
Chapter 13
A Note on the Equivalence of Operator
Splitting Methods

Walaa M. Moursi and Yuriy Zinchenko

Abstract This note provides a comprehensive discussion of the equivalences
between some splitting methods. We survey known results concerning these equiva-
lences which have been studied over the past few decades. In particular, we provide
simplified proofs of the equivalence of the ADMM and the Douglas–Rachford
method and the equivalence of the ADMM with intermediate update of multipliers
and the Peaceman–Rachford method.
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13.1 Introduction

Splitting methods have become popular in solving convex optimization problems
that involve finding a minimizer of the sum of two proper lower semicontin-
uous convex functions. Among these methods are the Douglas–Rachford and
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the Peaceman–Rachford methods introduced in the seminal work of Lions and
Mercier [24], the forward-backward method (see, e.g., [12, 17] and [29]), Dykstra’s
method (see, e.g., [3] and [10]), and the Method of Alternating Projections (MAP)
(see, e.g., [19]).

When the optimization problem features the composition of one of the functions
with a bounded linear operator, a popular technique is the Alternating-Direction
Method of Multipliers (ADMM) (see [22, Section 4], [16, Section 10.6.4] and also
[7, Chapter 15]). The method has a wide range of applications including large-
scale optimization, machine learning, image processing and portfolio optimization,
see, e.g., [9, 15] and [20]. A powerful framework to use ADMM in the more
general setting of monotone operators is developed in the work of Briceño-Arias
and Combettes [13] (see also [8] and [14]). Another relatively recent method is the
Chambolle–Pock method introduced in [11].

Equivalences between splitting methods have been studied over the past four
decades. For instance, it is known that ADMM is equivalent to the Douglas–
Rachford method [24] (see, also [21]) in the sense that with a careful choice of
the starting point, one can prove that the sequences generated by both algorithms
coincide. (See, e.g., [22, Section 5.1] and [6, Remark 3.14].) A similar equivalence
holds between ADMM (with intermediate update of multiplier) and Peaceman–
Rachford method [24] (see [22, Section 5.2]). In [25], the authors proved the
correspondence of Douglas–Rachford and Chambolle–Pock methods.

The rest of this paper is organized as follows: Section 13.2 provides a brief
literature review of ADMM, Douglas–Rachford and Peaceman–Rachford methods.
In Sections 13.3 and 13.4 we explicitly describe the equivalence of ADMM (respec-
tively ADMM with intermediate update of multipliers) and Douglas–Rachford
(respectively Peaceman–Rachford) method introduced by Gabay in [22, Sec-
tions 5.1&5.2]. We provide simplified proofs of these equivalences. Section 13.5
focuses on the recent work of O’Connor and Vandenberghe concerning the equiva-
lence of Douglas–Rachford and Chambolle–Pock methods (see [25]). Our notation
is standard and follows largely, e.g., [5].

13.2 Three Techniques

In this paper, we assume that

X and Y are real Hilbert spaces,

and that
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f : X → ]−∞,+∞] , g : Y → ]−∞,+∞] are convex lower

semicontinuous and proper.

Alternating-Direction Method of Multipliers (ADMM) In the following we
assume that1

L : Y → X is linear such that L∗L is invertible,

that

argmin(f ◦ L + g) �= ∅, (13.1)

and that

0 ∈ sri(dom f − L(dom g)), (13.2)

where sri S denotes the strong relative interior of a subset S of X with respect to the
closed affine hull of S. When X is finite-dimensional we have sri S = ri S, where
ri S is the relative interior of S defined as the interior of S with respect to the affine
hull of S.

Consider the problem

minimize
y∈Y

f (Ly) + g(y). (13.3)

Note that (13.1) and (13.2) imply that (see, e.g., [5, Proposition 27.5(iii)(a)1])

argmin(f ◦L+g) = zer(∂(f ◦L)+∂g) = zer(L∗ ◦(∂f )◦L+∂g) �= ∅. (13.4)

In view of (13.4), solving (13.3) is equivalent to solving the inclusion:

Find y ∈ Y such that 0 ∈ L∗(∂f (Ly)) + ∂g(y). (13.5)

The augmented Lagrangian associated with (13.3) is the function

1The adjoint of L is the unique operator L∗ : X → Y that satisfies 〈Ly, x〉 = 〈y, L∗x〉 (∀(x, y) ∈
X × Y ).
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L : X×Y×X → ]−∞,+∞] : (a, b, u) �→ f (a)+g(b)+〈u,Lb−a〉+1

2
‖Lb−a‖2.

(13.6)
The ADMM (see [22, Section 4] and also [16, Section 10.6.4]) applied to
solve (13.3) consists in minimizing L over b then over a and then applying a
proximal minimization step with respect to the Lagrange multiplier u. The method
applied with a starting point (a0, u0) ∈ X × X generates three sequences (an)n∈N;
(bn)n≥1 and (un)n∈N via (∀n ∈ N):

bn+1 :=(L∗L + ∂g)−1(L∗an − L∗un), (13.7a)

an+1 := Proxf (Lbn+1 + un), (13.7b)

un+1 :=un + Lbn+1 − an+1, (13.7c)

where Proxf : X → X : x �→ argminy∈X

(
f (y) + 1

2‖x − y‖2
)

.

Let (xn)n∈N be a sequence in X and let x ∈ X. In the following we shall use xn →
x (respectively xn ⇀ x) to indicate that (xn)n∈N converges strongly (respectively
weakly) to x.

Fact 13.1 (Convergence of ADMM (See [22, Theorem 4.1])) Let (a0, u0) ∈ X ×
X, and let (an)n∈N, (bn)n≥1 and (un)n∈N be defined as in (13.7). Then, there exists
b ∈ Y such that bn ⇀ b ∈ argmin(f ◦ L + g).

The Douglas–Rachford Method Suppose that Y = X and that L = Id. In this
case Problem (13.3) becomes

minimize
x∈X

f (x) + g(x). (13.8)

The Douglas–Rachford (DR) method, introduced in [24], applied to the ordered
pair (f, g) with a starting point x0 ∈ X to solve (13.8) generates two sequences
(xn)n∈N and (yn)n∈N via:

yn := Proxf xn, (13.9a)

xn+1 :=T DRxn, (13.9b)

where

TDR := T DR(f, g) = 1
2 (Id +RgRf ) = Id − Proxf + Proxg(2 Proxf − Id),

(13.10)
and where Rf := 2 Proxf − Id.

To lighten the notation, in the sequel we shall use T DR to denote T DR(f, g). Let
T : X → X. Recall that the set of fixed points of T , denoted by Fix T , is defined as
Fix T := {

x ∈ X
∣∣ x = T x

}
.
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Fact 13.2 (Convergence of Douglas–Rachford Method (See, e.g., [24, Theo-
rem 1] or [5, Corollary 28.3])) Let x0 ∈ X and let (xn)n∈N and (yn)n∈N be defined
as in (13.9). Then, there exists x ∈ Fix TDR such that xn ⇀ x and yn ⇀ Proxf x ∈
argmin(f + g).

The Peaceman–Rachford Method Let h : X → ]−∞,+∞] be proper and let
β > 0. We say that h is strongly convex if f − β

2 ‖·‖2 is convex, i.e., (∀(x, y) ∈
dom f × dom f ) (∀α ∈ ]0, 1[) we have f (αx + (1 −α)y)+α(1 −α)φ(‖x −y‖)+
β
2 ‖x − y‖2 ≤ αf (x) + (1 − α)f (y).

When g is strongly convex, the Peaceman–Rachford (PR) method, introduced in
[24], can be used to solve (13.8). In this case, given x0 ∈ X, PR method generates
the sequences (xn)n∈N and (yn)n∈N via:

yn := Proxf xn, (13.11a)

xn+1 :=TPRxn, (13.11b)

where

TPR = TPR(f, g) = RgRf = (2 Proxg − Id)(2 Proxf − Id). (13.12)

To lighten the notation, in the sequel we shall use TPR to denote T PR(f, g).

Fact 13.3 (Convergence of Peaceman–Rachford Method (See, e.g., [24, Propo-
sition 1] or [5, Proposition 28.8])) Suppose that g is strongly convex. Let y be the
unique minimizer of f + g, let x0 ∈ X and let (xn)n∈N and (yn)n∈N be defined as
in (13.11). Then yn → y.

In the sequel we use the notation

g∨ : X → ]−∞,+∞] : x �→ g(−x). (13.13)

Recall that the Fenchel–Rockafellar dual of (13.3) is

minimize
x∈X

f ∗(x) + g∗(−L∗x). (13.14)

Remark 13.1

(i) One can readily verify that ∂g∨ = (− Id) ◦ ∂g ◦ (− Id). Therefore, in view of
[27, Theorem A] and [20, Lemma 3.5 on page 125 and Lemma 3.6 on page 133]
(see also [4, Corollaries 4.2 and 4.3]) we have2

TDR(f, g) = TDR(f ∗, g∗∨), (13.15)

2It is straightforward to verify that g∨∗ = (g∗)∨ (see, e.g., [5, Proposition 13.23(v)]).
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and

TPR(f, g) = TPR(f ∗, g∗∨). (13.16)

(ii) When (L, Y ) = (Id, X), inclusion (13.5) reduces to: Find y ∈ X such that 0 ∈
∂f (y)+∂g(y) and the dual inclusion (corresponding to the Fenchel–Rockafellar
dual (13.14)) is: Find y ∈ X such that 0 ∈ ∂f ∗(y) − ∂g∗(−y) = (∂f )−1y −
(∂g)−1(−y), which in this case coincide with the Attouch–Thera dual of (13.5)
(see [2]).

One can use DR method to solve (13.14) where (f, g) in Fact 13.2 is replaced by
(f ∗, g∗ ◦ (−L∗)). Recalling (13.15) we learn that TDR = TDR(f ∗, g∗ ◦ (−L∗)) =
TDR(f ∗∗, (g∗ ◦ (−L∗))∨∗) = TDR(f, (g∗ ◦ L∗)∗), where the last identity follows
from [5, Proposition 13.44].

In view of (13.10) (13.15), and [5, Proposition 15.23(v)] we have

T DR = T DR(f ∗, g∗ ◦ (−L∗)) = T DR(f, (g∗ ◦ L∗)∗)

= Id − Proxf + Prox(g∗◦L∗)∗(2 Proxf − Id). (13.17)

Similarly, under additional assumptions (see Fact 13.3), one can use PR method to
solve (13.14) where (f, g) in Theorem 13.3 is replaced by (f ∗, g∗ ◦ (−L∗)). In this
case (13.12), (13.16) and [5, Proposition 15.23(v)] imply that

TPR = TPR(f ∗, g∗ ◦ (−L∗)) = TPR(f, (g∗ ◦ L∗)∗)

= (2 Prox(g∗◦L∗)∗ − Id)(2 Proxf − Id). (13.18)

For completeness, we provide a concrete proof of the formula for Prox(g∗◦L∗)∗
in Appendix 1 (see Proposition 13.3(viii) below). We point out that the formula for
Prox(g∗◦L∗)∗ in a more general setting is given in [22, Proposition 4.1] (see also [16,
Section 10.6.4]).

13.3 ADMM and Douglas–Rachford Method

In this section we discuss the equivalence of ADMM and DR method. This
equivalence was first established by Gabay in [22, Section 5.1] (see also [6,
Remark 3.14]). Let (x0, a0, u0) ∈ X3. Throughout the rest of this section, we
assume that the sequences (xn)n∈N and (yn)n∈N are as defined in (13.9), i.e.,

(xn+1, yn)n∈N = (TDRxn, Proxf xn), (13.19)
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TDR := TDR(f, (g∗ ◦ L∗)∗) = Id − Proxf +L(L∗L + ∂g)−1L∗(2 Proxf − Id).

(13.20)
Note that the second identity in (13.20) follows from (13.17) and Proposi-
tion 13.3(viii). We also assume that

(an, un, bn+1)n∈N is defined as in (13.7).

The following lemma will be used later to clarify the equivalence of DR and
ADMM.

Lemma 13.1 Let (b−, a−, u−) ∈ Y × X × X and set

(b, a, u) := ((L∗L + ∂g)−1(L∗a− − L∗u−), Proxf (Lb + u−), u− + Lb − a),

(13.21a)

(b+, a+, u+) := ((L∗L + ∂g)−1(L∗a − L∗u), Proxf (Lb+ + u), u + Lb+ − a+).

(13.21b)

Then

TDR(Lb + u−) = Lb+ + u, (13.22a)

Proxf TDR(Lb + u−) = a+. (13.22b)

Proof Indeed, it follows from (13.20), (13.21), (13.22a) and (13.22b) that

TDR(Lb + u−) = (Lb + u−) − Proxf (Lb + u−)

+ L(L∗L + ∂g)−1L∗(2 Proxf (Lb + u−) − (Lb + u−))

(13.23a)

= (Lb + u−) − a + L(L∗L + ∂g)−1L∗(2a − (Lb + u−))

(13.23b)

= (Lb + u−) − a + L(L∗L + ∂g)−1L∗(a − (Lb + u− − a))

(13.23c)

= u + L(L∗L + ∂g)−1(L∗a − L∗u) (13.23d)

= Lb+ + u, (13.23e)

where (13.23a) follows from (13.20), (13.23b) and (13.23d) follow from (13.21a),
and (13.23e) follow from (13.21b). This proves (13.22a). Now (13.22b) follows
from combining (13.22a) and (13.21b). ��

We now prove the main result in this section by induction.
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Theorem 13.4 The following hold:

(i) (DR as ADMM Iteration) Using DR method with a starting point x0 ∈ X to
solve (13.14) is equivalent to using ADMM with a starting point (a0, u0) :=
(Proxf x0, x0 − Proxf x0) to solve (13.3), in the sense that (xn)n≥1 = (Lbn +
un−1)n≥1 and (yn)n∈N = (an)n∈N.

(ii) (ADMM as DR Iteration) Using ADMM with a starting point (a0, u0) ∈ X×X

to solve (13.3) is equivalent to using DR method with a starting point x0 =
Lb1 + u0 to solve (13.14), in the sense that (xn)n∈N = (Lbn+1 + un)n∈N and
(yn)n∈N = (an+1)n∈N.

Proof For simplicity, set T = TDR. (i): Note that (13.19) implies that y0 = a0. Now,
when n = 1 we have

x1 = T x0 = x0 − Proxf x0 + L(L∗L + ∂g)−1L∗(2 Proxf x0 − x0)

(by (13.17))

= x0 − a0 + L(L∗L + ∂g)−1L∗(2a0 − x0) (by (13.19))

= (x0 − a0) + L(L∗L + ∂g)−1L∗(a0 − (x0 − a0))

= u0 + L(L∗L + ∂g)−1L∗(a0 − u0)

= u0 + Lb1. (by (13.7a))

Combining with (13.19) and (13.7b) we get y1 = Proxf T x0 = Proxf x1 =
Proxf (u0 + Lb1) = a1, which verifies the base case. Now suppose for some n ≥ 1
we have xn = Lbn + un−1 and yn = an and use Lemma 13.1 with (b−, a−, u−)

replaced by (bn−1, an−1, un−1) to learn that xn+1 = Lbn+1 + un and yn+1 = an+1.
Consequently, (xn)n≥1 = (Lbn + un−1)n≥1 and (yn)n∈N = (an)n∈N as claimed.

(ii): At n = 0, x0 = Lb1 + u0 = Lb0+1 + u0, and therefore (13.9a) implies
that y0 = Proxf x0 = Proxf (Lb1 + u0) = a1 by (13.7b). Now suppose that for
some n ≥ 0 we have xn = Lbn+1 + un and yn = an+1. The conclusion follows by
applying Lemma 13.1 with (b−, a−, u−) replaced by (bn, an, un). ��

13.4 ADMM and Peaceman–Rachford Method

We now turn to the equivalence of ADMM with intermediate update of multiplier
and PR method. This equivalence was established in [22, Section 5.2]. Given
(a0, u0) ∈ X × X, the ADMM with an intermediate update of multiplier applied to
solve (13.3) generates four sequences (an)n∈N, (un)n∈N, (bn)n≥1 and (wn)n≥1 via
(∀n ∈ N):

bn+1 :=(L∗L + ∂g)−1(L∗an − L∗un), (13.24a)

wn+1 :=un + Lbn+1 − an, (13.24b)
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an+1 := Proxf (Lbn+1 + wn+1), (13.24c)

un+1 :=wn+1 + Lbn+1 − an+1. (13.24d)

Fact 13.5 (Convergence of ADMM with Intermediate Update of Multipliers
(See [22, Theorem 5.4])) Suppose that g is strongly convex. Let (a0, u0) ∈ X ×X,
and let (bn)n≥1, (wn)n≥1, (an)n∈N and (un)n∈N be defined as in (13.24). Then, there
exists b ∈ Y such that bn → b ∈ argmin(f ◦ L + g).

In this section we work under the additional assumption that

g is strongly convex.

Let (x0, a0, u0) ∈ X3. Throughout the rest of this section we assume that the
sequences (xn)n∈N and (yn)n∈N are as defined in (13.11), i.e.,

(xn+1, yn)n∈N = (TPRxn, Proxf xn)n∈N (13.25)

where

TPR := TPR(f, (g∗ ◦ L∗)∗) = 2L(L∗L+∂g)−1L∗(2 Proxf − Id)−2 Proxf + Id .

(13.26)

Note that the second identity in (13.26) follows from (13.18) and Proposi-
tion 13.3(viii). We also assume that

(an, un, bn+1, wn+1)n∈N is defined as in (13.24).

Before we proceed further, we prove the following useful lemma.

Lemma 13.2 Let (b−, w−, a−, u−) ∈ Y × X × X × X and set

(b,w, a, u) = ((L∗L + ∂g)−1(L∗a− − L∗u−), u− + Lb − a−,

Proxf (Lb + w),w + Lb − a), (13.27a)

(b+, w+, a+, u+) = ((L∗L + ∂g)−1(L∗a − L∗u), u + Lb+ − a,

Proxf (Lb+ + w+), w+ + Lb+ − a+). (13.27b)
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Then

TPR(Lb + w) = Lb+ + w+, (13.28a)

Proxf T PR(Lb + w) = a+. (13.28b)

Proof Indeed, by (13.26), (13.27a) and (13.27b) we have

T PR(Lb + w) = Lb + w − 2 Proxf (Lb + w)

+ 2L(L∗L + ∂g)−1L∗(2 Proxf (Lb + w) − (Lb + w))

(by (13.26))

= Lb + w − a − a + 2L(L∗L + ∂g)−1L∗(a − (Lb + w − a))

(by (13.27a))

= u − a + 2L(L∗L + ∂g)−1L∗(a − u) = u − a + 2Lb+
(by (13.27b))

= Lb+ + w+, (by (13.27b))

which proves (13.28a). Now (13.28b) is a direct consequence of (13.28a) in view of
(13.27b). ��

We are now ready for the main result in this section.

Theorem 13.6 Suppose that g is strongly convex. Then the following hold:

(i) (PR as ADMM Iteration) Using PR method with a starting point x0 ∈ X

to solve (13.14) is equivalent to using ADMM with intermediate update of
multipliers with starting points (a0, u0) := (Proxf x0, x0 − Proxf x0) to solve
(13.3), in the sense that (xn)n≥1 = (Lbn + wn)n≥1 and (yn)n∈N = (an)n∈N.

(ii) (ADMM as PR Iteration) Using ADMM with intermediate update of multipli-
ers with a starting point (a0, u0) ∈ X × X to solve (13.3) is equivalent to using
PR method with starting point x0 = Lb1 +w1 to solve (13.14), in the sense that
(xn)n∈N = (Lbn+1 + wn+1)n∈N and (yn)n∈N = (an+1)n∈N.

Proof We proceed by induction. (i): We have

x1 = T PRx0 = x0 − 2 Proxf x0 + L(L∗L + ∂g)−1L∗(2 Proxf x0 − x0)

(by (13.26))

= x0 − 2a0 + 2L(L∗L + ∂g)−1L∗(2a0 − x0)

= (x0 − a0) − a0 + 2L(L∗L + ∂g)−1L∗(a0 − (x0 − a0))

= u0 − a0 + 2Lb1 = u0 − a0 + Lb1 + Lb1

= Lb1 + w1, (by (13.24b))
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which verifies the base case. Now suppose for some n ≥ 1 we have xn = Lbn +wn.

The conclusion follows from applying Lemma 13.2 with (b−, w−, a−, u−) replaced
by (bn−1, wn−1, an−1, un−1) in view of (13.24).

(ii): At n = 0, the base case clearly holds in view of (13.25) and (13.24c). Now
suppose that for some n ≥ 0 we have xn = Lbn+1 + wn+1 and yn = an+1 and use
Lemma 13.2 with (b−, w−, a−, u−) replaced by (bn,wn, an, un) in view of (13.24).

��

13.5 Chambolle–Pock and Douglas–Rachford Methods

In this section we survey the recent work by O’Connor and Vandenberghe [25]
concerning the equivalence of Douglas–Rachford method and Chambolle–Pock
method. (For a detailed study of this correspondence in the more general framework
of the primal-dual hybrid gradient method and DR method with relaxation, as well
as connection to linearized ADMM, we refer the reader to [25].) We work under the
assumption that3

A : X → Y is linear, σ > 0, τ > 0, and στ‖A‖2 < 1. (13.31)

Consider the problem

minimize
x∈X

f (x) + g(Ax) (13.32)

and its Fenchel–Rockafellar dual given by

minimize
x∈X

f ∗(−Ax) + g∗(x). (13.33)

To proceed further, in the following we assume that

argmin(f + g ◦ A) �= ∅ and 0 ∈ sri(dom g − A(dom f )). (13.34)

Note that (13.34) implies that (see, e.g., [5, Proposition 27.5(iii)(a)1])

argmin(f +g◦A) = zer(∂f +∂(g◦A)) = zer(∂f +A∗◦(∂g)◦A) �= ∅. (13.35)

3In passing, we point out that, when X is a finite-dimensional Hilbert space, the condition
τσ‖A‖2 < 1 can be relaxed to τσ‖A‖2 ≤ 1. The convergence in this case is proved in [18,
Theorem 3.3].
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In view of (13.35), solving (13.32) is equivalent to solving the inclusion:

Find x ∈ X such that 0 ∈ ∂f (x) + A∗(∂g(Ax)). (13.36)

The Chambolle–Pock (CP) method applied with a staring point (u0, v0) ∈ X×Y

to solve (13.32) generates the sequences (un)n∈N, and (vn)n∈N via:

un = Proxτf (un−1 − τA∗vn−1), (13.37a)

vn = Proxσg∗(vn−1 + σA(2un − un−1)), (13.37b)

where τ and σ are as defined in (13.31).

Fact 13.7 (Convergence of Chambolle–Pock Method (See [11, Theorem 1], [30,
Theorem 3.1] and Also [18, Theorem 3.1])) Let (u0, v0) ∈ X×Y and let (un)n∈N
and (vn)n∈N be defined as in (13.37). Then, there exists (u, v) ∈ X × Y such that
(un, vn)n∈N ⇀ (u, v), u ∈ argmin(f + g ◦ A) and v ∈ argmin(f ∗ ◦ (−A∗) + g∗).

It is known that the method in (13.37) reduces to DR method (see, e.g., [11,
Section 4.2]) when A = Id. We state this equivalence in Proposition 13.1 below.

Proposition 13.1 (DR as a CP Iteration) Suppose that X = Y , and that A =
Id. Then, using DR method, defined as in (13.9), with a starting point x0 ∈ X to
solve (13.32) is equivalent to using CP method with a starting point (u0, v0) ∈{
(u, v)

∣∣ u − v = x0
} ⊆ X × X to solve (13.32) in the sense that (xn)n∈N = (un −

vn)n∈N and (yn)n∈N = (un)n∈N.

Proof We use induction. When n = 0, the base case is obviously true. Now suppose
that for some n ≥ 0 we have xn = un − vn and yn = un. Then,

xn+1 = Proxf xn − Proxg∗(2 Proxf xn − xn) (13.38a)

= Proxf (un − vn) − Proxg∗(2 Proxf (un − vn) − (un − vn)) (13.38b)

= un+1 − Proxg∗(vn + 2un+1 − un) = un+1 − vn+1. (13.38c)

Here (13.38a) follows from Lemma 13.5 below (applied with γ = 1), (13.38b)
follows from the inductive hypothesis, and (13.38c) follows from (13.37) applied
with (τ, σ,A) replaced by (1, 1, Id). The claim about yn+1 follows directly and the
proof is complete. ��
Chambolle–Pock as a DR Iteration: The O’Connor–Vandenberghe Technique
Let Z be a real Hilbert space. In the following, we assume that C : Z → Y is linear
and that

B : X × Z → Y : (x, z) �→ Ax + Cz satisfies that στBB∗ = Id. (13.39)
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Note that one possible choice of C is to set C2 := Id −στAA∗, where the existence
of C follows from, e.g., [26, Theorem on page 265]. Now consider the problem

minimize
(x,z)∈X×Z

f̃ (x, z) + g(B(x, z)), (13.40)

where

f̃ : X × Z → ]−∞,+∞] : (x, z) �→ f (x) + ι{0}(z). (13.41)

The following result, proved in [25, Section 4] in the more general framework
of primal-dual hybrid gradient method, provides an elegant way to construct the
correspondence between the DR sequence when applied to solve (13.40) and the
CP sequence when applied to solve (13.32). We restate the proof for the sake of
completeness.

Proposition 13.2 (CP Corresponds to a DR Iteration) Using CP method with
starting point (u0, v0) ∈ X × Z to solve (13.32) corresponds to using DR with
starting point x0 := (u0, 0) − τB∗v0 ∈ X × Z to solve (13.40), in the sense that
(xn)n∈N = ((un, 0) − τB∗vn)n∈N and (yn)n∈N = (un+1, 0)n∈N.

Proof We apply DR to solve (13.40) with (f̃ , g) replaced by (τ f̃ , τg). The proof
proceeds by induction. When n = 0, by assumption we have x0 = (u0, 0)− τB∗v0.
It follows from Proposition 13.4(i)&(vii) below applied with f̃ replaced by τ f̃

that y0 = Prox
τ f̃

x0 = Proxτ f̃ ((u0, 0) − τ(A∗v0, C
∗v0)) = Proxτ f̃ (u0 −

τA∗v0,−τC∗v0) = (Proxτf (u0 − τA∗v0), 0). Now suppose that for some n ≥ 0
we have

xn = (un, 0) − τB∗vn, (13.42a)

yn = (un+1, 0). (13.42b)

Then

(un+1, 0) − τB∗vn+1 = (un+1, 0) − τB∗(Proxσg∗(vn + σA(2un+1 − un)))

(13.43a)

= yn − τB∗(Proxσg∗(vn + σB(2(un+1, 0) − (un, 0))))

(13.43b)

= yn − τB∗(Proxσg∗(στBB∗vn + σB(2(un+1, 0) − (un, 0))))

(13.43c)

= yn − τB∗ Proxσg∗(σB(2(un+1, 0) − ((un, 0) − τB∗vn)))

(13.43d)

= yn − Prox(τg◦B)∗(2yn − xn)) = xn+1, (13.43e)
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where (13.43a) follows from (13.37b), (13.43b) follows from (13.42b) and
Proposition 13.4(iii) below, (13.43c) follows from (13.39), and (13.43e) follows
from (13.42a), Proposition 13.4(viii) and (13.49b) below applied with (γ, g)

replaced by (τ, g ◦ B).
Now by (13.37a) and Proposition 13.4(vii) below we have

(un+2, 0) = (Proxτf (un+1 − τA∗vn+1), 0) (13.44a)

= Prox
τ f̃

(un+1 − τA∗vn+1,−τC∗vn+1) (13.44b)

= Prox
τ f̃

((un+1, 0) − τ(A∗vn+1, C
∗vn+1)) (13.44c)

= Prox
τ f̃

((un+1, 0) − τB∗vn+1) (13.44d)

= Prox
τ f̃

xn+1 = yn+1. (13.44e)

��
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Appendices

Appendix 1

Let A : X → X be linear. Define

qA : X → R : x �→ 1
2 〈x,Ax〉. (13.45)

Recall that a linear operator A : X → X is monotone if (∀x ∈ X) 〈x,Ax〉 ≥ 0,
and is strictly monotone if (∀x ∈ X � {0}) 〈x,Ax〉 > 0. Let h : X → R and
let x ∈ X. We say that h is Fréchet differentiable at x if there exists a linear
operator Dh(x) : X → R, called the Fréchet derivative of h at x, such that
lim0 �=‖y‖→0

h(x+y)−h(x)−Dh(x)y
‖y‖ = 0; and h is Fréchet differentiable on X if it is

Fréchet differentiable at every point in X.
The following lemma is a special case of [5, Proposition 17.36].

Lemma 13.3 Let A : X → X be linear, strictly monotone, self-adjoint and
invertible. Then the following hold:

(i) qA and qA−1 are strictly convex, continuous, Fréchet differentiable. Moreover,
(∇qA,∇qA−1) = (A,A−1).

(ii) q∗
A = qA−1 .
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Proof Note that, likewise A, A−1 is linear, strictly monotone, self-adjoint (since
(A−1)∗ = (A∗)−1 = A−1) and invertible. Moreover, ran A = ran A−1 = X. (i):
This follows from [5, Example 17.11 and Proposition 17.36(i)] applied to A and A−1

respectively. (ii): It follows from [5, Proposition 17.36(iii)], [28, Theorem 4.8.5.4]
and the invertibility of A that q∗

A = qA−1 + ιran A = qA−1 + ιX = qA−1 . ��
Proposition 13.3 Let L : Y → X be linear. Suppose that L∗L is invertible.
g : Y → ]−∞,+∞] be convex, lower semicontinuous, and proper. Then the
following hold:

(i) ker L = {0}.
(ii) L∗L is strictly monotone.

(iii) dom(qL∗L + g)∗ = X.
(iv) ∂(qL∗L + g) = ∇qL∗L + ∂g = L∗L + ∂g.
(v) (qL∗L + g∗)∗ is Fréchet differentiable on X.

(vi) (L∗L + ∂g∗)−1 is single-valued and dom(L∗L + ∂g∗)−1 = X.
(vii) Proxg∗◦L∗ = Id −L(L∗L + ∂g)−1L∗.

(viii) Prox(g∗◦L∗)∗ = L(L∗L + ∂g)−1L∗.

Proof (i): Using [5, Fact 2.25(vi)] and the assumption that L∗L is invertible we
have ker L = ker L∗L = {0}. (ii): Using (i) we have (∀x ∈ X � {0}) 〈L∗Lx, x〉 =
〈Lx,Lx〉 = ‖Lx‖2 > 0, hence L∗L is strictly monotone. (iii): By (ii) and
Lemma 13.3(i) applied with A replaced by L∗L we have dom qL∗L = dom q∗

L∗L =
X, hence

dom qL∗L − dom g = X − dom g = X. (13.46)

It follows from (13.46), [1, Corollary 2.1] and Lemma 13.3(ii)&(i) that dom(qL∗L +
g)∗ = dom q∗

L∗L + dom g∗ = dom q(L∗L)−1 + dom g∗ = X + dom g∗ = X. (iv):
Combine (13.46), [1, Corollary 2.1] and Lemma 13.3(i). (v): Since qL∗L is strictly
convex, so is qL∗L + g, which in view of [5, Proposition 18.9] and (iii) implies that
(qL∗L + g)∗ is Fréchet differentiable on X = int dom(qL∗L + g)∗. (vi): Using (iv),
Fact 13.8(i) applied with f replaced by qL∗L + g, (v) and [5, Proposition 17.31(i)]
we have (L∗L + ∂g)−1 = (∂(qL∗L + g))−1 = ∂(qL∗L + g)∗ = {∇(qL∗L + g)∗} is
single-valued with dom(L∗L + ∂g)−1 = X.

(vii): Let x ∈ X = dom(L∗L+∂g)−1 and let y ∈ X such that y = x −L(L∗L+
∂g)−1L∗x. Then using (vi) we have

x = y + Lu where u = (L∗L + ∂g)−1L∗x. (13.47)

Consequently, L∗y + L∗Lu = L∗x ∈ L∗Lu + ∂g(u), hence L∗y ∈ ∂g(u), equiv-
alently, in view of Fact 13.8(i) applied with f replaced by g, u ∈ (∂g)−1(L∗y) =
∂g∗(L∗y). Combining with (13.47) we learn that

x ∈ y + L ◦ (∂g∗) ◦ L∗(y). (13.48)
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Note that [5, Fact 2.25(vi) and Fact 2.26] implies that ran L∗ = ran L∗L = X,
hence 0 ∈ sri(dom g∗ − ran L∗). Therefore one can apply [5, Corollary 16.53(i)]
to re-write (13.48) as x ∈ (Id +∂(g∗ ◦ L∗))y. Therefore, y = Proxg∗◦L∗ x by [5,
Proposition 16.44]. (viii): Apply Fact 13.8(ii) with f replaced by g∗ ◦ L∗. ��

Appendix 2

Lemma 13.4 Let g : Y → ]−∞,+∞] be convex, lower semicontinuous, and
proper. Consider the following statements:

(i) g is strongly convex.
(ii) g∗ is Fréchet differentiable and ∇g∗ is Lipschitz continuous.

(iii) g∗ ◦L∗ is Fréchet differentiable and ∇(g∗ ◦L∗) = L ◦ (∇g∗) ◦L∗ is Lipschitz
continuous.

(iv) (g∗ ◦ L∗)∗ is strongly convex.

Then (i)⇔(ii)⇒(iii)⇔(iv).

Proof (i)⇔(ii): See [5, Theorem 18.15]. (ii)⇒(iii): Clearly g∗ ◦ L∗ is Fréchet
differentiable. Now let (x, y) ∈ X × X and suppose that β > 0 is a Lipschitz
constant of ∇g∗. It follows from [5, Corollary 16.53] that ‖∇(g∗ ◦ L∗)x − ∇(g∗ ◦
L∗)y‖ = ‖L◦(∇g∗)◦L∗x−L◦(∇g∗)◦L∗y‖ = ‖L((∇g∗◦L∗)x−(∇g∗◦L∗)y)‖ ≤
‖L‖‖(∇g∗ ◦ L∗)x − (∇g∗ ◦ L∗)y‖ ≤ β‖L‖‖L∗x − L∗y‖ ≤ β‖L‖‖L∗‖‖x −
y‖. (iii)⇔(iv): Use the equivalence of (i) and (ii) applied with g replaced by
(g∗ ◦ L∗)∗. ��

Appendix 3

We start by recalling the following well-known fact.

Fact 13.8 Let f : X → ]−∞,+∞] be convex, lower semicontinuous and proper
and let γ > 0. Then the following hold:

(i) (∂f )−1 = ∂f ∗.
(ii) Proxγf + Prox(γf )∗ = Id.

Proof (i): See, e.g., [27, Remark on page 216] or [23, Théorème 3.1].
(ii): See, e.g., [5, Theorem 14.3(iii)]. ��

Lemma 13.5 Let γ > 0. The Douglas–Rachford method given in (13.9) applied
to the ordered pair (γf, γg) with a starting point x0 ∈ X to solve (13.8) can be
rewritten as:
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yn = Proxγf xn (13.49a)

xn+1 = yn − Prox(γg)∗(2yn − xn). (13.49b)

Proof Using (13.9a), (13.10), and Fact 13.8(ii) applied with f replaced by g we
have

xn+1 = xn − Proxγf xn + Proxγg(2 Proxγf xn − xn) = xn − yn + Proxγg(2yn − xn)

= xn − yn + 2yn − xn − Prox(γg)∗(2yn − xn) = yn − Prox(γg)∗(2yn − xn),

(13.50)

and the conclusion follows. ��

Appendix 4

Proposition 13.4 Let (x, y, z) ∈ X × Y × Z and let B and f̃ be defined as in
(13.39) and (13.41). Then the following hold:

(i) B∗y = (A∗y, C∗y).
(ii) dom f̃ = dom f × {0}.

(iii) (∀(x, z) ∈ dom f̃ ) we have z = 0 and B(x, z) = Ax.
(iv) B(dom f̃ ) = A(dom f ).
(v) 0 ∈ sri(dom g − B(dom f̃ )).

(vi) argmin(f̃ + g ◦ B) = argmin(f + g ◦ A) × {0} �= ∅.
(vii) Proxf̃ (x, z) = (Proxf x, 0).

(viii) Prox(τg◦B)∗ = τB∗ Proxσg∗(σB).

Proof (i): This clearly follows from (13.39). (ii): It follows from (13.41) that
dom f̃ = dom f × dom ι{0} = dom f × {0}. (iii): The claim that z = 0 follows
from (ii). Now combine with (13.39). (iv): Combine (ii) and (iii). (v): Combine (iv)
and (13.34). (vi): We have

argmin(f̃ + g ◦ B) = zer(∂f̃ + B∗ ◦ ∂g ◦ B) (13.51a)

= zer(∂f × N{0} + ((A∗ ◦ ∂g ◦ A) × (C∗ ◦ ∂g ◦ C)))

(13.51b)

= (zer(∂f + A∗ ◦ ∂g ◦ A)) × (zer(N{0} + C∗ ◦ ∂g ◦ C)),

(13.51c)

where (13.51a) follows from (v) and (13.4) applied with (f, g, L) replaced by
(g, f̃ , B), and (13.51b) follows from (13.39) and (13.41). Therefore, (x, z) ∈
argmin(f̃ + g ◦ B) ⇔ [z = 0 and x ∈ zer(∂f + A∗ ◦ ∂g ◦ A)] ⇔ (x, z) ∈
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argmin(f + g ◦ A) × {0}. Now combine with (13.4). (vii): Combine (13.41) and
[5, Proposition 23.18]. (viii): Indeed, Proposition 13.3(viii) implies

Prox(τg◦B)∗ = B∗(BB∗ + (τ∂g)∗)−1B = B∗(σ−1τ−1 Id +∂g∗ ◦ τ−1 Id)−1B

(13.52a)

= B∗(σ−1(Id +σ∂g∗)τ−1 ◦ Id)−1B = τB∗ Proxσg∗(σB).

(13.52b)

��
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17. Combettes, P.L., Vũ, B.-C.: Variable metric forward–backward splitting with applications to
monotone inclusions in duality. Optimization 63, 1289–1318 (2014)

18. Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian,
proximable and linear composite terms. J. Optim. Th. Appl. 158, 460–479 (2013)

19. Deutsch, F.: Best Approximation in Inner Product Spaces, Springer (2001)
20. Eckstein, J.: Splitting Methods for Monotone Operators with Applications to Parallel Opti-

mization, Ph.D. thesis, MIT (1989)
21. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point

algorithm for maximal monotone operators. Math. Prog. 55, 293–318 (1992)
22. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Augmented

Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems,
vol. 15, pp. 299–331. North-Holland, Amsterdam (1983)

23. Gossez, J.-P.: Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs. J.
Math. Anal. Appl. 34, 371–395 (1971)

24. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J.
Numer. Anal. 16, 964–979 (1979)

25. O’Connor, D., Vandenberghe, L.: On the equivalence of the primal-dual hybrid gradient
method and Douglas–Rachford splitting. Math. Prog. (Ser. A) (2018), https://doi.org/10.1007/
s10107-018-1321-1.

26. Riesz, F., Sz.-Nagy, B.: Functional Analysis. Dover paperback (1990)
27. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J.

Math. 33, 209–216 (1970)
28. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Third Edition. Springer-Verlag

(2002)
29. Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and

variational inequalities. SIAM J. Con. Optim. 29, 119–138 (1991)
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