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SPECOM 2019 Preface

The International Conference on Speech and Computer (SPECOM) was established by
the St. Petersburg Institute for Informatics and Automation of the Russian Academy of
Sciences (SPIIRAS) and the Herzen State Pedagogical University of Russia thanks to
the efforts of Prof. Yuri Kosarev and Prof. Rajmund Piotrowski.

In its long history, the SPECOM conference was organized alternately by SPIIRAS
and by the Moscow State Linguistic University (MSLU) in their home cities. SPECOM
2019 was the 21st event in the series, organized by Boğaziçi University (Istanbul,
Turkey), in cooperation with SPIIRAS and MSLU. The conference was sponsored by
ASM Solutions Ltd. (Moscow, Russia) and supported by the International Speech
Communication Association. The conference was held jointly with the 4th International
Conference on Interactive Collaborative Robotics (ICR) – where problems and modern
solutions of human–robot interaction were discussed – during August 20–25, 2019 at
Boğaziçi University, one of the top research universities in Turkey, established in 1863.

During the conferences three invited talks were given by Prof. Hynek Hermansky
(Julian S. Smith Professor of Electrical Engineering and the Director of the Center for
Language and Speech Processing at the Johns Hopkins University in Baltimore,
Maryland, USA and Research Professor at the Brno University of Technology,
Czech Republic), Prof. Odette Scharenborg (Delft University of Technology,
The Netherlands), and Prof. Erol Şahin (Computer Engineering Dept., Middle East
Technical University, Ankara, Turkey).

It is often argued that in in processing of sensory signals such as speech, engineering
should apply knowledge of properties of human perception—both have the same goal
of getting information from the signal. Prof. Hermansky’s talk, entitled “If You Can’t
Beat Them, Join Them,” showed examples from speech technology that perceptual
research can also learn from advances in technology. Since speech evolved to be heard
and properties of hearing are imprinted on speech, engineering optimizations of speech
technology often yield human-like processing strategies. Prof. Hermansky presented a
model of human speech communication which suggests that redundancies introduced
in speech production in order to protect the message during its transmission through a
realistic noisy acoustic environment are being used by human speech perception for a
reliable decoding of the message. That led to a particular architecture of an automatic
recognition (ASR) system in which longer temporal segments of spectrally smoothed
temporal trajectories of spectral energies in individual frequency bands of speech are
used to derive estimates of the posterior probabilities of speech sounds. Combinations
of these estimates in reliable frequency bands were then adaptively fused to yield the
final probability vectors, which best satisfy the adopted performance monitoring
criteria.

Speech recognition is the mapping of a continuous, highly variable speech signal
onto discrete, abstract representations. In both human and automatic speech processing,
the phoneme is considered to play an important role. Abstractionist theories of human



speech processing assume the presence of abstract, phoneme-like units that sequenced
together constitute words, while many large vocabulary automatic speech recognition
(ASR) systems use phoneme acoustic models. Prof. Scharenborg, in her talk entitled
“The Representation of Speech in Human and Artificial Brain,” argued that phonemes
might not be the unit of speech representation during human speech processing and that
comparisons between humans and dynamic neural networks and cross-fertilization
of the two research fields can provide valuable insights into the way humans process
speech and thereby improve ASR technology. The present volume includes an invited
paper by Prof. Scharenborg that discusses these issues at length.

Prof. Şahin’s talk, entitled “Animating Industrial Robots for Human–Robot
Interaction,” discussed interesting interaction research for robot-assisted assembly
operations in the production lines of factories. Prof. Şahin argued that as platforms that
require fast and fine manipulation of parts and tools remain beyond the capabilities of
robotic systems in the near future, robotic systems are predicted not to replace, but to
collaborate with the humans working on the assembly lines to increase their produc-
tivity. He briefly summarized the vision and goals of a recent TUBITAK project, titled
CIRAK, which aims to develop a robotic manipulator system that will help humans in
an assembly task by handing them the proper tools and parts at the right time in a
correct manner. Toward this end, Prof. Şahin shared his group’s recent studies on the
creation of a commercial robotic manipulator platform, made more life-like by
extensions and modifications to its look and behavior.

This volume contains a collection of submitted papers presented at the conference,
which were thoroughly reviewed by members of the Program Committee consisting of
more than 100 top specialists, as well as an invited paper by Prof. Scharenborg. Each
paper was reviewed, single blind, by two to four committee members (three reviewers
on the average) and then discussed by the program chairs. In total, 57 papers were
selected by the Program Committee for presentation at the SPECOM Conference.
A total of 126 submissions were received and evaluated for SPECOM/ICR. The
conference sessions were thematically organized, into Audio Signal Processing,
Automatic Speech Recognition, Speaker Recognition, Computational Paralinguistics,
Speech Synthesis, Sign Language and Multimodal Processing, and Speech and
Language Resources. An increasing number of papers used deep neural network-based
approaches across these themes.

We would like to express our gratitude to all authors for providing their papers on
time, to the members of the Program Committee for their careful reviews and paper
selection, and to the editors and correctors for their hard work in preparing this volume.
Special thanks are due to Alen Demirel, Cem Tunçel, Bilge Yüksel, Hasan Küçük of
BROS Group, our Conference Office, for their excellent work during the conference
organization.

August 2019 Albert Ali Salah
Alexey Karpov

Rodmonga Potapova

vi SPECOM 2019 Preface



Organization

General Co-chairs

Albert Ali Salah Utrecht University and Boğaziçi University,
The Netherlands/Turkey

Alexey Karpov SPIIRAS Institute, Russia
Rodmonga Potapova Moscow State Linguistic University, Russia

Program Co-chairs

Heysem Kaya Namık Kemal University, Turkey
Murat Saraçlar Boğaziçi University, Turkey
Ebru Arisoy Saraçlar MEF University, Turkey

Program Committee

Shyam Agrawal, India
Lale Akarun, Turkey
Rafet Akdeniz, Turkey
Tanel Alumäe, Estonia
Levent M. Arslan, Turkey
Ebru Arisoy Saraçlar, Turkey
Elias Azarov, Belarus
Peter Beim Graben, Germany
Marie-Luce Bourguet, UK
Christian-Alexander Bunge, Germany
Eric Castelli, Vietnam
Vladimir Chuchupal, Russia
Nicholas Cummins, Germany
Vlado Delic, Serbia
Hasan Demir, Turkey
Olivier Deroo, Belgium
Anna Esposito, Italy
Keelan Evanini, USA
Vera Evdokimova, Russia
Nikos Fakotakis, Greece
Mauro Falcone, Italy
Vasiliki Foufi, Switzerland
Philip N. Garner, Switzerland
Gábor Gosztolya, Hungary
Tunga Gungor, Turkey
Ivan Himawan, Australia

Ruediger Hoffmann, Germany
Marek Hruz, Czech Republic
Kazuki Irie, Germany
Rainer Jaeckel, Germany
Oliver Jokisch, Germany
Denis Jouvet, France
Alexey Karpov, Russia
Heysem Kaya, Turkey
Andreas Kerren, Sweden
Tomi Kinnunen, Finland
Irina Kipyatkova, Russia
Daniil Kocharov, Russia
Liliya Komalova, Russia
Evgeny Kostyuchenko, Russia
Ivan Kraljevski, Germany
Galina Lavrentyeva, Russia
Benjamin Lecouteux, France
Boris Lobanov, Belarus
Elena Lyakso, Russia
Joseph Mariani, France
Maria De Marsico, Italy
Jindřich Matoušek, Czech Republic
Yuri Matveev, Russia
Li Meng, UK
Peter Mihajlik, Hungary
Iosif Mporas, UK



Bernd Möbius, Germany
Luděk Müller, Czech Republic
Satoshi Nakamura, Japan
Stavros Ntalampiras, Italy
Géza Németh, Hungary
Olga Perepelkina, Russia
Dimitar Popov, Bulgaria
Branislav Popović, Serbia
Rodmonga Potapova, Russia
Fabien Ringeval, France
Andrey Ronzhin, Russia
Paolo Rosso, Spain
Sakriani Sakti, Japan
Albert Ali Salah,

The Netherlands/Turkey
Murat Saraçlar, Turkey
Maximilian Schmitt, Germany
Friedhelm Schwenker, Germany
Vidhyasaharan Sethu, Australia
Milan Sečujski, Serbia

Ingo Siegert, Germany
Vered Silber-Varod, Israel
Pavel Skrelin, Russia
Mikhail Stolbov, Russia
Tilo Strutz, Germany
György Szaszák, Hungary
Ivan Tashev, USA
Natalia Tomashenko, France
Laszlo Toth, Hungary
Isabel Trancoso, Portugal
Jan Trmal, USA
Liliya Tsirulnik, USA
Dirk Van Compernolle, Belgium
Vasilisa Verkhodanova, The Netherlands
Benjamin Weiss, Germany
Andreas Wendemuth, Germany
Matthias Wolff, Germany
Milos Zelezny, Czech Republic
Zixing Zhang, UK

Additional Reviewers

Cem Rıfkı Aydın
Somnath Banerjee
Branko Brkljač
Buse Buz
Koray Çiftçi
Gretel Liz De la Peña Sarracén
Ali Erkan
Nikša Jakovljević
Atul Kumar

Alexander Leipnitz
Michael Maruschke
Iris Ouyang
Sergey Rybin
Siniša Suzić
Juan Javier Sánchez Junquera
Oxana Verkholyak
Celaleddin Yeroglu

viii Organization



Contents

The Representation of Speech and Its Processing in the Human Brain
and Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Odette Scharenborg

A Detailed Analysis and Improvement of Feature-Based Named Entity
Recognition for Turkish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Arda Akdemir and Tunga Güngör

A Comparative Study of Classical and Deep Classifiers for Textual
Addressee Detection in Human-Human-Machine Conversations . . . . . . . . . . 20

Oleg Akhtiamov, Dmitrii Fedotov, and Wolfgang Minker

Acoustic Event Mixing to Multichannel AMI Data for Distant Speech
Recognition and Acoustic Event Classification Benchmarking . . . . . . . . . . . 31

Sergei Astapov, Gleb Svirskiy, Aleksandr Lavrentyev, Tatyana Prisyach,
Dmitriy Popov, Dmitriy Ubskiy, and Vladimir Kabarov

Speech-Based L2 Call System for English Foreign Speakers. . . . . . . . . . . . . 43
Mohammad Ateeq and Abualsoud Hanani

A Pattern Mining Approach in Feature Extraction for Emotion Recognition
from Speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Umut Avci, Gamze Akkurt, and Devrim Unay

Towards a Dialect Classification in German Speech Samples . . . . . . . . . . . . 64
Johanna Dobbriner and Oliver Jokisch

Classification of Regional Accent Using Speech Rhythm Metrics . . . . . . . . . 75
Ghania Droua-Hamdani

PocketEAR: An Assistive Sound Classification System
for Hearing-Impaired . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Kamil Ekštein

Time-Continuous Emotion Recognition Using Spectrogram Based
CNN-RNN Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Dmitrii Fedotov, Bobae Kim, Alexey Karpov, and Wolfgang Minker

Developmental Disorders Manifestation in the Characteristics of the Child’s
Voice and Speech: Perceptual and Acoustic Study. . . . . . . . . . . . . . . . . . . . 103

Olga Frolova, Viktor Gorodnyi, Aleksandr Nikolaev, Aleksey Grigorev,
Severin Grechanyi, and Elena Lyakso



RUSLAN: Russian Spoken Language Corpus for Speech Synthesis. . . . . . . . 113
Lenar Gabdrakhmanov, Rustem Garaev, and Evgenii Razinkov

Differentiating Laughter Types via HMM/DNN
and Probabilistic Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Gábor Gosztolya, András Beke, and Tilda Neuberger

Word Discovering in Low-Resources Languages Through
Cross-Lingual Phonemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Fernando García-Granada, Emilio Sanchis, Maria Jose Castro-Bleda,
José Ángel González, and Lluís-F. Hurtado

Semantic Segmentation of Historical Documents via Fully-Convolutional
Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Ivan Gruber, Miroslav Hlaváč, Marek Hrúz, and Miloš Železný

A New Approach of Adaptive Filtering Updating for Acoustic
Echo Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Mahfoud Hamidia and Abderrahmane Amrouche

Code-Switching Language Modeling with Bilingual Word Embeddings:
A Case Study for Egyptian Arabic-English. . . . . . . . . . . . . . . . . . . . . . . . . 160

Injy Hamed, Moritz Zhu, Mohamed Elmahdy, Slim Abdennadher,
and Ngoc Thang Vu

Identity Extraction from Clusters of Multi-modal Observations . . . . . . . . . . . 171
Marek Hrúz, Petr Salajka, Ivan Gruber, and Miroslav Hlaváč

Don’t Talk to Noisy Drones – Acoustic Interaction with Unmanned
Aerial Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Oliver Jokisch, Ingo Siegert, Michael Maruschke, Tilo Strutz,
and Andrey Ronzhin

Method for Multimodal Recognition of One-Handed Sign Language
Gestures Through 3D Convolution and LSTM Neural Networks . . . . . . . . . . 191

Ildar Kagirov, Dmitry Ryumin, and Alexandr Axyonov

LSTM-Based Kazakh Speech Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Arman Kaliyev

Combination of Positions and Angles for Hand Pose Estimation . . . . . . . . . . 209
Jakub Kanis, Zdeněk Krňoul, and Marek Hrúz

LSTM-Based Language Models for Very Large Vocabulary Continuous
Russian Speech Recognition System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Irina Kipyatkova

x Contents



Svarabhakti Vowel Occurrence and Duration in Rhotic Clusters in French
Lyric Singing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Uliana Kochetkova

The Evaluation Process Automation of Phrase and Word Intelligibility
Using Speech Recognition Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Evgeny Kostuchenko, Dariya Novokhrestova, Marina Tirskaya,
Alexander Shelupanov, Mikhail Nemirovich-Danchenko,
Evgeny Choynzonov, and Lidiya Balatskaya

Detection of Overlapping Speech for the Purposes of Speaker Diarization . . . 247
Marie Kunešová, Marek Hrúz, Zbyněk Zajíc, and Vlasta Radová

Exploring Hybrid CTC/Attention End-to-End Speech Recognition
with Gaussian Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Ludwig Kürzinger, Tobias Watzel, Lujun Li, Robert Baumgartner,
and Gerhard Rigoll

Estimating Aggressiveness of Russian Texts by Means
of Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Dmitriy Levonevskiy, Dmitrii Malov, and Irina Vatamaniuk

Software Subsystem Analysis of Prosodic Signs of Emotional Intonation . . . . 280
Boris Lobanov and Vladimir Zhitko

Assessing Alzheimer’s Disease from Speech Using the i-vector Approach . . . 289
José Vicente Egas López, László Tóth, Ildikó Hoffmann, János Kálmán,
Magdolna Pákáski, and Gábor Gosztolya

AD-Child.Ru: Speech Corpus for Russian Children
with Atypical Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Elena Lyakso, Olga Frolova, Arman Kaliyev, Viktor Gorodnyi,
Aleksey Grigorev, and Yuri Matveev

Building a Pronunciation Dictionary for the Kabyle Language . . . . . . . . . . . 309
Demri Lyes, Falek Leila, and Teffahi Hocine

Speech-Based Automatic Assessment of Question Making Skill
in L2 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Eman Mansour, Rand Sandouka, Dima Jaber, and Abualsoud Hanani

Automatic Recognition of Speaker Age and Gender Based on Deep
Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Maxim Markitantov and Oxana Verkholyak

Investigating Joint CTC-Attention Models for End-to-End Russian
Speech Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Nikita Markovnikov and Irina Kipyatkova

Contents xi



Author Clustering with and Without Topical Features . . . . . . . . . . . . . . . . . 348
Polina Panicheva, Olga Litvinova, and Tatiana Litvinova

Assessment of Syllable Intelligibility Based on Convolutional
Neural Networks for Speech Rehabilitation After Speech Organs
Surgical Interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Evgeny Kostuchenko, Dariya Novokhrestova, Svetlana Pekarskikh,
Alexander Shelupanov, Mikhail Nemirovich-Danchenko,
Evgeny Choynzonov, and Lidiya Balatskaya

Corpus Study of Early Bulgarian Onomatopoeias in the Terms
of CHILDES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Velka Popova and Dimitar Popov

EEG Investigation of Brain Bioelectrical Activity (Regarding Perception
of Multimodal Polycode Internet Discourse) . . . . . . . . . . . . . . . . . . . . . . . . 381

Rodmonga Potapova, Vsevolod Potapov, Nataliya Lebedeva,
Ekaterina Karimova, and Nikolay Bobrov

Some Peculiarities of Internet Multimodal Polycode Corpora Annotation . . . . 392
Rodmonga Potapova, Vsevolod Potapov, Liliya Komalova,
and Andrey Dzhunkovskiy

New Perspectives on Canadian English Digital Identity Based
on Word Stress Patterns in Lexicon and Spoken Corpus . . . . . . . . . . . . . . . 401

Daria Pozdeeva, Tatiana Shevchenko, and Alexey Abyzov

Automatic Speech Recognition for Kreol Morisien: A Case Study
for the Health Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

Nuzhah Gooda Sahib-Kaudeer, Baby Gobin-Rahimbux,
Bibi Saamiyah Bahsu, and Maryam Farheen Aasiyah Maghoo

Script Selection Using Convolutional Auto-encoder for TTS
Speech Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Meysam Shamsi, Damien Lolive, Nelly Barbot, and Jonathan Chevelu

Pragmatic Markers Distribution in Russian Everyday Speech:
Frequency Lists and Other Statistics for Discourse Modeling . . . . . . . . . . . . 433

Natalia Bogdanova-Beglarian, Tatiana Sherstinova, Olga Blinova,
and Gregory Martynenko

Curriculum Learning in Sentiment Analysis . . . . . . . . . . . . . . . . . . . . . . . . 444
Jakub Sido and Miloslav Konopík

First Minute Timing in American Telephone Talks:
A Cognitive Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Tatiana Shevchenko and Tatiana Sokoreva

xii Contents



Syntactic Segmentation of Spontaneous Speech:
Psychological and Cognitive Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

Anton Stepikhov, Anastassia Loukina, and Natella Stepikhova

Dual-Microphone Speech Enhancement System Attenuating both Coherent
and Diffuse Background Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

Mikhail Stolbov and Quan Trong The

Reducing the Inter-speaker Variance of CNN Acoustic Models Using
Unsupervised Adversarial Multi-task Training. . . . . . . . . . . . . . . . . . . . . . . 481

László Tóth and Gábor Gosztolya

Estimates of Transmission Characteristics Related to Perception
of Bone-Conducted Speech Using Real Utterances and Transcutaneous
Vibration on Larynx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

Teruki Toya, Peter Birkholz, and Masashi Unoki

Singing Voice Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
Liliya Tsirulnik and Shlomo Dubnov

How Dysarthric Prosody Impacts Naïve Listeners’ Recognition . . . . . . . . . . 510
Vass Verkhodanova, Sanne Timmermans, Matt Coler, Roel Jonkers,
Bauke de Jong, and Wander Lowie

Light CNN Architecture Enhancement for Different Types Spoofing
Attack Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

Marina Volkova, Tseren Andzhukaev, Galina Lavrentyeva,
Sergey Novoselov, and Alexander Kozlov

Deep Neural Network Quantizers Outperforming Continuous Speech
Recognition Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

Tobias Watzel, Lujun Li, Ludwig Kürzinger, and Gerhard Rigoll

Speaking Style Based Apparent Personality Recognition . . . . . . . . . . . . . . . 540
Jianguo Yu, Konstantin Markov, and Alexey Karpov

Diarization of the Language Consulting Center Telephone Calls . . . . . . . . . . 549
Zbyněk Zajíc, Josef V. Psutka, Lucie Zajícová, Luděk Müller,
and Petr Salajka

NN-Based Czech Sign Language Synthesis . . . . . . . . . . . . . . . . . . . . . . . . 559
Jan Zelinka, Jakub Kanis, and Petr Salajka

Re-evaluation of Words Used in Speech Audiometry. . . . . . . . . . . . . . . . . . 569
Aleksandar Živanović, Vlado Delić, Siniša Suzić, Ivana Sokolovac,
and Maja Marković

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

Contents xiii



The Representation of Speech
and Its Processing in the Human Brain

and Deep Neural Networks

Odette Scharenborg(&)

Multimedia Analysis Group, Delft University of Technology,
Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands

o.e.scharenborg@tudelft.nl

Abstract. For most languages in the world and for speech that deviates from
the standard pronunciation, not enough (annotated) speech data is available to
train an automatic speech recognition (ASR) system. Moreover, human inter-
vention is needed to adapt an ASR system to a new language or type of speech.
Human listeners, on the other hand, are able to quickly adapt to nonstandard
speech and can learn the sound categories of a new language without having
been explicitly taught to do so. In this paper, I will present comparisons between
human speech processing and deep neural network (DNN)-based ASR and will
argue that the cross-fertilisation of the two research fields can provide valuable
information for the development of ASR systems that can flexibly adapt to any
type of speech in any language. Specifically, I present results of several
experiments carried out on both human listeners and DNN-based ASR systems
on the representation of speech and lexically-guided perceptual learning, i.e., the
ability to adapt a sound category on the basis of new incoming information
resulting in improved processing of subsequent speech. The results showed that
DNNs appear to learn structures that humans use to process speech without
being explicitly trained to do so, and that, similar to humans, DNN systems learn
speaker-adapted phone category boundaries from a few labelled examples.
These results are the first steps towards building human-speech processing
inspired ASR systems that, similar to human listeners, can adjust flexibly and
fast to all kinds of new speech.

Keywords: Speech representations � Adaptation � Non-standard speech �
Deep neural networks � Human speech processing � Perceptual learning

1 Introduction

Automatic speech recognition (ASR) is the mapping of a continuous, highly variable
speech signal onto discrete, abstract representations, typically phonemes or words.
ASR works well in relatively restricted settings (e.g., speech without strong accents,
quiet background) but tends to break down when the speech that needs to be recognised
diverges from ‘normal’ speech, e.g., because of speech impediments or accents, or
when no or only limited annotated training data is available for the type of speech or
language for which the system is build (i.e., low-resource languages). In fact, for only
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about 1% of the world languages the minimum amount of training data that is needed to
develop ASR technology is available [1]. This means that ASR technology is not
available to all people in the world, including those people who would profit the most
from it, i.e., people with disabilities or people whose native language does not have a
common written form, because of which they need to rely on speech technology to
communicate with people and/or computers. The Linguistic Rights as included in the
Universal Declaration of Human Rights states that it is a human right to communicate
in one’s native language. This situation is obviously not yet reached.

Most ASR systems are phoneme-based systems which are based on the principle
that a word is composed of a sequence of speech sounds called phonemes, and acoustic
representations (i.e., acoustic models) are trained for context-dependent versions of
each phoneme. In order to make ASR available for all types of speech in all the world’s
languages, simply recording and annotating enough speech material for training a
phoneme-based ASR system is infeasible. First, because it is impossible to collect for
every type of speech in every language of the world the hundreds of hours of speech
with their textual transcriptions that are needed to train a system that works reasonably
well. Second, because it is impossible for languages that do not have a common writing
system. An obvious solution is to map an ASR system trained on a language and type
of speech for which there is enough training data (e.g., English spoken by native
speaker without a clear accent or speech impediment) to a language or type of speech
for which there is little or no data [2–6]. This mapping of an ASR system from one type
of speech or language to another requires explicit decisions by a human about which
phoneme categories, or rather acoustic models, will need to be adapted or created in the
ASR system.

In order to build ASR systems that can flexibly adapt to any type of speech in any
language, we need: (1) invariant units of speech which transfer easily and accurately to
other languages and different types of speech and lead to the best ASR recognition
performance; (2) an ASR system that can flexibly adapt to new types of speech; (3) an
ASR system that can decide when to create a new phoneme category, and do so.

Human listeners have been found to do exactly that. They are able to quickly adapt
their phoneme categories on the basis of only a few examples to deviant speech,
whether due to a speech impediment or an accent, using a process called lexically-
guided perceptual learning [7]. Moreover, human listeners have been found to create
new phoneme categories, e.g., when learning a new language [8].

So ideally, the search for invariant speech units and flexible adaptation processes in
ASR are based on the speech representations and speech recognition processes in
human speech processing as the best speech recogniser is a human who is a native
speaker of the language [9]. Moreover, despite the differences in hardware between a
human listener and an ASR system, they both carry out the same process: the recog-
nition of speech [10]. There is ample evidence that knowledge about human speech
processing has powerful potential for improving ASR ([9–14], for a review [15]). For
instance, knowledge about human speech processing and human hearing has been used
in the development of Mel-frequency cepstral coefficients (MFCCs, [16]) and Per-
ceptual Linear Predictives (PLPs, [14]), while the episodic theory of human speech
processing was the inspiration to the development of template-based approaches to
ASR (e.g., [17]).

2 O. Scharenborg



In this paper, I focus on the first two requisites for building an ASR system that can
flexibly adapt to any type of speech in any language by comparing human speech
processing and deep neural network (DNN)-based ASR. I will summarise experiments
which compare the representation of speech and adaptation processes in the human
brain and DNNs, with the ultimate aim to build human speech processing inspired ASR
systems that can flexibly adapt to any speech style in any language, i.e., the third
requisite. Recent advances in deep learning make DNNs currently the best-performing
ASR systems [18]. DNNs are inspired by the human brain, which is often suggested to
be the reason for their impressive abilities, e.g., [19]. Although both the human brain
and DNNs consist of neurons and neural connections, little is known about whether
DNNs actually use similar representations for speech and solve the task of speech
recognition in the same way the human brain does.

2 Speech Representations

When learning one’s first language, human listeners learn to associate certain acoustic
variability with certain phonological categories. The question I am interested in is
whether a DNN also learns phonological categories similar to those used by human
listeners. Using the visual example in Fig. 1 as an example: if a DNN is able to
distinguish between a plane in a blue sky and a chair on a green lawn, has the DNN
learned to distinguish the blue background from the green background or has it learned
features that are associated with planes and features that are associated with chairs to
distinguish the two objects as a human would do to distinguish these two objects in
these pictures?

The question what speech representations a DNN learns during speech processing
was investigated using a naïve, general feed-forward DNN which was trained on the
task of vowel/consonant classification [20]. Vowel/consonant classification is a rela-
tively simple, well-understood task, which allows us to investigate what a naïve,
general DNN exactly learns when faced with the large variability of the speech sounds
in the speech signal. Crucially, the speech representations in the different hidden layers
of the DNN were investigated by visualising the activations of the speech represen-
tations in those hidden layers using different linguistic labels that are known to cor-
respond to the underlying structures that human listeners use to process and understand
speech.

Fig. 1. What features does a DNN use to distinguish between the plane in the blue sky on the
left and the chair on the green lawn?
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The DNN consisted of 3 hidden layers with 1024 nodes each, and was trained on
64 h of read speech from the Corpus Spoken Dutch (CGN; [21]). Accuracy on the
vowel/consonant classification task, averaged over five runs, was 85.5% (consonants:
85.2%; vowels: 86.7% correct). Subsequently, the input frames were labelled with:

• Phoneme labels: 39 in total.
• Manner of articulation: indicates the type of constriction in the vocal tract. For

consonants, four categories were distinguished: plosive, fricative, nasal, approxi-
mant. For vowels, three categories were distinguished: short vowel, long vowel,
diphthong.

• Place of articulation: indicates the location of the constriction in the vocal tract. For
consonants, six categories were distinguished: bilabial, labiodental, velar, alveolar,
palatal, glottal. For vowels, three tongue position categories were distinguished:
front, central, back.

The clusters of speech representations at the different hidden layers were visualised
using t-distributed neighbor embedding (t-SNE, [22]). The first visualisation investi-
gated the clusters of consonants and vowels in the different hidden layers. The results
showed that from earlier to later hidden layers, the vowel and consonant clusters
become more compact and more separate, showing that the DNN is learning to create
speech representations that are increasingly abstract.

In the second series of visualisations, the input frames were first labelled with the
phoneme labels. This visualisation showed that the phoneme labels were not randomly
distributed over the hidden layers. Rather, despite that the DNN was trained on a
vowel/consonant classification task, the DNN implicitly learned to cluster frames with
the same phoneme label to some extent. Subsequent analyses with labelling of the
frames in terms of manner of articulation and place of articulation showed that the
DNN learned to cluster sounds together that are produced in similar ways such that
consonants with a similar manner of articulation and vowels with a similar place of
articulation are clustered into clearly defined groups. The DNN thus appeared to learn
structures that human listeners use to process speech without having been explicitly
trained to do so.

3 Adaptation to Non-standard Speech

Adaptation to nonstandard speech is often referred to as ‘perceptual learning’ in the
human speech processing literature. Perceptual learning is defined as the temporary or
more permanent adaptation of sound categories after exposure to nonstandard speech
such that the nonstandard sound is included into a pre-existing sound category, which
leads to an improvement in the intelligibility of the speech (see for a review [23]).
Perceptual learning is fast. Human listeners need only a few instances of the deviant
sounds [24, 25] to adapt their sound category boundaries to include the nonstandard
sound [7, 23–28]. ASR systems adapt to new speakers and listening conditions using
both short-time adaptation algorithms (e.g., fMLLR [29]) and longer-term adaptation
techniques (e.g., DNN weight training [30]). For both human listeners and ASR
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systems, lexical knowledge about the word in which the nonstandard sound occurs is
crucial to correctly interpret the nonstandard sound [7, 23].

3.1 Does a DNN Show Human-Like Adaptation to Nonstandard Speech?

In recent work, we investigated the question whether DNNs are able to adapt to
nonstandard speech as rapidly as human listeners, and whether DNNs use intermediate
speech representations that correlate with those used in human perceptual learning [12].
Mimicking the set-up of a human lexically-guided perceptual learning study [28],
which allows for the direct comparison between human listening behaviour and the
behaviour of the DNN, we trained a feed-forward DNN on the read speech of CGN.
The trained model was regarded as a ‘native Dutch listener’. In the next step, the DNN
was retrained with the acoustic stimuli from the original human perceptual learning
study [28], i.e., speech from a new speaker who had an (artificially created) nonstan-
dard pronunciation of a sound in between [l] and [ɹ], referred to as [l/ɹ]: One model was
trained with the [l/ɹ] sound always occurring in /r/-final words; another model was
trained with the [l/ɹ] sound always occurring in /l/-final words. A final, baseline model
was trained on the same words but without nonstandard pronunciations.

The results showed that the DNNs retrained with the [l/ɹ] sounds indeed showed
perceptual learning: The baseline model classified the nonstandard sound during a
subsequent phase as both [l] and [ɹ], the model retrained with the [l/ɹ] sound in /r/-final
words classified the sound as [ɹ] while the model retrained with the nonstandard sound
in /l/-final words classified the sound as [l]. This difference between the two models
trained with the nonstandard pronunciation is called the perceptual learning effect.
Moreover, this perceptual learning effect did not only occur at the output level, but
calculations of the distances between the average activations of the nonstandard sound
and those of the natural sounds and the visualisations of the activations of the hidden
layers showed that perceptual learning also occurred at the DNN’s intermediate levels.
Interestingly, the visualisations of the speech representations in the DNN’s hidden
layers showed that the phonetic space was warped to accommodate the nonstandard
speech. This warping of the phonetic space seems to be at odds with theories of human
speech processing, which assumes that the nonstandard sound is incorporated in the
existing phoneme category by redrawing the phoneme category boundaries [26]. In
follow-up research, I plan to test this prediction of the DNN about human speech
processing in new human perceptual experiments.

3.2 Are Nonstandard Sounds Processed Similarly in Human Listeners
and DNNs?

In subsequent work, this research was pushed further and we asked the questions
whether nonstandard sounds are processed in the same way as natural sounds; and, how
many examples of the nonstandard sound are needed before the DNN adapts? Again,
the experimental design [24] and acoustic stimuli were taken from earlier research on
lexically-guided perceptual learning in human listeners [28]. The same DNN as in the
study described in Sect. 3.1, was retrained but this time using increasing amounts of
nonstandard sounds (in 10 bins of 4 ambiguous items). Calculations of the distances
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between the average activations of the nonstandard sound and those of the natural
sounds in the different hidden layers showed that the DNN showed perceptual learning
after only four examples of the nonstandard sound, and little further adaptation for
subsequent training examples.

Interestingly, human listeners have been found to show a similar type of step-like
function after about 10–15 examples of the nonstandard sound. The difference in
number of examples could be explained by the fact that the DNN sees each training
example 30 times (30 epochs) whereas the human listener hears each token only once.
In follow-up research, I plan to further investigate the step-like function in adaptation in
human listening.

4 Concluding Remarks

In this paper, I summarised results from three studies comparing human speech pro-
cessing and speech processing in deep neural networks. The results showed that:

• Similar to human listeners, the DNN progressively abstracted away variability in the
speech signal in subsequent hidden layers;

• Without being explicitly trained to do so, the DNN captured the structure in speech
by clustering the speech signal into linguistically-defined speech category repre-
sentations, similar to those used during human speech processing;

• Similar to human listeners, the DNN adapted to nonstandard speech on the basis of
only a few labelled examples by warping the phoneme space;

• This adaptation did not only occur in the output layer but instead occurred in the
hidden layers of the DNN and showed a step-like function.

These detailed comparisons between human speech processing and DNN-based
ASR highlight clear similarities between the speech representations and their pro-
cessing in the human brain and in DNN-based ASR systems. Moreover, the DNNs
made specific predictions about adaptation to nonstandard speech that will be inves-
tigated in experiments on human speech processing to further investigate the differ-
ences and similarities between adaptation to nonstandard speech in humans and DNN-
based ASR systems. These experiments will lead to important new insights regarding
the adaptation of human listeners to nonstandard speech.

Past research [9–17] has shown that knowledge of human speech processing can be
used to improve ASRs. The observed similarities between human and DNN speech
processing suggest that integrating the flexibility of the human adaptation processes
into DNN-based ASRs is likely to lead to improved adaptation of DNN-based ASRs to
nonstandard speech. Crucial for the development of human-speech processing inspired
ASR systems that, similar to human listeners, can adjust flexibly and fast to all types of
speech in all languages is understanding when and how human listeners decide to
create a new phoneme category rather than adapting an existing phoneme category to
include a nonstandard pronunciation. This is a crucial next step in this research.

Acknowledgments. I would like to thank Junrui Ni for carrying out the experiments described
in Sect. 3.2 and Mark Hasegawa-Johnson for fruitful discussions on the experiments in Sect. 3.2.
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Abstract. Named Entity Recognition (NER) is an important task in
Natural Language Processing (NLP) with a wide range of applications.
Recently, word embedding based systems that does not rely on hand-
crafted features dominate the task as in the case of many other sequence
labeling tasks in NLP. However, we are also observing the emergence
of hybrid models that make use of hand crafted features through data
augmentation to improve performance of such NLP systems. Such hybrid
systems are especially important for less resourced languages such as
Turkish as deep learning models require a large dataset to achieve good
performance. In this paper, we first give a detailed analysis of the effect
of various syntactic, semantic and orthographic features on NER for
Turkish. We also improve the performance of the best feature based
models for Turkish using additional features. We believe that our results
will guide the research in this area and help making use of the key features
for data augmentation.

Keywords: Named Entity Recognition · Conditional Random Fields ·
Dependency Parsing · Turkish

1 Introduction

Named Entity Recognition was first defined officially as an NLP task in the Mes-
sage Understanding Conference (MUC) in 1995. According to its first formal def-
inition [2], NER consists of two main subtasks: Detection of named entities and
categorizing each detected entity into predefined categories. Identification is an
important step which enables information extraction over large texts. The second
step can be considered as a more refined task where the aim is to use any kind of
contextual or word-level, sub-word level information to distinguish between sub-
categories of entities. Ratinov et al. [15] show that this step is more challenging
compared to detection. Detecting and properly categorizing the named entities
is an important first step for analyzing a given text and is shown to improve
the performance of many other NLP tasks such as machine translation [10] and
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question answering on speech data [13]. Named entities are also used to select
a better language model to enhance the performance of speech-to-text systems
[1].

Dependency Parsing (DP) is an important research topic in NLP. It is demon-
strated to be highly useful for various NLP tasks. Dependency parsing is shown
to be useful for machine translation, question answering and named entity recog-
nition [3,18]. Following the previous work we used dependency parsing related
features together with other features during our experiments to boost the NER
performance in our feature based setting.

In this paper, we first give a detailed analysis of the effect of various morpho-
logical, syntactic and semantic level features on NER performance. Throughout
our experiments we make use of a Conditional Random Fields (CRF) based
model which makes use of hand crafted features. We also show improvements
over the previous work on feature based NER for Turkish. Our final model which
can be considered as an extension to the previous feature based models [4,19],
makes use of dependency parsing related features which are not tested exten-
sively in this setting before to the best of our knowledge. The main contributions
of this paper can be considered as follows:

– A detailed analysis of each hand crafted feature on the NER performance.
– Showing an improvement over the previous work on feature based NER mod-

els for Turkish by using dependency related features in addition.

The paper is organized as follows: We start by giving the previous work done
on NER and feature based models. Then we describe the dataset we have used
in Sect. 3. This will be followed by the Methodology Section which describes
the CRF model and the feature sets we have used in detail. Finally we give the
results we have obtained and compare our results with related work.

2 Previous Work

Early work in this area is dominated by feature based statistical models. McCal-
lum et al. [12] give the first results for using a CRF based model together with
hand crafted features for the NER task. A more detailed overview of the feature
based statistical models used for NER until 2007 can be found in the work of
Nadeau et al. [14].

Recent work on NER is dominated by deep learning models and these mod-
els are consistently shown to outperform the previous work in this area. Using
Convolutional Neural Networks (CNN), Bidirectional Long-short Term Memory
(BiLSTM) Recurrent Neural Networks (RNN) is frequent as in the case for many
other NLP tasks that can be formulated as a sequence labeling task [8,11]. The
work done on less resourced languages is more limited but best results for NER
are also obtained by using a similar deep learning architecture for the Turkish
language [7].

Previous work on agglutinatively rich languages such as Turkish show that
using morphological and syntactic features improves the performance of NER



Feature-Based Named Entity Recognition for Turkish 11

systems [4,7,19]. Yeniterzi et al. [23] exploit the morphological features of mor-
phologically rich languages to gain improvement in NER for Turkish. They focus
specifically on language specific morphological features and show that making
use of them increase the performance. Şeker et al. [19] make use of various hand
crafted features as well as gazetteers for the NER task for Turkish. Later they
improve extend the same methodology to cover a wider variety of entity tags
and to tackle the same task in a more challenging context where the input is
user generated web content [20]. Demir et al. [4] make use of only language
independent features along with word embeddings to gain improvement over the
previous state of the art. The main contribution of their work is that the same
feature set can easily be extended. Recently, Güngör et al. [7] showed that joint
learning of morphological disambiguation and NER increases the performance
of the NER model.

Using the surface form of the words causes the data sparsity problem as a
single word can be extended in multiple ways in such agglutinative languages.
Using stemming to solve this problem is often not a good idea as important
semantic and syntactic information about the token is lost during this process.
Specifically, morphological features are shown to be vital for such languages in
several studies [4,23].

3 Datasets

During all our experiments we have made use of a dataset extracted from Turkish
newspapers [22]. It is one of the most frequently used datasets for NER for
Turkish and considered as the most important benchmark in this setting. As the
dataset is relatively old and reannotated and refined many times by different
researchers, it is difficult to keep the consistency of the exact version of this
dataset being used in each paper. Table 1 gives some statistics about the training
and test sets we have used during this paper.

Table 1. (A) Number of annotated entities in the Turkish NER dataset. (B) Number
of annotated tokens.

A LOC ORG PER B LOC ORG PER

Training 9,800 9,117 14,693 Training 11,137 15,470 21,641

Test 1,116 865 1,597 Test 1,315 1,680 2,394

The dataset is annotated in BIO scheme. The initial token of each entity
sequence is tagged with ‘B’ followed by its entity type and the remaining token
tags start with ‘I’. In our setting we have used the following three entity types:
Location (LOC), Person (PER) and Organization (ORG). So an example anno-
tation for a two-token entity of type ‘Person’ will be tagged as follows: Akira (B-
PER) Kurosawa (I-PER). Figure 1 gives an example sentence from the dataset
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that we have made use of which is additionally annotated with many hand
crafted features. The dataset is structured in a token-per-line format where each
line contains a single token followed by its feature values. Each annotation fol-
lowing a token will be explained in detail in the following section.

Fig. 1. Example sentence from the NER dataset.

4 Methodology

In this section we explain the undertaken methodology during this study to
analyze and improve on using hand-crafted features for NER for Turkish. We
begin by describing the model used during the experiments which will be followed
by the explanation of each feature.

4.1 Model

During our experiments we have made use of the CRF based Wapiti toolkit
implement by Lavergne et al. [9]. Wapiti is a sequence classifier toolkit which
allows training models using various model types and optimization algorithms.
The results achieved by this toolkit on the CoNLL-2003 English dataset is com-
parable to the state-of-the-art deep network based systems even though the
training time is shorter and the memory requirement is significantly lower. The
toolkit is chosen primarily because it enables fast configuration of various train-
ing models as well as fast configuration of the features that are being used by
the model. Following subsections will describe the specific aspects of this toolkit.

The toolkit allows using various machine learning models for training as
mentioned previously. The models and their brief description are as follows:
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– Maximum Entropy (MAXENT): Maximum Entropy models are very
general probabilistic methods that pick the output with the highest entropy
by considering the observations and the prior knowledge. These models are
frequently used in NLP tasks that can be formulated as sequence labeling
tasks. A Maximum Entropy based model is used in [16] for the POS tagging
task.

– Maximum Entropy Markov Models (MEMM): It is an extension of
the Maximum Entropy models which consider the hidden features of Hidden
Markov Models. It is also frequently used in NLP, especially for the sequence
labeling tasks such as POS tagging and NER [6].

– Conditional Random Fields (CRF): This model calculates the transition
probabilities from one prediction to another in addition to the Markovian
assumption of the MEMM where the transition probabilities between tags
are learned from the training dataset.

Our initial experiments showed that CRF based models consistently outper-
form others. Thus for the final models tested on the test set, the training is done
using the CRF model. Sutton et al. [21] give a detailed formulation for CRF based
models. Apart from the training model, we have trained the proposed models
with several different optimization algorithms to be more confident about the
results we have obtained. Below is the list of the optimization algorithms used
together with a brief description:

– l-bfgs: Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm [5]. It
is a quasi-newton optimization algorithm with less memory requirements.

– sgd-l1: Stochastic gradient descent with l1 regularization. Our initial exper-
iments showed that sgd-l1 is not suitable in our proposed setting so we have
not included it in our grid search experiments.

– rprop+/-: Resilient backpropagation which only takes into account the sign
of the partial derivative and acts independently on each weight. rprop- refers
to the version of the algorithm without the backtracking step.

4.2 Features

We have analyzed many features in this study. Below we explain each feature
briefly:

1. Surface form (Surf): The surface form of each word.
2. Initial POS tag (POS): The POS tag prediction for the stem form of the

word by a third party morphological analyzer [17].
3. Final POS tag (POS): The POS tag for the complete surface form of the

word. This feature is also referred to as POS as we never used both features
at the same time and except for the initial experiment we consistently used
the Final POS tag as the POS feature.

4. Capitalization Feature (Cap): A four valued feature giving information
about the orthographic structure of a token. 0 for all lowercase, 1 for Only-
firstletter, 2 for ALLUPPER and 3 for miXeD. Capitalization feature is a
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fundamental feature for the NER task for Turkish as all named entities are
expected to be capitalized. This feature significantly increases the perfor-
mance in languages like Turkish.

5. Stem of the word (Stem): This feature is important to tackle the out-of-
vocabulary problem in agglutinative languages like Turkish.

6. Start of sentence (SS): Binary feature to handle the ambiguity of capital-
ization at the beginning of each sentence.

7. Proper noun (Prop): This binary feature takes the value 1 if the morpho-
logical analyzer predicts the word to be a proper noun and 0 otherwise.

8. Acronym feature (Acro): Binary feature denoting whether the morpho-
logical analyzer predicts the word to be an acronym or not, e.g. ABD -
Acro and Istanbul - Notacro. Acronym’s are almost always in the form of
ALLUPPER. Yet ALLUPPER is a purely orthographic feature whereas the
Acro feature is the prediction made by the morphological analyzer. Also,
arbitrary words that are not necessarily acronyms can be found in a dataset
and ALLUPPER category detects such cases.

9. Nominal feature (Nom): This feature is a combination of three atomic
features. Observing the morphological analyses of the labeled entities in the
training set showed that, most of them share the following three features:
They are capitalized, they are in their stem form and the analyzer predicts
them to be Nominal. So we used a binary feature to check whether these
three conditions are met or not.

10. Final suffix (Suf): The final suffix of the word is given in the morphological
analysis format. If the word does not have any suffix ‘None’ value is given. In
order to overcome the data sparsity of complete matching the surface form
of the suffix is not used. For example the final suffix of the word ‘kalitesinin’
which means ‘the quality of (something/someone)’ is ‘nin’ but the feature
value is ‘NHn’ where the uppercased letters denote the letters are subject to
change in other words but the suffix itself is the same. By using this feature
CRF based model can detect all the words that have the same suffix even
though the surface form of them may differ as in the case of ‘kalitesinin’ -
‘nin’ and ‘ormanın’ - ‘ın’.

11. Regex Features: Wapiti allows giving as input regular expressions which
are converted either into binary features or the regex match itself is kept as
the feature value. We used regular expressions to extract features such as
all 1, 2, 3 and 4 character long suffixes and prefixes if they exist. We also
used regular expression to create binary features to detect numericals and
punctuations in a given token.

12. Dependency Relation (Deprel): The predicted relation between the word
in question and its predicted head word by the dependency parser used.

13. Dependency Index (Depind): The index of the head word of the depen-
dency relation. This can be considered as a positional feature.

14. POS tag of the head word (POShead): The POS tag of the head word
of the dependency relation. In the case that the word itself is the root word
a special POS tag “ROOT” is used.
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All features are used with a window size two, i.e. two preceding and two
succeeding words are taken into account for each token during calculating the
conditional probabilities for the CRF-based model. Increasing the window size
greatly increases the computational cost and we found that increasing the win-
dow size to more than two does not significantly improve the performance.

4.3 Evaluation Metrics

We used two evaluation metrics which are considered as the standard metrics for
the NER task: F1 and MUC. For this task, F1 measures the systems performance
of both detecting and categorizing an entity together. MUC metric considers
detection and categorization as separate tasks and takes the average of the F1-
measures obtained for each sub-task. Thus, MUC scores are higher compared to
the F1 scores.

5 Results and Discussion

We performed various experiments with different subsets of the features given
above. In this section we first give the results obtained on the 10% of the training
set which is used as validation. We used the validation phase to find the best
feature subset and then continued with a grid search over the learning algorithms
and optimization methods explained in the previous section. Best performing
model is tested on the test set to get the final results. We finish the section by
comparing our results with the previous work on feature based NER for Turkish.

We started with analyzing the features by adding them cumulatively fol-
lowing the previous work [4]. We determined four core features as our baseline
model (BM) and added the remaining features one-by-one. The core features are
as follows: Surface form, POS tag, Capitalization and Stem form.

At each step we added each remaining feature, trained the model and
observed the change in performance. According to the results we pick the feature
that gave the highest improvement to be the next feature added to the current
feature subset. The feature with the highest improvement can easily be identified
from the order of appearance in Table 2(A) given below.

Table 2. (A)Initial results obtained for the first baseline (BM) together with the
training times. (B) Results with the updated baseline (BM2).

A MUC F1-measure Training time B F1-measure

BM 0.919 0.889 3,000 s BM2 0.894

+SS 0.921 0.889 3,300 s +Cap+Stem+SS 0.896

+Prop 0.924 0.896 3,400 s +Prop+Acro+Nom 0.899

+Acro 0.924 0.897 3,900 s +Suf 0.900

+Nom 0.925 0.896 4,800 s +Depind+Deprel 0.899
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At the last step of the experiments addition of the Nominal feature caused
a decrease in the performance which is counter-intuitive. Following this, we
changed the core feature set and started experiments from the baseline again
to analyze in detail the effect of each feature better. The core features for the
new baseline model (BM2) are as follows: Surface form, POS tag and all regex
features with a window size of 2. Regex features are described in the previ-
ous section and includes all orthographic features except for the capitalization
feature. Then again we added features in a cumulative manner but this time
analyzed the effect of adding these features in groups rather than one-by-one.
Table 2(B) gives the results obtained for these experiments.

Table 3. Exploration of combinations of all training models and optimization
algorithms.

Model Optimization algorithm PER LOC ORG Overall F1 MUC

CRF l-bfgs 0.909 0.898 0.883 0.899 0.919

rprop- 0.904 0.892 0.860 0.887 0.904

rprop+ 0.903 0.892 0.860 0.887 0.905

MAXENT l-bfgs 0.910 0.890 0.865 0.892 0.915

rprop- 0.913 0.887 0.847 0.887 0.908

rprop+ 0.913 0.887 0.847 0.887 0.908

MEMM l-bfgs 0.910 0.879 0.845 0.883 0.909

rprop- 0.911 0.883 0.826 0.879 0.901

rprop+ 0.911 0.883 0.826 0.879 0.901

At the final step we have observed a slight decrease in performance when we
added the dependency related features together. Next we did a grid search over
the training models and optimization algorithms, using the final feature set to be
more confident about the results we have obtained. Table 3 gives the results for
these experiments. After the grid search we have concluded that adding depen-
dency relation and dependency index together does not improve the performance
of the model, and the best model/optimization algorithm combination is the
default combination of CRF/l-bfgs. This combination consistently outperforms
all other combinations on both evaluation metrics (Overall F1 and MUC).

Next we trained a model by adding only the dependency relation feature
and obtained the best results. The effect of this feature is given in Table 4. We
restate the previous best result we have achieved which we call ‘Previous Best’
for readability.

We have successfully shown on the validation set that the addition of the
dependency relation feature in our setting slightly improves the performance.
Next we evaluated the true performance of our final proposed model which
exploits the dependency relation information, on the test set. Table 5 gives the
results obtained for these final experiments. ‘Previous Best’ denotes the feature
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Table 4. Results for adding the dependency relation feature.

PER LOC ORG Overall F1

Previous Best 0.912 0.895 0.884 0.900

+Deprel 0.916 0.896 0.886 0.902

combination with the highest F1 score without taking into account the depen-
dency related features. The feature combination is as follows: Surface form, POS
tag, Stem form, Capitalization, Start of Sentence, Proper Noun, Acronym, Nom-
inal, Final Suffix and all regex features explained in the previous section.

Table 5. Final results on the test set. “Previous Best” denotes the best combination
observed during the experiments on the validation set without dependency related
features.

Model Entity type Precision Recall F1

Previous Best+Deprel PER 0.913 0.889 0.900

LOC 0.921 0.899 0.910

ORG 0.909 0.856 0.882

Overall 0.915 0.884 0.899

+POShead PER 0.917 0.880 0.898

LOC 0.923 0.903 0.913

ORG 0.917 0.850 0.882

Overall 0.919 0.880 0.899

Table 6. Comparison with related work using F1 measure as the evaluation metric.

System PER ORG LOC Overall

Yeniterzi et al. [23] 89.32 83.50 92.15 88.94

Şeker et al. [19] without using gazetteers 90.65 86.12 90.74 89.59

Demir et al. [4] without using vector representations 92.26 83.53 90.73 89.73

Our Model 90.07 88.15 90.98 89.89

We did not observe a significant difference when we take into account the
POS tag of the head word of the dependency relation.

Finally we compare our results with the previous work on feature based
NER for Turkish. Table 6 shows the comparison of our model with the related
work. Yeniterzi et al. [23] exploits the morphological features and analyzes the
improvement obtained by using them. Following their work we have also made
use of various morphological features as explained in the Methodology section.
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As we have no access to the gazetteers used by Şeker et al. [19] and do not have
access to the vector representations used by Demir et al. [4], we compare our
results with their best versions that does not make use of gazetteers and vector
representations.

6 Conclusion and Future Work

In this study we have given a detailed analysis of the effect of hand-crafted
features on the performance of NER for Turkish language. We tried novel features
such as dependency related features and analyzed their effect. We also compared
our results with the previous work and showed improvement over them by using
additional features. We hope that the findings stated in this work will guide
the researchers working on this area. In future, we will be implementing deep
learning models that make use of data augmentation by following the findings
of this paper.
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13. Mollá, D., Van Zaanen, M., Cassidy, S., et al.: Named entity recognition in question
answering of speech data (2007)

14. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification.
Lingvisticae Investigationes 30(1), 3–26 (2007)

15. Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recog-
nition. In: Proceedings of the Thirteenth Conference on Computational Natural
Language Learning, pp. 147–155. Association for Computational Linguistics (2009)

16. Ratnaparkhi, A.: A maximum entropy model for part-of-speech tagging. In: Con-
ference on Empirical Methods in Natural Language Processing (1996)
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Abstract. The problem of addressee detection (AD) arises in multi-
party conversations involving several dialogue agents. In order to main-
tain such conversations in a realistic manner, an automatic spoken dia-
logue system is supposed to distinguish between computer- and human-
directed utterances since the latter utterances either need to be processed
in a specific way or should be completely ignored by the system. In the
present paper, we consider AD to be a text classification problem and
model three aspects of users’ speech (syntactical, lexical, and semanti-
cal) that are relevant to AD in German. We compare simple classifiers
operating with supervised text representations learned from in-domain
data and more advanced neural network-based models operating with
unsupervised text representations learned from in- and out-of-domain
data. The latter models provide a small yet significant AD performance
improvement over the classical ones on the Smart Video Corpus. A neu-
ral network-based semantical model determines the context of the first
four words of an utterance to be the most informative for AD, signifi-
cantly surpasses syntactical and lexical text classifiers and keeps up with
a baseline multimodal metaclassifier that utilises acoustical information
in addition to textual data. We also propose an effective approach to
building representations for out-of-vocabulary words.

Keywords: Text classification · Speaking style ·
Human-computer interaction · Spoken dialogue system

1 Introduction

The capabilities of modern automatic spoken dialogue systems (SDSs) are not
confined only to the range of tasks that such systems can solve. Many research
efforts are concentrated on improving the systems’ adaptability to different envi-
ronmental conditions and modelling human-like behaviour. People possess the
ability to determine addressees within spoken conversations that allows them to
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maintain multiparty interactions involving several conversational agents. This
capability is extremely useful for SDSs, such as personal assistants, social robots,
and chat bots, and may essentially improve their performance alongside with
users’ perception of such systems.

Most modern SDSs handle the interaction between a human and the system
as a pure human-machine (H-M) conversation, i.e, all the speech captured by
the system is assumed to be system-directed [17], though this hypothesis does
not take into consideration multiparty scenarios, in which several users solve col-
lective tasks by addressing the SDS. In such scenarios, a user may also address
another human while interacting with the system or even talk to him- or herself.
E.g., interlocutors may be negotiating how they will spend this evening, asking
the system to show information about cafes or cinema and discussing possi-
ble alternatives. As a result, a new type of interaction arises – human-human-
machine (H-H-M) conversation – that is supposed to be handled by the SDS so
that the system is able to maintain conversations in a realistic manner. Human-
directed utterances either need to be processed in a specific way without a direct
system response, e.g., the system may collect paralinguistic and contextual infor-
mation to adapt to the users, or should be completely ignored in order not to
confuse the system. This necessity leads to the problem of addressee detection
(AD) in H-H-M conversations, i.e, the SDS is supposed to determine whether
the user is addressing the artificial conversational agent or another human.

In human-human (H-H) conversations, people specify addressees in the fol-
lowing two ways: explicitly (addressees are specified directly in speech by their
names) and implicitly (addressees are specified indirectly using some contextual
markers). In both cases, the information required to make predictions regarding
addressees is enclosed in the semantical content of users’ utterances. Some other
cues in terms of AD arise in H-M conversations. People tend to change their
normal manner of speech, making it grammatically simpler and generally easier
to understand as soon as they start talking to a modern SDS, since they do
not perceive the system as an adequate conversational agent [22]. Another cue
is related to the problem-oriented nature of H-M dialogues. People usually use
some domain-related lexical units while addressing the system. Summarising all
the observations mentioned above, we define the following textual aspects that
should be taken into account for solving the AD problem in H-H-M conversa-
tions: lexical content (what has been said), structure of sentences (how it has
been said) and semantical content (what it means).

The present paper has the following contributions. We demonstrate that
modelling three aspects of users’ speech (syntactical, lexical, and semantical) is
sufficient for reliable AD in German. We also compare simple classifiers operat-
ing with supervised text representations learned from in-domain data and more
advanced neural network-based models operating with unsupervised text repre-
sentations learned from in- and out-of-domain data. The latter models provide
a small yet significant AD performance improvement over the classical ones.
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2 Related Work

As demonstrated in [1,5,24], multimodality brings a significant AD performance
improvement in comparison with unimodal approaches. However, it is shown in
[1] for the Smart Video Corpus (SVC) [5] being considered in the present paper
that textual information provides the most significant contribution to the overall
AD performance in comparison with the other modalities available. Therefore,
we focus specifically on text analysis to improve existing textual baselines intro-
duced in [3]. Most studies dedicated to textual AD analyse English speech, and
therefore it seems interesting to obtain results for other languages, e.g., German.
The authors of [15] tackled the problem of collecting realistic data from H-H-M
conversations and demonstrated that the H-H-M scenario can be approximated
combining data from H-M and H-H scenarios. In this approach, the data for the
H-M scenario models machine-directed utterances and should be collected with
a single user within the system domain, while the data for the H-H scenario
being applied to modelling human-directed utterances may be collected from
other domains. The authors of [20] compared classical n-gram and feedforward
neural network-based language models (LMs) for the AD problem and found
no improvement from simply replacing the standard n-gram LM with a neural
network-based LM as class likelihood estimators. However, an improved clas-
sification accuracy was obtained by means of a modified neural network-based
model that learned distributed word representations in the first training phase,
and was trained on the utterance classification task in the second phase. The
authors of [19] demonstrated advantages of applying recurrent neural networks
over using simple feedforward networks for AD. Overall, the related studies moti-
vate us to leverage advantages of both classical models operating with supervised
text representations learned from in-domain data and recurrent neural network-
based classifiers operating with unsupervised distributed word representations
learned from in- and out-of-domain data.

3 Classifiers

We consider AD to be an utterance classification problem. Designing our mod-
els, we assume that simple classifiers and text representations for them may be
trained on in-domain data exceptionally, while the usage of out-of-domain data
is reasonable for training more complex architectures involving neural networks.

3.1 Classical Models

Lexical Model. We apply two classical models that carry out different stages
of text analysis. The first classifier involving an n-gram LM utilising word tokens
performs lexical analysis and gives us an utterance-level text representation. It
is demonstrated in [3] that textual AD is not sensitive to various German word
forms. Stemming thereby allows us to reduce the vocabulary size by around
20% with no influence on the classification performance. However, stop word fil-
tering significantly decreases the performance, showing that stop words matter
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for AD in German [3]. The extracted n-grams are weighted with a supervised
term weighting method that takes into account statistical information about
class labels and therefore simplifies the classification problem for a classifier.
The utterance-level text representation is calculated as the product of Term
Frequency (TF – evaluates the statistics of term occurrences in a given docu-
ment) and Inverse Document Frequency (IDF – estimates the statistics of term
occurrences in an entire data set). Besides the well-known TF-IDF technique
[21], six different supervised term weighting methods are applied to compute the
IDF part of the product [8,9,13,14,23,25]. As a classifier, we apply the Support
Vector Machine-based algorithm Fast Large Margin (SVM-FLM). The study [2]
describes experiments with various term weighting methods and classification
algorithms on the AD problem.

Syntactical Model. The only difference between this model and the lexical
one is in their tokenisers: the syntactical model deals with Part-of-Speech (POS)
and dependency tokens instead of real words and considers a longer context
compared to the context fed to the lexical model.

We examine the following text representations for the two models described
above: five tokenisers implemented using spaCy [11] (no filtering, stop word filter-
ing, stemming, POS, and dependency parsing), five context lengths (from uni- to
quintagram), and seven term weighting methods implemented in C++ (TF-IDF
[21], Gain Ratio (GR) [8], Confident Weights (CW) [23], Term Second Moment
(TM2) [25], Relevance Frequency (RF) [14], Term Relevance Ratio (TRR) [13],
and Novel Term Weighting (NTW) [9]) that produce 175 feature configurations
in total. For each model, the best feature configuration depicted in Fig. 1 was
chosen in terms of both unweighted average recall (UAR) and macro F1-score
on a development set.

3.2 Deep Models

Originally, SVC has word-level labelling. Due to utterance segmentation errors
and the absence of any requirements for the participants, some utterances contain
words with different labels. In this case, a natural idea would be to use a word-
level text representation and a sequential model that would allow us to track
word label changes within each utterance. There were several attempts to apply
such models to textual AD on various corpora [4,19].

Word Embeddings. For building word representations, we use the GloVe algo-
rithm proposed in [18]. It is an unsupervised algorithm for learning global word
representations based on word co-occurrences in a large amount of textual data,
hence built word embeddings are domain-independent and may be used in a
wide range of applications. Another interesting feature of this approach is its
ability to form semantical linear substructures in the word vector space. The
performance reached with GloVe word representations is very similar to the per-
formance of Word2Vec embeddings in most applications, though the process of
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training GloVe representations can be easier parallelised since it is mostly based
on matrix factorisation.

Besides SVC, we utilise two large out-of-domain textual corpora to train
GloVe word embeddings: the TIGER [6] and the WikiNER Corpus [16]. We
have chosen the resulting dimensionality of word embeddings to be equal to 300
in accordance with an existing model for German built in the spaCy toolkit
being used for learning word representations.

Utterance-level predictions Sequence of word-level predictions

Recognised text

Lexical analyserSyntactical analyser

RF term weighting

POS tagging Stemming

Trigram extraction

RF term weighting

SVM-FLM SVM-FLM

Unigram extraction

Linear SVM-based meta-classifier

Word-to-utterance prediction averagingConfidence score concatenation

Extraction of GloVe word embeddings

BLSTM layer (15 units)

Softmax layer (2 units)

Dropout layer (20%)

Automatic speech recogniser

Semantical analyser

Final utterance-level prediction

Fig. 1. Text metaclassifier involving syntactical, lexical, and semantical models.

Sequential Data Models. After extracting word embeddings, each utterance
is represented as a sequence of word vectors. This sequence is processed with a
sequential model. The study [19] considering applications of a simple Recurrent
Neural Network (RNN) and a Long Short-Term Memory neural network (LSTM)
to textual AD demonstrates that RNNs perform better on one data set with
short utterances (utterance length mode is around 5 words), while LSTMs show
a higher performance on another data set with long utterances (utterance length
mode is around 10 words). Taking these results into account, we decide to apply
a BLSTM network (bidirectional LSTM, though a regular LSTM may also be
used) to our AD problem since SVC has an utterance length mode of roughly 10
words. In order to enable our network to process utterances of arbitrary length,
we pad them with zero vectors at the end to the length of the longest utterance
and add a masking operation before a recurrent layer so that the network ignores
empty time steps. The recurrent layer is followed by a dropout and a softmax
layer. As a result, the network receives an utterance and returns a sequence of
addressee predictions (one for each word). To obtain an utterance-level addressee
prediction for fusion with the other two models, we average word-level confidence
scores over all words in the utterance. We use the following network parameters
optimised on the development set: 15 BLSTM units, categorical cross-entropy
as a loss function, RMSprop as a weight optimisation algorithm, a learning rate
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of 0.01, 50 epochs, 20% dropout, and a batch size of 32. The neural network was
implemented applying Keras [7].

Handling Out-of-Vocabulary Words. It is noticed in [19] that sequential
models are more sensitive to unknown words that may appear in test data than
models utilising n-grams. A possible explanation for this is that such a word
affects all the subsequent context perception of the utterance in case of sequen-
tial models, while in case of n-gram models the same unknown word influences
only the neighbouring n-grams that include it. We faced this problem during our
first experiments with the recurrent model on SVC that contains 20% of single-
ton words in its vocabulary. Using the large out-of-domain corpora (TIGER and
WikiNER), we managed to reduce the number of unknown words, though they
still affected the AD performance. Most of the words remaining unknown turned
out to be either proper names, or numerals, or compounds. The latter category
comprises 40% of all the words remaining unknown and appears due to the Ger-
man habit to stack several simple words into long and complex constructions.
To find representations for unknown words, we propose the following solution:
according to the POS tags defined for each word prior to syntactical analysis,
each found proper name and numeral is replaced by a word from the respective
category in the out-of-domain corpora so that this word is already familiar to
our system. For each word that remains unknown, we search for a match among
the words contained in the training vocabulary, that covers the maximum num-
ber of characters starting from the end of the unknown word. This seems to be
reasonable since the last sub-word of a German compound usually denotes its
generic feature. If such a match is found, we represent it as a separate word that
is already known to the system and continue the loop until no more matches are
found, e.g., all sub-words in the compound Fußball+welt+meisterschaft (Foot-
ball World Championship). For those words that remain unknown at the end, we
apply a word hashing technique as described in [12]. We represent the unknown
words as vectors of character trigrams, find the in-vocabulary word nearest to
each out-of-vocabulary word in this space and associate its representation with
this in-vocabulary word.

3.3 Fusion

The three models described above are fused at the decision level. Their result-
ing confidence scores are concatenated and fed to another SVM-based classifier
returning the final confidence score for each utterance. A general scheme of this
metaclassifier is depicted in Fig. 1. The SVM was implemented using RapidMiner
[10] with default parameters.

4 Corpora

SVC was collected within large-scale Wizard-of-Oz experiments and consists of
H-H-M conversations in German between a user, a confederate, and a multimodal
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SDS [5]. The corpus contains users’ queries in the context of a visit to a stadium
of the Football World Cup 2006. A user was carrying a mobile phone, asking
questions of certain categories (transport, sights, event schedule and statistics,
and also open-domain questions) and discussing the obtained information with a
confederate, who was always nearby but has never talked to the system directly.
This experimental setup encouraged the interlocutors to use indirect addressing
instead of calling each other by name. The data comprises 3.5 hours of audio
and video, 99 dialogues (one unique speaker per dialogue), 2 193 automatically
segmented utterances with manual transcripts, and 25 073 words in total. The
labelling of addressees was carried out for each word; four word classes were
specified: NOT, SOT, POT, and ROT. Their description is provided in Table 1.
No requirements regarding Off-Talk were given to the users in order to obtain
as realistic H-H-M conversations as possible.

Table 1. Examples of SVC utterances.

Category of human speech # Addressee System action

On-Talk (NOT): system-directed utterances

Example: “Wann wurde Berlin gegründet? Können

Sie mir das sagen?” (When was Berlin founded? Can

you tell me that?)

1 087 System Explicit processing

(response)

Read Off-Talk (ROT): reading the information aloud

from the system display to another human

Example: “Berlin wurde im Jahr 1237 gegründet.”

(Berlin was founded in 1237.)

309 Human Implicit processing

(adaptation)

Paraphrased Off-Talk (POT): retelling the infor-

mation obtained from the system in arbitrary form to

another human

Example: “Oh, die Stadt ist ziemlich alt. Das

Gründungsjahr ist 1237.” (Oh, the city is quite old.

The foundation year is 1237.)

323

Spontaneous Off-Talk (SOT): any other human-

directed utterances

Example: “Toll! Das wusste ich nicht. Willst du noch

den Name vom Gründer wissen?” (Cool! I didn’t know

that. Do you want to know the founder’s name?)

474

To provide those models, which utilise utterance-level features, with labels,
we carry out a word-to-utterance label transformation: an utterance label is
calculated as the mode of all word labels in the current utterance. Utterance
examples are shown in Table 1. We consider a two-class task only (On-Talk vs
the three Off-Talk classes) since it is equivalent to the AD problem. Experiments
with a four-class task may be found in [5].

The TIGER Corpus [6] consists of around 50 000 sentences (900 000 tokens) of
German newspaper text, taken from the Frankfurter Rundschau. The WikiNER
Corpus [16] contains around 1 000 000 articles (400 000 000 tokens) from the Ger-
man Wikipedia.
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5 Experimental Results

It is shown in [3] that using the output of a state-of-the-art speech recogniser
instead of the manual transcripts does not worsen the AD performance on SVC.
Therefore, our system utilises the manual transcripts in the present study. For
statistical analysis, we conduct an experimental scheme as specified in [3] - leave-
one-speaker-group-out (LOSGO) cross-validation - splitting the entire speaker
set into 14 folds so that the class proportion remains equal in each fold. The
resulting AD performance calculated as UAR averaged over all folds is depicted
in Fig. 2 (left). We use UAR since this metric is the gold standard for compu-
tational paralingustic problems and all the previous studies on SVC [1,3–5] are
also presented in terms of UAR. Our statistical comparisons are drawn applying
a t-test with a significance level of 0.05. The metamodel (synt+lex) involving the
syntactical (synt) and the lexical classifier (lex) significantly outperforms both
standalone models included in it. However, the BLSTM-based model (sem) sig-
nificantly surpasses this metamodel, thereby updating the current baseline for
textual AD on SVC and reaching a performance at the level of the baseline mul-
timodal metaclassifier (synt+lex+ac) introduced in [3] that utilises acoustical
information (ac) in addition to textual data. The attempt to fuse the seman-
tical, the lexical, and the syntactical model at the metalevel (synt+lex+sem)
gives no significant AD performance improvement. We also examine our models
on the fixed partition used in [1,3–5], splitting the entire SVC data into a training
(48 speakers), a development (10 speakers), and a test set (41 speakers). These
results alongside with the average LOSGO UAR are depicted in Fig. 2 (middle).

Fig. 2. LOSGO cross-validation (left), average LOSGO UAR and UAR on the single
partition (middle), and AD performance on different speech categories (right). Models:
(1) - synt, (2) - lex, (3) - synt+lex, (4) - sem, (5) - synt+lex+sem, (6) - synt+lex+ac.

The semantical classifier confirms the previous observation regarding textual
AD that text-based models perform worse for spontaneous speech (spontaneous
Off-Talk) than for constrained speech (paraphrased and particularly read Off-
Talk) [3]. This trend is illustrated in Fig. 2 (right).

We wonder how early it is possible to predict addressees within one utterance.
The SVC utterance length distribution depicted in Fig. 3 (left) has a mode of
around 10 words. However, the trend illustrated in Fig. 3 (right) demonstrates
that the main performance gain is reached with the context of the first four words
and further context extensions contribute much less to the AD performance.
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Fig. 3. Kernel density estimation (KDE) of the utterance length distribution (left) and
AD performance for various context lengths (right).

6 Conclusions

The lexical and syntactical text representations have successfully been replaced
by the single semantical one utilising GloVe word embeddings. Though the fine-
tuned n-gram LMs perform well for the particular domain, they are likely to
fail, particularly the lexical one, if the domain slightly changes. In combination
with GloVe word embeddings, the semantical model demonstrates more effective
results on the AD problem, although this classifier is sensitive to unknown words
appearing in the test data. The problem of the lack of data for training word
embeddings has been resolved utilising the two out-of-domain corpora alongside
with SVC. As a solution for the problem of unknown words, we propose the
data augmentation procedure replacing them by their nearest analogues from
the training data vocabulary.

The semantical model keeps up with the baseline multimodal metaclassifier,
even though the latter model additionally utilises acoustical information. The
BLSTM-based model is able to make quite reliable addressee predictions by
analysing only the first four words of an utterance. Fusing the semantical, the
lexical, and the syntactical model at the metalevel would be a reasonable idea,
however, it did not bring us any significant AD performance improvement. A
possible explanation for this is that we have exhausted the potential of the
textual modality and reached the maximum AD performance that it can provide
on SVC. However, the potential of the acoustical modality has not been fully
discovered yet.
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Abstract. Currently, the quality of Distant Speech Recognition (DSR)
systems cannot match the quality of speech recognition on clean speech
acquired by close-talking microphones. The main problems behind DSR
are situated with the far field nature of data, one of which is unpre-
dictable occurrence of acoustic events and scenes, which distort the sig-
nal’s speech component. Application of acoustic event detection and clas-
sification (AEC) in conjunction with DSR can benefit speech enhance-
ment and improve DSR accuracy. However, no publicly available corpus
for conjunctive AEC and DSR currently exists. This paper proposes a
procedure of realistically mixing acoustic events and scenes with far field
multi-channel recordings of the AMI meeting corpus, accounting for spa-
tial reverberation and distinctive placement of sources of different kind.
We evaluate the derived corpus for both DSR and AEC tasks and present
replicative results, which can be used as a baseline for the corpus. The
code for the proposed mixing procedure is made available online.

Keywords: Distant Speech Recognition · Acoustic event classification ·
Speech Enhancement · Synthetic mixing · AMI corpus

1 Introduction

Current achievements in the field of Automatic Speech Recognition (ASR) pro-
vide astonishing recognition quality, with accuracy even reaching the one of
human listeners [24]. This is, however, true mostly for cases of clean speech
acquired using close-talking microphones (i.e., lapel, headset microphones) and
telephone conversations [16,24]. ASR of distant speakers is still struggling to
reach human perception quality and suffers from the destructive influence of
background noise. This is the reason behind Distant Speech Recognition (DSR)
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gaining ever rising popularity among researchers in the field of ASR. The late
5th CHiME challenge [2] has also addressed the problematic behind DSR of
overlapping spontaneous speech in varying noise conditions.

The main problems situated with DSR arise from the far field nature of sig-
nal acquisition [22]. Firstly, the speech component is not necessarily dominant
in the signal. Noise sources, arising in the speaker’s environment distort and
mask the speech component. Also, the noise sources arising in closer proxim-
ity to the acquisition point than the speaker may result in negative Signal to
Noise Ratios (SNR) even if the noise power is relatively low. Secondly, speech
acquired by a distant microphone cannot be considered a clean speech reference,
as it is commonly done in ASR. Speech acquired in the far field is distorted
due to wavefront decay; in enclosed spaces it is additionally distorted by the
Room Impulse Response (RIR). Thirdly, the nature of noise is not predictable.
In unconstrained environments noise is composed of acoustic events (AE) and
acoustic scenes (AS), which possess varying dynamical properties and are also
influenced by RIR distortions. We define AE as short-lasting (similar to an aver-
age utterance duration, not more than several seconds), usually transient sounds.
AS is a long-lasting event which continuously alters mixture statistics, i.e., reoc-
curring AE with pauses in between cannot be considered an AS.

Acoustic event detection and classification (AEC) is currently a task mildly
related to DSR. The application of AEC in conjunction with DSR has been pre-
viously shown to be beneficial for Speech Enhancement (SE) in terms of voice
activity detection (VAD) [3], non-verbal sound separation [6], noise mask esti-
mation and robust noise filtering [20]. The majority of such studies, however, is
not systematized due to lack of common corpora. We argue that a speech cor-
pus applied in such studies must satisfy certain requirements, which we address
further. To our knowledge no such corpus for the English language is currently
publicly available.

This paper proposes a method of synthetically producing a corpus, satisfy-
ing the conditions for proper application of both DSR and AEC. We attempt at
creating a corpus simulating real life conditions of noisy office meetings contain-
ing typical office AE and several frequently encountered AS. As a base for the
mixing procedure we employ the AMI meeting corpus [10] and AE/AS record-
ings from the Freesound database [5]. Our proposed procedure is composed of
spatially reverberating AE recordings and mixing them with AMI multi-channel
recordings, while maintaining a set of conditions, established to simulate natural
noise emission. We further test the derived corpus for DSR and AEC tasks by
applying an acoustic model for speech recognition trained on the AMI data with
several SE pre-processing procedures, and a simple event classifier.

2 Preliminary Information

This section discusses currently available corpora partially applicable to con-
junctive DSR and AEC tasks. Argumentation is provided as to why the available
corpora do not satisfy the defined requirements and how the proposed corpus
generation approach would benefit research in the field.
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2.1 Revision of Available Corpora

Currently available corpora applicable for conjunctive DSR and AEC tasks can
be divided into two major groups: real life far field recordings containing AE/AS
with annotation of either utterance or AE/AS instances; synthetic corpora of
mixed speech and AE, either reverberated from close-talking microphone record-
ings or re-recorded using multiple loudspeakers in enclosed environments.

The first kind of corpora would be the best choice for conjunctive DSR and
AEC validation if they had annotation for both utterances and AE/AS. Annota-
tion and transcription of speech does not pose a significant challenge because, in
addition to far field recordings, close-talking microphones are almost always used
to get clean speech references. Annotating AE/AS in far field recordings, how-
ever, is not as straightforward due to the unpredictability and ambiguity of third
party sounds. Therefore, AE/AS annotation without solid reference information
can result in an unacceptable human listener error.

The main disadvantage of the second kind of corpora is situated with their
synthetic nature. In this regard the fully synthetic corpora are more beneficial as
both speech and noise components are mixed with known and solid parameters.
This aids in corpus reproduction if needed and provides a full list of mixture
parameters, e.g., SNR, reverberation parameters (if applied), source position
relative to the measurement point, convoluted transfer function parameters, etc.
Re-recorded corpora can actually be less realistic than fully synthetic corpora if
the frequency and phase responses of the loudspeakers are not considered, along
with distortion produced by tweeter/mid-range/woofer cold start lags. Further-
more, directed speakers do not provide omnidirectional sound wave propagation,
as most of real life AE would produce.

A revision of corpora partially suitable for conjunctive DSR and AEC studies
is presented in Table 1 along with their respective drawbacks.

2.2 Problem Formulation

The corpus for conjunctive DSR/AEC testing should contain all the informa-
tion necessary for both tasks. As publicly available corpora of real recordings do
not contain AE/AS annotations and fully synthetic corpora cannot be consid-
ered sufficiently representative, we set to derive a corpus incorporating real life
far field recordings and reverberated AE and AS. The corpus must satisfy the
following conditions:

– contain far field (preferably multi-channel) speech recordings;
– contain a sufficient amount of AE and AS classes and instances of each class;
– contain annotations for all speech utterances and AE/AS instances;
– be publicly available free of cost.

For the base of the derived corpus we choose the AMI meeting corpus, as the
speaker overlap ratio is lower compared to, e.g., the 5th CHiME corpus and,
therefore, it is less cumbersome to analyze data. To simulate natural conditions
of AE/AS occurrence we develop a mixing procedure with AMI room RIRs and
AE/AS class-specific source spatial placement and occurrence probability.
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Table 1. Corpora partially suitable for conjunctive DSR and AEC tasks.

Corpus Description Drawback

5th CHiME

[2]

Contains 20 sessions and approximately 50 h of heavily

overlapping noisy speech recorded on both multi-channel far

field (six Microsoft Kinects) and binaural microphones in

various living spaces

No AE/AS

annotations

AMI [10] 100 h of meeting recordings, each performed by close-talking

(headset and lapel) and far-field microphones (one or two

circular arrays). Contains mildly overlapping speech with

typical office noise

Too few

AE/AS types

CHIL 2006

[11]

Contains multi-speaker fairly overlapping speech, recorded on a

64-microphone array, T-shaped omnidirectional microphone

clusters and table microphones. Has speech and AE/AS

annotations

Not publicly

available

Noisy speech

database [19]

56 speaker clean speech recordings mixed with various types of

AE through convolution with RIRs of different spaces and at

different SNR levels

Fully

synthetic

SpEAR [21] An ambitious recently started project. Contains noise corrupted

speech with clean speech references, both synthetically mixed

and physically re-recorded

In beta stage

3 Proposed Approach to Acoustic Event Mixing

The AMI corpus contains mild office noise and only a few non-human acoustic
events, e.g., knocking door, keyboard typing. We add AE and AS (acquired from
the Freesound database [5]), which are often encountered in office spaces, and
several urban sounds of interest:

1. Babble noise—AS, which are encountered in vast office spaces or in meeting
rooms if doors remain open;

2. Street—urban street noise AS, which are encountered if a window is open;
3. Alarm—AS of different kinds of office signalization;
4. Door—opening and closing doors;
5. Gunshot—specific sound of interest;
6. Computer—typing, clicking, various computer noise;
7. Drawer—opening and closing drawers of cabinets;
8. Knock—knocking on different surfaces;
9. Scissors—scissors snipping and cutting;

10. Squeak—squeaking of doors and mechanisms;
11. Telephone—different telephone rings and notification sounds;
12. Tool—sounds of hand, electric and power tools;
13. Writing—writing on paper with pens and pencils.

The proposed approach to acoustic event mixing is aimed at simultaneously sat-
isfying two major conditions. Firstly, the synthetic mixture must be brought to
real life conditions as much as possible in order to present an adequate challenge
to SE, DSR and AEC procedures. Secondly, the amounts of included acoustic
events must be chosen appropriately in order to present sufficient statistics for
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acoustic event detectors and classifiers. To achieve these goals we define the
following requirements to the corpus as a whole:

1. There should be not less than κ percent of each individual session duration
covered with added AE and AS.

2. AS types 1.–3. and AE types 4.–5. are added with source spatial placement
corresponding to the coordinates on a room wall, i.e., simulating noise incom-
ing from an open door or window.

3. AE types 6.–13. are added with source spatial placement inside the room,
excluding the area of the microphone array itself.

4. Each AE and AS instance is added with a SNR value chosen from an appro-
priate distribution of SNR values for this specific type of event or scene.

5. Each AE or AS type appears (in the whole corpus) with a certain probability.
Probabilities are specified empirically.

6. Acoustic event or scene overlap is not prohibited.

The procedure of AE/AS mixing consists of two major steps1: spatial reverber-
ation of all AE/AS instances and mixing at randomly chosen SNR levels.

3.1 Acoustic Event Spatial Reverberation

Each AE and AS type has to be spatially distributed in the room of interest.
This distribution should be type-specific, because events of different types occur
more frequently in certain parts of the room then in others. Therefore, we specify
three distribution types: normal N (μ, σ), uniform U(a, b) and rectangular R().
We define the rectangular distribution as the one, which situates the noise source
strictly on one of the room walls. The distribution type and its parameters are
defined for each AE/AS class.

To simulate RIR of the room of interest and convolve the AE/AS instance
we employ the pyroomacoustics tool set [17], which requires: room length lx,
width ly and height lz in meters; coordinates of each microphone of the array;
the absorption coefficient of the room surface Kabsorb; and the number of sound
wave reflections nrefl. The parameters Kabsorb and nrefl are manually estimated
per each room using the T60 reverberation time as a metric.

AE spatial reverberation is performed according to Algorithm1. For each
instance (sound file) from the database of AE/AS w ∈ {AE,AS} the coor-
dinates of sound emission are estimated depending on the specific distribu-
tion type Dw and its parameters (aw, bw). The set of RIR parameters r =
(lx, ly, lz, c,Kabsorb, nrefl) includes room dimensions; a subset c, which contains
the coordinates of the microphone array center and the coordinates of all M micro-
phones c = {cx, cy, cz,m

(1)
x ,m

(1)
y ,m

(1)
z , . . . ,m

(M)
z }; the absorption coefficient and

the reflection number. During the procedure the source coordinates (xw, yw, zw)
are estimated along with the Direction of Arrival (DOA) relative to the array cen-
ter (ϕw, θw), where ϕw and θw are the azimuth and elevation angles, accordingly.
The coordinates for AE are constrained by 0.05 m from each wall, floor and ceiling;
1 Corpus mixing scripts are available at https://github.com/sergeiastapov/nAMI.

https://github.com/sergeiastapov/nAMI
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Algorithm 1. AE and AS spatial reverberation
Require: w ∈ {AE, AS}, (aw, bw), Dw, r = {lx, ly, lz, c, Kabsorb, nrefl}
1: if ! (Dw ∼ R()) then
2: if Dw ∼ N (μ, σ) then
3: μw ← aw, σw ← bw
4: dw ← N (μw, σw) � distance to array center
5: else if Dw ∼ U(a, b) then
6: dw ← U(aw, bw) � distance to array center
7: end if
8: ϕw ← U(0, 360)
9: zw ← min (|U(0, 0.5)| , dw − 0.05)

10: θw ← arccos (zw/(dw + ε)) , zw ← zw + cz � ε — double precision
11: xw ← dw cos θ cos ϕ + cx, yw ← dw sin θ sin ϕ + cy
12: xw ← max (min(lx − 0.05, xw), 0.05), yw ← max (min(ly − 0.05, yw), 0.05) ,
13: zw ← max (min(lz − 0.05, zw), 0.05)
14: else if Dw ∼ R() then
15: case ← [U(1, 4)] � round to nearest integer
16: if case = 1 then � situate source on one of the walls
17: xw ← 0, yw ← U(0, ly)
18: else if case = 2 then
19: xw ← lx, yw ← U(0, ly)
20: else if case = 3 then
21: yw ← 0, xw ← U(0, lx)
22: else if case = 4 then
23: yw ← ly, xw ← U(0, lx)
24: end if
25: zw ← U(0.5, 1.5)
26: end if
27: return w∗ ← RIR(w, r, xw, yw, zw)

coordinates of AS are constrained by position on one of the walls. As a result, each
AE/AS instance has its own coordinates with known distribution. The output w∗

is a multi-channel recording of AE/AS received by every microphone in the array
according to the DOA and RIR convolution.

3.2 Acoustic Event Mixing

Acoustic event mixing is performed for each corpus session separately. Input X =
[x1(t), . . . , xM (t)] contains the multi-channel recording of all M microphones.
The parameters are as follows: lower bound for noise insertion κ in percent;
noise instance w ∈ {AE,AS}—the result of Algorithm 1; its parameters for
SNR value distribution μw, σw and its class occurrence probability p(w).

The mixing procedure is performed according to Algorithm2. Voiced seg-
ments are first established by applying VAD, which is performed according to
the speaker annotations of AMI sessions. The speech signal mean power is esti-
mated only on voiced segments. After choosing an AE/AS instance, the SNR is
calculated between its power and the mean power of the whole voiced session. A
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Algorithm 2. AE and AS mixing to corpus session
Require: w ∈ {AE, AS}, (μw, σw, p(w)), κ, nw = 0, X, Y = X
1: Xv ← VAD(X) � apply VAD according to annotation
2: PXv ← |Xv|2 � mean signal power
3: while nw < κ do
4: Choose w with probability p(w)
5: Pw ← |w|2, SNR(Xv, w) ← 10 log(PXv/Pw)
6: SNRreq ← max(−1, N (μw, σw))
7: w ← w · 10(SNR(Xv,w)−SNRreq)/20

8: Choose tstart ← U(0, len(Y) − len(w)), insert Y ← Y + w|tstart
9: Increment nw ← nw + len(w)/len(Y) · 100%

10: end while
11: return Y

required SNR value is obtained from the distribution specific to this event class
type and the power of the event instance is adjusted accordingly. The time inter-
val for AE/AS insertion is randomly selected; the only constraint being that the
whole event should be included in the mixture. The procedure continues until
κ% of the session is mixed with noise.

As a result we derive noised corpus sessions, each containing not less than
κ% of AE and AS, and annotation files per session, specifying: session ID;
speaker ID; utterance transcription; utterance time interval; AE/AS ID (name
of file); AE/AS time interval; AE/AS SNR value; AE/AS source coordinates
(xw, yw, zw); AE/AS DOA relative to the array center (ϕw, θw).

3.3 Parameter Specification for the AMI Corpus

From the AMI corpus we choose 168 sessions which have full recordings from all
channels of the microphone array. For mixing we choose recordings of Array 1,
situated on the table in the middle of the room. There are three rooms in total.
We estimate each room acoustic parameters for RIR generation empirically, by
convolving lapel microphone utterances of several speakers in their corresponding
appropriate coordinates relative to the array and analyzing the T60 reverberation
time and envelope of the resulting reverberated signal. For the Idiap Room
the absorption coefficient and the number of reflections, which result in most
similar response, are: Kabsorb = 0.13, nrefl = 20; for Edinburgh Room these are
Kabsorb = 0.15, nrefl = 16; for TNO Room these are Kabsorb = 0.13, nrefl = 18.
The lower bound is set to κ = 50%.

For the AE/AS database we employ Freesound [5] recordings. The parameters
of each AE/AS class for the spatial reverberation Algorithm 1 are presented in
Table 2. The mixing parameters for Algorithm 2 are presented in Table 3. These
parameters satisfy the requirements stated in the beginning of Sect. 3.
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Table 2. AE and AS reverberation
parameters per class.

Class Instances Distribution aw bw

Babble 205 Rectangular - -

Street 167 Rectangular - -

Alarm 155 Rectangular - -

Door 5075 Rectangular - -

Gunshot 147 Rectangular - -

Computer 1284 Normal 0.35 0.10

Drawer 158 Normal 1.0 0.09

Knock 1935 Normal 3.0 1.0

Scissors 95 Normal 0.35 0.10

Squeak 300 Uniform 0.10 3.0

Telephone 833 Uniform 0.10 5.0

Tool 1658 Normal 3.0 0.64

Writing 270 Normal 0.35 0.10

Table 3. AE and AS mix-
ing parameters per class.

Class μw σw p(w)

Babble 10 3 0.060

Street 5 3 0.060

Alarm 7 4 0.060

Door 5 3 0.083

Gunshot 5 3 0.035

Computer 5 3 0.150

Drawer 7 3 0.067

Knock 7 3.5 0.083

Scissors 5 3 0.067

Squeak 7 3 0.083

Telephone 5 4 0.150

Tool 7 3 0.035

Writing 5 3 0.067

4 Evaluation and Results

This section discusses evaluation methods of the derived corpus and presents
evaluation results of DSR and AEC.

4.1 Evaluation Methods and Metrics

To evaluate DSR on the derived noised AMI corpus (nAMI) we apply the
model for speech recognition [14] implemented in Time Delay Neural Networks
(TDNN). The model is trained using AMI Multi-channel Distant Microphone
(MDM) data (at sampling frequency of 16000 Hz) with Individual Headset Micro-
phone (IHM) targets. The Short Time Fourier Transform (STFT) window is set
at 512 samples and 160 samples window overlap (step of 10 ms). The features
used for TDNN input are: 40 Mel-frequency Cepstral Coefficients (MFCC) and
an i-vector of length 100. The model is trained using cross-entropy and Lattice-
free maximum mutual information (LFMMI) objectives. For SE prior to feature
extraction the BeamformIt beamforming method is applied to MDM data. The
train, dev and eval sets of the corpus are adopted according to AMI specification.

The nAMI corpus is evaluated using the TDNN model trained on AMI data.
For evaluation we employ the Word Error Rate (WER) metric. nAMI is evalu-
ated on the dev (18 sessions) and eval (16 sessions) sets with SE applied prior to
feature extraction. Four SE approaches are applied: BeamformIt [1], Maximum
Variance Distortionless Response (MVDR) with Ideal Ratio Mask (IRM) appli-
cation; General Eigenvalue (GEV) beamforming with IRM mask application;
Parameterized Multichannel Wiener Filter (PMWF) with IRM mask applica-
tion. MVDR, GEV and PMWF are adopted from the setk tool kit [23]. The
principle block diagram of DSR testing is presented in Fig. 1.
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Fig. 1. Block diagram of DSR testing steps on nAMI. (a) SE with BeamformIt appli-
cation; (b) SE with IRM mask and MVDR/GEV/PMWF.

IRM masks [9] are obtained by a CNN-TDNN-f [15] model trained on aug-
mented data from Librespeech [12]. Room acoustics simulations are used to
augment data [8]. This technology includes the addition of background noise
to the training data and reverberation. Room acoustics simulation allows to
generate a new training base using a relatively clean training base in a wide
range of conditions such as reverberation time, room size, SNR, number of noise
sources, localization of target speaker and noise sources. In our experiment we
used 50,000 different rooms and noises from publicly accessible bases (TIMIT [4],
MUSAN [18] and AURORA [13]). The CNN-TDNN-f is trained with an input of
80 Fbank features and generates a vector of 257 frequency bin mask coefficients
per STFT frame. Each coefficient of the target IRM mask represents the ratio of
the desired speech component in the corresponding STFT time-frequency bin:

IRM(t, f) =

√
D(t, f)

D(t, f) + R(t, f)
,

where D(t, f) consists of both the direct path and early reflections of the target
signal and the residual signal R(t, f) is obtained by subtracting the desired signal
from the noisy reverberant mixture.

For AEC of acoustic events, which were added to the original AMI corpus,
a classifier based on the embeddings from VGGish [7] audio classification model
is used. We used 128-dimensional embeddings as input features. After applying
VGGish on the MDM data, output embeddings are scaled to the value range of
[0, 1] and forwarded to the classifier. The classifier itself is a multi-layer percep-
tron consisting of one input layer of 128 neurons with sigmoid activation and
one output layer with the number of neurons equal to the number of classes and
softmax activation.

4.2 Evaluation Results

The results of DSR testing are presented in Table 4. Applying a κ = 50% noising
threshold we achieved a 9% increase of WER on both dev and eval sets of AMI



40 S. Astapov et al.

for the best-performing BeamformIt. This can be compared to 14–15% WER
increase on nAMI if no SE is performed (single channel recording as direct input
for decoding). The application of IRM masks to MVDR and PMWF results
in satisfying SE quality, but performs worse than BeamformIt. GEV, on the
other hand, does not provide recognition accuracy improvement. Results of AEC
testing on nAMI for 8 noise classes are presented in Fig. 2 in the form of a
confusion matrix. The resulting classification quality equals to 38.3%, which
indicates that AE/AS are sufficiently masked by speech at chosen SNR levels
and, therefore, pose a challenge for AEC. The Computer and Telephone AE are
classified best, possibly because the classifier is biased towards tonal sounds.

Table 4. Results of testing DSR on nAMI with reference to AMI corpus.

Corpus SE method WER dev (%) WER eval (%)

AMI BeamformIt 33.7 36.3

nAMI BeamformIt 42.7 46.0

nAMI IRM+MVDR 45.9 48.9

nAMI IRM+GEV 50.6 53.2

nAMI IRM+PMWF 44.9 48.8

nAMI Single channel 47.9 51.4
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Fig. 2. Confusion matrix for the AEC test on nAMI. Total accuracy is equal to 38.3%

Generally it can be noted, that for the current settings of the mixing proce-
dure the baseline for DSR is set too high with only 9% of available improvement
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against the best performing system. On the other hand, the baseline for AEC can
be called sufficient, but may turn out to be too low for more sophisticated AEC
systems. To establish a solid baseline for both DSR and AEC tasks a solution
lies in establishing proper percent of noise inclusion κ and SNR distributions.
Further development of the corpus will focus on establishing this balance.

5 Conclusion

The proposed event mixing procedure succeeds in providing a noised corpus
applicable for conjunctive DSR and AEC benchmarking. Initial testing has
shown, that the derived corpus is biased towards AEC benchmarking, as it does
not provide as much room for DSR improvement against the best performing
system, as it does for AEC. Fortunately, the procedure is highly tunable and can
be balanced without additional development. The source code for the procedure
and corpus replication is available online.
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Abstract. In this paper, we are presenting a language learning system
which automatically evaluates English speech linguistically and gram-
matically. The system works by prompting the learner a question in his
native language (text+figure) and waiting for his/her spoken response in
English. Different types of features were extracted from the response to
assess it in terms of language grammar and meaning errors. The universal
sentence encoder was used to encode each sentence into 512-dimensional
vector to represent the semantic of the response. Also, we propose a
binary embedding approach to produce 438 binary features vectors from
the student response. To assess the grammatical errors, different features
were extracted using a grammar checker tool and part of speech analy-
sis of the response. Finally, the best two DNN-based models have been
fused together to enhance the system performance. The best result on
the 2018 shared task test dataset is a D-score of 17.11.

Keywords: Speech recognition · Human-computer interaction ·
Linguistic assessment · CALL

1 Introduction

Over time, the introduction of Computer-Assisted Language Learning (CALL)
models is a pioneer factor in development of speech and language technology
especially after integrating Automatic Speech Recognition (ASR) as one of the
components. CALL system can better help improve language skill of the L2
learners. To date, most of the common speech-based CALL systems focus on
the pronunciation quality of the L2 language. A good and well-documented
example of these systems is the EduSpeak system [9] which plays the student a
recorded sentence, asks them to imitate it, and then rates them on the accuracy
of their imitation, giving advice if appropriate on how to improve pronunciation
or prosody. There is no doubt that this is useful, but does not give the student
a real opportunity to practice spoken language skills.

Rayner et al. in [16] took this a further step by building a speech-based CALL
system by which students can interact and respond to the system’s prompts.
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This system prompts the student in his/her L1 language indicating in an indi-
rect way what he/she is supposed to say in the L2 language. Then, the system
automatically assesses the spoken response, based the grammar and linguistic,
and provides a feedback. As an initiative to further develop related technologies,
Baur et al. in 2016 [2] organized a shared task for the spoken CALL research.
Participating systems were reported in the ISCA SLaTE 2017 workshop [2]. The
task is to automatically assess prompt-based spoken responses by English learn-
ers in terms of grammar and language meaning. The system needs to accept
the responses with no grammar nor linguistic errors, and reject others. Possibly
giving some extra feedback. The shared task organizers provided participants
by data consists of 52,222 training utterances and 966 testing utterances spo-
ken by German-speaking Swiss teenagers as responses to prompts written in
German [2]. The audio data was released together with accompanying meta-
data such as prompt in German, English transcription of each spoken response
generated automatically by state-of-the-art English ASR, and judgments (cor-
rect/incorrect) for “language” and “meaning”. Correct in the “language” means
that the audio file was a fully correct response to the prompt. On the other hand,
incorrect in the “language” means it was linguistically incorrect, but semanti-
cally correct. In addition to that, they provided a set of correct responses for
each prompt that can be used a reference for the given response.

Following the success of the first shared task with 20 submissions from 9
participant teams, the second edition with new resources and updated training
data was announced in October 2017 and the test data was released in February
2018 [3]. Similar to the first edition, the task organizers provide the audio data,
ASR outputs, and reference response grammar. There are two tasks: the text task
where the ASR outputs for the spoken responses are provided by the organizers,
and the speech task where participants can use their own recognizes to process
audio responses.

For the second edition, task organizers provided new subset of the corpus
consisting of 6698 student utterances to serve as additional training data. This
new data was selected in a similar way to the first training set, to be balanced
and representative of the collected data, with the additional constraint that there
should be no overlap of individual students between the first task and second
task. Speech data were processed through the two best speech recognizer from
the first shared task [13,14] after which the two sets of output transcriptions
were merged and cleaned up by transcribers at the University of Geneva.

Five of the participants in the 2018 CALL shared task [1,8,10,12,15] pre-
sented their systems in the Interspeech 2018 conference which was held in 2–6
September 2018 in India. They introduced different ideas for improving to the
baseline system at both the ASR and the text processing stages. In general, the
worst entry from the second edition scored better than the best entry from the
first edition, which served as the baseline here, and the best entry score was
nearly four times higher than the baseline (D = 19.088 versus D = 5.343).

The best D score (19) among the participating teams in the 2018 shared
task, was achieved by Nguyen et al. [12]. They improved the performance of



Speech-Based L2 Call System for English Foreign Speakers 45

the baseline speech recognition system provided by the shared task organizers.
They developed a set of features to capture the linguistic and semantic mean-
ing of the responses, and optimized the classification results for various factors
(training set, n-best hypotheses of speech recognition, decision threshold, model
ensemble).

Evanini et al. in [8] used additional features extracted by comparing the input
response to language models trained on text written by English native speakers
and L1-German English learners. In addition, they developed a set of sequence-
to-label models using bidirectional LSTM-RNNs with an attention layer. The
RNN model predictions were combined with the other feature sets using feature-
level and score-level fusion approaches resulting in a best-performing system that
achieved a D score of 7.397.

The team of the University of Birmingham [15] proposed improvements to
the baseline system. They enhanced both components: automatic speech recog-
nition and text processing units. Regarding to ASR component, Long short-term
memory (LSTM) network was used instead of DNN network, where the LSTM
network was trained using the alignments that were obtained from DNN-HMM
system. Regarding to text processing, different methods were used to calcu-
late the similarity between references and response. The Word Mover’s Distance
(WMD) [11] was used to calculate a sentence-level distance between response
and its references. Also, a two-class classifier was used to take the decision.

A rule-based system was proposed in [10]. This system predicts the judgment
for grammars and meaning of the responses based on pipe-lined rules. First
Doc2Vec [6] was trained using the training set and all reference responses. Also,
they enhanced the grammar by deleting any detected errors. They looked at
meaning and grammar errors separately. Each response was judged in terms of
grammar and meaning. Then, the final decision was taken based on a threshold
value.

In our previous work [1], the text processing module is implemented as a
rule-based, where its thresholds are optimized using genetic algorithm. This sys-
tem achieved D score of 14.4 in the 2018 spoken call shared task. In this paper,
a different approach was followed to evaluate the responses in this task. We used
a deep learning model for predicting the assessment of the input response. To
compute the semantic features, two sentence embedding methods were used and
compared: The universal sentence encoder [7] and binary embedding method
which was proposed in this paper. Finally, we proposed a fusion technique to
exploit the output of the best two DNN models to improve the system perfor-
mance.

The rest of the paper is organized as follows. In Sect. 2, we describe the data-
set. Sects. 3 presents different types of features that used to train the model.
Section 4 presents the experiments results and Sect. 5 gives conclusions.

2 Dataset Description

In all of the presented experiments, the dataset provided for the 2017 and
2018 spoken CALL shared tasks were used. As indicated earlier, this dataset
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is prompt-response pairs collected from an English course running CALL-SLT
developed for German-speaking Swiss teenagers [3]. Prompts in the course are
written texts in German associated with animation video clips each showing an
English native speaker asking a question. Each response is labeled as “correct” or
“incorrect” for its linguistic correctness (language) and its meaning, respectively.
A student’s response is accepted when it is correct in both grammar and mean-
ing given the prompt. Otherwise, it is rejected. It is possible that a response is
correct only in one aspect. The following shows an example of question, prompt
in German (with English translation), and accepted student response: Prompt:
Frag: Zimmer für 3 Nächte. (Ask: room for 3 nights) ASR transcription of
the student response: I would like to stay for three nights. Table 1 shows the
information of the data from the 2017 and 2018 tasks. In addition to training set,
“grammar.xml” file is also available in [3] and includes some possible answers
for each prompt.

Table 1. Numbers of accepts/rejects in different datasets.

Dataset No. of accepts No. of rejects Total

2017 Training 3,880 1,342 5,222

2017 Test 716 279 995

2018 Training 4,418 2,281 6,698

2018 Test 750 250 1,000

3 Features Prediction

Our proposed system consists of two major components; English ASR followed by
text processing unit. The ASR produces the transcription of the spoken response.
The text processing unit extracts a set of features representing language and
meaning from the transcription. Then, it evaluates the response by comparing
these features with similar features extracted from a set of reference responses
(set of possible responses provided in the grammar file) for each prompt provided
in the dataset.

The proposed system is a machine learning based model which mainly
depends on the extracted features from the student response and its references.
In this paper, we investigate the effect of a set of extracted features on the overall
system performance. First, we use a universal sentence encoder [7] to encode each
sentence (student response and each possible reference) into a high-dimensional
vector, and then we extract the features based on embedding vectors. A sentence
encoder transforms the text into a 512-dimensional vector space, which can be
further used to capture the semantic similarity.

Also, some other features were extracted to measure the grammatically cor-
rectness of the user response. These features were extracted from the output of
two ASRs: Google ASR and SLaTE2018 ASR which was provided by the shared
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task organizers. This is to handle some of the errors caused by ASR system.
Table 2 shows the transcriptions of two examples recognized by the two men-
tioned ASRs. It is clear that GOOGLE ASR is more accurate than the baseline
ASR in the first example. On the other hand, the baseline ASR performs better
in the second one.

Table 2. Examples for different recognized texts.

ASR Recognized text True transcription

GOOGLE From Italy From Italy

SLaTE2018 I’m from Italy From Italy

GOOGLE I want to leave on Tuesday I want to leave at Tuesday

SLaTE2018 I want to leave at Tuesday I want to leave at Tuesday

3.1 Features Produced by Universal Sentence Encoder

This encoder converts any sentence into a high dimensional vector which can
be used for natural language processing tasks such as text classification and
semantic similarity. The encoder is provided with a variable length English sen-
tence as an input to construct 512-dimensional vector. We use this encoder to
process the text from the student response and its all references. Formally, let
Vi = [F1, F2, ..., F512] represents a feature vector for a student response. Also,
let the set PR = [R1, R2, R3, ...., RN ] represents all possible references in the
‘grammar.xml’ file. Each element in PR is a possible reference and consists of
512 features Ri = [F1, F2, ..., F512]. The universal sentence encoder is used to
generate the feature set. Then, the cosine similarity measure is computed for
each (Vi, Ri) pair. Finally, we take the Ri which has maximum cosine value
(maximum similarity) to compute the difference between it and Vi. The differ-
ence vector was provided to a machine learning algorithm to predict the final
decision.

3.2 Features Using Python English Grammar Checker Toolkit

We used a free available Python English grammar checker toolkit1 to extract
grammar errors from audio transcription given by the ASR. Two features were
extracted using this tool:

– F1: The number of grammar errors produced when this tool was applied on
the transcription given by SLaTE2018 ASR.

– F2: The number of grammar errors produced when this tool was applied on
the transcription given by Google ASR.

1 https://pypi.python.org/pypi/grammar-check/1.3.1.

https://pypi.python.org/pypi/grammar-check/1.3.1
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3.3 Part-of-Speech (POS) Features

We used the POS tagger implemented in NLTK toolkit2 to generate POS set for
a given student response (the transcription given by the ASR) and each possible
reference.

Formally, let the set [t1, t2, t3 . . . , tm] represents all terms that the transcrip-
tion consists of. The set [pos1, pos2, pos3 . . . , posm] is produced by NTLK POS
tagger, where posi is the part of speech for the term ti. Also, POS level set was
generated for each reference. After that, we compute the similarity between the
student response and each reference by Eq. 1.

POSs
⋂
POSr

POSs

⋃
POSr

(1)

where POSs represents the POS level set for the student response, and POSr
is the POS level set for a reference response. This equations was computed for
each possible reference in ‘grammar.xml’ file. Tow features were extracted from
this approach:

– F1: is the maximum similarity value between transcription given by
SLaTE2018 ASR and each possible reference.

– F2: is the maximum similarity value between transcription given by Google
ASR and each possible reference.

3.4 Response Embedding to Binary Features

In this feature extraction technique, each student response and all of its related
references were embedded into 438 binary features vectors. Let the set D =
[t1, t2, t3 . . . , tm] represents all terms in grammar file. Every term ti was normal-
ized by removing punctuation and stemming using Porter Stemmer. Then, the
normalized term is added to the list B if it is not added before. The terms in the
list B were used to extract the 438-dimensional vector for all responses, where
the number 438 is the size of the list B.

Each student response is tokenized to find its terms. Then, each term is
normalized and added to the list ST . The same process is applied on each possible
reference to find the list PT . Let SF = [F1, F2 . . . , F438] represents the 438-
dimensional features vector for the student response. Fi = 1 if the ith term in
the list B exists in the list ST . Otherwise Fi = 0. In the same way, we can find
the 438-dimensional features vector RFi for each possible reference.

Let the set PF = [RF1, RF2, . . . , RFN ] includes group of 438-dimensional
vectors where each vector RFi for a possible reference and N is the number of
all possible references for a student response. The similarity between SF and
RFi can be computed by Eq. 2.

similarity =
438∑

i=1

SFi ∗ Fi (2)

2 https://www.nltk.org/.

https://www.nltk.org/
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Where SFi and Fi represent one item in SF and RFi vectors respectively.
After computing the similarity measure between each (SF,RFi) pair. We

take the RFi which has maximum similarity value to compute the difference
between it and SF . The difference vector was provided to a machine learning
algorithm to predict the final decision.

4 Evaluation

In this section, we present results of four DNN based systems. Feed-forward
neural networks [5] were used in all of our presented experiments. The following
four combinations of different feature sets were investigated:

– Feature Set1 includes: 512-dimensional feature vectors that described in
Sect. 3.1.

– Feature Set2 includes: Two features which are described in Sect. 3.2, two fea-
tures which are described in Sect. 3.3, and the 512 features that are described
in Sect. 3.1.

– Feature Set3 includes: 438 features that described in Sect. 3.4.
– Feature Set4 includes: Two features which are described in Sect. 3.2, two

features which are described in Sect. 3.3,and the 438 features that described
in Sect. 3.4.

4.1 Evaluation Metric

To evaluate the overall system and to easily compare its performance with similar
systems, D score is used as a performance measure for the overall system. D score
metric was used in evaluating the performance of systems competing in this task.
So, we use this score as an evaluation measure for our proposed system. D metric
is computed by Eq. 3.

D =
CR(FR + CA)
FR(CR + FA)

(3)

Where,

1. Correct Reject (CR): is the number of utterances where the system rejects
student’s response which is labeled as language incorrect one.

2. Correct Accept (CA): is the number of utterances where the system
accepts student’s response which is labeled as language correct one.

3. False Reject (FR): is the number of utterances where the system rejects
student’s response which is labeled as language correct one.

4. False Accept (FA) is defined by FA = PFA + 3 ∗ GFA, where PFA is
the number of utterances where the system accept student’s response which
is labeled as correct in meaning but has a grammar error. GFA is the number
of utterances where the system accept student’s response which is labeled as
incorrect responses in terms of meaning.
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4.2 Experiments and Results

A DNN based system is trained on each of the earlier mentioned four feature
combinations, using the training dataset and evaluated on the test data of the
2018 CALL shared task, as shown in Table 1. The system performance is repre-
sented by the D score [4] which is mathematically defined in Eq. 3. In addition,
the rejection rate on incorrect responses (IRej) and rejection rate on correct
responses (CRej) are also presented. The results of each trained model is reported
in Table 3.

Table 3. Results of four proposed systems, where IRej= rejections on incorrect
responses and CRej = rejections on correct responses.

Model IRej CRej D-score

Model-1 0.50 0.05 9.09

Model-2 0.55 0.05 10.0

Model-3 0.41 0.05 8.89

Model-4 0.58 0.06 10.2

Table 3 show the results of the four trained model. Feature Set1, Feature Set2,
Feature Set3, and Feature Set4 were used to train Model-1, Model-2, Model-3,
and Model-4, respectively. We can note that the grammar features played an
essential role to increase the rejection rate (and to enhance the D-score) when
are added to Feature Set1 and Feature Set3. This is because of its ability to
detect some grammar errors in the incorrect utterances. Also, the results show
that the Model-1 and Model3 are comparable in term of D-score. This proves
that the two ways of embedding that were described in Sects. 3.1 and 3.4 are
capable to represent the student response in this task.

4.3 Fusion of Multiple Models

In this section, we explore two fusion method to enhance the overall results:

– Method-1: As shown in the results above, Model-2 and Model-4 are achieved
the best D-score of 10 and 10.2, respectively. In order to study the usefulness of
combining these two models together, we fused Model-2 and Model-4 together,
so that the final decision is ‘reject’ if the output of the two models is ‘reject’.
Otherwise, the final decision is ‘accept’. The fused system was evaluated on
the same test set (shared task 2018 test set), and achieved 35% improvement
on the D-score of 13.87. This proof that the two features sets used in these two
models are, to some extent, orthogonal and do the evaluation from different
side. Therefore, by combining them together, we got a better performance.
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– Method-2: In our previous work [1], the text processing module is imple-
mented as a rule based, where optimized using genetic algorithm. We use this
system to enhance the fusion results. The final decision is ‘accept’ if both of
Model-2 and Model-4 agree on the response has no errors or the model in
[1] accept that response. Otherwise, the final decision is ‘reject’. In this way
the target of the fused system is increasing the rejection rate on incorrect
responses, and it also aims to reduce the rejection rate on correct responses.
This fused system was evaluated on the same test set (shared task 2018 test
set), and achieved improvement on the D-score of 17.11.

4.4 Comparison and Discussion

In this section, we compare our results with other five systems participated in the
same shared task and used the same dataset, [1,8,10,12,15] and using the same
measures. As shown in [12,15], the improvement on the ASR component has a
key factor of increasing the D-score. For this reason, we used Google ASR, in
addition to that provided by the shared task organizers, as described in Sect. 3.3
and Sect. 3.2. This help use to reduce some of the errors caused by ASR system.

Further tuning for the model parameters to increase the D-score was proposed
in [1,12]. Also, in this paper, we proposed two fusion ideas to increase the D-score
from 10.2 (best model) to 13.87 (method-1 in Sect. 4.3) and 17.11 (method-2 in
Sect. 4.3).

In general, both rule-based approaches [1,10] and machine learning based
approaches [8,12,15] achieved good results. Table 4 reports the D-score of
each system, where Fusion-1 and Fusion-2 represents our fused systems that
described in Sect. 4.3.

Table 4. Comparison between results

System D-score

Liulishuo’s system [12] 19.088

Fusion-2 17.11

An optimization based approach [1] 14.4

Fusion-1 13.87

The University of Birmingham [15] 10.764

The CSU-K rule-based system [10] 10.08

Improvements to an automated content scoring system [8] 7.397

Table 4 shows the effect of combining the results from rule-based system and
machine learning system. In this way we can achieve better D-score using low
false rejection rate in [1] when the response is correct, and high rejection rate in
Model-2 and Model-4 when the response is incorrect.
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5 Conclusion and Future Work

The main objective of this research is developing a system which helps English
learners to exercise and improve speaking skills in English conservation. Gener-
ally, different DNN models is trained on four combinations of different feature
sets to evaluate the student responses in 2018 CALL shared task. Moreover, two
fusion methods were proposed to enhance the D-score: The first one is fusing the
two DNN models that achieved best results, and the second one uses our already
implemented system to enhance the fusion results. The experiments showed that
the D-score was increased to 13.87 and 17.11 respectively. In the future work, we
intend to build a DNN model with D-score as a cost function of the optimizer.

References

1. Ateeq, M., Hanani, A., Qaroush, A.: An optimization based approach for solving
spoken CALL shared task. In: Proceedings of Interspeech 2018, pp. 2369–2373
(2018)

2. Baur, C., et al.: Overview of the 2017 spoken CALL shared task (2017)
3. Baur, C., et al.: Overview of the 2017 spoken CALL shared task. In: Proceedings

of Interspeech 2018 (2018)
4. Baur, C., Gerlach, J., Rayner, E., Russell, M., Strik, H.: A shared task for spoken

CALL? (2016)
5. Bebis, G., Georgiopoulos, M.: Feed-forward neural networks. IEEE Potentials

13(4), 27–31 (1994)
6. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with

subword information. Trans. Assoc. Comput. Linguistics 5, 135–146 (2017)
7. Cer, D., et al.: Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018)
8. Evanini, K., et al.: Improvements to an automated content scoring system for

spoken CALL responses: the ETS submission to the second spoken CALL shared
task. In: Proceedings of Interspeech 2018, pp. 2379–2383 (2018)

9. Franco, H., et al.: Eduspeak R©: a speech recognition and pronunciation scoring
toolkit for computer-aided language learning applications. Lang. Test. 27(3), 401–
418 (2010)
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15. Qian, M., Wei, X., Jančovič, P., Russell, M.: The University of Birmingham 2018
spoken CALL shared task systems. In: Proceedings of Interspeech 2018, pp. 2374–
2378 (2018)

16. Rayner, E., Bouillon, P., Gerlach, J.: Evaluating appropriateness of system
responses in a spoken CALL game (2012)



A Pattern Mining Approach in Feature
Extraction for Emotion Recognition

from Speech

Umut Avci1(B), Gamze Akkurt2, and Devrim Unay3

1 Faculty of Engineering, Department of Software Engineering,
Yasar University, Bornova, Izmir, Turkey

umut.avci@yasar.edu.tr
2 Faculty of Engineering, Department of Computer Engineering,

Izmir University of Economics, Balcova, Izmir, Turkey
akkurtgamzee@gmail.com

3 Faculty of Engineering, Department of Biomedical Engineering,
Izmir University of Economics, Balcova, Izmir, Turkey

devrim.unay@ieu.edu.tr

Abstract. We address the problem of recognizing emotions from speech
using features derived from emotional patterns. Because much work in
the field focuses on using low-level acoustic features, we explicitly study
whether high-level features are useful for classifying emotions. For this
purpose, we convert a continuous speech signal to a discretized signal
and extract discriminative patterns that are capable of distinguishing
distinct emotions from each other. Extracted patterns are then used to
create a feature set to be fed into a classifier. Experimental results show
that patterns alone are good predictors of emotions. When used to build
a classifier, pattern features achieve accuracy gains up to 25% compared
to state-of-the-art acoustic features.

Keywords: Emotion recognition · Speech processing ·
Pattern mining · Feature extraction

1 Introduction

Speech is the most natural communication channel. With recent advances,
speech-based technologies have become an integral part of modern life. From
basic mobile phones to advanced assistants such as Amazon’s Alexa or from our
cars to home automation, voice-controlled systems enable us to perform daily
tasks using commands. Apart from personal use, speech recognition has its appli-
cation in various domains: in businesses to cut costs and increase the productivity
of customer services [18], in education to improve the quality of teaching [25],
in healthcare to determine the state of patients [5]. Despite its widespread use,
recognizing speech is only one part of the story. Chibelushi suggests that words
are responsible for about 7% of the message perception while voice intonation for
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about 38% [3]. As intonation is directly affected by emotions, developing tech-
niques to identify emotions from the speech is of great importance in conveying
the full meaning of messages.

Recognizing emotions from speech have been addressed in many studies.
These are generally distinguished from each other by the types of features and
the methods of classification. Majority of the research focus on using prosody
[1,16], voice quality [7,23] or spectral features [8,19]. Some of the researchers
incorporate lexical information into acoustic features in order to improve emo-
tion recognition. Linguistic cues are mainly captured with N-Grams [21], Bag-
of-Words [20] or the language models [9]. Extracted features are used to build
classifiers such as such as Support Vector Machines (SVMs) [26], Gaussian Mix-
ture Models (GMMs) [13], Hidden Markov Models (HMMs) [15], Artificial Neural
Networks (ANNs) [14] and Deep Neural Networks (DNNs) [4].

In this study, we propose an approach to produce a novel set of features for
emotion recognition from speech. The method begins with transforming each
continuous speech signal into discrete units. A pattern mining algorithm then
takes as input the discretized signals and extracts patterns characterizing emo-
tions. Finally, a feature is generated for each pattern of each emotion by counting
how many times a pattern is observed on a converted signal. There are only a few
studies available in the literature that use pattern mining in feature extraction.
However, these works differ both in the domain of application, i.e. face [22] and
EEG [24], and in the way that features are extracted. To our knowledge, this
is the first study to suggest using pattern mining for emotion recognition from
speech.

In the next section, we explain our approach. We describe the dataset used
in this study and present experimental results in Sect. 3. We conclude the paper
in Sect. 4.

2 Our Approach

It is a known fact that emotions affect the acoustic characteristics of speech. In
most of the emotion recognition studies, these characteristics are captured by
low-level prosodic or spectral features. In this study, we propose an approach
that focuses on identifying acoustic patterns specific to different emotions as
high-level features of vocal expressions. For this purpose, raw speech signals
were transformed to strings via discretization. Discrete representations of signals
were used to extract patterns of emotions in a discriminative manner. Emotion
recognition was then performed with features elaborated from the patterns. The
approach is summarized in Fig. 1 where the details are presented in the following
sections.

2.1 Dimensionality Reduction

Given a speech signal of dimension t, D = d1, ..., dt, this step reduces the dimen-
sion of the original signal to t/w, D̄ = d̄1, ..., d̄i, by calculating the ith element
as:



56 U. Avci et al.

Fig. 1. Basic system diagram of speech emotion recognition.

d̄i =
1
w

w×i∑

j=w×(i−1)+1

dj (1)

where w is the window size of arbitrary length and i = 1, ..., t/w.
In a nut shell, the speech signal consisting of t data points is divided into

non-overlapping windows (partitions) of equal length, w (window size), where
each window is represented by the average value of its data points (Fig. 2a).
Before applying the Eq. 1 to a speech signal, we removed the silent parts of the
speech and performed z-score normalization on each signal. In our study, we set
w to 8.

2.2 Discretization

In discretization, we convert the scalar vector D̄ into a string of characters S̄.
To this aim, we map each element of D̄, d̄i to each element of S̄, s̄i. Mapping
is done by fitting the Gaussian Distribution on D̄ and dividing the distribution
into equally probable regions. Here, breakpoints B = b1 . . . bn are defined as the
values that divide the distribution into n + 1 equiprobable regions. Each region
is then tagged with a letter from the English alphabet in order, e.g. three regions
are labeled as a, b and c for n = 2. Depending on the region that a d̄i falls, s̄i
is assigned the label of the corresponding region. In our study, we set n to 4.
Figure 2b. shows an example of discretization. By setting n to 4, we convert D̄
into corresponding S̄ as a sequence of characters babccdedcb.

2.3 Pattern Mining

Pattern mining provides a set of patterns that describe the characteristic of data
in an informative manner. One of the well-known pattern mining techniques is
contrast mining. The aim of contrast mining is to discover diverse patterns that
have differences in the data set. Distinguishing pattern mining (DPS) is a specific
type of contrast mining. The idea of DSP is to find a set of interesting patterns
that are observed frequently in positive class and rarely in negative class. Data



A Pattern Mining Approach in Feature Extraction for Emotion Recognition 57

Fig. 2. (a) The dimension of a continuous speech signal of length t is reduced to t/w, w
being the window size. (b) The signal is discretized based on the areas of the Gaussian
distribution.

mining restrictions have an important part to determine a sequential pattern and
provide scalability of the whole process. The specific restriction in DSP mining
is gap constraint. Gap constraint set boundaries between two consecutive values
in sequences.

In our research, we used KDSP-Miner (top-k distinguishing sequential pat-
terns with gap constraint) [27]. We extracted top-1000 patterns with gap con-
straint of zero from each emotion using one against all strategy. As each pattern
may be observed both in positive and negative classes at the same time, the
algorithm provides two measures showing the extent to which a pattern appears
in each class as positive support (PosSup) and negative support (NegSup). By
dividing the PosSup to NegSup, a measure called C-ratio is obtained. We have
created a set of discriminative patterns of each emotion by selecting them based
on the highest C-ratio.

2.4 Feature Extraction

Patterns obtained in the previous step are used to extract acoustic descriptors.
Let pji be ith pattern for jth emotion where i = 1, . . . , n and j = 1, . . . , m. Also
let ft be tth element of the feature vector of size n×m. Given a pattern specific
to emotion, pji , and a discretized speech signal, we compute ft by counting the
number of times that pji is exactly matched on the discretized signal. In an exact
match, we do not allow gaps between matches of individual pattern elements
with the aim of retaining the motif that is represented by the pattern. Assume
that dceadceabdc is a discrete representation of a speech signal and that there
are two patterns: cea and eadc. The former is observed twice in the signal
which makes its relative entry in the feature vector 2. The latter is matched
once exactly and twice with a gap constraint of one, b being the gap in the
substring eabdc. As our calculation is based only on exact matches, its feature
value is set to 1.
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2.5 Classification

We have applied two different approaches for classifying patterns: maximum
voting and Directed Acyclic Graph Support Vector Machine (DAGSVM).

Maximum Voting Algorithm: Before learning a classification model, we uti-
lize a simple maximum voting algorithm in order to explore the effect of patterns
on emotions. In this approach, the emotion of a speech is determined solely based
on the patterns without building a classification model. A speech signal to be
labeled is first converted to its discretized version S̄ with steps described in
Sects. 2.1 and 2.2. We take a pattern pji for a specific emotion j (note again
that pji is the ith pattern for jth emotion where i = 1, . . . , n and j = 1, . . . , m)
and count how many times the given pattern is exactly matched on the S̄ as
performed in Sect. 2.4. This pattern matching phase is repeated for each pattern
of an emotion type j. The number of matches for each pattern i is summed
to obtain the cumulative number of matches for emotion j. The procedure is
repeated for all the emotions resulting in j number of cumulative sums. The
emotion for which the cumulative sum is the highest is assigned as the emotion
label of the speech S̄.

Here, although rare, there may be a case where the cumulative sums of dis-
tinct emotions are the same. In this situation, we randomly select one of the
competing emotions and assign the chosen emotion as the emotion label of the
speech.

DAGSVM: Support vector machines (SVM) is a popular classifier successfully
applied to problems of pattern recognition, text classification, etc. Initially pro-
posed for binary classification problems, SVM can be applied to multi-class prob-
lems by different strategies like one-versus-one and one-versus-all. One-against-
all [10] builds m number of classes in SVM. The mth class of SVM is trained
to separate the mth class from the other classes. One-against-one [12] method
construct m(m−1)/2 SVM classifiers that are trained to differentiate samples of
a class from other class samples. This method uses a pairwise coupling strategy
for all class combinations.

Directed Acyclic Graph (DAG) SVM [17] can be used for multi-class classifi-
cation as well. DAGSVM is closely related to one-versus-one SVM in the training
phase. The graph has m number of multi-class classifier and it has m(m − 1)/2
internal nodes where SVM classifier is included in each of them. In the testing
phase, the classification begins at the root node and move on through the left or
right node according to the output of SVM classification. The classification pro-
ceeds until a leaf node which determines predicted class. One of the advantages
of DAGSVM is that the performance of testing time is lower than one-versus-one
method of SVM. Also, experimental results [6] demonstrate that one-against-one
and DAGSVM methods is more proper for practical uses. In classification, we
adapted DAGSVM to SVM and used the implementation of LibSVM tool [2].
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3 Dataset and Experimental Results

3.1 Dataset

We use Ryerson Audio Visual Database of Emotional Speech and Song [11].
RAVDESS is a multi-modal database containing audio-visual recordings of emo-
tional speech and song from 24 actors (12 female and 12 male), and it is typically
used by the research community to study acoustic and/or visual similarities. In
the recordings, speech is restricted to two sentences: “kids are talking by the
door” and “dogs are sitting by the door”. Each actor expresses these sentences
with 8 different emotions (neutral, calm, happy, sad, angry, fearful, disgust and
surprise) in a North American accent. The song recordings contain first 6 emo-
tions except for disgust and surprise. Each emotion is expressed at normal and
strong intensities with two repetitions. Only the neutral emotion lacks the strong
intensity. In the dataset, each actor performs distinct vocalizations of 60 spoken
and 44 sung recordings. The total number of vocalizations is 2452 (24 actor× 60
recordings + 23 actor× 44 recordings) available in three modules: audio-only,
video-only, and audio-visual.

In our research, we only used the speech signals with normal intensity from
the RAVDESS database and omitted the song portion. Since the study that we
use as the benchmark [28] focuses on recognizing emotions independent from the
domain, i.e. speech and song, only common emotions to both domains are con-
sidered. To be aligned with this work, we excluded disgust and surprise emotions
from the speech recordings. As a result of the pruning, the total number of audio
recordings becomes 576 (1 domain× 24 actors× 2 sentences× 2 repetitions × 6
emotions).

3.2 Experimental Results

In this section, the performance of the proposed method was evaluated and
compared with the results in [28]. In order to appraise the effect of pattern
count on the performance, we created distinct sets with 5, 10, 15, 50, 100, 150,
250, 500 and 1000 patterns for each emotion based on the C-ratio criterion.
The choice of the pattern count determines the size of the feature vector (see
Sect. 2.4). For example, 5 patterns for each emotion results with a feature vector
of size 30. Such a feature vector allows representing a speech signal independent
from the type of emotion. Note that z-score normalization was performed on the
feature vectors prior to their usage.

For the experiments where we model a classifier, leave-one-performer-and-
sentence-out cross-validation is used. One sentence from one performer is eval-
uated in every round of testing data. The training data consists of other per-
formers and other sentences. Optimization of model parameters is performed
via 5-fold internal cross-validation on the folds of training data. The grid search
determines the optimal hyper-parameters of SVM, i.e. C and γ where C is a reg-
ularization constant for the training error and γ is the kernel function to control
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Fig. 3. Maximum voting algorithm and DAGSVM classification results.

the bandwidth of the radial basis function (RBF). In our experiments, we used
the popular RBF kernel.

Figure 3 shows voting-based and model-based classification results as accu-
racies. From the figure, it can be seen that the voting approach provides results
comparable to those provided with the state-of-the-art features (see Table 1). In
this approach, classification accuracies decrease as the pattern count increases.
As we sort patterns based on the C-ratio and select the pattern set from the list,
the patterns that are up in the list have higher discriminative power than the
followings. So, increasing the number of patterns decreases the overall discrimi-
native power, hence results with a decrease in the accuracy. An important point
worth noting is that a decrease in the number of patterns leads to an increase
in the likelihood of having emotions with the same cumulative sums of pattern
matches (see Sect. 2.5 - Maximum Voting Algorithm). Recall that, in cases where
such emotions emerge, the emotion label of a speech is determined by a random
selection process. This may cause a drop in classification accuracy, an example of
which can be seen for 5 patterns in Fig. 3. As can be predicted, the model-based
approach outperforms the voting-based approach in almost all cases. Besides, the
model-based approach improves the results of the voting-based approach up to
30% for larger pattern counts. Contrary to the voting-based approach, classifi-
cation results increase with the rise in the number of patterns. This is logical as
the information embedded into the feature vectors increases proportionally to
the pattern used.

Table 1 presents the classification accuracies of our approach for two different
sets of patterns (5 and 500) and results given in [28]. The results are comparable
as the cited study uses DAGSVM for classification and leave-one-performer-
and-sentence-out cross-validation for the evaluation on the same dataset. In this
benchmark paper, five sets of acoustic features are used, i.e. energy, spectral,
MFCC, voicing and RASTA. Our approach with the smallest set of patterns
outperforms the best of all the acoustic features, MFCC. Besides, the size of
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Table 1. Classification results of acoustic and pattern-based features.

Classification accuracy (%)

Energy [28] 34.78

Spectral [28] 48.01

MFCC [28] 48.73

Voicing [28] 38.41

Rasta [28] 30.43

5 Patterns (proposed) 50

500 Patterns (proposed) 73.44

the feature vector in the pattern-based approach is far less than the number of
attributes in MFCC. This makes our approach much more efficient compared to
known techniques. Moreover, in our approach, dramatic increases in the accu-
racies may be achieved by increasing the number of patterns with an additional
cost of complexity.

4 Conclusion

This paper presents a new method for feature extraction using pattern mining
in speech emotion recognition. Voting results show that patterns alone are mod-
erately good predictors of emotion. Experiments demonstrate that the features
extracted from even a small number of patterns outperform all state-of-the-art
benchmark features. Important accuracy gains are provided with increasing pat-
tern usage. Despite the growth in complexity due to both pattern mining and
training, gains up to 25% could be achieved relative to the best prior art, i.e.
MFCC features. We consider improving our work by using a standard set of
features, e.g. INTERSPEECH 2013 acoustic feature configuration, under a fully
subject independent cross-validation setting in the future.
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Abstract. The automatic classification of a speaker’s dialect can enrich
many applications, e.g. in the human-machine interaction (HMI) or nat-
ural language processing (NLP) but also in specific areas such as pronun-
ciation tutoring, forensic analysis or personalization of call-center talks.
Although a lot of HMI/NLP-related research has been dedicated to dif-
ferent tasks in affective computing, emotion recognition, semantic under-
standing and other advanced topics, there seems to be a lack of methods
for an automated dialect analysis that is not based on transcriptions, in
particular for some languages like German. For other languages such as
English, Mandarin or Arabic, a multitude of feature combinations and
classification methods has been tried already, which provides a starting
point for our study. We describe selected experiments to train suitable
classifiers on German dialect varieties in the corpus “Regional Variants
of German 1” (RVG1). Our article starts with a systematic choice of
appropriate spectral features. In a second step, these features are post-
processed with different methods and used to train one Gaussian Mixture
Model (GMM) per feature combination as a Universal Background Model
(UBM). The resulting UBMs are then adapted to a varied selection of
dialects by maximum-a-posteriori (MAP) adaptation. Our preliminary
results on German show, that a dialect discrimination and classification
is possible. The unweighted recognition accuracy ranges from 32.4 to
54.9% in a 3-dialects test and from 19.6 to 31.4% in a classification of
9-dialects. Some dialects are easier distinguishable, purely using spectral
features, while others require a different feature set or more sophisticated
classification methods, which we will explore in future experiments.

Keywords: Dialect recognition · Spectral features · MFCC · GMM

1 Introduction

Automatic Dialect Classification (ADC) is the process of automatically identi-
fying a regional dialect of a given language from speech samples, which poses a
challenge, since the dialects usually provide smaller distinguishable differences
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than languages in general. Beyond, the phonetic or prosodic borders between
dialects are often diffuse and, since people move to different places over their
lifetime, a speaker may exhibit a mixture of different dialects.

In spite of the limitations, it is useful for many applications to utilize ADC. A
prominent example is Automatic Speech Recognition (ASR) where the variation
within a language, individually or due to the speaker’s regional dialect, can be
challenging for the recognizer. By ADC the language model can be fitted to
the dialect classified. Furthermore, dialect recognition can be useful in forensic
analysis to match speech recordings to its region of origin or in the customer
service, allocating the customer to an agent, who can speak the same dialect. In
the described cases, it is unlikely to have transcripts of the speech that needs to
be classified. Consequently, an automatic, text-independent dialect classification
has been studied by several authors e.g. on English [1–4], Arabic [5–7] or Chinese
[8–10].

The different approaches to ADC, which have been used for the aforemen-
tioned languages, are either acoustic/phonetic [11–13], phonotactic [6,7,14] or
prosodic [5,15] with a number of variations and combinations in features, mod-
eling and classification methods [16,17], but the base model to compare to is
commonly a GMM-UBM system [1,4,18,19] that takes Mel-Frequency Cepstral
Coefficients (MFCC) as features to create a Gaussian Mixture Model (GMM) as
a Universal Background Model (UBM), followed by an UBM adaptation to the
dialects, that need to be classified.

For German, however, no studies on text-independent ADC could be found.
In this contribution, we attempt to establish a baseline ADC system for German
dialects on a database of about 500 speakers (Regional Variants of German 1)
using the GMM-UBM approach.

In this paper, at first, we describe the speech data and algorithms used in
the methods section followed by the experimental setup, results and discussion,
and our conclusions.

2 Methods

2.1 Speech Data

There are several corpora, which contain German speech samples – even some
for dialect analysis in particular, including the “Regional Variants of German 1”
(RVG1), a speech corpus within the BAS CLARIN Repository [20]. RVG1 con-
tains recordings of about 500 speakers from 9 different dialect regions in Ger-
many with samples of 1 min of spontaneous speech as well as single numbers,
commands and phrases for each speaker, recorded by four microphones simul-
taneously. The 9 dialect regions of RVG1 are visualized in Fig. 1, a map from
1989 that shows the then current dialect regions of the German language. As
RVG1 was recorded 1996–1997, the map corresponds well with the dialects in
the corpus.

The speaker distribution over the 9 regions is shown in the Figs. 2 and 3, the
first by birth place and the second by the current living place at the time of the
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recordings (1996–1997). Table 1 presents the number of speakers in the different
regions and dialects.

Since spontaneous and read speech differ significantly in many ways (e.g.
speed, clarity of pronunciation etc.), the two modes were not pooled for the
same model. In this paper we decided to concentrate only on the spontaneous
part of the corpus, which contains one sample per speaker of 1 min, each.

Table 1. Number of speakers per dialect

Region Dialect Speakers Train Test
North A Low Franconian 44 35 9

B West Low German 103 82 21
C East Low German 31 24 7

Center D West Central German 73 58 15
E East Central German 52 41 11

South F Alemannic 63 50 13
G East Franconian 19 15 4
H South Franconian 10 8 2
I Bavarian /Austrian 100 80 20

2.2 Models

To analyze, whether ADC is generally feasible for German, we started with
the mentioned, basic GMM-UBM approach, which is comprised of the following
steps:

1. Feature extraction
2. Processing of the features
3. Computing the UBM
4. Adapting the UBM to different dialects
5. Scoring each test sample in every dialect model
6. Classification

In Step 1, the Mel-Frequency Cepstral Coefficients (MFCC) were extracted
at a sampling rate of 8kHz, frame length of 25ms, Hamming-windowing and
10ms shift between the frames, which are fairly standard conditions. The result
were feature vectors consisting of 12 MFCC and the spectral energy per frame.

The feature vectors were then processed in Step 2 using Voice Activity Detec-
tion (VAD) through an energy threshold, RASTA-filtering to remove the spec-
tral components, that changed at a rate different from human speech and Cep-
stral Mean and Variance Normalization (CMVN). Additionally, delta and double
delta, as well as Shifted Delta Cepstra (SDC) were computed from the processed
MFCC to incorporate temporal context for each frame. The speech data was then
randomly divided into a training set and a test set.
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Fig. 1. The map, adapted from [21], shows the dialect regions as given in the cor-
pus [20]. The dialect regions are colored according to the legend. (Color figure online)

For Step 3, the feature vectors of all training speakers were accumulated to
train the UBM by Expectation-Maximization (EM) for 512 gaussians, a number
which had proven to be successful in prior ADC-research.

Afterwards, the maximum-a-posteriori (MAP) algorithm was used, to adapt
the means of the UBM to each dialect by using all speakers of this dialect in the
training set. Then the log-likelihood score of each test sample was calculated in
every adapted model, and the highest score per sample was determined as the
corresponding dialect.

In the end, we determined the unweighted accuracy of the model by dividing
all correctly classified test samples by the total number of test samples.
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Fig. 2. The map shows the distribution of speakers in RVG1 by birth place – colored by
their dialect as given in the corpus (created with: https://mapmakerapp.com/) (Color
figure online)

3 Baseline Experiments

To determine, whether the GMM-UBM approach is suitable to identify German
dialects too, we decided to experiment with several combinations of the potential
feature processing. Always applying VAD, we varied the use of RASTA, CMVN,
deltas and SDC. In addition, we switched between a coarse-grained dialect clas-
sification, which divided the speakers into just three main regions (low, central
and high German) and the more fine-grained partition of the original corpus into
9 regions.

For the surveyed models we only used the spontaneous speech samples from
the first microphone, which we divided randomly into a training set, containing
80% and a test set with 20% of the samples per dialect. The distribution of
the speakers within each class on training and test set can be seen in Table 1.
We used the full duration of 1 min for each sample and did not split any sam-
ples into smaller units. Since there is only one sample per speaker, the sets are

https://mapmakerapp.com/
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speaker-disjunct by design. We processed all mentioned models for two such
training/test combinations. Afterwards, we tried the same combinations on
GMMs with less gaussians – 64, 128 and 256 respectively – to explore, whether
similar accuracies can be achieved with smaller models that allow for lower cal-
culation complexity (with regard to our trainings a few hours/days each).

To implement the setup, we used the Python toolkit “Sidekit” [22], which was
written for the purpose of Speaker Identification and which enables the entire
experimental process from the feature extraction to the classification.

4 Results and Discussion

Figure 4 summarizes our training and test results, in which the achieved
unweighted accuracies are plotted per feature combination and model type. The

Fig. 3. The map shows the distribution of speakers in RVG1 by living place at the
recording time – colored by their dialect as given in the corpus (created with: https://
mapmakerapp.com/) (Color figure online)

https://mapmakerapp.com/
https://mapmakerapp.com/
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Fig. 4. Accuracies for the different feature combinations on top of MFCC and VAD:
None – no further processing, R – RASTA, D – Delta/DoubleDelta, S – SDC, C –
CMVN. Each line is one model combination, e.g. “9 64 0” refers to 9 dialects, 64
gaussians, test set number 0. (Color figure online)

four main colors (pink, green, blue and orange) show the training/test set (0 or
1) used and the number of dialects to be classified (3 or 9). Each of the main col-
ors corresponds to four different lines, associated with the number of gaussians
in this model.

For the three-dialects classification, the first test set mostly reached higher
accuracies, even up to 54.9%, whereas the second set was apparently more diffi-
cult to classify, achieving a maximum accuracy of 45.1%. With nine dialects, the
overall accuracy is naturally lower, but the impact of the test set used, was less
than with the first set reaching a maximal accuracy of 31.4% and 29.4% for the
second set. Additionally, the best-scoring feature combinations are shown to be
(1) just Delta/DoubleDelta, (2) RASTA+CMVN+SDC, and (3) RASTA with
either SDC or Delta/DoubleDelta, while the number of gaussians in the GMM
is mostly best at 512 and 256.

Our reached accuracies were far from optimal but certainly above chance
level, which is 11.1% for 9 dialects and 33.3% for 3 dialects. As a baseline system,
the GMM-UBM approach seems effective for distinguishing German dialects.
Aside from the chosen model, there may be other reasons for the rather low
accuracies, e.g. there may be dialects that are very similar and therefore hard
to distinguish, even for human listeners.

Another reason might be the unequal distribution of speakers per dialect as
well as the unbalanced size of dialect regions. In the three-dialects classification,
the variation of speech within one region might be too high, so that the models
for each region are not specific enough to allow for a robust classification. As
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one can see in the confusion matrix of one of the best 3-way models in Table 2,
both northern and southern German can be distinguished relatively well, but
the middle region was confused with the northern region as frequently as it was
correctly classified.

Table 2. Confusion matrix for 3 dialects

North Mid South
North 23 10 6
Mid 9 10 10
South 5 6 23
Σ 37 26 39
Accuracy(%) 62.2 38.5 59.0

In Table 3, the confusion matrix for the best 9-dialects model is shown with
the individual accuracies per dialect below. It is obvious, that some regions may
be too small, or they have too few samples in both test and training sets, like
G and H, which only included 4 and 2 test samples respectively, none of which
were classified correctly. Likely the remaining samples of this dialect region that
were assigned to the training set, 15 in G and 8 in H, were not sufficient to train
a robust model for each dialect or the test speakers were outliers even within
their own small dialect class.

On the other hand, the accuracies are not only affected by the size of the
region, because region A is around the same size, but can be classified with 44.4%
accuracy. The number of speakers, however, plays a role in the classification, since
the models cannot be properly fitted with too little data.

Another area, that has been classified with a very low accuracy, is region E,
which turns out to be surprising, as this region corresponds to eastern German
dialects, that are usually quite easy to identify by human listeners. Instead, these
speaker probes were mainly confused with the three northern dialects, which
indicates test speakers without a strong dialect, since parts of northern German
variations are colloquially called “High German” or “Standard German”, and in
bigger cities, that is usually the version of German spoken.

The further south one goes in Germany, the stronger the regional dialects
usually get. Of the other six dialects, five are relatively well recognized (35.0%
. . . 44.4% accuracy), with B being often wrongly recognized as D. An explanation
for the confusion of B for D might again be a prevalence of “Standard German”
in both regions, which may result in similar dialect models. Also, these regions
are right next to each other. Therefore the speakers, who live near the border of
B and D, might speak a mix of both dialects, which makes a classification more
challenging.

While dialect I has been identified correctly for 35% of its test samples, it
is also the dialect most frequently recognized as E, which ist interesting, when
even E itself is not usually classified as E. Additionally, I and E represent two
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regions, that are usually known for people, who speak with a marked dialect.
The dialects themselves (Bavarian in I and Saxon in E ), however are perceived
as quite distinguishable.

The dialect F is in between with 23.1% accuracy, being confused for D or
G as frequently as it is recognized correctly. The reasons for this effect should
be further explored, since both, the region and the number of speakers, are
comparatively large and well-represented in the corpus.

Table 3. Confusion matrix for 9 dialects

A B C D E F G H I
A 4 1 0 3 2 1 1 1 0
B 2 8 2 3 2 1 0 0 1
C 1 2 3 0 3 0 0 1 1
D 2 5 1 6 1 3 2 0 3
E 0 0 1 1 1 1 1 0 4
F 0 2 0 0 0 3 0 0 0
G 0 1 0 2 0 3 0 0 2
H 0 0 0 0 2 0 0 0 2
I 0 2 0 0 0 1 0 0 7
Σ 9 21 7 15 11 13 4 2 20
Accuracy(%) 44.4 38.1 42.9 40.0 9.1 23.1 0.0 0.0 35.0

5 Conclusions

In our experiments on ADC we have found, that German dialects can be classified
by a GMM-UBM system, achieving accuracies significantly above chance. We
were also able to identify five dialect regions out of nine, that appear to be
quite distinguishable. We are expecting relevant improvements, when using more
sophisticated classification methods, that combine our baseline results with e.g.
prosodic features. A more reliable validation technique such as cross validation
is also desirable, but in the current study it was too computationally demanding
for all tested combinations.

Further experiments will include read speech (instead of spontaneous speech
only) and further corpora with both, the baseline and advanced models afore-
mentioned. The corpus choice needs to consider more speakers and samples of
the regions, that were under-represented in our current study. In terms of the
relatively high calculation complexity and processing time during the training,
the further experiments will also require a more systematic schedule than our
draft experiments.
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Abstract. In this paper, MSA speech rhythm metrics were used to classify two
regional accent (northern vs. southern regions) using an MLP - neural network
classifier. Seven rhythm metrics vectors were computed from a speech dataset
taken from ALGerian Arabic Speech Database (ALGASD) using both Interval
Measures (IM) and Control/Compensation Index (CCI) algorithms. The classi-
fier was trained and tested using different input vectors of speech rhythm
measurements. The best accuracy of the NN-classifier was achieved when a
combination of all metrics was used (88.6%).
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1 Introduction

Nowadays, various tools of statistical measurement of durational variability in speech,
called rhythm metrics, were developed [1–4]. These metrics were used in different
research fields such as in: languages comparison and second language (L2) acquisition
[5–8] clinical applications [9] and in speech automatic recognition of emotion [10].

Many varieties of Artificial Neural Networks (ANNs) have appeared over the years,
with widely varying properties. The most widely used form, and the one we used in this
work, is the Multilayer perceptron MLP. Indeed, they have been successfully applied to
several speech tasks, i.e., phoneme recognition, out of vocabulary word detection,
confidence measure, etc. [11, 12].

The current research deals with speech rhythm data that were extracted from
recordings of speakers belonging to six Algerian regions [13]. An automatic classifi-
cation system was built to recognize the location of speakers when rhythm values were
used as the input vectors. Therefore, the aim of the classifier is to identify speakers’
locality whether they belong to the north or to the south of the country. The classifier is
based on MLP Neural Network models.

The organization of the paper is as follows: Sect. 2 gives some proprieties of MSA
language. Section 3 presents an overview on rhythm algorithms. Section 4 exposes
speech material and speakers used for the purpose of the rhythm analysis. Section 5
carries out results of different rhythm experiments and classifier accuracies. Section 6
concludes this work.
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2 MSA Language

Modern Standard Arabic (MSA) is the official Arabic language in 22 countries. Written
form of MSA is the language of literature and the media. Its phonetic system is com-
posed of 28 consonants (C) and six vowels (three short vowels (v) vs. three long vowels
(V). There are many allophones depending on the consonantal context. In addition,
MSA has two diphthongs /ay/ and /aw/ such as in /laaylun/ (night) and /yaawm/
(day) respectively. Two distinctive consonant classes characterize MSA phonetic
alphabet: pharyngeal and emphatic consonants. Likewise, Arabic language is endowed
by two fundamental properties: long vowels and germination (consonant doubling).
Arabic syllable structure has been subject to extensive studies. Researchers state that
Arabic syllables can be open or closed such as -CV /CV:-or -CVC /CV:C/ CVCC-
respectively. All Arabic syllables must contain at least one vowel.

3 Rhythm Modeling

It has often been asserted that languages exhibit regularity in the timing of successive
units of speech, and that every language may be assigned one of three rhythmical types:
stress-timed languages (Arabic, English, etc.); syllable-timed (French, Spanish, etc.)
and mora-timed (Japanese, etc.). To categorize languages regarding to their speech
rhythm scores, algorithms were performed such as: Interval Measures (IM), Pairwise
Variability Indices (PVI) and Compensation and Control Index (CCI).

The IM approach involves computing of three separate measures from the seg-
mentation of speech signals into vocalic (V) and consonantal (C) units [1]. These
measures are:

• %V: the proportion of time devoted to vocalic intervals in the sentence
• ΔV: the standard deviation of vocalic intervals;
• ΔC: the standard deviation of consonantal intervals, the sections between vowel

offset and vowel onset.

The time-normalized metric measures (VarcoV/C) are the normalized scores of the IM
variables [3].

Basing on vowels and consonants durations, PVI model obeys to this formula [2]:

PVI ¼ 100�
Xm�1

k¼1

dk � dkþ 1

dk þ dkþ 1ð Þ=2
����

����= m� 1ð Þ
� �

ð1Þ

where m is the number of intervals in utterance, d is the duration of the kth interval.
CCI model was proposed to compute rhythm of languages when the basic unit of

measurement focuses on syllable complexity model [4]. This algorithm, which is called
Compensation and Control Index (CCI), was inspired by the syllable compensation.
The CCI equation is:
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cci ¼ 100
m� 1ð Þ

Xm�1

k�1

dk
nk

� dkþ 1

nkþ 1

����

���� ð2Þ

where m is the number of intervals, d for duration, and n for number of segments within
the relevant interval.

The rhythm metrics that are examined for the purpose are: three interval measures
(%V, DV, and DC), two time-normalized indices (VarcoV, VarcoC) and two CCI
metrics (CCI-C, CCI-V).

4 Participants

Speech material used in the rhythm analysis is a part of ALGASD corpus. This corpus
composed about a set of 200 balanced sentences recorded from 300 speakers from 11
regions across Algeria. The database includes the main pronunciation variations of
MSA due to regional differences in Algeria. Likewise, the distribution of inhabitants in
these areas is proportional to the population in these regions. Thus, the regional cov-
erage corresponds to the major dialect groups. Speakers come from different socioe-
conomic backgrounds and their mastery of Arabic is different. Each speaker read from
2 to 6 sentences from the whole text material. The whole database consists of 1080
wave files [12].

The present study used only a set of recording related to six regions. Three regions
from the north of the country: Algiers – capital city - (R1), Tizi-Ouzou (R2) and Jijel
(R3); and three regions from the south: (Bechar in the west - close to Morocco - (R4),
El Oued is in the East -close to Tunisia - (R5) and Ghardaia in the center of Algeria’
south – (R6)). 594 recordings from 166 speakers (82 males/84 females) were used in
the study.

5 Experiments and Results

The experimentation deals with classification of the speakers, regarding speech rhythm
cues, into two classes: southern vs. northern regions. Indeed, we attempted to build a
classifier that can identify the accent of the speaker when speech rhythm measurements
were used. The classifier is based on Neural Network - NN models.

5.1 Rhythm Metrics Dataset

To get the speech rhythm scores, an experimented annotator segmented manually all
speech material i.e. 594 speech files of the dataset onto their different units (vowels and
consonants) using WaveSurfer software. From these segments, we extracted by using
program script all vowels and consonant durations (Fig. 1). Secondly, seven rhythm
metrics were computed from the data using both algorithms quoted before -Interval
Measures (%V, DV, and DC), two time-normalized indices (VarcoV, VarcoC), and
Compensation and Control Index (CCI-C, CCI-V).
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5.2 Classifier Design

Neural networks have proven themselves as proficient classifiers. A multilayer per-
ceptron (MLP) is a class of Artificial Neural Network. MLP has feed-forward archi-
tecture within input layer, a hidden layer, and an output layer. The input layer of this
network has N units for an N dimensional input vector. The input units are fully
connected to the hidden layer units, which are in turn, connected to the output layers
units. Different feature vectors can be used as input vector. In our case, rhythm metrics
values provide MLP input data. Feature vector is divided into three data sets: training,
validation and testing data set. The rhythm MLP is based on a back propagation
algorithm, a hyperbolic tangent and the logistic sigmoid. The nodes in this network are
all sigmoid activated. The node weights are adjusted based on corrections that mini-
mize the error in the entire output, given by:

e nð Þ ¼ 1
2

X
j
e2j nð Þ ð3Þ

Using gradient descent, the change in each weight is

Dwij ¼ �g
@e nð Þ
@vj nð Þ yi nð Þ ð4Þ

where yi is the output of the previous neuron and g is the learning rate

Fig. 1. Segmentation of speech sentence
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5.3 Experiments

To build the speech rhythm classifier that can recognize speaker accent regarding
speech rhythm measurements, we used all rhythm scores that were computed before
from speakers’ recordings. The rhythm samples were randomly divided into training
(70%), validation (15%) and test (15%) sets. The training set was used to teach the
network. The feed-forward algorithm assigned random weight value from input layer
towards the output layer. The back-propagation algorithm goes through the network
iteratively, updated the weight in each layer backwards from the output layer towards
the input layer then. The size of the MLP is 20 neurons.

To attempt the best recognition rate that allows classifying speakers depending on
their regional accent, the engine was trained and tested using different configurations of
the input feature vectors. The aim is to get in the end, two different classes: speakers
belonging to southern vs. northern regions. Therefore, the first configuration chosen
consists on the assessment of the classifier using all seven rhythm metrics input vectors
separately (IM and CCI). We tried by that to show the efficiency of each metric in
classification experiments. Matrices of confusion show that the classifier gives different
accuracies (Table 1). The best recognition rate (84.7%) is achieved when the input
vector included the normalized interval measure – VarcoC - that were computed from
durations of consonants

The second configuration considered that the input vector of the recognizer is
composed by a combination of different rhythm vectors. Thus, we tried as a first step a
mixture of all IM metric vectors (i.e. %V, DV and DC). Then we used the association
of both time-normalized IM (i.e. VarcoV and VarcoC) followed by a combination of
Compensation and Control Indices (CCI-V and CCI-C). In the last investigation, all
input vectors were utilized at same time. Results of all experiments are displayed in
Table 2. As it can be seen, the best accuracy was obtained when the input vector is
included of the combination of all rhythm values: Interval Measures (IM), time-
normalized metric measures (VarcoV/C), Compensation, and Control Index (CCI). The
best confusion matrix accuracy is given when we used the whole of input vectors
computed (88.6%). Therefore, the engine can categorize speakers’ regional accent,
considering their speech rhythm measurements, into two classes of speakers those
belonging to northern regions from those of the southern ones. An improvement of
�4% is obtained for the second configuration compared to the first one.

Table 1. Classifier’s accuracies for different input vectors

Metrics %V DV DC VarcoV VarcoC CCI-V CCI-C

Accuracy (%) 79.5 76.8 78.3 75.6 84.7 77.6 76.9

Table 2. Classifier’s accuracies for combined input vectors

Vectors IM VarcoX CCI IM, VarcoX, CCI

Accuracy (%) 87,6 85.5 77.4 88.6
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6 Conclusion

In this paper, speech rhythm metrics were used to classify six Algerian regions onto
two big classes northern vs. southern localities. Each locality included three areas.
Rhythm data were computed using Interval Measures (IM) and Compensation/Control
Index (CCI) from 594 MSA recordings pronounced by 166 speakers.

The MLP - neural network classifier was trained and tested using different speech
rhythm input vectors. The best accuracy was reached (88.6%) when we used a com-
bination of all speech rhythm values. To improve the classifier’s accuracy, we suggest
adding in future works other rhythm scores as PVI (normalized Pairwise Variability
Index).

References

1. Ramus, F., Nespor, M., Mehler, J.: Correlates of linguistic rhythm in the speech signal.
Cognition 73, 265–292 (1999)

2. Grabe, E., Low, E.L.: Durational variability in speech and the rhythm class hypothesis. In:
Papers in Laboratory Phonology, no. 7, pp. 515–546 (2003)

3. Dellwo, V.: Rhythm and speech rate: a variation coefficient for deltaC. In: Karnowski, P.,
Szigeti, I. (eds.) Language and Language Processing, Paper presented at the 38th Linguistic
Colloquium, 231241 (Peter Lang, Frankfurt (2006)

4. Bertinetto, P.M., Bertini, C.: On modelling the rhythm of natural languages. In: Proceedings
of 4th International Conference on Speech Prosody, Campinas, pp. 427–430 (2008)

5. Vázquez, L.Q., Romero, J.: The improvement of Spanish/Catalan EFL students’ prosody by
means of explicit rhythm instruction. In: ISAPh 2018 International Symposium on Applied
Phonetics, Aizuwakamatsu, Japan (2018)

6. Anh-Thư, T., Nguyễn, T.: L2 English rhythm by Vietnamese speakers: a rhythm metric
study. Linguistics J. 12(1), 22–44 (2018)

7. Droua-Hamdani, G., Selouani, S.A., Boudraa, M., Cichocki, W.: Algerian Arabic rhythm
classification. ISCA International Speech Communication Association. In: Proceedings of
the Third ISCA Tutorial and Research Workshop Experimental Linguistics, ExLing 2010,
Greece, August 2010, pp. 37–41 (2010)

8. Droua-Hamdani, G., Boudraa, M.: Rhythm metrics in MSA spoken language of six Algerian
regions. In: 15th International Conference on Intelligent Systems Design and Applications
(IEEE-ISDA2015, Marrakech, Morocco, 14–16 December (2015)

9. Liss, J., et al.: Quantifying speech rhythm abnormalities in the dysarthrias. J. Speech Lang.
Hear. Res. 52, 1334–1352 (2009)

10. Ringeval, F., Chetouani, M., Schuller, B.: Novel metrics of speech rhythm for the
assessment of emotion. In: Proceedings of Interspeech, Portland, OR, USA, pp. 2763–2766
(2008)

11. Zhu, Q., Stolcke, A., Chen, B.Y., Morgan, N.: Using MLP features in SRI’s conversational
speech recognition system. In: Interspeech 2005 – Eurospeech, Lisbon, Portugal, 4–8
September 2005

80 G. Droua-Hamdani



12. Park, J., Gales, M.J.F., Diehl, F., Tomalin, M., Woodland, P.C.: Training and adapting MLP
features for Arabic speech recognition. In: IEEE International Conference on Acoustics,
Speech and Signal Processing CASSP 2009, Taipei, Taiwan, 19–24 April 2009

13. Droua-Hamdani, G., Selouani, S.A., Boudraa, M.: Algerian Arabic Speech Database
(ALGASD): corpus design and automatic speech recognition application. Arab. J. Sci. Eng.
35(2C), 157–166 (2010)

Classification of Regional Accent Using Speech Rhythm Metrics 81



PocketEAR: An Assistive Sound
Classification System
for Hearing-Impaired

Kamil Ekštein(B)
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Abstract. This paper describes the design and operation of an assistive
system called PocketEAR which is primarily targeted towards hearing-
impaired users. It helps them with orientation in acoustically active
environments by continuously monitoring and classifying the incoming
sounds and displaying the captured sound classes to the users. The envi-
ronmental sound recognizer is designed as a two-stage deep convolu-
tional neural network classifier (consists of the so-called superclassifier
and a set of the so-called subclassifiers) fed with sequences of MFCC
vectors. It is wrapped in a distributed client-server system where the
sound capturing in terrain, (pre)processing and displaying of the classifi-
cation results are performed by instances of a mobile client application,
and the actual classification and maintenance are carried out by two
co-operating servers. The paper discusses in details the architecture of
the environmental sound classifier as well as the used task-specific sound
processing.

Keywords: Environmental sound classification ·
Deep convolutional neural networks · Two-stage classifier ·
Client-server architecture

1 Introduction

Undisputable immense progress of the recognition and classification techniques
based upon deep neural networks (DNN) in recent few years made it possible
to not only think about but actually to build up effective assistive systems for
humans with various disabilities or disadvantages.

As the accuracy and reliability of the DNN-based recognizers and classi-
fiers rise, computer systems are more and more usable in the task of providing
humans with the capabilities they lost or were born without. Furthermore, the
computing power and network connectivity of current and future mobile devices
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(smartphones, tablets, etc.) allow running at least the client part of the appli-
cation on portable equipment which does not restrict the respective users from
normal activities.

This paper describes a year-long work on building up a distributed assis-
tive system for hearing impaired persons named PocketEAR (EAR stands for
Environmental Audio Recognition).

1.1 Motivation

Several years ago, an interdisciplinary team (speech recognition, natural lan-
guage processing, and computer graphics) at our department was working on
software for translating spoken Czech language into Czech Sign Language (CSL,
ISO 639-3 code cse). The group had at its disposal 2 deaf persons, native speak-
ers of CSL, to help with the proper implementation of the signs.

During informal talks with the deaf co-workers, they explained to the team
members that their biggest problem is not to understand hearing people speaking
(as they were trained in lip-reading). They pointed out that what complicated
their lives most was the fact that they were not alerted to certain types of sounds
and thus they didn’t know they should use their practiced deaf skills to react
properly.

They brought up the following example: When a deaf or hard-of-hearing
person rings a doorbell by pressing the button at the entrance, he or she is then
completely unaware whether somebody is speaking at them through an intercom
or opens the door using a remote-controlled electromagnetic lock (buzzer).

At that moment, the key idea behind PocketEAR was born, i.e. to build up
a system that would continuously scan the sound from the environment and try
to identify sounds of specific importance for deaf or hard-of-hearing persons’
orientation.

2 System Architecture

The general architecture of the PocketEAR system is depicted in Fig. 1. The
central node is a server machine which runs two servers: (i) the recognizer
server—it communicates with mobile clients, receives parametrized audio signal
from them, launches the sound recognition routine on the received data, and
sends back the results (i.e. recognized categories and types of sounds); and (ii)
the manager server—it powers the operator’s console (web application) and
organizes the audio data for offline training of the sound classifier.

When designing the architecture of the system, it was considered important
to limit the amount of data transferred over the network. Therefore, the audio
signal preprocessing and parametrization is carried out on the client device. After
parametrization, it requires only 26 KB to be transferred from the client to the
server per each audio recording.
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On the other hand, the computing power of mobile devices is nowadays still
rather limited1. That is why the classification task is performed centrally on a
high-performance computer hosting the recognizer server.

The overall design is optimized for real-time (or nearly real-time) operation
of the whole system.

Fig. 1. Architecture of the PocketEAR system.

2.1 Client Application

The client application is targeted at mobile devices. It is written in C++ using
the Qt 5 framework2 and can be built for and run on Windows, Linux, MacOS
X, Android, and iOS systems.

The main tasks of the client application are to (i) interact with a Pock-
etEAR end user, to (ii) record the sound via the device audio interface and
parametrize the recorded audio signal, and to (iii) communicate with both the
recognizer server and the manager server (see Fig. 1).
1 However, the recently introduced TensorFlow Lite framework (available from
https://www.tensorflow.org/lite) makes it well possible to implement complex deep
learning tasks on mobile and IoT devices.

2 https://www.qt.io.

https://www.tensorflow.org/lite
https://www.qt.io
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Fig. 2. The PocketEAR mobile client application screenshots: Main screen of the appli-
cation in normal working mode, i.e. recording and recognizing sounds (left) and the
settings screen (right).

Audio Signal Processing on Client. The client application (when switched
to the active mode by a user) continuously records short segments (3 s) of the
audio signal from client’s environment using the mobile device audio subsys-
tem: The signal is digitized using 16 bits per sample resolution and sampling
frequency 44.1 kHz (i.e. the CD-DA standard settings). The digital audio signal
is subsequently transformed into a sequence of MFCC coefficients. Each 1024-
sample-long frame of the signal is windowed by the Hamming window. The frame
overlapping is set experimentally to 50 %, accordingly to suggestions given in [3].

As a result, a sequence of vectors consisting of 26 MFCC coefficients (32-bit
IEEE 754-1985 floats) is computed for each recorded audio chunk. The entire
settings of the audio processing on client are summarised in Table 1. The comput-
ing power of common present-day mobile devices (smartphones, tablets) easily
allows the signal processing to be performed in real time, specifically in approx.
0.3 RT. The original, unaltered recording in PCM format is, however, not dis-
carded right at the moment the vector sequence is ready. It is kept in temporary
storage of the device for prospective future use (explained in Sect. 2.1).

Client-Server Communication. Once the audio signal segment is recorded
and processed, it is sent through TCP/IP socket to the recognizer server. The



86 K. Ekštein

Table 1. Audio processing and feature extraction parameters.

Parameter Value

Recording channels 1 (i.e. mono)

Audio encoding PCM

Sampling rate 44100Hz

Quantization levels 65536 (i.e. 16 bits)

Frame length 1024 samples (i.e. 23.22 ms)

Frame overlapping 512 samples (i.e. 50%)

Audio segment length 256 vectors (i.e. approx. 3 s)

Number of triangular filters 48

Number of used MFCCs 26

server either (i) recognizes the sound(s) present in the recording or (ii) replies
that no known sound was identified.

When the recognizer server replies positively (i.e. one or more sounds iden-
tified), the client application obtains a packet3 with the information about the
class(es) and subclass(es) of the identified sound(s). This information is displayed
to the user as shown in Fig. 2 (left).

If the recognizer server returns the code for unknown/unrecognized sound,
the user is notified that there appeared a sound which cannot be identified.
The application takes the previously saved, unaltered PCM recording of the
unrecognized sound (see Sect. 2.1), compresses it into single-channel 192 kbps
MP3 format and sends the MP3 to the manager server as an unrecognized
sound.

2.2 Servers

The Recognizer server is only responsible for feeding the incoming
parametrized audio signals into the classifier, launching the forward pass of the
classifier, and sending the classifier result(s) back to the respective clients.

The Manager server powers the Operator’s Console web application and
manages the training dataset for the classifier: Every once the client obtains a
negative reply (i.e. the sound was not recognized) from the recognizer server,
it sends the original non-parametrized recording to the manager server which
stores it into storage for unrecognized sounds.

2.3 Operator’s Console

The Operator’s Console is a web application powered by the manager server.
Its main purpose is to work as a front-end (see Fig. 3) for specially trained
3 The PocketEAR system defines its own character-oriented communication protocol.
Each packet starts with ‘PE’ signature, then there goes a request/reply identification
character (e.g. ‘0’ means handshake); the message follows afterwards.
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operators. It assists them with preparing and/or extending the training dataset
for the recognizer: They use the application to edit and label the unrecognized
recordings that were previously saved by the manager server (as explained in
Sect. 2.1).

Fig. 3. The Operator’s Console web application interface.

The administrator’s console (as seen in Fig. 1) is just an operation mode of
the operator’s console with different authorization and user role. It is used to
monitor the activities of operators, to enrol new operators, and to run other
specific actions like e.g. batch training of the classifiers.

3 Environmental Sound Classification

The PocketEAR classifier of environmental sounds is based upon deep convolu-
tional neural networks and built up using the TensorFlow framework [1].

Initially, a series of sound classification experiments was carried out with
the model depicted in Fig. 4 only, as a single-stage classifier4. It is a moder-
ate modification of the commonly used architecture for sound classification (as
described in e.g. [2]). However, when using this model alone, the classification
accuracy was not satisfactory (varied between 56 and 63 % depending on the
model initialization).

Therefore, a two-stage architecture was designed and used: Each sound
(i.e. the sequence of vectors of 26 MFCC coefficients) is at first classified by the
so-called superclassifier which determines N most probable (super)classes the

4 The same model was later on used in the final design of the classifier, too, however,
as a two-stage classifier as described in details in Sect. 3.1.
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analyzed sound might belong to (currently N = 2). Consecutively, the sound
is classified parallelly by the N subclassifiers that correspond to the N most
probable classes—each class has its own, specifically trained subclassifier. The
subclassifier places the sound into one of M + 1 subclasses (the subclassifiers
use one more class as a garbage model).

Both the superclassifier and the subclassifiers produce a vector of real num-
bers from the bounded interval [0, 1], N - and M -long respectively. The compo-
nents of the vectors represent the proportional rate of confidence that the sound
belongs to i-th class, i ∈ [1, N ] for classes and i ∈ [1,M + 1] for subclasses
respectively. Their sum is equal to 1.0, i.e. the behaviour of the output layers is
strictly probabilistic.

The subclassifers select only the most probable classification, i.e. the class
with the highest probability (represented by the output neuron with the high-
est activation). The final subclass scores are computed as the product of the
(super)class probability and the subclass probability (see Example 1), K most
probable ones are sent to the client.

Example 1. The actual analyzed sound is “keyboard typing”. Superclassifier
puts the sound into “interior sounds” with 85% likelihood and into “natural
sounds” with 14% likelihood (N = 2, other classes with joint likelihood 1 % are
not taken into consideration).

The subclassifer of the “interior sounds” class sets the sound into the “key-
board typing” subclass with 48% likelihood, and the subclassifier of the “nat-
ural sounds” class sets the sound into the “crackling fire” subclass with 99%
likelihood. As 0.85 × 0.48 > 0.14 × 0.99, the sound is classified as “interior
sounds/keyboard typing” with 40.8% likelihood.

If all subclassifiers put congruently the analyzed sound into the garbage class,
it is marked as unrecognized.

3.1 Classifier Architecture

As mentioned above, the classifier is a two-stage Bayesian cascade consisting
of one superclassifier and N subclassifers. Both the superclassifier and the
subclassifers use the same deep convolutional neural network (DCNN) architec-
ture shown in Fig. 4. Models for the superclassifier and the subclassifer differ
only in the used final evaluation metric (see Sect. 3.2). The DCNN structure is
summarized in Table 2. All network layers use ReLU 5 activation function except
for the last dense layer which uses softmax function. Dropout value was set to
0.5. The used cost function was a modified cross-entropy to which a constant
Cmod was added. The Cmod is computed as a sum of Euclidean norms of both
convolutional and dense layers multiplied by 10−3 for superclassifier and sub-
classifers of the “human sounds” and the “interior sounds” classes, and by 0
for the other subclassifers. This modification provided the best results and was
finetuned manually during a series of experiments.
5 ReLU = Rectified Linear Unit, for details check [6].
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Fig. 4. The architecture of the deep convolutional network used as classifiers in the
PocketEAR system.

The cost function was optimized using the Adam (adaptive moment estima-
tion) method [4] implemented in the Keras library with initial learning rate set
to 10−4.

3.2 Classifier Training

For the initial evaluation purposes, the above-described classifier was trained on
the ESC-50: Dataset for Environmental Sound Classification—a labeled
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Table 2. The structure of the deep convolutional network classifiers.

Layer type Size

Input layer 434 × 26

Convolutional layer 3 × 3

Pooling layer 4 × 1

Convolutional layer 3 × 3

Pooling layer 4 × 2

Convolutional layer 3 × 3

Pooling layer 4 × 1

Convolutional layer 3 × 3

Matrix-to-vector transformation (flatten layer)

Dropout layer

Fully connected (dense) layer 128 neurons

Dropout layer

Fully connected (dense) layer 128 neurons

Dropout layer

Fully connected (dense) layer 〈# of classes〉 neurons

collection of 2000 environmental audio recordings suitable for benchmarking
methods of environmental sound classification [5]. The recordings in this dataset
are up to 5 s long and are organized into 50 semantical classes (with 40 examples
per class) loosely arranged into 5 major categories [5]. Each recording is stored
in an uncompressed PCM WAV file.

One training epoch of both super- and subclassifier is understood as one for-
ward pass and error backpropagation per each sample–class pair from the train-
ing dataset. The evaluation stage, however, differs between them: The super-
classifier performance is assessed by the top_2_accuracy metric (see Table 3)
which defines the correct classification of the input MFCC vector sequence as
the situation when the target label is among the 2 most probable classes. The
subclassifier is assessed by the standard accuracy metric as implemented in the
TensorFlow library.

However, the evaluation dataset for the subclassifier was adjusted so that
it contained the same amount of samples for each class including the garbage
class. The garbage class evaluation data was compiled by picking random samples
from the rest of the dataset, i.e. from the samples not used for training of the
respective subclassifier while for the training the whole class complement was
used (thus, the accuracies for the garbage classes are significantly higher as they
were trained with many more examples than the non-garbage classes).

The nature of the described classification problem implies that it is highly
undesirable to let the classifier put an unrecognized sound into any class of
which the score maximizes the above-outlined selection strategy even though
the classifier confidence is extremely low. That is why the garbage model was
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introduced. It makes it possible to detect the situation when the classified sound
is truly unknown with very high confidence (which is exactly the expected and
desired behaviour).

4 Results

Table 3 below summarizes the best performance obtained in a series of training-
evaluation passes. The ESC-50 dataset was split into a training set (1800 exam-
ples) and an evaluation set (200 examples, 10 % of the whole dataset).

There were finally 50 subclasses defined for the purpose of the performance
evaluation according to the description given in Sect. 3. Thus, 4 testing samples
are available for each subclass (or alternatively 44 samples for each subclassifer).
As mentioned above, the garbage class of each subclassifier is understood (and
trained) as the complement of the training samples for the respective class.
Therefore, 160 evaluation samples (200−M ×4,M = 10, see Sect. 3) is available
for each of the N garbage classes. The evaluation would be skewed due to this
situation and that is why only 4 randomly picked (with uniform distribution)
samples are taken from the set of 160.

Table 3. Accuracies achieved during the classifier performance evaluation.

Classifier Accuracy Metric

Superclassifier 87.5 % top 2 accuracy

Subclassifier (average) 74.1 % std. tf.metrics.accuracy

Subclassifier (minimum) 70.5 % std. tf.metrics.accuracy

Subclassifier (maximum) 79.5 % std. tf.metrics.accuracy

Baseline (maximum) 63.0 % std. tf.metrics.accuracy

The overall accuracy may seem unconvincing, however, it is necessary to take
into account the small size of the used training dataset. Considering that the
shown performance was achieved after training with 1800 examples (observation-
label pairs) only, it has to be judged as very promising. Figure 5 shows the
dependence of the number of training epochs and the overall performance of the
classifier. It indicates that the designed two-stage architecture works well in this
specific task and only needs larger training dataset.

Therefore, getting the large enough dataset by both compiling it from the
unrecognized recordings stored by the PocketEAR system running in an evalua-
tion mode and seeking for a co-operation with research teams/facilities that are
involved in preparing environmental sounds corpora is the logical next step the
development team will take in near future.
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Fig. 5. The accuracies reached in training and evaluation stages depending on the
number of training epochs.
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Abstract. In area of speech emotion recognition, hand-engineered fea-
tures are traditionally used as an input. However, it requires an addi-
tional step to extract features before the prediction and prior knowl-
edge to select feature set. Thus, recent research has been focused on
approaches that predict emotions directly from speech signal to reduce
the required efforts for the feature extraction and increase performance
of emotion recognition system. Whereas this approach has been applied
for prediction of categorical emotions, the study for prediction of con-
tinuous dimensional emotions is still rare. This paper presents a method
for time-continuous prediction of emotions from speech using spectro-
gram. Proposed model comprises convolutional neural network (CNN)
and Recurrent Neural Network with Long Short-Term Memory (RNN-
LSTM). Hyperparameters of CNN are investigated to improve the per-
formance of the our model. After finding the optimal hyperparameters,
the performance of the system with waveform and spectrogram as input
is compared in terms of concordance correlation coefficient (CCC). Pro-
posed method outperforms the end-to-end emotion recognition system
based on waveform and provides CCC of 0.722 predicting arousal on
RECOLA database.

Keywords: Time-continuous affect recognition ·
End-to-end modelling · Spectrogram based emotion recognition

1 Introduction

Speech emotion recognition gained popularity over the last decade, as it has
strong potential to improve the quality of understanding human and can find an
application in different areas. For example, it can be applied to automotive nav-
igation systems [20], movie recommendation systems or artificial tutor systems,
where user’s emotions affect responses of the system [4].

The traditional methodology of modern speech emotion recognition is to use
acoustic features such as pitch, voice quality and mel-frequency cepstral coeffi-
cients as an input to a classification or regression model. However, it requires
c© Springer Nature Switzerland AG 2019
A. A. Salah et al. (Eds.): SPECOM 2019, LNAI 11658, pp. 93–102, 2019.
https://doi.org/10.1007/978-3-030-26061-3_10
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additional process of extracting the features. Furthermore, the feature set is not
guaranteed to represent the emotional characteristics of speech signal because
speaking styles and the way of expressing emotional state depend on culture,
language and environment [1,12,16].

The recent studies have focused on representing an input directly from the
waveform [18]. In this method, the raw waveform is fed to convolutional neural
network (CNN) and the output of CNN is considered as an input of recurrent
neural network with long short-term memory (RNN-LSTM). Such end-to-end
approach does not require an a-priori knowledge to extract features, thus pro-
vides more flexibility to the model.

Recent research in area of emotion recognition focuses more on dimensional
representing of emotions, i.e., arousal and valence, instead of discrete categories,
e.g., anger, fear, happiness and sadness [6,11,13], hence increases systems flexi-
bility [8].

In this paper, two different input types are investigated for speech emotion
recognition using a deep neural network in end-to-end manner. The first input
type is the raw waveform. The waveform is directly fed to the deep neural net-
work which comprises CNN and RNN-LSTM. The second input type is the
spectrogram, which is also fed to the deep neural network for time-continuous
prediction of emotions. The performance of our models is evaluated with con-
cordance correlation coefficient (CCC). The major contributions of this paper
are as follows: (1) we introduce and test for the first time an approach to time-
continuous dimensional speech emotion recognition in end-to-end manner using
spectrogram as an input; (2) we evaluate the performance of our models with var-
ious lengths of segmenting window and demonstrate performance of our models
on waveform and spectrogram in comparison with other existing models.

This paper has the following structure: Sect. 2 introduces related work on
speech emotion recognition in time-continuous and end-to-end manner; Sect. 3
describes the database used in this paper and the preprocessing procedure of
the data; Sect. 4 presents the methods and the results and Sect. 5 concludes the
paper.

2 Related Work

The end-to-end approach has been explored in various learning tasks. Sainath et
al. match the performance of raw waveform and log-mel cepstral features on a
large-vocabulary speech recognition task by using convolutional long short-term
memory deep neural network [15]. Dieleman et al. applied end-to-end learning
on the waveform to solve a music information retrieval task [3].

Trigeorgis et al. proposed a convolutional recurrent model to perform a spon-
taneous emotion prediction on the waveform in end-to-end approach [18]. This
model is evaluated in terms of CCC and achieves better performance than tra-
ditional designed features. This model is used as a comparison to proposed app-
roach and discussed in Sect. 4.4.
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Cai et al. proposed a methodology of applying spectrogram based end-to-end
learning for paralinguistic information detection [2]. The authors used frame-
work, that comprises CNN for feature maps extraction and gated recurrent units
(GRU) for classification and proved its effectiveness in comparison with Gaussian
mixture models trained (GMMs) on constant Q cepstral features (CQCC) [2].
Although spectrogram has been used as an input for speech emotion recognition
in [1] and [10], these works represent emotions in discrete categories. As none of
the works investigated continuous dimensional emotions on the spectrogram, it
has motivated us to conduct this study.

3 Data and Preprocessing

In our research, the RECOLA database is employed for time-continuous emo-
tion recognition from spontaneous interactions. Two different types of the audio
signal are fed to models that comprise CNN and RNN-LSTM.

3.1 Database

The RECOLA database contains spontaneous interactions that were collected
during solving a collaborative task [14]. The recorded audio signals of 23 par-
ticipants are used for this paper, and the duration of each recording is 5 min.
Although the spontaneous interactions recorded in the RECOLA database are
spoken in French, participants have different mother tongues. Therefore, speak-
ers are equally distributed into three sets on their mother tongue, gender and
age to make results more comparable to previous research [18].

3.2 Labels

In modern research on affect recognition emotions are usually represented in two
ways: either discrete categories or continuous dimensions. The latter provides
more flexibility of affective states and has an ease of use for time-continuous
labeling. Arousal and valence are commonly used as continuous dimensions of
emotions. A high value of arousal indicates excitement, a low value – calmness
or tiredness. Valence denotes how pleasured or displeasured a person is. Between
arousal and valence, the former is selected as a label for this paper, since previous
study has shown that audio has more impact on arousal than valence in the
prediction of emotion [19].

In RECOLA database, arousal was annotated to have values ranging from -1
to 1 with a step of 0.01 at sample rate 25 Hz by six raters [14]. Six values of the
arousal measured by six raters are averaged to produce only one label at each
time step.
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Fig. 1. Spectrograms generated by various Hamming window sizes. Left: 64 frames,
middle: 256 frames, right: 1024 frames

3.3 The Spectrogram

The first input type investigated in this paper is spectrogram that represents an
audio signal in the two-dimensional graph. Spectrograms generated by various
Hamming windows are shown in Fig. 1. In our case, they show patterns of speech
signal clearly when Hamming window with the size of 256 frames is used to
produce the spectrogram. The spectrograms used in this paper are converted
from the waveform at sample rate 6.4 kHz by Fast Fourier Transform (FFT)
using Hamming window with the size of 256 frames since it provides a good
resolution in the time domain and the frequency domain, that are easy to align
with labels considering frame rate. As a result, the spectrogram has the sample
rate of 100 Hz and the frequency ranges up to 3.4 kHz.

The spectrogram of each subject is normalized by z-score transformation.
The mean and standard deviation of the train set is used to normalize not only
the train set but also the validation and test sets. After the normalization, the
spectrogram is segmented by an overlapping window with a shift step of 40 ms
which corresponds to the sample rate of the label. Three different window sizes
(2 s, 4 s, and 6 s) are investigated as quality of emotion recognition may depend
on amount of context used [5].

3.4 The Waveform

The second input type used in our research is raw waveform. The recorded speech
signal of the RECOLA database is down-sampled from 44.1 kHz to 6.4 kHz to
comply with our previous experiment. After down-sampling, the waveform of
each subject is normalized by z-score transformation with parameters obtained
on the train set. After the normalization, the waveform is segmented by an
overlapping window with a shift step of 40 ms.

4 Experiments and Results

Our experiments are conducted to investigate the performance of two different
input types for time-continuous dimensional emotion recognition in the end-to-
end manner. The performance of each model is measured in terms of concordance
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correlation coefficient (CCC, ρc) [9]. Since weights of a model are adjusted to
minimize loss function during training, we used CCC-based loss:

L = 1 − ρc = 1 − 2ρσyσŷ

σ2
y + σ2

ŷ + (μy − μŷ)2
(1)

where ρ is the Pearson correlation coefficient, σy and σŷ are the variances, σ2
y and

σ2
ŷ are the standard deviations, and μy and μŷ are the means of the predicted

and gold-standard values, respectively.
Gaussian noise is added to the input and dropout with p = 0.2 is applied to

two RNN-LSTM layers to avoid overfitting. Weights of RNN layers and biases
are initialized by Glorot uniform [7] and zeros, respectively. RMSprop [17] with
a mini-batch of 128 sequences is applied to optimize our models. Learning rates
ranging from 0.0001 to 0.01 are applied to each experiment, and only one learning
rate is chosen to show the best CCC at validation set at the end of experiments.
The training of each model is stopped if the gap between CCC of train and
validation sets is increasing. The optimal hyperparameters are chosen when the
highest CCC of the validation set is achieved. In each table below we report the
model performance in terms of total CCC (calculated on concatenation of all
predictions).

4.1 The Spectrogram

The model for time-continuous prediction of emotions on the spectrogram
includes CNN, RNN-LSTM and a fully connected layers. Since the spectrogram
is represented in two dimensions, 2-d convolutional and 2-d max pooling layers
are stacked. The optimal filter size of convolutional layers and pooling window
sizes are chosen empirically.

Pooling Size. Pooling window size is chosen to match the rate of the input
(100 Hz) with the rate of the labels (25 Hz). The various max pooling sizes are
evaluated on the spectrogram segmented by 4 seconds window. To analyze an
effect of pooling size on performance we fixed other hyperparameters. The results
of analysis are shown in Table 1. The highest CCC of validation set is acquired
when the first max pooling window has the size of 4 × 4 frames without the
second pooling layer.

Table 1. Comparison of 2D max pooling size on the spectrogram

Pooling size Train Validation

4 × 4, no pooling 0.657 0.621

2 × 2, 2 × 2 0.657 0.615

no pooling, 4 × 4 0.667 0.591
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Fig. 2. Comparison of 2D filter size in the time domain (left) and frequency domain
(rights) on the spectrogram

After the optimal max pooling window size is found, experiments are con-
ducted to find the optimal filter size of convolutional layers. The filter size in
the time domain and the frequency domain of the second convolutional layer are
found separately with a fixed size of the first convolutional layer. CCC of train
set is slightly increasing along with the filter size in the time domain. However,
the highest CCC of validation set is found when the filter size in the time domain
is 15 frames as seen in Fig. 2 (left). After the filter size is chosen for time domain,
various filter sizes of frequency domain are investigated. The results show, that
the highest CCC of validation set is obtained when the filter size of the second
convolutional layer is 15 × 3 frames as seen in Fig. 2 (right).

The structure of our optimal model for the spectrogram is chosen based on
results showed at Fig. 2 and in Table 1. The optimal model comprises two 2D
convolutional layers, one 2D max pooling layer, two RNN-LSTM layers and a
fully connected layer. Two convolutional layers contain 60 filters with the filter
size of 3 × 3 frames and 15 × 3 frames, respectively. ReLU activation functions
are used in both convolutional layers. The first convolutional layer is followed
by the max pooling layer with the size of 4 × 4 frames. Gaussian noise with
standard deviation of 0.1 is added to the output of CNN layers, and these are
fed to RNN-LSTM layers and a fully connected layer. Two RNN-LSTM layers
contain 80 neurons and 60 neurons, respectively. Sigmoid activation function and
dropout with p = 0.2 are applied to both RNN-LSTM layers. The fully connected
layer includes linear activation function. The number of output corresponds to
the number of input that depends on the segmenting window length.

4.2 The Waveform

The model for the waveform also comprises CNN and RNN-LSTM and includes
two 1D convolutional layers and two 1D max pooling layers, two RNN-LSTM
layers and a fully connected layer. The optimal filter size of convolutional layers
and pooling window size are chosen empirically.

Pooling Size. The pooling sizes of two max pooling layers are designed to match
the sample rate of the waveform to the rate of the label. The input waveform
for this experiment is segmented by 4 s overlapping window.

In Fig. 3, a significant difference is found on the validation set, although CCC
of the train set is rarely changed with various sizes of max pooling layers. The
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Fig. 3. Comparison of 1D max pooling size on the waveform

highest CCC of validation set is achieved when the size of first pooling window
is 32 frames and the size of the second pooling window is 8 frames.

Filter Size. After the pooling window sizes are chosen, an effect of filter size
is investigated. The size of the first filter is fixed to 3 frames and the size of the
second filter is varied from 3 to 35 frames. The result shows the highest CCC of
validation set when the filter of the first layer has the size of 3 frames and the
filter of the second layer has the size of 21 frames.

Number of Filters. The number of filters for 1D CNN is investigated in range
of [20, 100]. The results are shown in Table 2. The same number of filters is
used in both 1D convolutional layers. As seen in Table 2, a significant difference
is not found over the number of filters. Although CCC of train set is slightly
increased along with the number of filters, the highest CCC is achieved when
both convolutional layers contain 60 filters.

Table 2. Comparison of the number of filters in 1 − d convolutional layer on the
waveform

No. filters Train Validation

20 0.696 0.740

40 0.699 0.733

60 0.702 0.746

80 0.705 0.736

100 0.708 0.728

The optimal model for prediction of arousal on the waveform is acquired based
on our results in Fig. 3, 4 and Table 2. Our optimal model comprises two 1D
convolutional layers including 60 filters with the size of 3 frames and 21 frames,
respectively. Both convolutional layers have ReLU activation function and are
followed by 1D max pooling layer with the size of 32 frames and 8 frames,
respectively. The rest part of the model contains two RNN-LSTM layers and the
fully connected layer same as the optimal model for the spectrogram.
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Table 3. Results over the segmenting window length from 2 s to 6 s

Model Length Train Validation Test

Waveform 2 s 0.5415 0.5454 0.4874

4 s 0.648 0.690 0.636

6 s 0.702 0.746 0.705

Spectrogram 2 seconds 0.587 0.493 0.4723

4 s 0.664 0.623 0.650

6 s 0.711 0.711 0.722

4.3 Comparison of Segmenting Window Length

The performance of our models is measured over the segmenting window size and
the results are shown in Table 3. The model for waveform shows the best result
when the waveform is segmented by the six second window that corresponds to
38400 frames, while shorter window length causes lower performance, which is in
agreement with previous research [5]. The model for spectrogram also shows the
best performance when the spectrogram is segmented by the six-second window
that corresponds to 600 frames. In both models, two-second window leads to the
lowest performance.

4.4 Comparison of the Proposed Approach to the Existing One

Both models are compared with the existing one that predicts arousal in the end-
to-end manner. CCC of our models and the other existing model [18] are seen in
Table 4. The model of Trigeorgis et al. comprises CNN and RNN-LSTM layers
and predicts continuous dimensional emotions on the raw waveform. The results
cannot be directly compared, as the authors used 46 subjects of the RECOLA
database instead of 23 publicly available.

Our model for the waveform utilizes in general the same methodology and
shows similar CCC of the validation set to this model despite of smaller amount
of data. The model for the spectrogram performs comparably higher on a test
set than for waveform in our experiments.

Table 4. Results in terms of CCC for our optimal models and the existing model on
the validation set and test set

Method Validation Test

Waveform - CNN + RNN [18] 0.741 0.686

Waveform - CNN + RNN (ours) 0.746 0.705

Spectrogram - CNN + RNN (ours) 0.711 0.722
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Fig. 4. Comparison of 1-d filter size in the second convolutional layer on the waveform

5 Conclusion

In this paper, two different input types were investigated for time-continuous pre-
diction of dimensional emotion (arousal) in the end-to-end manner. We proposed
CNN + RNN-LSTM model to make the time-continuous dimensional prediction
of emotions with spectrogram taken as an input for the first time and com-
pared it to existing end-to-end approaches. Furthermore, hyperparameters of
the models are optimized and performance is measured in terms of concordance
correlation coefficient. We have shown, that the model based on spectrogram
achieves higher CCC than the waveform-based. Although different sizes of the
RECOLA database were used in our experiments and the existing one, both
models achieved compatible performance. The results of our study show that
the spectrogram can lead to the excellent performance of the end-to-end time-
continuous emotion recognition systems.
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Abstract. The paper presents the data of the perceptual experiment on recog-
nition of the child’s developmental disorders via speech. Participants of the
study were 30 children aged 11–12 years: with autism spectrum disorders (ASD,
n = 10), with Down syndrome (DS, n = 10), typically developing (TD, n = 10,
control), and 50 Russian-speaking adults as listeners. The listeners were divided
in 4 groups according to their professional experience: pediatric students, psy-
chiatric students, psychiatrists, and researchers in the field of psychophysiology
and child’s speech development. Every group carried out the perception task
separately. The speech material for the perceptual experiment was phrases and
words from spontaneous speech. The results of the perceptual experiment
showed that listeners could correctly recognize the child’s state – disorders or
typical development. Pediatric students classified the state of TD children better
than the state of children with ASD and DS. Psychiatric students and psychi-
atrists recognized the state of children with ASD and DS better than pediatric
students did. Acoustic features of speech samples correctly classified by listeners
as uttered by children with disorders and TD children were described. High
pitch values are specific for speech samples of children with ASD; long duration
of stressed vowels is a feature of children with DS. The obtained data could be
useful for specialists working with atypically developing children and for future
studies of machine classification of the child’s state – TD, ASD, and DS.

Keywords: Typically developing children � Autism spectrum disorders �
Down syndrome � Perceptual experiment � Acoustic analysis

1 Introduction

To assess the speech and language skills of children appropriately, speech-language
pathologists has to understand what effect their own biases may have on their clinical
practices, including the very basic practice of perceiving and annotating productions of
sounds and words [1]. The assessment of implicit attitudes of teachers and trained
tutors towards individuals with autism vs. normally developing individuals has shown
that participants produced more negative biases towards children with autism compared
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to children who were normally developing [2]. It was revealed that poor intelligibility
of speech of children with autism spectrum disorders (ASD) contributes to college-aged
adult listeners’ negative social evaluation of children [3]. It is common practice to
assess differences in the voice/speech of people with various diseases, based on speech-
language therapists’ opinions. Machine-learning-based voice analysis and human
hearing judgments made by speech therapists for classifying children with ASD and
typically developing (TD) are compared [4]. The question about effect of clinical
training of the listeners taking part in the perceptual studies is considered. The special
study examined whether trained speech-language pathologists and untrained listeners
accommodate for presumed speaker dialects when rating children’s productions of
words. One surprising finding was that clinical training was not consistently associated
with differences in ratings [5]. Speech-language therapists blind to patient’s charac-
teristics employed clinical rating scales to evaluate speech/voice in people with
Parkinson’s disease [6]. This approach is perspective and could be used for working
with informants with different types of disorders.

To diagnose diseases by voice and speech, search of disease markers is necessary.
A pause marker is proposed to distinguish early or persistent children’s speech apraxia
from speech delay [7]. A meta-analysis of 34 papers describing the acoustic markers of
ASD was made [8]. Results of perceptual and acoustic studies of voice and speech
sounds of children with Down syndrome (DS) are widely described [9]. Voice quality
in DS is accepted as unusual, with altered nasal resonance. The voice of children with
DS is presented by a lower pitch, the conjunction of frequencies of the first two
formants providing a decreased distinction between the vowels reflecting the loss of
articulatory processing [10]. Acoustic markers are considered as the significant char-
acteristics for automatic recognition of baby’s cry by the state and disease [11, 12]. The
attempts of automatic diagnostics of ASD on the base of a complex assessment of
crying and movements of infants [13] are made.

In our previous studies along with the assessment of acoustic characteristics of
children with developmental disabilities [14, 15], the ability of adults to recognize the
gender and age of children with atypical development [15], the emotional state of
children with neurological disorders [16] was shown. Concerning the possibility of
automatic recognition of the child’s state, we conducted an experiment on the human
recognition of children’s disorders via speech. The presented study is the part of
complex investigation of perceptual and acoustic features of typically developing
children and children with atypical development (ASD, DS). The aim of the study is to
explore the possibility of different groups of listeners to recognize the child’s state –

typical development or developmental disorders via speech.

2 Methods

Participants of the study were 30 children aged 11–12 years: 10 TD children, 10
children with ASD, 10 children with DS – five 11 year old children and five 12 year old
children in each group; five girls and five boys in TD and DS groups; two girls and
eight boys in ASD group (the frequency of ASD is higher in males). Speech material of
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children was taken from the speech database “AD-Child.Ru” containing audio and
video records of atypically developing children and TD children (as control) [14]. We
were guided by speech skills of children with atypical development when selecting the
participants of certain age. Phrases in DS children appear later than in TD children and
after the special training. Speech files are stored in the database in Windows PCM
format WAV, 44.100 Hz, 16 bits per sample.

Three speech experts carried out express-analysis of audio records of dialogues of a
child and an adult (experimenter or parents) in the model situation and the situation of
spontaneous interaction. Words and phrases which meaning is recognized unambigu-
ously by three experts were selected. Four words and three phrases of every child were
selected for creating 4 test sequences (tests) for the perceptual study. Two tests con-
tained the words of TD children, children with ASD and DS mixed randomly (one test
was for 11 year old children, the other test – for 12 year old children, each test
contained 60 words), two tests contained the phrases (for 60 phrases of 11 and 12 year
old children). The speech signal (word or phrase) in the tests was presented once; the
duration of pauses between speech signals was 5 s. The presentation of test sequences
was carried out in an open field for groups of listeners. This approach was approved in
our previous studies [15, 16], as this perceptual experiment is closed to natural
conditions.

The listeners were 50 adults from groups: first year pediatric students (n = 20,
18.5 ± 1.2 years old); psychiatric students (n = 20, 24.7 ± 0.8 years old); psychia-
trists (n = 5, 43.8 ± 8.8 years old); specialists - researchers in the field of psy-
chophysiology and child speech development (n = 5, 28.8 ± 5.4 years old).

The main goal of the perceptual study was to reveal the possibility of listeners to
recognize the child’s state – developmental disorders or typical development via
speech, but every group of listeners had their specific task.

The perceptual study included three experiments. Experiment 1: Pediatric students
recognized the child’s state, age, and gender, when listening to words and phrases (four
test sequences). Experiment 2: Psychiatric students and psychiatrists recognized the
state of the child and detected the severity of disorders – severe, moderate, and mild,
when listening to the child’s phrases (two test sequences). Results of the first and
second perceptual experiments were compared to reveal the effect of the professional
experience on the child’s state recognition. Experiment 3: Specialists described the
articulation clarity, intonation features, and utterance intelligibility when listening to
the child’s phrases (two test sequences).

Spectrographic analysis of the child’s speech material from test sequences was
carried out, based on the algorithms implemented in Cool Edit Pro sound editor. The
prosodic features: the duration of phrases, words, stressed vowels, and pauses between
words in the phrase, values of pitch - average, maximal, minimal pitch values of the
phrase and stressed vowel in words were measured. The number of words in the
phrases and syllables in the words were calculated. Acoustic features of TD children
and children with ASD and DS were compared taking into account the perceptual data.
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3 Results

3.1 Experiment 1. Recognition of the Child’s State, Age, Gender
by Pediatric Students

Pediatric students correctly recognized the state of children, when listening to the test
sequences containing the child’s words. The average recognition accuracy was 56% for
11 year old children and 57% for 12 year old children. 55% of words of 11 year old TD
children and 35% of words of 12 year old TD children were correctly classified as
typical development with perception rate 0.75–1.0. The agreement among the listeners
in determining the state of children with ASD and DS was less vs. TD children. 10% of
11 year old ASD children’s words, 25% of 12 year old ASD children’s words, 15% of
11 year old DS children’s words, and 35% of 12 year old DS children’s words were
correctly classified as disorders with perception rate 0.75–1.0.

The number of listeners’ mistakes in the child’s state classification decreased for
tests containing the phrases (Table 1). Pediatric students correctly recognized the state
of children by phrases with average recognition accuracy 75%. 93% of 11 year old TD
children’s phrases and 90% of 12 year old TD children’s phrases were classified as
typical development with perception rate 0.75–1.0. 80% of 11 year old DS children’s
phrases and 60% of 12 year old DS children’s phrases were classified as disorders with
perception rate 0.75–1.0. Recognition of the state of children with ASD was a more
difficult task for pediatric students: 25% of ASD children’s phrases were classified as
developmental disorders with perception rate 0.75–1.0. Regression analysis revealed
the correlation between a test type (words/phrases) and child’s state recognition
accuracy F(1,100) = 13.105 p < 0.001 R2 = 0.116 (Beta = 0.34).

The second task for pediatric students was the child’s age prediction. Students
defined the age of children younger than in fact (Fig. 1).

Table 1. Confusion matrices for child’s state recognition by pediatric students.

Group
of children

Words Phrases

11 y 12 y 11 y 12 y
TD Dis. TD Dis. TD Dis. TD Dis.

TD 71 29 63 37 88 12 90 10
ASD 55 45 49 51 45 55 44 56
DS 53 57 42 58 22 78 25 75
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Listeners noted that TD children are older than children with ASD; the age of
children with DS was determined as the youngest (except one of tests containing the
words of 12 year old children). The tendency was revealed that students noted the
younger child’s age for tests containing child’s words than for tests containing child’s
phrases.

For gender prediction, the average recognition accuracy for tests containing words
was lower than for tests containing phrases: 52% – 11 year old children, 47% – 12 year
old children (words); 64% – 11 year old children, 61% – 12 year old children (phrases).
Listeners recognized the male gender of all children better than the female gender
(Table 2). Listeners classified most of speech samples of children with DS as the male
gender.
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Fig. 1. Child’s age prediction by listeners – pediatric students. A – tests containing child’s
words, B - tests containing child’s phrases. White columns – 11 year old children, gray columns
– 12 year old children. * p < 0.05, ** p < 0.01, *** p < 0.001, differences between TD and
ASD, TD and DS children; + p < 0.05, differences between ASD and DS children - Mann-
Whitney test.

Table 2. Confusion matrices for child’s gender recognition by pediatric students.

Group
of children

Gender Words Phrases

11 y 12 y 11 y 12 y
Male Female Male Female Male Female Male Female

TD M 79 21 91 9 83 17 94 6
F 82 17 66 45 45 55 33 67

ASD M 63 37 67 33 68 32 56 44
F 79 21 86 14 55 45 35 65

DS M 82 18 87 13 95 5 95 5
F 92 8 84 16 96 4 85 15
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3.2 Experiment 2. Recognition of the Child’s State by Psychiatric
Students and Psychiatrists

Psychiatric students and psychiatrists correctly recognized the state of the children
(disorders/typical development) with high average recognition accuracy: 88% for
psychiatrists and 83% for psychiatric students. Psychiatric students correctly classified
60% of 11 year old TD children’s phrases, 40% of 12 year old TD children’s phrases,
92% of ASD children’s phrases, and 100% of DS children’s phrases with perception
rate 0.75–1.0. Psychiatrists correctly classified 73% of 11 year old TD children’s
phrases, 80% of 12 year old TD children’s phrases, 92% of 11 year old ASD children’s
phrases, 83% of 12 year old ASD children’s phrases with perception rate 0.75–1.0.
Like psychiatric students, psychiatrists correctly classified 100% of DS children’s
phrases with perception rate 0.75–1.0.

Generally, in the state prediction task, psychiatric students and psychiatrists
demonstrated less agreement in determining the state of TD children vs. determining
the state of children with DS and ASD. Psychiatric students and psychiatrists more
often determined the severity of disorders of ASD children as mild and moderate, DS
children – as moderate and severe (Table 3).

The results of the Experiment 1 and 2 revealed that the professional experience
affects the child’s state classification via speech: group of listeners (pediatrician
students/psychiatrist postgraduate students/psychiatrist doctors) correlates with recog-
nition accuracy of the child’s state F(1,124) = 11.59 p < 0.001 R2 = 0.085 (Beta =
0.292) – Regression analysis.

Table 3. Confusion matrices for child’s state recognition by psychiatric students and
psychiatrists.

Psychiatric students

Group 11 y 12 y
TD Mild

dis.
Moderate
dis.

Severe
dis.

TD Mild
dis.

Moderate
dis.

Severe
dis.

TD 73 18 6 3 65 27 6 2
ASD 16 36 31 17 10 40 38 12
DS 7 20 37 36 3 18 33 46
Psychiatrists
Group 11 y 12 y

TD Mild
dis.

Moderate
dis.

Severe
dis.

TD Mild
dis.

Moderate
dis.

Severe
dis.

TD 77 16 7 0 73 25.5 1.5 0
ASD 10 50 22 18 8 45 35 12
DS 3 19 41 37 0 20 31 49
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3.3 Acoustic Data

The comparison of acoustic features of child’s speech samples correctly recognized by
listeners as speech of TD children and children with developmental disorders with
perception rate 0.75–1.0 was carried out. We revealed the correlations between child’s
state recognition and: phrases duration F(1,49) = 7.178 p < 0.01 R2 = 0.128 (Beta =
−0.357) – Regression analysis (phrases correctly recognized as uttered by TD children
are longer than phrases recognized as uttered by children with disorders); the number of
words in a child’s phrase F(1,51) = 19.929 p < 0.001 R2 = 0.281 (Beta = −0.53) –
Regression analysis (phrases correctly recognized as uttered by TD children consist of
more words vs. phrases uttered by children with disorders); stressed vowels duration
F(1,222) = 14.818 p < 0.001 R2 = 0.063 (Beta = 0.25) – Regression analysis (the
duration values of stressed vowels in words from speech samples correctly recognized
as uttered by TD children are lower than the corresponding parameter in speech
samples uttered by children with disorders) (Fig. 2). The group of children (TD, ASD,
DS) correlates with stressed vowels duration F(1,222) = 18.563 p < 0.001 R2 = 0.077
(Beta = 0.278) – Regression analysis.

Pitch values of ASD children’s speech – average pitch values (F0), maximal and
minimal pitch values (F0 max, F0 min) of phrases and stressed vowels in words are
significantly higher vs. corresponding pitch values in speech of TD children (Fig. 3)
and children with DS. F0 max values of DS children’s phrases are lower vs. the
corresponding parameter of TD children.

3.4 Experiment 3. Description of Child’s Speech Material by Specialists
(Researchers)

Specialists noted that TD children’s articulation is clear, the speech is intelligible, the
intonation is normal. 100% of TD children’s phrases were classified by specialists as
clearly articulated, with the normal intonation with perception rate 0.75–1.0.
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Fig. 2. The duration values of phrases (A) and stressed vowels in the words (B) of TD children
and children with ASD and DS. Vertical axis - duration, ms; * p < 0.05, ** p < 0.01,
*** p < 0.001 – Mann-Whitney test - differences between TD children and children with ASD
and DS.
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For children with ASD and DS, specialists revealed fuzzy articulation (mainly for
DS children) and the abnormality of intonation (mainly for ASD children) (Table 4).

The phrases determined by specialists as intelligible (perception rate 0.75-1.0) were
compared with other child’s phrases. The number of words in phrases recognized by
specialists as intelligible (5.2 ± 2.9) was higher (p < 0.05) than the number of words
in other phrases (3.4 ± 2.2). The number of syllables in words from phrases recog-
nized by specialists as intelligible (2.1 ± 1.1) was higher (p < 0.001) than the number
of syllables in words from other phrases (1.6 ± 0.7). The comparison of intelligible
and incomprehensible phrases of children with ASD and DS revealed the same pat-
terns: the number of syllables is higher (p < 0.001) in words recognized as intelligible
(2.2 ± 1.1) than in other words (1.6 ± 0.7).

4 Discussion

The perceptual study revealed the possibility of different groups of adults to recognize
child’s developmental disorders via speech. Recognition accuracy and the agreement
among the listeners in determining the child’s state were higher for speech material
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Fig. 3. Pitch values of phrases – F0, F0 max, F0 min, and pitch values of stressed vowels in
words - F0 str vowel, of TD children, children with ASD and DS. Vertical axis – pitch values,
Hz; * p < 0.05, ** p < 0.01, *** p < 0.001 – differences between TD children and children with
ASD and DS; + p< 0.05, ++ p < 0.01, +++ p < 0.001 – differences between children with ASD
and children with DS.

Table 4. The number of child’s phrases recognized by specialists as clearly articulated,
intelligible, and with the normal intonation (perception rate 0.75–1.0).

Child’s age 11 years 12 years

Group of children TD ASD DS TD ASD DS
Clear articulation 100 42 7 100 67 13
Intelligible meaning 100 67 53 100 83 53
Normal intonation 100 50 47 100 17 53
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presented phrases vs. words. Our data correspond to the perceptual experiment, in
which several words from spontaneous speech of children with ASD and TD were
listened by college-aged adults who had no clinical training or experience. The results
showed that lay listeners can distinguish atypical from typical children outside the
social-interactional context based on speech intelligibility [3].

The professional experience of listeners impacts child’s state classification via
speech. Pediatric students (household experience of interaction with children) recog-
nized the state of TD children better vs. the state of children with ASD and DS.
Psychiatric students and psychiatrists recognized the state of children with ASD and
DS better than pediatric students did. In our previous studies [15, 16], we compared
experts in the field of child speech, students, older adults, and parents; it was revealed
that the experience of interaction with children influences the speech recognition and
emotions classification.

In our study, the specialists described lower articulation clarity and speech intel-
ligibility, intonation abnormalities in the speech of children with ASD and DS that is in
line with our previous findings [15]. The age of children with ASD and DS was
detected by listeners as younger than the age of TD children. For all children (espe-
cially for DS children), the female gender was recognized worse than the male gender.
Speech samples belonging to girls were attributed to boys. These results verify the
findings in our former studies on TD children and children with ASD [15].

Acoustic features of speech samples correctly classified by listeners as uttered by
children with disorders and TD children were described. According to our previous
data [15], speech of children with ASD is characterized by high pitch values. High
pitch values of phrases and stressed vowels in words of ASD children were revealed.
Long duration of stressed vowels in words was detected in speech samples of children
with DS.

In our future work we will combine the joint perception outputs: how well does a
fusion of experts and non-experts (say three groups except the researchers) perform in
terms of perception. The obtained data on recognition accuracy are the first step to
future works on the machine state classification of child’s speech. Our results could be
useful for specialists working with atypically developing children and for training
medical students.

5 Conclusions

The possibility of different groups of listeners to recognize the child’s state – devel-
opmental disorders or typical development via speech was revealed. Pediatric students
classified the state of children with ASD and DS worse than the state of TD children.
Psychiatric students and psychiatrists recognized the state of children with ASD and
DS better compared with pediatric students.

Predicting the age and gender of children with ASD and DS was a more difficult
task for listeners than recognizing the age and gender of TD children.

High pitch values are specific for speech samples of children with ASD; long
duration of stressed vowels is a feature of children with DS.
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Abstract. We present RUSLAN – a new open Russian spoken language
corpus for the text-to-speech task. RUSLAN contains 22200 audio sam-
ples with text annotations – more than 31 h of high-quality speech of one
person – being the largest annotated Russian corpus in terms of speech
duration for a single speaker. We trained an end-to-end neural network
for the text-to-speech task on our corpus and evaluated the quality of the
synthesized speech using Mean Opinion Score test. Synthesized speech
achieves 4.05 score for naturalness and 3.78 score for intelligibility on a
5-point MOS scale.

Keywords: Russian speech corpus · End-to-end speech synthesis ·
Text-to-speech

1 Introduction

Spoken language is an essential tool for human communication. In a world of AI
systems and mobile computers, humans also communicate with machines. Abil-
ity to communicate with a machine using natural spoken language contributes
greatly to the user experience. Two tasks should be completed in order to make
it possible: speech synthesis and automatic speech recognition.

The main goal of text-to-speech systems is to generate an audio signal con-
taining natural speech corresponding to the input text. There are several pos-
sible solutions. Speech synthesis systems based on concatenation and statisti-
cal parametrization might produce acceptable results in terms of quality but
they require deeply annotated speech corpora. Providing this level of speech
annotation is a time-consuming process that requires specific lexicology knowl-
edge. Another possible drawback of this approach is language-dependent system
design [20].

Recent advances in deep learning resulted in significant improvements in
speech synthesis task [1,12,15,17,22,24]. Deep learning techniques excel at lever-
aging large amounts of training data. Thus, the quality of the synthesized speech
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for text-to-speech systems based on deep learning is heavily influenced by the
quality and size of the speech corpus.

Depending on the text-to-speech neural network architecture various levels of
corpus annotation might be required. While WaveNet [22] neural network relies
on extensive annotation (linguistic features, fundamental frequency etc.), text-
audio pairs are sufficient for more recent Tacotron [24] end-to-end architecture.
It is much easier to collect text-audio pairs and it would lead to larger corpora
and higher quality of synthesized speech in the future.

While large open speech corpora exist for some of the most widespread lan-
guages [4,6,10] this is not the case for many other languages.

Russian is the sixth most widespread language in the world by the number of
native speakers being spoken by approximately 154 million people worldwide [5].
However, publicly available and annotated speech corpora in Russian are not
sufficient. Availability of large amounts of annotated speech is crucial for the
research community both in speech synthesis and recognition.

Amount of speech for a single speaker is an important factor for end-to-end
neural speech synthesis. There are few Russian speech corpora: [3,23] are public
and [7,16] are proprietary, but the amount of speech for a single speaker in these
corpora is less than 7 h. Up until now, there was only one open-source Russian
language speech corpus exceeding 7 h in audio duration for a single speaker
namely M-AILABS [21], containing about 20 h of speech for a single speaker at
most. In this work, we try to facilitate research in speech synthesis in Russian
by providing large publicly available annotated speech corpus.

Our contributions are as follows:

– We collected the largest annotated speech corpus in the Russian language for
a single speaker – RUSLAN (RUSsian spoken LANguage corpus) and made
it publicly available. Our corpus is 50% larger in terms of audio duration
in comparison with the second largest corpus in the Russian language for a
single speaker to date [21].
Speech corpus is publicly available under Creative Commons BY-NC-SA 4.0
license at https://ruslan-corpus.github.io.

– We trained text-to-speech neural network on RUSLAN and evaluated the
quality of the synthesized speech using Mean Opinion Score with 50 partici-
pating native speakers as respondents1.

– We propose several improvements for Tacotron text-to-speech end-to-end neu-
ral network that allow us to achieve comparable speech quality in fewer train-
ing iterations.

2 Speech Corpus

In this section, we describe RUSLAN speech corpus. The amount of annotated
speech for a single speaker is a key feature of text-to-speech corpora. Therefore,

1 Audio samples from corpus and examples of synthesized speech can be found at
https://ruslan-corpus.github.io.

https://ruslan-corpus.github.io
https://ruslan-corpus.github.io
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we focused on maximizing the amount of high-quality speech recording for a
single speaker. Speaker is a 23 years old male who is a native Russian speaker.
The pronunciation is clear and intelligible. The style of the text is narrative, the
speech is neutral. Corpus contains 22200 training samples. Each training sample
is a text-audio pair, where the text is a phrase or a sentence – an excerpt from
works of Russian and American writer Sergei Dovlatov. The number of words
in each training sample varies from 1 to 111 with an average of 12. The Russian
language consists of 33 letters (10 vowels and 23 consonants). The frequency
distribution for the phonemes are provided in Fig. 1. Phonemic transcription
was performed as suggested in [25].

Fig. 1. Distribution of the Russian phonemes in the corpus.

2.1 Text Preprocessing

Text for each training sample was preprocessed in the following way:

– All numbers and dates were manually replaced by their textual representation.
– Acronyms were manually substituted with their expanded forms.
– All symbols except for Russian letters and punctuation marks were automat-

ically deleted.

2.2 Recording Process

Audio samples were recorded in a quiet and noise-protected room using noise-
reduction hardware. Each sample was recorded separately with a sampling fre-
quency of 44.1 kHz and 16 bit linear PCM and saved in WAV format. Leading
and trailing silent parts were deleted from each audio sample. All text-audio
pairs were additionally verified in order to avoid annotation errors. The signal-
to-noise ratio is approximately equal to 90 dB. Corpus statistics are presented
in Table 1.

Figure 2 shows the ratio of the lengths and ratio of the number of symbols
per sample for the whole corpus.
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Table 1. RUSLAN corpus statistics

Total duration 31:32:55

Total number of samples 22200

Total symbols 1472377

Total words 267053

Unique words 52703

Min sample duration 0.61 s

Max sample duration 50.71 s

Min number of symbols in one sample 9

Max number of symbols in one sample 596

Min number of words in sample 1

Max number of words in sample 111

3 Neural Network for Speech Synthesis

In order to evaluate sufficiency and completeness of RUSLAN for Russian speech
synthesis, we train a neural network for the text-to-speech task. In this section,
we describe our neural network that is heavily based on Tacotron architec-
ture [24] with few changes that improve convergence and synthesized speech
quality which we discuss below.

We employ end-to-end trainable encoder-decoder deep neural network archi-
tecture that receives text as an input and produces a linear spectrogram. This
spectrogram is later used for waveform reconstruction. Model architecture is
illustrated in Fig. 3. We describe the encoder, decoder and audio reconstruction
procedure below.

3.1 Neural Network Architecture

The input of the model is a text where each distinct character is represented as
a trainable 256-dimensional character embedding vector. Thus, the lookup table
has a shape of 78 × 256 since we use only 78 characters: Russian capital and
lowercase letters, space and punctuation marks – {′,−(). :; !?}.

The model encoder consists of two parts: pre-net of two fully connected layers
with dropout [18] and CBHL module which is a slight modification of Tacotron
CBHG module. Our main and only modification here is a replacement of GRU
with layer normalized LSTM (LN-LSTM) in bidirectional RNN for faster con-
vergence [9].

Decoder consists of two parts to predict mel-frequency cepstral coefficients
and linear spectrogram respectively. The first part includes pre-net, Attention
RNN and Decoder RNN. We have replaced GRU with LN-LSTM in both Atten-
tion RNN [2] and Decoder RNN parts in contrast with the original Tacotron
model. In Tacotron model the second part of the decoder is post-processing
CBHG module, but we again replace it with our CBHL.
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Fig. 2. Histograms (a) of the duration of samples, (b) of the number of symbols.

Loss Function. Since Decoder RNN predicts MFCCs and post-processing
CBHL module predicts linear spectrogram, we employ two different loss
functions.

Target values for Decoder RNN are 80-band MFCCs:

Lossmel =
1
N

N∑

i

|tmel
i − ymel(texti)|1, (1)

where N is the number of samples in the training set, texti is the i-th text from
the corpus, tmel

i is ground truth mel-frequency cepstral coefficients for texti,
ymel(texti) is MFCCs predicted by Decoder RNN of the neural network given
texti as an input.

Loss function for post-processing CBHL module:

Losslin =
1
N

N∑

i

|tlini − ylin(texti)|1, (2)

where tlinj is ground truth linear-spectral coefficients for texti, ylin(texti) is
linear-spectral coefficients predicted by post-processing CBHL module of the
neural network given texti as an input.

The overall loss function of the neural network is computed as follows:

Loss = Lossmel + Losslin. (3)

Signal Reconstruction. In contrast to Tacotron we employ fast Griffin-Lim
[11] algorithm to reconstruct an audio signal from magnitude-only values of the
linear spectrogram.



118 L. Gabdrakhmanov et al.

Fig. 3. Model architecture.

The signal is being recovered iteratively, we stop the process after 300 itera-
tions. Optimization speed α was set to 0.99.

3.2 Training

Text from each text-audio pair from RUSLAN corpus was used as a training
sample and corresponding audio was used to obtain target variables, MFCCs
and a linear spectrogram.

Our model implementation had been training for 300 K iterations with a
batch size of 8. The training was performed on a single GTX 1060 with 6 Gb
of onboard memory. We used Adam optimizer [8] with exponential learning rate
decay.

4 Evaluation

Synthesized speech is intelligible, natural and close to human speech. The
described model shows good results even on a low amount of steps.

4.1 Mean Opinion Score

Mean Opinion Score (MOS) is the most frequently used method of a subjective
measure of speech quality. MOS is used to evaluate methods of signal processing,
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including speech synthesis. The respondents rate the speech quality on a five-
point scale. Score 1 corresponds to bad quality, score 5 corresponds to excellent
quality. The final rating of the signal in question is calculated as the mean over
rating scores from all respondents. This method is recommended by ITU and
IEEE for the quality estimation of the synthesized speech [14,19]. The scale of
MOS scores is presented in Table 2:

Table 2. MOS scale

Score Quality Distortions

5 Excellent Imperceptible

4 Good Tangible, but non-irritating

3 Fair Sensible and slightly annoying

2 Poor Annoying

1 Bad Annoying and unpleasant

In our work, we rate speech intelligibility and naturalness. The respondents
were allowed to listen to the samples on their own equipment in an uncontrolled
environment. The scores produced by this method remain very close to those
received in a controlled environment as it was mentioned in the work [13]. 50
respondents participated in the synthesis speech evaluation survey at the age of
20–40: 40% of them were female and 60% were male.

Twenty audio samples consisting of 11 samples of synthesized speech and
9 samples of recorded speech from the corpus were blindly presented to the
respondents. Each respondent got acquainted with the survey rules in advance.
Table 3 shows naturalness and intelligibility scores for the synthesized speech
and original recordings from the corpus. In contrast to the similarity of scores
achieved by real speech, the difference between naturalness and intelligibility
scores for synthesized speech might be explained by the fact that respondents
can understand all words clearly, although there are still some artefacts in audio
due to use of the Fast Griffin-Lim algorithm.

Table 3. Naturalness and intelligibility scores

Type Naturalness Intelligibility

Real speech 4.83 4.87

Synthesized speech 3.78 4.05

We also evaluated the quality of the speech synthesized by our implementa-
tion of the reference Tacotron neural network that had been training on RUS-
LAN for 300 K iterations. Speech synthesized by Tacotron achieved 3.12 MOS
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score for intelligibility and 2.17 MOS score for naturalness. It should be noted,
however, that in the original paper Tacotron neural network was trained for 2
million iterations [24].

5 Conclusion

We present RUSLAN spoken language corpus – the largest Russian open speech
corpus for a single speaker for the text-to-speech task. It consists of 22200 text-
audio pairs with the total audio duration being 31 h 32 min and exceeds the
second largest Russian corpus for a single speaker by 50%. We evaluate the
sufficiency and the completeness of our corpus by training an end-to-end text-
to-speech neural network on RUSLAN. Our model achieves 4.05 for intelligibility
and 3.78 for naturalness on a 5-point MOS scale.
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LNCS (LNAI), vol. 6231, pp. 392–399. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-15760-8 50

17. Sotelo, J., et al.: Char2Wav: end-to-end speech synthesis. In: Proceedings of Inter-
national Conference on Learning Representations (ICLR) (2017)

18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

19. International Telecommunication Union - Radiocommunication Sector. Subjective
assessment of sound quality (1990)

20. Taylor, P.: Text-to-Speech Synthesis. Cambridge University Press, Cambridge
(2009)

21. The M-AILABS Speech Dataset. http://www.m-ailabs.bayern/en/the-mailabs-
speech-dataset/

22. Van Den Oord, A., et al.: WaveNet: a generative model for raw audio. CoRR
abs/1609.03499 (2016)

23. VoxForge: Voxforge.org website
24. Wang, Y., et al.: Tacotron: towards end-to-end speech synthesis. arXiv preprint

arXiv:1703.10135 (2017)
25. Yakovenko, O., Bondarenko, I., Borovikova, M., Vodolazsky, D.: Algorithms for

automatic accentuation and transcription of russian texts in speech recognition
systems. In: Karpov, A., Jokisch, O., Potapova, R. (eds.) SPECOM 2018. LNCS
(LNAI), vol. 11096, pp. 768–777. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99579-3 78

http://arxiv.org/abs/1712.05884
https://doi.org/10.1007/978-3-642-15760-8_50
https://doi.org/10.1007/978-3-642-15760-8_50
http://www.m-ailabs.bayern/en/the-mailabs-speech-dataset/
http://www.m-ailabs.bayern/en/the-mailabs-speech-dataset/
http://arxiv.org/abs/1703.10135
https://doi.org/10.1007/978-3-319-99579-3_78
https://doi.org/10.1007/978-3-319-99579-3_78


Differentiating Laughter Types via
HMM/DNN and Probabilistic Sampling
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Abstract. In human speech, laughter has a special role as an impor-
tant non-verbal element, signaling a general positive affect and coop-
erative intent. However, laughter occurrences may be categorized into
several sub-groups, each having a slightly or significantly different role
in human conversation. It means that, besides automatically locating
laughter events in human speech, it would be beneficial if we could auto-
matically categorize them as well. In this study, we focus on laughter
events occurring in Hungarian spontaneous conversations. First we use
the manually annotated occurrence time segments, and the task is to
simply determine the correct laughter type via Deep Neural Networks
(DNNs). Secondly we seek to localize the laughter events as well, for
which we utilize Hidden Markov Models. Detecting different laughter
types also poses a challenge to DNNs due to the low number of training
examples for specific types, but this can be handled using the technique
of probabilistic sampling during frame-level DNN training.

Keywords: Laughter events · Deep Neural Networks ·
Hidden Markov Models · Probabilistic sampling

1 Introduction

Laughter is one of the most interesting and important aspects of complex human
behaviour [25]. But why do humans have an ability to laugh, what is the evo-
lutional purpose of laughter, and how did it develop during our evolution? To
answer these questions, the function of laughter has to be analyzed from the
perspective of human behaviour. It has been shown that there are many types
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of laughter depending on the approach used in the analysis. Based on the vocal-
production mode, laughter can be realized as voiced or unvoiced, and there are
intervals where a participant both speaks and laughs, known as speech-laughs
(see e.g. [18]). Unvoiced laughter is acoustically similar to breathing. Voiced
laughter was found to be a more relevant predictor of emotional involvement in
speech than general laughter. Other types of laughter may be voiced song-like,
unvoiced grunt-like, unvoiced snort-like and mixed sounds [3,14]. The types of
laughter may be differentiated by considering the emotion of the speaker as well;
for example hearty, amused, satirical and social laughs [23]. At least 23 types of
laughter have been identified (hilarious, anxious, embarrassed, etc.), where each
laughter type has its own social function [21].

More recently, there has been more interest in creating automatic classifiers
that are able to differentiate laughter types based on acoustics, facial expressions
and body movement features (e.g. [2,15,31]). The laughter detector developed
by Campbell et al. [6] can automatically recognize four laughter types based on
the speaker’s emotion in Japanese (the identification rate is greater than 75%).
The results of Galvan et al. also supported the possibility of automatical dis-
crimination among five types of acted laughter: happiness, giddiness, excitement,
embarrassment and hurtful [7]. In their study, automatic recognition based only
on the vocal features achieved higher accuracy scores (70% correct recognition)
than by using both facial and vocal features (60%) or just facial features alone
(40%).

In a previous study ([22]), we discriminated laughter based on the perceived
sound according to the identity and/or number of participants (test person, other
person(s), both), and according to the connection between laughter and speech.
We distinguished five types of laughter, namely

(i) single laughter (S): only the speaker’s laughter can be heard,
(ii) overlapping laughter (O): two or more speakers’ laughter occur at the same

time,
(iii) laughter during the speech of others (D): the test person’s laughter is heard

while another participant or participants are speaking,
(iv) laughed speech (P): the speaker’s laughter co-occurs with their own speech,
(v) mixed (M): a mixture of the previous three categories (ii) + (iii) + (iv).

These five categories of laughter may be associated with various functions in
conversations. Single laughter may be a sincere emotional expression or reaction
to one’s own message or the others’ message. Overlapping laughter may indicate
a cooperative act. Laughter during the speech of others may be a sign of attention
or a feedback to their message as a backchannel. Laughed speech may express the
fact that the speaker intends to refine or moderate the content of their message.
A mixed type of laughter has diverse functions in conversation.

Laughter – due to its various functions – contributes to the organisation of
conversation. We can get closer to understanding the structure of the conver-
sation by analysing laughter types. However, to do this, first they have to be
located and identified. In this study we seek to automatically classify laugh-
ter segments as one of these five pre-defined categories; to do this, we borrow
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Table 1. Some important properties of the different laughter types in the dataset used.

Laughter type All laughter

types

All utterances

Single Over-

lapping

During

other

Laughed

speech

Mixed

Total duration (m:ss) 2:12 2:13 4:17 1:52 1:27 12:01 147:36

% of duration 1.50% 1.50% 2.90% 1.26% 0.98% 8.14% 100.00%

Avg. duration (ms) 594 1087 937 1017 1887 930 —

Median duration (ms) 480 910 805 875 1620 740 —

No. of occurrences 223 122 274 110 46 775 —

% of occurrences 28.8% 15.7% 35.4% 14.2% 5.9% 100.0% —

Frequency (1/s) 1.51 0.83 1.86 0.75 0.31 5.25 —

tools from Automatic Speech Recognition (ASR) such as acoustic feature sets
and Deep Neural Networks (DNNs, [17]) for frame-level classification. To address
both the classification and the location problems, in the second part of our study
we combine the outputs of our frame-level DNNs with a Hidden Markov Model
(HMM). However, as in laughter detection only a fraction of the training data
corresponds to laughter, we shall use the sampling technique called probabilistic
sampling [19] to assist frame-level DNN training.

2 The Recordings Used

Here, we used a part of the BEA Hungarian Spoken Language Database [9].
It is the largest speech database in Hungarian, which contains 260 h of mate-
rial produced by 280 speakers (aged between 20 and 90 years), recorded in a
sound-proof studio environment. In the present study we could use only the
subset which had annotated laughter types at the time of writing, a total of 62
recordings of spontaneous conversations. The recordings lasted 148 min in total,
from which we assigned 100 min (42 utterances) to the training set, while 20
and 27 min were assigned to the development set and the test set (10 recordings
each). The segment boundaries of laughter segments were identified by human
transcribers. Overall the total duration of laughter was 12 min, taking up 8.1%
of all the utterances; of course, the different types of laughter were unevenly
distributed.

Some main characteristics of the different laughter types in this dataset can be
seen in Table 1. Unfortunately, the corpus we used is not very large, but it is typical
in the area of laughter identification, especially if we can use only the utterances
which have annotations about the types of laughter events. Surprisingly, the five
types are roughly balanced when measured in total duration, the shortest sub-type
(Mixed) taking up roughly 1% of the total playing time, and the most common one
(During others’ speech) comprised 2.9% of all the utterances. The main difference
comes from the average duration and frequency of the types: the most frequently
occurring laughter type was Single, but these laughter events were the shortest
ones as well, whileMixed types occurred only once in three minutes of conversation,
but then lasted for almost two seconds on average.
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3 DNN Training by Probabilistic Sampling

For our experiments we borrowed techniques from Automatic Speech Recogni-
tion (ASR) such as Deep Neural Networks and Hidden Markov Models. Following
standard ASR techniques, DNNs were used to provide a posterior probability
estimate for each 10 ms for each utterance (i.e. for each frame). However, DNNs
work best when they can be trained on hundreds or even thousands of hours of
speech data (see e.g. [20]), and this amount is typically not available for laughter
corpora. A further difference is that in ASR the classes are more-or-less uniformly
present among the training frames, while in laughter detection only 4–8% of the
duration corresponds to laughter, and the vast majority of training data belongs
to the non-laughter class (i.e. other speech, silence and background noise). When
we split the laughter class into several new classes, this class imbalance grows
further.

The simplest solution for balancing the class distribution is to downsample
the more frequent classes. This, however, results in data loss, hence it may also
result in a drop in accuracy especially as our training set was quite small in the
first place. A more refined solution is to upsample the rarer classes: we utilize
the examples from these classes more frequently during training. A mathemat-
ically well-formulated upsampling strategy is the method called probabilistic
sampling [19,29]. Probabilistic sampling selects the next training example fol-
lowing a two-step scheme. First we select a class according to some probability
distribution, then we pick a training sample from the samples that belong to
this class. For the first step, we assign the following probability to each class:

P (ck) = λ
1
K

+ (1 − λ)Prior(ck), (1)

where Prior(ck) is the prior probability of class ck, K is the number of classes and
λ ∈ [0, 1] is a parameter. When λ = 0, the above formula returns the original class
distribution, so probabilistic sampling will behave just as conventional sampling
does. When λ = 1, we get a uniform distribution over the classes, so we get totally
balanced samples with respect to class frequency. Selecting a value for λ between
0 and 1 allows us to linearly interpolate between the two distributions. According
to our previous results, using probabilistic sampling can aid DNN training when
the task is to detect laughter events [13] as well as other phenomena with rate
occurrences such as filler events [12].

4 Classification Experiments

In the first series of experiments we just classify the laughter occurrences into
one of the five types, relying on the manually annotated starting and ending
points of the laughter segments. We simply trained our DNNs at the frame level
and took the product of their output likelihoods, as in our previous studies we
found that this approach worked quite well (see e.g. [11]). Following the results
of preliminary tests, we divided the frame-level posterior estimates of the DNNs
by the original class priors, which is common in HMM/DNN hybrids [4].
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Fig. 1. Recall scores for the five laughter types on the development set as a function
of λ.

Table 2. Some notable classification accuracy scores on the test set.

Acc. (%) Recalls (%)

Classification method Mean Median

DNN with full sampling (baseline) 37.2 22.7 5.1

λ = 0.1 35.3 28.8 28.0

DNN + probabilistic sampling λ = 0.6 32.4 27.2 26.1

λ = 1.0 30.1 28.3 30.5

4.1 DNN Parameters

We applied a DNN that had rectified linear units as hidden neurons [8,28] for
frame-level classification. We used our custom DNN implementation [16], which
achieved the best accuracy score published so far on the TIMIT database [27].
We employed DNNs with 5 hidden layers, each containing 256 rectified neurons.
We applied the softmax function in the output layer. We used 40 mel filter
bank energies as features along with first and second order derivatives, extracted
using the HTK tool [30]. Training was performed on a sliding window containing
20 neighbouring frames from both sides, following the results of preliminary
tests. Note that this sliding window size is quite large compared to ones used in
speech recognition; but for laughter detection, using this many frames is clearly
beneficial (see e.g. [5,11]).
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4.2 Probabilistic Sampling

We evaluated the probabilistic sampling technique by varying the value of λ
in the range [0, 1] with a step size of 0.1. To reduce the effect of DNN random
weight initialization, we trained five DNN models for each λ value; then we chose
the value of λ based on the results obtained on the development set.

4.3 Evaluation

Since this was simply a classification task, we could have measured efficiency
using the standard classification accuracy metric. However, it is well known that
when class distribution is uneven, classification accuracy is biased towards the
classes having more examples. Therefore we decided to calculate the recall of
each laughter type. Afterwards, we aggregated the five recall values into one
accuracy score via a simple arithmetic mean and median.

4.4 Results

Figure 1 shows the recall values got on the development set for all laughter types
as a function of the λ parameter of probabilistic sampling. It is quite apparent
that the values are not really consistent without applying probabilistic sampling
(shown as λ = 0): actually no examples were classified as laughter types S, D and
M. Using larger values for λ tends to balance the recall values of the five kinds of
laughter, which is also reflected in the mean and median values. In our opinion,
when the task is to identify the occurrences of distinct laughter sub-classes, the
performance of an approach is more accurately described by the mean and even
more so by the median of the recall values than traditional classification accuracy
scores. Clearly, for values λ ≥ 0.5 our approach works well for all laughter types,
while it leads to a lower classification accuracy score.

Table 2 lists the accuracy, mean and median recall scores we got on the test
set for some notable values of λ. (Values exceeding the baseline score are shown
as bold.) Notice that the baseline case has the highest classification accuracy
score (37.2%), but the low mean and especially the median recall value (5.1%)
suggests a highly uneven behaviour. Overall, like that for the development set,
all values of λ ≥ 0.1 give a similar performance, which is significantly better
than that for the baseline DNNs trained without probabilistic sampling.

5 Experiments with a Hidden Markov Model

Laughter (segment) classification is a simplified task in the sense that we rely
on segment starting and ending points marked by human annotators. In the last
part of our study we perform laughter detection, where, besides laughter types,
we also have to find the locations of the different occurrences. We will do this by
incorporating our likelihood values supported by DNNs into a Hidden Markov
Model (HMM). In this set-up, the state transition probabilities of the HMM
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practically correspond to a state-level bi-gram language model. Following the
study of Salamin et al. [26], we calculated the model from statistics of the training
set; the weight of this language model was determined on the development set,
individually for the five DNN models trained.
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Fig. 2. Segment-level F1 scores measured on the development set.

Table 3. Some notable segment-level F1 scores obtained on the test set.

F1(%)

Sampling approach S O D P M Mean Median

DNN (baseline) 18.3 14.1 0.0 5.2 2.2 8.0 5.2

DNN + prob. sampling, λ = 0.4 23.0 19.5 19.0 8.7 6.1 15.3 19.0

DNN + prob. sampling, λ = 1.0 14.5 19.4 16.8 10.1 7.3 13.6 14.5

5.1 Evaluation Metrics

We opted for the information retrieval (IR) metrics of precision, recall and their
harmonic mean, F-measure (or F1). To decide whether two occurrences of events
(i.e. a laughter occurrence hypothesis returned by the HMM and one labeled by
an annotator) match, there is no de facto standard in the literature. In this study
we required that the two occurrences intersect (as in [10] and [24]), while their
centre also had to be close to each other (within 500 ms, as in [1]). Furthermore,
following the work of Salamin et al. [26], we calculated these metrics at the frame
level as well. Since the optimal meta-parameters (λ and language model weight)
may differ in the two (evaluation) approaches used, we set them independently.
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5.2 Results

Figures 2 and 3 show the averaged F1 scores got on the development set at the
segment level and frame level, respectively. It can be seen that the smaller λ
values (λ ≤ 0.3 and λ ≤ 0.4, at the segment and frame level, respectively) led
to quite low F1 values for some laughter types, while for larger λ parameters we
had a more balanced behaviour. This is also reflected in the mean and median
F1 scores. At the segment level, optimality is achieved with λ = 0.4, while at
the frame level it is with λ = 0.1 (mean) and with λ = 0.5 (median).
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Fig. 3. Frame-level F1 scores measured on the development set.

Table 4. Some notable frame-level F1 scores obtained on the test set.

Sampling approach F1(%)

S O D P M Mean Median

DNN (baseline) 23.1 15.8 0.0 8.1 10.1 11.4 10.1

DNN + prob. sampling, λ = 0.1 22.6 24.0 9.4 6.9 7.4 14.1 9.4

DNN + prob. sampling, λ = 0.5 15.8 14.6 14.8 10.0 6.7 12.4 14.6

DNN + prob. sampling, λ = 1.0 13.4 14.4 12.6 9.4 7.2 11.4 12.6

Overall, the F1 scores seem to be somewhat low, even after applying prob-
abilistic sampling. In our opinion, however, these are quite realistic scores, for
two reasons. Firstly, even when we treat laughter as one class, we get F1 values
between 40 and 60% (see e.g. [10,13,26]), which is likely to be reduced further
when we split the laughter class into several sub-classes. Secondly, recall that
the laughter sub-types were defined based on the relation between the laughter
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event and the other speaker’s speech. This, combined with the large duration
of laughter events, eventually leads to mixed laughter occurrences. For example,
in an overlapping laughter event both the speakers are probably not laughing
for the whole duration, but in some parts only one of them is (while the other
speaks or remains silent). This, however, is quite hard to detect at the frame
level.

Examining Tables 3 and 4 (containing the interesting F1 scores obtained on
the test set at the segment level and frame level, respectively), we see that
the F1 value of the Mixed laughter type is the lowest, which is probably due
to the latter phenomenon. Overall, the F1 values are more balanced for the
different laughter types when using probabilistic sampling, and when we use the
λ values found optimal on the development set, we get better results than either
without probabilistic sampling or with uniform sampling (i.e. λ = 1). We got
the highest frame-level mean F1 value in the case where the mean was highest
on the development set (λ = 0.1), and the same holds for the median (λ = 0.5).
Overall, optimizing for the median led to a more balanced performance than
optimizing for the mean, which led to a mixture or relatively high and low F1

values.

6 Conclusions

In this study we sought to detect and identify multiple laughter types in Hungar-
ian spontaneous conversations. We performed simple classification experiments
and those where the location of laughter occurrences had to be determined as
well. Overall, we found that the median of F1 scores characterizes performance
better than the arithmetic mean does, and the technique of probabilistic sam-
pling aids the training of frame-level DNNs in the task of laughter sub-group
classification, where the training data has a highly imbalanced class distribution.
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of MSZNY, pp. 136–145, Szeged, Hungary (2017). (in Hungarian)

14. Grammer, K., Eibl-Eibesfeldt, I.: The ritualisation of laughter, Chapter 10. In:
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Abstract. An approach for discovering word units in an unknown lan-
guage under zero resources conditions is presented in this paper. The
method is based only on acoustic similarity, combining a cross-lingual
phoneme recognition, followed by an identification of consistent strings
of phonemes. To this end, a 2-phases algorithm is proposed. The first
phase consists of an acoustic-phonetic decoding process, considering a
universal set of phonemes, not related with the target language. The
goal is to reduce the search space of similar segments of speech, avoiding
the quadratic search space if all-to-all speech files are compared. In the
second phase, a further refinement of the founded segments is done by
means of different approaches based on Dynamic Time Warping. In order
to include more hypotheses than only those that correspond to perfect
matching in terms of phonemes, an edit distance is calculated for the
purpose to also incorporate hypotheses under a given threshold. Three
frame representations are studied: raw acoustic features, autoencoders
and phoneme posteriorgrams. This approach has been evaluated on the
corpus used in Zero resources speech challenge 2017.

Keywords: Zero resources · Dynamic Time Warping · Autoencoders

1 Introduction

The zero resource speech task aims to automatically discover speech units with-
out any linguistic knowledge. Most of the approaches to this problem are based
on specific representations of the acoustic characteristics, and on the definition
of a distance among segments to detect similarities [2,3,6,11,14–16,19–22]. The
high computational complexity of a brute force approach (every speech file is
compared against each other), forces to choose other methods, such as perform-
ing a previous analysis of the signal in order to detect some candidate segments.
In our system, we have used a labeling process of the speech signal in terms of
a set of universal phonetic units. This set is composed of phoneme models from
a language which is different to the target language.
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Fig. 1. Scheme of the system. One of three alternatives is chosen for the DTW filtering
process: MFCC, autoenconder characteristics, or phoneme posteriorgrams.

Thus, the corpus can be labeled in linear time with the length of the data.
In an ideal situation with no errors in the phonetic labeling, the segments that
are labeled with the same sequence of phonemes would belong to the same class
(each class representing a discovered word). But the acoustic-phonetic decoding
errors make necessary to consider a larger number of hypotheses per class. This
can be done by also including in the same class those segments with similar
sequences of labels. We consider two sequences to be similar if their edit distance
is lower than a given threshold. In a second phase, a pruning of the segments in
each class is performed. This pruning is done by considering different Dynamic
Time Warping (DTW) distances. These distances are based on three different
speech representations: Mel-Frequency Cepstral Coefficients (MFCC), a compact
representation of the MFCC using autoencoders, and phoneme posteriorgrams.

The remainder of this paper is organized as follows. Section 2 presents our
system, Sect. 3 describes the autoencoder representation, Sect. 4 describes the
corpus characteristics and the evaluation measures, and Sect. 5 describes the
tuning process and the preliminary experiments done for tuning purposes. The
experimental results are described and analyzed in Sect. 6, and finally some con-
clusions are exposed.

2 System Overview

The architecture of the system is illustrated in Fig. 1. The system is a combi-
nation of cross-lingual phoneme recognition, followed by identifying consistent
strings of phonemes and doing some filtering based on the speech representations
of candidate words. Our approach is composed of two phases. The first phase
consists of an acoustic-phonetic decoding process that provides a sequence of
phonetic labels associated to the sequence of speech frames. We have used a
set of phonemes of a language not related with the target language because the
goal is, precisely, to discover words without linguistic knowledge of the target



Word Discovering in Low-Resources Languages 135

language. The phoneme recognizer toolkit based on long temporal context, devel-
oped at Brno University of Technology, Faculty of Information Technology, was
used for our experiments [18]. This decoder has four available systems, for Czech,
English, Hungarian and Russian languages. The Hungarian decoder which uses
61 phonetic units (including three specialized units to represent noise or silence)
was chosen [23].

Once the phonetic labeling is done, a process of selection of similar segments
is performed. The criterion to group two segments is that they must have a
distance smaller than a threshold between them. We have considered the distance
zero (same sequence of phonetic units) and distance one (one phonetic unit of
difference). Finally, only those classes that have more than three members are
selected.

After the candidate segments for each class have been selected, a second
phase to filter hypotheses is performed. To do this, three alternative speech
signal representations are used:

– speech signal parametrized in terms of Cepstral coefficients plus derivatives,
MFCC+Delta+Delta2,

– a compact representation of MFCC by means of an autoencoder (see Sect. 3)
which generates 10-dimension vectors, and

– a representation of each frame composed by the phoneme posteriorgrams of
the 61 considered phonemes from the Hungarian decoder.

Considering the previous representations, all-to-all distances among segments
in each class are calculated. The distances are obtained by a DTW algorithm
using cosine distance. These distances are used to eliminate the segments far
from the centroid of the class.

Another heuristic refinement was to avoid overlaps among the candidates,
that is, some segments corresponding to a sequence of n phonemes can contain
subsegments of length n − 1, n − 2, ... corresponding to other selected segments.
The discarding process consists of eliminating the candidates which overlapped
more than 80% in the time, always leaving the longest segment and discarding
the smallest one.

3 Autoencoders

An autoencoder is a neural network trained to learn efficient encodings in an
unsupervised way. The aim of an autoencoder is to learn a more useful rep-
resentation of data, by reconstructing the input at the output layer, in order
to typically perform a dimensionality reduction that captures useful properties
of the data [9] (similar to principal component analysis but using non-linear
transformations). For this reason, this kind of systems was used in previous zero
resources tasks, yielding large reductions on the error rate [1,17].

The autoencoder used in our experiments consists of a single hidden layer φ
with ReLU activation functions [13], which transform the input x ∈ R

d into an
alternative lower dimensional representation space, Rd′

: d′ << d; i.e. φ : Rd →
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R
d′

. Regarding to the reconstruction step, a linear layer ψ which transforms
z ∈ R

d′
to the original space R

d is used, then ψ : Rd′ → R
d. It should be noted

that the training was done with the objective of minimizing the squared error
of the reconstruction,

φ, ψ = argmin
φ,ψ

‖X − ψ(φ(X))‖2 ,

making use of the Adagrad optimization method [7] iterated during 60 epochs.
More concretely, given a sequence x of N cepstral vectors and derivatives,

the autoencoder is independently applied to every vector xi ∈ R
39. The result is

a new sequence y, also of N vectors, in which each element yi is dimensionally
reduced as yi ∈ R

10. Note that each vector is treated independently so the
dimensionality reduction does not take into account context information of the
sequence as other techniques do [4,5].

4 Corpus and Evaluation Measures

Three languages are available for training: English, French and Mandarin, and
two unknown languages for test. The test languages turned out to be German
and Wolof. Data are read speech and open source (either gathered from open
source audio books, or open datasets). A forced alignment has been performed
in order to build the corpus.

The training corpus consists of 64 wav files for English with a total amount
of more than 38 h, 28 wav files for French (around 25 h) and finally 12 wav files
for Mandarin (more than 2 h). All wav files are sampled at 16 KHz.

Three types of measures were defined for evaluation purposes: The first
one mesures the phoneme similarity between the segments associated to words
and the references. The second set measures the quality of groups of segments
obtained, that is, if the segments represents the same word. And the third set
measures the boundaries obtained [8]:

1. Evaluation as matching system. It consists of two scores:
– NED is the average, over all matched pairs, of the Levenshtein distance

between their phonemic transcriptions, with respect to the gold phonemic
transcriptions of the fragments.

– Coverage (COV) is the fraction of the corpus that is covered by all
the discovered fragments. The discovered fragments are computed as the
union of all of the intervals corresponding to all of the pairs of n-grams
(with n between 3 and 20).

2. Evaluation as lexicon discovery system. Six scores were defined:
– Grouping Precision, Recall, and F-score. These are defined in terms

of the set of all pairs that are in the same cluster in the output of the
system. The Grouping Recall is the set of all non-overlapping pairs of
fragments which are both discovered by the system (not necessarily in
the same cluster) and have exactly the same gold transcription.



Word Discovering in Low-Resources Languages 137

Table 1. Results obtained from the spoken French sentences.

Grouping Type Token Boundary

Method Words NED COV P R F P R F P R F P R F

From9to3 205975 69.0 85.8 5.3 11.9 7.4 9.2 33.4 1.45 2.6 18.9 4.5 22.8 71.4 34.6

From7to4 85580 63.4 76.0 6.2 32.9 10.3 6.1 17.5 9.1 2.4 7.4 3.6 23.8 61.5 34.3

7grams 517 15.6 1.1 76.3 100.0 84.4 4.5 0.1 0.2 3.5 0.0 0.1 28.5 0.5 0.9

6grams 4603 38.1 8.0 26.3 96.9 39.9 2.6 0.5 0.8 1.9 0.2 0.3 27.3 3.8 6.6

5grams 28486 55.2 38.3 9.8 88.8 17.4 3.4 4.0 3.7 2.1 1.4 1.7 25.5 25.0 25.2

4grams 45453 63.0 69.7 6.1 36.6 10.4 4.8 12.1 6.9 2.6 5.0 3.4 24.2 56.2 33.9

– Type Precision, Recall, and F-score. Type Precision is the probability
that discovered types belong to the gold set whereas Type Recall is the
probability that gold types are discovered.

3. Evaluation as word segmentation system. Six scores were defined:
– Token Precision, Recall, and F-score. Token Precision is the prob-

ability that discovered fragment tokens that are in the gold set. Token
Recall is the probability that the gold fragments are discovered.

– Boundary Precision, Recall, and F-score. They are defined with
respect to the set of discovered and gold word boundaries.

5 Tuning Process

We have done some tests using the French data in order to tune the parameters
of the system. These experiments are shown in Table 1. The first experiment
consisted of looking for the phoneme sequences found by the acoustic-phonetic
decoder of different sizes: 9, 8, 7, 6, 5, 4, and 3 phonemes (From9to3) in order
to verify if the coverage of the acoustic phonetic decoding has been correct. We
obtained a coverage up to 85.5%. Other experiments were performed taking into
account only the sequences of 7, 6, 5, and 4 phonemes (7grams, 6grams...), in
order to see their influence in the result. We concluded that using sequences of
sizes from 7 to 4 phonemes (From7to4) was the most appropriate, reaching a
high coverage, 76%, with a moderate NED of 63.4%.

In addition, experiments were carried out to test the best configuration for the
second part of our system, which consists of filtering the candidates within the
classes using DTW with the cosine distance. Results are shown in Table 2. To do
this filtering all the acoustic segments corresponding to the phonetic sequences
into a class are compared among them. This comparison is performed by means
of a DTW algorithm that supplies a normalized distance between each two acous-
tic segments. These distances were calculated by using the three studied repre-
sentations for the frames: MFCC (Filcepstrals), the autoencoder representation
(Filautoenc), and the phoneme posteriorgrams (Filposterior). Using these dis-
tances a threshold is used to discard segments that are far from the centroid.
The more restricted threshold, the more precision, but at the cost of coverage. It
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Table 2. Results obtained from the spoken French sentences using sequences of
phonemes from length 7 to 4.

Grouping Type Token Boundary

Method Words NED COV P R F P R F P R F P R F

Filcepstrals 81104 62.4 72.3 6.6 36.6 11.2 5.9 16.0 8.6 2.4 6.7 3.5 24.1 58.4 34.1

Filautoenc 79052 62.2 71.1 6.7 37.3 11.3 5.9 15.6 8.5 2.4 6.5 3.5 24.2 57.2 34.0

Filposterior 83623 61.2 72.3 7.1 38.7 12.0 5.9 15.9 8.6 2.4 6.7 3.5 24.1 58.0 34.0

Table 3. Baseline results from [8].

Grouping Type Token Boundary

Language Words Pairs NED COV P R F P R F P R F P R F

English 12886 15730 33.9 7.9 34.7 96.6 47.9 5.0 0.7 1.2 3.9 0.3 0.5 33.9 3.1 5.7

French 1803 1636 25.4 1.6 81.1 66.4 64.2 6.9 0.2 0.3 5.2 0.1 0.1 30.9 0.6 1.1

Mandarin 156 160 30.7 2.9 30.2 96.7 44.7 4.5 0.1 0.2 4.0 0.1 0.1 37.5 0.9 1.8

German 2973 3315 30.5 3.0 54.8 94.6 64.9 5.5 0.3 0.6 4.0 0.1 0.2 28.2 1.2 2.3

Wolof 462 545 33.5 3.2 39.1 72.1 32.8 2.3 0.1 0.2 1.6 0.0 0.1 25.3 1.0 2.0

should be noted that this process is strongly conditioned by the previous selec-
tion of segments based on phonetic similarity. Therefore it is not possible in this
phase to add new segments, only the refinement in terms of precision is possible.

Different values were experimentally tested and it was concluded that a value
of 1.2 times the mean of distances among all of them was the most suitable
threshold. Similar performance for the three data sources (MFCC, autoencoder
representation and phoneme posteriorgrams) was obtained, choosing the autoen-
coder representation due to the fact that it can be more independent of the
phonetic characteristics of the new target languages, such as oriental languages.

6 Experiments

Table 3 shows the baseline results given by the Zero Resource Speech Challenge
2017, organized by Dunbar et al. [8]. The baseline system was computed using
PLP features [10] and obtaining groups of pairs using graph clustering. The
parameters of the system stayed the same across all languages, except for Man-
darin, in order to obtain a NED value similar to that of other languages [8].

Results of our first system are shown in Table 4. It uses a supervised Auto-
matic Speech Recognition system for Hungarian to decode the speech. Chunks of
(transcribed) speech match if they have the same transcription. These matches
are then filtered: a representation of the speech is obtained by training an autoen-
coder, and only pairs with DTW sufficiently low in this representational space
(below a threshold) are retained.

We also analyzed the idea of joining classes whose difference of edit dis-
tance between their associated phoneme sequence was equal to one. A Longest
Common Subsequence between the sequences of phonemes algorithm was imple-
mented to this end. Table 5 shows the results of this second system.
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Table 4. Results obtained from the first system.

Grouping Type Token Boundary

Language Words Pairs NED COV P R F P R F P R F P R F

English 92544 864639 71.4 71.0 3.3 76.2 6.2 3.9 8.6 5.4 3.2 3.5 3.3 27.1 29.4 32.1

French 58701 515507 62.8 67.0 6.1 82.3 11.3 3.3 6.4 4.4 2.6 2.7 2.7 26.1 37.4 30.7

Mandarin 2887 17845 80.2 45.4 2.4 45.0 4.6 4.5 2.9 3.5 3.6 2.0 2.6 22.8 18.6 20.5

German 60658 582009 59.9 71.8 5.7 63.8 10.4 3.2 6.8 4.3 2.4 3.1 2.7 20.6 37.2 26.6

Wolof 5468 37191 56.8 47.8 7.6 43.3 12.8 5.9 8.2 6.9 6.1 4.2 4.9 29.6 29.6 29.6

Table 5. Results obtained from the second system.

Grouping Type Token Boundary

Language Words Pairs NED COV P R F P R F P R F P R F

English 92466 866170 71.4 71.0 3.2 75.8 6.2 3.9 8.6 5.4 3.2 3.5 3.3 27.0 39.4 32.1

French 58716 518113 62.7 67.0 6.3 81.7 11.6 3.3 6.4 4.4 2.6 2.7 2.7 26.0 37.4 30.7

Mandarin 2882 17824 80.0 43.3 2.5 45.3 4.7 4.4 2.9 3.5 3.6 2.0 2.5 22.7 18.5 20.4

German 60498 588162 59.9 71.8 5.8 64.0 10.7 3.2 6.8 4.3 2.4 3.1 2.7 20.6 37.2 26.5

Wolof 5460 37273 56.8 47.8 7.7 44.0 13.0 6.0 8.3 7.0 6.1 4.2 4.9 29.7 29.6 29.6

As the results show, there are not significative differences between both sys-
tems. This can be explained by the fact that the selecting phase is very determi-
nant for the posterior processes. On the other hand, results are logically better for
occidental languages that for Mandarin, probably because the set of phonemes
chosen is more related to these languages.

As seen from the Tables, results are very sensible to the thresholds to accept
or discard hypotheses.

Comparing to the baseline, our systems generate much more hypotheses, and
therefore our precision in terms of NED (that is, the Levenshtein distance of our
word pairs hypotheses) is lower, but the coverage is much more higher. It should
be noted that the baseline is very restricted for generation hypotheses, because
(in German, for example) for more than 2 millions of words they propose only
3315 pairs, and our system more that 500000 pairs.

Other systems, from Kamper et al. [12], uses k-means to discover acoustic
patterns, jointly optimized with an exhaustive segmentation. On the other hand,
our grouping results clearly works better than the baseline k-means clustering,
and better recall than the system Kamper et al. [12].

7 Conclusions

In this paper we have presented our approach to word discovering in raw speech.
Our runs are based in a previous phase of selection of candidate segments consid-
ering a generic transcription of the speech, in order to avoid the computational
complexity of a brute force approach. Once the candidate segments are selected,
a filtering of the results is done by means of DTW distances. Results show that
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the approach is reasonable even with the strong simplification of the first phase.
As future works we want to explore other ways to select segment candidates.
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Abstract. This paper presents a method for character semantic segmen-
tation in full-text documents from post World War II Czechoslovakia.
Unfortunately, standard optical character recognition algorithms have
problems to accurately read these documents due to their noisy nature.
Therefore we were looking for some ways to improve these unsatisfac-
tory results. Our approach is based on fully-convolutional neural network
inspired by U-Net architecture. We are utilizing a synthetic image gen-
erator for obtaining a training set for our method. We reached 99.53%
recognition accuracy for synthetic data. For real data, we are providing
qualitative results.

Keywords: Character recognition · Segmentation · OCR ·
Machine learning · Generating images · Computer vision

1 Introduction

Optical character recognition (OCR) is an important field of computer vision.
Data digitization is very demanded by doctors, police, or historians because it
enables indexing and searching for specific documents, information retrieval, or
full-text search. Standard OCR algorithms are based on a rule-driven system
often divided into detection and recognition parts. Probably the most popular
example is Tesseract [6]. Novel methods are usually based on neural networks
(NNs) and try to detect and read texts at once in an end-to-end fashion [7,8].

However, these networks are generally designed only for sparse text detection
in real-world environments. In this paper, we also would like to use a machine
learning approach, but with a focus on digitalized full-text historical document.
Semantic segmentation (classification on pixel-wise level) is a very attractive
topic of research in the last few years [2–4] and we believe that this approach
offers great potential for an end-to-end OCR algorithm. We use fully convolu-
tional network with Encoder-Decoder structure. For training data generation,
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we utilize our generator of synthetic texts [1]. Using this setup, we performed
two types of experiments: (1) semantic segmentation into two classes: text, and
background; (2) semantic segmentation when each character of Czech language
has its own class and moreover there was one class for a background. Both
experiments showed great potential and very promising results.

This paper is organized as follows: in Sect. 2 we briefly describe our synthetic
data generator, used training dataset and real historical documents we are work-
ing with; in Sect. 3 we discuss our approach to semantic text segmentation; in
Sect. 4 we describe our experimental settings and show obtained results, while
we draw conclusions and discuss future research in Sect. 5.

2 Data

To produce a synthetic version of an old typewritten document we needed two
parts. The first part is a background generator which creates a synthetic image of
a paper typically used in the typewriters of the given era. We already developed a
method based on the Variational Auto-Encoder (VAE) [9] in our previous article
[1]. Our VAE was trained on the images of real backgrounds that were extracted
from the actual documents. The text is removed using Otsu’s method of bright-
ness thresholding followed by dilatation of the detected region. The empty areas
are then replaced by a mean value of the remaining background pixels. The
incurred discontinuities in the replaced areas are smoothed out by blurring the
affected areas with local averages. The remaining noise and other artifacts are
then handled by the VAE during training because it produces blurred versions
of the original images by design.

As previously published in [1], 685 old paper images were used to train the
VAE background generator. The images were first processed by the method
described above. Then they were resized to a resolution of 128. The structure of
the VAE is described in Table 1. Parameters for the training can be found in the
original paper [1]. The output images are then resized to the original resolution
of 2480 using linear interpolation.

Fig. 1. The example of bounding boxes for each character (left). The example of fine-
tuned bounding boxes (right).

A text generator is used to fill the generated backgrounds with a synthetic
text. The font named Bohemian typewriter is used to add authenticity. The text
is loaded from a predefined dictionary or file and filled into selected areas of the
background. A random offset of ±3 in both axes is added to each character to
simulate the effect of a real typewriter. The text is also blurred by a Gaussian to
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add noise caused by the age of the original paper. The benefit of the synthetic
text includes the exact locations of each character bounding box, as can be seen
in Fig. 1, and the exact pixels for each printed character.

Table 1. Structure of VAE background generator. The encoder is composed of four
convolutional layers with 64 kernels with ReLU activation function, every even one
is moreover followed by batch normalization. The intermediate layer is represented by
fully-connected layer with 500 neurons with tanh activation function. The decoder mir-
rors this structure. Furthermore, the latent space is represented by two fully connected
layers with 250 neurons and linear activation function [1].

Encoder Decoder

Conv(64, 2× 2), ReLU Deconv(64, 3× 3), ReLU

Conv(64, 2× 2), BN, ReLU Deconv(64, 3× 3), ReLU

Conv(64, 3× 3), ReLU Deconv(64, 3× 3), ReLU

Conv(64, 3× 3), BN, ReLU Conv(3, 2× 2), sigmoid

Fully-connected (500)

With this setup, we generated 150 thousand synthetic documents, whereas we
split these documents into three subsets - training (100 thousand), development
(20 thousand), and testing (30 thousand) set.

3 Method

Our method is built upon a Fully-Convolutional network with Encoder-Decoder
structure, which proved itself to be perfectly suitable for semantic segmentation
tasks [2–4]. The Encoder-Decoder structure is a type of feed-forward NN. The
main idea of this structure is, firstly, in the Encoder part compressing the data
from input raw image pixels into a feature vector representation (i.e. latent space
representation). Secondly, the Decoder takes these features and via upsampling
produces an output map (or output maps) with the same size as the input.

Our neural network architecture is based on a work of Ronnenberger et al.
[3] and their U-Net architecture. To be more concrete, we adopted the idea
that for each class our network produces one output map with segmentation for
this specific class. The final semantic segmentation map can be constructed by
combining the results from all output maps in a simple manner.

Before designing network architecture, we calculated the average height of
the text lines. We use this knowledge to decide the size of the receptive field we
should work with in the hidden convolutional layers. In our opinion, NN should
be able to handle the lines independently, because the information in individual
lines is more-or-less independent on each other. Therefore, the ideal receptive
field will be high enough to see the whole line, however, not much higher, so
it can focus on this single line. With original resolution 2480× 3504 pixels, the
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average line is 36 pixels high, however, for purposes of training the resolution of
all images was decreased to 620× 876 pixels. That means the average line is 9
pixels high.

With this finding in mind, we firstly designed a very simple baseline archi-
tecture. The exact network configuration we used is shown in Table 2. We would
like to point out the total max-pooling layer omission because of the line aver-
age weight. All the convolutions and deconvolutions in this paper are used with
stride 1.

Table 2. Structure of our baseline architecture. The encoder is composed of three
convolutional layers with 16, 32, and 64 kernels, followed by batch normalization and
ReLU activation function. The decoder mirrors this structure. N in the last convolu-
tional layer of the decoder is the number of classes.

Encoder Decoder

Conv(16, 3× 3), BN, ReLU Deconv(64, 5× 5), BN, ReLU

Conv(32, 3× 3), BN, ReLU Deconv(32, 3× 3), BN, ReLU

Conv(64, 5× 5), BN, ReLU Deconv(16, 3× 3), BN, ReLU

Conv(N, 1× 1), Softmax

Second architecture, we are using in our work is inspired by Badrinarayanan
et al. [4] and their usage of skip-connections. Skip-connections are implemented
as element-wise summation between each mirrored part of the encoder-decoder
structure (Table 3).

Table 3. Structure of our improved architecture. The encoder is composed of four
convolutional layers with 16, 32, 64, and 64 kernels, followed by batch normalization
and ReLU activation function again. The decoder mirrors this structure. N in the last
convolutional layer ConvF of the decoder is the number of classes. Skip-connections
are implemented for outputs of layers Conv1-Deconv4, Conv2-Deconv3, and Conv3-
Deconv2.

Encoder Decoder

Conv1(16, 3× 3), BN, ReLU Deconv1(64, 5× 5), BN, ReLU

Conv2(32, 3× 3), BN, ReLU Deconv2(32, 3× 3), BN, ReLU

Conv3(32, 3× 3), BN, ReLU Deconv3(32, 3× 3), BN, ReLU

Conv4(64, 3× 3), BN, ReLU Deconv4(16, 3× 3), BN, ReLU

ConvF(N, 1× 1), Softmax

All tested NN architectures were implemented in Python using Chainer deep
learning framework [10,11].
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4 Experiments and Results

In this section, we present experimental settings and results of two experiments.
For both of them, we are providing quantitative results for testing synthetic data
and qualitative results for real data.

4.1 Two-Class Classification

In the first experiment, we teach our network semantic segmentation of input
image into one of the following two classes: text, and background. We train
baseline network architecture described in Subsect. 3 with mini-batch size 2 (due
to memory limitations). For updating NN parameters we use standard SGD
optimization with a starting learning rate l=0.01 and step decay d = 0.1 every
10 epochs. We use the cross-entropy loss for the network training. We stop the
training after 30 epochs and reach 99.28% recognition accuracy on synthetic
data on the testing set.

The numeral results look very promising, however, our network did not learn
to segment only the text. On the real documents, the network learned to filter out
unwanted background spots and paper inaccuracies, but leaves other unwanted
text elements (for example text underlining, line margins, etc.) intact, see Fig. 2.
This phenomenon occurs because these types of anomalies aren’t present in our
synthetic data. Nevertheless, we believe that this approach can be used as a part
of a preprocessing pipeline for the standard OCR algorithms.

Fig. 2. A result (on the right) of the semantic segmentation for the text class of the
real historical document (on the left).

According to Hajic et al. [5], for NN it should be easier not to segment
characters directly, but to segment their convex hulls. Inspired by this idea, we
regenerate our synthetic data labels to obtain convex-hull maps. Then we train
the same NN architecture to convex hull prediction with the same settings as in
the previous experiment. This step decreased error by 0.27% absolute error on
the test set (which is a relative improvement by 37.50%), see Table 4, but still
did not solve the problem with unwanted text elements.

4.2 Single-Character Classification

In our second experiment, we train NN to semantic segmentation of an input
image into one of 107 classes (one class for each text character of Czech lan-
guage and one for the background), i.e. we train NN to perform single-character
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Table 4. Results of per pixel recognition accuracy of two-class segmentation on the
real document.

NN architecture Development set Test set

Direct-char 99.32% 99.28%

Convex-hull 99.60% 99.55%

segmentation. This approach should solve the problem from the previous sub-
section. All experiments in this subsection have the same training settings as the
ones in the previous subsection. We firstly train two baseline NN architectures
for both direct-character segmentation, and convex-hull segmentation. We reach
recognition accuracy of 97.75%, 97.58% respectively. Qualitatively these results
look good, however, we find out that the network provides an almost flawless
prediction for frequent characters like a or e, but completely ignore the rare
ones like F or G. This phenomenon stems from their unbalanced frequency in
the training data as our training data preserve the nature of the Czech language.

To overcome this flaw we need to motivate our network to stop ignoring the
rare classes. Therefore, we decided to weight the loss from individual classes w.r.t.
their frequency, i.e. the loss from less frequent classes has a bigger weight than
from the more frequent ones. The frequencies of individual characters needed for
calculating the weight matrix were obtained from 10 thousand synthetically gen-
erated documents. With weighted categorical cross entropy we reached slightly
better results, see Table 5.

Table 5. Results of per pixel recognition accuracy of single-character segmentation on
the test set.

NN architecture Direct-char Convex-hull

Baseline 97.75% 97.58%

Baseline weighted 97.83% 97.75%

Improved 99.14% 99.17%

Improved weighted 99.53% 99.52%

After this experiment, we test a few modifications to our baseline NN archi-
tecture. The results from the best one (Improved) and the same one with
weighted categorical cross entropy are listed in Table 5. For a detailed description
of the architecture see Sect. 3. We also provide qualitative results on Fig. 3.

Overall, the final settings provide very good results, which, as we believe,
can be utilized as a part of a novel OCR algorithm for historical documents
in the future. The algorithm still has some problems to correctly segment rare
characters, especially in case of real documents. Moreover, in the segmentation
of the real documents there is still some noise present. In the future, we would
like to address these problems by employing more complex architecture and
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Fig. 3. A result (on the right) of the semantic segmentation for letter e of the real
historical document (on the left).

by extending our training data with more augmentations simulating other real
document features.

Finally, we would like to point out to one interesting finding during our
testing, that with our experimental settings convex-hull prediction reach only
comparable results. We believe, it is caused by the relative similarity of charac-
ters’ convex hulls and the characters themselves as opposed to the findings in
work [5] with convex hulls of musical symbols.

5 Conclusion and Future Work

Optical character recognition of full-text historical documents is a very chal-
lenging task, which, however, shows great importance in real-world applications.
We presented a method for semantic segmentation of this type of documents
into two classes: characters, and background. In the future, we are planning to
utilize this approach in a preprocessing pipeline for a standard OCR algorithm.
With a small modification of this method, we obtained semantic single-character
segmentation, which reached very promising results.

In our future research, we would like to focus on an extension of our training
dataset and testing more complex architecture with residual skip connections.
We believe, that with these changes we will solve the problem of rare character
segmentation and therefore will have a reliable tool to easily digitize typewriter
documents of all different kinds.
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Abstract. This paper addresses the acoustic echo issue in communication
systems which affects the quality of the transmitted speech. This echo occurs
due to the acoustic coupling between the loudspeaker and the microphone of the
voice terminals. Acoustic echo cancellation (AEC) based on adaptive filtering is
generally used to remove this undesirable echo where an adaptive algorithm
updates the filter coefficients iteratively until the convergence occurred. In this
paper, we propose a new approach of the filter coefficients updating for
improving the performance of the adaptive filtering algorithms. The proposed
approach is evaluated using the normalized least mean squares (NLMS) algo-
rithm with stationary and non-stationary input signals. The simulation results
demonstrate that the proposed approach outperforms the original NLMS algo-
rithm in terms of steady-state error reduction and echo return loss enhancement
(ERLE) improvement.

Keywords: Acoustic echo cancellation (AEC) � Adaptive filtering �
Filter coefficients update � Normalized least mean squares (NLMS) �
Steady-state error � Echo return loss enhancement (ERLE)

1 Introduction

The speech quality is one of the major performance indexes in communication systems.
In fact, the presence of background noise and acoustic echo effect the listener’s per-
ception where the voice communication would became difficult or even impossible [1].
The acoustic echo is caused by the reflection of sound waves and acoustics coupling
between the loudspeaker and the microphone on the teleconference and the hands-free
communication systems. Hence, acoustic echo cancellation (AEC) techniques are
generally used to remove this undesired echo and improve the speech intelligibility [2].
Moreover, adaptive filtering is considered as the most effective solution of this prob-
lem. The adaptive filter contains two blocks: digital filter and adaptive algorithm. Also,
a finite impulse response (FIR) structure of the digital filter is an attractive choice
because of the ease in design and stability considerations. Several adaptive filtering
algorithms are proposed to update the filter coefficients, including least mean squares
(LMS) [3], recursive least squares (RLS) [4], affine projection (AP) [5] algorithms, etc.
The filter coefficients updating is the corner stone of the adaptive filtering algorithm.
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A. A. Salah et al. (Eds.): SPECOM 2019, LNAI 11658, pp. 150–159, 2019.
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It allows to achieve an optimum coefficients values able to reduce the effect of the echo
signal. In addition, a step-size value should be well selected to achieve a good behavior
of the adaptive algorithm.

In this paper, we investigate in the step-size parameter of the adaptive filtering
algorithm for acoustic echo cancellation. Many works have been proposed in this task
to improve the adaptive filtering algorithms like variable step-size versions [6–10] and
partial update [11–15].

The rest of this paper is organized as follow. Section 2 provides the principle of
AEC based on adaptive filtering with discussion of the NLMS algorithm. In Sect. 3, the
proposed approach of the filter coefficients updating is presented. Section 4 illustrates
the simulation results obtained by the proposed approach, and Sect. 5 presents some
conclusions.

2 Adaptive Filtering Based Acoustic Echo Cancellation

Acoustic echo cancellation is considered as a system identification issue, when the
main role of the adaptive filter is to estimate the echo path between the loudspeaker an
the microphone. This echo path is modeled by the impulse response of the loudspeaker-
enclosure-microphone (LEM) system [16]. In addition, the adaptive filtering choice for
acoustic echo cancellation assures a simultaneous full-duplex communication and
keeps the speakers more comfortable.

The principle of AEC is shown in Fig. 1, where the basic steps of the AEC can be
summarized as follow:

1. Estimate the characteristics of echo path (impulse response h).
2. Create a replica of the echo signal (estimated echo ŷ nð Þ).
3. The estimated echo signal ŷ nð Þ is then subtracted from microphone signal d nð Þ to

remove the undesirable echo y nð Þ. Adaptive filter w nð Þ is a good supplement to
achieve a good replica because of the echo path is usually unknown and time-
varying.

The acoustic echo signal y nð Þ is the filter resulting from the far-end signal x nð Þ through
the LEM system impulse response h as is depicted in Fig. 1.

At each sample time n, the echo signal is modeled by the following equation:

y nð Þ ¼ xT nð Þh ð1Þ

where

h ¼ h0 h1; . . .hL�1½ �T ð2Þ

L is the length of the echo path, the superscript �ð ÞT denotes transpose of a vector.

x nð Þ ¼ x nð Þx n� 1ð Þ; . . .x n� Lþ 1ð Þ½ �T ð3Þ

is the length-L history of the received signal, or far-end signal x nð Þ:
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The desired signal d nð Þ of the microphone input includes the echo signal y nð Þ, and
the background noise signal y nð Þ as:

d nð Þ ¼ y nð Þþ b nð Þ ð4Þ

In this paper we consider that the near-end signal is absent (single-talk scenario) for
evaluating the adaptive algorithm performance without the perturbation of the near-end
signal.

The adaptive filter generates an estimate of echo ŷ nð Þwhich is a linear combination of
several inputs at time n. This signal represents the echo replica which is expressed as:

ŷ nð Þ ¼ xT nð Þw nð Þ ð5Þ

where

w nð Þ ¼ w0 nð Þ w1 nð Þ; . . .wL�1 nð Þ½ �T ð6Þ

is the weight vector of the adaptive filter.
The error signal e nð Þ corresponds to the residual echo signal and it is obtained by

subtracting this estimate ŷ nð Þ from the microphone signal d nð Þ [8]. This error signal is
given by:

e nð Þ ¼ d nð Þ � ŷ nð Þ ð7Þ

The NLMS algorithm is the most popular adaptive filtering algorithms, due to its
low complexity and its robustness to finite precision errors. It’s used for updating the
filter coefficients in AEC context, which is defined as [4]:

w nþ 1ð Þ ¼ w nð Þþ l
xT nð Þx nð Þþ e

e nð Þx nð Þ ð8Þ
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Fig. 1. A basic structure of AEC system.
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where w nð Þ is the present tap weight value of the adaptive filter. l is the step-size
parameter which is used in the weight vector updating with 0\l\2, and e[ 0 is a
regularization constant that prevents division by a very small number of the data norm.

3 Proposed Approach of Adaptive Filtering Updating

Two main characteristics of the acoustic echo are: reverberation and latency. Rever-
beration is the persistence of sound after stopping of the original sound. Impulse
response is the pressure-time response function at the receiver position inside a room as
a result of an impulse excitation. The impulse response contains three main parts: the
direct sound, early reflections and late reverberation as is depicted in Fig. 2 [17].
Various types of reverberation formulae are derived. Most of those formulae feature
exponentially decay of reverberation in a room [18].

The sound level decays exponentially over time in the room, so generally the
evolution of the acoustic impulse response represents an exponential decay. Moreover,
to estimate the impulse response, the update of non-significant coefficients (late
reverberation) and significant coefficients (early reflections) by the same step-size value
slow-down the global convergence of the filter coefficients.

For this reason, we propose a new strategy of adaptive filtering update based on a
weighted updating. In this proposition, the filter coefficients are not updated by the
same step-size value when the step-size parameter l is replaced by a vector l. This new
vector contains step-size values which vary according to the exponential function over
the length of the adaptive filter which is defined as:

l ¼ l exp �ktð Þ ð9Þ
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Fig. 2. Room impulse response.
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where l is the step-size parameter, t ¼ 1; . . .; L and k is the exponential decay constant
with 0\k\1, min lð Þ[ 0 and max lð Þ\2. Generally, the length of the adaptive filter
L is chosen to be equal to the length of the impulse response.

The update of the filter coefficients by the new approach for NLMS algorithm can
be expressed as follow:

w nþ 1ð Þ ¼ w nð Þþ e nð Þ
xT nð Þx nð Þþ e

lx nð Þ ð10Þ

Figure 3 shows an example of acoustic impulse response of room with 512 samples
of length in blue, also exponential function curves for different values of the expo-
nential decay constant k with step-size l equals to 1. These curves represent the step-
size values distribution for the filter coefficients update where the non-significant
coefficients have small values of the step-size compared to the significant coefficients.

4 Simulation Results and Discussions

In the evaluation task, we have used two types of inputs signals: stationary and non-
stationary signals. The stationary signal is presented by a white Gaussian noise (WGN).
On the other hand, speech signal taken from the TIMIT database [19] is used to
evaluate the proposed approach for the non-stationary input signal and simulate AEC
scenario. This signal represents the far-end speaker signal. These input signals are
sampled at 16 kHz and they are plotted in Fig. 4.
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Two measured impulse responses are used to model the echo paths: the first one
consists of 1024 samples [20] and the second 512 samples [21] as shown in Fig. 5.

The AEC system based on adaptive filter uses NLMS algorithm to update their
coefficients with, l ¼ 0:9 and e ¼ 2:2204� 10�16. The length of this filter L is equal to
the length of the echo path. Hence, the acoustic echo signal y nð Þ is resulting from the
linear convolution between the input signal and the measured impulse response (echo
path).

In order to evaluate the proposed approach, we have used two criteria measures: a
normalized misalignment (system mismatch) and echo return loss enhancement
(ERLE) with a total number of iterations N ¼ 40000. These criteria are defined as:

Misalignment dBð Þ ¼ 10 log10
w nð Þ � hk k2

hk k2
" #

ð11Þ
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Fig. 4. The input signals. (a) the stationary signal, (b) the non-stationary signal.
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where w nð Þ � hk k is the Euclidian distance between the adaptive coefficients vector
w nð Þ and the real echo path vector h, and hk k is the Euclidian norm of h.

ERLE dBð Þ ¼ 10 log10
E y nð Þj j2
h i

E e nð Þj j2
h i

8<
:

9=
; ð12Þ

where E :½ � denotes mathematical expectation. The role of AEC system is to minimize
the misalignment and maximize ERLE.

The real environment is modeled by a white Gaussian background noise signal b nð Þ
that is added to the echo signal y nð Þ at different signal-to-noise ratio (SNR) values,
where

SNR dBð Þ ¼ 10 log10
E y nð Þj j2
h i

E b nð Þj j2
h i

8<
:

9=
; ð13Þ

Figures 6 and 7 show the misalignment and the ERLE curves for the stationary
input signal using the echo path (a) and the echo path (b), respectively. A jump is
realized at 20000 iterations to simulate a change in the echo path and test the tracking
capability. These learning curves demonstrate good performance of the proposed
approach compared to the classical NLMS algorithm in terms for misalignment steady-
state error minimizing and maximizing of the ERLE values. Also, the proposed
approach has a good tracking capability in echo path change situations.
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The obtained results in Figs. 8 and 9 confirm that the proposed approach has a
better performance in terms of small steady-state error and large values of the ERLE for
the non-stationary input signal using the two echo paths. These results denote that the
proposed approach can reduce the effect of the acoustic echo and enhance the com-
munication quality.

The temporal evolution of the error signal e nð Þ (residual echo) for the NLMS and
the proposed approach is plotted in Fig. 10. From this result we can note that the
proposed approach performs well in acoustic echo cancellation scenario compared to
the original NLMS in terms of residual echo reduction. Therefore, it can improve the
speech quality in the communication systems.
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Fig. 7. Evaluation curves of the NLMS and the proposed approach for WGN input signal with
the acoustic echo path (b) of 512 taps, l ¼ 0:9, k ¼ 0:008, SNR ¼ 20 dB. Left: misalignment
curves, right: ERLE curves.
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5 Conclusion

In this paper, we have proposed a weighted updating of the adaptive filter coefficients
for acoustic echo cancellation. The basic idea behind this work is the use of the
significant degree to update the filter coefficients where a small step-size is used to
update a non-significant coefficient and vice versa. The performance of the proposed
approach is verified using stationary and non-stationary input signals. This proposed
approach provides better performance than the original NLMS algorithm in terms of
steady-state error reduction, echo return loss enhancement maximization and has a
good tracking capability. Also, it shows robustness against background noise.
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0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

-1.5

-1

-0.5

0

0.5

1

1.5

Sample number

M
ag

ni
tu

de

Echo signal
NLMS
Proposed approach

Fig. 10. Comparison between the temporal evolution of the residual echo of the NLMS
algorithm and the proposed approach with the acoustic echo path (a) of 1024 taps, l ¼ 0:9,
k ¼ 0:005, SNR ¼ 30 dB.

158 M. Hamidia and A. Amrouche



References

1. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Noise Reduction in Speech Processing, vol. 2.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00296-0

2. Hamidia, M., Amrouche, A.: A new robust double-talk detector based on the Stockwell
transform for acoustic echo cancellation. Digit. Sig. Process. 60, 99–112 (2017)

3. Widrow, B., Stearns, S.D.: Adaptive Signal Processing, 1st edn. Prentice-Hall, Inc.,
Englewood Cliffs (1985)

4. Haykin, S.S.: Adaptive Filter Theory, 4th edn. Prentice-Hall, Englewood Cliffs (2002)
5. Ozeki, K., Umeda, T.: An adaptive filtering algorithm using an orthogonal projection to an

affine subspace and its properties. Electron. Commun. Jpn. Part I: Commun. 67(5), 19–27
(1984)

6. Cho, J., Baek, H.J., Park, B.Y., Shin, J.: Variable step-size sign subband adaptive filter with
subband filter selection. Sig. Process. 152, 141–147 (2018)

7. Huang, F., Zhang, J., Zhang, S.: Combined-step-size normalized subband adaptive filter with
a variable-parametric step-size scaler against impulsive interferences. IEEE Trans. Circuits
Syst. II Express Briefs 65(11), 1803–1807 (2018)

8. Hamidia, M., Amrouche, A.: Improved variable step-size NLMS adaptive filtering algorithm
for acoustic echo cancellation. Digit. Sig. Process. 49, 44–55 (2016)

9. Huang, H.C., Lee, J.: A new variable step-size NLMS algorithm and its performance
analysis. IEEE Trans. Sig. Process. 60(4), 2055–2060 (2012)

10. Vega, L.R., Rey, H., Benesty, J., Tressens, S.: A new robust variable step-size NLMS
algorithm. IEEE Trans. Sig. Process. 56(5), 1878–1893 (2008)

11. Godavarti, M., Hero, A.O.: Partial update LMS algorithms. IEEE Trans. Sig. Process. 53(7),
2382–2399 (2005)

12. Werner, S., De Campos, M.L., Diniz, P.S.: Partial-update NLMS algorithms with data-
selective updating. IEEE Trans. Sig. Process. 52(4), 938–949 (2004)

13. Dogancay, K., Tanrikulu, O.: Adaptive filtering algorithms with selective partial updates.
IEEE Trans. Circuits Syst. II: Analog. Digit. Sig. Process. 48(8), 762–769 (2001)

14. Douglas, S.C.: Adaptive filters employing partial updates. IEEE Trans. Circuits Syst. II:
Analog. Digit. Sig. Process. 44(3), 209–216 (1997)

15. Dogancay, K.: Partial-Update Adaptive Signal Processing: Design Analysis and Implemen-
tation. Academic Press, Cambridge (2008)

16. Hamidia, M., Amrouche, A.: Effect of a signal decorrelation on adaptive filtering algorithms
for acoustic echo cancellation. In: the 5th International Conference on Electrical
Engineering-Boumerdes (ICEE-B), pp. 1–4 (2017)

17. Badeau, R.: Unified stochastic reverberation modeling. In: the 26th European Signal
Processing Conference (EUSIPCO), pp. 2175–2179 (2018)

18. Tohyama, M.: Sound in the Time Domain. Springer, Singapore (2018). https://doi.org/10.
1007/978-981-10-5889-9

19. Fisher, W.M., Zue, V., Bernstein, J., Pallett, D.S.: An acoustic-phonetic data base. J. Acoust.
Soc. Am. 81(S1), S92–S93 (1987)

20. Djendi, M., Bouchard, M., Guessoum, A., Benallal, A., Berkani, D.: Improvement of the
convergence speed and the tracking ability of the fast Newton type adaptive filtering (FNTF)
algorithm. Signal Process. 86(7), 1704–1719 (2006)

21. Yu, Y., Zhao, H.: Novel sign subband adaptive filter algorithms with individual weighting
factors. Sig. Process. 122, 14–23 (2016)

A New Approach of Adaptive Filtering Updating 159

http://dx.doi.org/10.1007/978-3-642-00296-0
http://dx.doi.org/10.1007/978-981-10-5889-9
http://dx.doi.org/10.1007/978-981-10-5889-9


Code-Switching Language Modeling with
Bilingual Word Embeddings: A Case
Study for Egyptian Arabic-English

Injy Hamed1(B), Moritz Zhu2, Mohamed Elmahdy3, Slim Abdennadher1,
and Ngoc Thang Vu2

1 Computer Science Department, The German University in Cairo, Cairo, Egypt
{injy.hamed,slim.abdennadher}@guc.edu.eg

2 Institute for Natural Language Processing, University of Stuttgart,
Stuttgart, Germany

{moritz.zhu,thang.vu}@ims.uni-stuttgart.de
3 Data Science Department, Raisa Energy LLC, Cairo, Egypt

melmahdy@raisaenergy.com

Abstract. Code-switching (CS) is a widespread phenomenon among
bilingual and multilingual societies. The lack of CS resources hinders the
performance of many NLP tasks. In this work, we explore the potential
use of bilingual word embeddings for code-switching (CS) language mod-
eling (LM) in the low resource Egyptian Arabic-English language. We
evaluate different state-of-the-art bilingual word embeddings approaches
that require cross-lingual resources at different levels and propose an
innovative but simple approach that jointly learns bilingual word repre-
sentations without the use of any parallel data, relying only on monolin-
gual and a small amount of CS data. While all representations improve
CS LM, ours performs the best and improves perplexity 33.5% relative
over the baseline.

1 Introduction

Code-switching is a common phenomenon in multilingual communities where
people use more than one language in a conversation [22]. Due to several factors
such as colonization, the rise in education levels and international business and
communication, code-switching is seen in several Arab countries, such as Arabic-
French in Morocco, Tunisia, Algeria, and Lebanon and Arabic-English in Egypt,
Jordon and Saudi Arabia. CS is becoming widely used in Egypt, especially among
urban youth, which has motivated research in the NLP field in that direction
[14,25]. As shown in [15], Egyptians mix the three languages: Modern Standard
Arabic, Dialectal Arabic and English, thus posing challenges to NLP tasks. With
the widespread of CS due to globalization, more attention from the speech and
language research community has been given towards building NLP applications
that can handle such mixed-language input. However, given the scarcity of CS
data, NLP tools often fail or need to be extensively adapted to perform well on
CS data [4], including the LM task. Language modeling (LM) is a widely-used
c© Springer Nature Switzerland AG 2019
A. A. Salah et al. (Eds.): SPECOM 2019, LNAI 11658, pp. 160–170, 2019.
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technique in many NLP applications, including Automatic Speech Recognition
(ASR) systems. The performance of language models on code-switched data
are greatly hindered by data sparsity problem. The problem of data sparseness
affects the performance of traditional n-grams and neural-based LMs, as many
word sequences can occur in the testing data without being present in the train-
ing data.

Previous work proposed several techniques such as artificial CS text gener-
ation using statistical machine translation-based methods [29] and integrating
linguistic knowledge in recurrent neural networks and factored LMs [1] or to
pose constraints on CS boundaries [36]. Another option is leveraging multi-task
learning, where the model jointly predicts the next word and POS tagging on
CS text. Recently, [10] proposed dual LMs, where two complementary mono-
lingual LMs are trained separately and then a probabilistic model is used to
switch between them. This approach overcame the problem of limited CS data
by relying on the large amounts of monolingual data.

In this paper, we address the data sparseness problem in CS LM from a
different perspective, leveraging the advantages of representing words using con-
tinuous vectors [3,21,24]. We explore the use of bilingual word embeddings1 as
shared latent space to bridge the gap between languages in CS LM for Egyptian
Arabic-English. Compared to other previous work, our proposed method does
not require any external knowledge, e.g. generated from a part-of-speech tagger
or a syntax parser which is not a trivial task in the CS context [4]. To the best
of our knowledge, this work is the first research towards this direction. We com-
pare different bilingual embeddings using state-of-the-art approaches that rely
on different levels of cross-lingual supervision; word-aligned [19] and sentence-
aligned [16] parallel corpora, and a bilingual lexicon [9]. Moreover, we propose
two new approaches, where the first approach only relies on monolingual and
small CS corpora (Bi-CS) and the second approach combines two of the existing
approaches [9,19]. We investigate their impact on LM as well as evaluate them
intrinsically on monolingual and bilingual tasks. Our results reveal that bilin-
gual embeddings improve LM, with our proposed bilingual embeddings (Bi-CS)
performing best, achieving 33.5% relative improvement in perplexity (PPL) over
the baseline.

2 Related Work

Bilingual word embeddings have proven to be a valuable resource to various NLP
tasks, such as machine translation [34], cross-lingual entity linking [27], docu-
ment classification [12], cross-lingual information retrieval [32], part-of-speech
tagging [13] and sentiment analysis [35]. Several approaches have been proposed
for building bilingual word embeddings, where the bilingual word representations
across multiple languages can be jointly learned, or where independently-learned
monolingual representations can be mapped to one vector space. For both tasks,
1 The bilingual word embeddings and the compiled Egyptian Arabic-English dictio-

nary and thesaurus can be obtained by contacting the authors.
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different forms of cross-lingual supervision are leveraged, including alignments
at word level [16], sentence level [12,16], both word and sentence level [19], or
document level [32,33], in addition to bilingual lexicons [9,13,30,35] and compa-
rable un-aligned data [33]. A comprehensive survey on crosslingual word embed-
ding models is provided by Ruder et al. [23]. The survey presents a comparison
between the models regarding their data requirements and objective functions,
as well as a discussion covering the different evaluation methods used for cross-
lingual word embeddings.

In [28], Upadhyay et al. present an extensive evaluation of four popular cross-
lingual embedding methods [9,16,19,31] that all require parallel training data,
but differ in the degree of data parallelism required. In this work, we propose a
new approach (Bi-CS) for training bilingual word embeddings that requires no
level of cross-lingual supervision and compare it against the first three models
compared in [28] on two tasks: language modeling and concept categorization.
While the existing approaches require different levels of cross-lingual supervision
(word-aligned [19] and sentence-aligned [16] parallel corpora as well as bilingual
lexicon [9]), Bi-CS only uses monolingual data in addition to a small amount of
CS data. We also investigate integrating two of the existing approaches [9,19].

3 Data

CS Data For language modeling evaluation, we further extend the Egyptian
Arabic speech transcriptions obtained in [15]. The corpus contains a total of
14,191 Arabic and 7,758 English words, which shows high usage of the embedded
English language in the conversations. Out of the total 2,407 sentences, there
are 573 (23.8%) monolingual Arabic, 239 (9.9%) monolingual English and 1,595
(66.3%) CS sentences, which also shows a high rate of code-mixing. A sample of
the the corpus is given in Table 1.

Table 1. Samples from the Egyptian Arabic-English CS speech corpus. The ∗ marks
the start of the sentence.
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Resources for Bilingual Embeddings For word embeddings training, we gath-
ered text from Facebook pages that are related to Egypt and tweets obtained
from Twitter with the location restricted to Cairo. The corpus contains a total
of 1,521,818 monolingual Arabic, 270,741 monolingual English and 123,445 CS
sentences, as further detailed in Table 2. We obtain parallel sentences from
LDC’s BBN Arabic-Dialect/English Parallel Text [37], containing 38,154 Egyp-
tian Arabic-English aligned sentences. All the embeddings were trained using
the text corpus and the parallel corpus. For BiCCA, we obtain 41,777 Egyptian
Arabic-English translation pairs from Lisaan Masy2 dictionary, out of which
14,812 translation pairs were found in our text corpus. We extracted the text
from the available PDF format and parsed it into a machine-readable format.
We also extracted an Egyptian Arabic-English thesaurus provided in the Lisaan
Masry dictionary for the intrinsic evaluation. The extracted thesaurus contains
a total of 43 general categories, divided into 356 sub-categories, each having an
average of 35 Arabic and 29 English words. After pruning to words available in
the text corpus, we end up with 40 general categories, 343 sub-categories, with
an average of 25 Arabic and 10 English words in each sub-category.

Table 2. The number of sentences gathered from Facebook and Twitter per language.

Monolingual Arabic Monolingual English Arabic-English CS Total

Facebook 634,914 140,954 61,210 837,078

Twitter 886,904 129,787 62,235 1,078,926

Facebook + Twitter 1,521,818 270,741 123,445 1,916,004

4 Bilingual Word Embeddings

We train bilingual word embeddings using three of the models compared in [28]
and propose two other simple extensions (BiCCAonBiSkip and Bi-CS). In order
to conduct a fair comparison between all algorithms, the same data is used for
training all word embeddings. Across all models, both corpora are used: the set
of Egyptian Arabic parallel sentences in [37] as well as the text corpus that was
gathered from the social media platforms.

Bilingual Compositional Vector Model (BiCVM) Hermann and Blunsom [16]
proposed to use sentence-aligned parallel data to train bilingual word embed-
dings. Their model is motivated by the fact that aligned sentences express the
same meaning and therefore have similar sentence representation. We train the
models using the parallel corpus, as well as the text corpus, where each sentence
in the text corpus acts as its own equivalent sentence. The models are trained
using both proposed composition functions used for summarizing a sentence;
2 http://eg.lisaanmasry.com/intro en/index.html.

http://eg.lisaanmasry.com/intro_en/index.html
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Fig. 1. t-SNE [20] visualization of BiCCAonBiSkip and Bi-CS for words in 3 clusters:
fruits (+), family (o) and professions (x).

additive (BiCVM add) and bigram (BiCVM bi) models. We train the models
using a hinge loss margin set to the embeddings dimension (m = d, as set
in [16]), noise parameter of 10, batch size of 50, L2 regularization with λ = 1, a
step-size of 0.05 and AdaGrad as the adaptive gradient method [6]. All models
are trained over 20 iterations.

Bilingual Correlation-Based Embeddings (BiCCA) Faruqui and Dyer [9] pro-
posed to project two (independently trained) vector spaces into a single space,
with the use of a translation lexicon. We investigate the use of continuous bag-
of-words (CBOW) and Skip-gram models [21] for the vector spaces before pro-
jection. The Arabic vector space is trained using the subset of Arabic and CS
sentences in the text corpus as well as the parallel corpus, while the English vec-
tor space is trained using the subset of English and CS sentences in both corpora.
CBOW models are trained with Negative Sampling, while Skip-gram models are
trained with Hierarchical Softmax. All models are trained with a window of size
5. For BiCCA projection, we set the number of canonical components k = 0.8.

Bilingual Skip-Gram Model (BiSkip) Luong et al. [19] proposed BiSkip to train
bilingual embeddings using parallel corpora with word alignments. Given a word
alignment link from w1 in language l1 to w2 in language l2, the model predicts
the context words of w1 using w2 and vice-versa. The model aims at creating
high-quality monolingual and bilingual embeddings by learning the context con-
currence information from the monolingual text, and the meaning equivalent
signals from the parallel corpus. As in BiCVM, the parallel and text corpora
provide the sentence-aligned data used for training the word embedding mod-
els. We use cdec [7] to lowercase, tokenize and generate word alignments for
the parallel corpus. For the sentences obtained from the text corpus, we use
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fake alignments, where each word is aligned with itself. The models are trained
with the same hyperparameters as given in [28]. We use a window of size 10,
cross-lingual weight of 4, 30 negative samples, and 5 training iterations.

BiCCAonBiSkip We observed that BiSkip model outperforms BiCCA and
BiCVM in monolingual and bilingual intrinsic evaluations. However, BiCCA
provides a vector space where similar words from both languages were most
closely represented. Therefore, we combine both best-performing approaches by
applying BiCCA on the output embeddings of BiSkip to draw the Arabic and
English word embeddings closer, while maintaining the high monolingual and
bilingual quality of BiSkip embeddings.

Bilingual CS Embeddings (Bi-CS) It is not always possible to find parallel cor-
pora or bilingual lexicons, especially for low-resource languages. In this work,
CS data is available for free which could be used as glue forcing the monolin-
gual embeddings being closer together in the shared vector space. Therefore,
we propose Bi-CS that jointly learns word representations of both languages by
training the Skip-gram and CBOW models on monolingual data of both lan-
guages in combination with a small amount of CS data. The models are trained
using the concatenation of all sentences in the text and parallel corpora. The
parallel corpus was used as a text corpus added to the training data in order to
unify the data used across algorithms to insure a fair comparison. However, the
Bi-CS approach does not require any parallel data. CBOW models are trained
with Negative Sampling, while Skip-gram models are trained with Hierarchical
Softmax. All models are trained with a window of size 5.

5 Language Modeling

Neural-Based LM We use TheanoLM3 (TLM) to train our recurrent neural
network (RNN) LMs [8]. As TLM does not allow the use of pretrained word
embeddings, we extend the implementation accordingly by adding an embedding
layer that is initialized with pre-trained embeddings and replaces the projection
layer in the small default architecture in [8]. The embedding layer weights are
then updated with the other layers. A neural language model with an LSTM
layer, followed by a softmax output layer is used. The embedding layer is of size
100 or 200, the LSTM layer has 300 LSTM cells and the softmax layer has the
vocabulary size. We use this network architecture in all experiments. All the
bilingual embeddings are filtered to only include words from the training data
to ensure an identical vocabulary across all experiments and comparable PPLs.
For all experiments, we fix the random seed, and optimize with AdaGrad [6]. We
set the mini-batch size to 16 and train until no improvement is observed on the
development set.

3 https://github.com/senarvi/theanolm.

https://github.com/senarvi/theanolm
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Experiment 1 In the first setting, the models are trained using the extended
speech transcriptions [15]. The corpus was divided into training, development
and testing sets as follows: 2040, 187 and 180 sentences. The division was made
taking into consideration having balanced sets in terms of speakers and genders.
The bilingual embeddings are filtered to only include words from the training set.

Results In Table 3, we compare the PPLs obtained using the bilingual word
embeddings for the first experiment. We only show the results obtained using
embedding dimension of 200, as they are superior over the dimension of 100. The
baseline LM with randomly initialized embeddings has a PPL of 300.2 on the
development set and 291.5 on the evaluation set. All bilingual word embeddings
outperform the baseline with a large margin. Despite the simplicity of the Bi-CS
approach, it achieves best results, giving a relative improvement of 33.5% in PPL
on the test set.

Experiment 2 In experiment 1, the substantial improvements in PPLs show
great potential in the integration of bilingual word embedding for improving CS
speech recognition. However, under this setting, the improvements in the PPLs
cannot be traced back exclusively to the incorporation of the pre-trained word
embeddings, as the LMs using the pre-trained word embeddings were given access
to more CS data over the baseline. Therefore, we conduct a second experiment
where all models are trained using the CS sentences obtained in our social media
text corpus. The word embeddings are also filtered to only contain the words in
that subset of the corpus. The Egyptian Arabic speech transcriptions obtained
in [15] are used in development and testing, where the corpus was divided evenly
into two sets.

Table 3. Experiment 1 - PPLs on the development and the test set

Experiment 1 Experiment 2

Dev Test Dev Test

Baseline 300.2 291.5 2146.7 2188.0

BiCVM add 226.3 228.1 1890.9 1994.1

BiCVM bi 225.3 217.7 1977.4 2102.9

BiSkip 224.9 220.9 1712.1 1851.5

BiCCA skip 249.5 241.4 2033.6 2156.6

BiCCA cbow 247.8 241.4 1956.8 2145.2

BiCCAonBiSkip 257.5 248.9 1988.9 2117.8

Bi-CS skip 223.2 214.5 1895.2 2016.6

Bi-CS cbow 204.7 193.6 1588.3 1697.0

Results In Table 3, we compare the PPLs obtained using the bilingual word
embeddings for the second experiment. The results are similar to those of the
first experiment, where all bilingual word embeddings outperform the baseline,
and Bi-CS gives the lowest PPL. The best-performing (Bi-CS) model achieves a
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relative improvement of 22.4% in PPL on the test set. It is to be noted that in this
setting, the PPLs are very high since the models are trained on text gathered
from social media platforms, while it is tested on speech text. This setting is
only used to confirm the effectiveness of using bilingual word embeddings in
low-resourced CS language modeling.

6 Intrinsic Evaluations

In this Section, we present intrinsic evaluations on the word embeddings. The
goal of bilingual word embeddings is to obtain distributed word representations
that are of high quality monolingually and bilingually; such that similar words
in each language and across different languages end up close to each other in
the embedding space. We evaluate both intrinsic objectives: (a) monolingual
objective using concept categorization task on Arabic and English words sep-
arately and (b) bilingual objective using concept categorization on words from
both languages.

Concept Categorization The task of concept categorization, also known as word
clustering, is to divide a set of words into n subsets. (e.g., correctly categorizing
the words in the set {teacher,apple,mango,scientist} into two subsets) The word
vectors are clustered into n groups (where n is determined by the gold standard
partition) using the CLUTO toolkit [17]. Clustering is done with the repeated
bisections with global optimization method and CLUTO’s default settings oth-
erwise, as outlined in [2]. Performance is evaluated in terms of purity, which
measures the extent to which each cluster contains words from primarily one
category, as defined by the gold standard partition. We created our own gold
standard partition using 12 concept categories from the compiled thesaurus. The
dataset consists of 211 Egyptian Arabic and 205 English words (or “concepts”).
In order to evaluate the word embeddings in terms of monolingual quality, we
report the clustering purity of the Arabic words and English words separately.
The overall monolingual purity is calculated as the average of both. For the
bilingual evaluation, we report the purity of clusters on all words from both
languages. The results are shown in Table 4.

Table 4. Intrinsic evaluations of bilingual word embeddings (Mono. = monolingual
and Bi. = bilingual)

ARB EN Mono. Bi.

BiCVM add 32.2% 24.9% 28.6% 27.2%

BiCVM bi 26.5% 23.9% 25.2% 23.1%

BiSkip 64.5% 38.0% 51.3% 41.6%

BiCCA skip 42.2% 57.6% 49.9% 43.0%

BiCCA cbow 36.0% 52.7% 44.4% 38.2%

BiCCAonBiSkip 70.6% 46.8% 58.7% 43.0%

Bi-CS skip 56.4% 48.8% 52.6% 42.3%

Bi-CS cbow 57.8% 46.8% 52.3% 43.0%
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Results The performance of the three models (BiCVM, BiSkip and BiCCA)
shows that BiSkip and BiCCA outperform BiCVM on all tasks. The order-
ing of BiSkip and BiCCA is task-dependent: BiSkip achieves better results on
Arabic monolingual task, while BiCCA performs better on the English mono-
lingual task as well as the bilingual task. By combining both approaches, the
BiCCAonBiSkip model outperforms all other models for both monolingual and
cross-lingual categorization tasks. This shows that BiCCAonBiSkip is able to
bring the crosslingual word vectors closer without compromising the high-quality
embeddings provided by BiSkip. Figure 1 presents a t-SNE [20] visualization of
word embeddings obtained by BiCCAonBiSkip for words in three clusters: fruits,
family and professions, in which words from both languages can be observed
within clusters. Surprisingly, Bi-CS, which is trained in a completely unsuper-
vised manner, displays good performance, outperforming BiSkip, BiCCA and
BiCVM which rely on richer resources. This is an interesting observation, as
it is usually the case that models trained with weaker supervision show lower
performance on semantic tasks [28].

7 Discussion

While all models show varying performance across tasks, Bi-CS achieves good
performance consistently, outperforming all models in LM, and performing sec-
ond best on the categorization task. This highlights the effectiveness of the Bi-CS
model, especially that it requires the least data and supervision requirements.
When comparing the performances of the other models, we find that the their
ordering is inconsistent within categorization, as well as across categorization
and LM tasks. This observation is in-line prior work [11,26,28] reporting that
performances are task-dependent. It is interesting to note that the models show
almost opposite ordering of performances (excluding Bi-CS). The performance
mismatch is most obvious for BiCCAonBiSkip (achieving highest performance in
categorization and least in LM) and BiCVM (ranking last in categorization and
second best in LM). The mismatch can also be seen in the additive and bigram
composition functions used by BiCVM, where the former performs better in the
categorization tasks, while the latter shows better results in LM. Furthermore,
when comparing CBOW and Skip-gram models, we find that Skip-gram models
(mostly) outperform CBOW models in the categorization task, while CBOW
models are superior in LM. It is also to be noted that word embeddings fuse
multiple word senses (or meanings) into one representation. Given that sense
embeddings have shown improvements in NLP tasks [5,18], it would be interest-
ing to further improve our embeddings to incorporate the different word senses
and investigate its effect on the categorization and CS LM tasks.

8 Conclusion

We investigated the use of various state-of-the-art bilingual word embeddings for
improving CS LM. We explored various state-of-the-art approaches that require
different levels of cross-lingual supervision for training the embeddings. In order
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to relax the need for parallel corpora and bilingual lexicons, which are usually
scarce, we proposed Bi-CS, a simple, yet effective model. Bi-CS only requires
monolingual corpora along with a small amount of CS data, and can thus be
more easily applied to low-resource languages. All LMs using bilingual word
embeddings outperformed the baseline trained with randomly initialized word
embeddings. Bi-CS gives the best performance, achieving a relative improvement
of 33.5% over the baseline. It also outperforms the existing approaches on the
intrinsic evaluation. In future work, we plan to investigate the effectiveness of
incorporating the bilingual word embeddings into language modeling on the task
of automatic speech recognition.
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33. Vulić, I., Moens, M.F.: Bilingual distributed word representations from document-
aligned comparable data. JAIR 55, 953–994 (2016)

34. Wang, R., Zhao, H., Ploux, S., Lu, B.L., Utiyama, M., Sumita, E.: Graph-based
bilingual word embedding for statistical machine translation. TALLIP 17, 31
(2018)

35. Wick, M., Kanani, P., Pocock, A.C.: Minimally-constrained multilingual embed-
dings via artificial code-switching. In: AAAI, pp. 2849–2855 (2016)

36. Ying, L., Fung, P.: Language modeling with functional head constraint for code
switching speech recognition. In: EMNLP, pp. 907–916 (2014)

37. Zbib, R., et al.: Machine translation of Arabic dialects. In: NAACL, pp. 49–59
(2012)

http://arxiv.org/abs/1506.01070
http://arxiv.org/abs/1706.04902


Identity Extraction from Clusters
of Multi-modal Observations
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Abstract. In this paper, we present a method for identity extraction
from TV News Broadcasts. We define the identity as a set of multi-modal
observations. In our case it is the face of a person and a name of a person.
The method is based on agglomerative clustering of observations. The
resulting clusters represent individual identities, that appeared in the
broadcasts. To evaluate the accuracy of our system, we hand labelled
approximately one year worth of TV News broadcasts. This resulted
in total of 10 301 multi-modal observations and 2563 unique identities.
Our method achieved a coverage measure of 90.69 % and precision mea-
sure of 94.69 %. Given the simplicity of the proposed algorithm, these
results are very satisfactory. Furthermore, the designed system is modu-
lar and new modalities can be easily added.

Keywords: Identity extraction · Agglomerative clustering ·
Face recognition · Text reading

1 Introduction

Identity is a complex concept and is defined in many domains suiting the needs
for theoretical description and/or discrimination of phenomena in the given
fields. In this work, we are interested in identity of humans based on the percep-
tion of events directly or indirectly resulting from their physical manifestation,
via possible different electronic receptors. This definition of identity includes
abstract concepts such as name, address, passport number and so on, which are
not direct physical manifestations of people, but nevertheless bear the informa-
tion about their identity. Using observations of different attributes of people, we
want to automatically extract identities - groups of observations produced by
a single person. An important attribute of such autonomous system should be
its scalability according to the different types of observations. If we want to add
an observation (modality) into the description of the identity, the system should
enable it with little effort. Furthermore, an identity as naturally understood,
c© Springer Nature Switzerland AG 2019
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does not change with time, or location, or other seemingly marginal conditions.
This is difficult from our perspective, since the appearance and thus observa-
tions of different modalities can be strongly conditioned by above-mentioned
circumstances (people grow in time, their voice changes, they dress differently in
different environments, change names or appearance using surgery and so on).
That is why we need to define another term – Persona as a subset of Identity.
To test the usefulness of such definition of identity, we will test an algorithm of
agglomerative clustering for automatic extraction of identities. We will demon-
strate the effectiveness of the algorithm on a data-set of TV News Broadcasting.

2 Definitions and Methods

In this section we provide formal definitions of terms used in this paper and
describe the methods used in the algorithm.

2.1 Identity

Identity Ω is a set of personae Πi representing the same person.

Ω = {Πi}Ni=0 , (1)

where N is the number of personae clusters in the dataset under consideration.
The concept of persona is explained in the next Section.

2.2 Persona

Persona Π is a set of multi-modal observations Oi of the same person in similar
circumstances - appearance, age, same name, and so on.

Π = {Oj}Mj=0 , (2)

where M is the number of observations. The similar circumstances are implicitly
defined by the quality of the uni-modal detectors/descriptors. A poor descriptor
will generate more personae than a good one. The better the descriptors, the
better personae representation we obtain.

2.3 Multi-modal Observation

A multi-modal observation O is a set of multiple uni-modal observations zX .

O =
{
zXiX

}K

X=0
, (3)

where X is the type of modality (face, age, gender, name, ...) , iX is the ith obser-
vation in modality X. The observation O does not necessary need to describe one
person. It is just a hypothetical description of a person and another algorithm
will decide whether it describes one person or not. The observations zXiX that
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form one multi-modal observation, must be time correlated. The time correlation
is dependent on the nature of the relationship between individual modalities and
needs to be designed for each pair of modalities.

In this paper we are focusing on two modalities - face of a person and a
name of a person. The observations from the modality X = face are feature
vectors representing the appearance of faces in a face-track extracted from a
video sequence.

zfacei =
{
xt
0, y

t
0, x

t
1, y

t
1, f

}t1

t=t0
, (4)

where t0, and t1 are the start, and the end time of the observation, xt
0, y

t
0, x

t
1, y

t
1

are the top-left and the bottom-right corners of the bounding box of the detected
faces in individual time instances, f is a median feature vector computed from
individual feature vectors in different time instances. The faces are detected and
described using a commercial software Eyedea1. The facial description is created
by a deep convolutional network outputting a 256-dimensional feature vector of
unit length. The network was trained so that it produces an embedding where
similar faces lie close and different faces are far apart. First experiments with
similar approach using Siamese neural networks were published in [1]. A direct
estimation of the embedding was introduced in [5] in a form of computing a
triplet loss. This approach was further developed in [2,3,6]. The Eyedea software
is based on the concepts developed in these papers. The face-tracks are obtained
by merging faces regions that have a large overlap in consecutive frames and
have similar feature vectors. The bounding boxes of individual detections are
stored for later usage.

The observations from the modality X = name are textual hypotheses of
first and last name of a person as appeared in a video sequence.

zname
i =

{
xt
0, y

t
0, x

t
1, y

t
1, sfn, sln

}t1

t=t0
, (5)

where t0, and t1 are the start, and the end time of the observation, xt
0, y

t
0, x

t
1, y

t
1

are the top-left and the bottom-right corners of the bounding box of the detected
text in individual time instances, sfn, and sln are the textual representations of
first name, and last name respectively. They are often in a form of hypotheses,
because of the ambiguity of the result of the text reader. The texts are obtained
by a two-stage algorithm. In the first stage the texts are detected using methods
from [7]. The results are regions in images in the form of rotated rectangles.
In the next stage, these regions are normalized and inputted into a reading
Convolutional Neural Network as in the work [4]. To obtain the text-tracks we
apply similar algorithm as for the faces. If we detect similar regions in consecutive
frames with similar textual representation, we merge the detections into one
track. To differentiate between a text representing a name and normal text we
compare the texts to a lists of first and last names. We have lists containing
thousands of names covering nationalities all over the world. We match the
recognized words to this list and if the Levenshtein distance is lower or equal

1 http://www.eyedea.cz.

http://www.eyedea.cz
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to one, we assume the recognized word is either a first or last name. Next, we
assume that the first name must be written before the last name, and on the
same line, which is typical for the data under consideration.

In this paper the multi-modal observations Oi are pairs of uni-modal obser-
vations Oi =

{
zfacea , zname

b

}
. For simplicity we will denote zface as zfa and zname as

zna . An example of how the multi-modal observations are obtained is visualized
in Fig. 1.

2.4 Time Correlation Functions

To obtain the mutli-modal observations, we need to know which uni-modal obser-
vations correspond together. For this, we design a special function which takes
pairs of uni-modal observations and outputs either 1 if the observations are cor-
responding, otherwise zero. In our case of facial and textual modalities we are
interested whether they appeared in a video stream at the same time.

f(zfa, z
n
b ) =

{
1, if

[
zfa (t0) , zfa (t1)

] ∩ [znb (t0) , znb (t1)] �= ∅
0, otherwise (6)

This means that the function in Eq. 6 outputs 1 if the uni-modal observations
have a non-empty overlap in time. Furthermore, one can set a minimal desired
duration of the overlap to obtain more probable mutli-modal observations. Also,
we want to make it clear that this function is specially tailored for the pair of
uni-modal observations at hand and for different types of modalities needs to
be designed in another way. Some modalities do not need to have an overlap in
time. For example, in TV News broadcasting the reporter can mention a name
of a person whose face appears after the utterance. In the case of text from
speech modality and face modality the function should reflect this in its design.
Important part is to find a common ground for the individual modalities, in this
case it is the time.

2.5 Multi-modal Distances

Since we use clustering for identity extraction, we need to define distances
between the multi-modal observations. We define the multi-modal distances as
a linear combination of uni-modal distances defined over the individual metrics.

d (Oi, Oj) = λ1d
n
(
zni , znj

)
+ λ2d

f
(
zfi , z

f
j

)
, (7)

where λ1 + λ2 = 1. For the distances in the text modality we use the well
established Levenshtein distance:

dn
(
zni , znj

)
= dfn

(
zfni , zfnj

)
+ dln

(
zlni , zlnj

)
, (8)

where

dfn
(
zfni

)
= min

a,b
levenshtein

(
zni [sfn (a)] , znj [sfn (b)]

)
(9)
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Fig. 1. Example of multi-modal observations when in correlated time instances there
were three faces detected and two names were detected. This would produce total of
six multi-modal observations. On the right, there is a representation of multi-modal
distances computation for two of the multi-modal observations. Note, that the multi-
modal observation share the same textual observation.

dln
(
zlni

)
= min

a,b
levenshtein

(
zni [sln (a)] , znj [sln (b)]

)
(10)

The minimum in the equations is carried out through the possible different
hypotheses of first and last names in the individual textual observations.

In the facial modality, we take advantages of modern approaches for face
recognition. Using a deep neural network, we obtain a robust representation of
the face in the form of a feature vector. In our case, the feature vectors lie on a
unit hyper-sphere and the distance between faces is computed as cosine distance:

df
(
zfi , z

f
j

)
=

1
2

(
1 − cos

(
∠zfi [f ] , zfj [f ]

))
(11)

To make the distances in individual modalities comparable, we need to nor-
malize them. Cosine distance, and hence the facial distance df , is normalized by
definition to interval 〈0, 1〉. To normalize the textual distance dn we define the
maximum Levenshtein distance for the first and last name to be 2. Any distance
larger than this is clipped to the value of 3. This means that any two names that
differ by more than 2 character operations in respectively first and last name
are considered to be maximally different. Then we can assume the individual
distances will be in interval 〈0, 3〉 and a simple normalization can be performed:
dnnorm = dn/6. For future reference, we will denote the normalized distance as dn.

As can be seen from Eq. 7, the multi-modal distance can be easily extended by
other modalities. The only requirement is that the individual uni-modal distances
are comparable, meaning they are normalized (a maximum distance exists). Nei-
ther the normalization nor linear combination of uni-modal distances break the
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multi-modal metric and hence the multi-modal distance is a proper distance
with all the properties. See Fig. 1 for graphical representation of multi-modal
distances computation.

3 Identity Extraction Using Agglomerative Clustering

The idea behind the usage of agglomerative clustering is that similar faces
observed with similar names will be merged into clusters in early stages of clus-
tering. The early stage creates relatively robust clusters of identities. Then comes
a late stage of clustering where several phenomena are occurring.

– Mistakes of the text reader are corrected, by joining the observations with
minor text mistakes with the already existing clusters.

– Atypical appearances of a person are being added to existing clusters thanks
to the similarity of observed names.

– Observations with non-corresponding name and face are being rejected.

The late stage ends, when the algorithm tries to merge observations with
different face and name into one cluster. The clustering algorithm is straightfor-
ward:

Result: Clusters representing individual identities.
All clusters are initialized as individual multi-modal observations
Πi = {Oi};
while any hard condition is True do

find the closest clusters Πi and Πj ;
compute hard conditions for each uni-modal distance;
if all hard conditions are True then

merge clusters Πi and Πj ;
end
if any (but not all) hard condition is False then

put smaller cluster into left-over clusters;
end

end
Algorithm 1. Algorithm for agglomerative clustering.

In Algorithm 1, to find the closest clusters we use a pre-computed distance
matrix. The distance between clusters is defined as the minimal distance between
the elements of the clusters d (Πi,Πj) = mina,b d (Oa, Ob) , a ∈ Πi, b ∈ Πj .
When clusters are being merged, the distance matrix is updated and the process
continues until the algorithm tries to merge clusters presumably representing
other identities.

3.1 Hard Conditions

The hard conditions are implemented for several reasons, the main one being the
stopping criterion for the clustering. They are evaluated for individual modal-
ities. When a hard condition is True, it means that it was passed and the
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considered clusters represent the same identity w.r.t. the analyzed uni-modal
observation. We define the conditions as thresholds imposed on the uni-modal
distances. When the distance is above the threshold it means that the uni-modal
observations are representing different identities w.r.t. the modality. The values
of the thresholds are set experimentally. In our case the threshold for the facial
modality is 0.3 and for the textual modality 0.5. These thresholds are also useful
for setting the values of weights λ1,2. We simply set λ1 = 0.3

0.3+0.5 = 0.375 and
λ2 = 0.625. This recipe can be used when adding modalities. One would use
formula

λi =

∑
k∈{1..N}\{i} τk

(N − 1)
∑

l∈{1..N} τl
, (12)

where τi is a threshold belonging to the ith modality. This is supported by
the idea that the values of the thresholds represent the same condition but in
different modalities.

3.2 Leftover Clusters

If the closest clusters about to be merged broke at least one hard condition, it
is considered a conflict and needs to be resolved before proceeding. The most
frequent situation when this happens is when a fake identity tries to be merged
with a real identity. A fake identity is a set of multi-modal observations that
are not representing only one person. It will happen, for example, in the case
when in an image a name appears, but with several faces. The algorithm joins
all the faces with the name into individual multi-modal observations (since they
are time correlated), but only one (or none) are true, other are fake. Another
case is when the algorithm tries to merge two different people with the same
name, or two very similar looking individuals (e.g. twins) with different names.
The conflict is resolved by putting the smaller cluster into the set of leftover
clusters. Then the clustering continues. It is obvious that this process will yield
some errors, but in much more cases it will work correctly.

4 Experiments

To evaluate the efficiency of the approach, we prepared a data-set of multi-
modal observations. The data-set was obtained from approximately one year of
TV News Broadcast of the Czech National Television. A typical example of the
data under consideration can be seen in Fig. 2. Using the methods described
in Sect. 2.3 we obtained 10 301 multi-modal observations. These were manually
labeled using our own annotation tool. We recovered 2563 unique identities. The
chosen evaluation metrics are coverage and purity of the clusters.

coverage(R,H) =
∑

r∈R maxh∈H |r ∩ h|
∑

r∈R |r| , (13)
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Fig. 2. An example image from Czech TV News Broadcasting data-set. There are two
face observations and two name observations resulting in total of four multi-modal
observations.

where R, and H are the sets of reference respectively hypothesized clusters.
Purity measurement is a dual representation, where the role of R and H is
interchanged. The values of purity and coverage fall into the interval 〈0, 1〉, where
1 is the best possible value. A pure cluster (purity = 1) is one that contains only
one identity. The best coverage is achieved, when one identity is represented by
just one cluster and not more.

Our presented method without any further modification achieved value of
coverage = 0.9069 and the value of purity = 0.9469. Although these results are
very satisfactory, they could be improved. When we observed the errors, we
noticed the problems arise mostly from non-definitive data. Many of the iden-
tities appear in the data only once (1778 out of 2563). If more faces appear
simultaneously with one name, the algorithm has a random chance to fail. But
in some cases even an expert cannot be sure to which face the name belongs.
Another typical error is that the host of the News broadcast appears with a name
more times than the person whose name it is. This could be addressed by mod-
elling all the hosts beforehand and use this knowledge in the clustering process.
Another open question is how to handle the leftover clusters. In small percentage
of cases there will be some proper clusters left in these leftover clusters. This is
already discussed in Sect. 3.2.

5 Conclusion

In this paper, we presented a method of identity extraction from TV News
Broadcast using unsupervised agglomerative clustering. The output of this algo-
rithm can be used for statistics computing, coverage computing, indexing and
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searching for people, and much more. We measure the quality of the results
using coverage-purity measurement and achieve coverage of 0.9069 and purity
of 0.9469. The designed system is modular and can be easily extended by using
other modalities. The condition is that it must be possible to measure distances
in the newly added modality. Since we compute the distance of clusters as the
minimal distance of points of these clusters, the modality does not need to be
represented in a vector space. Only the computation of distance must be pro-
vided (e.g. Levenshtein distance). Also, it should be noted that in the data under
consideration almost all identities were composed only by one persona. But in
future, this issue should be addressed and an approach of persona merging should
be implemented. Final remark is, that the practical intention with this algorithm
is to use it in a Human-in-the-loop scenario, when an expert would supervise the
clustering process to obtain errorless identities so that they can be modeled.
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Abstract. Common applications of an unmanned aerial vehicle (UAV,
aerial drone) utilize the capabilities of mobile image or video capturing,
whereas our article deals with acoustic-related scenarios. Especially for
surveillance tasks, e.g. in disaster management or measurement of artifi-
cial environmental noise in large industrial areas, an UAV-based acoustic
interaction or measurement can be important tasks. A sound and speech
signal processing at UAVs is complex because of rotor and maneuver-
related noise components. The signal processing has to consider various
sound sources, and the wanted signals (e.g. artificial environmental noise
or speech signals) have to be separated from the UAVs’ own flight and
wind noise. The contribution discusses the acoustic scenarios and some
acoustic characteristics of a sample UAV, including the effect of flight
maneuvers. We recorded speech signals in best practice with regard to
the outcome of our preliminary analyses and then conducted objective
speech quality measurements and speech recognition experiments with
a state-of-the-art recognizer. Aside, the measurability of environmental
noise signals is analyzed exemplarily. The article concludes with lessons
learned for acoustic UAV interactions or measurements and preliminary
thoughts with regard to a novel category of ’low-noise’ UAVs.

Keywords: UAV sound · Speech control · Speech quality ·
Intelligibility

1 Introduction

So far, the fairly limited research on UAV-related acoustics was directed to the
sound immission in humans – e.g. involving measurements of the sound pres-
sure level [1–3] and spectral analyses of overflight noise [4]. A few studies on
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influencing factors dealt with the number and type of rotor blades [5], the motor
rotation speed [1] and the differences between quad, tri or hexcopters [4].

While UAV-related image processing in civil and military environments was
intensively studied, a targeted sound processing turns out to be challenging due
to rotor and other noise at flying UAVs [4,5]. Also the processing of environ-
mental information was focused on electromagnetic signals or image processing,
including object recognition with a variety of camera techniques. Consequently,
the potential of sound or speech analysis directly at an UAV or in the near
field was not systematically analyzed, although the additional acoustic or speech
event analyses have some advantages over video-only analyses, including a lower
transmission bandwidth of acoustic signals with typically 6.6 . . . 23.85 kbps
(AMR-WB VoLTE) or 1,411 kbps (Wav uncompressed) in comparison to video
streaming, requiring 1.6 Mbps (720P HD, low quality H.264) . . . 16 Mbps (5MP,
high quality H.264) but also the possibility of intuitive interaction, as speech is
the most natural way for humans to interact [6].

For our acoustic study, it is necessary to distinguish between different sound
sources, e.g. noise which disturbs the analysis and the classification of external
signals such as speech commands, acoustic events (characterizing environmental
objects) or other useful signals that even allow a characterization of UAV oper-
ations or failures [3]. Except for the ultrasonic sensors, small consumer UAVs
do not provide acoustic recording facilities. Nevertheless, possible applications
of audio processing at the flying UAV include interesting use cases, such as the
recognition of speech commands or the classification of environmental sounds.

In this article, we summarize the conceptualization and some experiments
for a small sample UAV from [7–11], which include the acoustic characterization
of the sample UAV as well as speech command and environmental noise record-
ings at the operating UAV. Afterwards, the speech commands were assessed by
a speech recognizer and via the perceptual objective listening quality analysis
(POLQA) [12] to roughly estimate the communication quality or perceptibil-
ity of environmental sounds. After all, we revisit the sketched communication
scenarios and try some conclusions regarding an acoustic optimization of UAVs.

2 UAV-Based Communication Scenarios and Challenges

UAVs up to 25 kg are primarily used as airborne sensor platforms for surveil-
lance, monitoring, documentation tasks and disaster management [13,14]. The
transmission of the control and and mission data in almost all of these systems
is realized via a digital radio-data link. However, this connection can be affected
by topographic and electromagnetic interferences or might be not available. Fur-
thermore, the humans located within areas under surveillance are generally not
linked to the UAV and thus cannot establish contact with the UAV or its oper-
ator, as no interaction interface is available. A possible solution for trained res-
cue teams is a visual UAV control, e.g. by a gesture alphabet for operations
management [15,16]. Nevertheless, gesture-based solutions are not applicable
for untrained humans in a disaster scenario, since the team members are usually
not familiar with the gesture set. Therefore, we are aiming at a speech-based
interaction interface for UAVs as visualized in Fig. 1a.



182 O. Jokisch et al.

(a) UAVs in disaster management – direct communication sup-
port and cloud-computing supported operators

(b) UAVs in industrial noise measurement at unapproachable
locations, e.g. at wind turbines or chimneys

Fig. 1. Illustrations of speech/acoustic-enabled UAV operations.

Another field of application, which appeared recently, is the acoustic mea-
surement of environmental noise in impassable areas as demonstrated in Fig. 1b.
Two types of measures are distinguished: (a) the noise measurement directly at
the source of generation or (b) the noise measurement at areas under surveillance
(e.g. nearby living residents). Hereby, it is highly important to measure according
to pre-defined and comprehensible standards, cf. EU Directive 2000/14/EC [17].
The EU directive requires longer measurements at defined positions, and UAVs
are a good choice for impassable areas or measurements at big heights.
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3 Sound and Communication Experiments

In this section, we describe some acoustic experiments utilizing the small quad-
copter DJI Mavic Pro as our sample UAV platform. Beyond systematic sound
recordings in different microphone positions, the induced environmental noise
and some speech commands under extremely noisy conditions in the near field
were recorded. The most popular UAVs are designed to gather visual record-
ings and to have a stable flight avoiding movement blur. The flight noise does
not matter in camera UAVs, which results in loud UAVs. Table 1 summarizes
the sound pressure levels (SPL) of different UAVs, reported using similar mea-
surement conditions. It can be seen for various UAVs, that the SPL is high in
general, which is the main reason for challenging acoustic recordings.

Table 1. Sound pressure level (SPL) measurements for typical commercial UAVs,
sorted by SPL. The sample UAV is highlighted with gray.

UAV Weight Diameter SPL Reference
[kg] [cm] [dB]

DJI Mavic Air 0.430 21.3 98 [18]
DJI Mavic Pro 0.734 33.5 98 [18]
DJI Mavic Pro Platinum 0.734 33.5 98 [18]
Syma X5C 0.907 31.0 ∼82 [1]
DJI Inspire 1 Pro 3.400 56.0 81 [19]
SwellPro Splashdron 2.300 50.0 80 [19]
RC Eye One Xtreme 0.157 18.0 ∼66 [1]
Quad-rotor MUAS 2.100 65.0 ∼64 [20]

3.1 Acoustic Characteristics of the Sample UAV

The studied quadcopter (DJI Mavic Pro) weighs 734 g and has a thrust-to-weight
ratio (TTWR) of about 2.5 [10]. Figure 2 shows the UAV and the recording

Fig. 2. Measurement setup, microphone and recording phone [8].
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equipment including the mounting material (in total 102 g) – an omnidirec-
tional micro Rode smartLav+ (frequency range 20 Hz . . . 20 kHz) connected to
a hanging Jelly Pro smartphone. The additional UAV weight of 13.9 % reduces
the TTWR to ≈2.2, which slightly degrades the flight quality. To analyze the
influence of the recording positions onto different flight maneuvers, use cases and
environments, we placed the microphone at different positions on the UAV. The
smartphone as recording device was mounted in the UAV center to ensure an
appropriate weight distribution. Acoustic measurements at a flying UAV pose
some challenges, which affect the reducibility of the signal analysis and also the
potential of noise filtering. The flight control together with micro movements,
varying rotor speeds and other dynamic factors, such as turbulent flow or reflec-
tions, can hardly be synchronized with a harmonic or other analysis. All sound
samples were recorded at 44.1 kHz, 16 bit, WAV format (linear PCM).

For our acoustic analyses, five basic flight maneuvers have been considered
(hovering, climb, dive, directional flight and rotation). Both, sensor technology
and semi-automatic control of a commercial UAV limit the environmental test
scenarios: e.g., the crash protector prevents a close side-approach to walls, and
the barrier detection starts to intervene already ≈30 cm over ground. Hence,
we only recorded simple indoor and outdoor maneuvers like hovering under a
concrete ceiling or hovering over a wood plate, carpet, grassland or reed.

3.2 Speech Command and POLQA Tests

Beside gestures, a speech control represents a potential task in a close-by human-
UAV interaction. For this purpose we played random sequences of the seven Ger-
man commands “Halt”, “Stopp”, “Start”, “Fliege”, “Eins”, “Zwei” and “Drei”,
prerecorded at 44.1 kHz, linear 16 bit (mono) from a male voice aged 22. To
test different effects of rotor noise, microphone position and turbulent flow, we
simulated three (loud) speaker positions with two speaker-microphone distances
(SMD) of 0.5 and 1.0 m respectively, while the UAV was hovering.

To assess the possible improvement by automatic noise reduction (ANR),
we tested a single-channel ANR and a notch-filter method respectively [10] as
well as low-pass filtering with a cut-off frequency of 4 kHz. The UAV-recorded
command samples, including real-world noise and certain noise-reduced versions
of each command, were fed in random order to the Google Cloud Speech-to-Text
API without additional training or adaptation to the specific noise conditions.
In total, 735 command realizations were tested – in average 14 samples per
command, including the original and up to four noise-reduced versions.

Additionally, a POLQA test was targeting on the potential of a UAV-based
human-to-human interaction e.g. during rescuing activities. POLQA is an objec-
tive method to predict the overall speech quality as perceived by humans in an
ITU-T P.800 absolute category rating (ACR) listening-only test, [12,21] without
performing real human listening tests. We utilized POLQA in super-wideband
mode using SwissQual’s SQuadAnalyzer. The prediction algorithm reaches a sat-
uration level at a certain mean opinon score (listening quality objective, MOS-
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LQO) value. For clean high-quality super-wideband (SWB) samples this level is
considered 4.75.

3.3 Environmental Noise Measurement Setup

The decisive question for the use of an UAV-based environmental noise-measure-
ment scenario (Fig. 1b) is the chance of analyzing ambient signals with UAVs.
Exemplarily, we have examined three quite different environmental signals: (a) a
quiet vehicle at 80 km/h on a country road – limousine BMW 5 series, (b) a loud
vehicle at 30 km/h on a field – motocross motorcycle Yamaha JZF 250, and (c) a
loud and recurrent, tonal sound – a ringing bell in the church tower. The signals
were recorded at different microphone positions, in short distances of 1 . . . 5 m
to the measured objects, at which the vehicles passed under the UAV.

4 Results and Discussion

This section presents the acoustic characteristics of UAVs at different flight
maneuvers. Furthermore, the recognition rate of the speech-commands is given,
supplemented by a POLQA measurement to get a preliminary impression of
speech communication capabilities nearby an UAV, that need to be extended
by elaborate communication tests including humans in the loop. Finally, the
perceptibility of different environmental noise is analysed.

4.1 Generic Acoustic Characteristics

A representative rotation speed in the hovering mode is about 6,000 min−1.
Considering two blades, the associated blade passing frequency (BPF) results
in fBPF = 2 · fengine = 2 · 6, 000/60 s = 200 Hz. In Fig. 3a, the BPF and
its dominant harmonics can be observed in the frequency range up to ≈3kHz.
The additional, characteristic peaks in the frequency ranges 3.9 . . . 4.4 kHz and
6.5 . . . 7.5 kHz are related to the engine sound, as an affixed-UAV measurement
campaign showed. The overall decline of the curve characterizes the frequency
response of the microphone.

(a) Power density spectra of 2 s hovering
and recording of silence below

(b) Spectrogram of climb (start at 1.1 s)

Fig. 3. Acoustic measurement and analysis of different flight maneuvers.
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At the beginning of a climb maneuver, the rotation speeds are shortly
increased for UAV acceleration, before they turn back to the previous level, as
demonstrated in Fig. 3b within the time interval 1.1 . . . 2.5 s. The dive maneuver
(negative frequency shift at the beginning) results in analog spectral effects. As
the speed of directional flight is mainly controlled by the orientation angle of the
UAV, caused by slight modifications in the rotation differences only, the power
density spectra at lower UAV speeds like 10 or 30 km/h are quite similar [8].
For higher speeds like 60 km/h (sport mode), the power density in the range till
2 kHz is rising considerably. As a result, according to our experimental setup,
we can not find reproducible spectral patterns related to the tested indoor and
outdoor flight environments – even in short distances of 30 . . . 60 cm over ground
or under ceiling. Although the recorded signals are affected by sound reflections
and absorption, the spectra are presumably dominated by the influences of micro
position and flight maneuver.

4.2 Speech Command Analyses

In line with our previous acoustic characterization of the sample UAV, the har-
monic components of both, speech and rotor sounds, overlap to a large extent,
in particular in the frequency range till 2 kHz. Even for a short microphone dis-
tance of 0.5 m, the signal-to-noise ratio (SNR) averages at 0 dB only. Hence, a
command recognition without noise reduction is impossible, and a BPF-related
filtering of the rotor harmonics shows a limited success, as already described
in [10]. The perceptive assessment of the same commands via POLQA shows
that, regardless of the filtering method, the resulting MOS-LQO values are
only slightly varied and improved (1.18 . . . 1.21), which is still considered as
“bad” quality, cf. Table 2, whereas the MOS-LQO of the original speech sam-
ples scores 4.73, which is practically the reachable maximum in super-wideband
speech (4.75).

Table 2. Overall recognition rate (RR), rejections and MOS-LQO values of 343 signals
recorded with SMD ≈0.5m

Noise reduction SNR [dB] Rejections [%] RR [%] RR w/o rejections [%] MOS-LQO

– 0 (100.0) – – 1.18
ANR 20 89.80 10.20 100.00 1.21

Notch & low pass 5 69.39 28.57 93.33 1.17
Notch & ANR 25 53.06 32.65 69.57 1.17
Notch-filtering 3 46.94 51.02 96.15 1.20

Although the “ANR” method achieves an SNR improvement of about 20 dB,
it can not provide adequate input signals for the speech recognizer (rejection rate
of 89.8 %). The notch-filtering tries a targeted suppression of rotor harmonics
with only 3 dB improvement but it seems to work in narrow limits for ASR and
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POLQA. Regardless of the unacceptable rejection rate of still 46.9 %, the over-
all recognition rate (exclusive rejections) achieves 96.2 %, while the MOS-LQO
values are slightly improving from 1.18 to 1.20, see also Fig. 4. Unfortunately,
a correlation between the psychoacoustic modelling via POLQA, the noise-level
improvements (Fig. 4) as well as the recognition results cannot be revealed for
our samples.
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Fig. 4. Illustration of MOS-LQO values against Noise Level of the Probe (NL) in dBov
for the noisy ( ) and filtered signal ( ).

4.3 Environmental Noise Measurement Analyses

Regarding the also investigated induced environmental noise, we have made dif-
ferent observations. The car sound is almost completely masked by the UAV
noise (Fig. 5a), i.e., it is not clearly audible or detectable in the spectrogram,
apart from a short level reduction, which is presumably caused by the air blast in
the moment of passing. In contrast, the UAV-masked motocross sound (Fig. 5b)
and also the masked bell-ringing can be still detected at close distances.

(a) Spectrograms of noise-masked car sound (b) noise-masked motocross sound, 3 s

Fig. 5. Acoustic measurement of different induced environmental noise.
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5 Lessons Learned for the UAV Research in Progress

Acoustic interaction with UAVs and acoustic measurements at/nearby UAVs are
quite challenging. The quickly varying frequencies of blade passing and motor
sound can not be easily filtered and require the design of advanced filters, which
consider the known sound characteristics and flight maneuvers. Also moving
the sound recording from the UAV to a nearby location (e.g. using an arm
extension) can be considered. Hereby, it can be imagined that the microphone
hangs under the UAV on a rope or inflexible pole from the UAV’s center to
ensure an appropriate weight distribution. Such an “external” microphone can
be lowered closer to the human. The recording position would be out of the close
UAV range, and the noises are lowered. It has to be confirmed by experiments,
whether such approaches can ensure stable flight maneuvers. Beyond, we are
examining sound recordings with an 8-channel microphone array, supplemented
by a decided signal post-processing.

An alternative approach might be the design of specific ‘low-noise’ UAVs,
since a significant part of the noise results from flight-stabilizing maneuvers to
avoid motion blur in camera recordings. For acoustic recordings, highly-dynamic
flight stability can be ignored to some extend, which would reduce motor and
rotor noise. An acoustically improved UAV might provide lower velocity, thrust
and mobility but a significantly improved SNR. Furthermore, a successful design
of ‘low-noise’ UAVs might also serve strict acoustic demands, as e.g. in wildlife
monitoring [22,23], in which the currently available UAVs can stress wild animals
to a large extent [24].

6 Conclusions

Sound analyses at a small UAV are highly affected by the blade passing fre-
quencies and their harmonics, at which the recorded signals significantly vary
with the microphone position and the flight maneuver. With the best proposed
noise reduction method, unfortunately half of the commands are rejected but the
rest is correctly recognized. Thus, a conventional single or two-channel micro-
phone approach does not allow a proper analysis of sounds or speech commands.
And the command control is thus at the moment limited to non-time-critical
scenarios. Also the perception of wanted environmental noise, not to mention
the appropriate measurement, is quite challenging. Some possible solutions have
been indicated in the lessons-learned section, showing the potential of our future
research directions.
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Abstract. The paper presents an approach to the multimodal recognition of
dynamic and static gestures of Russian sign language through 3D convolutional
and LSTM neural networks. A set of data in color format and a depth map,
consisting of 48 one-handed gestures of Russian sign language, is presented as
well. The set of data was obtained with the use of the Kinect sensor v2 and
contains records of 13 different native signers of Russian sign language. The
obtained results are compared with these of other methods. The experiment on
classification showed a great potential of neural networks in solving this
problem. Achieved recognition accuracy was of 73.25%, and, compared to other
approaches to the problem, this turns out to be the best result.

Keywords: Gesture recognition � Sign language � 3D CNN �
Convolution LSTM � Human-Machine interaction

1 Introduction

Gestures as a form of nonverbal communication are of great importance in everyday
life and constitute different language systems and sub-systems: from the « body lan-
guage » to sign languages [1, 2]. Nowadays gesture recognition increasingly finds
applications in various domains associated with computer vision tasks, such as human-
machine interaction (HMI) [3] or virtual reality [4]. In a general sense, the gesture
recognition aims at comprehension of any meaningful movement of a person’s hand, or
hands, or other body parts. The problem of gesture recognition has not been resolved so
far due to variations between the sign languages of the world, noisy signing envi-
ronment, small size of articulators (hands, fingers).

The gesture recognition, in most cases, comes down to processing of a video
sequence, which provides the viewer with information about a part of the human body
and its coordinates in space and time [5]. The exceptions are the so-called static
gestures, involving no constant, dynamic articulator movements, and the time-space
coordinates are mostly one and the same for all the gesture time [6]. Complex gestures
involving different articulators and localizations also contribute to difficulties of gesture
recognition due to challenges of spatial feature extraction, where it finds out that the
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articulators are relatively small if compared to the whole picture. It seems reasonable,
therefore, that the process of gesture recognition should be based on processing of a
video sequence, not a single video picture, so that not only spatial coordinates, but also
time features could be extracted.

The rest of this paper is structured in the following way: in Sect. 2, current
approaches to sign language recognition are considered; in Sect. 3, a multimodal 3D
database of one-handed gestures of Russian sign language is presented, and the 4th
section depicts the proposed algorithm for a multi-modal recognition of specific ges-
tures of Russian sign language. The subject of Sect. 5 is a discussion of the results of
experiments, and the conclusions and perspectives of this investigation are drawn.

2 Related Work

Most of widely used methods and approaches, that have been applied by other
researchers to the gesture recognition task, are briefly outlined in this section.

The first method to be mentioned involves using of two-stream convolutional
networks [7] to extract space-time features of a gesture from integrated color
(RGB) and 3D frames (depth map) separately. The second way presupposes first
applying long-term recurrent convolutional networks (LRCN) [8] in order to extract
spatial features of each individual area, and then obtaining temporary gesture features
with the use of a recurrent neural network, based on the previously obtained spatial
information. Another method makes use of the VideoLSTM [9] architecture to use long
short-term memory (LSTM) [10] and extract the space-time features of gestures from a
chain of previously annotated 2D areas.

These methods are based on extraction of the spatial and temporal information at
different stages, or independently. Extracting both the spatial and temporal components
of a gesture would be an effective solution, considering the possibility of having a
complex background component on the scene. For example, 3D convolutional neural
networks [11] are used for simultaneous extraction of short-term space-time features.
However, it is LSTM networks that are best suited for storing temporary features. As
one could see above, it is reasonable to use a 3D convolutional neural network to
extract short-term spatial-temporal features and then use LSTM to extract spatial-
temporal dependencies from a long duration chain of frames. Such a 3D convolutional
LSTM network, due to its ability to store 3D spatial information, forms more efficient
spatial-temporal characteristics of a gesture.

Traditional approaches to gesture recognition usually involve handcrafted algo-
rithms [12], such as the support vector machine method [13], or machine learning
methods, e.g. Monte Carlo algorithms [14], hidden Markov models [15], neural net-
works of various design [8, 10, 16]. In paper [17], it is suggested to recognize the
trajectory of gestures (drawing letters with fingers in space) through the method of
structured dynamic time deformation (SDTW). The authors of another work [18] use
the hidden Markov models and the naive Bayes model to analyze the recognition of
dynamic gestures recorded via Kinect sensor. In [19], a system of static gesture
recognition is presented, based on geometric normalization of the hand regions and the
2D Krawtchouk moments. In paper [20], an adaptive space-time function is applied to
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represent information of external and temporal features of gestures using data from a
color camera and a depth sensor (RGB-D).

The aforementioned handcrafted algorithms are not very efficient because they do
not meet the requirements of practice-oriented gesture recognition systems being
unable to process simultaneously many factors during signing (noise of various nature
or occlusion on a video stream). Moreover, current methods that belong to the set of
“handcrafted” functions did not cope with the tasks that were set during the large
ChaLearn Looking at People (LAP) [21] Competition on static and dynamic gestures
recognition, held in 2016 within the framework of the International Conference on
Pattern Recognition (ICPR). On the contrary, machine learning methods based on deep
neural networks demonstrate fairly good results in image segmentation and classifi-
cation [22], recognition of both static and dynamic objects [23], face recognition [24],
gesture [25], actions of a person [26].

Nowadays, many models based on deep neural networks (DNN) are used in various
interactive systems, medicine, military robotics, etc. 3D convolutional neural network-
based approaches [11] to gesture recognition tasks showed quite good results [27], as it
was shown during ChaLearn LAP Competition within ICPR. The authors of [28]
presented a pyramid 3D design of ultra-precise neural network aimed at static gestures
recognition. 3D convolutional neural networks are used to extract space-time features,
while the pyramid representation allows to save contextual information about the
gesture during the scaling process. The best results of the ChaLearn LAP on the ICPR
were obtained by the authors of [29]. Their approach implies combining the convo-
lutional two stream consensus voting network (2SCVN) for the RGB and the ConvNet
3D convolutional network (3DDSN), in order to determine more reliable features of
gestures. An updated and improved version of this approach was published in [30].

Based on the experiments that have been carried out by other authors, it can be
concluded that the problem of relatively small size of articulators, i.e. hands, and
various conditions of signing can be partially solved through a simultaneous extraction
of the space-time component of a gesture. The 3D convolutional LSTM neural network
seems to be good suited for this task.

Hence, an approach to multimodal (color video stream and depth map) recognition
of both dynamic and static one-handed gestures from Russian sign language based on
the use of a 3D convolutional LSTM neural network is proposed within the present
paper. All the video sequences are brought to a fixed length through a normalization
procedure. The 3D convolutional neural network extracts short-term spatial-temporal
features from the video stream, and the LSTM network extracts long-term spatial-
temporal features. A spatial pyramid pooling [28] is also used, and is aimed at nor-
malizing the obtained spatial-temporal features for the subsequent hypothesis about the
following gesture. The modalities obtained from the color camera and the depth sensor
are trained separately and are further combined only at the level of hypothesis for
decision making.

Summarizing, one can list the following features of the proposed approach for
recognizing some of the Russian sign language gestures: (a) ability to customize the
learning process and the prediction algorithm through the process of extracting 3D
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features of gestures; (b) suitability of the approach, both for static and dynamic gestures;
(c) possibility to teach recognition models for other sign languages of the world, for
example [31] and [32], with available multimodal databases, for example, such as [33].

3 Database

This section describes a multimedia database of 3D one-handed gestures of Russian
sign language (TheRuSLan).

At the current stage of the research, the TheRuSLan data set consists of video
recordings of Russian sign language in the formats of RGB and depth map (48 one-
handed gestures in total). Examples of frames showing a gesture are shown in Fig. 1.

The subject area of the data set is the food, namely, food available in supermarkets.
There were 13 signers that took part in the recordings, each signer demonstrated each
gesture 5 times at a distance of 1.5–2 m from the Kinect 2.0 sensor. The main char-
acteristics of the database (TheRuSLan) are presented in Table 1.

Both static and dynamic gestures are included into the database. By static gestures
we mean such gestures that include no significant change of hand location or the
number of active fingers. On the contrary, dynamic gestures do imply some significant
change of the number of articulators or their location.

The second cluster, communicant data, covers information regarding the number
and peculiarities of the communicants (Fig. 2).

Fig. 1. Examples of frames presenting a gesture in FullHD format (left), and in the depth map
mode (right)
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4 Method

This section presents the process of multi-modal recognition of one-handed static and
dynamic gestures of Russian sign language evaluated by the authors (Fig. 2).

Table 1. Characteristics of the TheRuSLan database

Characteristics Values

Number of signers 13
Total number of gestures 48
Iterations of each gesture by the signer 5
Resolution (color frames) FullHD (1920 � 1080)
Resolution (depth map) 512 � 424
Distance from the recorder to the signers 1.2–2 m.
Average age of the signers 24
Total size of the output data �798 Gb.

Fig. 2. The process of multimodal recognition of one-handed gestures
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In most cases, a gesture demonstration involves the following stages: preparation for
a gesture, functional component of a gesture (the core), and retraction [34]. The
preparation may consist of an initial movement with the hands to the starting location, a
neutral movement with the hands, or a residual movement from the previous gesture.
The functional core of the gesture includes a context-independent movement with the
arms. Retraction is the movement of the hands to the position of preparation for the next
gesture. However, the problem is that each signer demonstrates gestures at different
speeds. Thus, any gesture consists of various sequences of video frames (the length of
the gesture), and it is necessary to input data of the same dimensionality to the neural
network all the time. Therefore, it is first necessary to normalize the video sequences.
There are two ways to perform the normalization, either dividing all video sequences
with gestures into sequences of frames of fixed length, or using an approach based on
lowering the frequency of all marked sequences with gestures to a constant length.

The first method is bad because it is impossible to pick out video sequences of
equal length, in order to get rid of any preparation and retraction stages. The second
approach is free of this disadvantage, and this was the reason for the authors of this
paper for using it. Normalized samples are video sequences of 30 frames.

The 3D CNN designed for recognizing individual gestures of Russian sign lan-
guage is presented in Fig. 3.

Fig. 3. 3D CNN architecture for recognizing particular gestures of Russian sign language

196 I. Kagirov et al.



Four 3D convolutional layers are used with 64, 128, 256, and 256 filters corre-
spondingly. Each 3D convolutional layer has a core size of 3 � 3�3, while stride and
padding of each layer are all size of 1 � 1�1. Each 3D convolutional layer (except the
3rd one) is followed by a normalization procedure, in order to solve the problem of
internal covariant displacement and the activation function of the ReLU. The first layer
has only the function of spatial unification due to a downsampling layer with a core size
of 1 � 2�2 and the same stride and padding. The second layer performs a space-time
association procedure, with the core size and padding and stride of 2 � 2�2. These
layers make it possible to reduce the spatial size of the output layer of the 3D CNN 4
times, and to reduce the temporary size of the output layer 2 times. Thus, using 3D
CNN network, only short-term time-space features are extracted.

Next, a two-level convolutional LSTM network is used, which allows both input-
state and state-state convolutions. The size of the convolution core is 3 � 3, with
padding and stride of 1 � 1. The first convolutional layer contains 256 filters, while the
second one contains 384 filters. This allows to extract space-time features of the
gesture. As a result, for each gesture, the convolutional LSTM network extracts a long-
term time-space feature. The output features of the convolutional LSTM network have
the same spatial size as the features from the 3D CNN.

A spatial pyramid pooling [12] is used before fully connected layers, which allows
to reduce the spatial dimension of the signs of gestures.

Before classification, modalities are combined by averaging the estimates from the
two obtained neural networks.

5 Experiment

This section provides test results for the proposed approach, based on TheRuSLan
database.

For training, 4 iterations of each one-handed gesture were used, and one iteration
by each signer for testing. Thus, 2496 iterations of gestures were used for training, and
624 iterations for testing. A relatively small number of testing iterations is due to the
small size of the database.

All the neural networks described within the present paper were implemented using
the TensorFlow [35] and Keras [36] tools, which simplify creation, training, and
deployment of deep learning models. The best results were obtained in the following
case: Training was made from zero level. The initial learning rate was 0.1 and
decreased every 10 thousand iterations. After 50 thousand iterations, the learning rate
was 0.01 and decreased every 2000 iterations. The total number of iterations was
80.000. All the models were trained with NVIDIA GeForce GTX 1080 GPU graphics
device. The proposed approach showed the following accuracy: 68.31% for color video
sequences only, 64.93% for data obtained from the depth map only, and 73.25% for the
multimodal data set with two combined modalities.

A comparative table of the proposed approach and other methods is presented in
Table 2. The results, i.e. accuracy, are taken directly from the cited works and were
obtained for different testing material.
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6 Conclusion

This article proposes an approach to the recognition of both dynamic and static one-
handed gestures of Russian sign language with the use of a 3D LSTM convolutional
neural network. From the results, it can be concluded that the space-time features
extracted from the gesture are quite stable under complex background components on
the scene. CNN 3D is well suited for obtaining short-term spatial and temporal features,
and super-precise LSTM networks for long-term spatial and temporal features. The best
accuracy was achieved on a multimodal data set, being 73.25%.

In the future studies, attempts will be made to improve recognition accuracy by
increasing the data set, as well as to expand the data for recognition with two-handed
gestures.
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Abstract. Currently, the level of penetration of speech technology in
modern life begins to vary greatly by country and by language environ-
ment. This is especially noticeable in the services developed in leading
technology companies, where high-resource languages such as English,
Russian, etc. have become the main service languages. Whereas, the
speech technologies for under-resourced languages lag in their develop-
ment. The article presents the first speech synthesis system based on
the long-term short-term memory (LSTM) neural network architecture
for the Kazakh language. The presented text-to-speech (TTS) system
includes previously developed methods of prosodic processing for under-
resourced languages and an acoustic model based on LSTM. The sys-
tem receives the linguistic features of the text, including phonetic tran-
scription, and it generates Kazakh speech with an acceptable quality
of perception. Briefly summing up, this work describes the method of
developing a speech synthesis for the Kazakh language, which has lim-
ited resources in terms of natural language processing. This approach
can also be applied to other under-resourced languages.

Keywords: Statistical parametric speech synthesis ·
Speech synthesis · LSTM · Kazakh language ·
Under-resourced languages

1 Introduction

At the present time, we can note the high penetration of speech technologies into
modern systems of human-machine interfaces. Unfortunately, it became appar-
ent that the level of penetration of such technologies is varied by countries and
language environments. The systems, operating in high resourced languages such
as English and French, are provided with high quality speech services. Whereas,
their analogs for under-resourced languages are provided with poorly developed
speech services or with their complete absence. Accordingly, in societies where
the main languages of communication are under-resourced languages, there is a
demand for such technologies. Developing a speech synthesis system for under-
resourced languages is a crucial task. This article presents the statistical para-
metric speech synthesis (SPSS) based on LSTM for the Kazakh language.

At the moment there are two approaches of neural network application for
speech synthesis:
c© Springer Nature Switzerland AG 2019
A. A. Salah et al. (Eds.): SPECOM 2019, LNAI 11658, pp. 201–208, 2019.
https://doi.org/10.1007/978-3-030-26061-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26061-3_21&domain=pdf
http://orcid.org/0000-0001-8399-8379
https://doi.org/10.1007/978-3-030-26061-3_21


202 A. Kaliyev

1. End-to-end models, when a neural network is trained to directly identify the
relationship between linguistic and speech features, examples of this approach
are VoiceLoop [19], Char2Wav [17], and Tacotron [16];

2. Conventional pipeline processing, when the main task is divided into separate
subtasks, and neural networks are used to solve some tasks.

Despite the fact that the first method is capable of producing high-quality speech
signal, it is expensive in term of computational costs, as it requires high com-
putational capabilities for operating. In the second method, the neural network
acoustic model is trained, where the inputs are prosodic and linguistic features
(including phonetic transcription) and the outputs are acoustic features. Neural
networks can also be used to detect some prosodic features, for example, the
duration of phonemes.

The main distinguishing feature of the SPSS is that it allows controlling and
changing the acoustic features of the speech. Thus, researchers can better under-
stand the influence of certain features on speech perception. The LSTM acoustic
model were successfully applied in [1,4,20], thanks to the long-term memory
LSTM can more successfully identify the long-term phonetic dependencies than,
for example, the feed forward deep neural networks (DNN).

As far as we know, so far there was only one TTS system for the Kazakh
language, developed by the Speech Technology Center Ltd. in 2014 based on
the Unit Selection technology. Unfortunately, at the end of the development, the
evaluation results of the system performance were not published.

In modern concepts of natural language processing, the Kazakh language is
an under-resourced (the term was proposed by Krauwer [10] and Berment [2])
and poorly studied language [8]. A particular problem is the identification of all
prosodic parameters affecting the sound of speech. Despite this, we were able
to develop a number of methods [5–7] of prosodic processing for the Kazakh
language, which can also be applied to other under-resourced languages.

Summing up, we present a new SPSS for the Kazakh language, where LSTM
was used to train the acoustic model. As far as the author knows, this is the first
SPSS system for the Kazakh language.

The paper is organized as follows: Sect. 2 describes the corpus and the selected
language, Sect. 3 presents the methods of prosodic processing, Sect. 4 introduces
the acoustic model, Sect. 5 discusses the architecture of the TTS, Sect. 6 presents
the evaluation method, Sect. 7 talks about the results of the evaluation, and
Sect. 8 gives conclusion.

2 Corpus and Language

This SPSS was created for the Kazakh language and it is the first such system
for this language. And, the methods used here can also be applied to other
languages, especially for under-resourced languages.
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2.1 Language

The Kazakh language belongs to the Kypchak group of Turkic languages.
According to A.Z. Salmenova, agglutinative nature of Turkic languages (postpos-
itive suffixation, fixed order of words, special auxiliary words) is reflected in the
fact that the functional load of melodic, temporal and dynamic characteristics
in the Kazakh non-finite syntagma turned out to be of little importance com-
pared to Russian and English. Thus, not only the morphological and syntactic
factors influence the prosody of the Kazakh phrase, but also phonetic features at
the segment level. We are talking about the phenomenon of the vowel harmony,
which is able to create a special segmental and prosodic organization of words,
syntagms and sentences for these languages [14].

2.2 Corpus

We used the speech corpus “Assel” [9] of the Kazakh language, which was created
in 2014 by the Speech Technology Center Ltd. in partnership with the Kostanay
State University. The speech corpora consists of 5.6 h of neutral female speech
or 6 thousand separate phrases and sentences.

3 Prosodic Processing

Since the Kazakh language is an under-resourced language, there is a limited set
of extractable features for conducting experiments. For example, when solving
the problem of predicting pause placements, traditionally, the parameters of the
input data are POS tags, punctuation and emphases [13,15]. However, so far, the
semantic analyzer has not been developed for the Kazakh language, there are not
classifier of named entities, the analyzer of the dependence tree, etc. Therefore,
the authors have developed methods of predicting prosodic parameters based on
distributional semantics.

We introduce the following notation.

i – sentence number.
mi – number of phonemes in the i-th sentence.
{vi,j}, j = 1, 2, ...,mi – phoneme sequence in the i-th sentence.
wi,k – k-th word in the i-th sentence.

3.1 Pause Place Prediction

Pause place prediction was carried out according to the method proposed in [5].
In this study, we used the parameters of the lexical representations obtained
from the cluster model of Brown et al. [3] and word embedding obtained by the
algorithm of Stratos et al. [18].

The prediction of the pause places was carried out at the level of bigrams,
where the input parameters of the bigram wi,k and wi,k+1 were the vector rep-
resentations of both of its tokens, their bit string representation in the Brown
cluster model, and the words themselves. For the classification of bigrams, the
support vector machine was used.
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3.2 Phoneme Duration Prediction

The method of phoneme duration prediction for the Kazakh language was pre-
sented in [6], where to predict the duration of vi,j phoneme in i-th sentence, the
vi,j phoneme and its four neighboring phonemes were selected. In addition, we
extracted wi,k word in which the phoneme was located, and four its neighboring
words. Thus, 5-gram phonemes and 5-gram words are used. DNN with 6 layers of
1024 nodes each has also been applied for the prediction of the phoneme dura-
tion (Fig. 1). To activate hidden nodes of DNN, the rectifier linear activation
function was used.

Fig. 1. The scheme of phoneme duration prediction.

4 Acoustic Model

4.1 Acoustic Model Based on LSTM

LSTM allows to process a sequence of events where each event can have an
impact on other events. During the prediction of local events, LSTM takes into
account the results of previous events calculations. Therefore, it can detect and
simulate events that are influenced by other events and vice versa.

At the same time, it is obvious that during the speech, the sound of each
phoneme has an impact on other phonemes and vice versa. This is largely caused
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by natural physical processes that change the vocal tract from one position to
another. Thus, LSTM is an appropriate architecture for prediction of sequences
of acoustic features.

4.2 Training Acoustic Model

For training the acoustic model, 50 sentences for the test set and 50 sentences for
the validation set were randomly selected from the corpus. The acoustic features
were extracted with a frequency of 200 Hz (5 ms) from a 22 kHz sound signal.
Acoustic parameters were extracted using WORLD [12] vocoder (D4C edition
[11]), so 60 Mel-generalized coefficients (MGC), 5 band aperiodicity coefficients
(BAP) and the F0 feature were extracted. For each sample, 97 linguistic features
were calculated.

The acoustic model was trained by the 3-layer LSTM, where each layer had
256 memory blocks. The tanh (hyperbolic tangent) activation function was used
in each layer.

5 TTS

The scheme of the TTS system is presented in Fig. 2. The system consists of four
modules. These are the text-processing module, the prosodic processing module,
the acoustic prediction module, and the speech generation module.

Fig. 2. The architecture of TTS.

The text-processing module preprocesses the text: selects sentences and
splits them into separate words, decodes abbreviations, numerals and other
non-standard entries, defines the morpho-grammatical characteristics of words,
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obtains phonetic transcription (grapheme-to-phoneme conversion). In the mod-
ule of prosodic processing, pause place prediction and phoneme duration predic-
tion are made. At this stage, the durations of the pauses are also determined, by
considering the pause as another phoneme. Further, the collected linguistic and
prosodic features are transfered to the acoustic module, in which the acoustic
features are predicted for each 5 ms interval: 60 MGC, 5 BAP, F0. Then in the
speech generation module, the speech is generated from the acoustic parameters
using the WORLD vocoder.

6 Evaluation

MOS evaluation on a 5-point scale was carried out to assess the quality of the
generated speech. 11 speakers of the Kazakh language participated in the survey,
who were asked to assess 6 sets of the records. For each set, a separate screen was
prepared, where the listeners were asked to listen to and evaluate each recording
separately. It was allowed to give a fractional number score. Each set consisted
of two recordings. Listeners were allowed to listen to an unlimited number of
times each audio recording but we recommended to limit to 2–3 auditions.

Upon completion of the survey, the average MOS score was equal to 3.1. The
standard deviation was 0.18 points.

7 Discussion

With the resources available at the moment, the evaluation results fully reflects
the real situation of TTS technology for the Kazakh language. The main prob-
lems for the synthesis of Kazakh speech remain insufficient knowledge of the
language and limited speech resources. Currently only one small speech corpus
is available for research.

From the above it follows that the applied linguistic and prosodic parameters
do not fully reflect the features of the language required for high-quality speech
synthesis. In particular, the Kazakh language is an agglutinative language, where
special rules of vowel harmony are observed. Which are reflected in special rules
for the construction of words and phonemes, and in the special sound of the
same phonemes in different combinations of phoneme sequences. It is also pos-
sible to note the great influence of tonality on the Kazakh language, which still
remains insufficiently investigated. It is still unclear how much tonality affects
the perception of the Kazakh speech, and what role it plays in the language.

The presented TTS system shows an acceptable quality of perception. To
improve the quality of synthesized speech and bring it to the state of the art
results, it is sufficient to increase the amount of training data and improve its
representativeness.
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8 Conclusion

In this paper, the first LSTM-based SPSS for the Kazakh language was pre-
sented. A number of prosodic processing methods were applied that were devel-
oped purposefully for under resourced languages. Obtained MOS score shows a
sufficiently good level of speech synthesis.

Despite the fact that training and testing was carried out on the Kazakh
speech corpus, this approach can also be acceptable to other under resourced
languages. In the near future, we plan to expand the Kazakh speech corpus, and
continue to work on the development of the proposed TTS system.
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ment of the Russian Federation (Grant 08-08).
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Faculty of Applied Sciences, NTIS - New Technologies for the Information Society,
University of West Bohemia, Univerzitńı 8, 306 14 Pilsen, Czech Republic
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Abstract. This paper deals with the estimation of hand pose from a
single depth image. We present a method that is based on a description of
the hand pose via local rotations of bones trained discriminatively in an
end-to-end fashion using a convolutional neural network. We compare our
method with existing approach of hand pose estimation of 3D locations of
hand joints. For this purpose, we collected precise ground-truth data with
a passive marker-based optical motion capture technology. The results
show, that the estimation of the hand pose formulated as a combination
of local rotations of bones and relative locations of joints outperforms
the direct estimation of 3D global joints locations.

Keywords: Hand pose estimation · Sign language processing ·
Shadow speaker

1 Introduction

Hand gestures are a very important part of human communication. It is natural
to extend the usage into human-machine interaction. The problem of hand pose
estimation in real-time from visual data is being addressed in many fields -
robotics [2], medicine, automotive, virtual/augmented reality [7], gesture and
sign language processing [18]. The human hand has a large number of degrees
of freedom with frequent self-occlusions of fingers and the hand pose estimation
leads to nonlinear regression. Despite this, there is a huge demand for such
technologies that would perform well with consumer quality sensors. In our case
with a depth sensor, where there are two main challenges: how to obtain precise
ground-truth data and how to recover the hand pose.
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Machine learning methods based on convolutional neural networks (CNNs)
currently outperform earlier approaches, most often based on random decision
forest classification and/or regression techniques [9]. In scope of machine learn-
ing methods the task of hand pose estimation from individual depth images is
performed either in a supervised [3,6,12] or in a semi-supervised manner from
unlabeled data [11,13]. In general, a large volume of training data and the cap-
turing of all possible states of 3D hand pose impose a condition on a robust hand
pose estimator [15]. In this work, they used 6 degrees of freedom (DoF) mag-
netic sensors and obtain a large labeled hand pose dataset. In [14] the authors
introduce a per frame detection of 2D fingertip positions from depth images
by a CNN combined with the prediction of wrist joint angle with 3 DoFs of
hand orientation. Later in [15] the authors predict 3D positions of hand joints
obtained with kinematic constraints. The positions of joints are also estimated
in an end-to-end fashion with the effort to model the prior of the hand pose in
a bottleneck of a CNN modeled by Principal Component Analysis (PCA) [4,5].
Currently the prediction of joints angles on a per-frame basis is defined as hier-
archical classification [7] or geometrically informed responses together with the
discriminative depth features to regularize the hand angle parameters [1].

We are interested in the task of per-frame hand pose estimation of a known
subject from single depth maps capturing his/her upper body by non-invasive
and commonly used capturing device (e.g. “shadow speaker”1 of the sign lan-
guage who is captured by MS Kinect v2). This real-word scenario is challenging
due to very low resolution of the hand in depth maps caused by a larger dis-
tance of the sensor from the subject. Such estimated hand poses can be used
for e.g. sign language recognition, or sign language synthesis where intelligibility
of hand gesture during processing of hand poses is a crucial factor. The idea
behind the ground-truth acquisition is to get a very precise description of hand
pose independently on quality of the input depth map. Our approach differs
from other current benchmark datasets [10,12] that provide target hand pose as
set of isolated, noisy and topologically incorrect 3D joints positions. For example
NYU dataset [12], the joint angle poses that are optimized via forward kinematic
function from 14 of all 36 original annotated joints positions produce average
error of 5.68 mm [17].

The main contribution of our work is a novel method based on a direct (end-
to-end) regression of a 3D hand pose described by a combination of local rota-
tions and relative locations of joints that outperforms state-of-the-art method
of a prediction based on the direct regression of 3D joints locations. We are
extending recent works [7,14] where only the orientation of hand is predicted in
the angular form. We consider the whole hand pose as a vector of local joints’
angles. Thus the optimization process can directly benefit from the angular form
and the trained estimator can predict hand pose vector that is straightforwardly
integrated to a target model; e.g. an avatar’s hand or a controller of virtual
environments.

1 The sign language speaker who interprets the spoken language to be used for signing
avatar broadcasting.
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A second significant contribution of this paper is an accompanying novel
acquisition approach that enables to collect a large amount of precise annotated
depth images of full human body poses. The 3D pose description is based on
a skeleton, it is anatomically valid and its precision is close to annotations of
artificially generated depth maps. Our approach combines a passive marker-
based optical motion capturing with depth sensor recording to obtain a hand
and/or a body pose ground-truth.

2 Methods

The hand pose is defined by a 3D skeleton of a hand. The hand pose estimation
method is based on several CNNs by the formula: Θ̂t = {θ̂t = ft(Dcrop)}, where
θ̂t is the estimation of a subset of the ground-truth values of hand pose param-
eters Θ = {θi} , i = 1 . . . N , θi is a vector of the target data, ft is one of the
CNN per-frame estimators and Dcrop is the hand crop in the depth map.

Acquisition Approach: The hand pose is measured by a VICON motion cap-
ture system. We use standard representation of a 3D hand skeleton, commonly
used in computer graphics. Our model is composed of 17 joints of the right
hand and includes the forearm, wrist, and 5 × 3 finger bones. In general, the
palm is considered to be one rigid object as in most cases. We integrated the
forearm joint into the capturing setup because pose of the forearm is a part of
entire hand in cropped depth data and this information may be useful in future
training scenarios.

We use 20 different sized retro-reflective markers in total - so that every
bone is constrained by at least one marker (see Fig. 1, on the left); 5 of them are
spherical with a radius of 14 and 6.5 mm and 15 are hemispherical with a radius
of 4 mm. The placement of the markers on the forearm, wrist, and palm follows
common fashion. The placement of the markers on the fingers in the middle of
the dorsal side of the phalanges was experimentally determined to preserve the
free finger articulation. The movement of the markers is tracked by 8 cameras
with 2 Mpix resolutions and 120 Hz frame rate.

The root of the skeleton is the elbow joint with 6 DoF. There are three
DoF for the wrist and for the thumb ball joint, proximal phalanges have two
DoF and the other phalanges have one DoF. This enables proper solving of
the full hand articulation. We calibrate the skeletal model on the subject by
capturing the full range of motion (ROM) of fingers, palm and forearm. In this
stage, we determine unknown and constant parameters: length of bones, marker-
bone constrain offsets, a maximal range of rotations and stiffness of the joints.
This calibrated mocap model is then used for solving hand poses of all ground-
truth data. The solving is strongly influenced by human annotator doing careful
visual check of marker’s swaps arising due to occluded markers in the mocap
cameras. The used combination of spherical and hemispherical markers, the given
placement of mocap cameras around the hand, and also the optimal settings of
the 3D marker position reconstruction reduces the amount of lost and false
marker reconstructions, which minimizes the amount of the visual checking.
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Fig. 1. First: marker setup omitting elbow marker, second: input depth image, third:
depth image after depth hole filling, last: result of the hand tracking = training data.

In contrast to [16] we produce much less missing data (only 2.2% of missing
marker positions in our training data). After the checking phase, the rotations
of joints are automatically computed against a rest pose - a hand with stretched
fingers pressed against each other, the fingers pointing away from the performer
and the palm faces the ground.

Ground-truth Data: We assume a hand pose defined by local rotations of
bones, i.e. the rotation of one bone is computed relative to its parent bone.
The quaternions are a convenient mathematical notation representing a rotation
θ around a rotation axis v well known in 3D computer graphics for proper
spherical linear interpolation. For this purpose, the quaternions provide us with
compact solution and avoid the possible singular states of the Euler angles form
(i.e. Gimbal lock). All 17 joints angles are represented in quaternion form q =
(qw, qx, qy, qz) = (cos(θ/2);v · sin(θ/2)) in half-space, qw > 0, where v is the
vector representing the rotation axis.

We compute forward kinematics (FK) to derive 15 3D joints positions as
precise geometrical rotation centers of the skeletal model. In addition, 5 fingertip
positions are defined from offsets of distal joints and end of the fingers. They are
determined from a 3D scan of the performer’s hand. For this purpose, we consider
the 3D scan of subject’s hand in the rest pose to get a polygonal mesh. The 3D
mesh naturally corresponds to the bones of the calibrated skeleton model. In
total 20 (x, y, z) positions form the global position features. Next, similarly with
the idea of canonical coordinate frame in [8], we derive the local joints positions
describing only the finger articulation independently on the global orientation of
the whole hand as the global hand pose derived from the solving skeleton with
zero rotation in the wrist and the forearm.

Depth Data: The depth data are recorded simultaneously with the mocap
recordings. We assume a common depth sensor based on ToF - Kinect v2. The
recording rate is 30 Hz and the image resolution is 512×424 pixels. The sensor is
positioned in 3rd person’s point of view in front of the performer approximately
1.8 meters away and captures the whole upper body (see Fig. 1). In this setup,
the average size of the hand region is only 92 × 92 pixels in contrast to 250 ×
250 pixels for NYU dataset and 201 × 201 pixels for ICVL dataset [10].

A straightforward synchronization of the mocap Vicon system and the depth
sensor is not available by default. We synchronize the data manually by sav-
ing time stamps of the depth maps and performing synchronizing hand gesture
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as fast snapping of fingers at the beginning of every capturing. The resulting
synchronization error is less than 10 ms.

ToF technology does not measure highly reflective surfaces (like mocap mark-
ers) and we get missing data (holes) in places where the markers are being pro-
jected. This differs from the magnetic motion sensors in a recently published
dataset [15] where projections of the sensors are measured. In [15] this is not
handled explicitly since the visibility of the sensors is considered to be limited.
The missing data are actually better than faulty depth data because we can
detect and repair them easily. For a given distance of the sensor and the subject,
the finger markers (4 mm) are projected as small holes (≈3 pixels) and can
be automatically fixed. We repair the depth map as a whole in every pixel via
standard linear nearest neighbor grid data interpolation. This process removes
other unmeasured pixels which arose due to noise or high depth gradient as an
effect of the capture technology, see Fig. 1.

Hand Detection: The localization of the hand is a necessary step that produces
a region (the crop) of the depth map that contains just the hand. This region
determines the neural networks’ input Dcrop. For the reference data, the region
could be obtained by known geometrical and projective relations but this is not
possible for unseen test data. We follow the idea of the algorithm in [5] and
consider simple localization based on the nearest object detection.

The convex hull of the smoothed thresholded depth map defines the most
probable region of the hand. We use the center of this location as a mean distance
M of the detected hand to the sensor. M is used for (1) adaptive computation
of the size of hand region (in pixels) and (2) normalization of the depth for the
CNN input. By (1) we rescale and interpolate depth map crop to uniform size
rather than transform the depth data into sparse volumetric space [9]. Similar
to [5], the resized size of the hand region ensures the relative size of the hand
in the region to be constant, independent on the distance from the sensor. We
use the formula: R = f · r

M , where R is the size of the region, f is the focal
length in the image axis and r defines the relative size of the hand in the region.
The region of size R × R is put on top of the center of the convex hull of the
hand and it is resized to the desired input shape of the CNN. Next, the depth
data are normalized so that they lie in the interval of 〈−1; 1〉 by the formula:
Dnorm = s ·(Draw−M)+d, where Draw is the original depth of the pixel in mm,
s is a constant representing the range of the farthest and the nearest possible
depth and d > 0 defines the constant shift of the range relative to the depth M .
The parameter d controls the “amount of forearm” that will be visible by the
CNN. The results of the depth data acquisition are in Fig. 1, on the right.

Data Augmentation: We use two types of augmentation; (1) random shifts
and (2) rotation of the depth data [10]. For (1) we obtain a new depth map by
applying a small random translation of all the depth pixels. We consider such
augmentation to be label preserving and thus the target does not need to change.
The aim of (1) is for the CNN to be independent on performance of the hand
detection phase. By applying the type (2) augmentation the target needs to be
changed to get new training data for unseen rotations of the hand. We apply
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Fig. 2. Network architecture: c= convolutional: kernel× kernel×#kernels(stride),
p=maxpool: kernel× kernel(stride), fc= full connected: size|dropout, all layers per-
form batch normalization before maxout (Actually, we are using the maxout activation
function as is defined in the Chainer framework with pool size 2.) activation function

the random angle of the planar rotation as an addition to the joint angle of
the skeleton root (forearm). We use only anatomically plausible rotations from
pre-defined ranges.

3 Experiments

The training data was created by the process described in previous Sect. 2. The
training set contains 21 076 depth images of the right hand from one recording
session. There was one subject, who performed 52 different hand poses used in
Czech sign language, in different rotations and positions relative to the depth
sensor. The hand localization in depth maps was performed by the algorithm
described in Sect. 2. The relative size of the hand parameter r was set to 241, the
relative depth parameter d to 0.6 of normalized depth and the scaling parameter
s to 15. The detected hand region R is resized to the final size of 96 × 96 pixels.
All training frames were augmented using the methods described in Sect. 2 and
randomly shuffled to remove any time correlation between consecutive frames.
The shifts in augmentation (1) were sampled from normal distributions N (0, 5)
for planar translations in pixels and N (0, 0.1) for normalized depth translations
and we generate 10 augmented images for each training image. The angles used
in augmentation (2) were chosen uniformly from the interval 〈−45, 45〉 degrees
with the step of 22.5 degrees. The resulting size of the dataset was increased to
1 074k frames .

The evaluation and testing data were performed by the same subject in
compliance with the task of shadow speaker. The evaluation set is com-
posed of 643 frames of calibrating ROM and 658 frames with arbitrary free
hand pose/movement. The test set contains 634 frames of arbitrary free hand
pose/movement. When CNN predicts the quaternion features they are only nor-
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malized to unit length. The hand pose is then obtained by using forward kine-
matics (FK). Euclidean distances of the 15 3D joints positions represent the
mean global position error (MGPE). By applying the above-mentioned proce-
dure we are able to compare the poses defined by quaternions and also by 3D
locations of joints with the ground-truth data. For the given dataset, we provide
established error metric as the percentage of good frames that have an error less
than a threshold. Also, we are able to visualize the 3D model of the predicted
values which enables a qualitative comparison with the ground-truth data.

4 Results and Discussion

Currently, there is no benchmark dataset available that consists of both joints
positions and anatomically correct joints rotations. In contrast to rotation pre-
dictions, it is possible to use our dataset to compare results of current methods
using just the joint global position estimation. For this comparison, we chose
a freely available framework DeepPrior++ [4] achieving state-of-the-art results
on the established benchmark datasets and train it on our dataset (denoted
D in Table 1). The hand detection in the depth maps was performed by an
original algorithm based on the detection of the center-of-mass (CoM) [4]. The
detected hand region is resized to the default size of 128 × 128 pixels. To be
able to use this framework with our data, we converted its annotation to the
format of the ICVL dataset2. All training frames were augmented using the
Deepprior++ default methods and randomly shuffled to remove any time cor-
relation between consecutive frames. A CNN with the topology described in [5]
(Fig. 1, type (d)) was used because we empirically found out that on our dataset
this topology is superior to the later one based on ResNet (Residual Network)
architecture [4]. Adam optimizer is used for optimization on batches of size 128
with the default hyper-parameters and the learning rate of 1 · 10−4, which was
progressively adjusted with the number of the training epochs, and trained for
100 epochs.

For our estimator we used a multi-scale CNN with the topology described in
Fig. 2, which was trained for a fixed amount of time (24 h) resulting in more then
70 epochs. For all experiments, we used the same training data. The difference
was the dimensionality of the ground-truth data and thus the size of the output
layer of the CNN. In the case of global positions (denoted GP), the estimation
has the dimensionality of the ground-truth data equal to 60 (20 global joints
locations × 3). In the case of joints angles estimation (denoted QP) we train
separate CNNs for the wrist and each finger (6 CNNs in total). Information about
the local joints positions is added to the angular representation. This results in
13 dimensions for the wrist (one joint quaternion + 3 × 3 joints locations of
the index, little and thumb root joint) and 24 dimensions for each finger (3 × 4
joints quaternions + 4 × 3 relevant joints locations) of the ground-truth data.
The estimation for the whole hand is then composed of the estimations of the
particular fingers and the wrist.
2 https://labicvl.github.io/hand.html.

https://labicvl.github.io/hand.html


216 J. Kanis et al.

Table 1. Results for MGPE on the evaluation and the test data.

Methods MGPE [mm]

Eval Test

D 12.5 12.8

GP 11.2 12.3

QP 11.0 10.9

Fig. 3. Max joints error thresholds for MGPE, left: evaluation data, right: test data

For each setup we trained our networks with different starting learning rates
(0.001, 1 · 10−4 and 1 · 10−5). The results reported in the Table 1 are for the
network and epoch that achieved the best performance on the evaluation data.
For optimization, we used Adam on mini-batches of size 100, with beta1 (0.9),
beta2 (0.999) and weight decay (5 ·10−4). In the case when mixing rotations and
3D locations (QP) only the predicted rotations are used for evaluation.

The results are reported only for 15 joints; the wrist joint and the fingertips
are omitted from the final comparison. From Table 1 it can be seen that using the
QP predictor achieves the best results both on the evaluation and the test data.
Interestingly, also the GP predictor surpasses the DeepPrior++ framework. This
may be due to a different training protocol and approach to data augmentation.
Furthermore, we can observe that while D and GP predictors have worse results
for test data than eval data, the QP predictor performs slightly better. This
may lead to the conclusion that the QP predictor is able to better generalize to
unseen data.

When observing the curves in Fig. 3 the picture is less clear. For lower thresh-
old of the max joints error both the GP and QP predictors exceed the D predic-
tor. The GP and QP predictors themselves are very competitive in these lower
bounds and a clear winner cannot be established. For the higher thresholds the
D predictor overcomes the GP and QP predictors. This may be due to the opti-
mization of the D predictor with respect to the max joint error. The qualitative
results can be seen in Fig. 4.
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Fig. 4. Hand pose estimation: line1 = rendered ground-truth, line2 = QP estimations.

5 Conclusion

A novel approach for the per-frame prediction of hand pose from single depth
image is presented as a high-dimensional and non-linear regression problem.
The approach is based on a description of the hand pose via combination of
local joints angles and positions. We compare it with the state-of-the-art app-
roach using the description via global 3D joints positions. For this purpose, we
recorded and released a new dataset providing the ground-truth data consist-
ing of accurate annotations including both 3D joints locations and all relevant
joints angles. We report results for the regression of combination of angular and
position representations of hand pose having better prediction precision then
regression of 3D joints positions.
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Abstract. This paper presents language models based on Long Short-Term
Memory (LSTM) neural networks for very large vocabulary continuous Russian
speech recognition. We created neural networks with various numbers of units
in hidden and projection layers using different optimization methods. Obtained
LSTM-based language models were used for N-best list rescoring. As well we
tested a linear interpolation of LSTM language model with the baseline 3-gram
language model and achieved 22% relative reduction of the word error rate with
respect to the baseline 3-gram model.

Keywords: Speech recognition � Recurrent Neural Networks �
Long Short-Term Memory � Language models � Russian speech

1 Introduction

A language model (LM) is one of the main parts of a speech recognition system.
Nowadays, neural networks (NNs) are widely used for language modeling. As it was
shown in many papers, NN-based LMs outperform standard n-gram models [1, 2]. For
language modeling, the usage of recurrent NNs (RNNs) is preferable because this type
of NN can store the whole context preceding the given word in contrast to feedforward
NNs which store a context of restricted length.

A long short-term memory (LSTM) network is RNN, which contains special units
called memory blocks. Each memory block is composed of a memory cell, which
stores the temporal state of the network, and multiplicative units named gates (an input
gate, an output gate, and a forget gate) controlling the information flow [3].

In our research we used a LSTM-based LM for N-best list rescoring for automatic
speech recognition (ASR) system. The paper is organized as follows: in Sect. 2 we give
a survey of application of LSTMs for language modeling, in Sect. 3 we give a
description of our LSTM-based LMs, experimental results of N-best list rescoring
using LSTM-based LMs are presented in Sect. 4.
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2 Related Works

LSTMs are widely used in speech recognition systems at N-best or lattice rescoring
stage. In [4] comparison of LMs based on n-grams, feedforward, recurrent, and LSTM
NNs in terms of perplexity and word error rate (WER) is presented. LMs were created
for English and French. In the paper, it was shown that application of LSTM-based
LMs for lattice rescoring outperforms other type of LMs. In addition, experimental
analysis of relationship between perplexity of NN-based LMs and WER was per-
formed. It showed that WER decreases with decreasing perplexity that is analogous to
correlation between perplexity and WER for n-gram LMs.

In [5] LSTM-based LM was used for lattice rescoring for a YouTube speech
recognition task. The proposed model decreased WER by 8% as compared with the
result obtained with the n-gram model.

Automatic speech recognition for conversational Finnish and Estonian speech with
LSTM LM is described in [6]. The authors tried subword-based and fullword-based
language modeling and investigated the usage of classes for language modeling.
LSTM LM was used for lattice rescoring. On both languages, the best results were
obtained from class-based subword models.

Czech language modeling using LSTM is represented in [7]. As the baseline, 5-
gram Knesser-Ney statistical model with 120 K vocabulary was used. The LSTM LMs
were trained with limited vocabulary consisted of 10 K most frequent words.
LSTM LM interpolated with the baseline model was used for rescoring of 1000-best
list. Experiments were performed on the corpus of Czech spontaneous speech which
was recorded from phone calls. Application of LSTM LM allowed increasing speech
recognition accuracy by 3.7% in relative comparing to the result obtained with the
baseline model.

A comparison of LMs based on LSTM and gated recurrent units (GRU) is pre-
sented in [8]. In experiments of lattice rescoring for English speech recognition task,
LSTM-based LM outperformed GRU-based LM in terms of both perplexity and WER.
Also experiments with Highway network based on GRU were performed that showed
WER improvement, but similar investigation on the base of LSTM was not conducted.

In [9] a system which uses LSTM for both acoustic and language modeling is
presented. The system uses CNN-BLSTM acoustic models and 4-gram LM for
decoding and lattice rescoring. LSTM-based LM was applied for 500-best list
rescoring. Relative WER reduction obtained after rescoring was about 20%.

Russian language modeling with the use of LSTM is described in [10]. The
baseline 3-gram LM was trained on transcriptions of telephone conversations (390 h of
speech) as well as on text corpus (about 200 M words) containes materials from
Internet forum discussions, books etc. Vocabulary for the baseline model contains
214 K words. NN-based LMs were trained only with a part of the test corpus, and for
this corpus the vocabulary of 45 K most frequent words was used. LSTM-based LM
was used for rescoring of 100-best list. Relative WER reduction was equal to 8%.

In our previous researches on Russian language modeling [11, 12] we have
experimented with LMs created on the base of RNN with one hidden layer using
RNNLM toolkit [13]. We have obtained relative WER reduction of 14% as compared
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to the result obtained with our 3-gram model. The current research is aimed to
investigation of another type of RNN for language modeling.

3 LSTM Language Models for Russian

For training of LSTM language models, we used TheanoLM toolkit [14]. We trained
LMs on a text corpus composed with the use of on-line Russian newspapers [15]. The
vocabulary size was 150 K word-forms. We created NN LMs consisting of a projection
layer, which maps words to specified dimensional embeddings, one hidden LSTM
layer, and a hierarchical softmax layer. Hierarchical softmax factors the output prob-
abilities into the product of multiple softmax functions [16]. Thus, the output layer is
factorized into two levels, both performing normalization over an equal number of
choices [6], it allows using of very large vocabulary for language modeling. NN LM
architecture is presented on Fig. 1, where wt is an input word at time t; ht is the hidden
layer state, ct is LSTM cell state.

We tried NNs with LSTM layer sizes equal to 256 and 512, and projection layer
sizes equal to 100, 500, and 1000. LSTM-based LMs were trained using stochastic
gradient descent (SGD) optimization method. The stopping criteria was “no-im-
provement” which means that learning rate is halved when validation set perplexity
stops improving, and training is stopped when the perplexity does not improve at all

Projection layer

LSTM layer

wt

P(wt|wt-1 ,…,w0)

ct-1

ht-1

ct

ht

Hierarchical softmax 
layer

Fig. 1. LSTM-based LM architecture
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with the current learning rate [14]. The maximum number of training epoch was 15.
The initial learning rate was equal to 1.

As well, we made a linear interpolation of the LSTM-based LM and baseline LM.
As a baseline, we used 3-gram LM with Kneser-Ney discounting trained on the same
text corpus using the SRI Language Modeling Toolkit (SRILM) [17]. Perplexities of
the obtained LMs computed on held-out text data are presented in Table 1. The
interpolation coefficient of 1.0 means that only LSTM-based LM was used. The per-
plexity of the baseline model was 553.

The lowest perplexity was obtained with the NN with the projection layer size
equal to 1000 and the hidden layer size equal to 512. Interpolation with the 3-gram
model gave the additional improvement of perplexity. The interpolation coefficient
equal to 0.7 provided the best result. Thus, relative reduction of perplexity was 46% as
compared with the perplexity of the baseline model.

4 Experiments

4.1 Experimental Setup

For training the acoustic models and testing the speech recognition system, we used our
own corpora of continuous Russian speech recorded at SPIIRAS. The total duration of
the entire speech data is more than 30 h. The corpus is described in detail in [18].

We used hybrid DNN/HMMs acoustic models based on time-delay neural network
with 5 hidden layers and time context [−8, 8]. Acoustic models were trained using the
open-source Kaldi toolkit [19]. Mel-frequency cepstral coefficients (MFCCs) were used
as input to the NNs. For speaker adaptation, 100-dimensional i-Vector [20] was
appended to the 40-dimensional MFCC input. Detail description of our acoustic models
is presented in [12]. We have obtained WER equal to 17.62% with our baseline 3-gram
model, and WER equal to 15.13 was obtained after rescoring 500-best list with the help
of RNN LM with one hidden layer interpolated with the 3-gram model.

Table 1. Perplexities of LSTM LMs

Hidden layer size Projection layer size Interpolation coefficient
0.5 0.6 0.7 0.8 0.9 1.0

256 100 339 336 336 343 359 431
500 330 325 325 330 345 407
1000 328 323 323 328 342 405

512 100 317 311 310 313 325 383
500 308 301 299 302 311 363
1000 306 300 297 300 309 361
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LSTM-based LM was applied for rescoring of 500-best list of hypotheses and for
selection of the best recognition hypothesis for the pronounced phrase. Interpolated
LMs were used for rescoring as well. Obtained speech recognition results are presented
in Table 2.

As one can see from the table, application of LSTM-based LMs allows to improve
speech recognition results. Additional improvement was achieved with interpolated
LSTM-based LM with baseline LM. The lowest WER (14.06%) was obtained using
NN with projection layer size equal to 500 and hidden layer size equal to 512 inter-
polated with the baseline model with interpolation coefficient equal to 0.7, though this
model was not the best in terms of perplexity. This may be connected with the fact that
we used different texts material for estimation of perplexity and for speech corpora
recordings.

Then we experimented with optimization method for NN training. We tried Nes-
terov Momentum [21], AdaGrad [22], and Adam [23] optimization methods, and
compared them with SGD method in terms of perplexity and WER of the created
models. We trained models with 512 units in the hidden layer and 512 units in the
projection layer because LSTM with these parameters gave us the best results in terms
of WER in our previous experiments with models with SGD optimization method.
Initial learning rates were chosen according to recommendations of TheanoLM toolkit.
Results of experiments on comparing optimization methods in term of perplexity and
WER are presented in Tables 3 and 4 respectively.

Table 2. WER after 500-best list rescoring (%)

Hidden layer size Projection layer size Interpolation coefficient
0.4 0.5 0.6 0.7 0.8 0.9 1.0

256 100 15.36 15.09 15.15 15.37 15.73 16.20 16.44
500 15.54 15.39 15.41 16.62 15.86 16.09 16.52
1000 15.21 15.06 14.94 14.79 14.94 15.22 15.67

512 100 15.17 14.83 14.59 14.74 14.85 15.02 15.39
500 14.51 14.36 14.21 14.06 14.19 14.64 14.96
1000 15.32 15.21 15.04 15.13 15.15 15.36 15.52

Table 3. Results of experiments with LMs trained using different optimization methods in terms
of perplexity

Optimization method Initial learning rate Interpolation coefficient
0.5 0.6 0.7 0.8 0.9 1.0

SGD 1.00 308 301 299 302 311 363
Nesterov momentum 1.00 299 292 289 291 300 346
AdaGrad 1.00 308 302 300 303 313 375
Adam 0.01 321 316 314 317 327 386
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Only Nesterov Momentum method slightly outperform SGD in terms of both
perplexity and WER of the obtained models. Thus, the best results (perplexity equals
289; WER equals 14.01) were obtained after interpolation of LSTM LM trained using
Nesterov Momentum optimization method interpolated with the baseline LM with
interpolation coefficient equal to 0.7.

Then we trained NNs with 2 and 3 LSTM layers using the parameters of the best 1-
layer LSTM. In these NNs we applied dropout at rate 0.3 between LSTM layers.
Obtained results are presented in Table 4.

Thus, the best result was obtained using NN LM with 2 LSTM layers interpolated
with the baseline LM with interpolation coefficient of 0.8, in this case WER equaled
13.80%. Further increasing the number of the hidden layers led to increasing WER that
may be caused by overtraining (Table 5).

5 Conclusions and Future Work

In the paper, we have investigated LSTM-based LMs for Russian speech recognition
task. We have tried NNs with different hidden layer sized, projection layer sizes,
optimization methods, and number of hidden layers. LSTM-based LMs were applied
for N-best list rescoring. The lowest WER was achieved with the NN with 2 hidden
layers, 512 units in hidden layer and projection layer of 500 trained with Nesterov
Momentum optimization method. We have achieved 22% relative reduction of WER

Table 4. Results of experiments with LMs trained using different optimization methods in terms
of WER (%)

Optimization method Initial learning rate Interpolation coefficient
0.5 0.6 0.7 0.8 0.9 1.0

SGD 1.00 14.36 14.21 14.06 14.19 14.64 14.96
Nesterov Momentum 1.00 14.33 14.08 14.01 14.16 14.34 14.55
AdaGrad 1.00 15.00 14.93 14.91 14.81 14.89 15.36
Adam 0.01 14.78 14.63 14.53 14.48 14.68 14.78

Table 5. Results of experiments with LMs with different number of LSTM layers

Number of
LSTM
layers

Interpolation coefficient

0.7 0.8 0.9 1.0
Perplexity WER,

%
Perplexity WER,

%
Perplexity WER,

%
Perplexity WER,

%

1 289 14.01 291 14.16 300 14.34 346 14.55
2 286 13.88 279 13.80 292 13.90 323 13.93
3 294 14.05 301 14.23 327 14.35 357 14.62
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using LSTM LM with respect to the baseline 3-gram model. In further research, we are
going to investigate other topologies of RNNs for language modeling.
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Abstract. The aim of the current study was to analyze the occurrence and
duration of the epenthetic (svarabhakti) vowel in consonant clusters containing
the uvular /R/ in French lyric singing. It was of special interest to consider this
phenomenon in vocal speech of the worldwide renowned French opera singers.
Firstly, because the uvular /R/ has been traditionally considered as an obstacle to
the airflow projection and was supposed to be replaced by the alveolar /r/.
Secondly, because consonant clusters present a problem for singers in any
language, for they interrupt the airflow and hinder a good legato in singing.
Rhotic clusters present both challenges combined. Svarabhakti vowel can be
helpful in this case, aiming at the simplification of syllable structures in singing.
The current study considered various factors, which may have an impact on the
occurrence and duration of the svarabhakti vowel: cluster structure (CR or RC),
sonority, voicing, manner and place of articulation of the adjacent consonant,
musical tempo and neighboring vowel duration. Performances of two distin-
guished French singers with high voices and with the same repertoire were
analyzed. The results of the study showed that in singing of both artists the
svarabhakti vowel occurred in all cluster types and in all musical tempi. In RC
clusters it was longer than in CR clusters (at the p-level < 0,05). Other corre-
lations between the above-mentioned factors and the svarabhakti frequency and
duration occurred to be singer-dependent.

Keywords: French rhotic clusters � Lyric singing analysis � Epenthetic vowel

1 Introduction

1.1 Rhotics in French Lyric Singing

Vocal speech analysis is of special interest today because it allows considering inter-
play between linguistics and music. At the same time there is still some lack of
information about its characteristics, notably, about consonant articulation and
acoustics in singers’ performances. This information is particularly important for the
French language, especially for its rhotic sounds pronunciation, because their inter-
pretation in formal singing is ambiguous. As the uvular consonant is supposed to
disturb and destroy the airflow projection in singing, only the alveolar /r/ should be
performed. This tradition takes its origins in 17th century. It coincided together with the
appearance of the Italian Bel Canto style of singing in France. Bertrand de Bassilly was
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one of the first authors who in 1679 described the /r/ quality in singing [1]. From this
time onwards the alveolar /r/ remained obligatory for formal singers in both operatic
and lyric genres [2–9]. At the same time, the recent analysis demonstrated that many
modern singers prefer to pronounce the uvular /R/ in art songs as well as in operatic
arias [10, 11]. They show much more consistency than the previous generations and
can seemingly be divided into two groups. While 50% of them pronounce the alveolar
variant in more than 90% of cases, the other half of performers produce the uvular
variant with the same high rate of occurrence [11].

How can the singers manage to articulate the inconvenient uvular consonant and
produce a good airflow at a time? The hypothesis would be the appearance of an
epenthetic vowel [12], for which K. Pike suggested the term vocoid [13, 14] because of
its undecided phonemic status. In the current study this epenthetic vowel or vocoid will
be considered in various clusters with the uvular /R/. Therefore the term svarabhakti,
originating from Sanskrit, is used, because it is a precise term designating an epenthesis
in consonant clusters with liquids.

1.2 Consonant Clusters vs. Syllable Structure

In the current analysis the term cluster designates any sequence of consonants in the
word-internal and cross-word-boundary positions. Although this term is often used for
the group of consonants only within the syllable [15–19], there are many examples of
its interpretation in more general sense [20–23]. In this case, they are divided into
tauto- and heterosyllabic clusters. In the following text the dot indicates the syllable
boundary.

The French language phonotactic rules provide constraints on consonant clustering
depending on its position [18, 21]. For instance, RC clusters are impossible in syllable-
or word-initial (onset) position. This sequence is always heterosyllabic. The syllabifi-
cation in French seems to follow the sonority sequencing principle (SSP), so that the
more sonorant consonant is, the closer to the syllable nucleus (vowel) it appears.
Therefore in the sequence CR (Obstruent + /R/) the syllable boundary will always pass
before the obstruent consonant after a vowel or another consonant. It means that the
sequences VCRV or VCCRV will be divided into syllables as following: V.CRV and
VC.CRV, neither *VC.RV nor *VC.CRV. Only if the first consonant is a glide, the
boundary will appear before the /R/, due to the above-mentioned SSP. However, there
were no such sequences in the studied material.

1.3 Svarabhakti Vowel in Singing

Any consonants, and especially the consonant clusters, present a difficulty for singer, as
in singing “one must think hard about where and how the legato line is interrupted by
the consonants and then sick to minimize that interruption in every way possible” [24].
The author of this quotation, though emphasizing the difficulty of the technique,
advises to sing the consonant clusters without splitting them. The svarabhakti vowel is
therefore forbidden and considered as destroying the legato line in Italian, as well as in
French and other languages. The author criticizes the use of epenthetic vowels that
create new syllables and make vowels unaligned [24]. The same advice can be found in
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the work concerning the lyric diction in Polish [25]. This language is well known for its
highly difficult consonant clusters, especially the onset clusters. Even in this case,
epenthesis is recommended only as an exercise. In performance it must be omitted [25].

The suggested technique of consonant cluster singing is slightly different in French
and Italian. In French, one can find recommendation never to shorten the preceding
vowel, but to move through the cluster to the following syllable, i.e. to the next vowel
[5]. In Italian, inversely, the first consonant of the cluster may be lengthened and the
preceding vowel shortened, especially if the latter is set to a long note [26]. Thus, no
recommendations to use an epenthetic vowel were observed in the studied treatises on
classical lyric diction.

At the same time, an epenthetic vowel occurrence seems to be the most natural and
easiest way to overcome the described difficulty, for it helps creating additional vowels
maintaining the airflow. This phenomenon was observed even in the early ecclesiastic
practices. The insertion of parasitic vowels in the singing of antiphones caused some
anaptyctic forms (i.e. forms with an epenthetic vowel) found in medieval manuscripts
[27]. Studies in ethnomusicology also prove the insertion of such vowels in various
styles of singing [28–30].

In regard to the cited recommendations and observations, the study of rhotic cluster
pronunciation by the high-level professional native opera singers will be of special
interest and importance. Thus the two main questions were formulated: how often will
the svarabhakti appear in their singing, and what factors may influence its occurrence
and duration?

2 Material and Method

2.1 Performers and Repertoire

According to the results of the previous analysis [10], nowadays, the highest rate of
uvular /R/’s was observed in art songs performances of three famous operatic singers:
two sopranos (Natalie Dessay and Isabelle Druet) and one countertenor (Phillipe Jar-
oussky). However, only Ph. Jaroussky and N. Dessay have a wide-ranging comparable
recorded French repertoire, while I. Druet’s accessible recordings represent only few art
songs by French composers. Therefore the following study analyzes rhotic cluster
pronunciation by two worldwide renowned singers: the countertenor Ph. Jaroussky and
the soprano Natalie Dessay. Despite gender differences, both of them sing in high
register. Natalie Dessay is supposed to be the champion among coloratura sopranos
attending the highest notes. At the same time, Phillippe Jaroussky is a unique coun-
tertenor with a large voice diapason whose recorded repertoire embraces not only the
baroque music, but also a wide range of composers.

For the analysis of rhotic clusters 17 interpretations of art songs by French com-
posers of the late 19th –early 20th century were chosen. Six art songs were interpreted
by both of singers. Two art songs were added in Ph. Jaroussky’s interpretation; three
were interpreted by N. Dessay (Table 1).
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2.2 Acoustic and Statistic Analysis

As the audio processing provided some challenges due to the file format and to the
accompaniment noise, all the acoustic analysis, i.e. segmentation and transcription, was
done manually using Praat software. The duration of svarabhakti vowel was measured,
its relative frequency and duration were calculated in two types of clusters (CR and RC
clusters). Then the statistic analysis was accomplished to verify the difference of
svarabhakti occurrence in various environment and types of clusters: the chi-squared
test was done with the Yates correction coefficient when needed, i.e. when the antic-
ipated values in the fourfold table were less than 9. The Fisher’s exact test was used
when the anticipated values in the fourfold table were less than 5. For the duration
analysis the Student t-test was used. The Pearson correlation coefficient was calculated
for the comparison of the svarabhakti vowel occurrence and duration with the musical
tempo indication, as well as with the neighboring vowels mean duration.

3 Results

487 contexts with /R/s in chosen art songs were observed. 310 samples contained
consonant clusters, both tauto-and heterosyllabic. They were divided into two groups:
CR and RC clusters, i.e. clusters with a consonant preceding or following /R/, no matter
how long was the cluster. In French connected speech, as well as in singing, the word
chain is divided into syllables, causing in some cases the resyllabification [21]. Thus
word-internal and cross-word-boundary clusters were considered together. The clusters
R + Glide + V were excluded from the current analysis, because glides do not present
such an obstacle for the airflow as other sonorant consonants or obstruent consonants.
The frequency of the svarabhakti vowel occurrence and its duration were calculated in
two types of clusters for each singer.

Table 1. List of the selected art songs by French composers.

Art Songs Countertenor (PhJ) Soprano (ND)

Mandoline (G. Fauré) + +
Clair de lune (G. Fauré) + +
Spleen (G. Fauré) + +
En sourdine (G. Fauré) + +
Colibri (E. Chausson) + +
Romance (C. Debussy) + +
Automne (G. Fauré) + –

Après un rêve (G. Fauré) – +
Nuits d’Espagne (J. Massenet) + –

Invitation au voyage (H. Duparc) – +
Les filles de Cadix (L. Délibes) – +
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3.1 CR vs. RC Clusters

Mostly single clusters, i.e. V.CRV contexts, in which the CR sequence was preceded
and followed by vowels word-internally or across word boundaries, represented the
group of CR clusters. All these clusters are tautosyllabic in French. Examples are the
word-internal cluster in navrant /na.vrɑ  / and the cross-boundary cluster in the group
votre âme /vɔ.tra(mə)/. The last consonant is given in parenthesis, for it belongs to the
following syllable.

Only two single CR clusters were observed in the onset position in the phrase (after
a pause): in brilliant /# bri.jɑ  / and in brune /# bry(nə)/. Few double clusters VC.CRV
occurred in both singers’ performances. Although these clusters are heterosyllabic in
French, the sequence CR always belongs to the same syllable, due to French phono-
tactic rules and sonority sequencing principle (SSP) as in ciels brouillés /siɛl.bru.je/ or
in esprit /ɛs.pri/. Double tautosyllabic clusters # CRGliV and V.CRGliV with glides /w,
j, ɥ/ appeared in the onset position after a pause, i.e. phrase-, word- and syllable-
initially, as in croise /# krwa(zə)/, or in intervocalic position word-internally or across
word boundaries, as in le bruit /lə.brɥi/.

All RC clusters are heterosyllabic in Standard French. The single clusters in
intervocalic position, i.e. the VR.CV contexts (except for V.RGliV sequences), were
the most frequent. These clusters appeared word-internally, as in parmi /paR.mi/, and
across word boundaries, as in the group leur bonheur /lœR.bɔ.nœr/. Double clusters
with glides VR.CGliV also occurred, as in leur joie /lœR.ʒwa/. Double clusters
including two /R/’s were observed only in three examples: arbres /aR.bRə/, marbres /
maR.bRə/ and ordre /ɔR.dRə/. As such contexts were rare in the studied material, the
first /R/ of the VR.CRV cluster was considered as a part of RC type and the second as a
part of CR type of cluster. A triple RC cluster VR.CCCV occurred only once, at the
word boundaries in leur splendeur /lœR.splɑ  .dœR/.

The comparison of the occurrence of the svarabhakti vowel in two types of contexts
showed that the epenthetic vowel was more frequent in RC clusters in both singers’s
performances, though significant difference (83% and 35% respectively) was observed
only in the countertenor’s singing (at the p < 0,001). In the soprano’s singing this
difference was insignificant (89% and 70%).

The comparison of the mean duration of the epenthetic vowel in CR and RC
clusters showed statistically relevant results for both singers (at the p < 0,05). In
countertenor’s singing the svarabhakti mean durations were 84 ms in CR clusters and
124 ms in RC clusters. In soprano’s performances mean durations were 83 ms and
119 ms respectively.

3.2 Consonantal Environment Impact

Comparison of the svarabhakti occurrence and duration after and before concrete
consonants would be of interest. Nevertheless, such an analysis necessitates much
larger material. Thus in the current study the possible impact of consonant classes was
considered. In CR clusters the only voiced consonants were /b, v, g/ in countertenor’s
singing and /b, v, g, d/ in soprano’s singing. Voiceless consonants for both performers
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were /f, k, t, p/. In RC clusters /j, ɲ, r/ were absent in both singers’ performances, while
in countertenor’s singing there was also a lack of /p/ and /g/.

Voicing. In countertenor’s performances an epenthetic vowel occurred more often in
the voiced environment both in CR (50% vs. 22%) and RC (93% vs. 69%) clusters with
the significance at the p < 0,05 and p < 0,005 respectively. For soprano’s perfor-
mances the opposite relationship was observed in CR clusters: epenthetic vowels after
voiceless consonant were more frequent (88% vs. 54%) with the significance at the
p < 0,005. In RC clusters there was the same proportion as in countertenor’s singing
(92% vs. 83%), though statistically insignificant. In soprano’s interpretations of the art
songs the svarabhakti vowel was significantly longer (at the p < 0,05) before voiced
consonants, i.e. in RC clusters. Its mean duration was 132 ms in voiced environment
vs. 91 ms in voiceless one. In countertenor’s performances the difference (130 ms vs.
112 ms) was not significant.

Manner of Articulation. The countertenor produced more epenthesis after fricatives
than after plosives (71% vs. 30%) with the significance at the p < 0,05. In RC contexts,
there is an opposite proportion: 70% before fricatives and 89% before plosives (with
the significance at the p < 0,05). Svarabhakti mean duration is significantly longer after
plosives in CR clusters (87 ms vs. 64 ms) in soprano’s singing (at the p < 0,05), while
in countertenor’s performance epenthetic vowel duration increases before plosives (at
the p < 0,05) in RC clusters (132 ms vs. 103 ms).

Place of Articulation and Sonority. Neither place of articulation nor sonority showed
statistically reliable results for svarabhakti occurrence and duration. It should also be
mentioned that in CR clusters no groups with sonorant consonants were observed.

3.3 Svarabhakti Occurrence vs. Duration vs. Musical Tempo

Correlation between svarabhakti occurrence and duration was observed in soprano’s
singing with the Pearson correlation coefficient > 0,7 (approved by the t-test at the
p < 0,05), which shows a high correlation. It means that in N. Dessay’s performances
the more epenthesis occurred, the longer they were. This correlates well with tempo
indications given by composers as well. To analyze the tempo, art songs were ranged;
tempo indications were designated by numbers. This correlation appears only in
soprano’s singing and is high (r > 0,7 at the p < 0,05).

Another way to analyze the musical tempo impact was to compare mean duration
of neighboring vowels with the svarabhakti vowel duration. This correlation again
appears only in N. Dessay’s singing and is very high (r > 0,9 at the p < 0,05). It means
that for this singer the slower the musical piece is, the more frequently an epenthesis
occurs. At the same time, there is no compensatory effect in Dessay’s singing, it
doesn’t become shorter when the number of epenthesis increases. An interesting fact is
that in Ph. Jaroussky’s singing no correlation between these parameters was observed
(Tables 2 and 3).
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4 Discussion

Some results of the current study can be related to those obtained by other authors [16,
17, 19]. This is the case of the more frequent svarabhakti after voiced consonants in
countertenor’s singing. It corresponds well to the fact that in CR clusters the beginning
of /R/ is most often represented by an open phase of articulation. This phase is con-
sidered as an intrinsic part of the consonant by some of the authors [23], while others
consider it as a separate epenthetic vowel [16]. It should however be mentioned, that in
the current analysis the phonological status of this vowel (or vocoid, following K. Pike
definition [13, 14]) is not discussed. In this relation the opposite proportion of
epenthesis number after voiced and voiceless consonants in soprano’s singing seems to
be of special interest. Is it an individual peculiarity or can it be used by other sopranos
as well? What are the factors that led to such proportion? Will it occur only in sung
speech? Although the comparison of the two singers’ performances cannot give
answers to these questions, one can observe that in vocal speech the mechanisms of the
svarabhakti vowel appearance differ from those described for the ordinary speech.

Another important observation, which can be made, is the difference in singers’
strategies. Comparing Tables 2 and 3, one can remark that the singers’ decisions

Table 2. Statistically significant differences in svarabhakti vowel occurrence.

Clusters Countertenor (PhJ) Soprano (ND)

Type of cluster RC > CR –

Voicing in CR Voiced > voiceless Voiceless > voiced
Voicing in RC Voiced > voiceless –

Articulation manner in CR Fricatives > plosives –

Articulation manner in RC Fricatives > plosives –

Place of articulation in CR – –

Place of articulation in RC – –

Sonority in CR – –

Sonority in RC – –

Table 3. Statistically significant differences in svarabhakti vowel duration.

Clusters Countertenor (PhJ) Soprano (ND)

Type of cluster RC > CR RC > CR
Voicing in CR – –

Voicing in RC – Voiced > voiceless
Articulation manner in CR – Plosives > fricatives
Articulation manner in RC Plosives > fricatives –

Place of articulation in CR – –

Place of articulation in RC – –

Sonority in CR – –

Sonority in RC – –
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coincided only for one parameter: both singers made longer epenthesis in RC clusters.
The other characteristic differed. The countertenor’s epenthetic vowel occurrence
seems to be influenced more by the consonant environment, while soprano’s
epenthesis, and especially its duration, correlates more with the temporal features.
Thus, we may suppose that singers “use” different characteristics of the svarabhakti
vowel in different ways. Some singers may produce them more often and others may
make them longer in order to facilitate the uvular /R/ pronunciation.

5 Conclusion

In the current paper the impact of various factors on svarabhakti vowel occurrence and
duration was analyzed. The choice of the material is based on the previous studies’
results. Performances of the two distinguished opera singers (Ph. Jaroussky and N.
Dessay) were compared, firstly, because they pronounce uvular /R/’s in singing in more
than 90% of cases. Secondly, they are both renowned French native artists with a wide-
ranging repertoire. This fact allowed making a comparison using a well-balanced
material. Thirdly, both of singers have high voices. At the same time, Ph. Jaroussky’s
interpretations of French art songs cannot be compared to any other countertenor’s
performances at this moment, because of the rarity of this voice and differences in
singers’s repertoire. N. Dessay’s art songs performances cannot be compared to other
soprano’s recordings either, for the number of accessible commercial recordings of
other singers pronouncing uvular /R/’s in singing is much lower.

This analysis showed the significant prevalence of svarabhakti vowel duration in
RC clusters vs. CR clusters for both singers. At the same time, other parameters seem
to depend on individual preferences of singers and may represent their individual
techniques, which aim at achieving a good airflow projection. One may suppose that
svarabhakti occurrence, especially in RC clusters, may facilitate not only the articu-
lation, but also the perception of the sung speech by listeners.

Another challenge concerns svarabhakti duration measurements. One can suppose
that the svarabhakti sung in different registers with different duration may have the
same number of pitch periods. Although this question was not considered in the current
study, it presents an important interest for the future research.

The results of the current analysis may be useful for the theory of opera singing and
of the French diction for singers, as they provide new data about rhotic cluster pro-
nunciation in formal singing. On the one hand, this information corresponds to the
results of the previous and recent studies in ethnomusicology. On the other hand, it
totally contradicts what has been recommended in various treatises on vocal technique.
However, the high professional level and competence of the considered artists makes
no doubt about the suitability of svarabhakti in their performances. Indeed, it seems to
be an individual strategy that helps maintaining an appropriate airflow projection when
pronouncing uncomfortable uvular consonants in the high register. In future, the
comparison with other singers with the same or lower registers, singing with the uvular
/R/ or alveolar /r/ seems to be of importance. The obtained results may also be
applied in singing voice synthesis and recognition, which are the most challenging and
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up-to-date questions in this field. Thus, a higher rate of the svarabhakti vowels and of
the open syllables may be one of the signals of the vocal speech.
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Abstract. The article proposes the application of the assessment of phrase and
word intelligibility through speech recognition approach in the framework of
solving the problems of speech rehabilitation after the combined treatment of
oncological diseases. Speech intelligibility assessments were obtained using
three speech recognition systems (Google, Yandex, Voco) and compared with
expert assessments of intelligibility. Experimental results show a positive
opinion about the proposed approach and they are agreed with expert assess-
ments. Based on the processed data from rehabilitation for the Russian language,
a recommendation is formulated on using the Google recognition system in the
first version of the being developed product. The statistical significance of the
differences in the obtained estimates of intelligibility between patient sessions
and the coincidence of the sign of these differences with expert estimates and
theoretical expectations are shown.

Keywords: Speech recognition � Cancer of the oral cavity and oropharynx �
Speech quality criteria

1 Introduction

According to statistics [1, 2], the prevalence of oncological diseases of the organs of the
speech apparatus increased in 2017 in Russia, in particular, the prevalence of onco-
logical diseases of the oral cavity became 27.2 per 100,000 population against 26.6 in
2016. The proportion of newly diagnosed diseases in I and II stages increased, the
mortality decreased with such localization (except for lungs, trachea and bronchus
diseases), the number of patients admitted for treatment increased. The average age of
patients is 60–63 years with such localization of oncology. Therefore, there is an urgent
need for speech rehabilitation after surgical treatment of cancer. The relevance of this
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area of research is confirmed by the appearance of similar works abroad, although they
cannot be directly applied to the processing of Russian-speaking speech [3]. As part of
rehabilitation, it is necessary to assess both the patient’s speech and the dynamics of
speech recovery. Currently, speech rehabilitation is carried out at Cancer Research
Institute, Tomsk National Research Medical Center of the Russian Academy of Sci-
ences is based on GOST R 50840-95 “Speech transmission over varies communication
channels. Techniques for measurements of speech quality, intelligibility and voice
identification” [4]. In the process of rehabilitation, assessment methods of syllable and
phrase intelligibility are used, the bases of which are taken from the standard. The main
disadvantage of these methods is the subjectivity of the resulting estimates. Therefore,
automated systems are being developed to obtain objective quantitative assessments of
the quality and intelligibility of speech, namely, syllable and phrase intelligibility. The
proposed systems and algorithms for assessing syllable intelligibility are described in
[5–7]. Concerning phrase intelligibility approach is offered to use, based on speech
recognition algorithms and the subsequent evaluation of the recognized text - whether
the recognized text matched what was or had to be pronounced. This article describes
the attempt to apply various speech recognition systems to the existing database of
phrase records according to GOST R 50840-95, formed on the basis of session records
of patients who were treated at Cancer Research Institute. The estimates obtained by
the results of recognition are compared with the estimates obtained by the method
currently used, namely, listening to the record base by experts. A comparison of both
phrase and word intelligibility is proposed. Phrase intelligibility is understood as an
assessment of the phrase pronunciation correctness. Word intelligibility is understood
as the proportion of correctly pronounced words in a phrase.

2 Proposed Approach

2.1 Applied Assessment Method

GOST R 50840-95 proposes an assessment of phrasal and verbal intelligibility in two
ways. The first of these is the speaker’s paired comparison of the recordings of phrases
in the test and control transmission paths by grading on a 5-point scale in 0.1 incre-
ments for each record. Then the average values are calculated for the test and control
paths. The final assessment is the ratio of these average values multiplied by 5. In
accordance with the obtained assessment, the quality class is assigned, the description
of which is given in Table 1 in GOST R 50840-95. For recording, 7 basic and 2
additional phrases from Appendix G GOST R 50840-95 are suggested. It is also
proposed an evaluation of phrase intelligibility at an accelerated pace of pronunciation.
The measurement is carried out by transferring phrases through the subject channel at
the normal and accelerated rate of pronunciation. A couple of operators participate in
the reception: an auditor and a controller. The auditor says out loud the received phrase,
and the controller detects the correctness of its reception (binary score - 0 or 1). In this
case, measurements are carried out at the normal and accelerated rate of pronouncing
two tables of phrases with the participation of a brigade consisting of at least 3
announcers and 4–5 pairs of operators. Tables of phrases are given in Appendix D
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GOST R 50840-95, which contains 100 tables of 50 phrases in each. Direct use of the
above techniques in the task of assessing the speech quality in the rehabilitation process
is not possible. Therefore, now phrase intelligibility is carried out as follows: a set of
phrases is recorded and a score of 0 or 1 is set for these records, where 1 is the phrase
spoken completely legibly and 0 otherwise. For recording, phrases from Appendix D
GOST R 50840-95 are used. Evaluation of word intelligibility is not performed. Also,
one of the drawbacks of the existing methodology is that the auditor knows in advance
what should be pronounced, which leads to a distortion of the resulting assessment.

2.2 Description of Speech Recognition Systems

In the framework of automating the process of evaluating phrase and word speech
intelligibility, it was proposed to use three speech recognition systems (converting
sound files into text). The first is Google Cloud Speech-to-Text API [8]. It allows
converting audio to text using deep-learning neural network algorithms. The API
recognizes 120 languages and variants. Speech-to-Text has three main methods to
perform speech recognition: Synchronous Recognition (audio data of 1 min or less in
duration), Asynchronous Recognition (audio data of any duration up to 480 min) and
Streaming Recognition. Both off-line (i.e. providing already pre-recorded audio) and
on-line recording (i.e. streaming the audio as it comes) modes are supported. All audio
file formats are permissible, but FLAC and WAV are recommended for best results.
This system uses the most basic recognition algorithms, however, due to the large
amounts of computing power, high recognition accuracy is achieved. Also, a possible
disadvantage of the system can be considered the fact that it was originally developed
not for the Russian language.

The second system is Yandex SpeechKit [9]. This system is designed for both
recognition and speech synthesis. Currently, the system supports three languages:
Russian, English and Turkish. Initially, the system was developed specifically for the
peculiarities of the Russian language. In the system, the recognition problem is solved
in two stages. The first is the selection of sets of sounds that can be interpreted as
words, and for each set there are several variants of words. At the second stage, a
language model is added, which determines the best of the variants due to the analysis
of consistency with the previously recognized words. The language model is based on
machine learning of neural networks. For each of the languages there are their own
models, for the Russian language currently there are 5 models: short queries (general),
addresses (maps), dates (dates), names (names), numbers (numbers). Both off-line (i.e.
providing already pre-recorded audio) and on-line recording (i.e. streaming the audio as
it comes) modes are supported. The following restrictions are imposed on audio files:
size no more than 1 MB, duration no more than 1 min, 1 audio channel.

The third system is Voco [10], a speech-to-text application developed by the
Speech Technology Center. The recognition language is Russian, the volume of the
dictionary is 334750 words and word forms. The claimed audio recognition time is
approximately 1 � real-time. Recognition accuracy is 86% for prepared dictated
speech and up to 77% for audio recording from the media channel (news channel). The
general vocabulary and colloquial vocabulary are included in the basic vocabulary,
there are also special subject dictionaries: legal and financial. Recognition is possible
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both dictation of speech from a microphone and downloadable audio recordings. The
program supports most existing audio formats, however, for best results, it is suggested
to use WAV and FLAC. This is the only one of the three systems presented that works
in offline mode.

2.3 Description of the Database and Experiment Methodology

To test the proposed approach to the assessment of phrasal and verbal intelligibility, a
database from the Tomsk Oncology Research Institute was used. Records of only those
patients who had 2 or more sessions were selected. This is due to the need to check the
efficiency of the approach, not only on the records before the operation, where speech
is close to normal, but also on the sessions after surgical treatment. There are 21
patients in the record database used, totally 60 sessions of 25 records each (totally 1500
records). Of these 21 patients, 12 are women and 9 are men. 12 speakers have 3
sessions, 6 speakers have 2 sessions each, the remaining 3 speakers have 4 sessions.
For the recording of phrases, a list of the first 25 phrases of the table D3 of Appendix D
GOST R 50840-95 is used.

Table 1. The assessment table for a session.
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As part of the experiment, each of the sessions was evaluated by an expert, as well
as by each of the three systems described above. In the case of an expert assessment,
the assessment was made as follows: the expert listens to a record, writes down what he
heard, and assesses how much what he heard coincides with what was supposed to be
pronounced. In the case of a recognition system, a record is made at the system input,
the system issues a recognition result, and the expert evaluates how much what the
system issued coincides with what was supposed to be pronounced. For each session
record, phrase intelligibility (0 or 1) and word intelligibility (the number of words that
were correctly recognized) are set. An example of the assessment table for a session is
presented in Table 1. The Table shows the pronounced and recognized phrases in
Russian, their phonetic transcription according to [11] and the translation into English.
The evaluation of the phrase intelligibility of a session is obtained as the ratio of the
number of correctly recognized phrases to the total number of phrases in the session.
The assessment of the word intelligibility of the session is obtained as the ratio of the
total number of correctly recognized words in all records to the total number of words.

3 Results

The first thing that was calculated as the average phrase and word intelligibility for
each type of assessment. Hereinafter, we will use the following notation: expert
assessment - Expert, Google Cloud Speech-to-Text API recognition system - Google,
Yandex SpeechKit - Yandex recognition system, Voco recognition system from the
Speech Technology Center - Voco. The mean values of intelligibility were compared
for three types of sessions (before the operation - the first session of the patient,
immediately after the operation and before rehabilitation - the second session, after
rehabilitation - the third session). Some patients also have a fourth session (usually
several months after the completion of rehabilitation), but since there are only 3 such
patients, therefore the average for them was not considered. The results for phrase
intelligibility, namely average values and standard deviations, are presented in Fig. 2.
Additionally, the significance of differences between the average values was calculated.
The significance is assessed based on testing the null hypothesis of equality of averages
with the alternative hypothesis of their inequality. The t-test was used [12]. The levels
of significance for each of the pairs are presented in Tables 2 and 3. The differences
between the obtained average values are statistically significant. From the presented
data it is clear that Google produces more quality recognition than other recognition
systems. And this advantage takes place both for records before the operation, and
after. Also, by average values, it can be seen that the best speech intelligibility is
observed in sessions before surgery, after surgery the lowest values, after rehabilitation
the scores improve, but do not reach the level before the operation. The results are
consistent with the data on rehabilitation provided by Cancer Research Institute.
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By analogy with phrase intelligibility, results are obtained for word intelligibility.
Average values and standard deviations are presented in Fig. 1. The significance for
average values of word intelligibility are presented in Tables 4 and 5. As with phrase
intelligibility, Google produces more quality recognition than others regarding word

Table 2. The significance for the null hypothesis of equality of averages with the alternative
hypothesis of their inequality.

Before the operation Before rehabilitation After rehabilitation
Google Yandex Voco Google Yandex Voco Google Yandex Voco

Google 1 0.358 0 1 0.166 0 1 0.164 0
Yandex 1 0 1 0 1 0
Voco 1 1 1

Table 3. The significance for the null hypothesis of equality of averages with the alternative
hypothesis of their inequality.

Expert Google
Before the
operation

Before
rehabilitation

After
rehabilitation

Before the
operation

Before
rehabilitation

After
rehabilitation

1 0.002 0.038 1 0.004 0.068
1 0.094 1 0.294

1 1
Yandex Voco
Before the
operation

Before
rehabilitation

After
rehabilitation

Before the
operation

Before
rehabilitation

After
rehabilitation

1 0 0.004 1 0 0.002
1 0.276 1 0.832

1 1

Fig. 1. Average values and standard deviations of word intelligibility.
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intelligibility among the recognition systems. Also, by evaluating phrase and word
intelligibility, it can be concluded that in most cases it is impossible after rehabilitation
to achieve the same level of intelligibility that was before the operation.

Fig. 2. Average values and standard deviations of word intelligibility.

Table 4. The significance for the null hypothesis of equality of averages with the alternative
hypothesis of their inequality.

Before the operation Before rehabilitation After rehabilitation
Google Yandex Voco Google Yandex Voco Google Yandex Voco

Google 1 0.09 0 1 0.282 0 1 0.162 0
Yandex 1 0 1 0 1 0
Voco 1 1 1

Table 5. The significance for the null hypothesis of equality of averages with the alternative
hypothesis of their inequality.

Expert Google
Before the
operation

Before
rehabilitation

After
rehabilitation

Before the
operation

Before
rehabilitation

After
rehabilitation

1 0.016 0.174 1 0 0.022
1 0.144 1 0.099

1 1
Yandex Voco
Before the
operation

Before
rehabilitation

After
rehabilitation

Before the
operation

Before
rehabilitation

After
rehabilitation

1 0 0.008 1 0 0.008
1 0.25 1 0.176

1 1
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We also calculated the values of the Pearson correlation coefficient between all
obtained sets of estimates of sessions and their significance. The results are presented in
Table 6. The following notation is used in the table: EP - phrase intelligibility, assessed
by an expert, GP - phrase intelligibility through Google, YP - phrase intelligibility
through Yandex, VP - phrase intelligibility through Voco, EW - word intelligibility,
assessed by an expert, GW - word intelligibility through Google, YW - word intelli-
gibility through Yandex, VW - word intelligibility through Voco, r - Pearson corre-
lation coefficient, t - significance (one-sided). For a conclusion about the applicability
of the proposed approach and the choice of the optimal recognition system for use, it is

Table 6. Correlation values and their significance.

Correlation
EP GP YP VP EW GW YW VW

EP r 1 0.486 0.500 0.331 0.873 0.543 0.499 0.462

t 0.000 0.000 0.006 .000 0.000 0.000 0.000

GP r 0.486 1 0.885 0.582 0.510 0.948 0.917 0.784

t 0.000 0.000 0.000 0.000 0.000 0.000 0.000

YP r 0.500 0.885 1 0.740 0.422 0.868 0.948 0.881

t 0.000 0.000 0.000 0.000 0.000 0.000 0.000

VP r 0.331 0.582 0.740 1 0.232 0.583 0.684 0.895

t 0.006 0.000 0.000 0.040 0.000 0.000 0.000

EW r 0.873 0.510 0.422 0.232 1 0.586 0.491 0.386

T 0.000 0.000 0.000 0.040 0.000 0.000 0.001

GW r 0.543 0.948 0.868 0.583 0.586 1 0.949 0.797

t 0.000 0.000 0.000 0.000 0.000 0.000 0.000

YW r 0.499 0.917 0.948 0.684 0.491 0.949 1 0.884

t 0.000 0.000 0.000 0.000 0.000 0.000 0.000

VW r 0.462 0.784 0.881 0.895 0.386 0.797 0.884 1

t 0.000 0.000 0.000 0.000 0.001 0.000 0.000

Bold Font, light grey background - The correlation is significant at the level of 0.01 (one-
sided).
Dark grey background - The correlation is significant at the level of 0.05 (one-sided).
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necessary to look at the correlation between expert evaluation and the evaluations of
each of the systems. From the presented data it can be concluded that if we talk about
phrase intelligibility, the correlation coefficient between Expert and Yandex estimates
is the highest, but it is only slightly more correlation coefficient between Expert and
Google (0.486 vs. 0.5). If we talk about word intelligibility, then Google is closest to
Expert. All scores obtained through recognition systems are consistent, but the con-
sistency between Google and Yandex is higher than between them and Voco.

4 Conclusion

As a result of the analysis of the obtained data on the word and phrase intelligibility
assessment, it can be concluded that the approach to assessing the pronunciation of
phrases and words in phrases based on the use of speech recognition systems is
applicable. The results obtained based on the application of the described approach are
consistent with the results obtained using the methodology currently used. A compar-
ison of the three speech recognition systems (Google, Yandex, Voco) showed that
Google’s system is best at recognizing. Therefore, this system is proposed for use in the
first version of the module for the assessment of phrase intelligibility in a program for
assessing speech quality in the process of speech rehabilitation. The resulting estimates
can be used to assess the dynamics of speech recovery from the point of view of phrase
and word intelligibility.

The values obtained for healthy speakers and the speech of patients before the
operation are comparable in terms of word intelligibility to the results presented in [13].

However, the results obtained through the selected system are not close (although
they are consistent) with the results obtained by the expert. Therefore, one of the areas
for further research is the development of a recognition system that will be designed
specifically for solving a specific local task of assessing patients’ speech in the process
of speech rehabilitation after surgical treatment of oncological diseases. It is possible to
attempt the use of existing speech recognition algorithms designed for the Russian
language [14], with a refinement to the task. It is assumed that in this system there will
be a setting for specific patients, a model for non-standard speakers (considering the
peculiarity of surgical intervention), as well as methods for setting up the system, in
particular using optimization methods [15].

Additionally, in the course of the experiment, an auditor significant “addiction” to
the phrases was revealed, which makes it impossible to obtain an assessment on the
same speech material. This effect will be investigated further by comparing with the
results obtained by individual selection of an auditor for each session. However, now
the identification of such a problem increases the relevance of using the developed
objective assessment method.

Acknowledgments. The study was performed by a grant from the Russian Science Foundation
(project 16-15-00038).
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Abstract. The presence of overlapping speech has a significant nega-
tive impact on the performance of speaker diarization systems. In this
paper, we employ a convolutional neural network for the detection of such
speech intervals and evaluate it in terms of the potential improvements
to speaker diarization. We train the network on specifically-created syn-
thetic data, while the evaluation is performed on the AMI Corpus and
the SSPNet Conflict Corpus.

Keywords: Overlapping speech · Speaker diarization ·
Convolutional neural network

1 Introduction

In natural human conversations, there are often instances where multiple individ-
uals speak at the same time – this includes interruptions, backchannel responses
(e.g. “yeah”, “uh-huh”), or simply brief natural overlaps during rapid turn-
taking. Such overlapping speech can prove problematic for automatic speech
processing, particularly for speech recognition and for speaker diarization.

Specifically, in our recent paper [17], we found that accurate detection of
overlapping speech would have improved the results of our diarization system by
a significant margin: on the development set of the DIHARD II corpus, the use of
ground-truth overlap labeling decreased the Diarization Error Rate (DER) from
20.78 to 16.16% (22% relative improvement). Similar observations have previ-
ously been made by other authors, e.g. in [8]. This potential for improvement is
what motivated our work on overlap detection.

The research of this topic has evolved over the last decade with only mild
success: The more traditional approaches rely on a careful selection of hand-
crafted features, to be fed into a HMM decoder [2,16] or a neural network [1,3].
A more recent alternative is to let a neural network extract the relevant infor-
mation form “raw” input, such as a spectrogram of acoustic signal [10,14]. Our
work is also based on this latter approach.
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1.1 Problems with Data

During our work on the overlap detector, we have encountered some difficulties,
particularly with the lack of suitable data.

Training and evaluating an overlap detector generally requires a large amount
of well-annotated data with frequent overlaps. Unfortunately, there do not
appear to be any publicly available datasets made specifically for this purpose,
and other corpora often lack sufficiently precise labels.

Like some other authors (e.g. [1,10,14]), we resorted to creating our own
synthetic training data – we describe this in Sect. 3.1. However, the same prob-
lem with inadequate labels also applies to subsequent evaluation of the overlap
detector on real corpora, and its use in a speaker diarization system.

It is difficult, as well as very time-consuming, to precisely annotate overlap-
ping speech. For this reason, reference annotations often tend to exclude very
short occurrences (<0.5 s), especially those at the boundaries between speakers.
This can be a problem if the overlap detector is more sensitive, as such detected
overlaps will be incorrectly evaluated as false alarms.

A similar issue is also with the classification of overlaps with voiced non-
speech sounds such as laughter or humming. On the one hand, these sounds
can often be identified as a specific speaker and can negatively affect speaker
diarization. On the other hand, these events are often not included in speech
transcripts, especially when they happen in the background of another speakers’
speech, so such regions may be (in this case incorrectly) marked as non-overlap
in the reference. This may again lead to a seemingly high false alarm rate of an
overlap detector evaluated on such data.

When evaluating overlap detection, various authors deal with these issues in
different ways, such as by ignoring very short intervals, applying generous toler-
ance windows, or, if they can be identified by other means, excluding intervals
with non-speech from evaluation.

2 Overlap Detector

We have previously [6,7] used a Convolutional Neural Network (CNN) for the
detection of speaker changes in an audio stream. In this paper, we employ the
same general approach for the detection of overlapping speech.

A summary of the network architecture can be found in Table 1. The input
of the network is a spectrogram of a short window of the acoustic signal. The
output of the last layer is a value between 0 and 1, indicating the probability of
overlapping speech in the middle of the window. Training references use a fuzzy
labeling function, with a linear slope (width 0.4 s) at the boundaries between
overlap and non-overlap (see the lower two plots of Fig. 3 for an example). The
sliding window has a length of 1 s and is shifted with a step of 0.05 s.

We use a median filter with a window length of 5 samples to smooth the raw
network output, then apply a threshold to obtain overlap/non-overlap classifi-
cation. Additionally, we fill in any gaps (non-overlaps within a longer overlap)



Detection of Overlapping Speech for the Purposes of Speaker Diarization 249

which are shorter than 0.1 s, and then discard overlaps under 0.5 s, as these are
unlikely to be included in the reference labeling (as discussed in Sect. 1.1).

Table 1. Summary of the network architecture.

Layer Kernels Size Shift

Convolution 128 8 × 16 2 × 2

Max pooling 2 × 2 2 × 2

Batch normalisation

Convolution 256 4 × 4 1 × 1

Max pooling 2 × 2 2 × 2

Batch normalisation

Convolution 512 3 × 3 1 × 1

Max pooling 2 × 2 2 × 2

Batch normalisation

Fully connected 1024

Fully connected 256

Fully connected 1

3 Data

3.1 Synthetic Training Data

Given the lack of sufficient real data (as mentioned in Sect. 1.1), we resorted
to artificially creating training data from two corpora of read English speech,
LibriSpeech [13] and TIMIT [5], using an automated and randomized process.
In the creation of this synthetic dataset, we used some of the ideas previously
described in [4,14].

TIMIT - The TIMIT corpus consists of the recordings of single English sen-
tences, approx. 2–5 s long. We used the data from 320 speakers for training.

To obtain overlapped data, we first concatenated all utterances from a single
speaker into one file of approx. 30 s, with random-length pauses (up to 2 s) in-
between. In order to avoid noticeable seams, the silence at the beginning and
end of each utterance is linearly tapered. Then, files from two random speakers
are combined at different volumes and augmented with added background noise
(office, hallway, meeting) from the DEMAND database [15] and, for 50% of the
files, reverberation (via convolution with room impulse response from the AIR
database [9]). The result is illustrated in Fig. 1.

Reference labels were created with the use of the original phone-level tran-
scripts - so that only the intervals where both speakers are truly active are
labeled as overlap.
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individual sentences from one speakerrandom pause
up to 2s

Background
noise

Speaker 2

Speaker 1

Fig. 1. Creation of artificial overlap data from the TIMIT corpus.

LibriSpeech - We also used data from the “train-other-500” set of the Lib-
riSpeech corpus - this consists of approx. 500 hours of speech from over 1000
speakers, in the form of 10–15 s long recordings derived from audiobooks.

Given the very large amount of available LibriSpeech data, we were able to
create several different types of overlaps, to better represent the possibilities
which may occur in real data (see Fig. 2):

(a) Two full length (approx. 10–15 s) utterances, with an overlap of 1/2 length
(b) Two utterances with a short overlap (up to 2 s) or pause (up to 1 s) in-

between
(c) A single utterance with an inserted word or phrase from another speaker:

Utterance 1 is split on pauses and a randomly selected speech interval (0.25–
2 s) is placed over utterance 2, either: fully overlapping speech, fully inside
a pause, or randomly placed.

In the case of (b) and (c), the resulting file is shortened to 5 s of non-overlap
data on each side of the overlap or pause, as seen in Fig. 2. The is done to keep
a better ratio between non-overlaps and overlaps.

5s
5s

~1/2 1st utterance length

5s 5s

5s 5s

up to 2s
0.25 to 2s

up to 1s

Fig. 2. Different types of synthetic overlap created from the LibriSpeech corpus. (Addi-
tive noise not shown.)

As with TIMIT, we added noise and reverberation. Speech/non-speech
labelling was obtained using a voice activity detector (VAD) on the original
single speaker data without added noise.

3.2 Test Data

We evaluated our overlap detector on three different sets of data: one artificially
created dataset and two corpora of real conversations.
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LibriSpeech Test Data - We created synthetic test data from the “test-other”
subset of the LibriSpeech corpus, in a very similar way to the TIMIT training
data - but with 5–10 s pauses between a single speaker’s utterances, and without
the added noise or reverberation.

SSPNet Conflict Corpus 1 [11] - This is a dataset of French-language polit-
ical debates, consisting of 1430 clips of exactly 30 s each, cut from 45 separate
debates. Each clip usually involves between 2–5 people and, as these are sponta-
neous discussions, there are frequent instances of overlapping speech. The same
corpus was also used for overlap detection in [10].

We selected 5 debates (06-05-31, 06-09-20, 06-10-11, 07-05-16, and 08-01-15;
161 files total = 80.5 min of audio data) as development data for tuning the
decision threshold, the remainder (1269 files = 10.6 h) was used for evaluation.

As the corpus hadn’t been created with overlaps in mind, the original refer-
ence labels are relatively rough in this regard - they do not include very short
overlaps at speaker changes or during isolated backchannel responses (e.g. “Oui,
... oui.”), nor shorter non-overlap intervals within a longer overlap region (e.g.
pauses in the speech of one speaker). However, our network proved capable of
detecting all of the above. For this reason, we also selected a small number of
audio clips (30 files = 15 min) and manually corrected the labels2 to better cor-
respond to the audio data (example shown in Fig. 3). These 30 files were then
evaluated separately, using both the original and corrected labels, to illustrate
how labelling quality affects the reported results (see Table 2).

00:00.00 00:05.00 00:10.00 00:15.00 00:20.00 00:25.00 00:30.00
0

0.5
1

CNN output (06-04-05_2430_2460.wav + dereverberation)

00:00.00 00:05.00 00:10.00 00:15.00 00:20.00 00:25.00 00:30.00
0

0.5
1

reference - original

00:00.00 00:05.00 00:10.00 00:15.00 00:20.00 00:25.00 00:30.00
0

0.5
1

reference - corrected

Fig. 3. Example output (raw + median filter) for dereverberated SSPNet data and the
corresponding reference labels - original (middle) and manually corrected (bottom).

1 http://www.dcs.gla.ac.uk/vincia/?p=270.
2 The corrected labels and the code used in this paper can be found at https://github.

com/mkunes/CNN-overlap-detection.

http://www.dcs.gla.ac.uk/vincia/?p=270
https://github.com/mkunes/CNN-overlap-detection
https://github.com/mkunes/CNN-overlap-detection
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AMI Meeting Corpus 3 - A set of recordings from meetings between 3–6
people. We tested the overlap detector on the “headset mix” data, using the same
train/validation/test split as Sajjan et al. [14]. We used the original transcripts
as ground truth, rather than Sajjan et al.’s force-aligned labels4, as we found
the latter to be less accurate in some regards, but both versions have errors –
in particular, there are many instances where overlaps with non-speech such as
laughter are not labeled.

The corpus consists of several subsets of meetings which were recorded at
different sites and vary in audio and transcription quality. We particularly found
the Idiap scenario meetings (IS) to have very different optimal settings from the
rest of the test set, so we also evaluate them separately.

4 Evaluation

Previous works on overlap detection use a variety of different evaluation met-
rics, including frame-level precision and recall or F-score [1], or per-overlap miss
and false alarm rate [10] (see Table 3). However, as our main motivation is the
improvement of speaker diarization, we decided to primarily evaluate the overlap
detector in terms of the potential gains in diarization performance.

There are two main ways in which overlap information can be used in a
diarization system: First, by excluding such intervals from any clustering process,
we can avoid “polluting” the clusters and negatively influencing the clustering
decisions. Secondly, in the final output, we assign multiple labels to each overlap
region. The exact benefits of the first point depend on the diarization system in
question. Thus, in this paper, we concentrate on the latter point, which is easier
to quantify.

Diarization systems are usually evaluated in terms of Diarization Error Rate
(DER), which consists of three types of error: missed speech (including missing
speakers in overlaps), false alarm (silence mislabelled as speech or non-overlap
as overlap), and speaker error (wrong speaker). In an ideal diarization system
with no overlap handling, false alarm and speaker error will be zero, while missed
speech will correspond to the amount of overlapping speech in the data.

In our evaluation of the potential benefits of overlap detection, we assume
that the diarization system assigns two speaker labels to every detected region
of overlapping speech (regardless of the true number speakers), and that (for
correctly detected overlap) it does so perfectly – the speaker error is still zero.

In such a scenario, correctly detected overlaps will directly decrease the
amount of missed speech compared to the baseline system, while false overlaps
will increase the false alarm. Thus, we can obtain the potential improvement as
the difference between the two values.

Note: By the correct definition, DER is calculated as a ratio of total speech
(excluding silence), with overlaps being counted multiple times – once for each

3 http://groups.inf.ed.ac.uk/ami/corpus/.
4 https://github.com/BornInWater/Overlap-Detection.

http://groups.inf.ed.ac.uk/ami/corpus/
https://github.com/BornInWater/Overlap-Detection


Detection of Overlapping Speech for the Purposes of Speaker Diarization 253

0 5 10 15
False positive overlap / all frames [%]

0

2

4

6

8

10

12

14

16
T

ru
e 

po
si

tiv
e 

ov
er

la
p 

/ a
ll 

fr
am

es
 [%

]

SSPNet - original labels

0 2 4 6 8 10 12
False positive overlap / all frames [%]

0

2

4

6

8

10

12

T
ru

e 
po

si
tiv

e 
ov

er
la

p 
/ a

ll 
fr

am
es

 [%
]

SSPNet - corrected labels

Original audio Dereverberated audio Real overlaps

Fig. 4. False Positive vs True Positive for SSPNet data (frame-level percentage of all
audio). Original labels (all 1269 test files) on the left, corrected labels (30 files, 15min
total) on the right. “Real overlaps” denotes the overlap percentage in the ground truth.

speaker. However, for simplicity, we calculate the potential improvements here
as relative to the total length of the audio data.

4.1 Results

The results we achieved on the different corpora are shown in Table 2 and in
Figs. 4 and 5.

The overlap detector appears to work very well on clean audio, such as the
synthetic LibriSpeech data and the SSPNet Conflict Corpus. The network also
seems to be very sensitive and capable of detecting even very short overlaps and
non-overlaps, down to the level of individual words – a much greater precision
than typically found in the reference annotations (as illustrated by the example
output in Fig. 3).

On the other hand, the detector had issues with the AMI corpus. This may
be in part due to errors in the reference labels – we have found instances of
missing speech, or long unlabeled intervals where multiple people are laughing,
which our network also considers to be overlaps. However, the lower performance
is likely also caused by the higher level of noise in the these recordings, as well as
the sometimes very large differences in the voice volumes of individual speakers.
This is evidenced by the fact that we were able to improve the results to some
extent by including the training set of the AMI corpus in the training data –
this suggests that we may need to improve the synthetic dataset.

Initial experiments also suggested that the network had problems with rever-
berant speech, which was often incorrectly labeled as overlap. We have partly
mitigated this effect by adding reverberation to the training data (as described
in Sect. 3.1). However, we have also experimented with dereverberation of the
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Table 2. Results of overlap detection on evaluation data. Overlap percentages are
relative to total audio length, precision and recall are calculated per frame. (Ref. =
Real overlap ratio according to the reference, TP = True Positive, FP = False Positive,
Δ = TP−FP � potential DER improvement).

Overlaps [% of all frames]

Dataset Ref. TP FP Δ Prec. Rec. Thresh.

LibriSpeech test mix 16.32 11.99 2.82 9.18 0.81 0.73 0.25

SSPNet - original (10.6h) 14.77 7.86 2.94 4.92 0.73 0.52 0.80

+ dereverberation 9.58 2.68 6.90 0.78 0.63 0.70

SSPNet - precise (15min) 12.62 8.05 1.42 6.63 0.85 0.65 0.80

+ dereverberation 8.90 1.41 7.49 0.86 0.71 0.70

SSPNet - original (15 min) 12.86 7.47 2.00 5.47 0.79 0.59 0.80

+ dereverberation 8.60 1.71 6.89 0.83 0.68 0.70

AMI test (all subsets) 12.21 2.25 0.96 1.30 0.70 0.19 0.50

+ dereverberation 2.38 1.03 1.34 0.70 0.20 0.25

AMI test (only “IS”) 7.82 2.75 1.34 1.41 0.67 0.36 0.80

+ dereverberation 3.71 1.76 1.95 0.68 0.48 0.60

Retrained network - with added AMI training data:

AMI test (all subsets) 12.21 5.73 2.35 3.38 0.71 0.48 0.50

+ dereverberation 4.92 1.61 3.31 0.75 0.41 0.25

AMI test (only “IS”) 7.82 3.28 1.24 2.04 0.73 0.43 0.90

+ dereverberation 3.73 1.61 2.12 0.70 0.48 0.80
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Fig. 5. False Positive vs True Positive for AMI data (frame-level percentage of all
audio), with overlap detector trained only on synthetic LibriSpeech + TIMIT data or
with the addition of AMI training data. Results are for all test files (left) and only for
the Idiap scenario meetings (right).
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test data - to evaluate the potential benefits, we used the WPE Dereverberation
package5 created by Nakatani et al. [12]. Even with the default settings without
any adjustments, this has proven to be clearly beneficial for SSPNet data, but
for AMI the difference is negligible (with the exception of the Idiap scenario (IS)
meetings).

Finally, in Table 3 we present a comparison of our overlap detector with some
other works on the topic. This comparison is somewhat complicated by the fact
that other authors have used many different combinations of datasets (or their
parts) and metrics to evaluate their systems. For instance, while 3 other systems
in the table used the AMI corpus, each of them selected different files. Similarly,
the results of [10] on the SSPNet Conflict Corpus are not directly comparable
with ours, as their system was evaluated only on voiced frames.

Table 3. Comparison of the proposed system (selected results from Table 2, without
added AMI training data) with prior works. With the exception of our “all subsets”
and [14]’s “original labels” AMI results, no two systems used identical test data and
ground-truth labelling.

System Dataset Prec. Rec. F-score Accuracy

Proposed LibriSpeech test mix 0.81 0.73 0.77 0.93

SSPNet (original labels) 0.73 0.52 0.61 0.90

+ dereverberation 0.78 0.63 0.70 0.92

AMI (16 files - all subsets) 0.70 0.19 0.30 0.89

+ dereverberation 0.70 0.20 0.31 0.89

AMI (4 files - only “IS” subset) 0.67 0.36 0.47 0.94

+ dereverberation 0.68 0.48 0.56 0.94

[1] Custom dataset 0.81 0.78 0.8 0.802

[10] SSPNet (voiced frames only) 0.71 0.78 0.75 0.92

[2] AMI (12 “IS” files, force aligned) 0.67 0.26 0.38 -

[14] AMI (16 files, original labels) - - - 76.0/60.6*

- AMI (16 files, force aligned labels) - - - 87.9/71.0*

[16] AMI (25 files) - - 0.51 -

(*overlap-detection accuracy/single-speaker detection accuracy)

5 Conclusion

In a previous paper [17], we measured the improvement achievable with a ground-
truth overlap labelling in a real diarization system. Here, we looked at the prob-
lem from the opposite angle - evaluating an overlap detector under the assump-
tion that the diarization system otherwise functions without error.

The results we achieved here appear to be very promising, particularly those
on relatively clean and noise-free data, although some more work will be required
5 http://www.kecl.ntt.co.jp/icl/signal/wpe/index.html.

http://www.kecl.ntt.co.jp/icl/signal/wpe/index.html
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in order to improve the performance on data with higher levels of noise. The next
step in our research will be to connect the two systems and to evaluate the full
effects of the overlap detector on the entire diarization pipeline.
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6. Hrúz, M., Kunešová, M.: Convolutional neural network in the task of speaker
change detection. In: Ronzhin, A., Potapova, R., Németh, G. (eds.) SPECOM
2016. LNCS (LNAI), vol. 9811, pp. 191–198. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-43958-7 22
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Abstract. Hybrid CTC/attention end-to-end speech recognition com-
bines two powerful concepts. Given a speech feature sequence, the atten-
tion mechanism directly outputs a sequence of letters. Connectionist
Temporal Classification (CTC) helps to bind the attention mechanism to
sequential alignments. This hybrid architecture also gives more degrees of
freedom in choosing parameter configurations. We applied Gaussian pro-
cess optimization to estimate the impact of network parameters and lan-
guage model weight in decoding towards Character Error Rate (CER), as
well as attention accuracy. In total, we trained 70 hybrid CTC/attention
networks and performed 590 beam search runs with an RNNLM as lan-
guage model on the TEDlium v2 test set. To our surprise, the results
challenge the assumption that CTC primarily regularizes the attention
mechanism. We argue in an evidence-based manner that CTC instead
regularizes the impact of language model feedback in a one-pass beam
search, as letter hypotheses are fed back into the attention mechanism.
Attention-only models without RNNLM already achieved 10.9% CER,
or 22.4% Word Error Rate (WER), on the TEDlium v2 test set. Com-
bined decoding of same attention-only networks with RNNLM strongly
underperformed, with at best 40.2% CER, or, 49.3% WER. A combined
hybrid CTC/attention model with RNNLM performed best, with 8.9%
CER, or 17.6% WER.

Keywords: Connectionist Temporal Classification ·
Attention-based neural networks · End-to-end speech recognition ·
Gaussian process optimization · Multi-objective training ·
Hybrid CTC/attention

1 Introduction

Conventional hybrid DNN/HMM models for automatic speech recognition
(ASR) rely on handcrafted linguistic information, and the training process
requires multiple refinement steps [18]. The training labels of a DNN are only
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obtained after estimating phoneme or state alignments through a Gaussian mix-
ture model. The decoding process requires a global search over many possible
word sequences using weighted finite-state transducers.

End-to-end ASR aims to simplify the training and decoding procedure by
directly inferring sequential letter probabilities given a speech signal [6,18]. Such
systems usually transcribe speech features to letters or word fragments without
any intermediate representations. It is also possible to train these networks in
an end-to-end manner without previous refinement steps.

There are two major techniques for end-to-end speech recognition: (1) Frame-
based classification using Connectionist Temporal Classification (CTC [9]),
where the HMM-like structure of CTC loss gives strong temporal dependen-
cies on decoding. (2) Sequence generation using attention-based encoder-decoder
architectures [6], as attention models are very flexible but also require additional
information about the sequential arrangement of the input features.

The hybrid CTC/attention architecture combines these two traits. However,
combining those two techniques in one architecture also introduces complexities,
as there are now more sub-networks. The structural shape of each network as well
as its priority in a multi-objective framework is controlled by parameters. We
use Gaussian processes to assess these parameter configurations. Gaussian pro-
cess optimization provides a method to systematically estimate good parameter
configurations based on an expected improvement criterion, providing a trade-off
between space exploration and convergent optimization. This technique enables
to optimize parameters towards an arbitrary metric, for example CER, instead
of optimizing towards sub-goals, such as frame-based classification.

In our work, we use the ESPnet speech recognition toolkit [17] and the TED-
lium v2 corpus [13]. Gaussian process optimization was applied in two separate
stages, to the training of the hybrid model, as well as to joint beam search. Based
on the results, we discuss properties of multi-objective training and inference in
hybrid CTC/attention models.

Our contributions are:

– We give an overview over results obtained with sequential Gaussian process
optimization, in total 70 different hybrid CTC/attention models and 590
beam search iterations. Based on obtained results, we assess the performance
of individual parameter groups.

– We identify a feedback loop in the hybrid CTC/attention architecture that
causes deteriorated performance in a certain parameter configuration, and
revisit one key assumption of the hybrid CTC/attention approach stating
that CTC provides alignments to the attention mechanism.

– Compared with the baseline model that achieved 10.1% CER on the TEDlium
v2 test set [17], our best model achieved 8.9% CER, an absolute improvement
of 1.2% CER.

2 Background

The main goal of a speech recognition system is to find the most probable letter
sequence Ŷ given a speech feature sequence X.
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End-to-end speech recognition systems directly infer letter and sequence
probabilities and do not require any pretraining steps; the model parameters
of a network are tuned based on training examples consisting of audio feature
vectors and letter sequences. As the number of speech training samples contains
a limited number of words, inference is supported by a language model that has
been trained on a larger text corpus.

End-to-end speech recognition systems fall into two categories. First, frame-
based estimation of letter probabilities p(yt) using Connectionist Temporal Clas-
sification (CTC [9]). Second, recursive sequence generation using sequential letter
probabilities p(yl|y1, . . . , yl−1) obtained from attention-based encoder-decoder
architectures [6]. When introducing both techniques in the following paragraphs,
as part of the hybrid CTC/attention architecture, frame-based values are indi-
cated with the indices t ∈ [1;T ] and sequential indices with l ∈ [1;L].

2.1 Location-Aware Attention-Based Encoder and Decoder

The attention-based encoder-decoder sequence transformation was proposed as
a method for machine language translation in [1]. Location-aware attention
for speech recognition is shown in [7]. An in-depth description of the hybrid
CTC/attention mechanism can be found in [18]. The following paragraphs out-
line its architecture and network parts: the encoder fenc (Fig. 1), the attention
network fatt, and the decoder network fdec (Fig. 2).

Fig. 1. Encoder of the hybrid CTC/attention architecture.

We start with an input sequence X that consists of feature vectors. The
encoder transforms the input sequence to a hidden representation denominated
by h1, · · · , hT . The encoder network fenc contains a convolutional VGGnet [14],
followed by a multiple-layer stack of long short term memory (BLSTM) cells
combined with a fully connected layer of projection neurons denoted by Lin(·).

ht = fenc(X) = [Lin(BLSTM)]Nelayers(VGG(X)) (1)
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Based on the hidden values from the encoder, the attention network and the
decoder network generate a sequence in a recurrent manner that is depicted in
Fig. 2 and described in the following paragraphs.

Analogous to an alignment model in conventional ASR, the location-aware
attention network fatt attends the hidden values in a recurrent manner. It carries
over information from the previous step contained in the decoder state vector
ql−1 and its previous attention weights al−1,t in order to calculate the attention
weights al,t for l-th decoding step.

al,t = fatt(ql−1, ht, al−1,t) (2)
= Softmax(gT · tanh( Lin(ql−1) + Lin(ht) + Lin(K ∗ al−1,t) )) (3)

Here, ∗ denotes the convolution operator and K the convolution kernel. A scalar
product with the learnable vector g reduces the activations of the inner linear
layers of the attention network to a single scalar. Attended sequence parts are
then merged into the context vector cl in a weighted sum, i.e., cl =

∑
t∈T al,tht.

Fig. 2. Decoder of the hybrid CTC/attention architecture.

Given the context vector, the decoder network fdec finally produces posterior
probabilities of letters, including an additional label indicating the end of the
sequence. It consists of multiple LSTM layers, without intermediate projection
layers or subsampling. Decoding is done in a recursive manner, based on its pre-
vious internal state vector ql−1, and the beam search hypothesis of the previous
letter ŷl−1.

ql = fdec(ct, ŷl−1) = [LSTM]Ndlayers(ct, ql−1, ŷl−1) (4)
p(yl) = Softmax(Lin(ql)) (5)

Based on the letter posteriors p(yl), the beam search chooses a probable letter
hypothesis ŷl, and the recursion jumps back to the attention network; until the
decoding process reaches the label for the end of the sequence.
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2.2 Frame-Discriminative CTC Network

Frame-discriminative CTC loss [9] is often combined with bidirectional recurrent
neural networks, that provide a short-time context for each frame and give strong
temporal dependencies on decoding. CTC was modeled with HMMs in mind; in
training, the CTC-HMM is constructed using a modified letter sequence. The
target letter sequence C = {yl ∈ U|l = 1, · · · , L} is extended with a blank
label and rewritten as the letter sequence C ′ = {−, y1,−, · · · ,−, yL,−}. The
CTC loss function estimates the most probable path through the label sequence:
the probability of a certain target sequence is calculated by summing up the
frame-based letter probabilities in all possible paths through the modified letter
sequence using the forward-backward algorithm. As this step is computationally
tractable, neural network training with the CTC loss function trims the network
to maximize the correct frame-based letter posteriors w.r.t. the target letter
sequence.

Our CTC network setup is shown in Fig. 2 alongside the attention mechanism.
Here, the pre-calculated hidden values by the encoder already include a short-
time context from the hidden representation ht. A single fully connected layer
is sufficient to generate letter posterior probabilities, i.e., p(yt|ht) = fCTC(ht) =
Lin(ht).

2.3 Hybrid CTC/Attention Multi-objective Training

A multi-objective training function [11] is applied to combine CTC and atten-
tion loss by introducing the multi-objective training factor κ ∈ [0; 1], so that
Lhybrid = κLCTC + (1 − κ)Latt. A network trained with κ = 0.0 consists only
of an attention network, and with κ = 1.0 only of a CTC network, respectively.
In this publication, we denominate networks that were trained with κ = 0.0 as
attention-only models, networks trained with κ = 1.0 as CTC-only networks,
whereas networks trained with 0.0 < κ < 1.0 as hybrid models.

2.4 Joint One-Pass Beam Search Decoding

Beam search concatenates letters according to their posterior probabilities to a
reconstructed letter sequence [8]. Attention networks apply beam search decod-
ing by iteratively building up a list of letter sequences, i.e., partial hypotheses
Y ′ ordered by their probability [6], until the end of the sequence is detected. It
searches for the most probable letter sequence hypothesis Ŷ = arg maxY p(Y |X).

Hybrid CTC/attention architecture uses joint one-pass decoding beam search
[18], combining frame-based as well as sequential letter probabilities. The prob-
ability of a partial hypothesis Y ′ in the attention network is estimated by using
the probabilistic chain rule. In the CTC network, this probability is estimated
based on the forward function of the forward-backward algorithm. The algorithm
integrates the language model using shallow fusion [10]. The hybrid probability
is then calculated in a multi-objective manner with weight parameter λ, together
with β as the weight of the RNNLM language model, as described in [17], to
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phybrid(Y ′|X) = λ pCTC(Y ′|X) + (1 − λ)patt(Y ′|X) + β pLM(Y ′|X). (6)

2.5 Gaussian Processes Optimization

Gaussian processes are a highly effective tool for parameter optimization [15].
It was shown in [3] that for hyper-parameter optimization problems with few
influential parameters, sequential model-based optimization methods are able to
surpass the performance of random search, as these techniques offer an approach
to weight the importance of each dimension. Furthermore, given the choice of a
suitable kernel and acquisition function [15], it has been shown that Gaussian
process optimization outperforms random brute-force search and human perfor-
mance for many algorithms. In our work, a sequential model-based approach is
applied to optimize hyper-parameters using Gaussian processes [4].

Gaussian processes provide an estimate of an unknown function, denoted by
f : X → R. A Gaussian process is a set of random variables, where any finite
set of points {X(n) ∈ X}, induces a joint Gaussian distribution in R

N , and
is described by two functions, the mean-function μ : X → R and the kernel
k : X × X → R.

We use the Matérn-kernel [12] defined by

kMatérn(r(n)) =
21−ν

Γ(ν)
(
√

2νr(n)

l
)νKν(

√
2νr(n)

l
). (7)

Here, ν and l are positive parameters, Kν is a modified Bessel function and
Γ(ν) is the Gamma-function, with r(n) = ||X(n) − X ′(n)|| as Euclidean distance.
Gaussian noise in the target value f(X(n)) is modeled by adding a small noise
constant ε onto the kernel in all sample points.

Based on a set of hypothesized models of the target function as a Gaussian
process fGP ∝ GP (μ, k), the mean-function and the kernel are weighted to
find the next optimal point X(n+1). This is done by maximizing an acquisition
function [15], such as the Expected Improvement (EI). Given the so far minimum
observed value fmin, the EI is described as

fEI(X(n+1)) = E[max(0, fmin − fGP (X(n+1)))|X(n+1),D], (8)

given point X(n+1) and the set of our previous observations D = {(X(i), Y (i))},
i = {1, 2, ..., n}. The EI function is usually optimized by performing a grid search
over its input space [3]. Starting from several randomly sampled points, L-BFGS-
B optimization [5], a quasi-Newton method, is applied to maximize the EI to
avoid local optima.

3 Experiment Setup

In our experiment, we use the location-aware hybrid CTC/attention network in
ESPnet1. The ESPnet framework already provides a receipt for the TEDlium
corpus and previous benchmark results.
1 To be precise, ESPnet version 0.3.0, on git commit hash 716ff54.
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The first stage optimized the parameter configuration of the hybrid
CTC/attention architecture. Network parameters of the attention mechanism,
described in Subsect. 2.1, and the multi-objective training parameter κ from Sub-
sect. 2.3, along with their upper and lower bounds were passed to the Gaussian
process optimizer.2 We kickstarted the optimization in this stage with 20 initial
parameter configurations. The optimization routine calculated then 40 iterations
on the CER of the model without a language model, followed by 10 iterations
over the accuracy of the attention network as target parameter.

In a parallel second stage, Gaussian process optimization was applied on
beam search parameters as in Subsect. 2.4. The target value for this stage was
the CER on the TEDlium dev set. We prepared four different RNNLM language
models, consisting of 2-layers to each 650 LSTM units, that the optimizer could
choose from. Hybrid models from the previous experiment were added to the
optimizer in an adaptive list. In a first pass, all initial hybrid CTC/attention
models were decoded with and without language models; additionally to a beam
search run that carried over the multi-objective training parameter κ to the
beam search parameter λ.3

4 Results and Evaluation

In the course of the experiment, Gaussian process optimization showed prefer-
ence for certain hybrid parameter configurations. Table 1 lists the best results
of selected categories, with and without RNNLM, as well as CTC-only and
attention-only networks. The columns of attention-only or CTC-only models
still contain parameter configurations that were handpicked in the first stage
of the experiment. While most results gravitate between 10% and 20% CER,
they show a wide difference in terms of WER and CER, as depicted in Fig. 3a4.
Manual investigation did not find supporting evidence of a significant correla-
tion between single parameters and CER. In general, hybrid models with deeper
networks exhibit a tendency to perform better, as shown in Fig. 3b, as EI shifted
towards deep encoder and decoder networks.

4.1 Observations on Certain Parameter Groups

Some groups of parameter configurations in Fig. 3a stand out that led to
degraded performance. We further analyze these observations by partitioning
2 Bounds on architecture parameters: Number of encoder/decoder layers ∈ [1; 6];
number of cells in a fully connected decoder/attention layer ∈ [25; 400], in the
encoder layer ∈ [25; 500]; κ ∈ [0; 1]; channels in conv. network K ∈ [1; 20]; filters
in K ∈ [30; 150]. Subsampling was applied to the second and third layer of the
encoder, i.e., only every second hidden value is forwarded in these projection layers
to the subsequent layer.

3 Bounds on beam search decoding parameters: λ ∈ [0; 1]; κ ∈ [0; 1], β ∈ [0; 1]. Beam
search was configured with a beam size of 20. Initial RNNLM weight λ ∈ {0.0, 1.0}.

4 Parameter groups in Fig. 3a: Attention-only beam search with RNNLM → λ <
0.05;β > 0.3. CTC-only beam search without RNNLM → λ > 0.8;β < 0.1.
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Fig. 3. TEDlium v2 results overview as discussed in Sect. 4.

overall results, as shown in Fig. 3c item (1), into categories5. Note that the y-axis
scale of Fig. 3c is set to CER, which introduces a certain framing on distributions
with different CER-to-WER ratios.

Attention-only beam search in combination with an RNNLM yields a high
CER but a low WER, e.g., with word loops and dropped sentence parts but few
misspellings. We state following observations: Attention-only beam search on

5 Figure 3c: Hybrid models → κ ∈]0.0; 1.0[; att.-only models→ κ = 0.0; att.-only beam
search → λ = 0.0; CTC-only model→ κ = 1.0; CTC-only beam search→ λ = 1.0;
‘w/o LM’ → λ = 0.0; ‘with LM’ → λ = 1.0.
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Table 1. Comparison of best results in selected categories.

Baseline With LM Without LM

Parameter [17] Hybrid Att.-only CTC-only Hybrid Att.-only CTC-only

Encoder layers 6 6 6 6 4 6 6

Encoder BLSTM cells 320 485 400 400 497 400 400

Projection units 320 292 320 320 377 320 320

Decoder Layers 1 5 2 2 3 2 2

Decoder LSTM cells 300 352 100 400 364 100 400

Attention neurons 320 379 100 350 172 100 350

Att. channels in K 10 2 10 10 10 10 10

Att. filters in K 100 122 100 100 128 100 100

Multi-obj. (training) κ 0.5 0.69 0.00 1.00 0.15 0.00 1.00

Model size (1e6) 18.7 35.1 23.6 26.6 28.8 23.6 26.6

RNNLM weight β 1.0 0.73 0.41 1.00 0.00 0.00 0.00

Multi-obj. (beam) λ 0.3 0.62 0 .08 1.00 0.15 0.00 1.00

TEDlium dev/CER 10.8 9.2 37.1 11.3 10.4 10.4 13.7

TEDlium dev/WER 19.8 18.5 47.1 23.3 22.5 22.4 36.5

TEDlium test/CER 10.1 8.9 40.2 11.3 10.6 10.9 14.4

TEDlium test/WER 18.6 17.6 49.3 22.6 22.1 22.4 36.9

hybrid models performs better without RNNLM (4) than with it (5). Using net-
works that were only trained with attention mechanism, beam search performs
significantly better without RNNLM (6) than with it (7). By intuition, adding an
RNNLM to an attention network in beam search is expected to improve results,
as it is trained on far more text data, but evidence indicates that adding the
RNNLM in the beam search deteriorates results. Sect. 4.2 discusses this obser-
vation in more detail.

Next, we examine the second parameter group, as CTC-only beam search
without the support of a language model yields a high WER but a comparatively
low CER, e.g., with shifted word boundaries and intra-word misspellings. CTC-
only beam search on hybrid models performs better with RNNLM (8) than
without it (9). CTC-only models in combination with CTC-only beam search
perform also worse without RNNLM (10) than with it (11). The CTC network
provides primarily temporal alignments, but is partially agnostic of short-term
letter orderings, so combining it with a sequence-based RNNLM is beneficial.

4.2 Feedback Loops Caused by Unexpected Letter Hypotheses

As observed, adding a language model to an attention-only model using the joint
beam search deteriorates results. This stands in contrast to previous publications
that combined attention-only models with a language model using shallow fusion,
but with improved results [6,16]. In comparison to these models, two notable
differences stand out.
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During training, the hybrid CTC/attention architecture uses teacher forc-
ing [19], i.e., feeding ground-truth letters as previous letter hypothesis yl−1 to
the attention network during training6. The listen-attend-spell architecture pre-
sented in [6] applies scheduled sampling [2], which samples from a probability
distribution to choose yl−1. Scheduled sampling is motivated by the observation
that training letter sequence is the ground truth sequence, but beam search dur-
ing inference exposes the model to state sequences that were not seen during
training. This discrepancy between training and inference distributions leads to
an accumulation of errors [2]. In a joint attention/RNNLM beam search, inte-
grating the language model into the beam search introduces such discrepancies
in the form of unexpected letter hypotheses. While this notion explains an ampli-
fication of small errors in the beginning of the generated sequence, it does not
yet fully explain why word loops are generated.

The second notable difference lies within the location-aware attention mech-
anism that, additional to the previous state vector ql−1, also takes previous
attention weights al−1,t into account. The indication to change the attention
focus originates from the decoder and arrives at the attention network with an
additional delay. In other words, after an unexpected letter hypothesis yl−1 was
fed in, the network should readjust its attention focus. However, at the time of
computing the context vector cl by the attention network, the information of
the previous letter yl−1 is not considered. Only at step l + 1, this information
propagates into the attention network through ql, and through the attention
weights with a delay of two steps, i.e., at l + 2.

In some cases, these delays of information propagation of letter hypothesis
feedback accumulate and lead to greater adjustments in the attention focus,
either backwards or forwards, leading to repeated or dropped sentence parts.
There is no penalty during beam search to detect these misaligned sequences, as
the attention decoder calculates the posterior probabilities p(yl) mainly based on
cl and the previous letter hypotheses, and therefore will classify a wrong letter
based on a misaligned attention focus with a high decision confidence.

4.3 CTC as Aligning Regularizer

We revisit the hypothesis that CTC regulates the attention mechanism by bind-
ing it to alignments [18]. For this, we compare the observed performance with-
out RNNLM of the hybrid model with joint beam search, as in Fig. 3c item
(2), and an attention-only approach (6). Both transcriptions consist of mostly
correctly aligned sentences but wrongly detected words. Lost alignments in the
transcriptions of attention-only beam search were rare with only a few deletion
error outliers, and the rate of insertion errors was approximately equal in both
scenarios. Additionally, hybrid models used for attention-only beam search (4)
did not perform better than attention-only models (6). From this perspective,
there is no clear advantage of combining CTC and attention for multi-objective

6 As mentioned in ESPnet Github issues #706 and #224.
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training. Evidence shows that, without the RNNLM, hybrid training and infer-
ence underperforms, whereas attention-only models already achieve acceptable
performance.

However, misspellings and similar-word substitutions in the transcription are
a sign of the lack of a language model. As discussed beforehand, attention-only
beam search underperforms when combined with the RNNLM, resulting in lost
alignments and word loops. Here, adding CTC provides temporal alignments,
adding a penalty on misaligned sequences, and therefore regularizes the joint
beam search. The combination of attention and CTC in a hybrid model with
the RNNLM as language model yields the best performance. This parameter
group is depicted in Fig. 3c item (3).

5 Conclusion

We investigate parameter configurations of the hybrid CTC/attention architec-
ture, in particular multi-objective configurations. For this, we trained 70 net-
works and performed 590 beam search runs with different parameters over the
TEDlium data set, guided by an expected improvement criterion derived from
Gaussian process optimization. Observations indicate that CTC-only networks
perform best in combination with a sequential language model. Attention-only
beam search without RNNLM already has a good performance, however, in com-
bination with an RNNLM language model, it transcribes word loops and drops
sentence parts. We argue that this is the result of a feedback loop caused by
teacher forcing during training in combination with an architectural trait of the
location-aware attention mechanism. As CTC adds a penalty on misaligned sen-
tences, the combined hybrid CTC/attention model together with an RNNLM
achieves the best performance.
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Abstract. This paper considers emotional assessment of texts in Russian using
machine learning on the example of aggression detection. It summarizes the
related work, methods, models and datasets, describes actual problems, proposes
a text processing pipeline and a software system for training neural networks on
heterogeneous datasets. The experiments show that neural networks trained on
the annotated corpora both in Russian and English, allow to determine whether a
text item in Russian contains an aggressive message. Authors thoroughly
compare different assessment methods, particularly corpus-based approaches,
machine learning solutions and hybrid variants. Results, obtained here, can be
used to estimate the aggressiveness probability, for example, to rank messages
for subsequent manual verification. They also enable feasibility studies on the
possibilities of detecting a particular type of emotion in a text using corpora in
other languages. The paper highlights further research directions, where different
Python toolkits (NLTK, Keras) could be used for better model performance.

Keywords: Emotion detection � Sentiment Analysis �
Natural language processing � Text analysis � Aggressive text detection �
Neural networks � Machine learning

1 Introduction

The problem of emotion detection in text is of current interest, as it can be applied in
various domains: network discussion moderation, analysis of public opinion on com-
panies, goods, events; text classification [1, 2]. At the same time this problem causes a
lot of difficulties. The problems associated with the task of automating of emotion
detection in text content are related to ambiguity and subjectivity of the natural lan-
guage. It should be considered that the methods of identifying emotions are practically
limited and, as a rule, are suitable primarily for detection of explicit emotions [2].
A more difficult task consists, for example, in identification of implicit aggression and,
more generally, in correct processing of the content that can be either aggressive or
neutral when taken out of context.

Moreover, it is necessary to pay attention to the peculiarities of the environment. In
particular, discussions in social media and forums may contain heterogeneous textual
and audiovisual content in different languages [21]. Depending on the analyzed media,
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the common terms, jargon, memes, lexicon and cultural canons of social groups may
differ significantly. The techniques used by intruders to bypass auto-moderation in
social media complicate technical text processing. The content is also characterized by
the presence of messages with spelling errors, typos, punctuation quirks, emoticons.
Poor grammatical correctness and vague syntactic structure of social media posts
complicates the usage of natural language processing tools [8]. The task turns out to be
challenging even for human annotators, although they could refer to context of each
message [9].

Another feature of the social media content is a large number of short messages:
such messages can be classified well only provided, they contain explicitly expressed
emotions. Another problem consists in detecting sarcasm and irony in text messages as
there is no agreement on formal description of these concepts. The results in [17] are
satisfactory but have a limited practical applicability.

Large amount and heterogeneous structure of the content require its preprocessing,
before the methods described here could be applied. The preprocessing is performed by
reducing the text dimension for further consumption by neural networks and other
classifiers. The diversity of the social network content complicates the research: it
should be noticed that working on domain-specific corpus gives better results than
working on the domain-independent corpus [5].

2 Related Work

2.1 Methods and Systems

Considering the aggression as a kind of sentiment expressed in text, we can use
Sentiment Analysis (SA) as a method of data mining [13] for its detection. SA iden-
tifies the sentiment expressed in a text and then analyzes it. The datasets used in SA are
of high importance in this field. The social network sites and micro-blogging sites are
considered a very good data source because people share and discuss their opinions
about a certain topic freely there [5]. Fields in SA include emotion detection (ED) that
aims to extract and analyze emotions, both explicit and implicit, present in the sen-
tences. It was argued in [15] that there are eight basic and prototypical emotions,
specifically: joy, sadness, anger, fear, trust, disgust, surprise, and anticipation; there are
also more approaches as well [27]. The problem is either handled as a binary classi-
fication case, where only positive and negative sentiments are considered, or as a multi-
class classification problem when a fine-grained list of sentiments is used (e.g., anger,
disgust, fear, guilt, interest, joy, sadness, shame, surprise) [4].

The difference between SA and ED consists in following: SA is concerned mainly
in specifying positive or negative opinions, whereas ED is concerned with detecting
various emotions from text. As a SA task, ED can be implemented using ML approach
or Lexicon-based approach, but Lexicon-based approach is more common one [5].

In order to implement SA or ED, feature selection (FS) should be carried out first of
all. FS may be performed by lexicon-based methods that require human annotation, and
statistical methods which are automatic methods that are more frequently used; sta-
tistical methods may ignore or retain the information on the word sequence [5].
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Key features mostly used for ED are terms presence and frequency [16], parts of
speech (POS), opinion words and phrases, negations.

As an example of such features we can consider activity markers, psycholinguistic,
lexical and semantic markers described in [14]. Natural language markers allow
evaluating possibly aggressive or other harmful text aspects (presence of manipulative
techniques, negative emotional background), reveal “hot” news characteristic of tabloid
press, fake news, etc. Psycholinguistic markers (number of personal pronouns, POS
frequency ratios, etc.), lexical markers (injective lexicon, destructive semantics) can be
measured and used for text analysis.

Various methods for emotional text classification and, in particular, for aggressive
text detection, are discussed in review articles [5, 12] and in the article [10]. Some web
services for solving SA tasks are analyzed in [11]. At the same time, a lot of sources
deal with a binary classification problem of single messages, without analyzing entire
threads; they often employ a very similar text preprocessing pipeline comprising stop-
word removal, tokenization, POS tagging, emoticon detection, stemming, etc., and a
typical text feature extraction step which resulted in bag-of-words, or, bag-of-stems
representations [4]. Some methods that deal with the problems specified in the previous
section are summarized in Table 1.

Table 1. Methods for emotion detection.

Method Classes Features Advantages Application

Hybrid (lexicon-
based + super-vised
machine learning)
[1]

Anger, disgust, fear,
happiness, sadness, surprise,
trust, neutral; bullying and
neutral posts and threads

Sentiment uni-
and bi-grams
(occurrences of
sentiment changes
in consecutive
posts); personal
pronouns;
bullying bi- and
tri-grams (using
BullyTracer
lexicon)

Performs
sentiment
analysis at
message level,
but considers
the whole
threads as the
context;
building
“sentiment n-
grams” for
threads

Web
forums,
discussions
(tested on
MySpace)

Machine learning
(random forest) [3]

Bully/aggressive/spam/normal
messages

User-based: post
frequency,
account existence
time, etc.; text-
based: number of
hashtags,
emoticons, upper
cases, emotional
scores, etc.;
network-based:
follower and
friend lists, etc.

Deals with
short and
imperfect
messages, takes
the context
(chains of
tweets) into
account, tries to
detect sarcasm
and trolling

Social
media
(Twitter)

(continued)
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Table 1. (continued)

Method Classes Features Advantages Application

Corpus-based
approach [4]

Types of bullying
(threat/blackmail; insult;
curse/exclusion; defamation;
sexual talk), victim defense,
encouragement to the harasser,
other

Word and
character n-grams
in bag of words;
term lists (for
example,
“allness”
indicators,
intensifiers, etc.);
subjectivity
lexicon features

Deals with
short and
distorted
messages.
Robustness to
spelling
variations

Social
media
(ASK.fm,
etc.)

Support vector
machine + recurrent
neural network [5]

Openly aggressive/covertly
aggressive/not aggressive

GloVe features;
sentiment scores
according to
SentiWordNet
features; N-gram
TF-IDF features

Detecting
messages with
covert
aggression

Social
media
(Facebook,
Twitter,
etc.)

Traditional and deep
machine learning [6]

Openly aggressive/covertly
aggressive/not aggressive

Bad words; POS
tags; text length;
capitalization;
numerical tokens;
named entities;
sentiment polarity

Deals with
short messages
and their
context.
Detecting
messages with
covert
aggression

Social
media
(Facebook,
Twitter)

Hybrid classifier
(Naïve Bayes,
random forest,
support vector
machine, logistic
regression) [7]

Positive/negative polarity Vector
representation of
the “Bag of
words”

Classifies short
messages

Social
media
(Twitter)

Profile-based
representations (TF-
IDF, NN) [8]

Aggressive texts, including
sexual aggression

Word and
character n-grams

Early
recognition for
sexual predator
detection and
aggressive text
identification.
Possible
application for
irony/sarcasm
detection,
opinion
mining, etc.

Social
media

NB, SVM, and DT
[14]

Ironic and sarcastic texts N-grams, POS n-
grams, funny,
positive/negative,
affective,
pleasantness
profiling

Irony and
sarcasm
detection

Amazon
reviews
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Among the considered approaches, neural networks show the most robust and high
performance [9, 10]. While applying the methods described above, some problems still
remain. In particular, the overwhelming majority of methods require that corpora of
labeled texts exist. Beside the tasks of constructing such a corpus for the Russian
language, the problem is that the social media lexicon is volatile, so the corpus
becomes obsolete.

The language problem is also significant: the majority of methods are optimized for
English language; some other languages under research are Germanic and Latin lan-
guages, some languages of South-Eastern Asia and the Near East.

The text analysis services mentioned in [11] are shown in Table 2. It should be
noted that some services described there are not available now, though they are said to
be able to provide a wide range of possibilities, including evaluating not only the
message polarity, but also the separate emotional constituents like fear, gratitude,
shame (Lymbix).

2.2 Datasets

The data problem arises most pronounced when analyzing non-English texts. For
example, there is an annotated corpus of messages from more than 200 000 units [19]
in Russian, but those messages are classified just as negative and positive, without any
detailed description of the emotions expressed. Datasets in English are much more
diverse. Some of them are analyzed in [18]. These datasets are characterized by a large
variety in emotion handling: classification by Ekman [20], Plutchik [15], and also some

Table 2. Services for text analysis.

Service Possibilities Methods

SentiStrength
http://sentistrength.wlv.ac.uk/

Estimating the polarity of short
messages

Text Mining – detecting “good”
and “bad” words, their relations

OpinionCrawl
http://www.opinioncrawl.com/

Estimating the polarity of relation
to a certain subject in the web
(news, analytics)
Languages: EN, FR, DE, SP

Text mining and multidocument
Summarization

OpenDover
http://demo.opendover.nl/

Extracts semantic features from
the text, calculates the text rating

Ontologies on applied areas (law,
education, etc.)

Semantria
http://semantria.com/

Languages: EN, FR, DE, SP, PT
Good accuracy (about 74% в [9])

Connotative lexicon, calculating
frequency of such words in text
and their proximity to the object in
question

Sentiment140
http://www.sentiment140.com/

Tweets classification
(positive/negative/neutral)

Naive Bayes, Maximum Entropy,
Support Vector Machines (SVM)

uClassify
https://uclassify.com/browse
https://uclassify.com/browse/
uclassify/sentiment

Provides a set of classifiers for
language, sentiment detection, text
gender and age recognition
Languages: EN, SP, FR, SE
Good accuracy (about 76% in [9])

ML: trained on 2.8 million
documents with data from Twitter,
Amazon product reviews and
movie reviews
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other approaches are present. Datasets of tweets in Russian [19], “The Emotion in Text,
published by CrowdFlower” (39 740 tweets, Ekman) [22], TEC (Twitter Emotion
Corpus, Ekman) [23], Emobank (Valence - Arousal - Dominance) [24] were used as
well as some smaller corpora. In this work they were processed separately to determine
which corpora provide the most accurate results.

One of the options for the use of English-language datasets for the classification of
Russian-language text is the use of machine translation. Currently, machine translation
systems show quite good results when using English as source or target language.
Translation causes accuracy loss, but it can be assumed that the features discussed in
Sect. 2.1 are preserved to a large extent.

3 Processing Scheme

To handle various datasets in uniform manner, they were supplied by JSON metadata
files containing descriptions of the dataset format and structure. Such file pairs were
used as the input data. Firstly, a cleanup operation is performed on the datasets,
particularly, removal of irrelevant and special characters, hyperlinks, identifiers. Then
comes standardization of whitespace characters, converting all characters to uniform
case. In addition, the converted versions (translated and normalized) are created for the
datasets.

Emotion estimates were converted into a numerical form. For datasets providing
binary classification [19], the estimate was normalized. For the datasets annotated with
a variety of emotions, transformed datasets were created with score values in the range
[0; 1] for each considered emotion. In the context of identifying aggression, the classes
“hate”, “anger”, “aggression”, etc. were assigned the value 1.0; all classes that do not
carry any negative constituent (“happiness”, “fun”, “trust”) were characterized by the
value 0.0; neutral classes with 0.5; classes with negative properties that do not char-
acterize aggression explicitly (“fear”, “worry”, “boredom”) were described with values
from the range (0.5; 1).

For the datasets, n-gram dictionaries are built. In this paper, n-grams of characters
and words with different values of n were used. The approach with n = 1 for words is
identical to the “bag of words” concept. The n-gram occurrence is used to build vectors
for neural network training.

Summarizing the aforementioned concerns, the pipeline of data preprocessing can
be represented in Fig. 1.

To organize the full processing pipeline, the following class model was developed
(Fig. 2):

Load Cleanup Transform Normalize 
rates 

Build N-
grams Vectorize Save 

Fig. 1. Dataset preprocessing pipeline
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For data processing, as well for creating and training neural networks Python 3.6
was used. The train and test datasets comprise 67% and 33% of the original datasets,
respectively. Libraries NLTK and Keras were applied to process text data and train
neural networks, respectively, to predict the text aggressiveness using a regression
predictive model.

4 Experiments

The modelling results are shown in Figs. 3 and 4. Experiments show that the highest
accuracy is achieved for binary classification using the original Russian corpus. Text
normalization does not positively influence the result, which can be explained by the
semantic loss caused by converting word forms. The considered neural network
architectures contained 1 or 2 hidden layers and up to k neurons, where k is the vector
size. The maximum accuracy 83% was achieved with the configuration of a neural
network with 2 hidden layers consisting of 50 neurons each. The achieved accuracy is
lower than in the work [26], but it deals with domain-specific texts (film, customer
reviews) which simplifies the classification task.

Fig. 2. Classes for data processing
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The use of machine translation enables distinguishing particular emotions, but the
accuracy is much lower in this case. The best results were achieved when using the
TEC dataset (65%) for recognizing aggressive messages. Approximately the same
accuracy was obtained in [25], and the authors are also able to distinguish overtly and
covertly aggressive messages, but that work deals with English texts, so the authors
could use English corpora directly.

0
10
20
30
40
50
60
70
80
90

Russian Twi er
corpus

Russian Twi er
corpus (normalized)

TEC TEC (normalized)

Detec on accuracy depending on the dataset 

Word N-grams Character N-grams

Fig. 3. Accuracy of aggression detection depending on the input data
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100 200 500 1000

Detec on accuracy depending on the vector size 

Russian Twi er Corpus TEC

Fig. 4. Accuracy of aggression detection depending on the vector size
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Using datasets smaller than of 10 000 items did not result in a sufficient accuracy
level. Despite the high error rate, such an approach can be used to estimate the
aggressiveness probability, for example, to rank messages for subsequent manual
verification.

5 Conclusions

The conducted experiments show that, using neural networks trained on the annotated
corpora both in Russian and English it is possible to determine with a certain accuracy
whether a text item in Russian contains an aggressive message. Such results can be
used to estimate the aggressiveness probability, for example, to rank social network
messages for subsequent manual verification or to adjust the chatbot behavior models.
These results also enable feasibility studies on the possibility of detecting particular
emotion types, i.e. fear, interest, in a text using corpora in another languages.

Further research directions include comparison of different approaches to build
dictionaries and reduce vector dimensions, comparative analysis and feasibility studies
of detecting particular types of emotions, complex analysis of multimodal content on
the basis of the technique proposed in [21].
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Abstract. The main results of the update of the “IntonTrainer” sys-
tem are the purposes of analyzing and studying the prosodic signs of
emotional intonation are described. A distinctive functional feature of
the updated system is the creation of an expanded set of prosodic signs
of emotional intonation. The paper presents preliminary assessments of
their effectiveness using the RAVDESS database of emotional phrases of
English speech.
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1 Introduction

Well known that human speech conveys not only semantic but also emotional
information. There are many different discrete sets of emotions. However, most
studies are limited to analyzing the prosodic characteristics of the following 6
emotional states: “Neutrality”, “‘Joy”, “Sadness”, “Anger”, “Fear”, “Surprise”.
There are also a number of emotions attributed quite often to the main ones, such
as “Suffering”, “Aversion”, “Contempt”, “Shame”, and in addition, numerous
shades of the above emotions.

Today, there is not enough knowledge about the details of acoustic models
that describe certain emotions of the human voice. Typical acoustic character-
istics that are believed to be involved in this process include the following [1,2]:

– Level, range and shape of the pitch contour;
– Level of vocal energy and speech rate.

Recently, some important new speech characteristics have been investigated,
such as formant frequencies, linear prediction coefficients (LPC), and the Mel-
frequency cepstral coefficients (MFCC) [3–5].

In one of the recent works devoted to the analysis of prosodic characteris-
tics of emotions [6], it is proposed to use the following description of the pitch
contour:
c© Springer Nature Switzerland AG 2019
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– The number of maxima in the contour of the main tone in the voiced segment;
– Average value and peak variance;
– Medium tilt;
– Average gradient between two sample points on the pitch curve;
– Variance of pitch gradients.

Our previous work [7] was devoted to the analysis and comparison of the
pitch contours of various intonation patterns with the help of software system
“IntonTrainer”. It aimed to for study, training, and analysis of speech intonation.
The software system “IntonTrainer” contains subsystems that include sets of
reference phrases that represent the basic intonation models of Russian, English
(British and American versions), German and Chinese speech.

The purpose of this work is to update the existing system by supplementing it
with a subsystem for analyzing the prosodic signs of emotional intonation. Such a
subsystem should provide analysis and visualization of an effective set of prosodic
signs of emotional intonation using the available databases of emotional speech.
In this work, for testing purposes, we use the Ryerson Audio-Visual Database of
Emotional Speech and Song (RAVDESS) [8].

2 Visual Representation of Emotional Intonation
Features

To create a subsystem that allows for detailed analysis and visualization of
emotional intonation we add to the “IntonTrainer” system some new func-
tions described below (see: folder name “English Emotions” at the site https://
intontrainer.by).

The initial Application window is shown in Fig. 1.

Fig. 1. Initial window

After clicking the “Start” button, the main window opens, containing a struc-
tured list of reference phrases indicating the name of the announcer, the name
of the emotion and the text of the phrase in which it is reflected (see Fig. 2).
The numbers 0 or 1 indicated two levels of emotional intensity.

https://intontrainer.by
https://intontrainer.by
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Fig. 2. Main window

By selecting the desired directory with the cursor, for example: “1 Male
Speaker (1) - 1 neutral 1 Dogs are sitting by the door” opens a window (Fig. 3)
in which are displayed the results of the intonation analysis of this phrase in a
graphic view. The continuous curve in Fig. 3 displays the trajectory of F0 change
on the voice sections of the phrase and is presented in the form of the Normalized
Melodic Portrait (NMP).

Fig. 3. Window displaying the NMP curve of the phrase “Dogs are sitting by the door”
(Neutral emotion)

Segmentation of speech signal into voice regions is carried out automatically
(by selecting the Auto Marking mode). Segmentation is based on the informa-
tion about periodicity in the signal (voice presence), while the presence of a
sufficiently high signal amplitude - A0 (t). The construction of the NMP curve,
in contrast to the Universal Melodic Portrait of the UMP [7], does not require
“manual” marking of the phrase on the “pre-core”, “core” and “post-core” sec-
tions. The horizontal dashed line on the screen shows the average value of the
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NMP curve. Two vertical lines show the information on the position of the center
of the NMP curve and its width on the normalized time axis.

It is also possible to calculate and display the derivative of the NMP in a
similar way (see Fig. 4). The height of the column (to the left of the NMP) shows
the range of variation of the F0 in octaves.

Fig. 4. Displaying of the NMP and its derivative

In the left part in Figs. 3, 4 control buttons are shown with which the following
functions are available:

– “Play Template” - listening to reference phrases.
– “Rec” - quick recording of user phrases through a microphone,
– “Open Instance File” - call test phrases from the “TEST” folder.

For individual training of emotional intonation, the user can apply an
extended or built-in microphone by pressing button “Rec”.

The user has also the ability to visually compare melodic portraits of various
emotions using test phrases from the “TEST” folder by pressing the button
“Open Instance File”. In Fig. 5 there are presented for comparison 2 curves of
NMP (neutral emotion and emotion of anger) for the same speaker and phrase.

Fig. 5. NMPs of neutral (red line) and anger (dark line) emotions (Color figure online)
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3 Numerical Evaluation of Signs of Emotional Intonation

The numerical estimates of the signs of emotional intonation are based mainly on
the results of measuring various parameters of the NMP presented in Figs. 3, 4, 5.
Based on the NMP, the following set of features is calculated:

– Mean Value of the NMP (in % of the maximal value of the NMP);
– Center of the NMP position (in % of the normalized length of the NMP);
– Width of the NMP (in % of the normalized length of the NMP);
– Mean Value of the NMP derivative (in % of the maximal value of the NMP

derivative);
– Center of the NMP derivative (in % of the normalized length of the NMP

derivative);
– Width of the NMP derivative in % of the normalized length of the NMP

derivative).
– Additionally, the following features are calculated from the source signal:
– F0-Diapason (in octaves): D = (F0max/F0min) – 1;
– F0-Mean Register (in Hz): R = (F0max - F0min)/2;
– Voiced Sounds Level (in %, as the average value of the signal amplitudes

relative to the maximum value;
– Voiced Sounds Duration [in seconds], as the total duration of voice sections.

In the left part at the bottom of Figs. 3, 4, 5 control buttons are shown for
“Save Metrics” functions. When you click the “Save Metrics” button appears
and a page opens in EXCEL, on which a complete set of 10 prosodic features of
the reference phrase is written (see Table 1). The obtained data is stored in the
same folder where the reference phrase being studied is stored.

Table 1. Prosodic features of the phrase “Dogs are sitting by the door” (Neutral
emotion)

# Names of prosodic features Results

1 F0-Diapason [Octaves] 0,56

2 F0-Register [Hz] 111,50

3 Mean Value of the NMP [%] 46,14

4 Center of the NMP [%] 42

5 Width of the NMP [%] 33,03

6 Mean Value of the NMP derivative [%] 54,65

7 Center of the NMP derivative [%] 5,77

8 Width of the NMP derivative [%] 54,71

9 Voiced Sounds Level [%] 24

10 Voiced Sounds Duration [Sec] 1,71

Table 2 shows an example of the results of calculating the numerical values
of the prosodic signs of a phrase expressing the emotion “Anger”.
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Table 2. Prosodic features of the phrase “Dogs are sitting by the door” (Anger emo-
tion)

# Names of prosodic features Results

1 F0-Diapason [Octaves] 1,17

2 F0-Register [Hz] 258,5

3 Mean Value of the NMP [%] 36,94

4 Center of the NMP [%] 42,69

5 Width of the NMP [%] 36,91

6 Mean Value of the NMP derivative [%] 44,26

7 Center of the NMP derivative [%] 44,92

8 Width of the NMP derivative [%] 47,34

9 Voiced Sounds Level [%] 34

10 Voiced Sounds Duration [Sec] 2,43

At the time, when the user makes a visual comparison of NMPs of reference
and tests phrases (see Fig. 5), it is also possible to calculate and to click the
“Save Metrics” button to store values of ratios for each prosodic signs of this
couple of phrases in dB scale. The results of a calculation based on the data
given in Tables 1 and 2 (a pair of phrases with “Anger/Neutrality” emotions) is
shown in Table 3.

The use of ratios in dB scale allows the comparison of a pair of phrases with
different emotions, using prosodic signs of different nature and in various units
of measurement.

Table 3. Relative values for the prosodic features of a pair “Anger/Neutrality” emo-
tions

# Names of prosodic features Results

1 F0-Diapason 1,33

2 F0-Register 3,66

3 Mean Value of the NMP −1,22

4 Center of the NMP 0,21

5 Width of the NMP −0,11

6 Mean Value of the NMP derivative −2,69

7 Center of the NMP derivative 0,30

8 Width of the NMP derivative −0,16

9 Voiced Sounds Level 2,06

10 Voiced Sounds Duration 1,27

4 Preliminary Testing of the Developed Signs
of Emotional Intonation

For testing of the developed signs, we used the RAVDESS emotion database [8].
It is a validated multimodal database of emotional speech. The database is
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gender balanced consisting of 24 professional actors and actresses, vocaliz-
ing lexically-matched statements in a neutral North American accent. Speech
includes Neutral, Happy, Sad, Angry, Fearful, Surprise, and Disgust expressions
of emotions. The common number of emotional speech samples available for test-
ing is 1534. The testing and analysis of such a big database become possible only
with the involvement of special programs for processing big data, for example,
using neural network algorithms that we are planning to realize in the future.

Below on Fig. 6 we present comparative graphs of the NMP and the tables
with data in the logarithmic ratio for each of the 10 signs (see: Table 3) for three
pairs of emotions expressed by one of the male and female actors.

A) Happy / Neutral

B) Sad / Neutral

Fig. 6. Graphs of the NMP (top rows) and the tables (bottom rows) for three pairs of
emotions expressed by one of male (left column) and female (right column) actors.
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C) Angry / Neutral

Fig. 6. (continued)

The present study of the effectiveness of the developed signs of emotional
intonation showed their significant distinctive power when comparing different
pairs of emotions. It should be noted that one group of signs can play a large
role in distinguishing the emotions of one speaker and be poorly informative for
another speaker. So, for example, from Fig. 6 it is clear that signs 1, 2, 9, 10,
calculated from the source signal, play the most significant role in distinguishing
emotions in a male speaker. To distinguish the emotions of a female speaker, the
most significant role is played by signs of 3, 4, 5, 6 calculated from NMPs.

5 Conclusions

The task of upgrading the “IntonTrainer” system wasn’t including the creation
of a valid speech emotion recognition model. The ultimate goal of refinement
was limited to the creation of such a software tool that would provide analysis
and visualization of an extended set of prosodic signs of emotional intonation,
and which could be used as a new tool for phonetic studies of speech.

We do not exclude also some applied aspects of the application, for example,
in the tasks of teaching the required emotional intonation of actors, as well as
people of various professions who are striving to enhance their so-called “emo-
tional intelligence (EQ)”. For this, in the Similarity Measure section (see the
Main settings window of the “IntonTrainer”) it is possible choose a method for
assessing the intonation proximity of the spoken phrase to the reference one,
using various similarity measures. The chosen method of calculating the into-
national similarity is then used in calculating the digital or verbal evaluation
assessment of the intonation quality of the spoken phrase.
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Abstract. One of the world’s chronic neuro-degenerative diseases, Alz-
heimer’s Disease (AD), leads its sufferers, among other symptoms, to
suffer from speech difficulties. In particular, the inability to recall vocab-
ulary which makes patients’ speech different. Furthermore, Mild Cog-
nitive Impairment (MCI) is usually considered as a prodromal neuro-
degenerative state of AD. The key to abate the progress of both disor-
ders is their early diagnosis. However, actual ways of diagnosis are costly
and quite time-consuming. In this study, we propose the extraction of
features from speech through the use of the i-vector approach, by which
we seek to model the speech pattern of the three mental conditions from
the subjects. To the best of our knowledge, no previous studies have uti-
lized i-vector features to assess Alzheimer’s before. These i-vectors are
extracted from Mel-Frequency Cepstral Coefficients (MFCCs), then they
are given to a SVM classifier in order to identify the speech in one of
the following manners: AD - Alzheimer Disease, MCI - Mild Cognitive
Impairment, HC - Healthy Control. We tested these i-vector features
by performing a 5-fold cross-validation and we achieved an F1-score of
79.2%.

Keywords: i-vectors · Alzheimer’s · SVM · Speech recognition

1 Introduction

Speech difficulties among patients suffering from Alzheimer’s Disease (AD)
become palpable from the moderate stage of the disease and such adversities
are often characterized by the incapacity to recall vocabulary, leading to con-
stant incorrect word substitutions, also known as paraphasias [8]. The language
of the AD patient is diminished to simple phrases or single words; progressively,
the patient may entirely lose their speech, resulting in a substantial decrease in
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A. A. Salah et al. (Eds.): SPECOM 2019, LNAI 11658, pp. 289–298, 2019.
https://doi.org/10.1007/978-3-030-26061-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26061-3_30&domain=pdf
https://doi.org/10.1007/978-3-030-26061-3_30


290 J. V. Egas López et al.

the quality of life [8,9]. In most cases, these factors create the structure of speech
of a patient suffering from Alzheimer’s, which is generally formed by syntactic
complexity, insufficient speech fluency, and vocabulary limitation.

Insufficient screening techniques have made Alzheimer’s too complex to diag-
nose. The early diagnosis of the disease could lead to a more effective confronta-
tion of the AD in order to slow down its development; this stage of diagnosis is
difficult to achieve [14,24]. Generally speaking, patients arrive at the clinic when
Alzheimer’s is already in an advanced state, which lowers the ratio of early AD
detection cases. MCI (Mild Cognitive Impairment), as part of the process of
dementia, is prone to start around the age of 40. Screening tests to detect MCI
take a long time, they shortage of pre-clinical state diagnosis and require a high
budget to fund them [18].

Speech recognition tools are widely used for similar tasks within this branch
of medicine. Fraser et al. [10–12] utilized speech recognition to detect aphasia.
Lehr et al. [22] applied speech recognition in order to diagnose MCI. Other
groups [1,26] diagnosed Alzheimer’s through the use of speech recognition tools.
To detect and assess other neuro-degenerative diseases such as Parkinson’s (PD),
the i-vector approach has been successfully applied to model the speech of PD
patients by extracting i-vectors from it and performing classification through
the comparison with those of the test speakers by means of cosine distance scor-
ing [16]; likewise, classifying them using of Support Vector Machines (SVM) [17].
Also, i-vectors have been used to perform classification and regression of the
speaker’s age. To be precise, Grzybowska et al. [19] carry out an examination
of the use of i-vectors both for age regression and for age classification based on
the speech of the subjects.

To the best of our knowledge, no previous studies exist that classify
Alzheimer’s Disease based on utterances by applying the i-vector approach.
Here, we fit a (linear) Support Vector Machines (SVM) classifier which is
given i-vectors features extracted from the Mel-Frequency Cepstral Coefficients
(MFCCs) of the utterances. The diagnosis is predicted as one of the following
three states: HC (Healthy Control), MCI (Mild Cognitive Impairment), and AD
(Alzheimer’s Disease).

2 Data

The data for the experiments in this study is defined as follows: 225 speech
signals recorded from 75 subjects (dementia dataset), and 44 recordings taken
from generic speakers (BEA dataset). The speech utterances used are the same as
those employed in [18], which were recorded at the Memory Clinic, University of
Szeged, Hungary. Three categories of utterances were recorded, namely, subjects
suffering from MCI, subjects affected by the early-stage of AD, and subjects
having no cognitive impairment at the time of recording. Such categories were
matched for age, gender and education. We worked with the utterances of 25
speakers for each speaker group, resulting in a total of 75 speakers and 225
recordings.
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Table 1. The characteristics of the three groups of the study participants. Groups: MCI
= mild cognitive impairment; mAD = mild Alzheimer’s Disease. Tests: MMSE = Mini-
Mental State Examination; CDT = Clock Drawing Test; ADAS-Cog = Alzheimer’s
Disease Assessment Scale. Values are given as mean ± standard deviation.

Subject groups Statistics

Control (n = 25) MCI (n = 25) mAD (n = 25) F(2;74) p

Age 70.72 ± 5.004 72.4 ± 3.594 73.96 ± 6.846 2.321 p = 0.105

Years of education 12.08 ± 2.326 10.84 ± 2.304 10.76 ± 2.818 2.202 p = 0.118

MMSE score 29.24 ± 0.523 27.16 ± 0.898 23.92 ± 2.488 76.213 p < 0.001

CDT score 8.88 ± 2.007 6.44 ± 3.429 5.88 ± 3.244 7.254 p = 0.001

Adas-COG score 8.575 ± 2.374 12.044 ± 3.205 18.675 ± 5.818 38.35 p < 0.001

Mini-Mental State Examination (MMSE, [7]), Clock Drawing Test (CDT;
[13]) and the Alzheimer’s Disease Assessment Scale (ADAS-Cog, [25]) were the
clinical tests employed in order to assess the cognitive states of the subjects. From
the MMSE test, one can get a maximum of 30 points in the following manner: 29–
30 points for healthy elderly, 27–28 points for mild neurocognitive impairment,
20–26 points for mild dementia, 10–19 points for moderate dementia, and 0–9
points for severe dementia [7]. The CDT test is up to a total of 10 points, where a
score below 7 corresponds to a cognitive decline [13]. The ADAS-Cog test, which
employs an inverse scoring (i.e. errors are counted rather than right answers), has
the following scoring system: 0–8 points for normal cognitive abilities, 9–15 points
for mild neurocognitive impairment, and 16–70 points for severe neurocognitive
impairment [25].

The Geriatric Depression Scale (GDS) was used to assess the state of depres-
sion. The three groups (F(2;74) = 2.202; p = 0.118) were aligned with regard
to gender (X2(2) = 1.389; p = 0.499), age (F(2;74) = 2.321; p = 0.105) and
years of education (F(2;74) = 2.202; p = 0.118). Table 1 lists the clinical char-
acteristics of the control, the MCI and the mAD group. The recordings reflect
a spontaneous speech of the subjects and the experimental setup for them was
as follows: (1) Immediate recall, after the presentation of a specially designed
one-minute-long film, the subjects were asked to talk about details seen on the
film. (2) Previous day, the subjects were asked to talk in detail about their pre-
vious day. (3) Delayed recall, in the end, a second film was played, and after
having one minute pause, the subjects were asked to speak about what they
saw. The structure of the data became a set of 3 spontaneous-speech recordings
per speaker, where each was edited in such a manner that we cropped parts
before the subject starts to speak and after the subject’s last phoneme.

3 Methods

The study was achieved by performing the extraction of the i-vectors in the
following manner: (1) MFCCs features were extracted separately from 225 (i.e.
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Fig. 1. The generic methodology applied in our work.

dementia dataset) and 44 speech recordings (i.e. BEA dataset) (2) the UBM
was trained using the MFCCs obtained from the BEA dataset (3) the i-vector
extractor model was trained using the UBM of the previous step, and MFCCs
from the dementia dataset (4) MFCCs from the dementia dataset were processed
to extract a set of 225 i-vectors, and lastly, (5) a Support Vector Machines (SVM)
performed the classification process. These stages are outlined in Fig. 1.

3.1 Feature Extraction

Among the most popular short-term acoustic features are the MFCCs (Mel-
Frequency Cepstral Coefficients), which are obtained by implementing the fol-
lowing operations on the utterances: power spectrum, logarithm, and Discrete
Cosine Transform (DCT), these deliver the first coefficients plus one more coef-
ficient associated with the energy of the frame. Velocity and acceleration (first
and second derivatives) are affixed to the MFCCs together with their energy’s
coefficients. In this study, we will use MFCCs because this technique has proved
to be one of the most effective when it comes to creating a speaker model [15,20].

3.2 The i-vector Approach

GMM (Gaussian Mixture Model) supervectors [2] and JFA (Joint Factor Anal-
ysis) [21] are successful approaches that were once the state-of-the-art systems
for robust speaker recognition. In an attempt to combine of both techniques,
JFA speaker factors were used as features for SVM classifiers [5]. It found that
the channel factors estimated with JFA not only contain channel effects but
speaker-dependent information as well; hence, speaker and channel factors were
combined into a single space. Factor Analysis (FA), which is used as a feature
extractor, defines a new low-dimensional total variability space in which a speech
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utterance is defined by a new vector called i-vector [6] that contains the estimates
of the total factors:

M = m + Tw, (1)

where M is the Gaussian Mixture Model (GMM) speaker supervector for a given
signal; m is the speaker/channel-independent component, namely, the UBM
supervector; T is the Total Variability matrix (TV); and w is a standard normal
distributed hidden variable, i.e. the i-vector. This vector can be thought of as a
representation of a given recording in a lower-dimension space.

In contrast to JFA, i-vectors do not make any distinction between speaker
and channel; here, each utterance is assumed to be acquired from a different
speaker. The i-vector approach is, in plain words, a dimensionality reduction
technique of the GMM supervector.

To the best of our knowledge, no previous studies described in the literature
used i-vector features specifically to predict AD from speech. We think that,
owing to the nature of factor analysis, which is used to obtain information about
speaker and channel variabilities, i-vector features are able to capture efficiently
the information needed in order to model an AD subject’s speech in a proper
way.

4 Experiments and Results

Here, we describe the experiments carried out using the i-vectors as features
obtained from the speech of 225 bio-signals (i.e. utterances). Moreover, we will
analyze the classification results given by the Support Vector Machines algorithm
which utilized the k-fold cross-validation technique.

4.1 i-vectors Extraction

Bob Kaldi [3] was used to perform the i-vectors extraction process, it being
a python wrapper for the Kaldi speech recognition toolkit [23]. In our work,
20 MFCCs features are extracted from the audio signals, which were 25 ms in
duration and had a 10 ms time-shift.

Our UBM was trained relying on the BEA Hungarian Spoken Language
Database that consists of spontaneous speech similar to the recordings collected
from the patients. We worked with a 120 min-long set of recordings from the BEA
corpus, mostly utilizing utterances from elderly subjects so as to match the age
group targeted audience. The UBM was supplied with the MFCCs related to the
BEA dataset in order to get a universal model of the speakers. The values of the
following parameters were adjusted in order to train the UBM: the number of
Gaussian components, C, from 2 to 256; and the number of Gaussians to keep
per frame, Cf , was given by log2(C).

MFCC features extracted from the utterances of the MCI, HC, and AD sub-
jects (i.e dementia dataset), were used both to model the i-vector extractor,
for which we used training utterances only, and to extract i-vectors from each
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Table 2. Scores obtained when SVM classifies with i-vectors.

UBM size Performance (%)

Used recording(s) Acc. Prec. Rec. F1

Immediate recall 32 42.7% 82.6% 76.0% 79.2%

Previous day 32 41.3% 72.2% 78.0% 75.0%

Delayed recall 4 46.7% 78.7% 74.0% 76.3%

All utterances 16 56.0% 80.9% 76.0% 78.4%

MFCC feature vector (i.e. using train, development and test utterances, respec-
tively). The i-vector extractor model was fitted using the UBM as well as the
MFCC features extracted from the dementia dataset. Then, the i-vector extrac-
tor makes use of the i-vector extractor model together with the UBM to extract
the i-vector features from each utterance.

4.2 Evaluation

We performed our classification with the use of Support-Vector Machines [27] and
we relied on the libSVM implementation [4]. To avoid overfitting due to having
a large number of meta-parameters, we applied a linear kernel; the value of
complexity (C) was set in the range 10{−5,−4,...,0,1}. The subjects were classified
using 5-fold cross-validation. Each fold contained the utterances of 5 healthy
controls, 5 speakers having AD, and 5 speakers suffering from MCI. Each SVM
model was trained on the utterances of 60 subjects.

The evaluation was carried out in 4 ways, where we measured the performance
of the recordings: immediate recall, previous day, delayed recall, and all utter-
ances together, respectively. Table 2 lists the results got in terms of F1-scoring
and accuracy. The best F1-score outcome belongs to the immediate recall mea-
surement. However, the best accuracy score was obtained when using all the
utterances. It can be seen that Immediate Recall and Previous Day recordings
performed the best with 32 Gaussian components in the UBM; but this is not
true for Delayed recall, and All utterances evaluations, they performed the best
when the size of the UBM was 4 and 16, respectively.

Figure 2 shows a big difference between the values of accuracy related to the
set ‘All tasks’ and the accuracy scores from the other set of tasks (i.e. Immediate
recall, Previous day, and Delayed recall). This happens because the accuracy
score was measured as a 3-wise set, that is, it was obtained in terms of the AD,
MCI, and HC classifications. This means that SVM had a 3-class classification
with an accuracy score of 56%. In contrast, a 2-wise set used in the rest of the
scores, that is, AD and MCI were treated as one class, while HC was the other
class, which allowed the classifier to perform better. Thus here the evaluation was
basically whether the subject has dementia (AD or MCI) or the subject is healthy
(HC). The same figure describes the number of Gaussian components required to
get the best results in terms of accuracy, it turns out that the best configurations
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Fig. 2. Achieved accuracy scores in terms of the number of Gaussian components.

were obtained when using the number of Gaussian components was less than 32
in the case of Immediate Recall and Previous Day tasks. For Delayed Recall just 4
components were needed. When all the utterances were combined, it was enough
to use 16 Gaussian components so as to achieve the best accuracy scores with
less computation time. Thus, i-vector features in these experiments performed
better when using smaller number of Gaussian components.

It should be mentioned that the best configuration of the number of com-
ponents C in the SVM classifier differed in relation to the type of recordings
used, i.e. for the best F1-score (Immediate recall) C = 10−2, while for the best
accuracy (All utterances) C = 10−3. A complexity constant value that is too
large may lead to overfit the model; on the other hand, a value that is too small
may result in over-generalization. Here, the best SVM complexity constant val-
ues, which set the tolerance for misclassification, were low in the two best cases,
which means that C just needed ‘hard’ boundaries of tolerance to perform the
best, and over-fitting was controlled by the cross-validation.

5 Conclusions and Future Work

Alzheimer’s Disease is currently very difficult to diagnose accurately, and the
methods of diagnosis generally comprise several costly and time-consuming tasks
that the patient may be asked to repeat more than once. A successful and precise
diagnosis might be relative due to the fact that it is strongly dependent of the
expertise of the physician. Mild Cognitive Impairment is commonly viewed as
a prodromal stage of Alzheimer’s, it causes a gentle-yet-noticeable decline in
cognitive abilities (i.e. memory and thinking). Generally speaking, a person with
MCI has a relatively high risk of developing AD or another type of dementia



296 J. V. Egas López et al.

disease. Unfortunately, the successful diagnosis of MCI greatly depends on the
doctor’s experience and judgement which may not be the most accurate. MCI
diagnosis is also based on the costly biomaker tests (e.g. brain imaging and
cerebrospinal fluid tests).

In this paper, we showed how speech analysis offers a non-intrusive, non-
expensive and faster way to perform the diagnosis of Alzheimer’s by means of the
utterances (i.e. speech recordings) of subjects. Here, we presented the advantage
of i-vectors as features to model the particular speech of an Alzheimer’s sufferer.
Two groups of speech signals were represented via MFFCs features, one for the
BEA Hungarian Spoken Language Database and the other got from the dementia
dataset. Next, i-vector modeling was performed over these features with the
goal of extracting their total factors (i.e. i-vector features). SVM utilized these
i-vectors and classified them using a linear kernel. It achieved an F1 score of
79.2% for the three groups, namely, Alzheimer Disease (AD), Mild Cognitive
Impairment (MCI), and Healthy Control (HC).

We tested the i-vector features by means of 5-fold cross-validation to avoid
overfitting. Evaluation took place over three types of recordings (Immediate
recall, Previous day, Delayed recall) from each of the 75 speakers, plus one more
evaluation over all these together.

In a future study, we intend to perform a standard i-vector preprocessing
before classifying them with the SVM. LDA (Linear Discriminant Analysis) and
WCCN (Within-class Covariance Normalization) are commonly used on i-vector
features in order to achieve the compensation for the intersession problem. We
expect that, with the use of LDA, undesired information may be removed from
the total factors (i.e. i-vectors) and that the variance between speakers can be
maximized (discrimination of multiple classes); on the other hand, WCCN can
be utilized to compensate the intersession variability. Such processes on i-vectors
may lead to a dimension reduction in the features which should cut CPU time
and make it easier to classify them.
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16. Garćıa, N., Orozco-Arroyave, J.R., D’Haro, L.F., Dehak, N., Nöth, E.: Evaluation
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Abstract. The paper presents the speech database “AD-Child.Ru” that contains
speech materials of 4–16 year old children with atypical development. The
choice of informants with certain diagnoses is due to speech disorders or lagging
speech development as one of the leading symptoms of each of these diseases.
At the present time the database includes 1.1 Tb of audio and video records
collected from children (n = 278) and adults aged 20–46 years (n = 20) with
mental retardation (with a mental age of 12 years). Audio recordings were
carried out in a model situation and spontaneous interaction with adults. This
database is designed to study the speech development in dysontogenesis. The
paper reports two experiments on the speech material included in the database
“AD-Child.Ru”: (i) recognition by listeners of the words meaning of preschool
typically developing (TD) children, children with autism spectrum disorders
(ASD), and Down syndrome (DS); (ii) determination by the listeners of the child
state “typical development – disorder”. Our database can be the basis for sci-
entific projects on the Russian language mastering in case of atypical devel-
opment and can be used in the studies of automated child speech recognition
system.

Keywords: Speech database � Atypically developing children �
Perceptual analysis � Spectrographic analysis

1 Introduction

In recent years, one of the priority directions of the development of modern society has
been the improvement of the quality of life of people with developmental disabilities
and atypical development. The creation of alternative communication systems, human-
computer interfaces, and training programs is associated with the need to obtain data on
the peculiarities of speech development and communication skills of adults and,
especially, children.

A prerequisite to the creation of such systems is the mastering of speech bases of
children with atypical development and developmental disabilities. Automatic systems
can provide complementary information that may be helpful for a clinician in the early
screening of a voice disorder [1]. When creating child’s speech databases, it is nec-
essary to take into account the specificity of children’s speech determined by the age of
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the child, the formation of articulatory patterns and the methods of annotating and
analysis of speech [2, 3]. Such databases are usually compiled for specific purposes.
These databases contain speech material of children specific for a single disease and the
database is collected for a specific goal, as a rule. There are speech databases of
children with Specific Language Impairment (SLI) [4], 5–12 year old Chinese children
with cleft palate [5]. There are two databases created in 2016 on Czech language
material and containing the speech of typically developing children (TD) and children
with SLI [6]. The database [7] on American English material contains the speech of 19
patients with cerebral palsy. “TalkBank” includes records of the speech of children
with speech pathology. They are presented by the speech of patients with autism
spectrum disorders (ASD) (20 records of patients with Asperger syndrome in Spanish)
and the speech of patients with Down syndrome (DS) (in English and Danish). “Autism
Spectrum Database, UK” [8] collects the information about ASD people living in Great
Britain and includes their speech materials. These databases vary depending on
availability. Such speech bases are absent in Russian children with various specific
diagnoses, accompanied by speech disorders.

The goals of our current work are the collection of speech material of 4–16 year old
Russian children with atypical development and developmental disabilities, the for-
mation of database and an analysis of these data for studies of speech development in
dysontogenesis.

2 Speech Database for Children with Atypical Development

2.1 Data Collection

The database “AD-Child.Ru” contains speech material of children and adults with
atypical development: ASD, DS, Cerebral palsy (CP), developmental disorders (DD),
Light neurological violations (LNV), Intellectual disabilities, mental retardation (ID),
and TD (control) (Table 1). The choice of informants with certain diagnoses is due to
speech disorders at different levels of the organization or lagging speech development
as one of the leading symptoms of each of these diseases. The diagnoses for children
were established by specialists – psychiatrists, neuropathologists, and pediatricians.
When the leading diagnosis was in doubt, an additional examination was conducted
with the involvement of interdisciplinary team. The children selected for the study were
tested using standardized scales and questionnaires. The recordings of informants’
speech material were made in kindergarten, at school, in the laboratory, orphanage, at
home, day care center, and Child center. The situation of spontaneous interaction
between children and the researcher, model situations applied early were used: dialogue
with the researcher or parents (the child answered to the set of questions), repetition of
the words pronounced by an adult, play with the set of toys, picture description,
retelling of the story (monologue), reading a book (Table 2). The difficulties of the
collection of speech materials are described in our previous paper [9]. The total
duration of recording was 20–40 min each, duration of model situation was 5-15 min.
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The recording for every child was made from three to ten times. Speech of adults with
intellectual disabilities (mental age up to 12 years) was recorded using the model
situations of interaction with the researcher used for children. The records were made
by the digital recorder “Marantz PMD660” with external microphone “SENNHEIZER
e835S” and video camera “SONY HDR-CX560E”. Speech files were stored in Win-
dows PCM format WAV, 44.100 Hz, 16 bits per sample; video files were in AVI
format. Every record is accompanied by a detailed protocol and video recording of
child’s behavior in parallel.

At the present time the database “AD-Child.Ru” includes 1.1 Tb of audio and video
records collected from 4–16 year old children (n = 198) with atypical development,
5–16 year old TD children (n = 80, control), and adults (n = 20) with mental retar-
dation. The database “AD-Child.Ru” contains speech material for children living not
only in St. Petersburg, but also from other regions of the Russian Federation who speak

Table 1. Diagnosis, gender, and age of informants.

Diagnosis* Place of
speech record

Age,
year

Number of
children

Gender
m f

Autism spectrum disorders (F 84) Laboratory 4–16 39** 31 8
Special school 8–11 13 11 2
Kindergarten 4–7 20 18 2
Medical center 3–11 21 16 5
Home 6–12 3 3

Down syndrome (Q 90) Orphanage 5–7 4 4
Child Center 4–16 20 9 11

Cerebral palsy (G 80) Laboratory 4–7 6 3 3
Developmental disorders (F 83) Orphanage 4–9 25 19 6

Kindergarten 6–7 10 7 3
Medical
Center

3–11 5 5

Intellectual disabilities, mental
retardation (F 70, 71)

Orphanage 4–11 20 11 9
Day care
center

20–46 20 11 9

Light neurological violations (F80,
90)

Orphanage 4–10 12 6 6

Typical development (control) School 15–16 46 18 28
Kindergarten 5–6 34 17 17

* Diagnosis according ICD-10
** Longitudinal data
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Russian. This is a specificity of the new speech database from our previous databases
[10]. This will allow to analyze the features of pronunciation and to identify speech
signs that are specific for the disease. Another specificity of the new database is the
inclusion of long original files (10–15 min), which contain the speech of the experi-
menter, parents, and sometimes other children.

All long original speech files are annotated by age, gender and the type of disorders
of the child. So far, about 10% of the data are annotated for emotional states “comfort –
neutral – discomfort”.

All procedures were approved by the Health and Human Research Ethics Com-
mittee (St. Petersburg State University). The informed consent was written by the
parents of the child participant and by the adult informants.

2.2 Database Structure

The “AD-Child.Ru” database is an organizational tool that provides streamlined access
to storing and searching the child’s audio recordings and the documentation of the
audio recording. The database consists of aggregated binary files which managed by
Microsoft SQL Server. Data can be added, modified, and deleted by the user only
through the application interface. The database structure is presented in Fig. 1.

Database Management Access Application. The interface of application contains
two blocks. The interface of the block-1 has access to the management of the following
audio recordings:

The main catalog includes audio records of child’s speech in accordance with the
leading diagnosis of the child (ASD, Down syndrome, neurological disorders, mental
retardation, mixed specific developmental disorders, norm, etc.) Subdirectories of the
main catalog are data for each child, which include age, record situation (dialogue,
playing with a standard set of toys, repetition, talking about the picture, picture
description, the natural interaction of the child with the parents). For each child, there is
information about the child’s name, gender, date of birth, birth number in the family,
place of birth, diagnosis, and information about parents. For each record, there is
information about the place of recording and the equipment used.

The interface of block-2 has access to the management of audio and video
recordings of child’s articulatory movements during utterance special speech samples
(repeated words). The interface of the block 2 is similar to the interface of the block 1.

The repeated words were chosen taking into account: (a) the minimum effect of co-
articulation (vowels /a/, /i/ and /u/ after the following consonants: /k/ and /d/ for /a/, /b/
and /g/ for /u/, /t’/ for /i/); (b) words with stressed cardinal vowels /a/, /i/ and /u/.

The application contains search fields and filters that allow the user to extract data
based on the type of the disease, the age of the child, the recording situation. Additional
filters make it possible to select data based on all available metadata: the child’s family
number, the information about parents, the equipment used during recordings, etc. The
application is written in C # language.
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Audio and video files are stored separately in the computer’s file system and their
file names are generated by the application. The following designation is used to
indicate the recording situation (Table 2), type of disease, the gender of the child, and
the emotional state. Identification of child’s gender: m – male, f – female. In annotating
the emotional state into three categories, abbreviations were used: comfort – C, neutral
- N, discomfort – D. At this stage of work, the annotation on a greater number of
emotional states was not made.

The file name contains next information about the child <type of disorders> <name
or ID number> <age> <gender> <the recording situation> <emotional state>.

Fig. 1. Database schema.
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3 Data Analysis

We presented two experimental data. Both experiments included perceptual and
spectrographic analysis of preschool child’s speech.

Experiment-1: The aim of perceptual study-1 was to reveal the listeners’ possi-
bilities to recognize the meaning of 6–7 year old child’s (TD, ASD, DS) words and
presence or absence of disease via speech. Four test sequences were made: three –

include 25 words in each test for TD (n = 5), ASD (n = 5) and DS (n = 5) children (5
words for each child); one mixed test (n = 45 words) contained 3 words for each child
from the three tests.

Experiment-2: The aim of perceptual study-2 was to reveal the listeners’ possi-
bilities to recognize the meaning of child’s (TD and ASD) words, age and gender via
speech. Two test sequences were formed from the speech material of 20 children aged
from 4 to 7 years (n = 10 TD children, n = 10 children with ASD). Every test sequence
includes 30 words uttered by children.

The listeners were 90 adults (age 18.8 ± 1.6 y) in experiment-1. The test sequences
in experiment-2 were presented to 100 adults (age – 19.7 ± 4.2 y) for perceptual
analysis. Each speech signal in the 5 tests was presented three times. The duration of
pauses between the same words was 3 s, between different words – 5 s. In the mixed
test, the words were presented once with an interval of 3 s. We calculated the per-
centage of listeners’ answers correctly recognized the meaning of child’s words (with
the perception rate 0–0.25 meaning not recognized; with rate 0.75–1.0 recognized) and
recognition accuracy of the child’s state via speech.

Spectrographic analysis of speech samples from two perceptual experiments was
carried out in “Cool Edit Pro” sound editor. Pitch and duration of words and vowels
were automatically calculated, based on the algorithms implemented in “Cool Edit Pro”
sound editor. The waveform view was used to calculate duration of words, stressed and
unstressed vowels in the word, and the spectral view was used to measure the pitch and
formants.

Table 2. The recording situations.

Original file (long) L

Dialogue D
Play with toys P
Picture description PD
Retelling (story or movie) SR
Reading BR
Spontaneous speech S
Repetition words R
Interactions with parents (experimenter) IP (IE)
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4 Experimental Results

4.1 Experiment 1. Word’s Meaning and State (Normally Development
or Disorder) Recognition by Listeners via Speech of TD Children
and Children with ASD and DS

Listeners correctly recognized the meaning of words of TD children (the recognition
accuracy was 40%), of children with ASD (32%) and children with DS (24%).

The words of TD children whose meaning is recognized by listeners (range 0.75–
1.0) have a longer duration (p < 0.05 – Mann – Whitney U test) than unrecognized
words (range 0–0.25), the words of children with ASD have a longer duration (p < 0.05)
than the words of children with DS. Words, stressed vowels (and their stationary parts)
in the words of children with ASD and DS, the meaning of which is recognized correctly
(0.75–1.0), are characterized by higher pitch values (p < 0.05) than the words of TD
children. Unrecognized words (0–0.25) are characterized by a longer duration of
stressed vowels (p < 0.001 for children with ASD, p < 0.01 for children with DS) in
words compared to the corresponding features of TD child’s words.

Listeners better recognized the state (norm) of TD children by speech samples
(92%) and disorder for children with DS (70%). Only 54% of speech samples of
children with ASD were correctly classified as speech signals belonging to children
with disorder (Table 3).

The words of children with DS correctly defined as belonging to children with
developmental disorder are characterized by a longer duration of stressed vowels
(p < 0.05), the words of children with ASD – by higher pitch (p < 0.05) vs. the
corresponding features of the words incorrectly classified as belonging to TD children.

4.2 Experiment 2. Word’s Meaning, Age, and Gender of TD and ASD
Children Recognition by Listeners

Listeners correctly recognized the meaning of 65.8% words of TD children and 44.8%
words of ASD children. The listeners’ experience of interaction with children is a
predictor of the correct recognition of the meaning of words of ASD children
F(3,34) = 1.763 p < 0.02 (R2 = 0.128 Beta = 0.431) – Multiple regression analysis.
Children with ASD, the meaning of which words was recognized by listeners, had
31 ± 4 points on the Child Autism Rating Scale (CARS) [11], children whose words

Table 3. Confusion matrices for TD children, ASD children and children with DS state
prediction – typical development or disorder.

Groups State
Typical development Disorder

TD 92 8
ASD 46 54
DS 30 70
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were not recognized −34.4 ± 5.3 points. Words recognized by listeners with a range of
0.75–1.0 are characterized by a longer duration (p < 0.05) – for TD children and
(p < 0.01) – for ASD children vs. words with an unrecognized meaning (range 0–0.25)
(Fig. 2 A). The pitch values of stressed vowels and stationary parts of stressed vowels
in the unrecognized words are higher (p < 0.001 – for ASD children, p < 0.05 – for TD
children) vs. corresponding parameters in the recognized words (Fig. 2B).

The age of 6–7 years of TD children was defined by the listeners as real, the age of
4 and 5 years was higher for TD children than real, for children with ASD – the age
was determined lower than real. Listeners attributed more voices of girls to boys’
voices (Fig. 3).
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values of stressed vowels in the stationary part and variation of pitch (B) in words recognized by
listeners with range 0–0.25 and 0.75–1.0. Vertical axis – duration, ms (A), pitch values, Hz (B);
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5 Discussion

Creating the database “AD-Child.Ru” is the main result of our work. Database structure
is traditional for speech bases. Original approach is collection and presentation of
speech material of children with various diagnoses, accompanied by speech disorders.

We select speech of children with different types of psychiatric or neurological
diagnosis: ASD, DS, mixed specific developmental disorders, mental retardation –

intellectual disabilities, cerebral palsy. ASD is characterized by impairments in lan-
guage and emotional cognition. Multiple symptomatology of disorders, combined into
an “autistic triad”, include a violation of social behavior and speech, limited forms of
behavior and stereotypes [12]. DS is one of chromosomal abnormalities. Children with
DS have specificity of the vocal tract structure - a smaller volume of the oral and nasal
cavities, lowering of the lower jaw, a narrow palate, and shorter length of the vocal
tract vs. TD children. The specificity of children and adults with DS is a large folded
tongue and muscular hypotonia [13]. It is shown that in children with DS the deficit of
verbal skills is maintained and strengthened with child’s age [14]. Mild and moderate
mental retardation is intellectual disabilities that caused lower level of language
development. Cerebral palsy is a group of neurological disorders affecting the devel-
opment of movement and posture, often accompanied by disturbances of sensation,
perception, cognition, behavior, and speech disorders are a consequence of motor
disruption and fine motor skills. Light neurological violations include behavior, speech
and emotional disorders. By analogy with the database [6] which contains speech
material of informants with SLI given the severity of symptoms, we also take into
account the severity of developmental disability according medical conclusion and the
points of CARS for ASD children. However, we used a greater variety of recording
situations than it is used to create specialized bases [for example, 4, 6], which allowed
us to get a variety of speech material, including emotional speech. An analysis of the
available literature in free access has shown the absence of speech databases for the
emotional speech of informants with atypical development.

The paper presents the results of two experiments on the recognition by adults of
information containing in child speech. The ability of listeners to determine the words
meaning of TD children, children with DS, and children with ASD aged 6–7 years and
the state of children “typical development – disorder” is shown. When recognizing the
gender and age of TD children and children with ASD aged 4–7 years, listeners defined
the age of children with ASD lower than real. Listeners attributed more voices of girls to
boys’ voices. The results of presented experiments correspond to our previous data [9].

The presented examples of using the database material to determine the meaning of
words of children, gender, age, presence or absence of the disease by speech make it
possible to widely use the created base “AD-Child.Ru” in psychophysiological
research, clinical practice, at the research of automated child speech recognition
system.
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6 Conclusions

We introduced the “AD-Child.Ru” database containing speech material of children
with atypical development and developmental disorders, designed to study the speech
and Russian language mastering in dysontogenesis. The particularities of database are
as follows: it includes child’s speech material in a wide age range of 4–16 year old,
with various diagnoses, accompanied by impaired speech. The results of the perceptual
study of the speech of preschool TD children and children with ASD and DS are
presented as the example of using of speech material annotation by age and disease.

Acknowledgements. The study is being performed with the financial support from the Russian
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Abstract. This paper presents the methods used and results obtained for the
creation of a Festival-compatible pronunciation dictionary of above 10k words
for the kabyle language. Kabyle is a berber dialect spoken in Northern Algeria.
This dictionary will be useful in the design of text-to-speech and automatic
speech recognition systems for the kabyle language. It was built using a boot-
strapping method in which we incrementally build rules to predict word pro-
nunciations while correcting wrong predictions. We thus obtain a large
pronunciation dictionary as well as a set of rules to predict pronunciations for
unknown words. The rules are embedded in Classification and Regression Trees
and achieve 91,62% of correct prediction rate for entire words and 97,85% for
phonemes.

Keywords: Text-to-speech synthesis � Automatic speech recognition �
Pronunciation lexicon � Bootstrapping � Classification and Regression Trees �
Letter-to-sound rules

1 Introduction

Kabyle is a berber dialect spoken in the North of Algeria by approximately 5 to 7
million people. It is the most spoken berber dialect after Tashelhit which is spoken in
Morocco [1]. Kabyle texts can be found in latin or tifinagh characters. The use of latin
characters to transcribe Kabyle was originated by M. Mammeri and is thus also called
“Tammammerit”, whereas Tifinagh is the original alphabet for the Berber language but
its inclusion in the Unicode system is relatively recent [2].

Speech synthesis and recognition have been growing and improving since the
second half of the 20th century. Current trends are now shifting to the use of deep
learning, specifically deep neural networks for the development of speech synthesis and
recognition systems. The introduction of deep learning has allowed an improvement in
recognition rates for speech recognition and naturalness in speech synthesis. Both
technologies however are dependent upon the availability of linguistic resources such
as pronunciation dictionaries, part-of-speech taggers and morphological analyzers.
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The challenge in building speech synthesizers and recognizers for under-resourced
languages is therefore to provide such resources to allow the alignment of acoustic
features from a given speech audio file to the corresponding phonemes, syllables, and
parts of speech.

Methods to assist the construction of such resources have been investigated since
the advent of computers with sufficient processing power. One such method is known
as bootstrapping and consists in incrementally adding words into an originally small set
of manually annotated words. It was originally presented in [3], based on [4], as a
method to rapidly provide pronunciation dictionaries for new languages.

Recent trends in the field of Grapheme to Phoneme conversion have introduced
newer methods in the learning and prediction scheme [5–7]. However, these approa-
ches focus on predicting pronunciations for unseen words without developing a new
lexicon. In [8] and [9], HMMs are used in order to derive phonemes automatically from
audio speech data before aligning these phonemes to the corresponding graphemes in
the orthographic words. The method is ultimately used to develop a lexicon, however it
requires more resources (acoustic speech), has higher complexity, and the integration of
the lexicon in the Festival speech synthesis system is not straightforward. For all these
reasons, we preferred the use of the bootstrapping approach described in [3], which is
well documented [10] and leads us closer to our objectives.

The aim of this work is threefold: (a) to provide a new pronunciation lexicon for the
Kabyle language in order to help TTS and ASR research for the kabyle language; (b) to
evaluate the efficacy of the bootstrapping approach in terms of efficacy and precision
for the Kabyle language; and (c) to enrich the Festival speech synthesis system with an
under-resourced language.

2 Methodology

Figure 1 shows the various steps in building the pronunciation lexicon. In this section
we will present the text corpus used for the study and detail each of these steps.

2.1 Text Corpus

The text was gathered from various websites on the internet. It consists of kabyle song
lyrics, wikipedia articles, and a kabyle translation of the New Testament in the latin
writing system. This choice was made because texts in the Tifinagh alphabet are less
common. Audio recordings of the kabyle New Testament can be found online, and the
same can be said for the songs. We have benefited from this in order to disambiguate
difficult words. Foreign words were suppressed from the corpus as much as possible.
All of the text was copied into a single text file which consisted of approximately
200000 tokens.

2.2 Phone Set

In order for the bootstrapping method to work, it is necessary to define the possible
combinations of letters and phonemes in the language for which the lexicon is to be
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built. Tables 1 and 2 give the possible phonemes in IPA notation as well as in the
ASCII notation we used for each letter found in the Kabyle alphabet. Table 1 is for
consonants and Table 2 is for vowels. For words which contained letters not found in
these tables, either the non-existent letter was replaced, or the entire word was
discarded.

Raw Kabyle text Raw
word list

Token
isola on

Sorted list of 
unique words

Word 
count

Ini al 
pronuncia on

lexicon

Manual
Phone c

annota on

CART tree training

Ini al Training set Ini al Test set

Allowable
le er/phone 
combina ons

LTS Rules

Predic on of 
pronuncia ons of 

unseen words

Unseen words

Predicted 
pronuncia ons

Extrac on of N words

Manual
correc on of

predicted
pronuncia ons

New training set
New test set

Separa on

(First itera on)

(Itera ons 2 to 16)

Fig. 1. Lexicon building steps. Steps above the bold red line are performed only for the first
iteration. The new training and test sets comprise all the previous sets plus a number of new
unseen words. Bold letters indicate an output (result) of the algorithm.

Building a Pronunciation Dictionary for the Kabyle Language 311



Table 1. Kabyle consonants with the corresponding sounds and ASCII symbols used for each
sound

Latin Letter Lowercase Possible sound(s) ASCII symbols

B b /b//b/ “b” “b*”

C c /ʃ/, /tʃ/ “sh” “ch”
Č č /tʃ/ “ch”
D d /d/, /ð/ “d”, “dh”
Ḍ ḍ /dˤ/, /ðˤ/ “D”, “DH”
Ɛ ɛ /ʕ/ “3”
F f /f/ “f”
G g /g/, /ʒ/, /dʒ/ “g”, “j”, “dj”
Ǧ ǧ /dʒ/ “dj”
H h /ɦ/ “h”
Ḥ ḥ /ħ/ “7”
J j /ʒ/ “j”
K k /k/, /q/ “k”, “q”
L l /l/ “l”
M m /m/ “m”

N n /n/ “n”
Q q /q/ “q”
R r /r/ “r”
Ṛ ṛ /rˤ/ “R”
C ɣ /ʁ/ “gh”
S s /s/ “s”
Ṣ ṣ /sˤ/ “S”
T t /t/, /h/ “t”, “th”
Ṭ ṭ /tˤ/ “T”
Ț ț /ts/ “ts”
W w /w/ “w”
X x /v/ “x”
Y y /j/ “y”
Z Z /z/, /zˤ/ “z”, ”Z”
Ẓ ẓ /zˤ/ “Z”

Table 2. Kabyle vowels with the corresponding sounds and the ASCII symbols used for each
sound

Latin letter Lowercase Possible sound(s) ASCII symbols

A a /a/, /ə/ “a” “e”
E e /ə/, /a/, /u/ “e” “a” “u”
I i /i/ “i”
O o /u/ “u”
U u /u/, /ə/ “u” “e”
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2.3 Algorithm

Step 1: Corpus Cleaning. This step was performed to remove all punctuation signs,
numbers, and other symbols. The goal was to leave only words into the lexicon and to
train the letter to sound rules.

Step 2: Word Isolation, Counting and Sorting. The words in the “cleaned” corpus
were then isolated to constitute a (redundant) list of all the words in the corpus. Each
word might appear several times in this first list. The appearance of each word in the
list was then counted and the words were sorted in descending order of appearance to
form a list of approximately 10000 unique words.

Step 3: Annotation. We then manually annotate (i.e. provide pronunciations for) the
first 350 words of the list of unique words (i.e. the 350 most frequent words in the text
corpus). The pronunciation of uncertain words was disambiguated by listening to the
audio recording of that word from the source to which it belonged.

Step 4: CART Tree Building. The list of annotated words is then used to build letter-
to-sound rules based on CART trees. The words are first separated into a set of 90%
words for training and 10% words for testing. As suggested in [10] every tenth word in
the test list is taken for the test set instead of taking the last 10% of words in the list
because the unique words list is sorted in frequency order. The percentage of correctly
predicted phonemes and correctly predicted words at this step is sampled.

Step 5: Generation of Pronunciations for a New Set of Unseen Words. We then
extract a number N of new unseen words from the list of unique words and use the
letter-to-sound rules embedded into the trained CART trees to predict pronunciations
from them for these words.

Step 6: Manual Verification and Lexicon Enrichment. The pronunciations gener-
ated by the CART trees are then verified to correct potential errors in predicted pho-
nemes and the correctly annotated words are added to the previous set of words in order
to build better letter-to-sound rules. It was suggested that an algorithm based on n-
grams should automatically compute confidence scores for the predicted pronuncia-
tions in order to save time and effort during this process. We therefore implemented the
algorithms for the computation as described in [11] and [12] (based on [13]), however
it seemed that the confidences scores were often high for erroneous pronunciations and
low for correct pronunciations. We therefore preferred to manually verify every single
word regardless of the confidence score. This choice was also made in [14], probably
for similar reasons.
The process hereby described (steps 4 to 6) was repeated until iteration 16 after which
the lexicon comprises 11250 words. For the first 10 iterations, the number N of unseen
words was equal to 100. Afterwards, we increased the value of N to 250, 500, 750,
1000, and the 5000.
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3 Results

Figure 2 shows the rates of correctly predicted phonemes and words. The overall shape
is similar to that in [3], but the correct prediction rates are slightly lower.

It can be seen that the final rate of correct prediction for entire words is above 90%
(precisely 91,62%). This corresponds to a training set of 10125 words and a testing set
of 1125 words. The LTS rules are embedded in a tree with 668 nodes.

It is interesting that although the global shape is about the same as the one in [3],
there is a large peak in at the 4th iteration, but the rate drops back to about 75% for the
next few iterations. This might be explained by the relative low frequency of occur-
rence of certain letters relative to others. For the first few iterations, some letters might
not have appeared enough times for rules to be generated for them. After these few
iterations, the system might be presented with new letters for which it doesn’t have any
rule, and therefore the rate drops back down for a few iterations. After enough
examples are added, the system can correctly form rules for every word in the Kabyle
script.

Analysis of the errors made by the system shows that the majority of errors are due
to spirantization, which is the development of stops into fricatives (cf. [1], p. 466).
Another kind of error consists in phoneme doubling, i.e. when there is a pair of the
same letters, only the first should generate a phoneme. For example, the correct pro-
nunciation for the word “beccer” is /b e sh e r/and not /b e sh sh e r/. These errors are
not too consequential phonetically speaking and most often do not alter the meaning of
the words.
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Fig. 2. Correct prediction rates in function of the number of words. Dashed line: Correct
phones. Solid line: Correct words.
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About 15% of the other errors consist of omissions of phonemes. Depending on the
omitted phoneme, the error can have rather severe phonetic consequences. However,
this ultimately happens about 1% of the time.

4 Conclusion

This work has provided a new phonetic lexicon of more than 10k words for the kabyle
language. The lexicon is accompanied with letter-to-sound rules for words not existing
in the lexicon. The letter-to-sound rules achieve above 90% accuracy for unseen words,
with most errors having little phonetic impact. Efforts will be made to provide this
lexicon as a readily available Festival module.

The use of a biblical text as a major part of our text corpus means that a lot of
modern words and names might be lacking. This can be improved by including more
words from news articles.

It might also be interesting to compare the bootstrapping algorithm with other
approaches for pronunciation prediction. It has been shown that the approach provides
reasonable results, provided that we manually check every predicted pronunciation at
each step, which is time consuming and tiresome. Unfortunately, the use of a confi-
dence metric hasn’t proven reliable enough.

For a speech synthesis system to effectively use this lexicon, it is also necessary to
know the stress patterns in the kabyle words. There doesn’t seem to be a consensus on
the question of whether berber languages exhibit lexical stress, as can be seen by
comparing [15] and [16].

Finally, it is tempting to produce a similar lexicon and rules for the Tifinagh
alphabet, which is becoming more commonly used as time goes on.
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Abstract. In this paper, we present a spoken educational system to
automatically assess Arabic-native children’s skill in forming English
questions for different presented prompts. These prompts consist of
images with a sentence that includes the answer to the required question.
The answer key is colored to indicate what to ask. The main method-
ology of the proposed system is to record the spoken response of the
child and pass it through state-of-the-art ASR to convert it into text.
The output transcription is passed through three pipelined subsystems;
Wh-question word checker, English grammar checker, which returns the
number of grammar errors in the given question, and machine learning
based grammar/language checker. The student response is accepted only
if it is accepted by the three subsystems. The system was trained on 650
recorded responses made by 60 students (5th to 8th grades) as response
to 75 different prompts. The number of grammar errors produced by
the English grammar checker, best cosine similarity, best edit distance
and best Jaccard distance between student response and the correspond-
ing reference possible responses, are used to train KNN and SVM models
with different parameters. The best precision, recall, f-measure and accu-
racy were achieved by SVM with linear kernel and degree of 2, 91%, 88%,
89% and 89%, respectively.

Keywords: Speech recognition · Human-computer interaction ·
Computational paralinguistics

1 Introduction

Information technology is entwined in almost every part of our culture. It affects
how we live, work, play and most importantly learn. It has been widely used
in education. Using information technology in education facilitates learning to
improve the productivity and performance. Language processing is a very vital
field in these days for learning and education in general and particularly, for
language learning. Language processing can be divided into natural language
processing which concerns in processing languages in text form, and speech pro-
cessing which concerns in processing spoken languages. Our graduation project
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uses both natural language processing and spoken language processing for build-
ing a computer system, which can assess the skills of making questions in foreign
language correctly in terms of grammar and language meaning. In our case, we
target Arabic native students who learn English as a second language. We focus
on children aged from 11–14 years (i.e. 5th grade to 8th grade). In this paper,
students get a prompt for asking a question verbally in English. The prompt
compromises of text sentence, pictures, drawings, or combinations of all of them.
Student should make a suitable question, in English, as a response to the given
prompt. Student should pronounce the question loudly to the system. The sys-
tem records the student response and assesses it grammatically and linguistically,
then provide him/her with a feedback about the correctness of the made ques-
tion. In addition to correct/incorrect, the feedback may include the mistake and
the correct question forms. This system can be implemented as a mobile phone
application or a web application, which is accessible from everywhere and at any
time.

2 Related Works

Many studies have been published on the topic of Automatic Speech Recognition
(ASR) for children and use it in building learning systems, such as questions and
reading assessments. The ASR is considered the core of any speech processing
application and it is used in many applications [8]. The ASR is usually trained
on a huge speech data, mainly adult speakers. Since children voice is quite differ-
ent than adults voice, the state-of-the-art ASR works better for adults and quite
poor for children [10]. This makes it challenging for developing speech-based
application dedicated for children. A study in [1] targeted this and proposed a
methodology for improving the performance of speech recognition for children
speakers and reducing acoustic mismatch between children and adult acoustic
spaces. The ASR feature extraction stage is difficult for children voices since the
fundamental frequency and the formants bandwidths are of comparable magni-
tude. However, children are shown to be less skilled in coarticulation, display
longer duration and they tend to exaggerate newly mastered skills. This signi-
fies that simpler acoustic models can be used for certain ASR tasks. The nor-
malization procedures and age-dependent acoustic models were used to reduce
variability (that was a major hurdle in building high performance ASR appli-
cations for children), mismatch and increase resolution between classes. Various
experiments have been made showing word accuracy vs. speaker’s age using
HMMs trained from children and adult speakers before and after the speaker
normalization algorithm is applied [9]. The techniques of normalization and age-
dependent (linear, bi-parametric and phoneme-dependent frequency wrapping
functions) improved recognition performance up to 55% for children speakers
[9]. Wilson in [14] focused on the skills needed for making question correctly by
children, Particularly, in foreign language. She developed communicative com-
petence in questions assessment. Forming questions in the correct form is a
difficult skill for children specially in foreign language where semantic and syn-
tactic subtleties are the key of learning this skill. QuestionQuest curriculum



Speech-based Automatic Assessment of Question Making Skill 319

[13] was designed to improve children’s ability to comprehend, ask, and answer
questions. It focuses on receptive language intervention that provides the essen-
tial input required to develop a lexicon, set parameters, and establish syntactic
competence. The QuestionQuest curriculum is divided into three levels, each
containing seven modules. Each module trains one to four question forms using
10 stimulus sets. The grammar of a language is composed of the lexicon (words)
and the syntactic computational system (forms sentences from lexical items).
The representation of a word in the lexicon includes phonological and seman-
tic properties (i.e., sound and meaning), in addition to syntactic features such
as categorical membership (e.g., whether it is a noun, verb, adjective, etc.).
The lexicon is divided into two categories that are essential to the comprehen-
sion and production of sentences: 1. Lexical category that includes nouns, verbs
and adjectives. 2. Functional category that consists of determiners (associated
with nouns e.g., the), complementizers (are associated with clause e.g., if and
whether) and tense (associated with verbs e.g., will and is). Wh-questions can
be formed by subject questions that has no auxiliary verb and the word order is
not changed, or object questions that involve overt Wh-movement and auxiliary
inversion. According to a study in [3], children formed subject questions 63% of
the time, whereas they correctly formed object questions just 49% of the time.
The main conclusion is that using computer technology in learning offers many
advantages to children who enjoy working with properly designed educational
software whether in classrooms or at home. Research has shown that language
intervention software improved language development and communication skills
[7]. Recently, Magooda et al. in [5] used machine learning and syntactic and
semantic features for building a computer system that assists language learning.
It provides learners with informative feedback on their spoken response that
helps them improving their language skills. It uses speech recognition system to
generate a text transcription from spoken response. The designed system accepts
or rejects the response based on the meaning and the language quality. Hence,
some features were adopted, such as language and meaning related features in
order to detect similarities between sentences. Where, n-gram model was used
to accomplish the feature extraction.

A more recent work was published in children readings assessment [12]. This
system supports teachers in children reading assessment process, by replacing the
classical way (writing down the errors) with an automatic system that detects
errors and measures the needed parameters in children reading.

For the assessment of reading speed, the time information provided by the
ASR system was used, based on KALDI toolkit1. Furthermore, tri-phone acous-
tic Hidden Markov Model (HMM) was used for building acoustic models. Accord-
ing to this study, training dataset was gathered from 115 children. Each one reads
58 to 65 sentences. Different Language models (LM) were used to detect correct-
ness assessment; pronunciation errors, truncation and substitutions of words).
Data set was collected from 20 children to compute the performance of the sys-
tem. The system score of the correctness of children’s reading was compared the

1 http://kaldi-asr.org.

http://kaldi-asr.org
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one given by the teacher. The correlation between system scores and teacher’s
scores were used as a performance measure. Thus, two different references were
used, the Ideal Reference Text (IRT) and the Manual Transcription Reference
(MTR).

As we have seen in the literature, most of the related works are based on
using ASR for converting speech into text. Therefore, the ASR accuracy has a
significant impact on the systems accuracy. What makes this more challenging
for our system is that users are young children (11–14 years old). Open source
and commercial ASRs are usually trained on adult speech, therefore, they works
better for adult speakers and poor for children. Researchers have targeted this
issue. Gray et al. in [2], demonstrated a child ASR system using less amount of
data in adapting linguistic and acoustic models of adult centric speech recogni-
tion. The obstacles that were presented about automatic speech recognition for
children and the techniques for adapting a better ASR, such as normalization
and age-dependent acoustic models. The child-adapted ASR was evaluated on
6.8 h of child’s speech. It provided an average of 27.2% relative Word Error Rate
(WER) improvement. The adult-centric models can be adapted to improve lan-
guage and acoustic models’ accuracy of children’s ASR. It’s also observed that
the system performance is age-dependent (the older the child, the better the
results).

3 System Description

This section describes our overall system. The block diagram in Fig. 1 illustrates
the main components of our system, and how they are connected to each other.
As shown in the diagram, the system takes the spoken response (question) made
by children, and passes it to an English ASR to convert it to a text (tran-
scription). The output text is feed into three pipelined blocks to evaluate the
given text question in term of grammar and language. The first block is question
tool checker, followed by an English grammar checker and language/grammar
checker. Each one of that blocks checks if the child response has errors in term
of grammar and language or not. If a block cannot detect any errors in the given
question, the response passes to the next block. The response is accepted (i.e.
identified as correct in terms of grammar and language meaning) if and only
if none of these blocks detects any errors. The subsequent subsections includes
more details about each component.

Fig. 1. Block diagram of the overall system



Speech-based Automatic Assessment of Question Making Skill 321

3.1 Speech Recognition System

The major component of the proposed system is the automatic speech recog-
nizer (ASR) which takes the children spoken question and converts it into text.
In our case, the system assesses the question making skills in English as a for-
eign language. Therefore, English ASR is needed. since there is no available
children English ASR, general Google cloud English ASR2 was used in all of our
experiments. Google ASR incorporates the state-of-the-art system based on the
powerful deep learning technology.

3.2 WH-Question Word Rule-Based Component

This component is a rule-based assessment subsystem. It simply checks the wh-
question word in the given children response. If the used Wh-question word is
correct and matches with the provided prompt, then the response is passed to
the following component. On the other hand, if the wh-question word is wrong
and doesn’t match with the provided prompt, then the response is rejected and
the provided question is counted as a wrong response. In order to do this, for each
prompt, we defined a list of possible wh-question words that can be successfully
used with that particular prompt. The wh-question word is extracted from the
user response and then compared with all defined words for that prompt. If no
one word matches the extracted word from the user response, then the provided
response is rejected. In the case of yes/no question, the wh-question word is
replaced by the auxiliary verbs which can be used for that particular prompt.
By applying this rule only, the system accuracy is 83%.

3.3 Python English Grammar Checker

The user response enters an English grammar checker component. A free avail-
able Python implementation of English grammar checker3 was used in our sys-
tem. This toolkit returns the number of grammar errors. If the returned number
is zero, it means that the input question does not have errors, hence, passes to
the next stage. If the number is greater than zero, then the process is terminated
and the system indicates that the given response contains errors, hence, rejected.
By applying only this grammar checker toolkit, the system accuracy is 75%.

3.4 Machine Learning Based Grammar/Language Checker

The third component in our system is a machine learning based system which
mainly depends on the extracted features from the user response of specific
prompt and all of its corresponding possible responses provided for each prompt.
The following four different features are extracted for each user response and used
in the machine learning subsystem.

2 https://cloud.google.com/speech-to-text/.
3 https://pypi.python.org/pypi/grammar-check/1.3.1.

https://cloud.google.com/speech-to-text/
https://pypi.python.org/pypi/grammar-check/1.3.1
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– feature extracted from the grammar checker: The number of grammar errors
produced by the English grammar checker toolkit, described earlier, is used
as a feature for the machine learning system.

– Cosine similarity feature: Cosine Similarity (CS) [4] is a commonly used app-
roach to compute the similarities between two vectors of an inner product
space. It is measured by the cosine of the angle between two vectors and
determines whether they are pointing to the same direction or not. The user
response (UR) and each of the reference responses are converted into a high
dimensional vectors using bag-of-words model of all distinct terms occurred
in the set of all possible responses (PR). Then, each vector is multiplied by
a weighting vector Tw = [Tw1, Tw2, ..., Twm], where m is the number of
distinct terms and Twi is the weight of corresponding term Ti calculated as:

Twi = TFi ∗ ni

N
(1)

where, TFi is the frequency of a term Ti in response ri ∈ UR, PRi. N
is the number of all reference responses, and ni is the number of possible
responses containing term Ti. The Weighting vector in equation above puts
more weight on the term that occurs more frequently in the corresponding
possible responses. The maximum weighted cosine between the user response
and each of the reference responses is used as a feature for the machine learn-
ing system.

– Edit distance feature: Edit Distance (ED) [11] is a measure to qualify the simi-
larity between two strings (user response and each of the reference responses)
by counting the minimum number of operations required to transform the
user response into each reference response, with the allowable edit operations:
insertion, deletion, or substitution of a single word. The lower ED distance,
the more similar the two strings. The minimum ED distance is used as a
feature for the machine learning system.

– Jacard distance feature: Jaccard Distance (JD) [6] is a used to measure the
dissimilarities between two strings or sets. It is calculated by subtracting
the Jaccard index from 100%. Jaccard similarity index (JI) or the Jaccard
similarity coefficient compares members of two sets to find out which members
are shared and which are not. JI is calculated using the following equation:

J(A,B) =
| A ∩ B |
| A ∪ B | (2)

| A ∩ B | refers to the number of shared terms between the two strings, and
| A∪B | refers to the number of un-shared terms between the two responses.
The higher the percentage, the more similar the two strings. After that, in
order to find the JD distance, we subtract J(A, B) from 1, as in the following
formula:

D(A,B) = 1 − J(A,B) (3)

The lower the Jaccard distance, the more similar the two strings. The mini-
mum Jaccard distance is used as a feature for the machine learning system.
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By this, each user response is represented by a 4-dimensional feature vector,
as explained above. The feature vectors extracted from a set of correct (grammar
and language) labeled responses and a set of incorrect labeled responses (train-
ing dataset) are used to train K Nearest Neighbor (KNN) and Support Vector
Machines (SVM). Resulted models are used to evaluate new user responses (test-
ing data set) by predicting the class label (correct vs. incorrect) of the testing
responses. By applying the machine learning component only, the system accu-
racy is 86%.

4 Data Collection and Description

In order to build and evaluate our system, a data set of sufficient number of
prompts and responses is needed. For this purpose, 65 prompts are carefully
designed and verified by two English experts (English instructors at Birzeit uni-
versity). In this study, we target children of age from 11 to 14 years old (i.e. 5th
to 8th grade), whose native language is Arabic. Therefore, each prompt contains
a graphic or a photo with English sentence and one word/phrase colored in red.
Student needs to look at the prompt and response by asking a question verbally
with the colored word/phrase is its answer. A sample of these prompts is shown
in Fig. 2.

Fig. 2. Sample of the prompts used in the data collection

In addition to the prompts, a set of reference possible responses (i.e. a set of
correct questions forms) have been made and verified by the two English experts.
Each prompt has different number of reference responses. The list below shows
a set of ten possible responses for the prompt shown in Fig. 2.

1. Who is your favorite cartoon character?
2. Who is your favorite cartoon?
3. Which cartoon character is your favorite?
4. Which is your favorite cartoon character?
5. Which is your favorite cartoon?
6. Which cartoon is your favorite?
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7. What is your favorite cartoon character?
8. What is your favorite cartoon?
9. What cartoon character is your favorite?

10. What cartoon is your favorite?

The designed prompts are displayed on a laptop screen to around 70 primary
school students (5th grade to 8th grade) from four primary schools. Their spoken
responses are recorded with a smart mobile phone in a quiet environment. By
the end of this process, around 864 different responses were recorded (on aver-
age 12 responses for each student). All of the resulted responses are listened and
evaluated by the two English experts and labeled as correct/incorrect grammat-
ically and correct/incorrect in terms of language meaning. It is worth to mention
here, that the experts discussed and agreed on one evaluation (correct/incorrect
label) for the responses with disagreement. Our proposed system considers stu-
dent response as correct if and only if it is correct in terms of both grammar and
language meaning. The collected dataset is divided into two subsets; training set
and testing set, as shown in Table 1.

Table 1. Collected data description.

subset No of students No of recordings Percentage

Training 60 650 75.2

Testing 10 214 24.8

Some of the prompts were displayed to more than one student. Therefore,
each prompt in the dataset has a unique id, recorded student response, user
response evaluation (correct/incorrect) in terms of grammar and language mean-
ing, and a set of reference possible responses.

5 Experiments and Results

As described earlier, the overall system consists of ASR followed by three com-
ponents (or subsystems); wh-question word rule-based subsystem, English gram-
mar checker rule-based sub-systems, and the grammar/language machine learn-
ing based subsystems. The response is considered as a correct if and only if
passed the three subsystems. Any subsystem rejects the response, it is consid-
ered as incorrect response. Training data subset was used to extract four features
for each response (recordings); number of grammar errors, best cosine similarity,
edit distance and Jaccard distance between user response and the corresponding
reference possible responses. These feature vectors with their correct/incorrect
labels are used to train KNN and SVM binary classifiers, with different parame-
ters, as shown in Table 2. The 214 recorded responses of the testing data subset
was used to evaluate the overall system. The system performance is represented
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Table 2. Results of the overall system.

Machine learning algorithm Precision Recall F-measure Accuracy

KNN, K neighbors = 3 0.76 0.50 0.38 0.50

KNN, K neighbors = 3 0.72 0.52 0.41 0.52

Svm kernel = ‘linear’ degree = 2 0.91 0.88 0.89 0.89

Svm kernel = ‘poly’ degree = 2 0.77 0.53 0.43 0.53

Svm kernel = ‘rbf’ degree = 2 0.87 0.81 0.81 0.81

Svm kernel = ‘rbf’ degree = 4 0.87 0.81 0.81 0.81

by four measures; precision, recall, accuracy and F-measure. The results of the
overall system are presented in Table 2.

From the results shown in Table 2, we can notice that the SVM outper-
forms KNN for this task. The best precision, recall, f-measure and accuracy
were achieved by SVM with linear kernel and degree of 2, 91%, 88%, 89% and
89%, respectively.

6 Conclusion

In this paper, we present a system that automatically assesses children skills in
making English questions. We used Google ASR for converting spoken response
to text transcription. The system consists of three piplelined subsystems; Wh-
question word rule-based subsystem, English grammar checker, and machine
learning based grammar/language checker. The student response is accepted
only if it accepted by the three subsystems. This system was trained on 650
recorded responses made by 60 students (5th to 8th grades) as response to 75
different prompts. The number of grammar errors produced by the English gram-
mar checker, best cosine similarity, best edit distance and best Jaccard distance
between student response and the corresponding reference possible responses, are
used to train KNN and SVM models with different parameters. The best pre-
cision, recall, f-measure and accuracy were achieved by SVM with linear kernel
and degree of 2, 91%, 88%, 89% and 89%, respectively.
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Abstract. In the given article, we present a novel approach in the paralinguistic
field of age and gender recognition by speaker voice based on deep neural
networks. The training and testing of proposed models were implemented on the
German speech corpus aGender. We conducted experiments using different
network topologies, including neural networks with fully-connected and con-
volutional layers. In a joint recognition of speaker age and gender, our system
reached the recognition performance measured as unweighted accuracy of
48.41%. In a separate age and gender recognition setup, the obtained perfor-
mance was 57.53% and 88.80%, respectively. Applied deep neural networks
provide the best result of speaker age recognition in comparison to existing
traditional classification methods.

Keywords: Age and gender recognition � Computational Paralinguistics �
Deep neural networks � Convolutional neural networks � Machine learning

1 Introduction

In a daily communication, people use not only verbal (speech, text, etc.), but also non-
verbal (paralinguistic, gesture, etc.) sources of information. The later may contain such
speaker characteristics as his/her psycho-emotional state, age, gender, presence of a
disease condition and other personal parameters reflecting current speaker state.
Without a direct contact with a client (user), paralinguistic information may turn out
useful for rendering certain services over the Internet.

Automatic speaker age recognition is necessary for various applications, such as
speaker identification and verification systems, call-centers, healthcare, target market-
ing, and in particular, human-computer interaction. Also, automatic speaker age
recognition system may prove useful for medico-legal purposes, for example, to narrow
down the list of suspects when speech samples are available. Other commercial use
cases for speaker age recognition include smart rooms and houses, vehicle assistants
capable of adaptation to target user needs.

Various researches have been done on extracting acoustic features and developing
classifiers for automatic speaker age recognition, but none achieves a satisfactory
performance. Extracting age information from speech signal is complicated by such
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factors as background noise and voice variation. Thus, the key problem in detection of
speaker age lies in extracting reliable features and building an effective classification
method.

For these purposes most popular methods nowadays include Deep Neural Networks
(DNN), and in particular, Convolutional Neural Networks (CNN), since they serve as
powerful machine learning algorithms and may be used in various tasks. In recent years
DNNs are effectively employed for feature extraction and classification in the field of
computer vision [1, 2], image processing [3] as well as in automatic speech recognition
systems [4, 5].

In this work we have used feed-forward artificial neural networks with various
topologies (including CNNs) for determining age and gender of the speaker by his/her
voice. As a baseline method for comparison we used Support Vector Machine
(SVM) classifier. This method is one of the most popular for classification and it is
simple for implementation.

The rest of the article is organized as following: Sect. 2 presents analysis of existing
approaches in the field of speaker age recognition by speech signal, Sect. 3 gives a
description of the used speech corpus (aGender), Sect. 4 describes the novel approach
proposed for speaker age recognition by voice, Sect. 5 shows the results of conducted
experiments, and Sect. 6 contains the discussion, conclusions and future work
directions.

2 Related Work

The 2nd Computational Paralinguistics Challenge (ComParE, http://www.compare.
openaudio.eu/tasks), held in the framework of the International conference
INTERSPEECH-2010 in Japan, included two sub-challenges: speaker age (4 classes)
and gender (3 classes) recognition [6]. The competitors were given audio files from
aGender corpus [7], as well as a set of 450 features, acquired with the open-source
platform openSMILE [8]. Unweighted Accuracy (UA) was a baseline performance
measure. The organizers provided the results obtained via baseline system based on
SVM with a linear kernel, which reached a test set performance of 49.91% and 81.21%
for speaker age and gender recognition, respectively. These values became the lowest
level for the competition [6]. The validation set accuracies for classifying speaker age
and gender were 47.11% and 77.28%.

The best result among competitors for detection of speaker age in ComParE-2010
was 52.88% [9]. The presented system consisted of several parts. In their work, the
authors used both acoustic and prosodic features. The system used Gaussian Mixture
Models (GMM) and SVM as a classifier. For one of the sub-systems the improvement
relative to the baseline system reached 2%. The result of sub-systems fusion for speaker
age and gender detection was 52.88% and 81.82% on the validation dataset, 52.35%
and 83.14% on the test set.
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The best system for speaker gender detection [10] was also comprised of several
sub-systems. The features consisted of 26 Perceptual Linear Prediction (PLP) coeffi-
cients and Static Modulation Spectrogram (MSG). The classifiers included Gaussian
Mixture Models - Universal Background Model (GMM-UBM), Multi-Layer Percep-
trons (MLP) and SVM. As a result of fusion of mentioned systems, the validation set
accuracy was 51.20% and 83.10%, and the test set accuracy 48.70% and 84.30% for
speaker age and gender recognition.

After ComParE-2010 the interest in the research in this field kept growing. In [11],
a complex system made of several constituents was proposed along with using acoustic
and prosodic features, as well as GMM and SVM as classifiers. The accuracy per-
formance reached 52.80% and 81.70% for speaker age and gender recognition. In [12],
a system with 7 sub-modules was proposed, with the best aGender corpus accuracies
reaching 54.10% and 90.39% for speaker age and gender recognition. The system used
spectral and prosodic features, and GMM and SVM classification methods. The work
[13] used i-vectors as features, which were extracted from 19 Mel-Frequency Cepstral
Coefficients (MFCC) with the first and second order derivatives using Matlab MSR
Identity Toolbox [14]. With the SVM classifier, the accuracy for joint recognition of
age and gender showed 62.90%.

DNN was also used both for feature extraction [15, 16] and classification [15–18].
The features used were MFCCs and i-vectors. The average accuracy for such systems
comprised 57.40%.

In [17], authors proposed an end-to-end recognition approach based on DNN
trained on x-vectors that are known for good performance in speaker verification tasks
[18]. The system was trained and tested on the NIST SRE2008-10 corpus. The method
for evaluating the system was Mean Absolute Error (MAE), which showed a value of
4.92. An attempt to combine x-vectors with i-vectors on the feature level resulted in
MAE of 5.20.

3 Speech Corpus

For training and testing our recognition systems we used aGender corpus that was
introduced in the ComParE-2010 Challenge. It consists of 49 h of telephone speech,
which was recorded from 945 speakers. The corpus was divided into a training (23 h,
471 speakers), validation (14 h, 299 speakers), and test (12 h, 175 speakers) datasets.
The total number of utterances, recorded in 6 sessions, is 65364. The length of the
utterances varies: for command words, month names and dates, time, telephone
number, names and surnames, the duration falls in the range of 1 to 6 s. Every
utterance is annotated in accordance with the speaker’s age and gender. The data is
stored as sound files with the sample rate of 8000 Hz, 8 bit encoding per sample. Seven
groups of speakers (classes) used for annotation in the corpus are presented in Table 1.
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4 Proposed System for Age and Gender Recognition

The architecture of our proposed system for recognition of speaker age and gender is
depicted in Fig. 1.

We used open-source platform openSMILE and Python library librosa [20] for
extracting features.

With the help of openSMILE we extracted 4 sets of features, using 4 different
configuration files that are distributed in the original package. For dimensionality
reduction we used Principle Component Analysis (PCA) method. The classifier for
these features was chosen to be the SVM, with the hyperparameter tuning done via grid
search, and DNN with varying number of fully connected and dropout layers. We will
call these methods “FullyConn” for simplicity of presenting the results.

Using librosa we extracted Mel-Spectrogram (MEL) and MFCC features with first
and second order derivatives (deltas) with the window size of 32 ms and 10 ms
step. The classifiers used for these features are three CNNs with different architectures.
All of them were implemented with the PyTorch programming platform [21].

The first network comprises one convolutional layer with a batch normalization and
Rectified Linear Unit (ReLU) activation function. After that, an attention mechanism is
applied, followed by a statistical pooling operation, which computes mean and standard

Table 1. Age and gender classes of the aGender corpus [6].

Class Group Age Gender Speakers/Instances

1 Child 7–14 X (F&M) 106/6802
2 Youth 15–24 F 99/7360
3 Youth 15–24 M 88/6189
4 Adult 25–54 F 113/7934
5 Adult 25–54 M 107/6929
6 Senior 55–80 F 123/8485
7 Senior 55–80 M 134/9375

Fig. 1. Pipeline of the proposed system for speaker’s age and gender recognition
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deviation in time axes. These statistics are later combined and propagated to the last
softmax layer. We call this network “SimpleCNN”.

In the second system there are three convolutional layers with kernel sizes of 1, 2
and 3. Different kernel sizes allow extracting different features from the same sequence.
Global max pooling is applied to every obtained filter; the results are concatenated and
propagated through a fully connected layer. We call this network “3xCNN”. The
architecture of this network is shown in Fig. 2.

The third neural network is different from the second in that an additional con-
volutional layer is added resulting in kernel sizes of 1, 2, 3, and 4. We call this network
“4xCNN” for simplicity.

For all of the networks the loss function used was cross entropy. The batch size was
equal 128. We used Adam optimizer with 0.0001 initial learning rate. The learning rate
was decreased by the order of 2, when the loss function was no longer declining during
the two consecutive epochs on the validation dataset. The training of DNN and CNN
was conducted for the 30 and 60 epochs, respectively.

5 Experimental Results

The proposed system was tested on the validation dataset of aGender corpus (the same
as at ComParE-2010). In the first place, we conducted experiments on the joint
recognition of age and gender (7 classes) using methods described above. Table 2

Fig. 2. CNN architecture with 3 layers (3xCNN)
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contains the results of the systems trained on openSMILE features. The best result
(UA = 48.41%) was obtained via DNN with 4 fully-connected layers. Table 3 presents
the results of the systems train on MEL and MFCC features. The best result (UA =
48.13%) was achieved by CNN with 3 convolutional layers.

After that we made separate experiments on recognition of age (4 classes) and
gender (3 classes). Tables 4 and 5 list the speaker age recognition results. The best
accuracy (UA = 57.53%) was reached by the system with 2 fully-connected layers.
With the number of fully-connected layers increasing, overfitting does not allow
improving the performance.

Table 2. UA for age & gender recognition with SVM and fully-connected DNN models (%)

Audio features SVM 1xFullyConn 2xFullyConn 4xFullyConn

IS10_PCA_600 42.90 45.51 46.50 47.15
IS11_PCA_1200 46.50 47.46 47.81 46.77
IS13_PCA_2000 46.80 47.45 47.96 46.07
Avec2013_PCA_1000 43.90 46.88 47.32 48.41

Table 3. UA for age & gender recognition with CNN models (%)

Audio features SimpleCNN 3xCNN 4xCNN

23 MFCC without D 43.52 46.27 46.90
23 MFCC with D 40.75 40.19 40.57
23 MFCC with DD 37.87 36.86 37.53
23 MFCC with D and DD 42.76 46.58 47.87
13 MFCC with D and DD 31.73 48.12 43.76
64 MEL 38.06 43.85 44.34

Table 4. UA of age recognition with SVM and fully-connected DNN models (%)

Audio features SVM 1xFullyConn 2xFullyConn 4xFullyConn

IS10_PCA_600 51.40 49.39 56.61 48.83
IS11_PCA_1200 54.10 51.39 57.53 51.40
IS13_PCA_2000 54.40 50.40 53.26 51.11
Avec2013_PCA_1000 52.90 49.90 57.41 49.95
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The ternary speaker gender classification results are presented in Tables 6 and 7.
The best performance (UA = 88.80%) was shown by CNN with 1 convolutional layer
and statistical pooling layer. For DNN with 1 fully-connected layer, UA reached
88.10%. Similar results were obtained via SVM, however only 2 classes out of 3 were
predicted.

Table 8 shows a comparison of our best systems with other solutions proposed in
the recent literature. As can be seen from the table, our system is the first among all
others in the age classification task and is second one in the gender recognition task. In
the join speaker age and gender recognition setup, our system reached UA = 48.12%,
that beats some of the systems recently proposed by other authors.

Table 5. UA of age recognition with CNN models (%)

Audio features SimpleCNN 3xCNN 4xCNN

23 MFCC without D 46.90 50.40 50.75
23 MFCC with D 44.75 47.55 46.62
23 MFCC with DD 40.52 44.53 45.13
23 MFCC with D and DD 47.37 50.69 51.21
13 MFCC with D and DD 40.48 50.41 47.98
64 MEL 48.86 49.45 48.79

Table 6. UA of gender recognition with SVM and fully-connected DNN models (%)

Audio features SVM 1xFullyConn 2xFullyConn 4xFullyConn

IS10_PCA_600 88.10 88.10 83.14 83.28
IS11_PCA_1200 87.50 85.57 82.38 85.37
IS13_PCA_2000 88.00 84.49 85.12 87.00
Avec2013_PCA_1000 85.60 87.32 82.03 85.15

Table 7. UA of gender recognition with CNN models (%)

Audio features SimpleCNN 3xCNN 4xCNN

23 MFCC without D 86.62 86.35 86.62
23 MFCC with D 84.83 85.72 84.93
23 MFCC with DD 86.92 79.39 81.32
23 MFCC with D and DD 86.01 87.26 87.32
13 MFCC with D and DD 77.11 84.80 85.75
64 MEL 88.80 87.37 87.28
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6 Conclusions and Future Work

In this article, we studied different deep neural network topologies based on fully-
connected and convolutional layers in the task and speaker age and gender recognition.
The training and testing were done on aGender corpus. The best classification accuracy
obtained for joint speaker age and gender recognition was 48.12%. In age classifica-
tion, DNN with 2 fully-connected layers reached UA = 57.53%. In gender classifica-
tion, the best performance (UA = 88.80%) was shown by CNN with 1 convolutional
layer and statistical pooling layer. Our age recognition result beats state-of-the-art
results known in literature to date.

In the follow-up work, our aim is to investigate different kinds of neural network
topologies, as well as feature representations based on i-vectors and x-vectors.
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Abstract. We propose an application of attention-based models for
automatic recognition of continuous Russian speech. We experimented
with three types of attention mechanism, data augmentation based on
a tempo and pitch perturbations, and a beam search pruning method.
Moreover we propose a using of sparsemax function for our task as a
probability distribution generator for an attention mechanism. We exper-
imented with a joint CTC-Attention encoder-decoders using deep convo-
lutional networks to compress input features or waveform spectrograms.
Also we experimented with Highway LSTM model as an encoder. We per-
formed experiments with a small dataset of Russian speech with total
duration of more than 60 h. We got the recognition accuracy improve-
ment by using proposed methods and showed better performance in
terms of speech decoding speed using the beam search optimization
method.

Keywords: End-to-end models · Attention mechanism ·
Deep learning · Russian speech · Speech recognition

1 Introduction

Automatic speech recognition (ASR) systems have been traditionally built with
the use of an acoustic model (AM) with application of Hidden Markov Mod-
els (HMM), the Gaussian Mixture Model (GMM), and a language model (LM).
Such models show good recognition accuracy, but they are made up of multiple
parts that are tuned independently. This can cause failures, with errors in one
part involving errors in the others. Thus, standard recognition scenarios need a
large amount of memory and capacity that does not allow to use such systems
locally at some devices and need remote computations at servers.
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Another approach, called end-to-end approach, has recently been adopted
with use of deep neural networks (DNN). This approach allows to implement
models easily using only one neural network that is tuned with gradient descent
and one loss function. End-to-end models often demonstrate better performance
in terms of both recognition speed and accuracy. Potentially these models require
less amount of memory that allows using them at mobile devices locally. However,
they need more training data to be learned properly.

The goal of our research was to explore end-to-end models for recognition of
continuous Russian speech, to tune and compare them in terms of recognition
accuracy and computing characteristics as training and decoding speed. To our
best knowledge it is the first research of using attention-based encoder-decoder
models for Russian speech recognition task.

The performance of the models was evaluated in terms of character error
rate (CER), word error rate (WER) and real-time factor (RTF). In our previous
research we explored models with Connectional Temporal Classification (CTC).
But it is rather interesting to get some results with using of encoder-decoder
models for low-resource language as Russian.

The rest of the paper is organized as follows. In Sect. 2, we survey related
works. In Sect. 3, we describe architectures of attention-based encoder-decoder
models. In Sect. 4, we describe the experimental setup and some methods that
we used to improve learning. In Sect. 5 we present results that we got using
trained models and provide a short analysis of the results. Finally, we conclude
and discuss future work in Sect. 6.

2 Main Related Works

In paper [2], an attention-based model integrated with LM was proposed.
Weighted finite state transducer (WFST) was used to merge an end-to-end model
with the language model. At the decoding stage, a launched output search was
performed that minimised encoder-decoder model and LM. Thus the authors
got WER = 11.3% and CER = 4.8%.

Independently, a similar attention-based end-to-end model called Listen,
Attend and Spell (LAS) was proposed in [4]. An encoder was pyramidal-shaped
bidirectional long short-term memory (BLSTM) and a decoder used stack of
LSTMs. The model was recomputed using LM after a decoding step, and WER
for a Google Voice Search was 10.3%.

In paper [22], an attention-based encoder-decoder model using sub-words
units was introduced. According to the scheme, pretraining starts with a high
time reduction factor which is lowering during training. Using of sub-words units
partly solves out-of-vocabulary problem. But it strongly increases number of
labels and requires a lot of training data. However the authors could achieve
state-of-the-art result (WER = 3.54%) using 1000 h audio data from LibriSpeech
corpus.

As we can see, end-to-end models are able to work well both with and without
LM for languages with strict word order (e.g. English). Also these models give
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good results with huge speech datasets. The Russian language is characterised
by a higher degree of syntactical freedom and complex morphological word for-
mation [3]. Also it has more complex phonetics. Thus, we need to use external
LMs in order to increase accuracy. One can state that usage of encoder-decoder
models for Russian speech recognition is a challenging task in that aspect.

3 Model Architecture

3.1 Attention-Based Encoder-Decoder Model

Encoder-Decoder networks are used for tasks, in which lengths of input and
output sequences are variable [5,17]. The term “encoder” refers to a neural
network that transforms input x = (x1, . . . , xL′) into the intermediate state
h = (h1, . . . , hL) and extracts features. The term “decoder” is usually applied
to refer to a recurrent neural network (RNN) that uses an intermediate state
for generating output sequences. Decoder generates output sequence (y1, . . . , yT )
using h as input. Also decoder uses a subnetwork called attention mechanism.
Attention mechanism chooses a subsequence of the input and then uses it for
updating hidden states of RNN and predicting an output.

On the i-th step decoder generates an output yi focusing on separate com-
ponents of h as follows [6]:

αi = Attend(si−1, αi−1, h) and gi =
L∑

j=1

αi,jhj

where si−1 is the (i − 1)-th state of RNN called Generator, αi ∈ R
L denotes

attention weights, vector gi called glimpse and Attend denotes some function
that calculates attention weights. The step comes to an end with computing a
new generator state as si = Recurrency(si−1, gi, yi). Attention mechanism can
be divided into three types. The following equations represent how to compute
them:

– dot:
ei,j = w� tanh(Wsi−1 + b)

– content-based:
ei,j = w� tanh(Wsi−1 + V hj + b)

– location-based:
fi = F ∗ αi−1

ei,j = w� tanh(Wsi−1 + V hj + Ufi,j + b)

where w ∈ R
m and b ∈ R

n denote weight vectors, W ∈ R
m×n, V ∈ R

m×2n and
U ∈ R

m×k are weight matrices, n and m are numbers of hidden units in the
encoder and in the decoder, respectively, vectors fi,j ∈ R

k are convolutional fea-
tures. Eventually, an attention weights matrix is calculated as αi = softmaxi(e).
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In this work we compare all three types of attention mechanism for the Rus-
sian speech recognition task. In [11] a joint CTC-Attention model was presented.
The model optimises multitask objective function during training as follows:

LMTL = λLCTC + (1 − λ)LAttention

where a λ ∈ [0; 1] is a hyperparameter, LCTC denotes an objective for CTC [8]
and LAttention is an objective for attention-based model. As soon as we have a
few amount of training speech data using of CTC objective can be helpful. So
we decided to study this idea too.

3.2 Proposed Recognition Model

The model presented in this work was obtained for the recognition of continuous
Russian speech. We trained some our models using filter banks (fBank) with
deltas features. As well we experimented with the usage of a raw spectrogram
waveform data to learn models. Spectrogram contains a lot of noise information,
hence we need to filter the data. So, firstly a convolutional neural network (CNN)
was used in order to extract compressed information from a spectrogram data.
CNN had 4 convolutional layers with kernel 3 × 3, 2 maxpooling layers with
window 2 × 2 and stride 2. Also we used ReLU activation function and batch
normalization [9] in between layers that showed a great stabilization effect on a
performance.

A regular LSTM network was used as the decoder, and a BLSTM network
was used as the encoder. After each layer in the encoder, a subsampling layer
along the time axis was used to reduce the length of the encoder’s network.
We skipped every second frame in the middle part of the encoder’s network.
The encoder’s network contained 5 BLSTM layers with 512 cells in each. The
decoder’s network contained 2 LSTM layers. In general, our model was similar
to the model proposed in [11].

Fig. 1. Proposed recognition model. Number of convolutional blocks N equals 2.
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A multilayer perceptron (MLP) was used as a mechanism of attention [1].
Also, we used all three types of attention mechanism and compared their effi-
ciency for Russian speech recognition. Additionaly, we learned LSTM LM based
on words. It had 1 LSTM layer with 256 cells. A proposed recognition model
scheme is presented on Fig. 1.

3.3 Beam Search Prunning Method

We proposed a pruning method at a decoding stage in the encoder-decoder. In
common, our method was similar to the approach described in [7]. Usually beam
search builds the output sequence keeping a sorted query of a fixed size (beam
size). For each iteration it selects the best hypothesis from the query and reduces
the query size. Query size becomes equal 2×beam at worst. Every new iteration
is started with a full query (except the first and the last iterations). So, the idea
was to filter query with some condition to remove too bad hypotheses. We used
the following filter condition:

∣∣∣∣max
h∈H

(score(h)) − score(h∗)
∣∣∣∣ < θ

where H denotes hypothesises query, h∗ is a candidate to be removed, θ is
a threshold that is hyperparameter being tuned. If this condition is met, the
hypothesis remains in the query, and otherwise it is deleted. To tune θ we greedily
increased it while the recognition error stopped to increase.

3.4 Using of Sparsemax Function

In [14] a sparsemax function was proposed. This function has similar properties
as a softmax. But sparsemax has a distinctive feature. It can return sparse
posterior distributions. In other words it may assign exactly zero probability to
some of its output variables. Sparsemax is defined as follows:

sparsemax(z) = arg min
p∈Δ

‖p − z2‖

where Δ is a set of probability distributions, p denotes a probability distribution
from Δ and z is a vector to be mapped.

In [14] it was found to be useful in a classification and translation tasks. So,
we decided to apply it to a speech recognition task where input and output are
in the different domains. The key idea is that an attention mechanism can make
an attention on some useless parts of a hidden representation of an original audio
input like noises, hezitations, etc. Sparsemax tries to solve this problem. In this
case an attention weights matrix is calculated as αi = sparsemax(e).

3.5 Highway BLSTM Encoder

In the end we propose the usage of Highway BLSTM network as the encoder.
We used a network similar to model from [13]. We used the following variant of
Highway LSTM:
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gT = σ(WT x + bT )

gC = σ(WCx + bC)

y = x · (1 − gC) + tanh(Wx + b) · gT

where WT , WC , W are weight matrices and bT , bC , b are biases. x in this case
denotes LSTM cell’s output. This LSTM type shows a good performance for
language modeling tasks. It was interesting to know if these models can show
some improvement in case of a speech recognition task with a small training
dataset. To our knowledge the highway networks strengthen the LSTM capability
of handling long-range dependencies in audio frames sequences.

4 Experimental Setup

4.1 Training Dataset

We used the training speech corpus collected by SPIIRAS [10]. The corpus con-
sists of three parts with the total duration of more than 30 h. Additionally, we
union our dataset with free speech corpuses Voxforge1 and M-AILABS2. All
data was preprocessed to have 16000 Hz sample rate and a similar volume level.
Audio was truncated at the begging and at the end using voice activity detection
methods. Also we removed examples with a non-alphabet symbols to have only
33 letters of Russian alphabet and a dash symbol in the lexicon. As a result we
had 60.6 hours of speech data. This speech dataset was splitted into validation
and trains parts with sizes of 5% and 95%.

To test the system we used another speech database of 500 phrases pro-
nounced by 5 speakers.

Our language model was learned using data from Russian news sites [12].
The dataset for the training of the language model contains approximately 300
millions words and a vocabulary size was 150000 words.

4.2 Data Augmentation

In our work, we perform tempo and pitch perturbation-based data augmentation,
because we have a few amount of training data.

The WSOLA [19] based implementation in the tempo command of the SoX3

tool was used to perform tempo augmentation. Two additional copies of the
original training data were created by modifying the speed with a factor value
taken from uniform distribution U(0.7; 1.3). To modify the pitch we also used
the SoX tool. Pitch was modified with a semitone values taken from uniform
distribution U(−5; 5). After performing two data augmentation methods, dataset
size increased to approximately 180 h.

1 http://www.voxforge.org/.
2 https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/.
3 http://sox.sourceforge.net/sox.html.

http://www.voxforge.org/
https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/
http://sox.sourceforge.net/sox.html
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5 Results of the Proposed Model

We used ESPnet [20] framework to conduct experiments with attention-based
models with a PyTorch as a back-end part.

The batch size was equal to 10. The AdaDelta algorithm [21] was used for
the optimization with ρ = 0.95 ε = 10−6 and initial learning rate equal to 1.0.
We initialized the weights randomly from the uniform distribution in interval
[−1; 1] without a scaling variance. At the training time λ = 0.5 was used. Also,
we compared recognition accuracy depending on the CTC weight parameter at
the beam search during decoding. Parameters with values in range [0; 1] with
step 0.1 were used. The best result was obtained using CTC weight equal to 0.4
at a decoding stage. The weight of word LM was equal to 0.7.

In order to prevent our model from making over-confident predictions, we
used label smoothing [18] as a regularization mechanism with a smoothing factor
of 0.01. We used dropout [16] in LSTM layers at every timestep in the encoder’s
network. A dropout probability was equal to 0.2. Moreover we used gradient
clipping [15] to control training process and convergence.

RTF was measured on a laptop with Intel Core i7, 8 Gb RAM, CPU 2.70
GHz. Training was performed on Nvidia GeForce GTX 1080 GPU with CUDA.

Results of our proposed models are shown in Table 1. As a baseline we used
regular encoder-decoder model with BLSTM as an encoder with a location-
based attention. The best result was 14.1% and 39.8% in terms of CER and
WER respectively, it was obtained with using spectrograms as input. The nearest
results were given by using of sparsemax. The best RTF value was 1.34 by using
of beam search pruning method. To our surprise the model used sparsemax
and spectrograms evaluated worse than the model used spectrograms only. We
suggest that it could happen because of too small training dataset.

Table 1. Experimental results. Beam size was equal to 10. ‘Tempo’ denotes a tempo-
perturbation augmentation, ‘pitch’ means a pitch perturbation.

Model Features Attention CER, % WER, % RTF

BLSTM (baseline) fBank+Δ Location 20.8 54.5 1.68

Proposed model fBank+Δ Dot 23.1 56.2 1.48

Proposed model fBank+Δ Content 18.0 52.2 1.46

Proposed model fBank+Δ Location 17.4 47.5 1.55

Proposed model + tempo fBank+Δ Location 16.9 44.6 1.56

Proposed model + tempo + pitch fBank+Δ Location 16.7 44.3 1.55

Proposed model + sparsemax fBank+Δ Location 15.8 44.6 1.57

Proposed model spectrogram Location 14.1 39.8 1.62

Proposed model + prunning fBank+Δ Location 17.4 47.6 1.34

Proposed model + Highway LSTM fBank+Δ Location 17.1 48.5 1.59

Proposed model + sparsemax spectrogram Location 14.3 44.5 1.61
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Tuning of an absolute pruning method is shown in Fig. 2 applying to a base
proposed model. Selected value of θ was equal to 7. Starting from this point,
recognition error stops increasing. The total RTF’s improvement was approxi-
mately 15% comparing with an initial model.

Highway LSTM network did not give us a significant accuracy improvement
but we found that model converges much faster. In Fig. 3 loss on a validation
corpus is shown. In future work we are going to continue research of this model.

Fig. 2. Tuning of an absolute pruning
method. Beam size was equal to 10.
The dotted line is a selected threshold
Θ value.

Fig. 3. Loss function on validation
data of the speech corpus for training
steps.

We see that location-based attention mechanism gives the best accuracy.
Augmentation allows to improve accuracy too, when we have a few amount of
training data. Sparsemax gives significant improvement in terms of CER. And
we are going to explore this method in the future by combining it with the
others. We could not achieve RTF = 1 with beam size of 10. But we showed that
pruning approach gives a good speed up without any accuracy loss. Supposedly,
if we collect much more training data models performance can be better in terms
of CER and WER.

In Fig. 4 an attention mechanism alignment between the input and the output
sequences for a test example is shown. We can see that alignment was learned
properly. But in the middle there is a gap. In this place an ending of the word was
missed. Also, we analysed some results of recognition. We can see that character
substitutions (50.4%) and deletions (34.1%) give the most error contribution. By
the way sparsemax and spectrograms give a noticeable reduction of deletions.



Investigating Joint CTC-Attention Models for End-to-End Russian ASR 345

Fig. 4. An inference alignment of a test example.

6 Conclusion

In this work, we focused on the Russian speech recognition task using a joint
CTC-Attention encoder-decoder model. We compared three types of attention
mechanisms. Also we proposed using of a pruning at a decoding stage and a
sparsemax function in the attention mechanism. The usage of Highway LSTM
networks as an encoder was explored. Moreover, we used deep CNN with a batch-
normalization to extract compressed features from spectrograms and fBank with
deltas features.

We achieved a recognition accuracy higher than that achieved with use of
baseline encoder-decoder models. Sparsemax and spectrogram approaches gave
a significant improvement. Also, we noticed that it is rather important to use
word-based language models for a such small dataset of Russian speech. In the
nearest future we are going to carry out experiments with another neural net-
works models, coverage mechanism and the usage of purely raw data.
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Abstract. Typically, the task of authorship attribution has been solved using
supervised machine learning methods. It is only recently that unsupervised
methods have been applied to authorship attribution, namely author clustering.
Clustering could be useful in realistic scenario as it represents natural grouping of
documents without a priori authorship information, although the problem of
feature selection remains unsolved. That is particularly true for a cross-domain
scenario. Studies have shown that in cross-domain settings some domain-specific
text features cause noise in authorship attribution. In the current work we
introduce a modification of unmasking technique aimed at selecting and
removing the features most influenced by topic change. We apply the proposed
technique to identify topical features and assess the quality of author clustering
with different feature sets in a real-world dataset of forum texts in Russian. The
main assumption is that the topical features result in topic-based text instead
authorship-based clustering, and removing them could increase the performance
of document clustering against authorship ground truth. We test this considera-
tion by first clustering cross-topic documents with state-of-the-art authorship
attribution features. Second, we remove the most significant topical features, and
cluster texts with resulting feature set. Both clustering results are evaluated
against ground truth authorship. The results demonstrate that the described
approach of removing some topical features increases author clustering perfor-
mance, however one should be cautious with the number of removed features.

Keywords: Author clustering � Unmasking � Topic classification �
Cross-domain authorship attribution

1 Introduction

Authorship attribution (AA), which entails determining the author of an anonymous
text from either a closed or an open set of possible authors is the task which has
attracted both scholars and forensic experts’ attention. Different approaches to solving
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this problem have been tested, including sophisticated ones such as complex network
approach [3]. In the recent years researchers working in the field of authorship attri-
bution have begun to employ unsupervised techniques aimed at automatic grouping of
texts according to their authorship in addition to the widely used supervised machine
learning techniques [11]. The task of AA currently involves training and testing
samples containing documents which differ in modes, genres, topics, etc. (cross-
domain AA) [7], which is a more realistic scenario comparing to single-domain AA.
Author clustering (also called author-based clustering, authorship clustering, or
authorial clustering) is a very important task as it represents real-world setting, where
the ground truth on document authorship may be unavailable a priori, however work
on author clustering is still limited. Author clustering also seems daunting [14, 15],
especially in a cross-domain scenario, as the latter has been shown to affect the number
of features needed for authorship-based document clustering [7].

In the current study we address the problem of authorship-based clustering of real-
world documents belonging to different topics. We apply modified unmasking tech-
nique [6] in order to remove highly topic-dependent textual features and evaluate the
result with natural groups of texts formed by hierarchical clustering.

The goal of the current work is to analyze the performance of authorship-based text
clustering after removing significant topical features from the feature set. The research
hypothesis is that various features, including topical ones, are useful in author clus-
tering, but the most significant topical features will result in clusters representing
topics, not authors. Thus removing a number of significant topical features could result
in more effective authorship-based text clustering. We set out to test the hypothesis by
performing topic classification of forum posts and iteratively removing a different
number of features most significant for topic classification. At each iteration we cluster
the documents with the resulting feature space and evaluate the clustering performance
in terms of ground truth authorship.

2 Related Work

2.1 Unmasking for Cross-Domain Authorship Attribution

Cross-domain AA is a demanding sort of AA, where training and test sets contain texts
which differ in topic, genre and even mode (written/oral) [7, 12, 13]. Several techniques
have been developed to tackle this problem. One the well-known technique which was
originally designed for author verification but useful for cross-domain AA is
unmasking. Unmasking was introduced in [6]. It is a technique aimed at removing the
features most useful at discriminating between two collections of texts and looking at
the speed with which classification performance between the two collections degrades
as more features are removed.

The general idea behind unmasking is that if two text collections are produced by
the same author, the differences between them will be reflected in a very small number
of features, and as the features are removed, the classification performance degrades in
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a sudden and dramatic manner. As the most informative features are removed, so is the
impact of genre and other domain-specific characteristics. Originally, unmasking was
employed as a technique for authorship verification for 21 English books by 10 authors.
By analyzing the performance degradation curve in a leave-one-book-out experiment
95.7% accuracy was achieved in authorship verification, although the dataset spanned a
variety of genres [6].

Unmasking was further investigated in [5] where it was applied to cross-genre
authorship verification. Although the results in the cross-genre setting were modest, the
technique still proved to be very interesting in terms of the results interpretation.

The idea behind unmasking, which is that there are specific features informative in
domain classification to be accounted for in cross-domain AA, has recently gained
research interest. While character n-grams are widely used and reported to be the most
effective type of features in AA [11, 12], the authors [8, 12] investigate whether
different character n-grams account for single- and cross-domain settings. Indeed, word
n-grams are useful in single-domain settings, mostly capturing topic-related informa-
tion, whereas punctuation and affix n-grams are more useful in cross-domain settings
capturing author-specific information irrespective of topic change.

In [13], the idea of excluding topic-related features from text is taken one step
further by using text distortion techniques to mask information associated with topic
preferences. After choosing the k most frequent words in the language, all the other
words and digits are replaced with asterisks. The results have shown that the masking
technique improves the performance of cross-domain AA: namely, cross-topic AA
benefits from masking all but the most frequent 300 words, i.e. mainly function words.

2.2 Author Clustering

Document-level author clustering was introduced in the 2016 PAN competition [14].
In author clustering, given a document collection the task is to group documents

written by a single author in a single cluster. The number of authors is not known to the
participants, so it has to be chosen based on the data.

The extrinsic evaluation metrics for author clustering in the PAN competitions are
BCubed F-score, Precision and Recall, which have been shown to perform well
compared to other extrinsic clustering evaluation metrics [1]. The BCubed precision of
a document d is the proportion of documents in the cluster of d by the same author of
d. The BCubed recall of d is the proportion of documents by the author of d that are
found in the cluster of d. The BCubed F-score is the harmonic mean of BCubed
precision and recall.

The evaluation results of the participants ranged from 0.23 to 0.82 BCubed F-score.
The two best approaches to author clustering both include bottom-up clustering with
character-based features and most frequent terms.

The PAN 2017 author clustering competition included the same texts chunked into
very short paragraphs between 100 and 500 characters [15]. Despite the difficulty in
processing very short documents, most of the approaches beat the baselines and ranged
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from 0.53 to 0.57. The top-performing method made use of agglomerative hierarchical
clustering with character and word n-grams and a number of text-length, orthographic
and lexical statistics features with TF-IDF and Log-Entropy weighting schemes [15].

2.3 Unmasking for Author Clustering in Russian

Stability of authorship features against change of mode, topic and time of text pro-
duction in the Russian language has been investigated in [7] concluding that some
features are highly affected by topic, especially mode change, whereas other features
remain stable for an individual author.

While author clustering is a difficult task, it is beneficial in evaluating different
feature sets. Clustering performs natural grouping of the data based on the features,
whereas modern text classification techniques automatically assign weights to features
in terms of their significance in a classification task. In the current cross-topic scenario,
author clustering allows us to evaluate natural groups for different feature sets and
determine whether the groups (clusters) represent topic or authorship.

To the best of our knowledge, this is the first work to use a document clustering
task in order to evaluate topical features unmasking. Moreover, to identify topical
features noisy for author clustering, we have introduced a modification to the original
unmasking technique [6] enabling us to investigate the influence of the significant
topical features on author clustering. Finally, we perform our experiments on a real-
world noisy dataset in Russian, which is an understudied language in terms of
authorship attribution.

3 Experiment

3.1 Dataset Description

The dataset for the experiment consists of postings from the KavkazChat dataset which
contains post from forums in Russian dedicated to jihad in the North Caucasus. This
dataset was collected under the Dark Web Project conducted by the University of
Arizona’s Artificial Intelligence Lab [2].

KavkazChat dataset contains 699,981 posts written by 7,125 members in the period
3/21/2003-5/21/2012. These posts in dataset are organized into 16,854 “threads”, or
topics. Each post contains information on topic, authorship and time of posting. For the
purpose of current study, 10 productive authors were chosen from the KavkazChat
dataset, so that there are 10 posts written by each author. All the texts are more than
1,000 characters long and are written in Russian as identified by the langid library [9].
The 10 posts by each author belong to one topic. As a result, our dataset includes 100
documents by 10 authors, with documents by each author belonging to one of three
topics. The dataset organization is illustrated in Table 1.
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3.2 Methods

The current research goal is to perform topic classification of forum posts and itera-
tively remove a number of the most significant features in the topic classification, while
evaluating author clustering with the resulting feature space in each iteration.

Feature Space. The initial feature space contains features proven to be useful in the
previous work on AA. First, we employ the typed character n-gram features described
in [12]. Second, we add a number of generalized features representing discourse and
punctuation patterns described in [8]. Finally, we add word and part-of-speech n-grams
with n ranging from 1 to 3, which have been shown to be instrumental in some
previous works [4, 7, 15]. We only include frequent features occurring in at least 10
documents. TF-IDF weighting was applied. The resulting feature space contains 8,497
features.

Unmasking Topical Features. To perform topic classification, we apply Linear
Support Vector Classification as developed in the sci-kit learn package [10], with two-
fold cross-validation, l2 penalty and otherwise default parameters. We apply recursive
feature elimination to remove 10 least informative features iteratively and evaluate the
topic classification performance with F1-micro. Thus we get a ranking for every fea-
ture, ranging from 1 to 849 according to its importance in the topic classification.

Author Clustering. Given the ranking of the most significant topical features, the goal
of the experiment is to identify a group of topical features which introduce noise in
author clustering. In order to test this, we have performed clustering experiments with
different feature sets. First, the full feature set is applied to text clustering. Then, the
significant topical features are removed from the feature set iteratively: first, the 7 most
significant topical features ranked 1 are removed; after that, the 10 topical features of
rank 2 are removed, etc. with the 10 highest rank features removed at every
step. Clustering is performed with the resulting feature set at every step so that a feature
set is 10 features smaller at each iteration. If the research hypothesis is true, there is a

Table 1. Dataset characteristics

Author Topic Number of
texts

Average text length
(tokens)

Шapиaт&gt;пpaвдa Бoлee пoдpoбнo o
Чeчeнcкиx тeйпax…
In detail on the Chechen teips

10 575.6
Инaл_Hoxчий 10 1216.3
Polevoj Buketik 10 895.1
Бeлг1тo 10 750.7
musulmexx 33 пoвoдa пpинять Иcлaм

33 reasons to convert to Islam
10 1339.3

Maga77 10 449.4
Jasmin 10 370.2
at_tawbah Caдитecь c нaми, yкpeпим

нaшy вepy
Sit with us, let’s strengthen
our faith

10 2304.4
Salah ad-Din 10 1140.8
Aль-Фaляк 10 1364.7
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feature set smaller than the full one for which author clustering performs higher than for
the full feature set. For document clustering, we use agglomerative clustering as it was
the top-performing author clustering approach in the 2017 PAN competition [4]. Our
preliminary experiments have shown that only Ward linkage with Euclidean metric
result in evenly distributed clusters, while the other strategies tend to form one very
large cluster with the rest of the clusters containing single documents. We set the
desired number of clusters equal to 10, which is the ground-truth number of authors.
Clustering is evaluated against authorship ground truth with the BCubed F-score [1,
15].

It should be noted that in our experiment we initially set a number of clusters equal
to the number of authors. As we mentioned earlier in this paper, in real-life situation the
number of authors of anonymous texts could be unknown, but we argue that our
approach is viable at least for two reasons. First, in a real-life scenario (especially in
forensic settings) two situations are typical, namely when there are small or indefinite
set of suspects. In the first case the number of clusters (i.e. possible authors) is known,
and the task is to cluster an anonymous text with other texts by a true author rather than
not to define the number of the authors. Second, our current goal is to assess the
efficiency of a different feature set rather than to define the exact number of authors and
then cluster texts over their authorship as it was in previously described PAN
competitions.

4 Results and Discussion

4.1 Unmasking Topical Features

First, we have applied recursive feature elimination by iteratively removing the 10 least
significant features and evaluating the topic classification performance with the
resulting feature set. The topic classification performance for different numbers of the
selected features is illustrated in Fig. 1. A very small number of features is needed to
achieve a considerably high classification performance. In fact, the best performing
number of features is 547 with the classification F1-micro reaching 0.86.

4.2 Author Clustering Performance

The clustering results with sets of topical features iteratively removed are illustrated in
Fig. 2. Clustering is evaluated against ground truth authorship with BCubed Precision
(P), Recall (R) and F-score (F).

For the full feature set, P = 0.385, R = 0.524, F = 0.444. It is obvious from Fig. 2
that generally all of the selected features are instrumental in author clustering, because
clustering performance mostly decreases with feature elimination. However, there is an
increase in clustering performance for the set with a short list of eliminated topical
features. Indeed, the best clustering performance result is achieved for the dataset with
the best 157 topical features removed (ranked from 1 to 16) and 8,340 features left,
P = 0.434, R = 0.59, F = 0.498. After that, clustering performance steadily decreases
as a result of topical feature elimination.

Author Clustering with and Without Topical Features 353



The clustering results for the full feature set and for the best performing feature set
with removed topical features are illustrated in Figs. 3 and 4, respectively. The name of
every ground-truth author is written in a specific color; the colors of the 10 sub-trees
representing clusters match that of the most frequent author in the given cluster.

The illustrations suggest that there are a few large clusters which are noisy in terms
of authorship but mostly representing the topical structure of the dataset. However, the
number of large noisy clusters drops from 4 down to 2 as the main topical features are
removed from the full feature set.

Fig. 1. Topic classification results with the most significant iteratively selected features

Fig. 2. Author clustering results with the most significant iteratively removed topical features
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Fig. 3. Document clustering for the full feature set
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Fig. 4. Document clustering with the 157 most significant topical features removed
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5 Conclusions and Future Work

We have been able to conduct the analysis of the performance of author clustering after
removing significant topical features using a real-world noisy dataset of forum posts in
Russian, i.e. we have performed topical feature ranking, removed the most significant
topical features iteratively from our dataset and evaluated the resulting document
clustering against authorship ground truth.

We have found out that the list of the most significant topical features indeed
decreases author clustering performance by introducing more topic-based clusters in
the clustering results. By removing the list of topical features we have increased author
clustering BCubed F-score by more than 5%. Manual investigation of the clusters
reveals that topical feature removal decreases the number of noisy large clusters rep-
resenting topical information and increases that of actually author-based clusters.

We have concluded that most of the features, including topical ones, are important
for author clustering, especially in a dataset where all the documents by one author
belong to a single topic. However, for effective authorship attribution even in such a
topic-author-imbalanced dataset, it is useful to remove a small number of the highest-
ranked topical features during preprocessing.

We expect this effect to be more robust in a dataset balanced by topics and authors,
including texts on a range of topics written by each author. It is our intention to
construct a topic- and author-balanced corpus in Russian and investigate the influence
of the topical features presented here as well as to add more sophisticated semantic and
syntactic ones. We will also include a larger number of authors and domains into the
dataset while controlling for the mode and genre of texts by each author. Finally, we
expect to achieve a list of domain-independent highly stable authorship features in
Russian.
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dation, grant №18-78-10081 “Modelling of the idiolect of a modern Russian speaker in the
context of the problem of authorship attribution”.
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Abstract. Head and neck cancer patients often have side effects that make
speaking and communicating more difficult. During the speech therapy the
approach of perceptual evaluation of voice quality is widely used. First of all,
this approach is subjective as it depends on the listener’s perception. Secondly,
the approach requires the patient to visit a hospital regularly. The present study
is aimed to develop the automatic assessment of pathological speech based on
convolutional neural networks to give more objective feedback of the speech
quality. The structure of the neural network has been selected based on exper-
imental results. The neural network is trained and validated on the dataset of
phonemes which are represented as Mel-frequency cepstral coefficients. The
neural network is tested on the syllable dataset. Recognition of the phoneme
content of the syllable pronounced by a patient allows to evaluate the progress of
the rehabilitation. A conclusion about the applicability of this approach and
recommendations for the further improvement of its performance were made.

Keywords: Speech rehabilitation � Syllable intelligibility �
Phoneme recognition � MFCC � CNN

1 Introduction

According to statistics, in Russia, the number of new cases of speech organ cancers has
reached 22 thousand in 2016 [1]. Those patients receive a combined treatment that
involves a surgical intervention. Hence, the changes in the speech organs occur. After
the surgery, most of the patients undergo a speech rehabilitation to learn to pronounce
some phonemes again. Currently, the assessment of the speech quality at the rehabil-
itation is given by several speech therapists for providing more objective results. This
procedure is time-consuming for the speech therapists, and requires a patient to come to
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the hospital. It is not always convenient and possible for a patient. Due to these
problems, the idea to automate the rehabilitation process came up. At this moment of
time, in Russia, there is no a complete solution of an automated speech quality
assessment, however, some approaches are in the process of developing. One of such
approaches is based on the application of neural networks.

This work presents a possible option to determine the progress in the speech
restoration which uses a CNN model trained on patient’s audio recordings made before
surgery.

2 Description of the Proposed Approach

The requirements and limitations for the framework are mentioned below.

1. Dependence on the speaker. For each patient a personal model is trained using his
audio recordings before surgery. This fact simplifies the training, as well as con-
siders the natural specific characteristics of the speech for each patient.

2. Predefined set of syllables. The audio recordings are defined by the table of 90
syllables in order to make an accent on the problematic phonemes ([k], [s], [t], and
their soft implementations).

3. It is known in advance which syllable is pronounced. It means that the phonetic
composition of a syllable, recognized by CNN, might be compared with an
expected one.

The algorithm of automating the process of rehabilitation includes the following
steps.

1. Preprocessing of an audio recording performed by a patient before surgery. This
data will be used to train the CNN.
a. Noise reduction and time-alignment at phoneme level;
b. Split of the phoneme’s periods into a sequence of overlapping frames (frame

length is 20 ms, hop length is 1 ms);
c. Feature extraction as Mel-Frequency Cepstral Coefficient (MFCC) from each of

the 20 ms frames (matrix size is 100 � 44);
2. Defining the structure of Convolutional Neural Network (CNN);
3. Training the CNN, built at the step 2 on the labeled data (phonemes) of the step 1.
4. Building an algorithm of the phoneme detection in an audio recording of a syllable.

Each recording of the syllable’s set is split into 20 ms frames with 1 ms hop length.
Then every frame is labeled by CNN as one of the phonemes learned. When the
resulting sequence of labels is obtained, the random phoneme labels are excluded
and consecutive phoneme labels are merged. The result is compared with the
expected one.

The main idea of this approach was proposed in [2] and has now found an
application for working with certain types of speech diseases [3, 4].
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3 Data Preprocessing

3.1 Analysis of Phonetic Composition of the Audio Data Given, Splitting
Recordings into Frames, and Labeling

There is a set of 90 syllables presented in the Table 1. The table was obtained from the
paper [5].

Table 1. Set of 90 syllables used at the speech rehabilitation in Russia.
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Using open-source audio auditor “Audacity”, the positions of all phonemes in each
of the 90 syllables of Table 1 were found. The time moments in milliseconds were
written into a table.

The analysis of a phoneme content for the 90 syllables showed that this syllable set
includes only 35 out of 42 Russian phonemes. Moreover, the occurrence of these
phonemes is unevenly distributed.

After splitting the phoneme intervals into 20 ms frames, the distribution of a
quantity of examples for each phoneme was obtained (see Fig. 1).

Figure 1 shows that the dataset is unbalanced. This fact can cause insufficient
results, and should be taken into consideration further.

3.2 Calculating MFCCs of Phoneme Audio Files

The MFCCs describe the energy distribution of a signal in the frequency domain and
refers to a perceived frequency. They are widely used as features in automatic speech
recognition [6]. To convert a frequency into a mel, the following equation is used:

m ¼ 1125 � ln 1þ f =700ð Þ ð1Þ

To calculate MFCCs for wav audio files, a Python library “librosa” [7] for audio
signal processing was applied. An example of a mel-spectrogram representation is
shown in Fig. 2.

Fig. 1. The distribution of a quantity of examples for each phoneme
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4 Construction and Training a Neural Network

4.1 Building CNN

For a software realization of the algorithm of the automated speech quality assessment,
a high-level programming language Python was chosen. The neural network was coded
using Keras library [8] with TensorFlow backend.

The final structure of the chosen CNN is represented in Fig. 3.

Fig. 3. Neural network structure.

Fig. 2. MFCC spectrogram of 20 ms [k] phoneme.
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4.2 Training the CNN

As mentioned earlier, the dataset of 35 classes is unbalanced. This fact caused law
accuracy results. It is for this reason that the decision to group some sounds was taken
since the recognition of them does not play an important role.

As a result, the data was regrouped into 9 classes: [k], [s], [t], [kʲ], [sʲ], [tʲ], [ʂ +
ɕː+t ɕ], [vow], [unknown]. The class [unknown] includes all the rest phonemes which
are not a part of other 8 classes. The confusion matrix of 9-classes model showed that it
is hard to distinguish [s] and [sʲ], as well as [t] and [tʲ].

The next step was to regroup the data into 7 classes merging the confusing pho-
nemes [s]/[sʲ] and [t]/[tʲ]. Such form of a dataset representation showed the best results.

The 7-class recognition model was trained on a dataset of 1395 audio files (see
Fig. 4 left) and validated on the dataset of 422 audio files (see Fig. 4 right).

The input shape of data for the model was (1395 � 100 � 44 � 1). The batch size
was chosen 100, when number of epochs was 87 in accordance with under-, overfitting
balance.

Thus, the training accuracy reached 98%, and the validation accuracy – 91%.

4.3 Phoneme Recognition in the Syllables

The algorithm of the phoneme recognition has the following steps.

1. On the timeline, the interval of a syllable is defined (the process of identifying
intervals is supposed to be automated both for syllables, and for phonemes).

2. The entire interval of a syllable is splitted into 20 ms frames with 1 ms hop length.
3. For each of 20 ms frame of a syllable, the label (phoneme’s name) is attributed. The

result is a list of phoneme labels for one syllable. An example of the resulting output
of the recognition for the syllable [kˈasʲ] can be presented as [‘k’, ‘vow’, ‘s’], and
shown in Fig. 5.

Fig. 4. Distribution of phoneme examples in the 6-classes ([k + kʲ], [s + sʲ], [t + tʲ], [ʂ + ɕː+t  ɕ],
[vow], [unknown]) training dataset (left) and validation dataset (right)
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4. Occasionally appeared labels are excluded and consecutive labels are merged. The
result of this procedure is presented in Fig. 6.

5. Representation of the syllable shown in Fig. 6 might be further compared with an
expected result.

5 Evaluation of the Phoneme Recognition by the CNN

The results of experiments with different number of classes in the dataset gathered in
Table 2.

Fig. 5. Full phonetic composition of the syllable [kˈasʲ] as a result of CNN model recognition

Fig. 6. Shorten result of phonetic composition of the syllable кacь

Table 2. Comparative table of results for different number of classes

Number of classes 35 9 6

Set of phonemes [a], [b], [bʲ],
…, [ch], [sh],
[sch], [e]

[k], [s], [t], [kʲ], [sʲ],
[tʲ], [ʂ + ɕː+t ɕ], [vow],
[unknown]

[k + kʲ], [s + sʲ],
[t + tʲ], [ʂ + ɕː+t  ɕ],
[vow], [unknown]

Training dataset size 17 062 2 792 1 395
Validation dataset
size

4 267 596 422

Number of epochs 150 20 87
Training accuracy 16% 21% 98%
Validation accuracy 13% 23% 91%
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From the consideration of the Table 2, the following conclusions are drawn:

1. To recognize all the phonemes equally, it is necessary to have enough examples and
a well-balanced dataset.

2. It might be acceptable to group some phonemes if they are not interesting as
problematic phonemes.

3. The problem of [s]/[sʲ], and [t]/[tʲ] confusion might be solved by involving an expert
in phonetics who could contribute to create a well-balanced dataset of syllables and
to label a training dataset correctly.

4. It is enough to use 200 examples per class for 6-class classification problem.
However, if the number of classes increases, it is essential to enlarge the training
dataset too.

5. In this paper the time-alignment of phonemes in audio files was performed man-
ually, and it is time-consuming. To make the phoneme recognition process indeed
automated, it is also needed to automate the process of performing phoneme time-
alignment.

6 Working with Signals After Surgery

In the next stage, the trained model for a 6-class classification was used for classifi-
cation in syllables that were recorded after surgery (before and after rehabilitation). The
diagrams of belonging to six classes before and after the rehabilitation are presented in
Figs. 7 and 8 (syllable [kas’]). For smoothing, a median filter with a 10 ms window is
applied.

It can be seen that, before rehabilitation, the syllable is, in fact, classified incor-
rectly. The phoneme [k] is essentially undefined. In addition, almost all the silence

Fig. 7. The diagrams of belonging to six classes [kˈasʲ] before the rehabilitation
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before and after a syllable is defined as [s], which is associated with changes in the
noise environment. After rehabilitation, the measure of belonging is closer to the
correct one, with an exception of the problem with silence. The proportion of errors in
the definition of each of the classes before surgery, after surgery and after rehabilitation
is presented in Table 3.

It can be seen that the quality of recognition decreases after the operation and
recovers (although not to the previous level) after rehabilitation.

7 Conclusion

In this paper, the application of speech recognition based on a deep neural network for
the problem of estimating syllabic intelligibility according to the method of GOST R
50840-95 “Speech transmission over varies communication channels. Techniques for
measurements of speech quality, intelligibility and voice identification” is considered.
In the framework of this method, the final deep neural network can act as an auditor

Fig. 8. The diagrams of belonging to six classes [kˈasʲ] after rehabilitation

Table 3. The proportion of errors (2-nd type) in the definition of each of the classes before
surgery, after surgery and after rehabilitation

Before surgery After surgery After rehabilitation

[unknown] 23% 99% 99%
[vow] 11% 83% 16%
[k + kʲ] 5% 94% 12%
[s + sʲ] 2% 2% 8%
[t + tʲ] 15% 90% 21%
[ʂ + ɕː+t  ɕ] 11% 83% 19%
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and issue an appropriate quantitative estimate at the output. In addition, for correct
estimates obtaining, it is necessary to have the opinions of 5 experts. This significantly
reduces the practical applicability of the method with direct experts’ participation. The
use of a neural network instead of experts solves this problem.

The following main conclusions can be made from the results of the conducted
experiments.

1. A full recognition of syllables based on the results of training only on the syllables
of a particular speaker before the operation (using 90 words) is not very promising,
an additional speech material is needed.

2. When applying classes focused on current problematic phonemes, it is possible to
get decent results for syllables before the operation. The general error is below 9%
with the possibility of improvement due to the use of VAD and better recognition
systems [9]. This can be used in determining the metrics of belonging to the
problem class (in fact, the quality of the production). Moreover, it can be used for
solving problems of syllable segmentation and highlighting of problem phonemes.

3. It is possible to conduct additional research on a similar program, but with prior
training on the speech of healthy speakers, additional training on the patient’s
speech before operation and a subsequent use of the trained neural network to
classify phonemes after operation during rehabilitation to assess its quality.

Acknowledgments. The study was performed by a grant from the Russian Science Foundation
(project 16-15-00038).
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Abstract. The paper focuses on the earliest phases of grammatical
ontogenesis. The object of observation and research is child-produced
onomatopoeias from the periods of pre-morphology and the transition
to proto-morphology, excerpted from the spoken language corpora of
two Bulgarian girls (Alexandra and Stefani, marked in the respective
longitudes in CHAT-format in the CLAN programme as ALE and TEF
respectively).
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1 Introduction

Onomatopoeias are among the first words in the vocabulary of small children.
They represent words based on the imitation of typical sounds produced by
animals, machines, people, and objects, and they can be included in the group
of iconic signs.

In the present work, an attempt has been made to outline the role of ono-
matopoeia in establishing the verb as a part of speech in the earliest phases of
language acquisition. To this end, the chronological model of natural morphology
has been used, according to which the beginning of the ontogenesis is associated
with two phases that precede the development of grammar (the morphological
phase), and namely – the pre- and proto-morphological phase, when any real
system (or even module) of morphological grammar till does not exist, since this
still is not necessary for extra-grammatical operations and the few rudimentary
precursors to later morphological rules. In the group of pre-morphological means
are included the different units, including onomatopoeias, which play the role of
ancillary mechanisms in the process of language acquisition [2,5].
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The observations and analysis in this research encompass onomatopoeias in
child language from the period of pre-morphology and the transition to proto-
morphology, excerpted from the speech corpora of two Bulgarian girls, Alexandra
and Stefani.

2 The Data

The longitudinal and observational data in the present study are taken from
mother-child interactions of two Bulgarian girls, Alexandra (ALE) and Stephani
(TEF) (Bulgarian child language corpus1). Both children have been observed
for a comparatively long period of time (ALE from the age of 1;01-2;04, and
TEF - from 1;03-2;05). On average, a 60-min recording has been made monthly
in different situations, such as playtime, feeding, reading books. The data con-
sist of 30 h of recordings of the children’s spontaneous speech in interactions
with their caregivers. ALE has been observed between the ages of 1;1-2;4, and
TEF, between 1;3-2;5. The data have been transcribed using CHILDES [4]. For
the purposes of the study, each child’s files have been grouped to correspond
to the pre-morphological, transitional, and proto-morphological phases of their
language development (Table 1).

Table 1. Data

egatcejbuS
ALE 0;11-1;4 1;05-1;7 1;08-2;4

Total of word tokens: ALE:13 058; Mother, Father, older Sister: 17 970

TEF 1;1-1;8 1;9-2;1 2;1-2;5...
Total of word tokens: TEF: 11514; Mother, Grandmother, Investigator: 20 498

premorphology transitional phase protomorphology
phases

ALE and TEF’s data are very suitable for the empirical verification of the
acquisition models as these two children have “considerable individual differ-
ences” in acquiring the language. Between the two girls there are individual
differences in the style of language acquisition [1]. ALE (a very early speaker) is
a “reference” child and TEF (a typical average speaker) is an “expressive” child.

3 Onomatopeias in the Early Speech of Two Bulgarian
Children

Onomatopoeias are found even in the first recordings of both of the two girls
studied, ALE and TEF. They belong in the category of the so-called pre-
1 The research described here is based on empirical material from the Bulgarian child

language corpus (and in particular on Corpus A), created by the team at the Lab-
oratory of Applied Linguistics at Shumen University “Konstantin Preslavski.” See
[6].
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morphological means, highlighting their specific role as ancillary mechanisms
that they play in the acquisition of certain language phenomena. Before pro-
ceeding with a detailed analysis of how onomatopoeia works in the framework
of the early stages in the language development of the two children, it is worth
outlining in general terms its place among the other pre-morphological means.
It will immediately be clear that the two corpora are saturated with examples
of extra-grammatical morphological operations, namely:

(a) Reduplications: bau-bau (‘dog’), mjau-mjau (‘cat’), pa-pa (‘duckling’), am-
am/am-ma (‘eating’/‘eat’), vova [:voda] (‘water’), nani-nani (‘sleep’), lju-lju
(‘swing’), puf-paf/pu-paf (‘train’), Ni-ni (Niki), Ti-ta (Čita), etc.;

(b) Shortenings: boni [:bonboni] (‘bonbons’), lad/olad [̌sokolad] (‘chocolate’),
kal [:portokal] (‘orange’), min [komin] (‘chimney’);

(c) Truncations/abbreviations of various kinds, e.g. in unpredictable hypocoris-
tics of the type: Stefani→Teti, Teče; Ivelin→Iči, Vin.

(d) Surface analogies such as Pipika (instead of Pipi) by analogy with Anika.
(e) Blends: akapǐs (akam + pǐsam ‘poop + pee’), pljunki (pljušeni pantalonki

‘fleece pants@diminut’), kakajeja (kaka + lelja ‘older sister + aunt’). And
interesting example in this regard is introduced by Jean-Paul Sartre in his
autobiographical book “Les Mots”, namely the blend Karlémami, a combi-
nation of Karl + Mamie (Karl et Mamie): “... I adored her: since she was my
grandmother. It had been suggested that I call her Mamie and call the head
of the household by his Alsatian name, Karl. Karl and Mamie, that sounded
better than Romeo and Juliet, than Philemon and Baucis. My mother would
repeat to me a hundred times a day, not without a purpose: ‘Karlemami are
waiting for us; Karlemami will be pleased; Karlemami...’, conjuring up, by
the intimate union of those four syllables, the perfect harmony of the per-
sons. I was only half taken in, but I managed to seem to be entirely: first of
all, to myself. The word cast its shadow on the thing; through Karlemami I
could maintain the flawless unity of the family and transfer a good part of
Charles’ merits to Louise. Suspect and sinful, always on the verge of erring,
my grandmother was held back by the arms of angels, by the power of a
word” [7].

The extra-grammatical morphological operations shown above, used by the
observed children during their pre-morphological phase, are accompanied by
many onomatopoeias (bau-bau, myau-myau, lyu-lyu, am-am, bum, etc.), non-
prototypical diminutives (pisi – a diminutive of kitten, čiči – a diminutive of čičo
‘uncle’, Teti – a diminutive of Stefani, babi – a diminutive of baba ‘granny’, ma-
mi – a diminutive of mama ‘mummy’), “frozen” forms (rote-learned forms) of the
type mina‘pass’, daj ‘give’, njama ‘don’t, won’t’, la tuka [:ela tuk] ‘come here’.
The extra-grammatical morphological operations, as well as the non-prototypical
rules, however, do not follow the functional evolution of the Bulgarian morpho-
logical system and therefore tend to preserve their characteristics of the pregram-
matical phase (especially in the early diminutives with their non-prototypical
pragmatic meaning). In such a case the only data from the pre-morphological
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phase, during which one would expect switching on of phases of grammatical-
ization, are the rote-learned inflected forms (which are a necessary basis for the
metamorphosis of early universal morphological preferences, which lead to the
language-specific system adequacy that can only be supported by a grammatical
module). In this line of thinking the role of onomatopoeia could more likely be
expected in the morphosemantics than in the morphotactics.

The data from the two corpora recording the relative portion of pre-
morphological means in the speech of ALE and TEF (presented in Fig. 1) are
indicative of the significant place of onomatopoeia among the other precursors
of grammar.

Fig. 1. Percentage of pre-morphological means (ALE and TEF).

From the very beginning of the recording, both children use onomatopoeias,
marking by them the situations completely and not – partially. For example,
when TEF (1;06) looks at the table as well as at the cake, plates, and the utensils
sitting on it, she says: “Am-am.” This am-am may refer to practically anything
involved in the situation: the cake, the utensils, the participants, the process
of eating. The mixed use of the onomatopoeias without any clear referential
relation is typical. So, for example, lyu-lyu in the speech of TEF (1;06) can be
observed regularly both in the sense of ‘cradle’ and ‘to swing’ (Table 2):

From the examples indicated it immediately becomes clear that the parts of
speech have not been differentiated yet, though in the child’s production there
are already formal possibilities for this (cf. the later realizations of the sort
Teti lyu-lyu, in which the predicative function of the onomatopoeia is clearly
differentiated, versus uses from the sort of Mau-mau papa).

Later, onomatopoeia is used more often particularly for marking the per-
ceived subject or event (action). At this stage of the language development
(before the verb appears), the question of the adult determines to a certain
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Table 2. Bulgarian onomatopoeia lyu-lyu in different contexts

Context 1: Context 2: Context 3:

BAB: Na lyulkata kak pravǐs, BAB: Kǎde shte hodim? BAB: Kakvo e tova?

babo? ‘Where will we go to?’ ‘What is this?’

‘How do you do in the cradle, TEF: Lyu-lyu@onomat. TEF: Lyu-lyu@onomat.

Granny?’

BAB: Kak se lyuleeš?

’How do you swing?’

TEF: Lyu-lyu@onomat.

BAB: I kakvo šte pravim tam? BAB: Kǎde shte hodite s vuyčo? BAB: Kakvo e tova?

‘And what will we do there?’ ‘Where will you go with uncle?’ ‘What is this?’

TEF: Ulka [:lyulka]. TEF: Ulka [:cradle]. TEF: Ulka [:lyulka].

‘Cradle.’ ‘Cradle.’ ‘Cradle.’

degree the predicative function of the onomatopoeia and thus aids the forming
of the verbs category. For example, compare:

*BAB: To kakvo pravi? ‘What is it doing?’
*TEF: Am-am@onomat.
*BAB: A-a, to am-am, yade. ‘A-a, it’s am-am, eating’
In the example above, the adult (BAB) first repeats the onomatopoeia am-

am, used by the child to indicate the action, and immediately after this adds the
corresponding word-equivalent yade ‘eat’ (3SG PRES) from the standard lan-
guage. This communicative practice is used frequently in early language acquisi-
tion. The question of the adult (most often the mother) “What is he/she doing?”
and its reply with the correct verb following the child’s answer create clear con-
ditions to highlight the “place” of the onomatopoeia and the verbs among the
remaining classes of words, and it makes it easier for the child to acquire the
word itself. The child, following this sort of “training” strategy of the mother,
often repeats the corresponding form. At the same time, there are instances
of the first attempts of the girls studied to make the connection between the
onomatopoeia and the normative lexeme, when they selectively repeat after the
adult only the normative equivalent of the onomatopoeia. For example:

*DIM: A kǎde e, tati, kokoškata? ‘And where is, daddy[’s child], the
hen?’

*ALE: Ko-ko@onomat.
*VEL: Ko-ko@onomat, kokoška.
*ALE: Koka [:kokoška]. ‘hen’
The use of the onomatopoeia is an important stage in the acquisition of

verb morphology, because it helps the child: (a) to learn how to make difference
between events (actions) and subjects; (b) to recognize different kinds of situa-
tions (with the help of the interlocutor’s explanations) and to mark them initially
with onomatopoeias, and then also with the relevant verbs. The adult’s strat-
egy to repeat selectively the onomatopoeia with the relevant verbs and nouns
can additionally catalyze the process of forming word categories. In this way, a
moment is reached in the child’s speech production when there has been clearly
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outlined the tendency towards dissociation of the global system into two fields,
namely – that of the noun and that of the verb. Thus, for example, in the lon-
gitudinal data of TEF at the age 1;08.0, when there had already been made the
first steps in this process, there are observed specific uses of onomatopoeias, in
which there has been clearly demonstrated the striving for formal representation
of a fragment of the reality once as a complete (limited) essence, i.e. - as a noun,
and in another context – as an unlimited essence, i.e. - as a verb. Compare, for
example:

*BAB: Kakvo e tova, babo? ‘What is this, [grandchild]?’
*BAB: Pile? ‘Chicken?’
%sit: she shows her a toy chicken
*TEF: Pi-pi@onomat. ‘Pi-pi’
*BAB: Kakvo pravi pileto? ‘What is the chicken doing’
*TEF: Pi-pi-pi@onomat. ‘Pi-pi-pi’
*VEL: Kakvo ima tam? ‘What is this there?’
*TEF: Pipi [:pile]. ‘Pipi’ [:pile: ‘chicken’]
Similar onomatopoeic realizations in the speech of TEF are not the only

proof for the availability of primary lexical paradigms during the age discussed.
Together with them, the aspiration of the child to mark certain lexemes as verbs
is shown also in the use of inflected verb forms for naming actions, though
very often this is accomplished incorrectly. Thus, in the child’s utterances there
are inflections for 1P SG, 1P PL; 3P SG (Present); 3P SG (Aorist); 2P SG
(imperative); as well as a form for 3P SG (perfective). As an illustration, there
will be quoted the verb lemmas (together with the formal types) and the ono-
matopoeias that marked ‘action’ in the speech passage analyzed: 14 verb lem-
mas/62 tokens/17 types versus 11 onomatopoeias/16 tokens (TEF – 1;08.0). See
Table 3.

In the given speech fragment, regarding the act of ‘feeding’, it can be observed
how the child “rewrites” the corresponding action from one format to another,
namely, how she reformats the onomatopoeia a-am/am-am/am-am-am-am into
the verb ama. Alongside this, in the same type of contexts during this recording,
multiple uses of the verb papam ‘eat’ are recorded. The statistical analysis shows
that at the age 1;08.0, in the presence of synonymous means for formal marking
of a certain verbal concept, TEF demonstrates an apparent preference for the
verb forms at the expense of the onomatopoeic ones, which is illustrated in Fig. 2.

In further language development, the tendency towards functional limiting
of the onomatopoeias has been observed, and in a certain moment it has even
resulted in encountering them only in predicative use (cf. for example TEF
– 1;11.04: Granny, pish (‘I will pee’); Bebito. Kok-kok (‘jumps’); Dus-dus (‘I
joggle’); Rm-rm-rmy-rmy (‘growls’); Botzi (‘I stick/prick’); Am (‘Eat!’)). Some
of them change also their phonetic appearance and start looking like verbs
(for example – the botzi form instead of the usual so far botz/botz-botz ono-
matopoeia used), and some of them have already totally lost their onomatopoeic
character and are perceived mostly as elements of the relevant verbal paradigm
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Table 3. Verbs and onomatopoeias (TEF – 1;08.0)

Verbs – 14 lemmas / 62 tokens / 17 types Onomatopoeias – 11 lemmas / 16 types
ma-ma-ma-ma1/ma-ma2/ma-a1’tae‘mama

ama [:amam] – *3/1P SG PRES 1 a-kha
mub2’evig‘mad

uhk-uhk1/hk-hk-hk1PMIGSP2–jad3
uu-ujl1’emoc‘adjod

1 ela – 2P SG IMP 1 mush
4 elja [:ela] – 2P SG IMP 1 na

mina ‘pass’ 1 opa
3 mina – 3P SG AOR 1 pǐs

molja ’please’ 1 skok
1 motja [:molja te] – 1P SG PRES 1 pi-pi-pi
1 motja [:molja te] – 1P SG PRES

nanjam/njanjam ‘sleep’
9 nani [:nanjam] – *3/1P SG PRES
1 nani-nani [:nanjam] – *3/1SG PRES
1 nanja [:nanjam] – *3/1P SG PRES

nedej ‘don’t’
1 dej [:nedej] – 2S IMP

njama ‘won’t, there isn’t’
13 njama – 3SG PRES

placha ‘cry’
1 pači [:plače] – 3SG PRES

opravja ‘fix’
2 pai [:opravim] – *3SG/1PL PRES

papam ‘eat’
12 papa – 3SG PRES
2 papa [:papam] – *3/1P SG PRES
1 papaj [:papam] – *2SG IMP/1SG PRES
1 papau [:papal] – *SG PART/PL

pija ‘drink’
1 pij [:pie] – 3SG PRES
1 pija – 1SG PRES

otivam ‘go’
2 tiva [:otivam] – *3/1P SG PRES
*titam [:slušam] ‘listen’– quasiverb
1 titam [:slušam] – 1P SG PRES

(for example the chipi form, used in parallel with chipa ‘bathe’, has been associ-
ated with 3P SG PRESENT form and could be explained by the peculiar com-
petition of the language forms at the entry during the process of constituting
the miniparadigms).

When both of the children studied were still in the one-word phase, for
describing actions consisting of one act, or which appear to be complete and
limited in scope, the use of single onomatopoeias (e.g. muš, štrak, pus/puš, bum,
etc.) is observed, whereas for indicating continuous actions or actions consisting
of separate motions of the same type, reduplicated onomatopoeias are observed
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Fig. 2. Quantitative indicators for the designation of actions (TEF, 1;08)

(e.g. lju-lju, am-am, kok-kok/kok-ko-kop, mjau-mjau-mjau-mjau, tik-tak-tik-tak,
etc.). For indicating duration of action, in some cases lengthened pronunciation
of the relevant onomatopoeia (of the type: muuš, aam, naa, etc.) is observed,
which accompanies the carrying out of the action itself.

The role of onomatopoeia as “laying the foundation” for the verb appearing
is undoubted. In the case of both children, there has been observed a period of
accelerated use of onomatopoeias in predicative function. With the appearance
of the verb (as well as its contrastive forms), the reverse tendency has been
detected – in both children’s recordings there has been registered decreased use
of onomatopoeias (cf. for example Graph 3, which illustratively represents how
even from their origination, the first verb forms become apparently preferred by
ALE). Thus, for example, in the case of ALE, the first significant decrease is
from 15,4% (during the age of 1;01.29) to 5,3% (during the age of 1;05.06). After
an unimportant increase at 1;07 to 7%, later this percent does not exceed 2%.
The first decrease in the use of onomatopoeia is observed during the transition
from pre- to proto-morphology, when the first proto-morphological signs appear;
the second considerable decrease, observed at the age of 1;08, is accompanied
by increase of a relative share of the utterances with verbs (more than 50%),
which coincides with the beginning of the proto- morphological stage and the
appearance of real mini-paradigms. This is illustrated in Fig. 3.

In the case of Stefani, the first significant decrease in the use of onomatopoeias
in the predicative function is observed at the age of 1;08, which (as with Alexan-
dra as well) corresponds with the beginning of the transition from pre- to proto-
morphology. During this phase, in the following months, onomatopoeias gradu-
ally decrease to 0,9%. The stabilized presence of verbs after the age of 2;01 (over
50%) signals the establishment of the proto-morphological phase (see Fig. 4).
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Fig. 3. Percentage of utterances with onomatopoeia (ALE)

Fig. 4. Percentage of utterances with onomatopoeia (TEF)

From Alexandra’s and Stefani’s data analyzed, it becomes clear that during
the earliest stages, the predicative functions can be expressed by onomatopoeias
(including onomatopoeic reduplications), i.e. by extra-grammatical means (for
more details cf. [6]). Little children have a rich repertoire of means for expressing
predication, even before they have mastered the correct verb forms. But even
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though they have forms of specific verbs expressing a pragmatic or morpho-
semantic sense, they may use in the same meaning non-verbs as well (called
also predecessors of verbs), together with onomatopoeias (cf. also: dolu ‘down’
in the meaning of ‘put me down!’; opa in the meaning of ‘pick me up!’; na in
the meaning of ‘take!’/‘give’ (ALE, 1;01.29)); and peculiar fillers, which consti-
tute the phonetic structure of the relevant verb being mastered from the sort of
tititeni, tititani respectively, in the meaning of ‘sit down’ and ‘stand up’ (TEF).
During the transitional stage from pre- to proto-morphology, these verb prede-
cessors are gradually replaced by the real verb lemmas, whose increase, however,
is insignificant. This is evidence of the instability of the verb system, in which
pre-morphological and proto-morphological elements cohabit. The appearance
of verbs is followed by dramatic changes in the whole grammar system: con-
trastive forms – conjugated forms for perfect and imperfect type (in the case of
verbs) – appear; there are observed changes in the structure of sentence (sen-
tences with subjects and predicates); and children start an intensive movement
towards generalization of grammatical rules.

4 Conclusion

In conclusion, the use of onomatopoeias is an important step in the earliest
phases of morphology acquisition, because it helps the child: (a) to learn to
differentiate events (actions) and subjects; (b) to recognize different types of sit-
uations and to designate them first with onomatopoeias and subsequently with
the corresponding verbs. In this way, in their capacity as precursors of gram-
mar in the phase of pre-morphology, onomatopoeias have a special contribution
primarily in a child’s morphosyntactic acquisition. At the same time, however,
from the observations and analysis it become clear that these language units
play a role also as a type of base for the primary testing of different inflectional
forms. Thus to a large extent their use is a necessary preliminary step in the
awareness of the relationship of form and function, which is realized in the onto-
genetic process first in the initial global differentiation of child speech in two
areas: the verb and the noun. This initial differentiation of classes of words,
which is actually the first proto-grammatical opposition [3,6], gives grounds to
assert that onomatopoeias are not simply a component of the early childhood
lexicon, but are a type of ancillary mechanism in the mastery of language, which
is contained in the language itself. To corroborate this statement, other data
with the characteristics of onomatopoeia can be identified (atypical displays of
echolalia, late babbling, vocal harmony, and others), some of which are observed
not only in the dawn of language ontogenesis, but also through the entire period
of childhood. Research on these phenomena, however, is not within the param-
eters of this work, but is an open possibility for the future. The work presented
here has a more modest goal. With the review of the data presented here from
the two Bulgarian girls studied, Alexandra and Stefani, an attempt was made
to demonstrate the place and role of onomatopoeia in the earliest phases of lan-
guage acquisition. It was demonstrated how with the help of onomatopoeia, the
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child gradually manages to free herself from the constraints of so-called expres-
sive morphology, based only on general cognitive principles and not subject to
inclusion in any specific grammatical module. The copyright of the media files
created during experiments can be protected using steganographic methods [8].
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Abstract. This paper considers the pilot experiment regarding the perception
functioning of various brain areas channels in respect of multimodal polycode
Internet discourses. The investigation focuses on three variants of EEG-analysis:
solely auditory, exclusively visual and integrative auditory-visual perception.
Regarding functional properties, it has been found that brain bioelectrical
activity and all brain rhythm power values are dependent on the type of mental
modality: visualization, audition and integrative stimuli perception. The exper-
iment included a number of special tests involving perception of polycode
Internet discourse, where subjects’ brain bioelectrical activity dynamics were
evaluated on the basis of EEGs. The frequency spectra were calculated in the
special “Typology” program. The primary aim of this experiment was to find out
what kind of Internet stimuli (auditory, visual and complex ones) have the
greatest influence on all brain rhythm power values. The interpretation of the
results may help in studying the influence on the brain areas observed during
participation of young users (18–25 years old) in polycode Internet discourses.
In the first series of experiments, differences in the brain bioelectrical activity
dynamics were studied. The purpose was to evaluate how the brain performs
auditory, visual and auditory-visual complex analyses with two indicators –

positive and negative ones – of the brain area activity.
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1 Introduction

This project is a longitudinal study aimed to investigate the influence of polycode
social-network discourse on the Internet on the brain bioelectrical activity of young
Internet users. It is known that speaking and listening to speech are both extremely
complex processes. Yet more complex is the process of decoding polycode complex
stimuli. Many publications presented results of investigations on the domain of Internet
addiction, Internet gaming disorders, pathological Internet use and others. The inves-
tigation tasks were combined with each of the following terms: “brain imaging”,
“resting state”, “qualitative EEG”. “Internet Gaming Disorder”, etc. [1, 5, 7, 16, 23].

The present fundamental cross-disciplinary research project has a valeological
focus, namely the influence of aggressive multimodal polycode communicative envi-
ronment formed under the conditions of social networks upon transformation of psy-
chophysiological and cognitive characteristics of mental and speech activity of young
Internet users. Multimodal polycode communication in modern social networks has a
number of features causing its negative influence over recipients. The most important of
them is the presence of different kinds of polycode stimuli, including acoustic noise
(auditory channel, which can be, in particular, affected by background noise) and other
types of noise in a broader sense: informational, visual and emotional. In this project
we propose to study the influence of different types of polycode stimuli over the
functional status of the users’ personality by monitoring the changes in psychophysi-
ological and cognitive behavior parameters and the variations of cognitive reactions.
The main hypothesis of the research is that the influence of different types of polycode
stimuli upon human brain is characterized by the same main regularities as the influ-
ence of acoustic noise, which can be described, for example, using Lombard’s model.
The study of transformation of cognitive processes is based on previous research
conducted using special tests (e.g. “Indicators of attention and speed of sensorimotor
reactions” after Schulte, Toulouse-Pieron) before and after immersion in conditions
typical of social network communication involving visual and auditory perception
channels. Cognitive transformation will also be measured using “Numbers repeating”,
“Semantic verbal fluency” tests [4, 9, 10, 12–14]. The plan involved the development
of new special tests oriented to the peculiarities of perception of multimodal polycode
stimuli in both element-wise and complex modes, which would be especially inter-
esting to compare with results described in [8].

The main goal of the research is to determine the cause-effect links between
transformation of psychophysiological and cognitive characteristics of Internet users
(in particular, social network users) and the influence of stressors forming the peculiar
aggressive “ecosystem” of the Internet, which will allow to develop a set of valeo-
logical recommendations taking into account the social status, age, and gender and
other factors related to internet-addiction prevention [15, 17, 18, 23].

The main focus of the research will be placed on the functional status of the
subjects based on psychophysiological personality characteristics (excitability, lability,
reactivity etc.) and also on cognitive deterioration under the influence of such stressors
as different types of polycode stimuli, as well as simultaneous effect of aggressive
visual and auditory information in multimodal social network communication [2, 3, 6,

382 R. Potapova et al.



11, 20–22]. An additional factor that needs to be considered in the research is that of
influence of polycode stimuli in social network communication on the behavior of the
recipients. It is expected that the research will help reveal the mechanism of social
network addiction development. The object of these investigations is “electronic per-
sonality”, individual differences and Internet use [3, 16, 17, 23]. Investigations, e.g.
those in the domain of Internet Gaming Disorders, indicated that “… negative out-
comes affected the covariance between risk level and activation of brain regions related
to value estimation (prefrontal cortex), anticipation of rewards (Ventral striatum), and
emotional-related learning (hippocampus), which may be one of the underlying neural
mechanisms of disadvantageous risky decision-making in adolescents with Internet
Gaming Disorders” [22, 24].

2 Method, Results

The aim of this pilot study is to analyze the EEGs indicating the brain bioelectrical
activity on the basis of perceptual auditive, visual and complex indicators as relative
signs of the brain bioelectrical activity dynamics with due account for fatigue. The
experimental material corpus included Internet social-network discourse (polycode
fragments) with verbal, paraverbal, non-verbal and extraverbal information (N = 30).
The participants of this project (recipients of these stimuli) were university students,
both male and female, aged 20–25. During the experiment, a special questionnaire was
used, which included a set of questions regarding perception of auditive, visual and
complex information. EEG (electroencephalographic) recordings were obtained from
native Russian listeners and participants of visual probation experiments [11, 16, 17].

The dynamics of brain bioelectrical activity were evaluated on the basis of elec-
troencephalographic data (EEG) using a technique similar to that described in [19].
EEG recording was performed using a Neurovizor encephalograph-analyzer with 13
electrodes (F3, F4, Fz, C3, C4, Cz, P3, P4, Pz, T3, T4, T5, T6) located according to the
EC 10–20 system, in a monopolar way relative to the combined ear electrodes, A1 and
A2. For all of these, the sampling frequency was set at 250 Hz, the filtration bands
were 0.5–70 Hz, and the impedance was less than 20 kX. At the first stage, the EEG
recording took place in the “Typology” program. When the electrodes are properly
attached to the head, the “Typology” program on a PC connected to the encephalo-
graph will start recording the EEG (if the electrodes are applied incorrectly, the EEG
recording will be impossible). At the second stage, for the EEG recording, in the
“Typology” program, the frequency spectra were calculated over epochs equal to
1216 Hz or 4.86 s for further processing. As a result of spectral analysis, the ampli-
tudes of the spectral power amplitudes and peak frequencies in the bands of the delta-,
theta-, alpha- and beta1-, and beta2- rhythms were obtained for each of the 13 channels.
Figure 1 demonstrates the absolute power values of the brain rhythms averaged over all
brain areas. Stimulus 1 was the audio signal without visual information; stimulus 2 was
the video without the audio track; and stimulus 3 was the video signal together with the
same audio track. The duration of each stimulus was 51 s (for the purpose of this pilot
study it was decided that the effects of natural fatigue should be avoided). The stimuli
were administered by an operator three times each with short (about a minute) intervals
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of rest. The video stimuli were demonstrated using a large LED monitor (Sony Bravia
52”) placed in front of the subject at a distance of about 3 meters. The audio track was
played back over a high quality loudspeaker system (Microlab X1/2.1) placed behind
the subject at a distance of about 2 m. These conditions were supposed to create
maximum immersion effect. It is notable that, when listening only to the audio signal
(stimulus 1), the power values of all the brain rhythms decreased compared to the state
prior to the listening. At the same time, when perceiving a video and a video with an
audio track (stimulus 2 and stimulus 3), on the contrary, an increase of the power
values of rhythms was observed in all frequency ranges compared to the state prior to
the visual perception. In addition, throughout the study, there is an increased level of
beta-rhythm power values compared to other bands, which can be associated, firstly,
with the subject’s tense posture – since during the study, the subject was sitting without
any support for their back, as it was necessary to fill in a questionnaire; secondly, it was
necessary to correctly answer the questions on the stimulus material in the question-
naire, and the state of readiness to perform the tasks increased the activation of the
brain cortex.

Comparison of the spectral values of the absolute power of the brain rhythms in the
frontal, central, temple and parietal areas did not reveal significant differences in the
dynamics of the rhythms (Figs. 2, 3 and 4).

The increased delta-activity in the resting state indicates the presence of inhibitory
processes in the cerebral cortex, as a result of tiredness. In addition, the relative values
of rhythm powers were calculated prior to and immediately after the presentation of
each type of stimulus material (Fig. 6). To make it easier to understand the dynamics of
the rhythm power values, below are the values of the relative power of the rhythms.
Relative values of the power demonstrate changes in the rhythms in the resting state
after the presentation of the stimuli. The values of relative power were calculated by the
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Fig. 1. Absolute power values of the rhythms in the frontal brain areas.
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formula: AFTER/PRIOR – 1. Accordingly, values greater than zero indicate an
increase in power after presentation of the stimulus material; values less than zero
indicate a decrease in power after the stimulation. Background values obtained with
closed and open eyes (EC and EO, respectively) that were recorded prior to and after
the entire study demonstrate an increase in power over all frequency ranges. After the
experiments involving visual and auditory perception of the stimulus material with eyes
closed, an increase in delta- and beta- rhythms was observed most obviously; and with
eyes open, a significant increase in the delta-rhythm only was observed (Fig. 5). As a
result, after the listening to the audio track (stimulus 1), the power values of the delta-
rhythm increased, while the power values of the other types of rhythms decreased. But
after the visual analysis of the video fragments together with the audio-track, the power
values of the alpha-activity increased.

1. Stimulus 1 – Audio track

In Fig. 7 one can observe a decrease in the activity of all types of rhythms when
listening to an audio signal. After the listening experiment, the power values of the
rhythms increase, but not to the initial level (except for the delta-rhythm).

2. Stimulus 2 – Video signal

Curiously, during the perception of video material without the audio track, on the
contrary, the power values of all rhythms increase compared to the resting state
immediately prior to this (Fig. 8). At the same time, after the visual analysis, the power
values of all rhythm types decrease even compared to the “prior” resting state. Fre-
quency indicators showed greater stability throughout the study (Fig. 10).
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Fig. 2. Absolute power values of the rhythms in the central brain areas.
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In general, the values of the dominant frequency are a much more stable indicator
than the power value of the rhythm. The frequency of the beta2-rhythm did not change
in various samples and remained at 32 Hz. The dynamics of other peak frequency
values can be observed in Figs. 11, 12. During the perception of the audio signal, the
frequencies of theta-, alpha-, and beta1-rhythms increased, while when watching only
the video material, the only frequency that increased was that of the theta-rhythm, and
when perceiving the video with the audio track, the frequency of the theta-rhythm
increased.
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Fig. 5. Relative power values of the rhythms (their dynamics) after the experiments – in the
resting state, with closed and open eyes
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Fig. 6. Relative power values of the rhythms (their dynamics) after presentation of each
stimulus.
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presentation of stimulus 2.
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3. Stimulus 3 – Video with the audio track

After the perception of the video fragment with the audio track, an even greater
increase in the power values of all rhythms occurs; after the watching, the power values
of all rhythms decrease, but the alpha-activity values remain above those “prior” the
stimulation (Fig. 9).

3 Conclusion

In conclusion, it may be said that after the preliminary study, signs of fatigue were
revealed regarding all subjects. The power value of the delta-rhythm in all leads
increased significantly. The EEG spectral indicators showed various dynamics upon
presentation of the stimulus material of various modalities. The first stimulus (audio
only) differed the most – while listening to it, the power values of all frequency ranges
decreased and the peak frequency of the theta-, alpha-, and beta1-rhythms increased.
When analyzing the video fragment without and with the audio track, on the contrary,
an increase in the power values of all rhythms was observed, but the frequency value
practically did not change. At the same time, an analysis of relative changes in power
values after/prior to presentation of the stimuli revealed that after the first and second
stimuli (the audio track and the video presented separately), the rhythm power values
decreased, and after the presentation of the third stimulus (the video fragment together
with the audio track) the power values of the alpha-rhythm increased significantly. The
different dynamics of the EEG spectral indicators upon the presentation of the stimuli
of various modalities and after each sample indicates that audio and video materials are
perceived differently and have a different delayed effect on the state of the cerebral
cortex.

The problem of multimodal polycode social network communication and its
influence upon psychophysiological and cognitive characteristics of Internet users is of
both academic and practical interest. Polycode communication on the Internet is a
major trend of the recent years, and the necessity of researching it is determined by the
fact that its nature renders the traditional linguistic methods of analysis only partially
applicable. This explains the importance of the problem for theoretical linguistics.

Results obtained on the basis of cross-disciplinary approach will help to establish a
perspective for development of an ecological model of health, in particular, for student-
age population. It is common knowledge that ecological model of health (mental
health, in particular) depends on personality-environment interaction. For the young
people of today a big part of this environment is the Internet and social networks.
Immersion in this environment can influence the transformation of psychophysiological
and cognitive personality characteristics. Taking into account the polysemiotic nature
of online communication, one can suggest that different semiotic arrays of the same
social network can have different effects on the mental activity of the user. Therefore it
is very important to address the problem of influence of the multimodal polycode
stimulus – reaction mechanism upon psychophysiological and cognitive personality
characteristics, taking into account possible variations of this influence depending on
social, age and gender factors. It is well known that noise as a type of wave pollution
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leads to neurological and mental disorders, hearing deterioration etc. Internet users
(social network users, in particular) frequently encounter different kinds of noise
forming the context of network multimodality. Multimodal polycode texts containing
both linguistic and non-linguistic information (images, sounds, videos etc) puts even a
bigger load on the psychocognitive system. Given all the above said, the proposed
research project is important for linguistics (as it will expand its methods and supply it
with new methods to deal with multimodal polycode texts) and other sciences having
the ecosystem of human as their object.
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Abstract. This paper presents a novel deep parametric annotation method in
regard to database items of Russian polycode social network discourse. The
database is used as the background for interdisciplinary research in the field of
psycho-physiologic and cognitive transformation of young Internet users’ per-
sonality. The present report focuses on different semiotic sign aspects of human-
human communication: verbal, paraverbal, non-verbal, extra-verbal. With
respect to the individual personality applications of polycode acts of behavior
this paper is relevant for three reasons: polycode Internet information may
influence the cognitive peculiarities of Internet discourse corpora perception;
sense interpretation of multimodal perception channels, and some types of
variability of quantitative and qualitative personality changes. The compatibility
of deep parametric corpora annotation data may be important in certain inves-
tigations pertaining to material cases.

Keywords: Polycode social-network discourse � Multimodality �
Deep parametric annotation method � Young Internet users

1 Introduction

This paper is part of a project aimed at a cross-disciplinary study of influence of
aggressive Internet environment in multimodal polycode social network communica-
tion upon transformation of psychophysiological and cognitive features of Internet user
personality (with regard to adolescent and young adult Internet users). According to the
research hypothesis, multimodal polycode communication in modern social networks
possesses a number of features causing its negative influence over recipients. “The
detrimental effects of this environment are compared to the effects of acoustic noise”
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[9, p. 408]. We focus on the consequences of such noise impact on “the functional
status of the subjects based on psychophysiological personality features” [9, p. 409], on
the one hand, and “cognitive deterioration under the influence of such stressors as
different types of noise” [9, p. 409], on the other hand.

We consider polycodedness as “a result of interaction between codes of different
semiotic systems and discourses” [3, p. 129]. A polycode text is at the center of
“interaction of different codes, i.e. symbols, systems of symbols, signs and rules of their
combinations with each other for the transmission, processing and storage of infor-
mation in the form most adapted thereto. This term describes the phenomenon of textual
heterogeneity at the level of form achieved through a mix of different semiotic systems,
such as verbal and visual” [3, p. 130]. The literature argues that “polycode text usage
changes categorial realia of communication through information perception manage-
ment resulting in modification of recipients’ value orientation” [12, p. 223].

2 Background and Method

“Multimodality is a concept introduced and developed in the last two decades to account
for the different resources used in communication to express meaning. As a phe-
nomenon of communication, multimodality defines the combination of different semi-
otic resources, or modes, in texts and communicative events, such as still and moving
image, speech, writing, layout, gesture, and/or proxemics.” [1, p. 114]. “Research has
shown that when emotional stimuli are conveyed only in one channel, emotion recog-
nition is more accurate in the visual modality than in the auditory modality [4, p. 194].
“The robustness hypothesis argues that multiple modalities ensure message delivery
when one modality is occluded by noise in the environment or noise in the perceptual
system of the receiver” [2, p. 441]. “Signallers seeking to transmit complex messages
benefit from a multimodal strategy as it both increases the diversity of information
flowing to a receiver and increases the robustness of the signal” [2, p. 447].

The method of gathering data that was to be included in the resulting database
included a set of instructions for researchers. Prior to the beginning of work on the
database, it has been elected to use a cloud-based storage service for the purposes of
forming and editing the database.

The criteria for choosing entries into the database included the following:

1. The entries must be written in Russian (with the possible inclusion of foreign
language elements);

2. The data must be in open access on the Internet (that includes social networks,
personal blogs, microblogs, videoblogs and podcasts);

3. Entries must be exhibit multimodality;

Prior to analyzing the entries, all materials (audio, video, text, images) related to them
were to be saved both within the cloud-based structure and on backup hard drive devices.

Prior to research, various aspects of Russian social network discourse were analyzed.
These included the effects of deprivation on the final speech product in Internet com-
munication [8, 10], the acmeological aspect of emotional-modal state of Internet users
[6], database annotation principles (in connectionwith the semantic field of “aggression”)
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[11], personal user trait profiling, etc. [9, p. 411]. The introduced deep parametric
annotation creation approach [7, p. 224] encompasses such traditional parameters as
message platform, authorship, material type, date of publication, author location, sub-
scription numbers or user friend counts, “like”, view, repost and comment counts, as well
as information regarding whether Russian is the author’s mother tongue. Furthermore,
the annotation method includes additional information on types of modality included in
the message, playback length for audio and video elements, the type of speech (prepared,
unprepared, semi-prepared), the inclusion of foreign language elements, intertextuality,
emotionality, temporality, etc. The basis of the deep parametric annotationmethodmodel
is conceptualized within four dimensions: verbal (linguo-semantic content), paraverbal
(intonational-prosodic, timbral components), non-verbal (proxemic-mimic-gesticulation
component) and extraverbal (situational-discursive component) [5, pp. 67–72]. Every
nomination includes own n-parameters, the number of which can reach 120 and beyond.
As such, the deep parametric annotation method encompasses not only the token sphere
of annotation, but also demands special knowledge from the linguist.

3 Results and Discussion

The employed deep parametric annotation method encompasses four major clusters of
data: metadata, communicant data, fragment data, and additional data (Fig. 1).

At the current stage of the research, the annotated database of Russian polycode
social network discourse of young Internet users includes more than 1500 entries and is

Fig. 1. Metadata analytical cluster
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subject to an interdisciplinary approach with linguists, sociologists, psychophysiolo-
gists and psychiatrists taking part in its development.

The first analytical cluster, metadata, was used for recording information about the
author and about the entries as an object within cyberspace: Database entry ID; Author
age (if created by an individual user); Sex of the entry author: (Male; Female); Author’s
location (at the moment of posting the analyzed content); Date of publication; Creator
type classification (By an individual user; By an organization, group or community);
Resource (platform) of publication; Number of friends/subscribers within the online
resource (Audience Coverage); Number of likes, views and reposts (Number of views;
Number of likes (or equivalent “content appreciation points”); Number of reposts);
Number of commentaries; Communication language.

The second cluster, communicant data, covers information regarding the number
and peculiarities of the communicants (Fig. 2).

The second cluster includes: Communicant age; Number of communicants; Mes-
sage preparation level (Prepared; Unprepared; Quasiprepared); Emotive-modal state of
the communicants (Elation; Indifference; Aggression; Possible Psychological Devia-
tions); Psychophysiological state (Fatigue; Vigor; Drowsiness; Excitement; Rest;
Stress; Tension); Communicant Gender and Age Distribution (Number of children;
Number of male communicants; Number of female communicants); Speech deficien-
cies (Stutter; Burr; Slurred Speech); Social Status (Social dynamics (Social equals;

Fig. 2. Communicant data analytical cluster
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Superior – inferior); Gender (Heterogeneous; Homogeneous); Ethnos (Heterogeneous;
Homogeneous); Economic status (Equals; Unequals)).

The fragment data cluster includes information regarding the situation of the
communication, communication types, types of polycode communication and some
other variables (Fig. 3).

The third cluster includes: Audio and video playback length; Inclusion of linguistic
elements native to foreign languages (Present; Absent); Fragment address type
(Addressed; Unaddressed); Intertextuality (Present; Absent); Type of communication
(Monologue; Dialogue; Trilogue; Polylogue); Modality types present (Text; Images;
Audio; Video); Tonality (Present (By type (Positive; Neutral; Negative); By promi-
nence (Strong; Weak)); Absent); Predominance of one type of polycode communica-
tion (Verbal; Paraverbal; Non-verbal; Extraverbal); Fragment theme (Ecology; Politics;
Technology; Private life; Beauty; Business; Entertainment; Economics; Religion;
Education; Military strategy; Diplomacy; Health and wellness); Temporality (Past;
Present; Future); Polycode signals present (Facial expression (Eyes; Eyebrows; Lips);
Gestures (Absent; Passive; Average; Active); Proxemics (Far; Average; Close);
Ambient noise); Communication situation (Interpersonal contact; Celebration; Gather-
ing; Discussion; Rally).

The final data cluster, additional data, is a technical cluster used for database
navigation and database development optimization (Fig. 4).

Fig. 3. Fragment data analytical cluster
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This cluster includes: In-database links to cloud-save data; Data source hyperlinks;
Database entry creator IDs.

Hereafter we present a full view of the analysis method (Fig. 5).

Fig. 4. Additional data cluster
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Fig. 5. Deep parametric annotation method visualization overview
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4 Conclusion

In summation, the described novel deep parametric annotation method allows for
considerable depth when analyzing Internet communication. By separating variables
into thematic clusters, a number of goals is accomplished: first and foremost, the
method allows for a synthesized approach that encompasses text-as-object analysis,
user analysis, communicant psychophysiological and emotive-modal state analysis,
communication situation analysis and semantic analysis of the communication situa-
tion, etc. Furthermore, the method allows for a large degree of visualization of research
findings.
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Abstract. The study develops our previous research reported in [17] which
established the specific Canadian English (CE) lexical stress pattern of sec-
ondary stress located after the main stress as more frequent than in British
English (BE) and American English (AE). The pattern was recognized and
detected in sound speech by native speakers of CE in the set of most frequent
words (n = 89). At the present stage of the research we applied the methods of
corpus analysis and the overall lexicon analysis in national dictionaries to
explore the actual usage of the pattern in CE as compared to BE and AE. The
objective data was bound to test the presence of the pattern previously identified
through the subjective perceptions of native speakers of CE (n = 40). National
dictionaries [9, 20] were the source of word stress patterns codified in the norms
(n = 12648); the corpus of spoken CE speech (IDEA) (n = 3352) provided
support of the rhythmical lexical stress location. Comparison of Anglophone
and Francophone areas of CE speakers’ residence gave evidence of the rhyth-
mical tendency being the impact of the French language contact. The right edge
prominence known as the effect of French borrowings in the history of English
was further supported by the constant language contact on the territory of
Canada. Thus the digital identity of CE compared to BE and AE, when based on
the overall analysis of lexicon across the three major varieties of English and in
CE corpus of spoken speech, was verified.

Keywords: Canadian English � Lexical stress � Identity � Lexicon �
Sound corpus � Frequency

1 Introduction

The issue of Canadian English (CE) identity in pronunciation is generally perceived as
rather complex and elusive not only for foreigners but for Canadians themselves. Being
one of the North American varieties of English, CE possesses both American and
British features, as well as the impact of language contact with French, First Nations
languages and a multitude of emigrant languages which the Government policy
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encourages to develop. In 2004 Charles Boberg, a prominent Canadian linguist, wrote
about the growth of a distinct Canadian identity, reflected in a small set of unique
Canadian features, among which the most diagnostic of all is the phonetic process of
“Canadian Raising”, i.e. the pronunciation of/ai/and/au/with a raised central onset
before voiceless, as in out and bite [1]. Based on our previous research into comparison
of lexical stress in BE, AE and CE, another pronunciation feature could be enlisted,
which, though not unique in its origin, may be distinctively Canadian for its frequency,
in comparison with BE and AE. That was a particular stress pattern with a rhythmical
secondary stress (also known as “tertiary”) that is normally located after the primary
stress. Following the “Primary Stress First” theory proposed by van der Hulst we argue
that the occurrence of secondary stress in English has a rhythmic nature. We also agree
that no one has proved that the secondary stress after the primary stress is less
prominent than the secondary stress which is located before the primary stress. Posi-
tional differentiation of the two secondary stresses will be reflected in the terms pre-
tonic secondary stress and post-tonic secondary stress; both stresses are rhythmical by
origin [17, 19].

In our previous research based on three national corpora (BNC, COCA, CCE) we
showed the stability of the accentual system of English: lexical stress divergent words
are equally rare in the three national varieties, and they are mainly loan words from
Romance languages. When we started with a limited number of words with stress
patterns different in BE and AE (n = 1400), only a tiny part of them (n = 89) was
found to be relatively frequent, at 50 words per million, across all the three major
varieties of English. However, the words of medium frequency are known to differ-
entiate the national varieties, and the distinction is an important part of national identity
in speech. CE native speakers (n = 30), for instance, in express survey demonstrated
that they possess the pattern of post-tonic secondary stress in their mental repertoire
when they were asked to select the right patterns for the 89 words. Another set of CE
native speakers (n = 10) took part in the perception test, and were able to detect the
pattern with accuracy [17]. What remains to be found is how often CE native speakers
actually employ the pattern in their speech. A corpus of natural CE speech (IDEA) is
bound to show it.

Another distinctive word stress feature might be found in the domain of disyllables.
Although the dominant pattern in English is stress on the first syllable (trochaic
rhythm), it is generally accepted that AE, in contrast to BE, tends to select the pattern
with stress on the second syllable (iambic rhythm), especially in the words of French
origin, e.g. de′tail, bal′let, buf′fet, de′but, Mo′net. The right-edge prominence is typical
of the French language, but analogy might operate in cases with loan words from other
languages, e.g. sig′nor (Italian), dik′tat (German), koi′ne (Greek), di′nar (Arabic) [1, 15,
20]. In our data of CE there were cases of both patterns, e.g. in detail, adult, and, what
is more specific, with two stresses in the same word ′deˌtail, a primary stress followed
by a secondary one, i.e. by a post-tonic stress. An overall analysis of the whole lexicon
included in the dictionary and realized in CE native speakers’ talks might reveal a more
realistic landscape of stress patterns distribution.
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The French impact on English word stress system may be a historical legacy as well
as language contact effect in Canada, which could be particularly evident in the
Francophone area of bilingual Quebec. Comparison of word stress characteristics in the
speech of Quebec residents, when compared with those of the Anglophone Ontario
residents, opens more opportunities to test our observations about the distinctive CE
word stress patterns.

The goal of the current study is to test the validity of the previous findings on
specific word stress pattern in CE based on a wider lexicon represented in IDEA corpus
of natural speech.

Our hypothesis is:
From the historical, geographical and demographic perspectives language contact

with the French language will facilitate the incidence of the rhythmical stress patterns
in CE compared to AE and BE, and the residents of bilingual Francophone Quebec will
score higher than the residents of the Anglophone Ontario. Right edge prominence
characteristic of the French language and the universal final lengthening will provide
the conditions for higher frequency of the patterns in the final position of the intonation
phrase.

2 Methods

Overall Quantitative and Structural Analysis of the Lexicon: What is the Domain
of the Rhythmical Patterns? New perspectives on lexical stress patterns in CE
involved looking at the whole lexicon included in the national dictionary, i.e. going
over from one specific feature in a limited set of words to the overall quantitative
analysis of all the polysyllabic words that are supplied with transcriptions, or at least
stress marks, in Gage [9]. The new approach gave us a chance of focusing on the
structural composition of polysyllabic words and stress patterns distribution in various
structures. Comparison of the CE data with BE and AE stress patterns frequencies with
rhythmical stresses in Longman Dictionary (LPD) [21] gave evidence of similar pat-
terns distribution across the three major varieties of English. Digital national identity in
lexical stress patterns, as any other sort of identity, becomes recognized and established
only in relation to others, similar or different, identities [10, 13, 18].

In exploring BE and AE distribution of patterns in LPD we worked with an elec-
tronic version of the dictionary. By creating a program to recognize and discriminate
primary and secondary stresses we could index the categories as follows: (0) one-
syllable words with no stress, (1) secondary stress, (2) primary stress, (1 + 2) pre-tonic
stress + primary, (2 + 1) primary + post-tonic. However, the problem of space saving
made the publishers leave out the cases in which AE pronunciation pattern was
identical with BE, which made the digital statistics for the former less accurate. On the
whole, the common tendencies were quite vivid. Nevertheless, to be more statistically
certain, in CE the Gage data collection, analysis and calculations were done by hand.
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The fact that in Canada there is no pronunciation dictionary, and Gage does not provide
transcription for the whole lexicon of 95 000 words, only a limited part of the lexicon
was submitted to the overall quantitative analysis (n = 12 648).

Auditory Analysis: Which Patterns do CE Native Speakers Actually Use? Audi-
tory analysis of the discourse in the CE spoken corpus IDEA in which 68 CE speakers
from all over Canada talk about their place of residence and memories from childhood
[11] yielded 3352 polysyllabic words in 68 tapescripts (total time is 2 h 30 min) which
were annotated for the incidence of primary and secondary stresses. In accordance with
the goal of the research the latter were grouped into two classes: pre-tonic secondary
rhythmical stress (before the primary stress) and post-tonic secondary rhythmical stress
(after the primary stress) cases.

In our previous study reported in SPECOM 2017 we compared the level of
agreement between CE native speakers (10) and Russian phoneticians, experts in
English phonetics (10) on detecting both primary and secondary stresses in CE speech.
The 90% agreement testified to the fact that the 10% difference was due to the latter’s
previous experience in listening only to BE and AE speech.

In the current study four Russian experts listened to a number of identical CE talks
with a very high agreement score in stress placement (91.3%), and after that prelimi-
nary test the first author did the overall auditory analysis of all the 68 tapescripts.

Comparative Analysis: the Dictionary and the Corpus. At the next step of our
analysis we aimed at finding the correlation between the stress patterns recommended
in the national dictionary and the actual usage of those in the spoken corpus. All the
polysyllabic words (n = 3352) that were realized in speech by 68 speakers of CE in
their talks were checked for stress patterns codified in the CE dictionary Gage [9]. The
limitations of the present study consisted in the fact that there is no pronunciation
dictionary for CE yet, and not all entries in Gage dictionary are supplied with tran-
scription. Stress patterns of words included in Gage dictionary (n = 1634) and supplied
with transcription (n = 888) were compared with the stress patterns realized in the
same lexicon of the corpus, including repetitions of words with recurrent or varying
stress patterns. Correlation was calculated.

Contrastive Analysis: in Search of Regional Identity. For the purpose of testing our
hypothesis that most of CE digital identity is due to the French language contact effect
we contrasted frequencies of identical patterns in the speech of Ontario residents with
the ones in Quebec. The narrow corpus of 20 speakers, equally balanced for number,
gender and age in the two provinces provided data on Quebec scores which were
expected to be higher for the French-affected rhythmical patterns. Given that French is
noted for right-edge prominence in separate words pronounced in isolation, as well as
in intonation phrases, we looked at the position of words under analysis in the structure
of the intonation phrase (IP). All the polysyllabic words (n = 531) that were realized in
speech by residents of Ontario and by residents of Quebec (n = 565) were checked for
the initial, medial, final positions in IPs, with special reference to pre-tonic (40 vs. 67)
and post-tonic (43 vs. 44) secondary stresses.
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Linguistic and Sociocultural Interpretation: Digital Identity is due to Language
Contact. The data in the Discussion accounts for the differences, however small, in the
stress patterns inventories across the three major varieties of English and also in the
performances of CE speakers in the provinces of Ontario and Quebec. They are
determined, the authors argue, by the language contact with French in the history of
English over the centuries, the constant contact with French in Canada and the par-
ticular close contact in the area of contemporary bilingual Francophone Quebec.

3 Results

3.1 Overall Quantitative and Structural Analysis of the Lexicon

BE and AE data are deduced from working with an electronic version of LPD by Wells
[20] with special software which enabled us to discriminate and index cases of: words
with no stress (0), words with a secondary stress (1), words with a primary stress (2),
words with a pre-tonic secondary stress + primary stress (12), words with a pri-
mary + post-tonic secondary stress (21). In fact, apart from these basic types, there
were cases which are unlikely to appear in speech: incomplete words or morphemes
with one secondary stress only or two pre-tonic stresses with one primary stress only.
The results are as follows:

(0) No stress (one-syllable words) 15%
(1) Secondary stress solely 2%
(2) Primary stress solely 66%
(1 + 2) Pre-tonic + Primary 14%
(2 + 1) Primary + Post-tonic 2%
(1 + 1 + 2) Two Pre-tonic + Primary 4%.

Thus we can see that apart from short one-syllable words with no stress at all which
were reported to take up to 80% of the total amount of words in the English vocabulary
[4, 5], the majority of BE words have one primary stress only (66%), and then comes
pre-tonic + primary pattern as most frequent in the compound combinations (14%),
with primary + post-tonic pattern to occupy the last place (2%).

The Canadian Gage dictionary provided transcription for only part of the lexicon:
12 648 polysyllabic words out of 95 000 words. The selected transcribed polysyllabic
lexicon fell into three basic classes: primary stress only (70%), pre-tonic + primary and
primary + post-tonic. See the distribution of patterns with secondary stresses
(n = 3813) (Table 1):
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Structurally, it is two-syllable and three-syllable words that constitute the basis of
Post-tonic secondary rhythmical stress domain. The Post-tonic secondary stress is
more frequent than the Pre-tonic one in two-syllable words: Cf. 95.1% vs. 4.9%, e.g.
′moˌvie, ′bathˌtub, ′crayˌfish, and also in three-syllable words: 75.4% vs. 24.6%, e.g.
′conseˌquence, ′otherˌwise, ′motorˌbike. The difference is statistically significant:
x2 = 62.33, p = 0.01. Longer structures, like four-syllable, five-syllable and six-
syllable words form the domain of the Pre-tonic secondary stress, e.g. ˌcompe′tition,
ˌinte′resting, ˌoppor′tunity, ˌpar′ticularly, ˌquarter′final. Pre-tonics dominate in the
above structures (in the order named): 55.8% vs. 44.2%; 87.5 vs. 12.5%; 94.6% vs.
5.4% (Fig. 1), the difference is statistically significant: x2 = 219, p = 0.01.

Table 1. Pre-tonic and post-tonic stress in CE [9].

Structures Pre-tonic + Primary Primary + Post-tonic %

1. Two-syllable 16 (4,9%) 309 (95,1%) 325 (100%)
2. Three-syllable 382 (24,6%) 1170 (75,4%) 1552 (100%)
3. Four-syllable 678 (55,8%) 537 (44,2%) 1215 (100%)
4. Five-syllable 478 (87,5%) 68 (12,5%) 546 (100%)
5. Six-syllable 122 (94,6%) 7 (5,4%) 129 (100%)
6. Seven-syllable 42 (100%) – 42 (100%)
7. Eight-syllable 4 (100%) – 4 (100%)
Total: 1722 2091 3813
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Fig. 1. Pre-tonic and post-tonic stress patterns in CE [9].
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3.2 Spoken Corpus and the Dictionary Data Compared

According to the design of the research, auditory analysis of 68 CE speakers’ talks,
monologue parts of the interviews in which they told a story about themselves, was
carried out, and all polysyllabic words were annotated for stress and selected for the
stress patterns research. As predicted, in spoken English the highest frequency was
registered for monosyllables: 80% frequency of monosyllables previously reported by
A. C. Gimson in 1962 and revised by Cruttenden in 2001 [3], was confirmed by Cutler
and Carter in 1987 [4]. That percentage was slightly exceeded (by 4%) in the current
study of CE corpus, and was estimated at 84%. The list of polysyllabic words selected
in the corpus included 4098 items that were checked for pronunciation in Gage dic-
tionary. Part of the words (746) were not transcribed in the dictionary and, therefore,
excluded from the analysis. The remaining 3352 words were split into two classes
according to their word structures: 2251 two-syllable words, 1101 three-syllable and
other polysyllabic words.

In the class of two-syllable words (n = 2251) the following observations were
made: 70% of words tend to demonstrate the dominant trochaic rhythm pattern with the
primary stress on the initial syllable (1577), while 22% have an iambic pattern with the
primary stress on the final one (497) (See Discussion for assessing the specificity of the
pattern). Something special was found as well: two adjacent syllables could both carry
a stress (8%), (n = 177), which might be taken as a sign of syllable-based rhythm. The
patterns recommended by the dictionary did not show much variance: the differences in
the order of 2% were common (Table 2).

Table 2. Two-syllable word stress patterns in the dictionary and in the spoken corpus.

Regions Two-syllable stress patterns

Primary on the
initial syllable

Primary on the
final syllable

Primary and
secondary

No transcript
in the
dictionaryDictionary Speech Dictionary Speech Dictionary Speech

British
Columbia

14 41 0 7 0 0 9

Manitoba 3 27 2 11 0 4 7
New
Brunswick

1 14 0 1 0 1 4

Newfoundland 21 108 12 35 1 21 29
Nova Scotia 21 98 12 28 4 7 25
Alberta 22 53 9 16 0 10 14
Ontario 210 840 54 244 47 80 151
Prince Edward
Island

21 65 4 13 0 6 19

Saskatchewan 36 125 17 31 1 7 37
Quebec 34 206 15 111 6 41 17
Total 383

68%
1577
70%

125
22%

497
22%

59
10%

177
8%

312
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Three-syllable words were grouped together with other polysyllabic words, with a
constant drop in frequency associated with a growing number of syllables. 1535 words
were spoken altogether, from which amount 434 were not transcribed in the dictionary,
which left only 1101 for analysis. Nevertheless, three-syllable words being especially
relevant for the rhythmical stress domain, as we noted in Sect. 3.1, it is here that the
pre-tonic and post-tonic secondary stresses were most numerous, their frequency in the
group estimated at 18% (Table 3).

By comparing the data from the spoken corpus and the dictionary pronunciations of
the same lexicon we could not find many discrepancies: the differences were in the
order of 3% only. Besides, there was no distinction between the frequencies of pre-
tonic and post-tonic rhythmical stresses in the corpus: in speech both patterns were
estimated at 18%, with the sum of both rhythmical patterns going up to 36%. Statistical
analysis confirmed that there is close correlation between the patterns proposed in the
dictionary and their actual usage in speech; two-syllable words: Primary stress on the
initial syllable (r = 0.99), Primary stress on the final syllable (r = 0.95), Primary and
secondary (r = 0.92) (Fig. 2); polysyllabic words: Primary stress only (r = 0.99),
Primary and pre-tonic secondary stress (r = 0.95), Primary and post-tonic secondary

Table 3. Polysyllabic stress patterns in the dictionary and in the spoken corpus.

Regions Polysyllabic stress patterns

Primary only Primary and pre-
tonic secondary

Primary and post-
tonic secondary

No transcript
in the
dictionaryDictionary Speech Dictionary Speech Dictionary Speech

British
Columbia

3 8 1 3 0 3 14

Manitoba 3 6 0 1 1 5 8
New
Brunswick

1 3 0 2 0 1 6

Newfoundland 16 58 1 10 6 23 38
Nova Scotia 23 49 1 7 6 27 36
Alberta 10 27 3 14 2 13 33
Ontario 105 417 28 53 33 74 210
Prince Edward
Island

6 27 1 5 3 10 24

Saskatchewan 22 61 2 7 1 7 43
Quebec 25 110 11 38 7 32 22
Total 214

67%
766
70%

48
15%

140
12%

59
18%

195
18%

434
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stress (r = 0.97) (Fig. 3). The graph also indicates that the Ontario area has the highest
values which corresponds with the density of population, the greatest number of
recorded CE speakers and, hence, the largest amount of tokens collected in that area.
A more balanced amount of speakers will be represented in 3.3.

The data suggest that lexical stress patterns codified in the dictionary are actually
reproduced in the speech of CE speakers and provide the basis for oral speech com-
prehension. The “sound image” of words, when preserved through recurrent use in
running speech, provide for word recognition and, consequently, speech recognition.

However, the digital identity becomes transparent only in relation to other varieties
of English, i.e. BE and AE stress patterns occurrence (See Discussion).
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Fig. 2. Correlation of corpus and dictionary data (two-syllable words).
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3.3 Regional Identity in Ontario and Quebec

Although we found remarkable agreement between the spoken corpus and the dic-
tionary data, there were obvious distinctions between the provinces’ scores. In this
section we will contrast the data from the Anglophone area of Ontario and the Fran-
cophone bilingual province of Quebec by balancing the two groups for number, gender
and age (n = 20). In two-syllable words the iambic pattern occurs more regularly in
Quebec, i.e. one in two words (Table 2), e.g. ci′ty, ho′tel, to′ward, while in Ontario it is
less common, one in three cases, e.g. my′self, e′lite. In three-syllable words we found a
higher percentage of both types of rhythmical stresses in Quebec, e.g. ˌinter′view,
ˌMontre′al and ′everyˌthing, ′waterˌfall, ′uniˌverse. The latter distinction is not sig-
nificant: x2 = 2.79, p = 0.1.

Another important factor that called for investigation was the impact of word
position (initial, medial, final) in the intonation phrase (IP) on the rhythmical stress
occurrence: there is evidence of all types of rhythmical stresses gravitating towards the
final position in IP. Higher values in rhythmical stresses data in Quebec are illustrated
(Fig. 4).
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Fig. 3. Correlation of corpus and dictionary data (polysyllabic words).
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Notable is the fact that the three main tendencies (iambic rhythm, rhythmical stress
patterns and the increase of their frequency towards the end of IP) are realized in
Quebec speech to a greater extent than in Ontario. Right-edge prominence as a char-
acteristic of French stress suggests itself as the most plausible (and probable)
explanation.

4 Discussion and Conclusions

The results of the overall quantitative lexicon and sound corpus analysis of digital
identity in CE lexical stress patterns can be assessed in relation to our previous data on
BE and AE [15]. Focused on distinctions found between the two major varieties
registered in Cambridge Pronouncing Dictionary, the previous data revealed that AE
tends to apply an iambic pattern more often than BE. The facts are known to be loan
words from Romance and other languages. In the two-syllable domain we can draw the
following comparisons:

BE: trochaic 67%; iambic 23%; pre-tonic 10%; post-tonic none.
AE: trochaic 34%; iambic 57%; pre-tonic 8%; post-tonic 1%.
CE: trochaic 68%; iambic 22%; pre-tonic 1%; post-tonic 9%.

Basically, as one can see, CE has preserved the British patterns but it has also
introduced and developed the post-tonic pattern, common with AE, which may be
interpreted as the effect of language contact with French. Two adjacent syllables
bearing stress, we can assume, is a sign of syllable-based rhythm, typical of the French
language as a prototypical syllable-timed language.

In the three-syllable domain the comparisons are as follows:

BE: primary only 68%; pre-tonic 30%; post-tonic 2%.
AE: primary only 67%; pre-tonic 26%; post-tonic 7%.
CE: primary only 67%; pre-tonic 15%; post-tonic 18%.
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Fig. 4. Positional distribution of stress patterns with rhythmical stress (Ontario and Quebec).
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Here again the post-tonic pattern has developed from what was present in the other
two varieties in a tiny proportion. Thus the three varieties have practically identical
nomenclature of stress patterns which are nationally distinctive in frequencies and,
probably, in their distribution and functions. The point of argument is that CE may not
have developed the identifying features, it may have preserved them, just like Canadian
French has preserved a few pronunciation features which distinguish it from Parisian
French. In support of this argument we can say that the diagnostic post-tonic patterns
were found in everyday CE, in basic vocabulary of people and not in newly borrowed
words. There are words of kinship and place names, for instance, in the lexicon we
found in the corpus. They may have originated in French and were supported by
language contact with French over a long period of time, but they are not new bor-
rowings in CE speakers’ vocabulary.

There are other conditions which facilitate the choice of the post-tonic pattern,
among them the position of the polysyllabic word in the intonation structure of
IP. Although we collected earlier in CE native speakers’ survey enough data to confirm
the cognitive reality of the pattern [17], we acknowledge that there are certain phonetic
contexts, widely attested in literature (Cf. overview in [8]) that provoke the prolon-
gation of the last syllable both in the word and in the intonation phrase [16], and
facilitate the pronunciation of a long vowel in the right-edge final position. In the CE
spoken corpus of IDEA the general tendency for final prolongation was verified and
supported by the frequency data on rhythmical stress patterns at the termination of
intonation phrases, with special reference to the Francophone area of Quebec.

The general conclusions are as follows:

1. By collecting an impressive amount of data from dictionaries and the spoken corpus
of CE lexical stress we have corroborated the theories of English stress which
proposed both stability and variance in the matrix of lexical stress patterns shared
by the three major varieties [15, 17–20]. Language contact with French resulted in
the interplay of two basic tendencies, recessive, common with other Germanic
languages (stress on the initial syllable) and rhythmical, caused by the stress on the
final syllable and alternating strong and weak syllables.

2. CE demonstrates digital identity in relation to the other two varieties, BE and AE.
The most robust data on national and regional identity of CE speech can be found in
the domains of two-syllable and three-syllable stress patterns where the diagnostic
feature is the post-tonic rhythmical stress and its frequency.

3. Taking into account the role of lexical stress in word recognition [5, 7, 14], we
assume that the stability of the stress patterns system in English across the three
major varieties provides for speech intelligibility and listening comprehension in
oral discourse, as well as for speech recognition systems. Nevertheless, the digital
identity of Canadian English as a distinct autonomous variety of English which, we
hope, has been established in the present lexicon and the corpus study, may also
become relevant for intercultural communication.
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Abstract. Automatic Speech Recognition (ASR) has revolutionized human-
machine interactions as it allows the use of speech as an input modality. Speech is
easy, natural and it is a skill that most people possess in their respective lan-
guages. Therefore, speech technology contributes to the usability and inclusivity
of applications. ASR in languages such as English is extensively developed as
there are large amounts of relevant resources available such as audio or tran-
scribed data. For languages which are under-resourced, such as Kreol Morisien,
ASR is a monumental task. In this paper, an attempt at developing an ASR
system in Kreol Morisien is described. The ASR system was developed for the
health domain to enable the automatic recognition of medical symptoms in
spoken Kreol. The data collection process included the manual creation of a list
of 848 symptoms along with 4000 audio files. Using the created corpus, the
acoustic model for Kreol recognition was built and trained. This paper also
describes a user evaluation which was conducted in different environments.
Findings showed that the accuracy of the acoustic model was mainly affected by
the level of noise. The gender of the speaker and the pronunciation style
(depending on the region where the speaker originates from) did not cause any
significant difference in the performance of the acoustic model.

Keywords: Automatic Speech Recognition � Kreol Morisien �
Under-resourced languages

1 Introduction

Automatic Speech Recognition (ASR) has been the subject of research for many
decades. However, with the recent popularity of technologies such as Amazon Alexa
and Apple Siri, ASR has received a new surge of interest [1]. The worldwide tech-
nological advancements in terms of mobile devices such as smartphones and tablets
have also highlighted the need for speech-based interactions [2] as speech is the pri-
mary means of human communication. Speaking is faster and more natural, therefore
increasing the usability of many applications. Speech-based applications are also more
inclusive [3] as they provide access to non-standard populations such as the elderly, the
low-literacy group or the visually impaired.
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Creating speech-based applications in well-resourced languages such as English
and French is not a big task, since text-to-speech systems are already available for these
languages. On the other hand, creating speech-based applications for languages that do
not offer the resources for Human Language Technologies (HLT) is a monumental
task. ASR in such cases require large amounts of transcribed data for the training
process and very often, for these languages, there are no existing corpus of data that can
be used. Generating this required transcribed data is an expensive process in terms of
both manpower and time [4].

In Mauritius, to the best of our knowledge, there is only one previous research [5] on
ASR in Kreol. It is most likely due to the absence of a corpus of text and audio data in
the language. Yet, there are many possible applications of ASR in the Mauritian context
since Kreol Morisien is spoken by the majority of the population [7]. For example,
despite English being the official language, Kreol is used extensively in schools, the
workplace and in most public institutions such as hospitals. In this paper, a first attempt
at ASR in Kreol Morisien is presented whereby the authors describe their approach to
building an acoustic model that is able to recognize spoken medical symptoms being
experienced by patients. The health domain has been chosen only because of the
authors’ previous work in developing smart health applications for Mauritius [6]. The
rest of this paper is structured as follows: Sect. 2 provides a literature review on Kreol
Morisien and Automatic Speech Recognition. Section 3 describes the implementation
of the acoustic model for Kreol recognition. In Sect. 4, the user evaluation process is
outlined along with findings and discussions. We conclude the paper in Sect. 5.

2 Literature Review

2.1 Kreol Morisien

According to Ethnologue1 (Accessed April 2019), the Kreol language, also known as
Kreol Morisien, is the de facto language of national identity in Mauritius and is spoken
by 1,339,200 around the world. Kreol can be defined as a French-based language
including a number of words from English and from the African and South Asian
languages spoken in Mauritius [6]. The status of Kreol Morisien has been the subject of
an ongoing debate since Mauritius attained independence from the British in 1968.
However, it is only in recent times that efforts have been made by the Government to
formalize the language: In 2010, Akademi Kreol Morisien (AKM) was created and
different committees were set up to define and standardize the spelling, syntax, pro-
nunciation and grammar of the Kreol language. In 2012, the Government of Mauritius
introduced the language in the curriculum of primary education.

2.2 Automatic Speech Recognition for Under-Resourced Languages

Automatic Speech Recognition (ASR) is an important technology for the most natural
human-computer interaction, given that speech is a skill that the majority of people

1 https://www.ethnologue.com.
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have [1]. Speech technology can address barriers in human-human interactions (two
people speaking different languages can use ASR to communicate seamlessly) as well
as human-machine interactions (applications such as Voice Search [8] and Personal
Digital Assistants [9]). ASR has already changed the way people live and work as
speech becomes the input modality of human-machine interactions [1]. This is espe-
cially true for established languages such as English and French, for which a large
amount of resources is available.

However, the same cannot be said for languages from developing countries which
have so far received a lot less attention [12]. Yet, the need for speech technology in these
languages is high as speech-based interactions are easy and thus accessible to a wider
population including the low literate, the elderly and people with certain impairments
[3]. The challenge for ASR in such languages is the limited availability of resources
which has led to these languages being termed as ‘under-resourced’. The concept of
under-resourced language was introduced by [10] and [11]. In a survey for ASR in the
context of under-resourced languages, [12] summarized the concept as a language with
some or all of the following: “lack of a unique writing system or stable orthography,
limited presence on the web, lack of linguistic expertise, lack of electronic resources for
speech and language processing, such as monolingual corpora, bilingual electronic
dictionaries, transcribed speech data, pronunciation dictionaries, vocabulary lists, etc.”

In the context of Kreol Morisien, it can be considered as an under-resourced
language mostly for the lack of electronic resources required for speech processing. In
this paper, a first attempt at developing an ASR system in Kreol Morisien is described.
The ASR system, through its acoustic model, aims to recognize spoken symptoms from
patients using a health diagnosis tool. Thus, the conversation patients may have with a
nursing staff while describing their symptoms is being simulated (A snapshot of such a
conversation can be found in Table 1). Since, the focus of this paper is ASR, only the
speech recognition part of this work is described, omitting details on health diagnosis.

3 Implementation of Acoustic Model

3.1 Data Collection

Since there are no existing corpus for Kreol Morisien, the implementation of the
acoustic model included the data collection process during which both text and audio
data was manually created.

Text Corpus. Since there are no corpus available for Kreol Morisien, the implemen-
tation of the acoustic model included the data collection process. A list of 848 commonly

Table 1. Examples of medical symptoms in Kreol Morisien and English

Kreol Morisien English

Mo latet p fermal I have a headache
Mo p gagne la fievre I have a fever
Mo p tousser I am coughing
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used words to describe symptoms in Kreol was created and based on these words, a list of
2989 sentences was manually created to be used for language modelling.

Audio Recording. The audio for each word and sentence was recorded using
Audacity2 and saved as .wav files. Four different speakers (two males and two female)
recorded 1000 audio files each. Therefore, a total of 4000 audio recordings was
obtained. The absence of noise was ensured during the recording process as noise
would cause interferences during the training of the acoustic model. Presence of noise
would cause the amplitude of the audio to increase and therefore, it was ensured that
the amplitude remained between −0.5 and 0.5.

3.2 Building of Phonetic Dictionary

A template dictionary of the list of 848 Kreol symptoms was constructed using the
Lexicon tool3 to understand the phonetic representation of each word (known as
phoneme). Different pronunciations for the same word were catered for (see Fig. 1) to
boost efficiency of the recognition model since the Kreol language is articulated dif-
ferently by different individuals. The dictionary was built using the French phones
since they are closer to Kreol pronunciation than English. For example, ‘a’ is repre-
sented as ‘AE’ in English phones whereas in French, it is represented as ‘aa’.

3.3 Building of Language Model

The Lexicon tool was used to generate the language model in order to calculate the
probabilistic occurrence of words. A total of 2989 sentences and 784 words was used to
build the language model.

3.4 Preparation of Transcript Files

The transcription files were manually created based on the audio recordings from the
data collection process. Both Kreol_train.transcription and Kreol_test.transcription

Fig. 1. Snapshot of Phonetic Dictionary

2 https://www.audacityteam.org/.
3 www.speech.cs.cmu.edu/tools/lmtool.html.
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have been prepared, one for training and one for testing respectively. Each word and
sentence in the files were allocated a unique identifier. The transcription files was
updated each time new audio recordings became available. This was an effort intensive
task that required in depth revisions since mistakes could lead to failure in training.

3.5 Training the Acoustic Model

CMU Sphinx4 was used to train the acoustic model with 80% of the audio recordings
corresponding to 3.2 h of audio data. A phoneset file of all phones in the dictionary was
created and a context dependent model was used for training. The details of the final
version of the acoustic model are described in Table 1.

4 User Evaluation

A user evaluation was conducted to determine the accuracy of the acoustic model in
correctly recognising the symptoms spoken by users in continuous speech. There were
two main parts of the user evaluation, referred to as User Study 1 and User Study 2 for
the rest of this paper. A set of 50 sentences in Kreol Morisien, that did not occur in the
train and the test sets, was created to conduct the user studies. Bothe studies used the
same sentences to ensure that while other variables such as level of noise were
changing, the complexity of the speech was the same across studies.

4.1 User Study 1

The aim of this study was to determine the accuracy of the acoustic model in varying
environments in order to simulate circumstances in which people may be using such an
application in real-life settings. The participants and the methodology are described in
the following.

Participants. Ten participants were involved in User Study 1 and they were divided
into two groups (A and B) such that two different participants were assigned the same
group of sentences. Additional demographic information about the participants which
was collected through a questionnaire can be found in Table 2.

Table 2. Demographic information of participants in User Study 1.

Group A Group B

Age 34.5 21
Gender Male (3) Female (2) Male (3) Female (2)
Region Urban (2) Rural (3) Urban (2) Rural (3)
Level of Kreol Native Speaker (5) Native Speaker (5)

4 https://cmusphinx.github.io.
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Methodology. The sentences were split in 5 sets of 10 sentences (S1 to S5) and each
participant in Group A and Group B were assigned one set of sentences to speak. For
comparison purposes, it was ensured that each set of sentences were assigned to
speakers of the same gender from both groups. However, different speakers from each
group tested the acoustic model in different environments in terms of noise levels. The
participants spoke the sentences using the same hardware and the acoustic model
output the transcribed speech for evaluation purposes.

Findings and Discussion. The ability of the acoustic model to recognize speech in
Kreol Morisien is evaluated based on Word Error Rate (WER). WER is calculated as
the total number of insertions, deletions and substitutions in the output of the acoustic
model divided by the total number of words in the reference sentence. For each user
study, the Sentence Error Rate (SER) is also provided. SER is the proportion of the
sentences which have an error in them. In this paper, all reported WER and SER values
have been calculated using the Python module for ASR evaluation5.

The Word Error Rate for User Study 1 was 17.91%, that is, the overall accuracy of
the acoustic model across all participants was 82.09%. In Fig. 2, WER for each par-
ticipant from both Group A and Group B are displayed. Statistical testing was carried
out at p < 0.05 using a two-sample t-test for unequal variances. There was no signif-
icant difference between Group A and Group B (p = 0.07). The regions from which the
participants originated (Urban or Rural) and the gender did not cause any significant
difference in the performance of the acoustic model (p = 0.26 and p = 0.17). The SER
value was 57% across the sentences spoken by the participants.

In this user study, the authors did not control the environment with respect to noise
level. Therefore, it was performed in mixed environments with some speakers inside a
room with background noises like a running fan and some in open air with people

Fig. 2. WER of speakers in User Study 1

5 https://github.com/belambert/asr-evaluation.
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talking and moving nearby. The average accuracy is 82.09% for all the sentences across
all speakers. The biggest differences in accuracy are between speakers 1A (21.05%) and
1B (7.9%) and speakers 4A (33.33%) and 4B (15.15%), despite each pair speaking the
same sentences. This difference may have arisen because as per data gathered in the
questionnaire, despite being a native creole speaker, speaker 1A speaks French on a
daily basis and thus her accent is different from speaker 1B who speaks Kreol Morisien
regularly. Speaker 1A was also in a noisier environment. The difference between
speakers 4A and 4B may also have resulted due to the difference in environments.

4.2 User Study 2

Following User Study 1 in mixed environments where the accuracy of the acoustic
model in different levels of noises was studied, User Study 2 was conducted with 10
participants in two different environments. The aim of this user evaluation was to study
how the acoustic model performed in two different environments: a noisy environment
as well as a quiet environment. For the noisy environment, an open corridor with
people talking and laughing, sounds of doors opening and closing and people walking
loudly was chosen. There was also a car park nearby and thus, there was also vehicle-
related noises in the background. The quiet environment was indoors, in a classroom
with closed doors.

Participants. Ten participants, who were all students from the University of Mauritius
took part in this study. They were divided into two groups (A and B) such that two
different participants were assigned the same group of sentences for each environment.
Additional demographic information about the participants are given in Table 3.

Methodology. The same set of sentences as in User Study 1 were used whereby each
participant in Group A and Group B were assigned one set of sentences (S1 to S5) to
speak, irrespective of their gender. For comparison purposes, the environment was kept
constant throughout the study, that is, for the first part all participants were in the noisy
environment and for the second part, in the quiet environment. For example, speaker
1A spoken sentence set S1 in both the noisy and the quiet environments.

Findings and Discussion. As expected, WER for the quiet environment was 13.70%
whereas for the noisy environment, it was 37.01%. Statistical testing was carried out at
p < 0.05 with a paired t-test and the difference between the two environments was
statistically significant (p = 0.000004). In the noisy environment, insertions and sub-
stitutions are more likely given the background noises and this significantly affected the

Table 3. Demographic information of participants in User Study 2.

Group A Group B

Age 20 20.5
Gender Male (3) Female (2) Male (2) Female (3)
Region Urban (2) Rural (1) Rodrigues (2) Urban (3) Rural (2)
Level of Kreol Native Speaker (5) Native Speaker (5)
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WER and the overall accuracy of the acoustic model. For the noisy environment, there
was no statistically significant difference in the performance of the acoustic model for
gender (p = 0.30) and region (p = 0.24). The SER value for the noisy environment was
90% while for the quiet environment it was 42%. Gender and Region did not cause
statistically significant differences in the quiet environment (p = 0.46) and (p = 0.12).

For User Study 2, there were two participants (3B and 4B) from Rodrigues.
Rodrigues is an autonomous outer island of the Republic of Mauritius and their style of
Kreol can be different from people in the main island. Statistical testing was performed
between participants from Mauritius and Rodrigues for the same sentences using a
paired t-test at p < 0.05. Between participants 3A (from Mauritius, Rural region) and
3B, no statistically significant differences were observed for the ten sentences of S3 in
both the noisy (p = 0.11) and the quiet environments (p = 0.63). Similarly, there were
no statistically significant differences between participants 4A (from Mauritius) and 4B
for the ten sentences of set S4 in the noisy environment (p = 0.18) and the quiet
environment (p = 0.94) (Table 4 and Fig. 3).

Table 4. WER for participants in User Study 2

Sentence set WER

Noisy environment Quiet environment
Group A Group B Group A Group B

S1 32.21 34.21 15.79 7.90
S2 30.00 40.00 15.00 17.50
S3 44.44 30.56 13.89 11.11
S4 54.55 42.42 15.15 15.15
S5 29.79 31.92 12.77 12.77

Fig. 3. WER for speakers in User Study 2
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5 Conclusion and Future Work

In this paper, an initial investigation regarding Automatic Speech Recognition (ASR) in
Kreol Morisien was presented. The context under study was the health domain whereby
the aim of the ASR system was to be capture patients’ symptoms as described through
speech. Given the lack of a corpus in Kreol Morisien, the data collection process
included the manual creation of both audio and transcribed data which was then used
for training an acoustic model to recognize the language.

Given the widespread use of Kreol in Mauritius, speech technology can
undoubtedly have a significant impact. However, given its under-resourced status with
regards to the lack of resources for speech processing, the challenge is to investigate
potential approaches for generalized ASR in Kreol without having to start from scratch
as discussed by [12]. Future work will focus on how existing corpus for English and
French can be used as a starting point in order to decrease the extensive efforts required
to build a corpus for a new language from scratch.
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Abstract. In this study, we propose an approach for script selection
in order to design TTS speech corpora. A Deep Convolutional Neural
Network (DCNN) is used to project linguistic information to an embed-
ding space. The embedded representation of the corpus is then fed to a
selection process to extract a subset of utterances which offers a good lin-
guistic coverage while tending to limit the linguistic unit repetition. We
present two selection processes: a clustering approach based on utterance
distance and another method that tends to reach a target distribution
of linguistic events. We compare the synthetic signal quality of the pro-
posed methods to state of art methods objectively and subjectively. The
subjective measure confirms the performance of the proposed methods
in order to design speech corpora with better synthetic speech quality.

Keywords: Corpus design · Deep neural networks ·
Embedding space · Clustering · Text-to-speech synthesis

1 Introduction

Text-to-speech synthesis is widely used in industry nowadays. Nevertheless, some
applications still require improvements for further developments, like audiobooks
generation.

In practice, the synthetic speech quality is strongly affected by the quality
of the corpus used to build the voice. Previous studies [1–3] have shown that
a random selection is not efficient to design such speech corpora. This is true
especially for unit selection-based speech synthesis but also statistical parametric
and hybrid ones. A random or unbalanced corpus contains lots of phonological
unit repetitions and, most importantly, does not guarantee a sufficient variety
of units for the speech synthesis process.

Moreover, the corpus should be as small as possible in order to minimize the
human cost of high quality recording and labeling checking stages. In the case of
unit selection and hybrid approaches, a reduced corpus size may also accelerate
the synthesis process considering the smaller search space. In that case, removing
redundant elements while adding critical ones to the corpus is important. A well-
designed corpus combines parsimony and balanced unit coverage in order to gain
a satisfactory level of richness with a minimal cost construction. The aim of this
c© Springer Nature Switzerland AG 2019
A. A. Salah et al. (Eds.): SPECOM 2019, LNAI 11658, pp. 423–432, 2019.
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study is to design an automatic method to select the best recording script from
the book. The selection is done at the utterance level to help the speaker have
a well-adapted intonation. The recorded signals form a voice corpus on which is
based a text-to-speech synthesis system to vocalize the complementary part of
the book.

Several works on automatic TTS corpus design have been carried out since
early 2000s (for instance [4–6] for some preliminary ones). The covering of lin-
guistic units under a parsimony constraint is the main idea of script corpus
design. In particular, the case of full covering can be formalized as a set-covering
problem [6]. Two axes have been mainly studied: which units should be better
to cover, and which algorithmic approach is the most adequate to best pro-
duce a solution according to the chosen optimization criteria? Many unit types
have been considered: allophones [6], “sandwich” units [7], triphones, syllable
and morpheme elements [8] for instance. [1] focused on maximum variability of
unit features in the selected subset instead of defining a discrete unit set to be
covered. The most commonly used algorithmic strategy is the greedy one which
provides solutions close to optimal ones [9].

Regardless of set covering, some studies [10,11] investigated the distribution
of units in the corpus. [10] suggested to design TTS corpora according to a
constraint of minimization of the Kullback-Leibler Divergence (KLD) between
their diphoneme and triphoneme distribution and a prior distribution. They then
focused on the usage frequencies by the TTS system and the distribution of units
in reduced speech corpus [12]. They assumed that the most used units by the
synthesis process are the most important to be covered by the reduced corpus.
However, the achievements of this method directly depend on the performance
of unit selection. Recently, the maximization of an extended entropy of phonetic
and prosodic context has been considered in [13] to design corpora and the results
have underlined that this contextual information should be taken into account.

Increasing the number of features and samples leads to an exponential growth
of the covering size if no feature selection is done. Instead of introducing expert
knowledge to select the features, we propose to use a model for that task. Deep
neural networks and particularly deep auto-encoders could be used to do so.
[14] introduced an approach to build Paragraph Vectors, also called Doc2Vec.
Their model maps variable length pieces of text to a fixed-length vector. This
method was introduced to work with words as units. [15] presented a sequence-
to-sequence model based on long short-term memories (LSTM). However their
proposition was used for translation task, the LSTM hidden states can be used
as embedding vectors for utterances when the model has been trained as an auto-
encoder. Although the context and application of these studies were different, in
both approaches, the linguistic information of each piece of text is embedded in a
fixed-length vector. In our case, we use a Convolutional Neural Network (CNN)
to map utterances to an embedding space. Then, we try to find a tiling of the
embedding space, in order to offer a larger linguistic covering, that could improve
the speech synthesis quality compared to standard approaches. These selection
approaches are compared to the LSTM and the Doc2vec methods as well as
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a standard set covering one, implemented as the covering of all diphonemes
using a greedy strategy [3,9]. The perceptual evaluation shows that the proposed
methods are more efficient than the standard one. Moreover, a crucial asset of
these embedding-based approaches is that it is not necessary to select features,
they adapt automatically to the book to be generated.

Section 2 explains the corpus design procedure in three steps. In Sect. 3,
the objective and subjective results are presented. Finally, Sect. 4 discusses the
results and future works.

2 Methodology

The main idea of this paper is to derive a vector representation of the linguistic
information in order to facilitate the selection of a subset of utterances having
a good linguistic variety from a text corpus. The proposed approach relies on
convolutional neural networks [16] with the aim of learning a non linear trans-
formation from textual and linguistic data into a new pertinent representations
without manual feature extraction/selection. The derived utterance embedding
enables to guide and compare some selection algorithms to extract a set of utter-
ances as a subset offering a large linguistic richness. The first algorithm is to cover
all clusters of the embedding space stemming from a K-means algorithm. The
second one is based on a greedy strategy to design an utterance subset close to
a target linguistic distribution.

Figure 1 shows the process of corpus design. The overall process is the fol-
lowing: (1) information extraction from the text corpus, (2) projection of feature
vectors into an embedding space, and (3) utterance selection.

Fig. 1. Corpus design process and CNN auto-encoder architecture. “Len” is the length
of the input and output layers.

2.1 Information Extraction

We define a linguistic feature vector, for each phoneme in the text utterance,
providing information about the phoneme, e.g., its identity, preceding and fol-
lowing neighbours, its position in the syllable/word/utterance it belongs to, etc.
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The linguistic features are automatically extracted [17]. The linguistic vector, of
size 296, contains categorical and numerical features. The categorical attributes
represent information about quinphonemes, syllables, articulatory features, and
POS for the current, previous and following words. These features are converted
to a one-hot vector. The numerical features take into account information such
as the phoneme position inside the word or utterance. These numerical features
are normalized so that all the entries of the linguistic vector are in the range
[0, 1]. The linguistic content of an utterance is then represented by the sequence
of linguistic feature vectors associated to the phonemes that compose it.

2.2 Embedding Space

From this initial representation of the linguistic content at phoneme and utter-
ance levels, using an embedding space enables to derive a continuous and com-
pressed representation. Importantly, this approach avoids the injection of expert
knowledge to drive the selection of the most important features, letting the model
reveal what is of interest.

To build up this embedding space, an auto-encoder based on a multi-layer
CNN has been implemented, as shown on Fig. 1. To avoid overfitting, a dropout
layer is used with a 0.1 drop probability after each layer in the encoder [18].
CNN layers are used with kernel size of 5 and the tanh activation function. The
loss function is the Mean Squared Error (MSE).

Two kinds of training sets have been tested to learn the CNN auto-encoder:
a set of utterances (Utt) with variable length, and a set of chunks provided by
a sliding window (SW ) of size 100 phoneme instances with a step size of 10
phonemes. The best configurations will be selected to be compared perceptually.

After training, the network is used to generate, for each input sequence of
linguistic vectors at utterance level, a sequence of unit vectors in embedding
space. Its length is equal to the number of phoneme instances in the input
utterance.

To compare our proposed method to state of the art models, we have also
used an LSTM model based on [15] and Doc2vec. The LSTM model has two
layers, one for encoding and one for decoding with 30 memory units each. The
Doc2vec model is learnt using the gensim toolbox with an output dimension of
30, a window size of 5 and a minimum count of input vectors equal to two. For
these two models, we have searched for the best configuration and an embedding
size of 30 with SW (resp. Utt) for LSTM (resp. Doc2vec) gives the best results.

2.3 Utterance Selection

The main idea behind utterance selection is to extract a set of utterances from a
book that offers a representative linguistic coverage while limiting the linguistic
unit repetitions. In our case, the term unit stands for phonemes in context, based
on the linguistic features used. The concrete goal is to provide a large variety
of options to the TTS system while minimizing the voice size. We propose two
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methods for selecting utterances: the first one is based on a clustering approach,
the second tends to reach a target distribution of linguistic events.

Clustering. The clustering methods group vectors based on the similarity of
their attributes. By selecting one vector per cluster, we assume that it represents
the information of other elements of its cluster. In particular, one can consider
that the most representative vector is the closest one to the cluster center.

In order to compute a similarity measure between utterances with differ-
ent lengths, we have built a numerical and fixed dimensional representation of
utterances. Let us consider an utterance u composed of m phoneme instances, its
ith phoneme instance is represented by the embedded vector pi = (xi

1, . . . , x
i
N ),

where N corresponds to the embedding dimension. Several aggregation operators
could be used to take into account the contributions of phonemes in u, like the
sum, and we have chosen the average to avoid the utterance length-dependency:
u is then represented by û = (f1, . . . , fN ) where fj = 1/m

∑m
i=1 xi

j .
The clustering of the full text corpus F is made based on the K-Means

algorithm using the Euclidean distance between utterance vectors û as the sim-
ilarity measure. As mentioned above, the closest vector to the cluster center is
selected from each cluster. The length lS of the set S of selected sentences is
given by the sum of the length of its elements (in terms of number of phoneme
instances). In order to achieve a target reduction rate τ∗ of F , the cluster num-
ber is iteratively updated (the selection is then redone): its initial value K0 is set
to �τ∗ × (number of utterances inF)�; resulting from step i, a selected subset Si

is derived using Ki clusters and Ki+1 is set to the �Ki × τ∗ × lF/lSi
�.

KLD Minimization. A greedy strategy to minimize the Kullback-Leibler
divergence in the context of corpus design has been proposed in [10]. Although
this method was based on the phonological unit distributions, the idea can be
transposed to continuous values in embedding space. In our case, the target
distribution is the natural one, given by the unit distribution in the full corpus.

Precisely, for each dimension of the embedded phoneme vectors, values are
normalized to the range [0, 1] and an histogram h is then computed by binning
the values into ten bins (X = {[0, 0.1), . . . , [0.9, 1]}). Thus, for each latent feature
fj , its probability distribution can be defined using histogram h(fj); the KLD
between the probability distribution P j

s of fj in the selected set of utterances S
and the probability distribution P j

t in the target set of utterances is derived as
follows:

KLD(P j
S || P j

t ) = −
∑

x∈X

P j
s (x) log

(
P j
s (x)

P j
t (x)

)

.

To achieve a target sub-corpus size, at each iteration, a greedy process selects
the utterance which minimizes the average of KLDs (one KLD per feature)
between the target distribution and the distribution computed from the new set
of utterances, including the candidate utterance.
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3 Experiments and Results

3.1 Experimental Setup

The initial corpus contains 3,339 utterances of a French expressive audio-book
spoken by a male speaker. The overall length of the speech corpus is 10h44.
More information on the annotation process can be found in [20]. The audio-
book has been divided into two parts. A test set T which is randomly selected
as a continuous part with 334 utterances (10% of the whole corpus). The rest of
the audio book is named the full corpus and is denoted F in the remainder. F
is composed of 3,005 utterances and 362,126 phoneme instances. The objective
is to extract from F a subset S of a given size. The natural signal samples of S
will be used to synthesise the utterances of T by the IRISA TTS system [19].
To derive the embedded representation of utterances of F , 90% of F are used
for training the CNN models and 10% are used as a validation set to avoid
overfitting.

The conversion of Utt (i.e. F here) into SW generates 36206 samples with
an average length of 100 phoneme instances. Several embedding sizes have been
tested (N = 240, 120, 60, 30, 15). As N = 30 gives the best reconstruction error
for the CNN models (0.00021 for SW and 0.00067 for Utt), we keep that embed-
ding size for the experiments. For comparison, the reconstruction error for the
LSTM model is 0.056 for SW with N = 30.

3.2 Best Configuration Selection

In order to compare the performance of the selection methods and evaluate
the impact of the selection size on the synthesised speech quality, several sub-
corpus sizes of F have been tested: 50%, 40%, 30%, 20%, and 10%. The selection
methods under comparison are the following:

– Random: the baseline method is a random selection of utterances. To have
representative results, 10 random selections have been built for each reduction
size, and for the evaluation, the average values are considered.

– SC : this system is based on a greedy strategy to solve a Set Covering prob-
lem [9]. The utterances are selected so as the solution under construction
covers at least η times each linguistic feature. Starting from 1, η is incre-
mented until the target sub-corpus size is reached.

– GreedyKLD : a greedy algorithm is used to minimize the KLD between the
diphoneme distribution of the selected subset S and F as done in [10].

– Doc2Vec/LSTM/CNN KMeans: as detailed in Sects. 2.2 and 2.3, the selec-
tion strategy is K-Means algorithm which clusters the embedding space. This
embedding is derived by Doc2Vec model or LSTM auto-encoder, which are
presented in Sect. 1, or a CNN auto-encoder.

– CNN KLD : it is a variant of GreedyKLD. The considered distributions are
those associated to the embedded vectorial representation as explained in
Sect. 2.3.
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Fig. 2. TTS global cost for the different systems.

For each selection method and reduction size, the obtained voice is used
to synthesize the utterances of T . Figure 2 displays the associated average TTS
global cost (the average concatenation and target costs are not detailed here since
they indicate the same trends). We can observe that the reduced set provided
by CNN KMeans achieves the best performance. We have also compared the
proposed CNN embedding to the Doc2Vec and LSTM models. The results show,
on TTS global cost, that the CNN based approach performs better.

Considering TTS global cost results, we keep the two following approaches,
relying on different selection strategies, for further evaluations: CNN KMeans
(using Utt as training set) and CNN KLD (with SW ).

3.3 Coverage Rate and KLD Evaluation

As for the assessment of the phonological richness of a selected subset S of F , its
associated diphoneme (resp. triphoneme) coverage rate, i.e. the rate of distinct
diphonemes (resp. triphonemes) of F present in S, is computed. Futhermore,
the KLD between diphoneme (resp. triphoneme) distributions of S and F is also
calculated in order to evaluate the closeness of both distributions, or, in other
words, the naturalness of unit distribution in S. Table 1 details these statistics
for each selection method and several sub-corpus sizes.

For both criteria, when the sub-corpus size increases, all the methods get
obviously better. Globally, with a sub-corpus size of 50%, all the methods have
very close results in terms of coverage rate and KLD.

More precisely, although the reduced subsets resulting from SC naturally
offer the best diphoneme coverages, CNN KMeans provides better diphoneme
and triphoneme coverage rates than the other approaches. Concerning KLD,
the GreedyKLD method yields the best results for diphonemes, as expected.
However, the CNN KMeans method achieves a lower KLD of triphonemes in
comparison with GreedyKLD method. Globally, the CNN Kmeans methods has
very good results on both criteria.
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Table 1. The coverage rate and KLD for diphonemes (Diph) and triphonemes (Triph)

SubCorpus Size 10% 20% 30% 40% 50%

Method Diph Triph Diph Triph Diph Triph Diph Triph Diph Triph

Coverage rate

Random 0.84 0.52 0.90 0.66 0.93 0.74 0.95 0.80 0.96 0.85

SC 1 0.56 1 0.69 1 0.78 1 0.86 1 0.89

GreedyKLD 0.86 0.52 0.92 0.66 0.95 0.74 0.96 0.80 0.99 0.85

Doc2Vec KMeans 0.82 0.50 0.91 0.66 0.93 0.74 0.96 0.81 0.97 0.86

LSTM KMeans 0.83 0.51 0.90 0.65 0.93 0.74 0.95 0.80 0.97 0.85

CNN KLD 0.86 0.54 0.91 0.67 0.94 0.76 0.95 0.82 0.97 0.86

CNN KMeans 0.88 0.61 0.93 0.75 0.97 0.83 0.97 0.88 0.98 0.91

Kullback Leibler Divergence

Random 0.012 0.153 0.006 0.077 0.003 0.048 0.002 0.032 0.001 0.022

SC 0.015 0.163 0.006 0.079 0.003 0.048 0.003 0.033 0.002 0.022

GreedyKLD 0.002 0.133 0.000 0.067 0.000 0.042 0.000 0.028 0.000 0.019

Doc2Vec KMeans 0.013 0.153 0.006 0.078 0.003 0.047 0.002 0.032 0.001 0.022

LSTM KMeans 0.013 0.150 0.006 0.079 0.004 0.049 0.002 0.032 0.001 0.022

CNN KLD 0.011 0.139 0.005 0.071 0.003 0.043 0.002 0.028 0.001 0.019

CNN KMeans 0.008 0.099 0.003 0.044 0.002 0.026 0.001 0.016 0.000 0.011

While the average length of utterances in the whole book is about 120
phonemes, this value for the selected sub-corpus of 10% by CNN KMeans is
104 (this value varies from 115 to 155 for other systems). In fact, among all the
considered methods and for each reduction size, CNN KMeans selects signifi-
cantly shorter utterances on average.

3.4 Subjective Evaluation

Based on objective measures, three methods have been chosen to be compared
perceptually: SC, CNN KMeans (using Utt) and CNN KLD (using SW ). The
utterances of the test section have been synthesized using 10% of F selected
by each of these methods. Three AB preference tests have been conducted to
compare the following pairs of systems:

1. CNN KLD and SC, 19 listeners
2. CNN KMeans and SC, 17 listeners
3. CNN KMeans and CNN KLD, 13 listeners.

Each test is composed of the 100 samples with the highest DTW on MCep
features from test set [21]. The samples are shorter than 7 s. The listeners were
asked to compare 30 pairs in terms of overall quality. The results are reported
on Fig. 3.

Synthetic signals provided by CNN KMeans and CNN KLD are judged to
be of better quality than the ones from SC, which confirms the ranking between
these methods provided by the objective measures. Moreover, listeners have a
small preference for the CNN KMeans method rather than the CNN KLD one
but this trend is not really significant.
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Fig. 3. Listening test results

4 Conclusion

In this paper, we presented a method for sentence selection. In the framework of
TTS corpus design, we showed that a CNN auto-encoder can be used successfully
to extract linguistic information. The K-Means clustering and the KLD meth-
ods work properly using embedded representations achieving better results than
random, or even than the best state-of-the-art methods such as greedy based set
covering algorithm. We have also compared the proposed CNN embedding app-
roach to Doc2Vec, and it proves to work better in the particular context of corpus
design. The subjective evaluation confirmed this result showing a preference for
the proposed approaches.

As for future works, first, the embedded phoneme representations should be
used for hybrid TTS as well. Second, in these experiments, the model corresponds
to a linguistic auto-encoder and it could be beneficial to use a general encoder-
decoder from linguistic information to acoustic information for corpus design.
Third, in order to generate a whole audio-book as a mix of natural and synthetic
signal, the selection method should take into account the utterances which are
not selected as the target of synthesizing. First results obtained here tend to
show that trying to minimize KLD between selected utterances and T achieves
better results than minimizing KLD with a global distribution like F .
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Abstract. Pragmatic markers (PMs) are discourse units (words and multiword
expressions) with a weakened referential meaning, which perform a variety of
pragmatic tasks. For example, in English the common PMs are “well”, “you
know”, “I think”, and many others. PMs are integral elements of spoken dis-
course in every language. According to the results obtained from the ORD corpus
of everyday Russian, their share can reach up to 6% of the total number of words
in speech of individual speakers. More than that, in some speech fragments, PMs
may even exceed the share of significant units (i.e., standard words). However,
despite their frequency and usualness, PMs are still poorly understood. Cur-
rent NLP and discourse modeling systems lack information on PMs distribution
and usage, this fact leads to noticeable shortcomings in work of these systems
when they face spontaneous speech of everyday spoken discourse. In this paper
we present top frequency lists of PMs for Russian dialogue and monologue
spoken speech in general, and also for separate sociological groups of informants
(by gender and by age). Our current list of PMs for Russian contains 450 units
which are the variants of 50 main structural types. Besides, we consider the most
frequent functions of PMs in spoken Russian. The presented quantitative data
may be used for improvement of NPL and discourse modeling systems.

Keywords: Spoken Russian � Everyday discourse � Pragmatics �
Pragmatic markers � Spoken dialogue � Spoken monologue � Speech corpus �
Statistics � Frequency lists � Sociolinguistics � NLP

1 Introduction

Pragmatic markers (PMs) are discourse units (words and multiword expressions) with a
weakened referential meaning, which perform a variety of pragmatic tasks [1]. They are
used to express speaker’s attitude to speech content, help to introduce new topics and to
structure the discourse as the whole, provide the speaker time to find the proper word,
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etc. [2]. In earlier papers on spoken discourse, PM were considered within a wider class
of discourse particles or discourse markers [3–7, etc.]. In this paper we adhere to
understanding PM as it was proposed in [8], and the distinction between pragmatic
markers (PMs) and discourse markers (DMs) is presented in [9].

It can be assumed that PMs may be observed in every natural spoken language.
And more than that, they are integral elements of every spoken discourse. For example,
in English the common PMs are “well”, “you know”, “I don’t know”, and many others,
and in Russian the similar PMs are “tak” (“well”), “znaesh” (“you know”), “ne znaju”
(“I don’t know”), etc.

According to the results obtained from the ORD corpus of everyday Russian [10,
11], their share can reach up to 6% of the total number of words in speech of individual
speakers. More than that, in some speech fragments, PMs may even exceed the share of
significant units (i.e., standard words). However, despite their frequency and usualness,
PMs are still poorly understood. Current NLP and discourse modeling systems lack
information on PMs distribution and usage, this fact leads to noticeable shortcomings
in work of these systems when they face spontaneous speech of everyday spoken
discourse [9].

In this paper we present frequency lists of PMs for Russian dialogue and mono-
logue spoken speech in general, and also for separate sociological groups of infor-
mants. Besides, we consider the most frequent functions of PMs in spoken Russian.

2 Research Data

2.1 Dialogue Everyday Speech

For the analysis of dialogue everyday speech, 149 macroepisodes of everyday com-
munication [12] were selected from the ORD corpus, obtained from 98 volunteer
participants. The total sample size is 308905 words. To form a balanced subcorpus, the
representatives of different gender, age and professional groups were included in the
sample, and the information from participants’ psychological tests concerning their
psycho type and temperament was used as well. Moreover, when forming the sample,
different conditions of everyday communication (locus, participants, type of commu-
nication) were taken into account.

As a result, the research subcorpus contains speech samples from participants of
different professional groups—service workers, IT-specialists, representatives of
engineering specialties, “office” workers, representatives of power structures, univer-
sity professors, etc. The presented communicative settings relate to both formal and
informal communication (with colleagues at work, with classmates, friends or parents,
and communication in the family). Among the sample participants are 45 women
(46%) and 53 men (54%). Speakers’ age varies in a wide range (from 17 to 83 years).

2.2 Monologue Speech

For the study of monologue speech, texts of various types, obtained from 34 infor-
mants, were selected from the SAT corpus, known as “Balanced Annotated Text
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Library” [13]. The sample consists of 50128 words. When selecting spoken texts for a
balanced subcorpus, we tried to balance texts reflecting different scenarios of mono-
logue speech generation, as well as speech samples from participants belonging to
different gender, age and professional groups.

The outcome subcorpus contains monologues of 5 communicative scenarios types:
retelling of both narrative and non-narrative texts, description of both narrative and
non-narrative images, and a free story on some definite topic. The sample contains 34
texts of each type, so the sample is balanced, first of all, according to the types of
monologue texts included in it.

The subcorpus presents the monologue speech of informants belonging to two
professional groups—lawyers and doctors (JUR and MED subcorpora), in total there
are 170 monologue texts in the sample. Women predominate among participants, since
the “medical speech” of MED subcorpus was recorded only from women. The sample
of lawyers-participants is gender-balanced: it includes monologues from 8 women and
9 men. In the SAT sample, the age of speakers ranges from 23 to 49 years. The
majority of speakers (22 informants) have a high level of speech competence, 12
informants belong to groups with an average and low level of speech competence.

2.3 Data Annotation

The both subsamples were annotated in ELAN [14] using the scheme described in [9].
Thus, the annotators had to fill in four additional levels: (1) PM, (2) PM function,
(3) speaker’s code, and (4) comments.

For PM annotation the list of Russian PMs containing 450 units being the variants
of 50 main structural types was used. This current list of PMs main structural types is
given in Table 1.

For each PM, its main function was assigned. The list of these functions is the
following [9]:

(1) A—marker-approximator (“tipa”, “kak by”, etc.);
(2) G—boundary marker, including starting, final, and navigational markers (“vot”,

“koroche”, etc.);
(3) D—deictic marker (“vot etot vot”, “vot takoj vot”, etc.);
(4) Z—replacement marker referring to some whole set or its part (“i tak dalee”, “i

vs’o takoe”, “to-sio”), as well as for imitating someone else’s speech (“bla-bla-
bla”);

(5) K—“xeno” marker that introduces someone’s speech (“tipa”, “govorit”, etc.);
(6) M—meta-communicative marker that refers to “communication about commu-

nication” (“znaesh”, “vidish”);
(7) F—“reflexive” marker that expresses reflection on what is said (“tak skazat’”);
(8) R—rhythm-forming marker (“vot”, “tam”, etc.);
(9) C—marker of self-correction (“v smysle”, “vernej”, etc.);

(10) H—hesitation markers (“eto”, “vot”, “tam”, etc.) [9].

Apart from the “pure” types, the “mixed” (or polyfunctional) functions could be
registered (e.g., AG, AGH, GRH, AF, etc.), reflecting the overall polyfunctionality of
PMs, which is very typical in oral speech [6].
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Processing the results of PMs annotation based on corpus material allowed us to
obtain data on the frequency of occurrence of individual pragmatic markers and their
functions, as well as on the dependence of PMs use on speaker’s characteristics. Below
are some of the data obtained.

3 Frequency Lists of Pragmatic Markers in Monologue
and Dialogue Speech

Two top frequency lists of PMs are presented in Tables 2 and 3, which include: the
ranks, the frequency of PMs in absolute numbers, the share of specific PMs from all the
PMs in the sample (in %), and the share of specific PMs from all words in the sample
(ipm). The data presented here were calculated on the subsample of 60000 words for
dialogue speech, and on that of 15000 words for monologue speech.

Table 1. The main structural types of PM in spoken Russian with the number of correspondent
variants

Structural type The number of variants Structural type The number of variants

vot takoj vot 109 tak 5
pyatoe desyatoe 30 tam 5
eto 30 znachit 4
vsyo takoe 25 i to i drugoe 4
eto samoe 18 predstav′ 4
znaesh′ 17 ne znayu 4
takoj 13 da 4
to syo 11 minutu 3
vrode 10 i tak dalee 3
slushaj 9 ili kak ego/eto 6
dumayu 9 sekundu 3
tipa 8 na samom dele 2
smotri 8 i vse dela 2
tak i tak 8 prikin′ 2
ponimaesh′ 8 zaceni 2
predstavlyaesh′ 8 glyan′ 2
boyus′ chto 8 voobshche 2
chto eshchyo 8 zamet′ 2
skazhem 7 vot 2
vidish′ 6 kak by 2
vsyo 6 ili chto 2
ili eshchyo chto-to takoe 6 kak ego 2
govorit 6 koroche 1
kak eto 6 sobstvenno 1
to to 5 kak ih 1
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It is seen from the Tables 2 and 3, that the most commonly used PM in the both
types of Russian speech turned out to be “vot”, which is usually used as a “boundary
marker” (G), a hesitation (H) and rhythm-forming (R) marker. Besides, among the
frequent PMs of both types are “tak”, “tam”, “kak by”, and “nu vot”.

Table 2. The most frequent PMs in Russian dialogue speech

Rank PM Abs.
number

The share (%) of PM among
the other PMs

IPM (to the total
number of tokens)

1 vot 149 14.06 2483
2 tam 117 11.04 1950
3 da 82 7.74 1367
4 govorit 70 6.60 1167
5 kak by 60 5.66 1000
6 eto 44 4.15 733
7 eto samoe 43 4.06 717
8 znaesh′ 41 3.87 683
9 koroche 38 3.58 633
10 tak 36 3.40 600
11 ne znayu 25 2.36 417
12 slushaj 23 2.17 383
13 znachit 21 1.98 350
14 nu vot 21 1.98 350
15 tipa 21 1.98 350
16 ponimaesh′ 19 1.79 317
17 takoj 17 1.60 283
18 vidish′ 11 1.04 183
19 takie 11 1.04 183
20 na samom dele 10 0.94 167
21 etot 9 0.85 150
22 vot takoj vot 7 0.66 117
23 govoryu 7 0.66 117
24 vot eti vot 6 0.57 100
25 dumaju 5 0.49 83

Table 3. The most frequent PMs in Russian monologue speech

Rank PM Abs.
number

The share of PM am.
the other PMs (%)

IPM (to the total
number of tokens)

1 vot 139 51.48 9232
2 znachit 15 5.56 996
3 tak 15 5.56 996
4 tam 13 4.81 863
5 kak by 12 4.44 797

(continued)
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In the top zone of the frequency list for dialogue speech we can also see meta-
communications (M) —“da”, “znaesh”, “ponimaesh”, “vidish”, hesitation markers
(H) “eto”, “eto samoje”, “koroche tak”, the xeno-indicator marker (K) “govorit” (which
is often reduced), and many others. In the monologue speech subsample, the upper
zone of PM frequency list contains mainly different types of boundary markers (G),
which mark the beginning or end of the monologue or are serving as discourse navi-
gators—“vot”/“nu vot”, “znachit tak”, “vsyo”. We should mention the high frequency
of the deictic marker (D) “vot tak vot” as well.

Table 4 presents the lists of most typical PMs for Russian dialogue and monologue
speech types measured in difference of correspondent IPM values. It could be seen
from this table, that the maximum difference is observed for PM “vot”, which occurs
much more often in monologues then in dialogue.

Table 3. (continued)

Rank PM Abs.
number

The share of PM am.
the other PMs (%)

IPM (to the total
number of tokens)

6 nu vot 12 4.44 797
7 vsyo 4 1.48 266
8 i tak dalee 4 1.48 266
9 vot tak vot 3 1.11 199
10 nu tak 3 1.11 199
11 takaya 3 1.11 199
12 takie 3 1.11 199
13 vot eta vot 2 0.74 133
14 da 2 0.74 133
15 kak eto nazyvaetsya 2 0.74 133
16 ya dumayu chto 2 0.74 133
17 v eti 1 0.37 66
18 vot sejchas by vot 1 0.37 66
19 vot takaya vot 1 0.37 66
20 vot takoe vot 1 0.37 66
21 vot eti vot 1 0.37 66
22 vot eto vot 1 0.37 66
23 vot etot vot 1 0.37 66
24 vrode 1 0.37 66
25 vrode by 1 0.37 66

Table 4. The most obvious differences in PMs usage between dialogue and monologue speech

“Dialogue” PMs “Monologue” PMs
Rank PM IPM difference Rank PM IPM difference

1 da −951 1 vot 7262
2 govorit −926 2 znachit 718
3 tam −684 3 tak 520

(continued)
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The research presented in [15] has shown that the differences in the use of PMs
between dialogue and monologue types of speech according to the Mann-Whitney test
can be considered statistically significant.

4 The Functions of Pragmatic Markers in Monologue
and Dialogue Speech

Table 5 presents the top frequency lists of PMs functions in dialogue and monologue
Russian speech (the meanings of the codes were listed above in Sect. 2.3), and in
Table 6 one may see the comparison of PMs functions frequency in these two types of
spoken Russian.

Table 4. (continued)

“Dialogue” PMs “Monologue” PMs
Rank PM IPM difference Rank PM IPM difference

4 eto samoe −569 4 nu vot 519
5 znaesh′ −542 5 i tak dalee 266
6 eto −516 6 nu tak 186
7 koroche −503 7 takaya 159
8 slushaj −304 8 vot tak vot 146
9 tipa −278 9 kak eto nazyvaetsya 120
10 ne znayu −265 10 ya dumayu chto 120

Table 5. The top frequency lists of PMs functions in dialogue and monologue Russian speech

“Dialogue” PMs “Monologue” PMs
Rank PM function IPM Rank PM function IPM

1 H 5283 1 GH 6110
2 M 3317 2 H 4251
3 GH 2417 3 AH 2125
4 K 1717 4 RH 1528
5 RH 1167 5 G 1129
6 AH 867 6 D 332
7 G 550 7 DH 332
8 A 500 8 Z 332
9 N/A 383 9 N/A 266
10 D 333 10 GM 199
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It is seen from Table 5, that in both speech types, PMs of hesitation (H), boundary
markers (G), and deictic markers (D), as well as bifunctional GH, AH, and RH are
rather frequent. In general, it turned out that monofunctional use of PMs in dialogue
speech is significantly higher (68.7%) than in monologue speech (37.4%).

According to Table 6, the most frequent “dialogue” functions are the following:
(1) meta-communicative marker (M), (2) “xeno” marker (K), (3) hesitation marker (H),
and (4) approximator (A). Among the polyfunctional PMs the rhythm-forming function
is a typical component. It should be mentioned that in dialogue speech there occurred
more cases when the experts could not attribute the PM function (N/A).

As for monologue speech, there are comparatively more boundary markers (G),
replacement (Z), and rhythm-forming markers (R) here. Among the polyfunctional
PMs the hesitation function prevails, probably because of the difference in commu-
nication scenarios of the SAT corpus [13].

5 Top Frequency Lists of Russian PMs for Speakers
of Different Gender and Age Groups

This section reflects peculiarities of PMs usage in Russian everyday dialogue speech by
different groups of speakers. Thus, Table 7 presents the top lists of PMs in male and
female speech. In this table, as well as in the following one (Table 8), the numbers refer
to the share of PMs in the correspondent social group.

Table 6. The difference in distribution of PMs functions in dialogue and monologue speech

“Dialogue” PMs “Monologue” PMs
Rank PM function IPM difference Rank PM function IPM difference

1 M 3184 1 GH −3693
2 K 1650 2 AH −1259
3 H 1033 3 G −579
4 A 367 4 RH −361
5 N/A 118 5 DH −282
6 ARH 50 6 FH −199
7 GR 50 7 Z −149
8 GRH 50 8 AF −133
9 AR 34 9 GDM −133
10 KR 33 10 R −99

Table 7. The top frequency lists of PMs in female and male Russian speech

Female speech Male speech
Rank PM % Rank PM %

1 vot 15.92 1 tam 19.24
2 govorit 8.80 2 vot 10.20
3 da 7.40 3 da 8.45

(continued)
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The limited volume of this article does not give us the opportunity to consider in
detail all the differences observed in speech of different social groups, even for the top
zone of frequency lists. However, we should mention high frequency of “tam” and
“koroche” in male speech, whereas “govorit” and “kak by” are more peculiar to female
speech. These results largely coincide with those obtained earlier [16–18]. As for age
variation, “eto samoe” and “ponimaesh’” are mainly used by seniors, whereas “ko-
roche” and “tipa” are more frequent in speech of youth group.

6 Conclusion

This study showed that PMs are indeed the integral elements of Russian spoken dis-
course. In speech of individual speakers, their share can reach up to 6.6% of the total
number of words, and in individual speech fragments it can even exceed the share of
significant units. The most common PM in almost all frequency lists is “vot”, and in
monologue speech, the high frequency of occurrence has shown PM “znachit”.

Table 7. (continued)

Female speech Male speech
Rank PM % Rank PM %

4 tam 7.12 4 koroche 6.12
5 kak by 6.28 5 tak 4.37
6 eto 5.03 6 kak by 4.37
7 eto samoe 4.75 7 tipa 3.21
8 znaesh′ 4.47 8 eto samoe 2.62
9 tak 2.93 9 znaesh′ 2.62
10 koroche 2.37 10 takie 2.33

Table 8. The top frequency lists of PMs in Russian speech of different age groups

Youth group Middle-age
group

Senior group

Rank PM % PM % PM %

1 vot 12.06 tam 15.90 vot 21.77
2 tam 11.36 vot 10.88 eto samoe 8.87
3 da 8.22 govorit 10.04 govorit 6.85
4 kak by 6.99 da 7.53 da 6.85
5 koroche 5.59 kak by 6.69 tam 5.65
6 govorit 5.07 znachit 5.02 eto 5.65
7 znaesh′ 4.02 eto samoe 5.02 znaesh′ 5.24
8 eto 3.67 tak 4.18 tak 4.84
9 ne znayu 3.32 eto 3.35 ponimaesh′ 2.82
10 tipa 3.15 koroche 2.51 nu vot 2.42
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PMs frequency lists analysis showed that we can confidently talk about statistically
significant differences in use of PMs in dialogue and monologue. The most frequent
PMs functions in speech of all groups of informants are metacommunicative,
boundary-marking, and xeno-indicator. Pragmatic markers of these classes are often
multifunctional and implement a number of additional functions.

Finally, the pilot annotation of the corpus data showed the qualitative heterogeneity
of PMs, which manifests itself both in terms of the diversity of functions performed by
them, and in terms of uniqueness of their identification and classification. The pre-
sented quantitative data may be used for improvement of NPL and discourse modeling
systems.
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Abstract. This work deals with curriculum learning for deep learning
models for the sentiment analysis task. We design a new way of curricu-
lum learning for text data. We reorder the training dataset to introduce
the simpler examples first. We estimate the difficulty of the examples
by measuring the length of the sentences. The simple examples are sup-
posed to be shorter. We also experiment with measuring the frequency
of the words, which is a technique designed by earlier researchers. We
attempt to evaluate changes in the overall accuracy of the models using
both curriculum learning techniques. Our experiments do not show an
increase in accuracy for any of the methods. Nevertheless, we reach a
new state of the art in the sentiment analysis for Czech as a by-product
of our effort.

Keywords: Sentiment analysis · Curriculum learning ·
Transfer learning

1 Introduction

With an increasing trend of using deep learning techniques for their superior
results in many different applications, the lack of training stability showed up.
We often observe lots of runs stuck in different local optima [3]. There are many
historically described techniques for supporting stability training and perfor-
mance of deep neural network systems. In this work, we decided to examine the
effect of various attitudes in the curriculum learning on a specific task in the
text domain - the sentiment analysis.

2 Related Work

An interesting idea of curriculum learning was introduced in 2009 [1]. Authors
discovered better results on several tasks with using a specific order of samples
during training. Curriculum learning can be seen as a sequence of training criteria
starting with an easy-to-optimise objective and moving to the actual objective.
c© Springer Nature Switzerland AG 2019
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On image classification task they used samples with high contrast first. After a
part of the training, they extend training set for samples with some noise and
deformation.

In the case of language modelling, they suggest using increasing vocabulary
size during a time. Texts with unknown words are discarded in each epoch given
the actual vocabulary size.

3 Experiment Setup

Our goal is to explore how curriculum learning can improve sentiment classi-
fication task. In this case, we use two different neural network architectures: one
is based on convolutional neural networks and the other one on recurrent neural
networks.

3.1 Curriculum Epochs Design

For a particular task like sentiment analysis, we can tailor the construction of
training data according to our knowledge of the task.

We try two different approaches to curriculum learning epoch designing.
Firstly, repeat epochs until over-fitting is noticeable and then we expand the
data. Secondly, we extend the data set with hard samples before over-fitting is
observed. The right time for changing epochs is set experimentally.

Text Length. Our intuition to use text lengths as meta information for esti-
mating difficulty of the examples is that the authors of the reviews must express
themselves in a more straightforward fashion in shorter texts than in longer
texts. The details of our settings are shown in Table 2.

Size of Word Vocabulary. Authors of [1] showed benefit of curriculum learn-
ing in the language modelling task. We expect an increase of accuracy (in terms
of Macro-F1 score) in our models as well. We split data set into several epochs.
Firstly, we use only sentences containing words in a small vocabulary of the most
frequent words. We try more different setups. In every iteration, we used only
samples containing more than 80% of top X known words. Last epoch was not
limited in any way (Table 1).

Table 1. Vocabulary size experiments

Vocabulary setup Amount of samples Repetition of epochs

voc1 [2000, 5000, –] [29700, 42581, 82244] [3, 3, –]

voc2 [2000, 5000, –] [29700, 42581, 82244] [10, 10, –]
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Table 2. Text length experiments

Max. sentence length Amount of samples Repetition of epochs

len1 [10, 20, 50, –] [6546, 19629, 47382, 82244] [2, 2, 1, –]

len2 [10, 20, 50, –] [6546, 19629, 47382, 82244] [5, 5, 5, –]

3.2 Architecture

LSTM. In our LSTM [5] architecture (see Fig. 1), we first transform words
into their vector representations using an embedding layer. We use pre-trained
vectors from the FastText tool [2] to set the weights for the embedding layer.

After the embedding layer, we attach two stacked bi-directional LSTM layers
and one fully connected softmax layer. We use the maximum length of sequences
set to 150 words, and the dimension of hidden states is set to 128.

Word Embeding

Ti
m

e

LSTM 

LSTM 

LSTM 

LSTM 

LSTM LSTM 

LSTM 

LSTM 

LSTM 

LSTM 

0.08

0.79

0.13

Fully-Connected 
Softmax 

1st Layer 2nd Layer

Fig. 1. LSTM architecture.

CNN. In our architecture, we use the same embedding layer as in the LSTM
architecture and add only one convolution layer followed by max pooling. This
approach is quite standard for text processing. We use 2D convolution kernels
where one dimension is set to the embedding dimension, and the other one is set
to 2, 3 and 4 respectively. This way the network looks for patterns in 2, 3 and 4
following words. We apply 32 2-word kernels, 32 3-word kernels and 16 4-word
kernels.

In the end, we connect two fully connected layers, one with Sigmoid activa-
tion, the other one with soft-max (see Fig. 2).
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Convolution
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Fig. 2. CNN architecture. Where t is time.

3.3 The Data Set

The CSFD dataset consists of 91,381 movie reviews written in Czech from the
Czech Movie Database1. The reviews are split into three categories according to
their star rating (0–1 stars as negative, 2–3 stars as neutral, 4–5 stars as posi-
tive). The dataset contains 30,897 positive, 30,768 neutral, and 29,716 negative
reviews. 82,244 reviews are used for training and 9,137 for testing. More details
about the dataset can be found in [4].

4 Experiments Results

The Figs. 3, 4, 5 and 6 show the process of training and evaluation. The baseline
is the same model we used in curriculum strategy, only the data set is randomly
shuffled. We can identify the various training epochs by looking at the accuracy
jump for len1/len2 and voc1/voc2 datasets. Every experiment was measured
five times, and results are mean of all runs.

We can look at the process of the curriculum learning like on a specific case
of a transfer learning [6] from an easier task to a harder one.

Using different maximum lengths for different epochs turn out to be not
helping either.

We observed similar results on the RNN architecture (see Fig. 6). Any sig-
nificant result improvement was not reached.

The RNN model achieved the best results. We reach 80.5% ±0.155 on 95%
confidence interval what is a new state of the art on this data set [4]. The CNN
model achieved 78.7% ±0.245 on 95%. These results are obtained on the test
part of the original dataset by running a fixed number of epochs (in our case 3)
and be averaging scores from 10 runs.
1 https://www.csfd.cz/.

https://www.csfd.cz/
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5 Future Work

There is a clear room for improvements. We can design other approaches of
dividing the dataset for the sentiment analysis task. We can use the rating in
stars (for example from 1 to 5) and start with the extreme cases - i.e. 1 and 5.
Later, we would add other reviews (2–4). We want to try this approach in future
work.

Another option for the future work is to experiment with different tasks - for
example, Named Entity recognition, Semantic Similarity and others.

6 Conclusion

Our models were not able to benefit from any of the proposed curriculum strate-
gies. This fact does not prove that our design is not working. We suppose that
the reason that we were not able to measure any improvement may lay in a
lack of training data. Although, it may indeed indicate that our premise that
short sentences relate to easy training examples is incorrect. However, manip-
ulation with vocabulary size, which works in language modelling task, did not
help either. So maybe, the sentiment analysis task is not suitable for curriculum
learning. Clearly, some more investigation is needed.

Even though we were not able to increase the accuracy using curriculum
learning, we reached a new state of the art of 80.5% accuracy (in terms of
Macro-F1 score) for the sentiment analysis in Czech.
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cessing of heterogeneous data and its specialized applications, and was partly supported
from ERDF “Research and Development of Intelligent Components of Advanced Tech-
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Abstract. Cognitive perspective gives insight into the temporal organization of
speech production based on acoustic cues of articulation rate, mean pause
duration, total pause time, mean length of pause-free run, phonaton:pause ratio
elicited from the first minutes of 30 American speakers’ telephone talks. We
assume that by balancing the number of speakers in three age groups (young,
middle-aged, old) and two gender groups we found age effects and gender
differences in the acoustic data which was revealing as regards overall speaking
rates and fluency, as well as suggested interpretation in terms of the speed of
online processing and working memory capacity of the speakers. Basic findings
are concerned with the following: positive correlation between articulation rate
and mean length of run; negative correlation between silent pause duration and
mean length of run; positive correlation between phonation/pause ratio and
mean length of run; negative correlation between silent pause duration and
phonation/pause ratio. Cognitively significant is the evidence that men spend
more time in thinking but articulate faster than women. Women spend less time
in pauses. However, young women are still the fastest talkers in the six sub-
groups. Age-related changes are most characteristic for the transition from
young age to middle age when middle-aged speakers tend to shorten both their
pauses and pause free runs. Mean length of run measured in number of syllables
increases in old age compared to the middle age. The interplay of biological and
social factors appears to account for the new facts found in middle-aged and old-
aged groups of American speakers on the phone.

Keywords: American English � Timing � Cognitive perspective � Age � Gender

1 Introduction

In the era of modern technologies information based on ‘big data’ may not be available
when we have to deal with a limited amount of sound samples. In real life situations we
need to identify the voice of the speaker or at least place one geographically and
socially, as well as make judgments about the personality of the speaker and the
purpose of the call within the first minute. The objective of the present study is to look
at the sound image of the speaker in the cognitive perspective by analyzing the con-
stituents of timing: articulation rate, average pause duration, length of run between
pauses, total pause time and phonation/pause ratio elicited from the first minute of
telephone talks. By comparing the durations of the timing units in three age groups and
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specifying the gender differences we can evaluate fluency, working memory capacity
and the speed of online processing according to the individual image projected by each
speaker.

The following parameters of temporal speech organization indicative of cognitive
processes became the subject of interdisciplinary research in psychology [7], cognitive
phonology [4, 10, 19], forensic phonetics [11], sociophonetics [14, 17], pedagogical
sciences [16, 18] and automatic speech recognition and speech synthesis [8, 12]. To
begin with, pauses, both silent and filled, were found to perform at least three
functions:

• physical, necessary for breathing, i.e. for respiration;
• cognitive, to show the time of online information processing, including perception

time, the search for words and their retrieval from memory, lexico-grammatical
coordination through collocation and colligation, parsing into meaningful units,
etc.;

• social, to signal the interaction with the interlocutor according to the conventions of
turn-taking, as well as for rhetorical purposes to show anticipation of an important
word in focus, and, finally, to project an image of a person with a particular social
status, a certain social role suitable for age and gender in a certain community.

Pauses, therefore, were reported to participate in style-shifting, and thus be dis-
tinctive for prepared reading, on the one hand, and spontaneous speech, on the other
[6]. The proportion of time taken by pauses, relative to the time of phonation, was
estimated for monologue at 30%, vs. 70%, or, in case filled pauses were also counted as
phonation, at 20% vs. 80% [13]. In our data, however, based on mass media perfor-
mances in weather forecasts and radio news on American TV, these proportions were
utterly destroyed in favor of the phonation share on account of lack of time on the air
[14]. See also a detailed review of cross-linguistic data on pauses, speech rate and
rhythm in [5].

Cognitive research into the mechanisms of speech production and perception is also
concerned with overall speaking rate (together with pauses) which is distinguished
from articulation rate measured in the number of speech units (words or syllables) per
second or per minute; alternatively, it was assessed as mean syllable duration (in msec
or seconds). As regards the aged-related changes in articulation rate, the general
assumption about the slowing down of tempo in old age is documented in comparison
with the young generation, and is reflected in longer pauses, greater hesitancy, lower
articulation rate and shorter phrases [1, 5, 9]. However, our previous research in which
we introduced data on middle-aged group, gave evidence of a more complex way of
prosody development with age, at least as far as accentuation is concerned [15]. In the
current study we set ourselves the task of testing the hypothesis about a particular age
effect in articulation rate/pause correlation for middle-aged people. Gender differences
are also expected to emerge and to either support the stereotype of fast-talking,
cooperative and friendly women in telephone conversations who spend less time in
thinking than men, or refute it.

Of particular interest for the present study is the duration of speech unit between the
two pauses, an uninterrupted run of phonation which is also called intonation phrase
(ip) [6]. The time of the speech run from pause to pause and the amount of words
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or syllables it holds may have certain implications for evaluating one’s working
memory capacity.

By way of summarizing the parameters of the current research aimed at cognitive
assessment of speech production in three groups of men and women, balanced for
gender, we can name again pauses, articulation rate, uninterrupted run between pauses,
phonation/pause ratio. In our methodology we propose a wholistic approach of con-
sidering the whole cluster of prosodic parameters simultaneously, as they occur in
natural speech, to maximally correlate their co-occurrence and to reveal their actual
interdependence. The cognitive processes which might transpire are bound to be
connected with biological and social factors determining human speech production.

The goal of the present study is to find how the elements of timing correlated for
the cognitive task of starting a telephone conversation by speakers at three stages of
life, with special reference to gender.

2 Methodology

2.1 Data

The material under analysis is based on Switchboard Corpus of American English
telephone conversations, recorded by LDC [3]. Sound sample type is 2-channel ulaw at
8000 Hz sample rate. The recording conditions implied that each time the informant
was speaking to a different interlocutor on a different topic. All participants consented
to being recorded providing information about their age, education and regional
affiliation.

For the present research we selected one-minute fraction of telephone conversation
data from 30 interlocutors counting from five up to sixteen phrases from the beginning
of the dialogues that totals to 30 min of recorded speech. The informants are balanced
for gender (15 male and 15 female speakers) and age: ten young (20–39), ten middle-
aged (40–59) and ten old (60–69) speakers.

All the dialogue remarks were analyzed by means of computer program PRAAT
[2] when pause and phonation durations were calculated and manually corrected. Such
disfluencies as coughing and laughing were excluded from the analysis while filled
pauses (e.g. ‘um’, ‘uh’ and the like) and partial words containing an initial consonant
and a vowel remained. The total numbers of IPs and SPs analyzed are 812 and 499
respectively.

2.2 Measurements

Speech rate measures comprise the following variables:
Silent pause duration (SPD) – the time attributed to silent pauses of 100 ms length

and above. The separate silent pauses were identified together with total time of silence
in each phrase.

‘Phonation: Pause’ ratio (PPR) – the percentage of time spent speaking (including
filled pauses) relative to the time attributed to silent pauses.
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Articulation rate (AR) – the average number of fluent syllables produced per second
over the total amount of time talking (excluding silent pauses, but including filled
pauses and partial words containing an initial consonant and a vowel).

Mean length of run (MLR) – the mean number of syllables in utterances between
silent pauses of 100 ms and above.

Statistical processing included one-way analysis of variance (ANOVA) that was
conducted to test the difference in the above-mentioned speech rate parameters between
three age groups and two gender groups of speakers. Furthermore, the correlation
analysis (Spearman correlation coefficient) was run to test the relationship between the
four extracted measures. Statistical procedures were performed in STATISTICA pro-
gram (PAWS Statistics).

3 Results

According to ANOVA results the values of SPD significantly vary in three age groups
with the most dramatic changes occurring in the middle-aged participants’ speech as
compared to the young speakers (F = 2.969, p = .052).

As is seen in Fig. 1 the time spent for silent pauses first decreases and then
increases with age. ANOVA results also reveal gender-related difference in mean silent
pause duration manifested in shorter pauses in female speech in comparison with the
male one (F = 7.436, p < .01).

‘Phonation:pause’ time ratio values differ significantly only in two gender groups as
revealed by ANOVA (F = 10.220, p < .01). Female speakers appear to spend much

Fig. 1. Mean duration of silent pauses across three age groups of men and women (n = 30).
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less time on pauses compared to men (Table 1) supporting the previous finding of
gender-related SPD changes.

Articulation rate unsurprisingly also varies across three age groups of speakers
(Fig. 2) with the most noticeable distinction between young and middle-aged infor-
mants as provided by ANOVA (F = 4.797, p < .01) as well as it proves to be different
in men’s and women’s speech (F = 14.829, p < .001). The results point that young
women possess the fastest speech while men’s speech is characterized by a smooth
grow in AR with age.

ANOVA scores for MLR parameter testify to significant age - (F = 3.001,
p = .051) and gender-related changes (F = 7.491, p < .01) where male figures rise with
increasing age and female values fall in the middle age and rise in the old age with
young numbers being the highest (Fig. 3).

Table 1. Mean values of speech rate parameters across three age groups of men and women.

Male Female
Young Mid Old Young Mid Old

SPD (ms) 0,465 0,417 0,458 0,413 0,352 0,410
PPR 6,6 6,7 7,4 8,3 13,8 9,5
AR (syll/sec) 4,8 5,1 5,2 5,4 4,1 4,2
MLR (syll) 7,3 8,6 10,1 12,1 8,4 10,5

Fig. 2. Articulation rate of speakers across three age groups of men and women.
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It is worth mentioning that all the four speech rate parameters proved to have
gender differences while age-related changes were validated only in three of them
(SPD, AR, MLR). Of interest is the direction of changes in two gender groups of
speakers: except for SPD results all other measures showed a gradual increase in male
speech values while middle-aged women’s speech appeared to stand out against other
age groups.

Alongside the analyses of variance Spearman correlation coefficient was found for
each pair of the four analyzed speech rate parameters revealing the following rela-
tionships that were validated:

– Significant negative correlation between Silent pause duration and ‘Phonation:-
pause’ time ratio (Rho = −.688, p < .01)

– Significant positive correlation between ‘Phonation:pause’ time ratio and Mean
length of run (Rho = .581, p < .01)

– Significant positive correlation between Articulation rate and Mean length of run
(Rho = .528, p < .01) represented in Fig. 4

– Significant negative correlation between Silent pause duration and Mean length of
run (p < .01).

Obviously the fewer the duration of pauses, the larger the phonation time in the
‘Phonation:Pause’ ratio, thus the first correlation from the list is apparent. The second
correlation result reveals that the larger the phonation duration, the bigger the quantity
of syllables in IP. The positive correlation between AR and MLR indicates that the
faster the rate of articulation, the more syllables are there in IP (Fig. 3). And negative
correlation between SPD and MLR reflects the tendency that the more syllables are
there in IP the fewer the duration of silent pauses in it.

Fig. 3. Number of syllables between silent pauses across three age groups of men and women.
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4 Discussion and Conclusions

The data obtained by means of acoustical and statistical analyses has given evidence of
speaker-dependent variance in the chosen parameters of temporal speech organization
for the cognitive task of starting a telephone conversation on a predetermined topic.
The first minute of the talk, we assume, gave a well of information about the speaker’s
ability to monitor and balance speaking time and pause time, articulation rate and
length of pause-free run according to one’s social practice and biological condition.

Cognitively significant are the facts that American men spend more time in
thinking, i.e. online information processing, which is reflected in their total amount of
pause time. At the same time men’s articulation rates are higher than the corresponding
values in American women’s speech. However, young women are exceptionally fast
speakers, as their scores on articulation rates suggest.

Age-related changes, it transpired, are most dramatic between young and middle
age. By cutting down on the length of pauses and pause-free runs middle-aged people
opt to produce the effect of businesslike, energetic manner of talking (sometimes called
‘ping-pong’ style of talk). As middle-aged people normally have the advantage of both
higher social statuses than the young and better physical condition than the old, their
timing might symbolize a most successful, by American standards, balance of speech
and silence. The young and the old American speakers demonstrated comparable
scores in silent pause durations and in length of pause-free runs, which could be
informative about their working memory capacity.

The limitations of the present study consist in focusing on one particular com-
municative situation at the beginning of the telephone talk. Nevertheless, the com-
municative strategies of the speakers were found to have impact on the temporal
organization of their speech and on the sound image they tend to project.

Fig. 4. Scatterplot of AR and MLR (n = 289).

First Minute Timing in American Telephone Talks 457



References

1. Amerman, J., Parnel, M.: Speech timing strategies in elderly adults. J. Phon. 20, 65–76
(1992)

2. Boersma, P., Weenink, D.: PRAAT: doing phonetics by computer [Computer program].
Version 5.3.80 (2015). http://www.praat.org/. Accessed 05 Apr 2015

3. Godfrey, J., Holliman, E.: Switchboard-1 Release 2 LDC97S62. Web Download. Linguistic
Data Consortium, Philadelphia (1993)

4. Durand, J., Laks, B. (eds.): Phonetics, Phonology and Cognition. Oxford University Press,
Oxford (2004)

5. Fletcher, J.: The prosody of speech: timing and rhythm. In: Hardcastle, W.J., Laver, J.,
Gibbon, F.E. (eds.) The Handbook of Phonetic Sciences, 2nd edn, pp. 523–602. Wiley-
Blackwell, Chichester (2013)

6. Kachkovskaia, T., Skrelin, P.: Intonational phrases and pauses in read and spontaneous
speech: evidence from large speech corpora. In: Analyz razgovornoy russkoy rechi (AR3-
2019) (Analysis of the Russian Colloquial Speech 2019). Trudy vosmogo mezhdisci-
plinarnogo seminara (Papers of the 8th Interdisciplinary Seminar). Politechnika-Print, St.
Petersburgh, pp. 46–54 (2019). (in Russian)

7. Kess, J.F.: Psycholinguistics: psychology, linguistics, and the study of natural language.
John Benjamins Publishing Company, Amsterdam/Philadelphia (1992)

8. Krivnova, O.F.: Speech tempo control in automatic speech synthesis. SPECOM, pp. 277–
281. MSLU, Moscow (2007)

9. Linville, S.E.: Vocal Aging. Singular Publishing Group, San Diego (2001)
10. Nathan, G.S.: Phonology: A Cognitive Grammar Introduction. John Benjamin Publishing

Company, Amsterdam (2008)
11. Potapova, R.K., Potapov, V.V.: Yazyk, Rech, Lichnost’ (Language, Speech, Personality).

Yazyki Slavyanskoy Kultury, Moscow (2006). (in Russian)
12. Potapova, R.K., Potapov, V.V.: Rechevaya Kommunikaciya: otzvuka k vyskazyvaniyu

(Speech Communication: from sound to utterance). Yazyki Slavyanskix Kultur, Moscow
(2012). (in Russian)

13. Ratnikova, Ye.I.: Temporalnaya organizaciya ustnoporozhdayemogo monologicheskogo
vyskazyvaniya: sootnosheniye dlitelnosty fonacii I pauzy (Temporal organization of the oral
monological utterance: relation between duration of the voice set and pause). Int. Res. J.
07(61), 130–135 (2017). (in Russian). V. 1

14. Shevchenko, T.I.: Sociofonetika: nacionalnaya I socialnaya identichnost’ v anglijskom
proiznoshenii (Sociophonetics: national and social identity in English pronunciation), 2nd
edn. URSS, Moscow (2016). (in Russian)

15. Shevchenko, T., Sokoreva, T.: Corpus data on adult life-long trajectory of prosody
development in American English, with special reference to middle age. In: Karpov, A.,
Jokisch, O., Potapova, R. (eds.) SPECOM 2018. LNCS (LNAI), vol. 11096, pp. 606–614.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99579-3_62

16. Skehan, P.: A Cognitive Approach to Language Learning. Oxford University Press, Oxford
(2008)

17. Thomas, E.R.: Sociophonetics: An Introduction. Palgrave Macmillan, London (2011)
18. Thomson, R.I.: Fluency. In: Reed, M., Levis, J.M. (eds.): The Handbook of English

Pronunciation, Wiley Blackwell, Chichester, pp. 209–226 (2015)
19. Valimaa-Blum, R.: Cognitive Phonology in Construction Grammar: analytic tools for

students of English. Mouton de Gruyter, Berlin (2005)

458 T. Shevchenko and T. Sokoreva

http://www.praat.org/
http://dx.doi.org/10.1007/978-3-319-99579-3_62


Syntactic Segmentation of Spontaneous
Speech: Psychological and Cognitive

Aspects

Anton Stepikhov1,2(B), Anastassia Loukina3, and Natella Stepikhova1,2,3

1 The Russian Language Department,
St. Petersburg State University,

7/9 Universitetskaya emb., St. Petersburg 199034, Russia
a.stepikhov@spbu.ru

2 Research Institute for Applied Russian Studies, Herzen University,
48 Moika emb., St. Petersburg 191186, Russia

3 Educational Testing Service, 660 Rosedale Rd, Princeton, NJ 08541, USA
aloukina@ets.org

Abstract. The paper examines the properties of expert manual annota-
tion of Russian spontaneous speech. While it is well known that experts
exhibit variability in the ways they mark transcripted speech, our aim is
to arrive at the reasons behind such variability. In this study we focus on
the annotator’s psychological profile (personality traits, working mem-
ory capacity, processing speed and lateral asymmetry). Our focus is to
determine whether there is a relationship between the annotated sentence
length and the psychological and cognitive characteristics of the annota-
tor. We also study inter-annotator agreement in different text types. The
participants (n = 80) detected sentence boundaries in the transcripts of
Russian spontaneous speech and performed several test tasks. Person-
ality traits were measured using the Five Factor Personality Inventory.
Working memory capacity was measured through reading span and oper-
ation span tasks. To compute processing speed we used Letter Compar-
ison and Pattern Comparison tasks. A dominant hemisphere for speech
processing was established based on a dichotic listening task. The data
analysis did not reveal any relationship between annotators individual
characteristics and segmentation results. However, we found that anno-
tators do tend to mark sentence length in a way that is individual to
them and that such practices remain relatively stable regardless of text
type or even language.

Keywords: Personality · Working memory capacity ·
Lateral asymmetry · Dominant hemisphere · Annotation ·
Segmentation · Sentence boundary detection · Spontaneous speech ·
Russian

1 Introduction

The problem of ambiguity of expert annotation of speech is well-known and was
reported in a number of studies (see cf. [1–3]). Variability of expert segmentation
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may result in placing boundaries in different positions as well as giving different
lengths to annotated sentences. Nevertheless, this type of syntactic annotation
has been considered the gold standard to establish sentence boundaries in spon-
taneous discourse and to model them in automatic algorithms. The annotations
of several experts are generalised into the overall inter-annotator agreement.
Understanding the reasons behind variability among experts is important and
would help improve automatic sentence boundary detection – a significant chal-
lenge in natural language processing [4].

Our previous studies have shown that differing boundary placements may be
determined by differing factors: language-specific features (relatively free word
order in Russian or asyndetic connection between clauses), the speaker’s gender
and profession, or the type of text [5]. Moreover, pilot experiments on the rela-
tionship between segmentation and experts’ psychological traits revealed associa-
tion between personality measured by the Five-Factor Personality Inventory and
the length of annotated sentences. For example, for German we found that neu-
roticism has a significant effect on segmentation; i.e. more emotional people had
a tendency to divide speech into shorter sentences [6]. For Russian, we showed
that highly emotional and highly extroverted people are more likely to mark
unique boundaries (marked by only one annotator from the expert group) [7].

Since “the language is the vehicle of personality” [8] and a personal profile is
not limited by personality traits, but also includes other individual characteris-
tics, we designed a psycholinguistic experiment involving both psychological and
cognitive characteristics such as working memory capacity, processing speed and
a dominant hemisphere in speech processing (lateral preference) to examine a
possible effect of an expert’s psychological profile on annotation.

Within this set of individual characteristics, working memory capacity is
the most important parameter since it plays a prominent role in sentence com-
prehension and speech planning and production. For example, [9,10] revealed
the association between higher working memory capacity and a large scope of
speech planning. Moreover, as [11] argues the role of working memory cannot
be reduced to that of simple storage. It allows speakers to be more efficient in
utterance planning. Finally, the results of syntactic parsing are ‘bounded by the
limits of working memory capacity’ [11], i. e. higher working memory allows
for assembling larger packages of information for later parsing decisions. Thus,
we hypothesised that when transcripts were annotated by sentence boundaries,
higher working memory capacity would lead to longer sentences.

The experiment was conducted on German and Russian language material
to enable us to compare the results obtained in different languages and to reveal
common or language-specific features of sentence boundary detection.

The analysis of the first stage of the experiment performed in German was
reported in [6]. In this paper we report the results of the second stage of the
experiment performed on the Russian language material.
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2 Data and Experimental Design

2.1 Participants

The participants of the experiment were Russian native monolinguals with a
minimum one year experience in linguistic research or studies. In total 80 par-
ticipants took part in the experiment—70 females and 10 males. Their age was
between 18 to 57 years, with the median age of 21. Experts’ linguistic experience
varied from 1 to 40 years, with the median experience of 3.5 years.

The experimental session lasted 70–75 min on average.

2.2 Experimental Stimuli

The experiment consisted of two parts – text task and tests. For the text task, five
different types of texts were extracted from the Corpus of Russian spontaneous
monologues described in [5]. In our previous research we found that type of text
had an effect on segmentation [5], therefore all text types from the corpus were
included into the text task. These were: descriptive text retelling (Text 1), story
retelling (Text 2), free comment on one of two themes: “My leisure time” or
“My way of life” (Text 3), description of a cartoon series (Text 4) and picture
description (Text 5).

The author of these text was a man of 40 years old with higher non-linguistic
education (Speaker 1). The pilot experiment conducted earlier on the German
material showed that the character of speech segmentation is affected by syn-
tactic cohesion in the transcript: asyndetic connection between clauses led to
longer annotated sentences [6]. To check whether this trend is also common
for Russian we complemented the text part of experimental stimuli by two
monologues recorded from another speaker who preferred asyndetic connection
between clauses. These monologues were a picture description and a description
of a cartoon series.

The information about text size is summarised in Table 1.

Table 1. Summary statistics of the text stimuli (words).

Text 1 Text 2 Text 3 Text 4 Text 5

Speaker 1 162 225 266 244 312

Speaker 2 – – – 269 223

For the experiment, the recordings were transcribed without punctuation
and capitalisation (except for proper names). They did not contain any signs
of prosodic segmentation such as speakers’ hesitation (eh, uhm) or non-verbal
behaviour (e.g. laughter).

The task for the experts was to annotate sentence boundaries using “/”. In
the instruction, it was also stated that a sentence might consist of several clauses,
for example, the main clause and the subordinate clause. For other decisions the
experts could rely on their intuition of what a sentence is. The annotators were
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only provided with transcriptions of the recordings and did not have access to
the audio since according to [12] the influence of the semantic factor on the
segmentation of Russian spontaneous speech outweighs that of the tone factor.
The annotators did not have any time limits for this task.

A control text was also included in the set of text stimuli to make sure that
the participants understood the task correctly. For this control task we selected
a short story (371 words) with relatively simple syntax and short sentences. This
text was processed in the same way as other monologues to remove punctuation
and capitalisation and presented along with other texts. The control text was
given first.

2.3 Personality Inventory

Experts’ personality traits were measured by Five Factor Personality Ques-
tionnaire (Big Five Inventory) [13] adopted and validated for Russian by [14].
The inventory consists of 75 items with five-level Likert scale (from −2 to 2
including 0). Each item has two opposite statements, and a respondent has to
choose the closest score on the scale to one or another statement. The results
of FFPQ are interpreted along five scales corresponding to five super-trait fac-
tors to describe personality: (1) introversion vs. extraversion, (2) separateness
vs. attachment, (3) naturality vs. controlling, (4) unemotionality vs. emotional-
ity, and (5) practicality vs. playfulness1. Each scale ranges from 15 to 75. The
questionnaire was administered on paper.

2.4 Measuring Working Memory Capacity

According to the recommendations suggested in [15] the working memory capac-
ity of the experts was measured by two working memory span tasks – reading
span and operation span, and then the average of the two tasks was used as
the measure of ex-pert’s working memory capacity. The result was computed
according to the partial unit score approach [15]. The completion of each task
took about 10 min.

Working memory span tasks were computer-administered. They were devel-
oped by [16] for German based on the above mentioned approach [15] and
adopted for Russian by the experimenter for the purposes of the described
research.

The task for reading span was to read elements (sentences) aloud from the
screen one by one, evaluate whether they have sense, memorise the words after
each element and then recall the words. The number of sentences varied from 2
to 5, each sequence repeated three times (i.e. 2× 3, 3× 3, 4× 3 and 5× 3) in the
randomised order. In total, reading span task consisted of 12 series of sentences.

The operation span task was similar except for the expert had to check the
validity of simple math equations and memorise the letters that appear after
each element. The size of the task was the same.
1 We follow [13] for factor names since this version of the Big Five was used as the

basis for the Russian version.
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2.5 Processing Speed Tasks

As supplementary tasks we used speed processing tasks—Letter Comparison
(Fig. 1) and Pattern Comparison (Fig. 2) [17]. The tests measure perceptual
speed, with Letter Comparison additionally measuring memory abilities, and
Pattern Comparison—spatial abilities. The task was to define whether two
sequences of letters or two line patterns are the same or not. The participant
had to give as many correct answers as possible for one minute. The number of
correct answers constituted the total score.

Fig. 1. The sample of Letter Comparison. Fig. 2. The sample of Pattern
Comparison.

2.6 Dichotic Listening

To define a dominant hemisphere for speech processing we used a test for dichotic
listening [18]. Each expert had to listen to 30 pairs of words simultaneously
through headphones (one word was given into the right ear, and the other word
into the left) and repeat the words. The pairs were combined into the sequence
with the interval of three seconds between them. After that we computed the
coefficient of lateral preference (CLP) using the following formula:

CLP =
Nright − Nleft

Nright + Nleft

where Nright is the number of words given into the right ear and repeated
first, Nleft is the number of words given into the left ear and repeated first. Based
on the CLP we then defined the dominant hemisphere for speech processing:

• −0.1 � CLP � 0.1: no preference (no dominant hemisphere)
• CLP < −0.1: left-sided preference (the right hemisphere is dominant)
• CLP > 0.1: right-sided preference (the left hemisphere is dominant).

3 Data Analysis

Initial data processing revealed that two annotators did not follow instruction
guidelines and segmented transcripts into clauses rather than sentences. The
third annotator segmented the speech transcripts into longer stretches of text
that were more likely to correspond to paragraphs than to sentences, with the
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maximum “sentence” size of 243 words (the control text though was segmented
correctly—the average sentence size was 15.46 words). Thus, the data obtained
from those experts was not used for further analysis.

An example of three various annotations of the same text fragment is given
below.2

3.1 Descriptive Analysis of the Data

Summary statistics of the data is shown in Tables 2, 3, 4, 5, 6 and in Fig. 3.

Table 2. Average sentence length (words) in different texts across speakers (S).

Median SD Min Max

S. 1, text 1 19.75 3.26 13.17 26.33

S. 1, text 2 16.07 2.91 9.00 25.00

S. 1, text 3 17.28 3.86 10.03 28.27

S. 1, text 4 15.25 2.77 10.17 24.40

S. 1, text 5 22.17 5.14 12.09 44.33

S. 2, text 4 10.62 3.35 5.72 27.88

S. 2, text 5 12.18 3.30 6.87 20.62

2 ‘the series of pictures is called “The Hat” /a, b, c/ in the first of them a man is
shown in a hat shop is trying on hats in the mirror /a, b, c/ obviously it suits him /b/
he buys it /c/ goes out into the street /b, c/ in the street there is strong wind /b, c/
it blows the hat off him /b, c / the hat is flying /c/ is reaching a pool /c/ is floating
on the water /a, b, c/’.
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Table 3. Personality scores.

Scale Median SD Min Max

Neuroticism 59.50 10.36 37 75

Extraversion 47.50 10.99 22 69

Openness 59.00 7.15 37 71

Agreeableness 54.00 8.46 34 73

Conscientiousness 53.00 9.73 31 74

Table 4. Working memory capacity (WMC) scores.

Median SD Min Max

Reading span 0.79 0.12 0.45 0.98

Operation span 0.75 0.13 0.38 0.95

WMC 0.77 0.11 0.41 0.94

Table 5. Scores of processing speed tasks.

Median SD Min Max

Pattern comparison 42.00 7.50 24 57

Letter comparison 25.00 5.59 15 37

Table 6. Dominant hemisphere.

Hemisphere Left Neutral Right

Total 38 17 22

Coefficient of lateral peference
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Fig. 3. Histogram of the coefficient of lateral preference.
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The analysis of sentence length revealed statistically significant correlations
of average sentence length across different texts for the same annotator in all
compared pairs of text types (see Table 7). This result corresponds to that
obtained earlier for German [6], which may indicate that an annotator has a
tendency to use an individual strategy of speech segmentation.

Table 7. Correlations (Spearman’s r) of average sentence length for each annotator
across text types. Sentence length is compared pairwise within all annotated texts
except control text. Statistical significance: * for p < 0.05, ** for p < 0.01, *** for
p < 0.001.

S. 1, text 2 S. 1, text 3 S. 1, text 4 S. 1, text 5 S. 2, text 4 S. 2, text 5

S. 1, text 1 .32** .29* .33** .26* .24* .32***

S. 1, text 2 .63*** .56*** .39*** .39*** .42***

S. 1, text 3 .62*** .44*** .51*** .51***

S. 1, text 4 .44*** .51*** .56***

S. 1, text 5 .39*** .56***

S. 2, text 4 .66***

The comparison of average annotated sentence length across two speakers
based on the texts 4 and 5 showed statistically significant difference (p < 0.001).
This fact demonstrates that the strategy of an annotator is rather flexible and
varies depending on a speaker’s style.

3.2 Inter-annotator Agreement

For all annotated text we computed inter-annotator agreement. The agreement
was estimated using Fleiss’ κ. This measure was computed twice: first, for all
inter-word positions in analysed texts and, second, only for those positions where
at least one annotator marked a sentence boundary. For each place where a
boundary was marked, we assigned 1 to each annotator who marked a boundary
at this location, and 0 to those annotators who did not mark the boundary.

We found moderate inter-annotator agreement, with the highest agreement in
the control text for all inter-word positions (see Table 8). For positions annotated
by at least one expert agreement for the control text was comparable with the
results obtained for speech transcripts.

3.3 Mixed Linear Regression Modelling

To study the possible effect of different individual characteristics on the length
of sentence annotated by each expert we performed mixed linear regression anal-
ysis. We used the length of each sentence as dependent variable, speaker, text
and annotator as random factors and the individual annotators’ characteris-
tics as fixed factors. There were 10 fixed factors: 5 personality scores, working
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Table 8. Inter-annotator agreement

Speaker and text Fleiss κ

All inter-word positions Only positions annotated by
at least one expert

S. 1 text 1 0.589 0.598

S. 1 text 2 0.577 0.543

S. 1 text 3 0.482 0.446

S. 1 text 4 0.611 0.518

S. 1 text 5 0.503 0.496

S. 2 text 4 0.616 0.52

S. 2 text 5 0.482 0.436

Control text 0.728 0.599

memory capacity, two scores for processing speed tasks, the coefficient of lat-
eral preference, and a dominant hemisphere. The model was fitted in R using
lmerTest package [19].

In contrast to the results obtained earlier for German [6] the model did not
show any statistical significance.

4 Discussion and Conclusions

Our study was focused on syntactic segmentation of Russian spontaneous speech
which is characterised by the various length of annotated sentences. The aim of
the study was to reveal a potential relationship between the sentence length
and an ex-pert’s psychological profile. We performed a psycholinguistic experi-
ment to verify the hypothesis that the results of annotation may be affected by
speaker’s psychological, cognitive and physiological characteristics such as per-
sonality traits, working memory capacity, processing speed or dominant hemi-
sphere in speech processing. In particular, we assumed that sentence length posi-
tively correlates with working memory capacity. Since this experiment continues
our work started earlier on the German language we also intended to compare the
obtained results to reveal possible common trends of expert sentence boundary
detection between different languages.

The analysis revealed moderate inter-annotator agreement in transcript-
based speech segmentation. Quite unexpectedly, inter-annotator agreement for
Russian spontaneous speech was significantly higher than that for German. Prob-
ably such difference is partly determined by the much smaller number of the par-
ticipants of the experiment conducted in German. Nevertheless, the data shows
that both Russian and German experts face similar difficulties while performing
segmentation. This fact may be explained by the very nature of spontaneous
speech and probably by the means by which it is represented. A speech tran-
script is the “meeting point” for written and oral speech, and therefore it may
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be the site of an indeterminate interaction between strategies for processing two
different language forms and thus result in variability.

The most important conclusion concerning sentence length is that annota-
tors differ regarding the sentence length they prefer. An expert’s decision in
favour of shorter or longer sentences does not depend on text type and usually
demonstrates a steady trend between texts. We observed moderate correlation
between average sentence length across different texts for the same annotator
in Russian (in German the correlation was significantly higher and achieved
r = 0.88, which may be explained by less flexible word order). Thus, sentence
length may be considered the individual characteristic of an annotator which
remains relatively stable regardless a text type or a language.

At the same time, sentence length may be affected by a speaker’s style. We
found that annotators changed their strategy when the syntax of the annotated
texts changed. The typical strategy was to segment texts with dominating asyn-
detic connection between clauses (texts by Speaker 2) into shorter sentences.
These changes were usually observed across all annotators (see Fig. 4).

Fig. 4. Average sentence length for two speakers (y-axis) across experts (x-axis)
(Text 4).

Mixed linear modelling of sentence length based on psychological and cogni-
tive characteristics of annotators did not reveal statistically significant associa-
tion between a speaker’s psychological profile and annotation results. In contrast
to the initial hypothesis working memory capacity of annotators was not related
to the length of an-notated sentences, which we had earlier also observed for
German. This result, however, may be determined by the fact of high density of
the range between the first and the third quartiles of WMC data (0.136 out of 1,
see Fig. 5) as well as by the absence of time limits for performing the annotation.

Surprisingly, the result of the present research contradicts that described in
[20] where we reported an association between sentence length and two per-
sonality traits measured by the Big Five – emotionality and practicality (they
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Fig. 5. The boxplot of working memory capacity.

accounted for 18% of the variance in sentence length). This fact may be explained
by the 20% higher inter-annotator agreement observed for the sample of the
present research. Since higher agreement suggests the lower extent of individ-
ual differences of annotators, we may assume that, with regard to individuality,
the present sample was more uniform, which did not let annotators’ personality
traits measured by the Big Five manifest themselves in segmentation.

In future we plan to examine individual differences in annotations based on
both textual and prosodic information. This type of task suggests a greater role
for working memory and other parameters of an expert’s psychological profile in
syntactic segmentation since it is performed with time restrictions.
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9. Petrone, C., Fuchs, S., Krivokapić, J.: Consequences of working memory differences

and phrasal length on pause duration and fundamental frequency. In: Proceedings
of the 9th International Seminar on Speech Production (ISSP), Montreal, pp. 393–
400 (2011)

10. Swets, B., Jakovina, M.E., Gerrig, R.J.: Individual differences in the scope of speech
planning: evidence from eye-movements. Lang. Cogn. 6, 12–44 (2014)

11. Swets, B.: Psycholinguistics and planning: a focus on individual differences. In:
Fuchs, S., Pape, D., Petrone, C., Perrier, P. (eds.) Individual Differences in Speech
Production and Perception. (Speech Production and Perception, vol. 3), pp. 89–121
(2015)

12. Vannikov, Yu., Abdalyan, I.: Eksperimentalnoe issledovanie chleneniya razgov-
ornoj rechi na diskretnye intonacionno-smyslovye edinicy (frazy) (Experimental
research of segmentation of spontaneous speech into intonational and semantic
units (phrases). In: Sirotinina, O.B., Barannikova, L.I., Serdobintsev, L.Ja. (eds.)
Russkaya razgovornaya rech, Saratov, pp. 40–46 (1973). (in Russian)

13. Tsuji, H., et al.: Five-factor model of personality: concept, structure, and measure-
ment of personality traits. Jpn. Psychol. Rev. 40(2), 239–259 (1997)

14. Khromov, A.B.: Pyatifactornyj oprosnik lichnosti: Uchebno-metodicheskoe poso-
bie (Five-factor personality inventory: Textbook). Izd-vo Kurganskogo gosu-
darstvennogo universiteta, Kurgan (2000). (in Russian)

15. Conway, A.R.A., Kane, M.J., Bunting, M.F., Hambrick, D.Z., Wilhelm, O., Engle,
R.W.: Working memory span tasks: a methodological review and user’s guide.
Psychon. Bull. Rev. 12(5), 769–786 (2005)

16. von der Malsburg, T.: Py-Span-Task - a software for testing working memory span
(2015). https://doi.org/10.5281/zenodo.18238

17. Salthouse, T.A.: The processing-speed theory of adult age differences in cognition.
Psychol. Rev. 103(3), 403–428 (1996)

18. Lyakso, E.E., Ogorodnikova, E.A., Alexeev, N.P.: Psikhofiziologiya slukhovogo
vospriyatia (Psychophysiology of auditory comprehension). St. Petersburg (2013).
(in Russian)

19. Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B.: lmerTest: tests in lin-
ear mixed effects models. R package version 2.0-20. http://CRAN.R-project.org/
package=lmerTest

20. Stepikhov, A., Loukina, A.: Annotation and personality: individual differences
in sentence boundary detection. In: Ronzhin, A., Potapova, R., Delic, V. (eds.)
SPECOM 2014. LNCS (LNAI), vol. 8773, pp. 105–112. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11581-8 13

https://doi.org/10.1007/978-3-319-99579-3_67
https://doi.org/10.1007/978-3-319-43958-7_55
https://doi.org/10.5281/zenodo.18238
http://CRAN.R-project.org/package=lmerTest
http://CRAN.R-project.org/package=lmerTest
https://doi.org/10.1007/978-3-319-11581-8_13


Dual-Microphone Speech Enhancement
System Attenuating both Coherent

and Diffuse Background Noise

Mikhail Stolbov(B) and Quan Trong The(B)

University ITMO, St. Petersburg, Russia
stolbov@mail.ifmo.ru, quantrongthe@itmo.ru

Abstract. In this paper, we present an adaptive dual-microphone array
to suppress coherent as well as diffuse noise in disturbed speech signals.
This system consists of a dual microphone array and an algorithm for
processing their signals. The algorithm for target speech enhancement
consists of two main algorithmic steps: segmentation and enhancement.
The segmentation is realized using GCC-PHAT signal processing algo-
rithm. This algorithm allows to detect the target speaker’s speech and
extract it in a noisy environment. Further the target speaker’s speech is
enhanced using an adaptive Minimum Variance Distortionless Response
(MVDR) filter implemented in the frequency domain. This paper pro-
poses a practical improvement of MVDR filter which allows better save
speech of the target speaker. Experiments with real recordings demon-
strate the reduction of both coherent and diffuse background noise. The
main advantage of the proposed technique is simplicity of its use in a
wide range of practical situations.

Keywords: Dual-microphone array · Speech activity detection ·
Adaptive MVDR beamformer · Coherent · Diffuse noise · Cross-talk

1 Introduction

The task of recognizing keywords in speech is important for many applications
(1). The effective method of Extraction of Desired Speech Signals in Multiple-
Speaker Reverberant Noisy Environments is using of microphone arrays (MA)
[1,2].

To recognize the operator’s keywords in the office, we proposed a simple dual-
microphone (MA2) system [3,4]. The advantage of this solution is the simplicity
and compactness of the system. The drawback is the lack of effective suppression
of nonstationary ambient noise. The goal is to improve the performance of the
MP2.

A possible solution to the problem may be the use of adaptive signal pro-
cessing algorithms, allowing suppress environmental noise (coherent and dif-
fuse noise) more efficiently. The comparison of various adaptive noise reduction
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algorithms for MA2 was made in [5,6], and the conclusion was drawn that the
MVDR algorithm is more efficient. The possibility of additional noise suppres-
sion of diffuse noise using dual-microphone superdirective beamforming, which
can be considered as a modification of the MVDR algorithm is shown in [7].
The equivalence of the adaptive MVDR algorithm to the adaptive null steering
algorithm in the direction of the coherent interference source is shown in [8].
Thus, we assume that the adaptive MVDR algorithm will make it possible to
more effectively suppress nonstationary environmental noises.

A number of articles are devoted to the problem of joint suppression of both
coherent and incoherent noise [9–13]. In this paper, we investigate the use of an
adaptive MVDR algorithm to suppress nonstationary coherent and diffuse noise.

2 Dual Microphone System

A microphone array consists of two closely spaced omnidirectional microphones.
The microphone array is placed in the workplace of the target speaker. The
signal processing scheme in a dual-microphone system is shown in Fig. 1.

The algorithm for target speaker’s speech enhancement consists of two main
steps: signal segmentation and speech enhancement. The purpose of segmenta-
tion is to allocate the operator’s speech, the goal of enhancement is to attenuate
the background noise on these segments.

The acoustic environment is characterized by the following features:

– An office with many employees (operators) whose speech can reach the work
place of the target speaker.

– Location of the interfering operators, whose positions are not known be fore-
hand and can change.

– A customer (speaker 2) located on the opposite side relative to the operator
(speaker 1).

– The target speaker (operator) is located in his or her workplace and can
insignificantly change position and turn his or her head relative to the micro-
phone.

– The noise level in an office can be high.

Consider the general algorithm for processing MA2 signals in the frequency
domain. In the representation of the short-term Fourier transform, the signal
S(f, k) of the target speaker from the direction θs (angle from the axis of MA2)
and additive noise V (f, k) on the microphones form a vector of signals:

X(f, k) = S(f, k)D(f, θs) + V (f, k) (1)

where f, k are the indexes of frequency and frame number respectively.
D(f, θs) = Ds(f) = [e+jφs , e−jφs ]T is a vector of phase shifts of microphone

signals relative to the center point between microphones, ()T denotes transpose
of a vector or matrix and φs(f) are phase shifts:

φs(f) = πdcos(θs)/λ = πfτ0cos(θs) (2)
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Fig. 1. The scheme of the system.

where S(f, k) is the target, τ0 = d/c is the sound delay between the microphones,
d is the distance between the microphones, c is the sound speed (340 m/s), θs -
the angle of the direction of arrival of the signal relative to the axis MA2.

The evaluation of the signal of the target speaker Ŝ(f, k) in the k -th frame
at the output of MA2 is formed by weighing the input signals with complex
weights:

Ŝ(f, k) = W H X(f, k) (3)

where W (f) is the vector of the coefficients, ()H is the symbol of Hermitian
conjugation.

The final processing step is the transition from the frequency domain to the
time domain. This is done using the inverse Fourier transform and the overlap-
and-add (OLA) algorithm.

The purpose of processing is to extract the signal of the target speaker. This
is achieved by highlighting the target speaker’s speech intervals and suppressing
noise. Consider these steps in detail.

3 The Separation of Sounds Using Dual-Microphone
Array

The first problem with the use of the adaptive MVDR algorithm is to tune
the coherent signal of the operator’s speech. The solution is to detect operator
activity intervals and termination at these MVDR tuning intervals.

The operator’s activity detection algorithm uses (relies on) the following
script features: first, the operator changes its position in a known limited range
of angles. Secondly, as a rule, only one of the speakers is in turn. Thirdly, the
speech of the operator is usually significantly louder than the sounds of the
environment (apart from the speech of the customer).

These circumstances make it possible to detect the activity of an operator
by determining the direction of arrival of the sound of a coherent source and
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comparing this direction with the range of directions of the possible position
of the operator. The generalized cross-correlation with phase transform (GCC-
PHAT) method was chosen as an algorithm for estimating the direction of sound
arrival. We used the algorithmic implementation of the method described in [14].

The results of applying the algorithm can be demonstrated using the fol-
lowing experiment. Two speakers located along the axis of MA2 on opposite
sides at a distance of approximately 70 cm from MA2. The speakers spoke alter-
nately. Using the PHAT algorithm, the direction of arrival of the sound was esti-
mated at various points in time. MA2 signals were recorded under the condition
d = 4.25 cm, Fs= 16 kHz. Figure 2 shows the waveform of one of the microphones
and an estimate of the angle of arrival of sound.

Fig. 2. (a) Microphone waveform, (b) An estimate of direction of arrival.

The results of the experiment prove the possibility of estimating the speech
intervals of the target speaker.

4 Speech Enhancement Using Adaptive MVDR

The MVDR algorithm is based on the condition of undistorted signal reception
from the target direction θs and minimization of the total noise power at the
MA2 output [6]. The solution of the optimization problem leads to the following
relation for the vector of optimal weights under assumption a homogeneous noise
field [1]:

W0(f, k) =
Γ −1(f, k)Ds(f)

DH
s (f)Γ −1(f, k)Ds(f)

(4)
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where Γ is a coherence matrix, which is calculating as follows:

Γij(f, k) =
Pij(f, k)

√
Pii(f, k)Pjj(f, k)

(5)

where Pij(f, k) are the smoothed cross-spectra:

Pij(f, k) = βPij(f, k − 1) + (1 − β)X∗
i (f, k)Xj(f, k) (6)

where β is the averaging factor.
The adaptive algorithm allows the update the coherence matrix in varying

noise environment and adjusts the filter coefficients for noise suppression. In
this case, the speech signal of the target speaker is partially distorted. In the
case when the spectral components of the speech of the target speaker are far
superior to the components of the noise, it is advisable to turn off its suppression
and form the look direction in the direction of the target speaker. This can be
achieved by the following modification of the coherence matrix:

Γ (f, k) =
[

Γ00 Γ12 ∗ F (f, k)
Γ21 ∗ F (f, k) Γ00

]
(7)

where

F (f, k) =
1

1 + SNR(f, k)
= min(1,

Pvv(f, k)
|(X(f, k)|2 ) (8)

SNR(f, k) =
Pss(f, k)
Pvv(f, k)

(9)

where Pss(f, k), Pvv(f, k) are spectral power density of target speech and noise
respectively. In the case of SNR(f, k) � 1, Γ = I,W0(f, k) = 1

2Ds. MA2 forms a
beam in look direction using the DAS algorithm and. In the case of SNR(f, k) ≈
1, MA2 tends to suppress noise.

Experiments have confirmed the effectiveness of the proposed solution in a
number of cases. However, this solution requires further investigation.

5 Experiments and Results

The purpose of the experiments was to test the possibility of suppressing both
coherent and diffuse noise using the adaptive MVDR algorithm, as well as
comparing it with other speech enhancement algorithms for MA2. All experi-
ments were performed with the following parameters: sampling rate Fs= 16 kHz,
NFFT = 512, Hamming window, 50% overlap of frames averaging factor
β = 0.5.
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Fig. 3. The spectrograms of the signals: (a) - a fragment of the speech of the target
speaker, (b) - a fragment of the mixture of the speech of the target and the interfering
speaker, (c) - a fragment of the mixture after processing.
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5.1 Experiments with Artificial Mixture

The purpose of the model experiment was to check the possibility of distinguish-
ing the operator’s speech (target speaker) against the background of the speech
of an outside speaker.

The following scenario was simulated. The speech of the target announcer
is synchronous in both channels, which corresponded to the angle of arrival
(relative to the MA2 normal 0◦, the speech of the interfering announcer enters
the channels with a time shift of 2 times, which corresponds (provided d = 5 cm,
Fs= 16 kHz) to the angle of arrival 60◦. The signal-to-noise ratio ranged from 0
dB to −12 dB.

The MVDR algorithm, in the absence of the speech of the target speaker, was
tuned to suppress the third-party speaker. At the site of simultaneous speech
of the target and third-party announcer, the MVDR algorithm continued to
adaptively adjust the coefficients. The spectrograms of the signals at the corre-
sponding intervals are presented in Fig. 3.

The results of the experiment prove the possibility of effectively distinguish-
ing the speech of the target speaker of the operator against the background of
the speech of the disturbing speaker using the MVDR algorithm. A similar result
was obtained for the broadband interference scenario.

5.2 Experiment in Anechoic Chamber

The purpose of the experiment was to test the MVDR algorithm on real signals
and to assess the possibilities of adaptation to changes in the direction of noise
arrival. The scheme of the experiment is shown in Fig. 4.

The target direction was set in the direction of the speaker (φv = −30◦), the
distance between the microphones d = 5 cm.

Fig. 4. The scheme of the experiment in anechoic chamber.
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Fig. 5. RMS of microphone signal and MVDR output signal (φv = 0◦...60◦).

Experimental results prove the ability of the algorithm to suppress non-
stationary interference while maintaining the speech signal of the target speaker.
The noise reduction was about 18 dB (Fig. 5).

5.3 Experiments in Reverberant Room

The purpose of the experiment was to compare the effectiveness of the sup-
pression of diffuse noise in the room by various algorithms. The scheme of the
experiment is shown in Fig. 6.

Fig. 6. Configuration of noise reduction experiment.
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The experiment was conducted in an office space, T60 = 320 ms. Noise was
generated through the speaker at a distance about 5 m from the microphone
array. We tested six frequency domain algorithms as noise reduction frontiers:
broadside Delay and Sum beamformer (DAS), Generalized Sidelobe Canceller
(GSC), Differential microphone arrays (Cardioid and Hypercardioid), MVDR
(broadside and end-fire configuration). Table 1 presents the obtained results.

Table 1. Noise suppression rate (dB) for various microphone arrays.

DAS GSC Hypercardioid Cardioid MVDR broadside MVDR end-fire

1.5 3.5 5.5 6.5 9.5 7.5

It follows from the table that MVDR has an advantage over the considered
algorithms by the criterion of the degree of suppression of diffuse noise and
provides 3...4 dB more suppression of diffuse noise.

6 Conclusions

In this paper we investigated a dual-microphone noise reduction system for sup-
pression of coherent and diffuse noise in disturbed speech signals which is based
on adaptive MVDR beamformer. The experimental results demonstrated that
the proposed system works well for a large range of noisy conditions. We have
shown that adaptive MVDR beamformer is a good algorithm to suppress both
coherent and diffuse background noise which allows to reduce speech recognition
errors for the target speaker. The MVDR algorithm has the ability to suppress
coherent noise coming from different directions, while preserving the speech of
the target speaker. This experiment also showed that the MVDR algorithm pro-
vides 3...4 dB more suppression of diffuse noise compared to the other considered
algorithms. Proposed algorithm could be used as a pre-processor and enhance-
ment unit for speech recognition and communication systems.
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Abstract. Although the Deep Neural Network (DNN) technology has
brought significant improvements in automatic speech recognition, the
technology is still vulnerable to changing environmental conditions. The
adversarial multi-task training method was recently proposed to increase
the domain and noise robustness of DNN acoustic models. Here, we apply
this method to reduce the inter-speaker variance of a convolutional neural
network-based speech recognition system. One drawback of the baseline
method is that it requires speaker labels for the training dataset. Hence,
we propose two modifications which allow the application of the method
in the unsupervised scenarios; that is, when speaker annotation is not
available. Our approach applies unsupervised speaker clustering, which
is based on a standard feature set in the first case, while in the second
case we modify the network structure to perform speaker discrimination
in the manner of a Siamese DNN. In the supervised scenario we report
a relative error rate reduction of 4%. The two unsupervised approaches
achieve smaller, but consistent improvements of about 3% on average.

Keywords: Convolutional neural network · Siamese neural network ·
Multi-task · Adversarial training · Unsupervised training

1 Introduction

Since the introduction of Deep Neural Network-based technologies, the error rate
of speech recognition systems has decreased significantly [8]. However, improving
the robustness of the recognizers is still an active area of research, as even these
DNN-based systems are sensitive to various adversarial environmental condi-
tions such as background noise, reverberant environments, and different speaker
accents. The sensitivity to these factors can partly be explained by the fact that
neural networks are inclined to overfit the actual training data, and generalize
poorly to cases that were not seen during training. Among other options, regular-
ization methods are routinely applied to tackle this overfitting phenomenon [6].
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For example, it is known that presenting multiple tasks to the network at the
same time – known as multi-task training [3] – also has a regularization effect.
That is, having to solve two (or more) similar, but slightly different tasks at the
same time forces the network to find a more general and more robust inner rep-
resentation. Multi-task training has been shown to reduce the speech recognition
error rate in several studies [2,14].

While multi-task training seeks to minimize the error of both tasks, there is a
newer variant of the method known as adversarial multi-task training [5]. Here,
we maximize the error of the secondary task. With this modification, we expect
the network to prefer inner representations that are invariant with respect to the
secondary task. In speech technology, adversarial multi-task training has mostly
been applied to enhance the domain independence (i.e. noise robustness) of DNN
acoustic models [4,15]. But we also found examples where it is used to make the
system less sensitive to other factors like the accent of the user [16]. In this
study, we seek to apply the adversarial multi-task training method to alleviate
the sensitivity of speech recognizers to the identity of the actual speaker. Our
starting point will be the recent study of Meng et al. [12]. The approach they
described requires a training data set that contains speaker annotation. However,
most of the current large training databases contain only transcripts of the text
spoken without any speaker labels, which renders the method of Meng et al.
inapplicable in practice. Here, we experiment with two possible extensions that
do not require speaker annotation, and hence these methods are unsupervised
in terms of the speakers. For the experimental evaluation we use the TIMIT
database, which contains brief samples from significantly more speakers than the
corpus used by Meng et al, so the task is presumably more difficult. Moreover,
as TIMIT contains a speaker identifier for each file, we can directly compare the
supervised approach with the proposed unsupervised methods.

2 Multi-task and Adversarial Multi-task Training

The typical Y-shaped architecture of a multi-task deep neural network is shown
schematically in Fig. 1. The network has a dedicated output layer for both tasks
(addressing more tasks is also possible, but here we shall assume there are just
two tasks). Typically, the uppermost hidden layers are also arranged into task-
specific counterparts. Both output layers have a corresponding error function,
which are denoted in the figure by LCD and LS , while the corresponding parame-
ters (weights) are denoted by θCD and θS . Although the network has two output
layers, it has only one input layer, and the lower layers are also shared between
the two tasks. This forces the network to find a hidden representation in these
shared layers which is useful for both tasks. During error backpropagation, the
errors coming from the two branches are combined by a simple linear combina-
tion. We can perform this using equal weights, but typically the accuracy of one
of the tasks is more important for us than that of the other. We can express this
importance using a λ weight in the combination formula (see Fig. 1). In our case,
the more important main task will be speech recognition (the recognition of the
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Fig. 1. Schematic structure of an (adversarial) multi-task neural network.

Hidden Markov Model states), while the secondary task will be the recognition
of the actual speaker. Note that the secondary task is added only during train-
ing, as we expect it to help learn the main task. However, the actual accuracy
score attained by this branch of the net is used only for verification purposes,
and this branch is discarded in the evaluation phase.

Besides λ, another parameter of the model is the depth where the two
branches should join. Intuitively, more different tasks require more task-specific
and fewer shared layers (see, e.g. [18]), but the optimal configuration can be
found only experimentally. Likewise, it is impossible to tell in advance whether
a certain secondary task will help learn a given main task, but intuitively, the
secondary task should be related, but slightly different from the main task.

To our knowledge, multi-task training was first applied in speech recognition
in a study by Lu et al., where the secondary task was to clean the noisy speech
features [11]. In the deep learning framework it was first applied by Seltzer
and Droppo, who used the recognition of the phonetic context as a secondary
task along with the main phone recognition task [14]. A similar solution was
implemented by Bell and Renals, who combined the tasks of context-dependent
and context-independent modeling [2].

Multi task-learning has a variant called adversarial multi-task learning [5].
Instead of preferring a hidden representation that helps handle both tasks, adver-
sarial multi-task learning seeks to find a hidden representation that is invariant
with respect to the secondary task, meaning that it contains no information that
would allow the identification of the secondary targets. In adversarial training
the Y-shaped network structure is the same as that for the standard multi-task
model. However, we will try to maximize the error of the secondary task instead
of minimizing it. Technically, it is realized by still minimizing the secondary error,
but using a negative value for λ. This way, the task-specific secondary branch
tries to solve the secondary task, but the shared layers will seek a representation
that works against this (performing a sort of ‘min-max’ optimization [16]).
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The adversarial multi-task training approach was first used in speech tech-
nology in 2016 [15]. Most authors mainly applied it to make the neural network
‘domain-invariant’ ([4]); that is, insensitive to the actual background noise, but
we know of examples where the domain corresponds to speaker accent [16], or
the identity of the actual speaker [12].

Shinohara recommends introducing adversarial training gradually, by slowly
increasing the weight of the adversarial branch in each iteration [15]. Following
his recommendation, we configured λ so as to attain its final value after 10
iterations, setting its absolute value in the kth iteration to

λk = min(
k

10
, 1) · λ.

3 Experimental Set-Up

We used the English TIMIT speech dataset for our experiments. Though this
dataset is now considered tiny for speech recognition purposes, we chose it
because it also contains speaker annotations. Moreover, it is ideal in the sense
that is contains samples from a lot of speakers in a uniform distribution. The
train set consists of 8 sentences from 462 speakers, while the core test set com-
prises 24 other (independent) speakers. As the development set, we randomly
separated 44 speakers from the train set, and we evaluated the models on the
core test set.

For the recognition, we applied a standard Hidden Markov Model - Deep
Neural Network (HMM/DNN) hybrid [8]. The neural network component was
trained on a mel-spectrogram, and it contained convolutional neurons in its low-
est layer (performing frequency-domain convolution) [1]. The convolutional layer
was followed by two additional fully connected layers, which together formed the
shared part of the network. The task-specific parts of the network consisted of
1-1 hidden layers, as this was found optimal in preliminary experiments. All
the hidden layers contained 2000 rectified (ReLU) neurons. In the speech recog-
nition (or main) branch, the output layer consisted of 858 softmax neurons,
corresponding to the states of the HMM. In the speaker recognition (or sec-
ondary) branch, the 462 softmax neurons had to identify the speakers of the
database. The network was trained using standard backpropagation, applying
the frame-level cross-entropy function as the loss function for both output layers.

4 Results with Supervised Adversarial Training

In the first adversarial training experiment we trained the network in a super-
vised manner; that is, using the original speaker labels as training targets for
the secondary task. To find the optimal value of λ, we varied it between −0.05
and −0.25 with a step size of 0.05. Table 1 shows the frame-level error rates got
for both branches. It should be mentioned that for the secondary task we have
scores only for the train set, and we listed these scores only to verify the behavior
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Table 1. The frame-level and phone-level error rates obtained for various values of λ,
using supervised training.

Parameter Frame error rate Phone error rate

λ (train, sec. task) (dev, main task) (dev. set) (test set)

0 (baseline) 24.7% 35.4% 16.6% 18.8%

−0.05 70.8% 34.7% 16.3% 18.4%

−0.10 77.2% 34.8% 16.0% 18.0%

−0.15 86.4% 34.9% 16.2% 18.1%

−0.20 89.3% 35.1% 16.3% 18.2%

of the network, as this branch of the network is not used by the final recognition
system. For the main task we listed the results on the independent develop-
ment set, as this tells us more about the generalization ability of the model. The
rightmost columns of the table show the phone recognition error rates on the
development and test sets, obtained after performing HMM decoding using the
state-level probabilities produced by the main branch of the network. The first
row contains the baseline result, which is obtained with λ = 0. We will call this
the ‘passive’ configuration, as in this case the secondary branch is allowed to
learn, but it cannot influence the shared hidden representation. The table shows
that by decreasing λ, the frame error rate of the secondary task rose consistently,
just as one would expect. The frame error rate of the main task decreased in
parallel until it reached its optimum point, then it started to rise again when λ
became smaller. The phone recognition error rate attained its optimum both for
the development and test sets at λ = −0.1, but the scores are consistently lower
than those for the baseline system for all parameter values tested. In the best
case the relative error rate reduction was 4.2% on the test set. As for Meng et
al., they reported an error rate reduction of 5% [12].

It is well known that adding a small disturbance to either the weights or the
input of the neural network can reduce overfitting, and bring a slight improve-
ment in the scores [6]. We wanted to verify that the improvement was not simply
due to this effect. Hence, we calculated the variance of the recognition scores
with respect to the speakers, and we found that it decreased by about 10%,
compared to the baseline model. This confirms that the adversarial training
method indeed makes the model less speaker-sensitive – although the model is
still far from being ‘speaker-invariant’. Meng et al. themselves reported addi-
tional improvements by applying speaker adaptation after adversarial training
[12]. We found earlier that the application of CNNs instead of fully connected
DNNs reduces the inter-speaker variance by about 5.7% [17]. As we used CNNs
here, the reduction of 10% was obtained in addition to this previously reported
improvement.
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Table 2. The error rates obtained using the conventional speaker clustering method.

No. of Parameter Frame error Phone error rate

clusters λ rate (dev) (dev) (test)

– 0 (baseline) 35.4% 16.6% 18.8%

50 −0.10 34.8% 16.4% 18.6%

100 −0.15 34.6% 16.0% 18.0%

150 −0.10 34.8% 16.0% 18.3%

200 −0.10 34.8% 16.2% 18.4%

250 −0.10 34.6% 16.0% 18.3%

5 Unsupervised Training Without Speaker Labels

The approach we presented in the previous section has a big drawback, namely
that it requires the annotation of the speakers. Though this is available in the
case of the TIMIT dataset, nowadays we train our systems on much larger
corpora, which are usually recorded under more natural conditions. For these
databases a precise speaker-level segmentation and labelling is typically not
available, which means that our adversarial training method cannot be directly
applied. Here, we propose two approaches to overcome this limitation. These
methods do not require speaker annotation, but they create the training targets
for the speaker classifier branch of the network in an unsupervised manner. The
only assumption is that there is no speaker change within a file, so each file
belongs to exactly one speaker. This is a much weaker constraint in general than
that of the availability of a speaker annotation.

5.1 Conventional Speaker Clustering

Not having speaker labels, we can apply a clustering method to group the files
into clusters, according to the similarity of the speakers’ voices. Many conven-
tional algorithms exist for this, and we chose a hierarchical clustering method
that was accessible to us. The original algorithm applies a bottom-up, agglom-
erative hierarchical cluster method, which merges clusters based on the gener-
alized likelihood ratio of Gaussian models fit on standard acoustic features like
mel-frequency cepstral coefficients (MFCCs) [7]. Various modifications of the
algorithm were later suggested by Wang et al. [19] and Kaya et al. [9].

When using the clustering algorithm, the number of clusters becomes an
additional parameter. We tried to vary this value between 50 and 250 with a
step size of 50. We applied the adversarial training method just as before, but
the speaker labels were replaced by the automatically found cluster identifiers.
Table 2 lists the recognition results obtained in this case. For each cluster size
we report only the λ value that gave the best score on the development set.
On the development set we attained the same error rate (16.0%) as that with
the supervised approach for several cluster sizes. However, the improvement did
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Fig. 2. Illustration of the architecture of a Siamese neural network.

not carry over to the test set, where the best supervised score (18.0%) was
achieved only in one configuration. Disregarding the cluster size of 50 (which
gave an inferior performance), the average score on the test set was 18.25%,
which corresponds to a 3% relative error rate reduction over the baseline.

5.2 Clustering Using a Siamese Multi-task Network

The conventional speaker clustering method we applied is built on MFCCs and
Gaussian modelling, but our acoustic model is a CNN that uses mel-frequency
energy features. This means that we calculate two types of features and two
types of models, which is a waste of resources. We could do better if we adjusted
our network (more precisely, its speaker classifier branch) to the unsupervised
task. The approach we applied is based on the method outlined by Ravanelli
and Bengio [13], but it is also closely related to the concept of Siamese neural
networks [20]. Siamese networks are usually applied to decide whether two images
depict the same object or not, and they consist of two main parts (see Fig. 2).
The upper, discriminator part is trained to discriminate a pair of input vectors.
In our case, the discriminator consists of one hidden layer and an output layer of
just two neurons, which try to decide whether two input speech frames belong
to the same speaker or not. The lower, encoder part seeks to find the optimal
representation for this discrimination. As we try to discriminate a pair of inputs,
the encoder is present in two copies in the network, but these are practically
identical (technically, this can be solved by weight sharing, for example).

In the case of our multi-task network, the lower, shared part will serve as the
encoder, and the network branch corresponding to the speaker classification task
has to be replaced by the discriminator. We had to solve two problems to achieve
this. First, the discriminator required two input vectors instead of just one.
Second, we had to create pairs that came from the same file (negative examples),
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Algorithm 1 . Constructing batches of data that allows the training of the
speaker discriminator and the classifier network branches in a multi-task fashion

Let N denote the batch size
f [k] (k = 1, ..., N) will store the batch of feature vectors
lc[k] (k = 1, ..., N) will store the training targets for state classification
ls[k] (k = 2, ..., N) will store the training targets for the speaker discriminator

j ← a randomly selected file index from the training file list
f [1] ← a randomly sampled frame from the jth file
lc[1] ← the state label of f [1]
ls[1] ← undefined � Not used during training
for (k=2; k ≤ N ; k++) do

if k is even then
f [k] ← a randomly sampled frame from the jth file
lc[k] ← the state label of f [k]
ls[k] ← 0 � f [k − 1] and f [k] are from the same file

if k is odd then
j ← a randomly selected new file index, different from the previous value of j
f [k] ← a randomly sampled frame from the jth file
lc[k] ← the state label of f [k]
ls[k] ← 1 � f [k − 1] and f [k] are from different files

Train the main network branch using f [k] and lc[k] (k = 1, ..., N)
Train the secondary branch using the < f [k −1], f [k] > pairs and ls[k] (k = 2, ..., N)

and pairs that came from different files (positive examples) in turn. We created
an algorithm that constructs the data batches in such a way that it allows one to
train the speech recognition and the speaker discriminator branches in parallel,
in a multi-task fashion (see Algorithm 1). That is, the N data vectors returned
by the algorithm can be used to train the speaker recognition branch directly,
while the N−1 pairs of neighboring vectors are alternating positive and negative
examples for the 2-class speaker discriminator branch. We should add that while
we want to discriminate the speakers, our implementation approximates this by
discriminating the files, as we have no access to speaker labels. However, as long
as the train set consists of many speakers, the chance of mislabelling a pair is
actually quite low (in this case, 8 files out of 418 belong to the same speaker).

In our preliminary tests the Siamese speaker discriminator branch of the
network attained an error rate of 18% in passive training mode. In multi-task
mode the error decreased to about 2%, which is similar to that reported by
Ravanelli and Bengio [13]. However, both in multi-task and in adversarial multi-
task training the discriminator branch had only a negligible influence on the
accuracy of the other branch. We think that deciding whether the speaker is the
same or different is a much weaker constraint on the hidden representation than
actually identifying the speakers.

As we were unable to apply adversarial training using the Siamese branch
directly, we opted for a two-stage approach. After training the network, we per-
formed a clustering on the training files, using the discriminator output as the



Unsupervised Adversarial Multi-task Training of CNN Acoustic Models 489

Table 3. The error rates obtained using the Siamese network-based clustering method.

No. of Parameter Frame error Phone error rate

clusters λ rate (dev) (dev) (test)

— 0 (baseline) 35.4% 16.6% 18.8%

50 −0.10 34.9% 16.4% 18.4%

100 −0.35 34.8% 16.0% 18.3%

150 −0.30 34.6% 16.1% 18.4%

200 −0.50 34.7% 16.3% 18.3%

250 −0.55 34.8% 16.2% 18.2%

distance function. We applied complete-linkage agglomerative hierarchical clus-
tering [10], where the distance between two files was estimated in the follow-
ing way. The speaker discriminator branch outputs posterior estimates (scores
between 0 and 1) of whether two frames belong to the same file or not. We defined
the distance between any two files as the average of these posterior values over
ten randomly selected frame pairs. After we had performed the clustering, we
repeated the training of the adversarial multi-task network using the cluster
labels as training targets for the secondary branch.

The recognition error rates obtained with this clustering method are shown
in Table 3. Similar to the standard clustering method, the score obtained with 50
clusters is just slightly better than the baseline score. For larger cluster sizes, on
the development set the results are typically slightly worse than those got with
the standard clustering method. However, on the test set the average improve-
ment is not significantly different, corresponding to a relative error rate reduction
of about 3% relative to the baseline.

6 Summary

Here, we examined the applicability of adversarial multi-task training to reduce
the inter-speaker variance of CNN acoustic models. First, we investigated super-
vised training that requires speaker annotation, and then we proposed two unsu-
pervised solutions to generate training targets when speaker labels are not avail-
able. In the supervised case we reported relative phone error rate reductions of
4%, and both unsupervised approaches performed slightly worse, giving an error
rate reduction of about 3%. Currently both proposed methods require a clus-
tering step, but in the future we intend to modify the Siamese network-based
approach so that it can work in one training pass, without the need for clustering
and re-training.
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Abstract. Beacause transmission characteristics of bone-conducted
(BC) speech from the larynx to auditory systems have not yet been
clarified, this paper investigates the transmission characteristics related
to the BC speech perception focusing on temporal bone (TB) vibration
signals and ear canal (EC) radiated speech signals. First, long-term aver-
age spectra (LTAS) of the normally produced speech signals recorded at
the lips, TB and EC were analyzed. It was found that the frequency
components above 2 kHz were relatively decreased in the TB vibration
and those below 1 kHz and above 3 kHz were relatively decreased in the
EC-radiated speech. Second, transfer functions from the larynx to the
observation positions (the lip, TB, and EC) were measured using tran-
scutaneous excitation at the larynx. It was found that the larynx-to-TB
transfer functions partially emphasized the frequency region below 1 kHz
and the larynx-to-EC transfer functions attenuated the frequency com-
ponents below 1 kHz and above 3 kHz. These results indicate that the
lower frequency components of BC speech are transmitted through TB
vibration and the higher frequency components are transmitted through
EC-radiated speech.

Keywords: Auditory feedback · Bone-conduction ·
Spectral characteristics · Transmission characteristics

1 Introduction

In human speech communication, speakers perceive their own voices to con-
trol their speech production systems [1]. This mechanism is referred to as
auditory feedback. If speakers perceive the delayed speech of their own by
Delayed Auditory Feedback (DAF), stutter-like speaking is observed [2]. This
phenomenon suggests that human auditory systems and speech production sys-
tems are strongly connected.
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Fig. 1. Transmission pathways of air- and bone-conducted speech

While speaking, people perceive their own voices through both air-conduction
(AC) and bone-conduction (BC). The authors previously found that the DAF
presented as not only AC but also BC speech affects one’s speech production [3].
Additionally, several subjective investigations have gradually clarified the whole
amplitude characteristics of BC speech [4,5]. However, acoustical features and
transmission pathways of BC speech related to auditory feedback have not yet
been clarified.

Stenfelt assumed that the BC sound is transmitted to the outer, middle and
inner ear part through multiple pathways from a physiological study [6]. In his
study, the BC sound source was located on the skull. On the other hand, while
hearing one’s own voices through BC, the sound source should be a vocal organ,
especially the larynx. In this paper, the transmission pathways of AC and BC
speech are assumed to be as shown in Fig. 1.

Our motivation is to understand how the BC speech is transmitted from
the larynx (glottal source) to the outer, middle and inner ear. To do this, this
paper investigates the transmission characteristics of BC speech, focusing on
observable transmission pathways (temporal bone (TB) vibration and ear canal
(EC) radiated speech). First, spectra of the TB vibration and the EC-radiated
speech are analyzed using real utterances. Second, transfer functions from the
larynx to the TB and the EC are measured using a transcutaneous excitation
signal.

2 Analysis of the Long-Term Average Spectrum

To analyze universal spectral characteristics independent of vocal tract shapes,
long-term average spectra (LTAS) of the AC speech, the TB vibration and the
EC-radiated speech were analyzed.
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Fig. 2. Schematic diagram of the recording system

2.1 Speakers

Seven students (five males and two females, aged 22 to 26) participated in the
production tasks for vocal recording. All speakers had normal hearing, and none
had a speaking disorder. None was a native English speaker, but they all had
enough experiences of speaking English in daily life.

2.2 Apparatus and Procedure

Figure 2 shows a schematic diagram of the recording system. The production
tasks were conducted in a soundproof room. Speakers’ AC and BC voices
were simultaneously recorded close to their lips, on their TBs, and in their
ECs through an AC microphone (audio-technica AT845Ra), a BC microphone
(TEMCO HG70), and a probe microphone (Etymotic Research ER-10C), respec-
tively. The distance between the speakers’ lips and the AC microphone was
20 cm. These recorded signals were routed through amplifiers and an A/D con-
verter (MOTU 828mk3) to a PC (Windows 10 with Adobe Audition). The sam-
pling frequency was 10 kHz and the number of quantizing bits was 16.

The speakers were asked to utter a 31-word English sentence with as constant
vocal intensity as possible. Each utterance duration was around 10 sec.

2.3 Analysis

LTAS of the voiced parts in the recorded signals were calculated and analyzed.
The LTAS were obtained in the frequency range from 0.2 to 5 kHz as the average
of short-term spectra derived from the frames in the voiced parts. In the short-
term spectrum analysis, a Hanning window with a 10 ms frame length was used.
The shifting length was 2.5 ms. The extracted LTAS were normalized with the
maximum power as 0 dB.
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Fig. 3. LTAS of AC speech, TB vibration and EC-radiated speech: (a) Female speaker
F1-1 and (b) male speaker M1-1. Each light-colored area represents the standard devi-
ation. (Color figure online)
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Fig. 4. Relative characteristics from AC speech to TB vibration and EC-radiated
speech: (a) Female speaker F1-1 and (b) male speaker M1-1

The spectral characteristics of the TB vibration signals were obtained as
acceleration responses since the BC microphone was a kind of acceleration
sensor. To compare these characteristics to the others obtained as displace-
ment responses, the absolute displacement responses |D(f)| was calculated as
|A(f)|/f2, where A(f) was the obtained acceleration responses. Additionally,
frequency characteristics of the BC microphone itself were compensated with
the same procedure as in the authors’ previous investigation [7].

When the EC-radiated speech signals were recorded through a probe micro-
phone, the speakers’ ECs were occluded. To estimate the spectral characteristics
of the EC-radiated speech with their ECs opened, the occlusion-effect charac-
teristics of ECs [8] were compensated.
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2.4 Results and Discussions

Figure 3 shows LTAS derived from AC speech, TB vibration and EC-radiated
speech. Figure 3(a) and (b) show the results for female speaker F1-1 and male
speaker M1-1. The dashed, dotted and solid lines represent LTAS of AC speech,
TB vibration and EC-radiated speech. Each light-colored area represents the
standard deviation of each LTAS.

The relative power of the AC speech decreased gradually as the frequency
increased. The relative power of the TB vibration decreased suddenly as the
frequency exceeded 2 kHz. Then the spectral shape was almost flat in the fre-
quency range above 2 kHz. The relative power of EC-radiated speech decreased
steeply as the frequency increased in the frequency range below 1 kHz, and lit-
tle increase/decrease of the power was found in the frequency range between
1 to 3 kHz. Then the power decreased gradually as the frequency increased in
the frequency range above 3 kHz. These trends were observed among almost all
speakers.

To estimate the transmission characteristics of the TB vibration and the EC-
radiated speech, relative characteristics from the AC speech to the TB vibration
and EC-radiated speech were derived as in Fig. 4. Figure 4(a) and (b) show the
results for female speaker F1-1 and male speaker M1-1. For TB vibration, the
frequency components above 2 kHz were reduced by 30 to 40 dB compared with
the AC speech. For EC-radiated speech, the frequency components below 1 kHz
and above 3 kHz were reduced by 10 to 30 dB compared with the AC speech.

These results indicated that TB vibration has relatively low-pass (below
2 kHz) characteristics compared with AC speech signals, wheras EC-radiated
speech has relatively band-pass (from 1 to 3 kHz) characteristics.

3 Transfer Function Measurement for BC Speech
Transmission

To investigate the transmission characteristics related to the BC speech percep-
tion, transfer functions from the larynx to the observable positions (TB and EC)
were measured.

3.1 Participants

Seven students (five males and two females, aged 24 to 32) participated in the
measurement. Besides one male and one female participants (M-1 and F-1), all
participants were different from the speakers of the previous vocal recording
stated in Sect. 2.1. All speakers had normal hearing, and none had a speaking
disorder. None was a native English speaker, but they all had enough experiences
of English in daily life.
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Fig. 5. Schematic illustration of the apparatus for transfer function measurements

3.2 Apparatus

Figure 5 schematically illustrate the apparatus. The measurements were con-
ducted in a soundproof room. Transcutaneous excitation signals to participants’
necks were presented through a shaker (Adafruit 1785). The position of the
shaker could be adjusted by a positioning arm. The observation signals were
simultaneously recorded close to their lips, on their TRs and in their ECs. The
same microphones as the previous recording stated in Sect. 2.2 were used. A
small anechoic chamber was used to prevent noise leaking from the shaker to
the AC microphone. The sampling frequency was 44.1 kHz and the number of
quantizing bits was 16.

3.3 Procedure

Before the measurement, participants were asked to silently articulate five vowels
(/a/, /e/, /i/, /o/, and /u/) one by one while a white noise was emitted by
the shaker. At that time, they were asked to adjust the shaker to a suitable
position to cleanly hear the vowel sounds. During the measurement, they were
asked to maintain each vowel articulation and shaker position while an excitation
signal was emitted by the shaker. A logarithmic sweep-tone signal lasting 7 s was
used for excitation. The frequency band was from 0.2 to 5 kHz. The signal was
presented 10 times for each vowel articulation. The total number of measurement
trials was 50.
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Fig. 6. Measured transfer function from the larynx to the observation positions: (a)
Male participant M2-1 with vowel /a/, (b) M2-2 with vowel /a/, (c) M2-1 with vowel /i/
and (d) M2-2 with vowel /i/. Each light-colored area represents the standard deviation.
(Color figure online)

3.4 Analysis

Here, the logarithmic sweep-tone signal is x(t), and the recorded signal at three
observation positions ((a), (b), and (c)) is yO(t) (O = {A,B, and C}) as in
Fig. 1. The impulse responses of the transmission paths from the larynx to the
observation positions (hO(t)) was calculated as hO(t) = yO(t) ∗ xinv(t), where
xinv(t) is a time-mirrored and amplitude-modified signal of x(t). The transfer
function from the larynx to the observation positions (HO(f)) was calculated
as HO(f) = FFT [hO(t)]. The amplitude characteristics |HO(f)| were averaged
among 10 measurement trials in each vowel articulation and used for evaluation.
The frequency characteristics of the apparatus were compensated in the same
way as stated in Sect. 2.3.

3.5 Results and Discussion

Figure 6 shows the measured transfer functions from the larynx (s) to the obser-
vation positions ((a), (b), or (c)). Figure 6(a) and (b) show the results for vowel
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Fig. 7. Transfer function from the larynx to the observation positions averaged among
five vowels: (a) male participant M2-1 and (b) M2-2

/a/ by male participants M2-1 and M2-2, and Fig. 6(c) and (d) show the results
for vowel /i/ by male participants M2-1 and M2-2. The dashed, dotted and
solid lines represent the averaged transfer functions from the larynx to the lip,
TB, and EC. Each light-colored area represents the standard deviation of each
transfer function.

The larynx-to-lip transfer function corresponds to the resonance character-
istics of the vocal tract. For this transfer function, peaks corresponding to the
first and second formant frequencies (F1 and F2) were clearly observed in the
results of almost all vowels by some participants (e.g. Fig. 6(b)).

With regard to the larynx-to-TB transfer function, peaks corresponding to
F1 were observed in the results for almost all vowels by some participants (e.g.
Fig. 6(a)). Additionally, there was a common trend that the frequency compo-
nents above 2 kHz were relatively decreased compared with those below 2 kHz
in all participants and vowels.

With regard to the larynx-to-EC transfer function, there were no peaks cor-
responding to F1 or F2 in the results of almost all vowels and participants. On
the other hand, there was a common trend that the frequency components from
2 to 3 kHz were more emphasized than those in the other frequency regions.

To investigate the universal transmission characteristics independent of vow-
els, the obtained transfer functions were averaged among five vowels. Figure 7
shows the vowel-averaged transfer functions from the larynx to the observation
positions. Figures 7(a) and (b) are the results from male participants M2-1 and
M2-2.

With regard to all vowel-averaged transfer functions, there was a common
trend that the frequency components around 2 kHz were more emphasized than
those in the other frequency regions. However, only in the larynx-to-TB transfer
functions was the frequency region below 1 kHz partially emphasized. Moreover,
only in the larynx-to-EC transfer functions were the frequency components below
1 kHz and above 3 kHz reduced by more than 20 dB compared with those in the
other frequency regions.
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These results indicated that the BC speech transmission from larynx to TB
has relatively low-pass characteristics (below 1 kHz) and that from larynx to EC
has band-pass characteristics (around 1 to 3 kHz).

4 General Discussions

Results of the spectral analysis (Sect. 2) and the transfer function measurement
(Sect. 3) are summarized as follows:

– With regard to the TB vibration, the frequency components above 2 kHz were
relatively attenuated.

– With regard to the EC-radiated speech, the frequency components below
1 kHz and above 3 kHz were relatively attenuated.

– In many cases, the lower formant frequencies such as F1 were observed in the
larynx-to-TB transfer function.

From these results, it is assumed that relatively lower frequency components
of speech sounds are transmitted through TB vibration and relatively higher
frequency components of speech sounds are transmitted through EC-radiated
speech. Previous perceptual investigation related to BC speech [4,5] indicated
that BC speech perception dominates in the frequency region around 0.7 to
2 kHz while perceiving one’s own voice. Considering this point, it could also
be assumed that the EC (outer ear) part of BC speech transmission is only
a main contributor to the perception of higher (e.g. around 2 kHz) frequency
components, while middle/inner ear parts contribute to the perception of lower
(e.g. below 2 kHz) frequency components in BC speech.

In this paper, spectral characteristics of the TB vibration signals are assumed
to represent of the soft-tissues or skullbones transmission characteristics, as
shown in Fig. 1. Under this assumption, the low-pass characteristics of the TB
vibration signals might be derived mainly from the soft-tissue transmission char-
acteristics. In addition, the characteristics of the EC-radiated speech are assumed
to contain the resonance characteristics of EC itself (around 3 kHz). Stenfelt et
al. reported the vibration characteristics of the middle/inner ear organs related
to BC hearing from their previous physiological measurements [9,10]. By com-
bining the findings in this paper and the characteristics of middle/inner ear
organ [9,10], BC speech transmission is expected to be further understood.

5 Conclusion

This paper estimated transmission characteristics related to the bone-conducted
(BC) speech perception focusing on temporal bone (TB) vibration signals and
ear canal (EC)-radiated speech signals.

First, long-term average spectra (LTAS) of the normally produced speech
signals from the lip, TB and EC were analyzed. It was found that the frequency
components above 2 kHz were relatively decreased in the TB vibration, and
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those below 1 kHz and above 3 kHz were relatively decreased in the EC-radiated
speech.

Second, transfer functions from the larynx to the observation positions (lip,
TB and EC) were measured using transcutaneous vibration at the larynx. It
was found that the larynx-to-TB transfer functions partially emphasized the
frequency region below 1 kHz and the larynx-to-EC transfer functions attenuated
the frequency components below 1 kHz and above 3 kHz.

These results indicate that the lower frequency components of BC speech
are transmitted through TB vibration and the higher frequency components are
transmitted through EC-radiated speech.
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Abstract. The first publicly available singing voice database, which was first
released in 2012, is presented in this paper. This database contains recordings of
professional singers including one Grammy Award winner. The database
includes so-called plain singing as well as singing with nine different singing
expressions. For all the material there are both vocal and glottal voice record-
ings, where glottal recordings were made by placing the microphone on the neck
of the singer near the glottis. Part of the database is annotated on the phoneme
and pitch level, which makes it much easier to do automated analyses of dif-
ferent singing voice phenomena. Such varied content of the singing voice
database makes it possible to use different types of singing voice for research,
including interconnection of vocal and glottal singing voice signals, acoustic
phenomena which take place in singing voice, different acoustic phenomena and
effects of different expressions in singing voice, as well as comparing singing
voice phenomena and acoustic effects of different singers. This database can also
be used for simplified singing voice synthesis.

Keywords: Singing voice synthesis � Singing voice database �
Speech Synthesis

1 Introduction

Singing Voice Synthesis Systems, as well as Speech Synthesis Systems, have been
developed over several decades. Though the general approaches to Singing Voice
Synthesis and Speech Synthesis are similar, singing voice is very different from spoken
voice in terms of its production and perception by a human. Intelligibility of phonemic
message in speech is very important, while in singing it is often secondary to the
intonation and musical qualities of the voice. During singing voice synthesis it is
important to convey singing voice phenomena, such as vibrato, jitter, drift, presence of
singer’s formant, and others.

Singing Voice Synthesis systems utilize different approaches, as presented in
Sect. 2, using different amounts and different representations of voice units. But until
recently, there was no publicly available singing voice database which would allow
research on singing voice phenomena and formulate necessary and sufficient content of
Singer’s database for high quality singing voice synthesis. The present work describes
the first (to the best of the authors’ knowledge) annotated singing voice database, which
was initially released in 2012. This database will allow the study of how various voice
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phenomena and effects are represented by spectral, temporal, and amplitude charac-
teristics, as well as to create a simplified singing voice synthesis system.

The rest of the paper describes the database (Sects. 3 to 5), ending with our con-
clusions and possible uses of this database in Sect. 6.

2 Previous Work

Approaches to Singing Voice Synthesis systems include an articulatory approach [1], a
formant synthesis [2, 3], and a concatenative and corpus-based synthesis [4–6]. In
contrast to TTS-synthesis systems, where the input is a text and the output is a speech
signal, for Singing Voice Synthesis systems the input is usually a musical score with
lyrics, and the output is a synthesized singing voice signal.

The articulatory singing voice synthesis system SPASM [1] maps physical char-
acteristics of the vocal tract to singing voice characteristics and produces a voice signal.
The input to this system is not musical notes but the vocal tract characteristics. The
system requires the user to have a knowledge of music and musical acoustics. For each
note the user should specify seven parameters, including vocal tract shape (radius of
each tract section), tract turbulence (noise spectrum and localization), performance
features (random and periodic pitch), and others. The system takes into account singing
voice phenomena, but the singing voice does not sound realistic.

The formant singing voice synthesizer CHANT [2] works with the English lan-
guage. It is based on rules derived from signal and psychoacoustic analyses, such as the
automatic determination of the formant relative amplitudes or bandwidths, or their
evolutions depending on the variation of other external or internal parameters. CHANT
uses an excitation resonance model to compose a singing voice signal. For each res-
onance, a basic response is generated using Formant Wave Functions, then these
signals are summed to produce the resulting signal. The system’s synthesis results are
impressive in some cases, although it is said that this require tedious manual tuning of
parameters.

Another formant singing voice synthesizer Virtual Singer [3] supports several
languages, including French, English, Spanish, Italian, German, Japanese, and others.
Virtual singer is an opera-like singing synthesizer. Its main attributes are the wide
amount of languages that the synthesizer supports, the sound-shaping control (timbre
and intonation), and the RealSinger function, which allows defining a Virtual Singer
voice out of recordings of the user’s own voice. The singer’s database of Virtual Singer
includes the set of phonemes with additional first parts of the diphthongs, represented
as spectral envelopes. It assumes that only three to six formants are sufficient to
generate a phoneme with acceptable quality. The advantage of this method is that only
a small amount of data is required to generate a phoneme, and it is far easier to modify
these data slightly to produce another voice timbre. However, the result is generally
less realistic than with recorded speech elements.

The MaxMBROLA [4] is a concatenative synthesis system. It supports 30 lan-
guages and has 70 voice databases. MaxMBROLA is a real-time singing synthesizer
based on the MBROLA speech synthesizer. It uses the standard MBROLA acoustic
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base which includes diphones and conveys singing voice phenomena by modifying the
voice signal.

Another concatenative singing voice synthesis system – Flinger [5] – supports the
English language. The singer’s database of Flinger includes 500 segments of the
consonant-vowel-consonant (CVC) structure: 250 on low pitch and 250 on high pitch,
which is about 10 min of singing voice signal. The units are represented using Har-
monic Plus Noise model. The system supports the following singing voice effects:
vibrato, vocal effort, and variation of spectral tilt with loudness (crescendo of the voice
is accompanied by a leveling of the usual downward tilt of the source spectrum).

Vocaloid [6] is currently considered as the best singing voice synthesizer for
popular music. It supports the English and Japanese languages. It’s a corpus-based
system with possible pitch and duration changing with signal generation from the
sinusoidal model. Singer’s database includes natural speech segments. It should con-
tain all the diphones (pairs of CV, VC, VV for English, where C is a consonant, V is a
vowel) and can contain polyphones as well. The size of singer’s base is 2000 units per
one pitch.

3 Singing Voice Database Content

The main goal of creating the database was to represent different singing voice phe-
nomena rather than a full set of phonemes for a particular language. That’s why the a-
priori database cannot be used for a full-fledged singing voice synthesis (where the
input is a musical score and lyrics), rather for a simplified singing voice synthesis,
where the input is a musical score.

The Singing Voice Database (SVDB) includes two parts: (1) Singing musical scale
recordings and (2) Singing song recordings. The first part includes:

1.1. The scale (musical notes) performed using “ah” vowel (“ah-ah-ah” recordings)
1.2. The transitions between notes performed using “ah” vowel
1.3. The scale (musical notes) performed using “la” syllable (“la-la-la” recordings)
1.4. The transitions between notes performed using “la” syllable.

The second part includes just the song “Twinkle, twinkle, little star” [7].
Both parts contain plain recordings and recordings with special singing expressions

described in Table 1. The database contains vocal recordings and also the so-called
“glottal” recordings, which are made by placing the second microphone on a neck of
the singer near the glottis.

4 Singing Voice Database Recording

All the recordings were performed in a studio by professional singers. For both the
musical scale and the song one female and one male voice were recorded. For the
musical scale the voices of Bonnie Lander [8] and Philip Larson [9] were recorded. For
the song the voices of Grammy Award winner Susan Narucki [10] and Philip Larson
were recorded. The singers’ voice characteristics are given in Table 2.
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Both vocal and glottal recordings were made simultaneously. The air microphone
was used for vocal recordings and a contact microphone was used for glottal
recordings.

The recordings are in WAVE PCM format with the following characteristics:
44100 Hz; 16 bit; 1 channel (mono).

Table 1. Singing expressions.

Expression
#

Expression
name

Description

1 Bounce Increased articulation on consonants (slight increase of weight
on initial consonants) followed by decrease of weight on
adjacent vowels. More rhythmic vitality of a regular sort

2 Hollow Less articulation of consonants. Modification of vowels to
minimize their differences with the addition of “air” in the tone
(as opposed to focused tone)

3 Light Minimal initial articulation and weight. Modification of
vowels to emphasize “brightness” upper partials

4 Soft Modification of vowels; some air added, low
volume. Consonants are present, but not sharply defined

5 Sweet Extreme legato. Pure vowels. Consonants present but without
extra articulated weight

6 Flat Affectless. Consonants and vowels with same
weight. Minimizing melodic contour

7 Mature Emphasis on heavier vibrato in sound, (irregular) emphasis on
lower partials of vowels (dark rather than bright)

8 Sharp Emphasis on forward placement of vowel, cutting off lower
partials. Aggressive articulation of consonants

9 Husky Irregular rhythmic inflection in phrasing. Irregular
pronunciation of consonants and vowels, additional throat
grab noises and air to vowel mix

10 Clear Purity of vowels and consonants. Emphasis on regularity of
pronunciation. Sincere effect

Table 2. Singers voice characteristics.

Type of recordings Singer Gender Voice Musical notes range

Musical scale Singer 1 F Soprano C4 to H5
Musical scale Singer 2 M Bass-baritone C3 to H4
Song Singer 3 F Soprano
Song Singer 4 M Bass-baritone
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5 Singing Voice Database Processing

The musical scale recordings were processed in the following way:

– pauses between recordings (unvoiced fragments) were automatically identified and
marked,

– pitch annotation of voiced fragments was made.

For voiced/unvoiced fragments identification the following algorithm was used:

1. For each 5 ms audio frame with a step of 1 ms:
1:1 The zero-crossing rate was calculated using the formula:

Zn ¼
XN�1

m¼0

sgn xðn� mþ 1ð Þ �sgn� ½x n� mð Þ½ �j j
2N

ð1Þ

where N – frame size,
x(n) – signal at the n-th sample,

sgn x nð Þ½ � ¼ 1; x nð Þ � 0
�1; x nð Þ\ 0

� �

1:2. The energy was calculated as a root-mean-square level:

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN�1

m¼0
x n� mð Þj j2

r
ð2Þ

To calculate energy on each frame the Hamming window was used.

2. To smooth out the result the median value with the window size equal to 7 was
calculated for each Energy and Zero-crossing rate.

3. The frame is considered to be voiced if

Zn \ Zth and En [Eth ð3Þ

where Zth is a zero-crossing threshold and Eth is an energy threshold. The values for
threshold were chosen experimentally Zth = 40 and Eth = 0.06

Pitch annotation algorithm was based on the fact that the recordings contain con-
sequently sung notes. For example, the consequence of notes C4, D4, E4, F4 corre-
sponds to the fundamental frequencies 261.63 Hz, 293.66 Hz, 329,63 Hz, 349,23 Hz.
It means that the length of pitch period changes gradually. For automatic pitch
annotation software the initial fundamental frequency (F0) was specified manually. The
software then finds and marks as a pitch period border the nearest zero crossing point in
a singing voice signal, taking into account the length of the previous pitch period and
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voiced/unvoiced parts of the signal. The results were manually verified and corrected
when needed.

For the second part of the recordings – song recordings – phoneme boundaries were
semi-automatically found and all the vowel phonemes were annotated.

All the annotations were made in the TIMIT database files format [11]. For pho-
netic transcription the ARPABET code [12] was used. The phonetic transcription of the
whole song as well as all the vowel phonemes marked in recordings are presented in
Table 3.

Table 3. The lyrics and phonetic transcription of a song “Twinkle, twinkle, little star”.

# Word Transcription Vowel
phonemes

# Word Transcription Vowel
phonemes

1 Twinkle ˈT, W, IX, NG,
K, L

IX 35 Blazing ˈB, L, EY, Z,
IX, NG

EY, IX

2 Twinkle ˈT, W, IX, NG,
K, L

IX 36 Sun S, AH, N AH

3 Little ˈL, IX, T, L IX 37 Is IX, Z IX
4 Star S, T, AA AA 38 Gone G, AH, N AH
5 How H, AW AW 39 When W, EH, N EH
6 I AY AY 40 There’s DH, AXR, Z AXR
7 Wonder ˈW, AH, N, D,

AX
AH, AX 41 Nothing ˈN, AH, TH, IX,

NG
AH, IX

8 What W, AH, T AH 42 He H, EE EE
9 You J, UX UX 43 Shines SH, AY, N, Z AY
10 Are AA AA 44 Upon AX,ˈP, AH, N AX, AH
11 Up AH,P AH 45 Then DH, EH, N EH
12 Above AX,ˈB, AH, V AX, AH 46 You J, UX UX
13 The DH, AX AX 47 Show SH, OW OW
14 World W, ER, L, D ER 48 Your J, AO AO
15 So S, OW OW 49 Little ˈL, IX, T, L IX
16 High H, AY AY 50 Light L, AY, T AY
17 Like L, AY, K AY 51 Twinkle ˈT, W, IX, NG,

K, L
IX

18 A AX AX 52 Twinkle ˈT, W, IX, NG,
K, L

IX

19 Diamond ˈD, AY, M, AX,
N, D

AY, AX 53 Through TH, R, UX UX

20 In IX, N IX 54 The DH, AX AX
21 The DH, AX AX 55 Night N, AY, T AY
22 Sky S, K, AY AY 56 Twinkle ˈT, W, IX, NG,

K, L
IX

23 Twinkle ˈT, W, IX, NG,
K, L

IX 57 Twinkle ˈT, W, IX, NG,
K, L

IX

(continued)

506 L. Tsirulnik and S. Dubnov



The resulting singing voice database has the following characteristics:

Part 1—“Ah-ah” and “La-la” recording of a male and a female voice. The overall
length of the male voice recordings is 23 min and the female voice recordings is
33 min.

Table 3. (continued)

# Word Transcription Vowel
phonemes

# Word Transcription Vowel
phonemes

24 Twinkle ˈT, W, IX, NG,
K, L

IX 58 Little ˈL, IX, T, L IX

25 Little ˈL, IX, T, L IX 59 Star S, T, AA AA
26 Star S, T, AA AA 60 How H, AW AW
27 How H, AW AW 61 I AY AY
28 I AY AY 62 Wonder ˈW, AH, N, D,

AX
AH, AX

29 Wonder ˈW, AH, N, D,
AX

AH, AX 63 What W, AH, T AH

30 What W, AH, T AH 64 You J, UX UX
31 You J, UX UX 65 Are AA AA
32 Are AA AA 66 In IX, N IX
33 When W, EH, N EH 67 The DH, AX AX
34 The DH, AX AX 68 Dark D, AA, K AA
69 Blue B, L, UX UX 85 The DH, AX AX
70 Sky S, K, AY AY 86 Morning ˈM, AO, N, IX,

NG
IX

71 So S, OW OW 87 Sun S, AH, N AH
72 Deep D, EE, P EE 88 Does D, AH, Z AH
73 Through TH, R, UX UX 89 Rise R, AY, Z AY
74 My M, AY AY 90 Twinkle ˈT, W, IX, NG,

K, L
IX

75 Curtains ˈK, ER, T, N, Z ER 91 Twinkle ˈT, W, IX, NG,
K, L

IX

76 Often ˈAH, F, N AH 92 Little ˈL, IX, T, L IX
77 Peep P, EE, P EE 93 Star S, T, AA AA
78 For F, AO AO 94 How H, AW AW
79 You J, UX UX 95 I AY AY
80 Never ˈN, EH, V, AX EH, AX 96 Wonder ˈW, AH, N, D,

AX
AH, AX

81 Close K, L, OW, Z OW 97 What W, AH, T AH
82 Your J, AO AO 98 You J, UX UX
83 Eyes AY, Z AY 99 Are AA AA
84 Till T, IX, L IX
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Part 2—song recordings of male and female voices. The overall length of the male
voice recordings is 13 min and the female voice recordings is 15 min.

6 Conclusions

The singing voice database described here is publicly available from [13] and [14]. The
database was first released in 2012 and is quite popular for research groups in Europe
and America.

The advantage of the database created is that it includes not only so-called “plain”
singing, but also singing with different expressions. It has both vocal and glottal
recordings made simultaneously. It is partly annotated on pitch and phoneme levels.
All these characteristics make it possible to use the database for different types of
research, as well as for simplified singing voice synthesis.

Indeed, this database can be used to research different singing voice effects,
including, but not limited to:

– interconnection of vocal and glottal singing voice signals,
– acoustic phenomena which take place in singing voice,
– different acoustic phenomena and effects of different expressions in singing voice,

and
– comparison of singing voice phenomena and acoustic effects for different singers.

The first part of a database can be used for a singing voice synthesis as well.
However, because it includes just “Ah-ah” and “La-la” sounds, it cannot be used for a
full-fledged singing voice synthesis, as was mentioned before. But it can be success-
fully used for singing voice synthesis where the input is just musical notes (without
lyrics).

References

1. Cook, P.R.: Singing Synthesis System. http://www.cs.princeton.edu/*prc/SingingSynth.
html

2. Rodet, X., Potard, Y., Barrière, J.-B.: The CHANT project: from the synthesis of the singing
voice to synthesis in general. Comput. Music J. 8(3), 15–31 (1984)

3. Virtual Singer. http://www.myriad-online.com/en/products/virtualsinger.htm
4. MaxMBROLA. http://tcts.fpms.ac.be/synthesis/maxmbrola/description.php
5. Macon, M.W., Jensen-Link, L., Oliverio, J., Clements, M.A., George, E.B.: A singing voice

synthesis system based on sinusoidal modeling. In: 1997 IEEE International Conference on
Acoustics, Speech, and Signal Processing, Munich, Germany, pp. 348–352. IEEE Computer
Society Press (1997)

6. Kenmochi, H., Ohshima, H.: Vocaloid - commercial singing synthesizer based on sample
concatenation. In: 8th Annual Conference of the International Speech Communication
Association, ISCA, Antwerp, Belgium, pp. 87–88 (2007)

7. “Twinkle, twinkle, little star” song. https://en.wikipedia.org/wiki/Twinkle,_Twinkle,_Little_
Star

8. Lander, B.: http://www.bonnielander.com/p/about.html

508 L. Tsirulnik and S. Dubnov

http://www.cs.princeton.edu/%7eprc/SingingSynth.html
http://www.cs.princeton.edu/%7eprc/SingingSynth.html
http://www.myriad-online.com/en/products/virtualsinger.htm
http://tcts.fpms.ac.be/synthesis/maxmbrola/description.php
https://en.wikipedia.org/wiki/Twinkle%2c_Twinkle%2c_Little_Star
https://en.wikipedia.org/wiki/Twinkle%2c_Twinkle%2c_Little_Star
http://www.bonnielander.com/p/about.html


9. Larson, P.: https://music-cms.ucsd.edu/people/faculty/regular_faculty/philip-larson/index.html
10. Narucki, S.: http://www.susannarucki.net/home
11. TIMIT. https://catalog.ldc.upenn.edu/LDC93S1
12. ARPABET. https://en.wikipedia.org/wiki/ARPABET
13. Singing Voice Database. https://liliyatsirulnik.wixsite.com/svdb
14. Singing Voice Database. http://crel.calit2.net/projects/databases/svdb

Singing Voice Database 509

https://music-cms.ucsd.edu/people/faculty/regular_faculty/philip-larson/index.html
http://www.susannarucki.net/home
https://catalog.ldc.upenn.edu/LDC93S1
https://en.wikipedia.org/wiki/ARPABET
https://liliyatsirulnik.wixsite.com/svdb
http://crel.calit2.net/projects/databases/svdb


How Dysarthric Prosody Impacts Näıve
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Abstract. The class of speech disorders known as dysarthria arise from
disturbances in muscular control over the speech mechanism caused by
damage of the central or peripheral nervous system. Dysarthria is typi-
cally classified into one of six classes, each corresponding to a different
neurological disorder with distinct prosodic cues [3]. The assumption in
this classification is that dysarthric speech can be classified implicit on
the basis of perception. In this study, we investigate how accurately näıve
listeners can recognize stress and intonation in dysarthric speech, and if
different neurological disorders impact the ability to convey meaning with
these same two cues. To those ends, we collected speech data from Dutch
speakers diagnosed with cerebellar lesions (ataxic dysarthria), Parkin-
son’s Disease (hypokinetic dysarthria), Multiple Sclerosis (mixed classes
of dysarthria) and from a healthy control group. Thirteen näıve Dutch
listeners participated in the perceptual experiment which targeted recog-
nition of intended realization of four prosodic functions: lexical stress,
sentence type, boundary marking and focus. We analyzed recognition
accuracy for different groups and performed acoustic analyses to check
for fundamental frequency trajectories. Results attest to different accu-
racy recognition results for different disease groups. The sentence type
recognition task was the most sensitive of all tasks for differentiating
different diseases both on perceptual and acoustic levels of analysis.
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1 Introduction

Dysarthria is a condition which is caused both by weakness of muscles used in
speech and by difficulties in the control over them. The most common and sim-
ple description of this speech disorder is “slow speech that can be difficult to
understand” [1]. Common causes of dysarthria arise from cerebral dysfunction
at the level of brainstem nuclei, supra nuclear brain dysfunction or neuromus-
cular impairment. Neurological conditions that may lead to dysarthria include
Parkinson’s Disease (PD), Amyotrophic Lateral Sclerosis (ALS), Multiple Scle-
rosis (MS), head injury, Spinocerebellar Ataxia (SCA) and a number of others.
Since dysarthria causes communication difficulties, it may lead to social depri-
vation and depression [1].

The seminal contribution to understanding dysarthria was made by Darley
et al. [2,3], who introduced the classification system of dysarthrias. Since then
the system (hereafter, the Mayo System) has been widely used for research
and clinical purposes. The Mayo System links brain pathology based on the
lesion site and perceptual speech characteristics, united in clusters of deviant
speech dimensions. Despite the wide use of the system, there are doubts in its
suitability for clinical purposes. For example, two independent studies tested
the classification accuracy for neurologists and neurology trainees [4], and for
neurologists, residents in neurology, and speech therapists [5]. Both had reported
accuracy of correct classification to be from about 35% to 40%, concluding that
perceptual judgement alone is not reliable, and other sources of information
should be taken into consideration by clinicians.

Since then, researchers have tried to classify dysarthrias using acoustic cues
to support the Mayo System. In the study by Guerra et al. [6], authors matched
the acoustic measurements to the perceptual cues used by clinicians, and com-
pared performance of two different classifiers to the clinicians’ judgements on
the speech corpus of different dysarthrias linked to eight neurological disorders
in their corpus. The combined feature set of perceptual judgments and objec-
tive measurements provided more accurate information about the speech dis-
turbances, while the best classifier proved to be self-organising maps (SOM),
which improved the accuracy of clinicians’ judgements by nearly 20% [6]. These
findings indicate the value of acoustic analysis as an additional tool for clinical
purposes.

There has been research dedicated to purely acoustic metrics to reliably
differentiate dysarthrias. In the study by Liss et al. [12] the rhythm metrics
are assessed, addressing dimension of prosody on the corpus of five differ-
ent dysarthrias with different prosodic profiles. The results showed the abil-
ity of rhythm metrics to distinguish healthy speech from moderate and severe
dysarthric speech as well as to discriminate dysarthria subtypes with accuracy
up to 80%. The follow up study [11] investigated whether speech envelope mod-
ulation spectra, which quantifies the rhythmicity of speech within specified fre-
quency bands, could be used for automatic analysis. Discriminant function anal-
ysis showed 84%–100% accuracy for different dysarthrias compared to all others,
with hypokinetic dysarthria scoring at 100% [12].
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Another study by Lansford and Liss [10] explored the dimension of articu-
lation, focusing on the vowel metrics. They investigated whether such metrics
could be used to distinguish healthy from dysarthric speech and among three
different classes of dysarthria (ataxic, hypokinetic dysarthria, hyperkinetic and
mixed flaccid-spastic dysarthria). All explored vowel metrics, particularly met-
rics that capture vowel distinctiveness, showed significant differences between
dysarthric and healthy control speakers to be more sensitive and specific predic-
tors of dysarthria. However, only the slope of the second formant (F2) demon-
strated between-group differences across the dysarthrias. The second study by
Lansford and Liss [9] investigated whether vowel metrics reflect the human per-
ceptual performance, namely judging intelligibility of dysarthric speech, showing
the correlation between classification by disordered vowels metrics and intelligi-
bility judgements.

The study by Kim et al. [8] explored both dimensions of articulation and
prosody simultaneously, using eight acoustic features as predictors for classifica-
tion of different classes of dysarthria occurring from PD, stroke, multiple system
atrophy or traumatic brain injury. Interestingly, the reported results have shown
that classification accuracy by dysarthria type was typically worse than by dis-
ease type or severity, while the best classification was achieved when disease
type was the grouping variable. Regarding intelligibility, F2 slope showed sig-
nificance for each disease group, serving as the universal predictor. Articulation
rate however was not a significant predictor of speech intelligibility for speakers
with Parkinson’s Disease, while it showed significance in the pooled analysis [8].

In this study, we further investigate the perceptual side of dysarthria classes.
We explore if different dysarthias affect the ability of speakers to convey intended
prosody. We have collected recordings of three groups of diseases - Parkinson’s
Disease (PD), SpinoCerebellar Ataxia group (SCA) and Multiple Sclerosis (MS)
that are frequent causes of different dysarthrias, namely hypokinetic dysarthria,
ataxic dysarthria and either spatic, flaccid or mixed dysarthria. Many stud-
ies have indicated that such dysarthrias have different prosodic deficit pro-
files [2,11,15], which, among other cues, is reflected by different disturbances
of fundamental frequency (f0).

To determine if näıve listeners could recognise intended intonation and stress
patterns produced by speakers of different disease groups, we approached the
question from two perspectives: first related to prosody recognition and second
related to acoustics. For the former we hypothesized, that if there is a correlation
between disease groups and accuracy of recognition, PD would be most promi-
nent. For the latter, we hypothesised that f0 would hinder the listeners’ accuracy
of recognition at least for PD group. To test these hypotheses we collected data
(Sect. 2.1), designed a perception experiment (Sects. 2.2–2.4), and performed an
acoustic and recognition accuracy analyses (Sect. 2.5).
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2 Methods

2.1 Data Collection

Speech recordings were collected from 32 Dutch native speakers, 24 patients
(eight per disease group) and eight control speakers. The demographics can be
seen in Table 1.

Table 1. Participants demographics. Age and duration of disease are given in years

Group
name

Mean
age

Gender
(F:M)

Diagnoses Disease
duration
mean,
range

PD 53.9 4:4 Idiopathic PD mean: 11.5,
range: 20

SCA 55.3 5:3 Spinocerebellar ataxia, adult form of
Alexander disease, idiopathic late
onset cerebellar ataxia, multiple
system atrophy with cerebellar ataxia

mean:6,
range: 10

MS 51.9 4:4 Primary progressive MS, secondary
progressive MS, relapsing-remitting
MS

mean: 13.5,
range: 21

HC 56.2 4:4 – –

Every participant except for the healthy control speakers (HC) exhibited
dysarthric symptoms due to neurological disorder according to the neurologist.
Speakers reported (corrected-to) normal vision and hearing and signed informed
consent. Exclusion criteria for patients were cognitive problems assessed by Min-
imal Mental State Examination (MMSE < 26), brain damage caused by stroke
that inflicted aphasia and/or apraxia of speech, and language and/or (motor)
speech disorders other than dysarthria. Exclusion criteria for healthy controls
were cognitive problems (MMSE < 26), brain damage, language and/or (motor)
speech disorders. The recording sessions took place in quiet rooms at the Uni-
versity Medical Centre Groningen or at participants’ homes with the TASCAM-
DR100 recorder and an external Senheiser e865 microphone placed at around a
40 cm distance from a participant.

The collection and analysis of the material was approved by the Medical
Ethics Committee of the University Medical Center Groningen.

2.2 Participants for Perceptual Experiment

Thirteen native Dutch listeners participated in the prosody recognition experi-
ment (mean age 29). All 13 were “näıve” listeners with no prior experience with
speech disorders. All participants reported normal hearing.
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2.3 Stimuli

Stimuli for this study were created from a prosody task, that included exercises
on four Dutch prosody functions: lexical stress, sentence type, boundary mark-
ing, and focus intonation [13]. Table 3 summarizes Dutch prosody functions and
their perceptual correlates based on [13,18].

Table 2. Prosodic functions and their perceptual correlates based on [13,18]. Percep-
tually prominent correlates according to Rietveld and Heuven [18] are marked bold.

Function
name

Description Perceptual correlates
(for undisturbed
speech)

Name used in
the current
study

Lexical
function

Discriminates between
words

f0 change, (vowel)
duration, intensity

Lexical stress

Phrasing
function

Segments the speech
stream in information
units

preboundary
lengthening pauses,
f0 change

Boundary
Marking

Attentional
marking

Highlights the most
important elements in
a unit

f0 change, (vowel)
duration, intensity

Focus

Intentional
marking

Nuances meaning f0 change –

Sentence
type

Discriminates between
questions and
statements

general f0 rise
(question), high
initial f0 (question)

Sentence
Typing

Emotional
prosody

Discriminates between
different emotional
states

general f0, f0 span,
speech rate

–

Four exercises included sentence completion (to elicit lexical stress and
boundary intonation), repetition (boundary intonation) and the production of
negative/affirmative questions and statements (sentence type). As the result,
from these exercises we had created pairs of stimuli for every prosody function:

– Words segmented from the completed sentences that differ by stress place-
ment: first or second syllable (e.g., dóórlopen - ‘continue’ and doorlópen -
‘complete’);

– Phrases syntactically identical but different in question or statement intona-
tion (e.g.de toets gehaald? - ‘<he> passed the test?’ and de toets gehaald. -
‘<he> passed the test’);

– Phrases syntactically identical but different in complete/statement or incom-
plete/iteration intonation (e.g., Andre houdt van honden, <...> - ‘Andre likes
dogs, <...>’ and Andre houdt van honden. - ‘Andre likes dogs’);



How Dysarthric Prosody Impacts Näıve Listeners’ Recognition 515

– Phrases syntactically identical but different in prosodically emphasised words
- focus intonation (e.g., ik ken haar van dansles. - ‘I know her from the
dancing class.’ (as opposed to another class) and ik ken haar van dansles.
- ‘I know her from the dancing class.’.

The total amount of stimuli was 1233, 320 for the stress and for sentence
type, and 310 and 283 for boundary marking and focus. Fewer stimuli for two
latter functions was due to patients quitting during the last part of the protocol
and due to their incorrect execution of exercise parts.

2.4 Procedure

Participants of the recognition experiment completed a recognition task in which
they listened to the stimuli in four blocks corresponding to four prosody func-
tions. Participants were told that they would hear words and phrases that were
different either in stress or intonation and were asked to answer a simple question
by picking one option from a list (e.g., “was the phrase question or statement?”
– “(1) question, (2) statement, (3) impossible to decide”), there were always
three options with one being “impossible to decide”. The experiment was built
within the OpenSesame program [14]. For every block, procedure consisted of a
short practice session and a main part. In the practice session, to get participants
acquainted with the task, they were asked to assess two stimuli of two different
voices. For the main part there were 192 stimuli randomly pooled from the set
representing current prosody function in such a way, that there would be six
stimuli per speaker in each block. The speech samples were intensity normalized
and presented over headphones (Koss Pro4S). Participants could listen to each
sample only once.

2.5 Analysis

To analyse listeners’ accuracy of dysarthric prosody recognition we calculated
percentage of correct, incorrect and unspecified (“impossible to decide”) answers
along with the confidence interval (CI) estimation for the particular answers
using Normal Approximation Method of the Binomial Confidence Interval.

To analyse pitch trajectories of different disease groups and healthy speakers,
we assessed f0 slopes within each stimulus. To do so, we divided each stimulus
recording in two parts (the ratio between parts was 1:1 for stimuli of the lexical
stress function, for other stimuli it was 7:3). For each part we calculated f0 aver-
age derivative and calculated the difference between the parts of the recording.
Pitch tracking was performed with the Talkin’s RAPT algorithm [19] imple-
mented in the SPTK toolkit for Python [17]. The RAPT algorithm identifies
pitch candidates with the cross-correlation function and then attempts to select
the “best fit” at each frame by dynamic programming [16,19]. RAPT results
have been shown to be informative for Dutch dysarthric speech [20].
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3 Results

General accuracy calculation for different disease groups did not show any strik-
ing differences, though predictably the HC group were recognized best of all,
and the PD group performed worst with the highest percentage of unspecified
answers. The percentage of unspecified answers was also very small for the HC
group compared to other groups (see Table 3).

Table 3. Recognition accuracy for different disease groups and healthy speakers

Disease
group

Percentage of
correct answers
with CI

Percentage of
incorrect answers
with CI

Percentage of
unspecified
answers with CI

HC 67 ± 1.8 27 ± 1.8 4 ± 0.8

MS 60 ± 2.0 28 ± 1.8 11 ± 1.3

SCA 56 ± 2.0 28 ± 1.8 14 ± 1.4

PD 55 ± 2.0 25 ± 1.7 18 ± 1.5

When assessing the differences for listeners’ performance depending on the
target prosodic function, disease groups yielded different accuracy results. Over-
all, boundary and focus tasks were the most difficult prosodic functions for lis-
teners to recognise intended prosody, especially the focus where the percentage
of the unspecified answers was the highest (up to 23± 3.4), but even those func-
tions showed difference between healthy and dysarthric speech. Lexical stress
was relatively successful for HC and MS, while SCA and PD showed lower accu-
racy results. Sentence type was the best recognised function for every disease
group, with the smallest numbers of unspecified answers. It was also the only
function where PD group did not score the worst.

Further analysis of accuracy targetted specific prosody patterns, that is first
or second syllables for the lexical stress, question or statement for the sentence
type, finished or unfinished intonation for boundary marking, presence or absence
of focus intonation for the focus. Except for the focus, the difference between
accuracy for two specific prosody patterns was very clear within each group.
Questions were better recognised than statements, stressed first syllable - better
than the stressed second syllable, finished intonation - better than unfinished.

To determine, if f0 trajectories would reflect perceptual aspect, we conducted
Kruskal-Wallis rank sum tests for non-parametric data to determine f0 trajectory
differences across the data. We compared differences between the f0 derivatives
for stimuli pairs. For all but one stimuli pair, significant results were found in
sentence type task for two disease groups: HC and PD. Other prosodic functions
did not exhibit any stable significant results within any disease group. The box
plot of f0 trajectories for sentence type function in different diseases is shown
on Fig. 1.
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(a) HC, sentence type (b) PD, sentence type

(c) MS, sentence type (d) SCA, sentence type

Fig. 1. HC and PD f0 derivative differences in sentence typing. Difference between
derivatives are placed on the y-axis, stimuli tags are placed on the x-axis: ‘q’ after each
word means question, ‘s’ - statement.

We also checked if there was a correlation between accuracy of listeners’
recognition and speakers’ disease duration, and found that there was none.

4 Discussion

In this study we explored the abilities of näıve listeners to recognitize intonation
and stress patterns produced by speakers of different disease groups. We indeed
found that different diagnoses, that cause different dysarthria types, affect the
intelligibility of prosodic patterns differently. HC group was always distinguish-
able from any dysarthria groups based on the listeners’ recognition accuracy. As
we hypothesised, listeners performed poorest on stimuli produced by PD group
(three out of four prosody function tasks). Sentence type was the function that
listeners were more successful at recognising in the PD group than in the SCA
group. This might be because the SCA speaker’s tendency towards equalized
vowel/syllable durations within utterances and unusually large f0 range across
utterances [7] interfered with their ability to mark sentence types.
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Moreover, not all the tasks were found to be reliable to assess prosody defi-
ciency. The focus recognition task was very difficult for listeners in general,
causing high numbers of unspecified (“impossible to decide”) answers. The sen-
tence type recognition proved to be the clearest task, and was the only one that
showed correlation with f0 trajectories estimation. However, it is obvious that
f0 trajectories cannot act as a single predictor for different dysarthria classes or
for the accuracy of listeners recognition, but it is obviously a meaningful cue for
differentiating healthy and dysarthric speech.

Despite the small number of speakers and participants, and the lack of infor-
mation about severity of dysarthria, we showed that assessing the näıve listen-
ers’ speech perception is potentially informative for further exploring the link
between acoustic and perceptual cues for classifying different dysarthrias. Fur-
ther research will target other acoustic cues such as duration, temporal cues
and formant measurements that might affect listeners’ prosody recognition of
different dysarthric speech.
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Abstract. The widely acknowledged vulnerability of automatic speaker
verification systems (ASV) to various spoofing attacks requires the
development of countermeasures robust to unforeseen spoofing trials.
In this paper we consider deep learning approach based on Light
CNN architecture and its modification for replay attack detection on
the base of ASVspoof2017 V2. The efficiency of Light CNN based
approaches for replay attacks detection has already been confirmed dur-
ing ASVspoof2017 (for ASVspoof V1 corpora) and ASVspoof2019 Chal-
lenges. We enhanced Light CNN architecture previously considered by
the authors via applying angular margin based softmax activation for
training robust deep Light CNN classifier. The proposed system achieved
Equal Error Rate of 5.5% on the evaluation part of ASVspoof2017 V2. In
addition, we also investigated the possibility of unified LCNN-based app-
roach to detect not only replay spoofing attacks but also attacks of logical
level, specifically speech synthesis and voice conversion. The experiment
results were obtained for microphone part of PHONESPOOF database.

Keywords: Spoofing · Anti-spoofing · Speaker recognition ·
Replay attack detection · ASVspoof · PHONESPOOF

1 Introduction

At the present time, the popularity of using authentication systems based on
individual biometric characteristics of a person’s voice is growing. Such authenti-
cation systems are being introduced in various call-centers to confirm the identity
of users for example of the credit institutions or banks. As well voice biometrics
is used in forensic investigations and other areas of law enforcement.

Along with the increasing quality of voice biometric techniques, there is a
continuous improvement of their hacking techniques, so-called spoofing attacks.
According to the [1] ASV spoofing attacks can be classified pursuant to the
stage they are applied to. In this paper we focus on the direct attacks aimed to
c© Springer Nature Switzerland AG 2019
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Fig. 1. ASV system with possible points of attacks.

substitute the input data on the physical (input signal recording) or logical level
(transmission), see Fig. 1. Since speaker verification is mostly used in automatic
systems without face-to-face contact, these attacks are more likely to be used by
the criminals.

Spoofing attacks can also be divided into 3 main classes according to the tech-
nologies these attacks were generated with [2]: speech synthesis, voice conversion
and replay attacks. For replay attack fraudster uses speech sample of the tar-
get speaker preliminary recorded via any recording device or smartphone. From
the practical point of view replay attacks are much easier to implement than
other types and, consequently, are currently the main threat to voice biometric
systems.

In order to encourage the design of anti-spoofing systems and assess the
current state of spoofing detection technologies, the ASVspoof initiative was
organized [3]. ASVspoof Challenge was held three times: in 2015 [3], 2017 [4]
and in 2019 [5]. It spurred the significant interest of the research community to
the problem of generalised countermeasures development robust to unforeseen
spoofing attacks. Also, the corpora, collected by the organizers, in some sense
have become a common standard for evaluating various anti-spoofing systems.

ASVspoof2015 focused on the attacks of speech synthesis and voice conver-
sion. The results obtained during the competition showed the ability of modern
at that time systems to detect attacks of speech synthesis and voice conversion.
ASVspoof2017 switched focus to the replay attacks which are easy to implement
but difficult to detect. ASVspoof2019 combined these types of attacks into two
separate scenarios: a scenario with logical access to the system (speech synthesis
and voice conversion) and physical access (replay attacks).

During the ASVspoof2017 Challenge, the authors of the article presented a
system based on the LightCNN architecture [6], which showed the best quality of
replay attacks detection on the evaluation set. During ASVspoof2019 Challenge,
the presented architecture was improved [7]. In particular, the angular based
softmax activation function (a-softmax) of the last layer instead of a well-known
softmax was used for training LightCNN-based spoofing detector in both sce-
narios. Additionally, we enlarged the number of network parameters and added
batch normalization layers.
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According to the ASVspoof2019 evaluation plan [8], in order to control the
evaluation setup all replay-attacks presented in the challenge corpora were mod-
eled by simulating various playback conditions. This is completely different from
ASVspoof2017, where replay attacks were implemented similar to real life sce-
nario by different playback and recording devices. In [9] authors has already
shown that emulated spoofing attacks for telephone channel differ from the real
cases and systems trained using only emulated samples can not detect real spoof-
ing attacks.

In this regard, the authors aimed to determine the efficiency of the system
developed for ASVspoof2019 for real (non-simulated) replay attacks using the
corpora ASVspoof2017 V2.

This paper considers several modifications of the LightCNN-based spoofing
detection system. The systems were trained and tested on the ASVspoof2017 V2
corpora database to create a generalized anti-spoofing solution able to detect
real replay attacks in different acoustic environments. Experiment results for
ASVspoof2017 V2 and microphone part of the PHONESPOOF corpora confirm
the generalizing ability of the proposed architecture.

2 Deep Learning Approach

2.1 Light CNN Classifier

Light CNN architecture (LCNN) was used by the authors for replay-attack detec-
tion in ASVspoof2017 and showed good results for such type of tasks [6]. Light
CNN architecture is based on Max-Feature-Map activation (MFM) which can
be considered as alternative of Rectified Linear Unit (ReLU) and extension of
Max-Out activation function [10]. The main motivation of MFM is to separate
informative and noisy signals via a feature selection between pairs of feature
maps. Each LCNN block includes a combination of two independent sets of
feature maps, computed on the input data of a layer (Fig. 2). The MFM acti-
vation function calculates elementwise maximum for each pair of feature maps.
Such feature extraction allows to significantly reduce the number of network
parameters. Unlike ReLu which learns to suppress low-activation neurons by the
threshold, MFM resorts to max function to implement a competitive relation-
ship between feature maps and does not depend on parameters or threshold.
That allows MFM-based CNN models to achieve better generalization even for
different data distributions.

Compared to Maxout activation, Max-Feature-Map activation does not use
hidden nodes, so the scale of MFM-networks is smaller than Maxout-networks.

MFM function is defined as

yk
ij = max(xk

ij , x
k+N

2
ij ),

∀i = 1,H, j = 1,W , k = 1, N/2

where x is the input tensor of size H × W × N , y is the output tensor of size
H × W × N

2 . Here i, j indicate the frequency and time domains and k is the
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channel index. Figure 2 illustrates MFM for a convolutional layer. MFM usage
allowed us to reduce CNN architecture. That is why such CNN architecture is
called Light CNN (LCNN) [10].

Fig. 2. MFM for convolutional layer

2.2 LCNN System Modifications

LCNN based architecture used in ASVspoof2017 consisted of 5 convolution lay-
ers, 10 Max-Feature-Map layers, 4 max-pooling layers and 2 fully connected
layers.

For ASVspoof2019 competition we developed an enhanced modification of
that LCNN [7]. New architecture has two times larger number of parameters, uses
angular margin based softmax (A-softmax) loss and includes batch normalization
layers after MFM and MaxPooling layers in order to increase stability and speed
convergence during the training process.

Besides, in ASVspoof2019 we used this LCNN modification for final score
estimation without GMM scoring backend, because it did not give a gain in
quality.

The detailed architecture for feature size 863 × 400 is described in Table 1.

2.3 Angular Margin Based Softmax Activation

The key difference of the novel LCNNasx
wide system is angular margin based soft-

max (A-softmax) loss used for training the described architecture.
A-softmax was introduced in [11] and demonstrated an elegant way to obtain

well-regularized loss function by forcing learned features to be discriminative on a
hypersphere manifold. Thus angular margin based softmax loss can be described
as:
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Table 1. LCNNasx
wide architecture

Type Filter/Stride Output Params

Conv 1 5 × 5/1 × 1 863 × 400 × 64 1.6K

MFM 2 − 864 × 400 × 32 −
MaxPool 3 2 × 2/2 × 2 431 × 200 × 32 −
Conv 4 1 × 1/1 × 1 431 × 200 × 64 2.1K

MFM 5 − 431 × 200 × 32 −
BatchNorm 6 − 431 × 200 × 32 −
Conv 7 3 × 3/1 × 1 431 × 200 × 96 27.7K

MFM 8 − 431 × 200 × 48 -

MaxPool 9 2 × 2/2 × 2 215 × 100 × 48 −
BatchNorm 10 − 215 × 100 × 48 −
Conv 11 1 × 1/1 × 1 215 × 100 × 96 4.7K

MFM 12 − 215 × 100 × 48 −
BatchNorm 13 − 215 × 100 × 48 −
Conv 14 3 × 3/1 × 1 215 × 100 × 128 55.4K

MFM 15 − 215 × 100 × 64 −
MaxPool 16 2 × 2/2 × 2 107 × 50 × 64 −
Conv 17 1 × 1/1 × 1 107 × 50 × 128 8.3K

MFM 18 − 107 × 75 × 64 −
BatchNorm 19 − 107 × 50 × 64 −
Conv 20 3 × 3/1 × 1 107 × 50 × 64 36.9K

MFM 21 − 107 × 50 × 32 −
BatchNorm 22 − 107 × 50 × 32 −
Conv 23 1 × 1/1 × 1 107 × 50 × 64 2.1K

MFM 24 − 107 × 50 × 32 −
BatchNorm 25 − 107 × 50 × 32 −
Conv 26 3 × 3/1 × 1 107 × 50 × 64 18.5K

MFM 27 − 107 × 50 × 32 −
MaxPool 28 2 × 2/2 × 2 53 × 25 × 32 −
FC 29 − 160 10.2 MM

MFM 30 − 80 −
BatchNorm 31 − 80 −
FC 32 − 2 64

Total − − 6.9MM
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Lang =
1
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where N is the number of training samples {xi}N
i=1 and their labels {yi}N

i=1, θi,yi

is the angle between xi and the corresponding column yi of the fully connected
classification layer weights W , and m is an integer that controls the size of an
angular margin between classes.

This approach has been already used in [12] for high-level speaker embed-
ding extractor. The learned features are constrained to a unit hypersphere. Such
regularization technique also addresses the problem of overfitting by separating
classes in cosine similarity metric.

2.4 Front-End

Several papers [6,13] presented the successful experience of using time-frequency
signal representations as input features for spoofing detection task. This app-
roach allows to detect local spectral artifacts presented in spoofing attacks that
distinguish it from genuine speech.

Our previous LCNN based system for replay attack detection from [6] used
normalized log power magnitude spectrum obtained via Fast Fourier Transform
(FFT) in the form of images.

During ASVspoof2019 we abandoned the quantized image representation of
spectrum and used source spectrum without normalization.

According to our experience in ASVspoof2017 features normalization plays
a crucial role in real scenarios. Due to this in the current investigation we used
mean and variance normalization for log-power spectrum extracted via FFT.
Here we also considered a special technique for obtaining a unified time-frequency
(T-F) shape of features. It implies truncation of the spectrum along the time
axis with a fixed size. During this procedure short files are extended by repeating
their contents if necessary to match the required length.

During the experiments we considered FFT-spectrograms of two shapes as
input features: 863 × 400 - similar to as it was used in ASVspoof2017 system
and 512 × 512 in order to increase processing speed.

3 Experimental Setup

3.1 Datasets

In this research we conduct experiments on the ASVspoof2017 Version 2.0
database [14]. Our interest in this database is dictated by the fact that it con-
tains actual recorded replay attacks in contradistinction to ASVspoof2019 where
it were simulated.

ASVspoof2017 Version 2.0 corpora was presented by the organizers after the
competition and became a fixed version of the original ASVspoof2017 base [14].
The second version of the database excludes data anomalies (like zero-valued
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segments) presented in the original version. These anomalies can impact on
the assessment of replay detection performance according to the post-evaluation
experiments [14].

The ASVspoof2017 V2 corpora include three parts: training, development
and evaluation. Each LCNN model described in this paper was trained on both
training and development data and evaluation part was used only for the exper-
iments.

3.2 Experiments

In this paper we compared 4 LCNN systems. We investigated the impact of the
amount of network parameters on the replay attack detection quality and con-
sidered original LCNN from [6] and its wider version LCNNwide. Furthermore,
we explored the efficiency of applying A-softmax activation function for train-
ing mentioned above architectures. These systems are referred further with asx
index.

– LCNNasx is similar to original LCNN architecture from [6] but includes
additional batch normalization layers. The key difference is A-softmax acti-
vation function used instead of softmax. We trained two systems based on
this architectures. The first system used normalized FFT spectra with size
863 × 400. The second one used 512 × 512 size features and due to this was
computationally lighter.

– LCNNwide is the extended version of LCNN from [6]. In contrast to that
network it has double amount of feature maps in each layer. As in the original
article, it uses conventional softmax activation function on the last layer. As
input features the normalized FFT spectra with size 863 × 400 were used.

– LCNNasx
wide is the combination of two previously described systems. It is based

on wide LCNN architecture with additional batch normalization layers and
utilize A-softmax activation function for training.
As input features the normalized FFT spectra with size 863× 400 were used.

As can be seen on Fig. 3, angular margin based softmax loss allows not only
to improve system quality but also to stabilize the training process.

Fig. 3. EER during training process for LCNNwide (left) and LCNNasx
wide(right)
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4 Results and Discussion

The experimental results for all described systems on the evaluation part of
ASVspoof2017 V2 corpora are presented in Table 2.

Table 2. Experimental results for different LCNN systems obtained on the evaluation
part of ASVspoof2017 V2 (EER%)

System Feature size EER

LCNNwide 863 × 400 6.09

LCNNasx
wide 863 × 400 5.5

LCNNasx 863 × 400 6.78

LCNNasx 512 × 512 8.17

This results in first two rows of Table 2 demonstrates the efficiency of usage
A-softmax loss which gives an advantage almost in 0.6 % EER. This confirms
our findings during ASVspoof2019 [7] about the expediency of usage A-softmax
loss in LCNN for spoofing detection task.

Besides, we can conclude that extended architecture LCNNasx
wide demon-

strates higher spoofing detection quality than LCNNasx but it has much more
computational complexity (with computational cost of 5.6 GFLOPs versus 1.5
GFLOPs for LCNNasx).

The final experiment was aimed to check the most computationally light
system LCNNasx with 512 × 512 feature size. As expected, this system shows
the worst quality among considered systems, but due to its relative simplicity and
satisfying performance it can be used if high processing speed is under demand.
The average computational cost of this system was 1.2 GFLOPs.

Inspired by the impressive results of the described systems we were aimed to
design the generalized LCNN-based system for both logical and physical access
spoofing attacks. In order to do this we trained LCNNasx on the combination
of ASVspoof2015, ASVspoof2017 V2 training and development parts and the
microphone channel of PHONESPOOF dataset described in [9]. This system was
trained to distinguish between spoofing and genuine classes, which means that
it did not use any information about attack type during training. The training
data was balanced across the types of attacks and varieties of TTS. As input
features normalized FFT-spectra with 512 × 512 size were used. The obtained
system was evaluated on the ASVspoof2015 and ASVspoof2017 V2 accordingly.
In addition we assess its ability to detect different types of known and unknown
types of open source TTS. The experiment results are presented in the Table 3.
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Table 3. Experiment results for generalized spoofing detection system, EER (%).

Spoofing attacks type Test dataset EER (%)

Replay ASVspoof2017 eval 15.31

TTS Google 0.03

Yandex 0.12

IBM 0.19

STC 0.55

Lyrebird 2.64

TTS + VC ASVspoof2015 0.24

Obtained results confirm the generalization ability of the proposed archi-
tecture. Detection quality of voice conversion and speech synthesis from
ASVspoof2015 outperform many published results obtained for this data set
including systems performed during the Challenge and after that [3,15–17]. This
significant improvement can be explained by the variability of the training set,
that included training and development parts of ASVspoof2015 as well a sub-
stantial amount of TTS samples from different open sources, such as Google,
Yandex.

It is worth mentioning that the general system demonstrate lower detection
quality for replay attacks from ASVspoof2017 evaluation part than an individual
system which can be explained by not sufficient amount of learning network
parameters for the generalized task.

5 Conclusion

In this paper we considered several modifications of LCNN for spoofing
attack detection. Performed experiments show that solutions proposed during
ASVspoof2019 Challenge for solving spoofing detection task in modeled condi-
tions provide high spoofing detection quality even for non-simulated data from
ASVspoof V2. These approaches include the extension of previous LCNN archi-
tecture with additional batch normalization layers and usage of the (A-softmax)
softmax loss for training this architecture. LCNNasx

wide system showed the best
replay attack detection with 5.5% of EER. It was shown that input feature size
reduction can be used in order to increase the processing speed of the ASVspoof
system. However, this leads to system performance degradation. Presented inves-
tigations show that the unified LCNN based system can be effectively trained
for both logical and physical access spoofing attacks detection simultaneously.
Such system demonstrates reliable performance for both antispoofing attacks
scenarios.

Acknowledgments. This research was partially financially supported by the Gov-
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CNN Architecture Enhancement for Spoofing Attack Detection 529

References

1. Faundez-Zanuy, M., Hagmüller, M., Kubin, G.: Speaker verification security
improvement by means of speech watermarking. Speech Commun. 48(12), 1608–
1619 (2006)

2. Wu, Z., Evans, N., Kinnunen, T., Yamagishi, J., Alegre, F., Li, H.: Spoofing and
countermeasures for speaker verification: a survey. Speech Commun. 66, 130–153
(2015)

3. Wu, Z., et al.: ASVspoof 2015: the first automatic speaker verification spoofing
and countermeasures challenge. In: INTERSPEECH (2015)

4. Kinnunen, T., et al.: The ASVspoof 2017 challenge: assessing the limits of replay
spoofing attack detection. In: INTERSPEECH (2017)

5. Todisco, M., et al.: ASVspoof 2019: future horizons in spoofed and fake audio
detection (2019)

6. Lavrentyeva, G., Novoselov, S., Malykh, E., Kozlov, A., Kudashev, O.,
Shchemelinin, V.: Audio replay attack detection with deep learning frameworks.
In: Proceedings of the INTERSPEECH 2017, pp. 82–86 (2017)

7. Lavrentyeva, G., Novoselov, S., Tseren, A., Volkova, M., Gorlanov, A., Kozlov, A.:
STC antispoofing systems for the ASVspoof2019 challenge (2019)

8. ASVspoof 2019: Automatic speaker verification spoofing and countermeasures chal-
lenge evaluation plan (2019)

9. Lavrentyeva, G., Novoselov, S., Volkova, M., Matveev, Y., De Marsico, M.: Phone-
spoof: a new dataset for spoofing attack detection in telephone channel. In: Pro-
ceedings of the ICASSP 2018 (2018)

10. Wu, X., He, R., Sun, Z.: A lightened CNN for deep face representation. CoRR, vol.
abs/1511.02683 (2015)

11. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere
embedding for face recognition. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), vol. 1 (2017)

12. Novoselov, S., Shulipa, A., Kremnev, I., Kozlov, A., Shchemelinin, V.: On deep
speaker embeddings for text-independent speaker recognition, pp. 378–385 (2018)

13. Tian, X., Xiao, X., Siong, C.E., Li, H.: Spoofing speech detection using temporal
convolutional neural network. In: 2016 Asia-Pacific Signal and Information Pro-
cessing Association Annual Summit and Conference (APSIPA) (2016)

14. Delgado, H., et al.: ASVspoof 2017 version 2.0: meta-data analysis and baseline
enhancements (2018)

15. Patel, T.B., Patil, H.A.: Combining evidences from mel cepstral, cochlear filter
cepstral and instantaneous frequency features for detection of natural vs. spoofed
speech. In: INTERSPEECH (2015)

16. Novoselov, S., Kozlov, A., Lavrentyeva, G., Simonchik, K., Shchemelinin, V.: STC
anti-spoofing systems for the ASVspoof 2015 challenge. In: 2016 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5475–
5479 (2016)

17. Alam, M.J., Kenny, P., Gupta, V., Stafylakis, T.: Spoofing detection on the
ASVspoof 2015 challenge corpus employing deep neural networks (2016)



Deep Neural Network Quantizers
Outperforming Continuous Speech

Recognition Systems

Tobias Watzel(B) , Lujun Li , Ludwig Kürzinger , and Gerhard Rigoll

Institute for Human-Machine Communication,
Technical University of Munich, Munich, Germany

{tobias.watzel,lujun.li,ludwig.kuerzinger,rigoll}@tum.de

Abstract. In Automatic Speech Recognition (ASR), the acoustic model
(AM) is modeled by a Deep Neural Network (DNN). The DNN learns a
posterior probability in a supervised fashion utilizing input features and
ground-truth labels. Current approaches combine a DNN with a Hid-
den Markov Model (HMM) in a hybrid approach, which achieved good
results in the last years. Similar approaches using a discrete version,
hence a Discrete Hidden Markov Model (DHMM), have been disregarded
in recent past. Our approach revisits the idea of a discrete system, more
precisely the so-called Deep Neural Network Quantizer (DNNQ), demon-
strating how a DNNQ is created and trained. We introduce a novel app-
roach to train a DNNQ in a supervised fashion with an arbitrary output
layer size even though suitable target values are not available. The pro-
posed method provides a mapping function exploiting fixed ground-truth
labels. Consequently, we are able to apply a frame-based cross entropy
(CE) training. Our experiments demonstrate that the DNNQ reduces the
Word Error Rate (WER) by 17.6 % on monophones and by 2.2 % on tri-
phones, respectively, compared to a continuous HMM-Gaussian Mixture
Model (GMM) system.

Keywords: Deep Neural Network Quantizer ·
Discrete speech recognition · Mini-batch sampling

1 Introduction

In recent years, Automatic Speech Recognition (ASR) systems have reduced
their Word Error Rate (WER) progressively. The recognition rates increased
even on challenging tasks like the AMI [3] corpus. Recently, Xiong et al. [19]
reached a new milestone. They achieved a human-like recognition rate by com-
bining several models and training on a large dataset. However, the training
of these models is not feasible without sufficient computational power. In fields
where only limited resources are available or the amount of training data is
restricted, different approaches need to be considered. Therefore, HMM-GMM
systems and hybrid systems, which combine a HMM with a single DNN, are still
c© Springer Nature Switzerland AG 2019
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popular and in use with slight adjustments in their architectures [5,10]. Usually,
these approaches determine the AM of the ASR by a continuous posterior dis-
tribution p(y|x) given the input features x. The time-variant model component
is modeled by an HMM [2].

Besides continuous models like GMMs or DNNs, another system category
was popular but has been disregarded in recent past: ASR systems consisting
of a discrete AM, hence, a DHMM. However, discrete ASR systems are usually
performing worse due the loss of information during discretization. Regardless of
this disadvantage, several approaches tried to compete in a discrete fashion. In
the beginning, the well-known and fast k-means algorithm was used as a baseline
to cluster the training data yielding a predefined number of cluster centroids.
With the help of these centriods, a Vector Quantizer (VQ) is used to assign
a feature vector to the nearest cluster. The AM is trained with the created
label stream.

In an alternative approach [13], Neukirchen and Rigoll introduced the Neural
Network Vector Quantizer (NNVQ). The NNVQ is a shallow neural network and
acts as a VQ, which labels the data. The model is trained with the mutual infor-
mation criterion. The index of the neuron in the output layer with the highest
activation returns the label for the training sample, thus, performs the quanti-
zation to assign the input feature to a specific cluster. Furthermore, the input
features were split into four separated streams. For each feature stream, a single
shallow NNVQ was trained. During the NNVQ training, applying a quantization
is not feasible since it is impossible to compute a derivative (note, quantization
corresponds to argmax of the output layer). To tackle this problem, the authors
used a scaled version of the softmax function to approximate the argmax opera-
tion. The softmax function is fully derivable, which is necessary to calculate the
gradients for training the NNVQ. In the end, their model was able to slightly
outperform a k-means system and nearly equalized continuous systems. However,
the evaluation was done on the Resource Management database [11], which only
provides a limited amount of training samples.

The same NNVQ architecture was also used in [14] for a large-vocabulary
speech recognition task on the Wall Street Journal database [8]. The NNVQ was
able to achieve better performance compared to a k-means system but could
not reach the performance of continuous systems. Besides using triphones, they
added context by splicing adjacent frames. However, they were not able to obtain
comparable results to continuous systems in [7].

In this work, we revisit discrete ASR investigating the limits of such systems.
We consider recent state-of-the-art developments and enhance the ideas of the
aforementioned approaches [13,14]. Our work makes the following contributions:

– We demonstrate how to build up a DNNQ for discrete ASR.
– We propose a novel training algorithm for DNNQs with arbitrary output layer

size.
– In contrast to [14], we illustrate how a DNNQ is able to outperform continuous

GMM systems.
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2 Proposed Method

2.1 Deep Neural Network Quantizer Training

Let D = {(xi, ŷi)}N
i=1 be a dataset of size N consisting of features xi ∈ R

D

with their corresponding ground-truth labels ŷi ∈ N1 (note that N1 = N \ {0}).
We want to find a function f : xi �→ ŷi mapping all input features onto their
ground-truth labels. In our approach, we use a DNNQ to approximate f with
gθ : xi �→ m̂i, where θ represent the weights of the network and m̂i ∈ N1 defines
the index of the maximum value in the DNNQ output layer mi ∈ R

Nclu as follows

m̂i = arg max
1≤j≤Nclu

mj
i . (1)

The size of the output layer is represented by Nclu and the index j describes
the j-th neuron in the layer. In order to approximate the argmax operation, we
apply a scaled version of the softmax

mj
i =

exp(aj
iTsca)

Nclu∑

l=1

exp(al
iTsca)

∀ 1 ≤ j ≤ Nclu, (2)

produce a single spiking output. Depending on the value of Tsca, the activations
aj

i of the previous layer are getting higher or lower scaled, consequently the
output of the DNNQ is spikier or smoother. By applying the softmax, we are
still able to take the derivative of the output mi which is a requirement to train
the DNNQ. Depending on size Nclu the emitting labels m̂i are in the range
[1, Nclu] = {m̂i ∈ N1 | 1 ≤ m̂i ≤ Nclu}. The ground-truth labels are in the range
[1, NK ] = {ŷi ∈ N1 | 1 ≤ ŷi ≤ NK}, where NK represents the dimension of the
label space.

In classic deep learning training, the well-known cross entropy loss LCE is
utilized in every mini-batch containing Nb examples to optimize the weights, i.e.,

LCE = − 1
Nb

Nb∑

i=1

NK∑

k=1

δ(ŷi, k) log mk
i , (3)

where δ(·) represents the Kronecker delta. Usually, the dimension of the output
layer and the ground-truth label space are equal, thus, Nclu = NK . However, it
does not apply for our DNNQ. Before we take a closer look as to why, we define
the discrete random variables M and Y with their probability mass functions

P (M = m̂j) =
1
N

N∑

i=1

δ(m̂i, j) ∀ 1 ≤ j ≤ Nclu (4)

and

P (Y = ŷk) =
1
N

N∑

i=1

δ(ŷi, k) ∀ 1 ≤ k ≤ NK . (5)
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The probability mass functions are created by counting the number of occur-
rence m̂j and ŷk based on all the samples m̂i and ŷi. Thereby, we are able to
define the mutual information I(Y ;M) by

I(Y ;M) = H(Y ) − H(Y |M). (6)

H(Y ) represents the entropy of Y and H(Y |M) is the entropy of Y condi-
tioned on M . Note that the entropy H(Y ) is fixed during training as we are
not able to adjust the ground-truth labels ŷi in Eq. 5. Hence, we can only min-
imize H(Y |M) by altering the output of the DNNQ to maximize I(Y ;M). In
our approach, we implicitly maximize I(Y ;M) by minimizing LCE [18] instead
of minimizing H(Y |M) directly like in [13]. Since I(Y ;M) is strongly dependent
on the size of mi, we need to increase the variety of emitted labels m̂i, thus
raising Nclu. However, LCE requires identical dimensions and if we vary Nclu, we
no longer have suitable target values available for training the DNNQ.

In order to use ŷi for a variable output layer size mi, i.e. NK �= Nclu, we intro-
duce a novel training method: First, we create the joint probability Pb(Y,M)
of the ground-truth labels ŷi and the DNNQ outputs mi employing the input
features xi in every mini-batch. Then, we condition on the DNNQ output

Pb(Y |M) = P (ŷb,k|mb,j) ≈
ε +

Nb∑

i=1

δ(ŷi, k)mj
i

εNclu +
Nb∑

i=1

mj
i

∀ 1 ≤ j ≤ Nclu,∀ 1 ≤ k ≤ NK ,

(7)
where ε is a small constant and Pb(Y |M) ∈ R

NK×Nclu . Note that dimensions
can be unequal, thus, NK �= Nclu. The aforementioned theory has similarities
to [13]. However, instead of creating P (Y |M) by using the entire dataset, we take
mini-batches with a sufficient batch size to approximate Pb(Y |M) ≈ P (Y |M).
Then, we use Pb(Y |M) and the output mi of the DNNQ to obtain

mtra,i = Pb(Y |M)mi ∀ 1 ≤ i ≤ Nb, (8)
with mtra,i denoting the transformed outputs which are mapped from dimension
Nclu to dimension NK . Now, we are able to calculate LCE(mtra,i; ŷi) for each
sample ensuring equal dimensions. In that way, we can train a DNNQ with
arbitrary output layer size Nclu using fixed ground-truth labels yi.

During training, the DNNQ reduces LCE(mtra,i; ŷi) progressively. Since
Pb(Y |M) only maps the output mi ∈ R

Nclu to mtra,i ∈ R
NK , we are actu-

ally reducing the cross entropy between mi and ŷi on frame-level. By doing
so, we implicitly maximizing the mutual information I(Y ;M) by minimize
LCE(mtra,i; ŷi).

2.2 Discrete Hidden Markov Model Training

For the time-variant model component we apply a DHMM. The main difference
between a normal HMM and a DHMM is the the emission probability bsk

bsk
= P (x|sk), (9)
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where sk represents a state in a DHMM/HMM and p(x|sk) is the posterior
modeled by a GMM or DNN. In our approach, the emission probability bsk

(m̂j)
is a histogram, which is learned during Viterbi training of the DHMM. The
histograms for every state sk are created via maximum likelihood (ML)

bsk
(m̂j)ML =

N∑

i=1

δ(s̃i, sk)δ(m̂i, j)

N∑

i=1

δ(s̃i, sk)
∀ 1 ≤ k ≤ NK ,∀ 1 ≤ j ≤ Nclu. (10)

Here, s̃i is the state sequence created by a Viterbi alignment. Depending
on the number of states NK in the DHMM we receive NK histograms with
Nclu bins corresponding to the occurring labels. These labels are created by the
aforementioned DNNQ.

3 Experimental Setup

All our experiments are based on the public TEDLIUMv2 [15] dataset. The
dataset is split into three subsets: train, test and dev, with the train set con-
taining 207 h of audio data. Besides training the DNNQ in tensorflow [1], we use
kaldi [9] to prepare the dataset and decode the final model for the evaluation.

First, we extract 12-dimensional MFCCs and the log-energy for every 25 ms
signal frame, applying a cepstral mean normalization and adding delta and delta-
delta features. Then, we train a HMM-GMM by maximum likelihood to receive
basic state alignments for every utterance in the dataset. Next, we cluster the
states to form a triphone model. We take the resulting model and perform
a forced-alignment on the entire dataset to retrieve state-based labels for the
DNNQ training. Next, we create our network architecture as depicted in Fig. 1.
The network consists of four fully-connected layers with 512 neurons and ReLU
activations followed by a batch normalization [4] layer, respectively. After the
fourth batch normalization layer we add a dropout [16] layer for regulariza-
tion. Besides dropout, we regularize all the weights of the network with L2-
Regularization scaled with 10−8. The latter regularization reduces network com-
plexity and improves overall generalization. An subsequent fully-connected layer
with sigmoid activations and a scaling layer form the output layer. The out-
put layer consists of Nclu neurons representing the number of clusters Nclu. The
scaling layer as mentioned in Eq. 2 forces the DNNQ to produce spiky outputs,
which are then fed into the softmax function. By adjusting the Tsca the networks
produce smoother or spikier outputs. We received prime results without numer-
ical instabilities with Tsca = 15.0. In summary, the network consists of 1.4 M
trainable parameters. We optimize the DNNQ with the Adam optimizer [6]. We
begin the training with a learning rate of 0.01. Depending on the experiment,
we lower the learning rate after Nepo epochs if there is no performance gain on
validation set indicating that the mutual information is not increasing further.
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Fig. 1. The architecture of the DNNQ with fully-connected (FC) and batch normal-
ization (BN) layers. We sample Pb(Y |M) in the current mini-batch and transform the
output mi to mb,tra for calculating the LCE.

During our frame-wise cross entropy training, we sample Pb(Y |M) in each
mini-batch and create Pb(Y |M) with ε = 0.01 by applying Eq. 7. In order
to obtain a representative statistic Pb(Y |M) we set the mini-batch size to
Nb = 15 000 which works well in all our experiments. Then, we perform the
label mapping using Eq. 8. Instead of applying one-hot-encoded labels, we take
smoothed labels [17] with a smoothing factor of 0.1 providing a faster and more
stable training.

After training the DNNQ, we decode on the test set. For creating the lattices
of the test data, we take a lattice beam size of 6.0 and an acoustic scale of 0.25.
The beam decoder applies a beam size of 13.0 to find the ideal sequence through
the decoding graph. We use the small version of the 4-gram language model,
which is already provided for the dataset.

4 Results

4.1 Number of Clusters

We evaluate our approach in two different experiments. Firstly, we train a
HMM-GMM on monophone states. Instead of using the entire training set, we
take the 20 k shortest utterances in the training set. Short utterances contain
only a few words and by performing a maximum likelihood training, we obtain
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already accurate alignments. We create labels for the DNNQ by using a pre-
trained triphone model. We map the triphone states to monophone states and
select the 20 k shorted utterances. Then, we train the DNNQ on cluster sizes
Nclu ∈ {400, 700, 1000, 1500}. Furthermore, we apply a high dropout rate of 0.5
and train the DNNQ for 100 epochs. We halve the learning rate every Nepo = 6
epochs if the performance on the validation set is stagnating.

The results depicted in Table 1 demonstrate that our approach outperformes
a conventional continuous HMM-GMM. Even for the smallest number of clus-
ters Nclu = 400 the DNNQ was able to obtain a better performance. Mostly, the
reason for this improvement is the deeper network architecture compared to [14].
The DNNQ is able to generalize better using deeper layers. In addition, we are
using state-of-the-art layers like batch normalization and dropout, which help
to speed up training and improve generalization as we could also verify by our
experiments. The best overall WER is returned by the DNNQ with Nclu = 1000.
On the dev and test sets for Nclu = 1000 the DNNQ achieved a final WER of
44.5 % and 45.1 %, respectively. Compared to the HMM-GMM system, our app-
roach is able to relatively decrease the WER by 17.9 % and 17.6 %. Note that
even though we apply discretized data generated with the DNNQ to train the
DHMM, the process of discretization does not mitigate the performance since
we achieve a WER reduction compared to a continuous system.

4.2 Number of Spliced Frames

The second experiment examines the effect of splicing. We vary different numbers
of neighboring frames. By setting Nspl = 0, we only use a single frame, thus a
39-dimensional input for the DNNQ. In other cases, we take a 117-dimensional
(left and right frame) and 195-dimensional (2 left and 2 right frames) input,
respectively. All splicing options are evaluated on triphone states. We train the
continuous GMM and the discrete DNNQ system on the entire train set. Due
to the small size of our DNNQ and the huge amount of training data, satisfying
generalization performance can be achieved even without dropout. Moreover, we
train for 50 epochs and halve the learning rate every Nepo = 10.

We observe similar results as in the first experiment. As illustrated in Table 3,
the DNNQ returned a better WER, however, only for Nspl = 1 and Nspl = 2
we notice a slightly improvement compared to the HMM-GMM. The continuous
model reached a WER of 28.2 % on the dev set and a WER of 27.7 % on the
test set. In accordance with [12], our experiments support the increase in WER
for higher Nspl in continuous systems as illustrated in Table 3. The parameter
estimation of the GMMs becomes problematic since the dimension of the input
feature is increased causing a significant growth of the parameters.

The DNNQ with Nspl = 2 achieves the best results with a WER of 27.1 %
on the dev and 27.1 % on the test set. This corresponds to a relative decrease
of 3.9 % and 2.2 % respectively. Despite the huge improvement of the DNNQ for
monophone states, the performance gain is not directly transferable to triphone
states. A reason for this could be the added context in the features itself since we
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Table 1. WERs (%) for different number of
cluster Nclu ∈ {400, 700, 1000, 1500} taking the
20k shortest training set utterances.

Monophone states

DNNQ GMM

Nclu 400 700 1000 1500 -

dev 52.0 45.8 44.5 45.8 54.2
test 52.2 46.9 45.1 47.0 54.7

Table 2. WERs (%) for Nclu =
1000 and Nspl ∈ {0, 1, 2} taking
the entire training set.

Monophone states

DNNQ

Nspl 0 1 2

dev 43.7 37.5 36.2
test 45.1 38.9 37.2

Table 3. WERs (%) for Nspl ∈ {0, 1, 2} and Nclu = 1000 using the entire training set.

Triphone states

DNNQ GMM

Nspl 0 1 2 0 1 2

dev 30.5 27.1 27.1 28.2 35.2 45.9
test 31.7 28.1 27.1 27.7 36.3 48.0

splice adjacent frames together to a bigger more context-based frame. By doing
so, the DNNQ is able to use context to improve the ability to assign an input
feature to a specific cluster. Our assumption is supported by taking a closer look
at the performance of the monophone states with spliced features in Table 2, in
which we present the WER for varying Nspl. It is clear that the performance
already improved by splicing adjacent frames as we added context information
to the features. Hence, the expected gain by using context-dependent triphone
states should be lower, which is affirmed by Table 3.

5 Conclusion

We revisited the idea of discrete ASR using a DNNQ and revealed that despite
the loss of information due to discretization we can achieve a smaller WER
compared to a continuous model. The novel way of training the DNNQ, more
precisely training it with an arbitrary output layer size exploiting fixed ground-
truth labels, allows us to easily scale the size of the DNNQ. Furthermore, we
are able to integrate our model into future approaches. We are planning to
investigate whether the DNNQ is able to support a classical vanilla DNN for
ASR. We believe that the output of the DNNQ contains information which
could be combined with the output of a classical vanilla DNN into a model
fusing approach.



538 T. Watzel et al.

References

1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. OSDI 16,
265–283 (2016)

2. Bourlard, H.A., Morgan, N.: Connectionist Speech Recognition: A Hybrid App-
roach, vol. 247. Springer, New York (2012)

3. Carletta, J., et al.: The AMI meeting corpus: a pre-announcement. In: International
Workshop on Machine Learning for Multimodal Interaction, pp. 28–39. Springer
(2005). https://doi.org/10.1007/11677482 3

4. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

5. Kanda, N., Fujita, Y., Nagamatsu, K.: Lattice-free state-level minimum Bayes risk
training of acoustic models. In: Proceedings of the INTERSPEECH (2018)

6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

7. Neukirchen, C., Rigoll, G.: Advanced training methods and new network topologies
for hybrid MMI-connectionist/HMM speech recognition systems. In: 1997 IEEE
International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp.
3257–3260. IEEE (1997)

8. Paul, D.B., Baker, J.M.: The design for the wall street journal-based CSR corpus.
In: Proceedings of the Workshop on Speech and Natural Language, pp. 357–362.
Association for Computational Linguistics (1992)

9. Povey, D., et al.: The Kaldi speech recognition toolkit. In: IEEE 2011 Workshop
on Automatic Speech Recognition and Understanding. No. EPFL-CONF-192584.
IEEE Signal Processing Society (2011)

10. Povey, D., et al.: Purely sequence-trained neural networks for ASR based on lattice-
free MMI. In: INTERSPEECH, pp. 2751–2755 (2016)

11. Price, P., Fisher, W.M., Bernstein, J., Pallett, D.S.: The DARPA 1000-word
resource management database for continuous speech recognition. In: 1988 Interna-
tional Conference on Acoustics, Speech, and Signal Processing, pp. 651–654. IEEE
(1988)
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Abstract. In this study, we investigate the problem of apparent per-
sonality recognition using person’s voice, or more precisely, the way he
or she speaks. Based on the style transfer idea in deep neural net image
processing, we developed a system capable of speaking style extraction
from recorded speech utterances, which then uses this information to
estimate the so called Big-Five personality traits. The latent speaking
style space is represented by the Gram matrix of convoluted acoustic
features. We used a database with labels of personality traits perceived
by other people (first impression). The experimental results showed that
the proposed system achieves state of the art results for the task of audio
based apparent personality recognition.

Keywords: Automatic Apparent Personality Recognition ·
First impression prediction · Speaking style representation ·
Computational Paralinguistics

1 Introduction and Related Works

The interest for Automatic Personality Recognition (APR) has rapidly risen in
recent years as it has many important applications [28], such as products, jobs, or
services recommendation [8,23], mental health diagnosis [6], computer-assisted
tutoring systems [29], social network analysis [2], etc. But since it is very difficult
to infer a person’s true personality, many researchers started to pay attention to
a less complex problem instead: Automatic Apparent Personality Recognition
(AAPR), which is the personality perceived by other people (first impression).
AAPR also has many practical applications since people constantly estimate
other persons personality. For example, if the interviewer’s first impression on
the job candidate is bad, he has lower chance to get the job; The audiences’ first
impression on a YouTuber’s voice also influences whether they continue watching
or close the video.

1.1 The Big-Five Model

The personality, as well as apparent personality, are formally described by five
dimensions known as the Big-Five personality traits [19]:
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– EXTraversion vs. Introversion (sociable, assertive, playful vs. aloof, reserved,
shy).

– NEUroticism vs. Emotional stability (calm, unemotional vs. insecure, anx-
ious).

– AGReeableness vs. Disagreeable (friendly, cooperative vs. antagonistic, fault-
finding).

– CONscientiousness vs. Unconscientious (self-disciplined, organized vs. inef-
ficient, care-less).

– OPEness to experience (intellectual, insightful vs. shallow, unimaginative).

For personality recognition, the true labels are usually obtained by self-
assessment questionnaire [7], where people rate their own behavior with Likert
scales [1]. While for the apparent personality recognition, the labels are obtained
by other people’s first impression [9].

1.2 Audio Based AAPR

The personality traits can be inferred based on many types of observations, such
as text [17,18,30], audio [20,24], video [22,31], or any combination of them, each
of which has its own applications, depending on the availability of observations
in different situations. For example, the audio based AAPR is very useful for
the producers who make education or explainer videos since the audiences’ first
impression on their voices can largely affect the trustiness and attractiveness of
the videos.

The conventional methods of AAPR from audio typically use a large pool
of potentially prosody features (e.g. Mel Frequency Cepstral Coefficients, pitch,
energy, and their 1st/2nd order temporal derivatives) and “Interspeech 2012
Speaker Trait Challenge” [26] is the first, rigorous comparison of different
approaches over the same data and using the same experimental protocol for
audio based AAPR, where the performances of most approaches depend heavily
on careful feature selection [3,13,21,25]. Many of those features are included in
the open-source openSMILE tool [10] and can serve as baseline for audio based
AAPR. For example, the winner in the ChaLearn 2017 Job Candidate Screen-
ing Competition also used the openSMILE feature configuration that served as
challenge baseline in the INTERSPEECH 2013 Computational Paralinguistics
Challenge, which is 6373-dimensional feature set and was found to be the most
effective acoustic feature set among others for personality trait recognition [12].
In order to learn useful features automatically, deep learning based methods
have also been proposed for audio based AAPR. The audio model baseline pro-
vided by the organizer is a variant of the original ResNet18 model [9], which
was trained on random 3s crops of the audio data and tested on the entire audio
data. However, since the general network architecture is not specifically designed
for AAPR, it doesn’t appear to clearly outperform the conventional methods.
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1.3 Neural Style Transfer

The neural style transfer became popular after the paper [11], where the style
representation of an image is described as the correlation between different filter
responses given by the Gram matrix. The basic idea was developed to classify
image style in work [4], where the VGG-19 network [27] trained on the ImageNet
dataset was used to obtain filter responses at different layers whose Gram matrix
is calculated and transformed into a style vector, which is then classified by an
SVM (support vector machine) classifier.

But the characteristics of audio signals are different from those of the images,
e.g. speech is a sequential signal while the image is a 3D-tensor, and the duration
varies for different utterances. Moreover, the Gram matrix representing styles is
usually calculated from pre-trained networks and might not hold the best fea-
tures for the desired task. In this work, we propose a system that automatically
captures speaking styles for apparent personality recognition.

2 System Description

The proposed system evaluates a speech signal and returns 6 scores for the 5
personality traits and an interview variable (whether a candidate will be invited
for a job interview).

In our neural network, the Gram matrix is not calculated from any pre-
trained networks. Everything is jointly learned from scratch. The overall archi-
tecture is illustrated in Fig. 1.

Fig. 1. Neural network architecture used in our system.

– Input: the input x ∈ Rt×d to our network contains d-dimensional speech
features obtained at t timesteps.

– Target: the learning target t ∈ R6 is a 6-dimensional vector (representing
five traits and the interview variable), whose range is [0,1].

– Convolutional layer: the input x is first fed to a convolutional layer with
f number of filters, k × d kernel size, 1 stride, and “same” zero padding,
resulting in a feature map h ∈ Rt×f . This is intended to automatically filter
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out the silence and extract useful features for computing the speaking styles. A
Rectified Linear Unit (ReLU) activation function is then applied to introduce
non-linearity.

– Gram layer: Gram matrix g is then calculated from the feature map h,
where g = hTh. The lower (or upper) triangular matrix and diagonal are
flattened into a vector g∗ ∈ R(f+1)∗f/2 for the next layer. A Gram layer
actually represents the speaking styles as the correlations between different
channels of the feature maps from the previous convolutional layer.

– Batch norm layer: since the norms of values in g∗ are very big, a batch
normalization layer with a ReLU activation function is added to solve this
issue, resulting in a vector s that represents the speaking styles.

– Fully connected layers: the style vector s is then fed to one or more fully
connected layers (dense layers) with ReLU activation function that further
transforms s to higher level features.

– Output layer: finally, an output layer without activation function follows
the dense layer(s) to produce an output o with 6 dimensions.

– Loss function: We tackle this task as a regression problem, so the mean
squared error (MSE) is used as loss function.

3 Experiments and Results

3.1 Dataset

The dataset used in our experiments was the first impressions data set (CVPR
2017) [9], which comprises of 10,000 clips (with an average duration of 15s)
extracted from more than 3,000 different YouTube high-definition (HD) videos of
people facing a camera and speaking in English. People in videos have different
gender, age, nationality, and ethnicity. Each clip is labeled for the Big Five
personality traits scores along with an interview variable score that recommends
whether a job candidate should be invited for an interview or not.

The train/val/test split used by the CVPR 2017 workshop participants is
6000/2000/2000 and we followed the same protocol (The numbers in parenthe-
sis are the actual number of examples used in our experiments due to data
corruption): train the networks on the trainset (5992), tune the networks using
validation set (2000) to find the best hyper-parameters, with which the networks
are retrained on both train and validation sets (7992), and finally test on the
testset (1997).

For each of the five traits and the interview variable, the performance was
evaluated by the Mean Absolute Error (MAE) subtracted from 1, which is for-
mulated as follows:

E = 1 −
∑N

i=1 |targeti − predictedi|
N

(1)

The score varies between 0 (worst case) and 1 (best case).
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3.2 Low Level Feature Extraction

16kHz audio signals are extracted from the video clips and 13 dimensional Mel
frequency cepstral coefficients (MFCCs) are computed every 10 ms over a 25 ms
window, along with their first and second derivatives and used for our acoustic
feature vector x ∈ R1528×39, where 1528 is the number of timesteps.

3.3 Overall Settings

In all the networks to be trained, every hidden dense layer has 512 nodes and
is followed by a dropout layer with a drop rate of 40%. The kernel size of every
convolutional layer is 3. Each network was trained by 300 epochs using Adam
[16] update method with a learning rate of 1e-4 and a batch size of 16. We chose
300 epochs because the networks after 300 epochs perform fairly well on the
validation set. The L2 regularization with a rate of 1e-4 is also added to the final
loss, which is 10−4

∑
(‖θ‖2)/2 and θ is the weights vector of a layer.

3.4 Our Baseline

In order to verify whether the performance improvement is provided by the
speaking styles captured by the Gram matrix, we also trained networks without
it. We tried recurrent networks with GRU (Gated Recurrent Unit) cell [5] and
found they are not as good as convolutional networks for this task. The net-
works with max pooling layer or more than one convolutional layers didn’t show
improvement either. We found the best network architecture without Gram layer
is the network with one 1D-convolutional layer, one average pooling layer over
all timesteps, one dense layer, and the output layer.

3.5 Results and Discussion

The experimental results of testset in terms of 1-MAE are summarized in Table 1.
The column “System” denotes different DNN configurations. Thus, C(32) stands
for a convolutional layer with 32 filters, P - an average pooling layer over all
timesteps, B - a batch normalization layer with ReLU activation and D - a
dense layer (2D means 2 consecutive dense layers).

Because it is hard to keep the numbers of parameters in the baseline and pro-
posed architectures the same, we tried many hyper-parameter combinations and
found that C(32)+P+2D was the best one among architectures without speaking
styles. From the results, we can see that batch normalization layer didn’t show
any improvement in these cases and could not outperform the ResNet18. How-
ever, when the Gram layer along with a batch normalization layer is used, all con-
figurations shows significant performance increase with the C(128)+G+B+2D
achieving the best audio based AAPR results.

Table 2 shows the Big-Five traits and the interview score classification results.
The ground truth labels and the system predictions were binarized based on the
training set mean scores. If a given score is above the corresponding mean, the
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label or the prediction is considered positive, otherwise - negative. The accuracy
results also show that our proposed architecture brings significant improvements
for both the personality traits and interview variable.

We also noticed that the Gram layer cannot be jointly trained without a
batch normalization layer (e.g. C(32)+G+D didn’t converge). The reason might
be that the values of the Gram matrix are changing dramatically for each batch
when the Gram matrix is not calculated from the pre-trained (fixed) convolu-
tional layer, but from a convolutional layer that is also being trained.

Table 1. 1 − MAE results. OPE: openness to experience. CON: conscientiousness.
EXT: extroversion. AGR: agreeableness. NEU: (non-)neuroticism. Inter: interview
invite variable. Ave: the average score of 5 traits (interview variable is not included).

System Ave OPE CON EXT AGR NEU Inter

Published Results

ResNet18 [9] 0.9004 0.9024 0.8966 0.8994 0.9034 0.9000 0.9032

OS IS13 [14] 0.8996 0.9022 0.8919 0.8980 0.9065 0.8991 0.8999

Models without Speaking Style

C(256)+B+P+D 0.8996 0.9017 0.8981 0.8980 0.9034 0.8968 0.9013

C(32)+B+P+2D 0.8999 0.9021 0.8970 0.8984 0.9038 0.8981 0.9017

C(32)+P+2D 0.9004 0.9023 0.8964 0.9005 0.9047 0.8983 0.9020

C(128)+P+2D 0.8993 0.9027 0.8948 0.8983 0.9040 0.8967 0.9013

C(256)+P+2D 0.9001 0.9022 0.8967 0.8994 0.9043 0.8979 0.9022

Models with Speaking Style

C(32)+G+B+D 0.9013 0.9025 0.9008 0.9004 0.9035 0.8993 0.9044

C(128)+G+B+D 0.9050 0.9055 0.9054 0.9040 0.9063 0.9038 0.9083

C(256)+G+B+D 0.9053 0.9058 0.9055 0.9049 0.9068 0.9037 0.9078

C(128)+G+B+2D 0.9061 0.9062 0.9072 0.9049 0.9073 0.9049 0.9101

Table 2. Big five traits and interview variable F1 score results for different systems.

System Ave OPE CON EXT AGR NEU Inter

Published Results

OS IS13 [15] 67.93 - - - - - 69.25

Models without Speaking Style

C(32)+P+2D 68.35 70.15 69.90 68.50 64.79 68.40 69.30

Models with Speaking Style

C(128)+G+B+2D 70.92 70.45 74.16 70.50 66.44 73.05 72.20
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4 Conclusion and Future Work

In this work, we developed a convolutional neural network with the Gram matrix
that is intended to capture the speaking styles for audio based AAPR.

The proposed architecture can learn to capture the speaking styles end-to-
end and the experimental results showed that the idea of style capturing also
works in the audio domain. The correlation between different dimensions of a
speech signal can help to infer the personality traits and interview variable and
our proposed system C(128)+G+B+2D achieves the state of the art results for
audio based AAPR: the average score of five traits is 0.9061 and the interview
variable score is 0.9101.

In future work, we plan to apply this technique on other modalities (e.g. text,
video) and merge it with generative adversarial networks (GANs) to generate
the voice with particular personality traits scores.
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Abstract. In this paper, we describe a diarization of the archive
data from the project “Access to a Linguistically Structured Database
of Enquiries from the Language Consulting Center”. This project is
attempting to provide improved access to the large archives of the Czech
language of mainly telephone conversations collected continuously by
The Language Consulting Center. One part of this archives contains
mono recordings, where the data of the client and the language counsel-
lor are mixed in one channel. In our proposed approach to a diarization,
we used the information about the identity of the language counsellor
acquired from the text transcription on the beginning of the conversation.
For the initial stage of the diarization, our system based on clustering
the x-vectors was adopted. The resegmentation step is used for refining
the boundaries of speaker changes by the pre-trained Gaussian mixture
model of the counsellor. Because of the uniqueness of our data, we com-
pared our results with the Kaldi diarization as the baseline system.

Keywords: Diarization · x-vector · Automatic speech recognition ·
GMM

1 Introduction

The Language Consulting Center (LCC) of the Czech Language Institute of the
Academy of Sciences of the Czech Republic provides a unique language consul-
tancy service in the matters of the Czech language via a telephone line open to
public calls. These telephone recordings contain completely new language mate-
rial which is the only source of advice for new language problems. The main goal
of the project “Access to a Linguistically Structured Database of Enquiries from
the Language Consulting Center” is to publish these unique data in the newly
created database. For this purpose, the Automatic Speech Recognizer (ASR)
and the language processing methods (like topic detection, keyword spotting,
etc.) are being designed to describe the speech data to allow their better accessi-
bility. These problems and the proposed solution was presented in our previous
paper [25].
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The telephone calls from the LCC are considered to be the primary source
for the database. Before this project, the LCC has been recording data only
on the analogue telephone line (8 kHz, µ-law resolution) stored only in mono -
counsellor and client mixed in one channel. These data, almost 8k recordings,
are very challenging for the automatic recognition and subsequent categorization
because of their bad quality and containing the question and the answer mixed in
one source. The diarization of these data can improve the ASR results using an
adaptation of the acoustic and language model, also the topic identification (the
previous paper [25] has shown the differences in using only an answer instead of
all of the recording data to categorize the topic in the recordings). Recently, the
new recording system was applied to store the queries called to LCC with better
quality (8 kHz, 16 bit resolution) and with the separated channels. Nevertheless,
the amount of the data and the uniqueness of the information in these archived
mono recordings is not negligible. Therefore, we applied our method for the
speaker diarization (SD) to separate the question of the LCC’s client from the
answer of the language counsellor.

The most common approach to the SD consists of the segmentation of an
input signal, followed by the merging of the segments into the clusters corre-
sponding to individual speakers [9,13,15]. Alternatively, the segmentation and
the clustering step can be combined into a single iterative process [8,17]. In
this paper, we investigate the state-of-the-art off-line SD approach based on the
x-vector representation of the speech segments [3,14,19]. As our initial stage,
we used our SD system [24,26] applied for the First and Second DIHARD Chal-
lenge [12]. Additionally, we are exploiting the known information about the iden-
tity of the language counsellor for the last stage of the diarization process - the
resegmentation stage - by a similar way as in work [1,5].

2 Archive Data Description

The part of the LCC’s audio archive contains the recorded data (2013–2016) only
on the analogue telephone line (8 kHz, µ-law resolution) stored in one channel.
For the purpose of the ASR and the topic detection, around 10% of mono data
were manually transcribed by annotators. They have been instructed to focus on
the precise transcription of the spoken words but not to be so punctual on the
precise position of words in the case of overlapped speech, which incorporates
some errors in the diarization point of view. Additionally, the role of the speaker
(client vs. counsellor) was annotated, and the gender of each client was added
to the transcription.

We have used these data for our domain trigram language model in our ASR.
During the project, the stereo data with better audio quality were obtained and
the ASR were trained primarily for these data. The results of our ASR can be
found in [25].

These manually transcribed mono data were then force-aligned to find the
precise time where the word or phone has been spoken and also which part of the
data belongs to each speaker. These data were used for training the individual
model of each counsellor and for testing of our diarization system.
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The number of the recordings belonging to each counsellor is very unsettled:
#rec = {13, 14, 24, 24, 37, 52, 61, 243, 247}, two counsellors are dominating the
whole archive. The histograms of the length of the individual telephone conver-
sation and the length of constant speaker segments can be seen in Fig. 1 (note
that the speaker change can occur also between speech and silence segments).
The majority of the phone calls has only 200 s and less which is an extremely
small amount of data. Contrariwise, the average length of the segments is a bit
longer than in another telephone database CallHome [2] used for the diarization
evaluation.

Fig. 1. The histograms of the length of the recording and the speaker segment.

3 Speaker Diarization

Our initial system for SD [23] is based on clustering the speech segments rep-
resented by x-vectors [18]. As the segmentation step, only the constant window
segmentation instead of the segmentation based on the Speaker Change Detec-
tion (SCD) [6,21,22] was applied, mainly because of the advantage of x-vectors’
ability to represent short segments and the application of the resegmentation
step after the initial segmentation. The main contribution to our problem is the
knowledge of the identity of one part of the conversation, the language coun-
sellor. In contrast with the identity of the client (where there are potentially
infinite number of the speakers), the list of the language counsellors answering
the language queries is limited and known. A diagram of our proposed diarization
system is shown in Fig. 2.

This section provides the description of the main steps of the diarization pro-
cess. The speaker identification and the modified resegmentation are described
in Sects. 4 and 5.
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Fig. 2. Diagram of the diarization process.

3.1 Segmentation

As a feature vector, we used Linear Frequency Cepstral Coefficients (LFCCs),
Hamming window of length 25 ms with 10 ms shift. There are 40 triangular fil-
ter banks linearly spread across the frequency spectrum, and 25 LFCCs are
extracted. The resulted 50-dimensional feature vector also included delta coef-
ficients. Cepstral Mean Normalization (CMN) was applied to compensate for
channel variations.

The segmentation provides chunks of speech between important non-speech
events. To exploit the ability of x-vectors to represent small amounts of data and
to minimize the presence of more than one speaker in a segment and subsequently
divide these segments into sub-segments, longer segments were split into intervals
of max. 1.5 s, with 0.75 s overlaps.

3.2 Segment Description

The x-vectors were obtained using a Kaldi recipe1 [14] for a diarization. A Time
Delay Neural Network (TDNN) was used as an x-vector extractor, and x-vectors
were extracted from the affine component of the second-to-last layer with dimen-
sion 128. As the whitening transformation, we used a conversation-dependent
1 https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome diarization/v2.

https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome_diarization/v2
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Principal Component Analysis (PCA) [16] computed on the data in the current
conversation to reduce the dimension of the x-vectors into 9.

3.3 Clustering

The telephone recordings generally contain only two parties, mainly two speak-
ers. For the LCC’s recordings, this applies almost without exceptions. For this
reason, we have limited our clustering part only to the k-means method with the
known number of clusters. As a distance measure, the cosine distance between
two x-vectors was applied. We have also investigated the use of a Probabilistic
Linear Discriminant Analysis (PLDA) model [7] for calculating the similarity of
two x-vectors, but it did not bring any improvements in the final result.

3.4 Resegmentation

The final decision about the speaker boundaries in the conversation was refined
via the resegmentation step. The previous decision had been based on the con-
stant length segments, therefore the speaker’s boundaries were not precisely
selected. Also, the overlap of the windows can bring a situation where two con-
secutive x-vectors were assigned to different clusters, and the overlapped part
was associated with two identities.

We trained the Gaussian Mixture Model (GMMs) over the feature vectors
in the actual recording, one GMM for each speaker cluster. Then the whole
conversation is redistributed frame by frame according to the likelihoods of the
GMMs, filtered by a Gaussian window (length 75 ms with shift 50 ms) to smooth
the peaks in the likelihoods. The number of GMM components depended on the
amount of data in each cluster and ranged between 1 and 64 depending on the
cluster data size.

4 Speaker Identification

The identity of the counsellor in the recording was obtained from the transcrip-
tion (done by the annotators for sake of this paper). The whole list of counsellors
employed by the LCC was known and they were instructed to introduce them-
selves to the phone with their name and organization (LCC). For this reason,
the identification task was reduced to find one name from the list appearing at
the beginning of the transcription. Then the relevant speaker model was selected
to represent this counsellor and used for the modified resegmentation step.

4.1 Training the Speakers GMMs

For each counsellor, the general GMM (UBM - Univeral Background Model)
with 1028 components was adapted on his/her data obtained from manually
transcribed and force-aligned mono recordings. These recordings were divided
into the counsellor and client data according to the transcription also. For the
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other side in the conversation, the LCC’s client, we adapted the same general
model into female and male client GMM. As we mentioned above, these tran-
scriptions were not flawless, especially in the case of the overlapped speech (see
Sect. 2).

5 Modified Resegmentation Step

Instead of creating the speaker model for the resegmentation only from the lim-
ited amount of the cluster data, we decided to use the known identity of the
counsellor and the gender of the client to initialize the speaker models. From the
initial step of the diarization, we got two clusters of the conversation data. At
first, the counsellor GMM (known from the transcription) was assigned to the
cluster according to the maximum likelihood criteria. The second cluster was
considered as the client. The gender of this cluster was detected via maximum
likelihood for two gender client GMMs. After this process, we got for each cluster
its most appropriate model from the database. Both of these models were then
adapted on the assigned cluster’s data to receive the best representation of the
speaker in this cluster using the actual and the archive data of him. The adap-
tation step on the end was there to compensate the time span of the recordings
(the difference of the test and train data conditions for the individual counsellor
and client) and to exploit the relatively precise initial step of the diarization.

6 Kaldi Diarization System

Because of the uniqueness of the data from the LCC, we have decided to use the
Kaldi recipe for the diarization [14] as our baseline system for the comparison
of the results. The input features are the same LFCCs as in our system, so is
the segmentation and the x-vectors generation step (see in Sects. 3.1 and 3.2).
The PLDA model to compute the similarity between the segments is used with
the between-class dimension equal to the feature dimension. The x-vectors are
whitened before the PLDA estimation by subtracting the mean and transforming
by an Linear Discriminant Analysis (LDA) matrix. As a clustering method, the
AHC with the stopping threshold set for two clusters is used.

7 Experiments

This section describes our experiments on 715 recordings, a small part of the
mono data from the LCC which contains a manual transcription.

7.1 Training Data

The following LDC corpora were used as training data for general GMM,
TDNN and PLDA: NIST 2004,05,06 (LDC2006S44, LDC2011S01, LDC2011S04,
LDC2011S09, LDC2011S10, LDC2012S01, LDC2011S05, LDC2011S08),
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SWBD2 Phase2,3 (LDC99S79, LDC2002S06) and SWBD Cellular1,2
(LDC2001S13, LDC2004S07). Additionally, data augmentation (additive noise,
music, babble and reverberation) was applied to this data.

The list of counsellors consisted of 9 speakers (3 males and 6 females). For
testing the influence of the modified segmentation step we used 4 or 10 first
recordings for each counsellor, marked as a set A and B. Because of the small
number of recordings for half of the counsellors, in the set B only 5 counsellors
(2 males and 3 females) was left with enough recordings for training the speaker
GMM. The rest of the available data was used for training the counsellor’s
identity GMM. The amount of the training data for the counsellors varies from
9 to 243 recordings in the set A and from 27 to 237 recordings in the set B
respectively. The reason for creating two sets for testing was the inconsistent
amount of available data for the individual counsellor - in the case A, one of the
counsellor has only 9 recordings (cca 9 minutes) for training his speaker model.
In the B set, there are only counsellors containing sufficiently enough data for
training their GMM model (min. cca 25 minutes).

The second side of this train telephone data was used for representing the
male and female client model (210 males and 505 females).

The hyper-parameters for the diarization process (length of the segmenta-
tion window, the components of the GMMs etc.) were tuned on a related task
(CallHome corpus [2], DIHARD coprus [10,11]), so development set was not
needed.

7.2 Results

The Table 1 presents the results in terms of Diarization Error Rate (DER) [4]
on all archived mono recordings with the available transcription for our speaker
diarization system with the classical resegmentation step (SD resegm.) compared
to the baseline Kaldi system. These results are there for the overall comparison
of our resegmentation approach on the bigger amount of data.

Table 1. DER [%] for our systems with resegmentation step (SD resegm.) and for
Kaldi approach on all available data.

Set Kaldi system SD resegment.

All transcribed data 11.11 10.09

These results confirm expected differences (described in Sect. 2) in compari-
son with the results on the similar evaluation phone-call database Callhome [20].
Also, the gain of the resegmentation step is expected [23].

The Table 2 presents a comparison of our system for the speaker diarization
with the classical resegmentation based on the data only from the actual conver-
sation (SD resegment.) and our system with modified resegmentation step based
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on the identified counsellor and the client model (SD resegment. ID) on the test
set A and B. For the comparison of the efficiency of our system, the Kaldi result
is also presented in the Table 2.

Table 2. DER [%] for our systems (SD) and for Kaldi approach on different test set.

Set Kaldi system SD resegment. SD resegment. ID

Test-set-A 8.92 8.26 7.99

Test-set-B 12.44 11.63 11.33

Our proposed approach for the modified resegmentation step improved the
results of our baseline system for both of the test sets. The benefits of our
approach on both test sets is comparable, the small amount of train data for
some of the counsellors in test set A did not effect the result.

8 Discussion

The task of this paper was to propose a new method for the diarization with
the known identity of one speaker in the two-party conversation. The discussion
of the influence of the resegmentation step in the telephone conversation can be
seen in the paper [23] and it is obvious from the significant amount of the speaker
segments (see Fig. 1) less then 1.5 s set for proper representation of x-vector.

The character of the data and their imprecise transcription, the small average
length of the recordings, as well as the time span where the counsellors data were
recorded, allows us only a limited improvement of the standard approach with
the resegmentation step using only the available data from the actual recording.
As our future work, our plan is to use the additional data in a different way
for making the information about the counsellor more precise. One possibility
is the initialization of one of the k-means’ cluster by the average x-vector from
the archived counsellor’s data to refine the clustering step of the diarization.
Another possible approach can focus on the selection of the appropriate data
from the database of the language counsellors instead of using all his/her data
in the form of the pre-trained GMM model. This solution can solve the problem
with a big variance in the data from one counsellor.

9 Conclusion

In this paper, we outlined the problem of the mono data stored in the archive
of The Language Consulting Center and the need for their automatic process-
ing. We presented the results for the diarization of these data. Because of the
limited list of counsellors appearing as one party in the recordings, we proposed
a new approach for the resegmentation step of the diarization initialized by the
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clustering of the segments in recordings. For the comparison, we applied a Kaldi
recipe for the diarization. At addition, we discussed another exploitation of the
data from the known identity of the language counsellor.
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Abstract. This paper describes our Czech sign language synthesis that
converts a Czech text into a series of skeletal poses. Our main goal is to
avoid demanding handcrafted annotations of videos and to avoid a man-
ual mapping between sign language glosses and skeletal poses. Thus,
instead of solving these task separately, we join a model of an implicit
neural-network-based translator and a model of the mapping between
sign language glosses and we train both models together. For this pur-
pose, we propose a simple differentiable operation that decomposes input
symbols and it allows to produce a required series without any recurrent
mechanism. We used The OpenPose toolbox to automatically extract
skeletal poses and we designed a gradient-descend-based algorithm that
converts a 2D skeleton model to a 3D skeleton model in order to fix mis-
placed and missing joints. Weather forecast parts of The daily news in
Czech sign language were used to obtain our training and testing data.
Our experiments demonstrate the benefit of the implicit translator and
an ability of the designed sign language synthesis system to produce
naturally formed skeletal poses.

Keywords: Sign language synthesis · 3D skeleton reconstruction ·
Implicit translation

1 Introduction

Our research and applications [7–10] that are focused on Czech sign language
(CSE) lead us to design a CSE synthesis system converting a text form of spoken
language into a series of skeletal poses. CSE differs from spoken Czech not only
on a lexical level but Sign Language (SL) has also a radical different grammatical
structure. An SL annotation of a video is a very expensive, slow and inaccurate
process. Especially when some complex notation system such as Hamburg nota-
tion system is used. Furthermore, building a corpus of parallel texts in SL is an
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extensive complication when big data such as daily broadcasting is processed.
Hence, we designed a method that does not rely on any explicit annotation of
spoken language into SL.

We utilized a third party framework OpenPose for skeletal poses extraction.
We extract not only arms but also hands because fingers positions are crucial
in SL. Despite the fact that we used this state-of-the-art (sota) method, some
errors occurred. Misplaced joints bring some noise to our ground true and missing
joints make using of a skeletal pose even impossible. Thus, we designed a method
that converts our 2D skeleton model into a 3D skeleton model and that takes
advantage of some invariances such as bone lengths. These invariances allow
interpolating all missing joints and giving more precision to obtained joints.

Even though we do not train any explicit translator, we use bidirectional GRU
to provide an implicit translation. Besides the translation, a special transforma-
tion was designed to incorporate a repository-of-signs making into our training
process. This transformation allows assigning a short series of skeletal poses to
each input symbol. We see the main contribution of our work in our end-to-end
synthesizer that consists of the implicit translator and the linear differentiable
transformation and that utilizes Dynamic Time Warping (DTW) as a part of our
loss function. The end-to-end synthesizer contains sequence-to-sequence model
and translates a text form of spoken language into a geometric form of SL whilst
only the text form and the geometric form is necessary for a training process.

In our experiments, we used weather forecast parts of Czech TV daily news in
CSE. This TV news is available online in high definition quality and a performer
occupies a substantial part of a picture.

2 Related Work

An SL synthesis is usually performed by a virtual avatar [1,11]. An approach
described in [12] deals with the translation of the spoken language to the glosses
by employing the sota sequence-to-sequence (seq2seq) Neural Machine Transla-
tion (NMT) approach based on an RNN with an attention mechanism. Subse-
quent direct generation of a video from the given glosses (constituted by skele-
tal poses extracted from training data using OpenPose framework) and basic
speaker’s pose using a method of direct image generation based on a convolu-
tional image encoder are followed by a generative adversarial network. The main
difference between our approach to SL synthesis and the approach presented in
[12] lies in omitting all explicit SL translation or video annotation and we also
did not split the SL synthesis into two sub-tasks solved separately. Furthermore,
we add the finger joints that are not considered in [12].

Other work [2] covers the opposite direction of the translation from SL to the
words. A video of SL is converted to spatial embeddings and then translated by
the sota seq2seq NMT method to words either using glosses as an intermediate
representation or without any intermediate representation. From [2] we differ
in an investigation of the opposite direction of the translation between SL and
spoken language and usage of skeletal poses instead of spatial embeddings for
SL representation.
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We used DTW in our loss function. Although DTW is differentiable, a gra-
dient does not try to change the optimal path directly which can be seen as a
disadvantage. There is another approach called soft-DTW that tries to remove
this disadvantage [3].

We applied backpropagation to a 3D skeleton model directly. Another app-
roach uses a special generative model which is uniform in the space of anatom-
ically plausible 3D poses [5]. A complex deformation model application could
lead to more accurate pose estimation [6] but these techniques are not primarily
designed for missing parts interpolation and errors correction.

3 Skeleton Model Restoration

Examples of OpenPoses’s results are shown in Fig. 1. Despite the fact that the
OpenPoses framework extracts 2D skeleton model with high accuracy, some
errors occur. Technically, misplaced joints can be used as a ground true but
missing joints cannot. The missing joints must be found or the whole skeleton
with a missing joint must be omitted. Because we do not want to cut our videos,
we design an interpolation that finds the missing joints.

Fig. 1. Examples of OpenPose’s outputs (bet in colors). In spite of high quality, some
joints are missing or they are misplaced due to rapid movements or covered hands.
(Color figure online)

An interpolation which uses a whole time-series usually finds some invariances
to interpolate missing data and to correct obtained data. It is not easy to find
such useful invariances in a 2D skeleton model but there are fortunately some
obvious invariances in a 3D skeleton model such as bone lengths. Thus, we
construct a 3D skeleton model with constant bone lengths from whole videos by
means of fitting its 2D projection with 2D skeleton model. A role of a perspective
is minimal in our video. Our 2D projection is simple omitting third coordinates.

Our technique creates a 3D skeleton model for each picture of a video and
it is an iterative process. An initialization that we used works as follows: All
missing joints are linearly interpolated from its neighborhood (in time). Because
the maximal bone length in 2D space is a suitable bone length estimation for
3D space only when no errors occur, we estimate bone length as an average of
the 2D lengths. When a bone lengths and 2D projection are known and MSE
is a criterion of optimality, finding the optimal joint position in 3D space is a
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relatively simple task that could be solved analytically. The only problem is to
choose between two possible solutions when a bone is too long. We chose the
solution that corresponds to a more probable position (e.g. arms are situated in
front of a torso etc.)

Naturally, the resultant 3D skeleton is only a suboptimal solution. Moreover,
the bone lengths are only a heuristic estimation. Thus, we apply a backpropaga-
tion mechanism to correct bone lengths and joint positions in the initialization.
We use two L2 regularizations. The first regularization minimizes trajectory
lengths. The second regularization minimizes bone lengths. The first regulariza-
tion makes movements more smooth and both regularizations prevent absurd
bone lengths that unregularized MSE criterion produces.

The 3D skeletons extraction is designed only for missing joints interpolation
and noised position correction and it is not ready to produce skeletons suit-
able for an avatar. Hence, we used only the 2D projections of the resultant 3D
skeletons as our ground-true skeletons.

Because the speakers’ heights are different and speakers do not always stay on
the same spot, we scaled coordinates in the following way: We trained a positive
weight for each video. A loss function was a distance between a coordinates
variance along the time axis in a video and a global variance of coordinates
computed from all videos.

4 Sign Language Synthesis

We used only a text form of the spoken language obtained from a spoken com-
mentary. We do not have any parallel SL representation in any form except a
video in the form of a series of 2D skeletal poses. These videos are not segmented,
i.e. no sign and even no sentences boundaries are labeled. This is the reason why
it is not possible to apply some standard or modern methods for translation. But
some methods still could be used if cross-entropy or another criterion suitable
for translation is replaced with MSE loss.

We computed that one word in a spoken commentary including Beginning of
a Sentence (BoS) and end of a sentence (EoS) symbols corresponds on average
to N = 14 skeletal poses. We designed a method that generates a series that is
exactly N times longer than an input text. We chose MSE as our loss function.
Naturally, generated series and a target series usually have different length and
they are probably not synchronized even if they have the same length. That
is the reason why we incorporated DTW-based synchronization into our loss
function. The loss is computed in the following way:

loss(y, tar) =
1

nDTW

nDTW∑

k=1

‖y(i1(k)) − tar(i2(k))‖2 , (1)

where i1(k) and i2(k) are the first and the second coordinates of the optimal path
obtained applying DTW and nDTW is a length of the path. The used distance in
DTW was the same Euclidean distance used in our loss. This loss is differentiable
and it could be used in gradient propagation.



NN-Based Czech Sign Language Synthesis 563

Our 2D skeleton model has 50 joints. We do not train our SL synthesis to
produce 100 coordinates of the joints because accurate mutual positions of limbs
are much more important than accurate absolute positions. We, therefore, train
the synthesis to produce vectors that represent the 49 limbs. The output of the
synthesis has 98 elements. Figure 4 shows that these vectors produce a naturally
looking skeleton model.

Fig. 2. A structure of the proposed implicit translator (left) and a structure of the
designed SL production model (right).

4.1 Implicit Sign Language Translation

We do not explicitly train a complex translator but we train a system with a
simplified structure that provides an implicit translation. The simplification lies
in omitting the usual encoder-decoder passage and translating directly into a
sentence with the same length. An SL differs from a spoken language not only
on the lexical level but it has also different grammatical structure. Hence, a
word-by-word translation is unusable. Our system translates words with their
contexts using usual bidirectional GRU layers.

We add a speaker ID to each word because not only skeleton proportions
and signs but also speaking manners and even grammar could be idiosyncratic.
There is usually used the word “tomorrow” in a spoken commentary and there
is a name of a day such as “on Monday” in CSE. Thus we add a day ID as well.
The last added information is a positional encoding (PE) that helps distinguish
between the same words on different positions.
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After a usual embedding layer, several blocks are applied. Each block con-
sists of one usual bidirectional GRU layer [4] with skip connection and layer
normalization and one feed-forward network with skip connection and layer nor-
malization. The feed-forward networks consist of one hidden layer with ReLU
activation function and a dropout layer and one linear output layer. The speaker
ID, the day ID and the PE are concatenated with an input of each block. The
described model structure is shown on the left side of Fig. 2. The structure is
similar to a structure described e.g. in [13].

4.2 Sign Language Production

We designed a simple linear differentiable operation that produces a sequence
from an input text. This operation iterates each input word (vector xi) in a
special way. It simply decomposes each word into N = 14 parts and joins these
parts. Formally, the iteration does the following transformation:

⎡

⎢⎣
x1,1 · · · x1,n

...
. . .

...
xm,1 · · · xm,n

⎤

⎥⎦ �→

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,1 · · · 0 x1,n · · · 0
...

. . .
... · · · ...

. . .
...

0 · · · x1,1 0 · · · x1,n

...
. . .

...
xm,1 · · · 0 xm,n · · · 0

...
. . .

... · · · ...
. . .

...
0 · · · xm,1 0 · · · xm,n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where the size of each diagonal sub-matrix is N × N . Figure 3 illustrates the
role of this operation. In a case of classical one-hot coding and a trainable linear
transformation following the iteration, this model is a trainable building of an
SL repository. This transformation avoids any recurrent mechanism and this
facilitates the usual training process.

The obvious disadvantage of this approach are fixed and equal sign lengths.
But the implicit translation can split a longer sign into two or more symbols if it
is properly trained. Another disadvantage is that a skeleton might not respect its
context. To prevent unpleasant cuts in a resultant skeleton series, we add splic-
ing operation and one additional linear transform. Because heights of speakers
were not normalized completely, speakers have different proportion and signs
are always a little bit distinctive, we add the speaker ID and another statistic
as well as in the case of the embedding layer and the implicit translation. The
complete structure of the described model is shown on the right side of Fig. 2.
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Fig. 3. An illustration of the iterating input words for N = 3 (we used N = 14).

5 Experiments and Results

We utilized an internet archive of The Czech TV daily news in CSE1. We focused
only on weather forecasts. Our corpus consists of 947 videos (from September
2015 to July 2018) of forecast in CSE performed by five different CSE speak-
ers. Videos contain 569,089 frames and the spoken commentaries contain 40,877
words. Due to a very small dataset, we tested ten different training sets (875
videos), development sets (36 videos), and test sets (36 videos). We transcribed
days of the week of broadcasting and speaker’s IDs manually from credits.

Fig. 4. Examples of generated skeletal poses: the first line contains target skeletons, the
second Text Only synthesizer (d = 0), the third the best synthesizer with BiGRU-based
implicit translator (d = 5).

1 https://www.ceskatelevize.cz/ivysilani.

https://www.ceskatelevize.cz/ivysilani
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All Czech texts were lemmatized to decrease redundancy. Our vocabulary
contains 411 different Czech lemmas including BoS and EoS symbols that are
important for SL production because they correspond to a resting pose (see
Fig. 4).

In our experiments, we measure MSE to evaluate SL synthesis quality. We
have no expert annotation but we train a NN to produce “oracle” annotations.
In our method, the NN selects every 14th vector on average (not equidistantly
due to used DTW). Then we used the standard K-means algorithm to make a
number of different selected vectors equal to the number of words in the spoken
commentary. These oracle annotations give us some view of limits that this
approach to SL production has.

In the first experiment, we trained ten times the model of SL production from
the oracle annotations (see a row labeled as Oracle in Table 1). In the second
experiment, only the text form of the spoken commentary was used instead of
the oracle annotation (Text Only). After that, we tried a different number of
blocks of the implicit translator (see BiGRU from d = 1 to d = 7). Statistics
of resultant MSEs are presented in Table 1. We also computed how many times
a system was outperformed by another system on the same test sets. These
numbers are in Table 2. Figure 4 shows examples of resultant skeletal poses.

Table 1. MSEs for investigated SL synthesis systems. Minimal (min), average (μ) and
maximal (max) achieved MSE are recorded in the table.

Model MSE - development test set MSE - test set

Oracle min: 4.66, μ: 5.06, max: 5.51 min: 4.89, μ: 5.05, max: 5.26

Text Only (d = 0) min: 6.93, μ: 7.39, max: 8.01 min: 7.13, μ: 7.32, max: 7.53

BiGRU, d = 1 min: 6.17, μ: 6.69, max: 7.28 min: 6.54, μ: 6.63, max: 6.83

BiGRU, d = 2 min: 6.10, μ: 6.62, max: 7.21 min: 6.45, μ: 6.54, max: 6.73

BiGRU, d = 3 min: 6.05, μ: 6.57, max: 7.11 min: 6.36, μ: 6.49, max: 6.66

BiGRU, d = 4 min: 6.04, μ: 6.56, max: 7.12 min: 6.39, μ: 6.49, max: 6.66

BiGRU, d = 5 min: 5.83, μ: 6.07, max: 6.60 min: 5.75, μ: 5.93, max: 6.44

BiGRU, d = 6 min: 5.99, μ: 6.49, max: 6.99 min: 6.25, μ: 6.41, max: 6.53

BiGRU, d = 7 min: 6.02, μ: 6.55, max: 7.10 min: 6.33, μ: 6.46, max: 6.59

The lowest average of the MSE loss has the system BiGRU with d = 5
blocks. Furthermore, this synthesizer outperformed the basic system without any
translator and even any other translator every single time naturally except the
Oracle. The results show that the usage of the implicit translator is significantly
beneficial, i.e. on average it reduces an error obtained without any translator
to its 81% whilst usage of the Oracle reduces it to 69%. In our case, it is not
beneficial to use a translator with more than five blocks. Because errors on
training sets are still decreasing (µ = 5.52 for d = 5, µ = 5.41 for d = 6 and
µ = 5.37 for d = 7) we see the reason why more blocks (layers) is not beneficial
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in overfitting. Using some much larger corpus will probably allow much deeper
and powerful models.

Table 2. This table contains numbers how many times a SL synthesis system S2 was
outperformed by a system S1. Bidirectional GRUs were used as the implicit translator.
The sums represent the overall evaluations (lower is better) of investigated synthesizers.

S1 vs. S2 d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

d = 0 0 0 0 0 0 0 0 0

d = 1 10 0 0 0 0 0 0 0

d = 2 10 10 0 0 0 0 0 0

d = 3 10 10 10 0 2 0 0 0

d = 4 10 10 10 8 0 0 0 2

d = 5 10 10 10 10 10 0 10 10

d = 6 10 10 10 10 10 0 0 10

d = 7 10 10 10 10 8 0 0 0

Σ 70 60 50 38 30 0 10 22

6 Conclusion

This paper deals with CSE synthesis. We designed an SL synthesis that converts
a text form of an utterance in spoken language into a series of 2D skeletal poses.
We avoid manual annotations of videos containing SL because these annotations
are too expensive and slow to potentially capitalize on big data such as daily
news in SL or some daily shows with SL commentary. We designed a mapping
between glosses and short sequences of skeletal poses and we incorporated this
mapping into our training process instead of constructing or training this map-
ping separately. We also trained an implicit translator that together with the
designed mapping allows accomplishing our main goal, i.e. to construct end-to-
end SL synthesis system. We employed a third-party framework that extracts 2D
skeletal poses and we designed a gradient-descend-based algorithm that converts
a 2D skeleton model to a 3D skeleton model in order to fix misplaced or missing
joints. Our corpus contains online available weather forecast in CSE. These fore-
casts were recorded between the years 2015 and 2018. Our experiments show the
benefit of the implicit translator. Moreover, the experiments show the designed
SL synthesis system ability to produce naturally formed skeletal poses.
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Abstract. The aim of this paper is to identify the words which significantly
increase or decrease recognition accuracy in speech audiometry at the Clinic for
Ear, Throat and Nose Diseases in Novi Sad, Serbia. The subjects of this research
were 66 patients diagnosed with multiple sclerosis, most of whom are hearing
unimpaired. Words with the highest and the lowest percentage of recognition are
explained from a linguistic point of view, taking into consideration their
occurrence, existence of similar words, phonetic characteristics of sounds and
phonological makeup of the words. The analysis suggests that minimal pairs are
more likely to cause incorrect repetitions than words which do not have minimal
pair neighbours (plosives are especially difficult in this respect, due to the fea-
ture of voicing and formant transitions of the following vowel). Our results also
show that longer and more frequent words are easier for identification, as well as
the words with rising accents.

Keywords: Speech perception � Speech audiometry � Linguistics � Serbian

1 Introduction

SPEECH audiometry is a fundamental tool of hearing ability assessment, i.e. of the ability
of patients to perceive speech. The standardized tests for Serbian and related languages
contain 16 groups of 10 pre-recorded words, uttered by a male speaker and reproduced
at a specific intensity level. The subjects are first presented with a 10 word group at low
intensity levels. With healthy (hearing unimpaired) subjects, the initial intensity levels
are at 10 to 20 dB, while in the hearing impaired subjects the level depends on the
thresholds obtained in the prior liminar tonal audiometric tests. The subsequent 10
word groups are tested at intensity levels increased by 5 dB, up to the level required for
a 100% recognition score for a specific subject. One measurement with a 10 word
group is expected to reveal recognition accuracy percentage at the given intensity level,
and should not depend on the specific words used in the testing procedure.
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The goal of this study is to identify the words which significantly deviate from the
average recognition measurements at a given intensity level, based on a number of
speech audiometric tests conducted. Such words would make the testing procedure
word-dependent at a certain intensity level, and should therefore be replaced by dif-
ferent words. In order to do so, such words need to be subject to perceptual analysis
from the linguistic, acoustic and medical point of view. The ultimate objective of the
research presented in this paper is to re-evaluate the testing corpus consisting of 16
groups of 10 words commonly used in speech audiometry tests in Serbia, and to
propose a somewhat modified corpus.

This paper is organized in the following sections: Sect. 2 describes the method-
ology employed in the research; Sect. 3 deals with the identification of potentially
inadequate testing words; Sect. 4 accounts for the observed difficulties related to the
choice of words from the linguistic point of view. The concluding section sums up the
findings and points to the lines of further research.

2 Methodology

2.1 Hypotheses

1. Some of the words used in speech audiometry in the standardized test for the
Serbian language are more frequently incorrectly recognized by subjects regardless
of their hearing ability at all intensity levels (difficult words). In contrast, some
words are easier for recognition by all subjects at all intensity levels (easy words).

2. Both difficult and easy words can be explained from the linguistic point of view,
taking into consideration their occurrence, existence of similar words, phonetic
characteristics of sounds and phonological makeup of the words.

2.2 The Testing Tool

Words used for audiometric speech testing need to constitute balanced sets in terms of
frequency, intensity and speech tempo. The sets of words used in speech audiometry at
the Clinic for Ear, Throat and Nose Diseases (ENT Clinic) are the first four out of the
eight sets proposed in [1]. They were subject to several modifications mainly due to the
dialectal differences between the original ijekavian (Croatian) and the target ekavian
dialect (Serbian). For example, the word ljeto was replaced by leto, plaća by plata, etc.
The sets are grouped into columns A, B, C and D (while column E is not used at the
ENT Clinic), each of which comprises 10 words. Each column contains 9 disyllabic
and 1 monosyllabic words, as well as 9 words with consonantal beginning and 1
beginning in a vowel. The total number of words analyzed in this study is 160. The
words were pre-recorded and read by a professional male reader according to the
standards of speech audiometry.
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2.3 Subjects

The subjects of this research were 66 patients (41 women and 25 men) diagnosed with
multiple sclerosis, most of whom are hearing unimpaired. The age of the patients
ranges from 20 to 57, with the mean age 39.1, st. dev. 9.4. The other results in the
database of the ENT Clinic in Novi Sad were not taken into consideration for the
purpose of this study, since they are related to the research of hearing impaired patients.

2.4 Procedure

The testing procedure involved three different contexts – the stimuli were presented
through headphones to the left ear, to the right ear, and to both ears in free field. The
total duration of the testing was 15–20 min. The subjects were asked to repeat the word
they heard and their answers were noted as correct or incorrect by the examiner. The
results were subsequently turned into binary data (correct answer – 1, incorrect answer
– 0) and entered into Microsoft Excel. We then selected the words which were the most
frequently incorrectly recognized at the intensity levels ranging from 25 to 40 dB and
subjected them to the linguistic analysis. These levels were taken into consideration
because persons with normal hearing are deemed to have high percentage of recognized
words, i.e. to hear without any difficulty. The results of recognition at the lowest and
the highest levels of intensity were excluded from the analysis, but were reported in [2].

3 Results

In this section, we report the results indicating which words have the highest and the
lowest percentage of recognition within each group from A-I to D-IV across four
different intensity levels (25–40 dB). The graph (Fig. 1) includes the words which have
the highest and the lowest mean accuracy scores for the entire range. The former are
represented in green and the latter in red; the length represents the extent to which these
values increase or decrease the mean of each group.

As regards words which are perceived better than others, the most frequently
occurring one in A-I is gavran (‘raven’; 85%). On the other hand, the words with the
lowest recognition accuracy in this group are vi (‘you’; 13% – on average near 50%
below the mean in A-I group) and kosti (‘bones’; 41%).

In A-II mirno (‘peacefully’) and lokva (‘pool’) have high percentage of identifi-
cation accuracy – 93%. The word ide (‘goes’; 72%) has the lowest score in this group.

The word lutka (‘doll’) in the group A-III has 97% of correct responses and the
word pismo (‘letter’) received 94% of recognition accuracy. There are two words
which are identified less correctly than other words in this group: plata (‘salary’; 69%)
and mi (‘we’; 72%).

The only word which is recognized by all the participants in A-IV is seka (‘kid
sister’). Another word which is recognized well in this group is kriva (‘guilty’; 93%).
The following words can be said to decrease the average percentage of recognition: teta
(‘auntie’; 43%) and čelo (‘forehead’; 50%).
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Fig. 1. The highest and the lowest mean accuracy scores (25–40 dB).
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In B-I there are many words which were repeated correctly many times. The ones
that we would like to single out are vino (‘wine’; 98%) and med (‘honey’; 97%). Words
with the lowest scores are gosti (‘guests’; 54%) and amo (‘here’; 56%).

Words with the highest percent of recognition accuracy in B-II are: neću (‘I don’t
want to’; 93%) and šunka (‘ham’; 88%). The word pila (‘drank’; 28%) has the lowest
percent of recognition accuracy in this group. It is followed by eno (‘there!’; 60%).

The most successfully recognized words in B-III are: slabo (‘weakly’; 96%) and
snažno (‘strongly’; 93%). As regards poor recognition accuracy, pas (‘pass’; 54%)
differs from other words.

There are two words in B-IV which have 100% of correct repetitions – dubok
(‘deep’) and kriza (‘crisis’). The word strići (‘shear’; 30%) has the lowest recognition
accuracy – on average more than 50% below the mean in B-IV group.

In C-I eto (‘look!’) and nema (‘doesn’t have’) have the highest number of correct
responses - 91%. The patients made the largest number of errors while pronouncing
puši (‘smokes’; 70%) and zora (‘dawn’; 72%).

Ljubav (‘love’; 98%) and slika (‘picture’; 95%) are the words which are most
frequently correctly identified in C-II – on average more than 40% above the mean in
this group. The two words have much lower scores than the other words: ti (‘you’;
15%) and peti (‘fifth’; 35%).

In C-III stoj (‘halt!’) is the only word with 100% of correct repetitions at all
intensity levels. Based on the results, the word dira (‘touches’; 65%) can be assessed as
more difficult than the rest.

There are four words in C-IV which have 100% of correct repetitions - medo
(‘teddy bear’), iskra (‘spark’), toči! (‘pour!’) and nosi (‘carries’). In this group there is
no word which stands out as more difficult for identification.

The words with the highest percent of recognition accuracy in D-I are leđa (‘back’;
96%) and oko (‘eye’; 94%). The words vlada (‘government’; 35%) and gora
(‘mountain’; 63%) brought about the highest number of incorrect repetitions.

The word lice (‘face’; 97%) can be assessed as the easiest word for recognition in
D-II. The word zini (‘gape!’; 34%) has a significantly lower number of correct iden-
tifications than the rest of the group.

In D-III there are two words with 100% of recognition accuracy at all intensity
levels: tajna (‘secret’) and svinja (‘pig’). The word with slightly worse recognition in
this group is osam (‘eight’; 82%).

There are many words with 100% of correct repetions in D-IV (and only two
instances of incorrect identifications), but a sample is rather small – only five patients in
total. For this reason, no word can be claimed to differentiate from others in this group.

4 Discussion

When examining the words with the lowest recognition rates, we analyzed them from
various linguistic perspectives, taking into consideration the existence of similar words
familiar to the subjects (minimal pairs) and the phonetic and phonological makeup of
words.
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Judging from the results, we presume that words which form minimal pairs are
more likely to cause errors in speech audiometry than the stimuli which do not share so
many simlarities with other words. This assumption is justified by the results of pre-
vious studies which show that similar words are recognized less accurately [3, 4]. In
our research, the words pila, gosti, teta, dira, which would form potential minimal pairs
with bila, kosti, peta, bira exhibit low recognition accuracy. Both the words in our
corpus and their minimal pair neighbours belong to the register of everyday, familiar
and highly frequent words. On the other hand, words which do not have minimal pair
neighbours, such as gavran, dućan, ptica are recognized correctly by the majority of
patients, which is why we can employ this concept as one of the explanations for
different percentage of recognition accuracy.

The presence of a number of alternatives raises the question of the difference
between hearing and intelligibility. As indicated by Padovan [1], some patients may
produce a higher number of correct responses in speech audiometry despite unsatis-
factory pure tone audiometry results (and vice versa). Lyregaard [5] highlights the
importance of the purpose for which the test is constructed, the relevant distinction
being between assessment of communication ability and diagnosis. For instance, if a
person is not able to successfully discriminate between the fricatives /s/ and /ʃ/, an
appropriate diagnostic test would include a large number of fricatives, whereas the one
containing more phonemically balanced words would not prove useful for this purpose.
Since some of the words used in speech audiometry at the ENT Clinic in Novi Sad may
offer a wider choice of possible responses and thus be more difficult for recognition
(from the viewpoint of assessment of communication ability), their use should be re-
examined. In other words, in recognizing those words, the subjects may rely more
heavily on their general linguistic knowledge than on the auditory input, and as a result,
their responses may be random guesses based on equal probabilities, rather than reli-
able indicators of their hearing ability.

Upon a closer look at these words, it can be seen that all of them contain plosives,
but the members of the first two potential minimal pairs (pila: bila; kosti: gosti), differ
in voicing, whereas the second two differ in the place of articulation (peta: teta, dira:
bira). In this section we analyze why these particulars features may be problematic in
the recognition of word initial plosive sounds.

Firstly, the feature of voicing appears to be problematic for recognition with initial
plosives, but not with fricatives. In contrast to words beginning with plosives, the word
seka (‘kid sister’, A-IV) had 100% correct responses at all intensity levels observed,
despite the existence of the potential minimal pair neighbour zeka (‘bunny’). We
presume that the feature of voicing in fricatives /s/ and /z/ is accompanied by other
acoustic cues in Serbian, including the difference in mean noise segment duration [6].
With initial plosives, voicing feature is achieved by the difference in Voice Onset Time
(VOT) alone, which, judging from our results, appears to be a much less salient
auditory cue. However, no systematic research on the acoustics of word initial voiced
and voiceless consonants and the impact of voicing on speech perception has been
conducted for the Serbian language, so our findings may raise the importance of such
studies.
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As for the recognition of the place features in plosives, it is known that besides the
energy distribution in the burst, one of the most important cues is the transition in the
second formant (F2) of the following vowel [6]. The stylized spectrograms of F1 and
F2 transitions in plosives with all places of articulation and before different vowels are
represented in Fig. 2.

The patterns of F1–F2 transitions are the most similar between the bilabial and
alveolar plosives when they are followed by the high front vowel /i/ and the closed
front vowel /e/. This may well be the reason why our subjects had difficulty recognizing
the words peta and bira, since without a context they are acoustically rather similar to
equally probable words teta and dira.

With all this in mind, we conclude that the words like the ones described in the
preceding section should be replaced by different words in future audiometric tests,
with the goal of increasing the reliability and accuracy of the results in relation to the
subjects’ hearing ability.

Except for the phonemic content of the words tested, it is known that word length
has an effect on the perception of words. Longer words are deemed to be easier for
identification, probably due to a larger number of acoustic redundant cues [8]. Words
with higher percentage of recognition accuracy in the corpus that we analyze are
slightly longer (4.56 phonemes) than words with lower percentage of recognition
accuracy (3.82 phonemes). Even though there is not a large difference in length
between them, our results are in accordance with this tendency. This explanation can
also be related to the concept of phonological neighbours – longer words are less likely
to have more neighbours than shorter words. Length seems to be one of the main
reasons for the poor recognition of monosyllables in the corpus, such as vi, ti, and mi.
As personal pronouns, these words are certainly among the words with the highest
frequency and degree of familiarity. However, all of them have potential minimal pair
neighbours with a consonant in the final position (e.g. vir, vid, mir, mit, tih). Since the
coda consonant in monosyllables is generally less acoustically salient, we presume that

Fig. 2. F1 and F2 transitions with plosives, adapted from [7].

Re-evaluation of Words Used in Speech Audiometry 575



listeners do not rely on this position in word perception, but make choices based on
probability instead.

Another phonological factor that has to be taken in consideration in audiometric
studies for the Serbian language, is the fact that Serbian is a language with four pitch
accents: long falling, long rising, short falling and short rising. In falling accents, F0
reaches its maximum on the tonic syllable, while in rising accents, the maximum is on
the post-tonic syllable [9]. The results reported above allow us to hypothesize that the
words with rising accents will be easier for perception than is the case with falling
accents. Our results speak in favour of this idea. Namely, long rising accents are more
numerous in the group of words which have the highest percent of recognition accuracy
in the entire corpus (11) than long falling accents (6). On the other hand, long falling
accents more frequently occur in the group of words with the lowest percent of
recognition accuracy (7) compared to long rising accents (4). Due to the acoustic
saliency of the post-tonic syllable, the listener has more auditory cues to rely on than in
words with a falling accent, where the post-tonic syllable is rather weak. Our findings
here are in contrast to [1], who found that falling accents generally increase the saliency
of the initial consonants or consonant groups in the stressed (tonic) syllable. We believe
that this difference may be the results of the dialectal differences in the pronunciation of
words with falling and rising accents by the speakers who read them in our research.
Standard Serbian, especially the variety spoken in Vojvodina, where the experiments
were conducted, is peculiar for the acoustic saliency of the post-tonic syllable(s) in
words with rising accents, which therefore may more strongly facilitate word recog-
nition than the strength of the initial segment(s) in the tonic syllable. This finding
should also be tested in future studies.

One last suggestion for the revision of sets of words used for audiometric studies is
concerned with the overall familiarity with the words used in the test setup. Words
which are archaic or less frequently used in everyday speech, such as strići, amo, pâs,
are more difficult for identification than words whose meaning is familiar to all the
participants. Having in mind that the corpus of words this research deals with was
compiled in the 1950s, it is not surprising that some of them are unknown to the
patients. The word strići is especially difficult in this respect and it may even be
considered a pseudoword. The results presented in [10] and [11] suggest that low-
frequency words are less intelligible than high-frequency words. In order to test sub-
jects hearing ability, rather than their knowledge of vocabulary, words such as these
should be avoided in future studies.

5 Conclusions

The aim of this study was to present and analyze the results of speech audiometry tests
from a linguistic point of view. Both hypotheses are confirmed: there are words which
have a significant impact on the results – some of them can be assessed as much easier
for identification, others as much more difficult; both difficult and easy words can be
explained from a linguistic perspective.

The most important characteristic of difficult words is the existence of phonolog-
ically similar words. Such words are prototypically used in the diagnostic test. On the
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other hand, the purpose of the test which the ENT Clinic employs is to assess patients’
communication ability, which is why we propose that the words in question should be
substituted with words which do not form minimal pairs.

The drawback of this research was the fact that the responses were noted only as
correct or incorrect – the examiners did not write down the words which the patients
pronounced. In order to be able to provide a more complete linguistic analysis, we
would need to be acquainted with the nature of incorrect repetitions, which is some-
thing that we will bear in mind for future research.
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