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Abstract We propose a Forward-Backward Truncated-Newton method (FBTN)
for minimizing the sum of two convex functions, one of which smooth. Unlike
other proximal Newton methods, our approach does not involve the employment of
variable metrics, but is rather based on a reformulation of the original problem as the
unconstrained minimization of a continuously differentiable function, the forward-
backward envelope (FBE). We introduce a generalized Hessian for the FBE that
symmetrizes the generalized Jacobian of the nonlinear system of equations repre-
senting the optimality conditions for the problem. This enables the employment of
conjugate gradient method (CG) for efficiently solving the resulting (regularized)
linear systems, which can be done inexactly. The employment of CG prevents the
computation of full (generalized) Jacobians, as it requires only (generalized) direc-
tional derivatives. The resulting algorithm is globally (subsequentially) convergent,
Q-linearly under an error bound condition, and up to Q-superlinearly and Q-
quadratically under regularity assumptions at the possibly non-isolated limit point.

Keywords Forward-backward splitting · Linear Newton approximation ·
Truncated-Newton method · Backtracking linesearch · Error bound · Superlinear
convergence
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15.1 Introduction

In this work we focus on convex composite optimization problems of the form

minimizex∈Rn ϕ(x) ≡ f (x)+ g(x), (15.1)
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where f : Rn → R is convex, twice continuously differentiable and with Lf -
Lipschitz-continuous gradient, and g : Rn → R ∪ {∞} has a cheaply computable
proximal mapping [51]. To ease the notation, throughout the chapter we indicate

ϕ� := inf ϕ and X� := argmin ϕ. (15.2)

Problems of the form (15.1) are abundant in many scientific areas such as control,
signal processing, system identification, machine learning, and image analysis, to
name a few. For example, when g is the indicator of a convex set then (15.1)
becomes a constrained optimization problem, while for f (x) = 1

2‖Ax − b‖2
and g(x) = λ‖x‖1 it becomes the �1-regularized least-squares problem (lasso)
which is the main building block of compressed sensing. When g is equal to the
nuclear norm, then (15.1) models low-rank matrix recovery problems. Finally, conic
optimization problems such as linear, second-order cone, and semidefinite programs
can be brought into the form of (15.1), see [31].

Perhaps the most well-known algorithm for problems in the form (15.1) is
the forward-backward splitting (FBS) or proximal gradient method [16, 40], that
interleaves gradient descent steps on the smooth function and proximal steps on the
nonsmooth one, see Section 15.3.1. Accelerated versions of FBS, based on the work
of Nesterov [5, 54, 77], have also gained popularity. Although these algorithms share
favorable global convergence rate estimates of order O(ε−1) or O(ε−1/2) (where ε

is the solution accuracy), they are first-order methods and therefore usually effective
at computing solutions of low or medium accuracy only. An evident remedy is to
include second-order information by replacing the Euclidean norm in the proximal
mapping with that induced by the Hessian of f at x or some approximation
of it, mimicking Newton or quasi-Newton methods for unconstrained problems
[6, 32, 42]. However, a severe limitation of the approach is that, unless Q has a
special structure, the computation of the proximal mapping becomes very hard. For
example, if ϕ models a lasso problem, the corresponding subproblem is as hard as
the original problem.

In this work we follow a different approach by reformulating the nonsmooth
constrained problem (15.1) into the smooth unconstrained minimization of the
forward-backward envelope (FBE) [57], a real-valued, continuously differentiable,
exact penalty function for ϕ. Although the FBE might fail to be twice continuously
differentiable, by using tools from nonsmooth analysis we show that one can
design Newton-like methods to address its minimization, that achieve Q-superlinear
asymptotic rates of convergence under nondegeneracy and (generalized) smooth-
ness conditions on the set of solutions. Furthermore, by suitably interleaving FBS
and Newton-like iterations the proposed algorithm also enjoys good complexity
guarantees provided by a global (non-asymptotic) convergence rate. Unlike the
approaches of [6, 32], where the corresponding subproblems are expensive to solve,
our algorithm only requires the inexact solution of a linear system to compute
the Newton-type direction, which can be done efficiently with a memory-free CG
method.
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Our approach combines and extends ideas stemming from the literature on merit
functions for variational inequalities (VIs) and complementarity problems (CPs),
specifically the reformulation of a VI as a constrained continuously differentiable
optimization problem via the regularized gap function [23] and as an unconstrained
continuously differentiable optimization problem via the D-gap function [79] (see
[19, §10] for a survey and [38, 58] for applications to constrained optimization and
model predictive control of dynamical systems).

15.1.1 Contributions

We propose an algorithm that addresses problem (15.1) by means of a Newton-like
method on the FBE. Differently from a direct application of the classical Newton
method, our approach does not require twice differentiability of the FBE (which
would impose additional properties on f and g), but merely twice differentiability
of f . This is possible thanks to the introduction of an approximate generalized
Hessian which only requires access to∇2f and to the generalized (Clarke) Jacobian
of the proximal mapping of g, as opposed to third-order derivatives and classical
Jacobian, respectively. Moreover, it allows for inexact solutions of linear systems
to compute the update direction, which can be done efficiently with a truncated
CG method; in particular, no computation of full (generalized) Hessian matrices
is necessary, as only (generalized) directional derivatives are needed. The method
is thus particularly appealing when the Clarke Jacobians are sparse and/or well
structured, so that the implementation of CG becomes extremely efficient. Under an
error bound condition and a (semi)smoothness assumption at the limit point, which
is not required to be isolated, the algorithm exhibits asymptotic Q-superlinear rates.
For the reader’s convenience we collect explicit formulas of the needed Jacobians
of the proximal mapping for a wide range of frequently encountered functions,
and discuss when they satisfy the needed semismoothness requirements that enable
superlinear rates.

15.1.2 Related Work

This work is a revised version of the unpublished manuscript [59] and extends
ideas proposed in [57], where the FBE is first introduced. Other FBE-based
algorithms are proposed in [69, 71, 75]; differently from the truncated-CG type of
approximation proposed here, they all employ quasi-Newton directions to mimic
second-order information. The underlying ideas can also be extended to enhance
other popular proximal splitting algorithms: the Douglas Rachford splitting (DRS)
and the alternating direction method of multipliers (ADMM) [74], and for strongly
convex problems also the alternating minimization algorithm (AMA) [70].
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The algorithm proposed in this chapter adopts the recent techniques investigated
in [71, 75] to enhance and greatly simplify the scheme in [59]. In particular,
Q-linear and Q-superlinear rates of convergence are established under an error
bound condition, as opposed to uniqueness of the solution. The proofs of superlinear
convergence with an error bound pattern the arguments in [82, 83], although with
less conservative requirements.

15.1.3 Organization

The work is structured as follows. In Section 15.2 we introduce the adopted notation
and list some known facts on generalized differentiability needed in the sequel.
Section 15.3 offers an overview on the connections between FBS and the proximal
point algorithm, and serves as a prelude to Section 15.4 where the forward-backward
envelope function is introduced and analyzed. Section 15.5 deals with the proposed
truncated-Newton algorithm and its convergence analysis. In Section 15.6 we collect
explicit formulas for the generalized Jacobian of the proximal mapping of a rich list
of nonsmooth functions, needed for computing the update directions in the proposed
algorithm. Finally, Section 15.7 draws some conclusions.

15.2 Preliminaries

15.2.1 Notation and Known Facts

Our notation is standard and follows that of convex analysis textbooks [2, 8, 28,
63]. For the sake of clarity we now properly specify the adopted conventions, and
briefly recap known definitions and facts in convex analysis. The interested reader
is referred to the above-mentioned textbooks for the details.

Matrices and Vectors The n×n identity matrix is denoted as In, and the Rn vector
with all elements equal to 1 is as 1n; whenever n is clear from context we simply
write I or 1, respectively. We use the Kronecker symbol δi,j for the (i, j)-th entry
of I. Given v ∈ R

n, with diag v we indicate the n × n diagonal matrix whose i-th
diagonal entry is vi . With S(Rn), S+(Rn), and S++(Rn) we denote respectively the
set of symmetric, symmetric positive semidefinite, and symmetric positive definite
matrices in R

n×n.

The minimum and maximum eigenvalues of H ∈ S(Rn) are denoted as λmin(H)

and λmax(H), respectively. For Q,R ∈ S(Rn) we write Q 	 R to indicate that
Q − R ∈ S+(Rn), and similarly Q 
 R indicates that Q − R ∈ S++(Rn). Any
matrix Q ∈ S+(Rn) induces the semi-norm ‖ · ‖Q on R

n, where ‖x‖2Q := 〈x,Qx〉;
in case Q = I, that is, for the Euclidean norm, we omit the subscript and simply
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write ‖ · ‖. No ambiguity occurs in adopting the same notation for the induced
matrix norm, namely ‖M‖ := max{‖Mx‖|x ∈ R

n, ‖x‖ = 1|} for M ∈ R
n×n.

Topology The convex hull of a set E ⊆ R
n, denoted as conv E, is the smallest

convex set that contains E (the intersection of convex sets is still convex). The affine
hull aff E and the conic hull cone E are defined accordingly. Specifically,

conv E :=
{∑k

i=1 αixi | k ∈ N, xi ∈ E, αi ≥ 0,
∑k

i=1 αi = 1
}

,

cone E :=
{∑k

i=1 αixi | k ∈ N, xi ∈ E, αi ≥ 0
}

,

aff E :=
{∑k

i=1 αixi | k ∈ N, xi ∈ E, αi ∈ R,
∑k

i=1 αi = 1
}

.

The closure and interior of E are denoted as cl E and int E, respectively, whereas
its relative interior, namely the interior of E as a subspace of aff E, is denoted as
relint E. With B(x; r) and B(x; r) we indicate, respectively, the open and closed
balls centered at x with radius r .

Sequences The notation (ak)k∈K represents a sequence indexed by elements of the
set K , and given a set E we write (ak)k∈K ⊂ E to indicate that ak ∈ E for all indices
k ∈ K . We say that (ak)k∈K ⊂ R

n is summable if
∑

k∈K ‖ak‖ is finite, and square-
summable if (‖ak‖2)k∈K is summable. We say that the sequence converges to a point
a ∈ R

n superlinearly if either ak = a for some k ∈ N, or ‖ak+1−a‖/‖ak−a‖ → 0;
if ‖ak+1−a‖/‖ak−a‖q is bounded for some q > 1, then we say that the sequence
converges superlinearly with order q, and in case q = 2 we say that the convergence
is quadratic.

Extended-Real Valued Functions The extended-real line is R = R ∪ {∞}. Given
a function h : Rn→ [−∞,∞], its epigraph is the set

epi h := {
(x, α) ∈ R

n × R | h(x) ≤ α
}
,

while its domain is

dom h := {
x ∈ R

n | h(x) <∞}
,

and for α ∈ R its α-level set is

lev≤α h := {
x ∈ R

n | h(x) ≤ α
}
.

Function h is said to be lower semicontinuous (lsc) if epi h is a closed set in R
n+1

(equivalently, h is said to be closed); in particular, all level sets of an lsc function
are closed. We say that h is proper if h > −∞ and dom h �= ∅, and that it is level
bounded if for all α ∈ R the level set lev≤α h is a bounded subset of Rn.
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Continuity and Smoothness A function G : Rn → R
m is ϑ-Hölder continuous

for some ϑ > 0 if there exists L ≥ 0 such that

‖G(x)−G(x′)‖ ≤ L‖x − x′‖ϑ (15.3)

for all x, x′. In case ϑ = 1 we say that G is (L-)Lipschitz continuous. G is strictly
differentiable at x̄ ∈ R

n if the Jacobian matrix JG(x̄) := (
∂Gi

∂xj
(x̄)

)
i,j

exists and

lim
x,x′→x̄
x �=x′

‖G(x′)− JG(x̄)(x′ − x)−G(x)‖
‖x′ − x‖ = 0. (15.4)

The class of functions h : Rn → R that are k times continuously differentiable is
denoted as Ck(Rn). We write h ∈ C1,1(Rn) to indicate that h ∈ C1(Rn) and that∇h

is Lipschitz continuous with modulus Lh. To simplify the terminology, we will say
that such an h is Lh-smooth. If h is Lh-smooth and convex, then for any u, v ∈ R

n

0 ≤ h(v)− [
h(u)+ 〈∇h(u), v − u〉] ≤ Lh

2 ‖v − u‖2. (15.5)

Moreover, having h ∈ C1,1(Rn) and μh-strongly convex is equivalent to having

μh‖v − u‖2 ≤ 〈∇h(v)−∇h(u), v − u〉 ≤ Lh‖v − u‖2 (15.6)

for all u, v ∈ R
n.

Set-Valued Mappings We use the notation H : Rn ⇒ R
m to indicate a point-to-

set function H : Rn → P(Rm), where P(Rm) is the power set of Rm (the set of all
subsets of Rm). The graph of H is the set

gph H := {
(x, y) ∈ R

n × R
m | y ∈ H(x)

}
,

while its domain is

dom H := {
x ∈ R

n | H(x) �= ∅} .

We say that H is outer semicontinuous (osc) at x̄ ∈ dom H if for any ε > 0 there
exists δ > 0 such that H(x) ⊆ H(x̄)+B(0; ε) for all x ∈ B(x̄; δ). In particular, this
implies that whenever (xk)

k∈N ⊆ dom H converges to x and (yk)
k∈N converges to

y with yk ∈ H(xk) for all k, it holds that y ∈ H(x). We say that H is osc (without
mention of a point) if H is osc at every point of its domain or, equivalently, if gph H

is a closed subset of R
n × R

m (notice that this notion does not reduce to lower
semicontinuity for a single-valued function H ).
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Convex Analysis The indicator function of a set S ⊆ R
n is denoted as δS : Rn →

R, namely

δS(x) =
{

0 if x ∈ S,

∞ otherwise.
(15.7)

If S is nonempty closed and convex, then δS is proper convex and lsc, and both
the projection PS : Rn → R

n and the distance dist( · , S) : Rn → [0,∞) are
well-defined functions, given by PS(x) = argminz∈S ‖z − x‖ and dist(x, S) =
minz∈S ‖z− x‖, respectively.

The subdifferential of h is the set-valued mapping ∂h : Rn ⇒ R
n defined as

∂h(x) :=
{
v ∈ R

n | h(z) ≥ h(x)+ 〈v, z− x〉 ∀z ∈ R
n
}

. (15.8)

A vector v ∈ ∂h(x) is called a subgradient of h at x. It holds that dom ∂h ⊆ dom h,
and if h is proper and convex, then dom ∂h is a nonempty convex set containing
relint dom h, and ∂h(x) is convex and closed for all x ∈ R

n.
A function h is said to be μ-strongly convex for some μ ≥ 0 if h − μ

2 ‖ · ‖2 is
convex. Unless differently specified, we allow for μ = 0 which corresponds to h

being convex but not strongly so. If μ > 0, then h has a unique (global) minimizer.

15.2.2 Generalized Differentiability

Due to its inherent nonsmooth nature, classical notions of differentiability may not
be directly applicable in problem (15.1). This subsection contains some definitions
and known facts on generalized differentiability that will be needed later on in the
chapter. The interested reader is referred to the textbooks [15, 19, 65] for the details.

Definition 15.2.1 (Bouligand and Clarke Subdifferentials) Let G : Rn → R
m

be locally Lipschitz continuous, and let CG ⊆ R
n be the set of points at which G

is differentiable (in particular R
n \ CG has measure zero). The B-subdifferential

(also known as Bouligand or limiting Jacobian) of G at x̄ is the set-valued mapping
∂BG : Rn ⇒ R

m×n defined as

∂BG(x̄) :=
{
H ∈ R

m×n | ∃(xk)k∈N ⊂ CG with xk → x̄, JG(xk)→ H
}

,

(15.9)

whereas the (Clarke) generalized Jacobian of G at x̄ is ∂CG : Rn ⇒ R
m×n given by

∂CG(x̄) := conv(∂BG(x̄)). (15.10)

If G : Rn→ R
m is locally Lipschitz on R

n, then ∂CG(x) is a nonempty, convex,
and compact subset of Rm×n matrices, and as a set-valued mapping it is osc at every
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x ∈ R
n. Semismooth functions [60] are precisely Lipschitz-continuous mappings for

which the generalized Jacobian (and consequently the B-subdifferential) furnishes
a first-order approximation.

Definition 15.2.2 (Semismooth Mappings) Let G : R
n → R

m be locally
Lipschitz continuous at x̄. We say that G is semismooth at x̄ if

lim sup
x→x̄

H∈∂CG(x)

‖G(x)+H(x̄ − x)−G(x̄)‖
‖x − x̄‖ = 0. (15.11a)

We say that G is ϑ-order semismooth for some ϑ > 0 if the condition can be
strengthened to

lim sup
x→x̄

H∈∂CG(x)

‖G(x)+H(x̄ − x)−G(x̄)‖
‖x − x̄‖1+ϑ

<∞, (15.11b)

and in case ϑ = 1 we say that G is strongly semismooth.

To simplify the notation, we adopt the small-o and big-O convention to
write expressions as (15.11a) in the compact form G(x) + H(x̄ − x) − G(x̄) =
o(‖x− x̄‖), and similarly (15.11b) as G(x)+H(x̄− x)−G(x̄) = O(‖x− x̄‖1+ϑ).
We remark that the original definition of semismoothness given by [49] requires G

to be directionally differentiable at x. The definition given here is the one employed
by [25]. It is also worth remarking that ∂CG(x) can be replaced with the smaller
set ∂BG(x) in Definition 15.2.2. Fortunately, the class of semismooth mappings
is rich enough to include many functions arising in interesting applications. For
example, piecewise smooth (PC1) mappings are semismooth everywhere. Recall
that a continuous mapping G : Rn → R

m is PC1 if there exists a finite collection
of smooth mappings Gi : Rn→ R

m, i = 1, . . . , N , such that

G(x) ∈ {G1(x), . . . ,GN(x)} ∀x ∈ R
n. (15.12)

The definition of PC1 mapping given here is less general than the one of, e.g.,
[66, §4] but it suffices for our purposes. For every x ∈ R

n we introduce the set of
essentially active indices

I e
G(x) := {

i | x ∈ cl
(

int {w | G(w) = Gi(w)} )} . (15.13)

In other words, I e
G(x) contains only indices of the pieces Gi for which there

exists a full-dimensional set on which G agrees with Gi . In accordance with
Definition 15.2.1, the generalized Jacobian of G at x is the convex hull of the
Jacobians of the essentially active pieces, i.e., [66, Prop. 4.3.1]

∂CG(x) = conv
{
JGi(x) | i ∈ I e

G(x)
}
. (15.14)

The following definition is taken from [19, Def. 7.5.13].
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Definition 15.2.3 (Linear Newton Approximation) Let G : R
n → R

m be
continuous on R

n. We say that G admits a linear Newton approximation (LNA)
at x̄ ∈ R

n if there exists a set-valued mapping H : Rn ⇒ R
m×n that has nonempty

compact images, is outer semicontinuous at x̄, and

lim sup
x→x̄

H ∈H(x)

‖G(x)+H(x̄ − x)−G(x̄)‖
‖x − x̄‖ = 0.

If for some ϑ > 0 the condition can be strengthened to

lim sup
x→x̄

H ∈H(x)

‖G(x)+H(x̄ − x)−G(x̄)‖
‖x − x̄‖1+ϑ

<∞,

then we say that H is a ϑ-order LNA, and if ϑ = 1 we say that H is a strong LNA.

Functions G as in Definition 15.2.3 are also referred to as H-semismooth in the
literature, see, e.g., [78], however we prefer to stick to the terminology of [19] and
rather say that H is a LNA for G. Arguably the most notable example of a LNA for
semismooth mappings is the generalized Jacobian, cf. Definition 15.2.1. However,
semismooth mappings can admit LNAs different from the generalized Jacobian.
More importantly, mappings that are not semismooth may also admit a LNA.

Lemma 15.2.4 ([19, Prop. 7.4.10]) Let h ∈ C1(Rn) and suppose that H : Rn ⇒
R

n×n is a LNA for ∇h at x̄. Then,

lim
x→x̄

H ∈H(x)

h(x)− h(x̄)− 〈∇h(x̄), x − x̄〉 − 1
2 〈H(x − x̄), x − x̄〉

‖x − x̄‖2 = 0. (15.15)

We remark that although [19, Prop. 7.4.10] assumes semismoothness of ∇h at x̄

and uses ∂C(∇h) in place of H; however, exactly the same arguments apply for any
LNA of ∇h at x̄ even without the semismoothness assumption.

15.3 Proximal Algorithms

15.3.1 Proximal Point and Moreau Envelope

The proximal mapping of a proper closed and convex function h : Rn → R with
parameter γ > 0 is proxγ h : Rn→ R

n, given by

proxγ h(x) := argminw∈Rn

{ Mh
γ (w;x)

h(w)+ 1
2γ
‖w − x‖2

}
. (15.16)
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The majorization model Mh
γ (x; · ) is a proper and strongly convex function, and

therefore has a unique minimizer. The value function, as opposed to the minimizer,
defines the Moreau envelope hγ : Rn→ R, namely

hγ (x) := min
w∈Rn

{
h(w)+ 1

2γ
‖w − x‖2

}
, (15.17)

which is real valued and Lipschitz differentiable, despite the fact that h might be
extended-real valued. Properties of the Moreau envelope and the proximal mapping
are well documented in the literature, see, e.g., [2, §24]. For example, proxγ h is
nonexpansive (Lipschitz continuous with modulus 1) and is characterized by the
implicit inclusion

x̂ = proxγ h(x) ⇔ 1
γ
(x − x̂) ∈ ∂h(x̂). (15.18)

For the sake of a brief recap, we now list some other important known properties.
Theorem 15.3.1 provides some relations between h and its Moreau envelope
hγ , which we informally refer to as sandwich property for apparent reasons, cf.
Figure 15.1. Theorem 15.3.2 highlights that the minimization of a (proper, lsc and)
convex function can be expressed as the convex smooth minimization of its Moreau
envelope.

Theorem 15.3.1 (Moreau Envelope: Sandwich Property [2, 12]) For all γ > 0
the following hold for the cost function ϕ:

(i) ϕγ (x) ≤ ϕ(x) − 1
2γ
‖x − x̂‖2 for all x ∈ R

n where x̂ := proxγ ϕ(x);

(ii) ϕ(x̂) = ϕγ (x)− 1
2γ
‖x − x̂‖2 for all x ∈ R

n where x̂ := proxγ ϕ(x);
(iii) ϕγ (x) = ϕ(x) iff x ∈ argmin ϕ.

Proof

• 15.3.1(i). This fact is shown in [12, Lem. 3.2] for a more general notion
of proximal point operator; namely, the square Euclidean norm appearing
in (15.16) and (15.17) can be replaced by arbitrary Bregman divergences. In
this simpler case, since 1

γ
(x− x̂) is a subgradient of ϕ at x̂, cf. (15.18), we have

ϕ(x) ≥ ϕ(x̂)+ 〈 1
γ
(x − x̂), x − x̂〉 = ϕ(x̂)+ 1

γ
‖x − x̂‖2. (15.19)

The claim now follows by subtracting 1
2γ
‖x − x̂‖2 from both sides.

• 15.3.1(ii). Follows by definition, cf. (15.16) and (15.17).
• 15.3.1(iii). See [2, Prop. 17.5]. ��

��
Theorem 15.3.2 (Moreau Envelope: Convex Smooth Minimization Equivalence
[2]) For all γ > 0 the following hold for the cost function ϕ:
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Fig. 15.1 Moreau envelope of the function
ϕ(x) = 1

3 x3 + x2 − x + 1+ δ[0,∞)(x) with parameter γ = 0.2.
At each point x, the Moreau envelope ϕγ is the minimum of the quadratic majorization model
M

ϕ
γ = ϕ + 1

2γ
( · − x)2, the unique minimizer being, by definition, the proximal point x̂ :=

proxγϕ(x). It is a convex smooth lower bound to ϕ, despite the fact that ϕ might be extended-real
valued. Function ϕ and its Moreau envelope ϕγ have same inf and argmin; in fact, the two functions
agree (only) on the set of minimizers. In general, ϕγ is sandwiched as ϕ ◦ proxγϕ ≤ ϕγ ≤ ϕ

(i) ϕγ is convex and smooth with Lϕγ = γ−1 and ∇ϕγ (x) = γ−1
(
x −

proxγ ϕ(x)
)
;

(ii) inf ϕ = inf ϕγ ;
(iii) x� ∈ argmin ϕ iff x� ∈ argmin ϕγ iff ∇ϕγ (x�) = 0.

Proof

• 15.3.2(i). See [2, Prop.s 12.15 and 12.30].
• 15.3.2(ii). See [2, Prop. 12.9(iii)].
• 15.3.2(iii). See [2, Prop. 17.5]. ��

��
As a consequence of Theorem 15.3.2, one can address the minimization of

the convex but possibly nonsmooth and extended-real-valued function ϕ by
means of gradient descent on the smooth envelope function ϕγ with stepsize
0 < τ < 2/Lϕγ = 2γ . As first noticed by Rockafellar [64], this simply amounts to
(relaxed) fixed-point iterations of the proximal point operator, namely

x+ = (1− λ)x + λ proxγ ϕ(x), (15.20)
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where λ = τ/γ ∈ (0, 2) is a possible relaxation parameter. The scheme, known
as proximal point algorithm (PPA) and first introduced by Martinet [45], is well
covered by the broad theory of monotone operators, where convergence properties
can be easily derived with simple tools of Fejérian monotonicity, see, e.g., [2, Thm.s
23.41 and 27.1]. Nevertheless, not only does the interpretation as gradient method
provide a beautiful theoretical link, but it also enables the employment of accel-
eration techniques exclusively stemming from smooth unconstrained optimization,
such as Nesterov’s extrapolation [26] or quasi-Newton schemes [13], see also [7]
for extensions to the dual formulation.

15.3.2 Forward-Backward Splitting

While it is true that every convex minimization problem can be smoothened
by means of the Moreau envelope, unfortunately it is often the case that the
computation of the proximal operator (which is needed to evaluate the envelope)
is as hard as solving the original problem. For instance, evaluating the Moreau
envelope of the cost of modeling a convex QP at one point amounts to solving
another QP with same constraints and augmented cost. To overcome this limitation
there comes the idea of splitting schemes, which decompose a complex problem in
small components which are easier to operate onto. A popular such scheme is the
forward-backward splitting (FBS), which addresses minimization problems of the
form (15.1).

Given a point x ∈ R
n, one iteration of forward-backward splitting (FBS) for

problem (15.1) with stepsize γ > 0 and relaxation λ > 0 consists in

x+ = (1− λ)x + λTγ (x), (15.21)

where

Tγ (x) := proxγg (x − γ∇f (x)) (15.22)

is the forward-backward operator, characterized as

x̄ = Tγ (x) ⇔ 1
γ
(x − x̄)− (∇f (x)− ∇f (x̄)) ∈ ∂ϕ(x̄), (15.23)

as it follows from (15.18). FBS interleaves a gradient descent step on f and a
proximal point step on g, and as such it is also known as proximal gradient method.
If both f and g are (lsc, proper and) convex, then the solutions to (15.1) are exactly
the fixed points of the forward-backward operator Tγ . In other words,

x� ∈ argmin ϕ iff Rγ (x�) = 0, (15.24)
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where

Rγ (x) := 1
γ

(
x − proxγg (x − γ∇f (x))

)
(15.25)

is the forward-backward residual.1 FBS iterations (15.21) are well known to
converge to a solution to (15.1) provided that f is smooth and that the parameters
are chosen as γ ∈ (0, 2/Lf ) and λ ∈ (0, 2 − γLf/2) [2, Cor. 28.9] (λ = 1, which is
always feasible, is the typical choice).

15.3.3 Error Bounds and Quadratic Growth

We conclude the section with some inequalities that will be useful in the sequel.

Lemma 15.3.3 Suppose that X� is nonempty. Then,

ϕ(x)− ϕ� ≤ dist(0, ∂ϕ(x)) dist(x,X�) ∀x ∈ R
n. (15.26)

Proof From the subgradient inequality it follows that for all x� ∈ X� and v ∈ ∂ϕ(x)

we have

ϕ(x)− ϕ� = ϕ(x)− ϕ(x�) ≤ 〈v, x − x�〉 ≤ ‖v‖‖x − x�‖ (15.27)

and the claimed inequality follows from the arbitrarity of x� and v. ��
Lemma 15.3.4 Suppose that X� is nonempty. For all x ∈ R

n and γ > 0 the
following holds:

‖Rγ (x)‖ ≥ 1
1+γLf

dist
(
0, ∂ϕ(Tγ (x))

)
(15.28)

Proof Let x̄ := Tγ (x). The characterization (15.23) of Tγ implies that

‖Rγ (x)‖ ≥ dist
(
0, ∂ϕ(x̄)

)−‖∇f (x)−∇f (x̄)‖ ≥ dist
(
0, ∂ϕ(x̄)

)−γLf ‖Rγ (x)‖.
(15.29)

After trivial rearrangements the sought inequality follows. ��
Further interesting inequalities can be derived if the cost function ϕ satisfies an

error bound, which can be regarded as a generalization of strong convexity that
does not require uniqueness of the minimizer. The interested reader is referred to
[3, 17, 43, 55] and the references therein for extensive discussions.

1Due to apparent similarities with gradient descent iterations, having x+ = x − γRγ (x) in FBS,
Rγ is also referred to as (generalized) gradient mapping, see, e.g., [17]. In particular, if g = 0, then
Rγ = ∇f whereas if f = 0 then Rγ = ∇gγ . The analogy will be supported by further evidence
in the next section where we will see that, up to a change of metric, indeed Rγ is the gradient of
the forward-backward envelope function.
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Definition 15.3.5 (Quadratic Growth and Error Bound) Suppose that X� �= ∅.
Given μ, ν > 0, we say that

(a) ϕ satisfies the quadratic growth with constants (μ, ν) if

ϕ(x)− ϕ� ≥ μ
2 dist(x,X�)

2 ∀x ∈ lev≤ϕ�+ν ϕ; (15.30)

(b) ϕ satisfies the error bound with constants (μ, ν) if

dist(0, ∂ϕ(x)) ≥ μ
2 dist(x,X�) ∀x ∈ lev≤ϕ�+ν ϕ. (15.31)

In case ν = ∞ we say that the properties are satisfied globally.

Theorem 15.3.6 ([17, Thm. 3.3]) For a proper convex and lsc function, the
quadratic growth with constants (μ, ν) is equivalent to the error bound with same
constants.

Lemma 15.3.7 (Globality of Quadratic Growth) Suppose that ϕ satisfies the
quadratic growth with constants (μ, ν). Then, for every ν′ > ν it satisfies the
quadratic growth with constants (μ′, ν′), where

μ′ := μ
2 min

{
1, ν

ν′−ν

}
. (15.32)

Proof Let ν′ > ν be fixed, and let x ∈ lev≤ϕ�+ν′ be arbitrary. Since μ′ ≤ μ, the
claim is trivial if ϕ(x) ≤ ϕ�+ ν; we may thus suppose that ϕ(x) > ϕ�+ ν. Let z be
the projection of x onto the (nonempty closed and convex) level set lev≤ϕ�+ν , and
observe that ϕ(z) = ϕ� + ν. With Lemma 15.3.3 and Theorem 15.3.6 we can upper
bound ν as

ν = ϕ(z)− ϕ� ≤ dist(0, ∂ϕ(z)) dist(z,X�) ≤ 2
μ

dist(0, ∂ϕ(z))2. (15.33)

Moreover, it follows from [28, Thm. 1.3.5] that there exists a subgradient v ∈ ∂ϕ(z)

such that 〈v, x − z〉 = ‖v‖‖x − z‖. Then,

ϕ(x) ≥ ϕ(z)+ 〈v, x − z〉 = ϕ(z)+ ‖v‖‖x − z‖ ≥ ϕ(z)+ dist(0, ∂ϕ(z))‖x − z‖
(15.33)
≥ ϕ(z)+

√
μν
2 ‖x − z‖. (15.34)

By subtracting ϕ(z) from the first and last terms we obtain

‖x − z‖ ≤
√

2
μν

(
ϕ(x)− ϕ(z)

) ≤
√

2
μν

(ν′ − ν), (15.35)

which implies

‖x − z‖ ≥
√

μν
2

1
ν′−ν
‖x − z‖2. (15.36)
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Thus,

ϕ(x)− ϕ�

(15.34)≥ ϕ(z)− ϕ� +
√

μν
2 ‖x − z‖

using the quadratic growth at z and the inequality (15.36)

≥ μ
2 dist(z,X�)

2 + μν
2(ν′−ν)

‖x − z‖2

≥ μ
2 min

{
1, ν

ν′−ν

} [
dist(z,X�)

2 + ‖x − z‖2
]
.

By using the fact that a2 + b2 ≥ 1
2 (a + b)2 for any a, b ∈ R together with the

triangular inequality dist(x,X�) ≤ ‖x − z‖ + dist(z,X�), we conclude that ϕ(x)−
ϕ� ≥ μ′

2 dist(x,X�)
2, with μ′ as in the statement. Since μ′ depends only on μ, ν,

and ν′, from the arbitrarity of x ∈ lev≤ϕ�+ν′ the claim follows. ��
Theorem 15.3.8 ([17, Cor. 3.6]) Suppose that ϕ satisfies the quadratic growth with
constants (μ, ν). Then, for all γ ∈ (0, 1/Lf ) and x ∈ lev≤ϕ�+ν ϕ we have

dist(x,X�) ≤ (γ + 2/μ)(1+ γLf )‖Rγ (x)‖. (15.37)

15.4 Forward-Backward Envelope

There are clearly infinite ways of representing the (proper, lsc and) convex function
ϕ in (15.1) as the sum of two convex functions f and g with f smooth, and each
of these choices leads to a different FBS operator Tγ . If f = 0, for instance, then
Tγ reduces to proxγ ϕ , and consequently FBS (15.21) to the PPA (15.20). A natural
question then arises, whether a function exists that serves as “envelope” for FBS in
the same way that ϕγ does for proxγ ϕ . We will now provide a positive answer to
this question by reformulating the nonsmooth problem (15.1) as the minimization
of a differentiable function. To this end, the following requirements on f and g will
be assumed throughout the chapter without further mention.

Assumption I (Basic Requirements) In problem (15.1),

(i) f : Rn→ R is convex, twice continuously differentiable and Lf -smooth;
(ii) g : Rn→ R is lsc, proper, and convex.
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Compared to the classical FBS assumptions, the only additional requirement
is twice differentiability of f . This ensures that the forward operator x �→ x −
γ∇f (x) is differentiable; we denote its Jacobian as Qγ : Rn→ R

n×n, namely

Qγ (x) := I− γ∇2f (x). (15.38)

Notice that, due to the bound ∇2f (x) � Lf I (which follows from Lf -smoothness
of f , see [53, Lem. 1.2.2]) Qγ (x) is invertible (in fact, positive definite) whenever
γ < 1/Lf . Moreover, due to the chain rule and Theorem 15.3.2(i) we have that

∇[gγ ◦ (id−γ∇f )
]
(x) = γ−1Qγ (x)

[
x − γ∇f (x)− proxγg (x − γ∇f (x))

]

= Qγ (x)
[
Rγ (x)−∇f (x)

]
.

Rearranging,

Qγ (x)Rγ (x) = ∇f (x)− γ∇2f (x)∇f (x)+∇[gγ ◦ (id−γ∇f )
]
(x)

= ∇f (x)−∇
[

γ
2 ‖∇f ‖2

]
(x)+∇[gγ ◦ (id−γ∇f )

]
(x)

= ∇
[
f − γ

2 ‖∇f ‖2 + gγ ◦ (id−γ∇f )
]
(x)

we obtain the gradient of a real-valued function, which we define as follows.

Definition 15.4.1 (Forward-Backward Envelope) The forward-backward
envelope (FBE) for the composite minimization problem (15.1) is the function
ϕγ : Rn→ R defined as

ϕγ (x) := f (x)− γ
2 ‖∇f (x)‖2 + gγ (x − γ∇f (x)). (15.39)

In the next section we discuss some of the favorable properties enjoyed by the FBE.

15.4.1 Basic Properties

We already verified that the FBE is differentiable with gradient

∇ϕγ (x) = Qγ (x)Rγ (x). (15.40)



15 On the Acceleration of Forward-Backward Splitting via an Inexact Newton Method 379

In particular, for γ < 1/Lf one obtains that a FBS step is a (scaled) gradient
descent step on the FBE, similarly as the relation between Moreau envelope and
PPA; namely,

Tγ (x) = x − γQγ (x)−1∇ϕγ (x). (15.41)

To take the analysis of the FBE one step further, let us consider the equivalent
expression of the operator Tγ as

Tγ (x) = argminw∈Rn

{ M
f,g
γ (w;x)

f (x)+ 〈∇f (x), w − x〉 + 1
2γ
‖w − x‖2 + g(w)

}
.

(15.42)

Differently from the quadratic model Mϕ
γ in (15.16), Mf,g

γ replaces the differen-
tiable component f with a linear approximation. Building upon the idea of the
Moreau envelope, instead of the minimizer Tγ (x) we consider the value attained
in the subproblem (15.42), and with simple algebra one can easily verify that this
gives rise once again to the FBE:

ϕγ (x) = min
w∈Rn

{
f (x)+ 〈∇f (x), w − x〉 + 1

2γ
‖w − x‖2 + g(w)

}
. (15.43)

Starting from this expression we can easily mirror the properties of the Moreau enve-
lope stated in Theorems 15.3.1 and 15.3.2. These results appeared in the indepen-
dent works [54] and [57], although the former makes no mention of an “envelope”
function and simply analyzes the majorization-minimization model Mf,g

γ .

Theorem 15.4.2 (FBE: Sandwich Property) Let γ > 0 and x ∈ R
n be fixed, and

denote x̄ = Tγ (x). The following hold:

(i) ϕγ (x) ≤ ϕ(x) − 1
2γ
‖x − x̄‖2;

(ii) ϕγ (x)− 1
2γ
‖x − x̄‖2 ≤ ϕ(x̄) ≤ ϕγ (x)− 1−γLf

2γ
‖x − x̄‖2.

In particular,

(iii) ϕγ (x�) = ϕ(x�) iff x� ∈ argmin ϕ.

In fact, the assumption of twice continuous differentiability of f can be dropped.

Proof

• 15.4.2(i) Since the minimum in (15.43) is attained at w = x̄, cf. (15.42), we
have

ϕγ (x) = f (x)+ 〈∇f (x), x̄ − x〉 + 1
2γ
‖x̄ − x‖2 + g(x̄) (15.44)
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≤ f (x)+ 〈∇f (x), x̄ − x〉 + 1
2γ
‖x̄ − x‖2 + g(x)

+ 〈 1
γ
(x − x̄)−∇f (x), x̄ − x〉

= f (x)+ g(x)− 1
2γ
‖x − x̄‖2

where in the inequality we used the fact that 1
γ
(x − x̄) − ∇f (x) ∈ ∂g(x̄),

cf. (15.23).
• 15.4.2(ii) Follows by using (15.5) (with h = f , u = x and v = x̄) in (15.44).
• 15.4.2(iii) Follows by 15.4.2(i) and the optimality condition (15.24). ��

��
Notice that by combining Theorems 15.4.2(i) and 15.4.2(ii) we recover the

“sufficient decrease” condition of (convex) FBS [54, Thm. 1], that is

ϕ(x̄) ≤ ϕ(x)− 2−γLf

2γ
‖x − x̄‖2 (15.45)

holding for all x ∈ R
n with x̄ = Tγ (x).

Theorem 15.4.3 (FBE: Smooth Minimization Equivalence) For all γ > 0

(i) ϕγ ∈ C1(Rn) with ∇ϕγ = Qγ Rγ .

Moreover, if γ ∈ (0, 1/Lf ) then the following also hold:

(ii) inf ϕ = inf ϕγ ;
(iii) x� ∈ argmin ϕ iff x� ∈ argmin ϕγ iff ∇ϕγ (x�) = 0.

Proof

• 15.4.3(i). Since f ∈ C2(Rn) and gγ ∈ C1(Rn) (cf. Theorem 15.3.2(i)), from
the definition (15.39) it is apparent that ϕγ is continuously differentiable for all
γ > 0. The formula for the gradient was already shown in (15.40).

Suppose now that γ < 1/Lf .

• 15.4.3(ii). inf ϕ ≤ infx∈Rn ϕ(Tγ (x))
15.4.2(ii)≤ infx∈Rn ϕγ (x) = inf ϕγ

15.4.2(i)≤ inf ϕ.
• 15.4.3(iii). We have

x� ∈ argmin ϕ
(15.24)⇔ Rγ (x�) = 0 ⇔ Qγ (x�)Rγ (x�) = 0

15.4.3(i)⇔ ∇ϕγ (x�) = 0,

(15.46)
where the second equivalence follows from the invertibility of Qγ .
Suppose now that x� ∈ argmin ϕγ . Since ϕγ ∈ C1(Rn) the first-order necessary
condition reads ∇ϕγ = 0, and from the equivalence proven above we conclude
that argmin ϕγ ⊆ argmin ϕ. Conversely, if x� ∈ argmin ϕ, then

ϕγ (x�)
15.4.2(iii)= ϕ(x�) = inf ϕ

15.4.3(ii)= inf ϕγ , (15.47)

proving x� ∈ argmin ϕγ , hence the inclusion argmin ϕγ ⊇ argmin ϕ. ��
��
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Proposition 15.4.4 (FBE and Moreau Envelope [54, Thm. 2]) For any γ ∈
(0, 1/Lf ), it holds that

ϕ
γ

1−γLf ≤ ϕγ ≤ ϕγ . (15.48)

Proof We have

ϕγ (x) = min
w∈Rn

{
f (x)+ 〈∇f (x), w − x〉 + 1

2γ
‖w − x‖2 + g(w)

}

(15.5)
≤ min

w∈Rn

{
f (w)− Lf

2 ‖w − x‖2 + 1
2γ
‖w − x‖2 + g(w)

}

= min
w∈Rn

{
f (w)+ g(w)+ 1−γLf

2γ
‖w − x‖2

}
= ϕ

γ
1−γLf (x).

Using the upper bound in (15.5) instead yields the other inequality. ��
Since ϕγ is upper bounded by the γ−1-smooth function ϕγ with which it shares

the set of minimizers X�, from (15.5) we easily infer the following quadratic upper
bound.

Corollary 15.4.5 (Global Quadratic Upper Bound) If X� �= ∅, then

ϕγ (x)− ϕ� ≤ 1
2γ

dist(x,X�)
2 ∀x ∈ R

n. (15.49)

Although the FBE may fail to be convex, for γ < 1/Lf its stationary points
and minimizers coincide and are the same as those of the original function ϕ

(Figure 15.2). That is, the minimization of ϕ is equivalent to the minimization of the
differentiable function ϕγ . This is a clear analogy with the Moreau envelope, which
in fact is the special case of the FBE corresponding to f ≡ 0 in the decomposition
of ϕ. In the next result we tighten the claims of Theorem 15.4.3(i) when f is a
convex quadratic function, showing that in this case the FBE is convex and smooth
and thus recover all the properties of the Moreau envelope.

Theorem 15.4.6 (FBE: Convexity & Smoothness for Quadratic f [24, Prop.
4.4]) Suppose that f is convex quadratic, namely f (x) = 1

2 〈x,Hx〉 + 〈h, x〉 for
some H ∈ S+(Rn) and h ∈ R

n. Then, for all γ ∈ (0, 1/Lf ] the FBE ϕγ is convex
and smooth, with

Lϕγ = 1−γμf

γ
and μϕγ = min

{
μf (1− γμf ), Lf (1− γLf )

}
, (15.50)

where Lf = λmax(H) and μf = λmin(H). In particular, when f is μf -strongly
convex the strong convexity of ϕγ is maximized for γ = 1

μf+Lf
, in which case

Lϕγ = Lf and μϕγ = Lf μf

μf+Lf
. (15.51)
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Fig. 15.2 FBE of the function ϕ as in Figure 15.1 with same parameter γ = 0.2, relative to the
decomposition as the sum of f (x) = x2 + x − 1 and g(x) = 1

3 x3 + δ[0,∞)(x).
For γ < 1/Lf (Lf = 2 in this example) at each point x the FBE ϕγ is the minimum of the

quadratic majorization model Mf,g
γ ( · , x) for ϕ, the unique minimizer being the proximal gradient

point x̄ = Tγ (x). The FBE is a differentiable lower bound to ϕ and since f is quadratic in this
example, it is also smooth and convex (cf. Theorem 15.4.6). In any case, its stationary points and
minimizers coincide, and are equivalent to the minimizers of ϕ

Proof Letting Q := I− γH , we have that Qγ ≡ Q and x − γ∇f (x) = Qx − γ h.
Therefore,

γ 〈∇ϕγ (x)−∇ϕγ (y), x − y〉(15.40)= 〈Q(Rγ (x)− Rγ (y)), x − y〉
= 〈Q(x−y), x−y〉 − 〈Q(Tγ (x)− Tγ (y)), x − y〉
= ‖x − y‖2Q
− 〈 proxγg(Qx − γ h)

− proxγg(Qy − γ h),Q(x − y)〉.

From the firm nonexpansiveness of proxγg (see [2, Prop.s 4.35(iii) and 12.28]) it
follows that

0 ≤ 〈 proxγg(Qx−γ h)− proxγg(Qy−γ h),Q(x−y)〉 ≤ ‖Q(x−y)‖2. (15.52)

By combining with the previous inequality, we obtain

1
γ
‖x − y‖2

Q−Q2 ≤ 〈∇ϕγ (x)−∇ϕγ (y), x − y〉 ≤ 1
γ
‖x − y‖2Q. (15.53)
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Since λmin(Q) = 1− γLf and λmax(Q) = 1− γμf , from Lemma 2 we conclude
that

μϕγ ‖x − y‖2 ≤ 〈∇ϕγ (x)−∇ϕγ (y), x − y〉 ≤ Lϕγ ‖x − y‖2 (15.54)

with μϕγ and Lϕγ as in the statement, hence the claim, cf. (15.6). ��
Lemma 15.4.7 Suppose that ϕ has the quadratic growth with constants (μ, ν), and
let ϕ� := min ϕ. Then, for all γ ∈ (0, 1/Lf ] and x ∈ lev≤ϕ�+ν ϕγ it holds that

ϕγ (x)− ϕ� ≤ γ
[ 1

2 + (1+ 2/γμ)(1+ γLf )2]‖Rγ (x)‖2. (15.55)

Proof Fix x ∈ lev≤ϕ�+ν ϕγ and let x̄ := Tγ (x). We have

ϕγ (x)− ϕ�

15.4.2(ii)
≤ γ

2 ‖Rγ (x)‖2 + ϕ(x̄)− ϕ�

15.3.3
≤ γ

2 ‖Rγ (x)‖2 + dist(x̄,X�) dist(0, ∂ϕ(x̄))

15.3.4
≤ [ γ

2 ‖Rγ (x)‖ + (1+ γLf ) dist(x̄,X�)
]‖Rγ (x)‖

and since x̄ ∈ lev≤ϕ�+ν ϕ (cf. Theorem 15.4.2(ii)), from Theorem 15.3.8 we can
bound the quantity dist(x̄,X�) in terms of the residual as

≤ [ γ
2 ‖Rγ (x)‖ + (γ + 2/μ)(1+ γLf )2‖Rγ (x̄)‖]‖Rγ (x)‖.

The proof now follows from the inequality ‖Rγ (x̄)‖ ≤ ‖Rγ (x)‖, see [4, Thm.
10.12], after easy algebraic manipulations. ��

15.4.2 Further Equivalence Properties

Proposition 15.4.8 (Equivalence of Level Boundedness) For any γ ∈ (0, 1/Lf ),
ϕ has bounded level sets iff ϕγ does.

Proof Theorem 15.4.2 implies that lev≤α ϕ ⊆ lev≤α ϕγ for all α ∈ R, therefore
level boundedness of ϕγ implies that of ϕ. Conversely, suppose that ϕγ is not
level bounded, and consider (xk)k∈N ⊆ lev≤α ϕγ with ‖xk‖ → ∞. Then from
Theorem 15.4.2 it follows that ϕ(x̄k) ≤ ϕγ (xk)− 1

2γ
‖xk−x̄k‖2 ≤ α− 1

2γ
‖xk−x̄k‖2,

where x̄k = Tγ (xk). In particular, (x̄k)k∈N ⊆ lev≤α ϕ. If (x̄k)k∈N is bounded, then
inf ϕ = −∞; otherwise, lev≤α ϕ contains the unbounded sequence (x̄k)k∈N. Either
way, ϕ cannot be level bounded. ��
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Proposition 15.4.9 (Equivalence of Quadratic Growth) Let γ ∈ (0, 1/Lf ) be
fixed. Then,

(i) if ϕ satisfies the quadratic growth condition with constants (μ, ν), then so does

ϕγ with constants (μ′, ν), where μ′ := 1−γLf

(1+γLf )2
μγ

(2+γμ)2 μ;

(ii) conversely, if ϕγ satisfies the quadratic growth condition, then so does ϕ with
same constants.

Proof Since ϕ and ϕγ have same infimum and minimizers (cf. Theorem 15.4.3),
15.4.9(ii) is a straightforward consequence of the fact that ϕγ ≤ ϕ (cf. Theo-
rem 15.4.2(i)).

Conversely, suppose that ϕ satisfies the quadratic growth with constants (μ, ν).
Then, for all x ∈ lev≤ϕ�+ν ϕγ we have that x̄ := Tγ (x) ∈ lev≤ϕ�+ν ϕ, therefore

ϕγ (x)− ϕ�

15.4.2(ii)
≥ ϕ(x̄)− ϕ� + γ

1−γLf

2 ‖Rγ (x)‖2 ≥ μ′
2 dist(x,X�), (15.56)

where in the last inequality we discarded the term ϕ(x̄) − ϕ� ≥ 0 and used
Theorem 15.3.8 to lower bound ‖Rγ (x)‖2. ��
Corollary 15.4.10 (Equivalence of Strong Minimality) For all γ ∈ (0, 1/Lf ), a
point x� is a (locally) strong minimizer for ϕ iff it is a (locally) strong minimizer for
ϕγ .

Lastly, having showed that for convex functions the quadratic growth can be
extended to arbitrary level sets (cf. Lemma 15.3.7), an interesting consequence of
Proposition 15.4.9 is that, although ϕγ may fail to be convex, it enjoys the same
property.

Corollary 15.4.11 (FBE: Globality of Quadratic Growth) Let γ ∈ (0, 1/Lf ) and
suppose that ϕγ satisfies the quadratic growth with constants (μ, ν). Then, for every
ν′ > ν there exists μ′ > 0 such that ϕγ satisfies the quadratic growth with constants
(μ′, ν′).

15.4.3 Second-Order Properties

Although ϕγ is continuously differentiable over Rn, it fails to be C2 in most cases;
since g is nonsmooth, its Moreau envelope gγ is hardly ever C2. For example, if g is
real valued, then gγ is C2 (and proxγg is C1) if and only if g is C2 [33]. Therefore,
we hardly ever have the luxury of assuming continuous differentiability of ∇ϕγ and
we must resort to generalized notions of differentiability stemming from nonsmooth
analysis. Specifically, our analysis is largely based on generalized differentiability
properties of proxγg which we study next.

Theorem 15.4.12 For all x ∈ R
n, ∂C(proxγg)(x) �= ∅ and any P ∈ ∂C(proxγg)(x)

is a symmetric positive semidefinite matrix that satisfies ‖P ‖ ≤ 1.
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Proof Nonempty-valuedness of ∂C(proxγg) is due to Lipschitz continuity of
proxγg . Moreover, since g is convex, its Moreau envelope is a convex function as
well, therefore every element of ∂C(∇gγ )(x) is a symmetric positive semidefinite
matrix (see, e.g., [19, §8.3.3]). Due to Theorem 15.3.2(i), we have that proxγg(x) =
x − γ∇gγ (x), therefore

∂C(proxγg)(x) = I− γ ∂C(∇gγ )(x). (15.57)

The last relation holds with equality (as opposed to inclusion in the general case)
due to the fact that one of the summands is continuously differentiable. Now,
from (15.57) we easily infer that every element of ∂C(proxγg)(x) is a symmetric
matrix. Since ∇gγ (x) is Lipschitz continuous with Lipschitz constant γ−1, using
[15, Prop. 2.6.2(d)], we infer that every H ∈ ∂C(∇gγ )(x) satisfies ‖H‖ ≤ γ−1.
Now, according to (15.57) it holds that

P ∈ ∂C(proxγg)(x) ⇔ P = I − γH, H ∈ ∂C(∇gγ )(x). (15.58)

Therefore, for every d ∈ R
n and P ∈ ∂C(proxγg)(x),

〈d, Pd〉 = ‖d‖2 − γ 〈d,Hd〉 ≥ ‖d‖2 − γ γ−1‖d‖2 = 0. (15.59)

On the other hand, since proxγg is Lipschitz continuous with Lipschitz constant 1,
using [15, Prop. 2.6.2(d)] we obtain that ‖P ‖ ≤ 1 for all P ∈ ∂C(proxγg)(x). ��

We are now in a position to construct a generalized Hessian for ϕγ that will allow
the development of Newton-like methods with fast asymptotic convergence rates.
An obvious route to follow would be to assume that ∇ϕγ is semismooth and employ
∂C(∇ϕγ ) as a generalized Hessian for ϕγ . However, this approach would require
extra assumptions on f and involve complicated operations to evaluate elements of
∂C(∇ϕγ ). On the other hand, what is really needed to devise Newton-like algorithms
with fast local convergence rates is a linear Newton approximation (LNA), cf.
Definition 15.2.3, at some stationary point of ϕγ , which by Theorem 15.4.3(iii) is
also a minimizer of ϕ, provided that γ ∈ (0, 1/Lf ).

The approach we follow is largely based on [72], [19, Prop. 10.4.4]. Without any
additional assumptions we can define a set-valued mapping ∂̂2ϕγ : Rn ⇒ R

n×n

with full domain and whose elements have a simpler form than those of ∂C(∇ϕγ ),
which serves as a LNA for ∇ϕγ at any stationary point x� provided proxγg is
semismooth at x� − γ∇f (x�). We call it approximate generalized Hessian of ϕγ

and it is given by

∂̂2ϕγ (x) :=
{
γ−1Qγ (x)(I− PQγ (x)) | P ∈ ∂C(proxγg)(x − γ∇f (x))

}
.

(15.60)
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Notice that if f is quadratic, then ∂̂2ϕγ ≡ ∂C∇ϕγ ; more generally, the key idea
in the definition of ∂̂2ϕγ , reminiscent of the Gauss-Newton method for nonlinear
least-squares problems, is to omit terms vanishing at x� that contain third-order
derivatives of f .

Proposition 15.4.13 Let x̄ ∈ R
n and γ > 0 be fixed. If proxγg is (ϑ-order)

semismooth at x̄ − γ∇f (x̄) (and ∇2f is ϑ-Hölder continuous around x̄), then

Rγ (x) :=
{
γ−1(I− PQγ (x)) | P ∈ ∂C proxγg (x − γ∇f (x))

}
(15.61)

is a (ϑ-order) LNA for Rγ at x̄.

Proof We shall prove only the ϑ-order semismooth case, as the other one is shown
by simply replacing all occurrences of O(‖ · ‖1+ϑ) with o(‖ · ‖) in the proof. Let
qγ = id−γ∇f be the forward operator, so that the forward-backward operator Tγ

can be expressed as Tγ = proxγg ◦qγ . With a straightforward adaptation of the
proof of [19, Prop. 7.2.9] to include the ϑ-Hölderian case, it can be shown that

qγ (x)− qγ (x̄)−Qγ (x)(x − x̄) = O(‖x − x̄‖1+ϑ). (15.62)

Moreover, since ∇f is Lipschitz continuous and thus so is qγ , we also have

qγ (x)− qγ (x̄) = O(‖x − x̄‖). (15.63)

Let Ux ∈ Rγ (x) be arbitrary; then, there exists Px ∈ ∂C proxγg (x − γ∇f (x)) such

that Ux = γ−1(I− PxQγ (x))(x̄ − x). We have

Rγ (x)+ Ux(x̄ − x)− Rγ (x̄)

= Rγ (x)+ γ−1(I− PxQγ (x))(x̄ − x)− Rγ (x̄)

= γ−1[ proxγg(qγ (x̄))− proxγg(qγ (x))− PxQγ (x)(x̄ − x)
]

due to ϑ-order semismoothness of proxγg at qγ (x̄),

= γ−1Px

[
qγ (x̄)− qγ (x)+O(‖qγ (x̄)− qγ (x)‖1+ϑ)−Qγ (x)(x̄ − x)

]

(15.63)
= γ−1Px

[
qγ (x̄)− qγ (x)−Qγ (x̄)(x̄ − x)+O(‖x̄ − x‖1+ϑ)

]

(15.62)
= γ−1PxO(‖x̄ − x‖1+ϑ) = O(‖x̄ − x‖1+ϑ),

where in the last equality we used the fact that ‖Px‖ ≤ 1, cf. Theorem 15.4.12. ��
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Corollary 15.4.14 Let γ ∈ (0, 1/Lf ) and x� ∈ X�. If proxγg is (ϑ-order)

semismooth at x� − γ∇f (x�) (and ∇2f is locally ϑ-Hölder continuous around
x�), then ∂̂2ϕγ is a (ϑ-order) LNA for ∇ϕγ at x�.

Proof Let Hx ∈ ∂̂2ϕγ (x) = {
Qγ (x)U | U ∈ Rγ (x)

}
, so that Hx = Qγ (x)Ux for

some Ux ∈ Rγ (x). Then,

‖∇ϕγ (x)+Hx(x� − x)−∇ϕγ (x�)‖ = ‖Qγ (x)Rγ (x)+Qγ (x)Ux(x − x�))‖
= ‖Qγ (x)[Rγ (x)+ Ux(x − x�)− Rγ (x�)]‖
≤ ‖Rγ (x)+ Ux(x − x�)− Rγ (x�)‖,

where in the equalities we used the fact that ∇ϕγ (x�) = Rγ (x�) = 0, and in the
inequality the fact that ‖Qγ ‖ ≤ 1. Since Rγ is a (ϑ-order) LNA of Rγ at x�, the last
term is o(‖x − x�‖) (resp. O(‖x − x�‖1+ϑ)). ��

As shown in the next result, although the FBE is in general not convex, for γ

small enough every element of ∂̂2ϕγ (x) is a (symmetric and) positive semidefinite
matrix. Moreover, the eigenvalues are lower and upper bounded uniformly over all
x ∈ R

n.

Proposition 15.4.15 Let γ ≤ 1/Lf and H ∈ ∂̂2ϕγ (x) be fixed. Then, H ∈ S+(Rn)

with

λmin(H) = min
{
(1− γμf )μf , (1− γLf )Lf

}
and λmax(H) = γ−1(1− γμf ),

(15.64)
where μf ≥ 0 is the modulus of strong convexity of f .

Proof Fix x ∈ R
n and let Q := Qγ (x). Any H ∈ ∂̂2ϕγ (x) can be expressed as

H = γ−1Q(I − PQ) for some P ∈ ∂C(proxγg)(x − γ∇f (x)). Since both Q and
P are symmetric (cf. Theorem 15.4.12), it follows that so is H . Moreover, for all
d ∈ R

n

〈Hd, d〉 = γ−1〈Qd, d〉 − γ−1〈PQd,Qd〉 (15.65)
15.4.12
≥ γ−1〈Qd, d〉 − γ−1‖Qd‖2
= 〈(I− γ∇2f (x))∇2f (x)d, d〉
2
≥ min

{
(1− γμf )μf , (1− γLf )Lf

} ‖d‖2.

On the other hand, since P 	 0 (cf. Theorem 15.4.12) and thus QPQ 	 0, we can
upper bound (15.65) as

〈Hd, d〉 ≤ γ−1〈Qd, d〉 ≤ ‖Q‖‖d‖2 ≤ γ−1(1− γμf )‖d‖2.

��
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The next lemma links the behavior of the FBE close to a solution of (15.1) and
a nonsingularity assumption on the elements of ∂̂2ϕγ (x�). Part of the statement
is similar to [19, Lem. 7.2.10]; however, here ∇ϕγ is not required to be locally
Lipschitz around x�.

Lemma 15.4.16 Let x� ∈ argmin ϕ and γ ∈ (0, 1/Lf ). If proxγg is semismooth at
x� − γ∇f (x�), then the following conditions are equivalent:

(a) x� is a locally strong minimum for ϕ (or, equivalently, for ϕγ );
(b) every element of ∂̂2ϕγ (x�) is nonsingular.

In any such case, there exist δ, κ > 0 such that

‖x − x�‖ ≤ κ‖Rγ (x)‖ and max
{
‖H‖, ‖H−1‖

}
≤ κ, (15.66)

for any x ∈ B(x�; δ) and H ∈ ∂̂2ϕγ (x).

Proof Observe first that Corollary 15.4.14 ensures that ∂̂2ϕγ is a LNA of ∇ϕγ at
x�, thus semicontinuous and compact valued (by definition). In particular, the last
claim follows from [19, Lem. 7.5.2].

• 15.4.16(a) ⇒ 15.4.16(b) It follows from Corollary 15.4.10 that there exists
μ, δ > 0 such that ϕγ (x)−ϕ� ≥ μ

2 ‖x−x�‖2 for all x ∈ B(x�; δ). In particular,

for all H ∈ ∂̂2ϕγ (x�) and x ∈ B(x�; δ) we have

μ
2 ‖x−x�‖2 ≤ ϕγ (x)−ϕ� = 1

2 〈H(x−x�), x−x�〉+o(‖x−x�‖2). (15.67)

Let vmin be a unitary eigenvector of H corresponding to the minimum eigen-
value λmin(H). Then, for all ε ∈ (−δ, δ) the point xε = x�+ εvmin is δ-close to
x� and thus

1
2λmin(H)ε2 ≥ μ

2 ε2 + o(ε2) ≥ μ
4 ε2, (15.68)

where the last inequality holds up to possibly restricting δ (and thus ε). The
claim now follows from the arbitrarity of H ∈ ∂̂2ϕγ (x�).

• 15.4.16(a)⇐ 15.4.16(b) Easily follows by reversing the arguments of the other
implication. ��

��

15.5 Forward-Backward Truncated-Newton Algorithm
(FBTN)

Having established the equivalence between minimizing ϕ and ϕγ , we may recast
problem (15.1) into the smooth unconstrained minimization of the FBE. Under some
assumptions the elements of ∂̂2ϕγ mimic second-order derivatives of ϕγ , suggesting
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Algorithm 15.1 (FBTN) Forward-Backward Truncated-Newton method

REQUIRE γ ∈ (0, 1/Lf ); σ ∈ (0,
γ (1−γLf )

2 ); η̄, ζ ∈ (0, 1); ρ, ν ∈ (0, 1]
initial point x0 ∈ R

n; accuracy ε > 0
PROVIDE ε-suboptimal solution xk (i.e., such that ‖Rγ (xk)‖ ≤ ε)
INITIALIZE k← 0
1: while ‖Rγ (xk)‖ > ε do
2: δk ← ζ‖∇ϕγ (xk)‖ν , ηk ← min

{
η̄, ‖∇ϕγ (xk)‖ρ}, εk ← ηk‖∇ϕγ (xk)‖

3: Apply CG(Alg. 15.2) to find an εk-approximate solution dk to

[
Hk + δkI

]
dk ≈ − ∇ϕγ (xk) (15.69)

for some Hk ∈ ∂̂2ϕγ (xk)

4: Let τk be the maximum in
{
2−i | i ∈ N

}
such that

ϕγ (xk+1) ≤ ϕγ (xk)− σ‖Rγ (xk)‖2 (15.70)

where xk+1 ← (1− τk)Tγ (xk)+ τk

[
xk + dk

]
5: k← k + 1 and go to step 1
6: end while

the employment of Newton-like update directions d = −(H + δI)−1∇ϕγ (x) with
H ∈ ∂̂2ϕγ (x) and δ > 0 (the regularization term δI ensures the well definedness
of d, as H is positive semidefinite, see Proposition 15.4.15). If δ and ε are suitably
selected, under some nondegeneracy assumptions updates x+ = x + d are locally
superlinearly convergent. Since such d’s are directions of descent for ϕγ , a possible
globalization strategy is an Armijo-type linesearch. Here, however, we follow the
simpler approach proposed in [71, 75] that exploits the basic properties of the
FBE investigated in Section 15.4.1. As we will discuss shortly after, this is also
advantageous from a computational point of view, as it allows an arbitrary warm
starting for solving the underlying linear system.

Let us elaborate on the linesearch. To this end, let x be the current iterate; then,
Theorem 15.4.2 ensures that ϕγ (Tγ (x)) ≤ ϕγ (x) − γ

1−γLf

2 ‖Rγ (x)‖2. Therefore,

unless Rγ (x) = 0, in which case x would be a solution, for any σ ∈ (0, γ
1−γLf

2 ) the

strict inequality ϕγ (Tγ (x)) < ϕγ (x)−σ‖Rγ (x)‖2 is satisfied. Due to the continuity
of ϕγ , all points sufficiently close to Tγ (x) will also satisfy the inequality, thus so
will the point x+ = (1 − τ)Tγ (x) + τ(x + d) for small enough stepsizes τ . This
fact can be used to enforce the iterates to sufficiently decrease the value of the FBE,
cf. (15.70), which straightforwardly implies optimality of all accumulation points
of the generated sequence. We defer the details to the proof of Theorem 15.5.1.
In Theorems 15.5.4 and 15.5.5 we will provide conditions ensuring acceptance of
unit stepsizes so that the scheme reduces to a regularized version of the (undamped)
linear Newton method [19, Alg. 7.5.14] for solving ∇ϕγ (x) = 0, which, under due
assumptions, converges superlinearly.
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In order to ease the computation of dk , we allow for inexact solutions of the linear
system by introducing a tolerance εk > 0 and requiring ‖(Hk+δkI)dk+∇ϕγ (xk)‖ ≤
εk . Since Hk + δkI is positive definite, inexact solutions of the linear system can be
efficiently retrieved by means of CG(Alg. 15.2) , which only requires matrix-vector
products and thus only (generalized) directional derivatives, namely, (generalized)
derivatives (denoted as ∂

∂λ
) of the single-variable functions t �→ proxγg(x+ tλ) and

t �→ ∇f (x + tλ), as opposed to computing the full (generalized) Hessian matrix.
To further enhance computational efficiency, we may warm start the CG method
with the previously computed direction, as eventually subsequent update directions
are expected to have a small difference. Notice that this warm starting does not
ensure that the provided (inexact) solution dk is a direction of descent for ϕγ ; either
way, this property is not required by the adopted linesearch, showing a considerable
advantage over classical Armijo-type rules. Putting all these facts together we obtain
the proposed FBE-based truncated-Newton algorithm FBTN(Alg. 15.1) for convex
composite minimization.

Remark 15.1 (Adaptive Variant When Lf Is Unknown) In practice, no prior
knowledge of the global Lipschitz constant Lf is required for FBTN. In fact,
replacing Lf with an initial estimate L > 0, the following instruction can be added
at the beginning of each iteration, before step 1:

0: x̄k ← Tγ (xk)

while f (x̄k) > f (xk)+ 〈∇f (xk), x̄k − xk〉 + L
2 ‖x̄k − xk‖2 do

γ ← γ/2, L← 2L, x̄k ← Tγ (xk)

Algorithm 15.2 (CG) Conjugate Gradient for computing the update direction

REQUIRE ∇ϕγ (xk); δk; εk; dk−1 (set to 0 if k = 0)

(generalized) directional derivatives λ �→ ∂.0 proxγg

∂λ
(xk − γ∇f (xk)) and

λ �→ ∂.0∇f
∂λ

(xk)

PROVIDE update direction dk

INITIALIZE e, p←−∇ϕγ (xk); warm start dk ← dk−1

1: while ‖e‖ > εk do
2: u ← ∂∇f

∂p
(xk)

3: v ← p − γ u " v = Qγ (xk)p

4: w ← p − ∂ proxγg

∂v
(xk − γ∇f (xk))

5: z ← δkp + w − γ
∂∇f
∂w

(xk) " z = Hkp

6: α ← ‖e‖2/〈p, z〉
7: dk ← dk + αp, e+ ← e − αz

8: p ← e+ + (‖e+‖/‖e‖)2
p

9: e ← e+
10: end while
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Moreover, since positive definiteness of Hk + δkI is ensured only for γ ≤ 1/Lf

where Lf is the true Lipschitz constant of ∇ϕγ (cf. Proposition 15.4.15), special
care should be taken when applying CG in order to find the update direction dk .
Specifically, CG should be stopped prematurely whenever 〈p, z〉 ≤ 0 in step 6, in
which case γ ← γ/2, L← 2L and the iteration should start again from step 1.

Whenever the quadratic bound (15.5) is violated with L in place of Lf , the
estimated Lipschitz constant L is increased, γ is decreased accordingly, and the
proximal gradient point x̄k with the new stepsize γ is evaluated. Since replacing
Lf with any L ≥ Lf still satisfies (15.5), it follows that L is incremented only a
finite number of times. Therefore, there exists an iteration k0 starting from which γ

and L are constant; in particular, all the convergence results here presented remain
valid starting from iteration k0, at latest. Moreover, notice that this step does not
increase the complexity of the algorithm, since both x̄k and ∇f (xk) are needed for
the evaluation of ϕγ (xk).

15.5.1 Subsequential and Linear Convergence

Before going through the convergence proofs let us spend a few lines to emphasize
that FBTN is a well-defined scheme. First, that a matrix Hk as in line 1 exists is
due to the nonemptyness of ∂̂2ϕγ (xk) (cf. Section 15.4.3). Second, since δk > 0
and Hk 	 0 (cf. Proposition 15.4.15) it follows that Hk + δkI is (symmetric and)
positive definite, and thus CG is indeed applicable at line 3.

Having clarified this, the proof of the next result falls as a simplified version
of [75, Lem. 5.1 and Thm. 5.6]; we elaborate on the details for the sake of self-
inclusiveness. To rule out trivialities, in the rest of the chapter we consider the
limiting case of infinite accuracy, that is ε = 0, and assume that the termination
criterion ‖Rγ (xk)‖ = 0 is never met. We shall also work under the assumption that
a solution to the investigated problem (15.1) exists, thus in particular that the cost
function ϕ is lower bounded.

Theorem 15.5.1 (Subsequential Convergence) Every accumulation point of the
sequence (xk)

k∈N generated by FBTN(Alg. 15.1) is optimal.

Proof Observe that

ϕγ

(
xk − γRγ (xk)

)15.4.2≤ ϕγ (xk)− γ
1−γLf

2 ‖Rγ (xk)‖2 < ϕγ (xk)− σ‖Rγ (xk)‖2
(15.71)

and that xk+1 → Tγ (xk) as τk → 0. Continuity of ϕγ ensures that for small enough

τk the linesearch condition (15.70) is satisfied, in fact, regardless of what dk is.
Therefore, for each k the stepsize τk is decreased only a finite number of times. By
telescoping the linesearch inequality (15.70) we obtain

σ
∑
k∈N
‖Rγ (xk)‖2 ≤

∑
k∈N

[
ϕγ (xk)− ϕγ (xk+1)

] ≤ ϕγ (x0)− ϕ� <∞ (15.72)
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and in particular Rγ (xk) → 0. Since Rγ is continuous we infer that every

accumulation point x� of (xk)
k∈N satisfies Rγ (x�) = 0, hence x� ∈ argmin ϕ,

cf. (15.24). ��
Remark 15.2 Since FBTN is a descent method on ϕγ , as ensured by the linesearch
condition (15.70), from Proposition 15.4.8 it follows that a sufficient condition for
the existence of cluster points is having ϕ with bounded level sets or, equivalently,
having argmin ϕ bounded (cf. Lemma 1).

As a straightforward consequence of Lemma 15.4.7, from the linesearch con-
dition (15.70) we infer Q-linear decrease of the FBE along the iterates of FBTN
provided that the original function ϕ has the quadratic growth property. In particular,
although the quadratic growth is a local property, Q-linear convergence holds
globally, as described in the following result.

Theorem 15.5.2 (Q-Linear Convergence of FBTN Under Quadratic Growth)
Suppose that ϕ satisfies the quadratic growth with constants (μ, ν). Then, the
iterates of FBTN(Alg. 15.1) decrease Q-linearly the value of ϕγ as

ϕγ (xk+1)−ϕ� ≤
(

1− 2σμ′
γμ+2(2+γμ′)(1+γLf )2

)
(ϕγ (xk)−ϕ�) ∀k ∈ N, (15.73)

where

μ′ :=
{

μ if ϕγ (x0) ≤ ϕ� + ν,
μ
2 min

{
1, ν

ϕγ (x0)−ϕ�−ν

}
otherwise.

(15.74)

Proof Since FBTN is a descent method on ϕγ , it holds that (xk)
k∈N ⊆ lev≤α ϕγ

with α = ϕγ (x0). It follows from Lemma 15.3.7 that ϕ satisfies the quadratic growth
condition with constants (μ′, ϕγ (x0)), with μ′ is as in the statement. The claim now
follows from the inequality ensured by linesearch condition (15.70) combined with
Lemma 15.4.7. ��

15.5.2 Superlinear Convergence

In this section we provide sufficient conditions that enable superlinear convergence
of FBTN. In the sequel, we will make use of the notion of superlinear directions
that we define next.

Definition 15.5.3 (Superlinear Directions) Suppose that X� �= ∅ and consider the
iterates generated by FBTN(Alg. 15.1). We say that (dk)

k∈N ⊂ R
n are superlinearly

convergent directions if

lim
k→∞

dist(xk + dk,X�)

dist(xk,X�)
= 0.
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If for some q > 1 the condition can be strengthened to

lim sup
k→∞

dist(xk + dk,X�)

dist(xk,X�)q
<∞

then we say that (dk)
k∈N are superlinearly convergent directions with order q.

We remark that our definition of superlinear directions extends the one given in
[19, §7.5] to cases in which X� is not a singleton. The next result constitutes a key
component of the proposed methodology, as it shows that the proposed algorithm
does not suffer from the Maratos’ effect [44], a well-known obstacle for fast local
methods that inhibits the acceptance of the unit stepsize. On the contrary, we will
show that whenever the directions (dk)

k∈N computed in FBTN are superlinear, then
indeed the unit stepsize is eventually always accepted, and the algorithm reduces
to a regularized version of the (undamped) linear Newton method [19, Alg. 7.5.14]
for solving ∇ϕγ (x) = 0 or, equivalently, Rγ (x) = 0, and dist(xk,X�) converges
superlinearly.

Theorem 15.5.4 (Acceptance of the Unit Stepsize and Superlinear Conver-
gence) Consider the iterates generated by FBTN(Alg. 15.1). Suppose that ϕ

satisfies the quadratic growth (locally) and that (dk)
k∈N are superlinearly conver-

gent directions (with order q). Then, there exists k̄ ∈ N such that

ϕγ (xk + dk) ≤ ϕγ (xk)− σ‖Rγ (xk)‖2 ∀k ≥ k̄. (15.75)

In particular, eventually the iterates reduce to xk+1 = xk + dk , and dist(xk,X�)

converges superlinearly (with order q).

Proof Without loss of generality we may assume that (xk)
k∈N and (xk + dk)

k∈N
belong to a region in which quadratic growth holds. Denoting ϕ� := min ϕ, since
ϕγ also satisfies the quadratic growth (cf. Proposition 15.4.9(i)) it follows that

ϕγ (xk)− ϕ� ≥ μ′
2 dist(xk,X�)

2 (15.76)

for some constant μ′ > 0. Moreover, we know from Lemma 15.4.7 that

ϕγ (xk + dk)− ϕ� ≤ c‖Rγ (xk + dk)‖2 ≤ c′ dist(xk + dk,X�)
2 (15.77)

for some constants c, c′ > 0, where in the second inequality we used Lipschitz
continuity of Rγ (Lemma 3) together with the fact that Rγ (x�) = 0 for all points
x� ∈ X�. By combining the last two inequalities, we obtain

tk := ϕγ (xk + dk)− ϕ�

ϕγ (xk)− ϕ�

≤ 2c′ dist(xk + dk,X�)
2

μ′ dist(xk,X�)2
→ 0 as k→∞. (15.78)
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Moreover,

ϕγ (xk)− ϕ� ≥ ϕγ (xk)− ϕ(Tγ (xk))
15.4.2(ii)≥ γ

1−γLf

2 ‖Rγ (xk)‖2. (15.79)

Thus,

ϕγ (xk + dk)− ϕγ (xk) = [
ϕγ (xk + dk)− ϕ�

]− [
ϕγ (xk)− ϕ�

]

= (tk − 1)
[
ϕγ (xk)− ϕ�

]

and since tk → 0, eventually it holds that tk ≤ 1− 2σ
γ (1−γLf )

∈ (0, 1), resulting in

≤ − σ‖Rγ (xk)‖2.

��
Theorem 15.5.5 Consider the iterates generated by FBTN(Alg. 15.1). Suppose
that ϕ satisfies the quadratic growth (locally), and let x� be the limit point of
(xk)

k∈N.2 Then, (dk)
k∈N are superlinearly convergent directions provided that

(i) either Rγ is strictly differentiable at x�
3 and there exists D > 0 such that

‖dk‖ ≤ D‖∇ϕγ (xk)‖ for all k’s,
(ii) or X� = {x�} and proxγg is semismooth at x�−γ∇f (x�). In this case, if proxγg

is ϑ-order semismooth at x�−γ∇f (x�) and ∇2f is ϑ-Hölder continuous close
to x�, then the order of superlinear convergence is at least 1+min {ρ, ϑ, ν}.

Proof Due to Proposition 15.4.9 and Theorem 15.5.2, if X� = {x�} then the
sequence (xk)

k∈N converges to x�. Otherwise, the hypothesis ensure that

‖xk+1 − xk‖ = τk‖dk‖ ≤ D‖∇ϕγ (xk)‖ ≤ D‖Rγ (xk)‖, (15.80)

from which we infer that (‖xk+1 − xk‖)k∈N is R-linearly convergent, hence that
(xk)

k∈N is a Cauchy sequence, and again we conclude that the limit point x� indeed
exists. Moreover, in light of Proposition 15.4.9 we have that (xk)

k∈N is contained
in a level set of ϕγ where ϕγ has quadratic growth. To establish a notation, let
ek := [Hk + δkI]dk +∇ϕγ (xk) be the error in solving the linear system at line 3, so
that

‖ek‖ ≤ εk ≤ ‖∇ϕγ (xk)‖1+ρ, (15.81)

(cf. line 1), and let Hk = Qγ (xk)Uk for some Uk ∈ Rγ (xk), see (15.61). Let us now
analyze the two cases separately.

2As detailed in the proof, under the assumptions the limit point indeed exists.
3From the chain rule of differentiation it follows that Rγ is strictly differentiable at x� if proxγg is
strictly differentiable at x� − γ∇f (x�) (strict differentiability is closed under composition).
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• 15.5.5(i) Let xk
� := PX�

xk , so that dist(xk,X�) = ‖xk − xk
�‖. Recall that

∇ϕγ = Qγ Rγ and that (1 − γLf )I � Qγ � I. Since Rγ (xk
� ) = 0, from

Lemma 3 and Theorem 15.3.8 we infer that there exist r1, r2 > 0 such that

‖Rγ (xk)‖ ≥ r1 dist(xk,X�) and ‖∇ϕγ (xk)‖ ≤ r2 dist(xk,X�). (15.82)

In particular, the assumption on dk ensures that ‖dk‖ = O
(

dist(xk,X�)
)
. We

have

r1 dist(xk + dk,X�)
(15.82)≤ ‖Rγ (xk + dk)‖
≤ ‖Rγ (xk+dk)− Rγ (xk)− Ukd

k‖︸ ︷︷ ︸
(a)

+ ‖Rγ (xk)+Ukd
k‖︸ ︷︷ ︸

(b)

.

As to quantity (a), we have

(a) ≤ ‖Rγ (xk + dk)− Rγ (xk)− JRγ (x�)d
k‖ + ‖Uk − JR(x�)‖‖dk‖

= o
(

dist(xk,X�)
)
,

where we used strict differentiability and the fact that ∂CRγ (x�) =
{
JRγ (x�)

}

[15, Prop. 2.2.4] which implies Uk → JR(x�). In order to bound (b), recall that
δk = ζ‖∇ϕγ (xk)‖ν (cf. line 1). Then,

(b) = ‖Qγ (xk)−1(ek − δkd
k)‖

(15.81)
≤ 1

1−γLf
‖∇ϕγ (xk)‖

(
‖∇ϕγ (xk)‖ρ + ζ‖∇ϕγ (xk)‖ν−1‖dk‖

)
.

(15.82)
≤ r2

1−γLf
dist(xk,X�)

(
r
ρ
2 dist(xk,X�)

ρ + ζ‖∇ϕγ (xk)‖ν−1‖dk‖
)

= O
(

dist(xk,X�)
1+min{ρ,ν}),

and we conclude that dist(xk + dk,X�) ≤ (a)+ (b) ≤ o
(

dist(xk,X�)
)
.

• 15.5.5(ii) In this case dist(xk,X�) = ‖xk − x�‖ and the assumption of
(ϑ-order) semismoothness ensures through Proposition 15.4.13 that Rγ is a
(ϑ-order) LNA for Rγ at x�. Moreover, due to Lemma 15.4.16 there exists c > 0

such that ‖[Hk + δkI]−1‖ ≤ c for all k’s. We have

‖xk + dk − x�‖ =
∥∥xk + [Hk + δkI]−1(ek −∇ϕγ (xk))− x�

∥∥
≤ ∥∥[Hk + δkI]−1

∥∥∥∥[Hk + δkI](xk − x�)+ ek −∇ϕγ (xk)
∥∥

≤ c
∥∥Hk(x

k − x�)− ∇ϕγ (xk)
∥∥+ cδk‖xk − x�‖ + c‖ek‖

= c
∥∥Qγ (xk)

(
Uk(x

k − x�)−Rγ (xk)
)∥∥+cδk‖xk−x�‖+c‖ek‖.
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Since Rγ is a LNA at x�, it follows that the quantity emphasized in the bracket

is a o(‖xk − x�‖), whereas in case of a (ϑ-order) LNA the tighter estimate
O(‖xk − x�‖1+ϑ) holds. Combined with the fact that δk = O(‖xk − x�‖ν)
and ‖ek‖ = O(‖xk − x�‖1+ρ), we conclude that (dk)

k∈N are superlinearly
convergent directions, and with order at least 1 + min {ρ, ϑ, ν} in case of ϑ-
order semismoothness. ��

��
Problems where the residual is (ϑ-order) semismooth are quite common. For

instance, piecewise affine functions are everywhere strongly semismooth, as it is the
case for the residual in lasso problems [67]. On the contrary, when the solution is not
unique the condition ‖dk‖ ≤ D‖∇ϕγ (xk)‖ (or, equivalently, ‖dk‖ ≤ D′‖Rγ (xk)‖)
is trickier. As detailed in [82, 83], this bound on the directions is ensured if ρ = 1
and for all iterates xk and points x close enough to the limit point the following
smoothness condition holds:

‖Rγ (xk)+ Uk(x − xk)‖ ≤ c‖x − xk‖2 (15.83)

for some constant c > 0. This condition is implied by and closely related to local
Lipschitz differentiability of Rγ and thus conservative. We remark that, however,
this can be weakened by requiring ρ ≥ ν, and a notion of ϑ-order semismoothness
at the limit point with some degree of uniformity on the set of solutions X�, namely

lim sup
x,x′→x�

x′∈X�, x �=x′
U∈Rγ (x)

‖Rγ (x)+ U(x′ − x)‖
‖x′ − x‖1+ϑ

<∞ (15.84)

for some ϑ ∈ [ν, 1]. This weakened requirement comes from the observation that
point x in (15.83) is in fact xk

� , the projection of xk onto X�, set onto which Rγ is

constant (equal to 0). To see this, notice that (15.84) implies that ‖Rγ (xk)+Uk(x
k
�−

xk)‖ ≤ c‖xk
� − xk‖1+ϑ for some c > 0. In particular, mimicking the arguments in

the cited references, since Hk 	 0 and ‖Qγ ‖ ≤ 1, observe that

‖[Hk + δkI]−1Qγ (xk)‖ ≤ ‖[Hk + δkI]−1‖ ≤ δ−1
k (15.85a)

and

‖[Hk + δkI]−1Hk‖ = ‖I− δk[Hk + δkI]−1‖ ≤ 2. (15.85b)

Therefore,

‖dk‖ = ∥∥[Hk + δkI]−1(ek − ∇ϕγ (xk)
)∥∥

≤ ∥∥[Hk + δkI]−1
∥∥‖ek‖ + ∥∥[Hk + δkI]−1Qγ (xk)

(
Rγ (xk)+ Uk(x

k
� − xk)

)∥∥

+ ∥∥[Hk + δkI]−1Hk(x
k
� − xk)

∥∥



15 On the Acceleration of Forward-Backward Splitting via an Inexact Newton Method 397

(15.85)
≤ δ−1

k ‖∇ϕγ (xk)‖1+ρ + cδ−1
k ‖xk

� − xk‖1+ϑ + 2‖xk
� − xk‖

= ζ−1‖∇ϕγ (xk)‖1+ρ−ν + cζ−1‖xk
� − xk‖1+ϑ−ν + 2‖xk

� − xk‖
= O

(
dist(xk,X�)

1+min{0,ρ−ν,ϑ−ν}),

which is indeed O(‖∇ϕγ (xk)‖) whenever ν ≤ min {ϑ, ρ}. Some comments are in
order to expand on condition (15.84).

(i) If X� = {x̄} is a singleton, then x′ is fixed to x� and the requirement reduces to
ϑ-order semismoothness at x�.

(ii) This notion of uniformity is a local property: for any ε > 0 the set X� can be
replaced by X� ∩ B(x�; ε).

(iii) The condition U ∈ Rγ (x) in the limit can be replaced by U ∈
R̂γ (x) := {

γ−1(I− PQγ (x)) | P ∈ ∂B proxγg (x − γ∇f (x))
}
, since

Rγ (x) = conv
(
R̂γ (x)

)
.

In particular, by exploiting this last condition it can be easily verified that if Rγ is
piecewise ϑ-Hölder differentiable around x�, then (15.84) holds, yet the stronger
requirement (15.83) in [82, 83] does not.

15.6 Generalized Jacobians of Proximal Mappings

In many interesting cases proxγg is PC1 and thus semismooth. Piecewise quadratic
(PWQ) functions comprise a special but important class of convex functions whose
proximal mapping is PC1. A convex function g is called PWQ if dom g can be
represented as the union of finitely many polyhedral sets, relative to each of which
g(x) is given by an expression of the form 1

2 〈x,Hx〉 + 〈q, x〉 + c (H ∈ R
n×n must

necessarily be symmetric positive semidefinite) [65, Def. 10.20]. The class of PWQ
functions is quite general since it includes e.g., polyhedral norms, indicators and
support functions of polyhedral sets, and it is closed under addition, composition
with affine mappings, conjugation, inf-convolution and inf-projection [65, Prop.s
10.22 and 11.32]. It turns out that the proximal mapping of a PWQ function is
piecewise affine (PWA) [65, 12.30] (Rn is partitioned in polyhedral sets relative to
each of which proxγg is an affine mapping), hence strongly semismooth [19, Prop.
7.4.7]. Another example of a proximal mapping that is strongly semismooth is the
projection operator over symmetric cones [73].

A big class with semismooth proximal mapping is formed by the semi-algebraic
functions. We remind that a set A ⊆ R

n is semi-algebraic if it can be expressed as

A =
p⋃

i=1

q⋂
j=1

{
x ∈ R

m | Pij (x) = 0, Qij (x) < 0
}

(15.86)
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for some polynomial functions Pij ,Qij : Rn → R, and that a function h : Rn →
R

m is semi-algebraic if gph h is a semi-algebraic subset of Rn+m.

Proposition 15.6.1 If g : Rn → R is semi-algebraic, then so are gγ and proxγg .
In particular, gγ and proxγg are semismooth.

Proof Since gγ and proxγg are both Lipschitz continuous, semismoothness will
follow once we show that they are semi-algebraic [11, Rem. 4]. Every polynomial is
clearly semi-algebraic, and since the property is preserved under addition [10, Prop.
2.2.6(ii)], the function (x,w) �→ g(w)+ 1

2γ
‖w− x‖2 is semi-algebraic. Moreover,

since parametric minimization of a semi-algebraic function is still semi-algebraic
(see, e.g., [1, §2]), it follows that the Moreau envelope gγ is semi-algebraic and
therefore so is h(x,w) := g(w) + 1

2γ
‖w − x‖2 − gγ (x). Notice that proxγg(x) =

{w ∈ R
n | h(x,w) ≤ 0}, therefore

gph proxγg =
{
(x, x̄) ∈ R

n × R
n | proxγg(x) = x̄

}

= {
(x, x̄) ∈ R

n × R
n | h(x, x̄) ≤ 0

}

= h−1((−∞, 0])

is a semi-algebraic set, since the interval (−∞, 0] is clearly semi-algebraic and thus
so is h−1((−∞, 0]) [10, Prop. 2.2.7]. ��

In fact, with the same arguments it can be shown that the result still holds if
“semi-algebraic” is replaced with the broader notion of “tame”, see [11]. Other
conditions that guarantee semismoothness of the proximal mapping can be found
in [46–48, 50]. The rest of the section is devoted to collecting explicit formulas of
∂C proxγg for many known useful instances of convex functions g.

15.6.1 Properties

a. Separable functions.
Whenever g is (block) separable, i.e., g(x) = ∑N

i=1 gi(xi), xi ∈ R
ni ,∑N

i=1 ni = n, then every P ∈ ∂C(proxγg)(x) is a (block) diagonal matrix. This
has favorable computational implications especially for large-scale problems.
For example, if g is the �1 norm or the indicator function of a box, then the
elements of ∂C proxγg(x) (or ∂B proxγg(x)) are diagonal matrices with diagonal
elements in [0, 1] (or in {0, 1}).

b. Convex conjugate.
With a simple application of the Moreau’s decomposition [2, Thm. 14.3(ii)],
all elements of ∂C proxγg∗ are readily available as long as one can compute
∂C proxg/γ . Specifically,

∂C(proxγg∗)(x) = I− ∂C(proxg/γ )(x/γ ). (15.87)
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c. Support function.
The support function of a nonempty closed and convex set D is the proper
convex and lsc function σD(x) := supy∈D〈x, y〉. Alternatively, σD can be
expressed as the convex conjugate of the indicator function δD , and one can
use the results of Section §15.6.1b to find that

∂C(proxγg)(x) = I− ∂C(PD)(x/γ ). (15.88)

Section 15.6.2 offers a rich list of sets D for which a closed form expression
exists.

d. Spectral functions.
The eigenvalue function λ : S(Rn×n) → R

n returns the vector of eigenvalues
of a symmetric matrix in nonincreasing order. Spectral functions are of the form

G := h ◦ λ : S(Rn×n)→ R. (15.89)

where h : R
n → R is proper, lsc, convex, and symmetric, i.e., invariant

under coordinate permutations [35]. Such G inherits most of the properties of h

[36, 37]; in particular, its proximal mapping is [56, §6.7]

proxγG(X) = Q diag(proxγ h(λ(X)))Q%, (15.90)

where X = Q diag(λ(X))Q% is the spectral decomposition of X (Q is an
orthogonal matrix). If, additionally,

h(x) = g(x1)+ · · · + g(xN) (15.91)

for some g : R→ R, then

proxγ h(x) = (proxγg(x1), . . . , proxγg(xN)), (15.92)

and therefore the proximal mapping of G can be expressed as

proxγG(X) = Q diag(proxγg(λ1(X)), . . . , proxγg(λn(X)))Q%, (15.93)

[9, Chap. V], [29, Sec. 6.2]. Now we can use the theory of nonsmooth sym-
metric matrix-valued functions developed in [14] to analyze differentiability
properties of proxγG. In particular, proxγG is (strongly) semismooth at X iff
proxγg is (strongly) semismooth at the eigenvalues of X [14, Prop. 4.10].
Moreover, for any X ∈ S(Rn×n) and P ∈ ∂B(proxγG)(X) we have [14, Lem.
4.7]

P(X) = Q
(
Ω

γg
λ,λ & (Q%XQ)

)
Q%, (15.94)
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where & denotes the Hadamard product and for vectors u, v ∈ R
n we defined

Ω
γg
u,v as the n× n matrix

(Ω
γg
u,v)ij :=

⎧⎨
⎩

∂B proxγg(ui) if ui = vj ,{
proxγg(ui )−proxγg(vj )

ui−vj

}
otherwise.

(15.95)

e. Orthogonally invariant functions. A function G : Rm×n → R is called
orthogonally invariant if G(UXV%) = G(X) for all X ∈ R

m×n and orthogonal
matrices U ∈ R

m×m, V ∈ R
n×n.4

A function h : Rq → R is absolutely symmetric if h(Qx) = h(x) for all
x ∈ R

q and any generalized permutation matrix Q, i.e., a matrix Q ∈ R
q×q that

has exactly one nonzero entry in each row and each column, that entry being
±1 [34]. There is a one-to-one correspondence between orthogonally invariant
functions on R

m×n and absolutely symmetric functions on R
q . Specifically, if

G is orthogonally invariant, then

G(X) = h(σ(X)) (15.96)

for the absolutely symmetric function h(x) = G(diag(x)). Here, for X ∈ R
m×n

and q := min {m, n} the spectral function σ : Rm×n → R
q returns the vector

of its singular values in nonincreasing order. Conversely, if h is absolutely
symmetric, then G(X) = h(σ(X)) is orthogonally invariant. Therefore, convex
analytic and generalized differentiability properties of orthogonally invariant
functions can be easily derived from those of the corresponding absolutely
symmetric functions [34]. For example, assuming for simplicity that m ≤ n,
the proximal mapping of G is given by [56, Sec. 6.7]

proxγG(X) = U diag(proxγ h(σ (X)))V%1 , (15.97)

where X = U
[
diag(σ (X)) 0

] [
V1 V2

]%
is the singular value decomposition of

X. If we further assume that h has a separable form as in (15.91), then

proxγG(X) = UΣg(X)V%1 , (15.98)

where Σg(X) = diag(proxγg(σ1(X)), . . . , proxγg(σn(X))). Functions of this
form are called nonsymmetric matrix-valued functions. We also assume that g

is a non-negative function such that g(0) = 0. This implies that proxγg(0) = 0
and guarantees that the nonsymmetric matrix-valued function (15.98) is well
defined [80, Prop. 2.1.1]. Now we can use the results of [80, §2] to draw
conclusions about generalized differentiability properties of proxγG.

4In case of complex-valued matrices, functions of this form are known as unitarily invariant [34].
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For example, through [80, Thm. 2.27] we have that proxγG is continuously
differentiable at X if and only if proxγg is continuously differentiable at the
singular values of X. Furthermore, proxγG is (strongly) semismooth at X if
proxγg is (strongly) semismooth at the singular values of X [80, Thm. 2.3.11].
For any X ∈ R

m×n the generalized Jacobian ∂B(proxγG)(X) is well defined
and nonempty, and any P ∈ ∂B(proxγG)(X) acts on H ∈ R

m×n as [80, Prop.
2.3.7]

P(H) = U

[(
Ω

γg
σ,σ &

(
H1+H%1

2

)
+Ω

γg
σ,−σ &

(
H1−H%1

2

))
, (Ω

γg

σ,0 &H2)

]
V%,

(15.99)

where V = [V1 V2], H1 = U%HV1 ∈ R
m×m, H2 = U%HV2 ∈ R

m×(n−m) and
matrices Ω are as in (15.95).

15.6.2 Indicator Functions

Smooth constrained convex problems

minimizex∈Rn f (x) subject to x ∈ D (15.100)

can be cast in the composite form (15.1) by encoding the feasible set D with the
indicator function g = δD . Whenever PD is efficiently computable, then algorithms
like the forward-backward splitting (15.21) can be conveniently considered. In the
following we analyze the generalized Jacobian of some of such projections.

a. Affine sets. D = {x ∈ R
n | Ax = b} for some A ∈ R

m×n and b ∈ R
m.

In this case, PD(x) = x − A†(Ax − b) where A† is the Moore-Penrose
pseudoinverse of A. For example, if A is surjective (i.e., it has full row rank
and thus m ≤ n), then A† = A%(AA%)−1, whereas if it is injective (i.e., it has
full column rank and thus m ≥ n), then A† = (A%A)−1A%. Obviously PD is
an affine mapping, thus everywhere differentiable with

∂C(PD)(x) = ∂B(PD)(x) = {∇PD(x)} =
{

I− A†A
}

. (15.101)

b. Polyhedral sets. D = {x ∈ R
n | Ax = b, Cx ≤ d}, for some A ∈ R

p×n, b ∈
R

p, C ∈ R
q×n and d ∈ R

q .
It is well known that PD is piecewise affine. In particular, let

ID :=
{
I ⊆ {1 . . . q} | ∃x ∈Rn : Ax = b, Ci·x= di i ∈ I, Cj ·x < dj j /∈ I

}
.

(15.102)
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Then, the faces of D can be indexed with the elements of I [66, Prop. 2.1.3]:
for each I ∈ ID let

FI := {x ∈ D | Ci·x = di, i ∈ I }

be the I -th face of D,

SI := aff FI =
{
x ∈ R

n | Ax = b, Ci·x = di, i ∈ I
}

be the hyperplane containing the I -th face of D,

NI := ran A%+ cone
{
C%I ·

}

be the normal cone to any point in the relative interior of FI [66, Eq. (2.44)],5

and

RI := FI +NI .

We then have PD(x) ∈ {PSI
(x) | I ∈ ID

}
, i.e., PD is a piecewise affine

function. The affine pieces of PD are the projections on the corresponding
affine subspaces SI (cf. Section §15.6.2a). In fact, for each x ∈ RI we have
PD(x) = PSI

(x), each RI is full dimensional and R
n = ⋃

I∈ID
RI [66,

Prop.s 2.4.4 and 2.4.5]. For each I ∈ ID let

PI := ∇PSI
= I−

(
A

CI

)†(
A

CI

)
, (15.103)

and for each x ∈ R
n let

ID(x) := {I ∈ ID | x ∈ RI } . (15.104)

Then,

∂C(PD)(x) = conv ∂B(PD)(x) = conv {PI | I ∈ ID(x)} . (15.105)

Therefore, an element of ∂B PD(x) is PI as in (15.103) where I =
{i | Cix̄ = di} is the set of active constraints of x̄ = PD(x). For a more
general analysis we refer the reader to [27, 39].

5Consistently with the definition in [66], the polyhedron P can equivalently be expressed by
means of only inequalities as P = {x ∈ R

n | Ax ≤ b, − Ax ≤ −b, Cx ≤ b}, resulting indeed
in cone[A%, − A%, C%] = ran A%+ cone C%.
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c. Halfspaces. H = {x ∈ R
n | 〈a, x〉 ≤ b} for some a ∈ R

n and b ∈ R.
Then, denoting the positive part of r ∈ R as [r]+ := max {0, r},

PH (x) = x − [〈a,x〉−b]+
‖a‖2 a

and

∂C(PH )(x) =
⎧
⎨
⎩

{
I− ‖a‖−2aa%

}
if x /∈ H,

{I} if 〈a, x〉 < b,

conv
{
I, I− ‖a‖−2aa%

}
if 〈a, x〉 = b.

d. Boxes. D = {x ∈ R
n | � ≤ x ≤ u} for some �, u ∈ [−∞,∞]n.

We have

PD(x) = min {max {x, �} , u} ,

and since the corresponding indicator function δD is separable, every element
of ∂C(PD)(x) is diagonal with (cf. Section §15.6.1a)

∂C(PD)(x)ii =
⎧⎨
⎩
[0, 1] if xi ∈ {�i, ui} ,
{1} if �i < xi < ui,

{0} otherwise,

e. Unit simplex. D = {
x ∈ R

n | x ≥ 0,
∑n

i=1 xi = 1
}
.

By writing down the optimality conditions for the corresponding projection
problem, one can easily see that

PD(x) = [x − λ1]+, (15.106)

where λ solves 〈1, [x − λ1]+〉 = 1. Since the unit simplex is a polyhedral set,
we are dealing with a special case of Section §15.6.2b, where A = 1%, b = 1,
C = −I, and d = 0. Therefore, in order to calculate an element of the
generalized Jacobian of the projection, we first compute PD(x) and then
determine the set of active indices J := {i | PD(x)i = 0}. An element P ∈
∂B(PD)(x) is given by

Pij =
{

δi,j − 1
n−|J | if i, j /∈ J,

0 otherwise,
(15.107)

where |J | denotes the cardinality of the set J . Notice that P is block diagonal
after a permutation of rows and columns.
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f. Euclidean unit ball. B = B(0; 1).
We have

PB(x) =
{

x if x ∈ B,

x/‖x‖ otherwise,

and

∂C(PB)(x) =
⎧⎨
⎩
{I} if ‖x‖ < 1,

conv
{‖x‖−1(I− ww%), I

}
if ‖x‖ = 1,{‖x‖−1(I− ww%)

}
if x /∈ B,

where w := x/‖x‖.
g. Second-order cone. K = {

(x0, x̄) ∈ R× R
n−1 | x0 ≥ ‖x̄‖

}
.

Let x := (x0, x̄), and for w ∈ R
n and α ∈ R define

Mw,α := 1
2

[
1 w%
w (1− α)In−1 + αww%

]
. (15.108)

Then, ∂C(PK)(x) = conv(∂B(PK)(x)) where, for w̄ := x̄/‖x̄‖ and ᾱ :=
−x0/‖x̄‖, we have [30, Lem. 2.6]

∂B(PK)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{0} if x0 < −‖x̄‖,
{In} if x0 > ‖x̄‖,{
Mw̄,ᾱ

}
if −‖x̄‖ < x0 < ‖x̄‖,{

In, Mw̄,ᾱ

}
if x0 = ‖x̄‖ �= 0,{

0, Mw̄,ᾱ

}
if x0 = −‖x̄‖ �= 0,

{0, In} ∪
{
Mw,α | |α| ≤ 1, ‖w‖ ≤ 1

}
if x0 = x̄ = 0.

(15.109)
h. Positive semidefinite cone. S+ = S+(Rn×n).

For any symmetric matrix M it holds that

PS+(M) = Q[diag(λ)]+Q%, (15.110)

where M = Q diag(λ)Q% is any spectral decomposition of M . This coincides
with (15.93), as δS+ can be expressed as in (15.89), where h has the separable
form (15.91) with g = δR+ , so that for r ∈ R we have

proxγg(r) = [r]+ and ∂B(proxγg)(r) =
⎧⎨
⎩
{0} if r < 0,

{0, 1} if r = 0,

{1} if r > 0.

(15.111)

An element of ∂B PS+(Rn×n)(X) is thus given by (15.94).
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15.6.3 Norms

a. �1 norm. g(x) = ‖x‖1.
The proximal mapping is the well-known soft-thresholding operator

(proxγg(x))i = sign(xi)[|xi | − γ ]+, i = 1, . . . , n. (15.112)

Function g is separable, and thus every element of ∂B(proxγg) is a diagonal
matrix, cf. Section §15.6.1a. Specifically, the nonzero elements are

∂C(proxγg)(x)ii =
⎧⎨
⎩
{1} if |xi | > γ,

[0, 1] if |xi | = γ,

{0} if |xi | < γ.

(15.113)

We could also arrive to the same conclusion by applying the Moreau decompo-
sition of Section §15.6.1b to the function of Section §15.6.2d with u = −� =
1n, since the �1 norm is the conjugate of the indicator of the �∞-norm ball.

b. �∞ norm. g(x) = ‖x‖∞.
Function g is the convex conjugate of the indicator of the unit simplex
D analyzed in Section §15.6.2e. From the Moreau decomposition, see Sec-
tion §15.6.1b, we obtain

∂C(proxγg)(x) = I− ∂C(PD)(x/γ ). (15.114)

Then, PD(x/γ ) = [x/γ − λ1]+ where λ ∈ R solves 〈1, [x/γ − λ1]+〉 = 1. Let
J = {i | PD(x/γ )i = 0}, then an element of ∂B(proxγg)(x) is given by

Pij =
{

1
n−|J | if i, j /∈ J,

δi,j otherwise.
(15.115)

c. Euclidean norm. g(x) = ‖x‖.
The proximal mapping is given by

proxγg(x) =
{

(1− γ ‖x‖−1)x if ‖x‖ ≥ γ,

0 otherwise.
(15.116)

Since proxγg is a PC1 mapping, its B-subdifferential can be computed by
simply computing the Jacobians of its smooth pieces. Specifically, denoting
w = x/‖x‖ we have

∂C(proxγg)(x) =
⎧⎨
⎩

{
I− γ ‖x‖−1(I− ww%)

}
if ‖x‖ > γ,

{0} if ‖x‖ < γ,

conv
{
I− γ ‖x‖−1(I− ww%), 0

}
otherwise.

(15.117)
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d. Sum of Euclidean norms. g(x) = ∑
s∈S ‖xs‖, where S is a partition of

{1, . . . , n}.
Differently from the �1-norm which induces sparsity on the whole vector, this
function serves as regularizer to induce group sparsity [81]. For s ∈ S, the
components of the proximal mapping indexed by s are

(proxγg(x))s = (1− γ ‖xs‖−1)+xs. (15.118)

Any P ∈ ∂B(proxγg)(x) is block diagonal with the s-block equal to

Ps =
⎧⎨
⎩

I− γ ‖xs‖−1
(
I− ‖xs‖−2xsx

%
s ) if ‖xs‖ > γ,

I if ‖xs‖ < γ,

any of these two matrices if ‖xs‖ = γ.

(15.119)

e. Matrix nuclear norm. G(X) = ‖X‖� for X ∈ R
m×n.

The nuclear norm returns the sum of the singular values of a matrix X ∈ R
m×n,

i.e., G(X) =∑m
i=1 σi(X) (for simplicity we are assuming that m ≤ n). It serves

as a convex surrogate for the rank, and has found many applications in systems
and control theory, including system identification and model reduction [20–22,
41, 61]. Other fields of application include matrix completion problems arising
in machine learning [62, 68] and computer vision [52, 76], and nonnegative
matrix factorization problems arising in data mining [18].
The nuclear norm can be expressed as G(X) = h(σ(X)), where h(x) = ‖x‖1
is absolutely symmetric and separable. Specifically, it takes the form (15.91)
with g = | · |, for which g(0) = 0 and 0 ∈ ∂g(0), and whose proximal
mapping is the soft-thresholding operator. In fact, since the case of interest here
is x ≥ 0 (because σi(X) ≥ 0), we have proxγg(x) = [x − γ ]+, cf. (15.116).
Consequently, the proximal mapping of ‖X‖� is given by (15.98) with

Σg(X) = diag([σ1(X)− γ ]+, . . . , [σm(X)− γ ]+). (15.120)

For x ∈ R+ we have that

∂C(proxγg)(x) =
⎧⎨
⎩

0 if 0 ≤ x < γ,

[0, 1] if x = γ,

1 if x > γ,

(15.121)

then ∂B(proxγG)(X) takes the form as in (15.99).

15.7 Conclusions

A forward-backward truncated-Newton method (FBTN) is proposed that mini-
mizes the sum of two convex functions one of which Lipschitz continuous and
twice continuously differentiable. Our approach is based on the forward-backward
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envelope (FBE), a continuously differentiable tight lower bound to the original (non-
smooth and extended-real valued) cost function sharing minima and minimizers.
The method requires forward-backward steps, Hessian evaluations of the smooth
function and Clarke Jacobians of the proximal map of the nonsmooth term. Explicit
formulas of Clarke Jacobians of a wide variety of useful nonsmooth functions
are collected from the literature for the reader’s convenience. The higher-order
operations are needed for the computation of symmetric and positive semidefinite
matrices that serve as surrogate for the Hessian of the FBE, allowing for a
generalized (regularized, truncated-) Newton method for its minimization. The
algorithm exhibits global Q-linear convergence under an error bound condition, and
Q-superlinear or even Q-quadratic if an additional semismoothness assumption at
the limit point is satisfied.
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EOS Project no 30468160 (SeLMA).

Appendix: Auxiliary Results

Lemma 1 Any proper lsc convex function with nonempty and bounded set of
minimizers is level bounded.

Proof Let h be such function; to avoid trivialities we assume that dom h is
unbounded. Fix x� ∈ argmin h and let R > 0 be such that argmin h ⊆ B :=
B(x�;R). Since dom h is closed, convex, and unbounded, it holds that h attains a
minimum on the compact set bdry B, be it m, which is strictly larger than h(x�)

(since dist(argmin h, bdry B) > 0 due to compactness of argmin h and openness of
B). For x /∈ B, let sx = x� + R x−x�‖x−x�‖ denote its projection onto bdry B, and let

tx := ‖x−x�‖
R
≥ 1. Then,

h(x) = h
(
x� + tx(sx − x�)) ≥ h(x�)+ tx

(
h(sx)− h(x�)

) ≥ h(x�)+ tx
(
m− h(x�)

)

where in the first inequality we used the fact that tx ≥ 1. Since m− h(x�) > 0 and
tx →∞ as ‖x‖ → ∞, we conclude that h is coercive, and thus level bounded. ��
Lemma 2 Let H ∈ S+(Rn) with λmax(H) ≤ 1. Then H −H 2 ∈ S+(Rn) with

λmin(H −H 2) = min {λmin(H)(1− λmin(H)), λmax(H)(1− λmax(H))} .
(15.122)

Proof Consider the spectral decomposition H = S%DS for some orthogonal matrix
S and diagonal D. Then, H − H 2 = S%D̃S where D̃ = D − D2. Apparently, D̃

is diagonal, hence the eigenvalues of H − H 2 are exactly
{
λ− λ2 | λ ∈ eigs(H)

}
.
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The function λ �→ λ− λ2 is concave, hence the minimum in eigs(H̃ ) is attained at
one extremum, that is, either at λ = λmin(H) or λ = λmax(H), which proves the
claim. ��
Lemma 3 For any γ ∈ (0, 2/Lf ) the forward-backward operator Tγ (15.22)

is nonexpansive (in fact, 2
4−γLf

-averaged), and the residual Rγ is Lipschitz

continuous with modulus 4
γ (4−γLf )

.

Proof By combining [2, Prop. 4.39 and Cor. 18.17] it follows that the gradient
descent operator x �→ x−γ∇f (x) is γLf/2-averaged. Moreover, since the proximal
mapping is 1/2-averaged [2, Prop. 12.28] we conclude from [2, Prop. 4.44] that the
forward-backward operator Tγ is α-averaged with α = 2

4−γLf
, thus nonexpansive

[2, Rem. 4.34(i)]. Therefore, by definition of α-averagedness there exists a 1-
Lipschitz continuous operator S such that Tγ = (1 − α) id+αS and consequently
the residual Rγ = 1

γ

(
id−Tγ

) = α
γ
(id−S) is (2α/γ )-Lipschitz continuous. ��
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