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Abstract. In this paper, we present a method to synthetically generate
the training material needed by machine learning algorithms to perform
human action recognition from 2D videos. As a baseline pipeline, we
consider a 2D video stream passing through a skeleton extractor (Open-
Pose), whose 2D joint coordinates are analyzed by a random forest. Such
a pipeline is trained and tested using real live videos. As an alternative
approach, we propose to train the random forest using automatically
generated 3D synthetic videos. For each action, given a single reference
live video, we edit a 3D animation (in Blender) using the rotoscoping
technique. This prior animation is then used to produce a full training
set of synthetic videos via perturbation of the original animation curves.
Our tests, performed on live videos, show that our alternative pipeline
leads to comparable accuracy, with the advantage of drastically reducing
both the human effort and the computing power needed to produce the
live training material.

Keywords: Action recognition · Random forest ·
Augmentation animation · Virtual Environment

1 Introduction

The mutual understanding and the collaboration between men and machines
lead to a new concept of the relation between users and tools in several fields,
such as automotive [1], medical [2,3], industry 4.0 [4], home assistance [5] or
even gaming [6]. In these contexts, a more suitable way of managing the relation
between man and machines relies on action recognition. The constraints intro-
duced by joysticks, joypads, mice or any other physical controller will disappear.
It is therefore important to study action recognition to fulfill the increasing
need for teaching robots and make them ‘understand’ human movements. Aug-
mented reality devices available in the market, like the Microsoft’s Hololens1 and
1 https://www.microsoft.com/en-us/hololens – Feb 8th, 2019.
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Fig. 1. Left: OpenPose applied on a live recorded video. Right: The same action recre-
ated on a Virtual Human in the Virtual Environment.

the Meta 22, already allow for an interaction based on free hand movements, like
pointing and grabbing3.

Teaching to a machine how to recognize an action is performed by Machine
Learning algorithms, which needs to be trained in order to produce a classifier.
The classifier is then able to recognize recurring patterns. The training process
is generally accomplished providing datasets. In the case of action recognition,
a dataset consists of a number of videos of real persons performing actions,
each video associated to information about the action performed. A person can
perform several actions, or the same action several times, or a combination of the
two. The datasets have to be properly organized and include a large amount of
data to allow the artificial intelligence to discern and classify successfully different
gestures and attitudes. However, this approach suffers of two main limitations.
First, it is slow and expensive, due to the (usually) manual collection of data.
Second, the data acquisition can not be automatized, and it is difficult to control
parameters’ evolution as long as the gestures are usually performed by actors.

We propose to analyze a new trend based on Virtual Environment (VE)
data generation. Given an action, instead of collecting live videos of many real
subjects performing the same action, we collect a single video of one subject per-
forming a prototype of an action (See Fig. 1, left). Then, the prototype action is
converted into a 3D animation of a virtual character (See Fig. 1, right) through
Rotoscoping. Rotoscoping is a widely used technique in digital computer anima-
tion that consists of tracing over real videos images, frame by frame, to recreate
a realistic replica.4 Finally, the animation data of the prototype 3D animation
are copied and altered, augmented, in order to generate a desired number of

2 https://www.metavision.com/ – Feb 8th, 2019.
3 https://www.ted.com/talks/meron gribetz a glimpse of the future through an aug

mented reality headset?language=it.
4 https://en.wikipedia.org/wiki/Rotoscoping.

https://www.metavision.com/
https://www.ted.com/talks/meron_gribetz_a_glimpse_of_the_future_through_an_augmented_reality_headset?language=it
https://www.ted.com/talks/meron_gribetz_a_glimpse_of_the_future_through_an_augmented_reality_headset?language=it
https://en.wikipedia.org/wiki/Rotoscoping
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variations. The resulting animation videos are used for training in place of the
real ones.

The advantage of this approach is that the VE allows to control the parame-
ters and automatize the data acquisition. In this way, it is possible to noticeably
reduce the time and the effort required to collect the data.

This paper is structured as follows. Section 2 describes the approaches pur-
sued in literature. Section 3 returns a general overview of our approach. Section 4
illustrates the procedures for VE and animation creation, data acquisition, and
dataset generation. Sections 5 and 6 present the testing phase and discuss the
results achieved. Finally, Sect. 7 concludes the paper by commenting on the lim-
itations that affect the pursued methods and introduces future direction.

2 Related Work

Traditional approaches on gesture recognition are based on data collection from
the real environment. Dataset generation has, usually, been pursued manually
recording actors during the gesture performance [7–9]. However, machine learn-
ing requires often a large amount of data, but datasets are difficult to pro-
vide because of the need, together with actors, of a proper equipment, a post-
production, and an accurate annotation phase. Eventually, it results to be an
expensive and slow process.

It is also possible to rely on already available datasets, such as the KTH
human motion dataset [10], the Weizmann human action dataset [11], INRIA
XMAS multi-view dataset [12], UCF101 sport dataset [13]. These datasets are
often used as reference for comparing different action recognition approaches.
They are quite useful, because they allow to save a lot of time that usually
data acquisition unavoidably takes. Unfortunately, they are frequently limited
to specific cases [14]. This leads to use them mainly for different machine learning
methods comparison and performance estimation.

Generally, both methods do not allow to control parameters as long as even
the best actor can not introduce controlled variability thousand of times. There-
fore, variability of the gesture and pattern distribution is populated repeating
the action over and over, hoping to cover all the possible cases.

Training on synthetic data allows to manage these limitations. First of all,
relying on a VE, data collection can be easily automatized. This relevant aspect
permits to save time, funds, and effort, as long as it does not require neither
actors, real cameras or equipment. Second, the procedure can control accurately
all parameters, which leads to a more effective data generation: several versions
of the same action can be achieved without repeating redundant information.

Similar research, which exploits a VE for Machine Learning, has been pursued
on different classifications. For example, related to the autonomous driving, VE
has been used to simulate a urban driving conditions. Data acquired from the
synthetic world were used to generate a Virtual Training dataset for pedestrian
detection [15].

Previous research gave us a reference guideline to follow as well as a bench-
mark for the results comparison. In addition, often they have been taken in to
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Fig. 2. Three different pipelines to produce the dataset for an action recognition sys-
tem.

account during features selection. In our case, we focused the attention in estab-
lishing the performances of a VE dataset generation, obtained from synthetic
data. In many research projects, the acquisition of the skeletal pose of a human
can be obtained via affordable acquisition devices that can be found on the con-
sumer market, like the Microsoft Kinect. Even if 3D skeleton acquisition provide
much more spatial information [16], the Kinect is still an expensive solution with
respect to a simple 640×480 2D camera [17]. For this reason, a 2D video-stream
analysis has been pursued with Open Pose [18]. In this way, real and synthetic
videos were processed in a similar way and in a reasonable amount of time.

Concerning the choice of a classification algorithm, a Random Forest [19] have
been preferred with respect to Deep Neural Networks to limit the time needed
for training and focus on the study of real vs. synthetic training material.

From the application point of view, gestures have been selected considering
previous research projects in the field of rehabilitation [2,5,20]. In this context,
the main goal of the application is to assist a mild cognitive patient while he
or she is cooking, reconizing a few common kitchen actions such as: grabbing,
pouring, mixing, and drinking.

3 Method Overview

Figure 2 outlines our approach for generating the dataset for gesture recognition.
It shows the plots of three generation strategies, organized in three paths sharing
the same starting and ending points.

Starting from top-left, path 1 shows the most traditional approach, widely
used in previous works [7,9]. It involves data collection from the Real Environ-
ment followed by a Pose Extraction step performed with Open Pose. The result
of the pose extraction is a dataset (Joints 3D coordinates) containing the evolu-
tion in time of the 2D coordinates of the joints of the human skeleton. Obviously,
the skeleton is not accurate, but only the approximation inferred by Open Pose
through the analysis of 2D color video frames (See Fig. 1, left, for an example).

The two other paths, two alternative Virtual Training approaches, share a
first step where a single live animation is transferred to a 3D editor (in our case
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Blender) through rotoscoping (left side of the figure). Rotoscoping is a com-
mon animation technique consisting of drawing over a (semi-)transparent layer
positioned over some reference animated material, which is visible in the back-
ground. This is a manual operation which leads to the Virtual Environment: a
simplified representation of the real world where a virtual character performs a
prototype version of some actions (See Fig. 1, right). The Virtual world provide
the synthetic environment for the Data Augmentation process, which procedu-
rally alters the animation data in order to produce a multitude of variations of
the prototype animations. The augmented data is then used by paths 2 and 3.

Following path 2, the augmented animations are rendered as 2D videos, and
the analysis proceed as for path 1, using OpenPose for pose detection. Differ-
ently, path 3 skips the rendering and the joint coordinates are directly, and pre-
cisely, transformed into 2D coordinate via a computationally inexpensive world-
to-screen projection.

Regardeless of the generation path, the time-evolving projected 2D coordi-
nates proceed into a normalization process, followed by a feature extraction step,
to become the reference training datasets.

4 Experiment: Action Recognition in a Kitchen

We applied our proposed approach in a real-world scenario set in a kitchen. The
scenario accounts for a monitoring device which has to check if a user is correctly
performing four actions: grabing, pouring, mixing or drinking. The goal of the
assistant is to classify which of the four actions is being currently performed.
The following subsections describe each of the phases needed to configure the
classifier.

4.1 Virtual Avatar and Virtual Environment

In order to recreate an action which is feasible by a human, we edited a 3D envi-
ronment composed of a virtual human, a kitchen, and three interactive objects:
a coffe-pot, a coffe-cup, and a spoon (See Fig. 3). All the editing was performed
using the Blender5 3D editor. The virtual human was generated using a freely
available open-source add-on for Blender called MB-Lab6. This choice allowed
us to save a conspicuous amount of time and rely on a well-made character. The
VE creation takes the cue from a real environment. The reference objects have
been crafted from scratch by one of the authors. Both the virtual human and
the objects were disposed in the environment with the goal to realize animations
for the four above-mentioned actions.

5 https://www.blender.org/ – Apr 30, 2019.
6 https://github.com/animate1978/MB-Lab – Feb 9th, 2019.

https://www.blender.org/
https://github.com/animate1978/MB-Lab
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Fig. 3. Virtual Environment recreated in Blender 3D

4.2 Animation Generation Through Rotoscoping

As already anticipated in Sect. 3, a limited amount of reference animations where
recorded live and meticulously replicated in the 3D environment through roto-
scoping. We call these the prototype animations.

Two classes of animation have been generated. The first class of animations
was created for calibration purposes. We identified five key locations in front
of the body, with the right arm extended centrally, up, down, left, right, with
respect to the related shoulder. For each position, we edited an animation where
the hand is waving around its reference location. In this way, a simple check on
features and armature comparison was easily pursued between real world and
virtual one.

The second class of animations consists of four kitchen-related actions: grab-
bing, pouring, mixing, and drinking. These actions involve the interaction with
the three objects in the environment: a coffee pot, a spoon, and a coffee cup.
While the first class of animations was edited completely manually, the second
class of animations went through a data augmentation process.

To ease the rotoscoping process, inverse kinematic (IK) controls were con-
figured on the hands of the virtual character. The author of the rotoscoping
procedure must only move the bone representing the palm of the hand. The IK
routine will automatically compute the rotation values of all the joins of the
arm, up to the spine. This is a standard time-saving technique widely used in
the digital animation industry. Consequently, the animation curves defining an
action affects only the IK controller, while the rotation of the intermediate bones
are computed in real-time during the playback of the animation.

An animation curve is a function mapping the time domain to the value of
an element of the VE. In our context, an animated element can be one of the
six degrees of freedom (3 for position and 3 for rotation) of an object or skeletal
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joint. Hence, for gesture or posture recognition, animation curves are useful to
track the evolution over time of the position and rotation of IK controllers in the
3D space, as well as the evolution of the rotation of the joints. The Animation
curves are strictly related with the animation generation. During the animation
authoring (in our case, through rotoscoping) the author stores a set of reference
body poses as key frames. A key frame maps a specific time point to a value for
each of the character’s animation curves. Afterward, during animation playback,
all the animation curves are generated by interpolating between the key-points
saved along the animation timeline. In Blender, animation curves can be modified
programmatically. This allows us to generate and modify automatically several
animations with a routine.

4.3 Data Augmentation: Procedural Variation of the Prototype
Animations

It is important to remember that the introduction of a significant variability that
populate the feature distribution returns often better training outcome. For this
reason, we implemented four data augmentation methods using the Blender’s
internal scripting system, which is based on Python.

Randomization of Objects’ Position. This first method is designed to
change, randomly, within certain intervals, the disposition of the interactive
objects (coffee pot and cup) in front of the avatar. In this way, the bone structure
is re-arranged by the inverse kinematic in order to reach, grab, and move these
object in different locations the 3D space during the action development.

Camera Rotation. This method takes care of moving the camera in different
positions and rotations around the vertical axis of the avatar. The function
requires as input the total number of variations – always an odd number, in
order to keep the central framing – and the angular step between two consecutive
views. Eventually, the procedure takes as reference the frontal perspective, which
is located at 90◦, and moves the camera along a circumference of fixed radius.
The animation videos were augmented with a combination of five different points
of view and an angular step of 18◦, leading to positions of the camera respectively
at 54◦, 72◦, 90◦, 108◦, 126◦ (Fig. 4).

Time Scaling. The time scaling method controls the duration of the anima-
tion sequence, shrinking or expanding the time interval between two consecutive
key-frames. This augmentation technique takes into consideration that different
actors perform the same action along different time intervals. The transforma-
tion function takes as input the animation curve and the scaling factor. The
process does not modify the first frame, which is kept as the reference starting
point.
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Fig. 4. Rendering of the same action frame using different camera viewing angles.

Perturbation of the Hand Trajectory. This method modifies the animation
curves of the hand IK controller. The animation curves keep the track of the
position and rotation changing along the animation.

This method requires as input the three animation curves covering the trans-
lation of the hand IK controller and introduces, in between the main key-frames,
an extra key-frame which “perturbs” the interpolation connection, imposing a
passage by a different point. This method aims to simulate the human feed-
back control while an object reaching is pursued. The introduced perturbation
is randomized in a range with the same order of magnitude of the other key
points.

Combining these methods as nesting dolls a large number of variations of
the same gesture took place. These methods produced already a good amount
of variability to appreciate the potentiality of the augmentation approach.

4.4 Joint Coordinate Collection

This phase consists of storing in a data frame the evolution of the movement of
the body joints. Each line of the data frame will be associated to a time stamp.
Each column of the data frame is one cartesian component (x or y) of the join
3D position after a projection on the 2D image space. Table 1 shows an example.

Table 1. Example of the data frame resulting from the projection of the joint coordi-
nates in time.

Time (ms) hand.x hand.y wrist.x wrist.y elbow.x elbow.y . . .

0.00 0.123 0.234 0.345 0.345 0.762 0.324 . . .

16.66 0.124 0.232 0.346 0.344 0.760 0.328 . . .

33.33 0.125 0.230 0.348 0.342 0.759 0.329 . . .

. . . . . . . . . . . . . . . . . . . . .

Given an input animation, the joint coordinates collection was performed
using two different methods: (i) pose estimation using OpenPose, and (ii) direct



Generation of Action Recognition Through Rotoscoping and Augmentation 31

Fig. 5. OpenPose applied on a frame of a rendered video

Fig. 6. Joint coordinates projection on the camera view plane

projection (in Blender) of the 3D joint coordinates into the 2D camera plane.
With reference to Fig. 2, the first method is used by paths 1 and 2, while the
second method is used in path 3.

As already mentioned, the first method exploits Open Pose and reflects the
more traditional approach, as it is possible to point out from Fig. 5. Open Pose
extrapolates the skeleton animation from 2D videos and returns the coordinates
on a pixel-based metric. The result of the processing on synthetic videos is very
similar to the one on real videos. With this method, the processing is highly
computational expensive because the augmented animations must be rendered.

Differently, the second method skips the rendering step and uses the virtual
camera embedded into the virtual environment to collect the 3D joint coordinates
and projects them on the 2D virtual screen (See Fig. 6). These coordinates are
expressed in a meter-base metric.
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Fig. 7. Comparison between Open Pose (red) and projected coordinates (green) skele-
tal structures on the same frame. (Color figure online)

This strategy emulates the Open Pose video analysis with the difference
of avoiding any error in the estimation of the joint positions. The absence of
error in the projection creates a discrepancy between the perfectionism of the
data set with respect to the estimation errors introduced by Open Pose (See
Fig. 7). In this case, perfectionism is not an advantage, because Open Pose will
be anyway used to analyse real world video during the action recognition on
human subjects. This implies that training data and test data will come from
different distributions.

Even if the second method results to be faster with respect to the first one,
it returns a skeleton that appears to be slightly different from the Open Pose
standard structure. The main difference being the presence, in the Open Pose
structure, of a central upper-spine bone always positioned as mid-point between
the clavicles. Hence, we aligned the two structures by computing, in the Blender
skeleton, the coordinates of a fictional spine bone by averaging the coordinates
of the clavicles.

Regardless the used method (pose extraction or projection), the coordinates
obtained as output are then collected, normalized, and used for computing Clas-
sification Features.

4.5 Coordinates Normalization

The projected joint coordinates have to be pre-processed before features com-
putation takes place. As anticipated, this occurs because the two methods use
different coordinate systems: the open pose output is in a pixel-based metric,
while the projected coordinates are expressed in meters (unit of reference used
in the VE). See Fig. 8, left.
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Fig. 8. Comparison between the coordinates projected from Blender skeleton structures
and Open Pose skeleton structure. Left: before normalization. Right: after normaliza-
tion.

Eventually, the midpoint between the two shoulder sets the common origin
of the reference system, which represents, from now on, every other couple of
joints coordinates. Therefore, every joint coordinate was translated to have the
midpoint as origin.

After that, the two representations needed to be scaled. The clavicle extension
appeared to be the most suitable length to choose as reference. In fact, it remains
constant enough during the entire gesture performance. This is due to the fact
that the analysis has been conducted mainly with respect to a frontal camera
point of view, which did not change remarkably over time. Another advantage
of this strategy is that farther and closer subjects are normalized and analyzed
as they were at the same distance.

Hence, every distance is divided by the reference length in order to represent
every skeleton structure with the same dimensions. In this way it has been
possible to overlap accurately the Open Pose skeleton and the Blender one (See
Fig. 8, right).

4.6 Features Selection

The feature selection was the most critical step of this work, as it can deeply
affect the final result and jeopardize the output performances. Literature and
academic paper of reference mainly suggest two approaches. The first one, based
on a Kinect data acquisition or 2D skeleton extraction, compute the features
from geometrical relations between joints, such as distances, angles or relative
velocities [7,9,21]. The second approach, based on 2D images analysis, suggest
a Deep Learning approach where pixels are provided to the algorithm and the
best features combinations are selected by the network itself [1,17].

For this work, we used random forests as classifiers, hence features were
selected manually. Different choices have been pursued and performances were
compared with respect to each other to find out the best combination.
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Fig. 9. Feature set one: all the possible combination of relative distances between two
non-consecutive joints.

The computation of the features dataframe uses a temporal sliding window
of 5 frames. The first 5 rows of the coordinates dataset produces the first row of
the features dataframe. The procedure iterates by shifting the time window of 2
frames at each step, until the end of the coordinates dataset is reached.

The time windows size (5) and sliding step (2) were empirically chosen con-
sidering the high frame rate (compared with the gesture duration), and with
the goal of reducing the similarities with respect to the previous five frames and
the consecutive ones. Therefore reducing the chance of computating two iden-
tical samples. This approach has also the advantage of acting as low-pass filter
against the high frequency jittering of the coordinates returned by Open Pose.

The computed features (columns of the features dataframe) belong to four
categories: raw normalized coordinates, distances between joints, joint movement
speed (computed over the 5 frames of the time window), and angles (of the armpit
and elbow).

Data analysis and features computation have been accomplished focusing on
the right arm, which involves 23 bones, from the clavicle and down to the fingers.
The results reported in the remainder of this paper come from the two feature
sets which returned the best results. The best choice is a list of features com-
puted as all the possible combinations of distances between two non-consecutive
joints (Fig. 9), while the second selection, simpler and more intuitive, collects
the normalized <x, y> joints coordinates.
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The two choices of features returned different results on different groups of
actions. In fact, for the first group, composed by the five different hand position
– mainly accomplished as a calibration experiment – the x, y joint coordinates
returned the best result. Differently, the list of relative distances between all the
non consecutive joints returned a better outcome in classifying the grab, pour,
mixing, and drinking actions.

Moreover, further comparison and focused analysis led us to introduce also
angles measurements of the shoulder and the elbow joint and to exclude the
relative distance combination between fingers – due to Open Pose low accuracy
in locating them – in order to increase the performances.

5 Training and Testing

Once the features are computed and filled up the dataset, the Machine Learning
method receive them as input in order to proceed with the training. When
training is done, the performance of the algorithm are evaluated using a test
dataset.

It is worth now reminding that the purpose of this study is mainly to assess
the advantages (or disadvantages) of using a virtual environment, rather than
a real one, to train a classifier. Hence, the classifiers were trained with two
different type of video sources: the first made of live-recorded videos of humans
(path 1), the second with the video material generated synthetically (paths 2
and 3). However, in order to assess the behaviour on real scenarios, the test set
was always entirely composed of live videos.

Training Material. For each action, each prototype animation has been aug-
mented into nine videos of roughly one second each; for a total of 36 videos. At
the render rate of 60 frame per second, we collected around 28 feature samples
per video. The same amount of videos have been collected from the real envi-
ronment in order to generate a balanced training dataset using the traditional
approach.

Similar criteria applied for testing material collection from the Real Environ-
ment. Four different actors performed nine times each action, for a total of 144
videos. The four actors accomplished each gesture in different amount of time.
Consequently, even if the same number of videos have been exploited, for each
action there is a slightly different amount of samples.

Table 2 reports on the time needed to create a dataset for each of the three
generation paths.

Environment setup refers to the time needed to prepare the live scene, or
the 3D editing. Data acquisition refers to the time needed for live shooting,
rendering, or coordinates projection. Skeleton Extraction is the time taken by
OpenPose. Data Conversion refers to the time needed to transform the skeleton
extracted coordinates in matrix form, which is more suitable for Matlab oper-
ations. Converting Open Pose data is slower because the coordinates of each
frame are saved in a separate JSON file. Finally, Feature Computation refers to
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Table 2. Measured time for the creation of the training material

Training

method

Environment

setup

Data acquisition

per single action

Skeleton

extraction

per single

action

Data

conversion per

single action

Feature

computation

per single

action

Traditional

(path 1)

30 s (per

single action)

1min 3min 6 s 4min

VE rendering

(path 2)

30min 10 s 3min 6 s 4min

VE projection

(path 3)

30min 3 s n/a 2 s 4min

the conversion from coordinates to features dataset, as described above in this
section.

With this timings, the creation of the 36 videos of the training set took
a total of 292.1 min for path 1, 291.6 min for path 2, and 177 min for path 3.
The latter, represents a 40% time saving compared to path 1. It is possible
to appreciate, that the virtual training approach results to be much faster if
the training require a large dataset composed by many actions. In different
conditions of video length, computational procedures or feature selection, timings
would proportionally scale. The traditional approach would eventually remain
the slowest, while the coordinates projection based would always result to be
the fastest.

The Training and Testing processes exploit two different methods. The first
one is the Classification Learner of Matlab, available as toolbox already imple-
mented and accessible from the toolbar of the main window. The second one is
an experimental Random Forest developed by the University of Trento [19].

MATLAB Classification Learner. The training procedure of the Matlab
Classification Learner asks the user, at first, to select a validation strategy. Due to
the large amount of samples – rows of the dataset – the “Cross out Classification”
and the “No Classification” options have been discarded, while the “Hold Out
Selection”7 appeared to be the most suitable one. This choice allows selecting
the percentage of samples that the trained classifier uses for the validation. This
subgroup of samples does not take part to the training, but provides the entries
for the validation procedure.

Following, the user is further asked to select the list of features to use for the
training. This is useful to experiment with different combination of features or to
simply discard a subset if is already known that some features are less relevant
with respect to the others, and therefore can be neglected.

Once the Classification Learner has loaded the dataset, it is possible to choose
the Classification Algorithm, selecting it from a list of available ones. We chose to
use the Fine Tree algorithm, because we wanted to compare a basic decision Tree
7 https://www.mathworks.com/help/stats/select-data-and-validation-for-classificatio

n-problem.html – Apr 30, 2019.

https://www.mathworks.com/help/stats/select-data-and-validation-for-classification-problem.html
https://www.mathworks.com/help/stats/select-data-and-validation-for-classification-problem.html
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based classifier with the sigma-z Random Forest developed by the University of
Trento [19].

After selecting the classifier algorithm, the training process begins, followed
by validation and testing. The training uses the features measurements to learn
how to classify the action. The validation set is used during the training to help
adjusting the hyper parameters and improve the performance of the classifier.
Finally, the real performance of the classifier is measured on the test set.

Using Matlab Classification Learner, Validation and Testing process are quite
different to each other. During our tests, the validation percentage returned often
very high accuracy levels, between 98% and 100%. This means that the classi-
fication algorithms works extremely well on video of the same type. However,
even when training on synthetic videos, test is performed on live videos. For this
reason, testing process results to be far more significant because it represent how
good the VE data emulate the Real Environment ones.

Random Forests. The Sigma-z Random Forest, proposed by the University
of Trento, works differently. First of all, it is important to introduce that this
Random Forest does not process data in the same way pursued by traditional
Random Forests [19]. In fact, it relies on a probability computation analyzing two
main aspects. The first one is the population uncertainty, computed considering
the variability over the whole dataset, the second one is the sampling uncertainty,
which reflects the uncertainty related to the new entry measurement (through
the variance computed over the five frames of the feature computation). These
two aspects, combined together, determine the probability for a certain new
entry to belong to a specific class. In this way, it is possible to provide also
a confidence level for each new entry classification in addition to the accuracy
level, which is usually reported after every testing procedure. This remarkable
aspect allows knowing the percentage of confidence the classifier is providing
while every new entry is classified, in other words “how much it is sure”. The
Random Forest does not accomplish the validation on a subgroup of samples
of the training dataset, but it directly pursues the validation using the testing
dataset. Hence, in the Random Forest case, Validation and Testing are actually
the same process.

Results. We decided to report the results of the Random Forest proposed by
the University of Trento, because it returned an outcome which is slightly better
with respect to the Classification Learner of Matlab. Each one of the following
tables is an average result of multiple testing sessions conducted separately with
different actors. Tables 3, 4 and 5 report the confusion matrix and the overall
accuracy achieved during the testing procedure over the four cooking actions.
Table 3 presents the results obtained from classifier trained with real environment
videos (Traditional approach, path 1). Tables 4 and 5 report the results obtained
training the classifier with a virtual environment through video rendering (path
2) and avatar joint coordinates projection (path 3), respectively.
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Table 3. Confusion matrix of the classifier trained with the traditional approach,
using real environment videos

True\Predicted Drinking Mixing Grabbing Pouring

Drinking 94.27% 1.67% 1.32% 2.74%

Mixing 13.38% 68.79% 16.36% 1.47%

Grabbing 0.96% 23.45% 71.47% 4.12%

Pouring 10.16% 1.87% 2.71% 85.26%

Average accuracy 79.94%

Table 4. Confusion matrix of the classifier trained with the proposed approach,
path 2, using video rendering.

True\Predicted Drinking Mixing Grabbing Pouring

Drinking 96.02% 1.3% 0.25% 2.43%

Mixing 1.03% 59.02% 37.15% 2.80%

Grabbing 0.91% 17.28% 81.16% 0.65%

Pouring 1.1% 1.7% 3.08% 94.12%

Average accuracy 82.58%

It is possible to state that the reached accuracy is averagely over 80%. During
the multiple training and testing trials the average accuracy mainly fluctuated
between 71% and 85%.

Both the approaches based on VE (Tables 4 and 5) returned results per-
formances comparable with the traditional approach. Moreover, there is not a
conspicuous difference between the two VE based approaches.

6 Discussion

Even if average performances of the proposed method results to be definitely
promising, sometimes the classifier has difficulties in classifying a specific class,
lowering the session performances around 70%, while usually state of art accu-
racy values results to be higher than 80% [2,6]. Higher accuracy resulted difficult
to pursue mainly due to several limitations which occurred during data acqui-
sition and feature selection. Even if Open Pose skeleton mismatching has been
compensated through data filtering – selection based on the joint acquisition con-
fidence value, provided by Open Pose – the 2D spatial characterization between
actions has been hardly achieved.

The cooking group of actions characterizes each gesture with geometrical
features, such as the rotation of the wrist or the hand opening/closure tracking
through the relative position between fingers. However, these intuitive features
are quite difficult to monitor properly from a 2D flat screen. This problem is fur-
ther increased due to the prospective point of view. Hence, while the five hand
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Table 5. Confusion matrix of the classifier trained with the proposed approach,
path 3, using projected coordinates.

True\Predicted Drinking Mixing Grabbing Pouring

Drinking 92.14% 0.74% 1.15% 5.97%

Mixing 1.79% 57.98% 38.28% 1.95%

Grabbing 1.0% 16.19% 82.16% 0.65%

Pouring 1.5% 1.2% 2.97% 94.33%

Average accuracy 81.65%

position group of gesture – just used for calibration purposes and, therefore, not
widely reported – has been better classified by x, y features, the second group (of
cooking actions) returned better results comparing a much larger number of fea-
tures. These features, as mentioned before, are the relative distances between non
consecutive joints, angles between joints, and their average difference between
two consecutive frames (within the interval of five frames).

In fact, the lack of a depth component affected considerably this second group
testing procedure, as soon as cooking actions discernment relied on features less
distinct and less trackable in a 2D context.

It is intuitive to understand–and possible to observe–that the accuracy level
is strictly related to the feasibility of the Avatar gestures features with respect
to the real ones that the actor performs. For this reason, a meticulous iterative
analysis has been performed over the gesture evolution in order to understand,
once for all, how to realize a natural movement. The group of the five hand
position helped remarkably in this process, because of the simplicity of the action
allowed to focus more deeply on the joint representation aspects. Furthermore,
translation and scaling augmentation procedures played an important role in
coordinate feasibility, forcing the similarity between the skeleton structures of
the real and the virtual environments. As it is possible to state from the images
of Fig. 10, all along the four cooking actions performance, the sequence of the
avatar joints render a skeleton structure indistinguishable from the actors’ ones.

7 Conclusions

This paper presented a novel approach to train machine learning systems for the
classification of actions performed by humans in front of video cameras. Instead
of training on a multitude of live-recorded real-world videos, we proposed to
realize a limited amount of live videos and manually translate them in to 3D
animations of a virtual character. The few hand-crafted 3D animations are then
augmented via procedural manipulation of their animation curves.

Tests on real, live videos showed comparable results between the two training
approaches. Hence, despite the action recognition accuracy (81%–84% with the
classifiers used in this study) being far from human-level, this research allowed
us to show the versatility and the performances of the virtual training.
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Fig. 10. Comparison between the Avatar (Synthetic) skeleton and the Actors’ one.

Applied on a large scale set of different actions, the proposed approach can
contribute in significantly cutting the time needed for the collection of training
material and, consequently, lower production costs, yet with no loss in perfor-
mances.

As a matter of improving the classification accuracy, it is important to
remember that the entire work has been pursued based on a 2D analysis. It is
thus reasonable to believe that performances could further increase if an exten-
sion to the 3D analysis – for example using a Microsoft Kinect – is accomplished.
This aspect would lead to a more accurate similarity between the real and the
virtual skeletons and to more precise information regarding the joint coordinates
position and rotation.
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It is also important to remark that the basic animation relies on the roto-
scoping of one single person, while the testing procedure has been conducted
over a sample of four people. A more general approach – which should involve
several different people, each one with different personal movement style – may
encounter more difficulties in discriminating gestures with similar posture pat-
terns, such as mixing and pouring, and would lead to a lower accuracy estimation,
independently from the followed path (live or synthetic).

As a possible improvement, it would be also possible to skip skeleton recogni-
tion and rely on deep convolutional neural networks for an end-to-end mapping
between frame pixels and action class. This would include, for example, an object
recognition algorithm. The object recognition would support the gesture recogni-
tion one, helping the selection of the candidate action in relation to the detected
object.
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