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Abstract. Knowledge graphs (KGs) are important resources for a vari-
ety of natural language processing tasks but suffer from incomplete-
ness. To address this challenge, a number of knowledge graph comple-
tion (KGC) methods have been developed using low-dimensional graph
embeddings. Most existing methods focus on the structured information
of triples in encyclopaedia KG and maximize the likelihood of them.
However, they neglect semantic information contained in lexical KG.
To overcome this drawback, we propose a novel KGC method (named as
TransC), that integrates the structured information in encyclopaedia KG
and the entity concepts in lexical KG, which describe the categories of
entities. Since all entities appearing in the head (or tail) position with the
same relation have some common concepts, we introduce a novel seman-
tic similarity to measure the distinction of entity semantics with the
concept information. And then TransC utilizes concept-based semantic
similarity of the related entities and relations to capture prior distribu-
tions of entities and relations. With the concept-based prior distributions,
TransC generates multiple embedding representations of each entity in
different contexts and estimates the posterior probability of entity and
relation prediction. Experimental results demonstrate the efficiency of
the proposed method on two benchmark datasets.

Keywords: Knowledge graph completion · Concept information ·
Representation learning

1 Introduction

Knowledge Graphs (KGs) are graph-structured knowledge bases, where factual
knowledge is represented in the form of relationships between entities. Knowledge
Graphs have become a crucial resource for many tasks in machine learning, data
mining, and artificial intelligence applications including question answering [34],
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entity linking/disambiguation [7], fact checking [29], and link prediction [44]. In
our view, KGs are an example of a heterogeneous information network containing
entity-nodes and relationship-edges corresponding to RDF-style triples (h, r, t)
where h represents a head entity, and r is a relationship that connects h to a
tail entity t.

KGs are widely used for many practical tasks, however, their completeness
are not guaranteed. Nonetheless, KGs are far from completion. For instance con-
sider Freebase, a core element in the Google Knowledge Vault project: 71% of
the persons described in Freebase have no known place of birth, 75% of them
have no known nationality, while the coverage for less frequent predicates can be
even lower. Therefore, it is necessary to develop Knowledge Graph Completion
(KGC) methods to find missing or errant relationships with the goal of improv-
ing the general quality of KGs, which, in turn, can be used to improve or create
interesting downstream applications. Motivated by the linear translation phe-
nomenon observed in well trained word embeddings [18], Many Representation
Learning (RL) based algorithms [3,15,37,41], have been proposed, aiming at
embedding entities and relations into a vector space and predicting the missing
element of triples. These models represents the head entity h, the relation r and
the tail entity t with vectors h, r and t respectively, which were trained so that
h + r ≈ t.

The objects most KGC models handle are encyclopedic KG (e.g., Freebase).
Although these models have significantly improved the embedding representa-
tions and increased the prediction accuracy, there is still room for improvement
by exploiting semantic information in the representation of entities. Generally
speaking, semantic information includes concepts, descriptions, lexical categories
and other textual information. As discussed in [12,31,35,38], it is essential to
utilize lexical KGs to help the machine to understand the world facts and the
semantics. That is, the knowledge of the language should be used. Encyclopedic
KGs contain facts such as Barack Obama’s birthday and birthplace, while lexical
KGs could definitely indicate that birthplace and birthday are properties of a
person.

Generally, each entity or relation may have different semantics in differ-
ent triples. For example, in the triple (David Beckham, place of birth, Lon-
don), David Beckham is a person, while in (David Beckham, player of, Manch-
ester United), David Beckham is a player or athlete. Unfortunately, most recent
works represent each entity as a single vector which cannot capture the uncer-
tain semantics of entities. To address the above-mentioned issue, we propose
a concept-based multiple embedding model (TransC). TransC fully utilizes the
entity concept information which represents the domains or categories of entities
in lexical KG Probase. Probase is widely used in research about short-text under-
standing [31,32,39] and text representation [12,36]. Probase uses an automatic
and iterative procedure to extract concept knowledge from 1.68 billion Web
pages. It contains 2.36 millions of open domain terms. Each term is a concept,
an instance, or both. Meanwhile, it provides around 14 millions relationships
with two kinds of important knowledge related to concepts: concept-attribute
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co-occurrence (isAttrbuteOf) and concept-instance co-occurrence (isA). More-
over, Probase provides huge number of high-quality and robust concepts with-
out builds. Therefore, we model each entity as multiple semantic vectors with
concept information, and construct multiple concepts of relations from common
concepts of related entities.

We utilize the concept-based semantic similarity to incorporate prior proba-
bility in the optimization objective. This is because all entities appearing in the
head (or tail) with the same relation have some common concepts. Therefore,
the prior distribution of the missing element could be derived from the semantic
similarity between the missing element and the others. In the “David Beckham”
example mentioned above, if the head of (David Beckham, player of, Manch-
ester United) is missing, we can predict the head is an entity with “player”
or “athlete” since we know the relation is “player of” and the tail is “Manch-
ester United”, a football club.

In summary, the contributions of this work are: (i) proposing a novel knowl-
edge base completion model that combines structured information in encyclope-
dic KG and concept information in lexical KG. To the best of our knowledge,
this is the first study aiming at combing the encyclopedic KG and the lexical
KG for knowledge graph completion (KGC) task. (ii) showing the effectiveness of
our model by outperforming baselines on two benchmark datasets for knowledge
base completion task.

2 Related Work

Many knowledge graphs have recently arisen, pushed by the W3C recommenda-
tion to use the resource description framework (RDF) for data representation.
Examples of such knowledge graphs include DBPedia [1], Freebase [2] and the
Google Knowledge Vault [8]. Motivating applications of knowledge graph com-
pletion include question answering [5] and more generally probabilistic querying
of knowledge bases [11,22]. First approaches to relational learning relied upon
probabilistic graphical models [10], such as bayesian networks [28] and markov
logic networks [25,26]. Then, asymmetry of relations was quickly seen as a prob-
lem and asymmetric extensions of tensors were studied, mostly by either consid-
ering independent embeddings [9] or considering relations as matrices instead of
vectors in the RESCAL model [23]. Pairwise interaction models were also con-
sidered to improve prediction performances. For example, the Universal Schema
approach [27] factorizes a 2D unfolding of the tensor (a matrix of entity pairs
vs. relations).

Nowadays, a variety of low-dimensional representation-based methods have
been developed to work on the KGC task. These methods usually learn con-
tinuous, low-dimensional vector representations (i.e., embeddings) for entities
and relationships by minimizing a margin-based pairwise ranking loss [14]. The
most widely used embedding model in this category is TransE [3], which views
relationships as translations from a head entity to a tail entity on the same
low-dimensional plane.
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Based on the initial idea of treating two entities as a translation of one
another (via their relationship) in the same embedding plane, several models
have been introduced to improve the initial TransE model. The newest contri-
butions in this line of work focus primarily on the changes in how the embedding
planes are computed and/or how the embeddings are combined. For example,
the entity translations in TransH [37] are computed on a hyperplane that is
perpendicular to the relationship embedding. In TransR [15] the entities and
relationships are embedded on separate planes and then the entity-vectors are
translated to the relationships plane. Structured Embedding (SE) [4] creates two
translation matrices for each relationship and applies them to head and tail enti-
ties separately. Knowledge Vault [8] and HolE [21], on the other hand, focus on
learning a new combination operator instead of simply adding two entity embed-
dings element-wise. Take HolE as example, the circular correlation is used for
combining entity embeddings, measuring the covariance between embeddings at
different dimension shifts.

Semantic information, such as types, descriptions, lexical categories and other
textual information, is an important supplement to structured information in
KGs. DKRL [42] represents entity descriptions as vectors for tuning the entity
and relation vectors. SSP [40] modifies TransH by using the topic distribution
of entity descriptions to construct semantic hyperplanes. Entity descriptions are
also used to derive a better initialization for training models [16]. With type
information, type-constraint model [13] selects negative samples according to
entity and relation types. In a similar way, TransT [17] leveraged the type infor-
mation for the representation of entity. However, TransT have to construct or
extend entity concepts from other semantic resources (e.g., WordNet), if there is
no explicit concept information in a KG. TKRL [43] encodes type information
into multiple representations in KGs with the help of hierarchical structures.
It is a variant of TransR with semantic information and it is the first model
introducing concept information.

3 Methodology

A typical knowledge graph (KG) is usually a multiple relational directed graph,
recorded as a set of relational triples (h, r, t), which indicate relation r between
two entities h and t. We model each entity as multiple semantic vectors with
concept information to represent entities more accurately. Different from using
semantic-based linear transformations to separate the mixed representation,
the proposed TransC models the multiple semantics separately and utilizes the
semantic similarity to distinguish entity semantics. Moreover, we measure the
semantic similarity of entities and relations based on entity concepts and relation
concepts.

3.1 Semantic Similarity Based on Concept

As discussed in [17], all of the entities located in the head position (or tail posi-
tion) with the same relation may have some common entity types or concepts, as
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David Beckham

Brack Obama

Taylor Swift

place_of_birth

London

Honolulu

Pennsylvania

Location, Place, Area, City, …

Location, Place, Area, City, …

Location, Place, Area, State, …

Relation Tail Entity

…, Athlete , Player, Celebrity, Person

…, Leader , Politician, Person

…, Singer , Artist , Celebrity, Person

Head Entity
Concepts of Head Entity

from Probase
Concept of Tail Entity
From Probase

Fig. 1. example showing that the entities in the head or tail of a relation have some
common concepts from the lexical KG Probase

shown in Fig. 1. In this example, all the head entities have “Person” concept and
all the tail entities have concepts of “Location”, “Place” and “Area”. Therefore,
we could see that, “Person” is the head concept of relation “place of birth”, and
“Location”, “Place” and “Area” are the tail concepts of this relation. Based on
aforementioned correlation, this paper introduces a concept-based semantic sim-
ilarity, which utilizes entity concepts to construct relation concepts. Apparently,
each relation (such as “place of birth” in Fig. 1) relates two components, and
thus each relation r has two concept sets: (i) head concept set Chead

r , consisting
of concepts of the entities occurring in the head position; and (ii) tail concept set
Ctail

r , consisting of concepts of the entities occurring in the tail position. From
the lexical KG Probase, we could distill entities appearing in the head position
of relation r to form the head entity set, denoted as Ehead

r . Similarly, the tail
entity set, denoted as Etail

r , could be constructed in the same way. Moreover,
given entity e, we denote its concept set as Ce, consisting the corresponding
concepts deriving from Probase by leveraging single instance conceptualization
algorithm [12,36,39]. With efforts above, given r relation, the corresponding
Chead

r and Ctail
r could be defined as follows:

Chead
r =

⋂

e∈Ehead
r

Ce (1)

Ctail
r =

⋂

e∈Etail
r

Ce (2)

Therefore, the semantic similarity between the relation and the head entity,
to measure the distinction of entity semantics with the concept information, is
defined as:

sim(rhead, h) =
|Chead

r

⋃
Ch|

|Chead
r | (3)

Similarly, the semantic similarity between the relation and the tail entity is:

sim(rtail, t) =
|Ctail

r

⋃
Ct|

|Ctail
r | (4)

And the semantic similarity between the head entity h and tail entity t is

sim(h, t) =
|Ch

⋃
Ct|

|Ch| (5)
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3.2 Methodology

In our perspective, the prediction probability is a conditional probability because
except the missing element, rest of the two elements in a triple are known. E.g.,
when predicting the tail entity for a triple (h, r, ?), we expect to maximize the
probability of t under the condition that the given triple satisfies the principle
h + r ≈ t and the head entity and relation are h and r. Wherein, h, r, and t
denote the embedding representation of h, r, and t respectively. Intuitively, we
could denote this conditional probability as P(t|h, r, fact), meaning that triple
(h, r, ?) is a fact, which means that the triple satisfies h + r ≈ t principle.
According to Bayes theorem [6], P(t|h, r, fact) could be reformed as follows:

P(t|h, r, fact) =
P(fact|h, r, t)P(t|h, r)

P(fact|h, r)
∝ P(fact|h, r, t)P(t|h, r) (6)

The above-mentioned Eq. 6 consists of two components: (i) P(fact|h, r, t) is
the likelihood that (h, r, t) is a fact, which is estimated by the multiple embedding
representations; (ii) P(t|h, r) is the prior probability of the tail entity t, estimated
by the semantic similarity.

Then, we describe how to estimate the prior probabilities Eq. (6). We assume
that, the prior distribution of the missing element could be derived from the
semantic similarity between the missing element and the others. For example,
when we predict t in the triple (h, r, t), the entities with more common or similar
concepts belonging to r and h, have higher probability. Hence, the semantic
similarity between t and its context (?, h, r) could be utilized to estimate t’s
prior probability:

P(t|h, r) ∝ sim(rtail, t)
αtailsim(h, t)αrelation (7)

wherein, sim(rtail, t) is the semantic similarity between the relation r and the
tail entity t, and sim(h, t) is the semantic similarity between the head entity
h and tail entity t. Furthermore, αtail ∈ {0, 1} and αrelation ∈ {0, 1} are the
concept similarity weights, because h and r have different impacts on the prior
probability of t.

Similarly, the objective of the head entity prediction is

P(h|r, t, fact) ∝ P(fact|h, r, t)P(h|r, t) (8)

This paper also estimates prior probability Eq. (8) by the concept-based
semantic similarity. Similarly, the prior estimation of head entity h is defined
as follows:

P(h|r, t) ∝ sim(rhead, h)αheadsim(t, h)αrelation (9)

Wherein, sim(rhead, t) is the semantic similarity between the relation r and
the head entity h, and αhead ∈ {0, 1} is also the concept similarity weight,
because t and r have different impacts on the prior probability of h. And the
objective of the relation prediction is

P(r|h, t, fact) ∝ P(fact|h, r, t)P(r|h, t) (10)
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By the similar derivation, the prior estimation of relation r, i.e., the prior
probability Eq. (10) could be estimated by leveraging the concept-based semantic
similarity.

P(r|h, t) ∝ sim(rhead, h)αheadsim(rtail, t)
αtail (11)

3.3 Multiple Semantic Vector Representations

We adopt the similar assumption as discussed in [17] to generate multiple seman-
tic vector representations for each entity, to accurately model the ubiquitous rich
semantics, while each relation is still represented as a single vector.

Taking the previous TransE as an example. TransE represents each entity
as a single vector, trying to describe (or compact) all semantics of the given
entity. There is only one vector representation for an entity in TransE. Thus the
vector representation is not accurate for any entity semantics, and discards the
rich semantic representations of the given entity. To overcome this drawback,
the proposed TransC represents each entity concept as a concept vector, and
represents each entity as a set of concept vectors, following the assumption that
relations have single semantic and entities have multiple semantics [17]. Hence
separate representations of entity semantics describe the relationship among a
triple more accurately. The likelihood of the vector representations for the triple
P(fact, h, r, t) (in Eq. 6) could be defined as below:

P(fact, h, r, t) =
|Ch|∑

i=1

|Ct|∑

j=1

wh,iwt,jfr(hi, tj) (12)

where |Ch| and |Ct| are the number of concepts of head entity h and tail entity t,
by leveraging single instance conceptualization algorithm based on Probase [24,
35,39]; {wh,1, . . . , wh,|Ch|} and {wt,1, . . . , wt,|Ct|} are the distributions of random
variables of h and t; fr(hi, tj) is the likelihood of the component with i-th concept
vector hi of the head entity h and j-th concept vector tj of the tail entity t. The
previous models represents the head entity h, the relation r and the tail entity t
with vectors h, r and t respectively, which were trained so that h+r ≈ t, which
have been viewed as a principle. This paper also following this principle. Thus,
Motivated by the linear translation phenomenon observed in well trained word
embeddings [3,18], this paper defines fr(hi, tj) in the form of the widely-used
energy function, as follows:

fr(hi, tj) = ‖hi + r − tj‖l (13)

Wherein, hi, r and tj are the vectors of h, r and t. l = 1 or l = 2, which
means either the l1 or the l2 norm of the vector hi+r−tj will be used depending
on the performance on the validation set.

We model the generating process of semantic vectors as a Dirichlet process
[33] like TransG [41]. In training process, the probability that the head entity
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(or the tail entity) in each triple generates a new (denoted as the superscript ∗)
concept vector, could be computed as follows:

P∗
head(h, r, t) = (1 − sim(rhead, h))

βe−‖rhead‖1

βe−‖rhead‖1 + P(fact|h, r, t)
(14)

This formula means that, if the current set of concepts could accurately rep-
resent the head entity h, the new concept semantics may be generated. Wherein,
β is the scaling parameter controlling the generation probability [17]. Similarly,
the generation probability of new concept vector of the tail entity t could be
defined as follows:

P∗
tail(h, r, t) = (1 − sim(rtail, t))

βe−‖rtail‖1

βe−‖rtail‖1 + P(fact|h, r, t)
(15)

3.4 Optimization with Concept Domain Sampling

Recall that we need to sample a negative triple (h′, r, t′) to compute hinge loss,
given a positive triple (h, r, t) ∈ Δ. The distribution of negative triple is denoted
by Δ′. Previous work [3,15,20] generally constructs a set of corrupted triples by
replacing the head entity or tail entity with a random entity uniformly sampled
from the KG. However, uniformly sampling corrupted entities may not be opti-
mal. Often, the head and tail entities associated a relation can only belong to a
specific concept domain or category. E.g., in Fig. 1, the prime candidate domain
for head entities is “Person”. When the corrupted entity comes from other con-
cept domains, it is very easy for the model to induce a large energy gap between
true triple and corrupted one. As the energy gap exceeds some threshold value,
there will be no training signal from this corrupted triple. In comparison, if the
corrupted entity comes from the same concept domain, the task becomes harder
for the model, leading to more consistent training signal.

Motivated by this observation, we propose to sample corrupted head or tail
from entities in the same concept domain with a probability Pr and from the
whole entity set with probability 1−Pr. In the rest of the paper, we refer to the
new proposed sampling method as concept domain sampling.

With efforts above, we define the For a triple (h, r, t) in the training set
Δ, we sample its negative triple (h′, r′, t′) /∈ Δ by replacing one element with
another entity or relation. When predicting different elements of a triple, we
replace the corresponding elements to obtain the negative triples, wherein the
negative triple set could be denoted as Δ

′
(h,r,t). With efforts above, we denote the

prediction error as l(h, r, t, h′, r′, t′). Therefore, the optimization function could
be viewed as the sum of prediction errors with the above-mentioned concept
domain sampling, as follows:

∑

(h,r,t)∈Δ

∑

(h′,r′,t′)∈Δ′
max {0, γ + l(h, r, t, h′, r′, t′)} (16)
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The stochastic gradient descent (SGD) strategy [19] is applied to optimize
the optimization function in the proposed algorithm. To optimize the parameters
in the formulae Eq. (16), we defined the prediction error as follows:

l(h, r, t, h′, r′, t′) =

⎧
⎪⎨

⎪⎩

− ln P(h|r, t, fact) + lnP(h′|r, t, fact) h′ �= h

− ln P(t|h, r, fact) + lnP(t′|h, r, fact) t′ �= t

− ln P(r|h, t, fact) + ln P(r′|h, t, fact) r′ �= r

(17)

4 Experiments

We evaluate our proposed TransC on several experiments. Generally, The Knowl-
edge Graph Completion (KGC) task could be divided into two non-mutually
exclusive sub-tasks: (i) Entity Prediction task, and (ii) Relationship Prediction
task. We evaluate our model on both tasks with benchmark static datasets. More-
over, Triple Classification task is also introduced for our comparative analysis.

4.1 Datasets and Baselines

To evaluate entity prediction, link prediction and triple classification, we con-
duct experiments on the WN18 (WordNet) and FB15k (Freebase) introduced
by [3] and use the same training/validation/test split as in [3]. The informa-
tion of the two datasets is given in Table 1. Wherein, #E and #R denote the
number of entities and relation types respectively. #Train, #V alid and #Test
are the numbers of triple in the training, validation and test sets respectively.
Concept information of entities in FB15K and WN18 is generated by instance
conceptualization algorithm based on Probase [24,39].

The baselines include TransE [3], TransH [37], and TransR [15], which
didn’t utilize semantics information. Moreover, four semantic-based models are
also included: (i) TKRL [43] and TransT [17] utilize entity types; (ii) DKRL
[42] and SSP [40] take advantage of entity descriptions. Two widely-used mea-
sures are considered as evaluation metrics in our experiments: (i) Mean Rank,
indicating the mean rank of original triples in the corresponding probability
ranks; HITS@N , indicating the proportion of original triples whose rank is not
larger than N . Lower mean rank or higher Hits@10 mean better performance.
What’s more, we follow [3] to report the filter results, i.e., removing all other
correct candidates h in ranking, which is called the “Filter” setting. In contrast
to this stands the “Raw” setting.

4.2 Entity Prediction

The Entity Prediction task takes a partial triple (h, r, ?) as input and produces
a ranked list of candidate entities as output. Our Entity Prediction task utilizes
FB15K dataset and WN18 dataset as benchmark dataset, and utilizes Mean
Rank and HITS@10 as evaluation metric.
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Table 1. Statistics of FB15k and WN18 used in experiments.

Dataset #E #R #Train #Valid #Test

WN18 40,943 18 141,442 5,000 5,000

FB15k 14,951 1,345 483,142 50,000 59,071

Table 2. Evaluation results of entity prediction on FB15k.

Mean rank HITS10 (%)

Raw Filter Raw Filter

TransE 238 143 46.4 62.1

TransH 212 87 45.7 64.4

TransR 199 77 47.2 67.2

DKRL 181 91 49.6 67.4

TKRL 202 87 50.3 73.4

SSP 163 82 57.2 79.0

TransT 199 46 53.3 85.4

TransC(Concept.) 180 64 57.1 84.2

TransC(Multiple.) 207 55 52.7 85.9

TransC 175 44 58.4 86.7

Following [17], the same protocol used in previous studies is utilized here.
For each triple (h, r, t), we replace the tail t (or the head h) with the concept
domain sampling strategy discussed in Sect. 3.4. We calculate the probabilities
of all replacement triples and rank these probabilities in descending order.

As the datasets are the same, we directly reuse the best results of several
baselines from the literature [15,17,37,43]. In both “Raw” setting and “Filter”
setting, a higher HITS@10 and a lower Mean Rank mean better performance.
The optimal-parameter configurations are described as follows: (i) For dataset
WN18, the learning rate is 0.001, the vector dimension is 100, the margin is 3,
the scaling parameter β is 0.0001, concept similarity weights αhead = αtail = 1,
and αrelation = 0; (ii) For dataset FB15K, the learning rate is 0.0005, the vector
dimension is 150, the margin is 3, the scaling parameter β is 0.0001, concept
similarity weights αhead = αtail = 1, and αrelation = 0.

The overall entity prediction results on FB15K and WN18 are reported in
Tables 2 and 3, respectively. It is worth mentioning that, both the proposed
TransC and previous [17] utilize multiple semantic vectors for representing the
entity. In Table 2, For TransC, “Concept.” means concept information is used,
and “Multiple.” means entities are represented as multiple vectors. At the end of
the row, “TransC” means the complete model combing “Concept.” with “Mul-
tiple.”. From the result, we observe that: TransC outperforms all baselines on
FB15k with “Filter” setting. E.g., compared with TransT and SSP, TransC
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Table 3. Evaluation results of entity prediction on WN18.

Mean rank HITS10 (%)

Raw Filter Raw Filter

TransE 263 251 75.4 89.2

TransH 401 338 73.0 82.3

TransR 238 225 79.8 92.0

DKRL 202 198 77.4 92.4

TKRL 180 167 80.6 94.1

SSP 168 156 81.2 93.2

TransT 137 130 92.7 97.4

TransC 136 125 94.5 96.9

improves the Mean Rank by 4.35% and 46.34%, and improves the HIT@10 by
1.52% and 9.75%, On WN18, TransT achieve the best results on metric HIT@10
for “Filter” setting. Beyond that, TransC performs the best. This shows that our
method successfully utilizes conceptual information, and that multiple concep-
tual vectors could capture the different semantics of each entity more accurately
than the linear transformation of a single entity vector. While SPP achieves the
best performance for “Raw” setting on the metric mean rank.

Similar to TransT, the proposed TransC has the largest difference between
the results of “Raw” and “Filter” settings on FB15K. Different from using
semantic-based linear transformations to separate the mixed representation,
the proposed TransC models the multiple semantics separately and utilizes
the semantic similarity to distinguish entity semantics. In order to capture
entity semantics accurately, we could dynamically generate new semantic vec-
tors for different contexts. This indicates the importance of the prior probability
(P(t|h, r)), which significantly improves the entity prediction performance.

Because the prior distribution of the missing element could be derived from
the semantic similarity between the missing element and the others. For example,
when we predict the head entity h in the triple (h, r, t), the entities with more
common or similar concepts belonging to the relation r and the tail entity t, have
higher probability. Therefore, TransC utilizes these similarities to estimate the
prior probability resulting in ranking similar entities higher.

Comparing the two approaches, multiple-vector representation (denoted
as TransC(Multiple.)) and concept information (denoted as TransC
(Concept.)), the later one is more instrumental for performance. While,
TransC is better than both of them, demonstrating the necessity of the combi-
nation of multiple-vector representation and concept information.

4.3 Relation Prediction

We evaluated TransC’s performance on relationship prediction task using the
FB15K dataset, following the experiment settings in [3].
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Table 4. Evaluation results of relation prediction on FB15K.

Mean rank HITS10 (%)

Raw Filter Raw Filter

TransE 2.91 2.53 69.5 90.2

TransH 8.25 7.91 60.3 72.5

TransR 2.49 2.09 70.2 91.6

DKRL 2.41 2.03 69.8 90.8

TKRL 2.47 2.07 68.3 90.6

SSP 1.87 1.47 70.9 90.9

TransT 1.59 1.19 72.0 94.1

TransC 1.37 1.38 73.6 95.2

We adopt the same protocol used in entity prediction. For relationship pre-
diction, we replaced the relationship of each test triple with all relationships in
the KG, with the concept domain sampling strategy, and rank these replacement
relationships in descending order. This section utilizes Mean Rank and HITS@10
as evaluation metric.

The optimal-parameter configurations are described as follows: For dataset
FB15K, the learning rate is 0.0005, the vector dimension is 150, the margin is 3,
the scaling parameter β is 0.0001, concept similarity weights αhead = αtail = 1,
and αrelation = 0. We train the model until convergence.

The overall entity prediction results on FB15K are reported in Table 4. The
experimental results demonstrate that, the proposed TransC significantly out-
performs all baselines in the most cases: (i) TransC achieves the best results
on the “Raw” setting; (ii) compared with TransT and SSP, TransC improves
the HIT@10 by 1.52% and 9.75%, on “Filter” setting. Compared with TransT,
which utilized type information, TransC improves HITS@1 by 1.17% and Mean
Rank by 4.73% in “Raw” setting. TransT performs better in relation prediction
task than in entity prediction task. This is because, we use the concept-based
semantics of both head entity and tail entity to generate relation’s semantic.

4.4 Triple Classification

Generally, the triple classification task could be reviewed as a binary classifi-
cation task, which discriminate whether the given triple is correct or not. We
utilize FB15K as the benchmark dataset, and utilize the binary classification
accuracy as the evaluation metric. Moreover, We adopt the same strategy for
negative samples generating used in [30].

The optimal-parameter configurations are described as follows: For dataset
FB15K, the learning rate is 0.0005, the vector dimension is 100, the margin is 3,
the scaling parameter β is 0.0001, concept similarity weights αhead = αtail = 1,
and αrelation = 0. We train the model until convergence.
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Table 5. Evaluation results of triple classification on FB15K.

Accuracy (%)

TransE 85.7

TransH 87.7

TransR 86.4

DKRL 87.1

TKRL 88.5

SSP 90.1

TransT 91.0

TransC 93.4

Evaluation results on FB15K are shown in Table 5. TransC outperforms
all baselines significantly. Compared with TransT and SSP, TransC improves
the accuracy by 2.64% and 3.67%. We argue that, this phenomenon is rooted
in the methodology that, the proposed TransC represents each entity as a set
of concept vectors instead of a single vector, which adapting the rich entity
semantics significantly and representing entities more accurately.

5 Conclusions

The paper studies aiming at combing the encyclopedic KG and the lexical KG
for knowledge graph completion. The paper constructs multiple concepts of rela-
tions from entity concepts and designs the concept-based semantic similarity for
multiple embedding representations and prior knowledge discovering. In sum-
mary, we leverage lexical knowledge base for knowledge graph completion task
and propose TransC, a novel algorithm for KGC, which combines structured
information in encyclopaedia KG and concept information in lexical KG (e.g.,
Probase). Different from using semantic-based linear transformations to sepa-
rate the mixed representation, such as previous TransE, the proposed TransC
models the multiple semantics separately and utilizes the semantic similarity to
distinguish entity semantics. Empirically, we show the proposed algorithm could
make full use of concept information and capture the rich semantic features of
entities, and therefore improves the performance on two benchmark datasets
over previous models of the same kind. Reasoning with temporal information in
knowledge bases has a long history and has resulted in numerous temporal log-
ics. Investigating the work on incorporating temporal information in knowledge
graph completion methods, may become the future direction.
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