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Abstract We consider the minimum-energy control of a car, which is modelled as a
point mass sliding on the ground in a fixed direction, and so it can be mathematically
described as the double integrator. The control variable, representing the accelera-
tion or the deceleration, is constrained by simple bounds from above and below.
Despite the simplicity of the problem, it is not possible to find an analytical solution
to it because of the constrained control variable. To find a numerical solution to this
problem we apply three different projection-type methods: (i) Dykstra’s algorithm,
(ii) the Douglas–Rachford (DR) method and (iii) the Aragón Artacho–Campoy
(AAC) algorithm. To the knowledge of the authors, these kinds of (projection)
methods have not previously been applied to continuous-time optimal control
problems, which are infinite-dimensional optimization problems. The problem we
study in this article is posed in infinite-dimensional Hilbert spaces. Behaviour of
the DR and AAC algorithms are explored via numerical experiments with respect
to their parameters. An error analysis is also carried out numerically for a particular
instance of the problem for each of the algorithms.
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2.1 Introduction

In this paper, we provide (to the best of our knowledge also first) application
of various best approximation algorithms to solve a continuous-time optimal
control problem. Operator splitting methods were applied previously to discrete-
time optimal control problems [19, 26], which are finite-dimensional problems.
In [26], for example, the state difference equations comprise the constraint A, and
the box constraints on the state and control variables comprise B. The condition
of belonging to the sets A and B are then appended to the objective function
via indicator functions. The original objective function that is considered in [26]
is quadratic in the state and control variables. In the next step in [26], the new
objective function is split into its quadratic and convex parts and the Douglas-
Rachford splitting method is applied to solve the problem.

In the current paper, we deal with continuous-time optimal control problems,
which are infinite-dimensional optimization problems that are set in Hilbert spaces.
After splitting the constraints of the problem, we apply Dykstra’s algorithm [11],
the Douglas–Rachford (DR) method [6, 9, 17, 18, 25, 29], and the Aragón Artacho–
Campoy (AAC) algorithm [3], all of which solve the underlying best approximation
problem.

The exposure of the current paper is more in the style of a tutorial. We pose the
problem of minimum-energy control of a simplified model of a car, amounting to
the double integrator, where the control variable has simple lower and upper bounds
and the initial and terminal state variables are specified. We split the constraints into
two, A and B, representing respectively the state differential equations (the double
integrator) along with their boundary conditions and the constraints on the control
variable. We define two subproblems, one subject to A, and the other one subject to
B. We take advantage of the relatively simple form of the optimal control problem
and derive analytical expressions for the optimality conditions and implement these
in defining the projections onto A and B.

The solutions of these subproblems provide the projections of a given point in
the control variable space onto the constraint sets A and B, respectively, in some
optimal way. By performing these projections in the way prescribed by the above-
listed algorithms, we can ensure convergence to a solution of the original optimal
control problem,

Note that while the minimum-energy control of the double integrator without any
constraints on the control variable can be solved analytically, the same problem with
(even simple bound, i.e., box) constraints on the control variable can in general be
solved only numerically. This problem should be considered within the framework



2 Constraint Splitting and Projection Methods for Optimal Control 47

of control-constrained linear-quadratic optimal control problems for which new
numerical methods are constantly being developed—see for example [1, 12] and
the references therein.

The current paper is a prototype for future applications of projection methods
to solving more general optimal control problems. Indeed, the minimum-energy
control of double integrator is a special case of linear quadratic optimal control
problems; so, with the reporting of the current study, an extension to more general
problems will be imminent.

The paper is organized as follows. In Section 2.2, we state the control-constrained
minimum-energy problem for the double integrator, and write down the optimality
conditions. We provide the analytical solution for the unconstrained problem. For
the control-constrained case, we briefly describe the standard numerical approach
and consider an instance of the problem which we use in the numerical experiments
in the rest of the paper. We define the constraint sets A and B. In Section 2.3,
we provide the expressions for the projections onto A and B. We describe the
algorithms in Section 2.4 and in the beginning of Section 2.5. In the remaining part
of Section 2.5, we present numerical experiments to study parametric behaviour
of the algorithms as well as the errors in the state and control variables with
each algorithm. In Section 2.6, we provide concluding remarks and list some open
problems.

2.2 Minimum-Energy Control of Double Integrator

We consider the minimum-energy control of a car, with a constrained control
variable. Consider the car as a point unit mass, moving on a frictionless ground
in a fixed line of action. Let the position of the car at time t be given by y(t) and the
velocity by ẏ(t) := (dy/dt)(t). By Newton’s second law of motion, ÿ(t) = u(t),
where u(t) is the summation of all the external forces applied on the car, in this
case the force simply representing the acceleration and deceleration of the car. This
differential equation model is referred to as the double integrator in system theory
literature, since y(t) can be obtained by integrating u(t) twice.

Optimal Control Problem Suppose that the total force on the car, i.e., the
acceleration or deceleration of the car, is constrained by a magnitude of a > 0.
Let x1 := y and x2 := ẏ. Then the problem of minimizing the energy of the car,
which starts at a position x1(0) = s0 with a velocity x2(0) = v0 and finishes at some
other position x1(1) = sf with velocity x2(1) = vf , within one unit of time, can be
posed as follows.

(P)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
1

2

∫ 1

0
u2(t) dt

subject to ẋ1(t) = x2(t) , x1(0) = s0 , x1(1) = sf ,

ẋ2(t) = u(t) , x2(0) = v0 , x2(1) = vf , |u(t)| ≤ a .
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Here, the functions x1 and x2 are referred to as the state variables and u the control
variable. As a first step in writing the conditions of optimality for this optimization
problem, define the Hamiltonian function H for Problem (P) simply as

H(x1, x2, u, λ1, λ2) := 1

2
u2 + λ1 x2 + λ2 u , (2.1)

where λ(t) := (λ1(t), λ2(t)) ∈ R2 is the adjoint variable (or costate) vector such
that (see [21])

λ̇1 = −∂H/∂x1 and λ̇2 = −∂H/∂x2 . (2.2)

Equations in (2.2) simply reduce to

λ1(t) = c1 and λ2(t) = −c1 t − c2 , (2.3)

where c1 and c2 are real constants. Let x(t) := (x1(t), x2(t)) ∈ R2 denote the state
variable vector.

Maximum Principle If u is an optimal control for Problem (P), then there exists
a continuously differentiable vector of adjoint variables λ, as defined in (2.2), such
that λ(t) �= 0 for all t ∈ [0, tf ], and that, for a.e. t ∈ [0, tf ],

u(t) = arg min
v∈[−a,a]

H(x, v, λ(t)) , (2.4)

i.e.,

u(t) = arg min
v∈[−a,a]

1

2
v2 + λ2(t) v ; (2.5)

see e.g. [21]. Condition (2.5) implies that the optimal control is given by

u(t) =

⎧
⎪⎨

⎪⎩

−λ2(t) , if − a ≤ λ2(t) ≤ a ,

a , if λ2(t) ≤ −a ,

−a , if λ2(t) ≥ a .

(2.6)

From (2.6), we can also conclude that the optimal control u for Problem (P) is
continuous.

When a is large enough, the control constraint does not become active, so the
optimal control is simply −λ2, and it is a straightforward classroom exercise to find
the analytical solution as

u(t) = c1 t + c2 ,

x1(t) = 1

6
c1 t3 + 1

2
c2 t2 + v0 t + s0 ,

x2(t) = 1

2
c1 t2 + c2 t + v0 ,
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Fig. 2.1 Solution of Problem (P) with large a (so that u(t) is unconstrained), s0 = 0, sf = 0,
v0 = 1, vf = 0. (a) Optimal state variables. (b) Optimal control variable

for all t ∈ [0, 1], where

c1 = −12 (sf − s0) + 6 (v0 + vf ) ,

c2 = 6 (sf − s0) − 2 (2 v0 + vf ) .

The solution of an instance of Problem (P), with s0 = 0, sf = 0, v0 = 1, vf = 0,
and large a, say a = 9, is depicted in Figure 2.1. Note that, for all t ∈ [0, 1],
λ2(t) = −u(t) = −6 t + 4 and λ1(t) = c1 = 6. The graphs of λ1 and λ2 are not
displayed for this particular instance.

When a is not so large, say a = 2.5, as we will consider next so that the control
constraint becomes active, it is usually not possible to find an analytical solution,
i.e., a solution has to be found numerically, as described below.

Numerical Approach A straightforward and popular numerical approach to solv-
ing Problem (P) is to discretize Problem (P) over a partition of the time horizon [0, 1]
and then use some finite-dimensional optimization software to get a discrete (finite-
dimensional) solution for the state and control variables x(t) and u(t). The discrete
solution is an approximation of the continuous-time solution. This approach is often
referred to as the direct method or the (first-)discretize-then-optimize approach. A
survey and discussion of Euler discretization of linear-quadratic optimal control
problems and convergence of their discretized solutions to their continuous-time
solutions can be found in [12, Section 5].

Figure 2.2 depicts the discrete solution of Problem (P) with the instance where
a = 2.5, s0 = 0, sf = 0, v0 = 1, vf = 0. The solution was obtained by pairing
up the optimization modelling language AMPL [20] and the finite-dimensional
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optimization software Ipopt [30]. The number of discretization nodes was taken
to be 2000. The multipliers of the (Euler approximation of the) state differential
equation constraints are provided by Ipopt when it finds an optimal solution to
the discretized (finite-dimensional) problem. These multipliers have been plotted
in Figure 2.2c. It should be noted that the graph of the adjoint variable λ2(t) given
in Figure 2.2c verifies the graph of the optimal control u(t) in Figure 2.2b via the
optimal control rule in (2.6). In Figure 2.2b and c, the bounds ± 2.5 have been
marked by horizontal dashed lines for ease of viewing.

Remark 2.1 If a is too small, there will obviously be no solution to Problem (P).
For the particular instance of the problem considered here, the critical value of a,
below which there exists no solution, is somewhere between 2.414 and 2.415, as our
numerical experiments show (not reported in detail here). At this critical value, the
only feasible solution is bang–bang, i.e., u(t) switches once from −a to a at around
t = 0.71. It should be noted that, in this case, the optimal control in (2.6) requires
the adjoint variable λ2 to switch from a value α ≥ a to another value β ≤ −a, i.e.,
be discontinuous, which is not allowed by the maximum principle. In this paper, we

Fig. 2.2 Solution of direct discretization of Problem (P), with a = 2.5, s0 = 0, sf = 0, v0 = 1,
vf = 0. (a) Optimal state variables. (b) Optimal control variable. (c) Adjoint variables
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only consider the case when a is strictly greater than its critical value so that the
maximum principle can be applied.

Function Spaces For the numerical methods, we consider projection/reflection
methods in Hilbert spaces. The spaces associated with Problem (P) are set up as
follows. Let q ∈ N and L2(0, 1; Rq) be the Banach space of Lebesgue measurable
functions

z : [0, 1] → Rq

t �→ (z1(t), . . . , zq(t)),

with finite L2 norm. Namely, define

‖z‖2 :=
(

q∑

i=1

‖zi‖2
2

)1/2

,

where

‖zi‖2 :=
(∫ 1

0
|zi(t)|2 dt

)1/2

,

for i = 1, . . . , q, with | · | the modulus or absolute value. In other words,

L2(0, 1; Rq) := {
z : [0, 1] → Rq : ‖z‖2 < ∞}

.

Furthermore, W 1,2(0, 1; Rq) is the Sobolev space of absolutely continuous func-
tions, namely

W 1,2(0, 1; Rq) = {z ∈ L2(0, 1; Rq) | ż = dz/dt ∈ L2(0, 1; Rq)} ,

endowed with the norm

‖z‖W 1,2 :=
(

q∑

i=1

[
‖zi‖2

2 + ‖żi‖2
2

]
)1/2

.

In Problem (P), the state variable x ∈ W 1,2(0, 1; R2) and the control variable u ∈
L2(0, 1; R).

Constraint Splitting Next, we split the constraints of Problem (P) into two subsets,
A and B. The subset A collects together all the feasible control functions satisfying
only the dynamics of the car. The subset B, on the other hand, collects all the control
functions whose values are constrained by −a and a.
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A := {
u ∈ L2(0, 1; R) | ∃x ∈ W 1,2(0, 1; R2) which solves

ẋ1(t) = x2(t) , x1(0) = s0 , x1(1) = sf ,

ẋ2(t) = u(t) , x2(0) = v0 , x2(1) = vf , ∀t ∈ [0, 1]} , (2.7)

B := {
u ∈ L2(0, 1; R) | −a ≤ u(t) ≤ a , for all t ∈ [0, 1]} . (2.8)

The rationale behind this sort of splitting is as follows: The problem of minimizing
the energy of the car subject to only A or only B is much easier to solve—in fact, the
solutions can be analytically written up in each case. If, for some given u, a solution
exists to the two-point boundary-value problem (TPBVP) in (2.7) then that solution
is unique by the linearity of the TPBVP [5, 28]. Note that a control solution u as
in (2.7) exists by the (Kalman) controllability of the double integrator—see [27]. So
the set A is nonempty. Note that the constraint set A is an affine subspace and B a
box.

2.3 Projections

All of the projection methods that we will consider involve projections onto the sets
A and B. The projection onto A from a current iterate u− is the point u solving the
following problem.

(P1)

⎧
⎪⎪⎨

⎪⎪⎩

min
1

2

∫ 1

0
(u(t) − u−(t))2 dt

subject to u ∈ A .

In (P1), we minimize the squared L2-norm distance between u− and u. The
projection onto B from a current iterate u− is similarly the point u solving the
following problem.

(P2)

⎧
⎪⎪⎨

⎪⎪⎩

min
1

2

∫ 1

0
(u(t) − u−(t))2 dt

subject to u ∈ B .

Proposition 2.1 (Projection onto A) The projection PA of u− ∈ L2(0, 1; R) onto
the constraint set A, as the solution of Problem (P1), is given by

PA(u−)(t) = u−(t) + c1 t + c2 , (2.9)
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for all t ∈ [0, 1], where

c1 = 12 (x1(1) − sf ) − 6 (x2(1) − vf ) , (2.10)

c2 = −6 (x1(1) − sf ) + 2 (x2(1) − vf ) , (2.11)

and x1(1) and x2(1) are obtained by solving the initial value problem

ẋ1(t) = x2(t) , x1(0) = s0 , (2.12)

ẋ2(t) = u−(t) , x2(0) = v0 , (2.13)

for all t ∈ [0, 1].
Proof The Hamiltonian function for Problem (P1) is

H1(x1, x2, u, λ1, λ2, t) := 1

2
(u − u−)2 + λ1 x2 + λ2 u ,

where the adjoint variables λ1 and λ2 are defined as in (2.2), with H replaced by
H1, and the subsequent solutions are given as in (2.3). The optimality condition for
Problem (P1) is akin to that in (2.4) for Problem (P) and, owing to the fact that the
control u is now unconstrained, can more simply be written as

∂H1

∂u
(x, u, λ, t) = 0 ,

which yields the optimal control as u(t) = u−(t) − λ2(t), i.e.

u(t) = u−(t) + c1 t + c2 , (2.14)

for all t ∈ [0, 1]. We need to show that c1 and c2 are found as in (2.10)–(2.11).
Using (2.14) in (2.7) yields the following time-varying, linear two-point boundary-
value problem.

ẋ1(t) = x2(t) , x1(0) = s0 , x1(1) = sf , (2.15)

ẋ2(t) = u−(t) + c1 t + c2 , x2(0) = v0 , x2(1) = vf , (2.16)

for all t ∈ [0, 1]. In other words, Problem (P1) is reduced to solving Equa-
tions (2.15)–(2.16) for the unknown parameters c1 and c2. Once c1 and c2 are found,
the projected point u in (2.14) is found. Since Equations (2.15)–(2.16) are linear in
x1 and x2, a simple shooting technique [5, 28] provides the solution for c1 and c2
in just one iteration. The essence of this technique is that the initial-value problem
(IVP)
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∂z1(t, c)

∂t
= z2(t, c) , z1(0, c) = s0 , (2.17)

∂z2(t, c)

∂t
= u−(t) + c1 t + c2 , z2(0, c) = v0 , (2.18)

for all t ∈ [0, 1], is solved repeatedly, so as to make the discrepancy at t = 1
vanish. Namely, we seek a parameter c := (c1, c2) such that z1(1, c) − sf = 0
and z2(1, c) − vf = 0. The procedure is as follows. For a given c, there exists a
unique solution z(t, c) := (z1(t, c), z2(t, c)) of (2.17)–(2.18). Define the near-miss
(vector) function ϕ : R2 → R2 as follows:

ϕ(c) :=
[

z1(1, c) − sf

z2(1, c) − vf

]

. (2.19)

The Jacobian of the near-miss function is

Jϕ(c) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂z1(1, c)

∂c1

∂z1(1, c)

∂c2

∂z2(1, c)

∂c1

∂z2(1, c)

∂c2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The shooting method looks for a pair c such that ϕ(c) := 0 (i.e., a pair c such that
the terminal boundary conditions are met). Expanding ϕ about, say, c = 0, and
discarding the terms of order 2 or higher, we obtain

ϕ(c) ≈ ϕ(0) + Jϕ(0) c .

Substituting ϕ(c) = 0 in the above expression, replacing “≈” with “=”, and re-
arranging, gives the single (Newton) iteration of the shooting method:

c = −[Jϕ(0)]−1ϕ(0) . (2.20)

The components (∂zi/∂cj )(1, c), i, j = 1, 2, of Jϕ(c), can be obtained by solving
the variational equations for (2.15)–(2.16) with respect to c1 and c2, i.e., by solving
the following system for (∂zi/∂cj )(·, c):

∂

∂t

(
∂z1

∂c1

)

(t, c) = ∂z2

∂c1
(t, c) ,

∂z1

∂c1
(0, c) = 0 ,

∂

∂t

(
∂z1

∂c2

)

(t, c) = ∂z2

∂c2
(t, c) ,

∂z1

∂c2
(0, c) = 0 ,
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∂

∂t

(
∂z2

∂c1

)

(t, c) = t ,
∂z2

∂c1
(0, c) = 0 ,

∂

∂t

(
∂z2

∂c2

)

(t, c) = 1 ,
∂z2

∂c2
(0, c) = 0 .

Elementary calculations lead to the following solution of the above system:

∂z

∂c
(t, c) =

[
t3/6 t2/2

t2/2 t

]

,

which is independent of c. Hence,

Jϕ(0) = ∂z

∂c
(1, 0) =

[
1/6 1/2

1/2 1

]

,

with inverse:

[
∂z

∂c
(1, 0)

]−1

= [
Jϕ(0)

]−1 =
[−12 6

6 −2

]

. (2.21)

Setting (x1(·), x2(·)) := (z1(·, 0), z2(·, 0)), the IVP (2.17)–(2.18) becomes (2.12)–
(2.13). Then substitution of (2.19) and (2.21) with c = 0 into Equation (2.20), and
expanding out, yield (2.10)–(2.11). The proof is complete. 
�
Proposition 2.2 (Projection onto B) The projection PB of u− ∈ L2(0, 1; R) onto
the constraint set B, as the solution of Problem (P2), is given by

PB(u−)(t) =

⎧
⎪⎨

⎪⎩

u−(t) , if − a ≤ u−(t) ≤ a ,

−a , if u−(t) ≤ −a ,

a , if u−(t) ≥ a ,

(2.22)

for all t ∈ [0, 1].
Proof The expression (2.22) is the straightforward solution of Problem (P2). 
�

2.4 Best Approximation Algorithms

In this section, we discuss best approximation algorithms. In the following,

X is a real Hilbert space (2.23)
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with inner product 〈·, ·〉, induced norm ‖ · ‖. We also assume that

A is a closed affine subspace of X, and B is a nonempty closed convex subset of X.

(2.24)
Given z ∈ X, our aim is to find

PA∩B(z), (2.25)

the projection of z onto the intersection A ∩ B which we assume to be nonempty.
We also assume that we are able to compute the projectors PA and PB onto the
constraints A and B, respectively.

Many algorithms are known which could be employed to find PA∩B(z); here,
however, we focus on three simple methods that do not require a product space
set-up as some of those considered, in, e.g., [6, 7, 13, 14].

In the next section, we will numerically test these algorithms when X =
L2(0, 1; R), A = A, B = B, and z = 0.

2.4.1 Dykstra’s Algorithm

We start with Dykstra’s algorithm (see [11]), which operates as follows1: Set a0 := z

and q0 := 0. Given an, qn, where n ≥ 0, update

bn := PB(an + qn), an+1 := PA(bn), and qn+1 := an + qn − bn. (2.26)

It is known that both (an)n∈B and (bn)n∈N converge strongly to PA∩B(z).

2.4.2 Douglas–Rachford Algorithm

Given β > 0, we specialize the Douglas–Rachford algorithm (see [17], [25] and
[18]) to minimize the sum of the two functions f (x) = ιB(x) + β

2 ‖x − z‖2 and
g := ιA which have respective proximal mappings (see [6, Proposition 23.29(i)])
Pf (x) = PB

( 1
1+β

x + β
1+β

z
)

and Pg = PA. Set λ := 1
1+β

∈ ]0, 1[. It follows that
the Douglas–Rachford operator T := Id −Pf + Pg(2Pf − Id) turns into

T x = x − PB

(
λx + (1 − λ)z

)+ PA

(
2PB

(
λx + (1 − λ)z

)− x
)
. (2.27)

1In the general case, there is also an auxiliary sequence (pn) associated with A; however, because
A is an affine subspace, it is not needed in our setting.
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Now let x0 ∈ X and given xn ∈ X, where n ≥ 0, update

bn := PB

(
λxn + (1 − λ)z

)
, xn+1 := T xn = xn − bn + PA

(
2bn − xn

)
. (2.28)

Then it is known (see [29] or [9]) that (bn)n∈N converges weakly to PA∩B(z). Note
that (2.28) simplifies to

xn+1 := xn − PB(λxn) + PA

(
2PB(λxn) − xn

)
provided that z = 0. (2.29)

2.4.3 Aragón Artacho–Campoy Algorithm

The Aragón Artacho–Campoy (AAC) Algorithm was recently presented in [3]; see
also [2, 4]. Given two fixed parameters α and β in ]0, 1[, define

T x = (1 − α)x

+ α

(

2β

(

PA

(
2β
(
PB(x + z) − z

)− x + z
)

− z

)

+ x + 2β
(
z − PB(x + z)

)
)

= x + 2αβ

(

PA

(
2β
(
PB(x + z) − z

)− x + z
)

− PB(x + z)

)

. (2.30)

Now let x0 ∈ X and given xn ∈ X, where n ≥ 0, update

bn := PB(xn + z), (2.31)

and

xn+1 := T xn = xn + 2αβ

(

PA

(
2β
(
bn − z

)− xn + z
)

− bn

)

. (2.32)

By [3, Theorem 4.1(iii)], the sequence (bn)n∈N converges strongly to PA∩B(z)

provided that2 z − PA∩B(z) ∈ (NA + NB)(PA∩Bz). Note that (2.32) simplifies to

xn+1 := T xn = xn + 2αβ
(
PA

(
2βPBxn − xn

)− PBxn

)
provided that z = 0.

(2.33)

2It appears that this constraint qualification is not easy to check in our setting.
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2.5 Numerical Implementation

2.5.1 The Algorithms

In this section, we gather the algorithms considered abstractly and explain how we
implemented them.

We start with Dykstra’s algorithm from Section 2.4.1.

Algorithm 1 (Dykstra)

Step 1 (Initialization) Choose the initial iterates u0 = 0 and q0 = 0. Choose a small
parameter ε > 0, and set k = 0.

Step 2 (Projection onto B) Set u− = uk + qk . Compute ũ = PB(u−) by
using (2.22).

Step 3 (Projection onto A) Set u− := ũ. Compute û = PA(u−) by using (2.9).
Step 4 (Update) Set uk+1 := û and qk+1 := uk + qk − ũ .
Step 5 (Stopping criterion) If ‖uk+1 − uk‖L∞ ≤ ε, then return ũ and stop.

Otherwise, set k := k + 1 and go to Step 2.

Next is the Douglas–Rachford method from Section 2.4.2.

Algorithm 2 (DR)

Step 1 (Initialization) Choose a parameter λ ∈ ]0, 1[ and the initial iterate u0

arbitrarily. Choose a small parameter ε > 0, and set k = 0.
Step 2 (Projection onto B) Set u− = λuk . Compute ũ = PB(u−) by using (2.22).
Step 3 (Projection onto A) Set u− := 2ũ − uk . Compute û = PA(u−) by

using (2.9).
Step 4 (Update) Set uk+1 := uk + û − ũ.
Step 5 (Stopping criterion) If ‖uk+1 − uk‖L∞ ≤ ε, then return ũ and stop.

Otherwise, set k := k + 1 and go to Step 2.

Finally, we describe the Aragón Artacho–Campoy algorithm from Section 2.4.3.

Algorithm 3 (AAC)

Step 1 (Initialization) Choose the initial iterate u0 arbitrarily. Choose a small
parameter ε > 0, two parameters3 α and β in ]0, 1[, and set k = 0.

Step 2 (Projection onto B) Set u− = uk . Compute ũ = PB(u−) by using (2.22).
Step 3 (Projection onto A) Set u− = 2βũ − uk . Compute û = PA(u−) by

using (2.9).
Step 4 (Update) Set uk+1 := uk + 2αβ(̂u − ũ).
Step 5 (Stopping criterion) If ‖uk+1 − uk‖L∞ ≤ ε, then return ũ and stop.

Otherwise, set k := k + 1 and go to Step 2.

We provide another version of each of Algorithms 1–3, as Algorithms 1b–3b,
in Appendix A. In Algorithm 1b, we monitor the sequence of iterates which are

3Aragón Artacho and Campoy recommend α = 0.9 and β ∈ [0.7, 0.8]; see [3, End of Section 7].
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the projections onto set A, instead of monitoring the projections onto set B in
Algorithm 1. On the other hand, in Algorithms 2b–3b, the order in which the
projections are done is reversed: the first projection is done onto the set A and the
second projection onto B.

Although the order of projections will not matter in view of the existing results
stating that convergence is achieved under any order—see [8, Proposition 2.5(i)],
the order does make a difference in early iterations (as well as in the number of
iterations required for convergence of Algorithms 2 and 2b, as we will elaborate on
later). If our intent is to stop the algorithm early so that we can use the current iterate
as an initial guess in more accurate computational optimal control algorithms, which
can find the junction times with a high precision (see [22–24]), then it is desirable
to implement Algorithms 1–3 above, rather than Algorithms 1b–3b, because any
iterate of Algorithms 1–3 will satisfy the constraints on the control variable, while
that of Algorithms 1b–3b will in general not.

2.5.2 Numerical Experiments

In what follows, we study the working of Algorithms 1–3 for an instance of
Problem (P). Suppose that the car is initially at a reference position 0 and has unit
speed. It is desired that the car come back to the reference position and be at rest after
one unit of time; namely that s0 = 0, sf = 0, v0 = 1, vf = 0. For these boundary
conditions, no solution exists if one takes the control variable bound a = 2.4 or
smaller but a solution does exist for a = 2.5. So, we use a = 2.5. In the ensuing
discussions, we use the stopping tolerance ε = 10−8 unless otherwise stated.

Discretization Algorithms 1–3, as well as 1b–3b, carry out iterations with func-
tions. For computations, we consider discrete approximations of the functions over
the partition 0 = t0 < t1 < . . . < tN = 1 such that

ti+1 = ti + h , i = 0, 1, . . . , N ,

h := 1/N and N is the number of subdivisions. Let ui be an approximation of
u(ti), i.e., ui ≈ u(ti), i = 0, 1, . . . , N − 1; similarly, x1,i ≈ x1(ti) and x2,i ≈
x2(ti), or xi := (x1,i , x2,i ) ≈ x(ti), i = 0, 1, . . . , N . In other words, the functions
u, x1 and x2 are approximated by the N -dimensional array uh, with components
ui , i = 0, 1, . . . , N − 1, and the (N + 1)-dimensional arrays x1,h and x2,h, with
components x1,i and x2,i , i = 0, 1, . . . , N , respectively. We define a discretization
P h
A of the projection PA as follows.

P h
A(u−

h )(t) = u−
h + c1 th + c2 , (2.34)

where th = (0, t1, . . . , tN ),
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c1 = 12 (x1,N − sf ) − 6 (x2,N − vf ) , (2.35)

c2 = −6 (x1,N − sf ) + 2 (x2,N − vf ) , (2.36)

and x1,N and x2,N are obtained from the Euler discretization of (2.12)–(2.13): Given
x1,0 = s0 and x2,0 = v0,

x1,i+1 = x1,i + h x2,i , (2.37)

x2,i+1 = x2,i + h u−
i (t) , (2.38)

for i = 0, 1, . . . , N − 1.

The discretization P h
B of the projection PB can be defined in a straightforward

manner, by simply replacing u− in (2.22) with the discrete components u−
i of u−

h .

Parametric Behaviour Obviously, the behaviour of Algorithms 2 and 2b, the
Douglas–Rachford method, depend on the parameter λ, and the behaviour of
Algorithms 3 and 3b on the two parameters α and β. Figure 2.3 displays the
dependence of the number of iterations it takes to converge on these parameters, for
various values of a. The dependence for a given value of a appears to be continuous,
albeit the presence of downward spikes.

The graphs for Algorithms 2 and 2b, shown in parts (a) and (c) of Figure 2.3,
respectively, differ significantly from one another. The bound a = 4 corresponds to
the case when the control constraint becomes active only at t = 0—see Figure 2.1.
In other words, when a > 4 the optimal control variable is truly unconstrained.
When a = 4, the best value of λ is 1 for Algorithm 2, yielding the solution in just
6 iterations. For Algorithm 2b, the best value for λ is 0.5, as can be seen in (c),
producing the solution in 30 iterations. Going back to Algorithm 2, with decreasing
values of a, the values of λ minimizing the number of iterations shift to the right.
For example, the minimum number of iterations is 91, with a = 2.5 and λ = 0.7466
(found by a refinement of the graph).

As for Algorithm 2b, the minimizer for a = 2.5 is λ = 0.5982766 and
the corresponding minimum number of iterations is 38. This is a point where a
downward spike occurs and so the number of iterations is very sensitive to changes
in λ. For example, the rounded-off value of λ = 0.598277 results in 88 iterations
instead of 38, and λ = 0.55 yields 444 iterations for convergence. The number
of iterations is less sensitive to the local minimizer λ = 0.7608, which results in
132 iterations. It is interesting to note that the graph with a = 4 appears to be an
envelope for the number of iterations for all λ ∈]0, 1[.

The graphs for Algorithms 3 and 3b, the Aragón Artacho–Campoy algorithm,
are indistinguishable to one’s eye; therefore we only display the one in Figure 2.3b.
Part (d) of Figure 2.3 shows surface plots of the number of iterations versus the
algorithmic parameters α and β, for the same values of a as in the rest of the
graphs in the figure. It is interesting to observe that the surfaces look to be cascaded
with (roughly) the outermost surface being the one corresponding to a = 4. The
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Fig. 2.3 Numerical experiments with s0 = 0, sf = 0, v0 = 1, vf = 0. (a) Algorithm 2 (DR).
(b) Algorithms 3 (AAC) and 3b (AAC-b) for α = 1. (c) Algorithm 2b (DR-b). (d) Algorithms 3
(AAC) and 3b (AAC-b)

surface plot suggests that for minimum number of iterations, one must have α = 1.
Although theory requires α < 1, α = 1 seems to cause no concerns in this particular
instance; so, we set α = 1 for the rest of the paper. The cross-sectional curves at
α = 1 are shown with much more precision in part (b) of the figure. The spikes that
are observed in part (d) can also be seen in the graph in part (b).

In fact, the first observation one has to make here is that, for a = 4, convergence
can be achieved in merely one iteration, with β = 0.5. This is quite remarkable,
compared with Algorithms 2 and 2b. The graphs in (b) appear to be enveloped as
well by the graph for a = 4, as in part (c). For the values of a other than 4, the
globally minimum number of iterations seems to be achieved at a downward spike,
which as a result is very sensitive to changes in β. For example, for a = 2.5,
the optimal β value is 0.78249754 for a minimum 35 iterations. A rounded-off
β = 0.782 results in 111 iterations, and β = 0.7 yields 243 iterations. Sensitivity at
the local minimizer β = 0.8617 giving 64 iterations is far less: Choosing β = 0.8 or
0.9 results in 128 or 90 iterations, respectively. It is interesting to note that, as in the
case of Algorithms 2 and 2b, the graphs in Figure 2.3b are approximately enveloped
by the graph/curve drawn for a = 4.
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Behaviour in Early Iterations Figure 2.4a–c illustrates the working of all three
algorithms for the same instance. All three algorithms converge to the optimal
solution, with the stopping tolerance of ε = 10−8. The optimal values of the
algorithmic parameters, λ = 0.7466 for Algorithm 2, and α = 1 and β = 0.8617
for Algorithm 3, have been used. The third, fifth and fifteenth iterates, as well as
the solution curve, are displayed for comparisons of behaviour. At least for the
given instance of the problem, it is fair to say from Figure 2.4c that Algorithm 3
gets closer to the solution much more quickly than the others in the few initial
iterations—see the third and fifth iterates. It also achieves convergence in a smaller
number of iterations (64 as opposed to 530 and 91 iterations of the Algorithms 1
and 2, respectively).

Error Analysis via Numerical Experiments For a fixed value of N , Algo-
rithms 1–3 converge only to some approximate solution of the original Problem.
Therefore, the question as to how the algorithms behave as the time partition is
refined, i.e., N is increased, needs to be investigated. For the purpose of a numerical
investigation, we define, in the kth iteration, the following errors. Suppose that the
pair (u∗, x∗) is the optimal solution of Problem (P) and (uk

h, x
k
h) an approximate

solution of Problem (P) in the kth iteration of a given algorithm. Define

σk
u := max

0≤i≤N−1
|uk

i − u∗(ti)| and σk
x := max

0≤i≤N
||xk

i − x∗(ti)||∞ ,

where || · ||∞ is the 
∞-norm in R2. For large N , these expressions are reminiscent
of the L∞-norm, and therefore they will be referred to as the L∞-error.

For (u∗, x∗) in the error expressions, we have used the discretized (approximate)
solution obtained for the Euler-discretized Problem (P) utilizing the Ipopt–AMPL
suite, with N = 106 and the tolerance set at 10−14.

For N = 2000, these errors are depicted in Figure 2.4d and e. From the graphs
it is immediately clear that no matter how much smaller the stopping tolerance is
selected, the best error that is achievable with N = 2000 is around 10−2 for the
control variable and around 10−3 for the state variable vector. In fact, the graphs also
tell that perhaps a much smaller stopping threshold than 10−8 would have achieved
the same approximation to the continuous-time solution of Problem (P). By just
looking at the graphs, one can see that Algorithm 1 could have been run just for
about 300 iterations instead of 530, and Algorithms 2 and 3 could have been run for
about 50 iterations to achieve the best possible approximation with N = 2000.

In Figure 2.5, we depict the same errors for N = 103 (parts (a) and (b)), N = 104

(in parts (c) and (d)) and N = 105 (in parts (e) and (f)). It is observed that, with a
ten-fold increase in N (which is a ten-fold decrease in h) the errors in both u and x

are reduced by ten-folds, implying that the error (both in x and in u) depends on the
stepsize h linearly. This is in line with the theory of Euler-discretization of optimal
control problems; see, for example, [15, 16]. Furthermore, even for very large values
of N , it can be seen from these graphs that a stopping threshold slightly smaller than
10−8 would suffice to get even more stringent error levels, such as around 10−4 for
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Fig. 2.4 Numerical experiments with a = 2.5, s0 = 0, sf = 0, v0 = 1, vf = 0, and the number of
discretization subintervals N = 2000. The graphs in (a)–(c) show approximations of the optimal
control function with Algorithms 1–3, after k = 3, 5, 15 iterations, with ε = 10−8. All algorithms
are observed to converge to the optimal solution indicated by k → ∞, in various rates. The semi-
log graphs in (d) and (e) show the L∞ errors in the state and control variables, respectively, in each
iteration of the three algorithms
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Fig. 2.5 Numerical experiments with a = 2.5, s0 = 0, sf = 0, v0 = 1, vf = 0. The semi-log
graphs show the L∞ errors in the state and control variables, respectively, in each iteration of the
three algorithms, with various N from coarse (N = 1000) to fine (N = 100000). (a) L∞-error in
control with N = 103. (b) L∞-error in states with N = 103. (c) L∞-error in control with N = 104.
(d) L∞-error in states with N = 104. (e) L∞-error in control with N = 105. (f) L∞-error in states
with N = 105

the control variable and around 10−5 for the state variable vector. A larger stopping
threshold would obviously result in smaller number of iterations.

Table 2.1 displays the values of the errors, separately in u and x, after the
stopping criteria with ε = 10−8 was satisfied, for each of the three algorithms. A
precise 10-fold reduction in error with a 10-fold increase in N can be verified with
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Table 2.1 Least errors that can be achieved by Algorithms 1–3 and Ipopt, with ε = 10−8

N Dykstra DR AAC Ipopt

(a) L∞-error in control, σk
u

103 3.2 × 10−2 2.5 × 10−2 2.8 × 10−2 3.2 × 10−2

104 3.2 × 10−3 2.5 × 10−3 2.8 × 10−3 7.7 × 10−3

105 3.0 × 10−4 2.4 × 10−4 2.6 × 10−4 1.6 × 10−2

(b) L∞-error in states, σk
x

103 2.2 × 10−3 3.6 × 10−3 3.0 × 10−3 2.2 × 10−3

104 2.1 × 10−4 3.6 × 10−4 2.9 × 10−4 2.3 × 10−4

105 2.0 × 10−5 3.4 × 10−5 2.8 × 10−5 8.7 × 10−5

Table 2.2 CPU times [sec] taken by Algorithms 1–3 and Ipopt. For N = 103, 104, 105,
respectively: ε = 10−6, 10−6, 10−7 for Algorithm 1, ε = 10−5, 10−5, 10−7 for Algorithm 2,
and ε = 10−4, 10−5, 10−6 for Algorithm 3, have been used. The tolerance for Ipopt was set as
10−14

N Dykstra DR AAC Ipopt

103 0.03 0.01 0.01 0.08

104 0.16 0.05 0.05 0.71

105 1.6 0.41 0.28 7.3

these numbers, as discussed in the previous paragraph. We have added the experi-
ments we have carried out with Ipopt, version 3.12, an interior point optimization
software [30], which solved the direct Euler-discretization of Problem (P), with the
same values of N and the same tolerance 10−8. Ipopt, running with linear solver
MA57, was paired up with the optimization modelling language AMPL [20]. The
same 10-fold decreases in error cannot be observed with Ipopt, unless one sets the
tolerance for Ipopt to be much smaller than 10−8, say 10−14 (which also means
longer computational times). With the tolerance set at 10−14, the error values with
Ipopt becomes pretty much the same as those with Dykstra (still with ε = 10−8),
which is interesting to note.

As we pointed out earlier, the same errors listed in Table 2.1 can be achieved
with bigger stopping thresholds. For N = 103, 104, 105, respectively: with ε =
10−6, 10−6, 10−7, Algorithm 1 converges in 281, 359 and 454 iterations; with ε =
10−5, 10−5, 10−7, Algorithm 2 converges in 65, 50 and 101 iterations; with ε =
10−4, 10−5, 10−6, Algorithm 3 converges in 49, 60 and 70 iterations.

In Table 2.2, the CPU times (in seconds) each algorithm takes, with the respective
ε values listed above, are tabulated. Note that Algorithms 1–3 have been coded
and run on Matlab, 64-bit (maci64) version R2017b. All software, including AMPL
and Ipopt, were run on MacBook Pro, with operating system macOS Sierra version
10.12.6, processor 3.3 GHz Intel Core i7 and memory 6 GB 2133 MHz LPDDR3.
In Table 2.2, the CPU times for Ipopt are listed with the tolerance 10−14, since with
only this fine tolerance it is possible to obtain the same order of the error magnitudes
as those obtained by Algorithms 1–3. With ε = 10−8, the CPU times for Ipopt are
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0.06, 0.45 and 4.4 seconds, respectively, which are significantly higher than the
times taken by Algorithms 1–3, in addition to worse errors.

Numerical observations suggest two joint winners: Algorithms 2 and 3, i.e., the
Douglas–Rachford method and the Aragón Artacho–Campoy algorithm, in both
accuracy and speed.

2.6 Conclusion and Open Problems

We have applied three well-known projection methods to solve an optimal control
problem, i.e., control-constrained minimum-energy control of double integrator.
We have derived the projectors for the optimal control problem and demonstrated
that they can be used in Dykstra’s algorithm, the Douglas–Rachford (DR) method
and the Aragón Artacho–Campoy (AAC) algorithm, effectively. We carried out
extensive numerical experiments for an instance of the problem and concluded
that the DR and AAC algorithms (Algorithms 2 and 3) were jointly the most
successful. We also made comparisons with the standard discretization approach,
only to witness the benefit of using projection methods.

It is interesting to note that when we apply alternating projections, we also seem
to converge to PA∩B(0) even though this is not supported by existing theory.

To the best of authors’ knowledge, the current paper constitutes the first of
its kind which involves projection methods and continuous-time optimal control
problems. It can be considered as a prototype for future studies in this direction.
Some of the possible directions are listed as follows.

• The setting we have introduced could be extended to general control-
constrained linear-quadratic problems.

• We have used some discretization of the projector as well as the associated IVP
in (2.34)–(2.38). This might be extended to problems in more general form.
On the other hand, for the particular problem we have dealt with in the present
paper, one might take into account the fact that if u−(t) is piecewise linear then
its projection is piecewise linear. This might simplify further the expressions
given in Proposition 2.1.

• Although theory for projection methods can in principle vouch convergence
only for convex problems, it is well-known that the DR method can be suc-
cessful for nonconvex problems, see, for example, [10]. It would be interesting
to extend the formulations in the current paper to nonconvex optimal control
problems.

• For a certain value of an algorithmic parameter, Figure 2.3 exhibits downward
spikes. It would be interesting to see if this phenomenon is also observed
in other control-constrained optimal control problems, as well as under other
stopping criteria.
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Appendix

Algorithm 1b (Dykstra-b)

Steps 1–4 (Initialization) Do as in Steps 1–4 of Algorithm 1.
Step 5 (Stopping criterion) If ‖uk+1 − uk‖L∞ ≤ ε, then return uk+1 and stop.

Otherwise, set k := k + 1 and go to Step 2.

Algorithm 2b (DR-b)

Step 1 (Initialization) Choose a parameter λ ∈ ]0, 1[ and the initial iterate u0

arbitrarily. Choose a small parameter ε > 0, and set k = 0.
Step 2 (Projection onto A) Set u− = λuk . Compute ũ = PA(u−) by using (2.9).
Step 3 (Projection onto B) Set u− := 2ũ − uk . Compute û = PB(u−) by

using (2.22).
Step 4 (Update) Set uk+1 := uk + û − ũ.
Step 5 (Stopping criterion) If ‖uk+1 − uk‖L∞ ≤ ε, then return ũ and stop.

Otherwise, set k := k + 1 and go to Step 2.

Algorithm 3b (AAC-b)

Step 1 (Initialization) Choose the initial iterate u0 arbitrarily. Choose a small
parameter ε > 0, two parameters α and β in ]0, 1[, and set k = 0.

Step 2 (Projection onto A) Set u− = uk . Compute ũ = PA(u−) by using (2.9).
Step 3 (Projection onto B) Set u− = 2βũ − uk . Compute û = PB(u−) by

using (2.22).
Step 4 (Update) Set uk+1 := uk + 2αβ(̂u − ũ).
Step 5 (Stopping criterion) If ‖uk+1 − uk‖L∞ ≤ ε, then return ũ and stop.

Otherwise, set k := k + 1 and go to Step 2.
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