
Virtual Reality and Logic Programming
as Assistance in Architectural Design

Dominik Struga�la and Krzysztof Walczak(B)

Poznań University of Economics and Business,
Niepodleg�lości 10, 61-875 Poznań, Poland
{strugala,walczak}@kti.ue.poznan.pl,

http://www.kti.ue.poznan.pl/

Abstract. In this paper, we describe a new approach to designing archi-
tectural spaces, called SADE, in which virtual reality and logic program-
ming techniques are used to support and simplify the architectural design
process. In the presented system, users have the possibility to design,
configure and visualize architectural spaces within an immersive virtual
reality environment, which helps them get better understanding of the
created spaces. The system simplifies the design process by taking into
account formal design rules, which describe domain knowledge, such as
the construction law, technical conditions, design patterns, as well as
preferences of a designer. The use of additional knowledge represented in
the design rules can significantly shorten and improve the design process.

Keywords: Virtual reality · Logic programming · Architecture ·
3D content · Unity

1 Introduction

The increasing use of interactive 3D technologies, such as virtual reality (VR) and
augmented reality (AR), for building immersive multimodal human-computer
interfaces is possible mainly due to the significant progress in the efficiency of
computing and graphics hardware, continually increasing bandwidth of com-
puter networks, as well as increasingly sophisticated forms of presentation and
interaction with 3D content available on end-user’s equipment.

Technical progress is largely driven by the quickly growing market of com-
puter games based on 3D user interfaces. However, the use of these techniques
is not only limited to applications in the entertainment industry. They can be –
and in fact often are – successfully used also in other areas, such as rapid pro-
totyping of products, e-commerce, medicine, tourism, education, and training.
The use of 3D/VR/AR techniques may not only lead to the implementation of
improved versions of existing services, but it makes it also possible to implement
a new class of applications and services, which otherwise would not be possible.

In the architectural industry, digital techniques have been widely used for a
long time. 3D presentation and interaction methods largely improve the process
c© Springer Nature Switzerland AG 2019
L. T. De Paolis and P. Bourdot (Eds.): AVR 2019, LNCS 11613, pp. 158–174, 2019.
https://doi.org/10.1007/978-3-030-25965-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25965-5_13&domain=pdf
http://orcid.org/0000-0003-3463-9323
http://orcid.org/0000-0001-8170-7910
https://doi.org/10.1007/978-3-030-25965-5_13

VR and Logic Programming as Assistance in Architectural Design 159

of creating architectural designs and their subsequent visualization, and enable
better parameterization of individual components (BIM) [4,10,11]. The next
step is virtual reality, which enables photorealistic presentation of the created
designs in real time. Currently, VR techniques are used in architecture mostly for
visualization of designs already created with some other design tools. The real
challenge, however, is to enable the use of VR directly in the design process. A
designer would be able to modify an architectural design while being immersed
in its photorealistic VR visualization. However, there is a mismatch between
the complexity of the design process and the availability and the precision of
interaction techniques used in VR. The method of designing must be simplified
to enable it to be performed directly in VR.

In this paper, a new approach to designing 3D architectural spaces is pre-
sented. In this approach, called SADE (Smart Architectural Design Environ-
ment), virtual reality and logic programming techniques are used to support and
simplify the design process. In the presented system, users can design, configure
and visualize architectural spaces within an immersive virtual reality environ-
ment, which helps them get better understanding of the created spaces. The
system simplifies the design process by taking into account formal design rules,
which contain domain knowledge, such as the construction law, technical con-
ditions, design patterns, as well as preferences of a designer. The use of addi-
tional knowledge represented in the design rules has the potential to significantly
shorten and improve the design process. The application architecture along with
a prototype of the architectural design tool, implemented as an extension to the
Unity IDE, are also presented.

The rest of the paper is organized as follows. Section 2 presents an overview
of the state of the art in architectural design. In Sect. 3, the concept, the require-
ments and the implementation of the Smart Architectural Design Environment
are discussed. Section 4 presents a step by step design example. Finally, Sect. 5
concludes the paper and discusses possible further development and research
directions.

2 State of the Art

The advancement of technology has allowed the development of various
approaches to the design of architectural spaces – both 2D and 3D. Many of
these approaches aim at providing comprehensive design environments, while
reducing the amount of information that must be supplied at the design stage
and decreasing the duration and complexity of the creation process. This, how-
ever, is often associated with the increase of the complexity of the software
used in the design stage. Commonly used tools use several approaches described
below.

2.1 2D Drawings

2D design applications rely on the use of 2D drawings for modeling of architec-
tural spaces. These applications enable creating 3D spaces with the use of 2D

160 D. Struga�la and K. Walczak

elements of various types and complexity, starting with simple lines in Autodesk
AutoCAD and ending with complex multi-layer elements such as walls, e.g., in
Graphisoft ArchiCAD or Autodesk Revit. The complexity of creating a space in
this way depends on the degree of integration between the elements. For example,
comparing two software packages from the same company – AutoCAD and Revit,
one can conclude that creating complex architectural designs with AutoCAD is
more time consuming than with Revit [3,18]. This is due to different ways these
two applications handle the designed content. First of all, AutoCAD is a purely
planar application that can be compared to a sheet of paper. Changes made in
one place must be marked separately in another. In turn, Revit automatically
transfers each change to the other planes (cross-section, elevation, projection).
This can be a key aspect when the time for creating a design is critical. Never-
theless, each of these tools in its own environment has advantages over the other.
The possibility of editing each element separately gives a developer full control
over the drawings. On the other hand, automatic transfer of a single change to
all related drawings facilitates and accelerates work on a project.

There is a possibility to build three-dimensional spaces with the use of 2D
tools, such as AutoCAD, in a similar way as it is possible with Revit or Archi-
CAD, which are specialized for creating 3D models, but the process is com-
plicated, and – therefore – 2D tools are most often used in conjunction with
specialized 3D modeling applications. Such an approach gives more freedom and
introduces a hierarchy to the architectural space design. By focusing on individ-
ual design stages, it is possible to have greater control over the entire process,
however, this is also often associated with the increase in the duration of the
development due to the need for incorporating changes in both the 2D drawings
and the 3D model.

2.2 Visual Content Modeling

The continuous technical progress has caused a significant increase in the avail-
ability of 3D modeling environments. There are many examples of 3D modeling
tools, but the most commonly used in both the entertainment and architectural
industries are: 3ds Max, 3D-Coat, Blender, Maya, Modo, Rhino, and Zbrush.
These sophisticated environments intended for professional users provide a wide
variety of tools and operations, which enable any object to be modeled. However,
their comprehensive capabilities require that users have experience in 3D mod-
eling. Nonetheless, creation of 3D content does not always have to be difficult.
Proper orientation on specific domains and constraining available functionality
permits creation of design environments that are user-friendly. Examples of such
environments are: AutoCAD Civil 3D, Ghost Productions, SketchUp, and Sweet
Home 3D. Designed with specific type of application domain in mind, they enable
efficient creation of 3D content without the need of extensive experience in 3D
modeling. However, it also results in a significant reduction of the generality of
the content creation process.

VR and Logic Programming as Assistance in Architectural Design 161

2.3 Parametric Modeling

In the field of architecture, very popular is the parametric modeling approach,
i.e., creating content with the help of parameterized complex content templates,
instead of direct free shape modeling used in typical 3D content creation appli-
cations [22,23]. In this way, content is generated on demand using a specific set
of parameter values. With the help of ready-made templates, the designer creat-
ing a given piece of content needs only to ascribe values to specific parameters,
which does not require comprehensive knowledge. This limits to a large extent
the flexibility of content creation, but also reduces the amount of information a
designer needs to provide. These types of templates are often inspired by natural
world phenomena such as the Voronoy diagram, which resembles arrangement
of cells on a leaf. One of the applications that enable generation of this type of
content is the Grasshopper extension to the Rhino modeling package [8].

2.4 Augmented Reality

Augmented reality is a promising technique in the field of architectural design
[1,2,24]. However, currently the use of AR in this domain is low. This is due to
several factors. Firstly, the available AR applications do not permit professional
design of architectural spaces. Secondly, high cost and low availability of AR
devices such as Magic Leap and Microsoft HoloLens, which facilitate interaction
within the AR environments, discourage potential users and result in low market
penetration. Devices which are widely available and popular, such as tablets and
smartphones, do not provide the quality and the efficiency that would allow for
effective creation of 3D architectural designs. Some companies provide simple
AR design applications through application markets, such as the Google Play
or the AppStore, but they are mainly limited to browsing and matching specific
products (e.g., furniture), without the possibility of performing full architectural
design.

2.5 Virtual Reality

Although virtual reality offers great benefits in architectural visualization
[14,16], currently there is very limited access to applications permitting design
of architectural spaces in VR [20]. There are software packages and extensions to
modeling programs that enable generating a VR environment from an existing
architectural model. In such an environment, a user can freely navigate to exam-
ine the designed space [5,7,9], but without the possibility to create, modify or
even annotate the visualized space. Applications that enable creation of objects
in VR are very limited in their functionality.

The currently used mainstream design process is the preparation of a ready-
made 3D model in a program purely aimed at creating 3D architectural designs
and exporting the model to a generally available game engine, such as Unity 3D
[19] or Unreal Engine [6]. Consequently, to achieve the expected result, there
is a need to posses knowledge both in the field of developing 3D designs and

162 D. Struga�la and K. Walczak

in operation of game engines. Often, there are issues related to compatibility
between the modeling programs and particular game engines. By importing an
architectural design into a game engine, a higher-quality visualization can be
achieved, but still there are no means of modifying the design.

2.6 Design Patterns in Architecture

Design patterns are recognized and proven ways to manage the designed space.
Patterns are based mainly on previously developed projects and current design
trends [17]. Their usage is not strictly required, but non-usage of a relevant pat-
tern is usually treated as a mistake. In cases when it is not possible to obtain
an acceptable solution based on the applicable patterns, it is allowed to omit
them. The use of design patterns can be seen as an attempt to introduce stan-
dardization into architectural design. One of the most well-known sets of design
patterns in architecture is Feng shui [13].

2.7 Summary

High complexity of 3D content creation software and the large number of aspects
to be considered during the design process make creation of architectural designs
a sophisticated task on many levels. The above described approaches are suitable
for solving different problems in various contexts. In a practical approach, it
is necessary to combine several of these methods to ensure the expected final
effect. Even this, however, does not guarantee achieving a satisfactory result due
to limitations in the presentation of the final designs. There is an evident lack
of an approach that would enable to combine professional architectural design
process with the benefit of doing this in a virtual reality environment with the
support of rules describing the architectural design process.

3 Smart Architectural Design Environment

In Sect. 2, several different approaches to creating 3D architectural designs have
been presented. Each of them offers some specific advantages, but there is clearly
a lack of an integrated solution that could facilitate architectural design, by
enabling real-time visualization and modification of the design in an immersive
VR environment, while simplifying the design process to mitigate the deficiencies
of VR as a design user interface.

In this section, we describe the concept of the Smart Architectural Design
Environment – the main contribution of the paper. First, motivation for the
work is provided, followed by requirements, and a description of the approach
itself.

VR and Logic Programming as Assistance in Architectural Design 163

3.1 Motivation

During the architectural design, highly complex 3D models are being created.
There is a lot of freedom in this process, but there are also constrains. Properly
modeled constraints help to simplify the process by lowering the variability of
possible results. An example of well-used constraints is parametric modeling,
described in Sect. 2.3, which hugely simplifies the design task. However, para-
metric modeling takes into account only physical properties of objects.

Further simplification of the design process may be possible by taking into
account other rules, such as construction law, technical conditions, design pat-
terns, and preferences of a designer. These rules, however, require a specific
approach. Firstly, they do not describe only individual objects, but relationships
between objects and groups of objects. Secondly, they operate on a different
(higher) level of abstraction. Finally, the constraints are often changing, e.g.,
when new construction materials and elements are introduced, new law comes
into force, or a new style of design is used by an architect.

These new constraints must be translated into information processable by a
computer program. Construction law and technical conditions are legal concepts,
which rise the problem of their interpretation. It is necessary to describe them
in the form of unambiguous rules. The design patterns, which are principles
developed based on experience, are more challenging because of their subjective
nature. They can suggest particular combinations of choices (e.g., colors) or
relationships between objects (e.g., relative location).

The applicable laws and principles must be assigned to individual objects, but
they must reflect relationships with other objects or types of objects. Therefore, a
taxonomy of objects is required and rules must be programmed in a way enabling
dynamic composition and linking of rules for all objects present in a given space.
For this purpose, formal specification of an ontology and logic programming
languages (e.g., Prolog) may be used. Logic rules may be associated with classes
of architectural spaces, classes of objects or even specific objects in the ontology,
thus enabling expression of constraints at different levels.

The use of a content library is needed to simplify the management of objects
and rules – both at the creation stage and during their later use. To enable
easy access and sharing of both particular objects and designs by design teams,
a remotely accessible shared repository may be used. There is a large variety
of modeling techniques and programs currently used by the designers (e.g., 3ds
Max, Blender or SketchUp), and therefore it is important to enable importing
models in various data formats.

An important decision is the choice of the user interface style. On the one
hand, classical user interfaces (screen, mouse, keyboard) provide a convenient
and familiar working environment for architects. On the other hand, VR inter-
faces – even if they are constrained in their interaction capabilities and precision
– clearly provide an added value in permitting to immediately see the changes
in a realistic visualization. It is important, therefore, to enable the use of both
interface styles. A specific UI must be provided within the VR space for pre-
sentation of messages and warnings. This may be accomplished with pop-up
windows, annotations, or changing the color of individual objects.

164 D. Struga�la and K. Walczak

3.2 Requirements

The motivation presented in the previous section can be converted into a list of
requirements, as presented below.

1. The system should enable immersive presentation of an architectural space
and natural navigation of users and designers within the space.

2. The system should enable modification of the architectural space, while a
designer is immersed in the space. In general, the space being designed can
be a part of a more comprehensive 3D virtual environment (e.g., a kitchen
being a part of a flat, a flat being a part of a building).

3. The system should allow for using a blueprint or an empty model of an
architectural space, but also for using elements taken from existing content
libraries. It is important that these elements could be imported in various
formats, not only limited to currently popular ones such as .3DS, .FBX or
.OBJ, but also formats used in other applications.

4. The system should enable parameterization of objects. Parameters should
describe individual objects as well as connections between objects.

5. The system should permit categorization of objects to enable associating
rules with specific categories of objects and creating dependences between
interdependent elements of the designs (e.g., washing machine and bathtub).

6. The system should enable the use of semantics as a formal way of describing
the role, the structure, and the interaction of particular design components
to permit automatic reasoning as well as efficient search and parameteriza-
tion of components.

7. The system should provide support for expressing design rules, which repre-
sent architectural design patterns, common practices, and other constraints.

8. The rules should be independently associated with spaces, objects and their
categories, and then combined ad-hoc during the design process, thus form-
ing a set of rules applicable to a particular part of the design.

9. The system should enable labeling of selected regions in order to assign them
to specific semantic categories, which may be affected by different sets of
design rules.

10. The design environment should enable access to a repository of already
designed and described components, at the same time providing mechanisms
to modify them.

11. Finally, the system should enable definition of actions to be executed as
a result of evaluating rules (e.g., suggesting an element, limiting a value,
informing the designer about errors).

Requirement 1 is met by existing game engines and VR environments, but the
use VR is not currently within the mainstream of architectural design practices.
Requirement 2, in a general case, is difficult to meet due to the complexity of the
3D design process. Therefore, in the current practice, permitted modifications are
limited to predefined surfaces (e.g., painting colors on a view of a wall) and basic
changes to particular elements, without the reference to other objects inside the
environment [12,15]. Requirement 4 (parameterization) is partially supported

VR and Logic Programming as Assistance in Architectural Design 165

by the existing Building Information Model (BIM) environments. The use of
parameters, however, is limited to simple values (e.g., weight of a bathtub) and
it does not support complex relationships (e.g., the distance between an electric
device and a bathtub). Requirements 3, 5 and 10 are available within VR/AR
design environments, such as the Unreal Engine and Unity. Requirements 7, 8,
9 and 11 are at an early conceptual stage or are not considered in current sys-
tems. Finally, requirement 6 has no reference in current VR/AR or architectural
modeling environments.

3.3 The SADE Approach

The use of VR for designing architectural spaces requires simplifying the process
as much as possible. The SADE approach is an attempt to partially handle this
problem by implementing the domain knowledge into a set of well-defined rules.
The application of rules does not only facilitate the use of VR interfaces, but
most importantly it supports design experts in their daily work through the
simplification and safeguarding of the design process. To some extent, it also
enables design or configuration of proper architectural spaces by non-experts.

In the SADE approach, an immersive VR system is used both for the design
and for the visualization (requirements 1 and 2). The design is performed using
semantically described components, with well-defined meaning, parameters, and
interactions (requirements 3, 4, 5, 6). The components are stored in shared
semantic on-line repositories (requirement 10). The design process is supported
and simplified by verification of formally defined rules, which describe possible
actions and therefore limit the complexity of the design process (requirements
7, 8, 11). While designing a space, a designer associates it with a specific class
of spaces (e.g., kitchen, office) thus activating appropriate sets of rules to use
(requirement 9). Rules may be also associated with classes or instances of archi-
tectural objects used within the spaces. All rules are merged in real time enabling
proper interaction between all components in the space and the space itself.

The SADE approach uses a common ontology of concepts. A fragment of
the ontology with classification of concepts is presented in Fig. 1. The ontology
describes both architectural spaces and particular classes of objects, which may
be present in the spaces. The starting point is an abstract class Architectural
Entity. It can be either an Architectural Space or an Architectural Object. Sub-
classes of the Architectural Space represent different categories of areas with
different sets of design rules. The first example subcategory is Room. It includes
categories such as Living Room, Kitchen and Bathroom. Some categories can
have specific variants, e.g., Large Living Room. In some cases, rules for several
categories can be combined in a subcategory, e.g., Living Room with Kitchen.
Another type of architectural spaces is represented by the Open Space class.
These are fragments of larger spaces, which cannot be clearly assigned to any
specific type of room.

166 D. Struga�la and K. Walczak

Architectural
En ty

Architectural
Space

Room Open
Space

Living Room

Large Living
Room

KitchenBathroom

Living Room
with Kitchen

Bathtub

Sink

Toilet

Opening

Window

DoorDuct

Wall

Home
Equipment

Bathroom
Equipment

Household
Appliances

Washing
Machine

Dryer

TV

Furnishings

Decora ons

Furniture

Structural
Element

Architectural
Object

Fig. 1. Classification of concepts in the SADE Ontology.

The second type of Architectural Entity is represented by the Architectural
Object class, which includes Structural Elements, Openings and Home Equip-
ment. Structural elements are static parts of the construction, e.g., walls or ducts.
Opening, as the name suggests, contains all structural openings, i.e., windows
and doors. The third type of architectural objects are elements of the Home
Equipment, encompassing such classes as Furnishings, Household Appliances,
and Bathroom Equipment.

Architectural
En ty

Design
Rules

Property
1

Property
2

Property
3

Fig. 2. Architectural entity with properties and design rules.

Each of the entities may be associated with a specific set of Design Rules
(Fig. 2) governing the use of the entity in a design. The design rules are expressed
as clauses in the Prolog language. The clauses may be parameterized with values
of properties of the entities. During the design process, a property value may be
set by the designer explicitly (e.g., type or weight of the object) or implicitly

VR and Logic Programming as Assistance in Architectural Design 167

(e.g., position or size of the object). Properties and rules may be associated with
any kind of architectural entity, including both spaces and objects.

Toilet

Bathtub

SinkArchitectural
Space

+
Equipment

Bathroom

Design
Rules

Assigned
to En es

Fig. 3. Merging design rules in SADE.

When an architectural space is being designed, all rules (implemented as
Prolog clauses) associated with the space and particular objects that are used
in the space are merged. Since all clauses use a common ontology, they can
be combined automatically into a consistent set of rules, describing the space
being designed. The process is illustrated in Fig. 3. An architectural space of
class Bathroom is being designed. The class has its own set of rules, which
are automatically associated with the space. The designer adds tree items of
equipment – a Sink, a Toilet, and a Bathtub. All these elements have their own
sets of rules, which are combined with the set of rules specific for bathroom.
The resulting joint set of rules is used during the design process. Whenever the
designer adds another element, the set of rules is updated. An example of a
merged set of rules is presented in Listing 1.1

168 D. Struga�la and K. Walczak

Listing 1.1. Example of merged design rules in Prolog

1 %Generic utility clauses

2 minDist(A, B, X) :- (point(A, X1 , Y1), point(B, X2 , Y2),

3 sqrt (((X1 -X2)*(X1 -X2))+((Y1 -Y2)*(Y1 -Y2)))>X).

4 maxDist(A, B, X) :- (point(A, X1 , Y1), point(B, X2 , Y2),

5 sqrt (((X1 -X2)*(X1 -X2))+((Y1 -Y2)*(Y1 -Y2)))<X).

6
7 %Main bathroom correctness clause

8 bathroom () :- verifiedItems (), verifiedDistances ().

9
10 %Items required in a bathroom

11 verifiedItems () :- (sinkExists (), toiletExists (),

12 (bathtubExists (); showerExists ())).

13
14 %Checking existence of items

15 sinkExists () :- (type(_,’Sink’)).

16 toiletExists () :- (type(_,’Toilet ’)).

17 bathtubExists () :- (type(_,’Bathtub ’)).

18 showerExists () :- (type(_,’Shower ’)).

19
20 %Distance rules for bathroom

21 toVerify(minDist(’Toilet ’,’Duct’ ,20),’Too�close�to�the�duct!’).

22 toVerify(maxDist(’Toilet ’,’Duct’ ,100),’Too�far�from�the�duct!’).

23 toVerify(minDist(’Washer ’,’Bathtub ’ ,100),’Too�close�to�bathtub!’).

24 toVerify(minDist(’Sink’,’Bathtub ’ ,50),’Too�close�to�bathtub!’).

25
26 %Created when items are added

27 type(’ID1’, ’Duct’).

28 type(’ID2’, ’Sink’).

29 type(’ID3’, ’Bathtub ’).

30 type(’ID5’, ’Toilet ’).

31 type(’ID4’, ’Washer ’).

32
33 %Set when items are placed

34 point(’Duct’, 0, 0).

35 point(’Sink’, 0, 50).

36 point(’Bathtub ’, 0, 120).

37 point(’Toilet ’, 60, 0).

38 point(’Washer ’, 100, 0).

39
40 %Attemt to falsify any of the rules and write a message

41 failedVerify () :- toVerify(Rule ,_), \+call(Rule), !, true.

42 :- (toVerify(Rule , Msg), \+ call(Rule) -> writeln(Msg); true).

43
44 %Verified if not possible to falsify any of the distance rules

45 verifiedDistances () :- \+ failedVerify ().

46
47 %Check the main rule and write a message

48 :- (bathroom () -> write(’All�correct ’); write(’Not�correct ’)).

In the example, the first two clauses (lines 2–5) are used to verify the mini-
mum and the maximum distances (X) between two items (A and B). The main
bathroom correctness clause (line 8) indicates that a bathroom design is correct
when there are all required items and there are proper distances between the

VR and Logic Programming as Assistance in Architectural Design 169

items. In the example, items required in a bathroom are a sink, a toilet, and
either a bathtub or a shower (lines 11–12). Next four clauses (lines 15–18) verify
whether there are objects of these classes in the design. The names of classes are
taken from the SADE Ontology (Fig. 1). Lines 21–24 contain distance rules that
must hold in a correctly designed bathroom. Clauses 2–24 are taken from the
design rules assigned to the Bathroom class (Fig. 3). Clauses 27–38 indicate that
items of particular classes are assigned to the bathroom design and set their
positions. The clauses are taken from rules assigned to the particular classes
of items (e.g., Sink, Toilet, Bathtub) with specific values taken from properties.
In the listing, they are grouped for readability. The clause 41 is an attempt to
falsify any of the distance rules (lines 21–24). If any of the distance rules fails,
appropriate message is displayed (line 42). If none of the clauses fails, it means
that distances are correct (line 45). The last clause (line 48) is used for testing
if the main bathroom rule holds.

3.4 SADE Implementation

The design process is performed in an open distributed environment that enables
the use and sharing of content. Design is understood here as building a space or
a part of a space from scratch (which may involve importing libraries of objects)
or re-using elements previously created – also by other users – and finishing with
ready-made design templates.

The method of categorization and parameterization of components in SADE
builds upon the previous work on SemFlex [21]. The main distinguishing novelty
is the use of formally defined design rules, as described in Sect. 3.3. The design
rules are expressed using constraint logic programming in Prolog. Prolog is a
declarative programming language – the program is expressed in terms of clauses,
representing facts and rules. It is the most popular logic programming language,
with several free and commercial implementations available. Most importantly,
Prolog enables to freely combine sets of rules given that the common ontology
of concepts is provided. This feature enables implementation of separate sets
of design rules for specific entities in the SADE Ontology – both spaces and
objects (cf. Fig. 1), as well as combining different sources of rules, e.g., regu-
lations, guidelines, design patterns, preferences, etc. Programming in Prolog is
declarative and does not require advanced IT expertise or effort.

The SADE environment has been implemented as an extension to the Unity
IDE (Fig. 4) communicating with shared repositories (SCRs) implemented as
REST services operating on web servers. The Unity IDE was chosen as the
starting point because of its popularity and the multitude of features it has as a
cross-platform game engine and IDE. Unity enables to freely expand the design
environment with new menus, custom component editors and editor windows
using C# and JavaScript.

SADE can be operated in two ways. First, it can be used as a typical IDE
with classic user interface providing all features of the Unity editor together with
SADE extensions. Second, it can be used as a fully immersive VR environment,
in which a user can directly interact with the designed space using an HMD

170 D. Struga�la and K. Walczak

Fig. 4. Architecture of the Smart Architectural Design Environment.

and controllers. With the help of the implemented design rules, all changes are
monitored, which enables the system to limit possible actions and to inform the
user about potential design errors or non-conformances to applicable regulations.

4 Design Example

Creating an architectural space in SADE starts with importing a 2D projection
or an empty model. On the left side of the application window there is a hier-
archical list of elements within a given scene. At the beginning, it contains only
basic objects, such as: Camera, Source of Light, Room Projection. The right
side of the screen contains a preview of the 3D scene being designed. In the
bottom left corner of the screen located is the SADE tool window. A button
available in the window enables selection of the class of the architectural space
being designed. When the button is pressed, a pop-up menu appears with a
list of classes taken from a shared repository (Fig. 5). After selecting the class,
a class window is displayed, which enables either to edit or to apply the class
to the architectural space (Fig. 6a). When the class is applied, a scalable sur-
face is added to the scene, enabling the designer to set the boundaries of the
architectural space of the selected class (Fig. 6b).

After a designer defines the boundaries of the space, the actual design process
starts (Fig. 7). The process consists of several phases. First, the designer needs
to choose objects that are to be located in the designed space. The objects are
downloaded from a repository in the form of packages (.unitypackage) along with
the design rules assigned to them. After importing packages with objects, it is

VR and Logic Programming as Assistance in Architectural Design 171

Fig. 5. SADE IDE – selecting the class of the architectural space.

(a) Applying the selected class (b) Indicating the area of applicability

Fig. 6. Indicating the area of applicability of a class of architectural spaces.

Fig. 7. Editing an item of equipment in the SADE IDE.

possible to add individual elements to the room (washing machine, toilet, etc.)
by using a drop-down menu in the application.

During the design process, the SADE system verifies design rules in a given
space. When the system identifies that the design is not consistent with the
rules, the designer receives a warning. In the presented example, the room has

172 D. Struga�la and K. Walczak

been associated with the Bathroom architectural space class. In architecture,
bathrooms have numerous restrictions regarding the mutual relations between
individual elements and the required distances (Fig. 8).

At any time, a designer can switch to the immersive mode (e.g., using the
HTC Vive HMD) and – with the help of controllers – can adjust the orientation
and the position of objects in the space. In this process, the designer repeatedly
receives feedback informing about verification of the design rules (e.g., if the
distances from other elements in the space are correct).

Fig. 8. Warning message resulting from the evaluation of design rules.

5 Conclusions and Future Works

In this paper, a new approach to the design of architectural spaces has been
presented. The approach, called SADE, is based on the concept of design rules,
which are formal descriptions of commonly used architectural regulations, prac-
tices, design patterns and preferences. By employing constraint logic program-
ming the design rules can be encoded into precise clauses that can be verified at
the design time. The use of immersive mode helps the designers to see a realis-
tic presentation of the architectural space during the design, at the same time
verifying correctness of the space.

The use of the presented approach enhances the process of designing architec-
tural spaces by helping to avoid design errors and reducing the designer’s effort
through automatic verification of rules. Thanks to the use of shared repositories,
it is possible to use a wide range of products available on the market as library
components, and also to share objects and designs with other designers.

Currently, the SADE IDE prototype – implemented as an extension to the
Unity IDE – enables importing content and rules from repositories, assigning

VR and Logic Programming as Assistance in Architectural Design 173

classes of architectural spaces to selected areas of designs, and creating instances
of architectural objects. Programming of design rules is performed manually by
editing Prolog scripts associated with the classes or objects in the repository.

As the next development step, we plan to extend the prototype by enabling
definition of rules at different levels of abstraction, thus enabling implementation
of the construction law, design patterns, design styles, designers preferences and
technical properties of objects. The second direction of development is to expand
the system of rules to automatically propose layouts of elements within a given
space, using typical solutions and specific constraints.

In the future, we plan to extend the approach to support machine learning
techniques, through the analysis of designers’ choices and existing designs. This
may further simplify the design process.

References

1. Abboud, R.: Architecture in an age of augmented reality: opportunities and obsta-
cles for mobile AR in design, construction, and post-completion. NAWIC Interna-
tional Women’s Day Scholarship Recipient (2013)

2. Anders, P., Lonsing, W.: AmbiViewer: a tool for creating architectural mixed real-
ity. Association for Computer Aided Design in Architecture, pp. 104–113 (2005)

3. Dib, C.: 5 key differences between AutoCAD and Revit! (2017). LinkedIn https://
www.linkedin.com/pulse/5-key-differences-between-autocad-revit-carole-dib

4. Engineering.com: BIM 101: what is building information modeling? (2016).
https://www.engineering.com/BIM/ArticleID/11436/BIM-101-What-is-Building-
Information-Modeling.aspx

5. Enscape: homepage (2018). https://enscape3d.com/architectural-virtual-reality/
6. Epic Games: unreal engine (2019). https://www.unrealengine.com/en-US/what-

is-unreal-engine-4
7. Eyecad VR: homepage (2018). https://eyecadvr.com/pl/
8. Grasshopper homepage. https://www.grasshopper3d.com/
9. IrisVR: homepage (2018). https://irisvr.com/

10. ISO: BIM - Part 1: concepts and principles, ISO 19650–1:2018 (2018). https://
www.iso.org/standard/68078.html

11. ISO: BIM - Part 2: delivery phase of the assets, ISO 19650–2:2018 (2018). https://
www.iso.org/standard/68080.html

12. Kaleja, P., Kozlovská, M.: Virtual reality as innovative approach to the interior
designing. Sel. Sci. Papers - J. Civil Eng. 12(1), 109–116 (2017)

13. Mak, M.Y., Ng, S.T.: The art and science of Feng Shui - a study on architects’
perception. Build. Environ. 40(3), 427–434 (2005)

14. Paes, D., Arantes, E., Irizarry, J.: Immersive environment for improving the under-
standing of architectural 3D models: comparing user spatial perception between
immersive and traditional virtual reality systems. Autom. Constr. 84, 292–303
(2017)

15. Pixel Legend: virtualist (2019). https://www.pixellegend.com/virtualist/
16. Portman, M.E., Natapov, A., Fisher-Gewirtzman, D.: To go where no man has gone

before: virtual reality in architecture, landscape architecture and environmental
planning. Comput. Environ. Urban Syst. 54, 376–384 (2015)

https://www.linkedin.com/pulse/5-key-differences-between-autocad-revit-carole-dib
https://www.linkedin.com/pulse/5-key-differences-between-autocad-revit-carole-dib
https://www.engineering.com/BIM/ArticleID/11436/BIM-101-What-is-Building-Information-Modeling.aspx
https://www.engineering.com/BIM/ArticleID/11436/BIM-101-What-is-Building-Information-Modeling.aspx
https://enscape3d.com/architectural-virtual-reality/
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://eyecadvr.com/pl/
https://www.grasshopper3d.com/
https://irisvr.com/
https://www.iso.org/standard/68078.html
https://www.iso.org/standard/68078.html
https://www.iso.org/standard/68080.html
https://www.iso.org/standard/68080.html
https://www.pixellegend.com/virtualist/

174 D. Struga�la and K. Walczak

17. Salingaros, N.A.: Design Patterns and Living Architecture. Sustasis Press, Portland
(2017)

18. Tobias, M.: How do AutoCad and Revit compare? (2017). https://www.ny-
engineers.com/blog/how-do-autocad-and-revit-compare

19. Unity Technologies: unity game engine v. 2018.3.3f1 (2018). https://unity3d.com/
unity

20. VRender: top 5 virtual reality applications for architects (2018). https://vrender.
com/top-5-virtual-reality-applications-for-architects/

21. Walczak, K.: Semantics-supported collaborative creation of interactive 3D con-
tent. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol.
10325, pp. 385–401. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
60928-7 33

22. Walczak, K., Cellary, W.: X-VRML for advanced virtual reality applications. Com-
puter 36(3), 89–92 (2003)

23. Walczak, K., Wojciechowski, R., Wójtowicz, A.: Interactive production of dynamic
3D sceneries for virtual television studio. In: The 7th Virtual Reality IC VRIC -
Laval Virtual, pp. 167–177, Laval (2005)

24. Wang, X.: Augmented reality in architecture and design: potentials and challenges
for application. Int. J. Architectural Comput. 02(7), 309–326 (2009)

https://www.ny-engineers.com/blog/how-do-autocad-and-revit-compare
https://www.ny-engineers.com/blog/how-do-autocad-and-revit-compare
https://unity3d.com/unity
https://unity3d.com/unity
https://vrender.com/top-5-virtual-reality-applications-for-architects/
https://vrender.com/top-5-virtual-reality-applications-for-architects/
https://doi.org/10.1007/978-3-319-60928-7_33
https://doi.org/10.1007/978-3-319-60928-7_33

	Virtual Reality and Logic Programming as Assistance in Architectural Design
	1 Introduction
	2 State of the Art
	2.1 2D Drawings
	2.2 Visual Content Modeling
	2.3 Parametric Modeling
	2.4 Augmented Reality
	2.5 Virtual Reality
	2.6 Design Patterns in Architecture
	2.7 Summary

	3 Smart Architectural Design Environment
	3.1 Motivation
	3.2 Requirements
	3.3 The SADE Approach
	3.4 SADE Implementation

	4 Design Example
	5 Conclusions and Future Works
	References

