
Apara: Workload-Aware Data Partition
and Replication for Parallel Databases

Xiaolei Zhang2, Chunxi Zhang2, Yuming Li2, Rong Zhang1,2(B),
and Aoying Zhou2

1 International Research Center of Trustworthy Software,
Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University, Shanghai, China
2 School of Data Science and Engineering,

East China Normal University, Shanghai, China
xiaoleizhang.ecnu@gmail.com, {cxzhang,liyuming}@stu.ecnu.edu.cn,

{rzhang,ayzhou}@dase.ecnu.edu.cn

Abstract. Data partition and replication mechanisms directly deter-
mine query execution patterns in parallel database systems, which have
a great impact on system performance. Recently, there have been some
workload-aware data storage techniques, but they suffer from problems
of narrow support to complex workloads or large requirements for stor-
age. In order to enable the support for complex analytical workloads
over massive distributed database systems, we design and implement a
workload-aware data partition and replication tool, called Apara. We
design two heuristic algorithms and define two cost models for effective
data partition calculation and efficient replication usages. We run a set
of experiments to compare and demonstrate the performance between
Apara and the other representative work. The results show that Apara
consistently outperforms the primary solutions on TPC-H workloads.

Keywords: Distributed database · Workload-aware storage ·
Partition · Replication

1 Introduction

As the explosion of data and severe requirement of massive query processing
ability, parallel database systems and parallel data processing platforms are
developed. Generally, they horizontally partition large amounts of data to dis-
tributed nodes in order to provide parallel data processing capabilities for ana-
lytical queries. One of the major challenges when horizontally partition data is to
achieve low data transferring for executing analytical queries [4,9,14,20]. Data
partition and replication are the main technology to reduce the processing cost
for those analytical workloads, which shall guarantee process parallelization and
data locality. The traditional approach splits each table on some key, using hash
or range partition. Hash partition is good for the point query, and range partition
c© Springer Nature Switzerland AG 2019
J. Shao et al. (Eds.): APWeb-WAIM 2019, LNCS 11642, pp. 191–206, 2019.
https://doi.org/10.1007/978-3-030-26075-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26075-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-26075-0_15

192 X. Zhang et al.

makes data within a given range of the partition key in the same partition. This
helps queries that have selection predicates involving the key go faster, but does
not affect the performance of queries without the split key attribute. we demon-
strate the critical impact of remote data transferring on query performance in
Fig. 1. The test workload is Q3 in benchmark TPC-H [17], shown in Fig. 2. This
experiment is conducted on Greenplum which is deployed on 9 nodes equipped
with the Gigabit network (more details presented in Sect. 5). Traditional hash
partition based on primary keys or randomly selected attributes have much worse
performance compared to our Apara. Apara can significantly improve the query
performance by 82.2% compared to key-based partition scheme.

Traditionally, hash or range partitioning to data can improve the perfor-
mance of queries involving the key in selection predicates. For join operators,
queries will benefit by co-partition technology on the join attributes. However
this method may not be suitable for complex scheme, which can only be used to
a subsets of tables sharing the join keys. Oracle [4] proposes a reference partition
method REF, and it co-partitions a table by another table that is referenced by
an outgoing foreign key. It can avoid duplicating the partition key columns and
improve the data integrity. But it cannot be used to optimize the network trans-
mission in distributed environment. Predicate-based reference partition method
PREF [20] is a partition scheme that allows to co-partition tables based on given
join predicates. However, if there is a deep cascading reference relationship in the
schema, substantial data redundancy will be stored in child tables. AdaptDB [9]
is a work of adaptive data partition. But it has a strong assumption that reading
a remote disk is similar as a local disk and it is unrealistic currently.

Fig. 1. Query latencies with different
partition schemes

Fig. 2. Q3 in TPC-H

In this page, we propose Apara, a workload-aware distributed partition and
replication tool enabling data distribution effectively and efficiently for parallel
database systems. With the input of target application workloads and corre-
sponding database schema, Apara can find an appropriate storage mode tailored
for the application by near-optimal algorithms. In summary, we make the fol-
lowing major technical contributions:

– We propose a workload-aware data partition tool Apara with data partition
and replication mechanisms for complex analytical workloads. It is the first

Apara 193

work to optimize the data transfer cost for production environment, which
can support the complicated workload with the multiple TPC-H style queries.

– We design two near-optimal algorithms which are greedy algorithm and
genetic algorithm for partition configuration generation with detailed anal-
ysis for the efficiency of our algorithms. We define two cost models, which
consider data transferring cost and data replication cost, respectively. It is
the first work to limit data redundancy in considering optimizing query pro-
cessing performance.

– We present extensive experimental results to show that Apara has excellent
performance on TPC-H workloads and outperforms the other methods.

The rest of this paper is organized as follows. Section 2 describes the overview
of Apara. Section 3 presents the methods designed for data partition. Section 4
shows the details of the cost models for both network and replication. Section 5
gives an experimental study. Section 6 describes some related work and Sect. 7
concludes the paper.

2 Overview of Apara

In this paper we provide an workload-Aware data PArtition and ReplicAgtion
tool (Apara for short) for complex join processing with the purpose of finding
the optimal partition strategy for each table. Apara can be used as a peripheral
tool or embedded in the storage layer as a part of the physical design of the
database.

Fig. 3. Schema reference in TPC-H

2.1 Preliminary and Definition

Through the paper, we take the analytical queries in TPC-H as example. The
reference relationship and a simplified partition schema among tables are drawn
in Fig. 3. The solid arrow line stands for the reference relationship among
tables and dotted line is an example of partition configuration. We can see
that if table ORDERS is hash partitioned on its primary key orderkey, then
table LINEITEM can be co-partitioned using the outgoing foreign key fk to

194 X. Zhang et al.

ORDERS. Apara uses hash partition method by default for tables to ensure
that the data distributed to each node is roughly balanced. In order to make the
description easy, we use capital letter S, W and T to represent schema, work-
load set and tables. We use A and a to represent attribute set and any single
attribute respectively.

Definition 1. Partition Attribute Set AT : For table T , there are m join
attributes {ak} (0 ≤ k ≤ m − 1). We call these m attributes partition attribute
set for T , represented as AT .

One table may join with several other tables having m join attributes, but there
is only one attribute a, a ∈ AT for partition. For example, in Fig. 3, NATION
joins with SUPPLIER, CUSTOMER and REGION. Then ANATION =
{nationkey, regionkey}.

Definition 2. Partition Configuration P : P is a collection of pairs like
<T, a>, where for table T , it selects attribute a, a ∈ AT as its partition attribute.
If we have n tables, then |P | = n.

Definition 3. Problem Definition: Given a schema S involved in workload W,
find a good partition P for W such that network transferring C(P) is mini-
mized,i.e.,

argpmin C(P)
subject to select a for T,

∀ a ∈ AT ,∀ T ∈ S.

Apara is designed to find a partition configuration P defined in Definition 2,
which can help to reduce data transferring cost in distributed environment
defined in Definition 3.

2.2 Cost Model

Data transferring among distributed nodes costs the most for distributed query
processing. Data partition quality in distributed environment determines the
amount of data transferred remotely. The amount of data transferred between
nodes is then used to evaluate the data locality.

costPD(W) =
∑

qi∈W

CostPD(qi) (1)

Where costPD(W) is the total cost of data transferring for workload W under
partition configuration P and CostPD(qi) is the cost for query qi decided by its
involved join operations.

For a cluster with M nodes, the data transferring cost for TA �� TB is calcu-
lated as follows:

CostTA��TB

D =

⎧
⎪⎨

⎪⎩

0, if co − partition

min(SA, SB) × M−1
M , if shuffle join

min(SA, SB) × (M − 1), if copy − based

(2)

Apara 195

Where SA and SB are the data of TA and TB that takes part in the join
operation. For co-partition, there is no additional data transferring. If we take
shuffle join, we should shuffle the data of small table in one node to all other
(M −1) nodes. Supposing SA is the smaller one and each node stores 1

M parts of
SA, when shuffle starts, the shuffling data size of each node is Dshuffle = M−1

M ×
|SA|
M and the total shuffling size is then Dshuffle = Dshuffle ×M = M−1

M ×|SA|.
If table is small enough, we can just copy it to the other M − 1 nodes.

2.3 Apara Architecture

Apara is designed sensitive to the changes in underlying workloads by enabling
the distributed database system to partition and replicate data for improving
the join performance. Figure 4 shows the main components of Apara. Inputs to
Apara are the database schema and historical query workloads expressed as the
query trees. We provide three different tunning algorithms for data distribution,
which are optimal partition, greedy partition and genetic partition algorithms.
The partition strategy is evaluated by our cost models, which consider data
transferring without replication cost (Network-based Cost) and data transferring
with replication cost (Network and Replication Cost) respectively. Finally the
partition and replication configuration are generated.

From the input database schema, we can get all the table information,
e.g. table name and table size. The historical executed query workloads are
abstracted as query trees. Each query tree generally involves multiple join oper-
ations. Each join operation in the tree has the information about the two join
tables, the join attributes, the filter conditions, filter ratio of each table, and the
size of join intermediate result set. An example of query tree is shown in Fig. 2,
where the number is the data size.

Fig. 4. Overview of Apara architecture

The Optimal Partition module OPA tries a traversal search method to find
the optimal data partition strategy. But when the number of tables involved with

196 X. Zhang et al.

join operations in W is large, it is impossible to traverse all possible candidate
partitions because this is a NP-hard problem. So we design new heuristic search
strategies to solve this problem. Greedy Partition algorithm GyPA is designed
by the guide of the data transferring cost among all joins in W , and the Genetic
Partition algorithm GePA is designed to seek the potential optimal data par-
tition configuration by mapping data partition problem to genetic evolution of
nature species. Besides data partition, replication is another way for enhancing
data locality. However, copying all the data to the nodes involving with them is
obviously unreasonable, because it will generate a lot of redundancy. Then the
number of copies and redundant usage of storage resources should be control-
lable.

3 Workload-Aware Partitioning Algorithm

3.1 Optimal Partition Algorithm OPA

The simplest search algorithm is to traverse all partition candidates and then
select the partition configuration P with the least transfer cost as shown in Algo-
rithm 1, where we have n tables for partition and each table has its own partition
attributes in PAS. Line 4–11 is the recursive code for finding all the partition
candidates in allPartitionConfig. After having all the partition candidates, Line
12 computes the data transferring cost CostPD of every partition configuration
P and Line 13 selects the partition with the least cost as the optimal partition
configuration. There are N tables involved in join operations with |P | = N .
The number of average potential partition key of each table is M . Then the time
complexity of the traversal search is O(MN). Clearly when there are many tables
in the workload, the search space will be too large to traversing all the partition
candidates in limited time. Therefore, we design following heuristic algorithms
to solve this problem.

Algorithm 1. Optimal Partition Algorithm: OPA
Input: historical workload W, partitionAttributeSets PAS
Output: partition configuration P

1 allPartitionConfig ← ∅;
2 partitionConfig ← ∅;
3 n = |PAS|, i = 0;
4 getAllParCandidate(allPartitionConfig, i, partitionConfig){
5 if i == n then
6 add(partitionConfig, allPartitionConfig); % find one candidate
7 return ;

8 for (j = 0; j < |ATi |, ATi ∈ PAS; j++) do
9 select one partition attribute aTi

j ∈ ATi into partitionConfig ;
10 getAllParCandidate(allPartitionConfig, i++, partitionConfig);

11 }
12 computer CostPD, P ∈ allPartitionConfig for each partition candidate;
13 return partitionConfig with the least cost;

Apara 197

3.2 Greedy Algorithm for Partitioning GyPA

For join between two tables in distributed environment, the network transfer-
ring cost will be different according to the selected partition attributes and
the join attributes. Generally there are five kinds of join options summa-
rized in Table 1, which are left table shuffle(LS), right table shuffle(RS), co-
partition(CP), left table shuffle plus right table shuffle(LSRS), table copy(TC).
Let’s take a look at the join segment “select * from NATION,REGION
where NATION.regionkey=REGION.regionkey” for example, involving table
NATION (size = 15) and REGION (size = 5) with join attribute regionkey.
Selecting different partition attributes, the join costs are different as calculated
in Eq. 2, with M = 5 as the number of involved distributed nodes:

1. The partition attribute is regionkey for both NATION and REGION. Two
tables can be co-partitioned with minimal cost 0 ;

2. The partition attributes for NATION and REGION are nationkey and region-
key, respectively. If we perform a shuffle join in NATION according to region-
key attribute, the cost of shuffle join RS is M−1

M ∗ |Nation| = 4
5 × 15 = 12.

However, if we broadcast REGION to all other nodes, the TC broadcast cost
is (M − 1) × |Region| = 4 × 5 = 20. Shuffle join is preferred in this case.

3. The partition attributes of NATION and REGION are regionkey and any
non-key attribute, e.g. name, respectively. If we perform LS shuffle join in
REGION according to regionkey, the cost is M−1

M × |Region| = 4
5 × 5 = 4.

However, when NATION is broadcast to all other nodes, the TC broadcast
cost is (M − 1) × |Nation| = 4 × 15 = 60. Obviously, we should shuffle
REGION table instead of copying the NATION table.

4. Neither of the partition attribute of NATION or REGION is the join
attribute, e.g. nationkey for NATION and name for REGION. If we perform
LSRS shuffle join both in REGION and NATION according to regionkey
attribute, the cost is M−1

M ×|Nation|+ M−1
M ×|Region| = 4

5 ×15+ 4
5 ×5 = 16.

If one of the two tables is broadcast to the other nodes, the TC cost is
min((M − 1) ∗ |Nation|(M − 1) ∗ |Region|) = min(60, 20) = 20. Obviously,
we should copy REGION table instead of shuffling the two tables.

Table 1. Example Cost Table for R, S and T (where ‘−1’ is the unavailable partition)

(a) Initial Table

join
cost LS RS CP LSRS TC

R.c2, S.c2 4 12 0 -1 5
S.c2, T.c2 12 32 0 -1 15

(b) Updated Table

join
cost LS RS CP LSRS TC

R.c2, S.c2 4 -1 0 -1 5
S.c2, T.c2 -1 -1 -1 -1 -1

Join cost can be calculated in advance using query trees and database schema.
In order to reduce the cost during SQL execution as much as possible, we should

198 X. Zhang et al.

try to filter the expensive join ways as early as possible. So the greedy strategy
GyPA is to fill the join cost table shown in Table 1, avoid the costly join strategy
and select the least cost join method as far as possible.

Algorithm 2 gives the pseudo-code for our greedy algorithm. In Table 1,
we have three tables R, S, and T; we have two joins j1 = R ��

R.c2=S.c2
S and

j2 = S ��
T.c2=S.c2

T . We first initialize the join cost table JoinTable in Line 3,

shown in Table 1(a). For the join tables, we iterate (Line 4–8) to find the partition
attributes for them. First, we decide the table for checking by finding the largest
join cost in the JoinTable, which is the worst partition on key c2. In Table 1(a),
the max cost is 32 by RS for j2. For j2, partition method CP can have the
least cost 0. We can then update the partitionConfig by adding pairs <S, c2>
and <T, c2> as in Line 7. For the selected partition attributes, we recalculate
and update JoinTable and get a new one shown in Table 1(b) as in Line 8.
In distributed environment, we may need to partition the other tables, which
are not involved in any joins and are then tackled by hashing acquiescently on
their primary key in Line 9. Notice that we select the attribute in partition
table instead of the shuffle table to update partitionConfig. For example, if LS
generates the least cost, the second table and its partition attribute pair is
selected to join partitionConfig. If CP generates the least cost, both table and
partition attribute pairs should be inserted to partitionConfig.

Algorithm 2. Greedy Algorithm for Partition: GyPA
Input: historical workload W, schema S
Output: partition configuration P

1 partitionConfig ← ∅;
2 JoinTable ← ∅;
3 fillJoinTable(JoinTable, W, S);
4 while !isAllUpdate() do
5 Key = getMaxCost(JoinTable);
6 Key = getMinCostByKey(JoinTable, Key);
7 add Key to partitionConfig ;
8 update(JoinTable);

9 process the other tables;
10 return partitionConfig ;

Supposing the size of JoinTable is n. In cost computing phase, we need
traverse all the lines of JoinTable, so the time complexity is O(n). When we
locate the maximum cost and do updation to JoinTable, we may update all the
other lines of the table, and the time complexity is O(n2). So the time complexity
of GyPA is O(k ∗n2), where k is the number of tables involved with joins. But in
fact, the method always makes the best choice in current view which is a local
optimal solution and does not consider global optimization.

Apara 199

Fig. 5. Example individual for TPC-H

3.3 Genetic Algorithm for Partitioning GePA

We design a new heuristic algorithm based on the traditional genetic algo-
rithm [19] shown in Algorithm 3 to find a global optimal partition configura-
tion. First, we do individual encoding and population initialization in Line 2,
where each individual corresponds to a partition configuration and the geno-
type of individual is the partition attribute selected for each table. Individual
is represented as an array. We represent the individual for TPC-H as an eight-
size array, indexed from 0 to 7 for the eight tables (key part). The value for
each item is the index of the selected partition attribute, shown in Fig. 5. For
example, NATION has four join key candidates, which are nationkey, regionkey,
name, comment. The value for NATION is 1, representing nationkey selected as
its partition key. So Fig. 5 gives an example individual value as {01002003}. The
number of individuals defined in the initial population is left as an adjustable
parameter according to the scale of the problem. The given initial population
size in this paper is 10.

Definition 4. Selection Probability: Supposing the population size is N and
one optional partition configuration is Pi, the Selection Probability of Pi =

CostiD∑
i∈N CostiD

.

In the context of our work, the size of data transferring under each partition
configuration is the indicator to measure the quality of individuals. We take the
size of data transferring as the fitness function for gene evolution, which is also
known as the evaluation function and used to select the superior and eliminate
the inferior ones in population. The larger the data transferring CostD, the worse
the individual fitness and the more likely to be eliminated. Choosing good par-
tition configurations from the population and eliminating bad ones is executed
in each round of iteration shown in Line 4–8 in Algorithm 3. We implement
Roulette Selection for gene evolution. Roulette Selection does gene evolution
based on Selection Probability defined in Definition 4, which reflects the ratio
of the fitness of Pi to the total individual fitness of the entire population. The
higher the Pi, the higher the probability of being selected as a bad individual.
Line 6 is Crossover Operation, which can generate new partition configurations
by randomly exchanging some genes of two individual in the population accord-
ing to the crossover mode. CrossOne, also known as simple crossover, refers to
the random setting of an intersection point in the individual gene string, then

200 X. Zhang et al.

randomly selecting two individuals as the parent individuals, exchanging the
part of gene block behind their intersection point, and then generating two new
child individuals. Line 7 is Variation Operation, which generates a new partition
configuration with the possibility of gene changes. The iteration is controlled by
predefined parameter iterNum.

Algorithm 3. Genetic Algorithm for Partition: GePA
Input: historical workload W, schema S, iterationNumber iterNum
Output: partition configuration P

1 partitionConfig ← ∅;
2 PL = initPopulartion(W, S);
3 iter = 0;
4 while iter < iterNum do
5 rouletteSelection (PL);
6 crossOne(PL);
7 partitionConfig = variation(PL);
8 iter++;

9 return partitionConfig ;

In Algorithm 3, new individuals are generated and the population is updated
through CrossOver, Selection, and Variation steps. By continuous iterating, the
partition configuration with higher cost is eliminated, and finally the optimal
data partition configuration is obtained. Supposing the number of individual in
population is N , the time complexity of the selection phase is O(N ∗ o(N)),
where o(N) is the time complexity for computing individual fitness, the time
complexity of the crossover phase is O(N/2) and the variation phase is O(N).
So the average time complexity is O(iterNum ∗ N ∗ o(N)).

4 Replication-Based Partition Algorithms

Distributed data replication can avoid data transferring with the cost of extra
storage [20]. Full redundancy is infeasible especially for big data and we should
find an appropriate replication strategy to minimize the data transferring cost
with respect to a specified storage space.

4.1 Mixed Cost Model

A good replication strategy can effectively reduce the data transferring of dis-
tributed joins and utilize less data redundancy meanwhile. We construct a new
cost model by weighting the cost of both data transferring and data redundancy:

CostPD,C(W) = α × CostPD(W) + β × CostC(W) , α + β = 1 (3)

Where CostPD,C(W) is the cost considering both data transferring CostPD(W)
as in Eq. 2 and data replication CostC(W), with respective to workload W ,
partition strategy P and replication strategy C. α and β are weight parameters
to specify the importance of data transferring and the data storage.

Apara 201

4.2 Greedy Algorithm Based on Data Replication

Intuitively, data that is frequently joined remotely needs to be replicated, which
can be obtained in advance by analyzing workload W and schema S. Since we
may have redundant storage limitations, we evaluate data replication usefulness
by Eq. 4.

CostU =
CostD
CostC

(4)

Where CostU is per unit data transferring cost with respect to redundancy.
The higher the value, the more useful the data.

We do some modification to GePA in Sect. 3.2 for considering data repli-
cation. Running Algorithm 2, it generates the partition configuration without
replications. We then calculate unit network cost for all the data blocks involved
in all the filter conditions, which are sorted in descending order. With respect to
the pre-specified space for replications, we greedily select useful data for repli-
cation.

4.3 Genetic Algorithm Based on Mixed Cost Model

We improve our genetic algorithm Algorithm 3 by combining the replication
strategy. We replace the fitness function by CostPD,C(W). We extend the indi-
vidual chromosome to two parts which are the original partition feature and
current replication feature, as shown in Fig. 6. We add all the filters in work-
loads to the array as the replication feature, which generates potential replica-
tion data candidates. If the value for the item in replication feature is set to 1, it
means data for this filter condition is preferred for replicating. The main idea of
CrossOver, Selection, and Variation is roughly similar to Algorithm 3 and will
not be repeated here.

Fig. 6. Extended individual Fig. 7. Total runtime of
all TPC-H queries

202 X. Zhang et al.

5 Evaluation

Apara is an assistant module for any database administrators with suggestions
about partition configuration and replication strategy. We then run experiments
in an open source database called GreenPlumDB [6]. We deploy GreenPlum
(v.4.3) on an cluster which includes a master node and other 9 segment nodes.
Each node contains two segments. For each table the data is partitioned accord-
ing to the partition key by Hashing acquiescently and then divided among the
segment nodes. Each machine has two 2.00 GHz 6-Core Intel(R) Xeon(R) E5-
2620 processes, 120G RAM and 3.6 T local storage. The machine is running on
CentOS 6.5.

We select complex workloads in TPC-H [17] for our experiments, which have
22 query templates containing more than sixty join operations. We use IPtraf [8]
to collect the information of data transferring among network. Default database
size is 20 GB (SF = 20) and the default replication space is set to 2GB on each
node. Processing efficiency is evaluated by query latency, which is the total
running time of the set of test workloads. In order to reduce cache influence, we
run each set of experiments five times and take the average latency.

For comparison, we implement PK (primary key-based partition) and the
idea in PREF [20] which is the latest work for locality aware query processing. In
our design, we evaluate OPA, GRP (GyPA algorithm), GEP (GePA algorithm),
GRPR (GyPA with replication), and GEPR(GePA with replication) in detail.

5.1 Comparison with PREF

In Fig. 7, we compare our method Apara implementing GRP with PREF [20],
OPA and PK methods. We can find that Apara is better than PREF without
any replication. Though OPA is the best one, its running time is unacceptable
for its full traversal, which is infeasible for realistic applications when involving
many tables. PREF is implemented with data replication if there is any ref-
erence relationship among tables. For Apara, if our partition uses replication,
e.g., GRPR, we can get much better performance, which will be shown in the
following paper. Moreover, PREF is implemented together with the modifica-
tion to query processing module. So it is difficult to be applied. So next, we run
experiments to compare different algorithms in Apara to show the performance.

5.2 Overview of the Performance Improvement

We compare the algorithms in Apara in Fig. 8(a). The query latency of GRP out-
performs PK by 51.21%, GEP outperforms PK by 68.93%. When using repli-
cation, GRPR and GEPR can improve better, which are 71.11% and 73.54%
compared to PK respectively. Figure 8(b) compares the network transfer cost
with different segment nodes from 1 to 8. As we know, disk access and network
transfer account for the majority time of query processing. In order to show
the effect of network transfer, we set the effective cache size of GreenPlum
to 30GB, which are huge enough to avoid disk access. IPtraf collects network

Apara 203

transfer size for all the workloads. When there is only 1 nodes, no data trans-
fer occurs. It is easy to see that with replication we can reduce network transfer
cost, which are GRPR and REPR. Genetic−based methods are generally better
than Greedy − based methods.

(a) Query Latency for Different Methods (b) The Network Transfer Cost

Fig. 8. Overview of the performance improvement

Fig. 9. Query latency with data size Fig. 10. Query latency with network
size

Since GRPR and GEPR are based on GRP and GEP with pre-specified
storage spaces, which make better performance, the scalability of both GRPR
and GEPR are decided by GRP and GEP. So we only demonstrate the scalability
of GRP and GEP in the following paper.

5.3 Algorithm Scalability

Scalability to Data Size: Figure 9 shows the query latency of GRP and GEP
with different scale factors (SF = 1, 5, 10, 20, 30, 50, 100). We also calculate the
speedup of GRP, GEP compared to PK. For the growth of data size will increase
data transfer among nodes, query latency grows up for all three methods. But
GEP wins the best scalability.

204 X. Zhang et al.

Speedup is increasing until SF = 10. This happens because of the bottleneck
of system resources. When SF is greater than 10, CPU utility consumes almost
100% and it becomes the bottleneck. Then the latency caused by resource com-
petition is more obvious than network transferring.

Scalability to Network Size: Figure 10 compares the query latency of GRP,
GEP and PK under different Network size. When the number of node is 1, the
query latency of these three partition configuration is almost the same, since
there is no data transferring. As we increase the number of nodes, though data
transferring among nodes will increase, parallel distributed query processing will
improve performance. However GEP can effectively reduce more network cost.
So GEP gets the best performance. Moreover, we can see the speedup ratio in
Fig. 10 increases with the increase of nodes, so our algorithms can work well in
distributed environment and have a good scalability.

Scalability to Complex Workloads: Figure 11 shows the query latency under
different numbers of queries, which are selected randomly from the 22 TPC-H
workloads. It compares the performance of GRP, GEP and PK. We can see that
Apara’s algorithms can still achieve better performance when we have larger
number of workloads.

Fig. 11. Query latency with workload
size

Fig. 12. Apara execution time with
workload size

5.4 Apara Efficiency

Figure 12 shows the total execution time of Apara tool to get all the partition
configuration suggestions for our four algorithms, which are GRP, GEP, GRPR
and GEPR. Execution time of Apara approximatively linearly increases with
the growth of queries selected randomly from TPC-H. Apara can get all the
partition and replication configurations in a short time period, which makes it
applicable for production environment.

Apara 205

6 Related Work

In order to avoid expensive remote join operations, data partition and replication
are the feasible options for improving query performance [3,15]. Data partition
can be used for both OLTP workloads [2,12,13] but also for OLAP workloads.
Horizontally partition is commonly used in traditionally databases area [18]. Co-
partition large tables can effectively avoid remote join operations [5]. However,
in complex schemata with increasing number of tables, not all tables can be co-
partitioned. Oracle [4] introduces a method REF to partition tables by reference
relationships. However, this method simply partitions tables by foreign keys and
does not consider the other relationships in join operators. Predicate-based refer-
ence partition [20] PREF is a partition scheme that allows to co-partition sets of
tables based on given set of join predicates. However, if a referenced table in the
PREF scheme contains duplicates, the referencing table will inherit those dupli-
cations as well, which may lead to a large size of redundancy. AdaptDB [9] and
Amoeba [16] propose the adaptive partition mechanisms. Amoeba is designed
for reducing remote disk access considering all filters conditions instead of joins.
AdaptDB extends it by supporting optimization for data access in join opera-
tions, but it still has strong assumptions which is that remote disk access is the
same as local disk access. There are some other work [1,11] designed based on
revising query execution plans which is not applicable for production environ-
ment. Navathe [10] and HYRISE [7] are two vertical partition methods which
focus on disk-based systems and main-memory resident data processing systems,
respectively. Apara will consider to add vertical partition for data distribution
in future.

7 Conclusion

In this paper, we present Apara, a workload-aware storage distribution guid-
ance tool for complex OLAP workloads with the purpose to reduce the network
cost and improve query performance in distributed environment. We firstly dis-
cuss the optimal partition algorithm, which is time consuming for large size of
applications. Then we present two heuristic algorithms to find the potential opti-
mal solutions. Finally, we consider to use pre-specified replication into our cost
model and use it in our heuristic algorithms to further improve the performance
of Apara. Our experiments show that Apara works well for complex workloads
in distributed environment.

Acknowledgment. We are supported by National Key Projects (No. 2018YFB100-
3404) and National Science Foundation of China (No. 61572194).

206 X. Zhang et al.

References

1. Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and horizontal partition-
ing into automated physical database design. In: SIGMOD (2004)

2. Curino, C., Jones, E., et al.: Schism: a workload-driven approach to database repli-
cation and partitioning. In: VLDB (2010)

3. DeWitt, D.J., Ghandeharizadeh, S., et al.: The gamma database machine project.
In: TKDE (1990)

4. Eadon, G., Chong, E.I., et al.: Supporting table partitioning by reference in oracle.
In: SIGMOD (2008)

5. Fushimi, S., Kitsuregawa, M., Tanaka, H.: An overview of the system software of
a parallel relational database machine grace. In: VLDB (1986)

6. GreenPlumDB. https://greenplum.org/
7. Grund, M., Krüger, J., et al.: Hyrise: a main memory hybrid storage engine. In:

VLDB (2010)
8. Iptraf. http://iptraf.seul.org/
9. Lu, Y., Shanbhag, A., et al.: AdaptDB: adaptive partitioning for distributed joins.

In: VLDB (2017)
10. Navathe, S., Ceri, S., et al.: Vertical partitioning algorithms for database design.

In: TODS (1984)
11. Nehme, R., Bruno, N.: Automated partitioning design in parallel database systems.

In: SIGMOD (2011)
12. Pavlo, A., Curino, C., Zdonik, S.: Skew-aware automatic database partitioning in

shared-nothing, parallel OLTP systems. In: SIGMOD (2012)
13. Quamar, A., Kumar, K.A., Deshpande, A.: SWORD: scalable workload-aware data

placement for transactional workloads. In: EDBT (2013)
14. Rodiger, W., Muhlbauer, T., et al.: Locality-sensitive operators for parallel main-

memory database clusters. In: ICDE (2014)
15. Sacca, D., Wiederhold, G.: Database partitioning in a cluster of processors. In:

TODS (1985)
16. Shanbhag, A., Jindal, A., et al.: A robust partitioning scheme for ad-hoc query

workloads. In: SoCC (2017)
17. TPC-H. http://www.tpc.org/tpch/
18. Waas, F.M.: Beyond conventional data warehousing—massively parallel data pro-

cessing with greenplum database. In: BIITE (2008)
19. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)
20. Zamanian, E., Binnig, C., Salama, A.: Locality-aware partitioning in parallel

database systems. In: SIGMOD (2015)

https://greenplum.org/
http://iptraf.seul.org/
http://www.tpc.org/tpch/

	Apara: Workload-Aware Data Partition and Replication for Parallel Databases
	1 Introduction
	2 Overview of Apara
	2.1 Preliminary and Definition
	2.2 Cost Model
	2.3 Apara Architecture

	3 Workload-Aware Partitioning Algorithm
	3.1 Optimal Partition Algorithm OPA
	3.2 Greedy Algorithm for Partitioning GyPA
	3.3 Genetic Algorithm for Partitioning GePA

	4 Replication-Based Partition Algorithms
	4.1 Mixed Cost Model
	4.2 Greedy Algorithm Based on Data Replication
	4.3 Genetic Algorithm Based on Mixed Cost Model

	5 Evaluation
	5.1 Comparison with PREF
	5.2 Overview of the Performance Improvement
	5.3 Algorithm Scalability
	5.4 Apara Efficiency

	6 Related Work
	7 Conclusion
	References

