The value of an optimal solution to Sub-
TPPS2(K, si,X, u∗), which is defined to be ∞ if no solution exists, is denoted
by OPT [K, si,X, u∗].

It is not hard to see the result of Colored-TPP-S2 is equal to

min
si∈M,X⊆χ,u∗≤u

{OPT [K, si,X, u∗] + di0}. (6)

Our idea is to compute all OPT [K, si,X, u∗] in a dynamic programming way,
in order of nondecreasing values of |K|, |X| and u∗ by using the following two
state transition process.

When u∗ > 0, it holds the purchasing recurrence relation

OPT [K, si,X, u∗] = min
gj∈K

{OPT [K \ {gj}, si,X, u∗ − 1] + pij}. (7)

When u∗ = 0, it holds the traveling recurrence relation

OPT [K, si, X, 0] =

{
∞, if χ(si) �∈ X,

minsj∈M\{si}&u∗≤u{OPT [K, sj , X \ {χ(si)}, u∗] + dji}, otherwise.
(8)

Note that the number of sets K is 2k, the number of sets X is 2q, the number
of possible values for u∗ is u + 1, and si can be any candidate in M. Thus, the
number of subproblems Sub-TPPS2(K, si,X, u∗) is O(um2k+q). When u∗ �= 0,
we may use |K| ≤ k basic computations to compute OPT [K, si,X, u∗] by (7).
When u∗ = 0, we may use |M|(u + 1) = m(u + 1) basic computations to
compute OPT [K, si,X, u∗] by (8). Note that um ≥ k otherwise the problem has
no solution. So the total running time of the dynamic programming algorithm
for Colored-TPP-S2 is O(u2m22k+q).

Next we solve TPP-S2 by reducing it to Colored-TPP-S2. Consider an
instance of TPP-S2. We use M∗ to denote the set of suppliers visited in an
optimal solution to it. We randomly color vertices of the instance graph by
using q different colors with the same probability for each color. The probability
such that all vertices in M∗ get different colors is

|M∗|!( q
|M∗|

)

q|M∗| . (9)

Since |M∗| ≤ q, we know that

|M∗|!( q
|M∗|

)

q|M∗| ≥ q!
qq

. (10)
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By using the well-known inequality q! > (q/e)q, where e is the base of natural
logs, we know that the probability of all vertices in M∗ being colored with
different colors is at least e−q.

Thus, we can get a randomized algorithm of TPP-S2 by applying the random
coloring operation and then solving each Colored-TPP-S2. We repeat the random
coloring operation for eq times and then get a colored instance such that vertices
in M∗ are colored with different colors with a constant probability.

There is also a technique to derandomize the above coloring operation with
an additional running time factor of qO(log q) log m [15]. We have that

Theorem 3. TPP-S2 can be solved in O(u2m22k+qeqqO(log q) log m) time and
it is FPT by taking the number k of products as the parameter.

Note that we always assume q ≤ k due to the triangle inequality, and thus this
algorithm is an FPT algorithm for the problem with parameter k.

3 Algorithms for Small Number of Suppliers

In this section, we will design an O(2m(m2+mk))-time algorithm for TPP, TPP-
S1 and TPP-B, and then modify it to an O(2m(m2 + mk

√
k))-time algorithm

for TPP-S2. When we take m as the parameter, the four problems are FPT.

3.1 TPP with Parameter m

We still consider TPP first. In TPP, we have to decide two things, a tour of some
suppliers and a purchasing plan of products. A tour of suppliers is a permutation
of suppliers in the visiting order, and a purchasing plan of products is a decision
that decides to buy each product from which supplier. This problem is hard
because we need to optimize the traveling cost and purchasing cost at the same
time. However, if we have decided the suppliers where we should visit (the set
of which is M), then the problem can be reduced to the normal TSP problem.

In our algorithm, for each subset M ⊆ M of suppliers, we solve the subprob-
lem: find a tour (circle) starting and ending at home s0, visiting all suppliers in
M to buy all products in K, while minimizing the total cost of purchasing and
traveling. We use c(M) to denote the cost of an optimal solution to the above
subproblem, d(M) to denote the cost of a minimum tour starting and ending at
home s0 and visiting all suppliers in M , and p(M) to denote the optimal cost to
buy all products in K from suppliers only in M , where p(M) may be ∞ if some
product is not sold in any suppliers in M . Then for each M ⊆ M,

c(M) = d(M) + p(M). (11)

We compute c(M) for all M ⊆ M using (11).
The next target is to compute d(M) and p(M). For each M ⊆ M and

si ∈ M , we use OPT [M, si] to denote the minimum distance of a tour which
starts from home s0, visits all suppliers in M and ends at si. Then OPT [M, si]
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can be computed in a dynamic programming method by the following recurrence
relation (see [3,10])

OPT [M, si] = min
sj∈M\{si}

{OPT [M\{si}, sj ] + dji}. (12)

We get that

d(M) = min
sj∈M

{OPT [M, sj ] + dj0}. (13)

For a subset M ⊆ M, we use pM (gi) to denote the minimum price of product gi

in all suppliers in M , where pM (gi) = ∞ if no supplier in M provides gi. Then

p(M) =
∑

gi∈K
pM (gi). (14)

The whole algorithm is denoted by A-m for TPP. In this algorithm, to com-
pute OPT [M, si] we use |M | ≤ m basic computations in (12). It takes O(2mm2)
time to compute all values of OPT [M, si] for M ⊆ M and si ∈ M in a dynamic
programming method. For each fixed M , it takes at most m and mk basic com-
putations to compute d(M) in (13) and p(M) in (14), respectively. The values
of c(M) = d(M) + p(M) for all M can be computed in O(2mmk) time. In total,
this algorithm uses O(2mm2 + 2mmk) time.

Theorem 4. TPP can be solved in O(2mm(m+k)) time and it is FPT by taking
the number m of suppliers as the parameter.

3.2 TPP-S1 and TPP-B with Parameter m

The above algorithm can be easily modified for TPP-S1. We only need to com-
pute c(M) for |M | ≤ q. Then TPP-S1 can be solved in O(2mm(m + k)) time.
For TPP-B, the goal is to find an M such that d(M) is minimized under the
budget constraint p(M) ≤ B. We can also use the above algorithm to compute
d(M) and p(M) and solve TPP-B in the same time.

Theorem 5. TPP-S1 and TPP-B can be solved in O(2mm(m + k)) time and
they are FPT by taking the number m of suppliers as the parameter.

3.3 TPP-S2 with Parameter m

We can also modify the algorithm for TPP to an algorithm for TPP-S2. However,
we need one more technique to find a minimum cost matching on a bipartite
graph. In TPP-S2, we have a part of input q to indicate the maximum number
of suppliers can be visited and {ui}m

i=1 to indicate that at most ui products can
be bought from supplier si. For each M ⊆ M and |M | ≤ q, we still use d(M) to
denote the cost of a minimum tour starting and ending at home s0 and visiting
all suppliers in M , and p(M) to denote the optimal cost to buy all products in K
from suppliers only in M under the constraints in TPP-S2, where p(M) = ∞ if
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we can not buy all the products from M under the constraints. To solve TPP-S2,
we only need to find an M with |M | ≤ q such that the cost c(M) = d(M)+p(M)
is minimized. The above method to compute d(M) is still suitable for TPP-S2.
The hard part is to compute p(M).

We construct a bipartite graph H = (VK ∪ VM , E) and compute p(M) by
finding a minimum cost matching in H. For each product gi ∈ K we generate
a vertex ai in VK . For each supplier si ∈ M we generate ui different vertices in
VM , each of which is adjacent to each aj ∈ VK with the edge cost being the price
pij of product gj at supplier si. We can see that the minimum cost of a matching
of size |VK | = k in H is equal to p(M). By using the algorithm developed in [1],
the minimum cost matching can be found in O(k

√
km) time.

Theorem 6. TPP-S2 can be solved in O(2mm(m + k
√

k)) time and it is FPT
by taking the number m of suppliers as the parameter.

4 Parameterized by the Number q of Suppliers to be
Visited

In some real-world problems, usually the number q of suppliers to be visited
is small. It is natural to consider q as the parameter. Different from the above
two sections, this section will show that it is unlikely to have FPT algorithms
by proving the W[2]-hardness of TPP parameterized by q. We will reduce from
the well-known W[2]-hard problem: the set cover problem parameterized by the
solution size.

An instance of the set cover problem is given by (U, C), where U is the universe
of elements and C is a collection of subsets of U . The target of the problem is to
find a subset A ⊆ C of minimum size such that ∪A∈AA = U .

For an instance I = (U, C) of the set cover problem, we construct an instance
I ′ of TPP. In I ′, each product g is corresponding to an element g in U , and each
supplier s is corresponding to a set s in C. The price of a product g in a supplier
s is 0 if the corresponding element g is contained in the corresponding set s and
is ∞ otherwise. The distance between any two sites (home and suppliers) is 1.
We can see that I has a set cover of size at most q if and only if I ′ has a solution
with cost q + 1 (the purchasing cost is 0 and the traveling cost is q + 1).

Note that TPP-S1, TPP-S2 and TPP-B are general cases of TPP with more
constraints. The above reduction also implies the hardness of TPP-S1, TPP-S2
and TPP-B.

Theorem 7. TPP, TPP-S1, TPP-S2 and TPP-B are W[2]-hard by taking the
number q of suppliers to be visited as the parameter.

5 A Hardness Result for TPP-B

We have shown that TPP-B parameterized by m is FPT. The algorithm A-k for
TPP can not be modified to TPP-B. In this section, we will show that TPP-B
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parameterized by k is indeed W[1]-hard. Our proof is based on a reduction from
the multi-subset sum problem.

In the subset sum problem, we are given a set of integers U =
{x1, x2, . . ., x|U |} and two integers w and k, and the task is to find a subset
S ⊆ U such that |S| = k and the sum of the elements in S is equal to w. For
the multi-subset sum problem, the input is the same and the task is to find a
multi-subset S of U with k elements such that the sum of the elements in S is
equal to w (i.e., an integer in U can appear more than one time in S). It is known
that the subset sum problem with parameter k is W[1]-hard [8]. The proof in [8],
without any modification, can also prove the W[1]-hardness of the multi-subset
sum problem with parameter k.

For an instance I = (U = {x1, x2, . . ., x|U |}, w, k) of the multi-subset sum
problem, we construct an instance I ′ of TPP-B. In I ′, we have k different prod-
ucts to be bought and k|U | suppliers. We partition the suppliers into k groups
G1, G2, . . . , Gk, each group Gi has exactly |U | suppliers.

We use si,j (j = 1, 2, . . . , |U |) to denote the jth supplier in group Gi. Any
supplier in the same group Gi only sales one product gi. However, the price of
gi in supplier si,j is xj . Next we define the distance between each pair of sites.
Let X =

∑
x∈U x. The distance from home s0 to each supplier s1,j in group 1

is X − xj/2. For any i = 1, 2, . . . , k − 1, the distance from each supplier si,j1 in
group i to each supplier si+1,j2 in group i + 1 is X − (xj1 + xj2)/2. The distance
from each supplier sk,j in group k to home s0 is X − xj/2. Any other distance
between two sites not defined above is a very large number such that any optimal
solution will not choose the path. The budget b is w. See Fig. 1 for an illustration
for the construction.

Fig. 1. Reduction from the multi-subset sum problem

In I ′, an optimal solution will visit exact one supplier in each group. Assume
that in an optimal solution, we buy product gi with price yi in group i (i =
1, 2, . . . , k). Then the traveling cost is c1 = (X − y1/2) + (X − (y1 + y2)/2) +
(X − (y2 + y3)/2) + · · · + (X − yk/2) = (k + 1)X − ∑k

i=1 yi and the purchasing
cost is c2 =

∑k
i=1 yi. We can see that c1 + c2 = (k + 1)X is a constant. When the
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purchasing cost reaches the budget w, the traveling cost reaches the optimal value
of (k +1)X −w. So the instance I of the multi-subset sum problem has a solution
of size k if and only if the instance I ′ of TPP-B has a solution with traveling cost
(k + 1)X − w.

Theorem 8. TPP-B is W[1]-hard by taking the number k of products as the
parameter.

6 Conclusion

To deal with NP-hard problems, approximation algorithms relax the accuracy,
heuristic methods loss the certainty (or accuracy), and parameterized algorithms
find certain tractable ranges. Parameterized algorithms restrict the exponential
part of the running time to parameters only. When the parameter is small,
parameterized algorithms can optimally solve problems in a short time. Many
real-world instances of TPP and its variants have the property of small param-
eters. In this paper, we establish the parameterized complexity of TPP with
additional constraints and different parameters. In practice, the experimental
results show the advantages of parameterized algorithms on instances with small
parameters.
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Abstract. Sorting permutations by block moves is a fundamental com-
binatorial problem in genome rearrangements. The classic block move
operation is called transposition, which switches two consecutive blocks,
or equivalently, moves a block to some other position. But large blocks
movement rarely occurs during real evolutionary events. A natural
restriction of transposition is to bound the length of the blocks to be
switched. In this paper, we investigate the problem called sorting by
bounded singleton moves, where one block is exactly a singleton while
the other is of length at most c. This problem generalizes the sorting by
short block moves problem proposed by Heath and Vergara [10], which
requires the total length of blocks switched bounded by 3. By exploring
some properties of this problem, we devise a 9

5
-approximation algorithm

for c = 3. Our algorithm can be extended to any constant c ≥ 3, guar-
anteeing an approximation factor of 3c

5
.

1 Introduction

In the 1980s, some evidence was found that some species have essentially the
same set of genes, but their gene order differs [1,2]. Sorting permutations with
the fewest number of operations has gained much interest in the area of com-
putational biology during the last thirty years, because it helps to reconstruct
the sequence of evolutionary events. Sankoff was probably the first researcher
who proposed the three basic operations of genome rearrangement, i.e., rever-
sals, transpositions and translocations [3]. A transposition, which is also called
a block-move, is a rearrangement operation that cuts a segment out of the per-
mutation and pastes it in a different location, i.e., it swaps two adjacent sub-
permutations. Of interest to biologists is how to transform one permutation to
another by the minimum number of transpositions. The problem was first stud-
ied by Bafna and Pevzner, who devised a 1.5-approximation algorithm, which
runs in quadratic time [4]. Elias and Hartman improved the approximation factor
to 1.375 [5]. Feng and Zhu proposed the “permutation tree” to store the per-
mutation, and improved the time complexity of the algorithms from O(n2) to
O(nlogn) [6]. Eriksson et al. showed that the transposition diameter is bounded
by �(2 ∗n− 2)/3� for n ≥ 9, and gave an exact expression for sorting the reverse
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permutation [7]. Recently, Bulteau et al. proved that sorting permutations by
transpositions is NP-complete [8], answering the long lasting open problem.

Actually, in the process of the genomes evolution, a segment is rarely moved
far away from its original position. Naturally, Heath and Vergara proposed the
problem of sorting by bounded block-moves [9], where the blocks must be moved
within a bounded distance. Among which, the problem of sorting by short block
moves is well studied. A short block move is a transposition on a permutation
such that the total length of the two segments swapped is at most three. Heath
and Vergara presented a 4/3-approximation algorithm for this problem, as well
as polynomial algorithms for some special permutations [10]. Short block move
is also called 3-bounded transposition in [11], where Mahajan et al. simplified
Heath and Vergara’s approximation algorithm, and described a linear-time algo-
rithm to optimally sort the correcting-hop-free permutations [11]. Jiang et al.
devised an O(n2) algorithm to sort a special permutation with a structure called
“umbrella”, by use of the umbrellas. They proposed a (1 + ε)-approximation
algorithm for sorting permutations with many inversions [12]. Then, they devised
a 14/11-approximation algorithm for sorting general permutations by short block
moves [13], later, the approximation factor was improved to 5/4 [14].

In light of the limitation of short block move, in this paper, we investigate the
problem of sorting by bounded singleton moves, which requires a single element
to move at most c positions away from its original position. We observe that this
problem shows distinct properties from the problem of sorting by short block
moves, and we present a polynomial 9

5 -approximation algorithm for c = 3. Our
algorithm can be extended to any constant c ≥ 3, guaranteeing an approximation
factor of 3c

5 .

2 Preliminaries

In the context of genome rearrangements, generally, genomes are presented
by permutations, where each element stands for a gene. For example, π =
[7, 1, 3, 5, 4, 2, 6, 8] is a permutation of eight elements. Let ιn=[1,2,...,n−1,n] be
the identity permutation of n elements. A block is a segment of contiguous
elements or just one element, a single element is called a singleton. A block
move (transposition) switches two adjacent blocks, it is called c-bounded sin-
gleton move when one block is a singleton while the other block has at most
c elements. Equivalently, a c-bounded singleton move asks a singleton to move
at most c positions away from its original position in the permutation. Observe
that a 2-bounded singleton move is actually a short block move.

Let π = [g1, g2, ..., gn] be a permutation. Note that a singleton can be moved
either to its left or to its right, then there are three types of c-bounded singleton
moves.

1. k-right-move: ρ(gi, [gi+1 · · · gi+k]), which moves gi to the immediate right of
gi+k, i ≥ 1, i + k ≤ n, 1 < k ≤ c.

2. k-left-move: ρ([gi−k · · · gi−1], gi), which moves gi to the immediate left of gi−k,
1 < k < i ≤ n, k ≤ c.
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3. skip: ρ(gi, gi+1), which switches the two singletons gi and gi+1.

Either a k-right-move or a k-left-move is also called a k-move. Applying a
bounded singleton move ρ to π yields π′ = π · ρ. We now formally define the
problem of sorting by bounded singleton moves.

Definition 1. Sorting by Bounded Singleton Moves, abbreviated as SBSM
Input: π = [g1,g2,...,gn], a constant c.
Question: Is there a sequence of c-bounded singleton moves: ρ1,ρ2,...,ρt,

such that π · ρ1 · ρ2... · ρt = ιn = [1, 2, ..., n], and t is minimized?

The minimum integer t is the c-bounded singleton move distance of π, denoted
by BSMc(π).

An inversion in a permutation is a pair of elements {gi, gj} that are not in
their correct order (i.e., i < j and gi > gj , or vice versa). There is no inversion
in the identity permutation. A correcting c-bounded singleton move corrects the
relative order of the moved elements and does not bring any new inversions, i.e., a
correcting skip erases a single inversion, a correcting k-move erases k inversions.
It is interesting that the problem of sorting by short block moves, which is called
the 2-bounded singleton move problem in this paper, has the following property.

Theorem 1. For a permutation π, there exists an optimal sequence of short
block moves ρ1, ρ2, . . . , ρt that sorts π such that each short block move is a
correcting short block-move [10].

Then the subsequent researches on this problem could ignore the non-
correcting short block moves. Unfortunately, when it comes to the sorting by
c-bounded singleton moves problem for c ≥ 3, the above property does no longer
hold. Sorting the permutation π = [2, 4, 5, 7, 1, 10, 3, 12, 6, 8, 9, 11] by 3-bounded
singleton moves becomes a counter example to the property. An optimal sort-
ing sequence should be: ρ(7, [1 10 3]), ρ([2 4 5], 1), ρ([4 5 10], 3), ρ([10 7 12], 6),
ρ(12, [8 9 11]), ρ(10, [7 8 9]), which contains 6 3-bounded singleton moves, among
which ρ(7, [1 10 3]) is not a correcting 3-bounded singleton move. One could check
that it needs at least 7 correcting 3-bounded singleton moves to sort π. So the
sorting by bounded singleton moves problem seems more complicated than sort-
ing by short block moves, and all the previous algorithms can not be extended
to solve this problem straightforwardly.

The following graph representation of a permutation serves as a fundamental
tool for solving the sorting by c-bounded singleton moves problem. The per-
mutation graph of π is a graph G(π) = (V,E), where V = {g1, g2, ..., gn},
E = {<gi, gj> | i < j and gi > gj}(See Fig. 1 for an example). All the arcs of E
direct from left to right, for sake of simplicity, we ignore their directions. Each
arc of G(π) represents an inversion in π. An arc <gi, gj> is short if j = i+1. Two
arcs in the permutation graph are compatible if they share an identical starting
element or ending element. A lone arc in the permutation graph is an arc that
is not compatible with any other arc.

As mentioned above, from what a c-bounded singleton move does, we have
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Lemma 1. A correcting c-bounded singleton move can remove at most c inver-
sions, which correspond to c compatible arcs.

Without causing any confusion, in the rest of this paper, we will not distinguish
between inversions and arcs, as well as between a permutation and its permuta-
tion graph. So sorting a permutation is equal to removing all the arcs from its
permutation graph.

Though the optimal sorting sequence may contain non-correcting c-bounded
singleton moves, we still use the following lower bound which is not so tight for
the c-bounded singleton move distance.

Lemma 2. The c-bounded singleton move distance of a permutation π satisfies
that

| E(G(π)) |
c

≤ BSMc(π) ≤| E(G(π)) |

3 A 9
5
- Approximation Algorithm for 3-Bounded

Singleton Moves

In this section, we will present an algorithm for 3-bounded singleton moves that
guarantees, for any permutation, a sorting sequence whose length is within 9

5
of the optimal. The algorithm’s main idea is trying to perform as many high
efficiency moves (correcting 3-moves and 2-moves) as possible and avoiding low
efficiency moves (skips). Now, we introduce some special subpermutations.

Definition 2. A dome in a permutation π = [g1, g2, ..., gn] is a subpermutation
of three consecutive elements D= [gi, gi+1, gi+2] that satisfies gi > gi+1 > gi+2.
The dome D = [gi, gi+1, gi+2] is lone if it also satisfies gj < gi+2 for all 1 ≤ j < i
and gk > gi for all i + 2 < k ≤ n.

Definition 3. A rainbow in a permutation π = [g1, g2, ..., gn] is a subper-
mutation of four consecutive elements R = [gi, gi+1, gi+2, gi+3] that satisfies
gi+1 > gi+3 > gi > gi+2. The rainbow R = [gi, gi+1, gi+2, gi+3] is lone if it
also satisfies gj < gi+2 for all 1 ≤ j < i and gk > gi+1 for all i + 3 < k ≤ n.

Definition 4. A mushroom in a permutation π = [g1, g2, ..., gn] is a subper-
mutation of four consecutive elements M = [gi, gi+1, gi+2, gi+3] that satisfies
gi+2 > gi > gi+3 > gi+1. The rainbow M = [gi, gi+1, gi+2, gi+3] is lone if it also
satisfies gj < gi+1 for all 1 ≤ j < i and gk > gi+2 for all i + 3 < k ≤ n.

One could find that lone domes, lone mushrooms as well as lone rainbows can
not be sorted only by correcting 3-moves or 2-moves, so we call them barriers.
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Lemma 3. Removing each lone arc needs one correcting skip.

Proof. Removing a lone arc <gi, gi+1> requires moving gi backward or gi+1

forward. Since all the elements ahead gi are smaller than gi+1 and all the elements
followed gi+1 are greater than gi, then moving gi or gi+1 too far away (not by a
skip) would bring new arcs. Thus, it just needs a correcting skip. ��
Lemma 4. Removing each lone barrier needs two correcting moves.

Proof. A correcting k-left move can remove k compatible arcs with a common
ending element, while a correcting k-right move can remove k compatible arcs
with a common starting element. Each lone barrier has three arcs, which could
be partitioned into at least two group of compatible arcs. Moving some elements
beyond the range of the lone barrier would bring new arcs. Thus, it needs two
correcting moves to remove the three arcs. ��
Lemma 5. Given a permutation π, let a, b be the number of lone arcs and lone
barriers respectively in G(π). Then,

BSM3(π) ≥ | E(G(π)) | −a − 3b

3
+ a + 2b =

| E(G(π)) | +2a + 3b

3
.

Our strategy is exhausting correcting 3-moves and then correcting 2-moves, after
that, the resulting permutation would have a fixed structure, which could be
sorted by a polynomial algorithm.

Lemma 6. Let α and β be the number of lone arcs and barriers introduced by
applying a correcting 3-move respectively, then α ≤ 3, β ≤ 2, and α + β ≤ 3.

Proof. W.L.O.G., assume that we apply a correcting 3-right move
ρ(gi, [gi+1 gi+2 gi+3]) on the permutation π = [g1, g2, . . . , gn], which yields
π′. Note that a lone arc must appear on two adjacent elements, and a barrier
contains at least three elements. ρ(gi, [gi+1 gi+2 gi+3]) generates two new neigh-
borhoods on π′: (gi−1, gi+1) and (gi, gi+4). π′ can be partitioned into three parts:
[g1, . . . , gi−1, gi+1], [gi+2, gi+3], and [gi, gi+4, . . . , gn]. There could be a newly
introduced lone arc or a lone barrier in part [g1, . . . , gi−1, gi+1], as well as in
part [gi, gi+4, . . . , gn]. However, there could not exist a newly introduced lone
barrier but a lone arc in [gi+2, gi+3]. By symmetry, it is similar while applying a
correcting 3-left move. See Fig. 3 for an example. ��
A correcting 3-move is acceptable if it fulfills one of the following two conditions:
(1) α ≤ 1 and β ≤ 2; (2) α ≤ 2 and β = 0. From Lemma 6, there are two
types of correcting 3-moves: (I) α = 3 and (II) α = 2 and β = 1, which are not
acceptable. We will replace it according to the following two lemmas.

Lemma 7. If there exists a correcting 3-move which would introduce three lone
arcs, then there also exist three correcting 2-moves to remove the six arcs.
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Proof. W.L.O.G., as what are shown in Fig. 3, assume that there exists a cor-
recting 3-right move ρ(gi, [gi+1 gi+2 gi+3]), applying which would introduce
three long arcs: <gi−1, gi+1>, <gi+2, gi+3>, <gi, gi+4>. Thus, it needs four
steps to remove the total six arcs. As a twist, applying the correcting 2-move
ρ([gi−1 gi], gi+1) followed by the correcting 2-move ρ([gi gi+2], gi+3) and then
the correcting 2-move ρ(gi, [gi+2 gi+4]) will, of course, remove the same six arcs,
but consume only three steps. It is similar when applying a correcting 3-left
move. ��
Lemma 8. If there exists a correcting 3-move which would introduce two lone
arcs and a barrier, then there also exist four correcting 2-moves to remove the
eight arcs.

Proof. W.L.O.G., assume that there exists a correcting 3-right move
ρ(gi, [gi+1 gi+2 gi+3]), applying which would introduce two lone arcs and a
barrier. As shown in Fig. 5, there are 6 cases:
(a) <gi+2, gi+3>, <gi, gi+4> become lone arcs and [gi−2, gi−1, gi+1] forms a lone
dome. Apply four correcting 2-moves: ρ([gi−1 gi], gi+1), ρ(gi−2, [gi+1 gi−1]),
ρ([gi gi+2], gi+3), ρ(gi, [gi+2 gi+4]). (b) <gi−1, gi+1>, <gi+2, gi+3> become
lone arcs and [gi, gi+4, gi+5] forms a lone dome. Apply four correcting 2-
moves: ρ([gi−1 gi], gi+1), ρ([gi gi+2], gi+3), ρ(gi, [gi+2 gi+4]), ρ([gi+4 gi], gi+5).
(c) <gi+2, gi+3>, <gi, gi+4> become lone arcs and [gi−3, gi−2, gi−1, gi+1]
forms a lone rainbow. Apply four correcting 2-moves: ρ([gi−3 gi−2], gi−1),
ρ([gi−2 gi], gi+1), ρ([gi gi+2], gi+3), ρ(gi, [gi+2 gi+4]). (d) <gi−1, gi+1>,
<gi+2, gi+3> become lone arcs and [gi, gi+4, gi+5, gi+6] forms a lone rain-
bow. Apply four correcting 2-moves: ρ([gi−1 gi], gi+1), ρ([gi gi+2], gi+3),
ρ(gi+4, [gi+5 gi+6]), ρ(gi, [gi+2 gi+5]). (e) <gi+2, gi+3>, <gi, gi+4> become
lone arcs and [gi−3, gi−2, gi−1, gi+1] forms a lone mushroom. Apply four
correcting 2-moves: ρ([gi−1 gi], gi+1), ρ(gi−3, [gi−2 gi+1]), ρ([gi gi+2], gi+3),
ρ(gi, [gi+2 gi+4]). (f) <gi−1, gi+1>, <gi+2, gi+3> become lone arcs and [gi,
gi+4, gi+5, gi+6] forms a lone mushroom. Apply four correcting 2-moves:
ρ([gi−1 gi], gi+1), ρ([gi gi+2], gi+3), ρ(gi, [gi+2 gi+4]), ρ([gi gi+5], gi+6).

It is similar for the case of applying a correcting 3-left move. ��
Lemma 9. Let α and β be the number of lone arcs and barriers introduced by
applying a correcting 2-move respectively, then α ≤ 2, β ≤ 2, and α + β ≤ 2.

Proof. W.L.O.G., assume that we apply a correcting 2-right move
ρ(gi, [gi+1 gi+2]) on the permutation π = [g1, g2, . . . , gn], which yields π′.
Note that a lone arc must appear on two adjacent elements, and a barrier
contains at least three elements. ρ(gi, [gi+1 gi+2]) generates two new neigh-
borhoods on π′: (gi−1, gi+1) and (gi, gi+3). π′ can be partitioned into two parts:
[g1, . . . , gi−1, gi+1, gi+2] and [gi, gi+3, . . . , gn]. In each part, there could be at most
one newly formed lone arc or barrier. Then the lemma follows. ��
Lemma 10. If there exists a correcting 2-move which would introduce two lone
arcs, then there must be a correcting 3-move.
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Proof. W.L.O.G., assume that there exists a correcting 2-right move
ρ(gi, [gi+1 gi+2]), applying which would introduce three possible lone arcs:
<gi−1, gi+1>, <gi+1, gi+2>, <gi, gi+3>. But <gi−1, gi+1> and <gi+1, gi+2>
can not be lone arcs meanwhile. So, <gi, gi+3> must be a lone arc. Thus,
ρ(gi, [gi+1 gi+2]) introduces two lone arcs, which implies ρ(gi, [gi+1 gi+2 gi+3])
is a correcting 3-move. ��
Lemma 10 can also be stated in the converse-negative form: if there is no cor-
recting 3-move, then every correcting 2-move, if exists, would not introduce two
lone arcs.

Lemma 11. Supposing that there is no barrier and correcting 3-move, then
there must be a correcting 2-move which would not introduce any lone arc unless
there is no correcting 2-move.

Proof. Assume on the contrary that every correcting 2-move introduces lone arcs.
Since there is no correcting 3-move, from Lemma 10, every correcting 2-move
introduces exactly one lone arc. W.L.O.G., let ρ(gi, [gi+1 gi+2]) be such a 2-move.
There can not exist the arc <gi, gi+3>, since otherwise there would be a cor-
recting 3-move. Thus, the newly introduced lone arc may be either <gi−1, gi+1>
or <gi+1, gi+2>. For the former case, ρ([gi−1 gi], gi+1) becomes a correcting 2-
move, applying which would not introduce lone arc <gi−2, gi+1>. That is because
there is no correcting 3-move, as well as lone arc <gi, gi+2>, and [gi−1, gi, gi+1,
gi+2] is not a lone rainbow. For the latter case, ρ([gi gi+1], gi+2) becomes a
correcting 2-move, applying which would not introduce lone arc <gi−1, gi+2>.
That is because there is no correcting 3-move, as well as lone arc <gi, gi+1>,
and [gi, gi+1, gi+2] is not a lone rainbow. It is similar for the case of applying a
correcting 2-left move. ��
Lemma 12. Supposing that there is no barrier and correcting 3-move, if there
is a correcting 2-move applying which would introduce two barriers, then there
exist four correcting 2-moves to remove the eight arcs.

Proof. W.L.O.G., let ρ(gi, [gi+1 gi+2]) be a correcting 2-move applying which
would introduce two barriers. Since there is no correcting 3-move, one could
check that a correcting 2-right move can not introduce any dome, and also a
mushroom on the rightside. Thus, we have the following three cases,

1. [gi−3, gi−2, gi−1, gi+1] forms a rainbow and [gi, gi+3, gi+4, gi+5] forms a rain-
bow. Apply four correcting 2-moves: ρ([gi−3 gi−2], gi−1), ρ([gi−2 gi], gi+1),
ρ(gi+3, [gi+4 gi+5]), ρ(gi, [gi+2 gi+4]).

2. [gi−3, gi−2, gi−1, gi+1] forms a mushroom and [gi, gi+3, gi+4, gi+5]
forms a rainbow. Apply four correcting 2-moves: ρ([gi−1 gi], gi+1),
ρ(gi−3, [gi−2 gi+1]), ρ(gi+3, [gi+4 gi+5]), ρ(gi, [gi+2 gi+4]).

3. [gi−2, gi−1, gi+1, gi+2] forms a mushroom and [gi, gi+3, gi+4, gi+5]
forms a rainbow. Apply four correcting 2-moves: ρ([gi gi+1], gi+2),
ρ(gi−2, [gi−1 gi+2]), ρ(gi+3, [gi+4 gi+5]), ρ(gi, [gi+1 gi+4]). ��
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A correcting 2-move is acceptable if applying it would not introduce either
lone arcs or two barriers.

Definition 5. A multi-mushroom in a permutation π = [g1, g2, ..., gn] is a sub-
permutation of 2k + 2 consecutive elements [gi, gi+1, . . . , gi+2k, gi+2k+1](k ≥
2, 1 ≤ i ≤ n−5) that satisfies gi+2j+1 < gi+2j+3 < gi+2j < gi+2j+2, equivalently,
[gi+2j , gi+2j+1, gi+2j+2, gi+2j+3] forms a mushroom, for every 0 ≤ j ≤ k − 1.

Lemma 13. Supposing that there are no correcting 2-moves in an unsorted per-
mutation π, then each connected component in the permutation graph of π is a
lone arc or a lone mushrooms or a multi-mushroom.

Proof. Assume that there is a connected component CC = [gi, gi+1, . . . , gi+m−1]
of m elements. It is trivial that m ≥ 2, since otherwise CC is sorted.

Claim 1. gi+j < gi+j+2, for all 0 ≤ j ≤ m − 3 and m ≥ 3.

Proof. Assume to the contrary that gi+j > gi+j+2, then gi+j+1 is either greater
than gi+j+2 or smaller than gi+j+2. In the former case ρ([gi+j gi+j+1], gi+j+2) is
a correcting 2-move, and in the latter case ρ(gi+j , [gi+j+1 gi+j+2]) is a correcting
2-move. Thus the claim follows. ��
Claim 2. gi+2j > gi+2j+1, for all 0 ≤ j ≤ 	(m − 1)/2
.
Proof. If m = 2, CC = [gi, gi+1]. Since CC is a connected component, gi > gi+1.
If m ≥ 2, the proof is by induction on j. Initially, when j = 0, assume to the
contrary that gi < gi+1. From Claim 1, gi < gi+2. Since gi is in this connected
component, there must be an element which is smaller than gi and also appears
on the right of gi+1. Let gi+r (r > 1) be the fist such element while searching CC
from gi+1 to its right. Then gi, gi+1, . . . , gi+r−1 are all greater than gi+r, as a
result, ρ([gi+r−2 gi+r−1], gi+r) is a correcting 2-move, which is a contradiction.
Then we have gi > gi+1.

For the inductive step, assume that gi+2j > gi+2j+1, we must prove
that gi+2j+2 > gi+2j+3, 2j + 3 ≤ m − 1. If 2j + 3 < m − 1, assume to
the contrary that gi+2j+2 < gi+2j+3. From Claim 1, gi+2j < gi+2j+2. Since
[gi, gi+1, . . . , gi+2j+1] and [gi+2j+2, gi+2j+3, . . . , gi+m−1] must be a single con-
nected component, from Claim 1 and inductive basis, gi+2j is the greatest ele-
ment in [gi, gi+1, . . . , gi+2j+1], then there must be arcs going from gi+2j to some
elements of [gi+2j+2, gi+2j+3, . . . , gi+m−1]. Let gi+2j+3+r (r > 1) be the first
such element to the right of gi+2j+3. Then gi+2j+2, gi+2j+3, . . . , gi+2j+2+r are
all greater than gi+2j+3+r. As a result, ρ([gi+2j+1+r gi+2j+2+r], gi+2j+3+r) is
a correcting 2-move, which is a contradiction. If 2j + 3 = m − 1, to keep CC
a single connected component, gi+2j > gi+2j+3, from Claim 1, gi+2j+2 > gi+2j ,
then we have gi+2j+2 > gi+2j+3. ��

From Claim 2, we can also conclude that m is even, since otherwise gi+m−1 is
the greatest element but appears on the rightmost of the subpermutation, thus
it could not be in this connected component.

Claim 3. gi+2j > gi+2j+3, for all 0 ≤ j ≤ (m − 4)/2 and m ≥ 4.
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Algorithm 1. sorting a multi-mushroom
Input: A multi-mushroom MM = [gi, gi+1, . . . , gi+2∗k, gi+2∗k+1]
Output: A collection of correcting moves to sort MM

1: Apply the skip ρ(gi+2k, gi+2k+1).
2: for j = k − 1 to 0 do
3: Apply 2-right moves and 3-right moves to move gi+2j to its right position.
4: end for

Proof. From Claims 1 and 2, gi+2j is the greatest element of [gi, gi+1, . . . , gi+2j+1]
and gi+2j+3 is the smallest element of [gi+2j+2, gi+2j+3, . . . , gi+m−1]. To make a
single connected component, there must an arc between gi+2j and gi+2j+3. ��
From the above three claims, [gi, gi+1] forms a lone arc while m = 2, and [gi+2j ,
gi+2j+1, gi+2j+2, gi+2j+3] forms a mushroom, for every 0 ≤ j ≤ (m − 4)/2 and
m ≥ 4, thus the proof of lemma 13 is done. ��
Definition 6. A k-claw (k ≥ 2) in a permutation π = [g1, g2, ..., gn] is a
subpermutation of k + 1 consecutive elements C = [gi,gi+1,gi+k] that satisfies
gi+1 < gi+2 < · · · < gi+k < gi.

From its definition, A k-claw can be sorted by 	k
2 
 2-moves and 3-moves. From

Claims 1, 2 and 3, each round of the FORLOOP in Algorithm1 sorts a k-claw.
Now, we present our algorithm for sorting an arbitrary permutation by

bounded singleton moves. In Algorithm2: sorting by bounded singleton
moves, line 1 handles the original lone arcs and barriers; line 2–8 handle cor-
recting 3-moves if exist; line 9–15 handle correcting 2-moves if exist; line 16
handles multi-mushrooms. As shown in line 4, an acceptable correcting 3-move
will be applied straightforwardly, on the other side, a not acceptable correcting
3-move will be handled in line 6. From Lemma11, there always exists a cor-
recting 2-move without introducing any lone arc unless there is no correcting
2-move. If such a correcting 2-move brings two barriers, the algorithm handles
them in line 11, otherwise it is acceptable and will be applied directly in line 13.
Finally, the remained multi-mushrooms are handled in line 16.

Theorem 2. Algorithm2 approximates the 3-bounded singleton move distance
within a factor of 9/5.

Proof. For the lone arcs and barriers, from Lemmas 3 and 4, Algorithm 2 adopts
the same steps as the optimal solution. It is sufficient to show that each move
in Algorithm 2 removes at least 5/3 arcs averagely.

(I) As in line 4, an acceptable correcting 3-move, may introduce one lone arc
as well as at most two barriers, Algorithm 2 adopts six moves to remove ten arcs,
on average 10/6, also an acceptable correcting 3-move may introduce at most two
lone arcs but no barriers, Algorithm2 adopts three moves to remove five arcs, on
average 5/3. (II) From Lemma 7, Algorithm 2 adopts three correcting 2-moves
to remove six arcs, on average 6/3. (III) From Lemma 8, Algorithm 2 adopts
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Algorithm 2. sorting by bounded singleton moves
Input: A permutation π
Output: A collection of correcting moves that sort π

1: Remove the lone arcs and barriers following Lemma 3 and Lemma 4.
2: while there exists a correcting 3-move do
3: if it is acceptable then
4: apply this correcting 3-move and remove the lone arcs and barriers introduced

by this correcting 3-move.
5: else
6: handle it according to Lemma 7 or Lemma 8.
7: end if
8: end while
9: while there exists a correcting 2-move (choose a correcting 2-move following

Lemma 11) do
10: if it introduces two barriers then
11: handle it according to Lemma 12.
12: else
13: apply this correcting 2-move and remove the barrier introduced by this cor-

recting 2-move.
14: end if
15: end while
16: Sort each connected component by Algorithm 1: sorting a multi-mushroom.

four correcting 2-moves to remove eight arcs, on average 8/4. (IV) As in line
13, an acceptable correcting 2-move introduces at most one barrier, so totally,
Algorithm 2 adopts three moves to remove five arcs, on average 5/3. (V) From
Lemma 12, Algorithm 2 adopts four correcting 2-moves to remove eight arcs, on
average 8/4. (VI) For sorting a multi-mushroom [gi, gi+1, . . . , gi+2∗k, gi+2∗k+1]
(k ≥ 2), Algorithm 1 adopts one skip and at least k correcting 2-moves, since
k ≥ 2, k+1 moves remove at least 2k+1 arcs, averagely 2k+1

k+1 ≥ 5
3 . Above all, each

move in the optimal solution removes at most three arcs, thus, the approximation
factor reaches to 3

5/3 = 9
5 . ��

For the c-bounded singleton move distance, since each move in its optimal solu-
tion can remove at most c arcs, then we have,

Theorem 3. Algorithm2: sorting by bounded singleton moves approxi-
mates the c-bounded singleton move distance within a factor of 3c

5 .

4 Concluding Remarks

This paper investigates the problem of sorting by bounded singleton moves,
which requires a single element to move at most c positions away from its original
position. We present a polynomial approximation algorithm with a factor of
9
5 for c = 3. The complexity of this problem is still open. We think better
approximations with good structure analysis are preferable.
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Abstract. We consider the universal facility location that extends sev-
eral classical facility location problems like the incremental-cost facility
location, concave-cost facility location, hard-capacitated facility location,
soft-capacitated facility location, and of course, uncapacitated facility
location. In this problem we are given a set of facilities F and clients
C, as well as the distances between any pair of facility and client. Each
facility i has its specific cost function fi(·) depending on the amount
of clients assigned to that facility. The goal is to assign the clients to
facilities such that the sum of facility and service costs is minimized. In
metric facility location, the service cost is proportional to the distance
between the client and its assigned facility. We study a cost measure
known as l22 considered by Jain and Vazirani [J. ACM’01] and Fernandes
et al. [Math. Program.’15] where the service cost is proportional to the
squared distance. We extend their work to include the aforementioned
variants of facility location. As our main contribution, a local search
based (11.18 + ε)-approximation algorithm is proposed.

Keywords: Universal facility location · Capacitated facility location ·
Approximation algorithm · Squared metric

1 Introduction

Facility location is no doubt one of the most classical and fundamental NP-hard
problems. In the location problem, we are given a set of clients as well as possible
locations of facilities. Each client has its demand and each facility has an open
cost. Any unit of demand should be severed by an open facility and has to pay
a unit of assignment/service cost. The objective is to search a subset of possible
locations/facilities to open and assign all demands to the opened facilities such
that the total cost of opening facilities and the assignment is minimized.
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Many variants of facility locations in metric space are studied. Linear pro-
gramming based technique has been successfully applied to metric uncapacitated
facility location to obtain good approximations. The state-of-the-art algorithm
for metric uncapacitated facility location is a 1.488-approximation by Li [12],
which is very close to the lower bound of 1.463 proved by Guha and Khuller
[8] under the assumption of NP � DTIME[nO(log log n)] and strengthened by
Sviridenko that it holds as long as P �= NP (Personal Communication). Lin-
ear programming based technique yields a 2-approximation for soft-capacitated
facility location presented by Mahdian et al. [14] that achieves the integrality gap
of the natural LP relaxation of the problem. However, this technique seems to be
inefficient for solving hard-capacitated facility locations. The only known result
is a 288-approximation proposed by An et al. [2]. Most results are based on local
search heuristic including the state-of-the-art 5-approximation algorithm pro-
posed by Bansal et al. [4]. It is also the case for universal facility location which
is first proposed by Mahdian and Pál [13] who present the first constant approx-
imation for this problem. The proposed approximation ratio is then improved to
6.702 and 5 by Vygen [18], and Bansal et al. [5] respectively. Local search also
achieves series of results in variants of universal facility location, see [19,20].

Facility location in Euclidean space is somehow well-studied. As its name
implies, Euclidean facility location considers the service cost proportional to
the Euclidean distance. Note Euclidean space is metric thus any approximation
results in metric space are also valid for that of Euclidean space. The first PTAS
result [3] for 2-dimensional uncapacitated Euclidean facility location appears in
STOC’98. This work is then improved by Kolliopoulos and Rao [11] who pro-
pose an efficient PTAS for it in any fixed dimensional Euclidean space. Another
particular case of facility location considered in literature is so-called squared
Euclidean facility location where the service cost is proportional to the squared
Euclidean distance. This variant is first considered by Jain and Vazirani [9] as a
cost measure named l22. Their work implies a 9-approximation for it. This result
is improved afterwards by Fernandes et al. [7] who reanalyze the primal-dual
algorithms of uncapacitated metric facility locations and obtain a best possible
2.04-approximation for squared metric uncapacitated facility location.

To the best of our knowledge, seldom work on capacitated or universal facility
location in squared metric space are known. We first consider this problem and
propose a constant (11.18 + ε)-approximation algorithm based on local search.
This work from one side extends the study of the aforementioned universal facil-
ity location as well as the squared metric facility location, and from other side
allows the inputs to locate in a wider space. In addition, we will extend this work
to allow any positive distance inputs and an input-related performance ratio dis-
tribution for the proposed algorithm will be presented. Due to space constraint,
we mainly propose our work in squared metric space and the extension work
will further appear in the full version of this paper. The remainder of this paper
is organized as: The notations and models are presented in definition section.
Follows by the main body of algorithm and analysis section. In the last section
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we conclude our results and possible applications. Several missing proofs refer
to the full version of this paper.

2 Definitions

The inputs of the universal facility location include: a set of facilities F , a set of
clients C, distances between any facility-client pair cij ∈ cF×C and a well-defined
facility cost function fi(·) for each i ∈ F . Let m represent the number of facilities
and n represent the number of clients. For the sake of simplicity, we force the
demand of each client to be one. Due to Pál et al. [16] and Mahdian et al. [13],
arbitrary demand can be handled easily by making slight modifications.

We abuse the definition of distance a little for representing the unit ser-
vice/assignment cost as most facility location works do, as there is no need to
introduce a constant multiplier. In classical facility location, the distances cF×C
form a metric, which means the distances are nonnegative, symmetric, and obey-
ing the triangle inequality. In this paper, we assume the distances form a squared
metric where the only difference is that the distances are not necessary obeying
the triangle inequality but the squared triangle inequality, a relaxed property.
More formally, we call cF×C obeys squared triangle inequality if for any facilities
i and i′, clients j and j′, we have √

cij ≤ √
cij′ + √

ci′j′ + √
ci′j . Note a metric

must be a squared metric (but not vice versa). Therefore any approximation
algorithm for squared metric facility location is also that for metric facility loca-
tion, and the inapproximability bound for metric facility location is also valid
for squared metric facility location. And the facility location dose not differ from
its cost measure in the mathematical programming point of view.

The opening cost function of facilities is so well-defined that the universal
facility location can be a general model of a variety of facility locations. We
assume each fi(·) is a non-decreasing and left-continuous mapping from non-
negative reals to non-negative reals with infinity. And it makes sense by assuming
fi(0) = 0 since we do not need to pay for what we do not use. Due to [13],
these assumptions guarantee the existence of a globally optimal solution to the
following mathematical programming, and we simply ignore the proof.

min
∑

i∈F
fi(ui) +

∑

i∈F,j∈C
cijxij (1)

s.t.
∑

i∈F
xij = 1, ∀ j ∈ C, (2)

∑

j∈C
xij ≤ ui, ∀ i ∈ F , (3)

xij ∈ {0, 1}, ∀ i ∈ F , j ∈ C, (4)
ui ≥ 0, ∀ i ∈ F , j ∈ C. (5)

For notational convenience, ui is introduced to represent the allocation of
facility i. Since fi(·) is nondecreasing, we assume w.l.o.g. that for any facility
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i, it must be the case that ui = |{j : xij = 1}| (thus integral), otherwise one
can reduce ui without increasing the opening cost of facility i. Therefore, any
solution to programming (1–5) can be specified by pair (u, x) in which u is
a m-dimensional vector representing the allocation and x is a mn-dimensional
vector representing the assignment. Also note, the above programming is actually
tractable in polynomial time when given allocation vector u. In fact, as long as
(1) the coefficient matrix is totally unimodular and (2) u is an integral vector,
the above programming is equivalent to its linear relaxation and thus polynomial
time tractable. Obviously, (1) and (2) are satisfied in (1–5). Detail see [17] as a
reference. Therefore either u or x contains the complete information of a solution
to the above programming.

The universal facility location is general enough to include several important
variants of facility location in the literature as special cases. For instance, by
setting fi(ui) = Fi · 1{ui>0} we obtain uncapacitated facility location, where Fi

is the constant opening cost of facility i and the indicator function 1{ui>0} equals
1 when ui > 0 and 0 otherwise. By setting fi(ui) = Fi · �ui/Ui	 where Fi is the
constant opening cost for one copy of facility i and Ui is its capacity, we obtain
the soft-capacitated variant. Any arbitrary concave function fi(ui) end up in the
concave-cost facility location variant. Note uncapacitated facility location and
incremental-cost (linear-cost) facility location are also concave facility locations.
See figures below the opening cost functions in the above three facility location
variants, all of which are non-decreasing and left-continuous (Fig. 1).

Fig. 1. Opening cost functions in uncapacitated, soft-capacitated and concave-cost
facility locations

3 Local Search Based Algorithm

We borrow the main idea of local search heuristic from literature as it is the
only known efficient technique in universal facility location study. When given
current feasible solution S = (u, x), as stated in last section, all we have to cope
with is the allocation vector u. Let σ be the mapping from clients to facilities
that reflects the assignment. That is, σ(j) represents the facility with xij = 1
and σ−1(i) represents all the clients with xij = 1.



Universal Facility Location in Generalized Metric Space 595

3.1 Moves and Moves Finding

The following defined moves are to reduce the current cost and by iteratively
taking these moves we obtain the locally optimal solution to our problem.

– add(s, δ): Increase the allocation of facility s by an amount δ > 0 and solve
the optimal assignment under the adjusted allocation. This move is also con-
sidered by many previous work to reduce the service cost.

– pivot(s,Δ): Adjust the allocation of all facilities except s by a vector Δ (the
allocation of each facility i is adjusted by an amount of Δi). We find the
pivot facility s to connect the source facilities (with Δi < 0) with sink ones
(with Δi > 0). That means we must ship |Δi| clients from i to s for facilities
with Δi < 0, and ship |Δi| clients from s to those with Δi > 0. This move
only makes sense when

∑
i∈F Δi ≥ 0 as the total number of clients must be

conserved.

Note for pivot move,
∑

i∈F Δi = 0 is satisfied after reducing the alloca-
tion from ui + Δi to the real amount of clients assigned to i for those facilities
that these two amount are not equal. To obtain a locally optimal solution, any
move with positive cost save is acceptable. We define the cost function (a nega-
tive value implies cost save) as estimate cost for the two types of moves below
respectively. And we claim that both moves with minimum cost function val-
ues can be computed in polynomial time. Note the estimate cost of pivot move
is tighter than previous work [5,13,18] for metric facility locations in order to
bound the opening cost efficiently in this generalized metric space.

cadd(s,δ) = fs(us + δ) − fs(us) + cs(S′) − cs(S)

The cost function cadd(s,δ) consists of two parts, opening cost increase and
service cost increase. We assume S is the initial solution and S′ is the optimal
solution under the adjusted allocation after one add(s, δ) move. cs(S) denotes
the service cost of solution S, and later we use cf (S) denoting the opening cost
of S. The cost increase for pivot(s,Δ) can be formulated as follows.

cpivot(s,Δ) =
∑

i∈F
(fi(ui + Δi) − fi(ui)) + cs(S′) − cs(S)

Also, cpivot(s,Δ) consists of opening cost increase and service cost increase.
And we abuse the notations cs(S) and cs(S′) a little to represent the service cost
of initial solution S and one pivot move solution S′ respectively. More accurately,
it is equivalent to the following expression.

cpivot(s,Δ) =
∑

i∈F
(fi(ui + Δi) − fi(ui)) +

∑

i∈F

∑

j∈σ−1(i)|Δi|

(csj − cij)(−1)1{Δi>0}

We introduce the indicator for event Δi > 0 to separate the cost increase of s
to i from those i to s. And σ−1(i)|Δi| represents the |Δi|-element subset of σ−1(i)
with minimum values of (csj −cij)(−1)1{Δi>0} . In other words, one can order the
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clients in σ−1(i) according to the nondecreasing rule of (csj − cij)(−1)1{Δi>0} ,
and the first |Δi| clients at the top of the list are subset σ−1(i)|Δi|.

Observe that once we are given pair (s, δ) or (s,Δ), we are able to compute
cadd(s,δ) or cpivot(s,Δ) immediately. Now we claim that both moves with minimum
cost function increase can also be found in polynomial time. The proof for add
move is quite straightforward. Since we have only mn choices for (s, δ) pair, we
can simply try all of them. But it is not the case for pivot move.

Lemma 1. Given current solution S = (u, x), we can in polynomial time find
s and Δ such that cpivot(s,Δ) is minimized.

Proof. Refer to the full version of this paper. 
�

We fulfill the above proof (in the full version) mainly to see that we do not
require cF×C be metric as previous work ([5,13,18]) do.

3.2 Significant Moves and Polynomial-Time Proof

Even though we have one optimal move executed in polynomial time, we cannot
guarantee a polynomial-time algorithm. This because of the unbounded number
of moves. For example, a sequence of moves with cost save 1/k2 in kth step
cannot end up in a locally optimum within finite steps. Because

∑∞
k=1 1/k2

converges to a finite real π2/6, the iteration will never terminate before it hits a
minimum. Thus we introduce a standard idea of significant move that requires
a lower bound of step length. With such requirement we guarantee that our
algorithm only takes polynomial many moves. Specifically, let the step length
be p(n, ε) times the current cost of solution, where p(n, ε) is a suitable chosen
polynomial w.r.t. n and small ε. Note in this way, we find the approximate locally
optimal solution instead of the real locally optimal one, with only a factor of
p(n, ε) difference.

Lemma 2. If one only takes any of the two moves whenever he finds one
with cost save more than p(n, ε) times the current, then after at most
O(p−1(n, ε) log c(S0)

c(Sk)
) moves, the algorithm terminates, where S0 denotes the ini-

tial solution and Sk denotes the approximate locally optimal solution.

Proof. Refer to the full version of this paper. 
�

4 Analysis

In this section, we mainly aim to compare the performance of the locally opti-
mal solution with the global one, and we use S := (u, x) and S∗ := (u∗, x∗)
representing them respectively. Remember c(S) is the total cost of a solution S;
cs(S) and cf (S) are the service cost and opening cost. We separate this section
into two parts, one of which is to bound the service cost using add move and the
other is to bound the opening cost using pivot move.
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4.1 Bounding the Service Cost

In the facility location literature, the add move is widely used to efficiently reduce
the high service cost of a locally optimal solution. The lemma first proposed by
Guha, Khuller [8] and Korupolu et al. [10] for the capacitated facility location
is also valid for universal facility location.

Lemma 3. Any locally optimal solution w.r.t. the add move has service cost no
larger than the total cost of the global optimal solution, i.e., cs(S) ≤ c(S∗).

Proof. For locally optimal solution S together with its allocation and assignment
(u, x) and global optimal solution S∗ together with (u∗, x∗), consider the facility i
with ui < u∗

i . If none, x∗ is a feasible assignment and we are done. Otherwise take
moves add(i, u∗

i − ui) for all such facilities. Observe that x∗ must be feasible to
the new solution. Thus the cost increase is no more than cf (S∗)+cs(S∗)−cs(S).
From the local optimality of S we have cf (S∗) + cs(S∗) − cs(S) ≥ 0, implying
the lemma. 
�

This lemma is simple but powerful. We sketch the proof mainly in order to
find out that it does not require any metric property.

4.2 Bounding the Opening Cost

We show in this subsection that whenever a feasible solution has high opening
cost, an efficient pivot move exists. In other words, a locally optimal solution
w.r.t. the pivot move will never have a high opening cost. We begin with a
transhipment problem that will help to build the connection between S and S∗.
We shall show that by taking several pivot moves in a well-defined graph we can
switch S to S∗ and afterwards an analysis on the cost increase will result in the
bound for opening cost.

Let Fout = {i ∈ F : ui > u∗
i } and Fin = {i ∈ F : u∗

i > ui}. We set up
a transhipment that move a number of clients from Fout to Fin, where each
s ∈ Fout has us − u∗

s clients shipping out and each t ∈ Fin has u∗
t − ut clients

shipping in. Note this is feasible as
∑

s∈Fout
(us − u∗

s) =
∑

t∈Fin
(u∗

t − ut) which
is derived from the fact that the total number of assigned clients are equal in S
and that in S∗. Note we do not specify the reassignment. Specifically, we model
this transhipment using the following programming.

min
∑

s∈Fout,t∈Fin

cstr(s, t) (6)

s.t.
∑

t∈Fin

r(s, t) = us − u∗
s, ∀ s ∈ Fout, (7)

∑

s∈Fout

r(s, t) = u∗
t − ut, ∀ t ∈ Fin, (8)

r(s, t) ≥ 0, ∀ s ∈ Fout, t ∈ Fin. (9)
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Any feasible solution to the above programming implies an feasible assign-
ment of clients that switch the allocation from S to S∗. But remember we do
not have the distances between facilities as inputs. Unlike metric facility location
algorithms do, we first define a fictitious distance c′

st := minj∈C(√csj + √
ctj)2

for each facility pairs s, t ∈ F , and update that distance to be the shortest path
between facilities if we can reduce the distance by doing this update. Particu-
larly, define cst := min{c′

st,minp∈P (s,t) length(p)}, where P (s, t) denotes the set
of all paths consisting of facilities that start in s and end in t, and length(p) is
the sum of distances of all passing edges in path p. Note the above definition
meet the squared metric triangle inequality, i.e., for any s, t ∈ F and j ∈ C,√

cst ≤ √
csj + √

ctj . Under this definition, we are able to find a feasible way to
transfer the allocation of S to that of S∗ with an acceptable cost.

Lemma 4. There exists a feasible transhipment at cost no more than 2(cs(S)+
cs(S∗)).

Proof. Refer to the full version of this paper. 
�

To simplify the analysis, we start with the optimal transhipment w.r.t. the
programming (6–9) denoting by y, of which the cost is at most 2(cs(S)+cs(S∗)).
We interpret the element of y in each edge a nonnegative arc flow. From flow
decomposition theorem [1], we can represent the arc flow as path and cycle flow
such that each directed path flow connects a source facility to a sink one. Aug-
menting the flow along the cycle must not increase the cost (since y is optimal)
and by iteratively doing this we can remove all the cycles without increase the
cost. Thus, the modified y forms a forest.

We focus on this forest and partition it into simple subtrees that have depth at
most 2 and rooted at facilities in Fin. Let Tt be such subtree rooted at t. For any
node s in the tree, let C(s) be its children and p(s) be its parent. We sometimes
abuse this notation by replacing s with a set S if no confusion. Let y(s, t) be the
directed flow value on edge (s, t), y(s, ·) be the total flow value going out of s
and y(·, t) be the total flow value going in t. We sometimes abuse this notation
by replace a facility by a set of facilities, for example y(s, S) :=

∑
i∈S y(s, i). In

fact, y(s, ·) = us − u∗
s for any s ∈ Fout and y(·, t) = u∗

t − ut for any t ∈ Fin.
By closing a facility s ∈ Fout we mean to reassign y(s, ·) out of s, and open
a t ∈ Fin means we reassign y(·, t) clients to t. Note we may open a facility t
several times, which means an excess use of y(·, t). Now we build a set of pivot
moves to reassign the excess allocations from Fout to Fin.

Let us begin with a simple particular case that Tt has no grandchildren,
that is to say, Tt is a subtree of depth one. In this case we consider the move
pivot(t,Δ) in which Δ can be defined to close all children of t and reassign all
their allocations to t. This move is obviously feasible since we open the only
neighbor of every nodes in C(t).

For nontrivial subtree Tt of depth 2, we partition C(t) into two subsets that
will be separately cope with. Particulary, for arbitrary s ∈ Fout, we say s is an
up-facility if y(s, p(s)) ≥ y(s, C(s)), otherwise it is a down-facility. Note an up



Universal Facility Location in Generalized Metric Space 599

s also means y(s, p(s)) ≥ 1
2y(s, ·). We denote all up-facilities by Fu and down-

facilities by Fd. For the nodes in C(t) that are up-facilities, which for notation
convenience we denote by Cu(t) := C(t)∩Fu, consider a single pivot(t,Δ) move
that closes all facilities in Cu(t) and open t as well as all the children of Cu(t).
This move ships the allocations of Cu(t) up to pivot t and then reassigns to the
children of Cu(t).

For the rest of the facilities Cd(t), we cannot close all these facilities through
a single pivot(t,Δ) move. Because it is infeasible to ship all the allocations
from Cd(t) to the pivot t as the flow downwards may be arbitrarily larger than
upwards. We consider these facilities in an nondecreasing order of the value
y(s, t). That is, assume Cd(t) = {s1, s2, . . . , sk} is so labeled that y(s1, t) ≤
y(s2, t) ≤ . . . ≤ y(sk, t). For an arbitrary sv ∈ Cd(t) with v ∈ {1, 2, . . . , k − 1},
consider the pivot(sv,Δ) move that closes sv and open all facilities in C(sv) ∪
C(Sv+1). Note this move is pivot at sv, so we can directly ship the y(sv, u)
amount of clients from sv to u for an arbitrary u ∈ C(sv). And the rest of the
allocation should be reassigned along the edges (sv, t), (t, sv+1), and set of edges
(sv+1, C(sv+1)). For the special facility sk, we consider such pivot(sk,Δ) that
closes sk and open all its neighbors including the root t. Later we will prove all
these moves are feasible and economical. First of all, let us officially define the
aforementioned pivot moves as follows.

Trivial Tt: Consider pivot(t,Δ) move with Δ defined as:

Δi =

⎧
⎨

⎩

−(ui − u∗
i ), i ∈ C(t);

u∗
t − ut, i = t;

0, otherwise.

Nontrivial Tt:

– Cu(t): Consider pivot(t,Δ) move with Δ defined as:

Δi =

⎧
⎨

⎩

−(ui − u∗
i ), i ∈ Cu(t);

u∗
i − ui, i ∈ C(Cu(t));

0, otherwise.

– Cd(t) \ {sk}: Consider a set of pivot(sv,Δ) moves for all sv ∈ Cd(t) \ {sk}
with the corresponding Δ defined as:

Δi =

⎧
⎨

⎩

−(usv
− u∗

sv
), i = sv;

u∗
i − ui, i ∈ C(sv) ∪ C(sv+1);

0, otherwise.

– sk: Consider pivot(sk,Δ) move with Δ defined as:

Δi =

⎧
⎨

⎩

−(usk
− u∗

sk
), i = sk;

u∗
i − ui, i ∈ C(sk) ∪ {t};

0, otherwise.
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Note in the above definitions, the negative sign is a reminder that the corre-
sponding value is negative. We analyze the feasibility case by case in the following
lemma. Remember a pivot(s,Δ) move is feasible only if

∑
i∈F Δi ≥ 0.

Lemma 5. All the pivot moves considered above are feasible.

Proof. Refer to the full version of this paper. 
�

Observing the above, we are able to close all the facilities in Fout once, at
the same time open as few times as possible the facilities in Fin and obey the
transhipment flow along the edges. Particularly, we conclude the following.

Lemma 6. Combining all the pivot moves above, we close all the facilities in
Fout exactly once, at the same time open an arbitrary t ∈ Fin at most 4 times,
and use at most 3 times the flow capacity along the edges.

Proof. The conclusion about closing Fout is obvious. For the open times of Fin,
do not forget we are considering the whole forest which are partitioned into
above subtrees. We only consider the worst case when a facility t ∈ Fin is the
root of a nontrivial subtree Tt and a leaf in another subtree Tt′ where it happen
to be a child node of an facility sk (same property as sk described in previous
analysis). Such t is opened 2 times as a root and 2 times as a leaf, implies the
conclusion.

Also, we only focus on the worst case for the edge capacity and the rest cases
can be similarly checked. In the nontrivial case, consider the move closing all
s ∈ Cu(t). We first ship y(s, ·) clients to t, leave y(s, t) clients at t and then ship
the rest clients to C(s). This ends in using (s, t) totally 2y(s, ·) − y(s, t) flow
of clients. Remember the capacity is y(s, t) and s is an up-facility which means
y(s, ·) ≤ 2y(s, t). So 2y(s, ·) − y(s, t) ≤ 3y(s, t), completing the proof. 
�

The feasibility and economy of the defined pivot moves end in the following
main result of a locally optimal solution.

Lemma 7. cf (S) ≤ 10cf (S∗) + 12cs(S∗)

Proof. This upper bound for opening cost can be directly derived from Lemma 6.
Since we reassign all excess allocations of facilities in S to that of S∗, we have
cf (S) ≤ 4cf (S∗) + 3c(y). And from Lemma 4 we know c(y) ≤ 2(cs(S)+ cs(S∗)),
combing with cs(S) ≤ c(S∗) obtain, cf (S) ≤ 10cf (S∗) + 12cs(S∗). 
�

4.3 Scaling and Polynomial-Time Establishing

Combine Lemma 7 with aforementioned upper bound for service cost, we have
a straightforward performance guarantee of 13. But we can do slightly better
than this by employing a standard scaling technique. That is, we scale the unit
service/opening cost by a factor of λ as a data preprocessor. Then applying the
algorithm on the modified inputs, we conclude that by doing this we obtain
a slightly better return from the algorithm. Formally speaking, the modified
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upper bounds for service and opening cost are λcs(S) ≤ cf (S∗) + λcs(S∗) and
cf (S) ≤ 10cf (S∗) + 12λcs(S∗) respectively. By setting λ ≈ 0.8482 we obtain a
performance guarantee of 11.18.

Recall we restrict a polynomial step length of the proposed local search algo-
rithm by p(n, ε). In the above we analyze the performance of a locally optimal
solution, not the approximate locally optimal one. There is only ε difference of
these two solutions by setting p(n, ε) = ε/6n and substitute into the proof of
previous lemmas. Putting all things together, we have the following theorem.

Theorem 1. The proposed local search algorithm w.r.t. add and pivot moves
outputs an approximate locally optimal solution with performance ratio 11.18+ε.

5 Conclusion

Metric property plays an important role in many combinatorial problems. For
example, we all know that under the assumption P �= NP, there does not
exist an α-approximation algorithm (for any constant α > 1) for the travel-
ing salesman problem. Even an O(2n) approximation ratio implies P = NP,
where n is the number of cities. But under the metric assumption, one can
easily obtain a 2-approximation or 1.5-approximation algorithm [6]. And the
metric traveling salesman problem has a much lower inapproximability bound
of 220/219 ≈ 1.0045 [15], provided by P �= NP.

However, it is time-consuming to check whether a set of distance inputs are
metric or not if we are not informed beforehand. Our algorithm allows distance
inputs to locate in a more generalized space. And for the worst case in this
generalized space, we have a constant approximation ratio of 11.18 + ε.
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1 Introduction

Currently, online social networks such as Facebook, Twitter, Wechat and
Google+ have become major social tools for users to share and to dissemi-
nate information. Information quickly and widely spread on social networks with
“Word-of-mouth” effects compared to traditional ways such as TV, radio, etc.
According to statistics, there are 2.34 billion people around the world frequently
visiting social networks.

Online marketing is the most representative application of social networks. In
viral marketing, the Influence Maximization (IM) problem has been extensively
studied. Specifically, a company launches a kind of novel product and wants to
market it by social networks. Due to the limited budget, it can only choose a small
number of initial users (seeds) to provide them free or discounted samples. The
company hopes that these initial users would like the products and recommend
them to their friends on the social networks. Similarly, their friends will influence
more friends in the same way. Finally, the company wants to maximize the
number of users who would like to adopt the product.

However, in some practical scenarios, one may consider to maximize the
activation probability of a set of target users for efficiently using the limited
budget. More specifically, assume that each user in a social network has a poten-
tial value1 for a company. The company may pay more attention to the users
who have higher potential values. These higher potential value users are called
the target users and denoted by a set T . These target users may be potential
adopters, such as Make-up artists for a specific kind of cosmetics, or the highly
influential and authoritative users who have high probability of activating other
users. Intuitively, the company will benefit from maximizing the activation prob-
ability of these target users. In most cases, the company cannot directly reach
these target users, so the company aims to find the optimal seed set such that
the sum of activation probability of the target users is maximized. We call this
problem Activation Probability Maximization (APM).

It’s obvious that the IM problem is different from the APM problem. The
former selects a seed set from all nodes in network within a budget such that
the expected number of nodes influenced by the seed set through information
diffusion is maximized. However, the latter selects a seed set from all nodes
except the target set such that the sum of activation probabilities of the target
users is maximized.

To the best of our knowledge, only a few studies explored the APM prob-
lem even though it plays an essential role in viral marketing. The similar stud-
ies have been done in some researches such as [5,19]. Guo et al. [5] propose a
problem to find the top-k most influential nodes to a given user. They develop
a simple greedy algorithm to solve the problem based on the sub-modularity.
We expand their work and solve the APM problem from different perspectives.
In [19], Yang et al. advocate recommendation support for active friending, where

1 The potential value can be obtained through statistical or machine learning based
methods. And this is beyond the scope of this paper.
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a user actively specifies a friending target. In other words, they want to maxi-
mize the probability that the friending target would accept an invitation from
the source user. The differences between our APM and the previous works are:
(1) APM chooses seeds from all nodes except the target nodes instead of all
nodes on social network. (2) APM maximizes the activation probability of the
target users instead of the expected number of influenced nodes.

Another key issue is about propagation probability. According to [14], a
user’s influence in a social network decays with time, i.e., the influence prop-
agation probability is dynamic. For example, a famous football player Bailey
said, “Brazil is the biggest favorite in the 2018 World Cup. Neymar can take
advantage of the 2018 World Cup shame, optimistic about Brazil’s finals.” This
news is quickly reported by major media websites and newspapers in February
2018 such as Baidu, Sina, etc. As time goes by, to the end of the World Cup, the
news is significantly less affected by the Brazilian fans than before. Indeed, the
influence to users after the World Cup would not bring any profit to the mar-
keters. In the previous literature, well-studied influence propagation models such
as Independent Cascade (IC) and Linear Threshold (LT) models overlook the
fact that users’ influence on others will decrease with time, which can lead to an
over-estimation of the activation probabilities. In this paper, we consider a more
realistic Influence Decay Model (IDM) that gives a more accurate estimation of
the activation probability of the target users. We summarize main contributions
as following:
– We propose the Activation Probability Maximization (APM) problem for the

a specific set of target users.
– We propose a new influence diffusion model named Influence Decay Model

(IDM) based on the IC model.
– We show that APM is NP-hard and objective function is monotone non-

decreasing as well as submodular. Furthermore, we show that computing the
activation probability of the target users is #P − hard.

– We propose a Basic Greedy Algorithm (BGA) that has a (1 − 1/e) approx-
imation ratio. In addition, a speed-up Scalable Algorithm (SA) is proposed
for online large social networks.

– To evaluate proposed algorithms, we use a synthetic network and three real-
life social networks in experiments. Experimental results validate the pro-
posed algorithms are superior to the comparison methods.

The rest of this paper is organized as follows. In Sect. 2, we begin by recalling
some existing related work. In Sect. 3, the influence diffusion model is presented.
In Sect. 4, we introduce the problem description and show the properties of the
objective function. Algorithms are designed for solving the APM problem in
Sect. 5. The experiment results are shown in Sect. 6. We draw conclusions in
Sect. 7.

2 Related Work

Kempe et al. [7] model viral marketing as a discrete optimization problem, which
is named Influence Maximization (IM). They propose a greedy algorithm with
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(1 − 1/e)-approximation ratio since the objective function is submodular under
the Independent Cascade (IC) or Linear Threshold (LT) model.

Note that the previous researches [8,16,18] study social influence problem
without the target users. Therefore they cannot be directly convert to the APM
problem. Specifically, Tong et al. [16] present a Dynamic Independent Cascade
(DIC) model to study the strategies selecting seed users in an adaptive manner.
Yan et al. [18] investigate the problem of group-level influence maximization
with budget constraint. They introduce a statistical method to reveal the influ-
ence relationship among the groups. Furthermore, theoretical analysis shows
that their algorithm can guarantee an approximation ratio of at least 1 − √

e.
In [8], Kuhnle et al. consider Threshold Activation Problem (TAP) which finds
a minimum size set triggering expected activation at a certain threshold. They
exploit the bicriteria nature of solutions to TAP and control the running time
by a parameter.

The related works involve the target users such as [13,20]. In [20], Zhou et
al. study a new problem: Give an activatable set A and a targeted set T , finding
the k nodes in A with the maximal influence in T . They give a greedy algorithm
with a (1 − 1/e)-approximation ratio. In [13], Song et al. formalize the problem
targeted influence maximization in social networks. They adopt a login model
where each user is associated with a login probability and he can be influenced by
his neighbors only when he is online. Moreover, they develop a sampling based
algorithm that returns a (1 − 1/e − ε)-approximate solution.

The other category involve the decay models such as [3,9,10]. In [3], Feng
et al. study the influence maximization from the impact of novelty decay on
influence propagation, i.e., repeated exposures will have diminishing influence
on users. Furthermore, they propose the IC model with Novelty Decay (ICND)
as their diffusion model. Liu et al. [9] propose algorithms for the time constrained
influence maximization problem. In [10], Mohammadi et al. propose the Time-
Sensitive Influence Maximization (TSIM) problem, which takes into account
the time dependence of the information value. They develop two diffusion mod-
els based on the time delay, namely the Delayed Independent Cascade Model
(DICM) and the Delayed Linear Threshold Model (DLTM).

In this paper, we simultaneously consider maximizing the activation proba-
bility of the target users and dynamic influence diffusion model. And we believe
that it can provide a good seed selection for the company in social marketing.

3 Influence Diffusion Model

Independent Cascade Model: A directed social network is denoted as
G = (V,E, p), where V is the node set (users) and E ⊆ V × V is the edge set
(the relationships between users). In the IC model, evu ∈ E denotes a directed
edge from v to u and pvu of edge evu denotes the probability that node v can
successfully activate node u. We call a node active if it accepts the product or the
information from other nodes, inactive otherwise. Influence propagation process
unfolds in discrete time steps. The initial seed set is S0. Let St denote the active
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Fig. 1. An example for the influence decay model.

nodes in time t, and each node v in St has single chance to activate each inactive
neighbor u through its out-edge with probability pvu at time t + 1. Then repeat
this process until no more new nodes can be activated. Note that a node can
only switch from inactive to active, but not in reverse direction.

Influence Decay Model: We propose the Influence Decay Model (IDM) based
on the IC model. The biggest difference between our model and the IC model is
that the propagation probability of each edge on the network decays with time.
More specifically, at any time step t (t = 0, 1, ...), let v be an active node in
time step t − 1. From the work in [17], we have learned that the propagation
probability of each edge will decay in a logarithmic manner over the time. In
this paper, we give the modified propagation probability from v to u at time t
in following equation

pact
vu (t) =

pvu

log(10 + t)
, (1)

where pvu is the initial propagation probability from v to u at time step t = 0. It
can be seen clearly from (1) that the propagation probability decreases as time
increases. Based on the above discussion, the influence propagation process is
similar to the IC model.

Figure 1 shows an example of the influence decay model in a social network.
In the figure, the number embedded on each edge indicates the propagation
probability at time step t = 0. Influence propagation process unfolds as follows.
At time step t = 0, without loss of generality, we assume that nodes a and b are
active (seed nodes) and other nodes are inactive. a and b attempt to activate
c and d with probability 0.2 and 0.5, respectively. For ease of exposition, we
suppose that c becomes active and d is still inactive2. At time step t = 1, c tries
to activate e with probability 0.4

log(10+1) and c tries to activate f with probability
0.3

log(10+1) . As a result, the nodes e and f become active. The influence continues
to spread. At time stamp t = 2, only f attempts to activate g. Finally, g is still

2 In fact, the seeds activating the inactive nodes is a stochastic process.
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inactive. At this time, no new nodes become active so the propagation process
stops. Based on the above analysis, we explain the differences between IDM
and IC model. For example, in the IC model, the activation probability of e
by a is 1 − (1 − 0.2 × 0.4) = 0.08. However, in the DTM, this probability is
1− (1− 0.2× 0.4

log(10+1) ) = 0.0768. Again, we think that the IC model is a special
case of the IDM if we ignore the decay.

4 Problem Description

Given a directed social network which can be described as a graph G = (V,E, p),
an influence decay model (IDM) M and a seed set S, we define the activation
probability of a node u ∈ V under the IDM at time step t as follow.

PrM(u, S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if u ∈ S

0, if N in(u) = ∅
1−

∏

v∈Nin(u)

(1 − PrM(v, S)pact
vu (t)).

(2)

Where N in(u) is the set of in-neighbors of node u. And PrM(v, S)pact
vu (t)

shows the probability v successfully activates u. We define the activation prob-
ability of the target user set T = {T1, T2, ..., Tq} as following equation

PrM(T , S) =
∑

u∈T
PrM(u, S). (3)

Now, we can formally define the Acceptance Probability Maximization (APM)
problem. Given a directed social network G = (V,E, p), an influence decay model
M and a non-negative integer budget b, our APM aims to find a seed set S∗

such that

S∗ = arg max
S⊆V \T ,|S|≤b

PrM(T , S). (4)

We show the hardness result of APM as following theorem.

Theorem 1. The Activation Probability Maximization (APM) problem is NP-
hard under the Influence Decay Model (IDM).

It’s easy to prove this theorem with reduction from the set cover problem [6].
In this paper, we omit the proof due to space constraints.

From the Theorem 1, we can clearly know the APM problem is NP-hard.
However, there is still a question what’s the hardness of calculating the activation
probability of the target users with respect to a given seed set S? We answer
this question by the following theorem.

Theorem 2. Given a seed set S and a target set T , computing the activation
probability from the seed set S to the target set T is #P − hard under the IDM.

Theorem 3. The objective function (4) is monotone non-decreasing and sub-
modular under the IDM.
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5 Algorithms

Basic Greedy Algorithm: Submodular functions have a variety of nice
tractability properties [11] which provide us a good way to obtain an approx-
imation algorithm. From previous Theorem 3, we know the objective function
(4) is submodular. Thus we propose a Basic Greedy Algorithm (BGA) to solve
APM. The details can be found in Algorithm 1.

Algorithm 1. Basic Greedy Algorithm (BGA)
Input: G = (V, E, p), b, T and M.
Output: seed set S.
S ← ∅;
for |S| < b do

Select v ← arg maxv∈V \T Pr(v|S);
S ← S ∪ {v};

end
return S.

In Algorithm 1, the key step is to select a node with the largest marginal
activation probability Pr(v|S) = PrM(T , S∪{v})−PrM(T , S) based on current
seed set S in each iteration. According to [11], a non-decreasing and non-negative
submodular function can provide a (1 − 1/e)-approximation ratio by the basic
greedy algorithm. We use the following theory to give the approximation ratio
analysis.

Theorem 4. Let SBGA and S∗ denote the solution returned by the Algorithm
1 and the optimal solution, respectively. Then we have PrM(M, SBGA) ≥ (1 −
1/e) · PrM(T , S∗).

Scalable Algorithm: In the basic greedy algorithm, computing activation prob-
ability is time consuming. Intuitively, computing activation probability of the
target users in a local way such as tree structure is an effective method [1]. Fur-
thermore, it’s relatively easy to approximate local influence from the seed set S
to the target user Tj ∈ T (j = 1, 2, ...q) through the directed tree structure.

For a path Path(v, u) =< v = x1, x2, ..., xl = u > from v to u in social
network G = (V,E, p), we define the probability of this path as P(v, u) =
k=l−1∏

k=1

pxkxk+1 . Since v attempts to activate u through the Path(v, u), which

leads to v activating all the nodes along the path. Let PathG(v, u) denote the
set of all paths from v to u in G. In particular, we focus on the path whose
probability is maximum. And we define the Maximum Influence Path (MIP) as
follow.

Definition 1 (Maximum Influence Path (MIP)). Given a social network G =
(V,E, p), we define maximum influence path MIPG(v, u) from v to u in G as
MIPG(v, u) = arg max{P(v, u)|Path(v, u) ∈ PathG(v, u)}.
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Note that if we convert the propagation probability pvu to 1/puv for each edge
(v, u) in G, MIPG(v, u) is equivalent to the shortest path from v to u in G. As we
all know, the shortest path problem can be solved by polynomial time algorithms,
e.g., Floyd-Warshall and Dijkstra algorithms. For a target user Tj ∈ T , we
create a directed tree structure that is the union of maximum influence paths
to estimate the activation probability of the target user Tj from the seed set.
Moreover, we use a threshold θ to delete MIPs which have small activation
probabilities.

Definition 2 (Maximum Activation Probability Tree (MAPT)). For a threshold
θ (0 < θ ≤ 1), the maximum activation probability tree rooted a target user
Tj ∈ T in G is MAPT (Tj , θ) =

⋃
MIPG(u,Tj)≥θ MIPG(u, Tj).

Algorithm 2. Scalable Algorithm (SA)
Input: G = (V, E, p), b, T , M and θ.
Output: seed set S.
S ← ∅;
for each Tj ∈ T do

if |S| < b then
Create a MAPT (Tj , θ) for Tj ;
for each node v ∈ MAPT (Tj , θ)\Tj do

Calculate PrM(Tj , v);
end
Select v ← arg max

v∈MAPT (Tj ,θ)\Tj

PrM(Tj , v);

S ← S ∪ {v};

end

end
return S.

Based on these directed trees, we propose a Scalable Algorithm (SA) in Algo-
rithm 2. Instead of computing APM in the entire network, the scalable algorithm
constructs local tree structures consisting of only the shortest paths between the
seed nodes and the target nodes with the parameter θ. Then we restrict compu-
tations within the shortest paths of tree structures.

6 Experiments

Experiment Setup: We use one synthetic network and three real-life networks
with various scale from (SNAP)3 and [15]. Note that Amazon and Youtube
are undirected networks. Therefore we convert these two undirected graphs to
directed graphs. Specifically, for each undirected edge (v, u) in Amazon and

3 http://snap.stanford.edu/data.

http://snap.stanford.edu/data
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Youtube networks, we randomly generate a directed edge (v, u) or (u, v) with a
probability of 0.5. Since all networks are without probability, we first assign a uni-
form probability p = 0.5 for each edge on Synthetic and Email networks. Second,
we employ a trivalency model [2] to uniformly select a value from {0.1,0.3,0.5}
at random for each edge on Amazon and Youtube networks (e.g., p = TRI).

Synthetic. We randomly generate a relatively small directed network to evalu-
ate the proposed algorithms and compare the results with the real-life datasets.
This synthetic network includes 2K nodes and 5.2K edges.

E-mail is generated using email data from a large European research insti-
tution. Each node represents a researcher and each directed edge (u, v) means
that u sent at least one email to v. It includes 1K nodes and 25.9K edges.

Amazon is based on Customers Who Bought This Item Also Bought feature
of the Amazon website. Each node is a product. If a product u is frequently co-
purchased with product v, thus there is an edge between u and v. It includes
334.8K nodes and 925.8K edges.

Youtube is a video-sharing social network. Each node is a user on network.
Users can form friendship if they share same videos. It includes 1134.8K nodes
and 2987.6K edges.

Comparison Methods: We use the following three Heuristic Algorithms (HA):
Degree Discount (DD) [2], Local Structural Centrality (LSC) [4] and PageRank
(PR) [12] to discover influential nodes on the network and to select these influen-
tial nodes as seed nodes. Furthermore, we adopt the algorithm [5] as a benchmark
method.

Fig. 2. Influence hop h study: target set size |T | = 500, seed set size b = 45, p = 0.5
for Synthetic and E-mail networks.

Results: Influence Hop h Study: We study the effect of influence hop on
the activation probability of the target users. We evaluate the performance of
Basic Greedy Algorithm (BGA) and Heuristic Algorithm (HA) on Synthetic
and E-mail networks by varying h from h = 2 to h = 10. Figure 2 shows the
results. In Fig. 2, the vertical and horizontal axes represent the total activation
probability of the target users PrM(T , S) and the influence hop h, respectively.
Specifically, we first randomly select 500 nodes (i.e., |T | = 500) as target users.
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Fig. 3. The target users set size Vs. seed nodes set size on networks

Then we run BGA and HA (HA-DD, HA-PR and HA-LSC denote selecting
global influential nodes by Degree Discount, PageRank and Local Structural
Centrality respectively.) with restriction of seed size b = 45 under the influence
decay model M. We observe that the total activation probability increases as
the influence hop h increases in all algorithms according to the figures. And
the total activation probability sharply increases between h = 2 and h = 5 but
goes slowly after h = 6. This phenomenon is reasonable because the seed nodes
may not successfully activate the target nodes when the number of influence
hop is small. In the subsequent experiments, we set the influence hop h = 6.
In addition, we can see that the total activation probability of BGA is greater
than that of HA (BGA>HA-LSC>HA-PR>HA-DD). This is because BGA has
performance guarantee as we analyzed before. On the other hand, the heuristic
algorithm is not as good as we expected. The reason is that heuristic rules select
the global influential nodes as seed nodes and these nodes may be far away from
the target users, which leads to the less activation probability.

Target Users Size vs. Seed Size: In order to investigate the relationship
between seed size b and target users size |T | with different methods, we let
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influence propagation probability p = 0.5 for Synthetic as well as E-mail net-
works or p = TRI for Amazon as well as Youtube networks. We let θ = 0.02
and influence hop h = 6. Experiments are conducted by varying the target users
size |T | from 0 to 1000 while |T | from 0 to 500 on E-mail network. The aver-
age the number of seeds are calculated with different methods (BGA, SA, LCA,
HA-DD, HA-LSC, HA-PR and RAN where RAN means that it randomly selects
nodes as seed nodes). Note that all experimental results are averaged from 10
independent randomized experiments. The results are plotted in Fig. 3.

In the figure, the horizontal and vertical axis indicate the target users size and
seed nodes size, respectively. On each network, the seed nodes size increases as
the target users size increases. And we find that seed size steadily increases from
0 and 300 while sharply increases from 400 and 1000. With the same target users
size, our BGA method needs the minimum seed nodes while the RAN method
needs the maximum seed nodes. BGA is better than HA since it has performance
guarantee as we analyzed in previous section. In all heuristic algorithms, HA-
DD, HA-LSC and HA-PR are close. Moreover, we observe that LCA is better
than HA. And SA is better than LCA since SA needs less seed nodes to activate
same target nodes than LCA. On the other hand, instead of utilizing Monte-
Carlo simulation, it indicates MAPT is an effective approximation to calculate
the activation probability.

7 Conclusion

In this paper, we study the Acceptance Probability Maximization (APM) prob-
lem that finds a seed set such that the activation probability of the target users
is maximized. And we propose an influence propagation model Influence Decay
Model (IDM). Based on the IDM, we show APM is NP-hard and computing
APM is #p − hard. We also prove objective functions satisfy monotonicity
and submodularity. We develop a Basic Greedy Algorithm (BGA) which has
a (1 − 1/e)-approximation ratio when |S| ≤ b. In addition, a speed-up Scalable
Algorithm (SA) is developed for online large social networks. Finally, in order to
evaluate our proposed algorithms, extensive experiments have been conducted
on synthetic and real-life networks. And the experiment results show that our
proposed algorithms outperform other comparison methods.
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Abstract. We investigate a non-submodular maximization problem
subject to a p-independence system constraint, where the non-
submodularity of the utility function is characterized by a series of
parameters, such as submodularity (supmodularity) ratio, generalized
curvature, and zero order approximate submodularity coefficient, etc.
Inspired by Feldman et al. [15] who consider a non-monotone submod-
ular maximization with a p-independence system constraint, we extend
their Repeat-Greedy algorithm to non-submodular setting. While there
is no general reduction to convert algorithms for submodular optimiza-
tion problems to non-submodular optimization problems, we are able
to show the extended Repeat-Greedy algorithm has an almost constant
approximation ratio for non-monotone non-submodular maximization.

Keywords: Approximation algorithms ·
Non-submodular maximization · Independence system constraint

1 Introduction

Submodular optimization is widely studied in optimization, computer science,
and economics, etc. Submodularity is a very powerful tool in many optimization
applications such as viral marketing [9,18], recommendation system [12,15,21],
nonparametric learning [1,16], and document summarization [20], etc.

The greedy algorithm introduced by Nemhauser et al. [22] gave the first (1 −
e−1)-approximation for monotone submodular maximization with a cardinality
constraint (SMC). Feige [13] considered a maximal k-cover problem, which is a
special case of SMC, and showed that there is no algorithms with approximation
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ratio greater than (1 − e−1 + ε) for any ε > 0, under the assumption P �= NP.
Sviridenko [23] considered a monotone submodular maximization with a knap-
sack constraint, and provided a tight (1 − e−1)-approximation algorithm with
time complexity O(n5). Calinescu et al. [8] provided a (1 − e−1)-approximation
algorithm for monotone submodular maximization with a matroid constraint. All
extant results of constrained submodular maximization assume monotonicity of
the objective functions. In this paper, we consider a non-monotonic and non–
submodular maximization problem subject to a more general p-independence sys-
tem constraint.

1.1 Our Contributions

In this work, we consider a non-submodular maximization with an independence
system constraint. Specifically, all feasible solutions associated with this model
generate a p-independence system and the objective function is characterized by
a series of parameters, such as submodularity (supmodularity) ratio, generalized
curvature, and zero order approximate submodularity coefficient, etc. Our main
results can be summarized as follows.

– We first investigate the efficiency of a greedy algorithm with two scenarios.
Firstly, the objective function is non-submodularity and non-monotonic. Sec-
ondly, the feasible solution belongs to a p-independence system. We show
that some good properties are still retained in the non-submodular setting
(Theorem 1).

– Second we study the non-monotone non-submodular maximization problem
without any constraint. Based on a simple approximate local search, for any
ε > 0 we show that there exists a polynomial time (3/c2 + ε)-approximation
algorithm, where c is the zero order approximate submodularity coefficient of
objective function (Theorem 2).

– Finally, we apply the first two algorithms as the subroutines to solve a non-
monotone non-submodular maximization problem with p-independence sys-
tem constraint. Our algorithm is an extension of the Repeat-Greedy introduced
in [15]. Based on a multiple times rounding of the above subroutine algorithms,
we derived a nearly constant approximation ratio algorithm (Theorem3).

1.2 The Organization

We give a brief summary of related work in Sect. 2. The necessary preliminaries
and definitions are presented in Sect. 3. The main algorithms and analyses are
provided in Sect. 4. We present a greedy algorithm in Sect. 4.1, an approximate
local search in Sect. 4.2, and the core algorithm is provided in Sect. 4.3. In Sect. 5,
we offer a conclusion for our work.

2 Related Works

Non-monotone Submodular Optimization. Unlike the monotone submodular
optimization, there exists a natural obstacle in the study of non-monotonic
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case. For example, direct application of the greedy algorithm introduced by
Nemhauser et al. [22] to the non-monotonic case does not yield a constant
approximation guarantee. Some previous work is summarized below. For the non-
monotone submodular maximization problem without any constraint (USM),
Feige et al. [14] presented a series of algorithms. They first showed a uniform ran-
dom algorithm has a 1/4-approximation ratio. Second, they gave a deterministic
local search 1/3-approximation algorithm and a random 2/5-approximation algo-
rithm. For symmetric submodular functions, they derived a 1/2-approximation
algorithm and showed that any (1/2+ ε)-approximation for symmetric submod-
ular functions must need an exponential number of queries for any fixed ε > 0.
Based on local search technique, Buchbinder et al. [7] provided a random linear
time 1/2-approximation algorithm.

Optimization of non-monotone submodular with complex constraints are
also considered previously. Buchbinder and Feldman [5] gave a deterministic
1/2-approximation algorithm for USM with time complexity O(n2). For non-
monotone submodular maximization with cardinality constraint, they derived a
deterministic 1/e-approximation algorithm, which has a slightly better approx-
imation ration than the random (1/e + 0.004)-approximation ratio by [6].
Buchbinder and Feldman [4] considered a more general non-monotone sub-
modular maximization problem with matroid constraint and presented the cur-
rently best random 0.385-approximation algorithm. Lee et al. [19] derived a
1/(p + 1 + 1/(p − 1) + ε)-approximation algorithm as well as non-monotone
submodular maximization algorithm with a constraint of the intersection of p
matroids. For a more general p-independence system constraint, Gupta et al.
[17] derived a 1/3p-approximation, which needs O(np�) function value oracles,
where � is the maximum size of feasible solutions. Mirzasoleiman et al. [21]
improved the approximation ratio to 1/2k, while the time complexity was still
bounded by O(np�). Recently, with improved time complexity of O(n�

√
p), the

approximation ratio was improved to 1/(p +
√

p) by Feldman et al. [15].

Non-submodular Maximization. There are also many problems in optimization
and machine learning whose utility functions do not possess submodularity. Das
and Kempe [11] introduced a definition of submodularity ratio γ to measure
the magnitude of submodularity of the utility function. For the maximization of
monotone non-submodular function with cardinality constraint (NSMC), they
showed the greedy algorithm can achieve a (1 − e−γ)-approximation ratio. Con-
forti and Cornuéjols [10] studied the efficiency of the greedy algorithm by defining
curvature κ of submodular objective functions for SMC and showed the approx-
imation could be improved it to 1/κ(1 − e−κ). Bian et al. [2] introduced a more
expressive formulation by providing a definition of the generalized curvature α of
any non-negative set function. Combining the submodularity ratio with the gen-
eralized curvature, they derived the tight 1/α(1 − e1/(αγ))-approximation ratio
of the greedy algorithm for NSMC. Inspired by these work, Bogunovic et al.
[3] introduced further parameters, such as supmodularity ratio, inverse general-
ized curvature, etc., to characterize the utility function. They derived the first
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constant approximation algorithm for monotone robust non-submodular maxi-
mization problem with cardinality constraint.

3 Preliminaries

In this section, we present some necessary notations. We are given a ground set
V = {u1, ..., un}, and a utility function f : 2V → R+. The function f may not be
submodular; namely the following zero order condition of submodular may not
hold

f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B),∀A,B ⊆ V.

For our purpose, we define a parameter c to approximate the submodularity of
our utility function.

Definition 1. Given an integer k, let {Ai}k
i=1 be a collection of subsets of V.

The zero order approximate submodularity coefficient is the largest ck ∈ [0, 1]
such that

k∑

i=1

f(Ai) ≥ ck · [f(∪iAi) + f(∩iAi)].

For any A,B ⊆ V, we set fA(B) = f(A ∪ {B}) − f(A) as the amount
of change by adding B to A. For the sake of brevity and readability, we set
fA(u) = f(A + u) − f(A) for any singleton element u ∈ V. Then we restate
the submodularity ratio γ in the following definition. The submodularity ratio
measures how close of f being submodular.

Definition 2 ([2,3,11]). Given an integer k, the submodularity ratio of a non-
negative set function f with respect to V is

γV,k(f) = min
A⊆V,B:|B|≤k,A∩B=∅

∑
u∈B fA(u)
fA(B)

.

Let k be the maximum size of any feasible solution, and omit signs k,V and f
for clarity. Bian et al. [2] introduced an equivalent formulation of submodularity
ratio γ by the largest γ such that

∑

u∈B

fA(u) ≥ γ · fA(B),∀A,B ⊆ V, A ∩ B = ∅.

Bogunovic et al. [3] defined supmodularity ratio γ̌ that measures how close a
utility function is supermodular.

Definition 3 ([3]). The supmodularity ratio of a non-negative set function f is
the largest γ̌ such that

fA(B) ≥ γ̌ ·
∑

u∈B

fA(u),∀A,B ⊆ V, A ∩ B = ∅.
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For a monotone submodular function, Conforti and Cornuéjols [10] intro-
duced the definition of total curvature κf and curvature κf (S) w.r.t. a set
S ⊆ V as follows. Denote κf = 1 − minu∈V fV\{u}(u)/f(u), and κf (S) =
1 − minu∈S fS\{u}(u)/f(u). Sviridenko et al. [24] provided a definition of cur-
vature from submodular to non-submodular functions. The expanded curvature
is defined as κo = 1 − minu∈V minA,B⊆V\{u} fA(u)/fB(u). Bian et al. [2] pre-
sented a more expressive formulation of curvature, which measures how close a
set function is to being supmodular.

Definition 4 ([2]). The generalized curvature of a non-negative function f is
the smallest scalar α such that

fA\{u}∪B(u) ≥ (1 − α) · fA\{u}(u),∀A,B ⊆ V, u ∈ A \ B.

Recently, Bogunovic et al. [3] introduced the concept of inverse generalized
curvature α̌, which can be described as follows:

Definition 5 ([3]). The inverse generalized curvature of a non-negative func-
tion f is the smallest scalar α̌ such that

fA\{u}(u) ≥ (1 − α̌)fA\{u}∪B(u),∀A,B ⊆ V, u ∈ A \ B.

The above parameters are used to characterize a non-negative set func-
tion from different points of view. We provide a lower bound of zero order
approximate submodularity coefficient c by inverse generalized curvature α̌. I.e.,
c ≥ 1 − α̌. The proof is referred to the full version. We omit the relation of the
other parameters as they can be found in [2,3]. In the rest of this part, we restate
the concept of the p-independence system.

Let I = {Ai}i be a finite collection of subsets chosen from V. We say the
tuple (V, I) is an independence system if for any A ∈ I, A′ ⊆ A implies that
A′ ∈ I. The sets of I are called the independent sets of the independence system.
An independent set B contained in a subset X ⊆ V is a base (basis) of X if no
other independent set A ⊆ X strictly contains B. By the above terminologies
we restate the definition of p-independence system as follows.

Definition 6 ([15]). An independence system (V, I) is a p-independence sys-
tem if, for every subset X ⊆ V and for any two bases B1, B2 of X, we have
|B1|/|B2| ≤ p.

In our model, assume the utility function is characterized by these parame-
ters, and the collection of all feasible subsets constructs a p-independence system.
We also assume that there exist a utility function value oracle and an indepen-
dence oracle; i.e., for any A ⊆ V, we can obtain the value of f(A) and know if
A in I or not. The model can be described as follows:

OPT ← arg max
S⊆V,S∈I

f(S), (1)

where (V, I) is a p-independence system.



620 R. Yang et al.

4 Algorithms

In this section, we present some algorithms in dealing with non-submodular
maximization. Before providing our main algorithm, we first investigate the effi-
ciency of two sub-algorithms. In Subsect. 4.1, we restate the greedy algorithm
for submodular maximization with p-independence system constraint, and show
that some good properties are still retained in the non-submodular setting.
In Subsect. 4.2, we present a local search for non-monotone non-submodular
maximization without any constraint. Finally, we provide the core algorithm in
Subsect. 4.3.

4.1 Greedy Algorithm Applied to Non-submodular Optimization

The pseudo codes of the greedy algorithm are presented in Algorithm 1. Let
SG = {u1, ..., u�} be the returned set by Algorithm 1. We start with SG = ∅.
In each iteration, we choose the element u with maximum gain, and add it to
the current solution if it satisfies SG + u ∈ I. For clarity, we let OPT be any
optimum solution set of maximizing the utility function under p-independence
system constraint. Then we can derive a lower bound of f(SG) by the following
theorem.

Theorem 1. Let SG be the returned set of Algorithm 1, then we have

f(OPT ∪ SG) ≤
(

p

γ2γ̌(1 − α̌)
+ 1

)
f(SG).

Proof. Refer to the full version of this paper.

Algorithm 1. Greedy(V, f, I)
1: SG ← ∅, A ← ∅
2: repeat
3: A ← {e|SG ∪ {e} ∈ I}
4: if A �= ∅ then
5: e ← arg maxe′∈A fSG(e′)
6: SG ← SG + e
7: end if
8: until A = ∅
9: Return SG

Let B ∈ I be any independent set and set SG
i = {u1, ..., ui} be the set of the

first i elements added by Algorithm 1. We can iteratively construct a partition of
B according to SG. We start with B0 = B and set Bi = {u ∈ B\SG

i |SG
i +u ∈ I}

for iteration i ∈ [�] = {1, ..., �}, where � denotes the size of SG in the end. Then
the collection of {Bi−1 \ Bi}�

i=1 derives a partition of B. Let Ci = Bi−1 \ Bi for
any i ∈ [�]. The construction can be summarized as Algorithm 2. The properties
of the above partition are presented in the following lemma.
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Algorithm 2. Construct(V, f, I)
1: S0 ← ∅, B0 ← B
2: for i = 1 : � do
3: Bi ← {u ∈ B \ Si|Si + u ∈ I}
4: end for
5: Return {Bi−1 \ Bi}�

i=1

Lemma 1. Let {Ci}�
i=1 be the returned partition of Algorithm 2, then

– for each i ∈ [�], we have
∑i

j=1 pj ≤ p · i where pj = |Cj |; and
– for each i ∈ [�], we have pi · δi ≥ γ(1 − α̌)fSG(Ci).

Proof. Refer to the full version of this paper.

4.2 Local Search Applied to Non-submodular Optimization

In this subsection, we present a local search algorithm for the non-monotone non-
submodular maximization problem without any constraint. The main pseudo
codes are provided by Algorithm 3. Feige et al. [14] introduced the local search
approach to deal with the non-monotone submodular optimization problem. We
extend their algorithm to the non-submodular setting, and show that the algo-
rithm still keeps a near constant approximation ratio by increasing a factor.

In order to implement our algorithm in polynomial time, we relax the local
search approach and find an approximate local solution. Let SLS be the returned
set of Algorithm 3 and let OPT o be any optimum solution without any con-
straint. We restate the definition of approximate local optimum as follows.

Definition 7 ([14]). Given a set function f : 2V → R, a set A ⊆ V is called a
(1 + λ)-approximate local optimum if, f(A − u) ≤ (1 + λ) · f(A) for any u ∈ A
and f(A + u) ≤ (1 + λ) · f(A) for any u /∈ A.

By the definition of the approximate local optimum solution, we show that
there exists a similar performance guarantee in the non-submodular case. The
details are summarized in the following theorem.

Theorem 2. Given ε > 0, c and α̌ ∈ [0, 1). Let SLS be the returned set of
Algorithm 3 by setting set λ = c2ε

(1−α̌)n . We have

f(OPT o) ≤
(

3
c2

+ ε

)
· f(SLS).

Proof. Refer to the full version of this paper.

Before proving the above theorem, we need the following lemma.

Lemma 2. If S is a (1 + λ)-approximate local optimum for a non-submodular
function f , then for any set T such that T ⊆ S or T ⊇ S, we have

f(T ) ≤ [1 + λn(1 − α̌)] · f(S).
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Algorithm 3. Local Search(V, f, λ)
1: S ← arg maxu∈V f(u), U ← V
2: repeat
3: if there exists u ∈ U \ S such that f(S + u) ≥ (1 + λ)f(S) then
4: S ← S + u
5: U ← U − u
6: end if
7: until
8: if there exists u ∈ S such that f(S − u) ≥ (1 + λ)f(S) then
9: S ← S − u, and go back to Repeat loop.

10: end if
11: Return SLS ← arg max{f(S), f(V \ S)}

Proof. Let S = {u1, ..., uq} be a (1 + λ)-approximate local optimum solution
returned by Algorithm 3. W.l.o.g., we assume T ⊆ S, then we construct Ti such
that T = T1 ⊆ T2 ⊆ · · · ⊆ Tr = S and ui = Ti \ Ti−1. For each i ∈ {2, ..., q},
we have

f(Ti) − f(Ti−1) ≥ (1 − α̌)(f(S) − f(S − ui)) ≥ −λ(1 − α̌)f(S),

where the first inequality follows by the definition of the inverse generalized
curvature and the second inequality follows by the definition of the approximate
local optimum. Summing up the above inequalities, we have

f(S) − f(T ) =
q∑

i=2

[f(Ti) − f(Ti−1)] ≥ −λq(1 − α̌)f(S),

implying that f(T ) ≤ [1 + λq(1 − α̌)]f(S) ≤ [1 + λn(1 − α̌)]f(S), where the
second inequality follows from q ≤ n. Simultaneously, the case of T ⊇ S can be
similarly derived by the above process.

4.3 The Core Algorithm

In this subsection, we present the main algorithm, which is an extension of the
Repeat-Greedy algorithm introduced in [15]. The pseudo codes are presented
as Algorithm 4. We run the main algorithm in r rounds. Let Vi be the set of
candidate elements set at the start of round i ∈ [r]. We first run the greedy step
of Algorithm 1. Then, we proceed with the local search step of Algorithm 3 on
the set returned from the first step. Simultaneously, we update the candidate
ground set as Vi = V \ Vi−1. Finally, we output the best solution among all
returned sets. We can directly obtain two estimations of the utility function by
Theorems 1 and 2, respectively. The results are summarized as follows.

Lemma 3. For any iteration i ∈ [r] of Algorithm 4, we have

1. f(Si ∪ (OPT ∩ Vi)) ≤
(

p
γ2γ̌(1−α̌) + 1

)
f(Si), and

2. f(Si ∩ OPT ) ≤ (
3
c2 + ε

)
f(S′

i).
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Buchbinder et al. [6] derived an interesting property in dealing with non-
monotone submodular optimization problems. Now, we extend this property to
the non-submodular case, as summarized in the following lemma.

Lemma 4. Let g : 2V → R+ be a set function with inverse generalized curvature
α̌g, and S be a random subset of V where each element appears with probability
at most pr (not necessarily independent). Then E[g(S)] ≥ [1 − (1 − α̌g)pr] ·g(∅).

Proof. Refer to the full version of this paper.

Using this result, we can derive an estimation of f(OPT ). Let S be a random set
of {Si}r

i=1 with probability pr = 1
r and set g(S) = f(OPT ∪ S) for any S ⊆ V.

Then we have α̌ = α̌f = α̌g. By Lemma 4, we yield

1
r

r∑

i=1

f(Si ∪ OPT ) = E[f(S ∪ OPT )] = E[g(S)] ≥ [1 − (1 − α̌g)pr] · g(∅)

=
(

1 − 1 − α̌

r

)
· f(OPT ).

Multiplying both sides of the last inequality by r, we get

r∑

i=1

f(Si ∪ OPT ) ≥ [r − (1 − α̌)] · f(OPT ). (2)

The following lemma presents a property based on zero order approximate sub-
modularity coefficient of the objective function.

Lemma 5 ([15]). For any subsets A,B,C ⊆ V, we have

f(A ∪ B) ≤ 1
c

· [f(A ∪ (B ∩ C)) + f(B \ C)].

Algorithm 4. Repeat Greedy(V, f, I, r)
1: i = 1, V1 ← V
2: repeat
3: Si ← output of Greedy(Vi, f, I)
4: S′

i ← output of Local Search(Si, f, λi)
5: Vi ← Vi \ Si

6: i ← i + 1
7: until i = r
8: Return S ← arg max{f(Si), f(S′

i)}i∈[r]
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Proof. To prove this lemma, we have the following

f(A ∪ B) = f(A ∪ (B ∩ C) ∪ (B \ C))
≤ f(A ∪ (B ∩ C) ∪ (B \ C)) + f(A ∪ (B ∩ C) ∩ (B \ C))

≤ 1
c

· [f(A ∪ (B ∩ C)) + f(B \ C)] ,

where the first inequality follows from the nonnegativity of the objective func-
tion and the second inequality is derived by the definition of the zero order
approximate submodularity coefficient c.

From these lemmas and choosing properly the number of rounds, we conclude
that if the parameters of the utility function are fixed, or have a food estimation,
then Algorithm 4 yieds a near constant performance guarantee for problem (1).
The details are presented in the following theorem.

Theorem 3. Give an objective function f : 2V → R+ with parameters c, γ, γ̌, α̌,
and a real number ε > 0, let S be the returned set of Algorithm 4. Set r = �Δ�.
Then we have

f(OPT )
f(S)

≤
[(

p

γ2γ̌c(1 − α̌)
+

3Δ

2c4
+

1
c

)
+

εΔ

2c4

]
· [1 − (1 − α̌) · (Δ + 1)]−1

,

where

Δ = (1 − α̌) +

√

(1 − α̌)2 + (1 − α̌)
(

2c3

3 + c2ε
+ 1

)
+

p

γ2γ̌
· 2c3

3 + c2ε
.

Proof. Refer to the full version of this paper.

5 Conclusion

We consider the non-submodular and non-monotonic maximization problem
with a p-independence system constraint, where the objective utility function
is characterized by a set of parameters such as submodularity (supmodularity)
ratio, inverse generalized curvature, and zero order approximate submodularity
coefficient. We study a greedy algorithm applied to non-submodular optimiza-
tion with p-independence system constraint, and show the algorithm preserves
some good properties even though the objective function is non-submodularity.
Then, we investigate the unconstrained non-submodular maximization problem.
Utilizing an approximate local search technique, we derive an O(3/c2 + ε)-
approximation algorithm, where c is the zero order approximate submodular-
ity coefficient. Finally, combining these two algorithms, we obtain an almost
constant approximation algorithm for the non-monotone non-submodular max-
imization problem with p-independence system constraint.
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Abstract. In this paper, we study a mechanism design of reversed auc-
tion on cloud computing. A cloud computing platform has a set of jobs
and would like to rent VM instances to process these jobs from cloud
providers. In the auction model, each cloud provider (agent) who owns
VM instances will submit a bid on the costs for using such VM instances.
The mechanism determines the number of VM instances from each agent,
and payments that have to be paid for using the chosen VM instances.
The utility of every agent is the payment received minus the true cost.
Our proposed mechanism is a deterministic truthful mechanism that the
utility of each agent is maximized by revealing the true costs. We first
provide the analysis of the approximation ratios and then run experi-
ments using both realistic workload and uniformly random data to show
the performance of the proposed mechanisms.

Keywords: Auction and mechanism design · Approximation ratio ·
Multi-dimensional bin packing

1 Introduction

Cloud computing enables individual users and enterprises to use computing
resources on-demand and pay only for the resources and service they use. Cloud
computing emerged as a new computing platform such as Amazon EC2 and
Microsoft Azure offer fixed-price and auction-based mechanisms to sell virtual
machine (VM) instances to users. This allows more and more application service
providers (ASP) to deploy their applications in clouds. An application service
provider is a company that holds and manages remote software applications such
as media services, content, and entertainment that are accessed by users over
the Internet using a rental or usage-based transaction-pricing model. Examples
include ISP, Yahoo Email, Gmails. If we regard customers’ service request as a
vector of resource (CPU, Memory, Disk) [21], then a sequence of such vectors
will be generated in the ASP system. A practical problem for the ASP is to
allocate such demands into VMs rented from cloud providers, and the goal is to
minimize the total cost due to the rental of VMs.
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The existing markets focus on the scenario that users or tenants compete
for resources in a cloud provider. In this paper, we consider another scenario,
namely reversed auction, in which cloud providers will compete for the tasks
in an ASP system. In details, we consider such a computing platform that an
ASP owns a set of computing jobs that require multi-dimensional computing
resources, and there exist a number of cloud providers that can offer computing
resources in the form of virtual machine instances for that ASP. The platform is
required to determine which type of VM instance and how many such instances
will be used such that the total cost incurred is minimized. In the market model,
the true cost of each VM instance is private information that is only known to
the cloud provider. Agents (cloud providers) will submit biddings of the type of
VM instance and the cost to the system. The utility of each cloud provider is
the payment received from the ASP platform minus the cost incurred to run the
jobs. Usually, the type of instances offered by the cloud provider is fixed. A cloud
provider may increase the cost to produce more profit (maximize the utility).
However, this is a competitive market, different cloud providers may offer better
choices. One goal of the mechanism design is to make sure that no cloud provider
can benefit from strategically manipulate the decisions. The optimization of this
problem is named as vector bin packing with general costs (VPGC), and the
mechanism design version of VPGC is called MD-VPGC.

1.1 Our Contribution

We first design truthful mechanisms for one-dimensional VPGC. To guarantee
the truthfulness, we extended the payment function for single parameter [1] to
our problem such that any allocation algorithm (bin packing algorithm) satisfies
the monotonic property is a truthful mechanism. An algorithm is a monotone if
the number of bins used for that type of bin is not increasing if its cost increases.
Consequently, we provide a class of algorithms based on the density rank, which
is the ratio between the cost and the size of that bin. We show that if the
bin packing algorithm is Next Fit (NF), Next Fit Decreasing (NFD), First Fit
Decreasing (FFD), then the algorithm is monotone, while the First Fit (FF) is
not monotone. Next, we extend the results to general multiple dimensions. The
approximation ratios of the proposed mechanisms are also given in this work.

Besides the theoretical results, we implement our mechanisms in real data.
We collect items from Google trace. Each item from the Google trace consists of
three-dimensional information CPU, Memory, and Disk. The agents are collected
from the virtual machine instances from Amazon EC2. We assume that the cost
of each instance is a truthful cost. Then, we discuss the approximation ratios
according to the experimental results. To the best of our knowledge, this work
is the first effort on mechanism design for the vector packing problem.

1.2 Related Work

Recently, mechanism design attracted a great deal in the area of cloud provision
problems, which can be regarded as the mechanism design on knapsack problems.
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Mu’Alem and Nisan first provided a 2-approximation mechanism [14] for the
knapsack problem. Chekuri and Gamzu [4] studied the mechanism design for
the multiple knapsack problem via a greedy iterative packing. In general, they
gave a truthful (2+ε)-approximate mechanism among single-minded agents, and
further improved to (e/(e − 1) + ε) for knapsacks with identical capacity, where
ε is an arbitrarily small positive number and e is the natural number. Briest et
al. [3] designed a new approach in rounding scheme that leads to a monotone
FPTAS for the knapsack problem. Moreover, when the number of knapsacks is a
fixed constant, there exists a monotone PTAS for the multiple knapsack problem
[3]. Nejad [16] give a greedy mechanism for dynamic virtual machine provision.
Mashayekhy et al. [13] provided a PTAS mechanism for single multiple knapsack
problem. In [12], a 3-approximated mechanism was proposed for multiple and
multi-dimensional knapsacks.

If all agents reveal their truthful costs, it is the classical bin packing with
costs problem. For one-dimension bin packing with general costs, Epstein and
Levin [8] provided an APTAS. Kang and Park [11] considered this problem with
the constraint that ci/bi ≤ cj/bj for bi ≥ bj , and provided an algorithm of
asymptotic approximation ratio 3/2. If the cost of each bin is proportionate to
its size, then the problem becomes the variable sized bin packing problem, which
was first investigated by Friesen and Langston [9].

For arbitrary d-dimensional vector bin packing, Chekuri and Khanna [5]
showed vector bin packing is hard to approximate to within a d1/2−ε factor for all
fixed ε > 0, and Bansal et al. [2] showed that it is d1−ε in-approximate. A (d+ε)-
approximate algorithm can be easily extended from the APTAS [7]. Chekuri and
Khanna [5] presented an algorithm with approximation of 1+εd+O(ln 1/ε). For
constant d, Bansal et al. [2] provided the current best algorithm with approxima-
tion ratio of 0.807+ ln(d+1)+ ε, and it is APX-hard even for d = 2 [23]. Gabay
and Zaourar [10] studied vector bin packing with heterogeneous bins (bins with
different size) and the goal is to find a feasible packing of items into the given
bins.

2 Preliminaries

We define the studied problem as a vector packing with general costs (VPGC)
as follows. The ASP platform has a set of n items (or jobs) I = (a1, . . . , an).
Each item ai consists of heterogeneous resources such as cores, memory, storage,
etc. In this work, we suppose that there are total d types of resources, i.e. ai =
(ai1, ai2, . . . , aid) is a d-dimensional vector.

We consider that there is a set of m agents, B = (B1, . . . , Bm), could offer
sufficiently large number of bins (virtual machines). Each agent Bi owns a type
of bins such that the capacity is bi = (bi1, bi2, . . . , bid) and the cost is ci. We
denote Bi = (bi, ci). In this work, we assume that bi is publicly known, and ci

is a piece of private information. When agents receive requests of bins from the
ASP platform, each agent Bi will submit a bid Ri = (bi, θi) to the ASP, where
θi may not equal to ci. Let R = (R1, R2, . . . , Rm) be the profile of biddings. For
simplicity, we let Ri = θi in the following since bi is a piece of public information.
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Once the ASP platform receives the bids R from agents, the ASP platform
is required to determine the number of bins from each agent, and the payment
to each agent for using those bins. Let numi(R) be the number of bins bought
from the agent Bi and Pi(R) be the payment from the ASP to the agent Bi

according to the bid R, respectively. The utility function of agent Bi according
to the bidding R is defined as

ui(R) = Pi(R) − ci · numi(R).

Note that each agent is selfish, and each agent’s goal is to maximize his/her
utility, which will motivate each agent Bi to manipulate the mechanism by sub-
mitting a different bid θi from the true cost ci to increase the utility.

Let Biq be set of items assigned in the qth bin of the agent Bi. A packing
is feasible, we require that for each i and q, we have

∑
j∈Biq

ajk ≤ bik for each
coordinate 1 ≤ k ≤ d.

We define by C(A(I,R)) the social cost of the mechanism M to pack the item
set I with bids profile R, which is the total costs of bins used by all agents, i.e.,

C(M(I,R)) =
m∑

i=1

ci · numi(R).

A mechanism M is said to be ρ-approximated if C(M(I,R)) ≤ ρ·C(OPT (I)),
where OPT (I) is an optimal solution for the set I. A mechanism is said ρ-
approximated in asymptotic if

C(M(I,R)) ≤ ρ · C(OPT (I)) + α, (1)

where α is a constant.
Let R−i = {R1, . . . , Ri−1, Ri+1, . . . , Rm} be the bids except agent Bi’s bid.

Definition 1. (Truthfulness): A mechanism M consisting of a packing function
A and a payment function P is truthful (or strategy-proof) if for every agent Bi

with the true cost ci cannot increase his/her utility by declaring any other cost
θi regardless of every bidding of other agents R−i, i.e., it satisfies

ui(ci, R−i) ≥ ui(θi, R−i).

This definition implies that truthful reporting is a dominant strategy for every
agent.

Definition 2. (Individual rationality): A mechanism M is said to be individual
rationality if every agent always obtains non-negative utility with bidding of the
true cost, i.e., ui(ci, R−i) ≥ 0 for any i and any R−i.

The Vickrey-Clarke-Groves (VCG) mechanism [18,22] is a well-known mech-
anism that ensures truthful bidding. However, the VCG mechanism requires an
optimal solution to pack the items. Note that the vector packing problem is
NP-hard, which generalize the classical one-dimensional bin packing problem.
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Unfortunately, if an approximation algorithm is applied in the packing, then
VCG is not guaranteed to be truthful [17]. As a result, we are going to design
a deterministic truthful mechanism, while the property of individual rationality
satisfies.

It is worthy to note that if there exists an item that can only be packed into
a specific type bin, then that agent of that type bin will claim an arbitrary high
cost such that his/her utility is arbitrarily large. To avoid this scenario, we set
an upper bound to the cost of any bin in the system. In real applications, the
cost of each bin will be in a reasonable interval, and hence we further suppose
that for each item, there are at least two types of bins can accommodate it. To
design a truthful mechanism, we will follow the framework of Archer and Tardos
[1] to find monotone algorithms. The payment of each agent Bi according to the
bidding R is given as below.

Pi(R) = θi · numi(R) +
∫ ∞

θi

numi(x,R−i)dx. (2)

By the assumption that the cost of each bin is upper bounded, we know that∫ ∞
θi

numi(x,R−i)dx is finite.

Definition 3. (Monotone:) A packing algorithm A is monotone if numi(R) is
a non-increasing function on the increasing of bid θi by fixing R−i.

Theorem 1. A mechanism M with a monotone packing algorithm A, and asso-
ciated with above payment P (2) is truthful.

Proof. This proof can be extended from Theorem 4.2 by Archer and Tardos [1].
��

Corollary 1. A mechanism M adopt the payment in Eq. (2) satisfies individual
rationality.

3 Mechanism Design Framework

In this section, we propose a deterministic truthful mechanism design for VPGC.
To be convenient, we first address the mechanism design framework for the one-
dimensional case, and we extend it to the general multi-dimensional version of
the problem in the full version of this work.

3.1 Monotone Algorithms for One-Dimensional VPGC

According to Theorem 1, the key challenge in the design of a truthful mechanism
is to propose a packing algorithm in order to satisfy monotonicity. An algorithm
in our mechanism consists of a way of methods to select bins and the way to
pack items among the selected bins. The core idea of our packing algorithm is
to assign an item to a bin with the cheapest unit cost.
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Before describing the detailed algorithm, we need to define some notations.
For each item j with size aj , let us define a feasible set of bins Fsj = {Bi|aj ≤ bi}.
Let us define the cost density of the ith type of bins (the bins owned by the
agent Bi) be den(Bi) = ci/bi. Our main idea is to select the cheapest feasible
bin, i.e., the bin with the smallest density to assign every item. Our algorithm
is given in Algorithm 1. The algorithm consists of two phases. In phase one, the
algorithm finds a type of bin with the smallest density among the feasible bins.
In the second phase, all the items assigned in a specific type of bin are packed
according to a classical bin packing algorithm, such as Next Fit (NF), First Fit
(FF), First Fit Decreasing (FFD) and so on. We also use DF +(BinPacking) to
denote the detailed algorithm, where BinPacking is a bin packing algorithm, for
example, DF+NF means we use Next Fit instead of BinPacking, and DF+FF
means we use First Fit instead of BinPacking. For one-dimensional bin packing
algorithms (see e.g. [6]), we will describe the detailed algorithms as follows.

– Next-Fit (NF): NF picks an item and packs the item in the currently opened
bin if it can fit, otherwise this bin will be closed, and packs the current item
in an empty bin.

– Next-Fit Decreasing (NFD): NFD is the same as NF except that items are
sorted in non-increasing order, i.e. NFD always picks the item with the largest
size among the remaining unpacked items.

– First-Fit (FF): Suppose that bins are ordered in a sequence, and items are
sorted in a list. FF picks an item from the list, and pack the current item in
the lowest indexed nonempty bin if it can be accommodated. Otherwise, FF
packs the current item in an empty bin. The procedure is continuous until
there is no item in the list.

– First-Fit Decreasing (FFD): FFD is the same as FF except that the items
are sorted in non-increasing order, i.e., FFD always packs the item with the
largest size among the remaining unpacked items.

Lemma 1. The algorithms DF+NF and DF+NFD are monotone.

Proof. Without loss of generality, we assume that den(B1) ≤ den(B2) ≤ . . . ≤
den(Bm). According to the definition of monotone, we suppose agent Bi claims
a different bid B′

i = (bi, c
′
i), where c′

i > ci. If den(B′
i) ≤ den(Bi+1), the items

assigned to agent Bi do not change, and hence the number of bins keep the same.
W.L.O.G. we assume that

den(B′
i) > den(Bi+1).

We claim that the items choose agent Bi with bidding B′
i = (bi, c

′
i) is in a subset

of the items that choose agent Bi with bidding Ri = (bi, ci).
It was proved by Murgolo in [15] that NF (or NFD) algorithm does not use

more bins to pack any subset of items. As a result, DF+NF and DF+NFD are
monotone. ��
Lemma 2. The algorithm DF+FF is not monotone.
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Algorithm 1. Monotone Algorithm for VPGC: DF+(BinPacking)
Input: A set of items I = (a1, a2, . . . , an); m agents {B1, . . . , Bm}, with (bi, ci)

for each agent.
1 {First phase}
2 for j ← 1 to n do
3 Fsj ← {Bi|aj ≤ bi} /* For each item j, we calculate the set of feasible bins

Bi that the item j can be assigned */;
4 k ← minBi∈Fsj den(Bi) = ci/bi, in case of tie, k is the index of the bin with

the smallest cost;
5 Assignk = Assignk

⋃{j} /* Assignk is the set of items that will be
assigned in the bins of type Bk*/ ;

6 {Second phase}
7 for i ← 1 to m do
8 /* All the jobs that will be assigned in bin of type Bi*/;
9 Apply a classical bin packing algorithm BinPacking for the set of items in

Assigni;

Output: Assignment for each item aj

Proof. Given a list of items with size I = { 0.55, 0.7, 0.1, 0.45, 0.15, 0.3, 0.2,0.55 }.
There are three types of bin B1 = (1, 1), B2 = (0.1, 0.101), and B3 = (1, 2). Note
that den(B1) = 1 and den(B2) = 1.01. Then, bin B1 is the feasible bin for all items
and it is the smallest cost density. According to the FF algorithm, we need 3 bins
to pack all items in I.

To prove an algorithm is monotone, we need to prove if bin B1 increases its
cost, the number of bins used shall not be increasing. We show it is not correct.

Suppose bin B1 reports a different bid B′
1 = (1, 1.11). Then den(B1) = 1.11.

According to the algorithm, the item of size 0.1 shall be assigned to the bin B2,
and all the other items shall be assigned to B1 with the FF algorithm. Note that
the FF algorithm needs 4 bins to pack all items in I/{0.1}. ��
Lemma 3. The algorithm DF+FFD is monotone.

Proof. Similar as Lemma 1, we assume that den(B1) ≤ den(B2) ≤ . . . ≤
den(Bm). The profile of the bidding is R = {B1, . . . , Bm}. Now we suppose
agent Bi claims a different bid B′

i = (bi, c
′
i), where c′

i > ci. Again we could
assume that den(B′

i) > den(Bi+1), otherwise the items assigned to agent i do
not change, and hence the number of bins keeps the same.

Let Si(R) be the set of items that choose the agent of type Bi under the
bidding of R. Clearly, Si(R−i, B

′
i) ⊆ Si(R). Namely, items choose agent Bi by

bidding B′
i is in a subset of the items that choose the agent with bidding Bi. Let

j be the largest number such that den(Bj) < den(B′
i), then j ≥ i + 1. Clearly,

any item with size at most of bj will choose agent j, and the size of any item in
Si(R−i, B

′
i) is at least bj . Hence, the size of any items in Si(R−i, B

′
i) is at least

the size of items in Si(R)\Si(R−i, B
′
i).

According to the algorithm FFD, to pack items in Si(R), we need first pack
all items in Si(R−i, B

′
i), and then the remaining items. Thus, the bins used by
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items in Si(R) will be at least that of Si(R−i, B
′
i). In consequence, DF+FFD is

monotone followed by the definition. ��
Lemma 4. The algorithm DF+BinPacking is at least 2-approximation in
asymptotic.

Proof. For any given ε > 0, there are n items, all are with size 1/2+ ε. There are
two type of bins B1 = (1, 1) and B2 = (1 + 2ε, 1 + 3ε). The algorithm uses type
bin B1 to pack all items. The total cost is n. While an optimal algorithm uses
type B2 to pack all items, with total cost approaches to n/2 + O(ε). Therefore
no matter which BinPacking algorithm we adopt, the lower bound 2 follows
immediately. ��
Theorem 2. The asymptotic approximation ratio of DF+NF is at most of 2.

Proof. W.L.O.G. we assume that den(B1) ≤ den(B2) ≤ . . . ≤ den(Bm). Sup-
pose that the item j is packed in bin Bi, which implies that aj > bk, where
1 ≤ k ≤ i − 1. It is worth to note that den(Bi) is the cheapest unit cost to pack
the item j. Hence, an optimal algorithm to pack the item j need cost at least
aj · den(Bi). Let xi be the number of bins used from agent i. According to the
NF algorithm, the total size of items packed in bins of agent i is at least xibi/2
or at least bi((xi − 1)/2) + aj , where aj is the last item in the bin of type i.

Let OPT and ALG be the costs required by an optimal algorithm and the
approximation algorithm DF+NF, respectively. From the above analysis, it is
clear to have the following inequalities.

OPT ≥
m∑

i=1

{1
2
(xi − 1)bi · den(Bi) + bi−1den(Bi)}

≥
m∑

i=1

{1
2
(xi − 1)bi · den(Bi) + bi−1den(Bi−1)}

≥
m∑

i=1

{1
2
(xi − 1)ci + ci−1}

≥
m∑

i=1

(
1
2
xici) − 1

2
cm

Note that ALG =
∑m

i=1 cixi, then we have ALG ≤ 2OPT +cm. The asymptotic
ratio of 2 follows since we suppose that every cost of a bin is bounded by a
constant. ��

We can extend the monotone algorithm of one dimension VPGC to the gen-
eral multiple dimension d-VPGC. The detailed algorithms and proofs will be
given the full version of this paper.

Theorem 3. The asymptotic approximation ratio of the d-VPGC(NF) or (d-
VPGC(FFD)) for the d-VPGC problem is at most 2d.
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4 Experimental Results

We perform experiments to investigate the performance of the proposed mech-
anisms against the performance of the optimal social optimum.

4.1 Data Sets and Simulation Setup

We conduct our simulations based on Google cluster-usage traces [20]. Google
trace data has been explored and used extensively in industry and research, such as
the characterization analysis [19]. In details, the data is collected from about 12500
machines over 29 days and the chosen data is one of the 500 task-events trace data
files. This data includes CPU, memory and disk information. Each record repre-
sents a 3-dimensional item, and there are 77409 records in total. Google cluster
data provides job requests with a large variety of resource requirements.

The agents’ data are collected from publicly available information from Ama-
zon EC2. Currently, there is no auction-based platform available to simulate our
proposed mechanism. Instead, we suppose that each instance in the Amazon EC2
is an individual agent. The capacity of each instance and its true cost is the one
given on the platform. For example, instance m3.medium is a 3-dimensional vec-
tor (1, 3.75, 4) with cost 0.067, where vCPU has 1 core, and memory is 3.75 GiB,
and storage is 4 GB, and the unit cost per hour is $0.067. This data is collected
from https://aws.amazon.com/ec2/ on Aug 16,2016, and the actual values may
be updated in that web from time to time.

To avoid one agent can dictator by bidding a very large cost, we require in
addition that there are at least two types of bins can accommodate an item. In
this case, the upper bound cost M in our experiment can be ignored due to the
fact that we do not need to use that bin if its cost is high enough. Actually, the
payment is a finite number for each agent. The total number of items used in
the experiment is ranging from 1000 to 50,000.

4.2 Analysis of Results

In the experiment, we run the designed mechanisms for these two data sets.
In the theoretical part, we have proved upper bounds in the asymptotic, there
might have some constant α in (1). In this experiment, we only consider absolute
competitive ratio, i.e., the constant α is zero. To obtain approximation ratios
of the mechanism, we compare the total costs of the approximated mechanisms
to the lower bound of an optimal solution in (3). Let us simplify the instance,
in which each item is only associated with data in the qth coordinate. To pack
the item j, the cost we require is at least mini den(Biq, j). Let Diq be the set of
items that have the cheapest cost when it is packed in a bin of type i when only
considering the qth coordinate. Thus, a lower bound of an optimal algorithm for
the general d dimensional instance, is

max
q

∑

i

∑
j∈Diq

ajq

biq
ci. (3)

https://aws.amazon.com/ec2/
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We compare the approximation ratios for a different number of items ranging
from 1000 to 50,000. We explore several factors that might affect the approx-
imation ratios of the mechanism, such as the number of items, different data
sets, different dimensions of data. The payment and the utility of each agent
will be calculated as well. Though the truthfulness of mechanism was already
proved in theory, we also run the experiment to see how the utility function
varies according to different bids.

d-VPGC(NF) vs d-VPGC(FFD). In our mechanisms, we use one-dimensional
BinPacking algorithms, in which NF and FFD were shown to be monotone
algorithms, while the FF is not monotone. Furthermore, FFD will outperform
NFD. Hence, we will compare FFD and NF, and aim to find how far they are
different. Figure 1(a) shows the approximations ratios of d-VPGC(NF) and d-
VPGC(FFD) in 3-dimensional data with the number of items in 1000 to 50,000.

Fig. 1. Approximation ratios of experimental results

The results show that d-VPGC(NF) and d-VPGC(FFD) have similar curves
regarding the approximation ratios. The approximation ratios of d-VPGC(FFD)
are between [1.19, 1.79], while the approximation ratios of d-VPGC(NF) are
between [1.22, 1.81]. The approximation ratios in this data set are much better
than the proved theoretical worst-case bounds of 6. In addition, we observe
that d-VPGC(FFD) is outperformed d-VPGC(NF). Hence, we only plot the
performance of d-VPGC(FFD) in the remaining simulations.

Density of Bins. The density of each type of bins plays a key role in the proposed
mechanism. In the experiment, we select agents based on two rules according to
the density of bins. One rule is that the density of bins is decreasing, i.e., the
larger bin has a smaller density. Another rule is density increasing, i.e., the larger
bin has a larger density.
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Figure 1(b) shows these two rules compared with a general case that does
not have such rules. The decreasing rule means that the larger bin has a smaller
density, hence the mechanism will prefer to use a bin with a larger capacity.
The results show that decreasing rule will generate the smallest approximation
ratios compared with the other two rules. The increasing rule has the largest
approximations because using smaller bins might produce more spare spaces,
and hence increases the approximation ratios.

5 Conclusions and Remarks

This work presented the first mechanism design for the vector packing with
general costs problem. We showed that the proposed mechanisms are individually
rational and truthful. Our mechanisms were based on monotonic algorithms that
choose bins with the smallest unit cost. The experimental results showed the
proposed mechanisms obtain better performance in practice than the theoretical
proved results.

There are some interesting problems to investigate which are left open by
our paper. In particular, we only consider the static one round bidding, it would
be nice to deal with the setting when the agents arrive online.

Acknowledgment. The authors thank anonymous referees for helpful comments and
suggestions to improve the presentation of this paper.
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Abstract. Given λ > 0, an undirected complete graph G = (V, E) with
nonnegative edge-weight function obeying the triangle inequality and a
depot vertex r ∈ V , a set {C1, . . . , Ck} of cycles is called a λ-bounded
r-cycle cover if V ⊆ ⋃k

i=1 V (Ci) and each cycle Ci contains r and has a
length of at most λ. The Distance Constrained Vehicle Routing Problem
with the objective of minimizing the total cost (DVRP-TC) aims to find
a λ-bounded r-cycle cover {C1, . . . , Ck} such that the sum of the total
length of the cycles and γk is minimized, where γ is an input indicating
the assignment cost of a single cycle.

For DVRP-TC on tree metric, we show a 2-approximation algorithm
that is implied by the existing results and give an LP relaxation whose
integrality gap has an upper bound of 5/2. In particular, when γ = 0 we
prove that this bound can be improved to 2. For the unrooted version
of DVRP-TC, we devise a 5-approximation algorithm and show that a
natural set-covering LP relaxation has a constant integrality gap of 25
using the rounding procedure given by Nagarajan and Ravi (2008).

Keywords: Vehicle Routing · Cycle cover · Path cover ·
Approximation algorithm · Integrality gap

1 Introduction

In the Distance Constrained Vehicle Routing Problem (DVRP), we are given a
set of n vertices in a metric space, a specified depot r, and a distance bound λ,
the aim is to find a set of tours, which start and end at r and have a length of
at most λ, for the vehicles to cover all the vertices such that one of the following
objectives is minimized: (i) the total distance of the tours; (ii) the number of
tours. We denoted by DVRP-D (DVRP-N) the DVRP with the first (second)
objective. In unrooted DVRP, the depot r is not specified and the tours are
allowed to contain any set of vertices as long as their length do not exceed λ.

The (unrooted) DVRP arises naturally in many practical applications includ-
ing daily routes scheduling for courier carriers, milkruns from manufacturing
facilities, sensor coverage in wireless sensor networks, and so on (see [2,9,11,13]).
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Both (unrooted) DVRP-D and (unrooted) DVRP-N are NP-hard since they
generalize the well-known Traveling Salesman Problem. Moreover, due to the
NP-Completeness of the Hamiltonian Cycle Problem [6], (unrooted) DVRP-N
cannot be approximated within a ratio less than 2 unless P = NP. The results
in [12] imply that (unrooted) DVRP-N defined on a tree metric space still has
an inapproximability lower bound of 3/2.

Li et al. [8] showed that DVRP-D and DVRP-N are within a factor of two
in terms of approximability. They gave

(
1 + αβ

β−2

)
-approximation algorithms for

both DVRP-D and DVRP-N, where α is the approximation ratio for the traveling
salesman problem and β is the ratio between λ and the distance from the depot
r to the farthest vertex. Recently, Liang et al. [9] improved the ratio for DVRP-
D to αβ

β−2 . They also proved that the 2-approximation algorithm for DVRP-N
on tree metric in [11,12] is versatile enough to achieve the same approximation
factor for DVRP-D on tree metric.

Nagarajan and Ravi [10,11] developed an O(min{log n, log λ})-approximation
algorithm for DVRP-N, which was improved to O

(
min

{
log n, log λ

log log λ

})
by Frig-

gstad and Swamy [5]. These results also imply the same bounds on the integral-
ity gap of a natural set-covering LP relaxation for DVRP-N. For the problem on
tree metric, Nagarajan and Ravi [11] proved that the integrality gap of this LP
relaxation is at most 20. Yu et al. [17] gave a new LP relaxation based on the
2-approximation algorithm for DVRP-N on tree metric in [11,12] and derived an
upper bound of 5/2 on the integrality gap.

Though it is still open whether DVRP-N admits a constant-factor approx-
imation algorithm, the unrooted DVRP-N, which is also called the Minimum
Cycle Cover Problem (MCCP) in the literature, seems easier to approximate.
Arkin et al. [1] first presented a 3-approximation algorithm for a related Mini-
mum Tree Cover Problem which implies a 6-approximation algorithm for MCCP
by a simple edge-doubling strategy. After a sequence of improvements by Khani
and Salavatipour [7], Yu and Liu [15], Yu et al. [16] proposed an algorithm
with approximation ratio 32/7. Nagarajan and Ravi [11]’s results imply that
an unrooted version of the above-mentioned set-covering LP relaxation has an
integrality of 34, as noted by Yu et al. [17], who also obtained an improved LP
relaxation for MCCP with integrality gap 6.

In this paper, we introduce the DVRP with the objective of minimizing the
total cost (DVRP-TC) that is a natural generalization of both DVRP-D and
DVRP-N. We assume w.l.o.g that one unit distance takes one unit cost and the
cost of sending one vehicle is γ. Then the objective of DVRP-TC is the sum of
the traveling cost, i.e., the total distance of the tours, and the assignment cost
of vehicles, i.e., γ times the number of tours.

We mainly obtained the following results. First, we show that the existing
results already imply a 2-approximation algorithm for DVRP-TC on tree metric.
Secondly, we give an LP relaxation for DVRP-TC on tree metric similar to that
in [17] and prove that its integrality gap can be bounded by 5/2. In particular,
when γ = 0 we show an upper bound of 2. Thirdly, we devise a 5-approximation
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algorithm for unrooted DVRP-TC. Fourthly, we show a natural set-covering LP
relaxation for unrooted DVRP-TC has a constant integrality gap of 25 using the
rounding procedure in [11]. Lastly, we mention that our results can be applied
to the path-version of (unrooted) DVRP-TC.

The rest of the paper is organized as follows. We formally state the problem
and give some preliminary results in Sect. 2. In Sect. 3 we deal with DVRP-TC
on tree metric, which is followed by the results on unrooted DVRP-TC in Sect. 4.
Finally, we give a short discussion on the path-version of DVRP-TC in Sect. 5.

2 Preliminaries

Given an undirected weighted graph G = (V,E) with vertex set V and edge set
E, w(e) denotes the weight or length of edge e. If e = (u, v), we also use w(u, v)
to denote the weight of e. For a subgraph G′ of G, the graph obtained by adding
some copies of the edges in G′ is called a multi-subgraph of G. For a (multi-
)subgraph H (e.g. tree, cycle, path) of G, let V (H), E(H) be the vertex set and
edge set of H, respectively. The weight of H is defined as w(H) =

∑
e∈E(H) w(e).

If H is a multi-subgraph, E(H) is a multi-set of edges and the edges appearing
multiple times contribute multiply to w(H).

A cycle C is also called a tour on V (C). A cycle (tree) that contains some
special vertex r ∈ V , called the depot, is referred to as an r-cycle (r-tree). An
r-path is a path starting from r. A set {C1, . . . , Ck} of cycles is called a cycle
cover if V ⊆ ⋃k

i=1 V (Ci). If each Ci is an r-cycle, {C1, . . . , Ck} is called an r-
cycle cover. For any λ ≥ 0, a cycle (tree, path) is called λ-bounded if its length
is at most λ. A cycle cover is called λ-bounded if all the cycles in this cycle cover
are λ-bounded. By replacing cycles with paths (trees) we can define path cover
(tree cover) or r-path cover (r-tree cover) similarly.

We formally state the problems to be studied as follows.
In the Distance Constrained Vehicle Routing Problem with the objective

of minimizing the total traveling distance of vehicles (DVRP-D), we are given
λ > 0, an undirected complete graph G = (V,E), a metric weight function
w : E → N that is nonnegative, symmetric and obeys the triangle inequality,
and a depot r ∈ V , the aim is to find a λ-bounded r-cycle cover {C1, . . . , Ck}
such that the total length

∑k
i=1 w(Ci) of the cycles is minimized.

In the Distance Constrained Vehicle Routing Problem with the objective of
minimizing the number of the vehicles used (DVRP-N), we have the same input
as in DVRP-D and the objective is to minimize the number k of cycles in the
λ-bounded r-cycle cover.

In the Distance Constrained Vehicle Routing Problem with the objective
of minimizing the total cost (DVRP-TC), we have an additional input γ ≥ 0,
which represents the assignment cost of one cycle, compared to DVRP-D and
the objective is to minimize the sum of the total length of the cycles and the
total assignment cost, i.e.,

∑k
i=1 w(Ci) + γk.

In the unrooted version of DVRP-TC (DVRP-D, DVRP-N), the depot r is
removed from the inputs and the r-cycles are replaced by cycles.
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The DVRP-TC (DVRP-D, DVRP-N) on tree metric is a special case where
G is restricted to the metric closure of a weighted tree T . For an edge e (a vertex
u) and a vertex v in T , v is called below e (u) if the unique path from r to v
passes e (u). A set V ′ ⊆ V of vertices is called below e (u) if each vertex in V ′

is below e (u).
Given an instance of DVRP-TC or its unrooted version, OPT indicates the

optimal solution as well as its objective value. We call each cycle in OPT an
optimum cycle. By the triangle inequality, we can assume w.l.o.g that any two
optimum cycles are vertex-disjoint. By taking γ = 0 (γ = +∞) we derive an
instance of DVRP-D (DVRP-N) from an instance of DVRP-TC and define
OPTD (OPTN ) as the corresponding optimal value. Clearly, it holds that
OPTD + γOPTN ≤ OPT .

We use n to denote the number of vertices of G. If (IP) is an integer pro-
gramming for the DVRP-TC (DVRP-D, DVRP-N) or its unrooted version, we
denote by OPTIP the optimal value of (IP). OPTLP is defined similarly for an
LP relaxation (LP) for the problem.

The following cycle-splitting result on breaking a long cycle into a series of
short paths is very useful. The basic idea is to add the edges greedily to a path
along the cycle and throw out the last edge once this path has a length more
than the target value.

Lemma 1 [1,4,14]. Given a tour C on V ′ and B > 0, we can split the tour, in
O(|V ′|) time, into max

{⌈
w(C)

B

⌉
, 1

}
B-bounded paths such that each vertex is

located at exactly one path and the total length of the paths is at most w(C).

3 Tree Metric

In this section we deal with DVRP-TC on tree metric. We first show that the
existing results already imply a 2-approximation algorithm. Then we present an
LP relaxation that has an integrality gap of 5/2.

Given an instance of DVRP-TC consisting of an undirected complete graph
G = (V,E) with depot r, λ > 0 and γ ≥ 0, let Cλ be the set of all λ-bounded
r-cycles. We can generalize the set-covering integer programming formulation
in [11] for DVRP-N to obtain the following integer programming formulation
(IP-TC) for DVRP-TC, where a binary variable xC is associated with each
r-cycle C ∈ Cλ and the first constraint is to ensure that each non-depot vertex
is covered by at least one r-cycle in Cλ. The first term of the objective function
indicates the total length of the cycles while the second term represents the
assignment cost of the cycles.

min
∑

C∈Cλ

w(C)xC + γ
∑

C∈Cλ

xC

s.t.
∑

C∈Cλ:v∈V (C)

xC ≥ 1, ∀v ∈ V \ {r} (IP − TC)

xC ∈ {0, 1}, ∀C ∈ Cλ.
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The corresponding LP relaxation (LP-TC) is obtained by neglecting the integral
constraints on the variables.

min
∑

C∈Cλ

w(C)xC + γ
∑

C∈Cλ

xC

s.t.
∑

C∈Cλ:v∈V (C)

xC ≥ 1, ∀v ∈ V \ {r} (LP − TC)

xC ≥ 0, ∀C ∈ Cλ.

Note that the constraints xC ≤ 1 for all C ∈ Cλ is unnecessary due to the first
constraint and the minimization objective.

Next we focus on DVRP-TC on tree metric induced by a weighted tree T =
(V,ET ). As noted by Nagarajan and Ravi [11,12], we can assume without loss
of generality that T is a binary tree rooted at r (otherwise one can add some
dummy vertices and zero-weight edges).

Nagarajan and Ravi [11] showed that if γ = +∞ (i.e., DVRP-N) the integral-
ity gap of (LP-TC) is at most 20 for tree metric instances. Their proof depends
on a crucial concept called heavy cluster, which is a set of vertices F ⊆ V such
that the induced subgraph of F is connected and all the vertices in F cannot be
covered by a single λ-bounded r-cycle. They obtained the following results.

Lemma 2 [11,12]. (i) There is a polynomial algorithm that finds k disjoint
heavy clusters F1, . . . , Fk ⊆ V and a λ-bounded r-cycle cover C = {C1, . . . , Cp}
with p ≤ 2k+1; (ii) If there exist k disjoint heavy clusters F1, . . . , Fk ⊆ V in the
tree T , the minimum number of λ-bounded r-cycles required to cover

⋃k
i=1 Fi is

at least k + 1.

On the one hand, the second conclusion in the above lemma implies that
|C| = p ≤ 2OPTN . On the other hand, Liang et al. [9] proved that the total
length

∑p
i=1 w(Ci) of the cycles in C cannot exceed 2OPTD. Therefore, the

total cost of C is at most 2OPTD + 2γOPTN ≤ 2OPT .

Theorem 1 [9,11,12]. There is a 2-approximation algorithm for DVRP-TC on
tree metric.

Note that for DVRP-TC on tree metric, an r-cycle is a multi-subgraph of T
that consists of two copies of the edges of some r-tree of T . To effectively exploit
the tree structure, Yu et al. [17] observed that covering all the vertices in T is
equivalent to covering at least twice all the edges and proposed the following
integer programming formulation for DVRP-N on tree metric, where ne denotes
the number of heavy clusters in F1, . . . , Fk in Lemma 2(i) that are below e. Since
F1, . . . , Fk can be computed in polynomial time by Lemma 2(i), ne can also be
determined in polynomial time.

min
∑

C∈Cλ

xC

s.t.
∑

C∈Cλ:e∈E(C)

xC ≥ 2(ne + 1), ∀e ∈ ET (IP − T )

xC ∈ {0, 1}, ∀C ∈ Cλ
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(Note that for e = (r, v) and an r-cycle C = r − e− v − e− r, E(C) is a multiset
consisting of two copies of e. And xC contributes twice to the left side of the
above inequality.)

After changing the objective function we can obtain the following integer
programming and linear programming formulations for DVRP-TC.

min
∑

C∈Cλ

w(C)xC + γ
∑

C∈Cλ

xC

s.t.
∑

C∈Cλ:e∈E(C)

xC ≥ 2(ne + 1), ∀e ∈ ET (IP − T − TC)

xC ∈ {0, 1}, ∀C ∈ Cλ

min
∑

C∈Cλ

w(C)xC + γ
∑

C∈Cλ

xC

s.t.
∑

C∈Cλ:e∈E(C)

xC ≥ 2(ne + 1), ∀e ∈ ET (LP − T − TC)

0 ≤ xC ≤ 1, ∀C ∈ Cλ

The following theorem gives an upper bound on the integrality gap of (LP-
T-TC).

Theorem 2. The integrality gap of (LP-T-TC) is at most 5/2. In particular,
the integrality gap of (LP-T-TC) is at most 2 if γ = 0.

Proof. Suppose (x∗
C)C∈Cλ

is an optimal solution to (LP-T-TC) and

OPTLP−T−TC =
∑

C∈Cλ

w(C)x∗
C + γ

∑
C∈Cλ

x∗
C

is the optimal value.
By the first constraint of (LP-T-TC) corresponding to any edge e we have

∑
C∈Cλ

x∗
C ≥ 1

2

∑
C∈Cλ:e∈E(C)

x∗
C ≥ ne + 1, (1)

where the first inequality follows from the fact that for each C ∈ Cλ the edge
multiset E(C) contains two copies of edges used by C and the second inequality
is due to the constraints of (LP-T-TC).

Multiply by w(e) in the first constraint of (LP-T-TC) and take the summation
over all e ∈ ET , we obtain

∑
e∈ET

2(ne + 1)w(e) ≤
∑

e∈ET

⎛
⎝ ∑

C∈Cλ:e∈E(C)

x∗
C

⎞
⎠ w(e)

=
∑

C∈Cλ

w(C)x∗
C

≤ λ
∑

C∈Cλ

x∗
C , (2)
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where the equality holds by exchanging the order of the two summations and
the last inequality follows from the definition of Cλ.

We distinguish two cases.
Case 1. ne = 0 for any e ∈ ET . Since T is a binary tree, the depot r has

two possible children u1, u2. Set ei = (r, ui)(i = 1, 2). Let Tei
be the r-tree of

T consisting of ei and the subtree rooted at ui. Since nei
= 0, we know that

w(Tei
) ≤ λ

2 and T can be covered by at most two r-cycles C1, C2 in Cλ, where
Ci(i = 1, 2) is obtained by doubling the edges in Tei

. Therefore we have a feasible
integral solution to (IP-T-TC) of objective value at most

w(C1) + w(C2) + 2γ ≤ 2
∑

e∈ET

w(e) + 2γ

≤
∑

C∈Cλ

w(C)x∗
C + 2γ

∑
C∈Cλ

x∗
C

≤ 2OPTLP−T−TC ,

where the second inequality follows from (1) and (2).
Case 2. There exists some edge ẽ with nẽ ≥ 1, which implies k ≥ 1. By

replacing e with ẽ in (1) we have
∑

C∈Cλ

x∗
C ≥ nẽ + 1 ≥ 2. (3)

On the other hand, for i = 1, . . . , k, by definition the induced subgraph of Fi,
denoted by T [Fi], is actually a subtree of T . Let vi ∈ Fi be the highest vertex
in Fi. We obtain an r-cycle C̃i by doubling the edges in the r-tree consisting of
T [Fi] and the unique path from r to vi. Let E′ ⊆ ET be the set of edges used
by C̃1, . . . , C̃k. For each e ∈ E′, it is used at most 2(ne + 1) times by the cycles
C̃1, . . . , C̃k, where 2ne is due to the heavy clusters below it and if e happens to
be in some T [Fi] it appears two more times in C̃i. Since Fi is a heavy cluster,
we have w(C̃i) ≥ λ. Then

kλ ≤
k∑

i=1

w(C̃i) ≤
∑
e∈E′

2(ne + 1)w(e)

≤
∑

e∈ET

2(ne + 1)w(e)

≤
∑

C∈Cλ

w(C)x∗
C

≤ λ
∑

C∈Cλ

x∗
C ,

where the last two inequalities follow from (2). This implies k ≤ ∑
C∈Cλ

x∗
C .

Since we already have
∑

C∈Cλ
x∗

C ≥ 2 by (3), it follows that
∑

C∈Cλ

x∗
C ≥ max{2, k}. (4)
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By the results in [9], the total length
∑p

i=1 w(Ci) of the cycles in the λ-
bounded r-cycle cover C = {C1, . . . , Cp} with p ≤ 2k + 1 in Lemma 2 cannot
exceed

∑
e∈E 4(ne + 1)w(e), which implies

∑p
i=1 w(Ci) ≤ 2

∑
C∈Cλ

w(C)x∗
C by

(2). So the total cost of C is at most

2
∑

C∈Cλ

w(C)x∗
C + (2k + 1)γ ≤ 2

∑
C∈Cλ

w(C)x∗
C + 2

∑
C∈Cλ

x∗
C + γ

= 2OPTLP−T−TC + γ (5)

≤ 2OPTLP−T−TC +
γ

∑
C∈Cλ

x∗
C

max{2, k}
≤

(
2 +

1
max{2, k}

)
OPTLP−T−TC

≤ 5
2
OPTLP−T−TC ,

where the first two inequalities follows from (4).
By (5), the total cost of C is at most 2OPTLP−T−TC when γ = 0. This

completes the proof. 	


4 General Metric

In this section we deal with unrooted DVRP-TC. We first develop a 5-
approximation algorithm by modifying the algorithm in [3] and then show that
the unrooted version of (LP-TC) has a constant integrality gap using a similar
LP-rounding procedure to that in [11].

4.1 A 5-Approximation Algorithm

We give the following algorithm for the unrooted DVRP-TC. The input is an
instance consisting of an undirected weighted complete graph G = (V,E), a
distance bound λ > 0 and an assignment cost γ for a single cycle.

Algorithm UDV RP − TC
For each k = n, n − 1, . . . , 1, do the following:

Step 1. Find a minimum weight spanning forest Fk of G consisting of exactly
k connected components Tk,1, . . . , Tk,k, which are actually trees. Set Ck = ∅.
Step 2. For each i = 1, . . . , k, double all the edges in Tk,i to obtain an Eule-
rian graph and shortcut the repeated vertices of the Eulerian tour of this
graph to obtain a cycle Ck,i. By Lemma 1, we can split Ck,i into at most

max
{⌈

w(Ck,i)
λ
2

⌉
, 1

}
λ
2 -bounded paths. After that we connect the two end

vertices of each path to obtain the same number of λ-bounded cycles and put
all these cycles into Ck.
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The algorithm returns one of the λ-bounded cycle cover among C1, . . . , Cn with
minimum total cost.

Note that Fk can be found by running the well-known Kruskal’s Algorithm
and stop when there are exactly k connected components (actually each com-
ponent is a tree). Therefore, all Fk’s can be obtained in O(n2 log n) time if we
compute them in the order Fn, Fn−1, . . . , F1. For each k, Step 2 takes O(n) time
by Lemma 1. So the total running time of Step 2 for k = 1, . . . , n is O(n2).
To sum up, Algorithm UDV RP − TC has a polynomial time complexity of
O(n2 log n).

By construction it can be seen that Ck is a λ-bounded cycle cover for each k =
1, . . . , n. Assume that OPT consists of k̂ optimum cycles C∗

1 , . . . , C∗
k̂
. It follows

that OPT =
∑k̂

i=1 w(C∗
i )+k̂γ. Since the algorithm returns the cycle cover among

C1, . . . , Cn with minimum total cost, to show that Algorithm UDV RP − TC is
a 5-approximation algorithm it is sufficient to prove that the total cost of Ck̂ is
at most 5OPT .

Consider the running of Algorithm UDV RP − TC for k = k̂. Since the
collection of all the optimum cycles C∗

1 , . . . , C∗
k̂

contains a spanning forest with

exactly k̂ connected components and all the optimum cycles are λ-bounded, we
have

w(Fk̂) =
k̂∑

i=1

w(Tk̂,i) ≤
k̂∑

i=1

w(C∗
i ) ≤ k̂λ. (6)

And the cycles Ck̂,1, . . . , Ck̂,k̂ are obtained by doubling the edges in Tk̂,1, . . . , Tk̂,k̂,
it follows that

k̂∑
i=1

w(Ck̂,i) ≤ 2
k̂∑

i=1

w(Tk̂,i) = 2w(Fk̂), (7)

which implies the total length of the λ
2 -bounded paths is at most 2w(Fk̂) by

Lemma 1. Consequently, the total length of the cycles in Ck̂, which are obtained
by connecting the two end vertices of these paths, cannot be greater than 4w(Fk̂).
Moreover, the total number of cycles in Ck̂ is identical to the total number of
the λ

2 -bounded paths, which is, by Lemma 1, at most

k̂∑
i=1

max

{⌈
w(Ck̂,i)

λ
2

⌉
, 1

}
≤

k̂∑
i=1

(
w(Ck̂,i)

λ
2

+ 1

)
≤ 4w(Fk̂)

λ
+ k̂ ≤ 5k̂,

where the second inequality holds by (7) and the last inequality follows from (6).
Therefore, the total cost of Ck̂ is no more than

4w(Fk̂) + 5k̂γ ≤ 4
k̂∑

i=1

w(C∗
i ) + 5k̂γ ≤ 5OPT.
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Theorem 3. Algorithm UDV RP − TC is a 5-approximation algorithm for
unrooted DVRP-TC.

Remark 1. Algorithm UDV RP −TC is actually a modification of the algorithm
in [3] tailored for the Distance Constraint Sweep-Coverage with the Min-
imum Sum of the Number of Mobile Sensors and the Number of Base
Stations (MinDCSC-SB), which is a generalization of unrooted DVRP-N. Com-
pared to DVRP-N, there are two additional inputs, i.e., the velocity v of mobile
sensors and the coverage period t, in MinDCSC-SB. The objective is to find a
λ-bounded cycle cover {C1, . . . , Ck} such that

∑k
i=1

⌈
w(Ci)

vt

⌉
+ k is minimized,

where
⌈

w(Ci)
vt

⌉
represents the number of mobile sensors that are deployed to

traveling along Ci periodically and k indicates the number of base stations (each
cycle installs one base station). Chen et al. [3] developed a 7-approximation
algorithm for MinDCSC-SB. Our result suggests that for a relatively simplified
objective function, i.e.,

∑k
i=1 w(Ci)+ γk, one can have an improved approxima-

tion ratio.

4.2 Integrality Gap

Given an instance of unrooted DVRP-TC consisting of G = (V,E) and λ > 0,
let Cλ be the set of all λ-bounded cycles. If we associate a variable xC with each
cycle C ∈ Cλ, the unrooted versions of (IP-TC) and (LP-TC) are given by

min
∑

C∈Cλ

w(C)xC + γ
∑

C∈Cλ

xC

s.t.
∑

C∈Cλ:v∈V (C)

xC ≥ 1, ∀v ∈ V (IP − TC − U)

xC ∈ {0, 1}, ∀C ∈ Cλ

and

min
∑

C∈Cλ

w(C)xC + γ
∑

C∈Cλ

xC

s.t.
∑

C∈Cλ:v∈V (C)

xC ≥ 1, ∀v ∈ V (LP − TC − U)

xC ≥ 0, ∀C ∈ Cλ.

We show the following result using a similar LP-rounding procedure in [11]
for unrooted DVRP-N.

Theorem 4. The integrality gap of (LP-TC-U) is at most 25.

5 Path-Version Problems

In the path-version of (unrooted) DVRP-TC (DVRP-D, DVRP-N), the (r-)cycles
are replaced by (r-)paths. Actually, the rounding procedure in [11] was proposed
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to deal with the path-version of unrooted DVRP-N. We note that our results on
DVRP-TC on tree metric or unrooted DVRP-TC can be easily applied to their
path-version problems to obtain approximation algorithms (or LP relaxations)
with similar bounds on approximation ratios (or integrality gaps).
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Abstract. Although submodular maximization generalizes many fun-
damental problems in discrete optimization, lots of real-world problems
are non-submodular. In this paper, we consider the maximization prob-
lem of non-submodular function with a knapsack constraint, and explore
the performance of the greedy algorithm. Our guarantee is character-
ized by the submodularity ratio β and curvature α. In particular, we
prove that the greedy algorithm enjoys a tight approximation guaran-
tee of 1

α

(
1 − e−αβ

)
for the above problem. To our knowledge, it is the

first tight constant factor for this problem. In addition, we experimen-
tally validate our algorithm by an important application, the Bayesian
A-optimality.

Keywords: Non-submodular · Knapsack constraint ·
Submodularity ratio · Curvature · Diminishing-return ratio

1 Introduction

In recent decades, maximizing submodular function has been well studied [1,13,
14], and has been widely applied into many fields, such as scheduling problem on
a single machine [15], maximum entropy sampling problem and column-subset
selection problem [20]. Let S be a subset of a finite set I = {1, 2, . . . , n} which
usually is considered as a ground set. The set function f : 2I → R

+ is (i) sub-
modular if f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) for any S, T ⊆ I and (ii) non-
decreasing if f(S) ≤ f(T ) for S ⊆ T ⊆ I. The submodular optimization problem
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): COCOON 2019, LNCS 11653, pp. 651–662, 2019.
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is expressed as maxS⊆I f(S). For the submodular optimization problem with a
K-cardinality constraint, that is maxS⊆I,|S|≤K f(S), Nemhauser et al. [12] pro-
vide a (1 − 1/e)-approximation using the greedy algorithm. Sviridenko [19] gives
a (1 − 1/e)-approximation algorithm for maximizing submodular set functions
with a knapsack constraint, that is maxS⊆I

{
f(S) :

∑
i∈S ci ≤ B

}
, where B and

ci (i ∈ {1, 2, . . . , n}) are nonnegative and can be considered as the total budget
and each element’s budget, respectively. Calinescu et al. [5] obtain a (1 − 1/e)-
approximation for an arbitrary matroid constraint. The factor of 1 − 1/e can be
improved by characterizing the curvature of the objective function [7–9,20], which
is introduced to measure how close a submodular function to being modular [7].

Since the set function f : 2I → R
+ can also be considered as a func-

tion defined on a Boolean hypercube {0, 1}I , Soma and Yoshida [17] general-
ize submodularity to functions defined on the integer lattice Z

I
+. They design

polynomial-time (1−1/e−ε)-approximation algorithms for the submodular opti-
mization problem on the integer lattice with the following three different con-
straints: cardinality constraint, polymatroid constraint and knapsack constraint,
respectively.

However, many objective functions arising from applications are not sub-
modular, such as experimental design, spare Gaussian processes and budget
allocation problem [4,11].

For non-submodular function, Bian et al. [4] introduce the submodularity
ratio to measure the distance from submodularity of a set function. By charac-
terizing the objective function with submodularity ratio β and curvature α, Bian
et al. [4] give a tight ratio of 1

α

(
1 − e−αβ

)
for the greedy algorithm for maximiz-

ing a non-submodular function subject to a cardinality constraint. Kuhnle et al.
[11] generalize the curvature and the submodularity ratio to the function defined
on integer lattice. Two fast modified greedy algorithms (ThresholdGreedy and
FastGreedy) are designed for the non-submodular function with a cardinality
constraint on the integer lattice.

Compared with the maximization with a cardinality constraint, optimiza-
tion with a knapsack constraint is more practical [2,13]. It is reasonable that
each element has a different budget, and the total budget of the selected subset
shouldn’t be exceeded. Here, we investigate maximization of objective function
with a knapsack constraint, where the set function is non-decreasing and non-
submodular. Let I = {1, 2, . . . , n} be the ground set, B, ci, i = 1, 2, . . . , n be
non-negative integers and the objective function f be non-negative, which means
f(S) ≥ 0, for any S ⊆ I. Then, our problem can be formulated as

max
S⊆I,

∑
i∈S ci≤B

f(S). (1)

Weadopt the greedymethod to dealwith the above problem.To get the approx-
imation ratio of the algorithm,we introduce the diminishing-return (DR) ratio [11],
which can be considered as a generalization of DR-submodular [3,16–18] for non-
submodular functions. The DR ratio can be considered as a measure to show how
close a set function satisfying the DR property.
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Our main contributions in this paper are listed as follows.

– To our knowledge, we give the first tight constant factor approximation guar-
antees for maximizing non-submodular nondecreasing functions with a knap-
sack constraint, by characterizing the submodularity ratio and curvature of
the objective function.

– We experimentally validate our algorithm on Bayesian A-optimality in exper-
imental design.

This paper is organized as follows. In Sect. 2, we introduce the mathematical
definitions of the DR ratio, submodularity ratio and curvature. In Sect. 3, we
design a greedy algorithm for any instance. In Sect. 4, we derive a constant factor
approximation guarantee for the greedy algorithm. The proofs of Lemmas 2, 3
and Theorem 1 will be given in the journal version. In Sect. 5, we introduce the
application of our algorithm on the Bayesian A-optimality. In Sect. 6, we give
the numerical experiment for the Bayesian A-optimality in experimental design.

2 Submodularity Ratio and Curvature

In this section, we will express some notations and introduce the mathematical
definitions of the DR ratio, submodularity ratio and the generalized curvature
of the objective function.

Let f(·) be a set function. For any subset A, D ⊆ I, let ρD(A) express
ρD(A) = f (A ∪ D) − f (A). This function gives the gain of inserting set D into
the set A. Specially, for i ∈ I, ρi(A) = f(A ∪ {i}) − f(A).

Definition 1 (Diminishing-return ratio) [11]. The diminishing-return (DR)
ratio of a non-negative set function f is the largest scalar γ, such that

γρi(T ) ≤ ρi(S), (2)

for any subset S, T ⊆ I, S ⊆ T and i ∈ I − T .

Definition 2 (Submodularity ratio) [4]. The submodularity ratio of a non-
negative set function f(·) is the largest scalar β, such that

βρT (S) ≤
∑

i∈T\S

ρi(S), (3)

for any subset S, T ⊆ I.

Remark 1. For any non-decreasing set function f(·), it holds that β, γ ∈ [0, 1],
γ ≤ β and f(·) is submodular if and only if γ = 1 or β = 1 [4,11].

Definition 3 (Curvature) [4]. The curvature of a non-negative function f(·)
is the smallest scalar α, such that

ρi(S\{i} ∪ T ) ≥ (1 − α)ρi(S\{i}), (4)

for any T, S ⊆ I, i ∈ S \ T .

Remark 2. The curvature α ∈ [0, 1], and any non-decreasing non-negative set
function f(·) is supermodular if and only if α = 0 [4].
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3 Greedy Algorithm for Maximizing Non-submodular
Function with a Knapsack Constraint

The greedy algorithm (GAMNSK) for the problem (1) is designed as follows.

Phase I. Enumerates all feasible solutions sets with cardinality from one to
P , where P = 	 α

γ(α−1+e−αβ)

.

Phase II. For all feasible sets Y with cardinality P satisfying
∑

i∈Y ci ≤ B,
carry out the following procedure:

1. Let S0 = Y , I0 = I, t = 1;
2. At step t, St−1 is given, find

θt = max
i∈It−1\St−1

f
(
St−1 ∪ {i}) − f

(
St−1

)

ci
,

it = arg max
i∈It−1\St−1

f
(
St−1 ∪ {i}) − f

(
St−1

)

ci
.

Let cit
denote the weight associated with it.

– If
∑t

τ=1 ciτ
≤ B − ∑

i∈Y ci, let St = St−1 ∪ {it}, It = It−1.
– If

∑t−1
τ=1 ciτ

+ cit
> B − ∑

i∈Y ci, let St = St−1, It = It−1\{it}.
3. Stop when It\St = ∅.

In Phase I, let S1 be a feasible set with the cardinality 1, 2 . . . , or P , which can
make the objective function achieve the maximum value. Let S2 be the solution
obtained in Phase II, which achieve the maximum value of objective function.

Phase III. If f(S1) ≥ f(S2), output S1; otherwise, output S2.

4 Approximation Guarantee

By characterizing the DR ratio, submodularity ratio and curvature of the objec-
tive function, we consider the approximation ratio of GAMNSK for problem (1)
in this section.

Now, we give some notations. Let S0 = Y = {m1,m2, . . . ,mP }. Define g(S) =
f(S)−f(Y ), where g(S) is nondecreasing and characterized by the submodularity
ratio β.

St is the tth step solution obtained by GAMNSK. Let S∗ denote the opti-
mal solution of problem (1), and t∗ + 1 be the first step of GAMNSK for which
the algorithm does not add element it∗+1 ∈ S∗ to the set St∗

, that is, St∗+1 =
St∗

and It∗+1 = It∗\{it∗+1}. Therefore, the intersection between the optimal
solution S∗ and GAMNSK solution St∗+1 can be expressed as S∗ ∩ St∗+1 =
{mϑ1 , . . . ,mϑv

, il1 , . . . , ils}, where l1, . . . , ls are consistent with the order of greedy
selection and {mϑ1 , . . . ,mϑv

} ⊆ {m1,m2 . . . ,mP }.
To get the approximation ratio of GAMNSK, we intend to get the pro-

portion of g
(
St∗)

/g (S∗). In fact, instead of getting g
(
St∗)

/g (S∗) directly,
we try to obtain g

(
St∗ ∪ {it∗+1}

)
/g (S∗) firstly. Meanwhile, utilizing the

following Lemma 1 and some transformations, we transfer the ratio of
g

(
St∗ ∪ {it∗+1}

)
/g (S∗) into a Linear Program (LP) with some constrains.
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Lemma 1. For the iterative step t ∈ {0, 1, . . . , t∗}, The equation

g(S∗) ≤ α
∑

t:it∈St\S∗
cit

θt +
∑

t:it∈(St\Y )∩S∗
cit

θt +
1
β

⎛

⎝B′ −
∑

i∈(St\Y )∩S∗
ci

⎞

⎠ θt+1

(5)
holds, where B′ = B − ∑

i∈Y ci, Y = {m1,m2 . . . ,mP } and (St\Y ) ∩ S∗ =
{il1 , . . . , ils}.

The corresponding weights of the elements {il1 , . . . , ils} are cil1
, . . . , cils

. Let
Bt =

∑t
j=1 cij

, B0 = 0 and ξr = θt, r = Bt−1 + 1, . . . , Bt, t = 1, 2, . . . , t∗.
Equation (5) can be expressed as

g(S∗) ≤ α
∑

t:it∈St\S∗

Bt∑

r=Bt−1+1

ξr +
∑

t:it(St\Y )∩S∗

Bt∑

r=Bt−1+1

ξr

+
1
β

⎛

⎝B′ −
∑

i∈(St\Y )∩S∗
ci

⎞

⎠ ξBt+1.

These equations imply

g(S∗) ≤ min
t=1,2,...,t∗

{

α
∑

t:it∈St\S∗

Bt∑

r=Bt−1+1

ξr +
∑

t:it(St\Y )∩S∗

Bt∑

r=Bt−1+1

ξr

+
1
β

⎛

⎝B′ −
∑

i∈(St\Y )∩S∗
ci

⎞

⎠ ξBt+1

}

= min
s=1,...,Bt∗+1

{
s−1∑

r=1

ζrξr +
(B′ − B′′)

β
ξs

}

,

where the coefficient ζr is given by

ζr =
{

1, r = Blm − cilm
+ 1, . . . , Blm , m = 1, 2, . . . , s,

α, otherwise,

and B′′ is the total amount of the coefficient ζr which is equal to 1.
Therefore, Eq. (5) can be written as

g(S∗) ≤
s−1∑

r=1

ζrξr +
(B′ − B′′)

β
ξs, (6)

for s = 1, . . . , Bt∗+1.
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Since

g(St∗ ∪ {it∗+1}) =
t∗+1∑

j=1

(
g

(
Sj−1 ∪ {ij}

) − g
(
Sj−1

))

=
t∗+1∑

j=1

(
f

(
Sj−1 ∪ {ij}

) − f
(
Sj−1

))

=
t∗+1∑

j=1

cij
θj

and ξr = θj , r = Bj−1 + 1, . . . , Bj , j = 1, 2, . . . , t∗ + 1, we can get

g
(
St∗ ∪ {it∗+1}

)

g (S∗)
=

∑t∗+1
j=1 cij

θj

g (S∗)
=

∑Bt∗+1
r=1 ξr

g (S∗)
.

Denote xr := ξr

g(S∗) , r = 1, . . . , Bt∗+1. Equation (6) gives Bt∗+1 constraints over

the variables xr. Therefore, the worst case approximation of
g
(

St∗ ∪{it∗+1}
)

g(S∗) can
be specified by the following LP,

min
Bt∗+1∑

r=1

xr (7)

s. t.
h−1∑

r=1

ζrxr +
(B′ − B′′)

β
xh ≥ 1,

xr ≥ 0,

r, h = 1, 2 . . . , Bt∗+1. (8)

In order to get the optimal values of the LP (7), we analyse the key structure
of the LP. To illustrate relationships between the optimal solutions of the LP
and specific ranks in constraint matrix, we express the objective function as

ϕ({Bl1 − cil1
+ 1, . . . , Bl1 , . . . , Blm − cilm

+ 1, . . . , Blm , . . . , Bls − cils
+ 1, . . . , Bls})

= min

Bt∗+1∑

r=1

xr.

In addition, the corresponding LP can be denote by LP ({Bl1 − cil1
+

1, . . . , Bl1 , . . . , Blm −cilm
+1, . . . , Blm , . . . , Bls −cils

+1, . . . , Bls}), which denote
that coefficients of following ranks {Bl1 − cil1

+ 1, . . . , Bl1 , . . . , Blm − cilm
+

1, . . . , Blm , . . . , Bls − cils
+1, . . . , Bls} of the constraint matrix are 1, and others

are α.
We achieve a significant property for the optimal solution.

Lemma 2. Assume that the optimal solution of the constructed LP is x∗ ∈
R

Bt∗+1 , it holds that x∗
q ≤ x∗

q+1, where q = Blm − cilm
+ um, 1 ≤ um ≤ cilm

,
m = 1, 2, . . . , s.
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From this characteristic, we can get another important Lemma as follows.

Lemma 3. For all {il1 , il2 , . . . , ils} ⊆ St∗+1 with the corresponding columns
{Bl1 − cil1

+ 1, . . . , Bl1 , . . . , Blm − cilm
+ 1, . . . , Blm , . . . , Bls − cils

+ 1, . . . , Bls}
in constraint matrix, it holds that

(a). ϕ({Bl1 − cil1
+ 1, . . . , Bl1 , . . . , Blm − cilm

+ 1, . . . , Blm , . . . , Bls − cils
+

1, . . . , Bls}) ≥ ϕ(∅),
(b).

ϕ(∅) =
1
α

[

1 −
(

1 − αβ

B′

)Bt∗+1
]

. (9)

From the first conclusion in Lemma 3, we know the optimal value of the LP
is obtained by coefficients of the constraint matrix are all α. In addition, the
second conclusion in Lemma 3 gives the optimal value of the LP.

By using the conclusions in Lemma 3, we receive the ratio of GAMNSK.

Theorem 1. Let f(·) be a non-negative nondecreasing set function with DR
ratio γ, submodularity ratio β and curvature α. The performance guarantee of
GAMNSK for solving problem (1) is equal to 1

α

(
1 − e−αβ

)
.

Since the factor 1
α

(
1 − e−αβ

)
is tight for the non-submodular function with

a cardinality constraint, which can be considered as a special case for that with
a knapsack constraint, 1

α

(
1 − e−αβ

)
is also tight for the maximization of non-

submodular function with a knapsack constraint.

5 Applications: Bayesian A-Optimality in Experimental
Design

In classical Bayesian experimental design [6], the purpose is to select a set of
experiments such that some statistical criterion is optimized. In [10], the statis-
tical criterion is defined as maximization of the difference of variance between
prior distribution and posterior distribution over the parameters.

Let the ground set be constructed by n experimental stimuli {x1, . . . ,xn},
where xi ∈ R

d, i = 1, 2, . . . , n, that is, V = {x1, . . . ,xn}. The corresponding
index set I = {1, 2, . . . , n} can also be considered as ground set. For any subset
S ⊆ I, the corresponding stimuli constitutes a matrix XS := [xv1 , . . . ,xvs

] ∈
R

d×|S|. The linear combination of XS can be expressed as YS = XT
Sθ+w, where

θ ∈ R
d is the parameter vector, YS is the vector of dependent variables, and w

is the Gaussian noise with zero mean and variance σ2, that is, w ∼ N (0, σ2I).
Suppose the prior distribution of the parameter vector θ is θ ∼ N (0, Λ−1),
Λ = η2I. By calculation, the variance of the posterior distribution of θ is Σθ|YS

=
(Λ+σ−2XSXT

S )−1. The target is selecting subset S ⊆ I, such that the following
function is maximized,

FA(S) := tr(Λ−1) − tr((Λ + σ−2XSXT
S )−1).
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However, it costs money to do any experiment, and different experiments cost
differently. Therefore, it is reasonable to assume that the objective function has
a knapsack constraint. Let ci ∈ R+ be the budget of the experimental stimuli
xi, and the budget of experimental design should satisfy

∑
i∈S ci ≤ B for subset

S ⊆ I, where B ∈ R+. Then, the target can be rewritten as

max
S⊆I,

∑
i∈S ci≤B

FA(S). (10)

The submodularity ratio and curvature are characters for the target function
FA(S), not decided by the constraint. Therefore, the submodularity ratio and
curvature of FA(S) are the same as in Proposition 1 in [4].

Proposition 1. Let the experimental stimuli be normalized, that is, ‖xi‖ = 1,
i = 1, 2, . . . , n. Let the spectral norm of X, which is the data matrix constituted
by all experimental stimulus, be ‖X‖. Thus, we get that the objective function
(10) is monotone nondecreasing, the lower bound of the submodularity ratio β is

η2

‖X‖(η2+σ−2‖X‖) and the upper bound of the curvature α is 1 − η2

‖X‖(η2+σ−2‖X‖) .

6 Numerical Results: Bayesian A-Optimality
in Experimental Design

We implement the greedy algorithm GAMNSK provided in Sect. 3 on some
instances of Bayesian A-optimality in experimental design to show the per-
formance. In the algorithm GAMNSK, the number P is calculated by the
diminishing-return ratio, submodularity ratio and curvature. Unfortunately,
these three measures are not computationally tractable. So we see P as a fixed
parameter in our experiment. We set P = 2, 3 and 4 respectively for all instances,
and compare their performances.

We use the Boston house-price data (http://lib.stat.cmu.edu/datasets/
boston) with 506 samples and 14 features. The parameters σ and η are set
to 1, ci(∀i = 1, 2, · · · , n) is drawn from an uniform distribution U [0, 1], and
B = C/1, C/2, · · · , C/10 where C :=

∑n
i=1 ci. We will compare the objective

values returned by GAMNSK, SDP algorithm and exact algorithm (exhausive
search). To save time, we only use n = 10 and 20 samples (drawn randomly from
506 samples of the data) to do the experiments.

To comparing our GAMNSK algorithm with semidefinite programming
(SDP) algorithm, we first give a SDP relaxation of maximizing Bayesian A-
optimality function with a knapsack constraint, and then use the SDP relax-
ation to produce a solution of the problem. Maximizing a Bayesian A-optimality
function with a knapsack constraint is equivalent to

min
S⊆I,

∑
i∈S ci≤B

tr((Λ + σ−2XSXT
S )−1). (11)

http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
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By introducing 0-1 variables ξi, i = 1, 2, ..., n, we translate the formulation (11)
as

min tr((Λ + σ−2
n∑

j=1

ξixixT
i )−1)

s. t.
n∑

i=1

ξici ≤ B,

ξi ∈ {0, 1}, i = 1, 2, ..., n.

Let λi = ξi/B, i = 1, 2, ..., n, and relax these variables, we get

min tr((Λ + Bσ−2
n∑

i=1

λixixT
i )−1)

s. t.
n∑

i=1

λici = 1,

λi ∈ R
n
+, i = 1, 2, ..., n.

According to the Schur complement lemma, we get the SDP relaxation as follows.

min
d∑

i=1

uj

s. t.

⎡

⎣Λ + Bσ−2
n∑

i=1

λixixT
i ej

ej uj

⎤

⎦ � 0, j = 1, 2, ..., d,

n∑

i=1

λici = 1,

λi ∈ R
n
+, i = 1, 2, ..., n.

(12)

The SDP algorithm first solves the SDP relaxation (12) to obtain the
relaxed solution λ̃i, i = 1, 2, ..., n, and then sorts them in the decreasing
order {i1, i2, ..., in}. The final solution is the set of first k items in the order
{i1, i2, ..., in} subject to

∑k
l=1 cil

≤ B and
∑k+1

l=1 cil
> B.

We repeat 10 experiments for each size and show the average ratios of objec-
tive value and optimal value, and the average running times in Fig. 1. For these
instances, the objective values returned by GAMNSK with P = 2, 3 and 4 are
very close to the optimal values, little better than the SDP algorithm. For the
instances with n = 10, GAMNSK with P = 2, 3 and 4 are faster than the SDP
algorithm. For the instances with n = 20, GAMNSK with larger P has faster
growing of the running time as a function of the increasing in B, while the SDP
algorithm has stable running times regardless of how big the number B is.
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Fig. 1. Results for Bayesian A-optimality in experimental design on Boston house-price
data

7 Conclusion

By characterizing the submodularity ratio and curvature of the objective func-
tion, we obtain a constant factor for the greedy algorithm for maximization
of non-submodular nondecreasing set function with a knapsack constraint.
Although in Phase I of GAMNSK, it seems to have to enumerate all feasible
solutions with cardinality P , which depends on the submodularity ratio and the
curvature. In fact, for practical problems we need not to enumerate all feasible
solutions with P = 	 α

γ(α−1+e−αβ)

. Only enumerating small amount of P , we can

get a satisfied solution. In addition, P = 	 α
γ(α−1+e−αβ)


 is just used for analyse
the ratio of GAMNSK.
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Abstract. Theorem proving is a widely used approach to the verifica-
tion of computer systems, and its theoretical basis is generally a proof
system for formal derivation of logic formulas. In this paper, we propose a
proof system for Propositional Projection Temporal Logic (PPTL) with
indexed expressions, which is a unified temporal logic that subsumes the
well-used Linear Temporal Logic (LTL). First, the syntax, semantics and
logic laws of PPTL that allows indexed expressions are introduced, and
the representation of LTL constructs by PPTL formulas is shown. Then,
the proof system for the logic is presented which consists of axioms and
inference rules for the derivation of both basic constructs and indexed
expressions of PPTL. To show the capability of the proof system, several
examples of formal proofs are provided. Finally, the soundness of the
proof system is demonstrated.

Keywords: Theorem proving · Proof system · Temporal Logic ·
Indexed expression · Soundness

1 Introduction

Projection Temporal Logic (PTL) [3] is an extension of Interval Temporal Logic
(ITL) [13] by introducing a new projection construct and supporting both finite
and infinite timeline. Within the PTL framework, Propositional PTL (PPTL)
is proved to have the full regular expressiveness [18], and its decision problem
has been solved [5]. Further, Modeling, Simulation and Verification Language
(MSVL) [7], an executable subset of PTL armed with a framing technique, is
defined as the language for system modeling. Based on these theoretical work, a
unified model checking [2] approach with PTL is developed for formal verification
of computer systems [4,20].
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The advantage of the model checking approach is that verification can be
done automatically. However, it suffer from the state explosion problem and
thus less suitable to verify data intensive applications. Another approach to
system verification widely used in practice is theorem proving [10], in which a
proof system for a specific logic, usually a temporal logic, is constructed in terms
of axioms and inference rules. To verify whether a computer system satisfies a
desired property, both the system and the property are characterized by formulas
S and P of the logic, respectively. Then, the problem is to check whether S → P
can be proved formally by the axioms and inference rules of the proof system.
Generally, such a verification process involves human assistance and can be done
semi-automatically. The advantage of theorem proving is that it avoids the state
explosion problem and can verify both finite-state and infinite-state systems,
including data intensive applications.

In the past three decades, a number of proof systems for Liner Temporal
Logic (LTL), Computing Tree Logic (CTL) and other temporal logics have
emerged [9,11,12]. However, the expressive power of these logics is weaker than
ITL or PPTL. Within the ITL community, several researchers have investigated
axiomatic systems with different extensions. Rosner and Pnueli [16] present a
proof system for a propositional choppy logic with chop, next and until opera-
tors. Bowman and Thompson provide a completeness proof and a tableau-based
decision procedure for PITL with projection over finite intervals [1]. Moszkowski
proposes an axiom system over finite intervals for PITL, and later extends the
work to infinite intervals [14]. Besides, two proof systems are formalized for
PPTL [8] and PTL [17], respectively.

A recent study [6] extends PPTL with indexed expressions that take the form
of

∨
i∈N

R[i]. Although indexed expressions are obtained by applying the syntax
rules countably infinitely many times, they have definite semantics and certain
good properties. Especially, they can equivalently represent the strong until U
and weak until W constructs of LTL. As a result, PPTL with indexed expressions
is a unified temporal logic that involves LTL as one of its subsets.

To employ PPTL and the indexed-expression technique to system verification
in the theorem proving approach, we develop a proof system Π for the unified
logic in this paper. Specifically, Π consists of two sub-systems of axioms and
inference rules. The first sub-system is provided for formal proof of basic PPTL
constructs, such as next, projection, always and chop plus. The second sub-
system is designed especially for formal derivation of formulas with indexed
expressions. We provide a few examples to show how the proof system Π works,
and demonstrate its soundness that every formula proved by Π is valid.

The paper is organized as follows. The next section introduces PPTL, includ-
ing indexed expressions and their capability of representing LTL. Then, Sect. 3
presents our proof system in terms of axioms and inference rules and Sect. 4 pro-
vides examples of formal proofs with the proof system. In Sect. 5, the soundness
of the proof system is demonstrated. Finally, conclusions are drawn in Sect. 6
with a discussion on potential future work.
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2 Propositional Projection Temporal Logic

We first introduce basic notions of Propositional Projection Temporal Logic
(PPTL) [3]. Let P be a countable set of atomic propositions and B = {tt ,ff }
the boolean domain. Usually, we use small letters, possibly with subscripts, like
p, q, r1, to denote atomic propositions in P and capital letters, possibly with sub-
scripts, like P,Q,R1, to represent general PPTL formulas. Formally, the formulas
of PPTL are inductively defined by the following syntax:

P ::= q | ¬P | P ∧ P | © P | (P [+]) prj P
P [+] ::= P | P, P [+]

where P [+] represents a finite sequence of PPTL formulas separated by commas.
For simplicity, some previous publications of PPTL, such as [3,18], use the syntax
defined as follows.

P :: = q | ¬P | P1 ∧ P2 | © P | (P1, . . . , Pm) prj P

It is trivial to prove that the two definitions are equivalent. Notice that © (next),
and prj (projection) are temporal operators, while ¬ and ∧ are defined as they
are in classical propositional logic. A formula is called a state formula if it does
not contain any temporal operators.

In the semantics of PTL, formulas are interpreted upon intervals. An interval
σ = 〈s0, s1, . . .〉 is a non-empty sequence of states, finite or infinite, while a state
s is a mapping from P to B. The length of an interval σ, denoted as |σ|, is the
number of states in σ minus one if σ is finite; or the smallest infinite ordinal
ω if σ is infinite. Let N denote the set of natural numbers. To have a uniform
notation for both finite and infinite intervals, we use extended natural numbers
as indices, that is Nω = N∪{ω}, and extend the comparison operators, =, <,≤,
to Nω by considering ω = ω and for all i ∈ N, i < ω. Moreover, we write 
 as
≤ −{(ω, ω)}. To simplify definitions, we denote σ by 〈s0, · · · , s|σ|〉, where s|σ| is
undefined if σ is infinite. With such a notation, σ(i..j) (0 ≤ i 
 j ≤ |σ|) denotes
a sub-interval 〈si, · · · , sj〉.

To formalize the semantics of the projection construct prj, we define an aux-
iliary operator ↓ to get rid of singleton points. For an interval σ and natural
numbers i0 ≤ . . . ≤ im (m ∈ N), σ ↓ (i0, . . . , im) denotes the interval obtained
from σ by preserving only states with non-repeated indices from il (0 ≤ l ≤ m).
For example, 〈s0, s1, s2, s3, s4〉 ↓ (0, 0, 2, 2, 2, 3) = 〈s0, s2, s3〉. In addtion, we use
σ · σ′ to denote the concatenation of two intervals σ and σ′, provided σ is finite.

An interpretation is a tuple I = (σ, k, j), where σ = 〈s0, s1, . . .〉 is an interval,
k ∈ N and j ∈ Nω with 0 ≤ k ≤ j ≤ |σ|. For a PPTL formula P , I |= P denotes
that I is an interpretation of P , defined inductively as follows. Intuitively, it
means that P is interpreted over the subinterval σ(k..j) of σ with the current
state being sk.
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I |= p iff sk(p) = tt
I |= ¬P iff I �|= P
I |= P1 ∧ P2 iff I |= P1 and I |= P2

I |= ©P iff k < j and (σ, k + 1, j) |= P
I |= (P1, . . . , Pm) prj Q iff there exist (extended) natural numbers k = i0 ≤ . . . ≤ im−1

� im ≤ j such that (σ, il−1, il) |= Pl for all 1 ≤ l ≤ m
and (σ′, 0, |σ′|) |= Q for σ′ given by either

(1) σ′ = σ ↓ (i0, . . . , im) · σ(im+1,...,j) if im < j, or
(2) σ′ is a prefix of σ ↓ (i0, . . . , im) if im = j.

Fig. 1. Possible interpretations of (P1, P2, P3) prj Q

The projection construct (P1, . . . , Pm) prj Q is a key operator of PPTL, which
has potential applications for compositional reasoning about concurrent systems.
The construct allows formulas P1, . . . , Pm, Q to be autonomous, each interpreted
in its own interval. Specifically, two different time scales exist, where P1, . . . , Pm

are interpreted over a series of fine-grained intervals while Q is interpreted over a
coarse-grained projected interval. In particular, the sequence of P1, . . . , Pm and
Q may terminate at different time points. The intuition of (P1, P2, P3) prj Q is
shown in Fig. 1.

A formula P is satisfied by an interval σ, denoted by σ |= P , if (σ, 0, |σ|) |= P .
A formula P is satisfiable if σ |= P for some σ while a formula P is valid, denoted by
|= P , if σ |= P for all intervals σ. The abbreviations such as tt , ff , ∨, → and ↔ are
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defined as usual. Some derived formulas of PPTL are shown below. They are useful
in characterizing various temporal properties.

ε
def= ¬ © tt P ;Q def= (P,Q) prj ε

♦P
def= tt ;P �P

def= ¬♦¬P

P+ def= (P [+]) prj ε P ∗ def= ε ∨ P+

halt(P ) def= �(ε ↔ P ) final(P ) def= �(ε → P )
keep(P ) def= �(©tt → P ) rem(P ) def= �(©tt → ©P )

fin
def= ♦ε ln(n) def=

{
ε if n = 0
©ln(n − 1) if n ≥ 1

inf
def= � © tt P ‖ Q

def= P ∧ (Q ; tt) ∨ Q ∧ (P ; tt)

The empty formula ε means that the current state is the last one of the interval,
and the chop construct P ;Q means the sequential composition of P and Q.
Besides, the sometimes construct ♦P (resp. always construct �P ) indicates P
holds at some state (resp. every state) from the current state on. The meaning
of the chop plus construct P+ (resp. chop star construct P ∗) is as usual, i.e.,
P holds repeatedly for one or more (resp. zero or more) times. Then, halt(P )
and final(P ) say that P holds at the last state of the interval, while halt(P )
also requires P holds only at the last state. The formula keep(P ) (resp. rem(P ))
means that P holds at every state that has a next (resp. previous) state in the
interval. In addition, fin (resp. inf) indicates the interval is finite (resp. infinite),
and ln(n) claims that the length of the remaining interval is exactly n. Finally,
the parallel construct P ‖ Q means that P and Q are interpreted in parallel.

We denote |= P ↔ Q by P ≡ Q (equivalence), and |= P → Q by P ⊂ Q
(strong implication). Some logic laws of PPTL are provided as follows, whose
proofs can be found in [3].

♦P ≡ P ∨ ©♦P �P ≡ P ∧ ε ∨ P ∧ ©�P
P+ ≡ P ∨ (P ;P+) Q ; (P1 ∨ P2) ≡ (Q ;P1) ∨ (Q ;P2)
�¬Q ≡ ¬♦Q keep(P ) ≡ ε ∨ P ∧ ©keep(P )
�P ∨ �Q ⊂ �(P ∨ Q) halt(P ) ≡ P ∧ ε ∨ ¬P ∧ ©halt(P )
�(P ∧ Q) ≡ �P ∧ �Q final(P ) ≡ P ∧ ε ∨ ©final(P )
tt ≡ fin ∨ inf rem(P ) ≡ ε ∨ ©P ∧ ©rem(P )
©(P ∨ Q) ≡ ©P ∨ ©Q �(P ∧ ©tt) ≡ P ∧ ©�(P ∧ ©tt)
©(P ∧ Q) ≡ ©P ∧ ©Q �(P → Q) ⊂ �P → �Q
©¬P ≡ ©tt ∧ ¬ © P P1 ; (P2 ;P3) ≡ (P1 ;P2) ;P3

2.1 Indexed Expression

Generally, a well-formed formula of PPTL is constructed by applying the syntax
rules finitely many times. However, some formulas formed by applying the syntax
rules countably infinitely many times, such as

∨
i∈N

©iP , have definite semantics
and good properties.
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A recent work [6] studies a kind of such formulas, namely indexed expressions,
which are of the form

∨
i∈N

R[i] where R[i] is a well-formed formula with an index
i ∈ N. Specifically, R[i] may contain sub-formulas such as ©iP , P i and P (i). For
i ∈ N, ©iP is the application of the next operator to P for i times, P i means
P holds repeatedly for i times, while P (i) means P holds at the consecutive i
states from the current state on. Formally, they are defined as follows.

©iP
def=

{
P if i = 0
© ©i−1 P if i ≥ 1 P i def=

{
ε if i = 0
P i−1 ;P if i ≥ 1

P (i) def=

⎧
⎨

⎩

tt if i = 0
P if i = 1
P ∧ ©P (i−1) if i > 1

The semantics of an indexed expression is clear. Let I be an interpretation.

I |=
∨

i∈N

R[i] iff there exists i ∈ N such that I |= R[i]

Intuitively,
∨

i∈N
R[i] means some R[i] holds for i ∈ N. From now on, we consider

PPTL with indexed expressions in that a formula may contain indexed expres-
sion(s) as its sub-formula(s). Nevertheless, it is good that indexed expressions
do not occur nested, since R[i] in

∨
i∈N

R[i] is a well-formed formula.
To avoid excessive use of parentheses, we specify the precedence of operators

as: 1. +, ∗; 2. ¬, ©, �, ♦, prj; 3. ∧; 4.
∨

i∈N
; 5. ∨; 6. ; ; 7. ‖; 8. →; 9. ↔, where

1 = highest and 9 = lowest.

Fig. 2. Intuitive meaning of p U q (see (a)) and p W q (see (a) or (b))

Indexed expressions of the form
∨

i∈N
P (i) ∧ ©iQ are closely related to the

recursive equation X ≡ Q ∨ P ∧ ©X [6], shown by the following lemmas.

Lemma 1. The recursive equation X ≡ Q∨P ∧©X has exactly two solutions:∨
i∈N

P (i) ∧ ©iQ and
∨

i∈N
P (i) ∧ ©iQ ∨ �(P ∧ ©tt).

Lemma 2. Let X be a formula satisfying X ≡ Q ∨ P ∧ ©X, then

1. X ⊂ ♦Q iff X ≡ ∨
i∈N

P (i) ∧ ©iQ, and
2. �(P ∧ ©tt) ⊂ X iff X ≡ ∨

i∈N
P (i) ∧ ©iQ ∨ �(P ∧ ©tt).

Many cases of indexed expressions are intrinsically well-formed in that they
are equivalent to well-formed formulas. Specifically, we have the following logic
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laws. Most of the laws are proved using the above lemmas, the others are proved
by the fixed-point induction approach [19].
∨

i∈N
©iQ ≡ ♦Q

∨
i∈N

Qi ≡ Q∗
∨

i∈N
P (i) ∧ ©i(P ∧ ε) ≡ �P ∧ ♦ε

∨
i∈N

P (i) ∧ ©iε ≡ keep(P ) ∧ ♦ε
∨

i∈N
(¬P )(i) ∧ ©i(P ∧ ε) ≡ halt(P ) ∧ ♦ε

∨
i∈N

(©P )(i) ∧ ©iε ≡ rem(P ) ∧ ♦ε
∨

i∈N
P (i) ∧ ©i(P ∧ ε) ∨ �(P ∧ ©tt) ≡ �P

∨
i∈N

P (i) ∧ ©iε ∨ �(P ∧ ©tt) ≡ keep(P )
∨

i∈N
(¬P )(i) ∧ ©i(P ∧ ε) ∨ �(¬P ∧ ©tt) ≡ halt(P )

∨
i∈N

(©P )(i) ∧ ©iε ∨ �(©P ∧ ©tt) ≡ rem(P )

2.2 Representing Linear Temporal Logic

Linear Temporal Logic (LTL) [15] is a well-known temporal logic, which is based
on a linear-time perspective and defined over an infinite interval. Usually, LTL
refers to the propositional subset of LTL which has been widely used in practice.
In LTL, the most prominent operators are strong until U and weak until W,
which is a weak version of U. Their intuitive meanings are shown in Fig. 2 and
more details can be found in [2].

We show that both the strong until and weak until operators can be rep-
resented as PPTL formulas with indexed expressions. Suppose (P UQ)P and
(P WQ)P are PPTL formulas that have the same meaning as P UQ and P WQ,
respectively. Then, both (P UQ)P and (P WQ)P satisfy the recursive equation
X ≡ Q ∧ inf ∨ P ∧ ¬Q ∧ ©X. In addition, they satisfy (P UQ)P ⊂ ♦(Q ∧ inf)
and �(P ∧ ¬Q ∧ ©tt) ⊂ (P WQ)P. According to Lemma 2, we have

(P UQ)P ≡ ∨
i∈N

(P ∧ ¬Q)(i) ∧ ©i(Q ∧ inf) ≡ inf ∧ ∨
i∈N

(P ∧ ¬Q)(i) ∧ ©iQ, and

(P WQ)P ≡ inf ∧ ∨
i∈N

(P ∧ ¬Q)(i) ∧ ©iQ ∨ �(P ∧ ¬Q ∧ ©tt).

Therefore, we can simply define the two operators in PPTL in the following way.

P UQ
def= inf ∧ ∨

i∈N
(P ∧ ¬Q)(i) ∧ ©iQ, and

P WQ
def= inf ∧ ∨

i∈N
(P ∧ ¬Q)(i) ∧ ©iQ ∨ �(P ∧ ¬Q ∧ ©tt).

On the other hand, except U and W, every construct of LTL has a direct
counterpart in PPTL. As a result, PPTL with indexed expressions is a unified
temporal logic that subsumes LTL.

3 Proof System

This section presents the proof system Π for PPTL with indexed expressions,
consisting of a set of axioms and inference rules. Each axiom defines a formula
that can be directly derived by the system, and each inference rule defines a one-
step derivation of a conclusion formula from one or more hypothesis formulas.
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A formal proof (or formal derivation) of a formula P is a sequence of formulas
P0, . . . , Pn (n ∈ N) such that Pn = P and each Pi (0 ≤ i ≤ n) is either an axiom
or the conclusion formula of an inference rule, provided every hypothesis formula
of the rule has occurred in the preceding formulas P0, . . . , Pi−1. If such a formal
proof exists, we say that P is proved by Π or P is a theorem of Π, denoted as
�Π P . When there is no confusion, we omit the subscript and simply write � P .

Specifically, the proof system Π is composed of two parts: axioms and infer-
ence rules ΠB for basic constructs, such as next and projection, and those ΠI

for indexed expressions, i.e. Π = ΠB ∪ ΠI .

3.1 Axioms and Inference Rules for Basic Constructs

A proof system for basic constructs of PPTL has been proposed in [8], which
adopts a relatively complex version of syntax that considers a projection-plus
construct (P1, . . . , (Pi, . . . , Pj)⊕, . . . , Pm) prj Q as a basic construct. Here, we
provide ΠB , an equivalent but more concise presentation of the proof system,
based on the current version of syntax considering the projection construct
instead of the projection-plus construct.

Let S denote a state formula and Ω represent a finite sequence of formulas,
which is possible the empty sequence τ . For convenience, we define (τ) prj P to
be P . The set of axioms of ΠB are presented as follows.

TAU ψ where ψ is an instance of a propositional tautology
POF (Ω1, P1 ∨ P2, Ω2) prj Q ↔ (Ω1, P1, Ω2) prj Q ∨ (Ω1, P2, Ω2) prj Q
POB (Ω) prj (Q1 ∨ Q2) ↔ (Ω) prj Q1 ∨ (Ω) prj Q2

PFN (Ω1, P1, P2, Ω2) prj Q ↔ (Ω1, P1 ∧ fin, P2, Ω2) prj Q
PIN (Ω, P ∧ inf) prj Q ↔ (Ω, P ∧ inf) prj (Q ∧ fin)
PSM (Ω1, S ∧ ε, P, Ω2) prj Q ↔ (Ω1, S ∧ P, Ω2) prj Q
PSF (S ∧ P, Ω) prj Q ↔ S ∧ (P, Ω) prj Q PSB (Ω) prj (S ∧ Q) ↔ S ∧ (Ω) prj Q
PEF (Ω, ε) prj Q ↔ (Ω) prj Q PEB (P ) prj ε ↔ P
PNX (©P, Ω) prj © Q ↔ ©((P, Ω) prj Q) CPR P+ ↔ P ∨ (P ∧ ©tt ;P+)
NXN ©¬P ↔ ¬(ε ∨ ©P ) NXA ©(P ∧ Q) ↔ ©P ∧ ©Q
CNX ©P ;Q ↔ ©(P ;Q) CAS P1 ; (P2 ;P3) ↔ (P1 ;P2) ;P3

STN P ∧ ♦¬P → ♦(P ∧ ©¬P ) ALR �P ↔ P ∧ (ε ∨ ©�P )

Intuitively, an axiom is a formula that is supposed to be valid. Especially, the
validity of a formula P ↔ Q means that P and Q are equivalent.

The set of inference rules of ΠB are presented as follows.

MP
P P → Q

Q
SUB

P (Q) Q ↔ Q′

P (Q′)

NXM
P → Q

©P → ©Q
PRM

P → P ′ Q → Q′

(Ω1, P,Ω2) prj Q → (Ω1, P
′, Ω2) prj Q′

ALW
P

�P
CPM

P → Q
P+ → Q+

REC
P → Q ∨ ©P

P → ♦Q ∨ � © P
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The rule MP is the classic rule of modus ponens for propositional logic. And in
the rule SUB, P (Q) denotes a formula P with a sub-formula Q, and P (Q′) is the
formula obtained from P (Q) by substituting Q with Q′. Intuitively, an inference
rule means: if the hypothesis formulas are all valid, the conclusion formula is
also valid. More explanations of these axioms and inference rules can be found
in [8].

3.2 Axioms and Inference Rules for Indexed Expressions

We propose a proof (sub-)system ΠI to reason about PPTL formulas with
indexed expressions. The set of axioms of ΠI are presented as follows. Here,
P denotes a formula without any index.

IST
∨

i∈N
Qi ↔ Q∗

INS R[i] → ∨
i∈N

R[i] INR
∨

i∈N
R[i] ↔ R[0] ∨ ∨

i∈N
R[i + 1]

INA
∨

i∈N
P ∧ R[i] ↔ P ∧ ∨

i∈N
R[i] INO

∨
i∈N

(P ∨ R[i]) ↔ P ∨ ∨
i∈N

R[i]
INN

∨
i∈N

©R[i] ↔ ©∨
i∈N

R[i] INC
∨

i∈N
(P ;R[i]) ↔ P ;

∨
i∈N

R[i]

Among the axioms, IST indicates that an indexed expression
∨

i∈N
Qi can always

be replaced by the star construct Q∗. In fact, both the formulas mean that P
holds repeatedly for zero or more times. Then, INS and INR reflect two standard
property of the infinite disjunction operator

∨
i∈N

. In addition, INA, INO, INN
and INC indicate that the and, or, next and chop operators are distributive over
the infinite disjunction operator, respectively.

The set of inference rules of ΠI are presented as follows.

INM
R[i] → R′[i]∨

i∈N
R[i] → ∨

i∈N
R′[i]

REF
R ↔ Q ∨ P ∧ ©R R → ♦Q

∨
i∈N

P (i) ∧ ©iQ ↔ R

REI
R ↔ Q ∨ P ∧ ©R �(P ∧ ©tt) → R

∨
i∈N

P (i) ∧ ©iQ ∨ �(P ∧ ©tt) ↔ R

Among the inference rules, INM indicates that the infinite disjunction operator is
monotonic. Besides, REF and REI are provided for solving R from the recursive
biconditional “equation” R ↔ Q ∨ P ∧ ©R. The solution is in the form of
an indexed expression, possibly in disjunction with a specific always formula.
Intuitively, REF and REI are in accordance with the two cases of Lemma 2 that
the recursion is made for finitely many times and for possibly infinitely many
times, respectively.

The approach of theorem proving can be applied to verify properties of sys-
tems formally. First, both a system and a desired property are specified by PPTL
formulas S and P , respectively. Then, the system satisfies the property if and
only if we can find a formal proof of � S → P by the proof system Π.
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4 Examples of Formal Proofs

To show the capability of the proof system Π, we provided a few examples of
formal proofs. Notice that once � P is proved, P is a theorem of the system and
can be used in the formal proof of other formulas.

Example 1. � keep(P ) ↔ ε ∨ P ∧ ©keep(P ). The theorem is denoted as T1,
whose formal proof is given as follows. Recall that ε = ¬ © tt and keep(P ) =
�(©tt → P ).

(1) keep(P ) ↔ (©tt → P ) ∧ (ε ∨ ©keep(P )) ALR
(2) (©tt → P ) ∧ (ε ∨ ©keep(P )) ↔ ε ∨ P ∧ ©keep(P ) TAU
(3) keep(P ) ↔ ε ∨ P ∧ ©keep(P ) SUB (1) (2)

Example 2. � ♦P ↔ P ∨ ©♦P . The theorem is denoted as T2, whose formal
proof is given as follows. Recall that �P = ¬♦¬P for any formula P .

(1) ¬♦¬¬P ↔ ¬P ∧ (ε ∨ ©¬♦¬¬P ) ALR
(2) ¬¬P ↔ P TAU
(3) ¬♦P ↔ ¬P ∧ (ε ∨ ©¬♦P ) SUB (1) (2)
(4) (¬♦P ↔ ¬P ∧ (ε ∨ ©¬♦P )) → (♦P ↔ P ∨ ¬(ε ∨ ©¬♦P )) TAU
(5) ♦P ↔ P ∨ ¬(ε ∨ ©¬♦P ) MP (3) (4)
(6) ©¬¬♦P ↔ ¬(ε ∨ ©¬♦P ) NXN
(7) ¬¬♦P ↔ ♦P TAU
(8) ©♦P ↔ ¬(ε ∨ ©¬♦P ) SUB (6) (7)
(9) ♦P ↔ P ∨ ©♦P SUB (5) (8)

Example 3. � ∨
i∈N

©iQ ↔ ♦Q. This theorem is denoted as T3, whose formal
proof is given as follows.

(1) ♦Q ↔ Q ∨ ©♦Q T2
(2) ♦Q → ♦Q TAU
(3)

∨
i∈N

©iQ ↔ ♦Q REF (1) (2)

Intuitively, the indexed expression
∨

i∈N
©iQ means Q must hold at some

state, which is equivalently characterized by the well-formed formula ♦Q.

Example 4. � ∨
i∈N

P (i) ∧ ©iQ → ♦Q. This theorem is denoted as T4, whose
formal proof is given as follows.

(1) P (i) ∧ ©iQ → ©iQ TAU
(2)

∨
i∈N

P (i) ∧ ©iQ → ∨
i∈N

©iQ INM
(3)

∨
i∈N

©iQ ↔ ♦Q T3
(4)

∨
i∈N

P (i) ∧ ©iQ → ♦Q SUB (2) (3)

The intuition of T4 is that the indexed expression
∨

i∈N
P (i) ∧ ©iQ implies

Q must hold at some state.
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Example 5. � ∨
i∈N

P (i)∧©iε∨�(P ∧©tt) ↔ keep(P ). This theorem is denoted
as T5, whose formal proof is given as follows. Recall that ♦P = tt ;P =
(tt , P ) prj ε for any formula P .

(1) keep(P ) ↔ ε ∨ P ∧ ©keep(P ) T1
(2) ¬(©tt → P ) → ¬(P ∧ ©tt) TAU
(3) ε → ε TAU
(4) ♦¬(©tt → P ) → ♦¬(P ∧ ©tt) PRM (2) (3)
(5) (♦¬(©tt → P ) → ♦¬(P ∧ ©tt)) → (�(P ∧ ©tt) → keep(P )) TAU
(6) �(P ∧ ©tt) → keep(P ) MP (4) (5)
(7)

∨
i∈N

P (i) ∧ ©iε ∨ �(P ∧ ©tt) ↔ keep(P ) REI (1) (6)

Intuitively, the formula
∨

i∈N
P (i)∧©iε∨�(P ∧©tt) with an indexed expres-

sion means that the current interval is either finite or infinite and P keeps holding
at every non-final state, which is equivalently characterized by the well-formed
formula keep(P ).

Example 6. � P UQ ↔ inf ∧ ∨
i∈N

P (i) ∧ ©iQ. This theorem is denoted as T6,
whose formal proof is given as follows. Recall that P UQ = inf ∧ ∨

i∈N
(P ∧

¬Q)(i) ∧ ©iQ.

(1)
∨

i∈N
P (i) ∧ ©iQ ↔ Q ∨ ∨

i∈N
P ∧ ©P (i) ∧ © ©i Q INR

(2)
∨

i∈N
P ∧ ©P (i) ∧ © ©i Q ↔ P ∧ ∨

i∈N
©P (i) ∧ © ©i Q INA

(3)
∨

i∈N
P (i) ∧ ©iQ ↔ Q ∨ P ∧ ∨

i∈N
©P (i) ∧ © ©i Q SUB (1) (2)

(4) ©(P (i) ∧ ©iQ) ↔ ©P (i) ∧ © ©i Q NXA
(5)

∨
i∈N

P (i) ∧ ©iQ ↔ Q ∨ P ∧ ∨
i∈N

©(P (i) ∧ ©iQ) SUB (3) (4)
(6)

∨
i∈N

©(P (i) ∧ ©iQ) ↔ ©∨
i∈N

P (i) ∧ ©iQ INN
(7)

∨
i∈N

P (i) ∧ ©iQ ↔ Q ∨ P ∧ ©∨
i∈N

P (i) ∧ ©iQ SUB (5) (6)
(8) Q ∨ P ∧ ©∨

i∈N
P (i) ∧ ©iQ

↔ Q ∨ P ∧ ¬Q ∧ ©∨
i∈N

P (i) ∧ ©iQ TAU
(9)

∨
i∈N

P (i) ∧ ©iQ ↔ Q ∨ P ∧ ¬Q ∧ ©∨
i∈N

P (i) ∧ ©iQ SUB (7) (8)
(10)

∨
i∈N

P (i) ∧ ©iQ → ♦Q T4
(11)

∨
i∈N

(P ∧ ¬Q)(i) ∧ ©iQ ↔ ∨
i∈N

P (i) ∧ ©iQ REF (9) (10)
(12) (

∨
i∈N

(P ∧ ¬Q)(i) ∧ ©iQ ↔ ∨
i∈N

P (i) ∧ ©iQ)
→ (P UQ ↔ inf ∧ ∨

i∈N
P (i) ∧ ©iQ) TAU

(13) P UQ ↔ inf ∧ ∨
i∈N

P (i) ∧ ©iQ MP (11) (12)

T6 indicates that the representation of P UQ can be simplified by replacing
the indexed expression

∨
i∈N

(P ∧ ¬Q)(i) ∧ ©iQ with a relatively concise one
∨

i∈N
P (i) ∧©iQ. Intuitively, the former indexed expression means that P holds

until Q holds for the first time, and the latter indexed expression means that P
holds until sometimes Q holds. These meanings are actually equivalent.

5 Soundness

An observation about the examples presented in the previous section is that
many theorems of the proof system Π coincide with the logic laws of PPTL.
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For instance,
∨

i∈N
©iQ ↔ ♦Q is a theorem (T3), and there is a logic law∨

i∈N
©iQ ≡ ♦Q which means the formula

∨
i∈N

©iQ ↔ ♦Q is valid.
In fact, this is a universal phenomenon. We are going to show that the proof

system Π is sound, i.e., each theorem proved by Π is valid.
For this, we first establish the soundness of axioms and inference rules of

Π. On the one hand, each axiom is a valid formula. On the other hand, the
conclusion formula of each inference rule is valid, provided all the hypothesis
formulas are valid.

Theorem 1 (Soundness of Axioms and Inference Rules). Each axiom or
inference rule of Π is sound, in that

1. |= P if P is an axiom of Π, and

2. |= P if
P1 · · · Pn

P
is an inference rule of Π (n ≥ 1) and |= Pi for each

1 ≤ i ≤ n.

The proof of Theorem1 is presented in the Appendix of this paper.
As a natural deduction of Theorem1, every formula proved by Π is valid.

That is, the proof system Π is sound.

Theorem 2 (Soundness ofΠ). For each PPTL formula P , � P implies |= P .

Proof. � P means there is a formal proof P1, . . . , Pn (n ≥ 1) with Pn = P .
According to Theorem 1, |= Pi for each 1 ≤ i ≤ n. This involves |= P . ��

6 Conclusions

In this paper, we develop a proof system Π for PPTL with indexed expressions,
which is a unified temporal logic that subsumes the well-used LTL. Specifically,
Π consists of axioms and inference rules for formal derivation of both basic
PPTL constructs and indexed expressions. We provide a few examples to show
how the proof system works. In addition, we demonstrate Π is sound in that
every formula proved by Π is valid.

In the near future, we are going to prove the completeness of Π, i.e., every
valid formula can also be proved formally by Π. This may be achieved by study-
ing the normal form of indexed expressions and then making structural induction
based on the normal form. We also plan to explore more meaningful styles of
indexed expressions other than

∨
i∈N

Qi and
∨

i∈N
P (i) ∧ ©iQ, including their

logic laws and relation with specific recursive equations. Which styles of indexed
expressions have equivalent well-formed formulas is still an open question.
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Appendix

This appendix presents the proof of Theorem1.

Proof. We only need to prove the soundness of axioms and inference rules in ΠI .
The soundness of axioms and inference rules in ΠB has been proved in [8].

(IST) For any interval σ, we have

σ |= ∨
i∈N

Qi

⇐⇒ σ |= Qi for some i ∈ N

⇐⇒ σ |= ε or σ |= Qi for some i ≥ 1
⇐⇒ σ |= ε or σ |= Q+

which indicates σ |= ∨
i∈N

Qi ↔ Q∗. Recall that Q∗ = ε ∨ Q+.
(INS) For any interval σ, we have

σ |= R[i]
=⇒ σ |= R[i] for some i ∈ N

⇐⇒ σ |= ∨
i∈N

R[i]

which indicates σ |= R[i] → ∨
i∈N

R[i].
(INR) For any interval σ, we have

σ |= ∨
i∈N

R[i]
⇐⇒ σ |= R[i] for some i ∈ N

⇐⇒ σ |= R[0] or σ |= R[i + 1] for some i ∈ N

⇐⇒ σ |= R[0] or σ |= ∨
i∈N

R[i + 1]

which indicates σ |= ∨
i∈N

R[i] ↔ R[0] ∨ ∨
i∈N

R[i + 1].
(INA) For any interval σ, we have

σ |= ∨
i∈N

P ∧ R[i]
⇐⇒ σ |= P ∧ R[i] for some i ∈ N

⇐⇒ σ |= P and σ |= R[i] for somei ∈ N

⇐⇒ σ |= P and σ |= ∨
i∈N

R[i]

which indicates σ |= ∨
i∈N

P ∧ R[i] ↔ P ∧ ∨
i∈N

R[i]. The proofs of (INO), (INN)
and (INC) are similar.

(INM) Suppose |= R[i] → R′[i]. Then, for any interval σ, σ |= R[i] implies
σ |= R′[i]. So, for any interval σ, σ |= R[i] for some i ∈ N implies σ |= R′[i] for
some i ∈ N, which means σ |= ∨

i∈N
R[i] implies σ |= ∨

i∈N
R′[i], or equivalently

σ |= ∨
i∈N

R[i] → ∨
i∈N

R′[i].
(REF) Suppose |= R ↔ Q∨P ∧©R and |= R → ♦Q. Then, R ≡ Q∨P ∧©R

and R ⊂ ♦Q. According to Lemma 2,
∨

i∈N
P (i) ∧ ©iQ ≡ R, which means

|= ∨
i∈N

P (i) ∧ ©iQ ↔ R. The proof of (REI) is similar. ��
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