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Abstract Ensembles of machine learning models have proven to improve the per-
formance of prediction tasks in various domains. The additional computational costs
for the performance increase are usually high since multiple models must be trained.
Recently, snapshot ensembles (Huang et al. in Snapshot ensembles: train 1 get M
for free, (2017) [16]) provide a comparably computationally cheap way of ensem-
ble learning for artificial neural networks (ANNs). We extend snapshot ensembles
to the application of time series forecasting, which comprises two essential steps.
First, we show that determining reasonable selections for sequence lengths can be
used to efficiently escape local minima. Additionally, combining the forecasts of
snapshot LSTMs with a stacking approach greatly boosts the performance compared
to the mean of the forecasts as used in the original snapshot ensemble approach.
We demonstrate the effectiveness of the algorithm on five real-world datasets and
show that the forecasting performance of our approach is superior to conservative
ensemble architectures as well as a single, highly optimized LSTM.
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Introduction

Estimating the future development of continuous data generated by one or more
signals has been an ongoing research field of interest for various applications. For
example, automated financial forecasting is vital to today’s markets. Further, sensor-
generated data driven by the Internet of Things requires robust methods for reliable
forecasts of temporal data. Long Short-Term Memory (LSTM) [13] has proven to be
an effective method for a variety of sequence learning tasks such as time series fore-
casting. Relying on a single LSTM, however, is prone to instability due to the dynamic
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behavior of time series data. Additionally, the optimization of LSTM parameters is
a hard problem that requires time-intensive fine-tuning.

Another difficulty when dealing with time series problems lies in the slicing of
the data, i.e., how many past values should be considered for training the model and
generating forecasts. It is common practice to determine the top periodicity using a
fast Fourier transformation and power spectra, and train one or more models based
on that periodicity. This approach is prone to incompleteness because information
may be encoded across patterns of varying periodicities in the series. It is also a
time-consuming task as identifying the optimal sequence length is usually part of
a manual preprocessing step. For these reasons, it is a challenge to create machine
learning frameworks that are able to produce automated forecasts for a given series.
Even a greatly tuned model fails to find important relationships in time series data if
the selected time lags cannot represent these patterns. Therefore, a framework that
can incorporate multiple sequence lengths is desirable.

We introduce a meta-learning approach based on snapshot ensembles that provide
superior and robust forecast estimates across different datasets. In contrast to the
original idea of snapshot ensembles, we do not adapt the parameters of the LSTM
but leave them unchanged. Instead, we use different slices of the training data in order
to escape local minima and to detect time-dependent patterns. Our proposed approach
enables the automated generation of time series forecasts for a given series yy, ..., Y,
including preprocessing steps like data standardization, periodicity detection, data
slicing, and splitting. Hence, the amount of required manual work is greatly reduced
by the proposed framework.

By sequentially training LSTMs with periodicities of decreasing strength, our
algorithm is able to learn the different patterns of the respective seasonalities. This
allows for higher generalization of the final model, thereby providing estimates that
are robust with respect to the underlying data generation process.

The rest of this paper is structured as follows. Section “Related Work™ provides
an overview of existing approaches to time series forecasting and their applica-
tion within ensemble frameworks. In section “Time Series Forecasting and Snapshot
Ensembles”, we introduce the concept of snapshot ensembles and explain our
approach for their extension to the task of time series forecasting. We show that our
method outperforms previous approaches on five datasets in section
“Experiments”. Eventually, we conclude and give an outlook on future research
directions in section “Future Work and Conclusion”.

Related Work

Time series forecasting is a highly common data modeling problem since temporal
data is generated in many different contexts. Classical forecasting approaches are
based on autoregressive models such as ARIMA, ARIMAX, and Vector Autoregres-
sion (VAR) [10, 25]. Here, a forecast estimate is dependent on a linear combination
of past values and errors. Autoregressive models work well if the assumption of
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stationarity is true and the series is generated by a linear process [1]. On the other
hand, these hard assumptions limit the effectiveness of autoregressive models if one
deals with nonlinear series, as it is the case with the majority of practical time series
problems.

LSTM, a particular variant of artificial recurrent neural networks (RNN), over-
comes these shortcomings as it makes no assumptions about the prior distribution
of the data. One can think of RNNs as regular feed-forward networks with loops in
them. This enables RNNs to model data with interdependencies such as autoregres-
sion. It has been shown that artificial neural networks with one hidden layer can, in
theory, approximate a continuous function arbitrarily well [14]. As the RNN gets
deeper, vanishing or exploding gradients often leads to poor model performance [4,
22]. LSTMs solve this problem with a gating mechanism that controls the informa-
tion flow in the neurons. LSTMs show superior performance in a variety of sequence
learning tasks such as machine translation [11, 26].

Since autoregressive models perform well for linear series and neural networks
for nonlinear data, there exist a number of hybrid approaches that make use of these
characteristics. In those cases, the data is first split into a linear and a nonlinear
component and each one is modeled independently. The individual results are then
combined additively to determine the final estimate [2, 3, 28, 32].

The sequential nature of LSTMs has led to them being studied in the context of time
series forecasting intensively. References [8, 19, 20] describe applications of LSTMs
for forecasting tasks. References[1, 17] propose frameworks of LSTM ensembles
with independently trained models. Finally, snapshot ensembles constitute a way to
construct an ensemble of dependent ANNSs at comparably low computational costs. A
more detailed description is given in section “Introduction to Snapshot Ensembles”.
We extend this method to recurrent neural networks and sequential problems.

Time series analysis has also been investigated in the framework of convolutional
neural networks (CNNs). Reference [5] uses an architecture inspired by the recent
success of WaveNet for audio generation [27] which achieves competitive forecasting
performance with relatively little training data available. A probabilistic approach
that combines both RNNs and CNNss in a single framework is given in [30].

Finding periodicities in time series data is a key part in the preprocessing of time
series data and proposes a major challenge for the automation of machine-generated
forecasts. Reference[7] proposes a variation of the approximate string matching
problem for automated periodicity detection. Reference [21] develops strategies on
diversity generation and builds ensembles of the resulting models. In [6], a number of
heterogeneous models are arbitrated by a meta-learner. Reference [9] applies Fourier
transformations to the original data for feature generation and uses a feed-forward
neural network for the modeling part based on these features. Reference [23] shifts
CNN training entirely to the Fourier domain, thereby, achieving a significant speedup
with practically no loss of effectiveness. Another approach that exploits Fourier
transformations is given in [24]. We will use a similar methodology in the course of
this paper.
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Time Series Forecasting and Snapshot Ensembles

Time series data is subject to a number of properties due to interdependencies across
observations:

1. Autoregression. In contrast to a machine learning setup where observations are
independent of each other, sequence learning tasks are characterized by depen-
dencies between observations. This has effects on data sampling and model evalu-
ation as drawing completely random subsamples is not possible. Hence, a suitable
sample strategy is indispensable when modeling temporal data.

2. Structural patterns and changes. Due to trend and seasonality effects, the behavior
of a time series is subject to repetition and change at the same time. While similar
patters may repeat over time, the frequency and intensity of those are usually
not constant. This is one reason why ensemble methods are a powerful tool for
time series data as each of the snapshot models incorporates information about
different behavior.

Introduction to Snapshot Ensembles

Snapshot ensembles propose a novel technique to obtain an ensemble of ANNs at
the same computational costs as fully training a single ANN. The central idea is that
instead of training a number of independent ANNs, only one ANN must be optimized.
In the process of optimization, the ANN converges to a number of different local
minima. Every time the ANN reaches a local minimum, the model snapshot is stored
along with its architecture and weights. The final weights of a snapshot serve as
the weight initialization of the succeeding snapshot LSTM. Finally, each snapshot
provides a prediction estimate and the ensemble predictor is calculated as the mean
of the snapshot estimates. It was shown that this combination yields advantageous
performance compared to the single best estimate [16].

Extending Snapshot Ensembles to Sequence Problems

Time series forecasting can be interpreted as a sequence learning problem. Given
an input sequence of scalars, the objective is to estimate the succeeding values of
the sequence. An important task is to determine how many past values should be
considered as the features under consideration, i.e., which slice dimension of the
series allows for good model generalization. By nature, time series data is dynamic
and subject to change over time, so an initial decision is not necessarily a sustainable
solution. Designing ensembles of LSTM networks allows us to incorporate multiple
sequence lengths into our prediction model. In the following, we explain how.



Stacked LSTM Snapshot Ensembles for Time Series Forecasting 91

LSTMs with varying sequence lengths. By architecture, LSTMs are only capable
to process sequences of equal lengths per epoch, due to the required matrix opera-
tions in the optimization process. In many applications, however, varying sequence
lengths are inevitable. One example is machine translation where the length of an
input sentence can be arbitrarily long [26]. Padding is usually used to overcome that
problem [15]. This implicitly means that, although two models trained with even
slightly different sequence lengths have a large intersection of training data, they
learn different yet related patterns. This constitutes a promising setting for ensemble
learning.

Locating candidate sequence lengths. In order to train anumber of snapshot LSTMs
with different sequence lengths, the first step is to identify the right choices of these.
A naive approach is to select sequence lengths from a random distribution. To get
sequence lengths that can catch effects of seasonality, we apply a fast Fourier transfor-
mation (FFT) to the training data and estimate the power spectra [29]. The motivation
behind this is that the FFT is an efficient method to extract the right periodicities
from a given time series. This allows the snapshots to encode different patterns,
seasonalities, and other time-dependent effects in the series.

Generating a snapshot ensemble of LSTMs with varying sequences. Refer-
ence[16] conducts a variant of simulated annealing in order to adapt the learning
rate and escape from local minima. In this case, a snapshot is a further optimiza-
tion of its predecessor using the identical training data, which leads to a relatively
low level of diversity across the snapshots. We propose another strategy in order to
increase diversity: Instead of adapting the model parameters, we feed the LSTM with
different slices of the data. This is possible because the dimensions of the training
data must be identical within a single epoch but not for two separate epochs. Given a
set S = {s1, 52, ..., s, } of different sequence lengths, we store in total n snapshots of
the LSTM. After each snapshot based on s;, the training process is continued with
a different data slice through time according to s;41. The final holdout estimates of
the individual snapshots are commonly combined by taking the mean of the base
forecasts. This assumes that each snapshot is equally important with respect to the
combination of forecasts. In order to allow for more flexibility, we extend the mean
function by a meta-learner. Ridge regression has proven to be an effective choice
here [31].

The process of the ensemble construction at training time is depicted in Fig. 1
for the example case S = {14, 21, 28} and a forecasting horizon of 10. First, the
training data yy, ..., y, (75% of the total data) is split according to the most potent
sequence lengths provided by the FFT (in decreasing order of FFT significance).
In our experiments, we use the top 20 sequence lengths. Next, the first snapshot is
trained with the respective data slices based on the first sequence length. We train each
snapshot for five epochs and standardize the data by its z-transform prior to training.
The base LSTM learners’ architecture is set up of two LSTM layers with 64 and 128
neurons as well as 20% dropout. Adam is used as the optimizer with a learning rate of
0.001. The weight matrix of the first snapshot is then updated based on the data slices
for the second sequence length, and so on. In total, training is done for 5 - 20 = 100
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Fig. 1 LSTM snapshot training framework

epochs. After all the snapshots are trained, a ridge regression meta model learns
how to combine the individual forecasts of the 20 snapshots. Analogously, during
test time, all 20 base models provide their forecasts to the meta-learner, which then
combines them to the final estimate for the 10-step ahead forecasts.

Experiments

We test the proposed methodology on five datasets of different kinds. We train a snap-
shot ensemble for each dataset where we start with the strongest periodicity according
to the FFT. Subsequently, each LSTM snapshot is based on the next strongest period-
icity. In total, 20 snapshots are trained. An overview of the datasets is given in Table 1
and Fig. 2. Furthermore, Fig. 3 displays the power spectrum for the sunspots series.
This example shows that there exist a number of unequally well-suited periodici-
ties. Each of these contains different patters which we aim to extract using snapshot
ensembles. To show the effectiveness as well as the efficiency of our approach, the
performance of the snapshot ensemble is measured against the following three base-
lines:

1. Independent LSTM ensemble. Instead of continuing the training process by
escaping from a local minimum, the LSTM is reinitialized randomly and fed
with the new data slices. Instead of n snapshots, we end up with n LSTMs whose
training process was completely independent of one another. In contrast to this,
a snapshot inherits its initial weights from its preceding snapshot.

2. Single optimized LSTM. The best sequence length according to the FFT is used
for the optimization of a single LSTM over all epochs.

3. ARIMA with model selection based on the AIC.
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Fig. 2 Graphical data overview

Notably, the total number of epochs is identical for all the neural net approaches.
Due to different slices of the training data, the total runtime of the latter approach
can slightly differ from the ensemble methods in either direction.

Model Evaluation

We validate the performance of our approach on five different datasets listed in
Table 1. Figure?2 illustrates the series on their original scale. Evidently, each of
the datasets has its very own characteristics and dynamics. While the daily birth
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rates dataset shows signs of weak stationarity, the sensor-generated household power
dataset depicts more chaotic behavior with random noises. The power dataset is sam-
pled by the minute. River flow, a monthly sampled time series, is clearly nonstation-
ary as well. The series of daily maximum temperatures repeats similar patterns over
time as does the births data and shows clear signs of weak stationarity. Somewhere
in between those cases fits the monthly sunspots data which shows seasonalities of
varying strength and amplitude.

Figure 4 shows the root mean square error (RMSE)' on the holdout set of each
dataset and method. Besides the performance of the stacked ensembles (“Snap
Stack”: stacked snapshot ensemble, “ClassEns Stack”: stacked ensemble of inde-
pendently trained LSTMs), metrics for mean ensemble forecasts (“Snap Mean”,
“ClassEns Mean”), and single model forecasts (“Single opt.”) are shown. The key
outcomes of the analysis are as follows:

— Snapshot ensembles with ridge regression as a meta-learner outperform conserva-
tive ensembles as well as the single, optimized model in all cases.The traditional
ARIMA models show inferior forecasting accuracy.

— On average, the stacked snapshot ensemble performs 4.2% better than the next
best baseline.

Thitps://www.qlik.com/us/products/qlik-data-market, accessed June 19, 2019.
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Fig. 4 Model performance

— The greatest performance gain obtained by the stacked ensemble is realized for
the sunspots data. Here, the stacked snapshot ensembles outperform the next best
method by 13.8%, while the performance win for the other four datasets is in a
significantly lower range between 1.0% and 3.4%. Looking at the illustrated data
in Fig.2, this is an indication that our approach is particularly suitable for time
series with seasonalities of varying intensity. Peaks of different amplitudes are
handled well by the stacked snapshot ensemble, which a single model fails to do
with a high degree of precision.

— Extending snapshot ensembles by the introduction of a meta-learner leads to a
great boost in performance compared to the simple mean combiner.

— The ensemble forecasts are significantly different from the estimates of the remain-
ing models, based on the paired t-test for significance.

— The single optimized LSTM only shows comparative performance if the structure
of the dataset is approximately stationary over time, as in the case of the maximum
temperatures series. This supports our hypothesis that snapshot ensembles are
particularly suitable for cases where patterns are spread across multiple sequence
lengths.
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— Reslicing the input data according to the FFT after each snapshot leads to base
learners with high diversity. This enables the meta-learner to exploit different
knowledge that is encoded across the snapshots. As an example, the ordered FFT
sequence lengths for the birth rates dataset are as follows: 365, 183, 73, 61, 37,
91, 41, 30, 10, 52, 11, 26, 852, 28, 14, 568, 341, 16, 20, and 465. This clearly
shows how FFT extracts potent periodicities from the time series as the yearly and
monthly seasonalities are immediately detected.

An exemplary 10-step ahead forecast is shown in Fig.5. Here, the first holdout
sequence of the birth rates series along with its model estimates is illustrated. One
can see the significant improvements that are attributed to the meta-learner, leading
to reduction in forecasting error.

The code for the experiments is available on GitHub.?

Future Work and Conclusion

Snapshot ensembles based on FFT sequence lengths are an efficient method to extract
diverse patterns from data. We have shown that they yield superior forecasting perfor-
mance in comparison to the standard optimization of a single LSTM and an ensemble
of fully independently trained LSTMs, without the need for additional computational
costs. It turned out that these results are stable across different datasets although the
relative performance boost differs depending on the underlying data structure. Our

Zhttps://github.com/saschakrs/TS-SnapshotEnsemble, accessed June 1, 2018.
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approach enables the automated generation of robust time series forecasts without
the assumption of a specified data distribution. This makes the framework a valu-
able application for systems that require the future estimation of one or more key
performance indicators that develop over time.

There is further potential regarding the design of the ensemble architecture:
Besides the configuration of the individual base learners, different combiner func-
tions might improve the overall performance for certain problems. In addition to
this, we found that five epochs per snapshot lead to good overall performance of the
ensemble, however, this parameter could be higher for very complex learning tasks.

It is also possible to extend the ensemble by different model types. Integrating
autoregressive models or state-space representations could increase model diversity
and thereby lead to a greater performance win by the combiner function.

Finally, LSTM snapshot ensembles are currently limited to univariate time series.
Evaluating their applicability to the multivariate case is another challenge worth
investigating. It would also be interesting to evaluate the applicability of stacked
snapshot ensembles to different sequence learning tasks such as machine translation.
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