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Preface

The word forecasting is commonly associated by many people with some enigmatic
concepts such as astrology (not to be confounded with astronomy), crystal balls, or
tarot cards. There is, however, a different way to make forecasts based on scientific
analyses from past and present information. This information can be numerical or
categorical. It can even be expressed in linguistic terms by experts in the field. In
this book, we try to provide some very recent contributions toward this scientific
way to make forecasts and which have in common that this past and present
information is arranged as a set of measurements collected in different instants of
time (normally at fixed time intervals). These contributions to what we call in this
book “Time Series Analysis and Forecasting” have been classified into different
parts according to their content. The first three parts of the book contain more
theoretical contributions, some related to pure statistical methods, some that also
make use of state-of-the-art computational intelligence methodologies and finally
some more related to econometrics. On the other hand, in the last parts, we provide
more practical contributions with the intention of providing the readers with the
view that this field, although with a very sophisticated and powerful theory behind,
has as final aim the practical application. There exists practically no discipline in
this world which cannot benefit from contributions in the “Time Analysis and
Forecasting” field.

The origin of this book stems from the International Conference on Time Series
and Forecasting, ITISE 2018, held in Granada (Spain) in September 2018. Our aim
with the organization of ITISE 2018 was to create a friendly discussion forum for
scientists, engineers, educators, and students about the latest ideas and realizations
in the foundations, theory, models, and applications for interdisciplinary and
multidisciplinary research encompassing disciplines of statistics, mathematical
models, econometrics, engineering, and computer science in the field of time series
analysis and forecasting.

The list of topics in the successive Call for Papers has also evolved, resulting in
the following list for the last edition:
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1. Time Series Analysis and Forecasting

• Nonparametric and functional methods.
• Vector processes.
• Probabilistic approach to modeling macroeconomic uncertainties.
• Uncertainties in forecasting processes.
• Nonstationarity.
• Forecasting with many models. Model integration.
• Forecasting theory and adjustment.
• Ensemble forecasting.
• Forecasting performance evaluation.
• Interval forecasting.
• Data preprocessing methods: data decomposition, seasonal adjustment, sin-

gular spectrum analysis, and detrending methods.

2. Econometric and Forecasting

• Econometric models.
• Economic and econometric forecasting.
• Real macroeconomic monitoring and forecasting.
• Advanced econometric methods.

3. Advanced Methods and Online Learning in Time Series

• Adaptivity for stochastic models.
• Online machine learning for forecasting.
• Aggregation of predictors.
• Hierarchical forecasting.
• Forecasting with computational intelligence.
• Time series analysis with computational intelligence.
• Integration of system dynamics and forecasting models.

4. High Dimension and Complex/Big Data

• Local versus global forecast.
• Techniques for dimension reduction.
• Multiscaling.
• Forecasting from complex/big data.

5. Forecasting in Real Problems

• Health forecasting.
• Atmospheric science forecasting.
• Telecommunication forecasting.
• Hydrological forecasting.
• Traffic forecasting.
• Tourism forecasting.
• Marketing forecasting.
• Modeling and forecasting in power markets.
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• Energy forecasting.
• Climate forecasting.
• Financial forecasting and risk analysis.
• Forecasting electricity load and prices.
• Forecasting and planning systems.
• Applications in other disciplines.

High-quality candidate papers from the Conference ITISE2018 (26 contribu-
tions) were invited to submit an extended version of their conference paper to be
considered for this special publication in the book series of Springer: Contributions
to Statistics. For the selection procedure, the information/evaluation of the chairman
of every session, in conjunction with the review comments and the summary of
reviews, were taken into account.

So, now we are pleased to have reached the end of the whole process and present
the readers with these final contributions that we hope will provide a clear overview
of the thematic areas covered by the ITISE 2018 conference, ranging from theo-
retical aspects to real-world applications of Time Series Analysis and Forecasting.

It is important to note that for the sake of consistency and readability of the
book, the presented papers have been classified into the following parts:

• Part: Advanced Statistical Methods for Time Series Analysis and
Forecasting
The main objective of this chapter is to present advanced statistical method-
ologies and theories that could be used with time series. It also aims at bringing
into existence recent and becoming developments in computational mathematics
that could be used in the field of time series. In particular, six contributions have
been selected for this chapter. The first contribution provides us with a
methodology to identify nonstationary autoregressive processes with
time-varying orders and time-varying degrees of nonstationarity, including its
extension to multivariate autoregressive processes. The second contribution
deals with how to take advantage of the information provided by different
estimators for a given big data problem with inhomogeneities, i.e., data is
neither i.i.d. (exhibiting outliers or not belonging to same distribution) nor
stationary (time-varying effects may be present). Not surprisingly, the three most
accurate forecasting methods of the recently celebrated M4 competition are
precisely hybrid approaches formed by a combination of different estimators,
thus proving that researching in this direction should be encouraged. The next
contribution presents a new extension for the general case of linear and non-
linear data of the Granger causality technique to detect causal relationship
between time series based on local approximations of the time delay embedding
reconstruction of the time series’ state space by a linear regression model. The
next two contributions try to shed some light into how complex systems work.
For this purpose, in the first one, the authors have developed a GUI-based
computing environment which allows for building forecasts based on System
Dynamics model, which is the part of the Systems Theory devoted to
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understanding the dynamic behavior of complex systems. In the second one, the
authors make use of order patterns recurrence plots to visually tell apart chaotic
systems from other non-chaotic ones. Finally, the last contribution of this part
presents a new freely available Matlab toolbox, called SSpace, that implements
linear, nonlinear, and non-Gaussian State-Space systems. The contribution
demonstrates the toolbox’s potential with several examples.

• Part: Advanced Computational Intelligence Methods for Time Series
Analysis and Forecasting
Although time series analysis can be considered a discipline originated within
the statistical area, in the last decades many computational intelligence methods
or machine learning approaches have been proposed to solve time series-related
problems. In fact, new and further computational intelligence approaches, their
efficiency, and their comparison to statistical methods and other fact-checked
computational intelligence methods are significant topics in academic and
professional projects. It is not uncommon the existence of time series forecasting
competitions which try to elucidate which of the two main research streams is
better. For instance, the above-commented M4-Competition for the first time
made explicit mention to machine learning forecasting methods. Within this
topic, five contributions have been selected for this book. Just related to the
comment we made in the previous paragraphs, the first of the contributions also
deals with an ensemble of estimators but this time it is an ensemble of machine
learning models (deep neural networks). In this case, the authors extend the
concept of snapshot ensembles to the field of time series forecasting. The idea of
this concept is to combine the models obtained through the different local
minima that the optimization algorithm finds in its search for the global one. The
next very interesting contribution is about detecting areas in a time series,
stationary or nonstationary, where it can be asserted that the data belong to a
different distribution than before. To solve this problem, the authors propose a
method called Wavelet-Based Least Squares Density-Difference which is based
on a least squares method applied to the distance between two wavelet expanded
densities extracted from the time series. The third contribution of this second
part of the book presents the very computationally efficient virtual leave-one-out
methodology aimed at selecting the best neural network structure for time series
prediction, and shows how to apply this method in the practical case of time
series data extracted from crime-related police reports. Finally, the last contri-
bution is related to how to implement existing algorithms in fast computing
platforms such as Field Programmable Gate Arrays (FPGAs). In this case, the
authors deal with the hardware implementation of Echo State Networks, which
are a special case of Recurrent Neural Networks in which the synaptic weights
between neurons are kept fixed and only the connections from the network to a
measurement output layer are modified by learning.
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• Part: Econometric Models, Financial Forecasting, and Risk Analysis
One of the most prominent applications of time series modeling and forecasting
lies within the field of Econometrics. This chapter aims at presenting some
recent developments of time series research applied to financial and futures data
with the original idea of focusing on studies that develop and apply recent
nonlinear econometric models to reproduce financial market dynamics and to
capture financial data properties with the hope of eventually predicting the next
economic bubble. Five contributions have been selected to that end. The first
one introduces a new class of long-memory model for the estimation of
volatility of stock returns, which takes into account long-memory
heteroskedasticity of the financial time series. The second contribution shows
that under appropriate assumptions on the fractional integration orders the
transfer function corresponding to a Vector Autoregressive Fractionally
Integrated Moving Average (VARFIMA) or a Fractionally Integrated Vector
Autoregressive Moving Average (FIVARMA) process can be estimated con-
sistently using Canonical Variate Analysis. The third contribution studies how
deep long short-term memory neural networks can be applied to robustly
forecast interest rates of different maturities and tenors. Since deep networks
need a lot of data to learn from, the authors solve this problem by generating
data based on fitted time series models. They complete their presentation by
applying support vector machines to predict trends in the term structures. The
next contribution studies the default intensities estimated from credit default
swap spreads by the dynamic Nelson–Siegel model with a time-varying decay
parameter. They show that for the German and U.S. credit default swap markets
the decay parameters change over time and the magnitude of the decay
parameter is positively related to the level of default intensities. The last con-
tribution of this part of the book deals with the problem of how to obtain an
accurate measure of the current globalization process we are currently under-
going in the world. To that end, the authors use the concept of permutation
entropy which essentially measures the entropy of a set of time series based on
the analysis of their permutation patterns. The main difference between this
concept and the Shannon entropy is that the former is a symbolic entropy
focused on patterns rather than on a probability distribution function, which
makes it useful in an analysis of short time series.

The next three parts of the book are dedicated to specific applications of time
series analysis. The contributions provided can be classified into the following
main parts.

• Part: Time Series Analysis in Earth Sciences
This part makes particular emphasis on the application of time series analysis
applied to earth-sciences-related data. For example, the first contribution ana-
lyzes high-resolution time series from a long-term monitoring campaign in the
Guadalquivir River Estuary in the south of Spain in order to predict how
harmful floods can be under certain circumstances. The second contribution uses
the smoothed Lomb–Scargle periodogram to study the precipitation and
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temperature data recorded during the last decades from 707 meteorological
stations in Andalusia. They eventually obtain a very interesting picture of the
spatial distribution of the climatic cycles from where many conclusions can be
extracted. The third contribution is about online forecasting of ambient tem-
perature and solar irradiation. The method is based on an adaptive ARX model
which can be tuned to changing weather conditions without relying on external
inputs and it obtains an outstanding performance improvement with respect to
the weather forecasting services’ prediction. Finally, the last paper analyzes data
taken from the storm that occurred at the Spanish coast of the Mediterranean Sea
at the end of January 2017 and which produced severe coastal floods. The
authors manage to accurately model and predict the space-time evolution of sea
wave heights during that event using a combination of spatiotemporal random
field theory and the Bayesian maximum entropy method.

• Part: Energy Time Series Forecasting
This part makes particular emphasis on the application of time series analysis,
modeling, and forecasting applied to energy-related data. By energy, we refer to
any kind of energy, such as electrical, solar, microwave, wind, and so on. The
first contribution presents several adaptive methods for forecasting solar heat
production and heat demand of consumers based on weather forecasts. Apart
from the good results obtained, these methods are explicitly developed so that
they are easy to implement in simple computers such as programmable logic
controllers commonly used in the industry. The second one deals with making
short-term forecasts (48-h horizon) of wind power production so as to know
how the pricing rates of wind-generated electricity are going to evolve. To that
end, the authors propose several direct and indirect methods based on different
machine learning algorithms with very promising results.

• Part: Time Series Analysis and Prediction in Other Real Problems
This last part is dedicated to other real applications of time series analysis,
modeling, and forecasting different from those especially mentioned before. The
idea is to state explicitly that applications of time series analysis reach practi-
cally any scientific discipline imaginable. Four very different contributions were
selected for this last part. The first one uses queuing theory to model the custom
inspection process in the Helsinki–Vantaa Airport so as to predict its capacity
and assess whether it can deal with the estimated increase in the number of
passengers in the following years. The second one studies the use of different
models such as ARIMA, Prophet (launched by Facebook in 2017) Multilayer
Perceptrons, and Long Short-Term Memory Neural Networks to predict Internet
data consumption and mobile phone card recharges for different prediction
horizons. The results are worth reading. The next contribution studies how
different pattern similarity-based forecasting methods perform to estimate up to
1 week ahead, the future demand of a thermal unit in a power plant. The
following and last contribution of this book takes advantage of the fact that the
ECG signal is somewhat modulated by the respiration of a person. So, with the
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use of an Empirical Mode Decomposition approach to R-peak detection and an
Independent Component Analysis to separate out the respiration signal in the
frequency domain, the authors manage to robustly estimate the breathing rate of
that person.

Last but not least, we would like to point out that this edition of ITISE was
organized by the University of Granada together with the Spanish Chapter of the
IEEE Computational Intelligence Society. The Guest Editors would also like to
express their gratitude to all the people who supported them in the compilation of
this book, and especially to the contributing authors for their submissions, the
chairmen of the different sessions, and to the anonymous reviewers for their
comments and useful suggestions in order to improve the quality of the papers.

We wish to thank our main sponsors as well: the Department of Computer
Architecture and Computer Technology, the Faculty of Science of the University of
Granada, the Research Centre for Information and Communications Technologies
(CITIC-UGR), and the Ministry of Science and Innovation for their support and
grants. Finally, we wish also to thank Prof. Alfred Hofmann, Vice President
Publishing—Computer Science, Springer-Verlag and Dr. Veronika Rosteck,
Springer, Editor, for their interest in editing a book series of Springer based on the
best papers of ITISE 2018.

We hope the readers of this book can make the most of these selected
contributions.

Granada, Spain Olga Valenzuela
January 2019 Fernando Rojas

Héctor Pomares
Ignacio Rojas
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Identification of Nonstationary Processes
Using Noncausal Bidirectional Lattice
Filtering

Maciej Niedźwiecki and Damian Chojnacki

Abstract The problem of off-line identification of a nonstationary autoregressive
process with a time-varying order and a time-varying degree of nonstationarity is
considered and solved using the parallel estimation approach. The proposed parallel
estimation scheme is made up of several bidirectional (noncausal) exponentially
weighted lattice algorithms with different estimation memory and order settings. It is
shown that optimization of both settings can be carried out bymeans of minimization
of the locally evaluated accumulated forward/backward prediction error statistic.

Keywords Identification of nonstationary processes · Selection of model order ·
Selection of estimation memory

Introduction

Autoregressive analysis is a popular modeling tool, used to solve practical problems
in many different areas, such as biomedicine [1–3], geophysics [4–6], telecommuni-
cations [7, 8], etc. When the analyzed processes are nonstationary, identification of
their autoregressivemodels can be carried out using local estimation techniques, such
as the well-known sliding-window (SWLS) or exponentially weighted (EWLS) least
squares approaches. Local estimation algorithms are often called finite-memory since
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e-mail: maciekn@eti.pg.edu.pl

D. Chojnacki
e-mail: damian.chojnacki@pg.edu.pl

© Springer Nature Switzerland AG 2019
O. Valenzuela et al. (eds.), Theory and Applications of Time Series Analysis,
Contributions to Statistics, https://doi.org/10.1007/978-3-030-26036-1_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26036-1_1&domain=pdf
mailto:maciekn@eti.pg.edu.pl
mailto:damian.chojnacki@pg.edu.pl
https://doi.org/10.1007/978-3-030-26036-1_1
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they rely on the limited (or effectively limited) number of signal samples. Owing to
this property they are capable of tracking time-varying signal parameters.

Two important decisions that must be taken when identifying the time-varying
autoregressivemodel are the choice of the number of estimated autoregressive coeffi-
cients, i.e., themodel order, and selection of the size of the local analysis interval, i.e.,
the estimation memory. Both decisions may have important quantitative (estimation
accuracy) and qualitative (estimation adequacy) implications.

In this paper we will focus on noncausal estimation techniques, which can be
applied when the analyzed signal is prerecorded and can be analyzed off-line. Non-
causality means that at any given time instant t the local parameter estimates can be
based on both “past” observations (collected prior to t) and “future” observations
(collected after t). When applied to identification of nonstationary processes, non-
causal estimators can significantly reduce the estimation bias (due to elimination of
the so-called estimation delay, typical of all causal algorithms [9]).

In the proposed approach, which is amodification of themethod described in [10],
noncausal estimates are obtained by combining results yielded by the exponentially
weighted least squares lattice/ladder algorithms [11] running forward and backward
in time, respectively. The problem of model order and estimation memory adaptation
is solved using the parallel estimation approach. In this approach several competing
algorithms, with different order and memory settings, are operated simultaneously
and compared according to their locally assessed predictive abilities.

The proposed technique is computationally attractive and yields time-varying
models with guaranteed uniform stability property which is important in such appli-
cations as parametric spectrum estimation or process simulation.

Nonstationary Autoregressive Processes

Suppose that the analyzed discrete time signal {y(t)}, t = . . . ,−1, 0, 1, . . ., can be
described or at least approximated by the following time-varying autoregressive (AR)
model

y(t) =
n∑

i=1

ai,n(t)y(t − i) + en(t) = ϕT
n (t)αn(t) + en(t)

var[en(t)] = ρn(t)

(1)

where ϕn(t) = [y(t − 1), . . . , y(t − n)]T denotes regression vector, αn(t) = [a1,n
(t), . . . , an,n(t)]T denotes the vector of autoregressive coefficients, and {en(t)}
denotes white noise with a time-dependent variance ρn(t). In the sequel we will
assume that the entire history of the signal {y(t), t = 1, . . . , T0} is available, along
with the “boundary” conditions {y(1 − i), y(T0 + i), i = 1, . . . , N }, where
N denotes the maximum model order that will be considered.
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When the driving noise variance ρn(t) is bounded, αn(t) is a “sampled” version
of a sufficiently smooth continuous time parameter trajectory, and at all time instants
t all zeros of the characteristic polynomial A[z,αn(t)] = 1 − ∑n

i=1 ai,n(t)z
−i are

uniformly bounded away from the unit circle in the complex plane, the process (1) is
uniformly exponentially stable [12]. According to the theory developed by Dahlhaus
[13], under the conditions specified above {y(t)} belongs to the class of locally
stationary processes with uniquely defined instantaneous spectral density function
given by

Sn(ω, t) = ρn(t)

|A[e jω,αn(t)]|2 (2)

where j = √−1 and ω ∈ (−π,π] denotes the normalized angular frequency.

Equivalent Parametrizations of a Stationary
Autoregressive Process

It is known that a zero-mean stationary AR process characterized by the set
Pn = {ρn, a1,n, . . . , an,n} (further referred to as direct parametrization) can be equiv-
alently specified in terms of autocorrelation coefficientsRn = {r0, r1, . . . , rn}where
ri = E[y(t)y(t − i)] (autocorrelation parametrization), or in terms of partial autocor-
relation coefficientsQn = {r0, q1, . . . , qn}whereqi is the normalized autocorrelation
between y(t) and y(t − i) with the linear dependence on the intermediate variables
y(s), t − i < s < t removed (lattice parametrization).

All three parametrizations are equivalent, i.e., given any of them, one can deter-
mine the remaining two using invertible mappings

Pn = F[Rn], Rn = F−1[Pn]
Rn = G[Qn], Qn = G−1[Rn]
Qn = H [Pn], Pn = H−1[Qn].

Description of these mappings can be found, e.g., in [14].

Causal Lattice Algorithm

The exponentially weighted least squares normalized lattice/ladder algorithm pro-
posed by Lee et al. [11], further referred to as EWLMF algorithm, is a time- and
order-recursive estimation procedure known for its low computational cost and
numerical robustness. The EWLMF algorithm is a lattice approximation of the
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EWLS algorithm. The EWLS algorithm, equipped with the forgetting constant λk ,
0 < λk < 1, provides a direct signal parametrization

P̂n|k(t) = {ρ̂n|k(t), â1,n|k(t), . . . , ân,n|k(t)}

where

α̂n|k(t) = [̂a1,n|k(t), . . . , ân,n|k(t)]T

= argmin
αn

t−1∑

i=0

λi
k[y(t − i) − ϕT

n (t − i)αn]2 (3)

ρ̂n|k(t) = 1

Lk(t)

t−1∑

i=0

λi
k[y(t − i) − ϕT

n (t − i)α̂n|k(t)]2 (4)

and Lk(t) = ∑t−1
i=0 λi

k denotes the effective width of the applied exponential window.
The explicit solution of (3) and (4) can be obtained in the form

α̂n|k(t) = R̂−1
n|k(t )̂rn|k(t), ρ̂n|k(t) = r̂0|k(t) − r̂Tn|k(t)α̂n|k(t) (5)

where

R̂n|k(t) = 1

Lk(t)

t−1∑

i=0

λi
kϕn(t − i)ϕT

n (t − i)

r̂n|k(t) = 1

Lk(t)

t−1∑

i=0

λi
k y(t − i)ϕn(t − i)

r̂0|k(t) = 1

Lk(t)

t−1∑

i=0

λi
k y

2(t − i) = r̃0|k(t).

The EWLMF algorithm estimates the normalized partial autocorrelation coefficients
directly from the data, yielding the lattice signal parametrization

Q̃n|k(t) = {̃r0|k(t), q̃1|k(t), . . . , q̃n|k(t)}

The estimates q̃1|k(t), . . . , q̃n|k(t) are usually called reflection coefficients. Due to
appropriate normalization, the estimates provided by the EWLMF algorithm obey
the condition

|̃qi |k(t)| < 1, ∀t, i = 1, . . . , n (6)
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which guarantees that the corresponding “frozen” AR models are at all times stable.
Denote by

P̃n|k(t) = H−1[Q̃n|k(t)] = {ρ̃n|k(t), ã1,n|k(t), . . . , ãn,n|k(t)}

the direct parametrization that is an equivalent of the lattice parametrization yielded
by the EWLMF algorithm. Since the EWLS algorithm does not guarantee model
stability, it is clear that P̂n|k(t) �= P̃n|k(t). We note, however, that both parametriza-
tions become identical if the matrix R̂n|k(t) and the vector r̂n|k(t) appearing in (5)
are replaced with

R̃n|k(t) =
⎡

⎢⎣
r̃0|k(t) r̃n−1|k(t)

...
. . .

...

r̃n−1|k(t) r̃0|k(t)

⎤

⎥⎦ , r̃n|k(t) = [
r̃1|k(t) . . . r̃n|k(t)

]T

where

R̃n|k(t) = {̃r0|k(t), r̃1|k(t), . . . , r̃n|k(t)} = G[Q̃n|k(t)]

denotes an autocorrelation parametrization equivalent to Q̃n|k(t). Therefore, the
parametrization P̃n|k(t) can be regarded as a stable approximation of P̂n|k(t).

Noncausal Lattice Algorithm

To obtain noncausal estimator of ρn(t) and αn(t) we will combine results yielded
by two lattice algorithms—the forward-time (−) EWLMF algorithm equipped with
a forgetting constant λk− , providing the estimates

Q̃−
n|k(t) = {̃r0|k−(t), q̃1|k−(t), . . . , q̃n|k−(t)}

and the backward time (+) EWLMF algorithm equipped with a forgetting constant
λk+ providing the estimates

Q̃+
n|k(t) = {̃r0|k+(t), q̃1|k+(t), . . . , q̃n|k+(t)}.

We will not assume that the forward and backward time EWLMF algorithms are
equipped with the same forgetting constants. Setting k− �= k+, one can fuse long
memory forward time estimation results with short memory backward time ones or
vice versa. Such asymmetric variantsmay be useful in the presence of abrupt parame-
ter changes. Let π = {k−, k+}, T−(t) = {1, . . . , t − 1} and T+(t) = {1, . . . , T0 − t}.
The combined estimate can be obtained using a three-step procedure.
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1. First, one can determine the autocorrelation parametrizations corresponding to
Q̂−

n|k(t − 1) and Q̂+
n|k(t + 1)

R̃±
n|k(t ± 1) = G[Q̃±

n|k(t ± 1)] = {̃r0|k±(t ± 1), r̃1|k±(t ± 1), . . . , r̃n|k±(t ± 1)}

Since parametrizations Q̃−
n|k(t − 1) and Q̃+

n|k(t + 1) are stable, the covariance
matrices made up of the estimates {̃ri |k−(t), i = 0, . . . , n} and {̃ri |k+(t), i =
0, . . . , n} must be positive definite [14].

2. Second, the two-sided autocorrelation parametrization

R̃n|π(t) = {̃r0|π(t), r̃1|π(t), . . . , r̃n|π(t)}

can be obtained using the formula

r̃i |π(t) = μ−(t )̃ri |k−(t − 1) + μ+(t )̃ri |k+(t + 1), i = 0, . . . , n (7)

where μ±(t) = L±
k±(t ± 1)/Lπ(t), L±

k±(t ± 1) = ∑
i∈T±(t) λi−1

k± and Lπ(t) =
L−
k−(t − 1) + L+

k+(t + 1). Note that since the sequence {̃ri |π(t), i = 0, . . . , n}
is a convex combination of {̃ri |k−(t − 1), i = 0, . . . , n} and {̃ri |k+(t + 1), i =
0, . . . , n}, the parametrization R̃n|π(t) is at all times stable.

3. Finally, based on R̃n|π(t), one can obtain the direct parametrization

P̃n|π(t) = F[R̃n|π(t)] = {ρ̃n|π(t), ã1,n|π(t), . . . , ãn,n|π(t)}

The doubly exponentially weighted Lee-Morf-Friedlander (E2WLMF) algorithm
described abovediffers from theoneproposed in [10] in one important aspect—unlike
[10] the obtained parameter estimates do not depend (in a deterministic sense) on
the “central” sample y(t).

Similarly as in the case of the EWLMF estimate, one can show that the E2WLMF
estimate α̃n|π(t) = [̃a1,n|π(t), . . . , ãn,n|π(t)]T can be regarded as a “stable approxi-
mation” of the estimate obtained using the noncausal doubly exponentially weighted
least squares (E2WLS) algorithm

α̂n|π(t) = [̂a1,n|π(t), . . . , ân,n|π(t)]T

= argmin
αn

[ t−1∑

i=1

λi−1
k− {y(t − i) − [ϕ−

n (t − i)]Tαn}2

+
T0−t∑

i=1

λi−1
k+ {y(t + i) − [ϕ+

n (t + i)]Tαn}2
]

where ϕ±
n (t) = [y(t ± 1), . . . , y(t ± n)]T. Actually, note that



Identification of Nonstationary Processes … 9

α̂n|π(t) =
[
μ−(t)R̂−

n|k−(t − 1) + μ+(t)R̂+
n|k+(t + 1)

]−1

×
[
μ−(t )̂r−

n|k−(t − 1) + μ+(t )̂r+
n|k+(t + 1)

]
(8)

where

R̂±
n|k±(t ± 1) = 1

L±
k±(t ± 1)

∑

i∈T±(t)

λi−1
k± ϕ±

n (t ± i)[ϕ±
n (t ± i)]T

r̂±
n|k±(t ± 1) = 1

L±
k±(t ± 1)

∑

i∈T±(t)

λi−1
k± y(t ± i)ϕ±

n (t ± i).

Similarly, since α̃n|π(t) must obey Yule-Walker equations defined in terms of
{̃ri |π(t), i = 0, . . . , n} [14], it holds that

α̃n|π(t) =
[
μ−(t)R̃−

n|k−(t − 1) + μ+(t)R̃+
n|k+(t + 1)

]−1

×
[
μ−(t )̃r−

n|k−(t − 1) + μ+(t )̃r+
n|k+(t + 1)

]

where

R̃n|k±(t ± 1) =
⎡

⎢⎣
r̃0|k±(t ± 1) r̃n−1|k±(t ± 1)

...
. . .

...

r̃n−1|k±(t ± 1) r̃0|k±(t ± 1)

⎤

⎥⎦

r̃n|k±(t ± 1) = [
r̃1|k±(t ± 1) . . . r̃n|k±(t ± 1)

]T
.

Hence, the estimates α̂n|π(t) and α̃n|π(t) coincide if the quantities R̂±
n|k±(t ± 1) and

r̂±
n|k±(t ± 1) are replaced in (8) with R̃±

n|k±(t ± 1) and r̃±
n|k±(t ± 1), respectively.

Model Order and Estimation Memory Adaptation

Based on P̃n|π(t), the parametric estimate of the instantaneous spectral density func-
tion Sn(ω, t) can be obtained in the form

S̃n|π(ω, t) = ρ̃n|π(t)

|A[e jω, α̃n|π(t)]|2 (9)

where α̃n|π(t) = [̃a1,n|π(t), . . . , ãn,n|π(t)]T.
Selection of the order n of the autoregressive model, and the choice of forgetting

factors λk± plays an important role in parametric spectral analysis. If the order is
underestimated some important features of the resonant structure of {y(t)} may not
be revealed, while when it is overestimated some nonexistent resonances may be
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indicated. In both cases one may arrive at false qualitative conclusions. The optimal
choice of λk− and λk+ , i.e., the one that trades off the bias and variance components
of the mean squared parameter estimation error, depends on the rate of parame-
ter variation—forgetting factors should be smaller (which corresponds to shorter
memory) when process parameters are subject to fast changes, and larger (which
corresponds to longer memory) when parameters vary slowly with time.

Our solution to the order/memory optimization problem will be based on parallel
estimation. Consider several E2WLMF algorithms with different order and memory
settings, running in parallel. Denote by N = {1, . . . , N } the set of all model orders
that will be considered, and by Π the set of all considered pairs π = {k−, k+}. The
data-adaptive version of (9) can be expressed in the form

S̃n̂(t)|̂π(t)(ω, t) = ρ̃ n̂(t)|̂π(t)(t)

|A[e jω, α̃n̂(t)|̂π(t)(t)]|2 (10)

where

{̂n(t), π̂(t)} = {̂n(t), k̂−(t), k̂+(t)} = argmin
n∈N
π∈Π

Jn|π(t) (11)

and Jn|π(t) denotes the local decision statistic.
The proposed selection criterion takes advantage of the fact that, unlike the esti-

mates considered in [10], the estimates α̃n|π(t) are not functions of y(t) and therefore
they can be used to compute unbiased forward and backward prediction errors

ε±
n|π(t) = y(t) − [ϕ±

n (t)]Tα̃n|π(t).

Consequently, one can adopt for Jn|π(t) the following prediction error (PE) statistic

Jn|π(t) =
M∑

i=−M

[ε−
n|π(t − i)]2 +

M∑

i=−M

[ε+
n|π(t + i)]2 (12)

where M ∈ [20, 50] is the parameter that controls the size of the local decision
window [t − M, t + M] centered around t .

Computational Complexity

Denote by Kπ ≤ K (K + 1)/2 the number of forward–backward pairs π = (k−, k+)

included in Π . For the assumed maximum model order N the per sample com-
putational load (the number of multiply–add operations) of the proposed parallel
estimation scheme is pretty low and is approximately equal to

l(N ) = 2K A(N ) + 2K B(N ) + KπC(N )
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where A(N ) = 30N denotes the load of the ELMF algorithm (given that theNewton-
Raphsonmethod is used to evaluate square roots), B(N ) = 2N + N 2 denotes the load
of the G transform (computation of autocorrelation coefficients based on reflection
coefficients), andC(N ) = 2 + 4N + N 2 is the load of the F transform (computation
of autoregressive coefficients basedon autocorrelation coefficients).Note that thefirst
stage of processing is computationally the cheapest one and that the only quantities
that have to be memorized during the forward/backward sweep of the EWLMF
algorithms are the forward/backward reflection coefficients.

Extension to Multivariate Autoregressive Processes

Unlike the univariate case, every zero-mean stationary multivariate AR process
has two (usually different) direct parametrizations P−

n = {ρ−
n ,A−

1,n, . . . ,A
−
n,n} and

P+
n = {ρ+

n ,A+
1,n, . . . ,A

+
n,n}, corresponding to the forward-time and backward time

AR models, respectively:

y(t) =
n∑

i=1

A±
i,ny(t ± i) + e±

n (t), cov[e±
n (t)] = ρ±

n (13)

where y(t) = [y1(t), . . . , ym(t)]T is the m-dimensional vector of signal components
and A±

i,n, i = 1, . . . , n, denote m × m matrices of forward/backward autoregressive
coefficients. Based on (13), the spectral density (matrix) function of {y(t)} can be
evaluated using the formula

Sn(ω) = [A (
e− jω,α−

n

)]−1
ρ−
n

[A (
e jω,α−

n

)]−T

= [A (
e− jω,α+

n

)]−1
ρ+
n

[A (
e jω,α+

n

)]−T
(14)

where α±
n = [A±

1,n, . . . ,A
±
n,n] and

A (
z,α±

n

) = i −
n∑

i=1

A±
i,nz

−i .

Similar to the univariate case, the process {y(t)} has a unique autocorrelation
parametrization

Rn = {R0,R1, . . . ,Rn}

where Ri = E[y(t)yT(t − i)], and unique lattice parametrization

Qn = {R0,Q1, . . . ,Qn}
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where Qi , i = 1, . . . , n, denote the matrices of normalized partial autocorrelation
(reflection) coefficients.

Noncausal identification of a multivariate AR process can be carried out in an
analogous way to that described in section“Noncausal Lattice Algorithm”. First, at
each time instant t , one can use the multivariate version of the EWLMF algorithm to
evaluate thematrices of forward-time and backward-time normalized reflection coef-
ficients Q̃±

i |k(t ± 1), i = 1, . . . , N , k ∈ K. Then, for all selections of n and π, one can

evaluate the two-sided parametrizations R̃n|π(t), n ∈ N ,π ∈ Π and, after solving
the corresponding Yule-Walker equations—the two-sided direct parametrizations

P±
n|π(t) = {̃ρ±

n|π(t), Ã
±
1,n|π(t), . . . , Ã±

n,n|π(t)}.

Finally, the best local combination of n and π can be selected using the decision rule
(11) after adopting

Jn|π(t) = det
[
En|π(t)

]
(15)

En|π(t) =
M∑

i=−M

ε−
n|π(t − i)[ε−

n|π(t − i)]T +
M∑

i=−M

ε+
n|π(t − i)[ε+

n|π(t − i)]T

where

ε±
n|π(t) = y(t) −

n∑

i=1

Ã±
i,n|π(t)y(t ± i).

Note that (15) is a natural extension of the univariate statistic (12). Another option
(computationally less demanding) is choosing Jn|π(t) in the form

Jn|π(t) = tr
[
En|π(t)

]
. (16)

Once the quantities n̂(t) and π̂(t) are established, the estimate of the instantaneous
spectral density matrix can be obtained in the form

S̃ n̂(t)|̂π(t)(ω, t) =
{
A

[
e− jω, α̃±

n̂(t)|̂π(t)(t)
]}−1

ρ̃±
n̂(t)|̂π(t)(t)×

×
{
A

[
e jω, α̃±

n̂(t)|̂π(t)(t)
]}−T

(17)

where
α̃±

n|π(t) = [Ã±
1,n|π(t), . . . , Ã

±
n,n|π(t)].
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Simulation Results

To verify the proposed order and estimation memory selection rule, a nonstationary
variable-order autoregressive process was generated. Process generation was based
on four time-invariant AR anchor models M1, M2, M3 and M4, of orders 2, 4, 6 and
8, respectively. The characteristic polynomial Ai (z) of the model Mi had i pairs of
complex conjugate zeros, given by z±

k = 0.995e± jkπ/5, k = 1, . . . , i . Two simulation
scenarios were considered, incorporating either smooth parameter changes (scenario
A) or abrupt parameter changes (scenario B).

In the first case, depicted in Fig. 1, the generated signal {y(t), t = 1, . . . , T0} had
stationaryperiods, duringwhich itwas governedby anchormodels, andnonstationary
periods,when the generatingmodelwas obtained bymorphing one anchormodel into
another one. Transition from Mi−1 to Mi was realized by moving, with a constant
speed, the i-th pair of complex conjugate zeros from their initial zero positions

Fig. 1 Trajectories of zeros
of the characteristic
polynomial (top figure),
simulation scenario A
corresponding to smooth
parameter variation (middle
figure), and the
corresponding time-varying
spectral density function
(bottom figure)
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Fig. 2 Simulation scenario B corresponding to abrupt parameter changes (top figure), and the
corresponding time-varying spectral density function (bottom figure)

towards the unit circle—see Fig. 1. The simulation scenario is symbolically depicted
in Fig. 1. Note that according to this scenario the order of the generating model was
gradually increased from two to eight.

In the second case, illustrated in Fig. 2, the model Mi−1 was instantaneously
switched to Mi . In this case the order of the model was gradually decreased from
eight to two.

The adopted value of T0 was equal to 5000 and the breakpoints, marked with
bullets in Figs. 1 and 2, had the following time coordinates: t1 = 1000, t2 = 1500,
t3 = 2500, t4 = 3000, t5 = 4000, t6 = 4500 (for type-A changes), and t7 = 1250,
t8 = 2750, t9 = 4250 (for type-B changes). The parallel estimation schemewasmade
up of 4 E2WLMF algorithms combining results yielded by K = 3 forward/back-
ward EWLMF trackers equipped with forgetting constants λ1 = 0.95, λ2 = 0.99
and λ3 = 0.995. The four combinations of forward/backward forgetting constants
were: (0.99, 0.99), (0.995, 0.995), (0.995, 0.95), and (0.95, 0.995),which corresponds
to π1 = (2, 2), π2 = (3, 3), π3 = (3, 1) and π4 = (1, 3), respectively. The parameter
M , which determines the width of the local decision window, was set to 50.

Two measures of fit were used to evaluate identification results: the mean squared
parameter tracking error and the Itakura-Saito spectral distortion measure, both aver-
aged over t ∈ [1, T0] and 100 independent realizations of {y(t)}. Table 1 com-
pares results yielded by three unidirectional (λ1, . . . ,λ3) and four bidirectional
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Table 1 Averaged Itakura-Saito distortion measures (left tables) and mean square parameter esti-
mation errors (right tables) in two cases described in the text.

Smooth parameter variation

n/N λ1 λ2 λ3 π1 π2 π3 π4 Adaptive

1 4,600 4,266 4,199 4,185 4,131 4,193 4,170 4,155

2 3,183 2,751 2,796 2,551 2,552 2,697 2,644 2,603

3 3,093 2,619 2,660 2,398 2,397 2,559 2,488 2,446

4 2,092 1,536 1,616 1,318 1,358 1,482 1,483 1,357

5 2,169 1,536 1,611 1,298 1,333 1,472 1,464 1,338

6 1,118 0,577 0,711 0,452 0,586 0,563 0,726 0,437

7 1,180 0,583 0,697 0,416 0,519 0,558 0,629 0,415

8 0,775 0,144 0,208 0,070 0,163 0,126 0,239 0,067
9 0,848 0,147 0,187 0,071 0,146 0,117 0,206 0,068
10 0,925 0,154 0,189 0,072 0,134 0,120 0,192 0,068
11 1,006 0,160 0,191 0,073 0,125 0,122 0,183 0,069
12 1,093 0,167 0,194 0,075 0,121 0,124 0,180 0,069
13 1,187 0,174 0,196 0,077 0,120 0,126 0,182 0,069
14 1,301 0,181 0,198 0,077 0,116 0,129 0,179 0,069
15 1,413 0,190 0,204 0,080 0,114 0,132 0,178 0,070
16 1,547 0,198 0,208 0,082 0,112 0,135 0,178 0,070
17 1,674 0,206 0,213 0,084 0,111 0,138 0,179 0,071
18 1,821 0,214 0,218 0,086 0,112 0,142 0,182 0,071
19 1,952 0,221 0,222 0,088 0,111 0,145 0,183 0,071
20 2,095 0,231 0,227 0,091 0,111 0,148 0,185 0,072

n/N λ1 λ2 λ3 π1 π2 π3 π4 Adaptive

1 12,027 11,986 11,956 12,002 11,992 11,959 12,049 12,010

2 8,673 8,623 8,577 8,679 8,685 8,587 8,789 8,681

3 6,504 6,386 6,339 6,418 6,444 6,339 6,615 6,484

4 3,015 2,897 2,839 3,011 3,291 2,829 3,729 2,984

5 2,628 2,460 2,566 2,315 2,517 2,514 2,720 2,402

6 1,106 1,026 1,282 0,593 0,863 1,156 1,113 0,815

7 1,083 0,547 0,675 0,723 2,412 0,596 2,970 0,478

8 1,102 0,348 0,441 0,369 1,522 0,352 2,125 0,236
9 1,392 0,425 0,523 0,389 1,284 0,436 1,718 0,252
10 1,688 0,485 0,552 0,444 1,347 0,464 1,749 0,266
11 2,014 0,551 0,578 0,497 1,449 0,486 1,852 0,278
12 2,340 0,628 0,618 0,560 1,680 0,523 2,135 0,294
13 2,613 0,690 0,646 0,549 1,560 0,546 2,067 0,298
14 2,947 0,761 0,682 0,557 1,377 0,580 1,910 0,305
15 3,197 0,827 0,716 0,579 1,275 0,613 1,801 0,312
16 3,614 0,904 0,756 0,615 1,245 0,646 1,778 0,322
17 3,887 0,962 0,784 0,653 1,306 0,672 1,855 0,328
18 4,184 1,026 0,816 0,673 1,302 0,702 1,868 0,333
19 4,475 1,085 0,847 0,691 1,259 0,731 1,841 0,339
20 4,805 1,160 0,885 0,723 1,223 0,766 1,820 0,345

Abrupt parameter changes

n/N λ1 λ2 λ3 π1 π2 π3 π4 Adaptive

1 4.164 4.116 4.414 4.095 4.053 4.105 4.096 4.082

2 3.206 3.215 3.680 3.050 3.049 3.185 3.097 3.052

3 3.078 3.075 3.621 2.915 2.905 3.044 2.966 2.909

4 1.993 2.071 2.597 1.187 1.872 2.035 1.865 1.762

5 1.989 2.044 2.708 1.796 1.836 2.004 1.851 1.748

6 1.116 1.299 1.699 0.946 1.098 1.264 0.939 0.809

7 1.072 1.179 1.841 0.908 1.004 1.144 0.926 0.818

8 0.281 0.372 0.870 0.180 0.298 0.359 0.184 0.082
9 0.218 0.300 0.940 0.154 0.241 0.288 0.148 0.076
10 0.209 0.270 1.014 0.143 0.212 0.258 0.144 0.074
11 0.207 0.255 1.103 0.138 0.195 0.242 0.145 0.074
12 0.210 0.250 1.191 0.137 0.188 0.237 0.148 0.075
13 0.216 0.253 1.283 0.139 0.188 0.239 0.151 0.075
14 0.220 0.251 1.401 0.139 0.184 0.236 0.153 0.075
15 0.225 0.251 1.511 0.140 0.181 0.235 0.156 0.076
16 0.230 0.251 1.656 0.141 0.179 0.234 0.160 0.076
17 0.236 0.251 1.785 0.142 0.177 0.235 0.164 0.077
18 0.243 0.254 1.962 0.144 0.178 0.238 0.167 0.077
19 0.249 0.256 2.098 0.146 0.178 0.239 0.170 0.077
20 0.255 0.259 2.242 0.148 0.178 0.241 0.174 0.078

n/N λ1 λ2 λ3 π1 π2 π3 π4 Adaptive

1 13.808 13.828 13.806 13.764 13.754 13.819 13.718 13.771

2 10.619 10.684 10.571 10.542 10.546 10.667 10.446 10.554

3 8.346 8.549 8.246 8.189 8.271 8.512 8.011 8.203

4 4.934 5.732 4.306 4.589 5.084 5.649 3.959 4.205

5 3.729 4.371 3.420 3.497 3.969 4.283 3.320 4.205

6 1.620 2.658 1.082 1.248 1.966 2.537 0.872 0.620

7 3.175 5.830 1.718 2.739 4.927 5.693 1.110 0.772

8 2.175 4.048 1.428 1.732 3.247 3.984 0.514 0.274
9 1.785 3.114 1.677 1.385 2.505 3.013 0.629 0.280
10 1.829 3.125 2.005 1.411 2.501 3.013 0.713 0.298
11 1.973 3.285 2.402 1.505 2.646 3.164 0.768 0.313
12 2.259 3.971 2.779 1.745 3.126 3.692 0.836 0.328
13 2.327 3.792 3.110 1.770 3.081 3.698 0.866 0.341
14 2.244 3.453 3.477 1.645 2.720 3.365 0.884 0.352
15 2.191 3.215 3.716 1.561 2.469 3.099 0.947 0.358
16 2.219 3.120 4.175 1.547 2.370 2.984 0.937 0.370
17 2.303 3.218 4.451 1.602 2.456 3.089 0.947 0.380
18 2.379 3.260 4.781 1.640 2.475 3.121 1.009 0.387
19 2.419 3.221 5.112 1.644 2.417 3.082 1.039 0.393
20 2.467 3.185 5.459 1.654 2.359 3.044 1.070 0.399

(π1, . . . ,π4) lattice algorithms (for different values of n), with the results yielded
by the proposed adaptive scheme (for different values of N ). Note that when the
model order is not underestimated (n, N ≥ 8) the algorithm with adaptive order and
memory assignment provides results that are uniformly the best, irrespective of the
choice of N .

Our second example shows the result of application of the proposed approach to
analysis of a real signal. Fig. 3 shows the plots of five fragments of a speech signal
(sampled at the rate of 22.05 kHz) and the corresponding estimates of the time-
varying spectrum obtained using the parallel estimation scheme described above
(with the same settings).
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Fig. 3 Five fragments of a speech signal (left figures) and the estimated time-varying spectra (right
figures)
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Conclusion

A new noncausal (bidirectional) lattice filtering algorithm was designed for off-line
identification of nonstationary autoregressive processes and an adaptive mechanism
was proposed for dynamic selection of the number of estimated coefficients and the
most appropriate estimationmemory,matching the degree of process nonstationarity.
It was shown that the proposed adaptive parallel estimation scheme outperforms the
fixed-order fixed-memory algorithms it is made up of.
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Normalized Entropy Aggregation
for Inhomogeneous Large-Scale Data
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Abstract It was already in the fifties of the last century that the relationship between
information theory, statistics and maximum entropy was established, following the
works of Kullback, Leibler, Lindley and Jaynes. However, the applications were
restricted to very specific domains and it was not until recently that the convergence
between information processing, data analysis and inference demanded the founda-
tion of a new scientific area, commonly referred to as Info-Metrics [1, 2]. As a huge
amount of information and large-scale data have become available, the term “big
data” has been used to refer to the many kinds of challenges presented in its analy-
sis: many observations, many variables (or both), limited computational resources,
different time regimes or multiple sources. In this work, we consider one particular
aspect of big data analysis which is the presence of inhomogeneities, compromis-
ing the use of the classical framework in regression modelling. A new approach is
proposed, based on the introduction of the concepts of info-metrics to the analysis
of inhomogeneous large-scale data. The framework of information-theoretic estima-
tion methods is presented, along with some information measures. In particular, the
normalized entropy is tested in aggregation procedures and some simulation results
are presented.
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Introduction

Inference and processing of limited information are still one of the most fascinat-
ing universal problems. As stated by Golan [2], a very recent publication, “[...]
the available information is most often insufficient to provide a unique answer or
solution for most interesting decisions or inferences we wish to make. In fact, insuf-
ficient information—including limited, incomplete, complex, noisy and uncertain
information—is the norm for most problems across all disciplines.” Also, regardless
of the system or question studied, any researcher observes only a certain amount of
information or evidence and optimal inferencemust take into account the relationship
between the observable and the unobservable, [3].

Info-Metrics is a constrained optimization framework for information processing,
modelling and inferencewith finite, noisy or incomplete information. It is at the inter-
section of information theory, statistical methods of inference, applied mathematics,
computer science, econometrics, complexity theory, decision analysis, modelling
and the philosophy of science, [2].

As Info-Metrics generalizes the Maximum Entropy (ME) principle by Jaynes
[4, 5], which in turn relies on the maximization of Shannon’s entropy, the notions
of information, uncertainty and entropy are fundamental to the understanding of the
methodologies involved. Each scientist and discipline have their own interpretation
and definition of information within the context of their research and understanding
but, in the context of Info-Metrics, it refers to the meaningful content of data, it’s
context and interpretation and how to transfer data from one entity to another. As
for uncertainty, it arises from a proposition or a set of possible outcomes where
none of the choices or outcomes is known with certainty (a proposition is uncertain
if it is consistent with knowledge but not implied by knowledge). Therefore, these
outcomes are represented by a certain probability distribution. The more uniform the
distribution, the higher the uncertainty that is associated with this set of propositions
or outcomes. Finally, the concept of entropy reflects what, on average, we expect to
learn from observations and it depends on howwemeasure information. Technically,
entropy is a measure of uncertainty of a single random variable. As such, entropy
can be viewed as a measure of uniformity.

For a brief discussion of entropy, let us consider the set A = {a1, a2, . . . , aK }
to be a finite set and p a proper probability mass function on A. The amount of
information needed to fully characterize all of the elements of this set consisting of
K discrete elements is defined by theHartley’s formula, I (AK ) = log2 K . Shannon’s
information content of an outcomeak is h(ak) = h(pk) ≡ log2

1
pk
. Shannon’s entropy

reflects the expected information content of an outcome and is defined as

H( p) ≡
K∑

k=1

pk log2
1

pk
= −

K∑

k=1

pk log2 pk = E

[
log2

(
1

p(X)

)]
, (1)

for the random variable X . This information criterion, expressed in bits, measures the
uncertainty of X that is implied by p. The entropymeasure H( p) reaches amaximum
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when p1 = p2 = · · · = pK = 1
K and a minimum with a point mass function. The

entropy H( p) is a function of the probability distribution p and not a function of the
actual values taken by the random variable.

The remainder of the paper is laid out as follows: in section “Generalized
MaximumEntropyEstimator”,maximumentropy andgeneralizedmaximumentropy
estimation are briefly discussed. Section “Large-Scale Data and Aggregation” illus-
trates some traditional aggregation procedures and a new proposal based on normal-
ized entropy. Section “Simulation Study” presents simulation results. Some conclu-
sions and topics for future research are given in section “Concluding Remarks”.

Generalized Maximum Entropy Estimator

The ME principle was discussed by Golan et al. [6], in order to develop analytical
and empirical methods for recovering the unobservable parameters of a pure linear
inverse problem. Considering then

y = Xp, (2)

where y is the vector (N × 1) of observations, X is a non-invertible matrix (N × K )
with N < K , and p is the vector (K × 1) of unknown probabilities, theME principle
consists in choosing p that maximizes Shannon’s entropy

H( p) = −
K∑

k=1

pk ln pk = − p′ ln p, (3)

subject to the data consistency restriction, y = Xp, and the additivity restriction,
p′1 = 1. Formally, the ME estimator is given by

argmax
p

{− p′ ln p
}
, (4)

subject to the model consistency and additivity constraints,

{
y = Xp
1′ p = 1

. (5)

There is no closed-form analytical solution, but a numerical approximation can be
obtained using the Lagrange multipliers. It can be said that the Jaynes maximum
entropy formalism has enabled us to solve the pure inverse problem with this opti-
mization (maximization) procedure, regarding it as an inference problem. The ME
principle is the basis for transforming the information in the data into a probabilistic
distribution that reflects our uncertainty about individual outcomes.

To extend the ME estimator to the linear regression model represented by
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y = Xβ + e, (6)

where, as usually, y denotes a (N × 1) vector of noisy observations, β is a
(K × 1) vector of unknown parameters, X is a known (N × K ) matrix of explana-
tory variables, and e is the (N × 1) vector of random disturbances (errors), Golan
et al. [6], considered each βk as a discrete random variable with a compact support
and M ≥ 2 possible outcomes and each en as a finite and discrete random variable
with J ≥ 2 possible outcomes. The error vector is considered here as another vector
of unknown parameters to be estimated simultaneously with the vector β. In this
context, the linear regression model is represented as

y = XZp + Vw, (7)

where

β = Zp =

⎡

⎢⎢⎢⎣

z′
1 0 . . . 0
0 z′

2 . . . 0
...

...
. . .

...

0 0 . . . z′
K

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

p1
p2
...

pK

⎤

⎥⎥⎥⎦ , (8)

and

e = Vw =

⎡

⎢⎢⎢⎣

v′
1 0 . . . 0
0 v′

2 . . . 0
...

...
. . .

...

0 0 . . . v′
N

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

w1

w2
...

wN

⎤

⎥⎥⎥⎦ . (9)

Matrices Z (K × KM) and V (N × N J ) are the matrices of support values and
vectors p (KM × 1) and w (N J × 1) are the vectors of unknown probabilities to
be estimated. Note that each βk , k = 1, 2, . . . , K , and each en , n = 1, 2, . . . , N ,
are viewed as expected values of discrete random variables zk and vn , respectively,
with M ≥ 2 and J ≥ 2 possible outcomes, within the lower and upper bounds of
the corresponding support spaces. Thus, the generalized maximum entropy (GME)
estimator is given by

argmax
p,w

{− p′ ln p − w′ lnw
}
, (10)

subject to the consistency (with the model) and additivity (for p and w) constraints,

⎧
⎨

⎩

y = XZp + Vw,

1K = (IK ⊗ 1′
M) p,

1N = (I N ⊗ 1′
J )w,

(11)

where ⊗ represents the Kronecker product. The optimal probability vectors, p̂ and
ŵ, are used to obtain point estimates of the unknown parameters and the unknown
errors with β̂ = Z p̂ and ê = V ŵ. Some properties of the GME estimator, such
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as consistency and asymptotic normality, are discussed in detail, for example, in
Mittelhammer et al. [7].

Large-Scale Data and Aggregation

Large-scale data or big data usually refers to datasets that are large in different
ways: many observations, many variables (or both); observations are recorded in
different time regimes or are taken from multiple sources. Some difficult issues arise
in dealing with this kind of data like, for instance, retaining optimal (or, at least,
reasonably good) statistical properties with a computationally efficient analysis; or
dealing with inhomogeneous data that does not fit in the classical framework: data is
neither i.i.d. (exhibiting outliers or not belonging to same distribution) nor stationary
(time-varying effects may be present).

Standard statistical models (linear or generalized linear models for regression or
classification) fail to capture inhomogeneity structure in data, compromising estima-
tion and interpretation of model parameters, and, of course, prediction. On the other
hand, statistical approaches for dealing with inhomogeneous data (such as varying-
coefficient models, mixed effects models, mixture models or clusterwise regression
models) are typically very computationally cumbersome.

Ignoring heterogeneity in data, computational burden can be addressed with the
following procedure, [8]: firstly, construct g groups from the large-scale data (groups
may be overlapping and may not cover all observations in the sample); then, for each
group compute an estimator, β̂g , through standard techniques (e.g., OLS, ridge or
LASSO); finally, considering the ensemble of estimators, aggregate them into a single
estimator, β̂.

Traditional Aggregation Procedures

Several aggregation procedures have been already proposed in literature. Three of
them are presented next.

1. Bagging: this procedure results in less computational complexity and even allows
for parallel computing. It simply averages the ensemble estimators with equal
weight to obtain the aggregated estimator, [8, 9]:

β̂ :=
G∑

g=1

wgβ̂g, (12)

where wg = 1
G for all g = 1, 2, . . . ,G. The estimates β̂g are obtained from

bootstrap samples, where the groups are sampled with replacement from the
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whole data. It is a simple procedure and the weights do not depend on the
response y, but it is not suitable for inhomogeneous data.

2. Stacking: instead of assigning a uniform weight to each estimator, [10, 11]
proposed the aggregated estimator

β̂ :=
G∑

g=1

wgβ̂g, (13)

where

w := argmin
w∈W

∥∥∥∥∥∥
y −

G∑

g=1

wg ŷg

∥∥∥∥∥∥
2

, (14)

and, using a ridge constraint, W = {w : ‖w‖ ≤ s}, for some s > 0, or using a
sign constraint, W = {w : min

g
wg ≥ 0}, or using a convex constraint,

W = {w : min
g

wg ≥ 0 and
∑G

g=1 wg = 1}. The idea is to find the optimal lin-

ear or convex combination of all ensemble estimators, but it is also not suitable
for inhomogeneous data.

3. Magging: corresponds tomaximizing theminimally “explainedvariance” among
all data groups, [8], such that

β̂ :=
G∑

g=1

wgβ̂g, (15)

where

w := argmin
w∈W

∥∥∥∥∥∥

G∑

g=1

wg ŷg

∥∥∥∥∥∥
2

, (16)

and W = {w : min
g

wg ≥ 0 and
∑G

g=1 wg = 1}. The idea is to choose the

weights as a convex combination to minimize the ‖ · ‖2 of the fitted values,
ŷ. If the solution is not unique, it is considered the solution with lowest ‖ · ‖2
of the weight vector among all solutions. This procedure was the first that we
are aware of that was proposed for heterogeneous data. The main idea is that
if an effect is common across all groups, then it cannot be “averaged away” by
searching for a specific combination of the weights. The common effects will
be present in all groups and will be retained even after the minimization of the
aggregation scheme.

We believe the question as to whether the effects are really common across all
groups may not be answered straightforwardly. If the groups carry information about
the whole dataset and there are inhomogeneities, why should we consider that, with
random sub-sampling, all groups are equally informative?
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These considerations led us to the idea of choosing the groups according to their
“information content”.

Proposed Aggregation Procedure

Tomeasure the information content in a system and to measure the importance of the
contribution of each piece of data or constraint in reducing uncertainty, Golan et al.
[6], stated that, in the ME formulation, the maximum level of entropy-uncertainty
results when the information-moment constraints are not enforced and the distribu-
tion of probabilities over the K states is uniform. As each piece of effective data is
added, there is a departure from the uniform distribution, which implies a reduction
of uncertainty. The proportion of the remaining total uncertainty is measured by the
normalized entropy (NE),

S( p̂) = −
∑

k p̂k ln p̂k
ln(K )

, (17)

where S( p̂) ∈ [0, 1] and ln(K ) representsmaximumuncertainty (the entropy level of
the uniform distribution with K outcomes). A value S( p̂) = 0 implies no uncertainty
and a value S( p̂) = 1 implies perfect uncertainty. Related to the normalized entropy,
the information index (II) is defined as 1 − S( p̂) and measures the reduction in
uncertainty.

In this work, we propose a new aggregation scheme that is based on identifying
the information content of a given group through the calculation of the normalized
entropy. The proposed NE aggregated estimator is then

β̂ :=
G∑

g=1

wgβ̂g, (18)

where wg is defined by normalized entropy using GME,

S( p̂)g = − p̂′ ln p̂
K lnM

, (19)

for the signal, Xβ, such that
∑G

g=1 wg = 1. This aggregation procedure is a weighted
average of the collection of regression coefficient estimates as in Bagging, Stacking
and Magging. The idea is almost as simple as Bagging and it is expected to provide
similar results if the data is homogeneous. However, since the weights in (18) will
depend on the information content of each group according to (19), or some function
of it, the weights will be, in general, non-uniform (as in Stacking and Magging) if
the data is inhomogeneous.
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Following section reports some simulated situations for which the NE aggregated
estimatorwas calculated and compared to the aggregated estimator basedonBagging.

Simulation Study

A linear regression model was considered, where X is the simulated matrix of
explanatory variables, drawn randomly from normal distributions; β is a vector of
parameters, e is the vector of random disturbances, drawn randomly from normal dis-
tributions and y is the constructed vector of noisy observations. For this simulation,
β was considered as

β = [1.8, 1.2, −1.4, 1.6, −1.8, 2.0, −2.0, 0.2, −0.4, 0.6, 0.8].
(20)

Necessary reparameterizations were done considering M = 5 and J = 3 and dif-
ferent matrices Z containing the supports for the parameters. The support matrix
V containing the supports for the errors was set considering symmetric and zero-
centred supports using the three-sigma rule with the empirical standard deviation of
the noisy observations.

Simulations were done considering X a (20000 × 11) matrix; β a (11 × 1) vec-
tor; e a (20000 × 1) vector and y a (20000 × 1) vector. The error distribution was
considered to be normal, with mean value zero and standard deviation five. Sev-
eral matrices X of explanatory variables were simulated, corresponding to different
condition numbers (c.n.).1 Random sub-sampling with replacement was done con-
sidering different number of groups and 50 observations per group. The Euclidean
norm of the difference between the aggregated estimator β̂ and the true parameter β,
‖β̂ − β‖2, is calculated for each simulated case and the results are given in Tables
1, 2, 3, 4 and 5. For each case, three different solutions are presented, namely,

1. NE1: the chosen β̂ corresponds to the GME estimate for the group with lower
normalized entropy, (NE). This solution does not correspond, in fact, to an aggre-
gated estimator; it corresponds to a chosen estimate amongst all groups;

2. NE2: the chosen β̂ corresponds to the weighted average of the GME estimates
of all groups, weighted by the information index, II, where II = 1−NE;

3. Bgg: the β̂ chosen corresponds to Bagging (average of the OLS estimates of all
groups).2

The present results are intended to highlight the overall tendencieswe encountered
in the simulation study. Many other situations were simulated, with many different
matrices of explanatory variables, X , corresponding to a wide range of variation
regarding the matrix condition number, which, as is well known, is related to the

1Ratio of the largest singular value of X , with the smallest singular value.
2It is not considered here the case of a single learning set, as in [9], and the need to take repeated
bootstrap samples from it.
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Table 1 Euclidean norm of the difference β̂ − β, with zk = [−10, 10]
n.g. Solution c.n. = 1337

5 NE1 4.26

NE2 4.18

Bgg 181.23

Table 2 Euclidean norm of the difference β̂ − β, with zk = [−10, 10]
n.g. Solution c.n. = 43030

5 NE1 4.22

NE2 4.25

Bgg 1432.59

Table 3 Euclidean norm of the difference β̂ − β, with zk = [−10, 10]
n.g. Solution c.n. = 1337

5 NE1 4.26

NE2 4.18

Bgg 181.23

10 NE1 4.47

NE2 4.31

Bgg 171.22

50 NE1 4.45

NE2 4.30

Bgg 49.36

100 NE1 5.48

NE2 4.34

Bgg 38.74

Table 4 Euclidean norm of the difference β̂ − β, with zk = [−100, 100]
n.g. Solution c.n. = 1337

5 NE1 32.31

NE2 10.17

Bgg 214.56

Table 5 Euclidean norm of the difference β̂ − β, with zk = [−100, 100]
n.g. Solution c.n. = 1337 c.n. = 43030

5 NE1 32.31 35.54

NE2 10.17 15.59

Bgg 214.56 5440.47
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presence of collinearity3 in the explanatory variables. In this paper, only two extreme
cases were chosen to be presented, the first one corresponding to a relatively small
condition number (c.n. around 1300) and the second one corresponding to a much
higher condition number (c.n. around 43000).

It can be concluded that, for both cases, ‖β̂ − β‖2 is much lower for any of the
normalized entropy methodologies, when compared to Bagging, as can be seen from
any of the Tables 1, 2, 3, 4 and 5.

Comparing Tables 1 and 2, same number of groups (n.g.=5) and same support
vectors for the parameters (zk = [−10, 10]) were considered. The higher condition
number in Table 2 results in a much higher ‖β̂ − β‖2 for the Bagging procedure,
whereas the normalized entropy methodologies behave in the same way as with the
much lower condition number, revealing that the presence of collinearity does not
seem to compromise the results provided by the normalized entropy aggregation
procedures. Since the GME estimator is appropriate in the estimation of ill-posed
models, including models with ill-conditioned design matrices, these results are not
surprising.

Considering Table 3, the analysis was done changing the number of groups in the
aggregation. The Bagging procedure tends to provide better results in terms of lower
‖β̂ − β‖2, as the number of groups rises. This observation does not come as a surprise
due to sampling and inferential statistics theory. The normalized entropy methodolo-
gies do not seem to follow this behaviour, as the ‖β̂ − β‖2 remains approximately
constant as the number of groups gets higher. This may be considered an advantage
of this aggregation procedure, since there is no need for bigger data sets (and conse-
quent higher computational burden) in order to have comparable results in terms of
precision.

Finally, Tables 4 and 5 refer to the effect of changing the amplitude of the support
vectors, zk . It can be seen that as the support vector zk changes from [−10, 10],
in Table 1, to [−100, 100], in Table 4, all aggregation procedures provide worse
results in terms of ‖β̂ − β‖2. Widening the amplitude of the support vectors results
in a less informative probability distribution for the parameters, which should lead
to a smaller departure from total uncertainty as compared to the situation where
the support vectors are less wide. It is expected, then, that the normalized entropy
methodologies provide better results when the amplitude of the support vectors are
smaller. The results of the simulation study are in agreement with this interpretation.
Nevertheless, when the same analysis is done considering a matrix of explanatory
variables X , with higher condition number, as presented in Table 5, even though the
normalized entropy methodologies provide worse results, as already discussed, the
Bagging procedure provides even worse results: while ‖β̂ − β‖2 changes from 4.25
to 15.59 for the information index weighted average of the GME estimates (solution
NE2), the corresponding change for the Bagging procedure is from 1432.59 (which
is already a very poor value concerning the precision of the estimates) to 5440.47.

3The concept is not used here in a literal sense. A discussion about similar notions of this concept
is available in Belsley et al. [12, pp. 85–98].
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Concluding Remarks

The idea of an aggregation procedure based on normalized entropy is promising as
it is clear from the simulation study that this approach provides very satisfactory
solutions. The normalized entropy methodologies, in particular, the aggregation pro-
cedure based on the weighting of the groups by the information index, always results
in a ‖β̂ − β‖2 much lower than the one obtained with Bagging. This discrepancy
tends to aggravate in the presence of high collinearity, as that is the case when the
explanatory variables matrices, X , have high condition numbers. On the other hand,
the use of more groups in the aggregation scheme does not seem to improve the over-
all quality of the estimates obtained through the normalized entropy methodologies,
what turns out to be an advantage towards this procedure. These observations sug-
gest that a further and thorough simulation analysis with different error structures
or severe inhomogeneities may reveal substantial differences between normalized
entropy aggregation schemes and Bagging, eventually penalizing the second. These
analysis will be conducted in futurework, alongwith investigation of other scenarios,
such as the detection of zero coefficients, non-normal regressors and other violations
of the classical framework. Also, the comparison with Magging is a very important
analysis that remains to be explored.
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Modified Granger Causality in Selected
Neighborhoods

Martina Chvosteková

Abstract AlthoughGranger causality is a widely used technique to detect the causal
relationship between time series, its direct application for nonlinearly modeled data
is not appropriate. There have been proposed several extensions to nonlinear cases,
but there is no method appropriate for detecting relations between time series in
general. We present a new measure for evaluation of a causal effect between two
time series, which is calculated on the selected local approximations of time-delay
embedding reconstruction of state space by a linear regression model. The novel
causal measure, called the modified Granger causality in selected neighborhoods
(MGCiSN), reflects the proportion of the explained variation of the modeled variable
by the past of the second variable only. The proposed procedure for evaluating the
direct causal link between two nonlinearly modeled time series is applied to four
data sets with different known nonlinear causal structures. Our experimental results
support that the MGCiSN correctly detects underlying causal relationship in many
cases and does not detect false causality, regardless of the number of samples.

Keywords Granger causality · Time-delay embedding reconstruction · Linear
regression model · Prediction error

Introduction

Assessing the presence of directional interactions between simultaneously recor-
ded variables is an essential issue in diverse areas including finance, neuroscience,
sociology, and others. The Granger causality [7] has become the most popular tool to
identify relationship between two time series corresponding to the recorded variables
due to its computational simplicity. A variable X is said to Granger-cause another
variable Y if the prediction error of Y in a linear regression model including its own
past values and the past values of X as predictors is less (in some suitable sense)
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than the prediction error of Y in a linear regression model including only its own past
values. X Granger-causes Y means that the variable X was found to be helpful for
forecasting variable Y . So, the notation of Granger causality implies predictability
and precedence, but it does not imply true causality. Note that the detection approach
can be theoretically used also for time series actually not generated by a linear
regression model [1]. The most important issue for using the Granger causality
analysis is verification that the time series data can be modeled by a stochastic
linear regressive scheme. If the model assumption is not satisfied, the result of the
commonly used F-test (or Wald test) for Granger causality is not approved.

Extensions of the Granger causality to nonlinear cases have been explored, e.g.,
in [2, 12, 13]. Also, the causality detection methods that do not directly follow the
traditional Granger causality methodology have been proposed, e.g., [10, 15, 16].
The results from recently published rigorous comparison study of various causality
detection methods indicate that the most methods have extremely low specificity
(they produce false detection of causality) and there is no rule how to choose the
appropriate method for particular data. Furthermore, extensive computations and no
straightforward interpretation of the numeric results decrease the usefulness of some
of these procedures. It can be concluded that identifying a causal relationship among
simultaneously acquired processes is still not a satisfactorily closed issue, even for
the bivariate case.

In this work, we present a newmethod for quantifying the causal structure for non-
linearly modeled bivariate time series. The proposed procedure, called the modified
Granger causality in selected neighborhoods (MGCiSN), is based on a local approx-
imation of the reconstructed dynamics by a linear regression model. The causality
detection methods developed on a similar approach have appeared in [2, 6]. The
presented procedure differs from the mentioned methods in the way how the local
neighborhoods are selected and the most important difference is in using variable for
exploring the relationship between time series. In our procedure, the direct causal
influence of X on Y is evaluated by determining the proportion of predicted variation
of the variable Y by the past of the variable X only. These proportions are calcu-
lated only on those local neighborhoods, where the linear regression model fits the
reconstructed joint dynamics. The goodness of fit in neighborhoods is assessed by
the coefficient of determination, R-squared (R2). Finally, the MGCiSN is obtained
as the average of these proportions from suitable neighborhoods over the attractor.

We examined the suggested measure on numerical nonlinear time series with
known nonlinear asymmetric dependencies. Four artificially generated data sets were
analyzed: unidirectionally coupled nonidentical two Hénon maps, bidirectionally
coupled nonidentical two Hénon maps, and two systems composed of unidirection-
ally different nonlinear coupled chaotic maps.
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Methodology

Consider two variables X and Y , represented by the stationary time series x and
y, respectively. The classical Granger causality starts with fitting the time series by
a bivariate autoregressive model (V AR(p)), where the Akaike information crite-
rion (AIC) or the Schwartz Bayesian information criterion (BIC) is usually used to
determine the order p. In this study, the number of predictors, which are included
in the modeling, are chosen by employing Takens’ time-delay embedding [17]. The
state spaces ˜X corresponding to the time series x is reconstructed by the following
time-delayed embedding vector

xmx ,τx (t) = (x(t), x(t − τx ), . . . , x(t − (mx − 1)τx ))
T , (1)

where mx is the embedding dimension and τx is the time delay. Similarly, the time-
delayed embedding vector reconstructing the state space ˜Y of time series y is defined
as

ymy ,τy (t) = (y(t), y(t − τy), . . . , y(t − (my − 1)τy))
T . (2)

The most common practice to determine the reconstruction parameters is to take the
delay as the first minimum of the mutual information between the delayed compo-
nents [5] and the embedding dimension is estimated by the false nearest neighbor
technique [8]. For investigating the Granger causality, the time delays must be equal,
therefore we will use τx = τy = τ in the following text. Now, the embedding dimen-
sions mx and my will determine the number of lagged observations of X and Y in a
linear regression model, respectively.

Let us express the delay vector of the joint state space of ˜X and ˜Y as

zmx ,my ,τ (t) = (xmx ,τ (t)T , ymy ,τ (t)T )T , (3)

where zmx ,my ,τ (t) is a point in the (mx + my)-dimensional reconstructed state space
˜Z . It is supposed that the joint dynamics can be locally approximated by a linear map,
written as z(t + τ ) = Az(t) + ε(t), where A is (mx + my) × (mx + my) coefficient
matrix and ε(t) is the error vector. In the next step of our procedure, the neighborhoods
in ˜Z suitable for a local linear approximation are selected.

Selection of Local Neighborhoods

Let zmx ,my ,τ (t[0]) be a point in the joint state space ˜Z and zmx ,my ,τ (t[1]), zmx ,my ,τ (t[2]),
. . . , zmx ,my ,τ (t[k]) be its k-nearest neighbors. For all k + 1 points, fit the full linear
regression models of the following form
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x(t[i] + τ ) = cxy +
mx−1
∑

j=0

a( j)
xx x(t[i] − jτ ) +

my−1
∑

j=0

a( j)
xy y(t[i] − jτ ) + εxy(t[i]), (4)

y(t[i] + τ ) = cyx +
mx−1
∑

j=0

a( j)
yx x(t[i] − jτ ) +

my−1
∑

j=0

a( j)
yy y(t[i] − jτ ) + εyx (t[i]), (5)

where εxy(t), εyx (t) are the prediction error terms and their magnitudes can be eval-
uated by their variances, i.e., var(εxy), var(εyx ). The unknown intercepts cxy , cyx ,
and the unknown coefficients a( j)

xx , a
( j)
xy , a

( j)
yx , a

( j)
yy of the models (4, 5) can be deter-

mined by the least squares technique. Then, for the same k + 1 points, perform fitting
process of the intercept-only models of the following form

x(t[i] + τ ) = x̄ + εx (t[i]), (6)

y(t[i] + τ ) = ȳ + εy(t[i]), (7)

where εx (t[i]), εy(t[i]) are the prediction error terms, x̄ and ȳ is mean of x(t[i])’s and
y(t[i])’s, respectively. Now, we can define the sum of squares

s2xy =
k

∑

i=0

ε̂xy(t[i])2, s2x =
k

∑

i=0

ε̂x (t[i])2, (8)

s2yx =
k

∑

i=0

ε̂yx (t[i])2, s2y =
k

∑

i=0

ε̂y(t[i])2, (9)

where ε̂xy , ε̂yx , ε̂xx , ε̂yy , are determined estimates of error εxy , εyx , εx , εy based on
the fitted models (4, 5, 6, 7).

In classical linear regression analysis, the coefficient of determination, denoted
R2 (R - squared), is often used for evaluating the model fit. The quality of the fitted
full linear regression model (5) in the neighborhood corresponding to zmx ,my ,τ (t[0])
is evaluated via

R2
y/{x,y} = 1 − s2yx/s

2
y . (10)

If R2
y/{x,y} value is greater than a prescribed value, denoted R∗, then the (k + 1)-th

nearest point to zmx ,my ,τ (t[0]), denoted zmx ,my ,τ (t[k+1]), is added to the neighborhood
and R2

y/{x,y} is calculated again. If the new value of R2
y/{x,y} is not smaller than

one from the previous step, then the next nearest point zmx ,my ,τ (t[k+2]) is added to
the neighborhood and the procedure is repeated. The number of points in a suitable
neighborhood for detecting the causal link of X onY increases as long as R2

y/{x,y} does
not decrease. Analogously, the appropriateness of a neighborhood in Z̃ for exploring
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the causal link Y to X is evaluated through the value R2
x/{x,y} = 1 − s2xy/s

2
x . Here we

suggest to use R∗ = 0.95 and k = 30.

Modified Granger Causality Index

The mathematical formulation of the classical Granger causality is based on a linear
regression modeling of stochastic processes. The Granger causality does not imply
true causality, it reflects variable’s prediction ability. The idea behind the Granger
causality is well comprehended. X Granger-causes Y , if the prediction error of y
from a linear regression model including only own past values of y as predictors
(restricted linear regression model) is reduced, in a statistically suitable sense, by
incorporating past values of x as predictors in the linear regression model. The
magnitude of the Granger causality of X on Y can be measured by the log ratio
FX→Y = ln(var(εyy)/var(εyx )), see, e.g., [1], or by the Granger causality index
δX→Y = 1 − var(εyx )/var(εyy) see, e.g., [2], where var(εyy) denotes the prediction
error variance for the restricted model , and var(εyx ) denotes the prediction error
variance for the full linear regression model. Both measures should be null if the past
of x is ineffective to the prediction improvement of y. It is important to note that it
is meaningless to compare nonzero values of FX→Y from another couple of series
since FX→Y is not scaled on a range. TheGranger causality index is amore pragmatic
quantity from this point of view, δX→Y indicates a proportion of the variance of y in
the restricted model, which is not explained by past of y itself and can be explained
by added past of x as predictors to a linear representation of the observed processes.
In general, the Granger causality is focused on improving the prediction error of
modeled variable in a restrictedmodel, but the value of the prediction error alone is out
of interest. It means that if (var(εyy), var(εyx )) = (10, 1) or (var(εyy), var(εyx )) =
(10−4, 10−5), then δX→Y = 0.9 in both cases, i.e., 90% of unexplained variation of
Y by its own past is expressed by implementing the past of X to a representation
of Y and the causal link X to Y is indicated. Consequently, the methods based on
the Granger causality concept fail to detect asymmetric causal dependencies, even
linear, between bivariate time series, the false causality is often detected, see, e.g.,
[9]. The suggested novel causality measure is based on specifying the proportion of
the variation of the modeled variable explained actually by past values of the second
variable in full linear regression model.

The proportion of the explained sumof squares of y by afitted full linear regression
model is known through the value R2

y/{x,y} for a selected suitable neighborhood. In
the next step of our procedure, on the same specified neighborhood, the restricted
linear regression model of the form

y(t[i] + τ ) = cyy +
my−1
∑

j=0

a( j)
y y(t[i] − jτ ) + εyy(t[i]) (11)
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is fitted. The unknown parameters of the model, the intercept cyy and the coefficients
a( j)
y can be estimated by the least squares procedure. The estimates ε̂yy(t[i]) of the

prediction error εyy(t[i]) are used to determine the following sum of squares

s2yy =
k̃

∑

i=0

ε̂yy(t[i])2, (12)

where k̃ + 1 denotes the number of points in the suitable neighborhood. Then, the
proposed measure for quantifying the causal effect of X on Y in a selected suitable
neighborhood, denoted λX→Y , is defined as

λX→Y = λ
′
X→Y

R2
y/{x,y}

= s2yy − s2yx
s2y − s2yx

, where λ
′
X→Y = s2yy − s2yx

s2y
. (13)

A value λ
′
X→Y is a ratio of the explained sum of squares of y from the restricted

model (11) by the full model (5) and the total sum of squares of variable y. Thus,
the value λX→Y indicates the proportion of the variation of the response variable y,
explained by the linear regression model including past of x and y as predictors,
actually predicted by x values only.

The magnitude of the suggested modified Granger causality of X on Y in selected
neighborhoods, denoted ΛX→Y , is the average of the indices λX→Y from all suitable
neighborhoods on the attractor. Here, as the significant presence of the causal influ-
ence of X on Y , aΛX→Y value greater than 0.01 is considered.ΛX→Y ≥ 0.01 means
that more than 1% of the explained variation of y by the full linear regression model
is actually expressed by past of x in the linear representation. In a similar way, the
magnitude of the MGCiSN of Y on X denoted ΛY→X can be defined.

Numerical Experiments

In order to investigate the behavior of the proposed causality measure, we artificially
generated time series from four model systems of nonlinear dynamics with known
nonlinear causal links: three systems composed of unidirectionally coupled chaotic
maps with different types of nonlinear causal effect and one system of bidirectionally
coupled chaotic maps with non-linear causal effect. In all numerical experiments,
the strength of the coupling c varied on a specified range and the MGCiSN was
evaluated on the data sets of N = 10000 and N = 1000 samples for each considered
c value. The time delay for the studied examples was set to τ = 1 and the embedding
dimensions in analyzed systems were set up to mx = my = 2. Note that none of the
data sets is appropriate for the classical Granger causality analysis.
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Unidirectional Nonlinear Coupling I

In the first example, we studied two unidirectionally coupled nonidentical Hénon
maps (see, e.g., [4]):

x(t) = 1.4 − x(t − 1)2 + 0.3x(t − 2), (14)

y(t) = 1.4 − [cx(t − 1)y(t − 1) + (1 − c)y(t − 1)2] + 0.1y(t − 2) (15)

where the strength of the coupling cwas varied from0 to 0.78with increments of 0.06.
By construction, the variable X represented by the time series x has causal influence
on the variable Y represented by the time series y for c �= 0, and the variables X and
Y are not causally connected for c = 0.

Figures 1 and 2 show results of our first experiment.We observe that theMGCiSN
successfully indicates the absence of the causal influence of Y on X , ΛY→X is zero
at all values of c for N = 10000 and N = 1000. The MGCiSN correctly detected
the causal relationship of X on Y at c > 0.06 for both sample sizes, but ΛX→Y is
nonzero at almost all c > 0.

Fig. 1 Unidirectional
coupling I (true causality
X → Y ) at coupling
strengths c =
{0, 0.06, . . . , 0.72, 0.78}.
MGCiSN (Λ) for
N = 10000

coupling c
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Fig. 2 Unidirectional
coupling I (true causality
X → Y ) at coupling
strengths c =
{0, 0.06, . . . , 0.72, 0.78}.
MGCiSN (Λ) for N = 1000
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Unidirectional Nonlinear Coupling II

The next model represents two interacting nonidentical nonlinear time series with a
nonlinear causal effect:

x(t) = 3.4x(t − 1)[1 − x(t − 1)2]e−x(t−1)2 + 0.6x(t − 1), (16)

y(t) = 3.4y(t − 1)[1 − y(t − 1)2]e−y(t−1)2 + 0.3y(t − 2) + cx2(t − 2). (17)

The coupling strength c varied from 0 to 2 with a step of 0.2. By construction, X has
causal influence on Y for c �= 0, and there is no causal connection between X and Y
for c = 0.

Figures 3 and 4 show results of our second experiment. We observe that the
MGCiSN successfully indicates the absence of causal influence of Y on X at any c
for both sample sizes, but ΛY→X is close to chosen significance level 0.01 at c close
to 2 for N = 1000. The MGCiSN correctly detected causal relationship from X to
Y at c > 0.04 for N = 10000 and N = 1000.

Fig. 3 Unidirectional
coupling II (true causality
X → Y ) at coupling
strengths
c = {0, 0.2, . . . , 1.8, 2}.
MGCiSN (Λ) for
N = 10000

coupling c
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Fig. 4 Unidirectional
coupling II (true causality
X → Y ) at coupling
strengths
c = {0, 0.2, . . . , 1.8, 2}.
MGCiSN (Λ) for N = 1000
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Nonlinear Causal Coupling III

The next model represents another example of two unidirectionally interacting non-
identical nonlinear time series with a nonlinear causal effect:

x(t) = 3.4x(t − 1)[1 − x(t − 1)2]e−x(t−1)2 + 0.6x(t − 1), (18)

y(t) = 3.4y(t − 1)[1 − y(t − 1)2]e−y(t−1)2 + cy(t − 2)x(t − 2). (19)

The coupling strength c varied from 0 to 1 with a step of 0.1. By construction, the
variable X has causal influence on the variable Y for c �= 0, and there is no causal
connection between X and Y for c = 0.

Figures 5 and 6 show results of our third experiment.We observe that theMGCiSN
successfully indicates the absence of the causal influence of Y on X at any c for both
samples N = 10000 and N = 1000,ΛY→X is almost zero except the case N = 1000
at coupling strength close to 1. The causal relationship from X to Y is detected by
the MGCiSN at c > 0.22 for N = 10000 and at c > 0.16 for N = 1000.

Fig. 5 Unidirectional
coupling III (true causality
X → Y ) at coupling
strengths
c = {0, 0.1, . . . , 0.9, 1}.
MGCiSN (Λ) for
N = 10000

coupling c
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Fig. 6 Unidirectional
coupling III (true causality
X → Y ) at coupling
strengths
c = {0, 0.1, . . . , 0.9, 1}.
MGCiSN (Λ) for N = 1000
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Bidirectional Nonlinear Coupling

For the forth example, we used bidirectionally coupled nonidentical Hénon maps
(see, e.g., [11]):

x(t) = 1.4 − x(t − 1)2 + 0.3x(t − 2) + c(x(t − 1)2 − y(t − 1)2), (20)

y(t) = 1.4 − y(t − 1)2 + 0.1y(t − 2) + c(y(t − 1)2 − x(t − 1)2). (21)

The coupling strength cwas varied from 0 to 0.2 with a step of 0.02. By construction,
the variable X and the variableY are bidirectionally causally connected for c �= 0,
and they are independent for c = 0.

Figures 7 and 8 show results of our fourth experiment. We observe that the
MGCiSN successfully detected correct causal relationship X → Y at all values of
c for both samples N = 10000 and N = 10000. The MGCiSN detected the causal
link Y → X only at c > 0.07 for considered sample sizes, but ΛY→X is nonzero at
all values of c for both sample sizes.

For more experimental results, see [3].

Fig. 7 Bidirectional
coupling (true causality
X ↔ Y ) at coupling
strengths
c = {0, 0.02, . . . , 0.18, 0.2}.
MGCiSN (Λ) for
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Fig. 8 Bidirectional
coupling (true causality
X ↔ Y ) at coupling
strengths
c = {0, 0.02, . . . , 0.18, 0.2}.
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coupling c

0 0.05 0.1 0.15 0.2

M
G

C
iS

N
 (

)

-0.02

0

0.02

0.04

0.06

0.08
X  Y

Y  X

 = 0.01



Modified Granger Causality in Selected Neighborhoods 41

Discussion

Detection of asymmetric and possibly nonlinear dependence between time series has
application in a wide range of different sciences (e.g., climatology, neurophysiology,
economy, etc.) and to avoid the false detection of causality is a major problem [14].
The suggested MGCiSN does not produce false-positive results and false-negative
results are produced for very small coupling strengths. The MGCiSN has ability to
capture nonlinear relationships without sample size limits. Although five parameters
(τ ,mx ,my, k, R∗) controlled the procedure, based on our experience, we reported
that the choice R∗ = 0.95 is the most influencing part of the method. If there is
no neighborhood in the joint reconstructed phase space where R2 ≥ R∗, we can-
not recommend the proposed MGCiSN for detecting causal dependencies between
variables.

Conclusion

Wepresent a novel causality estimator for two simultaneously recorded variables, the
modified Granger causality in selected neighborhoods. MGCiSN is based on fitting
linear regression models in local neighborhoods of the reconstructed joint dynam-
ics and reflects the proportion of the predicted variation of the modeled variable by
the past of the second variable only. The effectiveness of the suggested causal mea-
sure was studied on artificially generated nonlinear coupled nonlinear time series.
The results showed that the MGCiSN works well for quantifying the asymmetric
causal dependence of two nonlinear time series data, the sample size has a negligi-
ble influence on results. The computational properties and the experimental results
indicate that the MGCiSN is potentially the first-choice technique in many cases to
reveal causal relationship between two time series not appropriated for the Granger
causality analysis.
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Computing Environment for Forecasting
Based on System Dynamics Models
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Abstract The paper proposes the computing environment which allows building
forecasts based on System Dynamics models. The environment is equipped with
GUI for building dynamic models according to Forrester’s methodology. The unique
feature of the application is that the created models can be calibrated with the help of
optimization procedures tailored for solving nonlinear least squares problems with
differential–algebraic equations. Furthermore, the application enables verification of
decision rules inherited in System Dynamics models by solving problems associated
with the models dynamic optimization—then the model with optimal decision rules
can be simulated to build forecasts of interests. To illustrate the functionalities of
the environment, the example of the model of drug prevalence is discussed in some
detail.
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Introduction

System Dynamics offers an approach to forecast that is essentially different from the
one based on econometric models, as it allows to include decision rules (which are
dynamical in nature) within the model. Building predictions boils down to running
new simulations of model equations with appropriately changed parameters describ-
ing the decision rules.Also, nonlinear functions are a common thing inmulti-equation
System Dynamics models while multi-equation nonlinear econometric models are a
rarity due to extreme difficulties in their building.

The quality of quantitative predictions drawn from System Dynamics models—
in the form of generated trajectories of selected variables—depends heavily on the
specification of values of the model’s parameters. If our predictions are to possess
any merit, we must be certain that the simulated trajectories of interest are close
to these which have been observed. This can be achieved in the process of model
calibration, provided that the structure ofmodel’s equations are not far from the actual
dynamics of the real process. Model calibration can refer to statistical methods to
measure quality of parameters estimation, but the finalmodel and its use in predicting
future values of model’s variables is deterministic. The model calibration is based
on optimization tools; however, there are other applications of optimization within
the process of building dynamical models, such as finding adequate structures of
model’s decision rules or choosing proper (parameters’) values for these decision
rules.

The paper describes a newly implemented computing environment that brings
together System Dynamics (SD) graphical modeling methodology, simulation of
the model’s behavior, defining optimal control problems (by supplementing the SD
model with objective function), and advanced numerical algorithms for solving vari-
ous classes of dynamic optimization problems. It was designed to make it possible—
define and solve a number of related problems defined around the same model. This
way one can start with specifying a dedicated problem of calibrating the model’s
parameters (solved by selecting parameters’ values for which the distance between
empirical and generated trajectories is minimized). Once the model is calibrated, it
can then be used to build another optimization problem dealingwith choosing control
strategies that would optimize (some measures of) certain aspects of the system’s
behavior. The environment makes it, therefore, possible to produce forecasts for the
values of the system’s variables under different decision rules and helps the user
select such decisions for which the foreseen behavior is most preferable.

The proposed software package canbe compared to a number of existing solutions,
such asVensim ([1] or any of similar SD simulation applications), OpenModelica [2],
or JModelica.org [3]. However, we believe that our solution is unique as it exceeds
the capabilities of these competitors. In comparison with Vensim, it not only offers
simulation (and does that with a significantlywider selection of numerical integration
engines) but also provides support for dynamic optimization, which is completely
lacking in theVensim class of SystemDynamics simulation packages. In that respect,
it is much closer in kind to the Modelica-related applications with built-in Optimica
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language support, i.e., OpenModelica or JModelica.org (Optimica is a close relative
to Modelica with slight syntax extensions for defining optimal control problems;
it was initially proposed in [4]). What sets us apart from the two is the designed-
in support for a wide range of various optimization solvers (as described, e.g., in
[5])—while both implementations, of OpenModelica and JModelca.org, are based
solely on the collocation algorithm—which makes them less appropriate for certain
classes of problems, calibration in particular.

In our environment, the models can either be built by means of System Dynamics
standard graphical notation or through text files written in a dedicated language—
DOML. The Dynamic Optimization Modeling Language (DOML) was initially pro-
posed in [5] as a Modelica-based programming language-independent communi-
cation format while developing Interactive Dynamic Optimization Server (IDOS,
described therein). The DOML format provides a mean for defining dynamic sys-
tems (i.e., described by systems of Ordinary Differential Equations or Differential–
AlgebraicEquations) togetherwith user controls and objective functions that together
compose optimal control problems.

The paper is organized as follows. The following section“System Description”
provides a general description of the graphical and computational environment.
Section“Problem Formulation” proceeds toward formulating an exemplary dynam-
ical model that illustrates its capacities and can be used for forecasting the behavior
of a system of interest. The example model deals with forecasting drug use, at a
national level, under different strategies undertaken by law enforcement authorities
to combat drugs. Additional attention is devoted to the specification of the system by
means of the DOML language. Next, in section“Numerical Procedures for Optimal
Control Problems”, the numerical algorithms implemented within the environment
and used in this particular case are briefly described, together with discussion of
the related aspects of calibrating the model and specifying decision rules. Finally,
section“Discussion of Results” provides a discussion of simulation and optimization
results yielding trajectories showing the foreseen behavior of the system’s variables.

System Description

The system that has been developed to solve optimization problems consists of three
main components:

– modeling application
– DOML compiler
– simulation and optimization libraries.

and their interrelationship is schematically shown in Fig. 1.
The modeling component called JOptisim allows users to create graphical mod-

els according to System Dynamics methodology which introduces three funda-
mental elements of SD models, namely stocks, flows, and auxiliary variables (or
parameters)—in that respect it is comparable to similar graphical tools such as Ven-
sim and Stella as all model’s elements can be graphically placed, removed, renamed,



46 R. Pytlak et al.

Fig. 1 Composing elements of the computing environment

or copied at any time and then saved to and restored from external file. JOptsim
also runs preliminary simulations to check the correctness of the model. The imple-
mented simulation procedure is based on advanced RADAU5 numerical code which
enables to track trajectories with steep changes, especially observed in so-called stiff
equations.

Besides creating a standard System Dynamics models, the application allows to
define optimization problem by filling additional values in a dedicated window. The
window supports a definition of horizon used in optimization problem, objective
function, and constraints of optimization problem. Such created model can be saved
in an external file for further editing or exported to the DOML language file either as
ordinary differential or differential–algebraic equations. The resulting DOML files
are sent to Modelica-based simulation and optimization engine composed of DOML
compiler (as the first stage) and a number of dedicated numerical libraries.

The compiler was fitted with a number of additional features needed to implement
the postulated extensions to the standardModelica language. The extensions and their
implementations were discussed in detail in a number of articles (see, e.g., [5, 6])
but in short, they boil down to:

– provide a mechanism for choosing among a number of different solver packages
applicable to (different classes of) dynamic optimization problems;

– allow for solver chaining—i.e., using a sequence of solvers on the same problem,
where the solution from one (usually more robust but less accurate) can be used in
the next (that, e.g., provides higher accuracy but requires a relatively good starting
point);

– introduce labeling of equations (and constraints) together with a way for defin-
ing so-called adjoint variables, which are necessary when using certain class of
optimization algorithms.

To our mind, these elements make the language significantly better fit for handling
the vast variety of optimal control problems out there.
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The compiler transcribes the DOML definition of a problem into a regular pro-
gramming language (in most cases being C++, but in some cases, it is C, Fortran
of R). The generated code includes appropriately woven calls to external numer-
ical libraries needed to solve a particular problem. The environment setup is pre-
pared to handle various cases as it is equipped with several sophisticated solvers
for dynamic optimization problems: based on “a priori discretization” of differential
equations; solvers using adjoint equations; shooting procedures. Second, the envi-
ronment includes state-of-the-art numerical libraries dealing, e.g., with numerical
integration or automatic differentiation–optimization problems can have many dif-
ferential equations and providing Jacobians of the right-hand side of these equations
is impractical (and these Jacobians are needed to solve optimal controls problems
efficiently).

Problem Formulation

The exemplary problem we consider is the determination of the optimal time distri-
bution of police forces intended for fighting against drugs. The calculations are based
on the drug prevalence model built with the help of System Dynamics methodology.
The model is based on the drug prevalence model presented in [7] and additional
contribution related to drug market in Poland depicted in [8].

The appropriate model is presented in Fig. 2 and we will now briefly describe the
structure of themodel. The core of themodel is the flowof people between two groups
of people: people who have used drugs during the previous year (PastYearUsers);
people who have not used drugs during the previous year (NotPastYearUsers). The

Fig. 2 System Dynamics model of drug prevalence
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flowof people between these two groups consists of two subflows: flowof peoplewho
have started using drugs during the previous year (peopleStartUsingDrugs); flow of
peoplewho have abstained fromdrug-using during the previous year (peopleAbstain-
FromDrugUse). The sizes of these flows depend on the sizes of populations and the
positive attitude to drug use among the society, which is modeled by one aggregated
variable attitudeToDrugUse. In our model, the attitude to drug use depends on the
following factors: exposure to drugs through social contacts (exposure); perception
of health consequences of drug use (safety); perception of consequences of breaking
the drug law(legality); affordability of drugs (affordability).

The exposure to drugs through social contacts depends on the prevalence of drugs
in the population and it increases the positive attitude to drug use. In our model,
we assume that the perception of health consequences of drug use depends on the
number of medical interventions associated with using drugs (ERMentions). With
the increasing number of medical interventions, the positive attitude to drug use
decreases. The number of medical interventions depends directly on the prevalence
of drugs in the population. The perception of law consequences of drug possession
and distribution depends on the number of arrests (arrests). With the increasing
number of arrests, the positive attitude to drug use decreases. The number of arrests
depends on the prevalence of drugs in population as well as on the efficiency of
police (policeEfficiency). The police efficiency models a general ability of police to
fight against drugs and it is assumed to be the only control variable in our exemplary
problem.

Drugs affordability depends on the drug unit price (Price). With the increasing
price, the positive attitude to drug use decreases. To describe the dependence of drug
unit price on the drug prevalence, a simple economic modeled is used. It is assumed
that the changes in drug unit price depend on the actual price and the difference
between drug demand and supply. Drug demand depends on the drug prevalence
and drug supply is modeled as an external function of time. It is possible to utilize
more complicated economic models, but for our needs, the proposed model gives
satisfactory results.

Our goal is to determine the optimal distribution of police forces over the assumed
time interval to achieve the best results in fighting against drugs. In our model, the
optimized control variable is policeEfficiency, which represents the efficiency of the
police in arresting people breaking the drug law. policeEfficiency variable has been
introduced to our model arbitrary and does not possess a simple and direct interpre-
tation. Nevertheless, it is possible to associate it with other measurable quantities
such as a number of police patrols per week or the drug fight budget per year. In any
case, the methodology remains the same.

To test the computational environment, we solved the exemplary optimal control
problem. The parameters of the drug prevalence model have been adjusted according
to data regarding the cocaine prevalence in Poland provided by EuropeanMonitoring
Centre for Drugs and Drug Addictions. In the considered optimal control problem,
we assume that at each time moment the policeEfficiency stays within interval [0, 2].
This constraint models, e.g., the limited number of policemen available at each
moment. Next, we assume that police interventions generate costs that are integrated
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over time. The variable CostOfPoliceInterventions represents the summary cost of
all police interventions up to a moment t1

CostOfPoliceInterventions(t1) =
∫ t1

0
costPerEfficiency · policeEfficiency(t)dt.

(1)
where costPerEfficiency = 1. We impose the additional constraint on the total cost
of police interventions over the whole time interval [0, t1] = [0, 20] years

CostOfPoliceInterventions(t1) ≤ 20 (2)

The above inequality represents the budget constraints as the policeEfficiency cannot
always assume the maximum value 2, for which the variable CostOfPoliceInterven-
tions would reach a value 40. It is therefore required to distribute the police forces
somehowover thewhole time interval. The proposed cost function,which is supposed
to be minimized, is the number of drug users at the final time PastYearUsers(t1).

The model and the optimization tasks have been implemented as a DOML script
[5]. The header of the DOML script defines the cost function and the time interval.

optimization drugs_opt ( objective = PastYearUsers(finalTime),

startTime = 0, finalTime = 20.0 )

Next all the variables in the model are declared.

parameter Real InitialPrice= 45;

...

parameter Real TypicalERM= 100;

Real affordability;

...

Real arrests;

input Real policeEfficiency(initialGuess = 1, min = 0, max = 2);

Real PotentialArrests(start = 133.33333333333334);

...

Real Price(start = 22.5);

There are four types of variables: constant parameters, casual variables, input vari-
ables, and state variables, which correspond to stock variables in System Dynamics
convention [9]. Besides the declaration, for input variables, the initial guess and
bounds are defined and for state variables, the initial value is defined.

In the equation section of DOML script system equations are defined. Dif-
ferential equations define derivatives of state variables, whereas algebraic equations
define the remaining variables.
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equation

der(Price) = (changeInPrice) - 0;

...

0 = - safety + (TypicalERM*safetyScalFac)/ERMentions;

In the constraint section, the remaining constraints are defined

constraint

CostOfPoliceInterventions(finalTime) <= 20;

Numerical Procedures for Optimal Control Problems

There are three types of optimization problems linked with the methodology our
computing environment realizes. The first two are associatedwithmodels calibration.
We assume that the calibration of a System Dynamics model should be performed in
two stages. In the first one, one looks for functions which describe the relationship
in a given node of a CLD diagram. This calibration reduces, in fact, to solving a
standard nonlinear (in general) least squares problem and can be accomplished by
a variant of the Gauss–Newton method. In that case, we use data which represent
variables linked to a particular node.

The model calibration in the second stage is needed to construct an adequate
model for forecasting with respect to a particular variable which is a solution to
DAEs representing System Dynamics model. In that case, the calibration procedure
is much more elaborate since it takes into account the entire model dynamics and
so it requires a tailored dynamic optimization procedure based on a least squares
objective function.

Then, we apply optimal control to verify (construct) decision rules which are
inherently present in a System Dynamics model. In that case, we solve a standard
optimal control problem having in mind that a procedure for solving that problem
must satisfy the following conditions: (1) it should tackle control problems described
by large-scale differential–algebraic equations; (2) it must have an initialization pro-
cedure for algebraic variables which is called at initial time and at times at which
controls exhibit jumps.

The first requirement is a direct consequence of the System Dynamics methodol-
ogy. The dynamic model in the form of differential–algebraic equations is of special
form. Algebraic variables are functions of other algebraic variables and differential
variables (those variables which are solutions to differential equations). In the liter-
ature on differential–algebraic equations of this form are called semi-explicit index
one differential–algebraic equations [10].

The index one means in this context that algebraic equations can be uniquely
expressed as functions of differential variables. And this is really the case of System
Dynamics models which can be transformed into first-order ordinary differential
equations. However, in general, we do not want to do that since wewould like to have
the optimal control problem defined in terms of algebraic and differential equations
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in order, for example, to express some constraints in the problem as functions of
algebraic variables which have their meanings in the model.

The solver we use to solve optimal control problems with System Dynamics
models is described in detail in [11]. The solver has several features which make
it suitable for control problems with System Dynamics models. It is based on a
continuous-time approach to optimal control algorithms and thus it is able to solve
accurately control problems with state constraints [11]. On the other hand, it uses
adjoint equations to evaluate gradients, so it can be used to solve optimal control
problemswithmany differential–algebraic equationswhich often occur in the context
of System Dynamics modeling.

Nonlinear Least Squares Calibration of Dynamical Systems

In order to explain our approach to the calibration of dynamical models, consider
first the static nonlinear least squares problem:

min
p∈Rn p

[
f (x) = 1

2
‖g(p)‖2 = 1

2

m∑
i=1

((gi (p))
2

]
(3)

where g(p) = [g1(p), g2(p), . . . , gm(p)]T .
Important feature of the Gauss–Newton method for the nonlinear least squares

problem is that the Hessian matrix of the objective function (3) can be effectively
approximated by thematrix basedon the Jacobianmatrix related to the transformation
g—see [12] for details:

∇2 f (p) ≈ J (p)T J (p). (4)

Here, J (p) is the Jacobian matrix of the transformation g.
Let us adopt the Gauss–Newton procedure for the one which is suitable for cali-

brating dynamical systems with continuous-time dynamics described by DAEs.
Suppose that a system is represented by the equations

F(ẋ(t), x(t), u(t), p) = 0, t ∈ [0, t f ], (5)

where vector p represents system parameters. The solution to system (5) is dependent
on p and thus we denote it by x p.

We approximate the parameters p by solving the nonlinear least squares problem

min
p

⎡
⎣MSEl(p) = 1

N

N∑
j=1

(
x p
l (t j ) − x̂l(t j )

)2 = 1

N

N∑
j=1

MSE j
l (p)

⎤
⎦ (6)

subject to the constraints (5). Here, we recall, that x̂l is the empirical (measured)
trajectory.
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That problem can be solved by nonlinear programming techniques provided that
we can evaluate gradients of MSEl(p).

On the other hand, the gradient of the functional MAEl(p) may be evaluated
with the help of adjoint equations if we observe that MSEl(p) is composed of N
functions MSE j

l (p).
The gradient of MSE j

l (p) can be calculated by using the adjoint equations for the
system (5) and the function MSE j

l (p)—it means that these adjoint equations will
be integrated from time t j (see, for example, [11] on the use of adjoint equations in
dynamic optimization and [6] on their application to this particular function). Then,
∇MSEl(p) = ∑N

j=1 ∇MSE j
l (p).

The adjoint equations for the considered objective function we present for the
case when system equations are in the form of ordinary differential equations

ẋ(t) = f (x(t), t, p), t ∈ [0, t f ], x(0) = x0. (7)

Then

∇MSE j
l (p) =

∫ t j

0
f p(x

p(t), t, p)T q j (t)dt, (8)

where q j is the solution to the adjoint equations

q j (t) = 0, t ∈ (t j , t f ] (9)

q j (t j ) = Δ j (10)

q̇ j (t) = − fx (x
p(t), t, p)T q j (t), t ∈ [0, t j ). (11)

Here,

Δ j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

2(x p
l (t j ) − x̂l(t j ))

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Having objective function values and its gradients, we can build an optimization
procedure for model calibration. A general scheme for such a procedure may look
like stated below.
General Calibration Procedure (GCP)

1. Set initial values of parameters: p1 and set k = 1.
2. For parameters pk , calculate system trajectories x pk by numerically integrating

system equations. On that basis, determine objective function value MSEl(pk)
through values MSE j

l (pk), j = 1, . . . , N .
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3. Having trajectories x pk and valuesMSE j
l (pk), j = 1, . . . , N solve adjoint equa-

tions and determine ∇MSE j
l (pk), j = 1, . . . , N , ∇MSEl(pk).

4. Determine the direction of descent pk using some optimization procedure.
5. Perform directional minimization with the help of the optimization procedure to

evaluate the step size αk . Substitute pk + αkdk for pk+1. increase k by one and
go to Step 2).

That general calibration scheme covers also a Gauss–Newton approach to amodel
calibration. However, in this case, we need to specify how the direction of descent dk
is determined on the basis of vectors ∇MSE j

l (pk), j = 1, . . . , N and ∇MSEl(pk).
In this case, we use the relations:

Jl(pk) =

⎡
⎢⎢⎢⎣

∇MSE1
l (pk)

T

∇MSE2
l (pk)

T

...

∇MSEN
l (pk)T

⎤
⎥⎥⎥⎦ , Hl(pk) = Jl(pk)

T Jl(pk)

pk+1 = pk − αk [Hl(pk)]
−1 ∇MSEl(pk). (12)

Algorithm for Optimal Control Problems with SD Models

In general, System Dynamics models are described by differential–algebraic equa-
tions (DAEs). Therefore, we should consider the following optimal control problem
PDAE:

min
u

φ(x(t f )),

subject to the constraints:

F(ẋ(t), x(t), y(t), u(t), t) = 0 a.e. on T, x(0) = x0 (13)

q(t, x(t)) ≤ 0 ∀t ∈ T (14)

h1i (x(t f )) = 0 ∀i ∈ E (15)

h2j (x(t f )) ≤ 0 ∀ j ∈ I (16)

u ∈ U = {u : u(t) ∈ Ω a.e. on T }. (17)

Here, x(t) ∈ Rnd , y(t) ∈ Rna , u(t) ∈ Rm , n = nd + na , and Ω is a convex com-
pact set. We assume that for any x0, u ∈ U there exists a unique solution to (13):
(xu, yu). We call x a differential state and y an algebraic state.
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The problemwe have to consider has both terminal constraints (15)–(16) (equality
and inequality), state constraints (14) (constraints which must be satisfied at every
point of time horizon) and hard constraints on controls (17). The System Dynamics
equations (13) contain controls u which are introduced to System Dynamics to ver-
ify the optimality of decision rules used in the System Dynamics model. Once the
problem PDAE is solved, we build once again (possibly new, but almost surely with
new parameters) decision rules and new forecasts on the basis of these rules.

Essentially the above optimal control problem can be numerically tackled in the
very similar way as the problem described by ODEs, in particular, due to the unique-
ness assumption stated above, it can be stated in reduced space (see [11] for details).
In fact, our computing environment applies a numerical procedure stated in [11]. It
is the procedure which uses a RADAU IIA procedure (it is an implicit Runge–Kutta
method) for the integration of the system equations (13)—the justification for the
choice is given in [11] (Chap.6). Having trajections of system equations obtained
by numerical integration gradients of all functionals defining the problem PDAE are
evaluated in the reduced space with the help of adjoint equations associated with
system equations (Chap.6 of [11]).

Since our system equations are in the form of DAEs, we need a procedure for
their initialization—usuallywe have initial values of differential states x but algebraic
variables y have to be found so algebraic equations are satisfied at initial time. Due to
the way System Dynamics equations are constructed (with the help of the GUI), the
functions yi (t) = ini t (xu(t), u(t), i), i = 1, . . . , na can be built—these functions
are created while processing model equations by the DOML compiler.

Discussion of Results

Several optimal control problems based on System Dynamics have been defined and
solved. In [13], an optimal control problem related to sanitary teams activities during
an epidemics of foodborne disease is discussed. In the problem, decision variables
(controls) are linked with the number of sanitary teams which try to contain the
epidemics by isolating infected people and by eliminating contaminated food. The
optimal control problem is further discussed in [14] where decision rules are derived
for sanitary teams activities on the basis of the optimal solution to the problem.

The optimization results presented in the section are related to the SystemDynam-
ics model of drug prevalence stated in section“Problem Formulation”. They should
be treated as preliminary results since additional experiments with the optimization
model (and its variants) are needed to propose new decision rules for the distribution
of police forces which fight against drugs use. On the basis of these decision rules,
we could then forecast the spread of drugs use as described by the model variable
PastYearUsers.

The numerical procedure presented in section“Numerical Procedures for Optimal
Control Problems” has found the optimal solution shown in Fig. 3 (one optimal
state trajectory is given in Fig. 4). The analysis of the obtained solution suggests the
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following strategy for the use of police forces: use the highest possible efficiency
in the beginning and then reduce it linearly to its lowest possible level at the end
of the planning horizon—the strategy has, in fact, one parameter which could be
determined by a simple sweeping procedure.
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Novel Order Patterns Recurrence
Plot-Based Quantification Measures
to Unveil Deterministic Dynamics
from Stochastic Processes

Shuixiu Lu, Sebastian Oberst, Guoqiang Zhang and Zongwei Luo

Abstract Forbidden ordinal patterns are known to be useful to discriminate between
chaotic and stochastic systems. However, while uncorrelated noise can be separated
from deterministic signals using forbidden ordinal patterns, correlated noise exhibits
apparently forbidden ordinal patterns, which can impede distinguishing noise from
chaos. Here, we introduce order patterns recurrence plots to visualise the differ-
ence among deterministic chaotic systems, and stochastic systems of uncorrelated
and correlated noise. In an order pattern plot of a chaotic system with an optimal
embedding dimension, the diagonal lines remain preserved, while uncorrelated noise
shows up as thinly isolated dots and correlated noise forms clusters. We propose two
measures, the mean and the median of relative frequencies of order patterns that
appear in a time series to distinguish those dynamics. The effectiveness of the two
measures is analysed using bifurcation diagrams of the logistic map, the tent map,
the delayed logistic map and the Hénon map. Our results show, that both, the mean
and the median, distinguish chaos from quasiperiodicity in the delayed logistic map.
The mean of relative frequencies of order pattern is reciprocal to the number of order
patterns that occur in a given time series and thus can be a measure of forbidden
structures—which becomes unbounded. While the mean is robust to the change of
parameters in the bifurcation diagrams, the median exhibits sensitive changes, which
is significant to characterise chaotic signals.
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Introduction

Given a measured time series, irregularity often dominates. The irregularities can
emerge in economics [18], finance [31] and natural sciences (physics [10], biology
[27], chemistry [41], geology [25], medicine [44] or engineering [28, 40, 43]). For
real data, it is often necessary to distinguish between stochastic dynamics (random
noise, high dimensional) and deterministic dynamics which can also be chaotic, of
either low or high dimensions.

However, both a stochastic system and a chaotic system generate a broadband
power spectrum in the frequency domain, which often hinders their disentanglement
[34]. The situation complicates when it comes to real-life data or natural infor-
mation (life sciences) since measurements here are inextricably contaminated by
omnipresent dynamical or observational noise [17, 26, 29, 34].

To discriminate chaotic systemswith observational noise from stochastic systems,
Bandt and Pompe [6] developed a symbolisation scheme, the Bandt–Pompe(BP)
methodology, which encodes a time series into order patterns. An order pattern with
embedding dimensionm represents a permutation of the set {0, 1, ...,m − 1}, which
is an invariant under the process of monotonous transformations and known to be
robust with regards to observational Gaussian noise [6]. Owing to this robustness,
order patterns have attracted a growing interest [7, 16, 32, 33, 47].

Two streams of studies have been devoted to quantify order patterns and the degree
of determinism on the basis of the BP method. The first stream is that of forbidden
ordinal patterns [3, 4, 36, 37, 45, 46, 48], which are non-occurring permutations in
a time series [2, 4, 9, 17, 35].

The occurrence of forbidden ordinal patterns are related to structures of determin-
istic processes. For a deterministic map xi+1 = f (xi ), the number of intersections of
f 0(x) = x, f 1(x), ..., f m−1(x) determines the number of order patterns. As a result,
when the number of intersections is smaller thanm! (and exponentially growing with
m), the map exhibits a forbidden pattern [4, 5, 36].

However, there is a minimal embedding dimension to detect the outgrowth of the
forbidden ordinal patterns [36]. For the logistic map (xi+1 = 4xi (1 − xi )), asm = 3,
the number of intersections of f 0, f 1, f 2 is 6, hence the number of order patterns
equals to 5 and the permutation (2, 1, 0) is forbidden, irrespective of the time series’
length [4]. Also, the number of forbidden ordinal patterns is robust to low degrees of
sampling irregularities as the time series is generated from irregular time intervals
[16].

To visualise forbidden ordinal patterns, Kulp and Smith [15], Kulp and Zunino
[17] introduce a permutation spectrum test, which plots the counts of frequencies
of each permutation of {0, 1, ...,m − 1}. A permutation that counts 0 is a forbidden
ordinal pattern and indicates determinism. However, this plot fails to discriminate
determinism from correlated noise, which is stochastic but shows missing order
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patterns. Both forbidden and missing order patterns are pattern structures that do not
show up in a time series. However, while the forbidden order patterns is unrelated
to the length of the time series, the missing order patterns have a small probability
to show up as long as the time series is long enough. Permutation entropy is further
needed to facilitate the identification of determinism based on this plot [30, 35, 36].

On the other hand, the second stream of measures that applied the BP method
is to visualise and estimate the recurrent behaviour of order patterns, using order
patterns recurrence plot (OPRP). OPRP was developed by Groth [13] to visualise
the dependencies between two time series.While a conventional recurrence plot (RP)
is based on the (phase) spatial and temporal closeness to define recurrent and laminar
behaviour [21], a recurrence in an OPRP is that the same order pattern recurs [8, 13].

However, the literature is scarce on interpreting recurrence quantification analysis
(RQA) measures extracted from an OPRP [8]. Schinkel et al. [38] and Marwan
et al. [20] employ the RQA to detect determinism of event-related potentials of
brain responses using electroencephalography (EEG). Donner et al. [11] use RQA
to investigate short-term dynamics of discrete-valued data. McCullough et al. [22]
regenerate a time series using an ordinal network to compare the dynamics of the
original time series and a surrogate time series designed from ordinal network data
using the RQA and OPRP.

While the aforementionedOPRPs are based onordering the time series,Caballero-
Pintado et al. [8] define a new OPRP using a symbolic correlation integral and by
ordering the time series relative to the original.

Motivated by the study of Lu et al. [19], our goal here is to connect these two
streams of studies and show that OPRP can visualise the effect of an exponential
increase of forbidden ordinal patterns through the increase of embedding dimension
m. To unveil the change of dynamics as the parameters of the dynamical system
change, we introduce and validate two new measures, the mean and the median of
the relative frequencies of order patterns that occur in a time series. To examine the
evolution of those two measures, as deterministic test models, we use the logistic
map, the delayed logistic map, the tent map and the Hénon map; as stochastic test
models, we use Gaussian and Brown noise.

Methodology

Underlying a one-dimensional time series ({xt }Nt=1) with length N , order patterns
of {xt }Nt=1 depend on the time delay τ and the embedding dimension m [6].

We encode xt to its order pattern through ranked elements in the vector
−−→
x(t) =

(xt , xt+τ , ..., xt+(m−1)τ ) [13]. Here, we study order patterns in the case of τ = 1, and

then rank
−−→
x(t) = (xt , xt+1, ..., xt+(m−1)), where 0 corresponds to the smallest element

in
−−→
x(t). To guarantee the uniqueness of order patterns, when xt+i = xt+ j , i < j , we

assume si < s j , where si is the rank of xt+i in
−−→
x(t). As a result, order patterns of

{xt }Nt=1 are permutations of {0, 1, ...,m − 1}, and the length of order patterns equals
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the embedding dimensionm with the number of well defined order patterns in {xt }Nt=1
equalling N − m + 1. An order pattern of {x1 = 4, x2 = 1, x3 = 7, x4 = 5}, with
embedding dimension m = 4 corresponds to the permutation (ordered sequence)
(1, 0, 3, 2) since 7 is the largest number corresponding to the symbol 3 and 1 being
the smallest element corresponding to the symbol 0.

Order Patterns Recurrence Plot

Given a time series, an OPRP [13, 21] visualises its order patterns (i.e. ordered
sequences) and analyses recurrent order structures using the following matrix:

Ri, j (m) =
{
1,πi = π j

0,πi �= π j
i, j = 1, 2, ..., N − m + 1 (1)

where πi and π j are the order patterns of the i th and j th element of {xt }Nt=1, respec-
tively.

Forbidden Ordinal Patterns

Let Πm = {πξ1 , ...,πξn } be the set of order patterns that occur in {xt }Nt=1 with embed-
ding dimension m and Ci be the frequency of πξi ∈ Πm , then

n∑
i=1

Ci = N − m + 1 (2)

where n is the number of order patterns that appear in {xt }Nt=1.
The maximal value of n is m! when N ≥ m! + m − 1. This leads to all possible

order patterns showing up and the number of forbidden ordinal patterns becoming
zero. If the time series is long enough to allow every possible order pattern (N � m!)
to show up, then the number of forbidden ordinal patterns (FOP) becomes

FOP = m! − n (3)

with n < m!. The relative frequency (RF) of πξi is then provided by

RFπξi
= Ci

N − m + 1
(4)

The mean of relative frequencies (MRF) is then given by
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(1) OPRP of a periodic system (2) OPRP of a chaotic system

(3) OPRP of Gaussian noise (4) OPRP of Brown noise

Fig. 1 OPRPs as m increases. The embedding dimension m is 4 (a) and 6 (b). c is the distribution
of order patterns. (1) and (2) logistic map xi = αxi−1(1 − xi−1) for α = 3.55 (periodic) and 3.91
(chaotic), respectively; (3) Gaussian noise (20,000 samples chosen fromN (0, 1)); (4) Brown noise
(20,000 samples chosen from power spectrum S( f ) = (1/ f )2, with f ∼ N (0, 1) [42])

MRF =
n∑

i=1

RFπξi
/n =

n∑
i=1

Ci

n(N − m + 1)
= 1

n
(5)

Kulp and Zunino [17] observe that a few order patterns of the fractional Brown
noise have high frequencies. This leads to a skewed frequency distribution. The
median is a better indicator to look at the statistic property of the frequency
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distribution. The reason is in that the median can reduce the influence of outliers
[12]. The median of relative frequencies (MDRF) can be expressed via

MDRF = median{RFπξ1
, ...,RFπξn

} = median{C1, ...,Cn}
N − m + 1

(6)

However, the MRF and the MDRF may variate in a small interval. This hinders
visualising a small variation in the MRF and the MDRF. We therefore take the
negative value of the logarithm of the mean (meanl ) and the median (medianl) of
all relative frequencies. Taking the logarithm is consistent with the definition of
permutation entropy of Bandt and Pompe [6]. Here, the meanl and the medianl are
expressed using

meanl = − logMRF = log n (7)

medianl = − logMDRF = log(N − m + 1) − log(median{C1, ...,Cn}). (8)

Plugging Eq.3 into Eq.7, we obtain a relationship between the meanl and the FOP
via

meanl = log(m! − FOP). (9)

A pseudo algorithm to calculate the meanl and the medianl is provided below.

Algorithm 1 Calculation of the meanl and the meanl

1: procedure Time series to symbolic sequences through the BP method

2: if i < N − m + 1, where N = 20, 000,m = 6.
3: Order patter π j = ( j0, · · · , j5) ← {xi , · · · , xi+5}
4: Record the frequency: π j : C j , where j ≤ n.

5: procedure Relative frequency of each π j
6: Calculate the MRF and MDRF of each π j according to Eqs. 5 and 6.

7: procedure Calculate the meanl and the medianl

8: Calculate the meanl and the meanl according to Eqs. 7 and 8.

Bifurcation diagrams are plotted using the following procedures:

Algorithm 2Make the bifurcation diagram
procedure Change the bifurcation parameter:

2: for ri = rmin + i(rmax − rmin)/1,000, where i ≤ 1,000 do
Record the steady-state solutions to form a time series (x_list)

4: Implement Algorithm 1 through x_list

where rmin and rmax are the minimal and maximal value of bifurcation parameters
to plot the bifurcation diagram.
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Fig. 2 Time series. (1) and (2) logistic map (periodic, r = 3.55), and (chaotic, r = 3.91); (3)
Gaussian noise of Fig. 1(3); (4) Brown noise of Fig. 1(4); parameters of noise as provided previously

Results

Order Patterns Recurrence Plot

ForGaussian noise (Fig. 1(3)), the increase ofmmakes theOPRP sparse. In Fig. 1(3a,
b), we use Gaussian noise and see that the OPRP is denser form = 4 than form = 6.
However, the OPRP of Brown noise (Fig. 1(4)) preserves many points indicating
that the system has the order pattern of which the relative frequency is high. For the
periodic or the chaotic system under study (Fig. 1(1, 2)), the OPRPs show distinctly
more diagonal lines than the cases of Gaussian or Brown noise. As highlighted by
Rosso et al. [36], aminimal embedding dimension allows the occurrence of forbidden
ordinal patterns and their exponential growth. An OPRP can then have an optimal
embedding dimension that rules out Gaussian noise. Figure 2 shows the time series
of the corresponding signals in Fig. 1.

The reasons for a sparse OPRP in case of Gaussian noise are that no forbidden
ordinal patterns exist [4] and that the relative frequencies of every order pattern are
close [1]. Therefore as m increases (Fig. 1(3c)), the number of order patterns that
occurs is up to m!, and thus the probability of an order pattern that recurs in a given
time window is 1

m! , which is low for large m, leading to a spare distribution of points
in a given time window.

However, for Brown noise, in a given time window, the time series shows an
upward (downward) tendency (Fig. 2d). As the upward (downward) tendency lasts
for six time intervals, it forms the order pattern 012345 (543210). If the tendency
lasts for over six time intervals, the order pattern does not change and forms a cluster
in the OPRP (Fig. 1(4c)).

Due to the tendencies in the time series, Brown noise shows high relative fre-
quencies (over 4%) of order patterns (012345 and 543210) (Fig. 1(4c)), compared
with Gaussian noise (below 0.24%) (Fig. 1(3b)). As consistent with Rosso et al. [35],
Brown noise shows missing ordinal patterns (n = 710 < 6! = 720) (Fig. 1(4b, c)).
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Bifurcation Diagrams

Caballero-Pintado et al. [8] showed that RQA in the OPRP can detect changing
dynamics. Now, we show how the meanl and medianl unveil a change in dynamics
and are able to uncover details in bifurcation diagrams. The embedding dimension
is m = 6 in the following.

Figure3 shows that the change of the meanl is like a staircase as bifurcation
parameters change. That is, the number of forbidden ordinal patterns is robust to the
change in dynamics. This result is complementary to the observation that forbidden
ordinal patterns are robust to irregular sampling time [16].

From Fig. 3(1b, 2b, 3b and4b), we find that the medianl quickly responds to a
small change in the bifurcation parameter. As a result, the medianl is non-robust
to a change in dynamics. In a periodic window, the medianl is close or equal to
the meanl . However, in a chaotic window, the medianl and the meanl become more
visible. Also, the medianl abruptly decreases to fit with the meanl in a periodic point
or a periodic window. In contrast, a sudden increase of the meanl is found at points
where the system switches between chaotic and periodic dynamics.

In a periodic window, the length of a time series may cause the number of some
order patterns to become slightly higher than the order patterns of the neighbouring
regimes.1 For the same length of the time series, as the periodicity increases, this
difference becomes smaller. However, the difference may be visualised in a low
periodicwindow such as the period-3window. This is possible since a low periodicity
leads to a high relative frequency for each order pattern. The unit difference of low
periodicity induces a higher difference between the medianl and the medianl than
that of a high periodicity (Fig. 3(1b)).

In a periodic window, the order patterns are evenly distributed without consid-
eration of the unit difference, whereas in a chaotic window, the order patterns are
not necessarily evenly distributed [17]. An uneven distribution of order patterns can
result in a difference of medianl and meanl . Figure3(1, 2) shows that the meanl

changes step by step even in a chaotic region, contributing to the number of order
patterns which is robust against the change in dynamics. According to Eq.3, when n
is robust, FOP is robust as well. Therefore, our results support that the number of for-
bidden ordinal patterns show some degree of robustness to the changes of dynamics
since the meanl is related to the number of forbidden ordinal patterns.

As shown by Sprott [39], for the delayed logistic map, it is difficult to distinguish
chaos from quasiperiodicity using a bifurcation diagram. However, Fig. 3(3b) shows
different structures of the change of the medianl and meanl under the two kinds
of dynamics. In the window of almost quasi-periodicity (see Fig. 3(3a)), where the

1For example, in our numerical experiments, N = 20,000,m = 6, for the logistic map with r =
3.55, eight order patterns appear, so that the total amount of these eight order patterns is N − m +
1 = 19,995. However, 19,995 cannot be divided by 8, so the count of some order patterns is 2,500,
that of the others is 2,499, resulting in the difference of unity between the mean and the median of
{C1, . . . ,Cn}. This further shows the difference between the meanl and the medianl according to
Eqs. 7 and8.
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(1) Logistic map (2) Tent map

(3) Delayed logistic map (4) x component of Hénon map

Fig. 3 Bifurcation diagrams (a) and the evolution of the meanl and the medianl (b). (1)–(4) corre-
spond to logistic map, tent map, delayed logistic map and Hénon map, respectively

maximal Lyapunov exponent remains at zero [24, 39], the meanl shows no evident
variations and the medianl has no abrupt changes. Also, different from periodic
windows, the evolution of the medianl does not fit with that of the meanl , showing
a different quality in changes.
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Fig. 4 Analysis of the meanl and the medianl as more initial conditions are considered. The
M_meanl represents the mean of the meanl ; the MD_medianl is the median of the medianl . The
bifurcation diagram is plotted on a 1,000 × 1,000 grid with each point in the x-axis having 1,000
samples of randomised conditions. a Logistic map; b tent map; c delayed logistic map; d Hénon
map

Next, we study the influence of randomised initial conditions on the meanl and
the medianl as bifurcation parameters change. We implement the Algorithm 2 using
1,000 randomised initial conditions for each ri . For logistic map and tent map, initial
conditions are chosen from U(0, 1); for the delayed logistic map, both the x0 and
x1 are chosen from U(0.4, 0.8); for the Hénon map, both the x0 and y0 are chosen
from U(0, 1). The meanl and medianl are calculated in each sample. Then the y-axis
records the mean of the meanl or the median of the medianl . Figure4 shows the
results. Figures4c and3(3b) have the same phenomena in the almost quasiperiodic
window: the meanl is almost fixed.

The influence of noise on the twomeasures studying a noise-contaminated regime
of the logistic map is examined in Fig. 5. Variations in the meanl is less than those
of the medianl . This result is consistent with the observation that the FOP is robust
against Gaussian noise [1]. Since the meanl = log(m! − FOP), a robust FOP leads
to a more robust meanl against Gaussian noise. However, the medianl shows persis-
tent variations,which reflects that the system is changing.Yet,whether this robustness
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Fig. 5 Influence of noise on the meanl and the medianl of the logistic map as r = 3.91. SNR
represents the signal-to-noise ratio. Here SNR = δ2signal/δ

2
noise, where δ2signal = 0.0926. The noise

is additive and follows N (0, δ2noise)

will lead to similar prediction quality over a wide range of bifurcation parameters as
shown for purely deterministic regimes and different or even different and varying
SNRs will need to be studied in the future in more detail.

Conclusion

We have used the mean (meanl ) and the median (medianl) of the relative frequency
of order patterns to characterise chaotic signals and stochastic signals. Although the
mean and themedian are commonmeasurements in statistics, our definitions provide
new measurements for order pattern recurrence plots to distinguish between chaotic
signals and stochastic signals and to detect the change in dynamics in purely chaotic
signals. Here, the meanl quantifies the number of forbidden order patterns (FOP, see
Eq.9) for the first time.

Also, monitoring the embedding dimension can be used to qualify chaotic versus
stochastic dynamics in an OPRP. An optimally embedded OPRP preserves diagonal
lines for a chaotic system and leads in the case of uncorrelated noise to thinly dis-
tributed isolated points and in the case of correlated noise to small clusters. However,
whether this holds true for any system especially if noise-contaminated systems are
considered needs to be verified in the future.

While the meanl is robust to changing bifurcation parameters, the medianl is
sensitive to the change in the dynamics. Using the difference between the meanl

and the medianl and their fluctuations, we can distinguish chaos from quasiperiodic
dynamics for the delayed logistic map.

The calculation of the medianl and the meanl is easily accomplished and com-
putationally inexpensive, which makes the medianl and the meanl a cost-effective
analysis tool to tell deterministic signals from stochastic signals.
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Further, the meanl shows the robustness to Gaussian noise. However, the medianl

is not robust to Gaussian noise. Since the relative frequencies of each order pattern
of Gaussian noise are close in value to each other, the meanl and the medianl of
deterministic signals being buried in Gaussian noise, are likely to be different from
that of pure noise.

From a practical viewpoint, especially low-dimensional deterministic signals are
often contaminated by high-dimensional processes (noise); yet only the lower dimen-
sional scales are often of interest. Cleaning these signals by employing dynamics-
preserving non-linear (geometric) filters as conducted by Oberst et al. [25, 29] could
expand utilising the measures, which are suggested here to real-life data problems.
Especially studying border-collision/grazing bifurcations the measures could poten-
tially assist in detecting of tipping points in bifurcation diagrams of maps and flows
related to discontinuous dynamics, cf. [14, 23].
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Time Series Modeling with MATLAB:
The SSpace Toolbox

Diego J. Pedregal , Marco A. Villegas , Diego A. Villegas
and Juan R. Trapero

Abstract SSpace is a MATLAB toolbox for State-Space modeling that provides
the user with tools for linear Gaussian, nonlinear, and non-Gaussian systems with
the most advanced and up-to-date features available in any State-Space framework.
Great flexibility is achieved because each model is coded on a standard MATLAB
function, thence having absolute control on particular parameterizations, parameter
constraints, time variation of parameters or variances, arbitrary nonlinear relations
with inputs, time aggregation, nestedmodels, system concatenation, etc. The toolbox
may be used by specifying State-Space systems from scratch or by using ready-to-use
templates for standardmethods (like VARMAX, exponential smoothing, unobserved
components, Dynamic Linear Regression, etc.). The toolbox is freely available via
a public code repository with full documentation and help system. This chapter
demonstrates the toolbox’s potential with several examples.

Keywords MATLAB · State-Space systems · Kalman filter · Smoother
algorithm · Maximum likelihood

Introduction

SSpace is a MATLAB toolbox that implements linear, nonlinear and non-Gaussian
State-Space (SS) systems in a very flexible and powerful way. It is mainly based
on the work of Young and collaborators [14, 15] along many years seasoned with
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many other elements, mainly found in the books of Harvey, Durbin, and Koopman
[5, 7]. Though SS systemsmay be considered a “classical” tool nowadays (especially
in engineering and economics), the approach is still remarkably alive as an area of
active research, judging by the number of research articles and books on this topic.

There are also numerous packages available in the marketplace: some of them
available for free, and many others available commercially. There are already several
toolboxes written in MATLAB including some supplied with the core program (like
Signal Processing, Control, etc.), but others also exist, such as CAPTAIN [14], SSM
[12], SSMMATLAB [6], and E4 [2]. Two packages worth mentioning because of
their relevance are STAMP [9] and SSfPack [10]. Some further examples are listed in
volume 41, 2011 of the Journal of Statistical Software [3]. Some others are written
either in R [13], RATS [4], gretl [11], etc. Among the commercial programs, the
following incorporate SS routines with different degrees of complexity: Eviews,
SAS, Stata, etc.

In a broad sense, SSpace provides the user with the most advanced and up-to-date
features available in any State-Space framework, e.g., the capability of dealing with
both univariate and multivariate models, exact Kalman filter initialization, univariate
treatment of multivariate time series, nonlinear and non-Gaussian modeling, alterna-
tive objective functions in parameter optimization (not only maximum likelihood),
straightforward modeling of nonlinear input–output relationships, etc.

Theflexibility and easiness of use are reflected in the fact that SSpacewas designed
keeping in mind the final user and the usability of the library, by selecting easy-to-
remember function names, and more importantly, by allowing a direct correspon-
dence between the analytical expression of models and the corresponding definition
in MATLAB code. In addition, users are also provided with a set of model templates
for approaching many standard models with maximum simplicity. A full help sys-
tem and documentation for each function are included in both HTML andMATLAB
format, complemented with eight step-by-step demos to demonstrate the use of the
toolbox with standard well-known examples and others much less standard.

A final advantage of SSpace is that it is freely available via the Internet at https://
bitbucket.org/predilab/sspace-matlab/, where potential users are encouraged to push
their own contributions and suggestions.

General State-Space Framework

SSpace supports multivariate linear and nonlinear Gaussian models and univariate
non-Gaussian models. The linear Gaussian version is shown in Eq. (1).

State Equations: αt+1 = Ttαt + Γt + Rtηt
Observation Equations: yt = Ztαt + Dt + Ctεt

(1)

In these equations, αt is the state vector of length n; yt are the m × 1 vectors of
output data; ηt ∼ N (0, Qt ) and εt ∼ N (0, Ht ) are the state and observational vectors

https://bitbucket.org/predilab/sspace-matlab/
https://bitbucket.org/predilab/sspace-matlab/
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of Gaussian noises, with dimensions r × 1 and h × 1, respectively; both noises are
allowed to be correlated by a systemmatrix St = Cov(ηt , εt ) of dimension r × h; Γt

and Dt are two matrices included to deal with input–output models in a flexible way.
The remaining elements in (1) are the rest of the system matrices with appropriate
dimensions. The system is completed by making assumptions about the stochastic
properties of the initial state vector, i.e., α1 ∼ N (a1, P1), where a1 and P1 are its
mean and covariance matrix, respectively.

The nonlinear models in SSpace are shown in Eq. (2).

αt+1 = Tt (αt ) + Γt + Rt (αt )ηt
yt = Zt (αt ) + Dt + Ct (αt )εt

(2)

Functions Tt (αt ) and Zt (αt ) provide nonlinear transformations of the state vector
into vectors of size n × 1 and m × 1, respectively. Matrices Qt and Ht may also
depend on the state vector, but St = 0.

Finally, the non-Gaussian SS setup is shown in Eq. (3):

αt+1 = Ttαt + Γt + Rtηt
yt ∼ p(yt | θt ) + Dt

θt = Ztαt

(3)

Here θt is known as the signal. This representation allows stochastic volatility
models (i.e., yt = exp( 12θt )εt + Dt ); exponential family models (where p(yt | θt ) =
exp[y′

tθt − bt (θt ) + ct (yt )],−∞ < θt < ∞); and models in which the observations
are generated by the relation yt = θt + εt , εt ∼ p(εt ) (with p(•) being a distribution
of the exponential family).

Given any of the previous systems, the estimation problem consists of finding
the first- and second-order moments (i.e., mean and covariance) of the state vector,
conditional on all the data in a sample. The tools that allow this operation to be per-
formed in linear Gaussian systems are the well-known Kalman filter, fixed interval,
and disturbance smoothers. These algorithms may be adapted to deal with nonlin-
ear systems by running them on a Taylor linear expansion of the original nonlinear
system (extended Kalman filter and smoothers). Things become rather more compli-
cated for non-Gaussian systems, which require simulation-based methods that imply
running the recursive algorithms repeatedly with an extra computational burden. An
excellent exposition of all these filtering and smoothing techniques may be found in
[5], see also SSpace documentation.

The application of the recursive algorithms requires knowledge of all the system
matrices. The normal situation is that part of the system matrices are known a priori
and part are unknown. The unknowns are estimated in SSpace by time domain Exact
Maximum Likelihood (ML) optimization, though less common procedures are also
available in SSpace, for example, estimation by minimization of several-step-ahead
forecast errors.

There are plenty of issues not commented in this chapter because of space con-
straints. For further reading, refer to SSpace documentation and [5, 7, 14, 15].
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SSpace Overview

The feature that gives SSpace its real power is the possibility of specifying models in
MATLAB coded functions. Such functions follow a fixed structure that is supplied
with the toolbox in a set of templates that should be used to avoid coding bugs. The
general template is a standard MATLAB function called SampleSS shown below.
This function has an input argument p, that is a vector of unknown parameters and
that will be estimated later on. The system matrix names are easily identifiable and
the template will work properly as long as the user does not remove anything from
it, and just adds meaningful MATLAB code.

function model = SampleSS(p)
model.T = []; model.Gam = []; model.R = [];
model.Z = []; model.D = []; model.C = [];
model.Q = []; model.H = []; model.S = [];

Take as an example the AR(1) process in Eq. (4) with var(ηt) = σ2
η .

yt = φyt−1 + ηt (4)

A straightforward SS representation of this model consists of Eq. (4) playing the
role of the state equation with yt = αt as the observation equation. By comparing
this particular case with the general linear Gaussian case in Eq. (1), the system SS
matrices are inferred as Tt = φ, Rt = Zt = 1, Ct = 0, Qt = σ2

η , Ht = 0. Γt , and Dt

do not exist because the model has no inputs. The filled-in version of SampleSS
for this particular case is listed below, where the function is renamed as ar1 to keep
the original version of SampleSS intact for future use.

function model = ar1(p)
model.T = p(1); model.Gam = []; model.R = 1;
model.Z = 1; model.D = []; model.C = 0;
model.Q = 10.^p(2); model.H = 0; model.S = [];

The input p is in this case a vector of two elements, namely φ and σ2
η . Beware that

the system matrix Q = σ2
η , identified as the second element of the input argument

p, should be positive or zero. Thence, Q is defined as any positive or negative power
of 10.

Once the model is fully specified, the way it is handled should be told to SSpace
by means of a number of fundamental functions shown in the following listing.

>> sys = SSmodel(’y’, data , ’model’, @ar1);
>> sys = SSestim(sys); % Estimation
>> sys = SSvalidate(sys); % Validation
>> sys = SSsmooth(sys); % Smoothing

The first command builds a new SSpace object, called sys, consisting of a model
written in ar1.m that will be applied to the data stored inmemory in a variable called
data. The second command estimates the model by exact ML. The third shows the
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Table 1 Main functions and templates included in SSpace

Main Functions

SSmodel Creates SSpace model object or adds properties to an existing one

SSestim Estimation of an SSpace model

SSvalidate Validation of an SSpace model

SSfilter Optimal Kalman filtering of SSpace model

SSsmooth Optimal fixed-interval smoothing of SSpace model

SSdisturb Optimal disturbance smoother

SSdemo Run SSpace demos 1–8

Templates

Linear and Gaussian Models

SampleSS: General SS template

SampleARIMA: ARIMA models with exogenous variables

SampleVARMAX: VARMAX models

SampleBSM: Basic structural model

SampleDHR: Dynamic harmonic regression

SampleDLR: Dynamic linear regression

SampleES: Exponential smoothing with exogenous variables

Non-Gaussian Models

SampleNONGAUSS: General non-Gaussian models

SampleEXP: Non-Gaussian exponential family models

SampleSV: Sochastic volatility models

Nonlinear Models

SampleNL: General nonlinear models

Other Templates

SampleAGG: Models with time aggregation

SampleCAT: Concatenation of State-Space systems

SampleNEST: Nesting in inputs State-Space systems

results in tabular form with diagnostic statistics to check model validity. Finally,
the last command provides the smoothed estimates of states and their covariance
matrices. With each command, the system object sys is filled in with the relevant
output information that may be used later on.

One caveat is that any model implemented has to be transformed into SS form as
a previous step before it may be used in SSpace. However, this limitation is readily
overcome, because the toolbox is provided with a number of predefined templates
for a set of common methods. Table1 lists all the available functions to deal with an
existing SSpace system and the templates included, see details in the documentation.

For example, the same AR(1) model may be implemented with the aid of the
SampleARIMA template. The advantage of using the SampleARIMA template is
that the model is directly defined in terms of the ARIMA specification, instead of
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using its SS representation. Therefore, the user does not even need to know the
SS representation of an AR model. The listing below shows the SampleARIMA
template prepared to deal with a much more complicated ARIMA model, in which
all the references to the system matrices of an SS model are replaced by alternative
references to the backshift operator polynomials typical of an ARIMA model (as
algebraic vectors), as is the norm in other MATLAB toolboxes.

function model= SampleARIMA(p)
Sigma = 10.^p(1); % Noise variance
DIFFpoly= [1 -1]’; % Differences
ARpoly = conv ([1 p(2)], [1 zeros(1, 11) p(3)]) ’;
MApoly = [1 -p(2)]’; % AR and MA polynomials
D = p(4); % Input variables (constant)

The model implemented is an ARIMA(1, 1, 1) × (1, 0, 0)12 with a constant (in
matrix D) and a parameter constraint consisting of setting the AR(1) parameter as
the negative of the MA(1). This is a constraint that will be ludicrous in many real
situations but is introduced here solely as an example of how easy it is to implement
parameter constraints in SSpace.

One last point worth mentioning is that Table1 includes a template list for nonlin-
ear and non-Gaussian templates. It also includes other templates to carry out useful
operations with time series, namely time aggregation (SampleAGG), concatenation
of SS systems (SampleCAT), and nesting SS systems in inputs (SampleNEST).

Examples

Example 1: Regression

Regression may be introduced in SSpace models in many different ways, and this
worked example is included here as an illustration of SSpace flexibility when imple-
menting this sort of models (see also demo number 5 of SSpace).

Consider 300 samples from a simulation of the model in Eq. (5), where B stands
for the backshift operator such that Bl yt = yt−l ; at is a Gaussian white noise serially
independent with mean 0 and variance 0.25 and et is another Gaussian white noise
with zeromean andvariance 1.This casemaybe seen as a regressionwith three inputs,
namely a constant, an AR(1) process, and a cosine wave. A simulated response of
Eq. (5) is depicted in Fig. 1.

yt = 15 + 4ut + 2 cos(2πt/50) + et
ut = 1

(1−0.8B)
at

(5)

Because of the simplicity of this model, one sees immediately that this regression
with three inputs may be viewed as a simplified version of an SS system in which the
state equation does not exist and the observation equation does not relate to the states
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Fig. 1 A simulation sample of a model in Eq. (5)

in any way, i.e., Tt = 0, Rt = Zt = 0, Ct = 1, Qt = 0, Ht = 1, and Γt do not exist
and Dt = β is a vector of three time-invariant parameters affecting each input. The
user model file based on the general SampleSS template is shown below, where
matrix D plays the role of β parameters of the regression.

function model= regression1(p)
model.T = 0; model.Gam = []; model.R = 0; model.Z = 0;
model.D = [p(1) p(2) p(3)]; model.C = 1; model.Q = 0;
model.H = 1; model.S = 0;

Since the observation noise variance is not included in themodel, it should be esti-
mated by concentratedML. The execution of the estimation functionwould explicitly
require the use of the concentrated ML function. Assuming that the inputs have been
included in a 3 × T MATLAB matrix called u; the command to estimate the model
is

>> sys=SSmodel(’y’,y, ’u’, u, ’model’,@regression1 ,
...’ OBJ_FUNCTION_NAME ’, @llikc);

In this listing, the output–input data are y and u, respectively; the model is in
function regression1 above; and the objective function is llikc, with the latter
“c” indicating the concentrated ML optimization.

Estimation results truncated to save space for the time series in Fig. 1 are shown
when using the SSvalidate function. Parameter estimates are highly significant
and close to their theoretical values.

------------------------------------------------------
Param S.E. T-test P-value |Gradient|

------------------------------------------------------
p(1) 15.0710 0.0623 241.9089 0.0000 0.000000
p(2) 3.9847 0.0646 61.7117 0.0000 0.000000
p(3) 1.7903 0.0835 21.4530 0.0000 0.000000

------------------------------------------------------
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A different way to implement this regression model consists of defining matrix D
as a time-varying matrix and adding the model inputs as a second input in the user
function. The next listing shows a variety of alternative definitions of matrix D.

function model= regression2(p, u)
...
model.D = [p(1) p(2) p(3)] * u;
...
model.D = filter(1, [1 -p(5)], u);
...
model.D = 1 ./ (exp(-p(5) * u));
...
model.D = p(5) * u;
ind = find(y > 0);
model.D(1, ind) = p(6) * u(1, ind);

The first case is just a redefinition of the linear model through a time-varying D
matrix; the second one defines the input–output relation as a transfer function model
that may be generalized to any order; the third case is a general nonlinear function;
the fourth case is a linear piece-wise relation, depending on whether variable y is
positive or negative (in this case, y should be supplied as an additional input to the
user model function). It is important to note that, as all the previous specifications
only affect the definition of matrix D for modeling input–output relationships, they
may be introduced in any sort of model.

The call to estimate thismodel below is somewhat different from the previous calls
because the additional input to function regression2 ought to be told explicitly.

>> sys=SSmodel(’y’,y, ’model’,@regression2 ,...
’user_inputs ’, u, ’OBJ’, @llikc );

Any of the previous regression versions have an advantage that allows the use
of SSpace in a completely novel and even “mischievous” way, consisting of inter-
polating missing values of input variables at the same time the model parameters
are estimated (note that missing values in output variables are not a problem in SS
systems in contrast to missing values in input variables). This is simply solved by
including all the missing values as additional parameters to estimate. For example,
assuming there are twomissing consecutive values in the second input at observations
200 and 201, the following line of code should be introduced prior to the definition
of matrix D.

...
u(2, 200)= p(4); u(2, 201)= p(5);
...

Another way to deal with regressions is by specifying them as Dynamic Linear
Regressions in which the parameters are assumed to vary over time as either Random
Walks or Integrated Random Walks. In the case of three inputs, the model may be
written as in Eq. (6).



Time Series Modeling with MATLAB: The SSpace Toolbox 79

yt = utβt + εt (6)

This model may be fit into Eq. (1) easily if the state vector is just the time-varying
parameter and it is assumed to follow an independent random walk process (βt+1 =
βt + ηt ). Then βt = αt , Tt = Rt = I (an identity matrix), Zt = ut , Ct = 1, Qt = Q
(diagonal), and Ht = 1. In this case, Zt is a time-varying system matrix.

SampleDLR helps the user to specify this type of models correctly. In particular,
the model in Eq. (5) is listed below.

function model = dlr(p, u)
D = [1 1 1];
Q = diag (10.^p(1:3));
H = 1;

Here, variable D indicates, with 1’s, which of the inputs are affected by time-
varying parameters; Q is the diagonal covariance matrix noises affecting the time-
varying parameters in such a way that big diagonal values imply big time variations,
while values close to zero imply constant parameters; finally, H is the variance of the
observed noise, that in this specification is concentrated out from the likelihood func-
tion (i.e., H=1). Such specification may be used in two different ways: (i) specifying
zero variances inQmatrix is effectively telling the recursive algorithms that themodel
is a time constant regression, and the filtered states are their least squares recursive
estimation; and (ii) estimating Q matrix, a time-varying regression is estimated.

The code in the next listing produces the results below, where SSpace automat-
ically detects that the system is a time-varying regression and therefore shows the
final states as the estimates of the time-varying parameters. Variances of parame-
ters (10.ˆ [p(1) p(2) p(3)]) are clearly zero, implying that the regression
parameters ([State(1) State(2) State(3)]) are constant and close to the
simulated ones. Further regression discussions are included in demo number 5 of
SSpace.

sys= SSmodel(’y’, y, ’model’, @dlr , ...
’user_input ’, u’, ’OBJ’, @llikc);

sys= SSestim(sys);
sys= SSvalidate(sys);

----------------------------------------------------
Param S.E. T-test P-val |Grad|

----------------------------------------------------
p(1) -11.7780 62.4750 0.1885 0.8506 0.000000
p(2) -14.8145 38.7453 0.3824 0.7025 0.000000
p(3) -10.1355 45.8441 0.2211 0.8252 0.000000

State (1) 15.0710 0.0626 240.6985 0.0000 -
State (2) 3.9847 0.0649 61.4029 0.0000 -
State (3) 1.7903 0.0839 21.3454 0.0000 -
----------------------------------------------------
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Example 2: Time Aggregation in a Basic Structural Model
with Trigonometric Seasonality

Thewell-known air passengers data from [1], but with the first five years transformed
to quarterly aggregated data is shown in Fig. 2.

An appropriate model for this time series is a Basic Structural Model [7] with
trigonometric seasonality that may be implemented in SSpace easily with the help
of SampleBSM template. A version of this model may be seen in the listing below
(user function airpasBsm).

function model= airpasBsm(p)
% TREND MODEL (Local Linear Trend)
TT = [1 1;0 1];
ZT = [1 0];
RT = [1 0;0 1];
QT = diag (10.^(p(3:4)));
% TRIGONOMMETRIC SEASONAL MODEL with common variance
Periods = [12 6 4 3 2.4 2];
Rho = [1 1 1 1 1 1];
Qs = repmat (10.^(p(1)), 1, 6);
% IRREGULAR (observed noise)
H = 10.^(p(2));

However, in order to handle time aggregation, this function ought to be called
inside another one based on SampleAGG template, which contains just the correct
call to the user function. This extra function needs as an extra input, the output data
to locate exactly where the time aggregation takes place, signaled in the output data
as standard MATLAB NaN (Not-a-Number) values.

function model= airpasBsm_agg(p, y)
model1 = airpasBsm(p);

0 50 100 150

Months

200

300

400

500

600

700

800

M
ill

. p
as

se
ng

er
s

Fig. 2 Air passengers data of [1] with time aggregation
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Fig. 3 Trend and log of air passengers (top panel) and seasonal component. Estimated components
with time aggregation (solid lines) and without time aggregation (dotted) are shown

Smoothed trend and seasonal components obtained with this model with and
without time aggregation are shown in Fig. 3. Differences are very small, meaning
that the interpolation is rather appropriate.

Example 3: Demand Forecasting Comparisons

The robustness of SSpace is evaluated in this example, in which a thorough experi-
ment is carried out. The data consists of 517 consecutive daily sales of 261 products
from a Spanish franchise, specialized in selling dishes made from natural products.
Figure4 shows some typical examples of the time series in the dataset.

Although all time series are composed of integer values, the units are much larger
in the top panel of Fig. 4. In fact, all observations in the bottom panel are below 12.
It is well-known that in such cases, the Gaussian approximation is not appropriate
and other discrete distributions (mainly Poisson) are superior in many respects (see,
for example, [5]). This suggests that the sample should be split into two groups of
series, i.e., those that may be treated as continuous with higher values per day, and
the remainder, which hereafter will be referred to as discrete time series. There are
166 time series in the continuous group, i.e., 63.6% of the total and 95 (36.4%) in
the discrete category.

The experimental setup of this example consists of the automatic identification and
estimation of all forecasting methods for each time series using the initial 414 daily
observations. 1–14days ahead forecasts are then produced in a rolling experiment
that advances the forecast origin one day at a time on the remaining out-of-sample
observations. Thus, 90 rounds of daily forecasts were done for each product.
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Fig. 4 Two examples of demand time series

The methods used are

– NAIVE: random walk.
– AR: pure autoregressive models with order identified with Bayesian Information
Criterion (BIC).

– ARIMA: identified as in [8].
– ETS: ExponenTial Smoothing, identified as in [8].
– UC: Unobserved Components based on the identification of several trend, sea-
sonal, and irregular components, based on the minimization of the BIC estimated
with SSpace (using template SampleBSM).

– UCp: PoissonUnobserved Components used only for discrete time series based on
theminimization of theBIC estimatedwith SSpace (using templateSampleEXP).

– MEAN: mean combination of ARIMA, ETS, UC, and UCp (in the case of discrete
time series).

– MEDIAN: median combination of ARIMA, ETS, UC and UCp (in the case of
discrete time series).

Mean of Mean Absolute Errors across all time series and all methods are shown
in Table2 at different forecast horizons (from 1 to 14), with the best method for
each forecasting horizon highlighted in boldface. The table shows clearly that UC
is the method with fewer errors in continuous time series, while the UCp is the best
in the case of discrete time series. MEAN and MEDIAN are often the second best.
But, what is more important from the point of view of this chapter is that the results
shown require repeated runs of SSpace subroutines, that worked robustly in this long
experiment.
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Table 2 Mean of Mean Absolute Errors for continuous and discrete time series. Best method for
each forecasting horizon is highlighted in boldface

Continuous time series

1 2 3 4 7 14

NAIVE 0.4695 1.0833 1.7437 2.4153 4.0597 8.3784

AR 0.3484 0.7198 1.0967 1.4816 2.6518 5.5116

ARIMA 0.3210 0.6634 1.0133 1.3695 2.4550 5.0598

ETS 0.3308 0.6849 1.0455 1.4117 2.5241 5.2015

UC 0.3164 0.6539 0.9989 1.3500 2.4225 4.9901

MEAN 0.3209 0.6635 1.0127 1.3691 2.4563 5.0740

MEDIAN 0.3216 0.6655 1.0163 1.3728 2.4590 5.0774

Discrete time series

1 2 3 4 7 14

NAIVE 1.0128 2.0892 3.1674 4.2484 7.3912 14.9254

AR 0.8304 1.6736 2.5218 3.3707 5.9269 11.9996

ARIMA 0.8285 1.6634 2.5020 3.3425 5.8658 11.8557

ETS 0.8338 1.6762 2.5220 3.3694 5.9136 11.9533

UC 0.8147 1.6331 2.4542 3.2784 5.7589 11.6495

UCp 0.8056 1.6161 2.4284 3.2456 5.7119 11.5940

MEAN 0.8089 1.6242 2.4428 3.2642 5.7368 11.6101

MEDIAN 0.8104 1.6259 2.4445 3.2660 5.7378 11.6103

Conclusions

This chapter has presented SSpace, a newMATLAB toolbox for taking full advantage
of the State-Space framework. SSpace is a toolbox for State-Space modeling that
provides the user with the possibility to model linear Gaussian, nonlinear, and non-
Gaussian systems with the most advanced and up-to-date features available in any
State-Space framework, following mainly [5, 7, 14]. In addition, all systemmatrices
are potentially time-varying and may be multivariate, several estimation methods are
implemented, inputs to the system may be introduced explicitly, etc.

Further advantages are that a few functions are necessary to carry out a compre-
hensive analysis of time series, always used with a fixed pattern and with function
names carefully chosen following mnemonic rules. However, what makes SSpace
flexible, powerful, and transparent is that the user implements models directly by
coding MATLAB functions. This feature makes extensions of models with non-
standard properties possible, like time-varying parameters or variances, nonlinear
input–output relations, etc.
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The toolbox is supplied with a number of templates to carry out the time series
analysis by some standard methods to avoid forcing the user to remember their
respective SS forms. All these advantages, in addition to robustness, are illustrated
with several worked examples taken from real data.
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Stacked LSTM Snapshot Ensembles
for Time Series Forecasting

Sascha Krstanovic and Heiko Paulheim

Abstract Ensembles of machine learning models have proven to improve the per-
formance of prediction tasks in various domains. The additional computational costs
for the performance increase are usually high since multiple models must be trained.
Recently, snapshot ensembles (Huang et al. in Snapshot ensembles: train 1 get M
for free, (2017) [16]) provide a comparably computationally cheap way of ensem-
ble learning for artificial neural networks (ANNs). We extend snapshot ensembles
to the application of time series forecasting, which comprises two essential steps.
First, we show that determining reasonable selections for sequence lengths can be
used to efficiently escape local minima. Additionally, combining the forecasts of
snapshot LSTMs with a stacking approach greatly boosts the performance compared
to the mean of the forecasts as used in the original snapshot ensemble approach.
We demonstrate the effectiveness of the algorithm on five real-world datasets and
show that the forecasting performance of our approach is superior to conservative
ensemble architectures as well as a single, highly optimized LSTM.

Keywords Time series · LSTM · ARIMA · Ensembles · Stacking ·Meta-learning

Introduction

Estimating the future development of continuous data generated by one or more
signals has been an ongoing research field of interest for various applications. For
example, automated financial forecasting is vital to today’s markets. Further, sensor-
generated data driven by the Internet of Things requires robust methods for reliable
forecasts of temporal data. Long Short-TermMemory (LSTM) [13] has proven to be
an effective method for a variety of sequence learning tasks such as time series fore-
casting.Relying on a singleLSTM, however, is prone to instability due to the dynamic
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behavior of time series data. Additionally, the optimization of LSTM parameters is
a hard problem that requires time-intensive fine-tuning.

Another difficulty when dealing with time series problems lies in the slicing of
the data, i.e., how many past values should be considered for training the model and
generating forecasts. It is common practice to determine the top periodicity using a
fast Fourier transformation and power spectra, and train one or more models based
on that periodicity. This approach is prone to incompleteness because information
may be encoded across patterns of varying periodicities in the series. It is also a
time-consuming task as identifying the optimal sequence length is usually part of
a manual preprocessing step. For these reasons, it is a challenge to create machine
learning frameworks that are able to produce automated forecasts for a given series.
Even a greatly tuned model fails to find important relationships in time series data if
the selected time lags cannot represent these patterns. Therefore, a framework that
can incorporate multiple sequence lengths is desirable.

We introduce a meta-learning approach based on snapshot ensembles that provide
superior and robust forecast estimates across different datasets. In contrast to the
original idea of snapshot ensembles, we do not adapt the parameters of the LSTM
but leave them unchanged. Instead, we use different slices of the training data in order
to escape localminima and to detect time-dependent patterns.Our proposed approach
enables the automated generation of time series forecasts for a given series y1, ..., yn ,
including preprocessing steps like data standardization, periodicity detection, data
slicing, and splitting. Hence, the amount of required manual work is greatly reduced
by the proposed framework.

By sequentially training LSTMs with periodicities of decreasing strength, our
algorithm is able to learn the different patterns of the respective seasonalities. This
allows for higher generalization of the final model, thereby providing estimates that
are robust with respect to the underlying data generation process.

The rest of this paper is structured as follows. Section“Related Work” provides
an overview of existing approaches to time series forecasting and their applica-
tion within ensemble frameworks. In section“Time Series Forecasting and Snapshot
Ensembles”, we introduce the concept of snapshot ensembles and explain our
approach for their extension to the task of time series forecasting. We show that our
method outperforms previous approaches on five datasets in section
“Experiments”. Eventually, we conclude and give an outlook on future research
directions in section“Future Work and Conclusion”.

Related Work

Time series forecasting is a highly common data modeling problem since temporal
data is generated in many different contexts. Classical forecasting approaches are
based on autoregressive models such as ARIMA, ARIMAX, and Vector Autoregres-
sion (VAR) [10, 25]. Here, a forecast estimate is dependent on a linear combination
of past values and errors. Autoregressive models work well if the assumption of
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stationarity is true and the series is generated by a linear process [1]. On the other
hand, these hard assumptions limit the effectiveness of autoregressive models if one
deals with nonlinear series, as it is the case with the majority of practical time series
problems.

LSTM, a particular variant of artificial recurrent neural networks (RNN), over-
comes these shortcomings as it makes no assumptions about the prior distribution
of the data. One can think of RNNs as regular feed-forward networks with loops in
them. This enables RNNs to model data with interdependencies such as autoregres-
sion. It has been shown that artificial neural networks with one hidden layer can, in
theory, approximate a continuous function arbitrarily well [14]. As the RNN gets
deeper, vanishing or exploding gradients often leads to poor model performance [4,
22]. LSTMs solve this problem with a gating mechanism that controls the informa-
tion flow in the neurons. LSTMs show superior performance in a variety of sequence
learning tasks such as machine translation [11, 26].

Since autoregressive models perform well for linear series and neural networks
for nonlinear data, there exist a number of hybrid approaches that make use of these
characteristics. In those cases, the data is first split into a linear and a nonlinear
component and each one is modeled independently. The individual results are then
combined additively to determine the final estimate [2, 3, 28, 32].

The sequential nature ofLSTMshas led to thembeing studied in the context of time
series forecasting intensively. References [8, 19, 20] describe applications of LSTMs
for forecasting tasks. References [1, 17] propose frameworks of LSTM ensembles
with independently trained models. Finally, snapshot ensembles constitute a way to
construct an ensemble of dependentANNs at comparably low computational costs. A
more detailed description is given in section“Introduction to Snapshot Ensembles”.
We extend this method to recurrent neural networks and sequential problems.

Time series analysis has also been investigated in the framework of convolutional
neural networks (CNNs). Reference [5] uses an architecture inspired by the recent
success ofWaveNet for audio generation [27]which achieves competitive forecasting
performance with relatively little training data available. A probabilistic approach
that combines both RNNs and CNNs in a single framework is given in [30].

Finding periodicities in time series data is a key part in the preprocessing of time
series data and proposes a major challenge for the automation of machine-generated
forecasts. Reference [7] proposes a variation of the approximate string matching
problem for automated periodicity detection. Reference [21] develops strategies on
diversity generation and builds ensembles of the resultingmodels. In [6], a number of
heterogeneous models are arbitrated by a meta-learner. Reference [9] applies Fourier
transformations to the original data for feature generation and uses a feed-forward
neural network for the modeling part based on these features. Reference [23] shifts
CNN training entirely to the Fourier domain, thereby, achieving a significant speedup
with practically no loss of effectiveness. Another approach that exploits Fourier
transformations is given in [24]. We will use a similar methodology in the course of
this paper.
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Time Series Forecasting and Snapshot Ensembles

Time series data is subject to a number of properties due to interdependencies across
observations:

1. Autoregression. In contrast to a machine learning setup where observations are
independent of each other, sequence learning tasks are characterized by depen-
dencies between observations. This has effects on data sampling andmodel evalu-
ation as drawing completely random subsamples is not possible. Hence, a suitable
sample strategy is indispensable when modeling temporal data.

2. Structural patterns and changes. Due to trend and seasonality effects, the behavior
of a time series is subject to repetition and change at the same time.While similar
patters may repeat over time, the frequency and intensity of those are usually
not constant. This is one reason why ensemble methods are a powerful tool for
time series data as each of the snapshot models incorporates information about
different behavior.

Introduction to Snapshot Ensembles

Snapshot ensembles propose a novel technique to obtain an ensemble of ANNs at
the same computational costs as fully training a single ANN. The central idea is that
instead of training a number of independentANNs, only oneANNmust be optimized.
In the process of optimization, the ANN converges to a number of different local
minima. Every time the ANN reaches a local minimum, the model snapshot is stored
along with its architecture and weights. The final weights of a snapshot serve as
the weight initialization of the succeeding snapshot LSTM. Finally, each snapshot
provides a prediction estimate and the ensemble predictor is calculated as the mean
of the snapshot estimates. It was shown that this combination yields advantageous
performance compared to the single best estimate [16].

Extending Snapshot Ensembles to Sequence Problems

Time series forecasting can be interpreted as a sequence learning problem. Given
an input sequence of scalars, the objective is to estimate the succeeding values of
the sequence. An important task is to determine how many past values should be
considered as the features under consideration, i.e., which slice dimension of the
series allows for good model generalization. By nature, time series data is dynamic
and subject to change over time, so an initial decision is not necessarily a sustainable
solution. Designing ensembles of LSTM networks allows us to incorporate multiple
sequence lengths into our prediction model. In the following, we explain how.
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LSTMs with varying sequence lengths. By architecture, LSTMs are only capable
to process sequences of equal lengths per epoch, due to the required matrix opera-
tions in the optimization process. In many applications, however, varying sequence
lengths are inevitable. One example is machine translation where the length of an
input sentence can be arbitrarily long [26]. Padding is usually used to overcome that
problem [15]. This implicitly means that, although two models trained with even
slightly different sequence lengths have a large intersection of training data, they
learn different yet related patterns. This constitutes a promising setting for ensemble
learning.

Locating candidate sequence lengths. In order to train a number of snapshotLSTMs
with different sequence lengths, the first step is to identify the right choices of these.
A naive approach is to select sequence lengths from a random distribution. To get
sequence lengths that can catch effects of seasonality,we apply a fast Fourier transfor-
mation (FFT) to the training data and estimate the power spectra [29]. Themotivation
behind this is that the FFT is an efficient method to extract the right periodicities
from a given time series. This allows the snapshots to encode different patterns,
seasonalities, and other time-dependent effects in the series.

Generating a snapshot ensemble of LSTMs with varying sequences. Refer-
ence [16] conducts a variant of simulated annealing in order to adapt the learning
rate and escape from local minima. In this case, a snapshot is a further optimiza-
tion of its predecessor using the identical training data, which leads to a relatively
low level of diversity across the snapshots. We propose another strategy in order to
increase diversity: Instead of adapting the model parameters, we feed the LSTMwith
different slices of the data. This is possible because the dimensions of the training
data must be identical within a single epoch but not for two separate epochs. Given a
set S = {s1, s2, ..., sn} of different sequence lengths, we store in total n snapshots of
the LSTM. After each snapshot based on si , the training process is continued with
a different data slice through time according to si+1. The final holdout estimates of
the individual snapshots are commonly combined by taking the mean of the base
forecasts. This assumes that each snapshot is equally important with respect to the
combination of forecasts. In order to allow for more flexibility, we extend the mean
function by a meta-learner. Ridge regression has proven to be an effective choice
here [31].

The process of the ensemble construction at training time is depicted in Fig. 1
for the example case S = {14, 21, 28} and a forecasting horizon of 10. First, the
training data y1, ..., yn (75% of the total data) is split according to the most potent
sequence lengths provided by the FFT (in decreasing order of FFT significance).
In our experiments, we use the top 20 sequence lengths. Next, the first snapshot is
trainedwith the respective data slices based on the first sequence length.We train each
snapshot for five epochs and standardize the data by its z-transform prior to training.
The base LSTM learners’ architecture is set up of two LSTM layers with 64 and 128
neurons as well as 20% dropout. Adam is used as the optimizer with a learning rate of
0.001. The weight matrix of the first snapshot is then updated based on the data slices
for the second sequence length, and so on. In total, training is done for 5 · 20 = 100
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Fig. 1 LSTM snapshot training framework

epochs. After all the snapshots are trained, a ridge regression meta model learns
how to combine the individual forecasts of the 20 snapshots. Analogously, during
test time, all 20 base models provide their forecasts to the meta-learner, which then
combines them to the final estimate for the 10-step ahead forecasts.

Experiments

We test the proposedmethodology on five datasets of different kinds.We train a snap-
shot ensemble for each datasetwherewe startwith the strongest periodicity according
to the FFT. Subsequently, each LSTM snapshot is based on the next strongest period-
icity. In total, 20 snapshots are trained. An overview of the datasets is given in Table1
and Fig. 2. Furthermore, Fig. 3 displays the power spectrum for the sunspots series.
This example shows that there exist a number of unequally well-suited periodici-
ties. Each of these contains different patters which we aim to extract using snapshot
ensembles. To show the effectiveness as well as the efficiency of our approach, the
performance of the snapshot ensemble is measured against the following three base-
lines:

1. Independent LSTM ensemble. Instead of continuing the training process by
escaping from a local minimum, the LSTM is reinitialized randomly and fed
with the new data slices. Instead of n snapshots, we end up with n LSTMs whose
training process was completely independent of one another. In contrast to this,
a snapshot inherits its initial weights from its preceding snapshot.

2. Single optimized LSTM. The best sequence length according to the FFT is used
for the optimization of a single LSTM over all epochs.

3. ARIMA with model selection based on the AIC.
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Fig. 2 Graphical data overview

Notably, the total number of epochs is identical for all the neural net approaches.
Due to different slices of the training data, the total runtime of the latter approach
can slightly differ from the ensemble methods in either direction.

Model Evaluation

We validate the performance of our approach on five different datasets listed in
Table1. Figure2 illustrates the series on their original scale. Evidently, each of
the datasets has its very own characteristics and dynamics. While the daily birth
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Fig. 3 Power spectrum of
the sunspots dataset

Table 1 Datasets of the
experimental analysis

Data Number of observations

Births in Quebec [12] 5,113

Household power
consumption [18]

50,000

Maximum temperature in
Melbourne

3,650

Number of sunspots 2,820

Riverflow 23,741

rates dataset shows signs of weak stationarity, the sensor-generated household power
dataset depicts more chaotic behavior with random noises. The power dataset is sam-
pled by the minute. River flow, a monthly sampled time series, is clearly nonstation-
ary as well. The series of daily maximum temperatures repeats similar patterns over
time as does the births data and shows clear signs of weak stationarity. Somewhere
in between those cases fits the monthly sunspots data which shows seasonalities of
varying strength and amplitude.

Figure4 shows the root mean square error (RMSE)1 on the holdout set of each
dataset and method. Besides the performance of the stacked ensembles (“Snap
Stack”: stacked snapshot ensemble, “ClassEns Stack”: stacked ensemble of inde-
pendently trained LSTMs), metrics for mean ensemble forecasts (“Snap Mean”,
“ClassEns Mean”), and single model forecasts (“Single opt.”) are shown. The key
outcomes of the analysis are as follows:

– Snapshot ensembles with ridge regression as a meta-learner outperform conserva-
tive ensembles as well as the single, optimized model in all cases.The traditional
ARIMA models show inferior forecasting accuracy.

– On average, the stacked snapshot ensemble performs 4.2% better than the next
best baseline.

1https://www.qlik.com/us/products/qlik-data-market, accessed June 19, 2019.

https://www.qlik.com/us/products/qlik-data-market
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Fig. 4 Model performance

– The greatest performance gain obtained by the stacked ensemble is realized for
the sunspots data. Here, the stacked snapshot ensembles outperform the next best
method by 13.8%, while the performance win for the other four datasets is in a
significantly lower range between 1.0% and 3.4%. Looking at the illustrated data
in Fig. 2, this is an indication that our approach is particularly suitable for time
series with seasonalities of varying intensity. Peaks of different amplitudes are
handled well by the stacked snapshot ensemble, which a single model fails to do
with a high degree of precision.

– Extending snapshot ensembles by the introduction of a meta-learner leads to a
great boost in performance compared to the simple mean combiner.

– The ensemble forecasts are significantly different from the estimates of the remain-
ing models, based on the paired t-test for significance.

– The single optimized LSTM only shows comparative performance if the structure
of the dataset is approximately stationary over time, as in the case of the maximum
temperatures series. This supports our hypothesis that snapshot ensembles are
particularly suitable for cases where patterns are spread across multiple sequence
lengths.
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Fig. 5 Exemplary forecast

– Reslicing the input data according to the FFT after each snapshot leads to base
learners with high diversity. This enables the meta-learner to exploit different
knowledge that is encoded across the snapshots. As an example, the ordered FFT
sequence lengths for the birth rates dataset are as follows: 365, 183, 73, 61, 37,
91, 41, 30, 10, 52, 11, 26, 852, 28, 14, 568, 341, 16, 20, and 465. This clearly
shows how FFT extracts potent periodicities from the time series as the yearly and
monthly seasonalities are immediately detected.

An exemplary 10-step ahead forecast is shown in Fig. 5. Here, the first holdout
sequence of the birth rates series along with its model estimates is illustrated. One
can see the significant improvements that are attributed to the meta-learner, leading
to reduction in forecasting error.

The code for the experiments is available on GitHub.2

Future Work and Conclusion

Snapshot ensembles based on FFT sequence lengths are an efficientmethod to extract
diverse patterns fromdata.We have shown that they yield superior forecasting perfor-
mance in comparison to the standard optimization of a single LSTM and an ensemble
of fully independently trained LSTMs, without the need for additional computational
costs. It turned out that these results are stable across different datasets although the
relative performance boost differs depending on the underlying data structure. Our

2https://github.com/saschakrs/TS-SnapshotEnsemble, accessed June 1, 2018.

https://github.com/saschakrs/TS-SnapshotEnsemble


Stacked LSTM Snapshot Ensembles for Time Series Forecasting 97

approach enables the automated generation of robust time series forecasts without
the assumption of a specified data distribution. This makes the framework a valu-
able application for systems that require the future estimation of one or more key
performance indicators that develop over time.

There is further potential regarding the design of the ensemble architecture:
Besides the configuration of the individual base learners, different combiner func-
tions might improve the overall performance for certain problems. In addition to
this, we found that five epochs per snapshot lead to good overall performance of the
ensemble, however, this parameter could be higher for very complex learning tasks.

It is also possible to extend the ensemble by different model types. Integrating
autoregressive models or state-space representations could increase model diversity
and thereby lead to a greater performance win by the combiner function.

Finally, LSTM snapshot ensembles are currently limited to univariate time series.
Evaluating their applicability to the multivariate case is another challenge worth
investigating. It would also be interesting to evaluate the applicability of stacked
snapshot ensembles to different sequence learning tasks such as machine translation.
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Abstract Here, we present a novel algorithm for detecting changes in a continuous
time series stream based on the �2 distance between two distributions. The dis-
tributions are non-parametrically modeled using wavelet expansions, inspiring the
name of our method: Wavelet-based Least Squares Density–Difference (WLSDD).
Using the least squares method, we show that the �2 distance between two wavelet
expanded densities results in a closed-form expression of their coefficients. This cir-
cumvents the need to evaluate the densities and, instead, allows us to work directly
with the differences between the corresponding scaling and wavelet coefficients. The
method demonstrated superior change detection performance on both synthetic and
real datasets, stationary or nonstationary, in comparison to other competing tech-
niques.
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Introduction

With the advent of the Internet of Things (IoT), there has been a rapid increase in
connected network devices that are capable of continuously monitoring their sur-
rounding environment. These sensor observations are often streamed as time series
data and enable real-time reporting of system health, status updates, and interactive
engagement. In [20], the authors established eight basic rules for processing real-
time streaming data, some of which motivated this research: Rule 3 required that the
system has a built-in mechanism to handle imperfections and Rule 8 required the
system to respond to data changes instantaneously.

In this work, we propose the Wavelet-based Least Squares Density–Difference
(WLSDD) framework that is able to achieve these desired objectives and identify
reliable change points in stationary and nonstationary data streams in an efficient
manner. The WLSDD method non-parametrically models the density–difference
between distributions at two time instances through a wavelet expansion of their den-
sities. Then, based on the algebraic property that the �2 distance between two such
densities is available in closed-form, we formulate a change detection algorithm that
is triggered on significant deviations from this metric. Numerous experimental eval-
uations illustrated the outstanding performance ofWLSDD over other contemporary
methods.

Related Work

A recent comprehensive survey of the change point methods in [2] serves as a good
description of the current state-of-the-art algorithms. Here, we provide a brief tax-
onomic summary of these methods, from the nonparametric approaches of change
detection to the different density–difference measures.

Early works on change identification problems suggested using Kolmogorov–
Smirnov [8] andMann-WhitneyU [18] nonparametric tests. Supervisedmethods that
utilized theBayesian framework gained popularity recently, see [1, 3]. Unfortunately,
in many applications, the selection of an appropriate prior and likelihood-building
blocks of the Bayesian approach is not straightforward. The authors in [25] suggested
the generative additive model with two main components: a piecewise linear trend
and seasonality. The breaks in the trend component were contributed to the change
points. Hence, this model was called the Breaks For Additive Seasonal and Trend
(BFAST) and was applied to the sensed image time series data in order to detect
phonological changes caused by seasonal climatic variations, see [26]. A similar
model, called prophet [24], added a holiday component to accommodate human
behavior in social networks.
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Many unsupervised methods monitor a measure between two different distri-
butions; any excursion from a given threshold is labeled as a change point. The
methods utilize a two-window paradigm: the data from the “referenced” window
are compared to a set from the current window. Usually, estimating the density–
difference is a two-step method: first, distributions related with two retrospective
sliding windows are estimated, and then a difference measure is calculated based
on the results from the previous step. Common examples of measures are entropy
between the distributions [4], relative entropy or Kullback–Leibler (KL) divergence
[10], cumulative sum [11], and cosine distance [23]. Killick et al. [14] suggested a
penalized likelihood approach accompanied by a normality transformation and de-
trending steps to detect changes in the variance of oceanographic time series data.
Kifer et al. [13] proposed a user-understandable interpretation of the change called
the relativized discrepancy. A common framework for detecting both outliers and
change points from nonstationary streaming data was detailed in [30].With each new
data point, the framework used a probabilistic approach to relearn the parameters of
the autoregressive (AR) model by forgetting past data (exponential decay), incre-
mentally updated a probability density function and assigned a score with respect to
the baseline. Any rapid excursions from the scores indicated change points. Cha [6]
comprehensively reviewed different distance measures between distributions.

Unfortunately, in many real situations, the direct estimation of probability densi-
tiesmay not be an easy task. In [15], the authors used nonparametric estimation based
on the relative Pearson divergence in order to estimate the density–ratio estimation
directly. The authors in [12] worked on estimating the logarithm of the likelihood
ratio (importance) of probability densities. The improved Kullback–Leibler Impor-
tance Estimation Procedure (KLIEP) was implemented for online applications [22].
The authors presented a likelihood ratio as the linear model for basis functions.
The model parameters were determined by solving the convex optimization problem
derived from the Kullback–Leibler (KL) divergence criteria. For basis functions,
the authors used the Gaussian kernel with a spread parameter that was determined
from the cross-validation procedure. Yet another approach that calculated differences
between densities, without explicitly calculating individual densities, was presented
in [21]. The authors proposed an �2 distance, calculated by applying the least squares
fit to a density–difference model. They applied their model to the change point detec-
tion by thresholding the density–difference distance between Kernel Density Esti-
mators (KDEs). Their work was termed Least Squares Density–Difference (LSDD)
and serves as the progenitor of our work.

Wavelet-Based Density Estimators for Batch Processing

Wavelet-based density estimators belong in the category of nonparametric orthogonal
series estimators, founded in Čencov’s seminal work [5]. Provided with a set of
orthogonal bases {ϕk}k∈Z, we can present an unknown density function as a linear
combination of orthogonal bases, p(x) = ∑

k bkϕk (x) , where the coefficient bk ,
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for of a given dataset {xn}Nn=1, xn ∈ R (N is a dataset size1), is estimated using
b̂k = 1

N

∑N
n=1 ϕk (xn).

Čentsov’s theory can be directly applied to approximate probability density func-
tions using a wavelet representation as

p̂ (x) =
L∑

l=1

α̂ j0,lφ j0,l (x) +
J∑

j= j0

L j∑

l=1

β̂ j,lψ j,l (x) , (1)

where φ j0,l (x) = 2 j0/2φ
(
2 j0x − l

)
is the scaling function (a.k.a. father wavelet) with

the starting resolution j0, ψ j,l (x) = 2 j/2ψ
(
2 j x − l

)
is the wavelet function (a.k.a.

mother wavelet) with resolution j , l is the translation parameter, L is the total number
of scaling translates, L j is the total number of wavelet translates for resolution j ,
and J is the ending resolution for the wavelet basis (see [7, 16] for more details).
Assuming that we are provided with independent and identically distributed (i.i.d.)
data samples, {xn}Nn=1, the scaling and wavelet coefficients can be approximated as

α̂ j0,l = 1

N

N∑

n=1

φ j0,l (xn) and β̂ j,l = 1

N

N∑

n=1

ψ j,l (xn) , (2)

and then the probability density function can be estimated using (1).We chose towork
with orthogonal, compactly supported wavelet bases (such as the Haar, Daubechies,
Symlets, andCoiflets basis families of order P). Vidakovic [27] provided an excellent
overview of algorithms for probability density estimation.

However, a majority of algorithms assume that all N data samples are available,
causing them to regard estimation as a batch process.

Wavelet-Based Density Estimators for Stream Processing

In the case of streaming data, using (2) can be an issue if the current number of
samples, N , becomes too large: the new data will have no effect on the coefficients.
To avoid this issue, different approaches that utilize sliding windows of size Nw,
were proposed, as illustrated in Fig. 1. Wegman and Caudle [29] used an exponen-
tial smoothing technique that forced older coefficients, estimated using elderly data
samples, to vanish. García-Treviño andBarria [9] recognized an inability of the expo-
nential aging approach to adapt to moderate changes. Therefore, they suggested to
update only the relevant scaling andwavelet coefficients, presented as b̂ j,l for brevity,
impacted by the new datum xn , such as

1N can represent a corresponding window size too, as used in section“Change Point Detection
Using WLSDD”
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b̂nj,l = b̂n−1
j,l + b̂n,add

j,l − b̂n,remove
j,l , (3)

b̂n,add
j,l =

{
ϕ j,l (xn)

Nw
if 2 j l ≤ xn ≤ 2 j (l + 2P − 1)

0 otherwise
, (4)

b̂n,remove
j,l =

{
ϕ j,l(xn−Nw )

Nw
if 2 j l ≤ xn−Nw

≤ 2 j (l + 2P − 1)

0 otherwise
. (5)

In (4) and (5), the basis function ϕ j,l is either the corresponding scaling of res-
olution j0 or the wavelet of resolution j basis of order P . Recall that the addition
term (4) is applicable to the new datum, xn , provided it is within the support range
of the appropriate j th function for the lth translation. Similarly, aging (5) is applied
to the last data sample in the sliding window, xn−Nw

, again, provided it belongs to
the support of the j th basis for the lth translation.

Density–Difference Using Wavelets

In this section, we provide theoretical and algorithmic approaches for our density–
difference estimation method, giving rise to a change detection application. We seek
a measure between two distributions p1(x) and p2(x), related with two i.i.d. datasets
of size N , {x1n}Nn=1, and {x2n}Nn=1, respectively.

Direct Density–Difference Estimator Based on Wavelets

Similar to [21], we want to estimate the true density–difference function, f (x),
between the distributions p1(x) and p2(x), by solving

arg min
g

∫

(g(x) − f (x))2 dx, (6)

where g(x) presents the estimated density–difference function, which we represent
using the wavelet expansion as

g (x) =
∑

l

α j0,lφ j0,l(x) +
J∑

j= j0

∑

l

β j,lψ j,l(x), (7)
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or, the equivalent matrix form

g(x) = ΦT (x)α +
J∑

j= j0

Ψ T
j (x)β j , (8)

whereα ∈ R
L×1 andβ j ∈ R

L j×1 are the vectors of the scaling (at starting resolution
j0) and wavelet (at resolution j) coefficients, defined as

α = [
α j0,1 · · · α j0,L

]T
and β j = [

β j,1 · · · β j,L j

]T
, (9)

and Φ(x) and Ψ j (x) are the matrices of the scaling (at starting resolution j0) and
wavelet (at resolution j) functions, respectively.

Since we are interested in the estimated function g(x) that minimizes the mean
squares error, (6) can be simplified as

arg min
g

∫
(
g2(x) − 2g(x) f (x)

)
dx . (10)

Using the orthonormality properties applicable for the scaling and wavelet func-
tions defined asΦΦT = I ∈ R

L×L ,Ψ jΨ
T
j = I ∈ R

L j×L j ,Ψ jΨ
T
k = 0 ∈ R

L j×Lk for
j �= k, and ΦΨ T

j = 0 ∈ R
L×L j , definition of the true density–difference, f (x) =

p1(x) − p2(x), and the wavelet transformation of g(x) based on (8), our optimiza-
tion problem (10) can be further presented as

arg min
α,β j

{

αTα − 2αT
∫

Φ(x) (p1(x) − p2(x)) dx

+
J∑

j= j0

(

βT
j β j − 2βT

j

∫

Ψ j (x) (p1(x) − p2(x)) dx

)
⎫
⎬

⎭
. (11)

Note that (11) can be reformulated as a dual-optimization problem that depends
on the scaling and wavelet coefficients. Thus, our problem can be decoupled into
two independent cases: (1) optimal scaling parameters using

α∗ = arg min
α

{

αTα − 2αT

(∫

Φ(x)p1(x)dx −
∫

Φ(x)p2(x)dx

)}

(12)
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and (2) optimal wavelet parameters, per resolution j as

β∗
j = arg min

β j

{

βT
j β j − 2βT

j

(∫

Ψ j (x)p1(x)dx −
∫

Ψ j (x)p2(x)dx

)}

. (13)

The integrals in both (12) and (13) are appropriate expectations of the scaling and
wavelet functions for the given distributions p1(x) and p2(x), defined as

hΦ(x) = E {Φ(x)}p1(x) − E {Φ(x)}p2(x) and (14)

hΨ j (x) = E
{
Ψ j (x)

}
p1(x)

− E
{
Ψ j (x)

}
p2(x)

, (15)

where E {·} is the expectation operator. For a given discrete and finite set, {xn}Nn=1,
xn ∈ R, drawn fromdistribution p(x), the expected values of both scaling andwavelet
matrices become Φ ∈ R

L×N and Ψ j ∈ R
L j×N , defined as

Φ = [
φ j0 (x1) . . . φ j0 (xN )

]
andΨ j = [

ψ j (x1) . . . ψ j (xN )
]
. (16)

The vectors of the scaling φ j0(xn) = [
φ j0,1(xn) · · · φ j0,L(xn)

]T ∈ R
L×1 and wavelet

ψ j (xn) = [
ψ j,1(xn) · · · ψ j,L j (xn)

]T ∈ R
L j×1 bases in (16) are calculated at different

sample points xn (n = 1, · · · , N ) in the domain.
Using (16), the expectations in (14) and (15) can be approximated as

Algorithm 1: Detecting Change in Streaming Data with WLSDD

input : data stream, {xn}endn=1 (n is a data sample index), Nw, Nd , and thr
output: list of change points, {τ }
begin

set τ ←− ∅ and change point index τccp ←− 0;
for n ← 1 to Nd + Nw do

add (4), remove (5), update (3) coeff. in current and referenced windows;
end
for n ← Nd + Nw + 1 to end do

add (4), remove (5), update (3) coeff. in current and referenced windows;
calculate density–difference, dWLSDD , using (2) and (24);
if dWLSDD ≥ thr and n ≥ τccp + Nd + Nw then

change detected :
update τccp ←− n and τ ←− τ ∪ τccp with the change point index n;

end
end

end
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ĥΦ ≈ 1

N

N∑

n=1

φ j0(x1n) − 1

N

N∑

n=1

φ j0(x2n), (17)

ĥΨ j ≈ 1

N

N∑

n=1

ψ j (x1n) − 1

N

N∑

n=1

ψ j (x2n). (18)

It is important to note that both ĥΦ =
[
ĥφ j0 ,1 · · · ĥφ j0 ,L

]T ∈ R
L×1 and ĥΨ j =

[
ĥψ j,1 · · · ĥψ j,L j

]T ∈ R
L j×1 are vectors, where the lth elements are calculated as

ĥφ j0 ,l = 1

N

N∑

n=1

φ j0,l (x1n) − 1

N

N∑

n=1

φ j0,l (x2n) and (19)

ĥψ j,l = 1

N

N∑

n=1

ψ j,l (x1n) − 1

N

N∑

n=1

ψ j,l (x2n) . (20)

Using results (17) and (18), our pair of optimization problems (12) and (13) can
be solved in the closed form after applying the least squares method as

α∗ = ĥΦ and β∗
j = ĥΨ j . (21)

Therefore, the estimated density–difference, ĝ ∈ R
N×1, can be computed using

ĝ = ΦT ĥΦ +
J∑

j= j0

Ψ T
j ĥΨ j , (22)

which is commonly referred to as the Wavelet-based Least Squares Density–
Difference (WLSDD) estimator.

In order to calculate the density–difference, we define the �2-norm distance as
dWLSDD = ĝT ĝ, which, after applying (22) and the orthonormality rules, can be
calculated in the following closed form

dWLSDD = ĥ
T

Φ ĥΦ +
J∑

j= j0

ĥ
T

Ψ j
ĥΨ j . (23)

Using the approximations for computing coefficients based on the available
datasets (2), we can observe that (17) can be presented as ĥΦ = α1 − α2 and (18)
as ĥΨ j = β1, j − β2, j , where α1 and β1, j are scaling and wavelet coefficients cal-
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culated using {x1n}Nn=1 dataset and α2 and β2, j are scaling and wavelet coefficients
estimated using {x2n}Nn=1 dataset. Finally, our WLSDD density–difference measure
can be calculated in terms of the coefficients as

dWLSDD = (α1 − α2)
T (α1 − α2) +

∑

j

(
β1, j − β2, j

)T (
β1, j − β2, j

)
. (24)

Change Point Detection Using WLSDD

Our change point detection using WLSDD method is presented in Algorithm 1. In
order to expose a change in the streaming data, it uses a sliding two-windowapproach.
This strategy, as shown in Fig. 1, is organized as follows: the referenced window
contains Nw samples of the stream from the past and the current window contains the
last Nw samples, including the current, last seen sample, xn of index n. We introduce
delay, Nd , between the current and referenced windows (where we assume Nd ≤ Nw

in order to detect likely change as soon as possible). At the very beginning—within
the first Nd + Nw samples—the algorithm is trained to learn the initial density–
difference (baseline) between the referenced and current windows. For each new
sample in each sliding window, we analyze the scaling and wavelet coefficients in an
efficientmanner.We beginwith adding new scaling andwavelet coefficients using (4)
and removing old coefficients using (5); then, we update all applicable coefficients
by applying (3). After this update, we calculate the density–difference between the
referenced and current windows using (24). Then, we compare dWLSDD against the
threshold value: if dWLSDD falls behind the threshold, we slide both windows and
the process repeats; otherwise, the algorithm reports a change at the corresponding
index n. Thereafter, upon change detection, the algorithm continuously adapts by
relearning the new density–differences without performing any change thresholding
until the next Nd + Nw samples pass.

N1 N2

N

Referenced 
window

Current 
window

Interval 1, p1 Interval 2, p2 Interval 3, p1 Interval 4, p2

Nw

Nw

Nd Current sample, xn

Original data stream

Fig. 1 Change point two-window approach with original data stream samples from two alternating
distributions, p1 and p2
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Results

In this section, we begin with an introduction of other density–difference measures
and then we display the change detection results obtained from the synthetic and real
streaming data.

Some Other Density–Difference Measures

In order to evaluate the performance of our WLSDD method, we compared it with
LSDD as well as the Kolmogorov–Smirnov (KS) test, log-likelihood, entropy, and
Kullback–Leibler divergence. For the last three methods, we assumed two different
approaches for estimating distributions: (1) the underlying Gaussian distributions
for log-likelihood (LL), entropy (E), and Kullback–Leibler (KL) measures and (2)
histograms for log-likelihood (LLH), entropy (EH), and Kullback–Leibler (KLH)
measures, see [19]. Assuming the referenced pr and current pc distributions, other
distance measures of interest are defined as

LL or LLH =
∑

i

log2
pci
pri

, (25)

E or EH = −
∑

i

(pri − pci ) log2 (pri − pci ) , and (26)

K L or K LH =
∑

i

pci log2
pci
pri

. (27)

In (25), (26), and (27), index i represents either the current sample index in the
case of the LL, E, and KL methods (Gaussian assumptions) or the corresponding
histogram bin in the case of the LLH, EH, and KLHmethods. The same two-window
approach, as introduced in section“Change Point Detection UsingWLSDD”, is used
to calculate other density–difference measures.

Synthetic Static Dataset

First, to assess the performance of our WLSDD method, we observed the density–
difference value obtained by comparing the samples from two different distributions
in the offline setup.We generated samples drawn from different densities constructed
using a mixture of Gaussians, see [28]. From each distribution, we drew 2,000 sam-
ples and calculated the density–differences usingWLSDD and LSDD (refer to [21]).
In Table1, we compared the density–difference values between the twomethods. The
table contains the optimal wavelet family and the starting resolution j0 for WLSDD,
obtained using the cross-validation method.
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Table 1 Density–Difference (DD) between static data from two distributions, p1 and p2. Overall,
our WLSDD method estimates true DD more accurately when compared to LSDD

id Distribution p1 Distribution p2 True
DD

LSDD WLSDD Wavelet j0

1 Asym. Claw Asym. Dbl. Claw 0.059 0.064 0.063 coif1 1

2 Str. Skewed Uni. Sep. Bimodal 0.590 0.560 0.591 sym7 3

3 Bimodal Trimodal 0.007 0.005 0.007 coif3 1

4 Bimodal Skewed Bimodal 0.037 0.052 0.050 db5 1

5 Claw Dbl. Claw 0.106 0.093 0.109 sym10 2

6 Gaussian Kurtotic Uni. 0.257 0.209 0.234 coif2 2

7 Asym. Claw Dbl. Claw 0.052 0.058 0.064 sym10 3

8 Skewed Uni. Str. Skewed Uni. 0.838 0.810 0.841 sym7 3

9 Bimodal Sep. Bimodal 0.111 0.118 0.117 coif3 1

10 Skewed Bimodal Sep. Bimodal 0.162 0.183 0.179 db5 0

11 Gaussian Gaussian 0.000 0.000 0.011 db8 1

12 Gaussian Skewed Gaussian 0.125 0.139 0.140 db8 1

13 Asym. Claw Kurtotic Uni. 0.412 0.371 0.413 coif2 5

14 Asym. Dbl. Claw Dbl. Claw 0.004 0.001 0.004 sym7 4

15 Asym. Dbl. Claw Skewed Bimodal 0.036 0.047 0.040 db2 0

16 Skewed Uni. Trimodal 0.142 0.146 0.141 coif3 0

17 Skewed Uni. Claw 0.214 0.219 0.215 db6 2

18 Claw Kurtotic Uni. 0.265 0.238 0.265 db6 5

19 Str. Skewed Uni. Kurtotic Uni. 0.999 0.920 0.992 db7 4

20 Dbl. Claw Trimodal 0.009 0.008 0.009 db9 2

Overall, our method expressed results that were similar to the true density–
difference; in 17 out of 20 tests, WLSDD outperformed the LSDD results. These
are the expected results since the wavelet-based density estimators perform better
when compared to the kernel-based ones (refer to [17] for more details).

Synthetic Streaming Dataset with Alternating Distributions

In order to evaluate the change point detection performance of our method in the
streaming setup, we fabricated synthetic datasets. Since we were only interested in
change detection, we suggested the following bootstrap approach in order to estimate
the performance of our method on the relatively small number of change points
available from the synthetic streams.

First, we generated the original synthetic streams as follows: (1) 10,000 samples
were drawn from each pair of distributions, p1 and p2, labeled with appropriate ids
in Table1; (2) the samples from each distribution were divided into five different
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Fig. 2 Bootstrap approach for determining an optimal change detection threshold (permutations
of original stream intervals)

(a) False positives vs. threshold (b) Delay vs. threshold

Fig. 3 Optimal threshold using bootstrap for the bimodal and separated bimodal dataset: a larger
threshold (>0.3) assures smaller number of false positives and b faster change detection

groups, called intervals that contained N1 = N2 = 2,000 random samples from a
given distribution; (3) the intervals from different distributions were alternated, as
illustrated in Fig. 1 (to preserve space, only four intervals are shown). For example,
a dataset with id = 9 in Table1 was constructed with alternating bimodal and sepa-
rated bimodal intervals. Based on our design for the synthetic datasets, we expected
WLSDD to detect changes every 2,000 samples.

Then, using the original synthetic data stream (see Fig. 1), we created bootstrap
streams by permuting appropriate intervals for the given distributions, while keeping
an alternating approach between two distributions and true change points at multi-
ples of 2,000 samples. Our approach is shown in Fig. 2 where the desired bootstrap
data streams were obtained from the original stream (again, only four intervals are
presented in Figs. 1 and 2 for illustration purposes).

Next, utilizing the bootstrap data streams, we calculated the performances for
different threshold values (swept from 0 to true DD values, as listed in Table1) as the
following: the average accuracy Ab was calculated as the ratio between the number of
accurately detected changes and the true number of change points across the bootstrap
datasets; the average number of false positives Fb was found as the mean of the faulty
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detected change points across the bootstrap datasets (any suggested change, Nd + Nw

samples after the true change point within an interval, was considered as a faulty
detection); and the average time of delay Db was calculated as the mean difference
between the positively detected change instances and the appropriate true change
instances. For the optimal density–difference threshold, thropt , we selected a value
forwhich the average accuracywas high and the average number of false positives and
average delay values were low. The optimal threshold values for different bootstrap
datasets are summarized in Table2, section (1). The optimal window size Nw and
offset Nd were obtained using cross-validation. We chose relatively low values for
both the referenced and current window sizes, Nw, as well as the offset, Nd (Fig. 3).

Finally, following our methodology of generating the synthetic datasets for the
bootstrap approach, we created similar testing synthetic data streams that contained
10,000 samples in total, with 10 alternating intervals with random data from two
different distributions (as per pair ids from Table1). Thus, each dataset expressed
nine true change points every 1,000 samples. For our WSLDD approach, we used
the optimal threshold values, thropt , obtained from our bootstrap method; refer to
Table2, section (1). For LSDD, we used the same thresholds as for WLSDD. For all
other methods, we set the appropriate thresholds manually.

In Fig. 4, we illustrate the performance of all compared algorithms using the
synthetic dataset that alternates between bimodal and separated bimodal intervals
(id = 9 distributions from Table1). Our method detected changes soon after the
true change points, without any false positives. Many methods either erroneously
reported changes or failed to detect some alterations between different intervals.

In summary, our method expresses the highest accuracy Â in detecting changes in
the 10 synthetic datasets; see Table2 section (2). Also, it shows the lowest delay D̂ in
change detection, making it suitable for applications that need to respond rapidly to
changes. Along with LSDD, our WLSDD method reports the least number of false
positives F̂ . All other methods display very inconsistent results for different data
streams.

Real Datasets

Here, we tested change difference measures on two real datasets, called Well-log
and CENSREC-1-C speech corpus, respectively, both of which are popular among
researchers interested in change detection.

First, the Well-log dataset contains sudden abruptions in the mean values of
nuclear magnetic responses that were caused by the different geophysical struc-
tures of the rocks supporting the well, see [1]. In order to react faster to changes,
we defined smaller values for our current and referenced window sizes of 40 sam-
ples with a delay of 20 samples between the windows (refer to Algorithm 1). For
WLSDD, we used the Symlets wavelet family with the scaling functions at starting
resolution j0 = −2. With a carefully specified threshold, our method was capable of
reliably detecting change points with little delay (due to the two-window approach),
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Fig. 4 Change point detection using nine different methods (in gray). The top figure (amp) presents
the synthetic data samples (bimodal and separated bimodal alternating intervals, id = 9). The true
change points, detected change points, and false-positive change points are indicated by the black,
blue, and red vertical lines, respectively.OurWLSDDmethod successfully detected all of the change
points. LSDD, KS, LL, KL, and KLH all missed at least one change point. LL, LLH, E, and KL
faultily reported non-existing change points



Change Detection for Streaming Data Using ... 113

Table 2 Performance results for change point detection. (1) Using the bootstrap method, the esti-
matedWLSDDaccuracy Ab, false positives Fb, and delay Db are presented for the optimal threshold
thropt . (2) The accuracy A, total number of false positives F , and averaged delay D for different
methods and data streams, are summarized. WLSDD shows the best overall accuracy Â and delay
D̂, and along with LSDD has the least number of false positives (average F̂ and total Ft )

(1)WLSDD Bootstrap (2) Change Point Detection Results

id Nw Nd thropt Results WLSDD LSDD KS LL LLH E EH KL KLH

1 300 200 0.024
Ab 0.867 A 1.000 1.000 1.000 1.000 0.375 1.000 0.875 0.625 0.625

Fb 1.333 F 1 1 2 1 0 1 6 2 0

Db 137.856 D 140.625 215.125 129.000 120.750 202.667 150.000 111.857 172.200 308.400

2 200 100 0.085
Ab 1.000 A 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.556 1.000

Fb 3.000 F 0 0 1 0 0 2 10 0 0

Db 60.178 D 49.778 77.667 37.889 60.333 110.222 51.667 100.000 130.400 64.222

3 500 400 0.008
Ab 1.000 A 1.000 1.000 0.444 0.778 0.889 1.000 1.000 0.778 1.000

Fb 8.125 F 0 0 0 0 0 1 1 0 0

Db 431.844 D 315.222 383.556 399.250 327.000 500.625 596.889 326.444 262.143 423.333

4 500 400 0.010
Ab 0.889 A 1.000 1.000 1.000 1.000 0.889 1.000 1.000 1.000 0.778

Fb 6.200 F 0 0 0 0 2 0 2 0 0

Db 226.600 D 147.556 202.444 181.889 229.222 599.125 224.444 406.000 254.556 416.714

5 300 200 0.048
Ab 1.000 A 1.000 0.556 1.000 0.889 1.000 1.000 1.000 0.667 1.000

Fb 0.000 F 0 0 2 0 9 2 5 3 2

Db 137.222 D 144.333 152.000 143.111 183.625 165.222 140.000 111.333 123.667 354.556

6 200 100 0.056
Ab 1.000 A 1.000 0.778 0.556 1.000 1.000 1.000 1.000 0.778 1.000

Fb 1.000 F 0 0 2 9 12 21 9 5 15

Db 69.311 D 84.444 94.571 149.000 163.333 220.000 137.889 191.667 103.000 153.556

7 400 300 0.047
Ab 0.889 A 1.000 0.556 1.000 1.000 1.000 0.889 0.778 0.667 1.000

Fb 3.200 F 0 0 0 0 2 2 5 2 5

Db 196.175 D 205.333 260.200 148.667 149.333 478.444 270.000 305.571 199.667 335.444

8 200 100 0.100
Ab 1.000 A 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Fb 0.833 F 0 0 1 0 0 0 0 0 0

Db 49.350 D 51.778 70.778 27.333 56.444 81.667 52.000 66.778 79.333 77.000

9 200 100 0.032
Ab 1.000 A 1.000 0.889 0.889 0.778 1.000 1.000 1.000 0.667 0.889

Fb 1.000 F 0 0 0 1 16 13 0 3 0

Db 97.089 D 98.000 108.125 116.875 112.571 131.222 196.889 101.778 138.000 122.250

10 200 100 0.019
Ab 1.000 A 1.000 1.000 1.000 1.000 1.000 0.889 1.000 0.556 1.000

Fb 2.000 F 0 0 0 0 17 1 0 5 0

Db 68.822 D 56.889 69.000 66.444 66.000 154.444 138.375 76.667 64.000 76.667

Â 1.000 0.878 0.889 0.945 0.915 0.978 0.965 0.729 0.929

F̂ 0.100 0.100 0.800 1.100 5.800 4.300 3.800 2.000 2.200

Ft 1 1 8 11 58 43 38 20 22

D̂ 129.396 163.347 139.946 146.861 264.364 195.815 179.809 152.697 233.214

as displayed in Fig. 5. Similarly, LL detected changes, but the amplitude range of
the measure was very large, making it very difficult to specify a threshold value. On
the other hand, LSDD, KS, and KL can suffer from some false positive change point
detection: LSDD between 350 and 425, KS around the 315 point mark, and KL in
many ranges (from 125 to 159, 290 to 310, etc.)

Next, we tested our approach on audio signals used for speech detection in
public establishments from the Noisy Speech Detection Evaluation Environment
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Fig. 5 Change point detection measures using the Well-log dataset, presented as the top figure
(amp) with changes in mean values. The manually annotated change points are illustrated as the
black vertical lines. Note that our WLSDD method provides smooth distance measures, whereas
LSDD, KS, and KL are much more jittery in areas where no change points are available

(CENSREC-1-C2) corpus. Different silent and speech intervals alternated in the time
series signals from the corpus. The change detection measures, using both WLSDD
and LSDDmethods, are presented in Fig. 6. The top figure presents a part of the orig-
inal audio signal to allow for easier representation. The silence and speech periods
were manually segregated with change points presented as the black vertical lines
on all three figures. Our method perfectly detected the speech signals, while LSDD
reported high values in the silence (low noise) intervals. Furthermore, it is impor-
tant to note that the change measures reported by WLSDD follow natural speech
variations during the spoken intervals due to its wavelet-based nature.

2http://research.nii.ac.jp/src/en/CENSREC-1-C.html.

http://research.nii.ac.jp/src/en/CENSREC-1-C.html
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Fig. 6 Change point detection measures using the CENSCREC-1-C speech data (the only subset
of data is presented). The top figure (amp) presents the original dataset (noise + silent and speech
periods). The manually annotated change points are shown as the black vertical lines. Note that our
WLSDD method is less sensitive to noise when compared to LSDD (around 4800 and 5730)

Conclusion

In this paper, we presented a new method for determining the difference between
two distributions using nonparametric wavelet expansions. Our WLSDD method
was applied to a change point application, performing well on both synthetic and
real data sets. Aswell as outperforming all othermethods, it retained the highest point
detection accuracy and lowest detection delay. Furthermore, we tried with the best
performer for the lowest false positive detection among all competitors. In our future
work, we plan to investigate regularization in order to mitigate the noise impact on
our �2 density–difference measure.
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Selection of Neural Network for Crime
Time Series Prediction by Virtual
Leave-One-Out Tests

Stanisław Jankowski, Zbigniew Szymański, Zbigniew Wawrzyniak,
Paweł Cichosz, Eliza Szczechla and Radosław Pytlak

Abstract The goal of this paper is the application of the virtual leave-one-out
methodology to the selection of optimal neural network structure for time series
prediction. The experiments are performed on the real dataset of spatiotemporal
crime incidence for forecasting in the time coordinate. Due to the idea of local lin-
earization, the estimation of generalization can be obtained in analytical form; hence,
the method is computationally efficient.

Keywords Neural network · Virtual leave-one-out · Crime forecasting · Influential
statistics

Introduction

Large-scale computing infrastructures and sensing technologies have produced a
variety of spatial and time-dependent datasets exploiting human dynamics data [1].
The areas of urban computing [2] are intimately connected with transportation sys-
tems, social applications, and public safety and security. In the latter issue, under-
standing of criminal patterns within the crime datasets by the model of hot spots [3]
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results in the possibility of forecasting of crime [4]. The widely used assumption of
hot spots and sophisticated spatiotemporal statistical models have been proposed for
criminal events [5]. Temporal constraints are a severe determinant in spatial-temporal
patterns of property crime in conjunction with the locations of hot spots [6]. Pre-
diction of criminal events over time is associated with chronological sequence of
observations (time series, TS). The developed TS analysis techniques for forecasting
based on machine learning data-driven approaches could perform well [7].

The data are preprocessed by using the ARIMA model of time series forecasting
[8]. The data are analyzed by autocorrelation and partial autocorrelation functions.
It can be stated that the raw time series should be differentiated in order to remove
the trend. It can be concluded that time series can be modeled as autoregression
model. Neural networks are used to improve the quality of prediction by nonlinear
components [9–11].

The goal of this paper is to apply the virtual leave-one-out methodology (VLOO)
to the selection of the optimal neural network structure for time series prediction.
Our experiments are performed on a real dataset of spatiotemporal crime incidence
for forecasting in the time coordinate [12, 13].

The main task is to select the optimal network structure: the number of inputs—
data from past periods and the number of hidden neurons needed to represent the
nonlinear function of a predictor. The criterion of selection is the expected gen-
eralization capability usually based on test dataset results. The cross-validation is
considered as a very efficient method, often in the form of leave-one-out. How-
ever, this approach requires retraining of the neural network for each example of the
training set [14, 15].

Analyzed Dataset

Input Data

The original dataset contained 615,961 records describing events from unstructured
police reports. Crime data used for this study were extracted from anonymized inter-
nal police records provided for the purpose of scientific research funded by grant of
Polish National Office for Research and Development. The only data fields used in
the study were date and type (the data structure is shown in Table 1. The data stud-
ied in this work cover the period 2008 to the end of 2014. The anonymized records
contain information about 12 types of events such as robbery, burglary, misdeed,
violence, and interventions not assigned to any of the categories listed.

The original incident count data were aggregated by day (Fig. 1)—the aggregation
was performed by summing up the total number of events and the events of individual
types. The processed data were analyzed in subsequent stages of the presented work.

For the sake of simplicity in this project, we do not consider the crime type
forecasting problem.
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Table 1 Description of data record

Field name Size Description

Src varchar(10) Source id

Date Datetime Date of the event

Day of week tinyint(4) Day of week

Type varchar(20) Event type

County varchar(30) –

Free_kids tinyint(4) Boolean flag indicating pupil free day

Free_aldults tinyint(4) Boolean flag indicating a free day

Long_weekend tinyint(4) Boolean flag indicating extended weekend

National_holiday tinyint(4) Boolean flag indicating national holiday

Religious_holiday tinyint(4) Boolean flag indicating religious holiday

geo_long Double Event location—WGS84 longitude

geo_lat Double Event location—WGS84 latitude

Political_assembly tinyint(4) Boolean flag indicating political assembly

Youth_assembly tinyint(4) Boolean flag indicating youth assembly

Mass_event tinyint(4) Boolean flag indicating other mass event

Supporter tinyint(4) Boolean flag indicating football match

Fig. 1 Original time
sequence—the number of
events per day (misdeed
events)
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Data Processing

Preprocessing of time series for neural network modeling involves removing of the
mean value, differentiation, and normalization. In the first stage, the mean value 6.22
was subtracted from the time sequence shown in Fig. 1.

The autocorrelation ACF and partial autocorrelation PACF function graphs were
performed (Fig. 2) before processing the data to check whether the differentiation of
the time series and removal of the seasonal component should be performed.

The stationary time series manifests fluctuations around the mean value and its
autocorrelation function quickly decreases to 0. If the series has positive values
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Fig. 2 Autocorrelation
function ACF and partial
autocorrelation function
PACF of the time series
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of the autocorrelation function for many delay values (e.g., 10 or more), it means
differentiation should be performed. Differentiation tends to introduce negative auto-
correlations. Figure 3 shows differentiated times series according to the formula

xdiff(n) = x(n) − x(n − 1) (1)

The last processing step was data normalization according to the formula

xdiffnorm (n) = xdiff(n)

std
(
xdiff

) (2)

Fig. 3 Differentiated time
series
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Table 2 The structure of learning data

NN input NN output

Y(0) Y(1) … Y(k) Y(k + 1)

Y(1) Y(2) … Y(k + 1) Y(k + 2)

… … … … …

Y(i) Y(i + 1) … Y(k + i) Y(k + i+1)

Fig. 4 Model structure
z-1

z-1

z-1

z-1

NN

y(t)
y(t-1)

y(t-2)

y(t-3)

y(t-k)

y (t)p

Data for NN

The structure of the input data fed to the neural network is explained in Table 2.
The input of the neural network is a vector of k + 1 consecutive values from the
time series (Fig. 4). The value of parameter k depends on the implemented model
structure.

NN Model of Time Series

Nonlinear prediction of time series can be implemented as a neural network—multi-
layer perceptron. The problem of neural network design is a number of inputs equal
to time series delays and the number of hidden neurons necessary to represent the
complexity of a given time series. The number of inputs is suggested by a linear
ARIMAmodel obtained by the autocorrelation and partial autocorrelation functions
[8, 16].

Figure 5 presents the three-layered structure of a neural network consisting of
inputs, hidden neurons, and an output neuron. Activation function used is hyperbolic
tangent. The output neuron is linear [9–11]. The parameters of the neural network
model are shown in Table 3.

The total number of parameters (weights) of a three-layer neural network consist-
ing of an input layer, hidden neurons layer, and a one-neuron output layer is described
by the formula
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Fig. 5 Neural network structure

Table 3 The parameters of
neural network model

Parameter Count

Input layer weights No. of inputs

Hidden layer weights No. of inputs * no. of hidden neurons

Hidden layer bias No. of hidden neurons

Output layer weights No. of hidden neurons

Output layer bias 1

Nparam = Ni (1 + Nh) + 2 · Nh + 1 (3)

where Ni is the number of inputs and Nh is the number of neurons in the hidden layer.
At the verification stage, the properties of the model residuals are checked, which

should have white noise properties. It means that the autocorrelation coefficients of
the residues should not differ significantly from zero. For this purpose, the graphs of
autocorrelation functions for a series of model residues are analyzed.

The problem of creating neural models of time series is to avoid overfitting, which
is the result of a large number of network parameters, i.e., hidden neurons. There are
advanced methods of neural networks testing to help solve this problem effectively.
The virtual leave–one-out cross-validation test is particularly recommended. The so-
called sparseness characterizes the obtained models, i.e., the minimum number of
parameters (weights).

Notation NN(m–n) will be used in following sections to describe network archi-
tecture, where m denotes the number of inputs and n denotes the number of neurons
in the hidden layer.
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Local Overfitting Control—Virtual Leave-One-Out

A locally linear model can approximate a nonlinear model. In the vicinity of the goal
function minimum w*, a nonlinear model g(x, w*) can be approximated by using
the Taylor series expansion:

g(x, w) = g(x, w∗) + Z(w − w∗) (4)

where x = [y(i), y(i – 1),…, y(i – k), 1] is the input vector, k—the maximum time
delay. Z(N, q) is the Jacobian matrix of the nonlinear neural network of size (N,
q), N > q, where N—the number of training examples, q—the number of the neural
network weights (Table 3). Each column of Z consists of N partial derivatives of
the model output with respect to a given weight and describes the influence of one
weight update w on the model output. Each row of Z describes the influence of one
learning vector x on the model output.

zi =
(

∂g(x, w)

∂wi

)

w=w∗
(5)

ZN×q = ∂ J

∂wi
=

(
∂(yp − g(x, w))2

∂wi

)
= −2(yp − g(x, w))

∂g(x, w)

∂wi
(6)

If the output error:

yp − g(x, w) = −1

2
(7)

then the gradient of the goal function equals the gradient of the network output.
The Jacobian Z can be obtained using backpropagation of the error− 1/2 after the

network learning is completed. The local linear approximation of the neural network
weights has the least-squares form:

wLS = w∗ + (ZT Z)−1ZT [yp − g(x, w∗)] (8)

By introducing the H matrix of the orthogonal projection of the Z matrix onto the
solution subspace, the effect of withdrawing kth example from the training set can
be estimated as follows:

H = Z(ZT Z)−1ZT

hkk = zkT (ZT Z)−1zk

N∑

k=1

hkk = q, 0 ≤ hkk ≤ 1 (9)

The diagonal elements hkk of the H matrix are leverages—kth components of orthog-
onal projections. The leverages are equal:
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hkk = zkT (ZT Z)−1zk =
q∑

l=1

q∑

j=1

Zkl Zk j (ZT Z)−1
l j (10)

It can be shown that the virtual leave-one-out method can estimate the effect of
withdrawing one example of the training set on the network weights [12, 13]:

w(−k)
LS = w∗ + (ZT Z)−1zk

rk
1 − hkk

(11)

where the residual rk is

rk = ykp − g(xk, w) (12)

The leverages can be calculated by the singular value decomposition SVD. The
virtual leave-one-out residual equals

r (−k)
k = rk

1 − hkk
(13)

If all leverages were identical then

hkk = q

N
(14)

If hkk = 0, then a model is exact for kth example. If hkk = 1, then the influence
of kth example is extremely high. The leverages can be interpreted as a measure of
influence of each training example on the neural network structure. Therefore, our
goal is to select a model whose leverages are approximately equal.

Quantitative criteria of model selection [12, 13] are defined as follows. Prediction
error of the virtual leave-one-out test Ep is equal:

Ep =
√√√√ 1

N

N∑

k=1

(
rk

1 − hkk

)2

=
√√√√ 1

N

N∑

k=1

(r (−k)
k )2 (15)

This value can be compared to the training mean square error TMSE:

TMSE ==
√√
√√ 1

N

N∑

k=1

r2k (16)

The quantity Ep can characterize the models that overfit a subset of training
examples. The relations hold

∀k : hkk = q

N
⇒ Ep = N

N − q
TMSE (17)
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The leverages distribution can be characterized by the quantity μ:

μ = 1

N

N∑

k=1

√
N

q
hkk (18)

If μ = 1, then hkk = q
N for k = 1,…, N; hence this quantity can be used as an

index of overfitting if μ ≤ 1.
As each neural network is characterized by 2 quantities, the result of model testing

can be presented byEp−μ plot. Upon the presentedmethodology, the selected neural
network model should be described by the minimum Ep and the maximum (close to
1) μ.

The influence of training examples on the model can also be analyzed by con-
fidence intervals. The confidence interval of the predicted output value if the kth
example that is virtually withdrawn is equal:

±t N−q
α s

√
hkk

1 − hkk
(19)

where t N−q
α is t Student value for N-q degrees of freedom, α is the confidence level,

s is the standard deviation of training set prediction.

Results

The describedmethodwas applied to a real dataset discussed in the section “Analyzed
Dataset”. The experiments were performed on several subsets of the whole dataset
containing 200 samples. The first 100 samples were used as a training subset, and
the remaining samples were used for prediction tests. Model learning and prediction
tests were performed as one-step-ahead predictor.

In order to design the neural network optimization, the starting point for the neural
network structure was the ARIMA model. The source data was preprocessed and
differentiated. Previously prepared ARIMAmodel indicated that no MA component
is needed and it will be reasonable to use 3–5 delays.

The set of examinedmodels comprises neural networkswith 3–14 inputs and 3–40
hidden neurons. The network training was performed five times for each network
architecture. The initial weight values were randomly selected in order to avoid local
minima [9, 10]. Synthetic results of model quality assessment are shown as in the
Ep−μ plot for selected neural networks (Fig. 6). The preferred models are in the
proximity of Ep equal to 0.8 and μ equal to 0.94.

The detailed results are shown for two models:

• the model was shown a bad generalization property comprising 15 hidden neurons
and 4 inputs—called NN (4–15).



126 S. Jankowski et al.

Fig. 6 Prediction error of the virtual leave-one-out test Ep versus quantity μ—the Ep–μ plot. Each
point represents one neural network, the numbers in brackets denote, respectively, the number of
inputs, and the number of hidden neurons

• for comparison, themodel bestmatching theVLOOcriteria comprisingfive hidden
neurons and three inputs—called NN (3–5),

Synthetic Illustrations for the NN (4–15) Model According
to the VLOO Criteria

Figure 7 shows the leverage histogram for the NN (4–15) model. The distribution of
leverages is concentrated around value 1, so the model is too sensitive to a fraction
of the training data—it is overfitted.

Prediction results of the NN (4–15) model are shown in Fig. 9. The green dots
indicate the influential points (leverage values greater than 0.9).

The autocorrelation function of prediction error (Fig. 11) for the NN (4–15)model
shows that white noise criterion is not satisfied, because some lag values exceed
confidence interval.

The confidence interval (Fig. 13) width for the time series prediction on learning
set indicates that NN (4–15) model reliability is not very high.
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Fig. 7 Leverage histogram
for the NN (4–15) model

Synthetic Illustrations for the NN (3–5) Model According
to VLOO Criteria

Figure 8 shows the leverage histogram for the NN (3–5) model. The distribution of
leverages is concentrated around value close to 0, so the model is not sensitive to a
fixed fraction of the training data—the overfitting does not occur.

Prediction results of the NN (3–5) model are shown in Fig. 10. No influential
points are present.

The autocorrelation function of the prediction error (Fig. 12) for the NN (3–5)
model shows that the white noise criterion is satisfied because all lag values are
within the confidence interval.

According to (19), the confidence interval for the time series prediction on the
learning set indicate that the selected NN (3–5) model is more reliable than NN
(4–15) model due to more uniform leverage distribution.

The sliding window prediction is summarized in Tables 4 and 5. The average
MSE value of the NN (3–5) model on the test set equals 1.303 and is lower than the
corresponding value of the NN (4–15) model; hence, the generalization ability of the
NN (3–5) model is better (despite the similar MSE values on the training set).

Conclusions

Criminological data describe social phenomena difficult for formal modeling. The
numerical database allows creating mathematical models of the black box type. It
means that there is no cause–effect interpretation—instead the numerical relations
between the past and the future of the investigated phenomenon are found.
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Fig. 8 Leverage histogram for the NN (3–5) model

Fig. 9 Prediction results of the NN (4–15) model (blue—original data, red—prediction). Gray
background indicates the testing set. White background indicates the learning set
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Fig. 10 Prediction results of the NN (3–5) model (blue—original data, red—prediction). Gray
background indicates the testing set. White background indicates the learning set

Fig. 11 Autocorrelation
function of prediction error
for the NN (4–15) model
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Fig. 12 Autocorrelation function of prediction error for the NN (3–5) model

Fig. 13 Confidence interval for the time series prediction by the NN (4–15) model on the training
set
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Table 4 Mean square prediction error on the training and test sets—NN(4–15) model

Subset Training set Test set Ep µ

1 0.32025 1.34786 48.25361 0.99839

2 0.71700 1.49739 167.01352 0.99897

3 0.63195 3.16212 183.30357 0.99829

4 0.83721 1.99718 46.85441 0.99899

5 0.57766 0.76377 32.89198 0.99881

6 0.41966 0.58519 47.61199 0.99856

7 0.44554 2.07539 50.38480 0.99842

8 1.14641 4.48117 72.59150 0.99866

9 1.06016 0.75750 84.69553 0.99892

10 0.49907 0.96839 21.35108 0.99886

11 0.62024 1.13369 51.80788 0.99863

12 0.75298 1.16708 30.25622 0.99860

Average 0.669011 1.661394 69.75134 0.99867

Table 5 Mean square prediction error on the training and test sets—NN(3–5) model

Subset Training set Test set Ep µ

1 0.37799 1.1517 0.86410 0.93742

2 0.56507 1.37707 1.24035 0.94234

3 0.62260 1.56501 1.05008 0.95571

4 1.16928 1.49958 1.58339 0.94182

5 0.65316 0.63076 1.15383 0.96405

6 0.51095 0.56752 1.30319 0.96321

7 0.40103 3.06500 3.38401 0.92481

8 0.94954 2.11953 1.31979 0.97204

9 0.63216 0.76378 1.81024 0.94652

10 0.54018 0.75295 1.13184 0.95257

11 0.79046 1.06503 1.00031 0.97868

12 0.79046 1.08028 2.63900 0.95455

Average 0.666907 1.303184 1.54001 0.95281
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Themain goal of theworkwas to create a nonlinear predictor in the formof a neural
networkwith the structure of amultilayer perceptron. It should be emphasized that the
statistical predictions of time series generally give results close to real in the average
sense. Statistical models are ambiguous, and their results depend on the structure
and numerical details. The selection of the model ensuring optimal generalization
is of great practical importance—the prediction quality should remain high even for
the data unknown during the creation of the model.

We applied the virtual leave-one-out approach based on an analytical approx-
imation of the effect of withdrawing one example from the training set without
withdrawing by using the local linearization of the neural network predictor [12,
13]. This approach enables the general model diagnostics by performing the influ-
ential statistics [14]. In general, this approach is attractive in the theory of statistical
learning systems as, for example, new semi-supervised classifiers [17].

Application of the virtual leave-one-out procedure allows the selection of neural
models with the homogeneous influence of the training examples—thus avoiding the
overfitting. This method is computationally efficient and can also be used to dataset
diagnostics by discovering the most influential training examples.

The prediction obtained by the selected neural network model is more accurate
(low standard error deviation, low level of confidence interval) as can be stated in
Tables 4 and 5, and Figs. 7, 8, 9, 10, 11, 12, 13, and 14.

It can be concluded that the virtual leave-one-out test is the efficient tool for the
optimal selection of neural network predictors of crime time series in the application
for crime prediction performed on the real dataset of spatiotemporal crime incidence.

Fig. 14 Confidence interval for the time series prediction by the NN (3–5) model on the training
set
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Abstract The hardware implementation of Echo State Networks (ESN) can be
applied to situations where a quick response is needed in relation to how a cer-
tain signal will evolve. This is due to the possibility of connecting the ESN’s neurons
in parallel, which accelerates the calculation process considerably. In this article, we
present a proposal for the compact implementation of ESN in Field Programmable
Gate Arrays (FPGAs). To maximize the number of neurons, the synapses are imple-
mented using adders and multiplexers instead of multipliers. The hardware imple-
mentation has been tested for the prediction of the Santa Fe time-series dataset.
The proposed approach allows for significant savings in terms of energy, hardware
resources, and computing time compared to other recently published solutions.

Keywords Echo state networks · FPGA · Time-series forecasting

Introduction

Machine learning applications have exploded in numbers in recent years. This is
happening due to the paradigmatic shift from machine learning being it’s own pur-
pose, i.e., “machine learning to study how machine learning works” to being applied
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to other ends. Its uses and ways of implementation are very wide. This work is in
the scope of Recurrent Neural Networks (RNN) and Reservoir Computing (RC) as
implementation of the network, and in the field of time-series forecasting as machine
learning application.

Numerous applications require the use of specific hardware to implementmachine
learning applications. Those systems take advantage of the inherent parallelism in
the neural processing, (as opposed to typical software machine learning techniques
that in the case of neural networks, are a simulation of what otherwise would happen
on hardware) that may be beneficial in terms of speed, power, reliability, and cost
[6, 22]. As an example, Hardware Neural Networks (HNNs) are necessary for high-
volume processing and real-time applications, such as image search and data mining
[13, 24].

In HNNs, as in any other neural network, we have two essential parts, the neuron
and the axon. The neuron performs a nonlinear operation of its input and the axon
adjusts the weight that the output of the neuron will have on the input of the next
neuron, or at the output of the system. A neuron has one output (which may fan out
to many other neurons via the axons) but several inputs. These inputs are the sum of
the values of other neurons multiplied by the weight of each of the axons carrying
that value, as shown in Fig. 1.

A great research effort has been made to develop efficient HNN implementa-
tions [3, 5, 7, 9, 25] of one-pass incremental—learning of temporal patterns with a
bounded memory constraint . However, the synapses’ implementation (the gray box
in Fig. 1) constrains the viability of implementing massive networks in a single chip.
This is because if we want a full parallel neural network to take advantage of design-
ing specific hardware, it is necessary to provide the multiply and sum circuitry for
each neuron and these circuits usually grow linearly in silicon area with the neuron’s
fan-in. This can be catastrophic for large and complex neural networks For these
reasons, the use of approximate multipliers [18, 26] has been proposed to reduce
hardware at the cost of accuracy loss. Our team has proved that this accuracy loss in
axons’ weight description will not affect the neural network, at least in the reservoir
computing scheme.

Our application for a HNN is to build a reservoir, i.e., a dynamic system which
interacts with some input in a complexway. In our case the reservoir is a digital neural
network, in particular an Echo State Network (ESN). In order to use the reservoir,
an output has to be provided. To this end a machine learning technique is used, as
it will be explained in section “Methodology”. RC is not limited to neural networks
nor digital circuits. There is some research nowadays on optical systems [23], analog
electronics [30], memristors [14], and others, as the famous bucket of water [10].

Echo State Networks are suited to time-series prediction and classification tasks
[19] and has been successfully applied in numerous domains, such as robot control
[4], image/video processing [12], or financial forecasting [17]. Therefore, fast hard-
ware designs implementing ESN systems [1, 2] is of interest for these applications,
which require real-time intensive data processing [29].

In this article, we present a proposal for ESN hardware implementation using
few hardware resources. The proposed design presents low power characteristics.
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Fig. 1 Typical paradigm of
a neuron in any neural
network: It receives some
inputs from other neurons, it
performs a weighed sum of
the values (gray box) then
performs some nonlinear
function (purple circle) and
outputs the result to other
neurons
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As a demonstration of the validity of the approach, we implement a large reservoir
network within an FPGA and evaluate its performance for a traditional benchmark
on time-series processing (Santa Fe prediction task). The results are compared with
some previously published works.

Methodology

Echo State Networks

ESNdiffers fromother recurrent neural networks in that the synapticweights between
neurons are kept fixed and only the connections from the network to a measurement
output layer are modified by learning. This reduces the training to a classical linear
regression problem. The architecture of a reservoir computing system consists of
a total of N internal processing nodes (the neurons) each one providing a given
value xk,i , where i ∈ {1, 2, .., N } is the neuron index, k represents the evolution
during time (k ∈ {1, 2, ..., L}) and L is the total number of samples taken from the
reservoir. Therefore, the time evolution of internal nodes of the reservoir is described
by a matrix with L rows and N columns X (the design matrix). The state of the
network at a given time k is defined by the kth row of the design matrix x(k) and the
time evolution of a given node is stored in the i th column xi . The output response
of the reservoir is computed in two phases. First, the current reservoir state [x(k)]
is updated according to a nonlinear function of the weighted sum of the neuron
inputs [M external time-dependent inputs u(k) = (u1(k), u2(k), ..., uM (k))], and N
internal ones coming from the reservoir’s neurons evaluated in the previous time
step, x(k − 1) following the expression:

x(k) = f [Winu(k) + Wx(k − 1)] (1)
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where f is the activation function f : RN → R
N , Win and W are two N × M and

N × N weight matrices, respectively. The network is used to evaluate a total of Q
outputs [ŷ(k) = (

ŷ1(k), ŷ2(k), ..., ŷQ(k)
)
] that are obtained preforming linear com-

binations of the reservoir states.

ŷ(k) = xT (k)Wout (2)

whereWout is a N × Q weight matrix obtained using a linear regression with respect
to the expected outputs [y(k) = (

y1(k), y2(k), ..., yQ(k)
)
].

Training Method

Assuming we can take a total of L measurements for x(k) and y(k), we define Y as
the feature matrix of L × Q that will be approximated by the network (composed of
L row vectors of Q elements y(k)). Then we have that Wout is estimated using the
Moore–Penrose pseudo-inverse:

Wout = (
XTX

)−1
XTY (3)

In the reservoir computing scheme, matrices Win and W are taken fixed while
Wout is conveniently trained using expression (3) or other similar linear fitting.

Low-Cost Hardware Implementation Echo State Networks

The number of neurons employed in ESNs is usually high (typically between 50 and
1000, although some applications requiremuch larger networks to achieve the desired
accuracy [12]), which makes particularly challenging the hardware implementation
of these systems. Given the large number of products to be implemented due to the
high number of synapses, multipliers expend a significant portion of the integrated
circuit resources. We limit the possible weights to integer powers of two and sums
of powers of two so that shift registers can be employed instead of multipliers.

For a standard ANN implementation that uses backpropagation as learning algo-
rithm, the constraint on the weights is not desirable since it leads to lower network
performance [20]. Nonetheless, we show that for ESN with fixed connections, the
proposed approach only implies a minor accuracy loss. For the estimation of the
output [ŷ(k)] from expression (2) we use the dedicated embedded multipliers inte-
grated in the FPGA device (DSP blocks). The overall area impact of this computation
inside the FPGA is relatively low since the logical elements needed to implement
the neural network are not used and the number of multipliers at the output layer
is significantly lower than the synapses’ multipliers (that would limit the maximum
neural fan-in). Regarding the network topology, a simple cyclic architecture presents
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Fig. 2 The general ESN (a) where an n-dimensional input vector u(t) is mapped into the reservoir
by a weight matrix Win and an m-dimensional output y(t) is mapped out by the machine learning
trained matrixWout . In our case (b), the input and the output are one-dimensional and the reservoir
is ring-shaped, or cyclic

a similar performance to the classical random one while it minimizes the number of
connections [28] and optimizes the packing efficiency. In Fig. 2 we show a schematic
comparison between a general ESN system and our case of a simple cyclic reservoir
(SCR) with one input (u(t)) and one output (Q = 1). For simplicity, the connections
between internal units have the sameweight r whereas the inputs are connected to the
reservoir with a weight that is positive v =| v | or negative v = − | v |with the same
probability and same absolute value. To improve the experimental results, parameters
r and v are first adjusted numerically to find the optimum weight configuration.

Figure 3a illustrates a general circuit design for a two-input sigmoid neuron nec-
essary to build the cyclic reservoir when only one input signal is processed. The
fixed-point two’s complement notation is assumed for all signals so that both pos-
itive and negative values can be represented. The first neuron’s input [u(t)] refers
to the external input signal (to be processed by the network) and the second one
[xi−1(t − 1)] to the state of a neighboring neuron evaluated at the previous time step.
A resolution of n bits is considered for the input and of m bits for the weights (v and
r ). The multiplier’s output is truncated to n bits taking the most significant of the
result, but a higher or lower resolution could be employed depending on the desired
accuracy.

A simple piece-wise linear approximation with three segments [7] is used for the
implementation of the activation function, due to its simple implementation. More
accurate designs (e.g., [5, 25]) could be employed to improve the network’s perfor-
mance at the cost of higher hardware requirements. The scheme of Fig. 3a can be
simplified to that of Fig. 3b when the weight resolution is limited to a few bits, more
specifically m = 4. In this case, the full multipliers can be substituted by shift-and-
add blocks. Such “multiplier-less” approach enables great hardware saving at the
cost of constraining the possible values of the connection weights. The shift-and-add
block is depicted in Fig. 3c. Basically, it performs a multiplication of the input signal
[u(t)] by the corresponding weight (v) with a pair of shift registers and an adder.
Some additional circuitry is included to perform the negation of the shifted values
in case it is necessary. A multiplexer is employed to provide either the number that



140 E. S. Skibinsky-Gitlin et al.

Fig. 3 a–cNeuron design: a general circuit design of the neuron;b reduced implementation scheme
when the weight resolution is limited to few bits (m = 4) and the multipliers are replaced by simple
shift-and-add blocks; c description of the shift-and-add block

directly results from the shift register or its corresponding negative value depending
on a selection signal. A decoder configures the shift registers (with the number of
required shifts, sh1 and sh2) and controls the activation of the negations (neg1 and
neg2) as a function of the weight value (v). By way of example, a single right shift
of the input (sh1 = 1) performs multiplication by 0.5 while two shifts (sh2 = 2)
are equal to a factor of 0.25. The direct addition (with neg1 = neg2 = 0, indicating
that no negation of the shifted values is necessary) of these two shifted magnitudes
results in weight v = 0.75. The weight value v = 0.875 can be implemented by
selecting no shifts and no negation for the first shift register (sh1 = 0, neg1 = 0)
and three shifts with a negated output for the second one (sh2 = 3, neg2 = 1) so that
the input signal u(t) is weighted by the factor v = 1 − 0.125 = 0.875. A negative
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Fig. 4 Piecewise function
used as nonlinear activation
function

factor, for instance v = −0.5, may be obtained through the negation of both shifted
magnitudes (neg1 = neg2 = 1), where each one is obtained with two displacements
(sh1 = sh2 = 2) so that v = −0.25 + (−0.25) = −0.5. In the case it is desired a
generic design, the circuit of Fig. 3c can be used. For FPGA implementations in
which the training of r and v are done off-line, an ad hoc design implying the imple-
mentation of the exact shifts for each neuron input can be used, further simplifying
the hardware and increasing the processing speed. The transfer function f in Eq. (1)
determines the behavior of the analog (discrete-time) neuron. For the special case
of this work, in which the training is performed at the output layer and not imple-
menting a backpropagation algorithm, a piecewise linear function is able to provide
very good fitting results along with a compact hardware implementation. In Fig. 4
we show the nonlinear function used for each internal neuron of the reservoir. The
function is easily reproduced in hardware using a few gates and a multiplexer.

Benchmark Prediction Task

In time-series prediction or forecasting the objective is to predict future values based
on previously observed ones. Thus, the input sequences are mapped onto a real-
valued output sequence that represents one-step or several-step ahead predictions of
the desired variable. That is, the value of the series at the current time is introduced
each time step as input to the system and the time-series value corresponding to the
next (or several) time step must be predicted. In this work, we test the proposed
ESN hardware with respect to a widely used benchmark that is the Santa Fe [31]
time-series prediction task. The time-series processing is divided into two steps:

– Part of the time series is used for off-line training using an R script. The optimum v

and r values are selected along with the output weights (Wout ). Then, the network
is automatically generated using aHardwareDescriptionLanguageCode (VHDL).

– The rest of the time series is digitized to 16bits two’s complement that is transferred
to the on-chip RAM memory of the FPGA for its processing.

The typical processing task is to predict the next sample of the time series
before it has been injected into the reservoir computer (one-step ahead prediction).
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The performance of this task is evaluated using the Normalized Mean Square Error
(NMSE):

NMSE =
∑L

i=1

(
yi − ŷi

)2

∑L
i=1

(
yi − ȳ

)2 (4)

where y = (
y(1), y(2), .., y(L)

)
is the time series to be predicted (target), ŷ =(

ŷ(1), ŷ(2), .., ŷ(L)
)
is the predicted value provided by the output layer of the reser-

voir in the following Eq. (2), and ȳ is the mean value of y. Parameter L is the number
of samples.

The VHDL code is automatically generated from an R script and is composed of
three parts: RAMmemory (containing the input to be processed), the cyclic reservoir
(constructed using the programmable logic elements of the FPGA), and the output
layer (using the dedicated multipliers of the FPGA). The code is used to configure
an ALTERA Cyclone IV (EP4CE22F17C6N) FPGA chip.

The Santa Fe prediction task A representative example is the Santa Fe laser time-
series prediction task, a widely used benchmark [28]. The task consists in forecasting
an experimental recording of the output power of a far-infrared laser operating in
the chaotic regime. It is usually evaluated for one-step-ahead predictions. Data is
available at [31]. In this work, we employ 4000 samples of the original laser dataset,
the first 75% for training and the remaining 25% for testing.

The goal for the Santa Fe task is to predict the next sample in the chaotic time trace
before it has been injected into the reservoir computer (one-step-ahead prediction).

Results

We compare the performance of the proposed model with respect to different widely
usedbenchmark tasks and comparingwith somepreviously publishedworks.Regard-
ing the area impact of the proposed methodology, it represents an 86% of area reduc-
tion if comparedwith the standard digital realizationwhen two inputs for each neuron
are used and therefore the number of synapses’ multipliers are reduced to the mini-
mum in the conventional digital approach.

The proposed methodology is used to synthesize echo state networks with cyclic
topology (SCR) (Fig. 2), encoded using VHDL on an ALTERA Cyclone IV FPGA.
The performance of the system is tested for the Santa Fe time-series prediction task
[31]. Networks with different sizes with up to 200 neurons are implemented and
analyzed using the proposed “multiplier-less” approach (Fig. 3b) with a precision of
16 bits (n = 16). The training is performed following the methodology mentioned
in section “Echo State Networks”. A convenient numerical model of the hardware
reservoir is employed for the learning phase. Finally, once the prediction error has
been scanned for all the possible network configurations (values of r and v), the
hardware realization is set up with the optimum weights and evaluated using the test
set. The parameters providing better fitting (r = 0.875 and v = 1) are obtained and
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Fig. 5 Fragment of the Santa Fe time-series test set: original values and one-step ahead predictions
performed by the proposed reservoir implementation with N = 48 and N = 200 neurons. As can
be appreciated, the network is able to adapt to the abrupt changes of the input

the FPGA is configured with those values. The test set is then stored into the internal
RAMmemory, thus providing a new input value to the reservoir every time step (each
N clock cycles). The resulting outputs (individual neuron states) are processed by the
FPGA providing the output ŷ each N clock cycles. This computation is performed
following Eq. (2) in a total of N clock cycles so that the processing speed of the
proposed design is f/N , where f is the clock frequency that for all the experiments
performed in this work is fixed to 50 MHz. This output is extracted from the FPGA
with a logic analyzer and used to calculate the system’s performance as the error
between the estimated and targeted values. For this task we employ a total of 4000
samples of the original laser dataset, the first 3000 for training and the remaining
1000 for testing.

Figure 5 illustrates the experimental predictions obtained through the proposed
design when using 48 and 200 neurons. As can be observed, the fitting of the mea-
surements taken in the FPGA is improved when increassing N .

In Table 1 we show the performance of the proposed model measured in terms
of the NMSE, speed (in points predicted per second) and power dissipation for the
processing of the Santa Fe time-series prediction task. Comparison with previously
published models is also included in the table. We distinguish between theoretical
values of NMSE obtained from high-precision numerical calculations (Soft.) and
NMSE values obtained from experimental settings (Hard.). These two values can
differ significantly due to the intrinsic complexity of experimental settings that may
present both system and quantization noise. This is evidenced in references [8, 11],
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Table 1 Performance results of the Santa Fe experiments for the proposed design and some previ-
ously published models

Technology References N NMSE NMSE Speed Power PDP

(Hard.) (Simulation) (pps) (W) (W · µs)
Optoelectronic [23] 200 – 0.02 – – –

Optoelectronic [8] 388 0.106 – 1.3 · 107 150 11.5

Optoelectronic [11] 400 – 0.021 – – –

Numerical [28] 200 – 0.008 – – –

Numerical [28] 50 – 0.018 – – –

Analog circuit [30] 400 0.031 – – – –

FPGA [2] 50 0.131 – 1142 0.083 72.6

FPGA [1](16b) 50 0.075 – 763 <1.5 1966

FPGA [1](12b) 50 0.12 – 12207 <1.5 123

FPGA This work 200 0.079 0.0766 2.5 · 105 <1.5 6

FPGA This work 48 0.148 0.144 106 <1.5 1.5

where the expected NMSE provided by software is considerably lower than the
measured one. We also show the results of different studies that are purely numerical
as the work in [28] showing the expected performance of Simple Cycle Reservoir
designs or the paper in [23] where a semiconductor ring laser with optical feedback
(SRL) is numerically simulated.Wealso provide in the table thePower-DelayProduct
(PDP) achieved by the experimental settings (a classical figure of merit of the overall
hardware performance). As can be appreciated the proposed design is able to provide
a factor of two of lower PDP when compared with [8, 11].

Conclusions

In this work, we have presented a digital implementation of ESN. It is shown that the
connection weights can be limited to a few discrete values without compromising
the system’s performance. The validity of the resulting implementation has been
demonstrated for the Santa Fe time-series prediction task. Performance comparisons
with previous works are shown showing that the proposedmodel present competitive
results. Those comparisons show that the proposed model represent a considerable
improvement in terms of speed and power dissipation while is able to provide a
similar accuracy than previous models. The proposed solution allows the parallel
computation of all the recurrent network with a processing speed of the order of
MHz and therefore it is suited to supporting real-time signal processing applications.
On the other hand, the proposed approach can be useful to perform specialized
systems implementing computational intelligence techniques that requires lowpower
consumption. Potential applications include speech recognition [15], robotics [4],
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wireless sensor networks [21], predictive controllers [16], and the classification of
medical signals [27] among others. To summarize, it has been shown that the use of
low-resolution weights to implement the internal synapses of the neurons has little
effect on the system’s performance while it allows a considerable reduction of the
hardware since the use of binary multipliers are avoided. This observation makes
possible a very compact implementation of massive reservoir networks with parallel
processing capabilities.
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Conditional Heteroskedasticity
in Long-Memory Model “FIMACH”
for Return Volatilities in Equity Markets

A. M. M. Shahiduzzaman Quoreshi and Sabur Mollah

Abstract This paper incorporates conditional heteroskedasticity properties in the
long-memorymodel and applies themodel on squared returns ofBRICS (Brazil, Rus-
sia, India, China, and South Africa) and the United States equity markets to capture
the volatility of the stock return. The conditional first- and second-order moments
are provided. The CLS, FGLS, and QML are discussed and 2SQML estimator is
proposed employing a nonstationary mean function. The simulation study suggests
that the proposed 2SQML estimator performs better than the other three estimators.
Both in simulation and empirical studies, we find that the proposed model FIMACH
outperforms FIGARCH in terms of eliminating serial correlations.

Keywords Long-memory · Conditional heteroskedastic · Return volatility

Introduction

The volatility of stock returns reflects the response to macroeconomic news and
rumors. Engle and Patton [1], and Poon and Granger [2] stress that volatility surface
has empirically been proved to have persistence for a long time againstmarket shocks.
The long-memory phenomenon in time series was first considered by Hurst [3, 4].
In these studies, he explains the long-term storage requirements of the Nile river. He
shows that the cumulated water flows in a year depend not only on the water flows in
recent years but also on water flows in years much earlier prior to the present year.
Mandelbrot and Van Ness [5] explain and advance Hurst’s studies by employing
fractional Brownian motion. In analogy with Mandelbrot and Van Ness [5], Granger
[6], Granger and Joyeux [7], and Hosking [8] develop Autoregressive Fractionally
Integrated Moving Average (ARFIMA) models to account for the long-memory in
time series data. However, an empirical study regarding the usefulness of ARFIMA
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model is conducted by Bhardwaj and Swanson [9], who find strong evidence in
favor of ARFIMA in absolute, squared, and log-squared stock index returns. In
this regard, Ding and Granger [10] point out that a number of other processes can
also have the long memory property. Further, a Fractionally Integrated Generalized
Autoregressive Conditional Heteroskedasticity (FIGARCH) is primarily developed
by Baillie et al. [11] but later modified by Chung [12]. Nevertheless, Quoreshi [13]
develops an Integer-valued ARFIMA (INARFIMA) model to account for the long
memory property in a high-frequency count data framework.

This paper incorporates conditional heteroskedasticity properties in the long-
memory model and applies the model on squared returns of BRICS (Brazil, Russia,
India, China, and South Africa) and the United States. The newmodel is called Frac-
tionally IntegratedMovingAverageConditionalHeteroskedasticity (FIMACH). This
model is designed, in a similar fashion to Quoreshi [13], for non-integer data. One
important difference in estimation between the introduced model and the model in
ARFIMA class is that this model class can study the heteroskedasticity property on
the level series while the ARFIMA-FIGARCH class studies the same on the frac-
tionally differenced series through Fourier transformation. One obvious advantage of
the FIMACHmodel over the ARFIMA-FIGARCH class is that the model can easily
be extended to multivariate settings for the level series. The model may additionally
be used to measure the reaction times for macroeconomic news or rumors, and cap-
tures information spread through the system. The model is specified in terms of first-
and second-order moments conditioned on historical observations. We argue that the
mean function for the estimations of the long-memory parameter be used instead of
autocorrelation function even though the mean function may not converge theoret-
ically. Since the time series are always finite in length in the empirical application.
we may assume that the impact of lags approaches zero in mean function as the lag
length approaches infinity. This motivates to test whether the estimations employing
the mean function perform better or not. We perform a Monte Carlo simulation,
where we find that ARFIMA or FIGARCH is not suitable for data that are generated
according to the FIMACHmodel. Empirically, we find evidence of long-memory for
squared stock return of the United States and BRICS countries. It is also found that
the FIMACH model outperforms both FIGARCH and ARFIMA models in terms of
eliminating serial correlations.

The paper is organized as follows. The ARFIMA-FIGARCH model class is dis-
cussed, and the FIMACHmodel is introduced in the section “Model”. The estimation
procedure of FIMACH is discussed in the section “Estimation”. The section “Monte
Carlo Experiment” presents a brief Monte Carlo experiment. The description of the
empirical data is presented in the section “Empirical Data”. The empirical results on
the stock return volatilities are presented in the section “Empirical Results”, and the
concluding comments are included in the section “Conclusion”.
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Model

Granger and Joyeux [7] and Hosking [8] introduce the ARFIMA(p, d, q) class of
models of the discrete-time real-valued series xt

α(L)(1 − L)d xt = β(L)ut . (1)

The moving average representation of ARFIMA (0, d, 0) of the series xt is

xt = ut + d1ut−1 + d2ut−2 + d3ut−3 . . .

or

xt = (1 + L)−dut . (2)

Note that xt has long memory in a sense that the variable has a slow decay-
ing autocorrelation function and the parameters d j = �( j + d)/[�( j + 1)�(d)],
j = 0, 1, 2, . . . where d0 = 1, and where ut is a zero-mean serially uncorrelated
process. Approximating d j � Aj−d , for j ≥ 1, Granger and Joyeux [7] propose
the following representation of fractionally integrated MA (∞) model

yt = A
∞∑

j=1

j−dut− j + ut . (3)

According to Granger and Jouex [7], the series has the following variance:

V (y) = Aσ 2
u

∞∑

j=1

(
1 + j2(d−1)

)
. (4)

From the theory of infinite series, it is known that
∑∞

i=1 j−d converges for d > 1,
otherwise, it diverges. They conclude that the variance of xt and yt differ only in
finite quantity. Hence the variance for xt is finite provided d < 1

2 , but infinite if
d ≥ 1

2 . Geweke and Porter-Hudak [14] show that
∑∞

i=1 di < ∞ if and only if d < 0.
In a similar fashion of ARFIMA(p, d, q) defined in (1), Baillie et al. [11] introduce
Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity,
FIGARCH (k, d, l) process for u2t

ϕ(L)(1 − L)du2t = α0 + [1 − β(L)]vt (5)

where all the roots of α(L) and [1 − β(L)] lie outside the unit circle and 0 < d < 1.
Eq. (5) can be written as

[1 − β(L)]σ 2
t = α0 + [

1 − β(L) − ϕ(L)(1 − L)d
]
u2t . (6)
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The conditional variance for u2t is

σ 2
t = α0[1 − β(L)]−1 + {

1 − [1 − β(L)]−1 − ϕ(L)(1 − L)d
}
u2t

≡ α0[1 − β(L)]−1 + θ(L)u2t (7)

where θ(L) = θ1L + θ2L2 + · · · . It is assumed that the FIGARCH (k, d, l) process
in Eq. (5) be well-defined and the conditional variance be positive almost surely for
all t and all θk(L) ≥ 0, for k = 1, 2, . . ..

We assume that rt = pt − pt−1 is a stock index return time series, where pt
is the price for the index at time t. If the expected value rt is zero, we get r2t as
the variance at time point t. Let the degree of stock index return volatility, proxied
by the squared return r2t , have a slow decaying autocorrelation function. Note that
standard deviation is widely used as a measure of volatility which is just the square
root of the variance. In order to simplify, we further assume that xt represents r2t ,
stock index return volatility. Here, we assume that the ut is i.i.d. sequence of random
variables with unconditional mean E(u) = λ and variance V (αu) = α2∅2 where
V (u) = E(u)2 − λ2 = ∅2. Conditionally, it holds that E(u|u) = u and V (αu|u) =
α2V (u|u) where V (u|u) = u2 − 2λu + λ2. Employing these assumptions on xt , the
conditional mean and variance for the Moving Average representation of ARFIMA
(0, d, 0) of Granger and Jouex [7] are

E(xt |Yt−1) = Et−1 = λ +
m∑

i=1

diut−i (8a)

V (xt |Yt−1) = Vt−1 = ∅2 +
m∑

i=1

d2
i

(
u2t−i − 2λut−i + λ2

)
(8b)

where Yt−1 is the information set available at time t−1 and m = ∞. The conditional
mean and variance vary with ut− j . Hence, this model is clearly different from the
models discussed above. Since the conditional variance varies with ut− j , there is
a conditional heteroskedasticity property of moving average type that Brännäs and

Hall [15] called MACH(q). As λ and ∅2 are not functions of time and
∣∣∣
∑∞

j=1 d j

∣∣∣ ≤
∣∣∣
∑∞

j=1 d
2
j

∣∣∣ for d ∈ [−1, 1], it is sufficient that
∑∞

j=1 d j < ∞ for xt to be a stationary

sequence. It is worth noting that neither Granger and Joyeux [7] nor Baillie et al. [11]
have specified the conditional mean function of the process. The reason could be that
the mean of the process is nonstationary and hence may not be appropriate for the
estimation procedure. However, assuming di = 0 for very largem, we get finitemean
and variance.We call themodel Fractionally IntegratedMovingAverage Conditional
Heteroskedasticity FIMACH(d)whered represents the long-memoryparameter. The
main difference between FIMACH and FIGARCH is that in FIGARCH, the long-
memory property of the variance of the error term ut is modeledwhile the conditional
expected value for xt is modeled in FIMACH. The difference is more visible in using
lag operators. FIGARCH uses (1 − L)d while (1 + L)−d is used in FIMACH and
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hence those models are different. The variance of FIMACH (d) may be compared to
what Baillie et al. [11] have specified in Eq. (7) with α0[1 − β(L)]−1 = 0. Both of
the properties for xt given in Eq. (8a), (8b), (8c) can be used for estimation, while
the variance for ut given in Eq. (7) is used for estimation. For d > 0, the variance of
FIGARCH is not covariance-stationary [16]. Employing the same argument as for
Eq. (4), it is trivial to show that the conditional variance for FIMACH is finite for
d < 1

2 .
If the mean function in Eq. (8a) is well-behaved and decreasing for larger lags,

we can use the mean function estimating long-memory parameter instead of using
auto-covariance and variance functions as Granger and Joyeux [7] and Baillie et al.
[11] have suggested, respectively. Diebold [17] proposes also a test for long mem-
ory based on time variance function. The autocorrelation functions of the ARFIMA
model class are assumed to be a hyperbolic function while the general mathematical
expression of the autocorrelation function for FIMACH is considerably complicated
to derive, although possible. Assuming E(utut |Yt−1) = u2t and E

(
utut− j |Yt−1

) =
0 where j = 1, 2, . . . ,∞, we can provide a simple form of conditional autocorre-
lation function at lag k for FIMACH as

ρk|t−1 =

∞∑
j=0

d jdk+ j u2t− j−k

V
(
σ 2
t |Yt−1

) (8c)

where k = − j, j and represents lag, and d0 = 1. Note that this autocorrelation
function varies with ut− j which captures the heteroskedasticity property in the auto-
correlation function. The heteroskedasticity in autocorrelation function for absolute
return of stock is illustrated by Ding [10], although the authors assume a smooth
function for explaining the autocorrelation. The FIMACH model can be extended
with random parameters as

xt = ut + d1ut−1 + d2ut−2 + d3ut−3 . . . +
p∑

i=1

δi ut−i (9)

where di capture the long-memory properties and have the same definitions as in
Eq. (1). The δi , i = 1, 2, . . . , comprise the random parameters and are independent
of each other. These parameters capture the short term deviation from the long-
memory trend. We name this model FIMACH(d, p) model. The conditional mean
and variance of the random coefficients of FIMACH(d, p) representation can be
written as

E(xt |Yt−1) = Et−1 = λ +
m∑

i=1

diut−i +
p∑

i=1

δi ut−i (10a)

V (xt |Yt−1) = Vt−1 = ∅2 +
m∑

i=1

d2
i

(
u2t−i − 2λut−i + λ2

)
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+
∑p

i=1
δi

(
u2t−i − 2λut−i + λ2

)
(10b)

where Yt−1 is the information set available at time t−1and m = ∞. As for Eq. (8a),
(8b), assuming di = 0 for very large m, we get finite mean and variance. Note that
the moments are conditioned only on the previous observations, Yt−1. The same
stationary condition is applicable as for Eq. (8a), (8b). The model can be used to
measure mean and median reaction time to macroeconomic news and rumors1. The
model can easily be extended to a multivariate setting. Hence, the covariance and
Granger-Causality between two or several series can easily be studied in the same
fashion as the VARMA model. These possibilities are limited in the FIGARCH of
ARFIMA class, at least on the level series.

Estimation

Geweke and Porter-Hudak [14] assume that the spectral density for xt in Eq. (2),
where ut is a stationary linear process with spectral density fu(λ), is

f (λ) = (
σ 2/2π

){
4sin2(λ)

}−d
fu(λ) (11)

and

ln{ f (λ)} = ln
{
σ 2 fu(0)/2π

} − d ln

{
4sin2

(
λ

2

)}
+

{
fu(λ)

fu(0)

}
. (12)

The σ 2 is the variance of xt and fu(λ) is finite and continuous on [−π, π ]. Assuming
T as the sample size of xt and letting λ j,T = 2π

T ,where j = 0, 1, . . . , T − 1, denote
the harmonic ordinates, Eq. (12) can be written as

ln
{
I
(
λ j,T

)} = ln
{
σ 2 fu(0)/2π

} − d ln

{
4sin2

(
λ j,T

2

)}
+

{
fu

(
λ j,T

)

fu(0)

}

+ ln
{
I
(
λ j,T

)
/ f

(
λ j,T

)}
(13)

where I
(
λ j,T

)
denote the periodogram of these harmonic ordinates. The authors

propose the least square estimation of Eq. (13) to estimate d. Baillie et al. [11]
propose the following Maximum Likelihood Estimation

logL(∅; u1, u2, . . . , uT ) = −0.5 ∗ T ∗ log(2π)

1This is the reaction to macroeconomic news/rumors in the (ujt) sequence, we use the mean lag∑q j
i=0 iα j i/w, where w = ∑q j

i=0 α j i and α j0 = 1 (see Quoreshi 2012).
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− 0.5
T∑

t=1

[
log

(
σ 2
1

) + u21σ
−2
t

]
(14)

where σ 2
t is defined as in Eq. (7) and ∅′ ≡ (d, α0, β1, . . . , βk, ϕ1, . . . , ϕl). The

Maclaurin series expansion of (1 − L)d is used [11].
Quoreshi [13, 18] uses mean function for the estimation of integer-valued long-

memory models. Although the mean function of the introduced model may be non-
stationary, the function is decreasing and smooth. However, in practical implication,
we can never employ an infinite series. Since the time series are always finite in
length in the empirical application, we may assume that the impact of large lags is
zero in the mean function. This motivates to test whether the estimations employing
mean function perform better or not. The forecasting properties of the model can be
seen the same as the finite length of time series.

If we do not assume a full density function, we may estimate the Quasi Maxi-
mum Likelihood (QML) Estimator as discussed by Weiss [19] and Bollerslev and
Wooldridge [20] instead ofMaximumLikelihood (ML) Estimator. Conditional Least
Square (CLS), Feasible Generalized Least Square (FGLS), Generalized Methods of
Moments (GMM), and possibly others, e.g., Two-Stage Least Square (2SLS), are
candidates for the estimation. In the previous studies, it turns out that FGLS is the
best estimator among the three in terms of eliminating serial correlation [13]. The
CLS comes in the second position, which is almost as good as FGLS. Here, we only
consider CLS, FGLS, and ML class for estimation.

The Conditional Least Square (CLS) estimator for FIMACH(d, p) representation
model have the following residual

et = yt − Et−1 = σ 2
t − λ −

∞∑

i=1

diut−i −
p∑

i=1

θi ut−i (15)

and the criterion function SCLS = ∑T
i=m+1 e

2
t is minimized with respect to unknown

parameters, i.e., ψ = (
λ, θ ′and d ′) where θ ′ and d ′ are vectors of parameters with

elements θi respective di . Using a finite maximum lagm in Eq. (15) instead of infinite
lags may cause biasing effects. Due to omitted variables, i.e., ut−m−1, . . . , ut−∞,
we may expect a positive bias on the parameters λ, θi and di [21]. These moment
conditions correspond to the normal equations of the CLS estimator that focuses
on the unknown parameters of the conditional mean function. Alternatively and
equivalently, the properties E(et ) = 0 and E(etet− j ) = 0, j ≥ 1 could be used. Note
that the moment conditions for FIMACH(d, 0) can be obtained by setting θi = 0.
The FGLS estimator minimizes

SFGLS =
T∑

t=m+1

et V
∧−1

(16)
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with V
∧−1

as given. The variance of error from CLS estimates may be used for

approximation of V
∧−1

in Eq. (16). Alternatively, V
∧−1

can be estimated as specified
in Eq. (8b) by employing estimates from CLS. The covariance matrix estimators for
CLS and FGLS are

Cov
(
ψ
∧

CLS

)
=

(
T∑

t=m+1

∂et
∂ψ

∂et
∂ψ

′

)−1

Cov
(
ψ
∧

FGLS

)
=

(
T∑

t=m+1

V
∧−1 ∂et

∂ψ

∂et
∂ψ

′

)−1

.

The ML or QML estimator for FIMACH(d, p) representation model have the same
residual as in Eq. (15), and maximize the following criterion function

L
(
σ 2
1 , σ 2

2 . . . , σ 2
T |Yt−1, λ, θi and di

) =
T∏

t=1

L
(
σ 2
t |Yt−1, ψi

)

=
(

1

2πVt−1

)T/2

exp

⎛

⎜⎜⎜⎝−

T∑
i=m+1

e2t

2Vt−1

⎞

⎟⎟⎟⎠ (17)

where ψi = (λ, θi and di ) and Vt−1 are as in Eq. (8b). Taking the logarithm of
Eq. (17), we may simply use the criterion function and minimize the function as

LnL
(
σ 2
1 , σ 2

2 . . . , σ 2
T |Yt−1, λ, θi , di and V

∧

t−1

)

= −T

2
ln

(
V
∧

t−1

)
− ln(2π) −

⎛

⎜⎜⎜⎝

T∑
t=m+1

e2t

2V
∧

t−1

⎞

⎟⎟⎟⎠ (18)

where V
∧

t−1 is an estimate for Vt−1 that is to be estimated. Since T, 2 and π are
constants, we can equivalently minimize the following criterion function:

LnL
(
σ 2
1 , σ 2

2 . . . , σ 2
T |Yt−1, λ, θi , di and V

∧

t−1

)
= − ln

(
V
∧

t−1

)
−

⎛

⎜⎜⎜⎝

T∑
t=m+1

e2t

V
∧

t−1

⎞

⎟⎟⎟⎠.

(19)
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Note that V
∧

t−1 is to be estimated at the same time as the other parameters. If the
estimation is sensitive to the start value of V

∧

t−1, we can obviously estimate CLS at
the first stage and calculate the V

∧

t−1 which can be used as the start value for QML.
We call this estimation procedure Two-Stage Quasi Maximum Likelihood (2SQML)
Estimation. The covariance matrix estimators for QML and 2SQML are

Cov
(
ψ
∧

QML

)
=

(
T∑

t=m+1

V
∧−1 ∂et

∂ψ

∂et
∂ψ

′

)−1

Cov
(
ψ
∧

2SQML

)
=

(
T∑

t=m+1

V
∧−1 ∂et

∂ψ

∂et
∂ψ

′

)−1

.

One important difference in estimation between this model and the model in the
ARFIMA class is that this model can study the heteroskedasticity property on the
level series while, for example, FIGARCH of ARFIMA class studies the same on
the fractionally differenced series through Fourier transformation.

Monte Carlo Experiment

Smith et al. [22] and Quoreshi [13] have studied the bias and misspecification in
ARFIMA respective of INARFIMA models. Drost et al. [23] investigated finite
sample behavior of semiparametric integer-valued AR(p) models while Brännäs and
Quoreshi [21] studiedfinite-lagmisspecificationwhen thedata is generated according
to an infinite-lag INARFIMAmodel. In this brief Monte Carlo experiment, we study
the bias, MSE, Ljung–Box statistics, AIC, and SBIC properties of theML estimators
for finite-lag specifications, when data is generated according to FIMACH (d, 0). The
data generating process is as in Eq. (1), with d = 0.1, 0.25 and 0.4 and lag length
m = 70. The ut sequence is generated from i.i.d. normal distribution, with mean
25 and standard deviation 10. Six time series with length T = 4500 and T = 900
are generated. The first 500 observations are discarded to avoid the start-up effect.
The results for the Monte Carlo experiment are given in Table 1. We also generate
four other series in a similar fashion, with mean 25 and standard deviation 4 and 100
to study the performance of CLS, FGLS, 2SQML, and QML estimators. We also
evaluate the FIMACH(d, 0), ARFIMA (0, d, 0), FIGARCH (1, 1), and GARCH (1, 1)
models in terms of eliminating serial correlations when the data are generated in
accordance with FIMACH(d, 0). These results are presented in Table 2.

We set λ
∧

equal to mean values for the generated series instead of λ = 25. By
doing so, we eliminate the biased effect of λ in the generated series. Hence, we can
study the bias of the estimated parameter d due to misspecification of lag length
m more appropriately. The Monte Carlo study shows that as m increases toward
m = 70, the bias in d decreases (Table 1). For m less than 70, we find positive
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Table 1 Bias, MSE, Ljung–Box statistics, AIC and SBIC properties of the ML estimators for
finite-lag specifications, when data is generated according to FIMACH (0, d, 0) Model with d =
0.1, 0.25 and 0.4 and m = 70 and σ 2 = 100

Lag Parameters T = 4500 T = 9000

0.10 0.25 0.40 0.10 0.25 0.40

M10 δ (s.e.) 0.168***
(0.00)

0.432***
(0.00)

0.698***
(0.00)

0.167***
(0.00)

0.431***
(0.00)

0.696***
(0.00)

MSE 99.115 104.898 130.848 97.579 103.611 129.173

LB100 130.669 297.170 1047.228 166.566 525.401 2045.455

LB200 236.154 417.668 1214.240 285.267 651.793 2200.088

AIC 20659.704 20907.183 21811.986 41201.319 41723.602 43516.296

SBIC 20730.210 20977.689 21882.492 41279.461 41801.744 43594.438

M30 δ (s.e.) 0.122***
(0.00)

0.308***
(0.00)

0.496***
(0.00)

0.122***
(0.00)

0.307***
(0.00)

0.495***
(0.00)

MSE 98.180 99.305 103.427 96.901 97.936 101.736

LB100 101.855 116.564 167.503 108.976 151.998 284.131

LB200 202.485 219.121 268.172 225.197 268.950 405.750

AIC 20566.007 20616.690 20797.669 41048.905 41143.489 41482.381

SBIC 20596.463 20815.250 20996.228 41127.023 41221.607 41560.499

M50 δ (s.e.) 0.108***
(0.00)

0.271***
(0.00)

0.434***
(0.00)

0.108***
(0.00)

0.270***
(0.00)

0.433***
(0.00)

MSE 98.177 100.234 104.320 97.025 97.903 100.766

LB100 101.107 111.853 150.678 105.672 116.088 180.584

LB200 200.968 217.921 264.321 224.083 234.140 299.255

AIC 20514.152 20606.353 20784.158 41049.001 41129.531 41387.421

SBIC 20840.585 20932.787 21110.592 41411.071 41491.601 41749.491

M70 δ (s.e.) 0.101***
(0.00)

0.251***
(0.00)

0.402***
(0.00)

0.100***
(0.00)

0.250***
(0.00)

0.401***
(0.001)

MSE 98.027 99.939 105.527 96.821 97.604 100.086

LB100 103.897 115.392 160.502 103.300 108.986 134.357

LB200 200.740 212.267 264.265 222.201 226.818 249.751

AIC 20455.626 20541.172 20782.114 40989.067 41060.157 41281.722

SBIC 20909.753 20995.299 21236.241 41492.967 41564.057 41785.621

M90 δ (s.e.) 0.096***
(0.00)

0.238***
(0.00)

0.380***
(0.00)

0.095***
(0.00)

0.237***
(0.00)

0.379***
(0.00)

MSE 98.110 100.157 106.060 96.917 97.794 100.522

LB100 110.666 162.701 332.128 108.179 143.667 292.239

LB200 210.420 267.350 445.421 228.784 266.039 422.550

AIC 20407.668 20498.686 20750.943 40936.006 41016.225 41261.143

SBIC 20989.306 21080.324 21332.581 41581.644 41661.864 41906.782
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bias in d, while the bias is negative for m = 90. Biases are smaller for T = 4500
when m is less than 70 than those for T = 9000. MSE decreases as sample size
increases or m increases. Like Quoreshi [13] and Brännäs and Quoreshi [21], we
conclude that we may expect a positive biasing effect on the parameters due to
omitting variables, i.e. ut−m−1, . . . , ut−∞. The statistics for AIC and SBIC decrease
as lag length increases, and are noted lowest atm = 90. Hence, the standard AIC and
SBIC need to be corrected in order to choose optimal lag lengths. As expected, the LB
statistics are, with some exceptions, lowest atm = 70. The exceptions may arise due
to the conditional heteroskedasticity nature of the dataset. Hence, it is appropriate to
evaluate at more than one-time point or to use an average value of LB statistics for a
number of time points.

When the data is generated according to FIMACH (d, 0), it is not appropriate to
useARFIMA,FIGARCHorGARCHmodels (Table 2). TheARFIMAmodel reduces
the serial correlation successfully, but it does not perform well like FIMACH. This
shows that there is need for using FIMACH instead of ARFIMA when we need to
take account of the heteroskedasticity property in the long-memory. FIGARCH and
GARCH take account of heteroskedasticity in the shortmemory.Hence, thesemodels
did not performwell. FGLS andCLS perform consistently well, and somewhat better
than QML. It turns out that QML is sensitive to start values. Estimating CLS at the
first stage and using the CLS estimates as the start value for QML estimator, we
estimate 2SQML which performs best out of these estimators.

We have also conducted similar Monte Carlo studies with innovation Uˆ2. The
results are quite similar. Average discrepancy (d̂–d) with the number of simulation
equals 100 for FIMACH time series, with innovation U2 respective of U; when the
data are generated with lag length 70 and d= 0.1 respective of d= 0.25 are presented
in Fig. 1.

30 50 70 90
U^2: d=0.10 0.0181 0.0066 0.0002 -0.0042
U^2: d=0.25 0.0472 0.0172 0.0005 -0.0109
U: d=0.10 0.0215 0.0077 0.0002 -0.0048
U: d=0.25 0.0569 0.0202 0.0006 -0.0123

-0.0200
-0.0100
0.0000
0.0100
0.0200
0.0300
0.0400
0.0500
0.0600
0.0700

DI
SC

RE
PE

N
CY

LAG LENGTH

Fig. 1 Average discrepancy (d̂ − d) with number of simulation equals 100 for FIMACH time
series with innovation Uˆ2 respective U when the data are generated with lag length 70 and d =
0.1 respective d = 0.25
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Empirical Data

The daily squared stock MSCI index return series over a period of 17 years from
1995 to 2011 for the Unites States and BRICS are applied in this paper.2 Each series
comprises 4435 observations. The descriptive statistics of the dataset are given in
Table 3. The mean squared stock index return for Brazil is about 1800, which is the
largest among the BRICS counties. The corresponding number for China is about 1,
which is the smallest among the BRICS countries. The corresponding mean for the
United States is 172. The skewness, kurtosis, and Jarque–Bera statistics indicate that
the data are not from the normal distribution. The squared returns for Brazil and India
and the corresponding autocorrelation functions are exhibited in Fig. 2 respective of
Fig. 3. The autocorrelation functions for all of the series decay very slowly, which
indicates a long-memory behavior in the squared return series.

Empirical Results

The empirical results of the squared stock index returns for the United States and
BRICS countries are presented in Table 4a and b. CLS, FGLS, and QML estimators
have been employed to evaluate the performance of the estimators. FIMACH (d, 0),
FIGARCH (0, d, 0), FIGARCH (1, d, 1), and GARCH (1,1) are estimated to find out
the most suitable model for the volatility return. It turns out that CLS, FGLS, and
QML estimators have performed equally well for the time series of the United States,
Brazil, Russia, and China in terms of reducing serial correlation. However, the QML
estimator outperforms CLS and FGLS for the time series of India and South Africa.
Hence, we conclude that QML is somewhat a better estimator among these. It is to
be noted that the performance of the QML estimator is highly sensitive to the start
values, and may turn out worse than that of FGLS or CLS if the start values are not
selected carefully. We suggest that the value for the autocorrelation at lag one may
be chosen as the start values for the fractional integration parameter. The variance
of residuals from the CLS estimator may be used as the start value for V

∧

t−1 of the
QML estimator which we call 2SQML. We also recommend using both QML and
CLS estimators in order to determine the best estimates in terms of reducing serial
correlation.

We find that the GARCH is not an appropriate model for the time series, as the
estimated parameters deviate substantially from the expected values. The FIMACH
(0, d) turns out to be the best in terms of eliminating serial correlations. This model
performs much better than that of FIGARCH (0, d, 0) and FIGARCH (1, d, 1) for
all the five time series. For Brazil, the Ljung-Box (LB) statistics for residuals for
FIMACH is about 1430, while the corresponding number for FIGARCH is about
16,882 (see Table 4a). The corresponding statistics for the United States are 698 for

2Data source: Datastream.
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Fig. 2 The daily squared stock index return series over the period of 17 years from 1995 to 2011
for Brazil and India
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Fig. 3 Autocorrelation function for Brazil and India

FIMACH and 7147 for FIGARCH (Table 4b). The Ljung-Box statistics for stan-
dardized residuals for FIGARCH are smaller than that of residuals, but these are
much larger than the corresponding statistics for FIMACH. Note that the Ljung-
Box statistics for standardized residuals and residuals are the same for all FIMACH
estimations. This may imply that the FIMACH model captures heteroskedasticity
properly.

Employing the proposed FIMACH (d, 0) model, we find that the squared stock
return index for each of the United States and BRICS countries have long-memory
properties. The persistence in terms of days varies among the countries. The effects
of macroeconomics news and rumors on stock market volatility for India persist
up to 35 days while the corresponding number of days for South Africa is 70. The
stock market in China reacts initially more than any other BRICS countries since the
fractional integration parameter (d) for China is 0.283, which is the largest among
the BRICS countries. The stock market in Russia reacts initially with least (d =
0.167) among those countries. The volatility intensity increases for all the seven
stock markets when the macroeconomic news or rumors break out, and the impact
remains between 35 and 70 days and fades away very slowly with time.
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Conclusion

This paper introduces a new class of long-memory model for the volatility of stock
returns. The model introduced is capable of taking account of heteroskedasticity in
long memory. The conditional first- and second-order moments are provided. The
CLS, FGLS, and QML are discussed and 2SQML estimator is proposed. In Monte
Carlo experiments, we find that it is not appropriate to use ARFIMA, FIGARCH, or
GARCH model if the data is generated according to FIMACH (d, 0). The ARFIMA
model reduces the serial correlation successfully, but it does not perform well like
FIMACH. From the empirical results, we establish that the squared returns of the
stock index for the BRICS countries and the United States have long-memory prop-
erties. However, the effects of macroeconomics news and rumors on stock return
volatility vary among the countries.We also find that the volatility intensity increases
for all the seven stock markets when the macroeconomic news or rumors break out,
and that the impact remains between 35 and 70 days and fades away very slowly with
time. CLS and FGLS estimators perform equally well in terms of residual properties,
while the QML estimator performs somewhat better among the three estimators. The
results of the simulation study indicate that 2SQML performs best among the five
estimators and hence 2SQML is suggested to be used when QML does not perform
well. Both in simulation and empirical studies, we find that the proposed model
FIMACH outperforms FIGARCH in terms of eliminating serial correlations.
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Using Subspace Methods to Model
Long-Memory Processes

Dietmar Bauer

Abstract Subspace methods have been shown to be remarkably robust procedures
providing consistent estimates of linear dynamical state-space systems for (multivari-
ate) time series in different situations including stationary and integrated processes
without the need for specifying the degree of persistence. Fractionally integrated
processes bridge the gap between short-memory processes corresponding to sta-
ble rational transfer functions and integrated processes such as unit root processes.
Therefore, it is of interest to investigate the robustness of subspace procedures for this
class of processes. In this paper, it is shown that a particular subspace method called
canonical variate analysis (CVA) that is closely related to long vector autoregressions
(VAR) provides consistent estimators of the transfer function corresponding to the
data generating process also for fractionally integrated processes of the VARFIMA
or FIVARMA type, if integer parameters such as the system order tend to infinity as
a suitable function of the sample size. The results are based on analogous statements
for the consistency of long VAR modelling. In a simulation study, it is demonstrated
that the model reduction implicit in CVA leads to accuracy gains for the subspace
methods in comparison to long VAR modelling.

Keywords Fractional integration · Subspace algorithms · Long VAR-models

Introduction

For the estimation of linear dynamic models of the VARMA (vector autoregressive
moving average) type for (multivariate) times series, the so-called subspace methods
have been shown to provide attractive features inmany different settings (for a review
see e.g. [1]): in the stationary case, a particular type of algorithm termed canonical
variate analysis (CVA) [9]1 provides estimators of rational transfer functions that
are asymptotically equivalent to quasi-maximum likelihood estimators. Hence in the

1This algorithm has also been called canonical correlation analysis (CCA) in the literature.
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case of Gaussian innovations, efficient estimators are obtained for known order of
the data generating system. Consistency for this class of estimators has also been
established for I (1) processes (consistency for an adaptation is shown in [2] and
consistency of CVA is claimed in [1]; the corresponding result has not yet been
published).

Besides the asymptotic properties, the main appeal of subspace methods lies in
their conceptual simplicity: they can be interpreted as applyingmodel reduction to an
initial high-order vector autoregression (in the following ‘longVAR’) estimate. Thus,
their properties are in many cases easy to understand, problems in the data such as
missing values (for example, due to eliminated outliers) can be handled easily and the
effects of demeaning and de-trending are inmost cases straightforward to understand.
Additionally, also numerically efficient implementations are heavily used.

As a final advantage within the algorithm, also information on the suitability of
the system order used for estimation is obtained from the reduced rank regression
step. In this step, the order can be estimated or tested for.

As CVA provides consistent transfer function estimates for stationary short-
memory processes as well as for integrated processes, it appears tempting to inves-
tigate the asymptotic properties of system estimators using CVA in the setting of
fractionally integrated processes.

In this respect, the main contribution of this paper is to establish consistency of
the transfer function estimators when the order of the system tends to infinity at an
appropriate rate and the data generating process is a fractionally integrated process
of the VARFIMA (vector autoregressive fractionally integrated moving average) or
FIVARMA (fractionally integrated vector autoregression moving average) type. The
order of the fractional integration heremaydiffer for each component of the process in
the range 0 ≤ d j < 0.5 or−0.5 < d j ≤ 0. Based on consistent estimation (including
upper bounds for the order of convergence) for the underlying transfer function, initial
guesses for subsequent maximum likelihood estimation can be obtained.

Due to the intimate relation between CVA and long VAR modelling, this paper is
largely based on and slightly extends the knowledge on the properties of long VAR
estimators in the setting of vector processes with different fractional integration
orders d j .

The organization of the paper is as follows: in the next section, a brief description
of the CVA algorithm is provided. The main results of the paper are contained in
section“Results for Fractionally Integrated Processes”. The finite sample properties
are investigated in a case study in section“Simulation Study”. Section“Conclusions”
concludes the paper. Proofs are delegated to the Appendix.

The CVA Subspace Algorithm

Subspace algorithms are used for the identification of linear dynamic systems for
(multivariate) time series (yt )t∈Z, yt ∈ R

s, in state-space representation:

xt+1 = Axt + Kεt , yt = Cxt + εt (1)
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where (xt )t∈Z, xt ∈ R
n denotes the unobserved state process and the matrices

A ∈ R
n×n,C ∈ R

s×nandK ∈ R
n×s . The process (εt )t∈Z denotes the s-dimensional

innovation process which is a white noise. In this paper, we consider (εt )t∈Z as an
independent identically distributed (iid) sequence.

The stability assumption |λmax (A)| < 1 (the largest modulus of all eigenvalues
of A is smaller than 1) implies that there exists a stationary solution to (1):

yt =
∞∑

i=0

kiεt−i = εt +
∞∑

i=1

CAi−1Kεt−i .

The impulse response coefficients ki = CAi−1K , i ∈ N corresponding to the system
(A,C, K ) are related to the rational transfer function

k(z) = Is +
∞∑

i=1

CAi−1Kzi = a−1(z)b(z)

for some polynomial matrices a(z) ∈ R
s×s, b(z) ∈ R

s×s building a VARMA repre-
sentation of the state-space system. Without restriction of generality, we will only
consider minimal state-space representations (cf. Chap. 2 of [6]).

The main idea for estimation using subspace methods is to note that the state
Eqs. (1) are linear in the system matrices for known state. Thus if an estimate of the
state is available, the system can be estimated using least squares. An estimate for
the state is obtained from the equation (see [1] for details):

Y+
t, f = O f xt + E f E

+
t, f = O fKpY−

t,p + O f Apxt−p + E f E
+
t, f = β1Y−

t,p + N+
t, f .

(2)
Here, Y+

t, f := [y′
t , y

′
t+1, . . . , y

′
t+ f −1]′, E+

t, f := [ε′
t , ε

′
t+1, . . . , ε

′
t+ f −1]′ for some inte-

ger f , Y−
t,p := [y′

t−1, . . . , y
′
t−p]′,Kp := [K , AK , A2K , . . . , Ap−1K ] for A := A −

KC and O f := [C ′, A′C ′, . . . , (A f −1)′C ′]′. Expressions for E f are given in [1].
In the following, we use 〈at , bt 〉 := T−1 ∑T− f +1

t=p+1 atb′
t for sequences (at )t∈N and

(bt )t∈N. Then CVA proceeds as follows:

1. Specify the integer values f, p.
2. Solve the rank restricted regression problem Y+

t, f = β1Y−
t,p + N+

t, f under the
rank constraint rank(β1) = n (to be specified in this step) to obtain an estimate

Ô f K̂p := [(Ξ̂ f )
−1Ûn Ŝn][V̂ ′

nΞ̂
−
p ] of β1 using the SVD (singular value decom-

position)

Ξ̂ f β̂1Ξ̂
−
p = Û ŜV̂ ′ = Ûn Ŝn V̂ ′

n + R̂n,

Ξ̂ f := 〈Y+
t, f ,Y

+
t, f 〉−1/2 , Ξ̂−

p := 〈Y−
t,p,Y

−
t,p〉1/2.

Here, β̂1 = 〈Y+
t, f ,Y

−
t,p〉〈Y−

t,p,Y
−
t,p〉−1, Ûn ∈ R

f s×n denotes the matrix whose
columns are the left singular vectors to the singular values which are the
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diagonal entries in2 Ŝn := diag(σ̂1, σ̂2, . . . , σ̂n), σ̂1 ≥ · · · ≥ σ̂n > σ̂n+1 > 0 and
V̂n ∈ R

ps×n contains the corresponding right singular vectors as its columns. R̂n

denotes the approximation error.
3. Use the estimated state x̂t := K̂pY−

t,p, t = p + 1, . . . , T + 1 to obtain estimates

( Â, Ĉ, K̂ ) of the system matrices from regression in the system equations.

The choice of f and p influences the asymptotic properties of the estimators. For
fractionally integrated processes, we will let f = p as well as the order n tend to
infinity at a rate to be defined later on.

Note that for f = p, n = sp typically the then square matrix K̂p will be regular
and hence the estimated state equals Y−

t,p subject to a basis change. It then follows that
the estimated transfer function coincides with the VAR(p) estimate. The CVA esti-
mator for n < sp then can be interpreted as a particular method of model reduction
starting from the estimated long VAR model, cf. [4].

Results for Fractionally Integrated Processes

In this paper, we consider fractionally integrated processes of the VARFIMA or
FIVARMA type (cf. e.g. [13]):

Definition 3.1 The process (yt )t∈Z is called a vector autoregressive fractionally
integrated moving average (VARFIMA) process if it is obtained as the stationary
solution to the vector difference equation:

a(L)yt = b(L)et , et = D(L)−1εt

where (a(z), b(z)) is a stable and invertible VARMA system of left co-prime
polynomial matrices a(z) = Is + a1z + · · · + apz p, b(z) = Is + b1z + · · · + bqzq ,
D(L) = diag[(1 − L)d j ] j=1,...,s is a diagonal matrix of fractionally integrating fil-
ters where |d j | < 0.5,max j=1,...,s |d j | > 0 and where (εt )t∈Z is an iid white noise
sequence. L denotes the backward shift operator.

Thus a VARFIMA process applies a VARMA filter to a fractionally integrated
noise sequence. The FIVARMA model reverses the order by filtering a VARMA
process with a fractionally integrating filter:

Definition 3.2 The process (yt )t∈Z is called a fractionally integrated vector autore-
gressive moving average (FIVARMA) process if it is obtained as the stationary solu-
tion to the vector difference equation

yt = D(L)−1ut , a(L)ut = b(L)εt ,

2In the unlikely case of identically estimated singular values σ̂n = σ̂n+1, the basis in the corre-
sponding spaces is chosen randomly.
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where (a(z), b(z)) is a stable and invertible VARMA system of left co-prime
polynomial matrices a(z) = Is + a1z + · · · + apz p, b(z) = Is + b1z + · · · + bqzq ,
D(L) = diag[(1 − L)d j ] j=1,...,s is a diagonal matrix of fractionally integrating fil-
ters where |d j | < 0.5,max j=1,...,s |d j | > 0 and where (εt )t∈Z is an iid white noise
sequence. L denotes the backward shift operator.

In the scalar case s = 1, the twodefinitions are identical as in this case the operators
D(z) and a(z)−1b(z) commute, whereas in the vector case they are different if not all
d j are identical (compare [13]). Note also that |d j | < 0.5 contains the case that some
(but not all) d j are zero. Therefore, the processes may contain a mixture of long-
and short-memory processes. We will always assume that there exists at least one
integration order d j 	= 0 to rule out the case of exclusively short-memory processes,
for which the properties of CVA are well known. Hosking [7] derived a number of
common properties:

Theorem 3.1 Let (yt )t∈Z be a stationary FIVARMA or VARFIMA process with frac-
tional integration orders d1, ..., ds. Then

(i) yt = ∑∞
j=0 k jεt− j where ‖k j‖ ≤ Mk jd+−1 where d+ = max(d1, ..., ds; d j 	=

0) < 0.5.
(ii) yt = εt + ∑∞

j=1 φ j yt− j where ‖φ j‖ ≤ Mφ j−1−d− where d− = min(d1, ..., ds;
d j 	= 0) > −0.5.

The theorem shows that the two orders d− and d+ determine the rate of decay
of the coefficients in the AR(∞) and MA(∞) representations, both having square
summable coefficients.

The processes included in the above setup do not allow for a state-space repre-
sentation with a finite state dimension. It has been shown by [3] that fractionally
integrated processes correspond to infinite state dimension while at the same time
approximationswith finite state dimension exist in the sense that by allowing the state
dimension to grow, a convergent sequence of transfer functions can be obtained. It
is the main contribution of this paper to show that this holds for transfer functions
estimated using CVA (for the proof see section“Proof of Theorem 3.2”):

Theorem 3.2 Let the process (yt )t∈Z be a VARFIMA or FIVARMA process gen-
erated according to Definition 3.1 or Definition 3.2 with d− and d+ defined in
Theorem 3.1 where the white noise process (εt )t∈Z is independent identically dis-
tributed with zero mean, non-singular variance � and finite fourth moments. Let
( Ân, Ĉn, K̂n) denote theCVA estimates using f = p = p(T ) → ∞, choosing a sys-
tem order n. Further, let φ(z) = Is − ∑∞

j=1 φ j z j = k−1(z), k̂n(z) = Is + zĈn(In −
Ânz)−1 K̂n, φ̂n(z) = k̂−1

n (z).
(I) If 0 < d− ≤ d+ < 0.5 and if d− > 2d+ − 0.5 then for p = p(T ) → ∞ such

that pRT (d+) → 0 (where RT (d) := (T/ log T )d−1/2), then there exists a choice
n = n(T ) such that

‖φ̂n(z) − φ(z)‖2 = o(pRT (d+)) + O(p2d+−d−−0.5) = o(1)
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where ‖ f ‖22 = ∫ π

−π ‖ f (eiω)‖2dω denotes the two norm in the space of functions
defined on the unit circle.

(II) If −0.5 < d− ≤ d+ < 0 and 2d+ < 0.5 + 3d− and if p = p(T ) → ∞ such
that p = o((T/ log T )1/(2−8d−)), then there exists a choice n = n(T ) such that

‖φ̂n(z) − φ(z)‖2 = o((log T/T )1/2 p1−4d−) + O(p2d+−3d−−0.5) = o(1).

The theorem allows for different d− and d+, however, both must have the same
sign. Additional short-memory components of the VARMA type are allowed for
(that is, some of the d j but not all can be zero; of course the case that all d j are
zero is well covered in the literature). The proof of the theorem extends the current
knowledge on long VAR approximation in the long-memory setting as it implies that
for appropriate increase of p as a function of the sample size autoregressions can
be used in order to approximate the data generating process in the FIVARMA and
VARFIMA case for different values of d j .

Note that the results also imply consistency for the transfer function k(z):

‖k̂n(z) − k(z)‖2 ≤ ‖φ̂n(z)
−1‖2‖φ(z)−1‖2‖φ(z) − φ̂n(z)‖2.

Thus, convergence for k̂n(z) is of the same order.
Investigating the order of convergence in more detail, consider the case d− = d+

and let p be chosen as p = T ε. Then in both cases, the total order of convergence
consists of two terms where the first term is due to the sample error and becomes
small for large T and small p while the second term is due to the approximation error
and hence is small for large p. Omitting the term due to log T , we obtain a rate ε(d)

compromising between the two terms such that both terms achieve the order T r(d).
Figure1 provides the corresponding plot. It follows that around d ≈ 0 the ‘optimal’
rate equals 1/3 which decreases for positive and negatives values. It reaches 0 for
d = 0.5 and 1/6 at d = −0.5. With respect to the rate r(d), we obtain r(0) = −1/6

Fig. 1 ‘Optimal’ rate ε(d)

and the achieved
convergence rate r(d) as a
function of d = d− = d+
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which decreases to r(±0.5) = 0 indicating that at both boundaries convergence is
extremely slow. Note that the graph is not symmetric and not differentiable at 0, both
for ε(d) and r(d).

Simulation Study

In this section, the consistency result of the last section is complemented by a small
case study on the finite sample properties of the estimators compared to alternative
estimators. To this end, 1000 trajectories of univariateARFIMAmodels are simulated
for 1100 time points where the first 100 are discarded. The AR and the MA polyno-
mial are generated from 4 randomly drawn (for each replication) real poles (inverses
are uniformly [−0.5, 0.5] distributed) and zeros (inverses are uniformly [−0.9, 0.9]
distributed). The corresponding ARMAprocesses are filtered using (1 − z)−d . Three
methods of estimation are tested:

– non-parametric estimates of the parameter d using theWhittle likelihood followed
by CVA applied to the pre-filtered series

– CVA estimates for the original series using f = p = 2 p̂AIC and selecting the order
n according to the criterion SVC.

– long AR approximation with lag order chosen using AIC as p̂AIC .

Two resulting plots are provided in Fig. 2. The main message from the plot is
that the CVA outperforms the long AR approximation in terms of accuracy, both for
positive and negative d values and is comparable to the Whittle estimation for most
of the frequencies.

d = 0.4 d = −0.25

Fig. 2 Mean absolute error for true transfer function estimates for the three estimators
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Fig. 3 Mean of norm of
transfer function estimation
errors for the four sample
sizes T = 100, 500, 1000
and T = 2000

Second, also a bivariate process where the first component is a FIVARMA with
d = 0.4 and the second is a FIVARMA with d = 0.1 is investigated. For a total
of 1000 replications of time series of length T = 100, 500, 1000 and T = 2000,
ARMA systems with four poles uniformly in [−0.5, 0.5] and four zeros uniformly
in [−0.9, 0.9] are drawn. Then estimation is performed with the long VAR approach
and the CVA approach. Figure3 provides the mean of the one norm of the difference
between the estimates and the true transfer function as a function of the frequency. It
can be seen that both procedures show a decreasing error for increasing sample size.
Additionally, CVA outperforms long AR approximation for most frequencies.

Conclusions

This paper shows that (under appropriate assumptions on the fractional integration
orders) the transfer function corresponding to a VARFIMA or FIVARMA process
can be estimated consistently using the CVA approach when the maximal lag order
p tends to infinity as a function of the sample size. This adds fractionally integrated
processes to the list of settings in which CVA provides useful outcomes.

Preliminary simulations verify that the model reduction employed in CVA is ben-
eficial in terms of estimation accuracy in comparison to using the full-order long
VAR approximation. The order selection criterion used in the paper is based on a
simple heuristic and hence, there appears to be potential for further improvement.
This is left for future research.

Acknowledgements The author is grateful to Philipp Sibbertsen and Christian Leschinski for
discussions and comments on the contents of the paper.
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Appendix

Auxiliary Lemmas

Lemma A.1 Let yt = ∑∞
j=0 k jεt− j where (εt )t∈Z is an iid sequence of random

variables having zero mean and finite fourth moments. Let γ̂ j = 1
T

∑T
t=1+ j (yt −

ȳ)(yt− j − ȳ)′ where ȳ = 1
T

∑T
t=1 yt , γ̃ j = 1

T

∑T
t=1 yt+ j y′

t − ȳ ȳ′ and γ j = Eyt y′
t− j .

Assume that k j = O( j d−1) where −0.5 < d < 0.5. Then,
(i) ‖γ j‖ ≤ κ j2d−1 f or j > 0.
(ii) Eȳ ȳ′ = O(T 2d−1) and E‖ȳ‖4 = O(T 4d−2).
(iii) E‖γ̂ j − γ̃ j‖ ≤ τ j/T where 0 < τ < ∞ does not depend on j .
(iv) γ̂ j − γ j = OP( j/T ) + (γ̃ j − γ j ) where Evec(γ̃ j − γ j )vec(γ̃k − γk)

′ =
O(QT (d)2) with

QT (d) =
⎧
⎨

⎩

T 2d−1 , for 0.25 < d < 0.5
T−1/2 log T , d = 0.25,

T−1/2 , −0.5 < d < 0.25.

(v) Let RT (d) := (T/ log T )d−1/2. For HT RT (d̃) → 0 for d̃ = max(0, d), we have

max
0≤ j≤HT

‖γ̂ j − γ j‖ = O(RT (d̃)), max
0≤ j≤HT

‖γ̃ j − γ j‖ = O(RT (d̃)).

Proof The proof uses the results of Theorems 1, 3 and 5 of [8] and Theorems 1 and
2 of [12].

(i) Using � = Eεtε
′
t , we have for some constant 0 < κ < ∞ not depending on j

‖γ j‖ = ‖
∞∑

i=0

ki�k ′
i+ j‖ ≤ μ

∞∑

i=0

‖ki‖‖ki+ j‖ ≤ μμ̄2
∞∑

i=0

i d−1(i + j)d−1 ≤ κ j2d−1

since ‖�‖ < μ, ‖ki‖ ≤ μ̄i d−1 for some μ̄ < ∞, i < i + j and the techniques in the
proof of Lemma 3.2 of [3].

(ii) The first part follows directly from (i) in combination with [8, Theorem 1]
dealing with each coordinate separately.

Below, we deal without restriction of generality with scalar processes. The
vector case is merely notationally more complex. With respect to the second
part, note thatEyt ys yr y0 = γt−sγr + γt−rγs + γtγs−r + κ4(t, s, r) for κ4(t, s, r) :=∑∞

a=−∞ ka+t ka+ska+r ka(Eε4t − (Eε2t )
2) where for notational simplicity ka = 0, a <

0 is used. Next,
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Eȳ4 = 1

T 4

T∑

t,s,r,u=1

Eyt ys yr yu = 1

T 4

T∑

t,s,r,u=1

γt−sγr−u + γt−rγs−u + γt−uγs−r

+κ4(t − u, s − u, r − u) (3)

is the sum of four terms where the first three are identical:

T−4
T∑

t,s,r,u=1

γt−sγr−u =
(
T−2

T∑

t,s=1

γt−s

)2

= (Eȳ2)2 = O(T 4d−2).

The last term equals the fourth term of (A.2) in [8]. Using Lemma 3.2. (i) of [3] in
the fourth row of the equation on p. 277 of [8], we obtain

T−4
T∑

t,s,r,u=1

κ4(t − u, s − u, r − u) = O(T 2d−2)

for 0.25 ≤ d < 0.5. By dominated convergence, we have that this term is O(T−1)

for −0.5 < d < 0.25. Hence, we obtain the bound Eȳ4 = O(T 4d−2) for d > 0.25
and O(T−1) else.

(iii) For j > 0, we obtain

γ̂ j = 1

T

T∑

t=1+ j

(yt − ȳ)(yt− j − ȳ)′ = 1

T

T∑

t=1+ j

(yt y
′
t− j − ȳ y′

t− j − yt ȳ
′ + ȳ ȳ′)

= 1

T

T∑

t=1+ j

yt y
′
t− j − ȳ(

1

T

T∑

t=1+ j

yt− j )
′ − (

1

T

T∑

t=1+ j

yt )ȳ
′ + ȳ ȳ′ T − j

T

= 1

T

T∑

t=1

yt+ j y
′
t − 1

T

T∑

t=T− j+1

yt+ j y
′
t − ȳ(ȳ − 1

T

T∑

t=T− j+1

yt )
′ − (ȳ − 1

T

j∑

t=1

yt )ȳ
′ + ȳ ȳ′ T − j

T

= γ̃ j − 1

T

T∑

t=T− j+1

yt+ j y
′
t + 1

T

T∑

t=T− j+1

ȳ y′
t + 1

T

j∑

t=1

yt ȳ
′ − j

T
ȳ ȳ′.

(iv) From (iii), it follows that γ̂ j = γ̃ j + OP( j/T ). The rest follows from [8].
(v) Noting that Theorems 1 and 2 of [12] only use the variance bounds derived

above, uniformity of a.s. convergence follows.

Lemma A.2 Let (yt )t∈Z be as in Lemma A.1. Define k(z) := ∑∞
j=0 k j z j and the

spectrum f (ω) = 1
2π k(e

iω)�k(eiω)∗ where � := Eεtε
′
t .

(i) Assume that there exist constants 0 < a, b < ∞ such that a Is ≤ f (ω) ≤
bIs f (ω)where f (ω) = |1 − eiω|−2d for d ≥ 0. Then there exists constants 0 < C1 <

C2 < ∞ such that C1 Ips ≤ EY−
t,p(Y

−
t,p)

′ ≤ C2 Ips p2d .
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(ii) If there exist constants 0 < a, b < ∞ such that a Is f (ω) ≤ f (ω) ≤ bIs where
f (ω) = |1 − eiω|−2d for d < 0, then there exist constants 0 < C1 < C2 < ∞ such
that C1 Ips p2d ≤ EY−

t,p(Y
−
t,p)

′ ≤ C2.

Proof The proof is a straightforward generalization of the univariate result in The-
orem 2 of [11]; compare also Lemma 2 in [12]. Only (i) is proved, the remaining
statements follow analogously. Let Γ −

p = EY−
t,p(Y

−
t,p)

′. Note that the definition of f
and f coincide with the definition given in (9), (10), p. 96 of [11].

The smallest eigenvalue of Γ −
p equals the minimum of x ′Γ −

p x for x ′x = 1 and
the largest corresponds to the maximum. Since (yt )t∈Z is assumed to be stationary
with spectral density f (z) := k(z)�k(z)∗/(2π), it follows that

x ′Γ −
p x =

∫ π

−π

(

p∑

j=1

x j e
i jω)∗ f (eiω)(

p∑

j=1

x j e
i jω)dω

where x ′ = [x ′
1, . . . , x

′
p], x j ∈ R

s . If d > 0 then

∫ π

−π
(

p∑

j=1

x j e
i jω)∗ f (eiω)(

p∑

j=1

x j e
i jω)dω ≥

∫ π

−π
(

p∑

j=1

x j e
i jω)∗(

p∑

j=1

x j e
i jω)dωa ≥ 2πa.

Also,

∫ π

−π

(

p∑

j=1

x j e
i jω)∗ f (eiω)(

p∑

j=1

x j e
i jω)dω ≤ b

∫ π

−π

‖
p∑

j=1

x j e
i jω‖2 f (ω)dω.

It follows that the function h(ω) := ‖∑p
j=1 x j ei jω‖2 is in the set Pp (p. 97 of [11]).

Hence the result holds. �

Lemma A.3 Let (yt )t∈Z be as in Theorem 3.2. Then,

– For 0.25 < d+ < 0.5, we have ‖EY+
t, f (Y

−
t,p)

′‖Fr = O(( f + p)2d+), ‖EY−
t,p(Y

−
t,p)

′

‖Fr = O(p2d+).
– For d+ = 0.25, we have ‖EY+

t, f (Y
−
t,p)

′‖Fr = O(( f + p)1/2), ‖EY−
t,p(Y

−
t,p)

′‖Fr =
O(

√
p log p).

– For 0 ≤ d+ < 0.25, we have ‖EY+
t, f (Y

−
t,p)

′‖Fr = O(( f + p)2d+), ‖EY−
t,p(Y

−
t,p)

′
‖Fr = O(

√
p).

– For d+ < 0, we have ‖EY+
t, f (Y

−
t,p)

′‖Fr = O(1), ‖EY−
t,p(Y

−
t,p)

′‖Fr = O(
√
p).

The lemma is an easy consequence of ‖γl‖ ≤ μl2d+−1 as shown in Lemma A.1 in
combination with

∑m
j=1 jβ−1 = O(mβ) for β > 0.

Lemma A.4 Let the assumptions of Theorem 3.2 hold. Let d̃− = min(d−, 0), d̃+ =
max(d+, 0) and assume that p2−4d̃− RT (d̃+)2 → 0 and pRT (d̃+) → 0. Then
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‖〈Y+
t, f ,Y

−
t,p〉 − EY+

t, f (Y
−
t,p)

′‖Fr = O
(√

f p
(
RT (d̃+)

))
,

‖〈Y−
t,p,Y

−
t,p〉 − Γ −

p ‖Fr = O(pRT (d̃+)),

‖〈Y−
t,p,Y

−
t,p〉−1 − (Γ −

p )−1‖2 = O(p1−4d̃− RT (d̃+))

Proof All three parts follow almost immediately from Lemma A.1 (v). With respect
to the third statement using [10], p. 397, l. 11, we obtain

‖〈Y−
t,p,Y

−
t,p〉−1 − (Γ −

p )−1‖2 = F2Z p,T /(1 − FZ p,T )

where F := ‖(Γ −
p )−1‖2, Z p,T := ‖〈Y−

t,p,Y
−
t,p〉−1 − (Γ −

p )−1‖2/F(‖〈Y−
t,p,Y

−
t,p〉−1 −

(Γ −
p )−1‖2 + F) ≤ ‖〈Y−

t,p,Y
−
t,p〉 − Γ −

p ‖2. Then the upper bound on p implies that

Z p,T = o(1). For d− > 0 and since d̃− = 0, we have F < ∞ and therefore the result
follows. For d− < 0, we have F = O(p−2d−) and therefore the upper bound on p
has to ascertain that FZ p,T → 0 where Z p,T = O(pRT (d̃+)). �

Lemma A.5 Let the assumptions of Theorem 3.2 hold and let φ j (p) denote the
coefficients of the long VAR approximation in (4). Then

∑p
j=1 ‖φ j − φ j (p)‖2 =

O(p4d+−2d−−1) if d+ ≥ d− ≥ 0which tends to zero if d− > 2d+ − 0.5. If d+ = d− =
d, this always holds and the order equals O(p2d−1).

If d− ≤ d+ ≤ 0 then
∑p

j=1 ‖φ j − φ j (p)‖2 = O(p4d+−6d−−1) which tends to zero
if 2d+ < 0.5 + 3d−. For 0 ≥ d+ = d− > −0.5, this always holds and the rate equals
O(p−2d−1) in this case.

Proof This result has already been obtained in the scalar case (where automatically
d+ = d−) by [5]. Note that using f = 1, we obtain

0 = EY+
t,1(Y

−
t,p)

′ − EY+
t,1(Y

−
t,p)

′ = β1,pΓ
−
p − [Is , 0]βΓ −∞[Ips , 0]′ = [

Φp − [Φ]p
]
Γ −
p − Φ−

p Γ̃ −
2,p

whereΦ−
p denotes thematrixΦ where the first p block columns are omitted. Further,

Γ̃ −
2,p = EY−

t−p,∞(Y−
t,p)

′. Therefore it is sufficient to compute the Frobenius norm of

Φ−
p Γ̃ −

2,p which contains as a typical element
∑∞

i=1 φi+pEyt−p−i y′
t− j , j = 1, . . . , p.

Using ‖φl‖ ≤ Mll−1−d− , ‖γl‖ ≤ Mgl2d+−1, we can bound the norm of this entry by
MlMg

∑∞
i=1(i + p)−1−d−(p + i − j)2d+−1. For d− > 0, this is of order O(p−d−(p −

j)2d+−1). Summing the squares over j = 1, . . . , p shows that the squared Frobenius
norm ofΦ−

p Γ̃ −
2,p in this case is of order O(p4d+−2d−−1). Since the smallest eigenvalue

of Γ −
p is bounded away from zero for d− > 0, the result follows. The result for

d+ = d− is obvious.
For d+ < 0, the norm of the typical entry is of order O(p−1−d−(p − j)2d+)

and therefore the squared Frobenius norm of Φ−
p Γ̃ −

2,p also in this case is of order
O(p4d+−2d−−1). Here the smallest eigenvalue of Γ −

p tends to zero as p2d− and
hence the inverse adds a factor p−2d− to the Frobenius norm adding up to order
O(p−1+4d+−6d−) = o(1) if −0.5 + 2d+ − 3d− < 0. �
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Proof of Theorem 3.2

The main insight into the algorithm lies in the fact that for n = ps the CVA estimate
( Â, Ĉ, K̂ ) equals the long VAR approximation of (yt )t∈Z using lag order p [4], the
properties of which follow along the lines of [12]:

Lemma A.6 Let (yt )t∈Z be as in Theorem 3.2 denoting

yt =
p∑

i=1

φi (p)yt−i + εt (p). (4)

Further, let the assumptions on d−, d+ be as in Theorem 3.2. Then the OLS
estimates of the coefficients in this long VAR approximation fulfil uniformly in

1 ≤ p ≤ HT where HT is such that H 2−4d̃−
T RT (d̃+)2 → 0, RT (d̃+)PT (d−, HT ) → 0

where PT (d, p) = p for d ≥ 0 and PT (d, p) = p1−4d for d < 0

max
1≤p≤HT

⎛

⎝
p∑

j=1

‖φ̂ j (p) − φ j (p)‖2/PT (d−, p)2

⎞

⎠
1/2

= O(RT (d̃+)).

Proof The proof follows the arguments of [12]. The long AR approximation can
be written as yt = β1,pY−

t,p + εt (p). It follows that β̂1,p = 〈yt ,Y−
t,p〉〈Y−

t,p,Y
−
t,p〉−1 =[

φ̂1(p) φ̂2(p) . . . φ̂p(p)
]
. Let

β1,p = Eyt (Y
−
t,p)

′[EY−
t,p(Y

−
t,p)

′]−1 = H1,p(Γ
−
p )−1 = [

φ1(p) φ2(p) . . . φp(p)
]
.

Then Lemma A.5 implies that ‖β1,p − [Φ]p‖Fr = o(1) where supp ‖[Φ]p‖Fr < ∞
due to the square integrability of the AR coefficients. This implies supp ‖β1,p‖Fr <

∞. Since ‖γl‖Fr ≤ κl2d+−1, it follows that supp ‖H1,p‖Fr < ∞ for d+ < 0.25.

Further, note that ‖(Γ̂ −
p )−1‖2 ≤ ‖(Γ̂ −

p )−1 − (Γ −
p )−1‖2 + ‖(Γ −

p )−1‖2 = o(1) +
‖(Γ −

p )−1‖2. Then β̂1,p − β1,p =

Ĥ1,p(Γ̂
−
p )−1 − H1,p(Γ

−
p )−1 = (Ĥ1,p − H1,p)(Γ̂

−
p )−1 + H1,p[(Γ̂ −

p )−1 − (Γ −
p )−1]

= (Ĥ1,p − H1,p)(Γ̂
−
p )−1 − β1,p[Γ̂ −

p − Γ −
p ](Γ̂ −

p )−1.

From these equations (for d+ > 0, we can use the third equation, else the second
can be used) in combinationwithLemmaA.4 (where the normbounds hold uniformly
in the lag length), the result follows. �

Consequently, p → ∞ at the rate given in the theorem implies that for φ̂(z) =∑p
j=0 φ̂ j z j and φp(z) = ∑p

j=0 φ j (p)z j it follows that ‖φ̂(z) − φp(z)‖2 → 0.
Furthermore, the norm bound implies that
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∞∑

j=p+1

‖φ j‖2 ≤ Mφ

∞∑

j=p+1

j−2−2d− = O(p−1−2d−)

and hence the Fourier series
∑p

j=0 φ j z j converges in L2 to φ(z), that is, ‖φp(z) −
φ(z)‖2 → 0 and thus ‖φ̂(z) − φ(z)‖2 → 0.

These two lemmas show that subspace methods with the maximal choice of the
order n = ps deliver consistent estimates of the inverse transfer function φ(z) and
thus also of the transfer function.

Finally, some facts on the approximation error for n < ps are provided.

Lemma A.7 Let ( Â, Ĉ, K̂ ) denote a system with corresponding state x̂t such that
〈x̂t , x̂t 〉 = IN and innovation noise variance �̂. Then consider the partitioning of the
system as (where Â11 ∈ R

n×n, K̂1 ∈ R
n×s, Ĉ1 ∈ R

s×n)

Â =
[
Â11 Â12

Â21 Â22

]
, K̂ =

[
K̂1

K̂2

]
, Ĉ = [

Ĉ1 Ĉ2

]
.

(i) The system ( Ân, Ĉn, K̂n) obtained from using x̂t,n = [In, 0]x̂t in the regressions
in the last step of the CVA algorithm fulfils

Ân = Â11, ‖K̂n − K̂1‖Fr = O(‖Ĉ2‖Fr (
√
n‖Ĉ2‖Fr + ‖ Â1,2‖Fr )), Ĉn = Ĉ1.

(ii)‖Ĉ:, j‖2 = O
(
pd̃+ σ̂ j

)
where Ĉ:, j denotes the j th column of Ĉ.

(iii) Furthermore, let ‖ f (z)‖∞ = supω∈[0,2π] ‖ f (eiω)‖2 and use the notation k̂(z) =
Is + zĈ(I − z Â)−1 K̂ , k̂n1(z) = Is + zĈn(I − z Ân)

−1 K̂1. Then ‖k̂(z) − k̂n1(z)‖∞

≤ ‖Ĉ2 + Ĉ1(z In − Â11)
−1 Â12‖∞‖(z I − Â22 − Â21(z In − Â11)

−1 Â12)
−1(K̂2 + Â21(z In − Â11)

−1 K̂1)‖∞.

(iv) Consequently, using k̂n(z) = Is + zĈn(I − z Ân)
−1 K̂n, we obtain

‖k̂(z) − k̂n(z)‖∞ ≤ ‖k̂(z) − k̂n1(z)‖∞ + ‖Ĉn(I − z Ân)
−1‖∞‖K̂n − K̂1‖.

Proof (i) Reference [4] shows that Cn = C1,�n = � + C2C ′
2, An = A11, Kn =

(M1 − A11C ′
1)�

−1
n where M1 = K1� + [In, 0]AC ′. Thus ‖�n − �‖ = ‖C2‖2.

Therefore

Kn�n − K1� = A1,2C
′
2 ⇒ (Kn − K1)�n = A1,2C

′
2 − K1(�n − �).

Since ‖�−1‖ ≤ M, ‖K1‖ ≤ √
n, ‖A1,2‖ ≤ √

n and �n ≥ �, it thus follows that

‖Kn − K1‖ = ‖[K1(� − �n) + A1,2C
′
2]�−1

n ‖ ≤ ‖K1C2‖‖�−1‖‖C2‖ + ‖C2‖‖A1,2‖‖�−1‖
= ‖�−1‖‖C2‖(‖K1C2‖ + ‖A1,2‖) ≤ ‖�−1‖‖C2‖(‖C2‖√n + √

n).
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It is straightforward to show that this also holds for the estimates as only orthog-
onality relations are used here.

(ii) Consider the estimation of the state as x̂t = V̂ ′(Γ̂ −
p )−1/2Y−

t,p which implies

that 〈x̂t , x̂t 〉 = Ips . According to Lemma A.4 ‖Γ̂ +
f − Γ +

f ‖Fr → 0 if pRT (d̃+) → 0.

Then ‖Γ̂ +
f ‖2 ≤ ‖Γ̂ +

f − Γ +
f ‖2 + ‖Γ +

f ‖2 = O(p2d̃+). Furthermore,

Ĉ2 = β̂ f,p V̂2 = [Is, 0]( ˆΓ +
f )1/2Û �̂V̂ ′V̂ [0, I ]′ = [Is, 0]( ˆΓ +

f )1/2Û2�̂2,

showing that the two norm of the j th column of Ĉ2 is of order O(pd̃+ σ̂n+ j ).
(iii) and (iv) follow from straightforward computations. �
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Robust Forecasting of Multiple Yield
Curves

Christoph Gerhart, Eva Lütkebohmert and Marc Weber

Abstract In this paper, we develop robust methods for forecasting term structures
of interest rates. We implement a deep long short-term memory (LSTM) neural
network based on keras. Our input data is based on the bootstrapped bid, mid and
ask multiple (tenor-dependent) yield curves reflecting different risk categories over
the period 2005–2018. We use the bid-ask spreads as an additional input factor
modelling the market depth. Since there is only a limited amount of data available,
there is a lack of a sufficiently large training data set. We cope with that difficulty
by generating data based on fitted time series models in order to enlarge the training
data. Furthermore, we apply support vector machines to predict trends in the term
structures. For this approach, we include different market variables to investigate the
relationship of these quantities to future yields.

Keywords Forecasting of yield curves · Multiple term structures · Machine
learning · Neural networks · Support vector machines

Introduction

The term structure of interest rates (or yield curve), that describes the interest rate
as a function of maturity, represents an important tool for derivative pricing, risk
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Fig. 1 EURIBOR-OIS spreads. The figure shows the spread between 3-month EURIBOR rates
and OIS rates (red curve), respectively, between 6-month EURIBOR and OIS rates (blue curve)
over the time period 2005–2018

management and monetary policy, and hence, has been intensively studied in the
literature. In the last years, following the financial crisis 2007/2008, however, there
has been a major change in interest rate markets. While interest rates of the same
maturity showed certain consistencies before the crisis, giving rise to a single term
structure, this no longer holds in post-crisis markets. Instead, e.g., rates on swaps
with the same maturity can differ quite substantially depending on the tenor of the
underlying reference rate. A famous example is the spread between interbank rates
of a specific tenor (say 3months) and the corresponding rates on Overnight Indexed
Swaps (OIS) with the same maturity. As can be seen in Fig. 1, the spread was almost
negligible before the crisis but then started to diverge substantially, especially after
the default of Lehman Brothers. In particular, these spreads also stayed at high levels
after the crisis.

Thus, in the post-crisis setting the term structure of interest rates becomes tenor-
dependent reflecting different risk categories such as, for instance, different levels of
credit and liquidity risk. Figure2 shows such multiple yield curves at different points
in time. We want to point out here that yield curves of different tenors are not just
parallel shifts of the discount (or basic) curve since spreads over the discount curve
can be quite different at the short- and at the long-end of the term structure (see, e.g.,
panel (b) in Fig. 2) and are fluctuating over time. Moreover, the figure indicates that
yield curves are monotonically increasing in tenor length.

In this paper, we take these new characteristics of interest rate markets into
account and develop robust methods for forecasting of multiple (tenor-dependent)
yield curves based on neural networks. Our input data consists of bootstrapped bid,
mid and ask yields over the time period 2005–2018. More specifically, we consider
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Fig. 2 Tenor-dependent term structures of interest rates at different points in time

the time series of historical discount, three-month and six-month yield curves for
maturities up to ten years (as shown for specific dates in Fig. 2). We implement a
deep long short-term memory (LSTM) neutral network based on keras to predict
future yields. Our results show extremely accurate predictions of 1-day, 1-month,
3-month and 6-month ahead yields across all maturities and curves. In particular, our
results point out the importance of cross-tenor dependencies for predicting future
yields, a feature that is naturally missing in existing single-curve approaches. More-
over, we show that using bid-ask spreads as additional inputs, reflecting a measure
of market depth, increases the accuracy of yield curve predictions. Additionally, we
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apply support vector machines (SVMs) to predict trends in the term structure over
a time horizon of up to 15weeks. Here, our results for the SVM classifier show a
very accurate and extremely robust performance compared to various classification
benchmark methods.

Standard forecasting methods based, e.g., on time series models insinuate some
specific distributional behavior and set the corresponding parameters during the train-
ing process. In contrast to such an approach, the methodology suggested in this paper
can be considered as much more robust as it does not impose any distributional
assumptions. Moreover, if a major change in the evolution of the time series occurs,
e.g. a level shift due to some policy changes, standard models usually fail to adapt
quickly to the new environment. Our approach, however, adapts quickly to such sce-
narios. In this sense, we consider our neural network based forecasting method as a
very robust and highly efficient approach to forecast future yields.

The paper is structured as follows. In section“Data” we describe our data set.
The forecasting methodology and results based on neural networks is discussed
in section“Forecasting of Multiple Yield Curves via Neural Networks”. Here, we
also elaborate on how we dealt with the problem of limited available data. In
section“Trend Forecasting via Support Vector Machines” we discuss trend fore-
casting based on support vector machines. The final section concludes.

Data

Ourdata set consists of daily bootstrappedmultiple yield curves over the period2005–
2018. More specifically, we consider historical discount, three-month and six-month
curves for maturities up to ten years. The discount curves have been bootstrapped
from market data on overnight indexed swap (OIS) rates for maturities ranging from
one week to 10years.1 For the construction of the risky (tenor-dependent) yield
curves, market quotes of deposit rates, rates from forward rate agreements (FRA)
and swap rates were used. More explicitly, the short-end is constructed from deposit
rates for contracts where the tenor agrees with the maturity, i.e., 3month deposits
for the 3month curve etc. Besides, FRAs for periods starting in one month ending
in 4months are used for the construction of the 3month curve while the 6month
curves are constructed from market data on FRAs for time periods [1m, 7m] and
[3m, 9m]. Furthermore, the medium to long-term rates are derived from market data
on tenor-dependent interest rate swaps with maturities ranging from 6months up to
10years. For each term structure, we derived the bid, mid and ask curves from the
corresponding quotes of the bootstrapping instruments.We useEuropeanmarket data
provided by Bloomberg for the time period from September, 2005, until May, 2018,
on a daily basis. The (tenor-dependent) term structures have been constructed by an

1The European market publishes the swap rate of an OIS at every business date for maturities
ranging from 1week to 60years. The floating leg is indexed on the EONIA rate and the payments
are based on annual frequency.
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exact fit bootstrapping methodology as explained in [12]. Results for specific dates
are displayed in Fig. 2. Additionally, the term structures were fitted to the parametric
Nelson Siegel model introduced in [19]. Below, we forecast yields over different
time horizons, and we work with the convention that one week consists of 5 trading
days and one months of 21 trading days.

Besides, we include different macroeconomic variables in our data set in order
to improve the forecasting performance of our methodology. Here, we use prime
interest rateswhich are available at quarter annual frequency from the official website
of the European Central Bank. In addition, we include quarter annual GDP data and
monthly inflation rates which we extracted from Bloomberg. The time period of all
macroeconomic variables ranges from September 2005 to March 2018.

Forecasting of Multiple Yield Curves via Neural Networks

In order to predict future yields of various maturities and tenors and over different
forecasting horizons, we implemented a neural network which we present in the
following subsection.Thereafter,wediscuss howwedealtwith the problemof limited
available data, present our forecasting results and elaborate on alternative approaches.

Neural Network Design and Methodology

The neural network is based on the keras package with tensorflow backend.
The input layer consists of the mid, bid and ask yields of a specific maturity, the
corresponding bid-ask spreads aswell as the basis spreads calculated as the difference
between the mid values of the risky tenor-dependent yields and the risk-free discount
yields for the specified maturity. The output consists of the yields themselves. As
we follow a multiple curve approach, this results in a rather large input and output
dimension.We use the eminent relationship between the risky and the discount curve
in order to fine tune the training process of the neural network. Furthermore, the bid-
ask spread is included in order to teach the network about market depth.

We ran a hyperparameter optimization code using the R package flags which
searches for the best hyperparameter combination on a discrete grit. Afterwards, we
also implemented the whole code in Python and used the hyperparameter opti-
mization procedure based on the hyperas package, which is more advanced. For a
deeper insight on grid searches versus random searches, we refer to [3]. The network
architecture based on the hyperparameter optimization consists of three layers and
two dropout layers in between. The first layer is an LSTM layer with 128 neurons.
The next layers are given by a second LSTM layer with 32 neurons and a third dense
layer. The drop out rates are set to 0.195327 and 0.056875 while the learning rate is
chosen as 8.777485 · 10−4 and is allowed to decay over time.
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We chose 3 neurons in the output layer since we analyse only one maturity at
a time for three different curves (discount, three-month and six-month curve) and
the last layer is supposed to directly correspond to the number of outputs. For a
deeper insight on Long-Short-Term-Memory neural networks, we refer the reader to
[13] and emphasize the ability to store and forget important, respectively redundant,
information of those layers.

The LSTM layer in keras needs a 3-dimensional input shape. It is, therefore,
necessary to reshape the given dataset in tensor form. The first dimension corresponds
to the number of historical dates used as a training, respectively test, data set. The last
dimension agrees with the number of input, respectively output parameters. In our
case, this amounts to 14 parameters—one fixed maturity times three curves and three
different values (mid, ask, bid) already yields 9 dimensions. When adding three bid-
ask spreads and 2 basis spreads, one ends up with 14 input parameters. The second
dimension specifies how much data is used to be fitted to one output unit. Here, we
chose chunks of 300 data points meaning that the last 300 values are used to find a
connection to the next value of interest. For monthly forecasts, this would, e.g., be
the 322nd value.

Hence, the input shape in the LSTM layer needs to be of the form c(300,14)
in our case. As explained above, a three dimensional array needs to be passed to the
network. As one can see in the keras documentation, the three dimensions coincide
with(batch_size, sequence_length, features). Thefirst dimension
does not need to be passed along. It only defines how long the training process is
going to be. The reshaping procedure of the two dimensional data is accomplished
via a loop. Starting with the matrix consisting of the first 300 × 14 data points, one
overwrites the first entry in the first dimension of a dummy tensor. In the next step,
one starts at the second value and proceeds to the 301st value. The procedure is
repeated over the whole training data set. The output data then consists of one-day-
ahead forecasts. If more than one forecast shall be constructed with each 300 data
point chunk, then the output needs to be reshaped correspondingly.

As activation function in the first layers we chose the tangent hyperbolic as the
sigmoid function produced larger errors. In the output layer, we use the linear activa-
tion function. Usually a relu function is chosen in the last layer. However, that does
not correspond well with our chosen normalizing procedure as we transformed the
data set into one which values range from −1 to 1. Therefore, a relu function would
just cut off roughly half of the values and set them to 0.A linear activation is the
natural choice in that context.

Based on the above specified architecture of the network, we predict yields of
different maturities and tenors. As in [12] we use the root-mean-squared-error as
loss function.2 The optimizer chosen in our model is the Adam optimizer [15].
Furthermore, we chose a validation split of 0.2 and a batch size of 32. The calculation
is done via 100 epochs.

2We did not use a pre-implemented loss of keras as most of these functions are applicable only for
categorization problems, and hence, fail to be of any value for our application.
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Dealing with Limited Data

As there is only a limited data set available, we face the problem that running a small
amount of epochs yields bad results but choosing a large amount of epochs often
results in over-fitting. We cope with that problem by generating new data based on
the historical yields via the following procedure. We use the first 500 historical data
points of the training set on the 9 yields (bid, mid and ask yields for three tenors
and fixed maturity) and fit an ARIMA(1, 0, 1) model to these time series. Based
on the time series model, we then predict intervals for the next ten values and save
the interval boarders. Then, we proceed with the points eleven up to 510 to predict
the next ten intervals and so on. We end up with 1000 confidence intervals in which
our yields are likely to lie in. In this way, we can easily generate new paths of the
nine time series available by randomly choosing values in these intervals. Now, one
has an arbitrary large training data set to which we can fit the neural network. We
still have to cope with the risk of over-fitting, though, since the generated paths are
highly dependent on the true evolution. Enlargement procedures are very common
coping with meager data sets. Usually, small geometric transformations are used to
do so. See, e.g., [6] who significantly improved their performance on theMNIST data
set due to enlargement by adding translations, rotations and line thickness changes
on the underlying pictures. Obviously, a linear transformation such as that one is
not applicable to time series models. Hence, the procedure we chose seems most
appropriate.

Results

The neural network performs very well with highly accurate predictions of future
yields across all tenors and maturities over various forecasting horizons. In Tables1,
2, 3 and 4 we list the results of that approach for 1-day, 1-month, 3-month and
6-month ahead predictions. The first row in each table shows the RMSEs of the
predicted yields for the discount, 3-months and 6-months curve for maturities in
1year and 3years, respectively, over the specified forecasting horizons for the neural
network (NN). The second row lists the corresponding RMSE for the random walk
(RW) approach. RMSEs of the best performing approach are displayed in bold face.
Rows 3 and 4 show the correlation between the predicted values and the actual values
which indicates the robustness of a forecasting method.

Our results show that the neural network produces extremely accurate predictions
of future yields across all maturities and curves and for all forecasting horizons. In
particular, for longer term predictions as 3- or 6-month ahead forecasts, our results
clearly outperform the benchmark random walk approach which has been proven to
be hard to beat in the related literature. For 1-month ahead predictions, the neural
network still beats the random walk procedure for yields with longer maturities. For
very short-term predictions such as 1-day ahead forecasts, the randomwalk approach
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Table 1 The table shows the six-month ahead forecasting results of the neural network and the
random walk approach as well as the correlation of the forecasts to the true values

Method Discount-1y 3m-1y 6m-1y Discount-3y 3m-3y 6m-3y

NN 0.002106980 0.002221245 0.002320099 0.002087555 0.002096353 0.002189963

RW 0.002455532 0.002646123 0.002898431 0.002351593 0.002598185 0.002784662

Correlation
NN

0.873266651 0.879881245 0.880366621 0.879653312 0.874569823 0.890000451

Correlation
RW

0.851333642 0.861110326 0.871005612 0.862343540 0.864706349 0.876448767

Table 2 The table shows the three-month ahead forecasting results of the neural network and the
random walk approach as well as the correlation of the forecasts to the true values

Method Discount-1y 3m-1y 6m-1y Discount-3y 3m-3y 6m-3y

NN 0.001256644 0.001198885 0.001400062 0.001075632 0.001101326 0.001178669

RW 0.001344568 0.001399984 0.001506844 0.001266431 0.001395539 0.001470158

Correlation
NN

0.938855486 0.93713645 0.93941100 0.94000325 0.93972566 0.93910442

Correlation
RW

0.93225647 0.93089991 0.93222241 0.93772375 0.93596972 0.93643050

Table 3 The table shows the one-month ahead forecasting results of the neural network and the
random walk approach as well as the correlation of the forecasts to the true values

Method Discount-1y 3m-1y 6m-1y Discount-3y 3m-3y 6m-3y

NN 0.000745689 0.000678933 0.000580112 0.000889645 0.000898752 0.000911564

RW 0.000587419 0.000582809 0.000583411 0.000913224 0.000955568 0.000990582

Correlation
NN

0.841000726 0.866559841 0.880076524 0.902354446 0.920068596 0.919167822

Correlation
RW

0.838753128 0.866618380 0.877812199 0.894634916 0.908987169 0.909525220

performs better than the neural network. However, it should be mentioned here that
the RMSEs of both methods are extremely small for all maturities and curves in this
case, so that both approaches actually produce very precise forecasts of next day
yields. The correlation values verify the robustness of our forecasting methodology.

We also tested several other forecasting approaches that we want to discuss here
without stating the results explicitly in order to keep the exposition compact. These
alternative methods include a version where yields of various maturities are turned
over to the network as input. However, that approach failed to perform well. An
explanation for this observation is the high dimensionality of the input and output
data in proportion to the number of historical dates in that case. As it is explained in
[11] a large number of input dimensions corresponds rather poorly with small data
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Table 4 The table shows the one-day ahead forecasting results of the neural network and the
random walk approach as well as the correlation of the forecasts to the true values
Method Discount-1y 3m-1y 6m-1y Discount-3y 3m-3y 6m-3y

NN 0.0003088099 0.00017444 0.000386521 0.000333298 0.000376663 0.000361211

RW 0.000215763 0.000225456 0.000215041 0.000215763 0.000225456 0.000215041

Correlation
NN

0.988765231 0.990015202 0.991645551 0.989822135 0.990041124 0.990117699

Correlation
RW

0.991047061 0.993272731 0.994688241 0.992894395 0.993695834 0.994688241

sets. The latter limits the number of training runs such that the neural network is
not able to learn which data has to be considered important and which redundant
in view of every single output dimension. At this point we want to emphasis that
even though a larger input dimension appears to be troublesome, the inclusion of
the bid and ask quotes really improves the performance of the neural network. The
information which lies in the spread obviously corresponds to the evolution of the
time series which is well detected by the artificial intelligence.

Besides, we implemented an alternative network based on a parameterized plug-in
model. For a given training set, we extract the Nelson–Siegel yield curve parameters
β0,β1 and β2 and assume these to follow a certain time series model. As input we
provide the three parameters for every curve andmid, bid and ask valueswhich results
in a total of 27 input parameters. After training the network, we build forecasts for
the Nelson–Siegel parameters that are then used to compute future yields via the
Nelson–Siegel model. Our results showed that this did not yield any improvements
over the approach that is directly based on the yields. However, as documented in
[12] the dynamic Nelson Siegel approach of [8] where parameters are modeled as a
time series process is in general not able to outperform the random walk benchmark.
Using neural networks, one only observes slight improvements compared to that
approach, however, these do not suffice to yield desirable results. The inaccuracies
of using the Nelson Siegel model pass along.

Furthermore, we have included different macroeconomic variables such as the
prime interest rate, inflation rates and GDP growth rates, in the input layer as these
have been shown to improve predictions in standard time series based approaches
(compare e.g. [1, 7, 10, 16, 18]). In our neural network, this, however, produces less
precise forecasts. An explanation for this might be the seldom updates of those val-
ues. For example, GDP is updated only quarter annually while our yields are updated
on daily basis. Thus, between two updating time points, we have fixed the macroe-
conomic variables to the value of the last update. In this way, the macroeconomic
variables represent an extra dimension in the network but only provide additional
value for forecasting at the updating time points. The inclusion of such macroeco-
nomic variables may, however, improve the model in a way which is not observable
when looking at the loss function as defined above. When fixing the macroeco-
nomic variables to the value of the last update, the increments in these variables are
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Table 5 The table shows theRMSEof theone-month ahead forecasting results of the neural network
including macroeconomic variables relative to the RMSEs of the benchmark neural network at the
updating dates of those values. The column “Frequency” specifies whether one takes monthly or
quarter annually updates to extract the results
Method Frequency Discount-

1y
3m-1y 6m-1y Discount-

3y
3m-3y 6m-3y

Macro variables included Monthly 0.95 0.93 0.92 0.91 0.96 0.92

Macro variables included Quarter
annually

0.89 0.90 0.87 0.85 0.92 0.90

obviously equal to zero, when no update has occurred. To overcome the problem
that the redundant information during most of the time points just prevents the net-
work to train quickly, one needs to adapt the activation function in a manner, that
the additional layers are not being activated when their increments are equal to zero.
That is easily accomplished by using an indicator function as a multiplicative factor
to the original activation function. Such a network seems to produce roughly the
same results as the original ones, since the training process is seldomly interfered
by the new architecture. However, when comparing the results at the days when the
macroeconomic variables are updated, a major improvement is observable. This is
documented in Tables5, 6 and 7 corresponding to the forecasting horizons of one-
month, three-month and six-month, respectively. Here, we extracted exactly those
dates, at which an update of macroeconomic variables occurred. Since the GDP
rates as well as the prime interest rate are only updated quarter annually whereas
the inflation rates are updated monthly, we studied both updating frequencies sep-
arately. That is, in the first row corresponding to monthly frequency, only inflation
rates are included while in the second row, where updates are quarter annually, all
three macroeconomic variables are taken into account. Results are reported relative
to the RMSEs in the benchmark NN without macroeconomic variables. As one can
easily see, the adjusted neural network performs better than the benchmark NN at
those dates and these improvements tend to become more prevalent the larger the
forecasting horizon is. An interpretation of these results is, that major changes in
interest rate markets take place, when macroeconomic quantities are being updated.
Those changes particularly affect the remote future since markets only adapt slowly.
Our conclusion is, that including macroeconomic variables is an efficient way to
improve the forecasting method and to make forecasts more robust since consider-
able changes—perhaps even so far unforeseeable jumps—are easier to detect.

Stacked Generalization

Another way to make the model more robust is to simply combine a variety of
different models. This procedure is commonly known in the literature as stacking
and was first introduced by [22]. For further details, see [11]. Themain idea is to train
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Table 6 The table shows the RMSE of the three-month ahead forecasting results of the neural
network includingmacroeconomic variables relative to theRMSEsof the benchmark neural network
at the updating dates of those values. The column “Frequency” specifies whether one takes monthly
or quarter annually updates to extract the results

Method Frequency Discount-
1y

3m-1y 6m-1y Discount-
3y

3m-3y 6m-3y

Macro
variables
included

Monthly 0.91 0.89 0.90 0.89 0.93 0.92

Macro
variables
included

Quarter
annually

0.84 0.80 0.81 0.83 0.87 0.81

Table 7 The table shows theRMSEof the six-month ahead forecasting results of the neural network
including macroeconomic variables relative to the RMSEs of the benchmark neural network at the
updating dates of those values. The column “Frequency” specifies whether one takes monthly or
quarter annually updates to extract the results

Method Frequency Discount-
1y

3m-1y 6m-1y Discount-
3y

3m-3y 6m-3y

Macro
variables
included

Monthly 0.84 0.80 0.78 0.80 0.80 0.81

Macro
variables
included

Quarter
annually

0.80 0.76 0.77 0.79 0.77 0.80

a variety of different models and use a meta-model, which combines the outputs of
the basic model in order to build the overall forecasts. If one has managed to fine tune
each of the corresponding models carefully, the stacked model usually profits from
the wide range on which it is build. Furthermore, the meta-learner is most commonly
chosen to be relatively easy [21]. In our case, we used a weighted linear combination
on the meta level and different trained neural networks as basic models. The network
we presented in detail as well as two plug-in neural networks—the first based on the
Nelson–Siegel model, the second based on principal component analysis—were part
of the stacked generalization. Besides, we also added a simpler version of the first
neural network, which means, we reduced the number of neurons in the first layer to
64 and used dense layers instead of LSTM layers.

The stacked generalization failed to outperform the presented approach. Our intu-
ition is that the basic models are too similar in order for the overall model to signif-
icantly profit from the different models that are incorporated. Usually, when using
stacking one chooses different model classes which have many different character-
istics. However, we solely used neural networks so far. Including different model
classes in order to build a wider ranged stacked generalization based on machine
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learning tools is left for future research. In this way, we anticipate that our current
results may be further improved and may become even more robust, since a variety
of models is less susceptible to unforeseen changes, which require updating.

Trend Forecasting via Support Vector Machines

In this section, we investigate the relationship between the different movements of
the term structures and various market variables by using Support Vector Machines
(SVMs). This type of machine learning classifier can be applied to forecast the up
and down trends of the levels as well as the slopes for the multiple term structures
of interest rates. For a detailed treatment of the subject of SVMs, we refer to [4,
5, 9]. Furthermore, an introductory discussion of SVMs is given by [2] and a more
rigorous study is stated by [20]. SVMs have been successfully applied for trend pre-
dictions in financial markets. For instance, [14] analyze the accuracy of predictions
of stock market movements with SVMs by comparing their performance with classi-
cal forecasting classification models. Their SVM-based models outperform the other
classification methods in their empirical analysis. In the following, we apply support
vector machines to predict level and slope trends in term structures of interest rates.

Model Input Selection

We consider the bootstrapped discount, three-month and six-month yield curves for
the periodofSeptember 2005 toMay2016. For each termstructurewederived the bid,
mid and ask curves up to a maturity of 10years. The term structures are fitted to the
parametric model of [19]. Consequently, we obtain a time series of estimated param-
eters of level βq,k

0,t , slope β
q,k
1,t , curvature β

q,k
2,t and exponentially decaying rate λ

q,k
t of

the loadings where t represents the date, q ∈ {bid,mid, ask} and k ∈ {d, 3m, 6m}.
From the weekly changes of the estimated level and slope parameters, we derive the
categorical variables indicating the up or down movement of the yield curve shape
parameters. As explanatory variables we use the fitted level and slope parameters
of each curve, the changes in the level and slope of the preceding period, and the
Euro STOXX 50. Moreover, we include the ratio between the bid-ask spread and the
mid bond prices for the time-to-maturity of 10years as a measure for the long-term
liquidity in the market. All the raw data is provided by Bloomberg and corresponds
to a weekly frequency (last business day in the week). The prediction models can
then be expressed in form of

levelt = F(Λl
t−1) and slopet = G(Γ s

t−1)

where
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As mentioned above, levelk,qt and slopek,qt are categorical variables indicating up
and down movements for curve k and type of quote q.

Model Design

The input data consists ofweekly quotes fromSeptember 2005 toMay2016.As train-
ing set we choose the first 150 weekly model quantities ranging from 2nd September
2005 to 12th February 2016. The test set contains 15weeks belonging to the period
19th February 2016 to 27th May 2016. The implemented SVM for the level predic-
tions is based on bound-constraint formulation of the classification. It is equipped
with the Gaussian Radial Basis kernel function where the kernel parameter is set
to σ = 0.01965. The constant C of the regularization term in the Lagrange formu-
lation, known as cost of constraints violation, is set to be C = 3. Furthermore, a
3-fold cross validation on the training data is performed to assess the quality of the
model performance. This type of classifiers also supports class-probabilities output.
For the forecasting of the slope movements we use a similar design of the SVMwith
parameters σ = 0.06555, C = 25 and 3-fold cross validation. The parameters are
obtained by using a hyperparameter optimization procedure.

Forecasting Results

Typically, the evaluation of the performance of classifiers is stated in form of accu-
racy measures or their comparison to other classification benchmark methods. A
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Table 8 Comparison of model performance with positive class up-movement as well a positive
class down-movement for level trends
Method +–class Accuracy Error rate Kappa Sensitivity Specificity Precision F-score

SVM Up 0.6593 0.3407 0.3164 0.7246 0.5909 0.6494 0.6849

LDA Up 0.6519 0.3481 0.2971 0.8551 0.4394 0.6146 0.7152

QDA Up 0.6519 0.3481 0.2999 0.7681 0.5303 0.6310 0.6928

RW Up 0.4254 0.5746 −0.1498 0.4412 0.4091 0.4348 0.4380

SVM Down 0.6593 0.3407 0.3164 0.5909 0.7246 0.6724 0.6290

LDA Down 0.6519 0.3481 0.2971 0.4394 0.8551 0.7436 0.5524

QDA Down 0.6519 0.3481 0.2999 0.5303 0.7681 0.6863 0.5983

RW Down 0.4254 0.5746 −0.1498 0.4091 0.4412 0.4154 0.4122

Table 9 Comparison of model performance with positive class up-movement as well a positive
class down-movement for slope trends
Method +–class Accuracy Error rate Kappa Sensitivity Specificity Precision F-score

SVM Up 0.6000 0.4000 0.2059 0.7077 0.5000 0.5679 0.6301

LDA Up 0.5852 0.4148 0.1783 0.7231 0.4571 0.5529 0.6267

QDA Up 0.5630 0.4370 0.1412 0.8154 0.3286 0.5300 0.6424

RW Up 0.4104 0.5896 -0.1807 0.3846 0.4348 0.3906 0.3876

SVM Down 0.6000 0.4000 0.2059 0.5000 0.7077 0.6481 0.5645

LDA Down 0.5852 0.4148 0.1783 0.4571 0.7231 0.6400 0.5333

QDA Down 0.5630 0.4370 0.1412 0.3286 0.8154 0.6571 0.4381

RW Down 0.4104 0.5896 -0.1807 0.4348 0.3846 0.4286 0.4317

comprehensive overview on useful and common accuracy measures based on the
confusion matrix can be found in [11, 17].

Table8 shows the performance of our SVM approach for the prediction of up-
and down movements in the level of interest rates and compares these with the cor-
responding values for the benchmark random walk model (RW), linear discriminant
analysis (LDA) and quadratic discriminant analysis (QDA). Table9 illustrates the
corresponding results for up- and down movements in the slope of the yield curves.
The results indicate that our SVMclassifier performs extremely robust across various
classification benchmark methods and clearly outperforms them in most cases.

Conclusion

In this paper, we have applied methods based on neural networks to forecast interest
rates of different maturities and tenors. Our results show extremely accurate pre-
dictions, in particular for longer term yields. Besides, we included bid-ask spreads
as a measure of market depths in the input vector. The neural network is able to
exploit this information and our results show a significant improvement of the
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network’s performance. Further, we included different macroeconomic quantities in
our analysis and showed, that at the updating dates of those values, the forecast-
ing performance was substantially increased. This documents that our implemented
neural network reflects a robust forecasting procedure, which, on the one hand, per-
forms quite well over time and on the other hand is able to exploit also rarely updated
market information to detect major changes in yields.

In addition, we have applied SVMs to forecast trends in the yield curve shape
parameters. Compared to other classification methods, our SVM approach performs
very well and robust. While the linear discriminant analysis also yields good results
for level trends, it performs less well for slope predictions. In contrast, the quadratic
discriminant analysis works well for slope trends but less good for level trends. The
suggestedSVMapproach, however, is very stable andprovides good trendpredictions
across the different yield curve movements.
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The Changing Shape of Sovereign
Default Intensities

Yusho Kagraoka and Zakaria Moussa

Abstract The term structure of sovereign default intensities evolves over time along
with rising/declining levels and steeping/flatting of the slope; a hump shapemay exist
in the default intensity curve, and the location of the hump changes. Thus, the default
intensitymodel should have the flexibility to capturemost of the variations in the term
structure of the default intensities. The dynamic Nelson–Siegel (DNS) model with a
time-varying decay parameter is appropriate to generate such default intensity curves.
The paper studies the default intensities estimated from credit default swap (CDS)
spreads by the DNS model with a time-varying decay parameter. Empirical studies
were conducted on the German and U.S. CDS markets. The model parameters were
successfully estimated using the Kalman filter. It is found that the decay parameters
change over time and the magnitude of the decay parameter is positively related to
the level of default intensities.

Keywords Sovereign credit default swap · Sovereign default intensities · The
Nelson–Siegel model · State space model · Kalman filter

Introduction

In the aftermath of the 2007–2008 financial crisis and the European sovereign debt
crisis that started in 2008, sovereign credit default swap (CDS) spreads surged dra-
matically. Not only the levels of CDS spreads but also the shape of the term structure
of CDS spreads changed dramatically during both these periods. The term structure
of CDS spreads reflects the default probabilities of a reference entity and the timing
of default. Thus, studying the shape of the term structure of CDS spreads and their
evolution is important for forecasting CDS spreads and controlling credit risk.
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Nelson and Siegel [18] employed a set of simple functions to describe the shape of
the term structure of interest rates. Diebold and Li [5] applied theNelson–Siegel (NS)
model to forecast the term structure of interest rates. Diebold et al. [6] investigated the
term structure of interest rates using the NS model accompanied by macroeconomic
variables and found that the macroeconomic factors improved forecasting of the
term structure of interest rates. Many variations were developed to improve the NS
model. For instance, Koopman et al. [12] extended the NS model by allowing the
time-varying decay parameter and incorporating a GARCH structure into the error
terms. Christensen et al. [3] and Coroneo et al. [4] constructed the arbitrage-free NS
model. Levant and Ma [17] and Zhu and Rahman [22] extended the NS model to
include Markov switching. The NS model has been applied not only to government
bond yields but also to other term structures. Yu and Zivot [21] and Krishnan et al.
[13] applied the NS model to corporate bond yields. Shaw et al. [20] adopted a
straightforward approach and applied the NS model to the European sovereign CDS
spreads.

Credit default swap spreads depend on the default intensities and risk-free rates
because risk-free rates are inevitable to obtain the present value of the fixed and
floating legs of the CDS. The CDS spread is set to the level at which the present
value of periodic payment made by a protection buyer and the present value of a loss
compensation caused by the default of a reference entity are both equal. Therefore,
CDS spreads are complicated functions of the risk-free rates and default intensities.
For instance, Shaw et al. [20] stated that CDS is a pure credit instrument and is
isolated from the interest rate risk. Thus, the interpretation that CDS spread reflects
pure credit risk is wrong. Shaw et al.’s [20] study had another disadvantage. They
applied the NS model to CDS spreads. However, it is not clear what a fundamental
object is. The original NS model represents the dynamics of forward rates, and its
model parameters are estimated from the term structures of spot rates. Shaw et al. [20]
applied a functional form for “spot rates” to the CDS spreads. Thus, in Shaw et al.
[20], the counterpart to “forward rates” is not interpreted clearly. In the original NS
model, the functional form for forward rates has a clear interpretation: level, slope,
and curvature of a term structure of forward rates. However, Shaw et al. [20] did not
provide any financial or economic interpretation for the underlying CDS spreads.

The purpose of the study is to apply the dynamic Nelson–Siegel (DNS) model
with the time-varying decay parameter to the default intensities that are extracted
from CDS spreads and government bond yields. The DNS factors correspond to
the level, slope, and curvature of the default intensities, and the time-varying decay
parameter can accommodate various time evolutions of default intensity curve. The
model parameter is estimated using the Kalman filter. The empirical studies of the
DNS model are conducted on the German and U.S. CDS markets.

The remaining of this chapter is organized as follows. The second section provides
a theoretical background and the methodology. The third section is devoted to the
presentation of the data used to illustrate the approach, the results, and a discussion.
The fourth section contains a brief conclusion.
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Methodology

Default Intensity and Risk-Free Rate

The valuation formula for CDS in the reduced form model is given in several text-
books, including Brigo and Mercurio [2], Duffie and Singleton [7], Lando [16], and
Schönbucher [19]. This study follows Lando [14, 15] and Houweling and Vorst [9].
In their model, the default event of a reference entity is modeled by a point process.
Let τ, λt , and Pr(t, T ) denote a default time, the default intensity at time t, and the
survival probability at time t up to time T, respectively. The following relationship
holds for them:

Pr(t, T ) = E
[
1{τ>T }

] = Et

⎡

⎣exp

⎛

⎝−
T∫

t

ds λs

⎞

⎠

⎤

⎦. (1)

The value of the fixed leg of periodic payment is the expected present value of the
periodic payments prior to the default time under a martingale measure. The value of
the floating leg is the expected present value of compensation for a default under the
martingale measure. The CDS spread is set to the level at which the value of the fixed
leg equals that of the floating leg. Apparently CDS spreads depend not only on the
default probabilities of a reference entity but also on the term structure of risk-free
rates.

Investors and researchers regard government bond yields as proxies for the risk-
free rates. However, nonzero spreads of the sovereign CDS imply that government
bonds are not risk-free assets. In fact, government bonds should be evaluated assum-
ing that their default probability is greater than zero. Thus, government bond yields
depend on the risk-free rates and the default intensities of the government.

Both CDS spreads and government bond yields are a complicated function of
the risk-free rates and default intensities. It is not simple to disentangle the risk-
free rates and the default intensities from the CDS spreads and government bond
yields. A procedure to decompose government bond yields to the risk-free rates and
credit spreads was proposed by Kagraoka and Moussa [11] and Kagraoka [10]. The
procedure is essentially subtracting the credit risk spread implied in the sovereign
CDS spreads from the bond yields to extract the risk-free rates under the assumption
that the risk-free rates and default intensities are independent. This study employs
this method to obtain the default intensities.

State Space Models for Default Intensities

Nelson and Siegel [18] proposed a set of parsimonious functions to express a yield
curve. Thismodel has been used to express the term structure of interest rates bymany
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central banks worldwide as reviewed by the Bank for International Settlements [1].
Diebold and Li [5] is the first paper that advocates the NS methodology to forecast
the time evolutions of the term structures of interest rates. In the NS model, time-t
forward rate maturing at t + τ is expressed as

ft (τ ) = β1,t + β2,t e
−λNSτ + β3,tλ

NSe−λNSτ . (2)

This parametrisation of the forward rate can reproduce various shapes of the term
structure of forward rates. Changes in the parameters generate variations of the term
structure of forward rates. The NS model has four parameters; the level parameter,
β1,t , represents a long-term interest rate and changes in the level parameter causing
parallel shifts in the term structure of forward rates; the slope parameter, β2,t , dictates
a gradient of the term structure of forward rates and its movements induce steepening
or flattening of the term structure of forward rates. The curvature parameter, β3,t ,
represents a hump shape of the term structure of forward rates and its variations
produce changes in the degree of hump in the term structure of forward rates. The
decay parameter, λNS , governs both the speed of the exponential decay rate of the
slope factor and the location of the hump in the curvature factor. Spot rate,

rt (τ) = 1

τ

t+τ∫

t

ds ft (s), (3)

is an average of the forward rates, and it is expressed as

rt (τ) = β1,t + β2,t

(
1 − e−λNSτ

λNSτ

)

+ β3,t

(
1 − e−λNSτ

λNSτ
− e−λNSτ

)

(4)

in the NS model. All previous empirical studies estimate the NS parameters from the
term structure of spot rates by using Eq. (4).

In the context of CDS valuation, forward rates correspond to default intensities.
Therefore, spot rates correspond to the average default intensities,

yt (τ) = 1

τ

t+τ∫

t

ds λs . (5)

This study empirically examines the average default intensity by applying the DNS
model.

Diebold and Li [5] proposed to fix to a priori value to the decay parameter and
formulated the dynamics of the term structure of interest rates by using a vector
autoregressive model. Diebold et al. [6] employed the state-space model to describe
the dynamics of the term structure of interest rates expressed by the NS model. The
evolution of the term structure of interest rates is generated by the transition equation,
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βt+1 − μβ = T β
(
βt − μβ

) + Rβ
t η

β
t , (6)

where βt is a 3 × 1 unobservable state vector, T β is a 3 × 3 matrix, the error term
η

β
t is a 3 × 1 column vector following η

β
t ∼ N

(
0, �β

η

)
, and Rβ

t = I . The vector

of the observable variables is denoted by yt (τ) = (
yt (τ1), yt (τ2), · · · , yt

(
τp

))′
, and

the measurement equation is written as
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and ε
β
t ∼ N

(
0, �β

ε

)
. It is assumed that the white noise transition disturbance, η

β
t ,

and the measurement disturbances, ε
β
t , are orthogonal to each other. The initial

state is assumed to be orthogonal to the transition and measurement disturbances;

E
[
β1η

β′
t

]
= 0 and E

[
β1ε

β′
t

]
= 0. The non-diagonal elements of �β

η allow for the

shocks to the term structure to be correlated. It is further assumed that �β
ε is an

orthogonal matrix.
Koopmanet al. [12] developed theDNSmodelwith the time-varyingdecayparam-

eter, λNS
t . This study follows their methodology. Logarithm of the decay parameter

is included in the fourth element of the state space to ensure positivity of it,

αt =
(

βt

ln λNS
t

)
. (9)

This model is not linear with respect to ln λNS
t , and this property makes it difficult

to use a Kalman filter technique for model estimation. Koopman et al. [12] linearized
this model as follows:

αt+1 − μα = T α(αt − μα) + Rα
t ηα

t , (10)

yt (τ) = Zαt + (
�

(
at |t−1

) − Zat |t−1
) + εα

t , (11)

Zt =
(

�1(τ ) �2(τ ) �3(τ ) λNS
t

3∑

j=1
�̇

(
a j,t |t−1

)
a j,t |t−1

)

, (12)

and
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�̇(αt ) =
(

∂�1(τ )

∂λNS
t

∂�2(τ )

∂λNS
t

∂�3(τ )

∂λNS
t

)
=

(
0 ∂�2(τ )

∂λNS
t

∂�3(τ )

∂λNS
t

)
(13)

where αt is a 4 × 1 unobservable state vector, T α is a 4 × 4 matrix, and the error
term ηα

t is a 4 × 1 column vector with the coefficient matrix Rα
t = I . This state-

space model is estimated by maximizing the log-likelihood function, as explained
by Durbin and Koopman [8].

Empirical Analysis

Data

Empirical studies were conducted on the German and U.S. CDS markets. Weekly
data were collected from 8 October 2008 to 27 December 2017 to estimate the NS
model. Datastream provides CDS spread data for Germany in USD and for the U.S.
in EUR, maturing at 6 months and 1, 2, 3, 4, 5, 7, and 10 years. The spot rates of
the AAA-rated European government bonds maturing from 3 months to 10 years,
with 1-month increments, are obtained from the European Central Bank. The Federal
Reserve Board gives the spot rates for the U.S. Treasuries from 1 year to 10 years,
with 1-year increments.

The risk-free rates and default intensities are estimated following Kagraoka and
Moussa [11] andKagraoka [10]. Kagraoka [10] advocates employingCDS spreads in
a foreign currency to estimate the default intensities. Thus, CDS spreads for Germany
in USD and for the U.S. in EUR are employed to estimate default intensities. Spot
rates in EUR and USD are depicted in Fig. 1 where spot rates are expressed in
percent. In addition, CDS spreads for Germany in USD and for the U.S. in EUR
are depicted in Fig. 1 where CDS spreads are expressed in percent. The estimated
risk-free rates and (average) default intensities for Germany and for the U.S. are
illustrated in Fig. 2 where all the values are expressed in percent. Summary statistics
of the average default intensities for Germany and for the U.S. are given in Table 1.

Parameter Estimation

The NS model parameters are estimated from the weekly data of the average default
intensities by maximizing likelihood. The average default intensities maturing at 6
months and 1, 2, 3, 4, 5, 7, and 10 years are regarded as observable by matching the
CDS maturities.

The CDS spreads and the average default densities of Germany and the U.S.
were volatile between 2008 and 2013 and the shapes of their term structure of the
average default intensities changed drastically. For Germany, the term structure of
the average default intensities was very low and flat at October 2008. Later, the level
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Fig. 1 Term structure of spot rates in EUR (spot rates of the AAA-rated European government
bonds) (upper left) and that in USD (U.S. Treasury spot rates) (lower left). Term structure of CDS
spreads for Germany in USD (upper right) and for the U.S. in EUR (lower right)

of term structure of the average default intensities surged abruptly and had a hump
at around 5 years. From 2013, the term structure of the average default intensities
resumed to flat at a low level. For the U.S., the term structure of the average default
intensities was very volatile from 2008 to 2014 and it took a convex or concave shape.
Therefore, the NS model with time-varying decay parameter is appropriate to model
the term structure of the average default intensities for both Germany and the U.S.

The estimated parameters of the DNS model with time-varying decay parameters
for Germany and the U.S. are reported in Table 2. The diagonal elements of �α

ε are
expressed by taking their logarithm. Trajectories of the state variables for Germany
and the U.S. are presented in Fig. 3. This figure shows the time decay parameters for
Germany and the U.S. vary with time.

First, the estimated parameters of default intensities for Germany are discussed.
Level, Lt , is likely to remain the same because T1,1 = 0.997 and T1, j ( j = 2, 3, 4) are
close to zero. Likewise, the slope, St , is likely to remain unchanged because T2,2 =
1.050 and T2, j ( j = 1, 3, 4) are close to zero. The curvature, Ct , is mainly affected
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Fig. 2 Term structure of risk-free rates in EUR (upper left) and USD (lower left). Term structure
of default intensities for Germany (upper middle) and for the U.S. (lower middle). Term structure
of average default intensities for Germany (upper right) and for the U.S. (lower right)

by itself because T3,3 = 0.980, and negatively affected by level and slope because
T3,1 = −0.211 and T3,2 = −0.172. The logarithm of the time decay parameter,
ln λt , is mainly affected by itself because T4,4 = 0.960, and it is affected by all the
factors because T4,1 = 0.154, T4,2 = 0.144, and T4,3 = 0.035. The trajectories of
the level, slope, curvature, and decay parameters are intriguing. The level correlates
negatively to the slope and curvature. The decay parameter varies over time; it rises
when the default intensities become higher and declines when the default intensities
decrease. During the financial market turmoil, the decay parameter peaked to 0.139
on 15 April 2009. It took around 0.02 after mid-2012. The correlations between the
state variables are given in the left panel in Table 3. The negative correlation between
the decay parameter and the level is apparent. The correlations between the decay
parameter and the slope or curvature are positive. The correlation between the decay
parameter and the 5-year average default intensity is 0.650. Thus, the higher the
average default intensity, the greater is the decay parameter.

Next, the estimated parameters of default intensities for the U.S. are discussed.
Level is affected by itself and slope. Slope is affected by itself as well as the level
and curvature. Curvature is affected by level, slope, and curvature. These parame-
ters produce upward or downward sloping curves of default intensities for the U.S.
The logarithm of the time decay parameter is mainly affected by itself because
T4,4 = 1.008, and by the slope (T4,2 = −0.127) and curvature (T4,3 = 0.060). The
trajectories of the level, slope, curvature, and time decay parameters are intriguing.
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Table 1 Summary statistics for average default intensities for Germany and for the U.S. For each
maturity mean, standard deviation (sd), minimum, maximum, and three autocorrelation coefficients
at 1 week (ρ(1)), 4 weeks (ρ(4)), and 13 weeks (ρ(13)) are reported

Average default intensity for Germany

Mean sd Min Max ρ(1) ρ(4) ρ(13)

6 m 0.152 0.174 0.015 0.815 0.954 0.836 0.528

1y 0.176 0.187 0.020 0.898 0.961 0.854 0.556

2y 0.233 0.221 0.032 1.085 0.972 0.882 0.605

3y 0.310 0.262 0.049 1.276 0.978 0.902 0.657

4y 0.412 0.311 0.076 1.468 0.983 0.920 0.718

5y 0.518 0.356 0.113 1.635 0.985 0.931 0.758

7y 0.670 0.376 0.200 1.844 0.986 0.937 0.787

10y 0.816 0.389 0.325 2.027 0.986 0.941 0.809

Average default intensity for the U.S

Mean sd Min Max ρ(1) ρ(4) ρ(13)

6 m 0.245 0.173 0.018 1.247 0.900 0.620 0.119

1y 0.260 0.172 0.049 1.215 0.915 0.662 0.181

2y 0.297 0.176 0.092 1.185 0.942 0.748 0.331

3y 0.347 0.188 0.122 1.278 0.960 0.816 0.476

4y 0.412 0.203 0.171 1.364 0.971 0.862 0.582

5y 0.478 0.216 0.210 1.431 0.977 0.887 0.641

7y 0.574 0.214 0.302 1.454 0.978 0.890 0.654

10y 0.667 0.218 0.351 1.460 0.977 0.892 0.669

The level negatively correlates to the slope and curvature as in the case of Germany.
The decay parameter varies over time; it rises when the default intensities become
higher and drops when the default intensities lower. In the financial market turmoil,
it peaked at 0.085 at 15 April 2009. It was below 0.03 since 2013. The correlations
between the state variables are given in the right panel in Table 3. The correlation
signs between the decay parameter and the level, slope or curvature are opposite
to that for Germany. The correlation between the decay parameter and the 5-year
average default intensity is 0.405. Thus, the higher the average default intensity, the
greater the decay parameter becomes.

Conclusion

This study applies the dynamic Nelson–Siegel (DNS) model with the time-varying
decay parameter to the average default intensities. TheDNS factors correspond to the
level, slope, and curvature of the default intensities, and the empirical results provide a
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Fig. 3 Time series of the state variables for Germany (upper left) and that for the U.S. (lower left)
are drawn. Time series of the time-varying decay parameter, λNS

t , for Germany (upper right) and
that for the U.S. (lower right) are depicted

Table 3 Correlation between the state variables for Germany (left) and that for the U.S. (right)

Germany The U.S.

Lt St Ct ln(λt) Lt St Ct ln(λt)

Lt 1.000 Lt 1.000

St −0.980 1.000 St −0.888 1.000

Ct −0.937 0.919 1.000 Ct −0.875 0.866 1.000

ln(λt) −0.664 0.767 0.544 1.000 ln(λt) 0.328 −0.274 −0.402 1.000
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clear interpretation of the estimated parameters. The DNSmodel with a time-varying
decay parameter accommodates the time-varying features of the term structure of the
average default intensities and their variations. Empirical studies for the German and
U.S. CDS markets are conducted and the Kalman filter is used to estimate the model
parameters. The empirical results show that the decay parameter is time-varying and
closely relates to the level, slope and curvature of the average default intensities.
The higher the average default intensity, the greater is the magnitude of the decay
parameter. Future studies will investigate forecasting of the average default intensity
by the DNS model.
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Permutation Entropy as the Measure
of Globalization Process

Janusz Miśkiewicz

Abstract The application of permutation entropy as the globalization measure is
discussed within this paper. In order to verify the stated hypothesis the following
time series were investigated: CO2 emission, CPI, employment rate and GDP and
the countries were grouped such that the groups differ in globalization level. The
received results support the thesis that the objective globalization measure can be
based on the permutation entropy.

Keywords Globalization · Permutation entropy · Time series analysis

Introduction

Globalization is a process that reduces the distance between societies in various
aspects. This process was initiated by inventions facilitating transport, such as rail-
ways, cars, aeroplanes and communication—the telegraph, the telephone, the radio,
the television and the Internet. This process has transformed the evolution of soci-
eties from a local phenomenon to a global phenomenon by strengthening long-range
interaction and has introduced the development of societies to new paths. At present,
communication means allow for easy and intense contacts between social groups.
This process significantly influences not only culture but also, particularly, economy
and politics. One of the most spectacular globalization processes in the twentieth
century was the creation of the European Community, which at the level of polit-
ical and legal regulation facilitates and improves the functioning of its members,
and influence various aspects of the life of EC citizens. The globalization is also
observed in the financial market. The illustration of the complex relationship on the
contemporary stocks markets might be the complicated structure of share ownership
[1]. The globalization of financial markets leads to complex functional relationship

J. Miśkiewicz (B)
Institute of Theoretical Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław, Poland
e-mail: janusz.miskiewicz@ift.uni.wroc.pl

Department of Physics and Biophysics, Wrocaw University of Environmental and Life Sciences,
ul. Norwida 25, 50-375 Wrocław, Poland

© Springer Nature Switzerland AG 2019
O. Valenzuela et al. (eds.), Theory and Applications of Time Series Analysis,
Contributions to Statistics, https://doi.org/10.1007/978-3-030-26036-1_15

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26036-1_15&domain=pdf
mailto:janusz.miskiewicz@ift.uni.wroc.pl
https://doi.org/10.1007/978-3-030-26036-1_15


218 J. Miśkiewicz

among stocks markets [2–4]. It affects also social integration [5]. So the process is
broadly observed.

In fact, researches on globalization have a long history [6]. A huge effort wasmade
in finding a proper description of the process. Many indexes have been introduced,
[7, 8] e.g. Global Connectedness Index, Global Entrepreneurship Index, Global Food
Security Index, Global Innovation Index, Global Liveability Ranking, Global Peace
Index, Global Slavery Index, Global Terrorism Index, Global Web Index, Human
Development Index, Human Poverty Index, Index of Economic Freedom, Interna-
tionalization Index, KOF Index of Globalization, Maastricht Globalization Index,
Networked Readiness Index, OECD Better Life Index, Energy Globalization Index
and many others. The common feature of mentioned indexes is that they are based
on a designated parameter, which is considered as the characteristics of the glob-
alization. In the present study, a different approach is proposed. The globalization
measure is constructed, such that it would be possible to investigate various aspects
of globalization by the same measure.

Globalization Measure

In the twenty-first century, the flow of information is the most dominating factor
determining globalization. It is very probable that this tendency will continue in
future. Thus, the measures related to the analysis of information seem to be the
most promising. Another factor increasing globalization are the legal and political
decisions. These regulations are primarily in the field of economy, international coop-
eration at the bilateral or multilateral level (e.g. the European Union). The ongoing
process leads to the unification of the conditions in which companies operate. The
situation resembles the information theory where imposed rules influence the com-
plexity of a signal. Taking into account the described factors, it seems that the proper
measure of globalization should be entropy, in particular, the information entropy,
which characterizes the degree of noise/determinism in given data sets. The main
difficulty in the direct use of Shannon information entropy (Eq. 1) is the limitation
of the available data.

S = −
∑

i

pi ln(pi ) (1)

Estimation of S requires knowledge of probabilities or occurrence of some quantities
or even the probability distribution function of analysed parameters. In the case of the
macroeconomy, it is hardly possible. For example, Gross Domestic Product (GDP)
is usually presented as annually time series, in consequence, the typical, developed
economy is described by a series of 50–100 data points. On the other hand in a long
time span, one has to face the stationarity problem of such a time series. One of the
possible solutions of the mentioned difficulties is the application of entropy related
parameter, i.e. Theil index [9, 10].
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In the present paper the approach based on permutation entropy is proposed [11,
12]. The main difference between Shannon entropy and the Permutation Entropy
(PE) is that the latter one is a symbolic entropy focused on patterns rather than on
probability distribution function, which makes it useful in an analysis of short time
series.

For the convenience of the reader, the short description of PE is recalled here [2]:
At each time s of the analysed time series X = xt , t = 1, . . . , N , a vector of D-th
subsequent values is taken.

(xs, xs+1, . . . , xs+D−1). (2)

This vector is sorted in an ascending order and a permutation pattern π is created.

π = (r0r1 . . . rD−1) (3)

which fulfils
xs+r0 ≤ xs+r1 ≤ . . . xs+rD−2 ≤ xs+rD−1 (4)

Finally the permutation entropy is defined as follows:

PE = −
D!∑

i=1

πi ln πi (5)

In the case of globalization analysis PE should be followed by cross-correlation
analysis. Within the present study, the Manhattan distance is used and it is defined
as follows. Denoting the time series as A and B and their elements as ai and bi ,
respectively, the Manhattan distance between A and B in the interval i ∈ (t, t + T )
is defined as follows:

MD(A, B)t,T =
t+T∑

i=t

|ai − bi |. (6)

The proposed method of globalization measurement consists of the following two
steps:

– first the time series are converted into PE time series and
– second the cross-correlation among them are analysed.

Since the globalization is rather a process than a state, therefore the final outcome
should describe the evolution of a system. In order to fulfil these requirements the
moving time window technique is used. In fact, in the proposed method two different
time windows are required. The first one is needed to transform analysed time series
into the entropy time series and the second window to measure the cross-correlation
among them. At each step, the time windows are moved by one data item (the
actual shift length depends on the probing frequency). Finally, the series of distance
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matrices are obtained. The last step is finding characteristic of the distance matrix.
In the present study, the mean distance of each distance matrix is calculated and
presented as the final result.

Data

The proposed method was verified on the GDP, CPI (consumer price index), employ-
ment rate andCO2 emission time series. Themacroeconomy datawere obtained from
the OECD database, while the CO2 emission time series were downloaded from the
European Commission web page [13]. In some cases the time series were cover-
ing only recent years, such series were rejected. The most comprehensive database
was the GDP which consisted of yearly GDP time series of 93 countries covering
the period from 1961 till 2016. CPI time series were monthly data of 25 countries
from January 1970 to April 2015. The employment rate covered quarterly data of
26 countries from the beginning of 2001 till the end of 2017. The CO2 emission
annually time series covered dates 1970–2015 for 126 countries. The times series
were converted into the relative increment time series Eq. (7).

R(t) = p(t) − p(t − 1)

p(t − 1)
(7)

Results

The proposed globalization measure depends on three parameters: the permutation
order D, the permutation time window T and the distance–time window Tm . From
the statistics quality point of view the longer the time window the more accurate
is the result, but in applications, there are two main limitations which have to be
taken into consideration. First of all the analysed time series are of limited length.
The second factor is the problem of data stationarity, particularly if long time series
are considered. On the other hand, the number of permutation patterns increases as
factorial, so the estimation of their probabilities would require very long permutation
time window. Therefore, in the present analysis, the permutation order was chosen
from 3 up to 5 data points. The performed analysis showed that for the reasonable
time window (not exceeding 12 years) the best choice is the permutation order of 3
or 4 and finally the results for D = 4 are discussed within this paper.

Since the aim of the research was to verify the proposed measure of the global-
ization the time series were chosen in such a way that in one group the globalization
is expected and in the second group the globalization should not be seen or is much
weaker. The first group consisted of the time series of GDP, CPI employment rate
of European countries and CO2 emission of all countries except the North American
region. Europe is a particularly interesting case since the unification processes have
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a long history and since the 50s of the twentieth century, European countries are
increasing unification level (a short description of EU history can be found, e.g. on
Britannica web page [14]. The comparative group where the time series of GDP,
CPI, the employment rate of non-European countries and CO2 emission rate of the
North American countries.

The results are presented in Figs. 1, 2 and 3. The proposed globalization measure
is based on the permutation entropy. Considering the general idea of the globalization
which is the unification of regulations among regions and countries one can expect
that the entropy distance between those of the high globalization level should be
lower. In the opposite case—if the globalization is low then the entropy distance is
expected to be high. This expectation perfectly agrees with the general outcome of
the performed analysis as in Figs. 1, 2 and 3.

The most evident observation of the mean distance of the permutation entropy
GDP increments evolution (Fig. 1) is that the appropriate lines present natural order-
ing from the highest: Australia and Oceania, North America, Central America, South
America, Europe and Africa. The ordering corresponds to the globalization level of
those regions. The top line presents the evolution of the mean permutation entropy
distance amongAustralia andOceania countries taking the value in the interval 0.85–
0.95, while for European countries the average distance is about 0.25, somuch lower,
which can be related to the much higher level of integration among European coun-
tries. Whereas, Australia and Oceania region is, in fact, one huge country and many
small island countries, naturally separated and with the lack of significant progress
of the mutual relationship development [15, 16]. In this situation, the low level of
economies globalization is not surprising. The second line is the North American
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group. This is also the case of significantly different countries. The USA and Canada
are so developed that are really independent. Mexico, the last country in this group
is in contrast to the previous one much poorer. In results, the North American group
consists of countries which are not following the same economic development pat-
tern. This agrees with the high value of the mean distance of permutation entropy.
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The very manifesting feature of the graph in Fig. 1 is the gap between the first
top lines and the others showing the significant difference between the permutation
entropy time series which coincides with differences in economic development pat-
terns. The gap between the top group and the following one is on average of 0.4 and
is significant considering the evolution of the PE mean distance. It is noticeable that
the lowest line of the second group is the European PE mean distance. Taking into
account that the European countries for the last 60 years are working on integration,
the high level of similarities is not surprising. The lowest line presents the evolution
of the mean PE of the African region. Although, it might be surprising the African
countries are one of the poorest, suffering various economic, social, political and
other problems and as a side effect, one can observe high similarities in development
pattern of this region being the effect of similar difficulties rather than cooperation.

In the CPI time series analysis, only three groups are investigated due to the
limitation on the data. Once again the main globalization factor governing the price
index is the formation of the European Community. Indeed the line representing the
distances among European countries are separated from two others by the gap of
the size 0.6. The highest PE mean distances are observed for the American region
related to the huge differences among countries.

The last set of analysed data—the CO2 emission rate is related to one of the
serious threads of contemporary world [17–20]. Since the CO2 is considered as
one of the leading factors of global warming [20–22]. Therefore a lot effort was
made to reduce the CO2 emission [23–25]. Unfortunately, the reduction is expensive
and despite the general agreement, there are countries which did not accept the
Kyoto agreement. The results obtained by proposed globalization measure are in
fact spectacular. Starting from the top line of Fig. 3, which presents the evolution of
the PE mean distance for the North American countries. Considering the fact that
the USA and Canada are not signatories to the Kyoto agreement and these are highly
industrialized countries, (with very high CO2 emission) the huge gap between this
group and the next one is absolutely understandable. This result seems to be the most
spectacular. The situation is serious because since 2000 the mean PE distance has
been increasing in this region. So, not much, or very little being done in joint action
in the CO2 emission reduction. The second group of lines represents Australia and
Oceania and the South American countries. Although they have signed the Kyoto
agreement, these are countries with serious economic problems and particularly
South American countries are putting much effort in the economy/industry grow.
Therefore, a significant CO2 reduction cannot be expected. The very interesting
case is the Europe region because the European Community strongly introduces
restrictions on CO2 emissions. This effort is well seen in years 1995–2005.

Another quite impressive result is the comparison of the averaged distance
between European and non-European countries for the employment time series (Fig.
4). The averaged Manhattan distance of the permutation entropy for European coun-
tries is on the level 0.1 while for non-European takes the value of 0.35, so three times
greater. Besides that, within the evolution, one can distinguish the periods 2009–
2012, when new members entered EC which resulted in further unification of the
employment market and decrease of permutation entropy distance.
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Conclusions

Summarizing, within the study it was verified if the entropy measure could be used
as a globalization measure. The proposed method was verified on several groups of
data series. The obtained results agree with the stated hypothesis.

Indifference to standard globalization measures pointed out in the introduction, it
is focused on general time series feature rather than on a particular parameter, such
that the proposed measure is universal. The same measure can be applied to various
aspects of human activity giving the opportunity to analyse the globalization process
more objectively.
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Forecasting Subtidal Water Levels
and Currents in Estuaries: Assessment
of Management Scenarios

M. Á. Reyes Merlo, R. Siles-Ajamil and M. Díez-Minguito

Abstract Floods are one of the most harmful extreme events that occur in estuar-
ies, which are induced by tides and freshwater discharges. The Guadalquivir River
Estuary (SW Spain) has experienced multiple flooding events in recent decades.
High-resolution time series from a long-term monitoring campaign were analyzed
to assess the impacts of subtidal water levels and currents in this estuary. An autore-
gressive approach, which is considered as the nonstationarity of the freshwater dis-
charge, indicated that water levels were well described by the linear superposition
of levels induced by tides and freshwater discharge, whereas a nonlinear relation-
ship between both tides and freshwater discharge reproduced the subtidal currents
better. The obtained relationships were used to assess, on a medium-term basis, the
effects of the expected 15% reduction in freshwater discharges and the planned 23%
deepening of the navigation channel. The comparison among the results from four
different scenarios based on these modifications and the present conditions of the
estuary revealed that (1) subtidal levels will decrease when the freshwater input is
reduced and (2) subtidal levels will be more harmful during extreme events due to
channel deepening.

Keywords Guadalquivir estuary · Flood risk · Tides · River discharge ·
Management

Introduction

Estuaries are transition environments between the river and the sea whose dynamics
are influenced by tides, waves, and fluvial processes [1], among others. These envi-
ronments host ecosystems for a wide range of life forms are the economic foundation
of many coastal nations and are the waterway between land and open sea.
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In the near future, human involvement and thus, social conflicts are expected
to increase in estuaries. This activity includes increased demands on freshwater
use, reclamation of marshes, use of soils, and increase in water depths to allow
the navigation of larger ships. Consequently, reductions in freshwater inputs and
increased flooding risks are expected in estuaries.

A prototypical estuary for environmental and human conflicts is the Guadalquivir
River estuary (GRE) [2]. The GRE, which is in the southwest of the Iberian Penin-
sula and flows into the Gulf of Cádiz, is normally subjected to low river discharges.
The estuary comprises the last 110 km of the Guadalquivir River, where the first
90 km are navigable. The river has a total length of 680 km and a drainage basin of
63,822 km2. Between themid-nineteenth and twentieth centuries, themost important
interventions, particularly at the margins, were executed in the GRE. The river was
extensively dammed, marshes were occupied, and the course of the estuary was dras-
tically shortened and channelized. Currently, 1.7 million people inhabit the estuary
and its surroundings with the people spread over 90 settlements. In the southern part
of Spain, where the management is extremely harsh due to the interaction of numer-
ous conflicting stakeholders, the GRE is one of the most important socioeconomic
areas. Intensive farming and paddy cultivation, commercial navigation, fisheries and
aquaculture, salterns, the Doana National Park, and urban development and associ-
ated infrastructures, with an extensive road network and irrigation channels, are the
main uses and elements in the estuary.

The recent plan of the Port Authority of Seville to deepen the channel triggered
social alarm and created the need for a comprehensive assessment of its potential
consequences on physical and ecological dynamics [2, 3]. The amplification in the
tidal range is one of the consequences to the deepening ad narrowing of the channel
(e.g., as has occurred in other estuaries such as those of the Delaware and Ems rivers
[4, 5]). This shift in the tidal motion will lead to a relative increase in high water
and a decrease in low water levels and with respects to the former, may improve the
navigation conditions. However, this shift may enhance flood risks, lead to a lowering
of the groundwater table, increase the suspended sediment matter concentration, and
increase salinity intrusion farther upstream (e.g., [6–9]). As a consequence of losing
intertidal areas, ongoing deepening may favor flood dominance, while the river’s
flushing capacity decreases [10]. An increase in tidal currents yields an increase in
the suspended sediment concentrations, which in turn reduce the effective hydraulic
drag, further increasing the tidal range [11]. This nonlinear feedback between the
flow and suspended sediment concentrations cannot be captured with common linear
models [12].

Accordingly, the present study addresses the main estuarine processes with the
aims to forecast the effects of the expected decrease in the freshwater discharge and
the deepening of the navigation channel on the subtidal water levels and currents.
Two major estuarine forcings are considered for the simulations: tidal motion and
freshwater discharge. Tidal motion is reproduced fairly well with deterministic tidal
propagation models. Regarding the freshwater discharges, this work applies a non-
stationary statistical approach to represent its stochastic nature. The predictions are
performed with common regression models by means of Monte Carlo simulations
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inspired in the previous works of [8, 13]. The following four specific scenarios are
considered: (S1) reference scenario in which freshwater discharge and water depth
remain unchanged; (S2) decrease in freshwater inputs, with unchanged water depths;
(S3) increase in water depth as a consequence of dredging, whereas the freshwater
discharge regime remains unchanged; and (S4) decrease in freshwater discharge and
increase of water depth.

The nonstationary statistical approach to account for the river discharge is
described in section “River Discharge: Nonstationary Modeling”. Discharge and
tides were used to predict subtidal water levels and currents for different man-
agement scenarios by means of Monte Carlo simulations. Both the scenarios and
the implemented regression models are explained in section “Regression Models
& Management Scenarios Simulations”, which includes a short-term analysis for
subtidal elevations as a consequence of a real-caseflooding situation. Themain attain-
ments of this work are summarized in section “Final Remarks and
Conclusions”.

River Discharge: Nonstationary Modeling

This characterization aimed to obtain the marginal distribution that best represented
the river discharge behavior in theGuadalquivir estuary. This distributionwas used to
simulate a long-term series of the variable, including its noticeable seasonality. After
at stationary analysis (section “Stationary Modeling”), the nonstationary approach
developed in [14] was applied (section “Nonstationary Modeling”).

Stationary Modeling

Usual and mixture models for the marginal distribution of the river discharge are
implemented. The usual distributions were the exponential (EX), lognormal (LN),
Weibull (WB), and gamma (GM). Mixture models are intended to incorporate the
central and extreme populations into a single model. In these models, the central
regime is a truncated distribution, where the upper and lower tails are represented by
means of generalized Pareto distribution (GPD). The resulting distributions for anal-
ysis are the LN-GPD and the WB-GPD [15]. The parameters of the mixture models
are estimated by maximum likelihood. The Kolmogorov–Smirnov test, at a 5% sig-
nificance level assessed the goodness of fit. To avoid numerical inconsistencies with
null discharge (4% of the data) and considering the precision of the measurements
(10−2), the time series is uniformly completed with values between 5 × 10−3 and
1 × 10−2 m3/s.

Figure 1 (left panel) shows the empirical, as well as the modeled cumulative
distribution function (cdf) of the river discharge. According to the test, the best fit
corresponded to the LN distribution. Figure 1 (right panel) shows the cdf of the LN-
GPD and WB-GPD, and the LN-GPD was the better distribution. Comparing the
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Fig. 1 Cumulative distribution function (cdf) for the river discharge with the usual models (left
panel) and the mixture models (right panel) described in section “Stationary Modeling”

best distributions of usual and mixture model, the LN and LN-GPD, respectively,
the latter model improved the fit, especially in the tails. Nevertheless, none of the
models could capture the trend for low freshwater discharges. The poor fit with usual
models and the strong seasonality observed in river discharge justified the use of
nonstationary distributions.

Nonstationary Modeling

The nonstationary distribution that best fit the data was the LN-GPD-NE, which
included the seasonality in the parameters of the distribution using a Fourier time
series. For the discharges in the Guadalquivir, the model with the minimumBayesian
information criterion had an order of approximation for the Fourier series in the
parameters (μLN ,σLN , ξ2), of (4, 2 ,2). The pdf and cdf considering the seasonality
in the parameters of the distributionwere alsomodeled too (Fig. 2). The improvement
in the fit with respect to a stationary distribution was noticeable.

Fig. 2 Pdf (left panel) and cdf (right panel)with theLN-GPDandLN-GPD-NEdistributions. Labels
Q1 and Q2 are for discharge values that correspond to ∼33% and ∼80% quantiles, respectively
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Fig. 3 Iso-probability quantiles for non-exceeding probability (right numbers) equal to 0.05, 0.1,
0.25, 0.5, 0.75, 0.9, 0.99, and 0.999 for empirical (black) data and the LGN-GPD-NE (orange)
model

Figure 3 shows the quantiles that corresponded to the empirical accumulated
probability values and those obtained when the LGN-GPD-NE was modeled. A
moving window of one month was used to obtain the empirical quantiles. The lower
most part of the tail was not well reproduced for quantiles ≤0.1 (∼10 m3/s). The
reason was that the system was highly regulated, and further considerations should
be performed to overcome this situation. Nevertheless, the other quantiles were well
reproduced. Thus, this model was selected when performing the simulations in the
other sections.

To gain insight into the dynamic effect of different river flow values on subtidal
water levels, currents, and into the salinity distribution, two river flows Q1 and Q2 that
corresponded, to ∼33% and ∼80% quantiles (right panel of Fig. 3) were selected.
For these flows, by means of a one-dimensional model for tidal propagation and
salinity distribution [9], the subtidal levels and currents and the subtidal distribution
of salinity were determined. As shown in Fig. 4, the higher freshwater flow, Q2,
induced higher currents and residual levels at all locations along the main channel,
especially upstream. It is noteworthy that residual levels exceeded 2 m at the head
of the estuary. River flows and saline intrusion followed an inverse relationship. The
discharge of Q2 = 150 m3/s almost completely moved the salt intrusion (defined as
the kilometric point with 2 psu) to the mouth. The more usual flow of Q2 = 30 m3/s
maintained the intrusion at approximately 70 km.
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Fig. 4 Subtidal water levels (left panel), currents (central panel), and salinity distributions (right
panel) for the discharge values Q1 = 30 m3/s (orange curves) and Q2 = 150 m3/s (blue curves)
along the main channel from the estuary mouth (km 0)

Regression Models & Management Scenarios Simulations

Regression Models

Three regression models were applied and compared. The regression models corre-
sponded to those detailed in the following: [16] (linear superposition of river dis-
charge Qd and tidal range H ) [17] (accounts for nonlinear interaction between Qd

and H ) and mixed partial combination of both).
A regression analysis was carried out for the Guadalquivir estuary. Values were

averaged subtidally for a time step of 25 h. Only the currents projected along the
channel were fitted. In [16], a linear combination of tidal contribution (tidal range)
and water level variation due to river discharge was used.

ηG = sGη,1H + sGη,2Qd + sGη,3 ,
uG = sGu,1H + sGu,2Qd + sGu,3 .

(1)

This regression was applied to all the tidal gauges and current meters installed
in the Guadalquivir using the local tidal range and the Qd realized from the Alcalá
del Río Dam. Water level and current observations were recorded between 2008 and
2011 by eight tidal gauges, βi , and six current meters, αi , located at different stations
along the main channel [3]. In [17], the following regression (nonlinear scaling) was
used:

ηK = sKη,1H
2
0 Q

−4/3
d + sKη,2Q

2/3
d + sKη,3 ,

uK = sKu,1H
2
0 Q

−4/3
d + sKu,2Q

2/3
d + sKu,3 ,

(2)

where sGη,k and s
K
η,k in Eqs. 1 and 2 are the fitted coefficients, and H0 is the tidal range

(station β0). The variables are referred in the same time step.
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In these expressions, the exponents correspond to the cited authors. The following
expressions, designed as mixed, were proposed to combine both models without
indiscriminately increasing the number of parameters:

ηM = sMη,1H + sMη,2Qd + sMη,3 + sMη,4H
sMη,5Q

sMη,6
d ,

uM = sMu,1H + sMu,2Qd + sMu,3 + sMu,4H
sMu,5Q

sMu,6
d .

(3)

Thismixturemodelwas intended tofind consistent exponents in the nonlinear term
that best represented the GRE. The model performance Sk and correlation coefficient
R were the fitted parameters. Figure 5 shows the observed and the predicted subtidal
elevations for instruments βS , β5, β1, and β0. The figure also shows the observed and
the predicted subtidal currents for instruments α5 and α0.

Overall, the models reproduced the best signal at the landward-most stations.
The fit coefficients with Godin and Kukulka formulation were the same order of
magnitude among instruments, e.g., sGη,1 for is ∼10−1. This consistency was not
observed in the mixed model. The results suggested that despite the improvement in
model performance with the mixed model, the understanding of the dynamics from
a global point of view was lost. For the sake of simplicity (parsimony principle), the
interpretations were performed with the first two models.

The best fit for the elevations was achieved with themodel in [16] andmixedmod-
els. Focusing on the former and according to the coefficients, with low discharges,
the dynamic behavior of the subtidal elevation in the GRE was mostly controlled
by the astronomical tidal range. With discharges of approximately around 400 m3/s
and higher, the situation changed. In this case, the results are in agreement with [10],
where the subtidal elevations are linearly related to the freshwater discharge. The
fit of [17] seemed to be not adequate with small discharges. Since no linear term
occurred with the tidal range, the subtidal behavior for the elevations could not be
reproduced: important spring–neap variations were dumped by the term H 2

0 /Q
3/4.

In addition, note that the model considered the tidal range at the mouth, not locally,
which also affected the goodness of fit.

The pdf and cdf for instruments β6 and β0 are depicted in Fig. 6.When plotting the
probability density and cumulative distribution functions with the observations and
the models as shown in Fig. 6, we found that the upper tails were better reproduced
than the lower tails. This fact must be considered when evaluating the results of our
simulations, for example, if we intend to assess the navigability of the channel.

In an attempt to improve thefit for the low regime, theMarkovChain techniquewas
considered in the regression analysis with [16, 17] and the mixed formulation. The
values of the new coefficients, which are not included, presented the same features
as those explained before, with the historic or pasttime term the most important. The
calibration improved, but the validation was almost the same (values and figure not
included).

Although the performance was slightly lower than that without the Markov Chain
(∼10−2), in the validation, the overall performancewas similar. The proposed regres-
sion models did not significantly improve the fit. The high subtidal elevations and
currents time step (25 h), which possibly attenuated or included the past effect, could
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Fig. 5 Panels a and f : Calibration and validation at βS and β0, respectively, of [16] (green circles),
[17] (orange triangles) and mixed model (purple dots) regression formulae against subtidal water
level obtained from observations (black curve). Panels b and c: Fit of these models for water levels
at β5 and β1, respectively. Panels d and e: Fit of these models for subtidal currents at α5 and α0,
respectively. Insets zoom into rectangle areas. Symbols are indications of greater than the 95% error
confidence interval

explain this fact. In addition, the results were improved by changing the way to con-
sider the inertia or the variables of the models, such as including the wind and other
lateral effects as a secondary circulation. Regardless, from this point, the Markov
Chain was not considered with subtidal elevations and currents.
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Fig. 6 Pdf and cdf for subtidal elevations at β6 (first row) and β0 (second row) for the observed
data (black color),[16] (green line), [17] (orange line) and mixed model (purple line)

Management Scenario Simulations

The proposed regression models were used to assess the effects of different scenarios
in the subtidal water levels, from short- to mid- temporal scales. The mid-term simu-
lations considered four different scenarios, related to the reduction in the freshwater
discharge and the increase in the water depth after a dredging intervention. The short-
term simulation assessed the variation in the subtidal level after a peak discharge,
supposing both the present state of the system and the response, to the same forcing,
after the dredging intervention. The coefficients of the regression models were kept
fixed during the simulations.

Mid-termSimulations Subtidal water levels depend on the freshwater discharge and
the astronomical tidal range. For the different scenarios, 50 simulationswere run, each
with a 25 years duration. The river discharges were stochastically simulated with the
Monte Carlo method using the nonstationary distribution. A simple one-dimensional
tidal model [18] assessed the changes induced by the dredging intervention (rise in
the water depth). In this model, friction and the other parameters were supposed to
remain as in the present situation. Thus, the shift in the tidal motion was applied by
changing the amplitude and phase of the semidiurnal component M2.

The considered scenarios were as follows:

– S1: Similar discharge (Qd ) distribution with the current water depth (h), (∼Qd ,
∼h).

– S2: Decrease in the freshwater discharge by 15%, according to [19]; the water
depth did not change (↓ Qd , ∼h).
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Fig. 7 Pdf (first row) and cdf (second row) for subtidal elevations at βS for the calibration and
validation period (black line) and scenarios S1 (red), S2 (orange), S3 (blue), and S4 (green) for the
regression models. In [17] (second column), S1 overlaps S3, and S2 does the same with S4

– S3: Increase in the water depth, from 7 to 8.5 m, according to the Port Authority
of Seville; the freshwater regime did not change (∼Qd , ↑h).

– S4: Combination of S2 and S3 (↓ Qd ,↑h).
Figure 7 depicts the pdf and cdf at βS with the different models.
Themodel in [16] and themixedmodel, despite different values, presented similar

behavior (Fig. 7 panels a-c, d-f). As expected with these models, for the S1 (red line)
the observed values (black line) at this instrument were better reproduced than those
with the model in [17]. With this formulation, S1 overlapped S3, and S2 and S4
overlapped. The reason for this result was that the authors built their model with the
astronomical tidal range at the mouth station. Since the one-dimensional tidal model
fixed the harmonics in the mouth after the dredging, the model in [17] could only
capture the variation in the freshwater regime. In all scenarios with all models except
with themixedmodel, subtidal water level distributions did not havemarked changes
in the dispersion and behavior of the tails in comparison to those of the simulation
of the present state S1.

Figure 8 displays the mean values of the subtidal levels for each scenario with
the regression models. Comparing the scenarios with the current simulated situation
of S1, we observed that the subtidal levels decreased when the freshwater input was
reduced (S2), and increased as a response to deepening the navigation channel (S3).
The mixed scenario (S4) values were between those of S2 and S3. According to the
proposed values for S4 and in comparison to those for S1, it was possible to locate
where the subtidal elevations decreased (lower stretch) or increased (upper stretch).

Short-Term Simulations In this section, the effects of flooding were assessed on
the subtidal water levels. The purpose was twofold: first, to show that the presented
regression models could be used as an early warning system, since managers can
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Fig. 9 River discharge
(upper panel) and observed
(black) and modeled
(orange) subtidal elevations
at β0 (middle panel) and βS
(lower panel)

control the river discharge released by the dam and second, to evaluate the response
of the estuary against a flood with or without the dredging intervention. The model
in [16] was used in this section.

The first step was to test the model against a high discharge with as many instru-
ments as possible. The high discharge corresponded to the discharges of April 2008
with a peak value of 550 m3/s. The global coefficient of determination R2, was 0.67,
using all the stations. The second step was to explore the along-estuary response with
a higher discharge. The selected period corresponded to the winter of 2009/2010,
as depicted in Fig. 9. Only β0 and βS recorded the elevations. In this case, the fit
improved, with a global R2 of 0.81. Finally, we focused on a second period with
a high discharge, from February 15 to March 13, 2010. The recorded subtidal ele-
vations at βS were higher than 0.4 m. The performance of the observations and the
predictions showed an R2 = 0.87. Thus, the regression model could fairly predict the
subtidal elevations in flooding. From a management point of view and delimiting,
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beforehand, the value of the discharge, the model can be used to develop a plan of
action against flooding in the riverine communities 25 h in advance.

We chose this latter discharge to fulfill the short-term analysis. For this analysis,
the objective was the assessment of what would have happened if the depth of the
navigational channel had been deeper. In this case, modifying the harmonics was
used to introduce the shift, the differences in the subtidal elevations between the
current situation and the increased depth scenario were plotted, and the situation
worsens in terms of safety upstream, from pk 35 to the weir. Note this case was
a subtidal assessment of 25 h. Most likely, the results after accounting for higher
frequency motions (discharge regarded as a ‘bore’) would be more adverse.

Final Remarks and Conclusions

Linear and nonlinear regression models were applied to characterize subtidal water
levels and currents, based on tidal motion and freshwater discharge variables.

whereas tidal motion was reproduced with deterministic models, the seasonality
of the freshwater discharge in the Guadalquivir was characterized by a nonstationary
mixture distribution model, with a lognormal distribution for the central regime and
a generalized Pareto distribution for both upper and lower tails. Though the lower
most part of the discharge distribution was not captured due to the regulation of the
dam, quantiles greater than 0.1 were well reproduced.

The best fit for elevations in the Guadalquivir estuary corresponded to a linear
superposition of tidal range and discharge, while the best fit for currents included
nonlinear interaction. The regression models captured the elevations better than they
captured the currents. The elevation signal was best reproduced at the landward-most
stations. An analysis of the subtidal level distribution revealed that the upper tails
were better modeled than the lower tails, which is a relevant fact when assessing
the navigability in the channel. Markov Chain processes were analyzed, but not
considered in the simulations, because although the performance of the calibration
notably improved with the Markov process, the validation remained the same.

The obtained relationshipswere used to predict on amedium-termbasis the effects
of a freshwater discharge decrease by 15% for the next years and the deepening of
the navigation channel by increasing the water depth 23%. Monte Carlo techniques,
with regression models, were used for subtidal water level simulations. During the
simulations, the coefficients that related the processes within the models were fixed.
The shifts associated with the forcings were introduced in their distribution. A new
nonstationary distribution was computed for the reduction in freshwater discharge.
The shifts associated with the deepening were introduced by changing the ampli-
tude and phase of the semidiurnal component M2 through a one-dimensional tidal
model. Considering the subtidal elevation simulations, the comparison between the
present conditions and the scenarios revealed that subtidal levels decreased when
the freshwater input was reduced and increased as a consequence of deepening the
channel. A short-term scenario was studied to assess the response of the system in
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the case of flooding. According to the results, the increase in the subtidal elevations
was the most significant from 35 km upstream to the dam. Overall, these simulations
contribute to a better understanding of the subtidal water level distributions with tidal
motion and freshwater discharge.
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Spatial Distribution of Climatic Cycles
in Andalusia (Southern Spain)

J. Sánchez-Morales, E. Pardo-Igúzquiza and F. J. Rodríguez-Tovar

Abstract Several climatic cycles inAndalusia (southern Spain) have been identified
by using precipitation and temperature data from most of the twentieth and the early
twenty-first centuries at 707 meteorological stations. Some of the cycles detected
had been recognized in previous studies, such as the 3-year cycle and the 7/8-year
cycle, which were the most common periodicities across the study area. Spectral
analysis was used for statistical analysis. The power spectrum estimator used is the
smoothed Lomb–Scargle periodogram. The results reveal very interesting spatial
patterns that had not been seen before in previous climatic studies, which illustrate a
combined and complex influence of the North Atlantic Oscillation and the Mediter-
ranean Oscillation. In general, the precipitation record studied presents better results
than the temperature record, which offers less clarity in assessing climatic variability
in Andalusia. Nevertheless, most of the cycles identified in the precipitation record
were detected in the temperature record as well.
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Introduction

Andalusia (southern Spain) is a region characterized by huge climatic contrasts, i.e.
the ‘Sierra de Grazalema’ in the southwest is the wettest place on the entire Iberian
Peninsula with average rainfall of over 2000 mm/year, whereas the ‘Desierto de
Tabernas’ in the southeast is considered the driest place in Continental Europe with
less than 150 mm/year on average. The influence of both the Atlantic Ocean and
the Mediterranean Sea on this area of 87,597 km2, plus the presence of the Betic
Cordillera with altitudes above 3000m.s.l. (metres above sea level), make this region
unique from a climatic point of view and very interesting for analysing the evolution
of climate from past to present times, especially during themost recent periods. Thus,
Andalusia could be seen as a natural laboratory for the study of climatic changes from
past to present.

Climatic studies from the region of Andalusia are frequent and focus on a variety
of aspects. Thus, several statistical techniques and methodologies have been used,
i.e. principal component analysis [1], empirical orthogonal function [2], innovative
missing values estimator [3], non-instrumental climate reconstruction [4], and grid-
ded dataset and combined indices evolution [5], amongst many others.

The causes of climate variability in Andalusia at annual, inter-annual, decadal and
multi-decadal timescales are generally associated with diverse phenomena, involv-
ing several climatic subsystems, revealing the interactions between the atmosphere
and ocean [1–5]. In some cases, a cyclic pattern in climatic variability has been
interpreted. The identification of climatic cycles in Andalusia by means of spectral
analysis has been carried out in previous studies although themethod differed accord-
ing to the specific study [6, 7]. On this basis, this study examines climatic evolution
during the twentieth and twenty-first centuries in Andalusia, based on the spectral
analysis of data from different climatic proxies, in order to evaluate the cyclic nature
of the said evolution and to interpret the processes involved.

Methodology

This study uses spectral analysis as a statistical technique to evaluate the impor-
tance of the frequencies associated with precipitation and temperature time series in
Andalusia (seemeteorological datasets below). The power spectrumestimator used is
the smoothed Lomb–Scargle periodogram [8–10], which works directly with uneven
time series, such as the annual precipitation and/or annual temperature series in the
study area. The technique evaluates the statistical significance of the peaks using
theMonte Carlo permutation test, as neighbouring frequencies are highly correlated,
and then it adjusts statistical significance by smoothing the periodogram [10]. Linear
smoothing with three terms was applied to the raw periodogram. The output consists
of the Lomb–Scargle spectrum, the achieved confidence level spectrum, the mean
spectrum of permutations and the phase spectrum.
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Fig. 1 Example of the power spectrum for annual precipitation at station P6289, and associated
peaks of 9.1, 6.5 and 3.4 years above Achieved Confidence Level (ACL) of 90%, by using the
smoothed Lomb–Scargle periodogram

The parameters required have been optimized for dealing with the annual pre-
cipitation and/or temperature time series in the study area, and for achieving the
intended goal of capturing climatic cycles with a duration just above the sampling
interval (i.e. biannual oscillation). Thus, 0.5 has been used as the highest frequency
to evaluate, 200 as the number of frequencies in the interval, 2000 as the number
of permutations, 75,654 as the random seed, 3 as the number of smoothing terms
and linear smoothing was enabled. To illustrate the above process, the output of this
methodology from one of the precipitation stations is presented below (Fig. 1).

Meteorological Datasets

The precipitation and temperature data were collected from two different sources
and named chguadalquivir [11] and aemet [12]. The sources differ from each other
with regard to the sampling interval; datasets from chguadalquivir were available
monthly and covered the period from 1951 to 1987, whereas datasets from aemet
were available daily and covered the period from 1901 to 2012. There were 1574
precipitation station and526 temperature stationdatasets fromchguadalquivir, spread
across the entire study area. Therewere 595 precipitation station and 282 temperature
station datasets from aemet, all located in the eastern half of the study area.

For a better comparison, all the datasets have been converted into annual datasets.
As a first step, the daily datasetswere summarized intomonthly datasets; onlymonths
with a minimum of 25 days of precipitation measurements and/or a minimum of
20 days of temperature measurements were considered. Then, to convert the monthly
datasets into annual datasets, only complete years and/or years that had 12 months
of measurements were used. A second level of filtering was also carried out in which
precipitation stations with less than a total of 20 years of records and temperature
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Fig. 2 Distribution of the meteorological stations selected for the spectral analysis

stations with less than a total 10 years of records were excluded from the analysis. It
was not a requirement for that the total amount of yearswith records to be consecutive,
as this spectral analysis methodology can deal with uneven series. Upon combining
the two data sources, a comparison method was established to see which one had
more years of information for the same station, as various stations were in both data
sources. If the length of the series in years was the same in both sources, preference
was given to the dataset from aemet, which was originally compiled daily.

The filtering process produced 547 precipitation stations and 160 temperature
stations: a total of 707 meteorological datasets to be analysed (Fig. 2).

Results

The spectral analysis carried out on the 707 datasets detected 1751 significant peaks
in the precipitation datasets (Fig. 3) and 466 significant peaks in the temperature
datasets (Fig. 4), all above or equal to 90% of ACL. All the cycles detected for the
same meteorological variable have been plotted in the same diagram.

The number of cycles detected is lower in the temperature record than in the
precipitation record, but it is very remarkable that both temperature and precipitation
variables show signals at the same frequencies. The 3-year cycle and the 7/8-year
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Fig. 3 Diagram containing all the precipitation cycles in the study area and the number of stations
in which the cycles were detected (yellow triangles represent the value of the cycle in years)
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Fig. 4 Diagram containing all the temperature cycles in the study area and the number of stations
in which the cycles were detected (yellow triangles represent the value of the cycle in years)

cycle were the most frequently detected, and show the highest significance. Thus, a
detailed analysis of cycles at both 3 years and 7/8 years has been conducted.

All precipitation (344) and temperature (28) stations showing peaks between
frequency values of 0.4 (2.5 years) and 0.29 (3.5 years) have been collected and
plotted on a map to see their spatial distribution (Fig. 5). The same output has been
conducted for the 7/8-year cycle by isolating all peaks between 0.154 (6.5 years) and
0.118 (8.5 years), 223 precipitation stations and 23 temperature stations (Fig. 6).

Overall (Figs. 5 and 6), the spatial distribution of temperature observed does not
show any geographical predominance of one cycle over the other, as opposed to
the maps showing the precipitation cycles observed, where a general trend can be
inferred. In the latter, there are more 3-year cycles in the east and more 7/8-year
cycles in the west. The two cycles have been combined into one map by using all the
precipitation stations in which the two cycles were detected together (Fig. 7). This
process was based on a preliminary selection of stations in which at least one of the
two cycles must be present at each station; if both cycles were detected in the same
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Fig. 5 Spatial distribution of all precipitation and temperature stations in which the 3-year cycle
was detected (crosses in blue for precipitation and red for temperature) above 90% of ACL, and all
the other stations used for the analysis (points in grey)

Fig. 6 Spatial distribution of all precipitation and temperature stations in which the 7/8-year cycle
was detected (crosses in blue for precipitation and red for temperature) above 90% of ACL, and all
the other stations used for the analysis (points in grey)
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Fig. 7 Spatial interpolation on 423 precipitation stations showing the geographical influence in
Andalusia on the 3-year cycle and the 7/8 year cycle. Values from 2.50 to 8.50 in years

station, the cycle with more power spectrum was the one counted for that station.
Thus, 423 precipitation stations resulting from the aforementioned conditions have
been analysed. About 261 precipitation stations show a predominance of the 3-year
cycle and 162 precipitation stations show a predominance of the 7/8-year cycle. This
process was followed by an interpolation process in which the ‘Inverse Distance
Weighting’ technique was applied. The parameters were ‘2’ for the power and ‘5’
for the maximum number of neighbours.

Interpretation

The causes of climate variability in Andalusia from annual to multi-decadal
timescales have generally been associated with Atlantic Ocean phenomena: large
scale circulation features of Western Europe and the Atlantic Ocean [1], alterna-
tion of zonal circulation and meridional circulation in the Atlantic that shifts the
Azores High [2], persistency and displacement of the Azores High [3], and changes
in North Atlantic Oscillation (NAO) phases [4]. However, Eastern Andalusia is less
influenced by Atlantic air masses and climate variability there is also influenced by
Mediterranean Sea dynamics [5].

Previous studies applying spectral analysis to climatic datasets reveal cyclic cli-
matic variability in the range of 2–250 years, but mainly located in the range of
2–11 years. Thus, a study on rainfall variability in Southern Spain [6] found peaks
above 95% significance at 2.1, 3.5, 7–9, 16.7 and 250 years, and a previous study on
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hydraulic heads across the Vega de Granada aquifer [7] found a decadal cycle (peaks
between 8 and 11 years) and a 3.2-year cycle, amongst others.

The power spectrum has been estimated for both North Atlantic Oscillation and
MediterraneanOscillation indexes (MOI) (Figs. 8 and 9). TheNAO index is available
at a daily resolution [14] from1950 to 2017. TheMOI has two versions [15], ‘Algiers-
Cairo’ (MOAC) and ‘Israel-Gibraltar’ (MOIG), both from 1948 to 2016 at daily
resolution. The NAO and MOIG indexes have been analysed by using annual series.

The NAO index has significant periodicities at 50, 13.7, 2.7, 2.5 and 2.1 years,
and the MOIG index at 7.8, 6.5, 4.1, 3.4, 2.4 and 2.1 years, all above 90% of ACL.

A second exercise has been conducted to assess the correlation between all the
monthly series from the 707 stations (547 precipitation stations and 160 tempera-
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Fig. 8 Power spectrum of the NAO index using annual records derived from the original dataset,
and associated peaks of 50, 13.7, 2.7, 2.5 and 2.1 years above ACL of 90%, by using the smoothed
Lomb–Scargle periodogram
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Fig. 9 Power spectrum of the MOIG index using annual records derived from the original dataset,
and associated peaks of 7.8, 6.5, 4.1, 3.4, 2.4 and 2.1 years above ACL of 90%, by using the
smoothed Lomb–Scargle periodogram
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ture stations) and the NAO and MO indexes. The geographical influence of both
oscillations has been assessed (Figs. 10, 11, 12 and 13). The NAO correlation for
precipitation (Fig. 10) is low; it tends to be more negative towards the west (−0.343)
and zero or slightly positive towards the east (0.067). The NAO and temperature
correlation (Fig. 11) is less clear, with values between−0.214 and 0.240. TheMOIG
and precipitation correlation (Fig. 12) is greater in value (from−0.16 to−0.76) than
that of the NAO and is always negative; it shows a pattern of being more negative
towards the west (−0.753) and less negative towards the east (−0.240). The cor-
relation between MOIG and temperature (Fig. 13) is always positive, with values
between 0.386 and 0.643, and it is equally distributed across the study area.

Themost significant frequencies associatedwith both theNAOandMOIG indexes
have been combined, as have the power spectra frequencies detected above 90% of
ACL (Figs. 14 and 15). Certain precipitation and temperature frequency valuesmatch
some of the frequencies associated with NAO and MOIG quite well.

Particularly interesting are the precipitation cycles that correspond to the MOIG
cycles of 3.4, 6.5 and 7.8 years, and to the NAO cycles of 2.1, 2.7, 14.3 and 50 years.
The match between the temperature cycles recorded and the NAO and MOIG cycles
is less clear than the precipitation comparison.

Other cycles detected in the study area, whichwere also above 90% ofACL, could
be tentatively associated with other climatic phenomena (Table 1; [13] for a review).

Fig. 10 Correlation coefficients between the NAO index monthly values (1950–2017) and the
monthly values of the 547 precipitation stations. The rectangles represent the average value for that
particular area
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Fig. 11 Correlation coefficients between the NAO index monthly values (1950–2017) and the
monthly values of the 160 temperature stations. The rectangles represent the average value for that
particular area

Fig. 12 Correlation coefficients between the MOIG index monthly values (1948–2016) and the
monthly values of the 547 precipitation stations. The rectangles represent the average value for that
particular area
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Fig. 13 Correlation coefficients between the MOIG index monthly values (1948–2016) and the
monthly values of the 160 temperature stations. The rectangles represent the average value for that
particular area
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Fig. 14 Histogram of frequencies detected aboveACL 90% from all precipitation stations, together
with the most significant frequencies of the NAO and MOIG indexes

Conclusions

Spectral analysis of precipitation and temperature time series from a considerable
number of meteorological stations (707 locations) distributed across southern Spain
in the regionofAndalusia has allowed for the characterization of the spatial variability
of the two most frequent cycles in the study region: a 7/8-year cycle and a 3-year
cycle. The length of time over which data was collected at the stations analysed was
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Fig. 15 Histogram of frequencies detected above ACL 90% from all temperature stations, together
with the most significant frequencies of the NAO and MOIG indexes

Table 1 Tentative correlation between the other cycles detected above 90% ACL and other well
known cycles, including the number of precipitation (P) and temperature (T) stations where the said
cycles were detected

Cycle value in years Cycle P T

10/11 Sunspot cycles of 11 years 84 17

17 Southern Oscillation Index (SOI) 17 16

19 Lunisolar cycle 19 14

20–25 Hale cycle 51 49

relatively short (in most cases less than 50 years, but always more than 20 years for
precipitation and 10 years for temperature) and therefore the focus of this research
has been the high-frequency cycles. Many other periodicities greater than 10 years
have been found with an ACL higher than 90%, but they are less abundant. Initially,
it was thought that the western part of the study area might be more influenced by
the climatic activity derived from the North Atlantic Oscillation (NAO), manifesting
as a cycle in the range from 7 to 8 years. On the other hand, the eastern part of the
study area was hypothesized to be more influenced by the Mediterranean Oscillation
(MO), represented by a 3-year cycle. However, the correlation values calculated
across the study area between the meteorological variables on the one hand, and the
NAO andMOIG indexes on the other, plus the spectral analysis conducted, show that
the Mediterranean Oscillation may play a greater role in the region than the North
Atlantic Oscillation. Thus, the 7/8-year cyclemay correspond to the 6.5- and 7.8-year
cycles detected in the MOIG index, and the 3-year cycle may be associated with the
3.4-year cycle detected in the MOIG index, and with the 2.7- and 2.5-year cycles
detected in the NAO index. The explanation of how these two climatic phenomena
interact with one another is outside the scope of this paper and more research is
needed. Nevertheless, these results can help meteorologists and climatologists to
better understand how weather and climate work in the southern Iberian Peninsula.
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Localized Online Weather Predictions
with Overnight Adaption

Michael Zauner, Michaela Killian and Martin Kozek

Abstract This paper extends the results presented in a conference paper showcas-
ing an approach for online forecasting of ambient temperature and solar irradiation.
The proposed method creates a localized prediction with an improvement over the
available weather predictions ranging from 52 to 92% in ambient temperature fore-
cast and 8–42% for solar irradiation forecast. This localized forecast can be used for
improved predictions in smart homes or PV power plants for a more efficient oper-
ation. A new method for adapting the parameters of the autoregressive model with
external input (ARX) for the solar irradiation over the night is proposed. This allows
the model to be tuned to changing weather conditions without relying on external
inputs.

Keywords Weather prediction · Local optimization · Parametric model

Introduction

With the ever-growing energy demand and the exhaustion of nonrenewable resources
the efficient usage of renewable energy sources (wind, solar, tidal, and biomass) gets
more important [4]. Due to the weather-dependent nature of those renewable energy
sources, it is challenging to balance energy production and consumption in global
electrical grids and in decentralized smart grids with smart consumers (e.g., smart
homes). Therefore, it is vitally important to have accurate forecasting models for
those renewable energy sources [6]. The most important factor influencing solar
power production via PV (photovoltaic) systems is solar irradiation [9], followed
by meteorological parameters like ambient temperature and relative humidity [4].
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Another application where solar irradiation and ambient temperature are important
factors are the heating and cooling tasks of residential buildings [5]. Therefore, a
model predictive controller for an HVAC (heating, ventilation, and air conditioning)
system can not only provide better comfort for the residents but also save energy if
accurate predictions are available.

The well-known modern numerical weather forecasting services (WFS) use dis-
crete cells for simulating weather predictions. The initial conditions for those simu-
lations are gathered by land-based weather stations and satellite images. This results
in poor localized predictions as the forecast is valid for the whole cell. The idea of
this paper is to create a localized weather prediction based on the forecasts of the
WFS and the past and current local sensor data.

The WFS provides information up to several days ahead [9]. The temporal reso-
lution of those WFS predictions is typically limited to 1h. This resolution is usually
not sufficient for the performance of most applications [3]. A common approach
for short-term forecasting is based on sky imaging [2] and time series models
[1, 4, 7, 9].

While predictions based on sky imaging provide good results in the range up to a
fewminutes, they also suffer from drawbacks: the devices are expensive, they require
a lot of maintenance, and predictions are only usable when the cloud cover is not too
high or too low.

The usage of localized sensors and global predictions provided byWFS allows for
more accurate localized predictions and a higher temporal resolution. While many
authors use nonlinear methods like Artificial Neuronal Networks (ANN) [7], Group
Method of Data Handling (GMDH) [4], or Support Vector Machines (SVM) [9] for
forecasting, a linear autoregressive model with exogenous input (ARX) is proposed
in this paper. The advantages of using ARX models over ANN, GMDH, and SVM
are that less parameters have to be optimized and the optimization can be done in
real time. Bacher et al. [1] proposed a similar modeling approach in their work. The
main differences to the proposed work are the usage of a diurnal component and a
clear sky approximation via smoothing kernels. The method proposed in this paper
includes an overnight prediction scheme to accommodate unmeasured changes in
weather conditions.

With the usage of ARX models, the proposed method can learn statistical differ-
ences between local conditions (provided via the sensors) and the WFS predicted
conditions.

This paper extends the contribution of Zauner et al. [10] by providing a more in-
depth overview of the model order selection process, as well as providing a complete
explanation on how the algorithm for generating localized forecasts works. Another
addition is the comparison of the proposed models with a zero-order model, serving
as reference.

The remainderof thepaper is structuredas follows:Section“AmbientTemperature
Forecast” explains themethods and algorithms used for the ambient temperature fore-
cast. Section “Solar Irradiation” highlights the necessary changes for the solar irradi-
ation forecast. Section “Results” briefly explains the simulation setup as well as the
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results of the simulations for ambient temperature forecast and solar irradiation fore-
cast. In the end, section “Conclusion” concludes this paper.

Ambient Temperature Forecast

TheWFS is assumed to provide an ambient temperature prediction for the next 80h.
In the first, 65h hourly prediction values are available. After that the WFS only
provides predictions in 3h intervals. An example of WFS prediction for the ambient
temperature can be seen in Fig. 1.

The WFS prediction is linearly interpolated and a new time series ϑpred(k) with
the uniform sampling time of Ts = 0.25h is constructed, where k = {1, ..., T } with
T being the final time step where predictions are available.

It is assumed that a local weather station is measuring the local ambient temper-
ature ϑamb(k) every 0.25 h. The last n measurements of the local temperature are
saved in the system. At every time step, the vector

xT (k) = [ϑamb(k − n + 1), . . . ,ϑamb(k),ϑWFS(k), . . . ,ϑWFS(k + m − 1)] (1)

is constructed, where ϑWFS(k) is the latest WFS prediction for the current time step
and ϑamb(k) is the current measured ambient temperature. The variables n ∈ N

+ and
m ∈ N

+ represent the order of the denominator and nominator in the resulting ARX
model.

Using theweighted recursive least squares algorithm (WRLS) shown in (2a)–(2c),

0

5

10

15

20

25

◦ C

Ambient temperature prediction ϑWFS by the WFS
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0 24 7248

Fig. 1 Temperature prediction from the WFS. The hourly ambient temperature predictions are
provided for the next 65h and after that in 3h intervals for an additional 15h
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γ(k) = P(k)x(k)
xT (k)P(k)x(k) + λ

, (2a)

θ̂(k + 1) = θ̂(k) + γ(k)[ϑamb(k + 1) − xT (k)θ̂(k)], (2b)

P(k + 1) = 1

λ
[I − γ(k)xT (k)]P(k), (2c)

with P(k) ∈ R
(n+m)×(n+m) being the parameter-covariance matrix, θ̂(k) ∈ R

(n+m)

representing the estimated parameter vector, and γ(k) ∈ R
(n+m) the correction vector.

The scalar value λ ≤ 1 represents the sensitivity of the algorithm to more recent val-
ues. Choosing a λ closer to 1 will increase the weight of past samples that are signifi-
cant to the current parameter estimation.Withλ = 1 theWRLSalgorithmwill behave
like a regular recursive least squares algorithm. Furthermore, I ∈ R

(n+m)×(n+m) is
defined as the unity matrix.

The initial value for the parameter-covariance matrix P is chosen as P(0) = αI
where α � 1. The initial value for θ̂(0) is chosen as a random (n + m) × 1 vector.
The future predictions for the ambient temperature denoted by ϑ̂amb(k| j + 1) where
j + 1 represents any given future time step and k represents the current time step
which are given by (3). Note that j ≥ k and j < T must hold.

ϑ̂amb(k| j + 1) = x̂T
(k| j)θ̂(k), (3)

where

x̂T
(k| j) = [ϑ̃amb(k| j − n + 1), . . . , ϑ̃amb(k| j),ϑWFS( j), . . . ,ϑWFS( j + m − 1)],

(4)
with ϑ̃amb(k|i) being defined as

ϑ̃amb(k|i) =
{

ϑamb(i) if i ≤ k

ϑ̂amb(k|i) else.
(5)

In (4), ϑWFS( j) is the most recent prediction for the time step j . Equation (5) recur-
sively calculates predictions by (3) until only current or pastmeasurements are needed
for the formulation of x̂T in (4).

The predicted future values have to be recalculated after every new measurement
since the parameter vector θ̂(k) is updated in (2b).

Algorithm 1 showcases the calculations needed at every time step k. The input
ϑamb ∈ R

(n+1)×1 are the past and current measurements aligned in such a way that
ϑamb(n) is the latest available measurement. The second input ϑWFS ∈ R

M×1 is the
prediction, where ϑWFS(1) is the prediction for the (k − 1)-th time step (compare
to Eq. (1)). The lines 8–10 implement the WRLS algorithm while the lines 11–15
generate the future predictions over the prediction horizon Np. The returned ϑ̂amb

are the predictions for future time steps.
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Require: ∃ ϑamb ∈ R
(n+1)×1,ϑWFS ∈ R

M×1,λ ∈ R
1×1, Np ∈ R

1×1

Ensure: M ≥ Np + m

1: if � θ̂, P then
2: θ̂ = rand
3: P = α ∗ I
4: else
5: {use previous θ̂, P}
6: end if
7: x = [ϑamb(0 : n − 1),ϑWFS(1 : m)]T
8: γ = Px/(xT Px + λ) {Eq. (2a)}
9: θ̂ = θ̂ + γ[ϑamb(n) − xT θ̂] {Eq. (2b)}
10: P = [I − γxT ]P/λ {Eq. (2c)}
11: for j = 1 to Np do
12: ϑ̃amb = [ϑamb( j : n), ϑ̂amb(max(1, j − n) : j − 1)]
13: x = [ϑ̃amb,ϑWFS( j + 1 : j + m)]T
14: ϑ̂amb( j) = xT θ̂ {Eq. (3)}
15: end for
16: return ϑ̂amb, θ̂, P

Algorithm 1: WRLS prediction

Solar Irradiation

The WFS provides the hourly solar irradiation predictions for the next 43 h.
Because of the diurnal and annual periodicity of the sun, the scheme presented
in section “Ambient Temperature Forecast” cannot be used without modifications.
The absence of measurements during the night does not allow for parameter adap-
tion during the night. This is problematic since the weather conditions could change
drastically overnight.

In a first step, the global horizontal irradiance (GHI), provided by the sensors, is
transformed into the clear sky index. The clear sky index τcs is defined by

G = Gcs · τcs, (6)

whereG is the current global horizontal irradiation (inW/m2) andGcs is the clear sky
global horizontal irradiation (in W/m2). The clear sky index τcs is an indication for
the transmissivity of the atmosphere. The GHI for clear sky conditions is calculated
via the toolbox provided by Sandia National Laboratories [8].

As previously, the vector

xT (k) = [τcs(k − n + 1), . . . , τcs(k), τWFS(k + 1), . . . , τWFS(k + m)] (7)

is created at every time step k = {1, ..., T }, where T is the final time step where
predictions are available and τWFS(k + 1) is the next clear sky index calculated with
the WFS data. It is important to note that the current prediction τWFS(k) is not used,
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instead the next future prediction τWFS(k + 1) is included. This corresponds to a
negative input dead time. The variables n ∈ N

+ and m ∈ N
+ represent again the

order of the denominator and nominator in the resulting ARX model.
During the day, theWRLS algorithm shown in (2a)–(5) can be applied to compute

the predictions for the clear sky index τ̂cs.
During the night, no calculations are possible due to the lack of measurements. In

the morning, new initial values for P and θ̂ are needed since the weather conditions
could have changed significantly overnight.

To calculate the new initial values, the latest predictions from sunrise to sunset
are queried before sunrise and concentrated into the vector τpred. These predictions
are then compared against measured solar irradiation time series of past days in a
database.

Require: ∃ τpred,i ∈ R
1×1, τdatab ∈ R

nd×48

1: normalize τpred to 12h day ⇒ τ̃pred ∈ R
1×48

2: for j = 1 to nd do

3: e j =
√

1
48

∑48
i (τ̃pred,i − τdatab, j,i )2

4: end for
5: sort e j ascending
6: return τdatab, j of [e1, e2, ..., eK ]

Algorithm 2: Find the K most similar solar days

Algorithm 2 showcases an example on how to search a database with nd nor-
malized entries. For a normalized solar day, the time between sunrise and sunset is
defined as 12 h. Therefore, a single normalized solar day consists of 48 entries when
sampled at 15min intervals. Line 3 of the algorithm uses the Euclidean distance to
calculate the similarity, but other distances could be considered too. Algorithm 2
returns the K most similar solar days in the database.

With the usage of the clear sky index and normalizing the solar days to 12 h,
comparisons between the daily solar conditions can be drawn regardless of the time
of the year.

Algorithm3describes the overnight prediction process. The prediction for the next
day and the K most similar solar days from the database along with λ are the inputs.
After normalizing the database entries and initializing P and θ̂, theWRLS algorithm
shown in (2a)–(5) is executed in line 5. In this WRLS algorithm, τWFS = τpred and
τCS = τ̃datab, j according to (7). The overnight prediction algorithm then returns the

new initial values for θ̂ and P for the WRLS algorithm that is active during the next
day.

The choice of K should be large enough for the parameters to settle during the
overnight prediction.



Localized Online Weather Predictions with Overnight Adaption 263

Require: ∃ τpred,i ∈ R
1×1, τdatab ∈ R

K×48,λ ∈ R
1×1

1: normalize τdatab to size(τpred) ⇒ τ̃datab ∈ R
K×I

2: θ̂(0) = rand
3: P(0) = α ∗ I
4: for j = 1 to K do
5: [θ̂( j), P( j)] = WRLS(τpred, τ̃datab, j , θ̂( j − 1), P( j − 1),λ)
6: end for
7: return θ̂(K ), P(K )

Algorithm 3: Overnight prediction

Results

In this section, the simulation setup and the results of the proposed localized weather
prediction algorithm described in sections “Ambient Temperature Forecast” and
“Solar Irradiation” are presented. Both ambient temperature and solar irradiation
forecasting simulations use data collected over a period of 36 days. The local weather
station collects measurements for ambient temperature (in deg C) and solar irradi-
ation (in W/m2) with a common sampling time of 15min. The database for the
overnight prediction consists of 181 collected daily solar irradiation values from a
different weather station from a different time frame. The dataset entries were already
normalized to the normalized solar day with the correct sampling time of 15min.

Ambient Temperature Forecast

The values for n and m in (1) represent the order of the ARX model. The denomi-
nator order is set by n and represents how many past measurements are used in the
model. The nominator order is defined bym and corresponds to the amount of future
predictions used.

Since the ARX model represents a virtual system rather than a physical system,
there is no obvious correct choice for the model order. By enumerating over all
reasonable combinations of n andm, and simulating each model output, two models
have been selected for further analysis. The selection was not only based on the
adjusted coefficient of determination (see Fig. 2) or the resulting RMSE (root mean
square error) but also on the overall order of the model. Higher order models tend
to give smaller RMSE values, while also having higher chances of overfitting the
data. Overfitting occurs when the model does not only capture the underlying model
characteristics but also the specific noise characteristics. This effect is unwanted
since noise is inherently unpredictable and therefore the robustness of the model is
decreasing.
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Figure2 showcases the adjusted coefficient of determination R2
adj for all reasonable

model orders. The first selected model ARX1 performs best at longer forecasting
ranges of Np > 10. The second selected model ARX2 is more reliant at shorter
forecasting ranges of Np ≤ 10 but less accurate than ARX1 at longer ranges. The
parameters of the two selectedmodels used for the simulation can be found in Table1.

In Fig. 3 the RMSE between various models and the WFS predictions are shown.
The RMSE for the WFS is slowly increasing over the whole prediction horizon with
3 ◦C at Np = 0. The RMSE of the ARX1 model is the lowest at prediction ranges
from 10 < Np < 288 with 1.5 ◦C. This yields a forecast skill [9] of 52% over the
available weather predictions. The second model ARX2 has the lowest error at the
shortest ranges Np ≤ 10 = 2.5 h. For those shortest ranges, a forecast skill of up to
92% is achieved.

To showcase that theWFSprediction and themeasured temperature are not simply
offset from each other, a zero-order model was simulated too. This model, called
ARX0 in Fig. 3, can be calculated by setting x = 1 in (1). Amodel of order zero does
not use any previous measurements or future predictions. It only uses a dynamically
updated offset to align the current measurement to the current prediction. With the
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Table 1 Parameters used for the ambient temperature forecast

Variable ARX1 ARX2

Np 288 samples = 3 days 288 samples = 3 days

n 1 2

m 2 2

λ 0.996 0.996
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ARX0 model output, a diurnal character can be seen. At Np = 96 = 1 day, at Np =
192 = 2 days, and at Np = 288 = 3 days, the RMSE has a local minimum.

The ARX model output and the WFS forecast can be seen in Fig. 4. At every
time step k when there is a new WFS prediction available, the new prediction ϑWFS

is aligned correctly and plotted. At every time step k, the new predictions of the
ARX1 model are plotted for the first 24 h. The predictions of the ARX2 model
are indistinguishable by eye from the predictions of the ARX1 model at this scale,
and therefore they are omitted for clarity. Note that the depicted interval requires a
sufficient run-in period for the parameters to settle.
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Solar Irradiation

As seen in section “Ambient Temperature Forecast”, the chosen values for n and
m were evaluated by examining multiple models over a wide parameter range. The
adjusted coefficient of determination of all the examined models can be seen in
Fig. 5. The chosen model, called ARX3, is highlighted. This model offers the best
trade-off between model order and performance. The chosen model parameters for
the simulation can be found in Table2 alongside with the parameter K which is used
for the overnight prediction.

In Fig. 6, the ARX3 model output τ̂cs and the WFS predictions τWFS can be seen
for 3 selected days. The black dash-dotted line represents the real (measured) clear
sky index τcs. During the start/end of the sunny days, the value for the clear sky index
τcs shows erratic changes. This is due to the small magnitudes of solar irradiation
measured and also small magnitudes of clear sky solar irradiation Gcs which leads to
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Table 2 Parameters used for
the solar forecast

Variable ARX 3

Np Till sunset

n 1

m 3

λ 0.98

K 5
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ill-conditioned normalization. During the day, when the clear sky index settles, the
predictions are reliable. In Fig. 7, the outputs have been converted to GHI in W/m2

and the clear sky global horizontal irradiation Gcs is plotted for reference.
Figure8 gives a better overview on the accuracy of the ARX3 model compared to

the predictions provided by the WFS. The development of the RMSE error over the
prediction horizon is plotted for the ARX3 model output and the WFS predictions.
Both predictions have an increasing RMSE over the prediction horizon with the
ARX3 predictions displaying a significantly better RMSE for short-term predictions
and at the end of Np. The forecast skill over the WFS model is 8–42% for the solar
irradiation forecast.
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Conclusion

Inspired by previous studies a forecasting method for ambient temperature and
solar irradiation has been developed. The proposed approach localizes the numerical
weather prediction provided by WFS to increase the local accuracy and reduce the
forecasting errors. The overnight adaption of the ARX model parameters allows the
model to accommodate to unmeasured changes and ensures a well-tuned start into
the next day.

Simulation results with real data showcase the benefits of the proposed methods.
The method is not computational intensive and can easily be run online on low-cost
CPUs, for example, in home automation systems. Therefore, the localized forecasts
could provide better predictions for smart home controllers and therefore increase
the comfort, save money, and energy.

The results further showcase that the model order for forecasting the ambient
temperature is dependent on the forecasting range. If the focus on the forecast is a
short-term prediction, a higher order model can be considered. On the other hand, if
the focus lies in forecasting longer ranges a simpler andmore robust model should be
considered. A possible solution to achieve a good prediction for various rangeswould
be to calculate multiple models in parallel and then blend their outputs together in a
fuzzy manner.
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Storm Characterization Using a BME
Approach

Manuel Cobos, Andrea Lira-Loarca, George Christakos
and Asunción Baquerizo

Abstract The storm that occurred at the Spanish coast of the Mediterranean Sea at
the end of January of 2017 produced severe coastal floods. The space–time evolution
of seawave heights during that event is analyzed in space and time using a combina-
tion of the spatiotemporal random field (S/TRF) theory and the Bayesian maximum
entropy (BME) method. Observed were combined with hindcasted datasets from
Puertos del Estado (Spain) to assess modeling accuracy and improve the analysis.
The mean absolute error and root mean square error of the tenfold cross-validation
technique were found to be equal to 7.90 · 10−2 m and 9.59 · 10−2m, respectively.
The results are presented in the form of spatial maps of seawave height statistics
(mean and variance) at the study domain. The mean wave height during the storm
propagation is fairly well reproduced. The variance shows two regions of permanent
maximum variance at the Mazarron Bay and between the Azahar coast and the north
face of the Balearic islands. Some indicators were computed based on S/TRF of the
mean wave height maps. The storm shape and a suitable storm determination thresh-
old for the definition of the storm can be inferred from the results. The classification
of several storms based on this methodology improves the assessment of the potential
damage caused by the storm event, thus enabling the development of management
strategies in coastal areas.

Keywords Storm characterization · Flood risk · Spatiotemporal random field ·
Bayesian maximum entropy

M. Cobos (B) · A. Lira-Loarca · A. Baquerizo
Andalusian Institute for Earth System Research, University of Granada, Av. Del Mediterráneo
S/n, 18006 Granada, Spain
e-mail: mcobosb@ugr.es

A. Lira-Loarca
e-mail: aliraloarca@ugr.es

A. Baquerizo
e-mail: abaqueri@ugr.es

G. Christakos
Geography Department, San Diego State University, San Diego, CA, USA
e-mail: gchrista@sdsu.edu

© Springer Nature Switzerland AG 2019
O. Valenzuela et al. (eds.), Theory and Applications of Time Series Analysis,
Contributions to Statistics, https://doi.org/10.1007/978-3-030-26036-1_19

271

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26036-1_19&domain=pdf
mailto:mcobosb@ugr.es
mailto:aliraloarca@ugr.es
mailto:abaqueri@ugr.es
mailto:gchrista@sdsu.edu
https://doi.org/10.1007/978-3-030-26036-1_19


272 M. Cobos et al.

Introduction

It is widely recognized by the scientific community that climate change presents an
unstable and uncertain picture of the environment [12]. It is expected that climate-
driven effects will cause an increase of the mean sea level during the current century
[8], and, also, an increase of the frequency and severity of extreme events like storms
[13]. Therefore, climate change will have important consequences in the littoral
[1, 14]. Coastal zones are areas especially vulnerable to climate change around the
globe. This situation increases the vulnerability of large coastal regions and house
properties, infrastructures, and industrial installations. Currently, more than 40%
of the population live in the 100km zone next to the coast, whereas 23% of the
population live below the 100m altitude. This is an issue in Spain where a high
percentage of its more than 4000km of coastline is inhabited and is very vulnerable
to climate-driven hazards. Some authors predict the disappearance of approximately
40–50% of the beaches caused by an average sea level rise of 50cm [15]. In fact, the
entire Mediterranean Sea coast is a vulnerable region to climate change [10].

In view of the above considerations, this chapter presents a quantitative approach
to characterize seawave height distributions during storms. The goal of this approach
is twofold: (i) the characterization of a hundred different kinds of storms togetherwith
the atmospheric conditions that generate them and (ii) the detection and prevention
against potential pattern of flooding.

Modern Spatiotemporal Geostatistics introduces a new perspective to space–time
data modeling and prediction that involves the Bayesian maximum entropy (BME)
theory [3, 4, 6]. The present work proposes a knowledge-based (KB) framework that
combines spatiotemporal random field (S/TRF) modeling and BME theory. There
are several applications of the BME theory in Earth Sciences, such as the mapping of
particularmatter pollution [20]; the prediction of granular content [2]; the uncertainty
assessment of groundwater quality [17]; and the updatingof digital soil organicmatter
maps based on historial records [19]. A recent review of the BME applications can
be found in [11].

The KB framework is not commonly used in coastal andmarine sciences although
it seems to give very promising results for the design and/or construction of break-
waters, the management of estuaries, the location of energy extraction systems, or
the development of management strategies against flood risk. The purpose of this
chapter is to determine those stochastic space–time attributes of seawave heights
during storms that are useful in the management of coastal areas or in flooding risk
assessment. The proposed approach is applied in the characterization of a devastating
storm that occurred in the Spanish Mediterranean Sea during the period January 20–
24, 2017. This chapter is organized as follows. Section “Methodology” outlines the
BMEapproach. Section “StudyArea: Storms at theMediterranean Sea” describes the
study area, data sources, and previous tasks required to apply the BME approach in
the specific site. Section “Results and Analysis” presents the results of the validation
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technique, the generated BME predictions, and the numerical indicators characteriz-
ing seawave heights. The discussion is presented at section“Discussion”, followed
by the study conclusions.

Methodology

The spatiotemporal random field (S/TRF) theory [3, 4] offers a powerful theoretical
framework to study and analyze natural processes and phenomena that evolve in a
spatial and/or space–time continuum [11]. The BME approach involves three main
stages: the prior, meta-prior, and posterior stage (Fig. 1).

More specifically: at the prior stage, an adequate space/time geometry and rules
of KB integration and processing are selected. The empirical relationships and/or
theoretical laws governing the phenomena are expressed in terms of a general prob-
ability density function ( fG) that is maximally informative. At the meta-prior stage,
the acquisition and storage of the various forms of specificatory (case-specific) data
from various sources are considered, including hard (exact) and soft (uncertain) data.
At posterior stage, the specificatory data are used to improve the prior pdf by means
of Bayesian conditionalization. The result is a posterior pdf ( fK ) that accounts for
both the general KB (physical law, theoretical model, etc.) and the specificatory KB
(hard and soft data).

Fig. 1 Knowledge-based
(KB) Bayesian maximum
entropy (BME) method
followed in this study
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Space–Time Rules of General Knowledge

The rules of KB integration are established in terms of a set of moment equations
gα(χm), α = 1, .., N ; gα that represent known statistics of the S/TRF X (pm) at the
space–time points pm ; N denotes the number of stochastic moments; and χm = χs ∪
χk is the union of specificatory data (known) and the required predictions (unknown).
A mean estimator based on the optimization of the Shannon information criterion
was used [18]. This criterion reads

I f (Xm) = −log fG(χm), (1)

where χm represents a realization of the random variables Xm . In this chapter,m = 1
and theS/TRF X stands for thefirst spectralmoment of the seawaveheight. Therefore,
the general knowledge equations are expressed as follows:

hα(pm) = I f (Xm) = −
∫

log fG(χm) fG(χm) dχm, (2)

in which the form of the general KB-based pdf is assumed as given below:

fG(χm) = eμ0+K , J =
Nc∑

α=1

μα(pm)gα(χm), (3)

with μ0, μα is a vector of Lagrange multipliers whose coefficients are associated
with gα(χm). Usually, g0 = 1 and μ0 account for the normalization constraint [7].

Specificatory Sources of Knowledge

At themeta-prior stage, site-specific data (exact or uncertain) are included in the anal-
ysis. The advantages were widely discussed in [5]. In situ or specificatory knowledge
is provided by devices, information systems, numerical models, or experiments. In
general, data cleaning, normalization, and some transformations should be performed
previously in order to use it. At the end of this stage, accurate data (χh) and uncertain
data (χs) coded by intervals or probability density functions with a measurement of
the uncertainty should be provided.

Bayesian Conditionalization of Prior Pdf

The logical space–time rules are expressed in terms of the BME model. Hence,
( fG) (Eq. 3) is updated with the specificatory data as PK [xk ≤ χk] = PG[xk ≤ χk ∪
χdata], yielding
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fK (χk) = fG(χk |χdata) = fG(χk ∪ χdata)

fG(χdata)
=

∫
R dF(ε, h)

∫
I (ε) fG(χk,χdata) dχs∫

R dF(ε, h)
∫
I (ε) fG(χdata) dχs

,

(4)
where K = G ∪ S, I (ε) is the domain of χs and χdata = χh ∪ χs .

If the general KB, G comprises the first two stochastic moments of the attribute
(space–time mean and covariance or variogram functions) and the site-specific
knowledge, S contains only hard data, the BME method is reduced to the
Kriging method [3]. At this study, a kind of an enhanced Kriging method is con-
sidered since S-KB also contains soft data.

BME Estimation

Finally, the stochastic moments are computed at each space–time estimation point
of interest pk . As an example, the first and second centered moments (μ and σ2) are
obtained as follows:

μ =
∫

χk fK (χk) dχk, σ2 =
∫
(χk − μ)2 fK (χk) dχk . (5)

The results from Eq. (5) enable the mapping of the mean and variance of the
S/TRF X (pk) at each space–time estimation point of interest pk .

One-Point Site Indicators

A set of stochastic site indicators (SSI) was introduced in [5] based on the space–time
characteristic function Ix (p, ζ) = 1 if X (p) > ζ and 0, otherwise where ζ defines a
threshold. On the basis of the previous definition, an SSI should be a function of the
associated S/TRF X , the threshold ζ, and the space–time point p.

Table1 shows the one-point indicators used in this study. The parameter I1
describes the relative area of excess height that physically described the relative active
area of the storm. The parameter I2 provides the average wave height exceedance
over the study area. This indicator assesses the potential impact of the storm arriving
to the coast. The mean excess differential wave height is defined by I3. It provides
the maximum wave height difference with respect to the threshold. Finally, I4 is the
conditional mean excess wave height which defines the mean wave height of the
storm subarea with seawave heights over the threshold.
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Table 1 One-point indicators definition and description. E[] is the expectation of variables between
brackets

One-point indicators Equation Description

I1(ζ) E[Ix (p, ζ)] Active area of storm given a
threshold

I2(ζ) E[X (p)Ix (p, ζ)] Wave height average that
exceed ζ

I3(ζ) E[(X (p) − ζ)Ix (p, ζ)] The mean excess differential
wave height

I4(ζ) E[X (p)|X (p) ≥ ζ] Average wave height
exceeding threshold ζ over I1

Study Area: Storms at the Mediterranean Sea

The Mediterranean Sea (MS) is a semi-closed water body connected to the Atlantic
Ocean through the Strait of Gibraltar at its west limit. The main basin is divided into
two principal sub-basins. Its waters bathe the coasts of more than 20 countries. The
MS region lies in a transition zone between the arid climate of North Africa and
the temperate and rainy climate of central Europe and it is affected by interactions
between mid-latitude and tropical processes [10]. The North West MS is delimited
westward by the Straight of Gibraltar (35◦ 58′ 18′′ N–5◦ 29′ 09′′ W) and eastward by
the Tyrrhenian Sea where it has as boundaries the islands of Corse and Sardegna at
longitude 10◦ E (Fig. 2a). Hence, northwest basin covers a water area of 650 thousand
of km2 with amean depth of about 1500mand a perimeter of approximately 4000km.

Fig. 2 Study area. a Western basin of the Mediterranean sea (MS) and some interest locations; b
Wave height variance in the time period computed with available data during the storm of January
2017 and some relevant dates
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Observed and Simulated Datasets

The data used in this study were obtained from Puertos del Estado, Spain (Fig. 2a).
The present methodology uses data compound by observations from REDEXT and
REDCOS and hindcasting analysis from SIMAR. Observations were recorded by
directional SeaWatch and Triaxys devices at a sampling frequency equals to 4Hz
during sample periods of 24 and 26min every hour. This data are processed and
hourly statistical samples of spectral data are obtained. The significant spectral wave
height is the S/TRF X (p) of our study. The seawave properties from SIMAR were
computed from reanalysis with WaveWatchIII oceanographic model feeded with the
wind field obtained by HIRLAM with the atmospheric data from NCEP (National
Centers for Environmental Predictions). These data are source of uncertainty and
will be treated as soft data.

Figure2b shows the temporal wave height variation in the study area during the
storm. As it can be seen, the storm is fed by winds that blow from the east of the MS.
Seawaves travel from southeast to northwest, growing during the storm propagation
until arriving to the Balearic islands. Then, the storm is split into two branches, one
of them propagates to the northwest arriving to Brava coast and the Gulf of Lion
along the north face of Balearic Islands while the other branch propagates toward
the southwest.

Implementation at the Northwest Basin of the Mediterranean
Sea

Themethodology is applied to the storm that occurred between of January 20 and 24,
2017. The severity of this storm led to several floods in the coastal area of Valencia.
The following section presents theBMEmethodology applied to a S/TRF thatmodels
the significant spectral heights of seawaves.

Spatiotemporal Dependences No physical laws were used in this chapter because
seawaves propagation over uneven bottoms cannot be reduced to analytical expres-
sions in terms of the space–timemoments. So, fG is defined in terms of the covariance
of χh . Seawave heights vary slightly in space and time; therefore, the physical pro-
cess is assumed to be homostationary [4], and the covariance is a function of the
distance h and the time-lag τ (isotropy). These hypotheses will be discussed later.
Then a coupled space–time covariance model is selected given by

c(h, τ ) = ae(
h
b − τ

c ) + d, (6)

where a (1.891), b (6.727), c (46.196), and d (0.431) are parameters that were fitted
using the sequential least squares programming optimization algorithm (SLSQP) in
Python; h and τ are spatial distances and temporal lags. The fitted surface is depicted
in Fig. 3. The fitted covariance models adequately represent the covariance of data
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Fig. 3 Spatiotemporal
covariance of seawave
heights during the storm.
The mesh represents the
fitting Eq. (6) evaluated at
pair points given by space
distance and time lag

yielding mean absolute error and root mean square error values less than 0.018 and
0.021, respectively. The significance of these space–time relationships is observed in
parameters b and c. The points located closest to 6.727km and in a time lag shorter
than 46.2h present a positive covariance and will be more representative of the final
value at the required location.

Site-Specific Data The specificatory knowledge is obtained from datasets. REDEXT
and REDCOS are used as hard data. A total of 1440 space–time data points were
distributed in 10 locations. Soft data χs was related with hard data χh with a linear
regression of pair points where hindcasting and observed data coexisted. Figure4a
shows the parameters of the linear regression. It is noted that simulated data slightly
overpredict the observed values of seawave heights. CI95 are also indicated with
a dashed line. The soft dataset is represented by 14790 points distributed in 102
spatial locations with the mean and variance computed by linear regression. The
error follows a Gaussian distribution, and hence χs can be adequately described by
the mean and variance.

The whole data presented are specificatory data that we use in the BME method.
Figure4b shows the smoothing cdf of hard and soft data and the Gaussian distribu-
tion. As we can observe after the detrending, the seawave heights follow a normal
distribution. The mean (μ) and median ( f50) are next to zero, the standard deviation
is one, the skewness (γ1) is slightly negative, and the modified kurtosis (g2) is almost
zero. The maximum error along the normalize z-axis is lower than 7%. The Gaussian
behavior of data is adequate to apply the BME theory.

The BME Prediction Steps The computation of the stochastic space–time moments
follows the steps that are briefly summarized below:

1. Obtain fG , analytically or numerically (Eq.6).
2. Select an adequate number of local hard and soft neighboring data in space–time.

Usually, a minimum of 50 space–time points is required.
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Fig. 4 Previous tasks in the specificatory data. a Linear regression of the samplemean (μ) and stan-
dard deviation (σ) between hard and soft data at collocated space–time locations. b Normalization
of space–time seawave heights and some statistical

3. Compute the spatial distances and time lags between data pd = (ph, ps) and the
estimation points of interest pk , as well as the corresponding covariance values.

4. Calculate the local mean BME through regression (Eq.4).
5. Subtract the mean from hard and soft data values.
6. Calculate the statistical moments (Eq. 5).

Results and Analysis

Validation with Tenfold Cross-Validation Technique

The performance of the BME method was assessed by means of a tenfold cross-
validation technique. We selected randomly a tenth of the space–time hard data and
removed it from the original specificatory data. Then, we used as space–time points
the removed space–time points and run the BME model. We repeated this process
ten times, and the results were compared with the raw data. Table2 shows the results
of two common accuracy indices widely applied in literature, the mean absolute
error (MAE) and the root mean square error (RMSE). The computed values of both
indices ranged between 1 and 9 hundredths which guarantee the accuracy of the
methodology.

MAE = 1

Nc

(
Nc∑
i=1

|μ − χmap|
)

RMSE = 1

Nc

√√√√ Nc∑
i=1

(μ − χmap)2 (7)
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Table 2 Mean absolute error and root mean square error of tenfold cross-validation application to
χh

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

MAE (x10−2) 2.96 7.90 3.08 4.15 2.79 3.23 4.22 3.12 3.64 1.31

RMSE (x10−2) 5.58 5.35 7.47 7.06 5.22 6.14 9.59 6.27 8.37 1.13

BME Predictions

The first two centered moments were computed following Eq. (5). The results are
presented in 144 maps with the temporal evolution of the mean seawave heights
(Fig. 5) and the variance of the seawave heights (Fig. 6).

As it is observed in Fig. 5, the storm is generated at the Strait of Sicilia and travels
over the north basin of the Mediterranean Sea. Southeastern winds favor the growth

Fig. 5 Estimation of the mean wave height at the study area for several relevant dates

Fig. 6 Estimation of the wave height variance at the study area for several relevant dates
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and propagation of waves from the south of Sardinia (January 20, 21.00). The water
available distance where winds blow is maximum and persistent winds drive higher
seawaves. The wave front reaches the Balearic islands, and then is divided into two
fronts that propagate over the lower and upper parts of the basin (January 21, 06.00).
During this stage, maximum wave heights (∼7 m) are observed. The bottom front
quickly reaches the Gulf of Valencia and is dispersed downward (January 21, 11.00).
The upper front propagates toward the Gulf of Lion, and then it decays too. The same
pattern is observed at the video included as supplementary material where SIMAR
hindcast data were used.

Conversely, the space–time variation observed in μ is not found in σ2 (Fig. 6).
An almost regular pattern of covariance is depicted. Two areas present persistent
maxima, the Mazarron bay (σ2 = 0.3m2) and Azahar coast (σ2 ∼ 0.25m2) next to
the upper face of the Balearic islands. The uncertaintymeasured through the variance
is 4–5 times greater than the rest of the study area. A reason of this deviation is that
those regions have larger depths that facilitate the wave propagation.

ST Characterization of a Storm

The indicators defined in Table1 give some hints about the shape of the storm:
triangular, trapezoidal, semicircular, etc. I2 provides a global assessment of expected
overcome wave for the fraction of site where X (p) exceeds the threshold ζ. Finally,
I4 gives an idea of the mean wave height in the subarea that defines the threshold.

As it can be observed in Fig. 7, the active area of the storm decreases sharply,
getting the inflection point at approximate 3m when the relative area is just the 20%
of the storm area. The parameters I2, I3, and I4 begin at value of 2.23m. I2 and
I3 decrease to zero while I4 increases up to the maximum wave height. I3 depicts

Fig. 7 Results of one-point
indicators of seawave heights
for the storm. The values of
I1 are given on the left
vertical axis. The values of
the other indicators are given
in the right vertical axis. H
stands for wave height
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the mean excess over the threshold. As it is observed, the waves that overtake the
threshold decrease quicklywith increasing threshold.With these information, a piked
bell-like storm can be inferred. Uprising threshold planes split the bell in concentric
circles whose area reduces exponentially.

Discussion

The methodology proposed to characterize storms in terms of their first two centered
moments has shown to be useful in giving clues about the potential damage and harm
of storm that approaches to the coast. The prior information is a critical component
for inference tasks, unlike the data-driven classical statistics approach that is based
purely on sampling information [9]. Hard data were obtained from devices which
error is well known and confined. However, the location of the buoys may differ
hundreds of meters, and also their positions strongly affect its height due to wave
transformation during its propagation over different depths, especially in shallow
areas. Devices were located at the continental shelf where water depths overtake
250m. Under this condition, the seawave height is independent of water depth.

The phenomenon was assumed isotropic and represented by the covariance func-
tion (Eq.6). This hypothesis was founded after the study of the anisotropy. The
directional variogram was computed [16]. The spatial and temporal range for the
sample correlation was established according to the mean physical characteristics
of the storms. So, we set five intervals and the spatial maximum range was set
accordingly to the maximum storm shape (∼9◦). The time step was set to 6 h. The
dissimilitude of directional variogram (results not shown) follows a transition both
in time and space that follows an exponential relationship. At short periods, the phe-
nomenon is anisotropic but fastly goes into isotropic. This process can also be seen
in the video. The storm propagates in the ES-WN direction. This direction has the
maximum spatial gradient and shows the maximum dissimilitude. However, in the
normal axis, the minimum dissimilitude is found due to the storm traveling as a wave
train.

The sensibility of these results to the chosen time period needs to be further
investigated. The threshold value can be subjectively set requiring a balance between
sample selection bias and variance. Physically, the independence of consecutive
storms should be guaranteed. This problem is usually found when dealing with
storm evolution. Furthermore, other multi-point indicators can be employed and
give insights of spatial distributions, specifically location or motion of the storm
crest or the connectivity, among others. The sensibility of this method to the number
of χs and χh should also be further investigated.

The methodology is feasible to: (i) detect regions where the seawave propagation
is more sensible to atmospheric and marine conditions, (ii) better estimate seawave
at any given point, or (iii) detect anomalous functionality of recording devices.
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Conclusion

The stochastical descriptors of seawave height (mean and variance) have been com-
puted in the basis of a methodology that uses the spatiotemporal random field theory
driven by the Bayesian maximum entropy. A spatiotemporal characterization of sea-
wave height during the storm that occurred between January 20 and 24, 2017 at
the Spanish Mediterranean sea is presented. Seawave height data were employed
to establish the physical bases and site-specific relations and to apply the Bayesian
maximum entropy conditionalization.

The methodology estimates adequately the mean values, depicting fairly well the
storm evolution. The accuracy of the methodology is ensured with tenfold cross-
validation which means absolute error and root mean square error are lower than
0.1m. Two regions are identified where variance is large (∼0.25m2), the Mazarron
bay and the Azahar coast. Furthermore, the shape of the storm is bell-like. The
vinculation of indicators results with flooding effects which allows the assessment
of the potential risk of flooding in coastal areas.
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Adaptive Methods for Energy
Forecasting of Production and Demand
of Solar-Assisted Heating Systems

Viktor Unterberger, Thomas Nigitz, Mauro Luzzu, Daniel Muschick
and Markus Gölles

Abstract Solar-assisted heating systems use the energy of the sun to supply con-
sumers with renewable heat and can be found all over the world where heating of
buildings is necessary. For these systems, both heat production and heat demand are
directly related to the weather conditions. In order to optimally plan production, stor-
age, and consumption, forecasts for both the future heat production of the thermal
solar collectors as well as the future heat demand of the connected consumers are
essential. For this reason, this contribution presents adaptive forecast methods for
the solar heat production and the heat demand of consumers using weather forecasts.
The developed methods are easy to implement and therefore practically applicable.
The final verification of the methods shows good agreement between the predicted
values and measurement data from a representative solar-assisted heating system.

Keywords Energy forecast · Production forecast · Demand forecast · Solar heat
production · Heat demand

Introduction

Solar-assisted heating systems use the energy provided by the sun to supply con-
sumers with renewable heat and can be found all over the world where heating of
buildings is necessary. Especially large-scale solar-assisted heating systems, which
benefit from the effect of scale regarding the cost of solar heat, are an important
element of future energy systems [1–4].

These solar-assisted heating systems are typically set upwith a solar collector field
to generate heat, and a buffer storage to store the heat and decouple the occurrence
of heat production from heat consumption, at least to a certain degree. Furthermore,
there are typically one or more auxiliary heating systems (e.g., a gas burner) in order
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Fig. 1 Schematic representation of a typical solar-assisted heating system

to supply the connected consumers with heat in case there is a lack of solar energy
and there is no heat stored in the buffer storage. A schematic representation of such
a system is shown in Fig. 1.

However, controlling such a solar-assisted heating system can be particularly
challenging because the daily weather fluctuations have significant effects on the
system’s performance, e.g., [5, 6]. Modern high-level controllers, typically referred
to as buffer management or energy management systems, thus rely on forecasts of
the future heat production and demand to derive efficient control strategies, e.g., [7,
8]. These strategies can lead to an overall efficiency improvement in the range of
2–5%, e.g., [9–11].

Unfortunately, most of the available forecastingmethods for solar heat production
aswell as for heat demandare tailored for a specific application, not adaptive andoften
mathematically complicated, e.g., [12–17]. In particular, because of their complex
mathematical structure (e.g., artificial neural networks), it is often not possible to
easily implement themon controllers typically used in solar-assisted heating systems.

For this reason, this paper presents energy forecasting methods for both the solar
heat production and the heat demand of consumers which are adaptive, easy to imple-
ment, and thus suitable for the use in controllers of solar-assisted heating systems.
Both methods shown in this contribution use weather forecasts from a weather ser-
vice provider (meteoblue, https://www.meteoblue.com) as inputs and their outputs
are verified with measurement data from a representative solar-assisted heating sys-
tem.

In the following, the general principle on which the forecast methods rely on
will be described in section “General Principle”. Section “Solar Heat Production
Forecast” then presents a specific implementation for forecasting the solar heat pro-
duction, which is suitable for a wide range of solar collectors, and section “Heat
Demand Forecast” describes an implementation for forecasting the heat demand of

https://www.meteoblue.com
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the consumers. Verifications of the presented methods based on comparisons with
measurement data from a representative solar-assisted heating system will be pre-
sented in both cases. Finally, section “Conclusion” draws conclusions from the pre-
sented methods and their practical verification.

General Principle

The forecasting method proposed relies on the natural periodicity of the phenomena
underlying both the solar heat production and the heat demand of the consumers. In
the case of solar heat production, it is obvious to assume that the sun follows approx-
imately the same path in the sky as the day before and thus generates approximately
the same amount of heat at the same time of day as long as the weather does not
change significantly. Likewise, the heat demand will only change slightly from one
day to the next, assuming similar ambient conditions and user behavior. As a first
approximation, it is thus reasonable to predict the solar heat production as well as
the heat demand at a particular time of day by using the corresponding values at
the same time of the previous day and possibly multiple days in the past. However,
looking too far into the past must not be advised since seasonal changes or changes
in the users’ behavior would not be taken into account sufficiently.

This rough prediction can be enhanced by additionally considering information
on external factors influencing the variables to be forecasted, such as variations in the
global irradiation due to clouds or variations in the ambient temperature. Forecasts
for the global irradiation and the ambient temperature are available from weather
service providers, with a typical sampling time of 1 hour. An easy way to express a
dependency from external factors is through a multiple linear regression model:

ỹh,d = β0,h +
n∑

j=1

β j,hx
∧

j,h,d . (1)

Here, ỹh,d denotes the prediction of the variable to be forecasted for hour h of day d,
β0,h is a constant offset, x̂ j,h,d is the prediction of the external factor j for hour h of
day d, and the model parameters β j,h are weighting the influence of the n external
factors. The dependency from the external factors was found to be different for the
individual hours of the day in some cases; thus, different model parameters are used
for each individual hour of the day.

In order to determine the model parameters, the model error eh,d is defined as

eh,d := ỹh,d − yh,d , (2)

where yh,d represents the actual value of the variable to be forecasted at hour h of day
d. By using historical values for the variable to be forecasted, as well as historical
values for the external factors to be considered, the optimal model parameters can be
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calculated by minimizing a given cost function. A reasonable approach for the cost
function is the sum of the squared errors of the model for the corresponding hours
of all days in the past which should be used for the model parametrization. It is then
possible to determine the optimal model parameters β∗

j,h by solving an ordinary least
squares problem, i.e.,

β∗
j,h = argmin

β j,h

d0−Nd∑

d=d0−1

e2h,d , j = 0, . . . , n. (3)

Here, d0 denotes the day when the model parameters are determined and Nd denotes
the number of previous days to be used for parametrization. As an example, consider
the linear regression model (1) with two external factors (n = 2) and using 4 training
days (Nd = 4). For hour h = 8 (08:00–09:00 am) of day d = Tuesday, the three
model parametersβ0,8,β1,8, andβ2,8 can be calculated by solving the overdetermined
system of equations containing the measured, historical value of the variable to be
forecasted y8,Fr−Mo and the measured historical external factors x1−2,8,Fr−Mo of the
training days. A graphical representation of this example is shown in Fig. 2.

Apart from only considering the time of the day, it could be necessary to also
distinguish between different types of days, e.g., working days and holidays. Then,
separate model parameters for each time of the day are needed to be identified for
each set of days. A further consideration of the day of the year is advised only if
the forecasting method should provide forecasts with a horizon of several weeks or
months, i.e., long-term forecasts. As the forecastingmethod proposed should support
the control of solar-assisted heating systems, a forecast horizon of several days up to
a week is required. For these forecasts, the periodicity in the variable to be forecasted
can be deduced more reliably from the previous days than from the previous year.
Hence, the day of the year is considered only implicitly, by automatically adapting
the model parameters when learning from only a few days in the past.

So far, the forecast for one hour only considers measurement data from the last
days, but disregards measurements that are more recent. One hour is incorrectly

Fig. 2 Graphical representation of the parametrization routine for a simple example
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assumed independent from the next. This would mean that, e.g., the prediction for 3
o’clock p.m. of the following day could be calculated at 4 o’clock p.m. of the current
day and would not change after that.

In order to reduce this shortcoming, a correction step is introduced that takes the
current prediction error into account. This correction step could act in two ways,
depending on the variable to be forecasted. If the variable to be forecasted equals the
solar heat production, then a prediction error typically occurs from temporary local
shading by clouds or buildings close to the solar collectors. Such a prediction error is
likely to persist for a certain time, and should be considered by correcting the short-
term predictions with the current prediction error. If the variable to be forecasted
equals the heat demand, then a prediction error typically occurs from nonperiodic
consumer behavior. Changes in timing (e.g., showering earlier than usual) lead to a
shift in demand rather than an overall increase or decrease. Then a prediction error
does not persist, but rather it is likely to change its sign, which should be considered
with the negative current prediction error. However, analysis of measurement data
showed that a positive prediction error is more likely to persist for a certain time.
Thus, the correction step adds the weighted current prediction error to the following
few hours, which can be written as follows:

ŷh,d = ỹh,d + (y0 − ỹ0)�(�h), (4)

where ŷh,d is the corrected forecast for hour h of day d, y0 is the most current
measurement, ỹ0 is the corresponding forecast, and � is a monotonically decreasing
function of the time difference �h between the most current measurement and the
hour given by indices h and d.

This simple and general forecasting method needs to consider different external
factors and must take into account different periodicity assumptions depending on
whether it is used to forecast the solar heat production or the heat demand. The
following chapters will go into the detailed implementation for solar heat produc-
tion forecast (Section “Solar Heat Production Forecast”) and heat demand forecast
(Section “Heat Demand Forecast”).

Solar Heat Production Forecast

For solar heat production, short wave radiation is absorbed by an absorber and the
energy is transferred to a heat carrier, typically water mixed with glycol to avoid
freezing [18]. The occurring energy flows for a solar collector are the heat input
from the sun Q̇in (where parts of the solar radiation Ig are reflected by the transparent
cover), the ambient heat losses through heat conduction and convection Q̇l,cc, the
heat losses through radiation Q̇l,r, and the heat finally transferred to the heat carrier
Q̇out. This leads to the following energy balance equation:

Q̇out = Q̇in − Q̇l,cc − Q̇l,r. (5)
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Fig. 3 Schematic structure of a flat plate collector and the occurring energy flows

These different energy flows are shown exemplarily in Fig. 3 for the case of a
solar flat plate collector. This type of collector is typically employed in solar-assisted
heating systems to efficiently provide hot water below temperatures of 100 °C.

The heat produced by a solar collector Q̇out during steady-state operating con-
ditions and for near-normal incidence angle of the solar radiation can be approxi-
mately expressed by the static energy equation according to the European Standard
EN12975:2006:

Q̇out = Acoll η0 Ig − Acollc1
(
T fl − Tamb

) − Acollc2
(
T fl − Tamb

)2
, (6)

where Acoll represents the net collector area, Ig symbolizes the global solar irradiation
hitting the collector surface, T fl is the arithmetic mean fluid temperature between
the inlet and the outlet of the collector, and Tamb is the ambient temperature. The
coefficients represent the optical efficiency η0, the heat loss coefficients for heat
conductance, c1, and for thermal radiation, c2. The EN12975:2006 standard covers
performance, durability, and reliability testing of almost all solar collector types
available on the market [19].

Even if the Standard EN12975:2006 is accepted and widely used, the analysis of
measurement data from large-scale solar-assisted heating systems shows that apply-
ing this model, with its parameters (Acoll, η0, c1, and c2) taken from the datasheet of
the collectors, does not directly lead to satisfying results for forecasting the solar heat
production, even if the external factors Ig, T fl, and Tamb are known. This is because
the model parameters are only valid for stationary conditions in the laboratory and
not for the conditions occurring during daily operation. Furthermore, these model
parameters would have to change over time to account for polluted collector sur-
faces decreasing the optical efficiency (given by η0), the decay of materials leading
to higher heat losses of the collectors (given by c1 and c2) and local shading reducing
the effective collector area (given by Acoll).

These shortcomings can be eliminated when applying the forecast method
described in section “General Principle”. In order to apply the forecast method, some
assumptions must be made with regards to Eq. (6). First, by taking into account that
solar collectors are typically operated with a constant desired outlet temperature,
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which is ensured by a temperature controller, the outlet temperature of the solar
collector can be assumed to be constant. Second, because the solar collectors of
solar-assisted heating systems are typically connected to the lowest part of a buffer
storage (Fig. 1), the inlet temperature can be assumed to be constant as long as the
buffer is reasonably sized and not inefficiently operated. Taking these two simplifi-
cations into account, a constant inlet and outlet temperature can be assumed, which
leads to a constant mean fluid temperature T fl = const. Introducing the variable
temperature difference �T between the constant mean fluid temperature and the
variable ambient temperature, reduces Eq. (6) to

Q̇out = Acoll η0 Ig − Acollc1�T − Acollc2�T 2. (7)

Note that this representation of the widely used static collector model is identical
in structure to the linear regression model with external factors x̂1 = Ig, x̂2 = �T ,
and x̂3 = �T 2. The physical parameters correspond to the model parameters, i.e.,
β0 = 0, β1 = Acollη0, β2 = −Acollc1, and β3 = −Acollc2.

The forecast model is thus equivalent to the static collector model and is there-
fore valid for a wide range of collectors. Furthermore, with the forecast method the
collector parameters are continuously adapted using measurement data of the pro-
duced solar heat, the temperature difference betweenmean collector temperature and
ambient temperature as well as the global solar irradiation. The dependency on the
time of day is considered by using different parameter sets for each hour of the day
to forecast the solar heat production ỹh,d :

ỹh,d = β1,h x̂1,h,d − β2,h x̂2,h,d − β3,h x̂3,h,d . (8)

By this procedure, the influence of pollution of the collector fields and decay of the
materials is automatically considered.

What is more, the effects of local shading, which would have to be incorporated
into the static collector model by complicated 3Dmodeling and shadow calculations
(see, e.g., [18]), are automatically considered and no manual parameterization is
necessary. In addition, later enhancements such as added solar collectors or chang-
ing environmental conditions such as additional buildings throwing shadows are
automatically incorporated into the forecasting process.

The forecasting method for the solar heat production is evaluated for days of the
year where heat production is significant but challenging to predict. Solar heat pro-
duction during winter is typically very small or negligible, which makes forecasting
not very interesting and its benefit small. During the summer months, solar heat
production is typically at its highest, but weather conditions are quite steady, which
makes forecasts interesting but less challenging. In spring and autumn, solar heat
production can be high too while the weather conditions can be very unsteady. This
makes forecasts interesting and more challenging.

Therefore, the forecasting method for solar heat production is evaluated using a
day in spring, with an additional day in summer for comparison. It is applied to a
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Fig. 4 Forecast of solar heat production during a day in summer

collector field built in 2009 for a solar-assisted heating system in Austria, consisting
of flat plate collectors with a net area of 138 m2.

The evaluation of the reference day in summer is visualized in Fig. 4, showing
the measured heat produced by the solar collector (black), the consecutive hourly
forecasts (in color, starting with green, going via yellow to red and blue), and the
output of the static collector model with the parameters taken from the datasheet
(gray).

From 0 o’clock a.m. to 12 o’clock, the forecast of the proposed method is very
accurate and predicts the solar heat production very precisely. After that, there is a
slight variation which gets corrected over the next hours via the current prediction
error, thus slightly improving the next forecast. The energy produced for this day is
563 kWh, and the initial forecast with the method developed in this paper (without
any hourly correction applied) is 556 kWh (−1.5%). In comparison, the forecast
of the static collector model, with the parameters taken from the datasheet, yields
785 kWh (+40%). Considering that the solar irradiation forecast is almost perfect
for this day, this is a large error. This is because using the static collector model
will immediately predict heat output as soon as global irradiation levels increase. In
reality, however, the system needs time to heat up until the temperature is above the
necessary limit and only then will it provide hot water. Furthermore, other effects
such as aging of the material or dust on the collector surface can lead to lower yields.

The presented method handles this naturally by using different coefficients for
every hour and thus predicting the start and stop times of the solar heat production
very accurately, which is an important information for the controller of a solar-
assisted heating system.

The evaluation of the day in spring is visualized in Fig. 5. For this spring day, the
heat produced is about half that of the summer day. From midnight to 11 o’clock
a.m., the forecast is very accurate. At 11 o’clock a.m., the forecast estimates the
heat production too high, which is why the next prediction at 12 o’clock, which was
already a bit too low, is corrected downward. The opposite is true for 1 o’clock p.m.,
when actual production drops in an unexpected way, but the forecast is corrected
upward because of the underestimation at 12 o’clock. Days where the solar heat
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Fig. 5 Forecast of solar heat production during a day in spring

production drops and rises repeatedly, which can happen through rapid cloud move-
ments, are therefore very challenging for the forecast, especially if these changes are
not apparent from the global irradiation forecasts. However, after 2 o’clock p.m., the
forecast is sufficiently accurate again and the start and stop times of the solar heat
production are predicted sufficiently well too. In contrast, the static collector model
(gray) predicts the heat output as soon as global irradiation is available, which leads
to wrong predictions of the start and stop times of solar heat production. The energy
produced this day was 248 kWh, the initial forecast with the model proposed in this
paper (without a correction applied) is 343 kWh (+40%). However, the forecast of
the static collector model with the parameters taken from the datasheet is worse with
500 kWh (+100%).

Heat Demand Forecast

The heat demand of consumers depends on many external factors such as the users’
behavior patterns and weather factors such as ambient temperature, solar irradiation,
rain, and wind. However, most of these factors are either hard to predict, follow
a periodic pattern themselves or only have a relatively small influence on the heat
demand. For example, the wind direction and speed might play a role because of
higher ambient losses, but they cannot be predicted sufficiently well for an individual
building. Solar irradiation might play a major role especially with modern glass
palaces, but its effect is mostly determined by the angle of incidence and thus the
time of day. After investigating the influence of the individual factors on multiple
test objects (family homes, office buildings, etc.), it was found that considering the
ambient temperature Tamb is enough for obtaining sufficient heat demand forecasts
(see [20]). This reduces the linear regression model (1) to

ỹh,d = β0,h + β1,h x̂1,h,d , (9)
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with x̂1,h,d representing the ambient temperature forecast T
∧

amb,h,d for hour h of day
d. In addition to considering the time of day, a distinction between working days and
weekend days improves the forecasting quality significantly. Hence, separate hourly
model parameters are considered for working days and weekend days. Seasonal
variations and changing users’ behavior are considered by continuously updating the
model parameters using measured heat demand and ambient temperature of the last
2 weeks.

The evaluation of the forecasting method for heat demand should again be per-
formed using challenging days. The heat demand during winter is mainly dominated
by room heating, which typically makes forecasts easy. The heat demand during
summer is mainly dominated by hot water usage and thus varying consumer behav-
ior, which typically makes forecasts hard. In spring and autumn, a combination of
both is present. Therefore, the forecasting method for heat demand is again evalu-
ated using a day in spring and a day in summer like it was used for the evaluation
of the solar heat production forecast in section “Solar Heat Production Forecast”.
The consumer used for the evaluation is an office building with a connected load
of 300 kW supplied by the solar-assisted heating system also used for evaluating
the solar heat production forecast in section “Solar Heat Production Forecast”. The
evaluation of the day in spring is visualized in Fig. 6, showing the measured heat
demand of the consumer (in black) and the consecutive hourly forecasts (in color).
The reason why the heat demand at 00:00 does not match the one at 24:00 is because
the ambient temperature has increased from day to day (like it is very common in
spring). This shows the importance of not only relying on periodicity alone but also
taking external factors like ambient temperature into account.

From midnight to 6 o’clock a.m., the forecast underestimates the demand by
a certain amount, but for the rest of the day the forecast is quite accurate. The
consecutive forecasts are corrected via the current prediction error, which improves
the next forecast.

The evaluation of the day in summer is visualized in Fig. 7.

Fig. 6 Forecast of heat demand during a day in spring
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Fig. 7 Forecast of heat demand of a day in summer

Here the demand is around a tenth of the demand in spring. The forecast dif-
fers stronger from the measurements, as in summer individual actions by the users
dominate the heat demand and neither periodicity nor the predicted external factors
play a major role. However, while the relative prediction errors are quite large, the
absolute prediction errors are quite small.

Conclusion

The forecasting method proposed in this article is sufficiently simple to be imple-
mented even on very simple computers (programmable logic controllers, PLCs) but
still automatically learns from past data and thus contains no parameters that need to
be tunedmanually. It is based on a linear regressionmodel using forecasts of external
factors that accounts for changes relative to a simple periodic signal extrapolation. A
simple correction step takes into account recent prediction errors to further improve
the forecasts for the next few hours. The forecasting method was shown to work
reasonably well for forecasting solar heat production and heat demand. With few
modifications, it can also be used to forecast other quantities such as electrical power
demand and photovoltaic electrical energy production.

The only requirement of the forecastingmethod is the availability ofmeasurement
data for both the quantity being forecasted and the external factors influencing that
quantity, as well as forecasts of the external factors themselves. These forecasts can
often be obtained from weather service providers, e.g., using web interfaces. It is
important to note that the forecast quality of both production and demand naturally
strongly depends on the forecast quality of the external factors such as ambient
temperature and global irradiation. Therefore, it is worth considering commercial
weather service providers, which typically offer better forecast quality.

By continuously updating the model parameters using past data, the method auto-
matically adapts to changing behavior patterns or environmental conditions andneeds
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no kind of manual parametrization. It is, therefore, a plug-and-play solution that
requires no experts for implementation and parametrization. It can be used in software
ranging from simple buffer management controllers to complicated, optimization-
based energy management systems. At present, the method is already successfully
used in two demonstration plants to predictively control a large-scale solar-assisted
heating system as well as a district heating system.
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Short-Term Forecast of Wind Turbine
Production with Machine Learning
Methods: Direct and Indirect Approach

Mamadou Dione and Eric Matzner-Løber

Abstract The Energy Transition Act defined by the French State has precise impli-
cations on Renewable Energies, in particular on its remuneration mechanism. Until
then, a purchase obligation contract permitted the sale of wind-generated electricity
at a fixed rate. From now, it will be necessary to sell this electricity on the Market
(at variable rates) before obtaining additional compensation intended to reduce the
risk. This sale on the market requires to announce in advance (about 48h) the pro-
duction that will be delivered on the market, thus it is very important to predict this
production. The objective of the project is to provide, every day, short-term forecasts
(48h horizon) of wind power production. We use two approaches: a direct one that
predicts wind generation directly from weather data, and an indirect one that pre-
dicts wind from weather data and converts it into production. In order to forecast the
production we use different machine learning algorithms and we propose features
engineering to improve the forecasts. Our results are very conclusive compared to
those in literature.

Keywords Short-term forecasting · Machine learning · Spatiotemporal dynamics
modeling · Wind power prediction

Introduction

At the end of 2015, the estimated share of renewable energies in the world’s electric-
ity generation was 24.5% compared to 75.5% of fossil fuels and nuclear energy [1].
Wind power occupied 4% of the world’s electricity production. In France, renewable
electricity covers 18.8% of electricity consumption in a slippery year with a share
of 4.1% for the wind turbine [2]. With the objectives of the United Nations Confer-
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ence on Climate Change (COP21), renewable energies will reach 32% in France’s
electricity supply by 2030 [3]. In other words, wind power is expected to double by
2030. This shows that the renewable energy sector is booming and particularly wind
energy and need a new management to support the energy transition.

In France, this energy transition is starting to have implications in the electric-
ity market. Until then, a purchase obligation contract made possible to sell wind-
generated electricity at a fixed rate. From now on, with State-defined Energy Transi-
tion Law, the fixed rate ended and the electricity should be sell on the market (before
obtaining additional compensation). Producers should announce the quantity of elec-
tricity which will be delivered on the market and under or over estimation could
exposed them to penalties. Thus there is a huge need for precise forecasts. Wind,
which is the fundamental resource for wind farm production is highly variable, and
producers need to develop accurate forecasting methods providing reliable forecasts
(with as little variance as possible from the actual production that will be delivered).
Forecasting wind farm production is of course not new [4–8] and it has been done for
decades using different models and techniques. Depending on whether the forecast
horizon is a few minutes, hours, or days, some suggest real-time production-based
models, satellite and ground-based models, or weather-based models [9].

We will focus on machine learning algorithms to forecast wind farm production
usingweather data. In the short term scale (from 1h to 48h), two different approaches
exist in the literature: the direct one which forecast the production directly from the
inputs (mostly meteorological variables) or the indirect one which from the inputs
forecast the wind and from the predicted wind forecast the production. It is a one
step method against a two steps one which can be summarize in Figs. 1 and 2.

In section“State of theArt onMachineLearningWindPowerForecasting”, state of
the art on the short-term forecast in the field of wind energy is done. Section
“TheData”gives thedetails of thedata andsection“AlgorithmsofMachineLearning”

Fig. 1 Direct forecast of wind production

Fig. 2 Indirect forecast of wind power
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summarizes theprinciples of themodels applied inour study.The results are discussed
in section“Results and Discussions” and finally a general conclusion is reached in
section“Conclusion”.

State of the Art on Machine Learning Wind Power
Forecasting

We find in the literature two types of modeling for the forecast of wind energy:
deterministic modeling and probabilistic modeling [10, 11]. Probabilistic models
predict directly at each time step of the prediction horizon the probability density.
Deterministicmodels provide a unique value at each time step of the forecast horizon.
In the deterministic modeling, we distinguish the physical models and the statistical
models. The physical models rely on the modeling of each wind turbine based on
the power curve equations [8]:

Pw = 0.5ρv3, (1)

where Pw the power density, ρ the air density and v the horizontal component of the
wind speed. Other statistical techniques rely on direct learning from data. It includes
statistical models and machine learning methods used in short-term forecasting. We
focus on machine learning methods. The variable to predict is the production of a
wind farm P and the statistical criterion used most often to evaluate the forecast
errors is the mean absolute error,MAE = 1

N

∑N
i=1 |P̂i − Pi |. It is often expressed in

terms of percentage of installed power (IP) and becomes NMAE = 100 ∗ MAE/I P .

The Root Mean Squared Error (RMSE =
√

1
N

∑N
i=1

(
P̂i − Pi

)2
) is often used too.

Article [6] discusses the short-term forecast of wind power using a data mining
approach by considering data from the Rapid Update Cycle (RUC) model and the
North American Mesoscale (NAM) model on sixteen grid points closer to a wind
farm. First, the authors select the number of grid points to be considered by the
boosting tree algorithm method, then they apply an PCA to reduce the dimension
of the variables and finally they apply models of SVMreg, multilayer perceptron
network (MLP), radial basis function (RBF), regression trees and random forests.
The MLP model gave the best results with an NMAE per horizon between 8.41 and
11.49%using as input theRUCdata (horizon 12h) and anNMAE per horizon between
5.93 and 13.82% for the NAM input data (horizon 84h). A predictive study of the
wind production of three wind farms with different complexity in France, using a
linear model, persistence (reference model) and nonlinear models (neural networks,
random forests, and SVM) is made in [7]. The authors used data from the ARPEGE
weather forecast model for France over a period of 18months with a 60h forecast
horizon. Random forests yielded the best resultswith anNRMSE per horizon between
9 and around 15% for forecast horizons ranging from 3h to 60h. A study of different
probabilistic approaches ismade in [4], followed by an evaluation of the deterministic
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performances (mean of the distributions) with NMAE as the evaluation criterion.
Their results show an NMAE per horizon between 9 and 15% for a 60h forecast
horizon with an overall increase based on forecast horizons. Predicting the density
ofwind generation using theECMWFensemble forecasts is discussed in [12]. In their
paper, the authors estimate the mean and the variance of the square of the speed by
models AR-GARCH or ARFI-GARCH, then after simulation of 10,000 wind speeds
squared according to a Gaussian law, they apply a theoretical power curve to get the
productionby taking the averageof the conversionof the 10,000 speeds. TheMAE and
themaximum log likelihood are used to estimate production forecasts and probability
distribution forecasts, respectively. They get on five wind farms (50.25 MW), an
averageMAE between 50 and 150kW from the first to the tenth day (time step 1day).
It is important to emphasize that in their study, the spatial aspect was not taken into
account. The article [5] focuses on the analysis and spatiotemporalmodeling of short-
term forecast errors in wind generation. With forecasts of the production of 22 wind
farms located in Denmark, the authors demonstrated a spatiotemporal structure of
production forecast errors, shown the impact of speed and direction on the nature and
shape of the structure and proposed a model to capture this structure. After clustering
the 22 wind farms, the ACFs and CCFs made it possible to study intra-group and
inter-group dependence respectively to demonstrate temporal and spatial correlation.
The effects of wind speed and direction were examined by performing an analysis
by sector (four sectors) and by velocity interval (interval [0–25] divided into five
intervals). They concluded that spatiotemporal information decreased their NRMSE.

Among others, parametric regressionmodels, Support VectorMachine (SVM) for
regression, classification and regression tree (CART), and random forests are often
used. The description of the data is made in the following section.

The Data

The data used in this study come from the European ECMWF model and the wind
turbine Supervisory Control and Data Acquisition (scada).

• ECMWF data: The European Center for Medium-Range Weather Forecasts is
an independent intergovernmental organization funded by 34 states. ECMWF is
both a research institute and an operational service, producing and disseminating
numerical weather forecasts to its member states. These data are fully available
to the national meteorological services of the Member States. The ECMWF data
used are hourly forecasts from the 0h run with a 48h forecast horizon and a reso-
lution of 0.125◦ (approximately 13km in latitude and longitude). We will use the
ECMWF model data as input source. With UGRD and VGRD the wind speed W,
which is the norm of (UGRD, VGRD) and the direction of the wind (Dir) obtained
by tangent arc of (UGRD, VGRD) have been calculated and added in the meteo-
rological variables (Table1).
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Table 1 ECMWF data

Variables Descriptions Units

UGRD_10m East–West wind component at 10m above ground m/s

VGRD_10m North–South wind component at 10m above the ground m/s

UGRD_100m East–West wind component at 100m above ground m/s

VGRD_100m North–South wind component at 100m above the
ground

m/s

TMP_2 Temperature at 2m above the ground ◦C
SP Surface pressure Pa

TP Total precipitation at the surface m

Table 2 Scada data

Variables Descriptions Units

Power Power of each wind turbine Kw

wind speed Real wind speed on the site m/s

Operation Operating index of each wind turbine

• Scada data: the data history of ENGIE Green wind farms is used in this study
covering the period from January 2015 to December 2017. This is the production
of each wind turbine, its operating condition (operating index) and the wind speed
measured by an anemometer on its nacelle every minute. The operating index
(equal 0 or 1) depends on the state of the wind turbine at every moment (run,
emergency or stop for example), the fact that the wind turbine is able to produce
and the fact that the measurement production is not fixed (the scada does not repeat
the samemeasure by malfunction). This index is defined in a way specific to Engie
Green and it allows to knowat everymoment if the value of the production provided
by the scada is correct or not. These data are dated in local time. In parallel, wind
measurements are also available from a measuring pylon located on each wind
farm. But there is more uncertainty about these measures of the pylon (Fig. 4 and
Table2).

Production data and real wind speed are converted to GMT and hourly averages. At
eachmoment t , the production P of thewind farm is equal to the sumof the production
of the wind turbines and the real wind speed Wnacelle is equal to the average wind
speeds measured by the anemometers on the nacelles of the wind turbines. The data
are divided into a 2-year learning sample (2015 and 2016) to account for seasonal
effects and a one-year test sample (2017).

Let X (i) = (Ui , Vi , Wi , Diri , Tempi , SPi , TPi ) denote the weather data at a grid
point i . Figure3 shows the sixteen grid points of the ECMWF mesh closest to the
wind farm.

For each approach, three situations where tested to study the impact of the
spatial aspect: (i) using as input variables X , the weather data at the closest
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Fig. 3 Sixteen grid points of the ECMWF grid closest to the wind farm (map done with leaflet
package from Rstudio)

grid point of the wind farm (X = X (7)), (ii) to the four closest grid points (X =
(X (6), X (7), X (10), X (11))) and (iii) to the nearest sixteen grid points (X = (X (1),

· · · , X (16))). Finally, we will explain the spatiotemporal analysis (Section
“Feature Engineering: Spatiotemporal Dynamics ofWind”) tomodel wind dynamics
and add it to the input data. For each approach there are two steps in the modeling:
the training step and the test step. For example, the indirect approach is as follows:

• Training step:

– Estimate the real power curve: P = g(Wnacelle) + η by a smoothing spline to
get ĝ,

– Wind speed: Wnacelle = h(X) + ζ to learn the wind speed forecast model
on the wind farm and obtain the estimator (or the forecasting model) ĥ
of the unknown function h (a machine learning algorithm, see section
“Algorithms of Machine Learning”),
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• Test step: use the day head weather data X , to forecast the wind speed on the wind
farm Ŵnacelle = ĥ(X) and then transform the forecasted wind speeds into wind
power forecast P̂ = ĝ(Ŵnacelle). Wnacelle is the real wind speed, P the production
of the wind farm, η and ζ are random errors.

In the following section we present the principles of machine learning methods used.

Algorithms of Machine Learning

From the 1980s, the development of computer science facilitated the implementation
of nonlinear methods. Classification and regression trees will be introduced in [13].
Breiman [14] then introduced random forests in 2001. Usually the statistical frame-
work is as follows: we want to predict a variable Y from p explanatory variables
X = (X1, X2, . . . , X p) which are vectors. In a general way the statistical model is
written: Y = f (X) + ε, where f is a function (Model) estimated minimizing the
errors ε. In our case Y will be either the wind farm production P or the wind speed
at the top of nacelleWnacelle. We apply somemodels commonly used in the literature.

Persistence

The persistence model is a widely used reference model for wind energy forecasting.
It simply consists of using the last observation as a forecast for all horizons [7].
Specifically, P̂t0+h = Pt0 with P̂ representing the forecasts, P the measures, t0 the
initial forecast time and h the forecast horizon.

Bagging

Decision trees (see [13] for details) suffer from a large variance. That is, if the
training data are randomly separated into two parts, and a decision tree is adjusted
on each set, the results obtained could be very different. A natural way to reduce
variance is to have multiple samples of the population, build a predictive model
on each sample separately, and average predictions. In other words, we calculate
f̂ 1(x), f̂ 2(x), . . . , f̂ B(x) using B learning sets and we average,

f̂avg(x) = 1

B

B∑

b=1

f̂ b(x), (2)

to obtain a lower variance. In practice, no more samples are available. However,
we can obtain several B samples per bootstrap in order to calculate f̂ ∗b(x) and to
average the predictions to obtain,
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f̂bag(x) = 1

B

B∑

b=1

f̂ ∗b(x) (3)

this is called bagging. The principle remains the same in the context of a regression.
In place of decision trees, regression trees will be constructed as part of the use
of bagging for regression. The idea of Bagging is that by applying the basic rule
on different bootstrap samples, the predictions are modified, and thus a collection
of various predictors is constructed. The aggregation step then makes it possible to
obtain a powerful predictor.

Boosting

Boosting was introduced by [15] in 1996. This is a general approach that can be
applied to several statistical learning methods for regression or classification. Boost-
ing is similar to bagging, except that trees are built sequentially: each tree is built
using the information from the previous tree. The principle of boosting is to draw a
first bootstrap sample BΘ1

n , where each observation has a 1/n probability of being
drawn, and then apply a basic rule (regression tree in our case) to get a first predictor
f̂ (., BΘ1

n ). Then, the error of f̂ (., BΘ1
n ) on the training sample is computed.We draw

a second bootstrap sample whose law of drawing of the observations is no longer
uniform. The probability for an observation to be drawn depends on the f̂ (., BΘ1

n )

prediction on this case. The principle is to increase the probability of drawing an
incorrectly predicted observation, and to diminish that of drawing a well-predicted
observation. The basic rule is applied to this new sample and then the process is
repeated. The collection of predictors obtained is then aggregated using a weighted
average.

Random Forests (RF)

Since its introduction by Breiman [14] in 2001, many publications have addressed
the theory of random forests with applications in several areas. The principle of
random forests is first of all to generate several bootstrap samples BΘ1

n , . . . ,BΘq
n .

Then, on each sample BΘl
n , a variant of CART (Classification And Regression Tree)

is explained. In other words, a tree is constructed in the following way. The division
of a node is done by a random draw of m variables and the search for the best
break according to the selected m variables. In addition, the constructed tree is fully
developed (maximum tree) and not pruned. Pruning consists in looking for the best
sub-tree pruned from themaximal tree (better in the sense of the generalization error).
The collection of trees obtained is finally aggregated (average in regression, majority
vote in classification) to give the predictor of random forests. The draw, at each node,
of the variablem is done, without discount, and uniformly among all variables (each
variable has a 1/p probability of being chosen). The number m (m ≤ p) is set at the
beginning of the forest’s construction and is, therefore, identical for all trees. This is
a very important parameter of the method.
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For Random Forests, there are, therefore, two sources of randomness to generate
the collection of individual predictors: the randomness due to the bootstrap and the
random choice of variables to cut each node of a tree. Thus, one disturbs both the
sample on which one launches the basic rule, and the heart of the construction of the
rule of base. This random draw of variables to cut a node had already been used by
Amit and Geman [16] in image recognition problems. Their method greatly influ-
enced Breiman in his development of Random Forests.

Support Vector Machine Regression

Support Vector Machines are a class of learning algorithms initially defined for
discrimination, that is, predicting a binary qualitative variable [17]. They were then
generalized to the forecast of a quantitative variable. We first consider the case of
linear SVM Regression. Let a training data (Y, X) where X is a multivariate set
of N observations with observed response values Y . The goal is to find a function
f (X) = X

′
β + b that deviates from Y by a value no greater than ε for each training

point X , and at the same time is as flat as possible. The formulation in convex
optimization problem is to minimize:

J (β) = 1

2
β

′
β subject to ∀ i : |Yi − f (Xi ))| ≤ ε. (4)

If there is no such function f (.) that satisfies these constraints for all the points, slack
variables ξi and ξ∗

i are introduced for each point. Including slack variables leads to
the objective function:

J (β) = 1

2
β

′
β + C

N∑

i=1

(ξi + ξ∗
i ), (5)

subject to ∀ i : Yi − f (Xi ) ≤ ε + ξi , f (Xi ) − Yi ≤ ε + ξ∗
i , ξi , ξ

∗
i ≥ 0.

C is a positive constant that controls the penalty imposed on observations that
lie outside the epsilon margin (ε) and helps to prevent over fitting (regularization).
The optimization problem previously described is computationally simpler to solve
in its Lagrange dual formulation by introducing non negative multipliers αi and α∗

i
for each observation Xi . The function used to predict new values depends only on
the support vectors:

f (X j ) =
N∑

i=1

(αi − α∗
i )(X

′
i X j ) + b. (6)

To obtain nonlinear SVM regression one can replace the product X
′
i X j with a

non linear kernel function G(X
′
i , X j ) (for example Gaussian kernel G(Xi , X j ) =

exp
(− ‖ Xi − X j ‖2), or polynomial kernel G(Xi , X j ) = (1 − X

′
i X j )

q , where q ∈
{2, 3, ...}).
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Generalized Additive Models

Generalized additive models were introduced by Hastie and Tibshirani in [18]. They
constitute a generalization of multiple regression. In linear regression, we calculate
a linear least squares adjustment for a set of variables X = (X1, · · · , X p) to predict
a variable Y. The equation of linear regression can be formulated as follows:

Y = b0 + b1X1 + · · · + bpX p + ε. (7)

Generalized additive models replace the linear form (
∑

β j X j ) with a sum of smooth
functions

∑
s j (X j ). The s j (.) are unknown functions that can be estimated by any

scatter plot smoother (least squares, splines,...) with a “local scoring” procedure (see
[18] for more details). The GAMpackage is used for the GAMmodel fit in this study.

Results and Discussions

In this study the wind power forecast of ENGIE Green wind farms is presented. We
used the weather forecast at the nearest grid point, at the closest four grid points and
then at the 16 grid points closest to the wind farm (Fig. 3). The forecast horizon is
from 24 to 48h because we are interested in the forecasts of wind production on day
D + 1, knowing that we are at day D.

Results of Machine Learning Algorithms

We present in this section the results of the different machine learning algorithms
(Section“Algorithms ofMachine Learning”).NMAE is used as a statistical indicator.
Taking the direct approach and the indirect approach as well as the modeling at one
grid point, four grid points and sixteen grid points, we compare the results of the
different methods.

Table3 shows that, apart from the GAM with the weather forecast at the nearest
grid point as input sources, random forests provide the weakest NMAE compared to
other machine learning methods when the conditions of application are the same.
For random forests, bagging and boosting, taking into account weather data at four
and then sixteen grid points reduces the NMAE compared to models integrating only
the weather data at the nearest grid point. However, for SVMs, taking into account
more than one grid point increases production forecast errors. Taking several grid
points does not systematically reduce forecast errors; thismay depend on themachine
learning algorithm used. The machine learning algorithms have comparable results
with a slight advantage for GAMS and Random forest for this farm.
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Table 3 NMAE forecast models

Methods Approach 1 grid point 4 grid points 16 grid points

RF Direct 8.56 8.65 8.38

Indirect 7.70 7.76 7.62

Bagging Direct 8.32 8.24 8.15

Indirect 7.92 7.77 7.70

Boosting Direct 8.34 8.35 8.35

Indirect 8.07 8.10 8.23

SVM Direct 8.03 8.40 8.64

Indirect 7.68 7.75 7.76

GAM Direct 7.98 8.74 9.75

Indirect 7.65 8.09 8.85

Persistence 20.40

The same conclusions were observed by generalizing the study on two other wind
farms of 13.8 MW (wind farm 2) and 12.3 MW (wind farm 3) located at different
places and with different topography neighborhood. The results are not presented
but the order of magnitude of the errors are the same.

In the following section we focus on the comparison between the direct and the
indirect approach.

Direct Approach/Indirect Approach

The indirect approach reduces the NMAE of wind power forecasts when using a grid
point, four or sixteen grid points on the wind farm 1 and 2 and less on the wind farm
3. Let’s analyze these results more precisely. We have the ECMWF wind at 100m at
the nearest grid point denotedW and the wind speed at the top of the turbine denoted
Wnacelle. In the case of the indirect approach, the wind is predicted at the head of the
wind turbine by a random forest using different ECMWF data denoted Ŵnacelle. We
compare in the following table the MAE between the W and Wnacelle and the MAE
between Ŵnacelle and Wnacelle. If we look at Table4, we find that the predicted wind
reduces the MAE wind forecast errors on the three wind farms. So the intermediate
step of wind forecasting at the wind turbine reduces the MAE.

What is important to note is that even if the meteorological wind forecast errors
are reduced, if the transfer curve used in the indirect approach is imprecise, the
indirect approach may be less advantageous. In fact, the Fig. 4 on the right is only
an example of the transfer curve in the direct case with only one input variable (the
wind speed) to illustrate the difference between the transfer curves in the direct and
indirect approach (transfer curve at left). For example, if we use the power curve
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Table 4 MAE with wind
ECMWF compared toMAE
with wind forecasted at the
top of wind turbines

Wind speed MAE (m/s) at the nearest grid

Wind farm 1

ECMWF wind speed at
100m

1.34

Wind forecast by RF 0.95

Wind farm 2

ECMWF wind speed at
100m

1.66

Wind forecast by RF 1.22

Wind farm 3

ECMWF wind speed at
100m

1.06

Wind forecast by RF 0.78

Fig. 4 Transfer curve with anemometer wind on the wind turbines (left), with wind pylon (in the
middle) and with wind ECMWF (right)

with wind measurements with a lot of uncertainties (middle), the indirect approach
becomes less advantageous.

For the farm 3, the real transfer curve of the wind farm is much more imprecise.
There were wind measurement deficiencies of anemometers on two wind turbines
among the six that makes up the wind farm 3.

Feature Engineering: Spatiotemporal Dynamics of Wind

In this part, a feature engineering of the meteorological data is done to model the
spatiotemporal dynamics of the wind. For each input variable we approached the
temporal variation and integrated it into model input. For example, for the wind
component UGRD, at a grid point i at an instant t , the temporal variation will be
UGRD(i,t) − UGRD(i,t−1).
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Table 5 NMAE with integration of spatiotemporal variations

Models 1 grid point 4 grid points 16 grid points

RF direct 8.56 8.65 8.38

RF indirect 7.70 7.76 7.62

Integration of spatiotemporal variations

RF direct 8.21 8.28 8.21

RF indirect 7.45 7.57 7.44

To model the spatial variations of the wind at a grid point in an instant t , we
calculate for the wind components (UGRD, VGRD, W and Dir) the vertical and
horizontal variations between this grid point and the other two grid points located
at the top on the vertical axis and left on the horizontal axis at the same time t . For
example for UGRD at grid point 6 (Fig. 3) in one instant t , we get (UGRD(6,t) −
UGRD(7,t), UGRD(6,t) − UGRD(10,t)) as spatial variations.

By adding these two derivatives as input variables, we model the spatiotemporal
dynamics of the wind (wind gradient).

The number of input variables will increase from 11 to 27 (in the case of a grid
point), from 44 to 108 (in the case of 4 grid points) and from 176 to 432 (in the case of
16 grid points).We present in the Table5, the integration of spatiotemporal variations.
In the three modeling cases (one grid point, four grid points and sixteen grid points)
there is a reduction in forecast errors compared to the first case where the derivatives
are not used. This improvement in forecasts come from the fact that, in addition to the
one-time meteorological data t , we take into account the spatiotemporal variations
of the wind at this moment in order to predict the production. In other words, at each
instant t , the spatiotemporal variations in addition to the instantaneousmeteorological
data better explain thewind production at thismoment. Integrating the spatiotemporal
variations increases the results by 3% and the same results were observed for the two
other wind farms.

Conclusion

In this paper, different statistical models applied to the short-term forecast of wind
energy production are studied. The ECMWF weather model forecasts are used as
input data. GAMs and Random Forests had a slight advantage over the short-term
forecast (horizon 24–48h) of wind generation that the other machine learning algo-
rithms tested. Our results showed a reduction in forecast errors with the indirect
approach due to improved wind forecasts and a better transfer curve in the indirect
case. It is important to take into account a good real transfer curve in the indirect
approach. If the local wind reference are rather imprecise, the resulting power curve
of these measurements and the production of the wind turbines is not as good and the
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use of the indirect approach may not be more advantageous than the direct approach.
We have also found that the use of the wind gradient provides an additional set-
back and thus reduces the NMAE of wind production forecasts. The use of several
grid points does not systematically reduce the forecast errors (this depends on the
machine learning algorithm used). In perspective we will refocus on how to take into
account wind regime change and also will use deep learning for forecasting wind
power. Selecting the grid point according to the importance (precision) of the mete-
orological variables on each grid point could also improve the production forecasts
and especially reduce the dimension of input data.
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A Simulation of a Custom Inspection
in the Airport

Kalle Saastamoinen, Petteri Mattila and Antti Rissanen

Abstract Time is an essential part when traveling since it is a very time-critical
process. One main issue when going abroad is a border crossing. Helsinki–Van-
taa Airport (HEL) has extensive flight connections and the shortest routes between
Europe and Asia, making it a major hub for Northern Europe. The number of exter-
nal border traffic at Helsinki–Vantaa Airport is increasing steadily. In this study, we
will study through simulation if Helsinki–Vantaa Airport is able to answer future
challenge with estimated amount of passenger to increase 74% by 2022 by using
cooperation-based data processing in entry and exit checks in the border inspection.
Main result of simulation is that by exchanging traveler’s information automatically
between different authorities, this future increased amount of traffic can be taken
care of without increase of airport capacity, so that airport traffic still stays fluent.
This simulation model can be used if we want to measure impacts of renovations and
increased traveler’s flows to the changes of border inspection time.

Keywords Airport · Passenger information · Border inspection · Data · Simulation

Introduction

Here simulation is used to show the real effects of alternative conditions and courses
of action. In order to establish our simulation model, we used queueing theory that is
themathematical study of waiting lines or queues [1]. This study can be considered to
be part of operations research since the simulation results are used to make decisions
about the resources needed to provide a service.
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In modern traveling, airport operations and the implementation of border checks
are very time-critical. Short connecting flight schedules at Helsinki–Vantaa Airport,
coupled with high level of the passengers passing through the airport to the next
flight, require smoothly running border control process. This demand challenges the
border inspection capability to be flexible and able to fill the level required for a
fluent border traffic. Passengers’ delays from connecting flights can be a significant
operational and financial risk for airlines and ultimately passengers themselves. The
border inspection authority has no legal right to waive border controls or to change
the content of inspections to ensure the smooth running of traffic. The flow of traffic
cannot get priority over the border control protocols that are in line with the regu-
lations. However, it is very important that the border inspection process is operated
without significant queuing times [2].

Main research question is to simulate how well can Helsinki–Vantaa Airport
answer future challenge with increasing number of passengers and can new demands
be handled using cooperation-based data processingwith different participating oper-
ators? Where main benefits are avoidance of overlapping information and use of
automated border checks in entry and exit.

In this article, first chapter presents the problem in hand at Helsinki–Vantaa Air-
port, second chapter goes through possibilities of collaboration-based data handling,
third chapter presents the simulation model and results, and fourth chapter gives
conclusions and discusses future directions of this research.

Problem Description

The development of Helsinki–Vantaa Airport emphasizes the growth of passen-
ger traffic across the Schengen border, which has a direct impact on the Border
Guard’s operations aswell. Estimated growth forecast for trafficwill take into account
Finavia’s (Formerly the Finnish Civil Aviation Administration that is responsible for
maintaining and developing its 21 airports and Finland’s air navigation system) and
Finnair plans and projections. The largest operator in the HEL airport is Finnair,
which invests in traffic between Europe and Asia. Currently, Asian traffic accounts
for a little over 50% of Finnair’s traffic [3]. Finavia’s future growth strategy under-
lines the strong growth of transit travelers. In Helsinki–Vantaa, this means that Asian
passenger traffic will increase, which significantly adds the number of passengers
with a visa requirement [4].

Helsinki–Vantaa Airport has extensive flight connections and the shortest routes
betweenEurope andAsia,making it amajor hub forNorthernEurope.Whenplanning
for a smooth running of the border control process, it is good to know that many
of the passengers pass through the airport only to switch the flight. The number of
external border traffic atHelsinki–VantaaAirport is increasing steadily. Table 1 shows
estimation for number of passengers up to the year 2035. Estimation forecasts an
average growth rate of 4.7% per annum. Traffic growth is expected to be particularly
high on third-country passengers.
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Table 1 Estimated passenger growth between 2013 and 2035 [5]. Published with permission of
Finavia

Table 2 shows the realization and development of cross-border traffic in the
Helsinki–Vantaa external border traffic 2010–2017. In 2016, Helsinki–Vantaa’s total
passenger traffic was 17.2 million passengers (Table 2). During the year 2017, the
growth was 800,000 passengers. By the year 2022, the number of passengers on

Table 2 Development of traffic in 2010–2017 [7]. Published with permission of Finavia
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external border traffic is estimated to increase approximately by 74%, from 4.6 mil-
lion (2016) to 8 million passengers. In 2017, more than 5.2 million border checks
were carried out [6].

TheHead of theCoastGuard of theGulf of Finland has pointed out thatHelsinki—
Vantaa Airport’s volume and profile of the passenger traffic, especially during the
afternoon hours, pose a challenge for the operators, airline carriers, and authori-
ties [8]. To respond to the challenge, the Border Guard’s operational processes are
continuously evaluated and developed. Efforts to streamline and manage passenger
traffic have been attempted to meet the needs of growing passenger flows. These
actions include the efficient use of personnel and passenger guidance as well as other
development measures for the border inspection process. The passenger guidance
system has been developed as a cooperation between the airport authority and the
Border Guard [9].

In the actual border checks, processes have been continuously enhanced. As an
example, automatic self-service border control desks in the Helsinki–Vantaa Airport
have helped to speed up the increase in passenger flows. The major factor in the
automated border control utilization is the increase in the proportion of biometric
passports. Safety regulation and features for biometrics passports and travel docu-
ments are provided at EU level [10]. As such, they made an important step toward
the development of technical components at border control in Europe.

The share of EU/EEA/CH nationals in the Helsinki–Vantaa external border traffic
has been steadily about 70% of the total number of passengers traveling each year.
In 2017, EU passengers accounted for around 66% of Helsinki–Vantaa’s external
border traffic. The number of automatic border checks on total traffic has still been
below 40% [7]. However, the predicted growth of passenger traffic in the group of
third-country nationals means also growth in the group with limited access to the
automated system, which demands biometric passport [7, 11]. This necessitates the
need for the development of audit processes. As an operating environment, the airport
requires that the border authoritymust take into account, in its ownactivities, the time-
and activity-related factors determined by the carrier and the airport [8]. These are
important for the airport competitiveness. Effective processes are important success
factors. Strengths of Helsinki–Vantaa Airport are short distances and at best plane
can be changed in 35 min. Quick access to connecting flights is a competitive factor
and as Asia’s transit traffic increases, the smoothness of processes is an essential part
to the success of the airport [12].

The challenge for border checks at Helsinki–Vantaa Airport is the fluctuations in
the time distribution of border-crossing air traffic. This means number of passengers’
to change heavily according to the time. Peaks are related to the structure of Finnair
flights. In the afternoon, the congestion of border checks for incoming and outgoing
flights is mainly due to the so-called “the Asian wave”. At that time, Finnair’s traffic
generates incoming traffic at border checks of up to 3600 passengers per hour. As
an example, if Finnair’s long-distance traffic would add two daily flights that would
mean that the number of border-crossing individuals would increase between 400
and 600 border-crossing individuals per day. On an annual level, increase would be
up to 200,000 border checks more.
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Fig. 1 Time fluctuation in passenger volume for 24 h at Helsinki–Vantaa [13]. Published with
permission of Finavia

According to Finavia’s data, in summer, especially in May, the number of passen-
gers is growing strongly [13]. Figure 1 illustrates the hourly variation for air travelers
on May 31.

When assessing the number of passengers, Finnair’s own growth forecasts should
not be considered as the only source of information. With regard to Helsinki–Vantaa,
itwould also beworth noting the growing interest of all airline carriers of transit traffic
inHelsinki–VantaaAirport. The admission of newcompanies to airlines operating via
Helsinki–Vantaa may have a major impact on passenger transport growth. However,
making forecasts is challenging because it is hard to anticipate passenger flows.
Mobility is affected by various phenomena and decisions made outside Finland’s
borders. Surprising changes in people’s behavior, mobility, and travel can be caused
by international security situation, immigration, or climate change [14].

Automation can significantly assist in verifying a person. The whole set of per-
sonal and travel information that has been identified at various stages of the border
check process has become complex. Technical progress has made it possible to
carry out checks of documents and persons in parallel. Future factors will be the
automation of the audit process and the wider utilization of biometric identifiers.
The border inspection process is then advancing toward solutions in which at the
border-crossing point the passengers themselves sovereignly master the procedures
while the authorities are there mainly to supervise and help. Technical solutions can
ensure the reliability of inspection activities and reduce queues at border-crossing
points. The implementation of technical services to facilitate the flow of cross-border
traffic requires the pooling of data for different authors [15].

Possibilities of Collaboration-Based Data Handling

In order to identify the information needed for border control, a border inspection
application is utilized. The necessary data in the application is combined for sources
to allow the user to view, process, and compare different data. The Border Inspection
Application is part of the Border Guard’s Operational Information System (RVT)
where all data entered at the border check is stored [11].
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Air carriers provide passenger information to the border inspection authority sys-
tem Ratas using a secure connection using a standardized message format. At recep-
tion of passenger information, an aero-based MQ-based network is used. The com-
munication follows the standards defined by the International Civil Aviation Organi-
zation (ICAO), the World Customs Organization (WCO), and the International Air
Transport Association (IATA). The message format is the PAXLST (passenger list)
message standard that passes within the Type B frame. The Border Guard has its
own address on the network, where the sent messages are sent to the Ratas system
of the Frontier Guard [2].

Passenger information and regulation on border checks revealed the convergence
of entries in border checks in relation to carriers’ data in air traffic. It is clear that
the current passenger data collected by the air carrier contains data which will also
be surveyed and recorded in the entry and exit checks. Passenger information can
be used to find out the necessary information without requiring the verification of
documentary evidence presented in support of this information.

Unlike Advance Passenger Information (API) data, Passenger Name Record
(PNR) data cannot be used to support border checks in accordance with the directives
[16]. The data contained in the PNR data set is related to the information needed to
determine the cross-border motive in order to establish the purpose and conditions
of the intended stay. The duration of the planned stay PNR data supports API data
in order for officer to determine the real destination.

As a whole, these “pre-requisite border controls” can be used, for example, in
entry checks. An air carrier collects the following information that is consistent with
the information available at the border inspection:

1. Country of Departure (API),
2. Transport, ID (API),
3. Destination (API), and
4. Planned (Scheduled) Travel Date (s) (PNR).

To make better use of passenger data, automation is needed to process the infor-
mation for acting border inspector. API data is designed for originally arriving pas-
sengers, so utilization for boarding is a challenge. Wider use of this data does not
seem possible because of the delivery time specified in the law. This change would
require both a review of the legal basis and new technical arrangements [2].

Uniform operating models for collecting data may also contribute to collaborative
information processing. Cooperation-based data processing is not only related to the
use of passenger data.Automation is not just a check-in automation. It is expected that
technological solutionswill not only be limited to checking-in ormaking reservations
but also the services will be further extended in the future [2]. At the same time, it is
necessary to ponder the question whether or not independent controls are needed for
border controls or would they bemore efficient when the activities are linked together
into the entire travel process? From the point of view of border checks, identification
data from travel and personal documents can be obtained from the check-in desk.
Primarily, the use of check-in machines would be airport specific and related to the
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start-up inspection. The use of check-in machines for entry checks is technically
complicated both in collecting and delivery of data [2].

Modeling and Results

Border inspection process can be described by the following flowchart (Fig. 2):
In order to define correct parameters for the simulation model, we did empirical

testing about inspection times at Helsinki–Vantaa Airport. Test was carried out on
February, 19–21, 2018 and concentrated to the customers coming outside Europe.
Sample size was 50 and samples were selected randomly.

In our simulation we were only interested how long time it takes to go through
border inspection. Simulation model helped to find critical points from the process
and gave valuable insight how time-critical border checkup time is with respect to
resources available. Simulation here models multiphase process, from where one
can see how passengers’ incoming and exiting to the process affect the queue length.
Using this simulator, we tested how much sharing information between officials and
use of automated border checkup could boost up passenger’s flowrate.

Border checkup is queue process. Phases are arrival, waiting, service, and exit.
Bottleneck in practice in this process is waiting time in queue. In HEL, border
checkup is organized as follows (Fig. 3):

Here we have one line with many servers. In order to make border check as
effective as possible, we can affect mainly to the effectiveness of servers. Service

Fig. 2 Process flowchart of the passengers’ border crossing
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Fig. 3 One line many servers

time distribution is a key factor in the fluent working of the queue. In the simulation
model, the following principles form the workingmodel: (1) Number of customers in
the queue. (2) Number of customers in the whole system. (3) Average time customers
wait in the queue. (4) Average time of the border inspection. (5) Average time in the
system.

The model simulated the timing of the queue length by calculating passenger
arrivals and exits at border inspection. Flight Passenger Parameters could be deter-
mined per flight. The user interface included setting the flight fill rate. The average
waiting time for the first incoming flight queue was assumed to be empty at first.
The simulation was continued until the last flight had arrived and the passengers had
passed the inspection. In this case, the observation from a single simulation time was
the average of all wait and wait times for all the passengers in that simulation run
(Fig. 4).

A total of 22 manual and 20 automated inspection lines are available for border
checks of incoming passengers. Manual lines 8 are located in the first floor and
the rest 14 in the second-floor spaces. Border checks on outbound passenger traffic
are carried out on one floor, where 16 manual and 15 automated control lines are
available [6]. In order to shorten the waiting times, there are separate routes for
passengers belonging under the European Union’s free movement right [17]. As a
result of these arrangements, a total of 20 inspection points are available for third-
country nationals and 15 manual checkpoints on outbound checks. With the terminal
extension, the capacity of external border controls will also increase in the future.
Exact line numbers have not yet been established [6], so existing border control
capacity was used in simulation and analysis of results.

The number of flights varies daily. Through the simulation it was essential to
illustrate the duration of the checks in relation to the resources used. To illustrate the
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ARR Cap max Täy öaste % Manuaali tarkaste avat ABC % Tarkastajien määrä

0:25 100 100 30 70 10
0:30 209 100 62,7 70 10
0:55 165 100 49,5 70 10
0:55 144 100 43,2 70 10
1:40 212 100 63,6 70 10
5:45 297 100 89,1 70 10
6:25 297 100 89,1 70 10
6:55 100 100 30 70 10
6:55 100 99 29,7 70 10
7:00 100 100 30 70 10
7:00 100 100 30 70 10
7:10 306 100 91,8 70 10
7:55 254 100 76,2 70 10
8:50 289 100 86,7 70 10

10:20 87 100 26,1 70 10
10:50 289 100 86,7 70 10
11:40 130 100 39 70 10
11:55 289 100 86,7 70 10
12:20 209 100 62,7 70 10
12:35 140 100 42 70 10
13:10 100 100 30 70 10
13:30 100 100 30 70 10
13:45 209 100 62,7 70 10
13:50 297 100 89,1 70 10
13:55 336 100 100,8 70 10

Fig. 4 The user interface occupancy of the flights and to determine the auditees and auditors

situation as close as possible to reality, it was important to make use of reality-based
timetables, which saw flight times and flight-specific maximum passenger capacity.
According to the statistics from Finavia [13], passenger numbers will grow strongly,
especially in May. In the simulation model, we wanted to note the effects of the
increase in the number of passengers in the summer timetable, so the preliminary
data on the busiest day of May that was May 30, 2018, see Fig. 1 was used as basic
of simulation model.

Table 3 illustrates the results of the simulation with the current total time control
(169.70 s) versus in case of automatically changing the passenger data (64.01 s).
The simulation showed that with the selected parameters, the number of inspectors

Table 3 Simulation result of automatic transmission of data on the flow rates of passengers
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Table 4 Effects of the use of passenger information to the inspection time

Present (s) Automated (s) (change %)

In-depth arrival inspection
– Phase 4—Departure (API), conveyance, identifier
(API)

– Phase 6—Destination (API), travel plan (PNR)

169.70 64.01 (−62.28)

In-depth boarding inspection
– Phase 5—Destination (API), conveyance,
identifier (API)

43.16 41.05 (−4.89)

decreased considerably if the data already collected by the air carrier was automati-
cally transferred to the simulation between the information systems. The time spent
on border checks may also be increased within the limits permitted by the airport’s
border inspection capability, and then the number of border inspectors may be a
variable factor.

Table 4 shows the effects of the usage of advanced passengers information (API)
to the inspection time. We see that result is significant.

Conclusions and Future

The simulation showed that the current border control total time (169.70 s) cannot
achieve the current maximum time set for inspection, i.e., the waiting time for a
border check can be 10 min (Table 3). The issue was solved in this simulation model
so that the sum of the waiting time and the inspection time was a total of 10 min. It
depicted the time taken to inspect one machine for passengers so that even the last
one in the queue does not have to wait longer than the target time.

The key result of the simulation was that automatic exchange of passenger data
can be used to carry out the necessary flight checks with the current border inspec-
tion capacity so that the effectiveness objective is met. In exit checks, benefit was
significant. The effects of the utilization of passenger data on the inspection times
are presented in Table 4.

The result of the study was that automatic procedures for handling current pas-
senger data should be developed in the future so that border inspectors will be able
to access the necessary information electronically. The question is mainly about the
new technical implementation and the new sharing of information among the dif-
ferent authors. Passenger data sharing speeds up the required checks to a significant
extent in connection with the border-crossing process. The impact was particularly
evident in a thorough entry check, which only covered one-third of the current time.

The simulation model built during the research gave grounds for evaluating per-
formance, explaining the flow efficiency of the process, and its impact from the point
of view of border authorities: how to allocate resources and how to use them to
achieve the overall quality of services sought. Performance was measured in order
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to see what kind of results was achieved with current activity. The most important
elements of the simulation were the waiting time and the time of inspection. It was
critical to keep the times within the allowed limits. When attention was paid to the
most important variables in the course of the process, it was possible to identify
the factors in which the process can be enhanced. The simulation model used was
particularly suitable for modeling incoming air traffic. In the simulation model, the
percentage of EU/EEA/CH nationals on the external borders was based on the calcu-
lated averages of total number of passengers. With a view to monitoring the impacts
of a credible growth, the relationship between third-country nationals of each flight
should be monitored separately. This is also possible if we want to extend the sim-
ulation. This study was based on a simplified model that provides sufficient initial
data for the examination of the border inspection process for third-country nationals
with selected variables.
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Approaches for Telecom Analysis

André Pinho, Rogério Costa, Helena Silva and Pedro Furtado

Abstract Prediction of consumption has several applications in industry, including
to support strategic decisions, market offering, and value proposition. In telecom-
munications industry, it can also be used in network resources management and in
guaranteeing quality of service to users. But in order to make good predictions, one
should choose the algorithm that is best fitted to the considered time series and also
configures the parameters correctly. In this chapter, we discuss the use of time series
forecasting algorithms over telecommunications data. We evaluate the use of Auto-
Regressive IntegratedMovingAverage (ARIMA), Prophet (launched by Facebook in
2017), and two neural network algorithms: Multilayer Perceptron (MLP) and Long
Short-Term Memory (LSTM). We ran those algorithms over real data about Internet
data consumption andmobile phone cards recharges, in order to forecast time periods
of distinct sizes. Forecasted values were qualified in terms of Root Mean Squared
Error (RMSE) andMean Absolute Percentage Error (MAPE). Obtained results show
that ARIMA is the algorithm that is best suited to most cases.
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Introduction

The emergence of new services made available through the Internet has further
increased competitiveness in the telecommunications industry in the last decade.
Companies had to adapt themselves to new challenges and to innovate. Ensuring
good quality of service at competitive costs has become essential. On the other hand,
an increasing amount of data about customers and services’ usage became available
and can be used in decision support tools. Also, data science techniques can be used
in telecom to forecast consumption and tendencies, having great potential to support
business and market decisions, and also to enable efficient management of network
resources in order to guarantee high levels of quality of service. Seasonality, trends,
and the variations of the number of clients are just some of the factors that influence
consumption of telecom services, posting additional challenges to the consumption
forecasting.

In this work, we study the use of time series forecasting methods over telecom
data. We evaluate the use of Auto-Regressive Integrated Moving Average (ARIMA),
Prophet (launched by Facebook in 2017), and two neural network algorithms: Mul-
tilayer Perceptron (MLP) and Long Short-Term Memory (LSTM). Although such
methodsmay be implemented using existing time series libraries (e.g., like statsmod-
els [1], fbprophet [2], scikit-learn [3], and keras [4], for python implementations),
they are subject to someparametrization thatmay greatly influence prediction quality.
We ran each of those methods over two real telecom datasets (of mobile phone cards
recharges and of Internet data consumption) using several configurations in order to
choose the one that leads to the best prediction. We use the Root Mean Squared Error
(RMSE) and the Mean Absolute Percentage Error (MAPE) to measure forecasting
quality.

In the next section, we present the state of the art. Then, in section “Application
of Time Series Forecasting Algorithms”, we discuss the application of time series
forecasting in telecommunications. In section “Experimental Analysis”, we present
and analyze experimental results. Section “Conclusion and Future Work” concludes
and presents future work.

Related Work

Time series forecasting has been studied for several years, but there is no single
algorithm that provides accurate predictions for any data series. In fact, several factors
like seasonality, trends, and the amount of historical data available to train a model
can affect prediction accuracy and should be considered when selecting algorithm
to be used. In this section, we review some work on time series forecasting, mainly
in the context of telecommunications.

Branco and Sampaio [5] studied short-term prediction of the consumption of a
telecommunications service. In that work, authors evaluated the use of two neural
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network algorithms, Multilayer Perceptron (MLP) and the Radial Basis Function
network (RBF). They argue that the use of neural networks provides good results
when data has a nonlinear behavior and that such algorithms would adapt well to
telecom demand behavior. In the study, per-month datasets of 3, 4, and 6 months
were used to forecast 1 month of demand (one-step-ahead prediction). Prediction
accuracy was evaluated using Mean Squared Error (MSE) and MAPE. The MLP
algorithm obtained its most accurate prediction (MSE of 3.91e + 5) when using
the largest history set (containing 6-month historical data). Authors conclude that
the MLP algorithm provided more accurate predictions than RBF, although having
worse computational performance. We selected MLP as one of the models to test as
part of this work.

Other types of neural networks, like recurrent neural networks (RNN), have also
been used in forecasting. For instance, Long Short-TermMemory (LSTM) networks
were used to predict rain precipitation [6] and to detect anomalies in time series [7].
LSTM can learn long-term correlation in sequences and eliminates the requirement
of prespecified time windows [7].

The Auto-Regressive Integrated Moving Average (ARIMA) was used by Wang
et al. [8] to predict income forecasting in telecommunications industry. Authors
argue that income prediction is affected by a variety of economic and social rules
which are difficult to get and that ARIMA can make good predictions from historical
data about incomes even without explicitly considering those rules. Two years of
monthly aggregated data was used to fit the model, while 6 months of data was used
for model validation. A double differential transformation was applied to the time
series in order to make it stationary and enable the use of ARIMA. Authors used the
Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF) to
identify the possible values of parameters p and q of ARIMA. Then, a set of models
was evaluated by varying ARIMA parameterization. Authors conclude that ARIMA
can lead to reasonable predictions in terms of telecom income.

In a recent work, Hayashi [9] compared the prediction accuracies of ARIMA and
Prophet [2]. Used dataset consists of 3 years of data about US airline flights aggre-
gated in months. The data about the first 2 years was used to train the model while
the data about the third was used to test the model. Initially, it seems that Prophet
would provide better results than ARIMA. But after a fine-tuning of ARIMA param-
eters, such method provided the most accurate results. Thus, the author concluded
that ARIMA needs manual parameter tuning in order to provide good predictions.
Hence, [8, 9] do show that ARIMA can provide accurate time series forecasting in
telecom and other contexts, but has the big drawback that it requires fine-tuning with
manual parameter configuration.

Trying to overcome such drawback, we presented and evaluated in [10] a strategy
to automate the configuration selection ofARIMA. In suchwork, the proposedmodel
does an exhaustive search over parameter configuration in a reasonable time, enabling
its use by decision support tools.

Furthermore, in our work, it was important to evaluate the alternatives in the
context of real telecom consumption data, and then we selected to evaluate ARIMA,
Prophet, MLP, and LSTM accuracy in such context.
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Application of Time Series Forecasting Algorithms

Time series forecastingmethods allowmanagers to predict the future behavior of key
business data from historical data series. These methods are capable of dealing with
the existence of tendency, of seasonality (variations occurring in certain periods),
and are time dependent.

In the following, we present Auto-Regressive Integrated Moving Average
(ARIMA) [11, 12] method. Then, we detail Prophet [2], which was launched by
Facebook in 2017 to allow its use by people with less knowledge in the field. The
final section briefly describes the use of LSTM and MLP in time series forecasting.

Stationarity and Time Series Forecasting in ARIMA

An important concept in the application of the ARIMA time series method is station-
arity, since the model can only be constructed with stationary time series. A series
is stationary if its statistical properties remain constant over time. The existence of
trend and seasonality are two of the reasons that lead the series to be nonstationary
[8, 12].

There are two methods that allow you to check whether a series is stationary
or not. The first method consists of the graphical visualization of the variation of
the statistical properties of the series, such as the moving average (calculation at
each instant of the average of the values corresponding to the last seasonal period,
typically of 12 consecutive months) and the moving standard deviation over time. If
the properties of the series do not change over time, then the series is stationary. The
second method, the Dickey–Fuller test, assumes that the null hypothesis is that the
series is nonstationary. This test calculates the value of the statistical test and some
critical values for different levels of confidence. If the value of the statistical test is
less than the critical value, then the series is stationary [11].

Differentiation [11, 12] is one of the existing techniques that allows us to deal
with seasonality and trend of the time series, bringing it closer to stationarity in time.
At each instant in the series, differentiation subtracts the original observation, Yt,
from that of the previous instant, Yt−1, using the following formula:

Y′
t = Yt − Yt−1 (1)

Let us now describe the Auto-Regressive (AR) and Moving Average (MA) mod-
els, before describing the Auto-Regressive Integrated Moving Average (ARIMA)
method.

1. The AR model [12] extracts the influence of the values of the previous periods
from those of the current period. This model is developed using the following
linear equation:
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Yt = c + ϕ1 · Yt−1 + . . . + ϕp · Yt−p + et

The parameter p indicates the order ofAR in themodel and represents the delayed
time period of the dependent variable. The remaining parameters of the equation
include ϕ which represents the AR coefficient, y, which is the observed value, e
the deviation of the series at the current instant, and c, which is a constant [12].

2. The MA model [12] extracts the influence of the error terms from the previous
period in the current period. This model is developed by the following linear
equation:

Yt = c + et + θ1 · et−1 − . . . − θq · et−q

The parameter q indicates the MA order in the model and represents the delayed
forecast errors. The remaining parameters of the equation, θ represents the MA
coefficient, y represents the observed value, e represents the deviation of the
series at the current instant, and c is a constant [12].

3. The nonseasonal ARIMAmodel [11, 12] consists of three components, AR, Inte-
grated (I), and MA, each component represented by a positive integer parameter,
p, d, and q, respectively. These three components are combined in the following
linear equation:

Yt = c + ϕ1 · Yd t−1 + . . . + ϕp · Yd t−p + et + θ1 · et−1 − . . . − θq · et−q

The three components have the following characteristics:

• Component I [11]: This component is represented by parameter d of the model.
It indicates the number of times the series has been differentiated to approximate
stationary in time. Typically, one order for a nonstationary series and zero order
for a series stationary in time. This component is developed by the differentiation
formula presented before.

• ARcomponent [6, 11]: represented by the pparameter of themodel. This parameter
indicates the order of theAR component and represents the delayed time period. Its
value is estimated by theAutocorrelation Function (ACF), a function thatmeasures
the correlation between the original series and its delayed version of p time periods.

• MA component [6, 11]: represented by the q parameter of the model. This param-
eter indicates the order of the MA component and represents the delayed forecast
errors. Its value is estimated by the Partial Autocorrelation Function (PACF), a
function that measures the partial correlation between the original series and its
backward version.

It should be noted that parameters p and q are determined when the respective
functions, ACF and PACF, cross the upper confidence interval for the first time.
The confidence interval of the two functions is calculated as ±1.96/

√
n, where the

variable n corresponds to the size of the historical data [11, 12].
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4. The seasonal ARIMA model [12] extends the previous model, combining its
components along with the seasonal model. The seasonality component is also
represented by a parameter and indicates the period of seasonality of the series.

Time Series Forecasting with Prophet

Time series forecasting with Prophet is more automated due to its ability to find
automatically inflection points in the data originated by changes in trend. A novelty
of this method in relation to the previous one is the possibility of accommodating the
existence of seasonal festive periods. The method combines three components, the
trend, the seasonality, and the festive periods, each modeled by some function [13]:

y(t) = g(t) + s(t) + h(t) + εt

The trend component, g(t), is modeled by a logistic function. The seasonality
component, s(t), by a Fourier series. The festive periods, h(t), are adjusted by param-
eterization in the model. Finally, the error term, εt, represents the changes originated
by circumstances that are not accommodated by the model [10]. Further information
on the formulation details of each of these components can be found in [10].

Time Series Forecasting with Neural Networks

The neural networks are constituted by a set of units connected to each other.
Multilayer Perceptron (MLP) [14] is a feedforward artificial neural network con-

sisting of an input layer, one or more hidden layers, and an output layer. Each layer
consists of units called neurons. The inputs of the network correspond to the records
of the training data. These pass through the input layer to compute a weighted sum,
with adjustable weights per input, to be inserted into the neurons that make up the
second layer, called the hidden layer. The outputs of the neurons from the hidden
layer can be inserted into another hidden layer based on a successive weighted sum
and so on. The weighted outputs of the last hidden layer are inserted into the neu-
rons that make up the output layer capable of predicting the desired quantity for
a given month. Each neuron of the hidden and output layers receives as input the
weighted sum of the outputs of the neurons from the previous layer. Then, it applies
an activation function to the weighted input to calculate its output.

Long Short-Term Memory (LSTM) [15] is a type of Recurrent Neural Network
(RNN) capable of learning long-term dependencies. The architecture of the network
consists of a set of units called blocks, containing memory cells connected to each
other, and gates. The memory cells are responsible for storing the temporal state of
the network. Gates are responsible for controlling the flow of information, with each
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block containing an input, output, and forget gate. The input gate controls the flow
of input activations in the memory cell. The output gate controls the output flow of
the memory cell activations to the rest of the network. The forget gate decides the
internal state of the cell, resetting or forgetting the memory of the cells.

Experimental Analysis

Wemade several experiments using real-world data in order to compare the accuracy
of ARIMA, Prophet, MLP, and LSTM in time series forecasting over telecom data.

Used datasets were provided by a telecom operator and consist on real data about
mobile phone card recharges (recharge) and consumption of Internet data (consump-
tion) that was aggregated by month for a time period of 4 years (2014–2017), as it is
detailed latter in this section.

For each dataset and selected algorithm, we used data about 2014–2016 to fit
the model and made several experiments testing distinct configurations in order to
forecast the values for the full year of 2017.WemeasuredMAPE and RMSE in order
to select the most accurate configuration for each algorithm.

Then, we used the configuration that leads to the best result of each method and
dataset to forecast values for each of 2017s quarters. In these tests, we used a period
of 36 months to fit the considered model and used the trained model in order to
forecast values for the following 3 months.

Testbed Datasets

The data used in our experiments comes from a medium-sized telecommunication
operator. We use data about mobile phone card recharges (i.e., loading the phone
account with a certain balance to use in calls and data) and about the volume of
Internet data consumed over 4 years (aggregated by month). Figure 1 graphically
shows the normalized consumption data variation over the period from 2014 to 2017.

In Fig. 1, we can see that there is a tendency of consumption decreasing in terms of
recharging and increasing in terms of data consumption. Seasonality can be seen as
the temporarily accentuated increase and decrease of consumption in certain months
of each year. In the series of recharges, there is a lower consumption in the months
of February, October, and November, and a higher consumption in the months of
January, August, and December. Data from the first 3 years was used for analysis of
the time series and training of the model, the fourth year for testing the model. The
data series in general presents a more accentuated growth in the last months of each
year.

Figure 2 shows the stationarity test of the time series of recharges with two meth-
ods. The figure above shows the graphical visualization of the statistical properties
of the series over time, moving average and moving standard deviation. Both were
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Fig. 1 Mobile phone card recharges and Internet data consumption variation

Fig. 2 Stationarity test of the original time series

configured with the value of 12, corresponding to the seasonal period. The second
method is based on the Dickey–Fuller statistical test, with results presented next to
the figure.

From the analysis of the previous graph, we can see a decrease of the average over
time. This variation over time indicates that the series is nonstationary. The result of
the statistical test has a value greater than the critical value with a confidence level
of 95% (−1.149969 > −2.967882), also indicating that the series is nonstationary in
time. Then a first-order differentiation transformation was applied to make the time
series stationary in time. Figure 3 presents the stationarity test of the series after this
transformation.

From the analysis of the previous graph, it is verified that the statistical
properties of the time series have become approximately constant over time. The
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Fig. 3 Stationarity test of the transformed time series

Fig. 4 Graphs of functions ACF and PACF of the temporal series

result of the statistical test is also less than the critical value for a 95% confidence
level (−4.815318 < −2.992216), also indicating that the time series approached
stationarity.

The number of differentiations that allowed the series to become approximately
stationary indicates the value of the parameter d of ARIMA. The Autocorrelation
Function (ACF) and Partial Autocorrelation Function (PACF) can be used to deter-
mine the values of ARIMA’ parameters p (order of the AR component of the model)
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Table 1 ARIMA 1-step
versus ARIMA 12-step on
recharges—1 year

Method RMSE MAPE

ARIMA 1-step 2.69e + 4 2.6

ARIMA 12-step 3.99e + 4 4.2

and q (order of the MA component of the model). Figure 4 shows the graphs of these
two functions.

The graph on the left side, representing the ACF function, allows estimation of
the value of parameter p, by looking at the position where the function crosses the
confidence interval for the first time. In the graph, this happens between p = 0 and p
= 1. The other graph on the right side is the PACF function, which allows to obtain
the value of parameter q, also by crossing the function with the confidence interval.
In the graph, it happens between q = 0 and q = 1.

Dynamic Forecasting in ARIMA

The Python library used to run ARIMA supports the use of both one-step-ahead
forecasting and of dynamic forecasting. In dynamic forecasting, real values are con-
sidered up to a certain point and then several values may be forecasted. In one-step-
ahead forecasting, real values up to a certain point are used to forecast the next value
in the time series. Then, the real value for the recently forecasted point is used to
forecast the next point, and so on.

One-step-ahead prediction reduces forecasting errors, as shown in Table 1, where
we present RSME and MAPE values when using one-step-ahead configuration
(ARIMA 1-step) or dynamic configuration (ARIMA 12-step) to forecast recharges.
In both situations, we used (0, 1, 1) as the values for the parameters (p, d, q) of
ARIMA, and 12 as the number of steps for a single seasonal period, as such values
were the ones that gave the best results.

The following graphs in Fig. 5 present the values obtained when using both con-
figurations and confirm that using one-step-ahead would lead to better results than
dynamic forecasting.

Although the one-step-ahead configuration leads to better results than the dynamic
one, one-step-ahead prediction is not suitable when planning resource allocation for
several months. Hence, in the following sections, we compare the use of Prophet,
MLP, and LSTM with the dynamic prediction configuration of ARIMA.

Forecasting Mobile Phone Card Recharges

Table 2 shows the RMSE and MAPE obtained using ARIMA, Prophet, MLP, and
LSTM to forecast a full year of recharges. Those results were obtained using the
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Fig. 5 Recharges forecasting with ARIMA

Table 2 Forecasting
recharges—1 year

Method RMSE MAPE

ARIMA 12-step 3.99e + 4 4.2

Prophet 4.26e + 4 3.7

MLP 4.20e + 4 4.4

LSTM 6.25e + 4 5.5

dynamic configuration of ARIMA described in the last section. In ARIMA and
Prophet, we used a seasonality period of 12 months and in MLP and LSTM we used
a validation set size of 33% of the training data.

In the above table, we can see that ARIMA had the lowest value of RMSE while
the lowest MAPE is provided by Prophet. The worst results were obtained when
using LSTM.

The graphs in Fig. 6 present the real and forecasted values for each considered
method. By a visual inspection of such graphs, it is possible to identify that Prophet
made a considerably bad estimation of the last value of the time series. Such error
has impacted the obtained RMSE value.

Wealsomade several experiments on estimating recharges for periods of 3months.
In each experiment, we used a dataset of 36 months of real values to fit the model
and estimated the following 3 months in the time series, each estimated period cor-
responding to one of 2017s quarters.

In Table 3, we present average and maximum values for RMSE and MAPE for
each forecasting method. Again, ARIMA and Prophet generated better results than
the other methods.

By analyzing obtained predictions, we verify that Prophet made another bad esti-
mation for the last month of the year, while ARIMAwentworse in the second quarter.
Obtained results for such quarters (Q2 and Q4) are represented in Fig. 7.
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Fig. 6 Recharges forecasting for a period of 12 months

Table 3 RMSE and MAPE for recharge prediction—quarters

Method RMSE MAPE

Mean Maximum Mean Maximum

ARIMA 3-step 2.96e + 4 4.97e + 4 3.7 5.0

Prophet 4.21e + 4 1.27e + 4 4.1 5.2

MLP 5.88e + 4 1.04e + 5 6.6 13.1

LSTM 5.51e + 4 9.34e + 4 5.4 7.8

Forecasting Internet Data Consumption

We also evaluated the use of ARIMA, Prophet, MLP, and LSTM to forecast data
consumption over 2017. First, we made several experiments forecasting 12 months
of consumption and looking for the configuration parameters that gave the best result
in each method. In ARIMA, the best results were obtained while using (0, 0, 0) for
(p, d, q) and used (0, 1, 0) for (P, D, Q) of the order of the seasonal component. All
the other configurations remain the same.

Figure 8 shows real and forecasted data for each algorithm. ARIMA led to the
best results among all tested algorithms, but in this data series LSTM produced better
estimations than MLP and Prophet. That is also presented in Table 4 that contains
calculated RMSE and MAPE for each algorithm.

We also evaluated forecasting data consumption in periods of 3 months. Table 5
shows the mean and maximum values of RMSE and MAPE in this configuration.
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Fig. 7 Forecasting recharges in quarters—Q2 and Q4

Fig. 8 Data consumption forecasting for a period of 12 months
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Table 4 Forecasting data
consumption—1 year

Method RMSE MAPE

ARIMA 12-step 3.23e + 13 7.1

Prophet 4.41e + 13 9.9

MLP 6.98e + 13 14.0

LSTM 3.44e + 13 7.4

Table 5 Forecasting data
consumption—quarters

Method RMSE MAPE

Mean Maximum Mean Maximum

ARIMA
3-step

3.06e + 13 6.38e + 13 9.96 11.87

Prophet 3.59e + 13 6.21e + 13 7.84 11.12

MLP 3.61e + 13 4.58e + 13 8.22 14.28

LSTM 3.33e + 13 4.81e + 13 7.42 10.72

Forecasting data consumption was more challenging than forecasting recharges, as
it can be proved by comparing the higher error values in Tables 3 and 5. ARIMA
produced the lowest mean value for RMSE while LSTM gave the lowest mean
average value of MAPE.

In all considered situations, the dynamic configuration of ARIMA provided the
best results for RMSE. ARIMA also produced the best results in terms of MAPE for
the quarters estimation of the recharge series and for the full year estimation of the
consumption data series.

Conclusion and Future Work

In this work, we studied the application of four algorithms in forecasting telecom
data. We discussed parameterization issues and experimentally tested the use of
several parameters to obtain the best result of each method. The quality of obtained
predictions was validated in terms of RMSE and MAPE, and could also be checked
by visual inspection.

Although Prophet and LSTM provided some good results in some specific cases,
the ARIMA model consistently provided good predictions for either mobile phone
card recharges or Internet data consumption, even when tested for periods of distinct
sizes. Despite the great variation of phone recharges and data consumption over
the years (and over a single year, due to the existence of seasonality), we could
obtain some reasonably good results, with MAPE values of about 4%. Although
ARIMA requires a great deal of knowledge in its parameterization, an automatic
parameterization procedure can be used, which enables the model to be integrated
into forecasting tools used by managers.
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For future work, we intend to test obtained models over other types of telecom
data, including SMS and phone calls, evaluate the effects of seasonality over such
datasets, and compare the results with the results obtained in this work. Furthermore,
we intend to identify alternatives and configurations to be integrated into decision
support tools used in telecom industry.
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Abstract This study investigates the application of short-term load forecasting
(STLF), which consists of estimating a future demand within a period of time up to
one week, to thermal unit commitment problems (TUCP), providing schedule for
power plant operations. Both problems have fundamental importance for power sys-
temoperations and good results onSTLFmay also influenceTUCPperformance. The
pattern similarity approach is chosen for STLF, which allows the use of regression
algorithms based on machine learning applied to time series analysis and forecast-
ing results are used as information for generators scheduling. This study proposes
a framework containing these tasks with a deep review of them and provides some
statistical information regarding the performance and validation of the framework.
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Introduction

The importance of load demand in power systems tasks leads to the development
of several load forecasting models, which can be based on regression, statistical
analysis, smoothing, or parametric analysis. Some approaches consist of applying
models based on integrated auto-regressive and moving averages, namely ARIMA,
exponential smoothing models of Holt-Winters [20], or principal component anal-
ysis [18]. There are also some computational intelligence models, among them the
ones based on artificial neural networks, studied in [4, 14, 19].

The pattern similarity-based approach, presented in [2, 3], consists of analyzing
time series historical data by training a machine learning (ML) algorithm in order to
build a model and predict data. These models can be described by their simplicity,
few parameters used, and can be applied with several ML approaches. In addition,
deseasonality or decomposition methods are not mandatory, only the definition of
patterns is performed.

This principle can be successfully applied to short-term load forecasting (STLF)
models, which are useful in control, scheduling and safety tasks essential in elec-
trical systems. Such as the Unit Commitment problem (UCP) [8], which consists
of scheduling generating units status (ON/OFF) in order to supply the hourly load
demand with minimum generation cost. A successful load forecasting is critically
important to solve UCP, since it determine the operation of generators in order to
satisfy a given demand.

This chapter presents the pattern similarity model and how STLF problems are
represented in algorithms, with some examples, such as self organizing maps (SOM)
neural network algorithms, as in [4] and the application of results in a thermal unit
commitment problem (TUCP), which deals with the scheduling of thermal plants in
order to handle the load demand.

Pattern Similarity-Based Forecasting Method

The short-term load forecasting problem predicts future demand in a range of a
few hours before up to a few weeks ahead. According to [17], it is an important
part of energy management system and presents complex nonlinear characteristics
when different factors affect load at the same time, such as seasonal, economic and
climatic factors, or even some random effects, however, it is possible to predict
statistically a distinct pattern of consumption resulting from the totality of individual
loads, according to [7]. In [16], three objectives for the problem are listed, such as
scheduling generation, providing safer and more reliable operation of the plants, and
increasing system reliability.

The pattern similarity-based forecasting method (PSBFM) is the methodology
considered here for load forecasting. Most of the methodology, based on [2, 3] is
reviewed.



Application of Load Forecasting in Thermal Unit Commitment Problems… 349

Considering some factors such as seasonality and trends, it is possible to transcribe
a simple and univariate problem based on similarity metrics, based on a simple
optimization process that involves a generalization of minimal distance methods,
considered as a basis of some pattern recognition and machine learning techniques,
using analogies between time series fragments with seasonal cycles.

A pattern is a vector with components that are functions of actual time series
elements z. The input and output (forecast) patterns are defined respectively as x =
[x1, x2, . . . , xn], namely x-pattern, and y = [y1, y2, . . . , yn], namely y-pattern, both
forming the pair (xi , yi ), given the forecast horizon τ which is constant, the number
of instants n and taking the following assumption.

Assumption. If a pattern xa which represents a period preceding the forecasted
period is similar to another pattern xb from historical data, then the resulting forecast
pattern ya is similar to the forecast pattern yb.

This assumption provides a nonparametric regression model that generates a y-
pattern, paired with a corresponding x-pattern, resulting from the evaluation of his-
torical data, all of them represent continuous sequences of a given time series that
coincide with daily cycles, through a machine learning method.

The prediction model based on pattern similarity can be defined by:

1. mapping the time series (seasonal cycles) in paired patterns x and y;
2. selecting similar patterns x to the query pattern x�;
3. defining of the pattern y that pairs with x in order to forecast ŷ related to x�;
4. decoding ŷ in the seasonal cycle referring to ẑ.

This prediction model considers the original time series z to be pre-processed in
order to treat specificities in the series (periodicities, trend, variance) or to normalize
the data, according to:

xt = fx (zi,t ,φi ), (1)

yt = fy(zi+τ ,t ,φi ), (2)

where i refers to the period analyzed before forecast, t is the hour of the day, τ is
the period to be forecasted related to i and φi is the decoding variable, usually the
daily average load. The x-pattern size n can be equal to 24, 48 or 96, for hourly,
half-hourly or quarter-hourly load time series, respectively.

Usually, pre-processing can be defined by the following functions:

fx (zi,t ,φi ) = zi,t − φi√
n∑
j=1

(zi, j − φi )2

(3)

fy(zi+τ ,t ,φi ) = zi+τ ,t − φi√
n∑
j=1

(zi, j − φi )2

(4)
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Note that in the construction of y only prior data is used, since y values are not known
at the time of the forecast. There are some other normalization functions in [2].

During the test phase, an inverse function is employed to calculate the seasonal
cycle ẑ based on the forecasted pattern ŷ as follows:

f −1
y (yi,t ,φi ) = ŷi,t

√√√√ n∑
j=1

(zi, j − φi )2 + φi (5)

The model is evaluated through similarity functions, usually based on linear or
non-linear mapping of a given distance metric D, usually the Euclidean Distance,
which provides comparisons among x patterns. Distance metrics are applied to train-
ing phase, in order to analyze y patterns and the correlation between measured dis-
tances, and to test phase, in order to estimate y pattern from observed x-patterns.

With these mechanisms, several algorithms can be used in order to map x → y
and then obtain new y patterns from presented x patterns. Among some methods,
there are three algorithms based on Self-organizing maps (SOM) neural network that
are formulated considering pattern similarity principles as follows:

Algorithm 1. Self-organizing map model 1

1. Concatenation of the paired x and y patterns in the pattern z;
2. train SOM network according to patterns z;
3. presentation of the query pattern x� and assigning it to the nearest neuron w j

according to j� = argmin‖x� − wx, j‖, where wx, j is the x-pattern part of the
neuron w;

4. reconstruction of the y pattern paired with the query pattern based on the y part
of the neuron wy, j .

Algorithm 2. Self-organizing map model 2

1. Independent grouping of patterns x and y, with two SOMs for each pattern;
2. estimation of the conditional probabilities P(Cy,l |Cx,k), where Cx,k and Cy,l are

the respectives neurons for x-patterns and y-patterns;
3. presentation of the query pattern x� and assigning it to a set of nearest neurons

wx, j ;
4. reconstruction of the y pattern paired with the query pattern based on neuron

wy,k from SOM of pattern y and probabilities P(Cy,l |Cx,k).

Algorithm 3. Self-organizing map model 3

1. Only y patterns are developed;
2. neurons w j are labeled according to the following information: day numbers i

and day types δ;
3. calculation of the number of entries e j which satisfy two conditions:

(a) query pattern is from the same period of the year as the forecasted y pattern;
(b) day type is the same as for the forecasted y pattern;
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4. reconstruction of the y pattern paired with the query pattern based on neuron w j

and label entry numbers e j .

Some clustering algorithms, such as k-means, can also be applied to generate
these models, as proposed in [4].

These algorithms consist of examples of PSBFMs, which are tested in short-term
load forecasting problems. The resulting forecast is applied to the scheduling of
thermal generators, provided by TUCP solutions, as further presented.

Thermal Unit Commitment Problem

The Unit Commitment deals with generators scheduling considering a demand to be
supplied. In order to achieve it, each generator status (ON or OFF) is set during a
given hour. The problem formulation, specific to thermal generators, defines some
costs and a set of constraints, being based on formulations defined in [1, 12, 15]
and reviewed here. Since most units are based on thermal generators, we refer to
this formulation as TUCP. This formulation also includes the Economic Dispatch
subproblem.

The complete formulation is defined as follows:

minC =
T∑
t=1

[PCt + ECt + SUt + SDt ], (6)

PCt =
NGen∑
n=1

anG
2
n,t + bnGn,t + cn, (7)

ECt =
NGen∑
n=1

αnG
2
n,t + βnGn,t + γn, (8)

SUt =
NGen∑
n=1

min(0, Sn,t − Sn,t−1 + 1) × CSUn, (9)

CSUn =
{
CSHn if Sn,t ≤ CTn
CSCn otherwise

, (10)

SDt =
NGen∑
n=1

max(0, Sn,t − Sn,t−1 − 1) × −CSDn, (11)

where:

C Total cost of unit commitment;
PCt Total production costs at hour t , in $/MW;
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ECt Total emission costs at hour t , in $/ton;
SUt Total unit startup cost at hour t , in $;
SDt Total unit shutdown cost at hour t , in $;
Gn,t Active power of unit n at hour t , (MW);
an, bn, cn Production cost coefficients of unit n;
αn,βn, γn Emission cost coefficients of unit n;
Sn,t State of unit n at hour t , [0, 1];
CSUn Startup costs of unit n, $;
CSHn Hot startup costs of unit n, $;
CSCn Cold startup costs of unit n, $;
CTn Cold start-up threshold for generation n, $;
CSDn Shutdown costs of unit n, $.

Generator operation are also subject to the following equality and inequality con-
straints:

NGen∑
n=1

(Gn,t × Sn,t ) =
NLoad∑
l=1

Pl,t ,∀t, (12)

Gmin,n ≤ Gn,t ≤ Gmax,n ⇐⇒ Sn,t ,∀n, t, (13)

− RDNn ≤ Gn,t − Gn,t−1 ≤ RUPn ⇐⇒ Sn,t − Sn,t−1 = 0,∀n, (14)

NGen∑
n=1

(Gn,t × Sn,t ) =
NLoad∑
l=1

Pl,t + SRt ,∀t, (15)

t−1∑
h=t−TON,n

(Sn,h = TON ,n) ⇐⇒ Sn,t − Sn,t−1 = −1,∀n, (16)

t−1∑
h=t−TOFF,n

(Sn,h = 0) ⇐⇒ Sn,t − Sn,t−1 = +1,∀n, (17)

where:

Pl,t Amount of load demand at t time interval and l load point, in MW;
Gmin,n Minimum power limits of generator n, inMW;
Gmax,n Maximum power limits of generator n, inMW;
RUPn Ramp rate upper limit of generator n;
RDNn Ramp rate lower limit of generator n;
SRt Minimum up time of generator n;
TON,n Minimum down time of generator n;
TOFF,n Minimum down time of generatorn.
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The TUCP can be solved by several binary optimization methods. In this case,
dynamic programming methods, as studied in [8, 12, 15], can solve this problem
deterministically. Before solving TUCP, load forecasting tasks should be performed
in order to obtain future demand of a power system, so that generators operations
can be obtained.

This framework was previously studied in [5], by finding hourly and daily fore-
casting through neural networks and applying the results on unit commitment sched-
ule decisions. The novelty of this study is the introduction and application of the
pattern similarity concepts and then applying them at the forecasting and schedule
framework, as further presented.

Test Framework

A set of simulations is proposed as a test framework that contain the main tasks of
a power system planning. There are five phases, two of them for data analysis and
the others related to load forecasting, unit commitment and the overall analyses, as
illustrated in Fig. 1 and described throughout this work.

ISO New England Data

Main data from the framework is derived fromNew England area. ISONew England
dataset is available in [10, 13] and contains information regarding the 8 regionswithin
New England area, the demand and market located marginal prices applied in TUCP
approaches.

This dataset is used during the STLF phase, in which the pattern similarity-based
method is applied to one of 8 zones, The training data consists of load demand
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between 2007 and 2013,which is processed in order to forecast information regarding
2014 demand.

IEEE Benchmark Systems

Three benchmarks systems from IEEE, namely IEEE 14-bus, 30-bus and 57-bus,
are tested during the unit commitment phase with their generators being scheduled
according to the demand forecasted during STLF phase.

All database used for experiments are given in [11], except for the demand, which
is replaced by one contained in ISO NE database, as previously presented.

Pattern Similarity SOM Network

In order to provide information regarding load demand, the three methods presented
in section “Pattern Similarity-Based Forecasting Method” and some statistical anal-
ysis is provided regarding error and correlation analysis.

Forecasts quality can be measured by the root mean square error (RMSE), the
mean absolute percent error (MAPE), or the mean absolute error (MAE) between
the forecasted data Ft and the actual data At considering the period within n instants:

RMSE =

√√√√√
n∑

t=0
(Ft − At )2

n
(18)

MAPE = 100

n

n∑
t=1

|At − Ft |
At

(19)

MAE =

n∑
t=0

|Ft − At |
n

(20)

While RMSE is scale-dependent, useful when applied to the same set of data
and being more sensitive to outliers [9], MAPE is widely used in short-term load
forecasting problems [22], defined by sampling energy demand in days, with its
hourly information as a dimension of the problem. As a scale-independent metric,
can be used across different data sets, however, it may assume large values if At < 1
or become undefined if At = 0. However, with the application of inverse function
f −1
y (yi,t ) on forecasted pattern, this problem is minimized. TheMAE, studied in [21]

along with RMSE, measures the magnitude of mean error in tests. For all measure-
ments, Ft are obtained from inverse function applied to the forecasted patterns, and
At are obtained from original time series values zi,t .



Application of Load Forecasting in Thermal Unit Commitment Problems… 355

Fig. 2 Description of the
dynamic programming
approach used in this work,
as in [8]
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Dynamic Programming

TheDynamic Programming (DP) approach, proposed in [8], is applied to TUCP. This
approach features a mechanism named hourly state restriction, which is employed
in order to determine which secondary states are feasible, as presented in Fig. 2.

The DP application is performed considering the evaluation of all 24 h of a day,
considering working days, Saturday s, Sunday s and holidays. Four scenarios are
considered a given season of the year, each of them obtained considering the mean
of historical hourly data defined by the described period. In addition, all costs and
constraints, including spinning reserve and ramp constraints, are considered in the
simulations.

Solutions Evaluation

In the last stage, TUCP solutions are evaluated according to the following hypothesis
test ΩS:
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ΩS = H(Sg,t , S
�
g,t ) (21)

i.e., there are significant differences between the obtained scheduling Sg,t and an
ideal solution S�

g,t , which is obtained considering the actual load demand of test data.
For this purpose, the χ2 test [6] is employed for each case, considering all day types.

Results

Load Forecasting

The STLF experiments were performed through MATLAB R2016b, running under
Ubuntu 18.04 under the Intel Core i7 processor. Parameters are defined according
Table1 and some comparisons between the studied approaches, some classical meth-
ods (ARIMA and Holt-Winters) and a pattern similarity-based k-means performing
forecasting procedures 1 and 2.

Load forecasting error evaluation results are presented in Table2, according to
the control area and in Fig. 3, considering the 8 zones of ISO-NE. Overall, presented

Table 1 Parameters of load forecasting methods

ID Description Value Algorithm

It Iterations 2000 All PS-based methods

Cx x-pattern clusters/neurons 50 All PS-based methods
(except SOM3)

Cy y-pattern clusters/neurons 50 SOM2 and KM2

Cy y-pattern neurons 150 SOM3

p Autoregressive lag 5 ARIMA

d Differencing degree 1 ARIMA

q Moving average order 0 ARIMA

Table 2 Load forecasting results for Control Area zone, with the best solution in bold

Method RMSE MAPE MAE

SOM1 762.56 3.56 628.28

SOM2 695.61 3.47 587.25

SOM3 849.63 4.25 735.27

KM1 766.95 3.70 646.88

KM2 745.94 3.75 632.71

H-W 1921.2 6.09 1650.3

ARIMA 1215.1 5.12 1008.5
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Fig. 3 Load forecasting results per zone. Bars with red stars indicate best performance in tests

results indicated satisfactory performances for most PBSFMs, mainly SOM1, SOM2
and KM1. According to error metrics, SOM model 2 has achieved best results,
although MAPE metric has indicated that k-means-based models are closer to the
actual data.

Even in some areas, such as the Connecticut zone, which are more difficult to
predict, PBSFMs achieved reasonable resultsand may be applied to the TUCP.

Such methods, considering these results, may produce similar performance, as
implied by Fig. 4, this may indicate minimal differences in the model considered for
TUCP phase.

Thermal Unit Commitment

This phase consists of applying TUCP at the forecasted demand from ISO New
England zones, which are partially supplied by IEEE benchmark systems as solved
by DP. Some case studies are presented, according to the description of Table3, the
study of such cases aim at obtaining solutions that exploit the proper operation of all
units. Results from SOMModel 2 are applied to the scheduling. Spinning reserve is
5% of the supplied demand. Four schedules are provided, according to the type of
day considered.



358 G. C. Silva et al.

SOM1 SOM2 SOM3 K-M1 K-M2 H-WARIMA

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Method

R
o

ot
 M

ea
n 

Sq
ua

re
d 

E
rr

or

SOM1SOM2SOM3K-M1 K-M2 H-WARIMA

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Method

M
ea

n
A

bs
ol

ut
e 

P
er

ce
nt

 E
rr

or

SOM1SOM2SOM3K-M1 K-M2 H-WARIMA

0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

1,300

1,400

1,500

1,600

1,700

Method

M
ea

n
A

bs
ol

ut
e 

E
rr

or

Fig. 4 Boxplot of error metrics of all load forecasting models studied

Table 3 Description of TUCP case studies developed

Case ID Zone code Zone ID Supplied
demand (%)

System Season

1 NEMASSBOST 9 10 IEEE14 Winter

2 SEMASS 7 20 IEEE30 Spring

3 WCMASS 8 65 IEEE57 Summer

Table 4 TUCP simulation results

Case ID Working day
costs

Saturday costs Sunday costs Holiday costs Average time
(s)

1 25616 21867 24468 25847 176.42

2 26341 23223 25600 21361 203.03

3 251657 212500 244771 269410 290.05

Results are presented in Table4 with total planning costs for each period and the
average run time of DP algorithm. These results are detailed in Fig. 5 for Case 1, in
Fig. 6 for Case 2, and in Fig. 7 for Case 3.

For all cases, the forecasted demand was supplied for the available generation.
However, since this schedule is based on information provided by forecasted data, it
should be verified according to a validation provided by an ideal plan.
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Fig. 6 Detailed results for Case 2

1 4 8 12 16 20 24
0

200
400
600
800

1,000
1,200
1,400
1,600

Time (hrs)

G
en
er
at
io
n
(M

W
)

Working days

1 4 8 12 16 20 24
0

200
400
600
800

1,000
1,200
1,400

Time (hrs)

Saturday

1 4 8 12 16 20 24
0

200
400
600
800

1,000
1,200
1,400
1,600

Time (hrs)

Sunday

1 4 8 12 16 20 24
0

500

1,000

1,500

Time (hrs)

Holidays

Unit 1
Unit 2
Unit 3
Unit 5
Unit 6
Unit 7
Demand

Fig. 7 Detailed results for Case 3

Overall Evaluation

The last step of the proposed framework consists of evaluating the observed plan-
ning of all cases according to the expected values, obtained from actual demand as
calculated through ΩS , which verifies the following null hypothesis, whose results
are presented in Table5:

Table 5 Chi-squared hypothesis test results

Case ID χ2 value p-value Degree of
freedom

H0

1 144 0.4843 144 Reject

2 173.6190 0.4725 173 Reject

3 159.0233 0.5069 160 Reject
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H0: There are significant differences between planning obtained through forecasting
and an ideal plan.

Overall, the null hypothesis was rejected in all presented tests, which means that
unit commitment results may handle the actual demand. Even considering different
methods that achieved a similar performance, as evaluated in load forecasting step,
the demand may be supplied by available generation in most cases.

Concluding Remarks

The PBSFMs were applied to a framework that solves both STLF and TUCP, with
promising results that confirm the importance of forecasting methods in generation
schedule planning tasks. The statistical information presented how these steps are
crucial for power systems operation.

This study can be reinforced by some other methods applied to unit commitment,
as well as some alternate load forecasting methods and other sources of generation
as well. The study of several other power system tasks such as power flows, genera-
tion, transmission and distribution expansion planning, transient analysis, and their
influence or integration possibilities can be considered for a deeper analysis.
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ICA-Derived Respiration Using
an Adaptive R-Peak Detector
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Abstract Breathing Rate (BR) plays a key role in health deterioration monitoring.
Despite that, it has been neglected due to inadequate nursing skills and insufficient
equipment. ECG signal, which is always monitored in a hospital ward, is affected
by respiration which makes it a highly appealing way for the BR estimation. In
addition, the latter requires accurate R-peak detection, which is a continuing concern
because current methods are still inaccurate and miss heart beats. We describe a
systematic approach for robust and accurate BR estimation based on the respiration-
modulated ECG signal. Increased accuracy is obtained by a time-varying adaptive
threshold for QRS complex identification, and discriminating high amplitude Q-
peaks as false R-peaks. Improved robustness derives from the use of an Empirical
Mode Decomposition (EMD) approach to R-peak detection and an Independent
ComponentAnalysis (ICA)used to separate out the respiration signal in the frequency
domain as opposed to the more usual time domain approaches. The performance of
our system, tested on real data from the Capnobase dataset, returned an averagemean
absolute error of less than 0.7 breaths per minute compared with up to 15 breaths per
minute produced by some of the best time domain analysis approaches. Additionally,
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Introduction

Over the past two decades, there has been a dramatic increase in the extraction of
the respiration signal and its derivative, the Breathing Rate (BR), from a single-lead
ECG [1]. The BR is a key indicator in health deterioration monitoring and provides
valuable information on the physiological status of a person [2]. The first serious dis-
cussions and research into extraction of the respiratory signal using the ECG emerged
during the 1980s and the use of the latter was suggested by reporting that a normal
respiratory cycle affects the heart rate, which causes sinus arrhythmia [1]. An ECG-
Derived Respiration (EDR) method was suggested in [3]. EDR uses the variations
in the QRS peak amplitudes through time due to the chest movement amplitude dis-
placements, whereas Respiratory Sinus Arrhythmia-Derived Respiration (RSA) uses
the InstantaneousHeart Rate (IHR) variabilitywhich increases during inspiration and
drops during exhalation due to baroreflex sensitivity [4].

More recent attention has focused on the analysis of the beat-to-beat changes in
the QRS complex in order to estimate the BR. In [5] a new method for extracting the
respiration signal based on the Principal Component Analysis (PCA) was suggested.
It has been argued that PCA can describe the variability of the QRS complex due to
respiration. Their proposed algorithm has been compared with existing EDR meth-
ods and the results were promising. In [6] an EDR method based on Independent
Component Analysis (ICA) and the power spectrum of the independent components
was proposed. This method is more robust as ICA assumes statistical independence
between the components, whereas PCA assumes that the components are mutually
uncorrelated.

As was pointed out above, it is clear that the respiration signal extraction requires
an accurate QRS detector [1, 3, 4]. The identification of QRS complexes is a major
area of interest as it is the most discernible feature of the ECG. However, R-peak
detection turns out to be complex due to signal contamination from various types of
noise and the morphological variability of the QRS complexes. Several studies have
investigated the QRS complex detection by developing a number of methods [7–11].
The signal is pre-processed in order to amplify the QRS complex and remove noise
and baseline wander and then a set of thresholds is applied in order to locate the real
R-peaks in the signal. In [7, 8] the derivative of the signal was used in order to obtain
the slope and width information of the QRS complex. In [11] the Hilbert transform of
the derivative of the ECG was suggested in order to locate the R-peaks. More recent
studies have investigated the use of Empirical Mode Decomposition (EMD) [12] as
an effective pre-processor which amplifies the QRS complex and decomposes the
signal into a set of Intrinsic Mode Functions (IMF) [13–15]. A serious weakness
of the above methods is that the threshold of R-peak detection is derived from the
full length ECG. Generally, difficulties arise when the signal includes very large R-
peaks, making the threshold high. This results in the failure to detect lower amplitude
R-peaks.

The current study proposes an alternative adaptive QRS detector which over-
comes the aforementioned problems in the current state-of-the-art EMD methods
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by introducing an adaptive threshold which is calculated from the local energy of
the reconstructed ECG signal from the EMD. The pre-processing stage contains a
band-pass filter which eliminates noise and reduces the number of the IMFs. The
reconstruction of the signal using the EMD method facilitates the removal of low-
frequency interference and the absolute value of the reconstructed signal amplifies
the QRS complexes. Compared with prior work our locally-adaptive approach has
three distinct features. Firstly, the proposed detector provides a solution for the detec-
tion of small R-peaks by establishing a threshold derived from the mean of the root
mean square (rms) over recent data segments. Secondly, the threshold based on the
local signal energy of each segment allows tracking of non-stationary noise. Thirdly,
it allows the system to distinguish R-peaks from large Q-peaks using the absolute
value of the signal and the first derivative of the ECG signal.

The respiratory-induced modulations of the ECG signal are extracted using sta-
tistical Independent Component Analysis (ICA) on the matrix of temporally-ordered
R-peak synchronised time series segments. The Independent Component (IC) corre-
sponding to respiration is identified based on its frequency spectrum, and this respi-
ratory IC is then filtered in order to extract the ICA respiration signal. An advantage
of working with the frequency domain analysis over the time domain is that the time
domain is sensitive to double-humped peaks, which makes BR estimation inaccu-
rate in the time domain. Finally, the identification of the respiratory IC in frequency
domain gives the respiratory bands, which makes the BR estimation more accurate.

Proposed QRS Detector

The main assumption of our proposed R-peak detector is that the QRS complex
can be further amplified by reconstructing the signal from its first three IMFs after
applying the EMD algorithm. Our assumption has been verified on all the tested
recordings as will be shown in section“QRS Detector Algorithm”.

Empirical Mode Decomposition

EMD decomposes the signal, x(t), into a series of narrow-band signals, ci (t), which
are called IMFs, and fulfil special conditions. An oscillatory mode of the signal is an
IMF exclusively under the conditions that: first, in the whole dataset, the number of
zero-crossings and the number of extrema are either equal or differ at most by one;
and second, at any point, the mean value of the maximum and the minimum envelope
is zero. The key advantage of EMD is that it is a data-driven analysis method. At each
iteration the algorithm needs to decide if the i-th component, hi (t), extracted from
the data, is an IMF based on the conditions mentioned above. In order to achieve
this, the EMD method uses a systematic way which is called the sifting process and
is described as follows: for a given signal x(t), the extrema points are first identified,
followed by approximation of the upper, r̂(t), and lower, r(t), envelopes of the signal
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through a cubic spline interpolation. The mean of the envelopes is then obtained, and
the i th component, hi (t), is computed as the difference between the signal and the
mean. The sifting process has to be repeated as many times as required to reduce
the extracted signal to an IMF. For our implementation, in order to stop the sifting
process, the number of zero-crossings and the number of extrema are checked for
equality or whether they differ at most by one. If the final residue, rN (t), is obtained
as a monotonic function, the EMD algorithm is terminated, ci = hi , and the signal,
x(t), can be written as follows:

x(t) =
N∑

i=1

ci (t) + rN (t), (1)

where N is the total number of the extracted IMFs.

QRS Detector Algorithm

To summarise, the proposed QRS detector is as follows.

Pre-processing Stage

1. The raw signal, x(t), is first filtered with a band-pass filter, whose coefficients
were designed using a Kaiser-Bessel window [16]. The band-stop frequencies
were set at 8 and 20Hz [17] in order to amplify the QRS complex, eliminate
noise and reduce the number of IMFs. The output of the filter is denoted as x f (t),

2. The EMD algorithm is applied on x f (t) to extract the IMFs, c1(t), . . . , cN (t),
where N is the total number of the extracted IMFs,

3. The signal is reconstructed by adding the first three IMFs,

xr (t) =
3∑

i=1

ci (t), (2)

where the number of IMFs is experimentally selected and it will be discussed
later,

4. Then, the absolute value of the reconstructed signal is computed, that is a(t) =
|xr (t)|. This makes all data points positive and implements a linear amplification
of the reconstructed signal emphasising the higher cardiac frequencies, such as
the QRS complex.

Decision Stage

5. In order to increase the efficiency of the algorithm, we divide a(t) into k
segments of 3 s duration, that is k = (total number of samples)/(3 ∗ f s).
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The starting point of the k-th segment should match the last R-peak located
on the k − 1 segment in order to increase the accuracy,

6. Compute the envelope of the maxima, âk(t), of ak(t) for each segment k through
a cubic spline interpolation of the local maxima,

7. Compute the local signal energy for each segment as,

RMSk =
√√√√ 1

M

M∑

t=1

[âk(t)]2, (3)

where k is the current segment and M is the number of samples in the segment,
that is M = 3 ∗ f s,

8. The threshold of the k-th segment is set to be the mean of the eight most recent
RMSk values,

Tk = 1

8

k∑

j=k−7

RMSj , (4)

9. The peaks, which exceed threshold Tk in the absolute sequence ak(t), are clas-
sified as candidate peaks,

10. In order to segregate large Q-peaks from R-peaks, we compute the first deriva-
tive of xr (t). Peaks with a negative derivative will be investigated further at the
refractory period check given next,

11. Apply a refractory period check when the R-R interval of two adjacent peaks is
less than 200 ms. Keep the peak with the maximum amplitude.

The main assumption of the proposed R-peak detector is that the first three IMFs
can be used in the QRS complex amplification, because their frequency spectra
correspond to the QRS frequencies (3–40 Hz [18]). Furthermore, the IMFs which
represent slower oscillations, like P- or T-waves (0.7–10 Hz [18]), are omitted in
order to enhance the R-peaks. To enhance the QRS complex and reduce computation
time and the number of the extracted IMFs, it is recommended that the ECG signal is
filtered with a band-pass filter. Figure1 shows a filtered ECG signal and its first five
IMFs, obtained after the EMD algorithm. It is evident from Plots 7 to 11 that as the
order of the IMFs increases, the frequency of the mode decreases. It is also shown
that the spectra of the first three IMFs correspond to the frequency band of the QRS
complex. Figure2 shows that the filtered signal, x f (t), can be approximated by the
reconstructed signal, xr (t), because the difference of the two signals (yellow dotted
line) is small and the shape of the QRS complex is preserved.

Our study used a convenience sample of 20 children recordings (median age: 9.1,
range 1–16 years) and 5 adult recordings (median age: 46.2, range 37–64) from the
Capnobase dataset [19]. The latter contains ECG, pulse oximetry and capnography
recordings of 8min duration acquired during elective surgery and routine anaesthesia.
The sampling frequency, which was used for the ECG acquisition, was set to be at
300Hz. Furthermore, the dataset contains fully annotated data, providing the actual
R-peaks and referenceBRdata. The results obtained fromour proposedQRSdetector
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Fig. 1 The result on the EMD and the spectrum of each IMF. Plot 1 corresponds to the filtered ECG,
x f (t). Plots 2–6 correspond to the first five IMFs. Plots 7–11 correspond to the Fourier transform
of each IMF
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Fig. 2 Left plot—Reconstruction of the filtered signal, x f (t), by the summation of the first three
IMFs, xr (t), and their difference, x f (t) − xr (t). Right plot—Steps of the QRS detector. Plot 1,
corresponds to the filtered ECG signal, x f (t). Plot 2, corresponds to the reconstructed signal, xr (t).
Plot 3, shows the absolute sequence, ak(t), (blue line) and its maximum envelope, âk(t), (dotted
black line) along with the threshold (dashed black horizontal line) and candidate peaks marked with
a red asterisk ‘*’. Plot 4, shows the identified R peaks on x f (t) as red asterisk ‘*’
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Table 1 QRS detection performance using the Capnobase dataset

Rec Annotated peaks DER (%) Se (%) +P (%)

9 815 0.00 100 100

15 960 0.00 100 100

16 1012 0.00 100 100

18 1131 0.00 100 100

23 818 0.00 100 100

32 685 0.00 100 100

35 900 0.18 100 99.89

38 956 0.00 100 100

103 826 0.00 100 100

104 912 0.00 100 100

105 530 0.37 100 99.62

121 579 0.00 100 100

122 588 0.00 100 100

125 627 0.00 100 100

127 615 0.00 100 100

128 541 0.18 100 99.82

134 578 1.53 100 98.50

142 739 0.00 100 100

147 538 3.58 100 97.52

148 624 0.00 100 100

311 555 0.17 100 99.82

312 432 0.00 100 100

313 588 0.00 100 100

322 589 0.16 100 99.83

325 584 0.00 100 100

Average 17716 0.24 100 99.80

Table 2 Comparison of QRS detector performance with other methods for Capnobase dataset

Method DER (%) Se (%) +P (%)

Derivative based [7] 0.25 100 99.78

Hilbert transform [11] 0.31 100 99.70

Our method 0.24 100 99.80

are shown in Table1. Table2 shows a comparison of our method’s performance with
other existing detectors. Figure2 shows the sequential steps of the R-peak detection
method. The detected R-peaks are marked by an asterisk ‘*’ on the filtered signal,
x f (t) (Plot 4). A false negative (FN) occurs when the algorithm fails to detect an
actual R-peak. A false positive (FP) represents a false peak detection. Sensitivity
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(Se), Positive Predictivity (+P) andDetection Error Rate (DER) were calculated for
each recording using the following formulas, respectively:

Se(%) = T P

T P + FN
% , (5)

+ P(%) = T P

T P + FP
% , (6)

DER(%) = FP + FN

total number of R peaks
%, (7)

where TP (true positives) is the total number of R-peaks correctly identified. As can
be seen from Tables1 and 2 our QRS detector shows a better performance for the
Capnobase records, achieving a Se of 100%, a higher +P of 99.80% compared to
99.78% in [7] and 99.70% in [11], as well as a lower DER of 0.24% compared to
0.25% in [7] and 0.31% in [11].

An important observation is that the absolute amplitude of a Q-peak occurs to be
larger than the R-peak in some cases. This was found to identify the Q-peak as a real
R-peak, because the threshold is applied to the absolutewaveform. Therefore, the first
derivative of theECGsignal is computedwhich facilitates theQ-,R-peak segregation.
Peaks with a negative derivative will be investigated further in the decision stage by
applying the refractory period check. Secondly, another significant advantage of
our proposed method is that it can be implemented in real-time with a detection
delay equal to the duration of the segment. Online implementation requires a small
alteration of our method. The segmentation can be executed at the very beginning of
the pre-processing stage and the sequential steps of our algorithmcan be implemented
for each segment.

Proposed BR Estimation

The main idea of our proposed BR estimation method is to analyse the beat-to-beat
changes in the QRS complex in order to extract the respiration signal using the ICA.
In order to derive the respiration signal, the R-peaks are located using our proposed
QRS detector (section“Proposed QRS Detector”). The QRS complexes are then
stacked into a matrix and then the ICA is applied. Using the frequency domain to
identify the IC corresponding to the respiration signal provides a robustness that is
not accessible from time domain processing [20]. The main assumption is that the
BR provides the most power and hence provides the dominant peak of the respiration
frequency spectrum.
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Independent Component Analysis

Blind Source Separation (BSS) represents a model where a set of unobserved source
signals is been recovered from a set of observed mixtures [21, 22]. In other words,
BSS is the separation of a set of source signals, s(t) = {s1(t), s2(t), · · · , sn(t)}, from
a set of mixed signals, x(t) = {x1(t), x2(t), · · · , xm(t)}. In ECG signal processing,
we assume that the sources are signals like the electrical heart activity, the respiration
and some noise, which are mixed, and give as result the observed ECG (Fig. 3). Since
it was reported in 1986, ICA has been attracting a lot of interest in machine learning
and signal processing [23, 24]. ICA is a statistical approach whose main assumption
is that the observations are actually linear combinations of statistically independent
variables [21, 25], as follows:

xi = ai,1s1 + · · · + ai,ksk + · · · + ai,nsn, (8)

where ak are the basis vectors which form the columns of the mixing matrix A
(Fig. 3) and i = 1, · · · ,m.

ICADR Algorithm

Tosummarise, the proposed ICA-DerivedRespiration (ICADR)method is as follows:

1. Extract the R-peaks from a single-lead ECG signal using our proposed QRS
detector,

2. Create the data matrix and whiten the data,
3. Apply PCA method for dimensionality reduction and keep the first 10 Principal

Components (PC),

Fig. 3 Schematic representation of the BSS model in ECG signal processing
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Fig. 5 The frequency
spectrum of 1-minute
window respiration signal.
The dominant peak is located
(black dashed line) and it is
converted to breaths per
minute (bpm)
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Frequency spectral of one minute respiration signal

BR = 0.3 * 60 = 18 BPM

4. Apply the fastICA algorithm to the reduced matrix in order to get the source
signals as independent components (Fig. 4),

5. Compute the Fourier transform of the ICs produced and choose as respiration
signal the IC whose frequencies lie between reasonable respiration rates (Fig. 4),

6. Filter the output of step 5 within reasonable respiration frequencies (0.0666–
0.5Hz) to get the ICA respiration signal,

7. Divide the respiration signal into 1-minute windows,
8. For each window, compute the Fourier transform and locate the frequency that

corresponds to the most dominant peak in the frequency spectrum (Fig. 5),
9. Convert frequency to bpm to get the BR.

The data matrix construction is based on the fact that we are interested in
analysing the inter-beat variations of the ECG features. Using the detected R-peaks
(section“QRS Detector Algorithm”) the data matrix X is constructed from a single-
lead ECG by stacking m segments of length n around the R-peak, that is, Xm×n =
[x1 . . . xm]T , where xi is a row vector of length n, that is xi = [xi,1 · · · xi, j · · · xi,n].
Hence, the first row contains n samples around the first R-peak, the second row con-
tains n samples around the second R-peak etc. For example, in recording 0009 there
are 815 detected R-peaks. We are taking 100 points around the R-peak, thus the size
of the matrix is 815 × 100. After applying the PCA for dimensionality reduction,
the size of the matrix reduces to 10 × 815.

For all the recordings the results obtained from our ICADR method are shown in
Table3. In order to evaluate the performance of our method, we computed the Mean
Absolute Error (MAE) in bpm, as follows:
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MAE = 1

N

N∑

i=1

|BRrefi − BResti |, (9)

where N is the number of the extracted BRs, BRref and BRest are the reference and
estimated BR respectively. The obtained ICA respiration signal was analysed using
our proposed frequency domain analysis for the BR estimation. Furthermore, the
respiration signal was later upsampled at 8Hz and then filtered using a band-pass

Table 3 ICA-derived respiration evaluation performance

Frequency domain Time domain

No post-processing Post-processing

MAE (bpm) MAE (bpm)

Children recordings

0009 0.6359 0.5109 7.2088

0015 0.2086 0.2086 1.0354

0016 0.0048 0.0048 37.4550

0018 1.2587 1.3837 14.8083

0023 0.4867 0.6117 8.9675

0032 2.3126 1.2261 18.1932

0035 2.1316 1.9887 17.0079

0038 1.6166 1.6166 16.8503

0103 0.0079 0.0079 22.3282

0104 0.0049 0.0049 22.0298

0105 0.0276 0.0276 12.8290

0121 0.0069 0.0069 13.2939

0122 0.0070 0.0070 19.5208

0125 0.3816 0.3623 15.0810

0127 0.4262 0.4262 7.5363

0128 0.3477 0.3477 11.7071

0134 0.3788 0.5038 13.4641

0142 0.1368 0.1368 18.4440

0147 8.8772 5.3786 19.2597

0148 0.0051 0.0051 19.5607

Adult recordings

0311 1.8822 0.8878 14.4469

0312 0.0096 0.0096 12.3631

0313 0.0110 0.0110 8.8237

0322 0.5638 0.5648 4.2980

0325 1.5150 0.1400 18.4905

Average 0.9297 0.6551 15.0000
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filter within a reasonable respiration frequency range. It is evident from our results
that the post-processing stage improved the accuracy of the estimation about 0.2747
bpm, achieving an average MAE of 0.6551 bpm. Figure6 shows the respiration
signal obtained fromourmethod for recording0009, alongwith the frequencydomain
analysis, which shows a clear dominant peak in each window. It can be also observed
that the error for recording 0147 is high about 8 bpm, and after the post-processing
stage it drops to 5 bpm.Onepossible explanation is that the existence of false positives
in the R-peak detection affects the accuracy. For recording 0147, the number of false
positives was 13 compared to 0 false positives for recording 0009.

In order to prove that our BR estimation method in the frequency domain out-
performs the time domain analysis [20], we compared our approach with the time
domain of the respiration signal. The results obtained are shown in Table3. A basic
peak detector is used in order to identify the peaks in the respiration signal, alongwith
their time locations [20]. The evaluation of the Instantaneous Breathing Rate (IBR)
from the time intervals of consecutive peaks in the respiration signal is attempted.
As soon as the IBRs are computed, they are converted to bpm in order to estimate
the BR. It can be observed that the MAE obtained from the time domain analysis
is high about 15 bpm. The major drawback of this method is that the existence of
double-humped peaks in the respiration signal affects the peak detection.

Conclusion

To conclude, a new ICA-Derived Respiration (ICADR) method was presented based
on an accurate and adaptive R-peak detector. Moreover, a frequency domain analysis
of the respiration signalwas proposed in this study for theBRestimation. The ICADR
achieved a low average MAE of 0.6551 bpm for both children and adult recordings.
The frequency domain analysis outperforms the BR estimation in the time domain.

The present study also suggested a new R-peak detector based on the EMD of the
ECG signal and an adaptive threshold which relies on the local signal energy. Our
method facilitates the detection of small R-peaks by deriving a threshold from the
mean of the rms over eight segments. The decision stage also contains gradient-based
and refractory period checks to differentiate large Q-peaks and omit false R-peaks.
For the Capnobase dataset, our R-peak detector is competitivewith the best published
methods, with a detection accuracy of 99.80%.
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