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Abstract. This paper presents language models based on Long Short-Term
Memory (LSTM) neural networks for very large vocabulary continuous Russian
speech recognition. We created neural networks with various numbers of units
in hidden and projection layers using different optimization methods. Obtained
LSTM-based language models were used for N-best list rescoring. As well we
tested a linear interpolation of LSTM language model with the baseline 3-gram
language model and achieved 22% relative reduction of the word error rate with
respect to the baseline 3-gram model.
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1 Introduction

A language model (LM) is one of the main parts of a speech recognition system.
Nowadays, neural networks (NNs) are widely used for language modeling. As it was
shown in many papers, NN-based LMs outperform standard n-gram models [1, 2]. For
language modeling, the usage of recurrent NNs (RNNs) is preferable because this type
of NN can store the whole context preceding the given word in contrast to feedforward
NNs which store a context of restricted length.

A long short-term memory (LSTM) network is RNN, which contains special units
called memory blocks. Each memory block is composed of a memory cell, which
stores the temporal state of the network, and multiplicative units named gates (an input
gate, an output gate, and a forget gate) controlling the information flow [3].

In our research we used a LSTM-based LM for N-best list rescoring for automatic
speech recognition (ASR) system. The paper is organized as follows: in Sect. 2 we give
a survey of application of LSTMs for language modeling, in Sect. 3 we give a
description of our LSTM-based LMs, experimental results of N-best list rescoring
using LSTM-based LMs are presented in Sect. 4.
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2 Related Works

LSTMs are widely used in speech recognition systems at N-best or lattice rescoring
stage. In [4] comparison of LMs based on n-grams, feedforward, recurrent, and LSTM
NNs in terms of perplexity and word error rate (WER) is presented. LMs were created
for English and French. In the paper, it was shown that application of LSTM-based
LMs for lattice rescoring outperforms other type of LMs. In addition, experimental
analysis of relationship between perplexity of NN-based LMs and WER was per-
formed. It showed that WER decreases with decreasing perplexity that is analogous to
correlation between perplexity and WER for n-gram LMs.

In [5] LSTM-based LM was used for lattice rescoring for a YouTube speech
recognition task. The proposed model decreased WER by 8% as compared with the
result obtained with the n-gram model.

Automatic speech recognition for conversational Finnish and Estonian speech with
LSTM LM is described in [6]. The authors tried subword-based and fullword-based
language modeling and investigated the usage of classes for language modeling.
LSTM LM was used for lattice rescoring. On both languages, the best results were
obtained from class-based subword models.

Czech language modeling using LSTM is represented in [7]. As the baseline, 5-
gram Knesser-Ney statistical model with 120 K vocabulary was used. The LSTM LMs
were trained with limited vocabulary consisted of 10 K most frequent words.
LSTM LM interpolated with the baseline model was used for rescoring of 1000-best
list. Experiments were performed on the corpus of Czech spontaneous speech which
was recorded from phone calls. Application of LSTM LM allowed increasing speech
recognition accuracy by 3.7% in relative comparing to the result obtained with the
baseline model.

A comparison of LMs based on LSTM and gated recurrent units (GRU) is pre-
sented in [8]. In experiments of lattice rescoring for English speech recognition task,
LSTM-based LM outperformed GRU-based LM in terms of both perplexity and WER.
Also experiments with Highway network based on GRU were performed that showed
WER improvement, but similar investigation on the base of LSTM was not conducted.

In [9] a system which uses LSTM for both acoustic and language modeling is
presented. The system uses CNN-BLSTM acoustic models and 4-gram LM for
decoding and lattice rescoring. LSTM-based LM was applied for 500-best list
rescoring. Relative WER reduction obtained after rescoring was about 20%.

Russian language modeling with the use of LSTM is described in [10]. The
baseline 3-gram LM was trained on transcriptions of telephone conversations (390 h of
speech) as well as on text corpus (about 200 M words) containes materials from
Internet forum discussions, books etc. Vocabulary for the baseline model contains
214 K words. NN-based LMs were trained only with a part of the test corpus, and for
this corpus the vocabulary of 45 K most frequent words was used. LSTM-based LM
was used for rescoring of 100-best list. Relative WER reduction was equal to 8%.

In our previous researches on Russian language modeling [11, 12] we have
experimented with LMs created on the base of RNN with one hidden layer using
RNNLM toolkit [13]. We have obtained relative WER reduction of 14% as compared
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to the result obtained with our 3-gram model. The current research is aimed to
investigation of another type of RNN for language modeling.

3 LSTM Language Models for Russian

For training of LSTM language models, we used TheanoLM toolkit [14]. We trained
LMs on a text corpus composed with the use of on-line Russian newspapers [15]. The
vocabulary size was 150 K word-forms. We created NN LMs consisting of a projection
layer, which maps words to specified dimensional embeddings, one hidden LSTM
layer, and a hierarchical softmax layer. Hierarchical softmax factors the output prob-
abilities into the product of multiple softmax functions [16]. Thus, the output layer is
factorized into two levels, both performing normalization over an equal number of
choices [6], it allows using of very large vocabulary for language modeling. NN LM
architecture is presented on Fig. 1, where wt is an input word at time t; ht is the hidden
layer state, ct is LSTM cell state.

We tried NNs with LSTM layer sizes equal to 256 and 512, and projection layer
sizes equal to 100, 500, and 1000. LSTM-based LMs were trained using stochastic
gradient descent (SGD) optimization method. The stopping criteria was “no-im-
provement” which means that learning rate is halved when validation set perplexity
stops improving, and training is stopped when the perplexity does not improve at all

Projection layer

LSTM layer
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P(wt|wt-1 ,…,w0)

ct-1
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ct

ht
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Fig. 1. LSTM-based LM architecture
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with the current learning rate [14]. The maximum number of training epoch was 15.
The initial learning rate was equal to 1.

As well, we made a linear interpolation of the LSTM-based LM and baseline LM.
As a baseline, we used 3-gram LM with Kneser-Ney discounting trained on the same
text corpus using the SRI Language Modeling Toolkit (SRILM) [17]. Perplexities of
the obtained LMs computed on held-out text data are presented in Table 1. The
interpolation coefficient of 1.0 means that only LSTM-based LM was used. The per-
plexity of the baseline model was 553.

The lowest perplexity was obtained with the NN with the projection layer size
equal to 1000 and the hidden layer size equal to 512. Interpolation with the 3-gram
model gave the additional improvement of perplexity. The interpolation coefficient
equal to 0.7 provided the best result. Thus, relative reduction of perplexity was 46% as
compared with the perplexity of the baseline model.

4 Experiments

4.1 Experimental Setup

For training the acoustic models and testing the speech recognition system, we used our
own corpora of continuous Russian speech recorded at SPIIRAS. The total duration of
the entire speech data is more than 30 h. The corpus is described in detail in [18].

We used hybrid DNN/HMMs acoustic models based on time-delay neural network
with 5 hidden layers and time context [−8, 8]. Acoustic models were trained using the
open-source Kaldi toolkit [19]. Mel-frequency cepstral coefficients (MFCCs) were used
as input to the NNs. For speaker adaptation, 100-dimensional i-Vector [20] was
appended to the 40-dimensional MFCC input. Detail description of our acoustic models
is presented in [12]. We have obtained WER equal to 17.62% with our baseline 3-gram
model, and WER equal to 15.13 was obtained after rescoring 500-best list with the help
of RNN LM with one hidden layer interpolated with the 3-gram model.

Table 1. Perplexities of LSTM LMs

Hidden layer size Projection layer size Interpolation coefficient
0.5 0.6 0.7 0.8 0.9 1.0

256 100 339 336 336 343 359 431
500 330 325 325 330 345 407
1000 328 323 323 328 342 405

512 100 317 311 310 313 325 383
500 308 301 299 302 311 363
1000 306 300 297 300 309 361
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LSTM-based LM was applied for rescoring of 500-best list of hypotheses and for
selection of the best recognition hypothesis for the pronounced phrase. Interpolated
LMs were used for rescoring as well. Obtained speech recognition results are presented
in Table 2.

As one can see from the table, application of LSTM-based LMs allows to improve
speech recognition results. Additional improvement was achieved with interpolated
LSTM-based LM with baseline LM. The lowest WER (14.06%) was obtained using
NN with projection layer size equal to 500 and hidden layer size equal to 512 inter-
polated with the baseline model with interpolation coefficient equal to 0.7, though this
model was not the best in terms of perplexity. This may be connected with the fact that
we used different texts material for estimation of perplexity and for speech corpora
recordings.

Then we experimented with optimization method for NN training. We tried Nes-
terov Momentum [21], AdaGrad [22], and Adam [23] optimization methods, and
compared them with SGD method in terms of perplexity and WER of the created
models. We trained models with 512 units in the hidden layer and 512 units in the
projection layer because LSTM with these parameters gave us the best results in terms
of WER in our previous experiments with models with SGD optimization method.
Initial learning rates were chosen according to recommendations of TheanoLM toolkit.
Results of experiments on comparing optimization methods in term of perplexity and
WER are presented in Tables 3 and 4 respectively.

Table 2. WER after 500-best list rescoring (%)

Hidden layer size Projection layer size Interpolation coefficient
0.4 0.5 0.6 0.7 0.8 0.9 1.0

256 100 15.36 15.09 15.15 15.37 15.73 16.20 16.44
500 15.54 15.39 15.41 16.62 15.86 16.09 16.52
1000 15.21 15.06 14.94 14.79 14.94 15.22 15.67

512 100 15.17 14.83 14.59 14.74 14.85 15.02 15.39
500 14.51 14.36 14.21 14.06 14.19 14.64 14.96
1000 15.32 15.21 15.04 15.13 15.15 15.36 15.52

Table 3. Results of experiments with LMs trained using different optimization methods in terms
of perplexity

Optimization method Initial learning rate Interpolation coefficient
0.5 0.6 0.7 0.8 0.9 1.0

SGD 1.00 308 301 299 302 311 363
Nesterov momentum 1.00 299 292 289 291 300 346
AdaGrad 1.00 308 302 300 303 313 375
Adam 0.01 321 316 314 317 327 386
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Only Nesterov Momentum method slightly outperform SGD in terms of both
perplexity and WER of the obtained models. Thus, the best results (perplexity equals
289; WER equals 14.01) were obtained after interpolation of LSTM LM trained using
Nesterov Momentum optimization method interpolated with the baseline LM with
interpolation coefficient equal to 0.7.

Then we trained NNs with 2 and 3 LSTM layers using the parameters of the best 1-
layer LSTM. In these NNs we applied dropout at rate 0.3 between LSTM layers.
Obtained results are presented in Table 4.

Thus, the best result was obtained using NN LM with 2 LSTM layers interpolated
with the baseline LM with interpolation coefficient of 0.8, in this case WER equaled
13.80%. Further increasing the number of the hidden layers led to increasing WER that
may be caused by overtraining (Table 5).

5 Conclusions and Future Work

In the paper, we have investigated LSTM-based LMs for Russian speech recognition
task. We have tried NNs with different hidden layer sized, projection layer sizes,
optimization methods, and number of hidden layers. LSTM-based LMs were applied
for N-best list rescoring. The lowest WER was achieved with the NN with 2 hidden
layers, 512 units in hidden layer and projection layer of 500 trained with Nesterov
Momentum optimization method. We have achieved 22% relative reduction of WER

Table 4. Results of experiments with LMs trained using different optimization methods in terms
of WER (%)

Optimization method Initial learning rate Interpolation coefficient
0.5 0.6 0.7 0.8 0.9 1.0

SGD 1.00 14.36 14.21 14.06 14.19 14.64 14.96
Nesterov Momentum 1.00 14.33 14.08 14.01 14.16 14.34 14.55
AdaGrad 1.00 15.00 14.93 14.91 14.81 14.89 15.36
Adam 0.01 14.78 14.63 14.53 14.48 14.68 14.78

Table 5. Results of experiments with LMs with different number of LSTM layers

Number of
LSTM
layers

Interpolation coefficient

0.7 0.8 0.9 1.0
Perplexity WER,

%
Perplexity WER,

%
Perplexity WER,

%
Perplexity WER,

%

1 289 14.01 291 14.16 300 14.34 346 14.55
2 286 13.88 279 13.80 292 13.90 323 13.93
3 294 14.05 301 14.23 327 14.35 357 14.62
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using LSTM LM with respect to the baseline 3-gram model. In further research, we are
going to investigate other topologies of RNNs for language modeling.
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