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Abstract In this survey paper we present the existing generalizations of the proxi-
mal point method from scalar to vector optimization problems, discussing some of
their advantages and drawbacks, respectively, presenting some open challenges and
sketching some possible directions for future research.
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11.1 Introduction

The usual way to solve a vector optimization problem is by scalarizing it, i.e.
by attaching to it a scalar optimization problem whose optimal solutions are also
optimal in some sense to the original problem. However, this approach can often
lead to unbounded scalar optimization problems, hence the necessity to address
the vector optimization problems directly, especially when it comes to numerically
solving them. One can find some results on the choice of scalarizing parameters in
order to guarantee the existence of optimal solutions of the scalarized problems in
the literature, but the imposed conditions are quite restrictive (see [47, 62]) and their
verification, when possible, may prove to be too expensive from a computational
point of view. There are some scalarization methods (for instance the one with the
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scalarization function introduced by Tammer (Gerstewitz) in [43] or by means of
a (semi-)norm, see also [49, Chapter 4]) that lead to scalar optimization problems
that are bounded from below, however the objective functions of the latter consist
of compositions of functions that are often unsuitable for the existing algorithms.
This situation has motivated research on iterative methods for directly solving
multiobjective or vector optimization problems consisting in vector-minimizing a
vector function, sometimes subject to (geometric) constraints, that are more or
less immediate extensions of scalar algorithms. Some of the first contributions
to this direction can be found in [54–56, 64] and the interest towards such
algorithms remained active during the next decades (see, for instance, [11, 60, 61]),
several other methods being adapted or developed. More recently, one can find
generalizations from the scalar case to the vector one of several classical methods
for solving both smooth optimization problems, such as the Newton’s method (cf.
[42]), the projected gradient method (cf. [46]) or the steepest descent method (cf.
[48]), and nonsmooth ones, for instance the proximal point method (cf. [24, 75]),
the proximal bundle one (cf. [58]) or the subgradient method (cf. [40]). Moreover,
one can find even methods for solving vector optimization problems that rely on
dynamical systems, such as the ones proposed in [5–7].

In this survey we focus on the existing generalizations of the proximal point
method from scalar to vector optimization problems, briefly presenting them and
discussing about their advantages and drawbacks, respectively, mentioning some
open problems and sketching some possible directions for future research. The
(already classical) proximal point algorithm was first proposed by Martinet in [59]
and shortly afterwards developed and extended by Rockafellar for solving monotone
inclusions, in particular convex (scalar) optimization problems. Since then there
were many contributions to this area of research, proximal point type algorithms
being now available for various complexly structured convex optimization problems
as well as for some classes of nonconvex optimization problems. We refer the reader
to [9] for more on the state of the art on this topic.

The first major contribution to extending the proximal point method from scalar
to vector optimization problems is the paper [24] due to Bonnel, Iusem and Svaiter.
One could argue that the earlier contributions [61] and [45, Section 4.2] contain
some proximal point type algorithms for solving vector optimization problems,
too, however, in the introduction of [24] the authors explicitly address this issue,
stressing that in these works the proximal point steps are actually applied on
scalar optimization problems. The mentioned work, written roughly fifteen years
ago and cited over one hundred times (according to google scholar) is still the
(gold) standard in the field and basically every further paper containing a proximal
point type method for solving vector optimization problems builds on it. In the
following we discuss around thirty such subsequent contributions (see [4, 12–
17, 19, 27–39, 41, 51–53, 67–75]) where one finds algorithms for solving vector
optimization problems of various types, where the objective functions are cone-
convex, cone-quasiconvex, differences of cone-convex functions or sums of such,
have a special structure or are arbitrary and map from Euclidean, Hilbert, Banach
or even Hadamard spaces to Euclidean or Banach ones, being minimized over
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the whole space or only over some sets or even subject to some other explicitly
formulated constraints. In some of these papers the proximality paradigm is present
in a classical manner, in some the proximal terms contain Bregman distances, quasi-
distances, or are formulated via viscosity functions. There are also two papers where
inertial/memory effects or hybrid constructions are added to the algorithm, and we
mention, too, some contributions where the regularization is performed by means of
a Tikhonov type function instead of the Moreau-Yosida one from the proximal point
algorithms.

The method proposed in [24] and extended and refined in subsequent contri-
butions does not directly scalarize the original vector optimization problem. The
proximal step of the algorithm consists in choosing as the next iterate a weakly
efficient solution of the intermediate vector optimization problem corresponding to
the current iteration. The intermediate vector optimization problems are constructed
by means of a Moreau-Yosida type regularization and, consequently, they always
have weakly efficient solutions. Moreover, the scalarized optimization problems
attached to them by any nonzero linear continuous functional from the dual cone of
the ordering cone have optimal solutions and, thus, deliver weakly efficient solutions
to the intermediate vector optimization problems. This observation is used in the
convergence proof, however it does not mean that the original vector optimization
problem or the intermediate ones have to be actually scalarized when the algorithm
is running. Note also that most of the proximal point type algorithms for vector
optimization problems deliver weakly efficient solutions or even, in the nonconvex
case, critically efficient solutions to them. The convergence to efficient solutions can
be then guaranteed under additional hypotheses.

Note that we have used in this survey the vector optimization problems as they
were considered in the original works, i.e. in Euclidean, Hilbert or Banach spaces
and with or without constraints, respectively. In order to maintain a reasonable
length of the work, we gave for each algorithm only a convergence statement, not
other related results such as well definiteness of the iterations.

Most of the proximal point type algorithms for solving vector optimization
problems are formulated as theoretical schemes and some of them are accompanied
by inexact versions that should be more suitable for implementation. While the
papers presenting algorithms for solving scalar optimization problems usually
contain applications and computational results, this is rarely the case for the ones
dealing with methods for solving vector optimization problems. The algorithm
introduced in [24] is explicitly presented as a theoretical scheme meant to be
implemented someday and many of its followers are introduced in a similar
manner. We discuss later the difficulties encountered while trying to actually
numerically test such algorithms. However, making use of additional methods in
order to solve the intermediate problems, various authors managed to provide viable
implementations of the proximal point type algorithms they introduced for solving
vector optimization problems and hence to deliver concrete computational results.
We mention in the following, where applicable, on which classes of problems were
the considered algorithms tested.
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11.2 Preliminaries

In the following we present the general framework we consider within this study,
following [24]. Where necessary we mention the changes to this setting. Note,
however, that this work is not completely self-contained and the reader is referred
to the original sources for some definitions and more properties of notions that are
only briefly employed or mentioned within this study.

Let X be a Hilbert space and (Y, ‖ · ‖) a separable Banach space that is partially
ordered by a pointed closed convex cone C ⊆ Y . Recall that C ⊆ Y is said to be
a cone when tC ⊆ C for all t ≥ 0, that is called pointed when −C ∩ C = {0}.
The partial ordering induced by C on Y is denoted by “�C” (i.e. it holds x �C y

when y − x ∈ C, where x, y ∈ Y ) and we write x ≤C y if x �C y and x �= y.
A greatest element with respect to “�C” denoted by ∞C which does not belong to
Y is attached to this space, and let Y • = Y ∪ {∞C}. Then for any y ∈ Y one has
y ≤C ∞C and we consider on Y • the operations y + ∞C = ∞C + y = ∞C for
all y ∈ Y • and t · ∞C = ∞C for all t ≥ 0. By 〈y∗, y〉 we denote the value at
y ∈ Y of the linear continuous functional y∗ ∈ Y ∗, where (Y ∗, ‖ · ‖∗) is the dual
space of Y , and by convention we take 〈y∗,∞C〉 = +∞ for all y∗ ∈ C∗, where
C∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 ∀y ∈ C} is the dual cone to C. The restricted
polar to the cone C is Kδ = {z∗ ∈ Y ∗ : 〈z∗, y〉 ≥ δ‖y‖‖z∗‖ for all y ∈ C} for
some δ > 0. Given a subset U of X, by cl U , cone U , int U and δU we denote its
closure, conical hull, interior and indicator function, respectively. As int C ∪ {0}
is a convex cone, too, we also write x <C y when y − x ∈ int C. A set W ⊆ Y

is said to have the domination property with respect to C, if there exists w ∈ Y

such that W ⊆ w + C. The closed unit ball of Y is denoted by BY and its unit
sphere by SY . The convergence in the (corresponding) weak topology is denoted
by “⇀”, idX : X → X is the identity operator on X and by PrU we denote the
projection onto the (closed convex) set U ⊆ X. When Y is finitely dimensional we
consider it endowed with the Euclidean norm, unless otherwise specified. Denote
also e = (1, . . . , 1)� ∈ R

m.
A Banach space (Z, ‖·) is said to be strictly convex if ‖(1/2)(x + y)‖ < 1 for all

x, y ∈ Z with ‖x‖ = ‖y‖ = 1 and x �= y, and uniformly convex if limn→+∞ ‖xn −
yn‖ = 0 for any two sequences (xn)n, (yn)n ⊆ SZ such that limn→+∞(‖xn +
yn‖)/2 = 1. One says that Z is (uniformly) smooth if the limit limt→0(‖x+ty‖x‖)/t

exists (and is attained uniformly) for all x, y ∈ SZ . The normalized duality mapping
of Z is JZ : Z → 2Z∗

defined by JZ(x) = {x∗ ∈ Z∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2∗}.
When f : X → R = R ∪ {±∞} is proper (i.e. is nowhere equal to −∞ and

has at least a real value) and ε ≥ 0, if f (x) ∈ R the (convex) ε-subdifferential of
f at x is ∂εf (x) = {x∗ ∈ X∗ : f (y) − f (x) ≥ 〈x∗, y − x〉 − ε ∀y ∈ X}, while
if f (x) = +∞ we take by convention ∂εf (x) = ∅. The ε-subdifferential of f

becomes in case ε = 0 its classical (convex) subdifferential denoted by ∂f . Then
x̄ ∈ X is a minimum of f if and only if 0 ∈ ∂f (x̄). Denote also by [t]+ = max{t, 0}
for any t ∈ R.
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A vector function F : X → Y • = Y ∪ {∞C} is said to be proper if its
domain dom F = {x ∈ X : F(x) ∈ Y } is nonempty, (strictly) C-convex if
F(tx + (1 − t)y) �C (<C)tF (x) + (1 − t)F (y) for all x, y ∈ X and all
t ∈ (0, 1) and positively C-lower semicontinuous (in the literature also star C-
lower semicontinuous) when the function x �→ 〈z∗, F (x)〉, further denoted by
(z∗F) : X → R, is lower semicontinuous for all z∗ ∈ C∗ \ {0}. A slightly stronger
generalization of the classical lower semicontinuity to vector functions is the one
due to Penot and Théra (cf. [66]) who called F to be C-lower semicontinuous x ∈ X

if for any neighborhood V of 0 and for any b ∈ Y satisfying b �C F(x), there exists
a neighborhood U of x in X such that F(U) ⊆ b+V +C∪{∞C}. Last but not least,
F is called (cf. [36, 37, 39]) positively partially continuous if (z∗F) is continuous
on every closed convex subset of dom F for every z∗ ∈ C∗, and C∗-asymptotically
uniformly continuous when for every bounded sequences (xn)n, (yn)n ⊆ X such
that limn→+∞ ‖xn − yn‖ = 0 and each sequence (z∗

n)n ⊆ C∗ weakly∗-converging
to some z∗ ∈ C∗ there holds limn→+∞〈F(xn) − F(yn), z

∗
n − z∗〉 = 0. Related

to this one can also define F to be C∗-uniformly semicontinuous (on some closed
convex set S ⊆ X) when for every weakly convergent sequence (xn)n ⊆ S to some
x ∈ S and each sequence (z∗

n)n ⊆ C∗ weakly∗-converging to some z∗ ∈ C∗, one
has limn→+∞ |〈z∗

n, F (xn) − F(yn)〉 − 〈z∗, F (x) − F(yn)〉| = 0 for any sequence
(yn)n ⊆ S for which limn→+∞ ‖xn − yn‖ = 0. A generalization of the (convex)
ε-subdifferential for vector functions is necessary for our presentation, too. When
F : Rn → R

m, K ⊆ R
m is a convex cone and ε ≥ 0, the (vector) ε-subdifferential

of F at x ∈ R
n is ∂εF (x) = {V ∈ R

m×n : F(x) + V T (y − x) �K F(y) + εe

∀y ∈ X} and it becomes the (vector) subdifferential of F denoted by ∂F when
ε = 0.

Some notions of nonconvex nonsmooth analysis are necessary as well. Let
f : R

n → R be locally Lipschitz at x ∈ R
n and d ∈ R

n. The Clarke
directional derivative of f at x in the direction d is defined as f C(x; d) =
limt↓0 supy→x(f (y + td) − f (y))/t , while the Clarke subdifferential of f at x

is ∂Cf (x) = {w ∈ R
n : w�d ≤ f C(x; d) ∀d ∈ R

n}.
In order to introduce some generalized distances, the following notions are

necessary. A function d : Rn ×R
n → R+ ∪ {+∞} is said to be a proximal distance

with respect to a nonempty open convex set S ⊆ R
n (cf. [8]) if for each y ∈ S it

satisfies the following properties

(P1) d(·, y) is proper, convex and continuously differentiable on S;
(P2) dom d(·, y) ⊆ cl S and dom ∇1d(·, y) = S, where ∇1 denotes the gradient

map with respect to the first variable;
(P3) d(·, y) is level bounded on R

n, i.e., lim‖x‖→+∞ d(x, y) = +∞;
(P4) d(y, y) = 0.

Moreover, a function H : Rn × R
n → R+ ∪ {+∞} is called the induced proximal

distance to a given proximal distance d if H is finitely valued on cl S × S and for
each y, z ∈ S it satisfies H(y, y) = 0, ∇1d(z, y)�(x − z) ≤ H(x, y) − H(x, z)

for all x ∈ cl S and H(x, ·) is level bounded on S, for all x ∈ cl S. One denotes by
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F∗(cl S) the set of pairs (d,H) as introduced above that satisfy the following two
additional properties

(P5) if (yn)n ⊆ S is a bounded sequence in S and ȳ ∈ cl S such that
limn→+∞ H(ȳ, yn) = 0, then limn→+∞ yn = ȳ;

(P6) if (yn)n ⊆ S converges to y, then at least one of the relations
limn→+∞ H(y, yn) = 0 and limn→+∞ H(ȳ, yn) = +∞ for all ȳ ∈ S

such that ȳ �= y holds true.

On the other hand, one says that q : Rn ×R
n → R+ is a quasi-distance (cf. [72])

when for any x, y, z ∈ R
n it holds

(Q1) q(x, y) = q(y, x) = 0 ⇔ x = y;
(Q2) q(x, z) ≤ q(x, y) + q(y, z).

In [33] a vector-valued Bregman distance function was introduced. Let the
proper, strictly C-convex and C-lower semicontinuous vector function G : Rn →
(Rm)• whose domain is closed, convex and has a nonempty interior, on which it
is Gâteaux differentiable with the Gâteaux derivative DG(·). The vector-valued
Bregman distance with respect to G is the map BG : dom G × int(dom G) → R

m,
defined by BG(z, x) = G(z) − G(x) − DG(x)(z − x). Moreover, G is said to be a
vector-valued Bregman distance function if it satisfies the following hypotheses

(A1) for any x, y, z ∈ int(dom G), if (DG(x) − DG(y))�(z − x) /∈ − int C, then
(DG(x) − DG(y))�(z − x) ∈ C;

(A2) for any x ∈ dom G, λ ∈ {a ∈ R
m+ : ‖a‖ = 1}, bounded sequences

(xn)n, (yn)n ⊆ int(dom G) such that limn→+∞ ‖xn − yn‖ = 0, it holds
limn→+∞(BG(x, xn) − BG(x, yn))

�λ = 0;
(A3) for any bounded sequences (xn)n, (yn)n ⊆ int(dom G) such that

limn→+∞ yn = y and, for any λ ∈ {a ∈ R
m+ : ‖a‖ = 1},

limn→+∞ BG(xn, yn)
�λ = 0, one has limn→+∞ xn = y.

A vector-valued Bregman distance function G : Rn → (Rm)• that satisfies also
the condition

(A4) for every y ∈ R
n and λ ∈ R

m+ ∩ SRm , there exists x ∈ int(dom G) such that
DG(x)�λ = y;

is said to be a strengthened vector-valued Bregman distance function.
On the other hand, a vector-valued coercive viscosity function G : Rn → (Rm)•

is a proper, strictly C-convex and C-lower semicontinuous vector function with a
closed convex domain with a nonempty interior, that is Gâteaux differentiable on
the interior of its domain and whose Gâteaux derivative DG(·) is nonexpansive on
dom G such that there exists an x ∈ dom G with ‖x‖ < +∞ such that DG(x) = 0.

When Z is a smooth Banach space, one defines the Lyapunov functional as L :
Z × Z → R+, defined by L(x, y) = ‖x‖2 − 2〈JZ(y), x〉 + ‖y‖2, x, y ∈ Z. For
further properties of this function that are relevant for the algorithms discussed in
this paper the reader is referred to [35, Section 2].

Let S ⊆ X. A mapping A : S → X is said to be monotone when 〈Ax − Ay, x −
y〉 ≥ 0 for all x, y ∈ S. Using it, one can define a monotone variational inequality
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problem that consists of determining an x ∈ S such that 〈Ax, y − x〉 ≥ 0 for all
y ∈ S and whose set of solutions is denoted by V I (A, S).

Assume further, unless explicitly stated otherwise, that int C �= ∅. Consider the
vector optimization problem

(V P ) Min
x∈X

F(x),

where F : X → Y • is a proper vector function. When Y = R
m we usually write

F = (F1, . . . , Fm)�.
In case the vector minimization of F is considered subject to some nonempty

subset S of X such that dom F ∩S �= ∅, we consider the vector optimization problem

(V PG) Min
x∈S

F (x).

Later in Remark 11.33 a vector optimization problem with both geometric
and equality constraints is briefly discussed, while in Section 11.5 we consider
other vector optimization problems whose objective functions consist of sums or
differences of (C-convex) vector functions.

In the literature one can find different solution notions for vector optimization
problems. We present here the ones needed for our presentation. An element
x̄ ∈ dom F is said to be an efficient solution to (V P ) if there is no x ∈ X

such that F(x) ≤C F(x̄) and a weakly efficient solution to (V P ) if (F (x̄) −
int C) ∩ F(dom F) = ∅, respectively. We denote by E(V P ) the efficiency set
to (V P ), i.e. set of all efficient solutions to (V P ), and by WE(V P ) the one
of all weakly efficient ones, i.e. the weak efficiency set. Moreover, x̄ ∈ dom F

is a properly efficient solution (in the sense of Henig and Lampe) to (V P ) if
there is a pointed closed convex cone K ⊆ Y such that C \ {0} ⊆ int K and
(F (dom F) − F(x̄)) ∩ (−K) = {0}, and we denote this by x̄ ∈ PE(V P ). Another
proper efficiency notion considered in this presentation is the following (for other
types of properly efficient solutions to (V P ), such as the ones due to Borwein from
[25, 26], we refer to [21, Section 2.4]). We say, for δ ∈ (0, 1], that x̄ ∈ dom F is
a properly efficient solution (with respect to Kδ) to (V P ) when there exists some
z∗ ∈ Kδ \ {0} such that 〈z∗, F (x̄)〉 ≤ 〈z∗, F (x)〉 for all x ∈ X and we write
this x̄ ∈ PEδ(V P ). The corresponding efficiency notions for (V PG) are defined
analogously, by replacing X by S and dom F by dom F ∩ S in the definitions.
Further, when X = R

n, Y = R
m and F : R

n → R
m is locally Lipschitz,

an element x̄ ∈ R
n is said to be a (Pareto-Clarke) critically efficient solution

to (V P ) if, for any direction d ∈ R
n, there exists a j̄ ∈ {1, . . . , m}, such that

FC
j (x̄; d) ≥ 0. When F can be written as the difference of two C-convex functions

F1, F2 : Rn → R
m the last definition collapses to the existence of a u ∈ C∗ ∩ SRm

such that 0 ∈ (∂F1(x) − ∂F2(x))�u. Theoretically nice, but without much practical
relevance are the so-called ideally efficient solutions to (V P ) in case Y = R

m,
defined as those x̄ ∈ dom F for which Fj (x̄) ≤ Fj (x) for all x ∈ X, where
F = (F1, . . . , Fm)�.

From [21, Corollary 2.4.26] one has the following characterization of the weakly
efficient solutions to (V P ) in the convex setting.
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Lemma 11.1 If F is also C-convex, then x̄ ∈ WE(V P ) if and only if

∃z∗ ∈ C∗ \ {0} : 〈z∗, F (x̄)〉 ≤ 〈z∗, F (x)〉 ∀x ∈ X.

Remark 11.1 As noted above, there are quite simple vector optimization problems
where an unfortunate choice of the scalarizing function can often lead to unbounded
scalar optimization problems. Take, for instance, the example presented in [24,
Remark 1], where X = Y = R

2, C = R
2+ and F(x1, x2) = (x2

1 − x2, x2)
�. For

every z∗ = (z∗
1, z

∗
2)

� ∈ C∗ = R
2+ with z∗

1 �= z∗
2 the scalarized optimization problem

infx∈X(z∗F)(x) is unbounded from below, hence it has no optimal solutions and
is of little use in identifying the weakly efficient solutions to the original vector
optimization problem. Only the scalarization functionals based on z∗ = (z∗

1, z
∗
2)

� ∈
R

2+ \ {0} with z∗
1 = z∗

2 generate scalarized optimization problems that have
optimal solutions, delivering hence weakly efficient solutions to the original vector
optimization problem.

For guaranteeing the convergence of many of the algorithms that are presented
in this work the following notion is necessary. Note that it is defined in a more
general framework in [57, Definition 3.2]. It is followed by a weaker version needed
only for the convergence of the method from [28, 38] (see Theorem 11.15 and
Theorem 11.16).

Definition 11.1 (cf. [24]) Given x ∈ X, the set F(X) ∩ (F (x) − C) is said to be
C-complete when for all sequences (an)n ⊆ X with a0 = x such that F(an+1) �C

F(an) for all n ≥ 1 there exists an a ∈ X such that F(a) �C F(an) for all n ≥ 1.

Definition 11.2 (cf. [28]) Given x ∈ S, where S ⊆ X is a closed convex set, the
set F(S) ∩ (F (x) − C) is said to be C-quasicomplete for S when for all sequences
(an)n ⊆ X with a0 = x such that F(an+1) �C F(an) for all n ≥ 1 one has
F(a) �C F(an) for all n ≥ 1 and all a ∈ WE(V P ) ∩ V I (S,A), where A : S → X

is a monotone mapping.

11.3 The Original Proximal Point Type Method for Vector
Optimization Problems

As mentioned above, the first work where the classical proximal point method was
actually extended from scalar optimization to vector optimization problems is [24].
The algorithm introduced there, on which basically all the future contributions to
this field rely on, is the following one.

Algorithm 1 Choose the starting point x1 ∈ dom F and the exogenous sequences
(αn)n ⊆ (0, α], with α > 0, and (en)n ⊆ int C such that ‖en‖ = 1 for all n ≥ 1.
Consider the following iterative steps
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1 let n = 1;
2 if xn ∈ WE(V P ), then xn+p = xn for all p ≥ 1;

3 otherwise find xn+1 ∈ WE
{
F(x) + αn

2 ‖x − xn‖2en : x ∈ Ωn

}
, where Ωn =

{x ∈ X : F(x) �C F(xn)};
4 take n := n + 1 and go to Step 2.

Under usual convexity and topological hypotheses applied on F one can prove
the following weak convergence result.

Proposition 11.1 (cf. [24, Proposition 3.3]) Let F be C-convex and positively C-
lower semicontinuous. If the sequence (xn)n generated by Algorithm 1 has a weak
cluster point, then it is weakly convergent towards a weakly efficient solution to
(V P ).

However, in order to prove the weak convergence of this algorithm towards a
weakly efficient solution to (V P ) regardless of the knowledge available only after
running it, an additional hypothesis is necessary.

Theorem 11.1 (cf. [24, Theorem 3.1]) Let F be C-convex and positively C-lower
semicontinuous and assume that F(X) ∩ (F (x1) − C) is C-complete. Then any
sequence (xn)n generated by Algorithm 1 converges weakly towards a weakly
efficient solution to (V P ).

Some comments are in order.

Remark 11.2 When Y = R and C = R+ (i.e. in the scalar case), Algorithm 1
collapses to the classical proximal point method for scalar optimization problems,
supporting thus the fact that it is a direct extension of the latter.

Remark 11.3 In every iteration of Algorithm 1 a different intermediate vector
optimization problem is addressed, each of them having a smaller feasible set than
its predecessor.

Remark 11.4 The operation that takes place in Step 3 of Algorithm 1 can be
considered as a vector counterpart of determining the proximal point of a scalar
function at a given point, i.e. one could call the set-valued mapping

v �→ WE
{
F(x) + αn

2
‖x − v‖2en : x ∈ Ωv

}
, (11.1)

where Ωv = {x ∈ X : F(x) �C F(v)}, vector proximal point operator.
Of course the analogy is not perfect, since the scalar (Moreau) proximal point
operator is single-valued if the involved scalar function is proper, convex and
lower-semicontinuous. Note also that the arg min operation within is unconstrained.
However, (11.1) is at the moment the closest construction to the scalar (Moreau)
proximal point operator one has in the vector case and when particularized to the
scalar framework it coincides with the latter.
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Remark 11.5 The construction of xn+1 in Algorithm 1 guarantees the decreasing
monotonicity of the sequence (F (xn))n with respect to the cone C. However, this is
not enough to guarantee its convergence.

Remark 11.6 Alternate stopping rules to the one used in the formulation of
Algorithm 1 can be found in [24, Remark 2 and Proposition 3.2]. Since it is
usually not an easy task to verify whether xn ∈ WE(V P ), one can instead check if
xn+1 = xn.

Remark 11.7 At a first look the construction of the new iterate in Algorithm 1
contradicts the basic fact that the subproblems that are employed in an iterative
process have to be simpler and more easily solvable than the original optimization
problem one aims to solve with the method in discussion, as the intermediate
problems have more complicated objective functions than (V P ) and, on the top of
it, they are constrained (in a world where the proximal point methods still lack the
ability to solve general constrained optimization problems even in the scalar setting).
However, any z∗ ∈ C∗ \ {0} provides a suitable scalarization functional (whose
existence is guaranteed by Lemma 11.1 under the hypotheses of Theorem 11.1) for
the vector optimization problems in Step 3 of Algorithm 1. This endows the method
with additional flexibility properties that may prove to be useful when implementing
it. Moreover, even if the function

x �→
〈
z∗, F (x) + αn

2
‖x − xn‖2en

〉
+ δΩn(x)

has, because it is lower semicontinuous and strongly convex, exactly one minimum
that is xn+1, the sequence (xn)n is not uniquely determined because for each choice
of z∗ ∈ C∗ \ {0} one deals with a different such function. This does not mean
that the vector optimization problem (V P ) is a priori scalarized by means of a
linear continuous functional, because this scalarization is applied to the intermediate
vector optimization problems not to (V P ).

Remark 11.8 Different to the classical proximal point method, in the convergence
statement Theorem 11.1 it is not necessary to assume the existence of a solution
of the considered optimization problem, i.e. a weakly efficient solution to (V P ),
in order to prove the convergence of Algorithm 1. The role of such a hypothesis
in showing the convergence of the method has been fully covered in the proof of
Theorem 11.1 (see [24, Theorem 3.1]) by the assumed C-completeness hypothesis.
Considering the former instead of the latter, the role of ∩n≥1Ωn would be taken
by WE(V P ) in the proof of Theorem 11.1 (i.e. [24, Theorem 3.1]). However,
then is the inclusion WE(V P ) ⊆ Ωn for all n ≥ 1 not obviously guaranteed by
construction and should be separately investigated (or imposed). Note moreover
that assuming the existence of some x̄ ∈ WE(V P ) does not automatically deliver
the corresponding scalarizing parameter z̄∗ that exists according to Lemma 11.1,
which would probably be needed in formulating the algorithm under the mentioned
hypothesis.
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Remark 11.9 In the scalar setting (i.e. when Y = R and C = R+), when the set
of minimizers of a function f : X → R is nonempty, for every x1 ∈ dom F

the intersection (f (x1) − R+) ∩ f (X) is R+-complete, i.e. the C-completeness
hypothesis of Theorem 11.1 is always satisfied. However, in even slightly more
complex frameworks this hypothesis is no longer automatically valid and its even-
tual fulfillment is not always easy to verify. Sufficient conditions for guaranteeing
that F(X)∩ (F (x1)−C) is C-complete were proposed in [57, Lemma 3.5], namely

• the set (F (x1) − C) ∩ F(X) is compact;
• the set (F (x1) − C) ∩ F(X) is weakly compact;
• the set (F (x1)−C)∩F(X) is closed and has a lower bound and the cone C has

the Daniell property (i.e., any decreasing net having a lower bound converges
to its infimum).

On the other hand, it could be interesting to investigate whether the weaker hypoth-
esis of C-quasicompleteness imposed on F(X)∩(F (x1)−C) in Theorem 11.15 and
Theorem 11.16 could prove to be sufficient for convergence for other algorithms as
well.

Remark 11.10 For determining the optimal solutions of the scalarized optimization
problems attached to the vector optimization problems in Step 3 of Algorithm 1
one can try to employ a splitting type algorithm designed for finding the optimal
solutions of optimization problems consisting in minimizing sums of convex
functions, like the ones proposed in [9, 18, 20, 22]. However, the processing of
the functions δΩn , n ≥ 1, may prove to be quite difficult, due to the special
structure of the sets Ωn, n ≥ 1. A way to go round this nuisance is, as seen
in [4, 19, 52, 53, 67–69], by employing some other algorithms for solving the
intermediate scalar optimization problems, for instance one based on interior point
methods.

In [24, Section 4] it is discussed about the additional hypotheses needed by
Algorithm 1 in order to deliver efficient solutions to (V P ) instead of weakly
efficient ones. In this case it is not necessary to have int C �= ∅.

Theorem 11.2 (cf. [24, Theorem 4.1]) Let F be C-convex and positively C-lower
semicontinuous and assume that F(X) ∩ (F (x1) − C) is C-complete and that there
exists some δ > 0 such that the set Kδ is nonempty. Then any sequence (xn)n
generated by Algorithm 1 with the selection

xn+1 = arg min
x∈Ωn

〈z∗
n, F (x) + αn

2
‖x − xn‖2en〉,

where (z∗
n)n ⊆ Kδ , converges weakly towards an efficient solution to (V P ).

Last but not least, an inexact version of Algorithm 1 is proposed in [24, Section 5]
for the purpose of providing an implementable iterative scheme, that, however,
was not concretely tested on an example or an application. As the authors put
it, the Step 3 in Algorithm 2 is formulated in a scalar manner in order to avoid
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unnecessary complications, but xn+1 could be as well taken as some approximate
weakly efficient solution to the corresponding intermediate vector optimization
problem in Algorithm 1.

Algorithm 2 Choose the starting point x1 ∈ dom F , the relative error tolerance
σ ∈ [0, 1) and the exogenous sequences (αn)n ⊆ (0, α], with α > 0, (en)n ⊆ int C
such that ‖en‖ = 1 for all n ≥ 1 and (z∗

n)n ∈ C∗ such that ‖z∗
n‖ = 1 for all n ≥ 1.

Consider the following iterative steps

1 let n = 1;
2 if xn ∈ E(V P ), then xn+p = xn for all p ≥ 1;
3 otherwise find xn+1 ∈ X as a solution of the inclusion 0 ∈ ∂εn〈z∗

n, F (x) +
δΩn〉 + αn〈z∗

n, en〉(x − xn), where εn ≤ σ αn

2 〈z∗
n, en〉‖x − xn‖2;

4 take n := n + 1 and go to Step 2.

The convergence of Algorithm 2 is obtained in a similar manner to the one of
Algorithm 1 and in [24, Remark 6] it is stated that one can also obtain efficient
solutions to (V P ) under the additional hypotheses from Theorem 11.2.

Theorem 11.3 (cf. [24, Theorem 5.1]) Let F be C-convex and positively C-lower
semicontinuous and assume that F(X) ∩ (F (x1) − C) is C-complete. Then any
sequence (xn)n generated by Algorithm 2 converges weakly towards a weakly
efficient solution to (V P ).

Remark 11.11 As noted in [19, Remark 11], vector optimization problems with
the ordering cones of the image spaces having empty interiors, but nonempty
generalized interiors can be found in finance mathematics (see, for instance, [1, 44])
and other research fields. This has motivated the weakening of the definition of the
weakly efficient solutions to (V P ) (cf. [44, 49, 50]) for the case when int C = ∅ by
replacing this hypothesis with the nonemptiness of the quasi interior of C (i.e. the
set of all y ∈ Y such that cl(cone(V −y)) = Y ). In order to characterize these more
general weakly efficient solutions to (V P ) one can use [50, Corollary 9] instead
of Lemma 11.1. However, since the key result [23, Lemma 2.2] does not hold in
case int C = ∅, the proof of the algorithm convergence statement Theorem 11.1
has to be modified, for instance, by scalarizing all the subproblems with the same
z̄∗ ∈ C∗ \ {0}. On the other hand, in finitely dimensional spaces so-called relatively
weakly efficient solutions to (V P ) can be defined when C has an empty interior
but a nonempty relative interior and they can be characterized by means of linear
scalarization (cf. [49]) while the impediment mentioned above does not occur due
to the equivalence of the corresponding weak and strong topologies.

Remark 11.12 Algorithm 1 is applied in [31] for vector-minimizing in the finitely
dimensional setting where X = R

n and Y = R
m the composition of a vector

function with a linear continuous mapping subject to a geometric constraint. We
have not included this method in Section 11.5 because the author merely replaced
in Algorithm 1 the vector function F : R

p → (Rm)• with its composition with
the considered linear continuous mapping A : R

n → R
p and did not apply

some splitting method in order to process F and A separately during the iterative
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process. In order to guarantee the convergence of the method towards a weakly
efficient solution to the considered vector optimization problem no C-completeness
hypothesis is employed, however the domination property of the image of the
objective vector function is imposed and the weak efficiency set is taken to be
compact.

Remark 11.13 In the literature one can find contributions where the convergence of
Algorithm 1 (or of its inexact version) is proven under different hypotheses than the
ones of Theorem 11.1, in the sense that the objective function F of the considered
vector optimization problem needs not be C-convex in order to achieve the desired
result. In the following we discuss briefly the results of [4, 12, 14, 15, 69]. Consider
the finitely dimensional setting with X = R

n, Y = R
m and, moreover, C = R

m+.
In [12] Algorithm 1 (with the difference that the elements of the sequence (xn)n are
additionally asked to lie in S) is employed for solving (V PG) (the geometrically
constrained counterpart of (V P )). The components of the vector function F are
asked to be locally Lipschitz and, under some additional hypotheses imposed on
the involved sequences it is shown in [12, Theorem 3] that every cluster point of
(xn)n is a critically efficient solution to (V PG). Taking the components of F to
be quasiconvex and imposing the R

m+-completeness hypothesis, the convergence of
the generated sequence (xn)n towards a critically efficient solution to (V PG) is
achieved. An application to the compromise solution problem is discussed, however
no numerical results are provided. The same algorithm is employed in [15] for
vector minimizing a vector function F : Rn → R

m whose components are maxima
of continuously differentiable functions over some given subset of R

n. In [15,
Theorem 1] the convergence of the iterative method is investigated and it is shown
that each cluster point of the generated sequence is a critically efficient solution to
(V PG). Under additional hypotheses the convergence of the generated sequence
towards a weakly efficient solution to (V PG) is achieved. Further, in [14] a
proximal point type algorithm that solves at each step a scalarized version (by means
of a special case of the Tammer scalarization function - the so-called maximum
scalarization, see also Remark 11.31 and Remark 11.32) of the corresponding
intermediate vector optimization problem from Algorithm 1 is proposed, with the
convergence of the generated sequence towards a critically efficient solution to
(V P ) shown under quasiconvexity hypotheses imposed on the components of F

in [14, Theorem 4.1]. It is also shown that under stronger assumptions the sequence
can converge towards a weakly efficient solution to (V P ) and even an efficient one
in [14, Theorem 4.3], while an application to behavioural science is also discussed.
Last but not least in [4, 69] one finds proximal point type algorithms for solving
(V P ) with the components of F taken quasiconvex, where the iterations are defined
as zeros of subdifferential inclusions, in the vein of Algorithm 2 but without the
error sequence (εn)n and with the Clarke and Fréchet subdifferential, respectively,
instead of the convex one. The convergence of the generated sequence is guaranteed
towards critically efficient solutions (and, under additional convexity hypotheses
imposed on the components of F , also towards weakly efficient solutions) to (V P )

in [4] and towards a minimizing set (and, under additional continuity hypotheses
imposed on the components of F , also towards weakly efficient, and, if these are
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taken also convex, even efficient solutions) to (V P ). Worth noticing, however, is
that in both these papers computational results obtained in MATLAB are presented,
too. Note also that in [4] one can find an application to location theory, while in
[69] an inexact version of the considered algorithm and an application to consumer
demand theory are given as well.

11.4 Modifications and Extensions of the Original Method

Several authors have proposed various modifications and extensions of the proximal
point type method introduced in [24]. Besides the extensions towards nonconvex
vector optimization problems mentioned in Remark 11.13, there are algorithms
where the norm distance from the classical proximal point iteration is replaced by a
quasi-distance, a Bregman distance, a Lyapunov distance or is formulated by means
of a viscosity function and proximal point type algorithms with inertial/memory
effects or hybrid constructions. Generalizations of the algorithm from [24] towards
Hadamard and Banach spaces were proposed, too. We also briefly mention some
contributions where the regularization is performed by means of a Tikhonov type
function instead of the Moreau-Yosida type one from the proximal point algorithms.

We begin with algorithms where the classical distance expressed via a norm is
replaced by a generalization of it.

11.4.1 Algorithms with Bregman-Type Distances

In [75], a so-called interior proximal method is proposed for solving a geometrically
constrained version of (V P ) in finitely-dimensional spaces, i.e. (V PG), where F :
R

n → (Rm)• is a proper vector function and S ⊆ R
n is a closed convex set with

nonempty interior. The algorithm employs a proximal distance d with respect to
int S and before formulating it one assumes that S ⊆ dom F .

Algorithm 3 Choose the starting point x1 ∈ int S and the exogenous sequences
(αn)n ⊆ (0, α], with α > 0, and (en)n ⊆ int C such that ‖en‖ = 1 for all n ≥ 1.
Consider the following iterative steps

1 let n = 1;
2 if xn ∈ WE(V PG), then xn+p = xn for all p ≥ 1;

3 otherwise find xn+1 ∈ WE
{
F(x) + αnd(x, xn)en : x ∈ Ωn

}
;

4 take n := n + 1 and go to Step 2.

For the statement on convergence towards a weakly efficient solution to (V PG),
the following additional hypotheses are required

(B1) ∃z̃ ∈ C∗ \ {0} such that z̃�F(x) > −∞ for all x ∈ S;
(B2) d(·, u) is coercive for any u ∈ S in R

n.
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Theorem 11.4 (cf. [75, Theorem 4.1]) Let F be C-convex and positively C-lower
semicontinuous and assume that F(S) ∩ (F (x1) − C) is C-complete, the conditions
(B1) − (B2) hold and (d,H) ∈ F∗(cl S). Then any sequence (xn)n generated by
Algorithm 3 converges towards a weakly efficient solution to (V PG).

Remark 11.14 In [75, Section 5] an inexact version of Algorithm 3 was proposed,
too, with the corresponding convergence towards a weakly efficient solution to
(V PG) obtained in [75, Theorem 5.1] under some additional hypotheses.

Remark 11.15 Another inexact algorithm based on a proximal distance was pro-
posed in [17] for vector minimizing a vector function F : R

n → R
m whose

components are maxima of continuously differentiable functions over some given
subset of Rn, like the one treated in [15]. In [17, Theorem 4.1] the convergence of
the iterative method is investigated and it is shown that each cluster point of the
generated sequence is a critically efficient solution to (V PG). An application to a
problem of distributive justice is also presented together with some ideas for future
research.

A somehow similar algorithm was proposed in [33] for solving (V PG), with the
difference that the authors take F : S → (Rm)• and assume that int S ∩dom F �= ∅.
In order to introduce it, one needs to consider a strengthened vector-valued Bregman
distance function G : Rn → (Rm)•.

Algorithm 4 Assume that a starting point x1 ∈ int S ∩ dom F such that {x ∈ R
n :

F(x) �C F(x1)} ⊆ dom F ∩ int(dom G) exists and choose the exogenous sequence
(αn)n ⊆ (0, α], with α > 0. Consider the following iterative steps

1 let n = 1;
2 if xn ∈ WE(V PG), then xn+p = xn for all p ≥ 1;

3 otherwise find xn+1 ∈ WE
{
F(x) + αn

2 BG(x, xn) : x ∈ Ωn

}
;

4 take n := n + 1 and go to Step 2.

The statement on convergence of the sequence generated via Algorithm 4 towards
a weakly efficient solution to (V PG) follows. Note that, unlike its counterparts
presented above, it requires no C-completeness in order to achieve the convergence,
however the domination property of the image of the objective vector function is
imposed.

Theorem 11.5 (cf. [33, Theorem 3.3]) Let F be C-convex and C-lower semicon-
tinuous such that F(Rn) has the domination property, WE(V PG) is nonempty and
compact and DG is norm-to-norm continuous. Then any sequence (xn)n generated
by Algorithm 4 converges towards a weakly efficient solution to (V PG).

Further generalizations of the classical distance function can be found in the
class of the so-called quasi-distances. Successfully employed in proximal point type
algorithms, they ended up being used in iterative methods for determining weakly
efficient solutions to vector optimization problems, too, for instance in [72], as
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follows, where F = (F1, . . . , Fm)� : Rn → R
m, C = R

m+ and q : Rn × R
n → R+

is a quasi-distance.

Algorithm 5 Choose the starting point x1 ∈ R
n and the exogenous sequence

(αn)n ⊆ (η, α], with 0 < η < α. Consider the following iterative steps

1 let n = 1;
2 if xn ∈ WE(V P ), then xn+p = xn for all p ≥ 1;

3 otherwise find xn+1 ∈ WE
{
F(x) + αn

2 q2(x, xn) : x ∈ Ωn

}
;

4 take n := n + 1 and go to Step 2.

The convergence statement of Algorithm 5 follows, noting that the uniqueness of
the cluster point of the sequence generated by the method is not guaranteed. Worth
noticing is also that the considered hypotheses imply the usual C-completeness
assumption needed in the rest of the paper for guaranteeing the convergence of the
considered algorithms.

Theorem 11.6 (cf. [72, Theorem 3.1]) Let Fi be convex, i = 1, . . . , m, and
assume that there is some j ∈ {1, . . . , m} such that lim‖x‖→+∞ Fj (x) = +∞.
Suppose there are positive constants a and b such that a‖x − y‖ ≤ q(x, y) ≤
b‖x−y‖ for any x, y ∈ R

n. Then any cluster point of any sequence (xn)n generated
by Algorithm 5 is a weakly efficient solution to (V P ).

Remark 11.16 Computational results obtained by implementing Algorithm 5 in
MATLAB are presented in [72, Section 4].

Remark 11.17 An inexact version of Algorithm 5 was proposed in [70] by means
of the limiting subdifferential. The usage of this nonsmooth subdifferential instead
of the classical convex one is justified by the fact that even if F is taken R

m+-convex,
the quasi-distance needs not be convex.

11.4.2 Algorithms with Viscosity Functions and Tikhonov Type
Regularizations

In order to present the proximal point type algorithms for solving vector optimiza-
tion problems where the regularization is done by means of viscosity functions that
were introduced in [30, 39] one needs to take X = R

n and Y = R
m within this

subsection. Moreover, let G : R
n → R

m be a vector-valued coercive viscosity
function such that dom F ∩ int(dom G) �= ∅.

We begin with the method proposed in [30] for determining weakly efficient
solutions to (V P ).

Algorithm 6 Choose the starting point x1 ∈ dom F ∩ int(dom G) and the
exogenous sequences (αn)n ⊆ (0,+∞), with limn→+∞ αn = +0, and (βn)n ⊆
[0, 1] with limn→+∞ βn = 0. Consider the following iterative steps
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1 let n = 1;
2 if xn ∈ WE(V P ), then xn+p = xn for all p ≥ 1;

3 otherwise find yn+1 ∈ WE
{
F(x) + αnG(x) : x ∈ Ωn

}
;

4 take xn+1 = (1 − βn)yn + βnxn;
5 take n := n + 1 and go to Step 2.

The convergence statement of Algorithm 6 follows. Note that the constructions
considered in this subsection do not require the usual C-completeness hypothesis
needed in the rest of the paper for guaranteeing the convergence of the considered
algorithms, its role being covered by asking WE(V P ) to be nonempty and compact.
Connected to this issue see also the discussion in Remark 11.8.

Theorem 11.7 (cf. [30, Theorem 3.3]) Let F be C-convex, C-lower semicontinu-
ous and C∗-asymptotically uniformly continuous such that WE(V P ) is nonempty
and compact. Further suppose that there exist a sequence (ηn)n ∈ R such that
‖yn − xn‖ ≤ ηn for all n ≥ 1 and

∑
n≥1 ηn < +∞, where (xn)n and (yn)n

are sequences generated by Algorithm 6. Then (xn)n converges towards a weakly
efficient solution to (V P ).

Remark 11.18 An legitimate question regarding Theorem 11.7 concerns the neces-
sity of both topological assumptions imposed on F , the C-lower semicontinuity
and the C∗-asymptotically uniform continuity in order to achieve the statement.
However, at the moment we are unaware of any result connecting or comparing
these two notions in some way.

A modification of Algorithm 6 proposed in [39] guarantees the convergence
of the generated sequence towards an efficient solution to (V P ). More precisely,
instead of determining weakly efficient solutions of the intermediate problems, one
looks in Step 3 for properly efficient ones with respect to Kδ . In this case it is not
necessary to have int C �= ∅.

Algorithm 7 Choose the starting point x1 ∈ dom F ∩ int(dom G) and the
exogenous sequences (αn)n ⊆ (0,+∞), with limn→+∞ αn = +0, and (βn)n ⊆
[0, 1] with limn→+∞ βn = 0. Assume moreover that there exists some δ ∈ (0, 1]
such that the set Kδ is nonempty. Consider the following iterative steps

1 let n = 1;
2 if xn ∈ E(V P ), then xn+p = xn for all p ≥ 1;

3 otherwise find yn+1 ∈ PEδ

{
F(x) + αnG(x) : x ∈ Ωn

}
;

4 take xn+1 = (1 − βn)yn + βnxn;
5 take n := n + 1 and go to Step 2.

The convergence statement [39, Theorem 3.4] is different to the others presented
so far since it does not guarantee the convergence of the sequence generated by
Algorithm 7 (towards an efficient solution to (V P )). Adding to it an additional
hypothesis from Theorem 11.7 guarantees the unicity of the cluster point of this
sequence.
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Theorem 11.8 (cf. [39, Theorem 3.4]) Let F be C-convex, C-lower semicontin-
uous, positively partially continuous and C∗-asymptotically uniformly continuous
such that WE(V P ) is nonempty and compact. Further suppose that there exist a
sequence (αn)n ∈ R such that ‖yn − xn‖ ≤ αn for all n ≥ 1 and

∑
n≥1 αn <

+∞, where (xn)n and (yn)n are sequences generated by Algorithm 7. Then (xn)n
converges towards an efficient solution to (V P ).

Remark 11.19 Examining the proof of [39, Theorem 3.4] (and that of [37, The-
orem 3.2], cited below as Theorem 11.13), one can note that the usage of the
property of positive C-lower semicontinuity of F can be covered by its positive
partial continuity, so the firstly mentioned hypothesis seems to be redundant. On the
other hand, at least at a first look, the role of the second hypothesis in the proof is
not crucial and it can be replaced by the first one as well. Connected to this issue, a
discussion on whether a positively partially continuous vector function is in general
also positively C-lower semicontinuous could prove to be interesting as well, taking
also in consideration that positively partially continuous vector functions (at least
under this name) can be found only in [36, 37, 39].

Related to Algorithm 6 and Algorithm 7 from which special cases can be derived
when βn = 0 for all n ≥ 1 and G = ‖ · ‖ẽ, for some suitable ẽ ∈ R

m+ (respectively
ẽ ∈ C) are the methods proposed in [34, 36] where the regularization in the iterative
steps is performed by means of a Tikhonov type function instead of the Moreau-
Yosida type one from the proximal point algorithms.

The algorithm proposed in [34] for determining weakly efficient solutions to
(V PG) is the following, where dom F ∩ int S �= ∅.

Algorithm 8 Choose the starting point x1 ∈ dom F ∩ int S and the exogenous
sequences (αn)n ⊆ (0,+∞), with limn→+∞ αn = +0, and (en)n ⊆ R

m+ with
‖en‖ = 1 for all n ≥ 1. Consider the following iterative steps

1 let n = 1;
2 if xn ∈ WE(V GP), then xn+p = xn for all p ≥ 1;

3 otherwise find xn+1 ∈ WE
{
F(x) + αn‖x‖2en : x ∈ Ωn

}
;

4 take n := n + 1 and go to Step 2.

Theorem 11.9 (cf. [34, Theorem 3.2]) Let F be C-convex and C-lower semicon-
tinuous, S be closed and convex, and WE(V PG) nonempty and compact. Then
any sequence (xn)n generated by Algorithm 8 converges towards a weakly efficient
solution to (V PG).

Finally, we also present the algorithm proposed in [36] for determining efficient
solutions to (V P ). In this case it is not necessary to have int C �= ∅.

Algorithm 9 Choose the starting point x1 ∈ dom F and the exogenous sequences
(αn)n ⊆ (0,+∞), with limn→+∞ αn = 0, and (en)n ⊆ C with ‖en‖ = 1 for all
n ≥ 1. Assume moreover that there exists some δ ∈ (0, 1] such that the set Kδ is
nonempty. Consider the following iterative steps
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1 let n = 1;
2 if xn ∈ E(V P ), then xn+p = xn for all p ≥ 1;

3 otherwise find xn+1 ∈ PEδ

{
F(x) + αn‖x‖2en : x ∈ Ωn

}
;

4 take n := n + 1 and go to Step 2.

The corresponding convergence statement follows, although in a different man-
ner than many of the other ones presented in this survey, as the unicity of the
cluster point of the sequence generated by Algorithm 9 is not guaranteed. The idea
presented in Remark 11.19 is valid for this result as well.

Theorem 11.10 (cf. [36, Theorem 3.1]) Let F be C-convex, C-lower semicontin-
uous and positively partially continuous, and E(V P ) is nonempty and compact.
Then any sequence (xn)n generated by Algorithm 9 converges towards an efficient
solution to (V P ).

11.4.3 Algorithms with Lyapunov-Type Distances

A more general framework, even than the one in [24], is considered in the papers
[32, 35, 37], where algorithms of proximal point type for solving (V P ) are
formulated by means of the Lyapunov functional. In this subsection let (X, ‖ · ‖)
be a uniformly convex and uniformly smooth Banach space. We begin with the
algorithm proposed in [35].

Algorithm 10 Choose the starting point x1 ∈ dom F and the exogenous sequences
(αn)n ⊆ (0, α], with α > 0, and (en)n ⊆ int C such that ‖en‖ = 1 for all n ≥ 1.
Consider the following iterative steps

1 let n = 1;
2 if xn ∈ WE(V P ), then xn+p = xn for all p ≥ 1;

3 otherwise find xn+1 ∈ WE
{
F(x) + αn

2 L(x, xn)en : x ∈ Ωn

}
;

4 take n := n + 1 and go to Step 2.

Because of the more general framework, the convergence of the method towards
a weakly efficient solution to (V P ) can be guaranteed under some additional
hypotheses to the ones in Theorem 11.1.

Theorem 11.11 (cf. [35, Theorem 3.5]) Let F be C-convex and positively C-lower
semicontinuous and assume that F(S) ∩ (F (x1) − C) is C-complete, WE(V P ) is
nonempty and JX is weak-to-weak continuous. Then any sequence (xn)n generated
by Algorithm 10 converges weakly towards a weakly efficient solution to (V P ).

Remark 11.20 In the proof of [35, Theorem 3.5] it is claimed that the weak limit
of the sequence generated by Algorithm 10 under the hypotheses of Theorem 11.11
was the only weakly efficient solution to (V P ). However, nothing supports this fact,
as there it is shown only that any such sequence has a unique weak cluster point.
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Moreover, the hypothesis of nonemptiness of WE(V P ) in Theorem 11.11 seems, in
the light of Remark 11.8, superfluous.

Closely related to this method is the approximate one proposed in [32].

Algorithm 11 Choose the starting point x1 ∈ dom F and the exogenous sequences
(αn)n ⊆ (0, α], with α > 0, and (en)n ⊆ int C such that ‖en‖ = 1 for all n ≥ 1,
as well as the error sequence (εn)n ⊆ X∗ satisfying

∑
n≥1 ‖εn‖∗ < +∞. Consider

the following iterative steps

1 let n = 1;
2 if xn ∈ WE(V P ), then xn+p = xn for all p ≥ 1;

3 otherwise find xn+1 ∈ WE
{
F(x) + αn

2 (L(x, xn) − 〈εn+1, x〉)en : x ∈ Ωn

}
;

4 take n := n + 1 and go to Step 2.

The corresponding convergence statement is similar to Theorem 11.11 to which
a hypothesis regarding the error sequence and involving the generated sequence is
added. Note that Remark 11.20 applies for the following statement, too.

Theorem 11.12 (cf. [32, Theorem 3.5]) Let F be C-convex and positively C-lower
semicontinuous and assume that F(S) ∩ (F (x1) − C) is C-complete, WE(V PG) is
nonempty and JX is weak-to-weak continuous. Then any sequence (xn)n generated
by Algorithm 11 converges weakly towards a weakly efficient solution to (V P ) when∑

n≥1〈εn, xn〉 exists and is finite.

A modification of Algorithm 11 proposed in [37] delivers efficient solutions to
(V P ). In this case it is not necessary to have int C �= ∅.

Algorithm 12 Choose the starting point x1 ∈ dom F and the exogenous sequences
(αn)n ⊆ (0, α], with α > 0, and (en)n ⊆ int C such that ‖en‖ = 1 for all n ≥ 1,
as well as the error sequence (εn)n ⊆ X∗ satisfying

∑
n≥1 ‖εn‖∗ < +∞. Assume

moreover that there exists some δ > 0 such that the set Kδ is nonempty. Consider
the following iterative steps

1 let n = 1;
2 if xn ∈ E(V P ), then xn+p = xn for all p ≥ 1;

3 otherwise find xn+1 ∈ PEδ

{
F(x) + αn

2 (L(x, xn) − 〈εn+1, x〉)en : x ∈ Ωn

}
;

4 take n := n + 1 and go to Step 2.

The convergence statement contains both the hypotheses of Theorem 11.12 and
the additional requirement imposed on F to be positively partially continuous.

Theorem 11.13 (cf. [37, Theorem 3.2]) Let F be C-convex, positively C-lower
semicontinuous and positively partially continuous, and assume that F(S) ∩
(F (x1)−C) is C-complete, and JX is weak-to-weak continuous. Then any sequence
(xn)n generated by Algorithm 12 converges weakly towards an efficient solution to
(V P ) when

∑
n≥1〈εn, xn〉 exists and is finite.
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11.4.4 Algorithms with Hybrid and Inertial Steps

In this subsection we have gathered some algorithms for solving vector optimization
problems where the proximal point steps are combined with other ideas, leading to
so-called hybrid methods and inertial type algorithms.

In [29] one can find the following method for determining weakly efficient
solutions to vector optimization problems.

Algorithm 13 Choose the starting point x1 ∈ dom F and the sequences (αn)n ⊆
(0, α), where α > 0, (βn)n ⊆ [0, 1], (θn)n ⊆ X and (en)n ⊆ int C such that
‖en‖ = 1 for all n ≥ 1. Consider the following iterative steps

1 let n = 1;
2 if xn ∈ WE(V P ), then xn+p = xn for all p ≥ 1;

3 find yn ∈ WE
{
F(x) + αn

2 ‖x − xn − θn‖2en : x ∈ Ωn

}
;

4 take xn+1 = βnxn + (1 − βn)yn;
5 take n := n + 1 and go to Step 2.

Different to Algorithm 1 is not only the fact that an additional iterative sequence
(yn)n was employed in order to define the one that will converge towards a weakly
efficient solution to (V P ) (as seen below), but also the usage of another sequence
(θn)n in the proximal step. The corresponding convergence statement follows, with
a dynamic condition that cannot be verified before running the algorithm. Note also
that the comment from Remark 11.18 applicable here, too.

Theorem 11.14 (cf. [29, Theorem 3.1]) Let F be C-convex, positively C-lower
semicontinuous and C∗-asymptotically uniformly continuous and assume that
F(S)∩ (F (x1)−C) is C-complete. Let the sequences (xn)n and (yn)n be generated
by Algorithm 13. If there is a bounded sequence (ηn)n ⊆ (0,+∞) such that∑

n≥1 η2
n < +∞ and ‖θn‖ ≤ ηn‖xn − yn‖ and a constant δ ∈ (0, 1) such that

0 ≤ βn ≤ 1 − δ for all n ≥ 1, and it holds limn→+∞ βn = 0, then (xn)n converges
weakly towards a weakly efficient solution to (V P ).

In [29] one can find also a modification of Algorithm 13 where the usual distance
is replaced by a Bregman type one as follows, where h : X → R is a strictly
convex function that is Gâteaux differentiable with the Gâteaux derivative Dh(·)
and Bh : X × X → R is the corresponding Bregman distance with respect to h,
namely Bh(x, y) = h(x) − h(y) − Dh(y)(x − y).

Algorithm 14 Choose the starting point x1 ∈ dom F and the sequences (αn)n ⊆
(0, α), where α > 0, (βn)n ⊆ [0, 1], (θn)n ⊆ X and (en)n ⊆ int C such that
‖en‖ = 1 for all n ≥ 1. Consider the following iterative steps

1 let n = 1;
2 if xn ∈ WE(V P ), then xn+p = xn for all p ≥ 1;

3 find xn ∈ WE
{
F(x) + αn

2 (2h(x) + ‖x − Dh(xn) − θn‖2)en : x ∈ Ωn

}
;

4 take n := n + 1 and go to Step 2.
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Remark 11.21 The weak convergence of Algorithm 14 towards a weakly efficient
solution to (V P ) is achieved in [29, Theorem 4.1]. Different to Theorem 11.14,
the hypothesis of C∗-asymptotically uniform continuity of F seems no longer
necessary, however Dh is required to be weak-to-weak sequentially continuous
and the boundedness condition imposed on the sequence (θn)n is replaced with
‖θn‖ ≤ ηnD

1/2
h (xn+1, xn).

Remark 11.22 In [29] one can also find an inexact version of Algorithm 13
called relative approximate proximal algorithm, whose weak convergence towards a
weakly efficient solution to (V P ) is obtained in [29, Theorem 5.1]. Interestingly, the
hypothesis of C∗-asymptotically uniform continuity of F seems no longer necessary
for this statement either.

A further development of Algorithm 13 can be found in [28] in the form
of a hybrid proximal point type algorithm for finding weakly efficient solutions
to (V PG), where the iterative steps contain projections and involve monotone
mappings, while a variational inequality is involved in the convergence statement.
Note that in this case actually four sequences are generated during the iterative
process in order to construct the one that actually converges towards a weakly
efficient solutions to (V PG). Let S be closed and convex and A : S → X be
monotone.

Algorithm 15 Choose the starting point x1 ∈ dom F ∩ S and the sequences
(αn)n ⊆ (0, α), where α > 0, (λn)n ⊆ (0, 1), (βn)n ⊆ [0, 1], (ηn)n ⊆ [0, 1],
(θn)n ⊆ X and (en)n ⊆ int C such that ‖en‖ = 1 for all n ≥ 1. Consider the
following iterative steps

1 let n = 1;
2 if xn ∈ WE(V PG), then xn+p = xn for all p ≥ 1;
3 take yn = PrS(xn − λnAxn);
4 take zn = ηnxn + (1 − ηn) PrS(xn − λnAyn);

5 find wn ∈ WE
{
F(x) + αn

2 ‖x − zn − θn‖2en : x ∈ Ωn

}
;

6 take xn+1 = βnxn + (1 − βn)wn;
7 take n := n + 1 and go to Step 2.

The convergence statement is apparently more complicated than the others, as
it solves not only the considered vector optimization problem but also an attached
variational inequality.

Theorem 11.15 (cf. [28, Theorem 3.1]) Let F be C-convex, positively C-lower
semicontinuous and C∗-uniformly semicontinuous and assume that F(S)∩(F (x1)−
C) is C-quasicomplete. Assume that A is Lipschitz continuous with the Lipschitz
constant κ > 0, such that WE(V PG) ∩ V I (S,A) �= ∅ and that there is a bounded
sequence (ηn)n ⊆ (0,+∞) such that

∑
n≥1 η2

n < +∞ and ‖θn‖ ≤ ηn‖xn − yn‖,
where the sequences (xn)n and (yn)n are generated by Algorithm 15. When there
are some ε, δ ∈ (0, 1) such that (βn)n ⊆ (ε, δ), c ∈ [0, 1) such that (ηn)n ⊆ [0, c)
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and a, b ∈ (0, 1/κ) such that (λn)n ⊆ [a, b], then (xn)n converges weakly towards
a weakly efficient solution to (V PG) that also lies in V I (S,A).

Remark 11.23 In [28] one can also find a modification of Algorithm 15 where the
usual distance is replaced by a Bregman type one in the spirit of Algorithm 14
as well as an inexact version of Algorithm 15 called relative hybrid approximate
proximal algorithm, whose weak convergences towards weakly efficient solutions
to (V PG) (that also lie in V I (S,A)) are obtained in [28, Theorem 4.3 &
Theorem 5.1], respectively, under some additional hypotheses to the ones from The-
orem 11.15. Like above (see Remark 11.22), the hypothesis of C∗-asymptotically
uniform semicontinuity of F seems no longer necessary for these statements.

Another modification of Algorithm 15 is available in [38], where it is shown
to deliver efficient solutions to (V PG). In this case it is not necessary to have
int C �= ∅.

Algorithm 16 Choose the starting point x1 ∈ dom F ∩ S and the sequences
(αn)n ⊆ (0, α), where α > 0, (λn)n ⊆ (0, 1), (βn)n ⊆ [0, 1], (ηn)n ⊆ [0, 1],
(θn)n ⊆ X and (en)n ⊆ int C such that ‖en‖ = 1 for all n ≥ 1. Assume moreover
that there exists some δ ∈ (0, 1] such that the set Kδ is nonempty. Consider the
following iterative steps

1 let n = 1;
2 if xn ∈ E(V PG), then xn+p = xn for all p ≥ 1;
3 take yn = PrS(xn − λnAxn);
4 take zn = ηnxn + (1 − ηn) PrS(xn − λnAyn);

5 find wn ∈ PEδ

{
F(x) + αn

2 ‖x − zn − θn‖2en : x ∈ Ωn

}
;

6 take xn+1 = βnxn + (1 − βn)wn;
7 take n := n + 1 and go to Step 2.

For the convergence one basically needs the hypotheses of Theorem 11.15.

Theorem 11.16 (cf. [38, Theorem 3.1]) Let F be C-convex, positively C-lower
semicontinuous and C∗-uniformly semicontinuous and assume that F(S)∩(F (x1)−
C) is C-quasicomplete. Assume that A is Lipschitz continuous with the Lipschitz
constant κ > 0 and that there is a bounded sequence (ηn)n ⊆ (0,+∞) such that∑

n≥1 η2
n < +∞ and ‖θn‖ ≤ ηn‖xn − yn‖, where the sequences (xn)n and (yn)n

are generated by Algorithm 15. When there are some ε, δ ∈ (0, 1) such that (βn)n ⊆
(ε, δ), c ∈ [0, 1) such that (ηn)n ⊆ [0, c) and a, b ∈ (0, 1/κ) such that (λn)n ⊆
[a, b], then (xn)n converges weakly towards a weakly efficient solution to (V PG)

that, when xn /∈ E(V PG) for all n ≥ 1, also lies in V I (S,A).

Remark 11.24 In [38] one can also find a modification of Algorithm 16 where the
usual distance is replaced by a Bregman type one in the spirit of Algorithm 14 as
well as an inexact version of Algorithm 16 called relative hybrid approximate prox-
imal algorithm, whose weak convergences towards efficient solutions to (V PG)

(that also lie in V I (S,A) provided that xn /∈ E(V PG) for all n ≥ 1) are obtained in
[38, Theorem 4.1 & Theorem 5.1], respectively, under some additional hypotheses
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to the ones from Theorem 11.16. Like above (see Remark 11.22), the hypothesis
of C∗-asymptotically uniform semicontinuity of F seems no longer necessary for
these statements.

Further we also present an inertial proximal point algorithms with memory
effects for solving vector optimization problems. The inertial proximal point
methods with memory effects, first proposed by Alvarez and Attouch (cf. [2, 3]),
were inspired from heavy ball with friction dynamical systems and have as a
characteristic feature the fact that an iteration variable depends on the previous
two elements of the same sequence, not only on its predecessor as it is usually the
case for many algorithmic approaches. This modification accelerates the original
proximal point method and makes it more robust. We propose an inertial version of
Algorithm 1 that is slightly more general than the special case of Algorithm 19
(introduced later in Section 11.5) that can be employed for solving (V P ). For
completeness sake, since it cannot be found in the published literature, the proof
of the convergence of this algorithm towards a weakly efficient solution to (V P ) is
provided in an Appendix at the end of the paper.

Algorithm 17 Choose the starting points x0, x1 ∈ dom F and the sequences
(λn)n ⊆ (0,+∞), (αn)n ⊆ [α,+∞), where α > 0, (βn)n ⊆ [0, β), where
0 < β < 1/3, and (en)n ⊆ int C such that (αn)n is bounded, (βn)n is nondecreasing
and ‖en‖ = 1 for all n ≥ 1. Consider the following iterative steps

1 let n = 1;
2 if xn ∈ WE(V P ), then xn+p = xn for all p ≥ 1;

3 find xn+1 ∈ WE
{
λnF (x) + αn

2 ‖x − xn − βn(xn − xn−1)‖2en : x ∈ Ωn

}
;

4 take n := n + 1 and go to Step 2.

Remark 11.25 When βn = 0 and λn = 1 for all n ≥ 1, Algorithm 17 collapses to
Algorithm 1. On the other hand, when Y = R and C = R+, Algorithm 17 becomes
the inertial proximal point method for scalar optimization problems that can be
derived from the algorithm for finding zeros of maximally monotone operators
proposed in [3].

Theorem 11.17 Let F be C-convex and positively C-lower semicontinuous and
F(X) ∩ (F (x1) − C) be C-complete. Then any sequence (xn)n generated by
Algorithm 17 converges weakly towards a weakly efficient solution to (V P ).

Remark 11.26 The conclusion of Theorem 11.17 remains valid when the sequence
(xn)n generated by Algorithm 17 fulfills the condition

∑+∞
n=1 βn‖xn − xn−1‖2 <

+∞, in which case (βn)n needs not necessarily be nondecreasing and one can take
β ∈ [0, 1). However, this dynamic condition might be more difficult to verify since it
involves the generated sequence (xn)n, while the static hypotheses considered above
can simply be imposed while defining the parameters β and (βn)n, respectively.
Different to the inertial proximal methods proposed in the literature for solving
scalar optimization problems or monotone inclusions (see, for instance, [3]), in
Theorem 11.17 it is not necessary to assume the existence of a weakly efficient
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solution to (V P ) in order to prove the convergence of Algorithm 17. Analogous to
Remark 11.8, in this case the role of such a hypothesis in showing the convergence
of the method has been fully covered by the assumed C-completeness hypothesis.

Remark 11.27 Motivated by Remark 11.6, one can consider also in Algorithm 17 a
stopping rule that is easier to check than the original one. It can be shown in a similar
manner to [24, Proposition 3.2] that if three consecutive iterations of the sequence
(xn)n generated by Algorithm 17 coincide, they represent a weakly efficient solution
to (V P ).

One can provide an inexact version of Algorithm 17 inspired by Algorithm 2 as
follows.

Algorithm 18 Choose the starting points x0, x1 ∈ dom F , the sequences (λn)n ⊆
(0,+∞), (αn)n ⊆ [α,+∞), where α > 0, (βn)n ⊆ [0, β), where 0 < β <

1/4, (z∗
n)n ⊆ C∗ \ {0}, and (en)n ⊆ int C such that (αn)n is bounded, (βn)n is

nondecreasing, ‖z∗
n‖ = 1 and ‖en‖ = 1 for all n ≥ 1, as well as the constant

σ ∈ [0, 1 − 4β). Consider the following iterative steps

1 let n = 1;
2 if xn ∈ WE(V P ), then xn+p = xn for all p ≥ 1;
3 find xn+1 ∈ dom F such that

0 ∈ ∂εn(〈z∗
n, F (·)〉 + δΩn)(xn+1) + αn〈z∗

n, en〉(xn+1 − xn − βn(xn − xn−1))

for some 0 ≤ εn ≤ σ αn

2 〈z∗
n, en〉‖xn+1 − xn − βn(xn − xn−1)‖2;

4 take n := n + 1 and go to Step 2.

Remark 11.28 When βn = 0 and λn = 1 for all n ≥ 1 and β ↓ 0, Algorithm 18
collapses to Algorithm 2.

The convergence of Algorithm 18 towards a weakly efficient solution to (V P )

can be guaranteed under the same hypotheses as the one of its exact version Algo-
rithm 17, the proof relying on the ones of Theorem 11.17 and [24, Theorem 5.1].

Theorem 11.18 Let F be C-convex and positively C-lower semicontinuous and
F(X) ∩ (F (x1) − C) be C-complete. Then any sequence (xn)n generated by
Algorithm 17 converges weakly towards a weakly efficient solution to (V P ).

Remark 11.29 Another possible way to provide an inexact version of Algorithm 17
may be investigated by making use of the approximative inertial type proximal
scheme proposed in [2, Section 3.2].

Remark 11.30 Another inertial type proximal point method was proposed in [27]
for determining ideally efficient solutions to (V P ) in case Y = R

m. We opted
not to present it here because of the limited significance of the ideally efficient
solutions to (V P ) and also due to the way it is constructed that required introducing
maximally monotone operators. Note however that this algorithm is accompanied
by applications to convex feasibility problems and to the problem of common fixed
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points for nonexpansive potential mappings and also that some convergence rates
are derived for the method.

Remark 11.31 In the literature there are also some proximal point type algo-
rithms for solving vector optimization problems whose objective functions map
from Hadamard manifolds to Euclidean spaces. The algorithmic schemes are not
much different from the ones presented above, however one needs to define the
whole Hadamard manifolds setting in order to give the corresponding convergence
statements. In [13] a proximal point type scheme is proposed for determining
weakly efficient solutions to the Hadamard version of (V PG), where F is taken
as mentioned above. Weakly efficient elements to the Hadamard version of (V P )

are obtained in [16] by means of a proximal point type algorithm where the
intermediate optimization problems are scalarized versions of the ones in [13] by
means of a special case of the scalarization function introduced by Tammer (then
Gerstewitz) in [43]. An inexact version of the method that converges towards weakly
efficient elements to the considered vector optimization problem is proposed as well.
Another special case of Tammer’s scalarization function, the so-called maximum
scalarization, is employed in [74] for proposing an inexact proximal point method
for determining efficient solutions to the Hadamard version of (V P ). Because of
the special structure of its objective function, the scalarized optimization problem
should apparently be not so difficult to solve and a rate of convergence of the
proposed method is provided, too.

Remark 11.32 One could include in this section also the algorithms in [41, 51,
71, 73], as they are proximal point type methods for solving vector optimization
problems as well. However, in all of them the new iteration xn+1 is calculated as an
optimal solution to a scalar optimization problem that is a scalarization of a vector
one, not as some sort of an efficient solution to some vector optimization problem,
failing thus to satisfy the criteria stated in [24]. The algorithm proposed in [41]
employs the Tammer scalarization function (see also Remark 11.31). This function
leads to scalar optimization problems that are bounded from below by 0, excluding
thus the possibility to have to deal with unbounded scalar optimization problems
that may occur when working with the linear scalarization. However, the objective
functions of the scalar optimization problems derived by means of this scalarization
contain compositions of functions that are unfortunately still unsuitable for the
existing proximal point type algorithms and, moreover, this scalarization does not
guarantee a descent property for the values of the objective function either. On the
other hand, worth noticing is that the intermediate optimization problems in the
algorithm designed in [41] for delivering weakly efficient solutions to (V P ) are
unconstrained, i.e. they do not require defining the sets Ωn, n ≥ 1. An inexact
method that converges towards weakly efficient elements to the considered vector
optimization problem is proposed in the Hadamard manifolds framework discussed
in Remark 11.31 in [73] by means of a generalized proximal distance, where
the original problem is scalarized by a special case of the Tammer scalarization
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function. In [51, 71] there are proposed some logarithmic proximal point type
algorithms for solving (V P ) in Euclidean spaces. However, these are essentially
methods for minimizing some scalar functions called strict scalar representations
of the objective function of the original vector optimization problem. Note that the
method proposed in [51] can be modelled, to some extent, to deal also with vector
optimization problems with convex inequality constraints. On the other hand, the
one from [71] employs a quasi-distance instead of the classical distance induced
by a norm in the proximal step and is employed for numerically solving some test
problems.

Remark 11.33 There are some papers where proximal point type algorithms for
solving vector optimization problems consisting in vector-minimizing a vector
function subject to both geometric and linear equality constraints are proposed, in
the finitely dimensional framework where X = R

n, S ⊆ X is convex and compact,
Y = R

m, C ⊆ R
m is a convex cone, A ∈ R

p×n, b ∈ R
p and F : Rn → R

m. The
constrained vector optimization problem considered in [67, 68] is

(V PC) WMin
Ax=b,
x∈S

F (x).

However, the methods proposed in the mentioned papers for determining weakly
efficient and efficient solutions to (V PC) fail to satisfy the criteria stated in [24] (see
also Remark 11.32), as they consist of solving some minmax scalar optimization
problems that contain scalarizations of the objective function of (V PC) and some
other terms based on the equality constraint. The algorithms are shown to converge
towards weakly efficient solutions to (V PC) and, under additional assumptions,
towards efficient ones (called strongly efficient in [68]) to it. Applications to supply
chain network risk management and computational results obtained in MATLAB are
provided, too in both these works, despite the fact that usually minmax optimization
problems are not easy to solve numerically. Note also that in [72, Remark 3.3] a
vector optimization problem with a linear objective function and both geometric
and linear inequality constraints is mentioned and a numerical scheme for solving it
is sketched, however without actually exploiting the structure of the constraint set.

11.5 Proximal Point Type Algorithms for Other Vector
Optimization Problems

In this section we present proximal point type algorithms for solving vector opti-
mization problems with more complicated structure than (V P ) (or its constrained
counterparts (V PG) and (V PC)), namely ones with a sum or difference of vector
functions as an objective function. Many of the remarks we gave in Section 11.3
remain valid for some of these classes of vector optimization problems as well and
we will not mention them again here.
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11.5.1 Vector-Minimization of Sums of Vector Functions

Consider next the so-called composite vector optimization problem consisting
in vector-minimizing the sum of two vector functions, whose weakly efficient
solutions were obtained in [19] by means of a forward-backward proximal point
method with inertial/memory effects

(V PS) WMin
x∈X

[
F(x) + G(x)

]
,

where F : X → Y • is a proper vector function and G : X → Y is a Fréchet
differentiable vector function with an L-Lipschitz continuous gradient ∇G.

The exact proximal inertial forward-backward iterative method proposed in [19]
for determining the weakly efficient solutions to (V PS) is the following.

Algorithm 19 Choose the starting points x0, x1 ∈ X and the sequences (βn)n ⊆
[0, β), (z∗

n)n ⊆ C∗ \ {0} and (en)n ⊆ int C such that (βn)n is nondecreasing, β <

1/9, ‖z∗
n‖ = 1 and 〈z∗

n, en〉 = 1 for all n ≥ 1. Consider the following iterative steps

1 let n = 1;
2 if xn ∈ WE(V PS), then xn+p = xn for all p ≥ 1;

3 find xn+1 ∈ WE
{
F(x) + L

2

∥∥x − (
xn + βn(xn − xn−1) − 1

L
∇(z∗

nG)(xn)
)∥∥2

en :
x ∈ ΩS

n

}
, where ΩS

n = {x ∈ X : (F + G)(x) �C (F + G)(xn)};
4 take n := n + 1 and go to Step 2.

Remark 11.34 When G ≡ 0, Algorithm 19 becomes an inertial proximal point
method for solving vector optimization problems that is a special case of Algo-
rithm 17, and by additionally taking βn = 0 for all n ≥ 1 it collapses into
the proximal point method for vector-minimizing a nonsmooth vector function
introduced in [24] and presented above as Algorithm 1. On the other hand, when
Y = R and C = R+ (i.e. in the scalar case), Algorithm 19 becomes the inertial
proximal-gradient method for scalar optimization problems, that can be derived
from the algorithm for finding zeros of maximally monotone operators proposed
in [63]. When, furthermore, G ≡ 0, it collapses into the one from [3], while when
βn = 0 for all n ≥ 1 it becomes the celebrated ISTA method, however in a more
general framework.

The convergence of Algorithm 19 is achieved in a similar setting to the one of
Algorithm 1.

Theorem 11.19 (cf. [19, Theorem 2.1]) Let F be C-convex and positively C-lower
semicontinuous, G be C-convex and assume that (F + G)(X) ∩ (F (x1) + G(x1) −
C) is C-complete. Then any sequence (xn)n generated by Algorithm 19 converges
weakly towards a weakly efficient solution to (V PS).

Remark 11.35 The conclusion of Theorem 11.19 remains valid when one takes only
F + G to be C-convex instead of both F and G and Remark 11.26 applies here as
well. The additional hypotheses of Theorem 11.2 guarantee the weak convergence
of any sequence (xn)n generated by Algorithm 19 towards an efficient solution
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to (V PS), too. Note also that the intermediate vector optimization problems
can be solved as such or can be scalarized for this, in which case an obvious
choice for the scalarizing functional are the corresponding z∗

n’s. Of course, the
sequence (z∗

n)n can be taken constant, situation in which the intermediate vector
optimization problems differ despite having the same objective vector function
because their feasible sets become smaller at each iteration. This does not mean
that the vector optimization problem (V PS) is a priori scalarized by means of a
linear continuous functional, because this scalarization is applied to the intermediate
vector optimization problems not to (V PS).

Remark 11.36 For implementation purposes one can provide an inexact version of
Algorithm 19 as well, where Step 3 is replaced by

3’ find xn+1 ∈ X such that

0 ∈ ∂εn(〈z∗
n, F (·) + L

2
‖ · −xn − βn(xn − xn−1) + 1

L
∇(z∗

nG)(xn)‖2en〉
+ δΩS

n
(·))(xn+1),

where the additional sequence of tolerable nonnegative errors (εn)n fulfills some
hypotheses, such as the ones considered in [24] or those from [2, 63]. Employing the
later, i.e.

∑
n≥1 εn < +∞, the convergence statement obtained by correspondingly

modifying Theorem 11.19 remains valid. Moreover, as an alternative stopping rule
that is easier to check than Step 2 of Algorithm 19 one can verify whether three
consecutive iterations of the sequence (xn)n generated by the method coincide,
in which case they represent a weakly efficient solution to (V PS). Note also that
xn−1 = xn does not necessarily imply that xn+1 coincides with them, too. This can
prove to be useful when starting the algorithm because one can begin with x0 = x1
without affecting the convergence of the method.

In [19] also the following (Nesterov type) modification of Algorithm 19 was
proposed, the difference between them residing in the point where the value of
∇(z∗

nG) is calculated. The above remarks remain basically valid for it as well.

Algorithm 20 Choose the starting points x0, x1 ∈ X and the sequences (βn)n ⊆
[0, β), (z∗

n)n ⊆ C∗ \ {0} and (en)n ⊆ int C such that (βn)n is nondecreasing, β <

1/9, ‖z∗
n‖ = 1 and 〈z∗

n, en〉 = 1 for all n ≥ 1. Consider the following iterative steps

1 let n = 1;
2 if xn ∈ WE(V PS), then xn+p = xn for all p ≥ 1;

3 find xn+1 ∈ WE
{
F(x)+ L

2

∥∥x−(
xn +βn(xn −xn−1)− 1

L
∇(z∗

nG)(xn +βn(xn −
xn−1))

)∥∥2
en : x ∈ ΩS

n

}
;

4 take n := n + 1 and go to Step 2.

Remark 11.37 In the scalar case, when Y = R and C = R+, Algorithm 20 becomes
a more general version of the celebrated FISTA method from [10], that can be
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recovered by taking βn = (tn − 1)/tn+1, where tn+1 = (1 + √
1 + 4t2

n)/2, n ≥ 1,
with t1 = 1, and restricting the framework to finitely dimensional spaces.

The convergence statement concerning Algorithm 20 is similar to Theo-
rem 11.19.

Theorem 11.20 (cf. [19, Theorem 3.1]) Let F be C-convex and positively C-lower
semicontinuous, G be C-convex and assume that (F + G)(X) ∩ (F (x1) + G(x1) −
C) is C-complete. Then any sequence (xn)n generated by Algorithm 20 converges
weakly towards a weakly efficient solution to (V PS).

Remark 11.38 One can additionally provide, following [10, Theorem 4.4], when
the sequence (z∗

n)n is constant and for the choice of the parameters βn, n ≥
1, mentioned in Remark 11.37, a convergence rate statement for the values of
the objective functions of the scalarized intermediate problems in Algorithm 20.
Moreover, when taking the sequence (z∗

n)n constant it is no longer necessary to take
‖z∗

n‖ = 1 for all n ≥ 1.

Stripping any of Algorithm 19 or Algorithm 20 of its inertial terms, it collapses
into a forward-backward method, whose convergence is derivable from Theo-
rem 11.19 or Theorem 11.20, as follows.

Algorithm 21 Choose the starting point x1 ∈ X and the sequences (z∗
n)n ⊆ C∗\{0}

and (en)n ⊆ int C such that ‖z∗
n‖ = 1 and 〈z∗

n, en〉 = 1 for all n ≥ 1. Consider the
following iterative steps

1 let n = 1;
2 if xn ∈ WE(V PS), then xn+p = xn for all p ≥ 1;

3 find xn+1 ∈ WE
{
F(x) + L

2

∥∥x − (
xn − 1

L
∇(z∗

nG)(xn)
)∥∥2

en : x ∈ ΩS
n

}
;

4 take n := n + 1 and go to Step 2.

A convergence rate statement for the values of the objective functions of the
scalarized intermediate problems in Algorithm 21 can be deduced analogously to
[10, Theorem 3.1].

Theorem 11.21 (cf. [19, Theorem 2.2]) Let F be C-convex and positively C-lower
semicontinuous, G be C-convex and assume that (F +G)(X)∩(F (x1)+G(x1)−C)

is C-complete. Consider the sequence (xn)n generated by Algorithm 21, where one
takes z∗

n = z∗ ∈ C∗ \ {0}, n ≥ 1. Then for any n ≥ 1 and x̃ ∈ ∩n≥1Ω
S
n one has

〈z∗, F (xn) + G(xn) − F(x̃) − G(x̃)〉 ≤ L‖x̃ − x1‖2

2n
.

Remark 11.39 Unlike most of the mentioned papers where iterative methods for
solving vector optimization problems were proposed, but their implementation was
left for later due to the difficulty of solving the employed subproblems, in [19,
Section 4] a concrete application in finance mathematics was solved in MATLAB via
the inexact versions of both Algorithm 19 and Algorithm 21, whose performances
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are then compared, showing that a good choice of the inertial parameters can
considerably reduce the resources needed for identifying a weakly efficient solution
to (V PS).

11.5.2 Vector-Minimization of Differences of Cone-Convex
Vector Functions

The last class of vector optimization problems considered in this survey consists in
vector-minimizing the difference of two cone-convex (DC) vector functions subject
to a geometric constraint in finitely dimensional spaces. One can find in [52, 53]
proximal point type algorithms for solving such problems, however, due to their
structure, only critically efficient solutions are determined. In the convex case the
critically efficient solutions turn out to be weakly efficient, however this cannot
happen in this setting. Consider the DC vector optimization problem

(V PD) WMin
x∈S

[
F(x) − G(x)

]
,

where F,G : Rn → R
m are proper C-convex vector functions, C ⊆ R

m being a
convex cone, and S ⊆ R

n is a closed convex set.
The proximal point type algorithm for solving (V PD) proposed in [53] is the

following.

Algorithm 22 Choose the starting point x1 ∈ R
n, the exogenous sequence (αn)n ⊆

(0,+∞) and ε > 0. Consider the following iterative steps

1 let n = 1;
2 find Vn ∈ ∂G(xn);

3 find xn+1 = arg minx∈S max
u∈C∗∩SRm

{
u�F(x) − u�Vn(x − xn) + αn

2 ‖x − xn‖2
}

;

4 if ‖xn+1 − xn‖ ≤ ε: STOP;
5 take n := n + 1 and go to Step 2.

The convergence statement regarding Algorithm 22 follows. Note however that
only the fact that every cluster point of (xn)n is a critically efficient solution to
(V PD) is guaranteed and that even for this a condition involving the structure of
the sequence (xn)n is imposed.

Theorem 11.22 (cf. [53, Theorem 7]) Let S be bounded and assume that for n ≥
1 large enough there is some u ∈ C∗ ∩ SRm such that xn+1 ∈ S ∩ (

∂G�u +
αn idRn

)−1(
V �

n u + αnxn

)
, where the sequence (xn)n is generated by Algorithm 22

and it has infinitely many iterations. Then any cluster point of (xn)n is a critically
efficient solution to (V PD).

Remark 11.40 In [53] one can find also a second proximal point type algorithm for
solving (V PD) where the role of αn is taken by r�

n u, where (rn)n ⊆ R
m is some

iterative sequence that satisfies r�
n u > 0. Moreover, an inexact version of Algo-
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rithm 22 called ε-proximal algorithm is proposed, where the vector subdifferential
of G is replaced (also in the hypotheses of the convergence statement) by its vector
ε-subdifferential.

Remark 11.41 A special case of Algorithm 22 obtained when C = R
m+ can be found

in the earlier paper [52] together with an inexact version and an application to port-
folio optimization that is also numerically solved in MATLAB, some computational
results being provided.

Remark 11.42 Note that in Algorithm 22 the sets Ωn play no role and the
intermediate problems are only geometrically constrained. On the other hand, at
the first look they do not satisfy the criterion mentioned in [24] (see Remark 11.32),
as they are scalar minmax optimization problems. However we opted to include
Algorithm 22 here and not only to mention it in a remark because it employs
the vector subdifferential of G and not one of some scalarization of it and, on
the other hand, since the method can be seen as a splitting type one where the
involved functions are processed separately, as one determines an element of the
vector subdifferential of G and then uses it in a sort of a backward step. Another
argument for the inclusion of this algorithm in this work is the fact that in [53] it
is applied for numerically solving in MATLAB a problem of probabilistic lot sizing
with service levels and computational results are provided, too. Note also that the
hypotheses of the convergence statement do not include the usual C-completeness
assumption considered in most of its counterparts gathered in this survey.

11.6 Conclusions and Further Research Directions

At the moment one can find more than thirty papers whose authors claim to
introduce new proximal point type algorithms for solving vector optimization
problems or to refine some existing ones. In most of these the method proposed in
the seminal contribution due to Bonel, Iusem and Svaiter is extended in some way,
usually by replacing the norm distance in the iterative step by some other (quasi-
)distance function or by relaxing the hypotheses that are necessary for ensuring
the convergence of the algorithm. Moreover, there are some contributions where
one also has constraints or the objective function has a more complicated structure,
being a sum or difference of vector functions or a composition of such a function
with a linear operator.

The first conclusion one can draw is that in the decade and a half since
the mentioned paper was published the interest around iteratively solving vector
(and multiobjective) optimization problems by means of proximal point methods
has steadily increased. Various techniques were extended from scalar to vector
optimization and it seems that others would follow soon. There are proximal
point type algorithms for approaching nonconvex vector optimization problems
and some that deliver efficient (and not only weakly efficient) solutions to the
considered vector optimization problem. The authors of the original paper have
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actually admitted that their algorithm was merely a theoretical scheme and many
of the ones who followed it contain no numerical results either, however in some
recent contributions one can find concrete applications with computational results.

On the other hand, one can notice that the algorithmic scheme of Bonel,
Iusem and Svaiter is still the standard in this research area, as many of the
subsequent contributions are mostly theoretical variations or improvements. Despite
the progress in relaxing the hypotheses of the convergence statement, there are
still no real alternatives to the cone-completeness hypothesis, as the compactness
of the (weak) efficiency set cannot usually be a priori verified. However, the most
important issue relies in the construction of the intermediate vector optimization
problems that have to be solved in the iterative steps. The fact that these are
constrained makes the existing splitting proximal point methods not really useful
in approaching them and they have to be solved via other algorithms or solvers.
The role of these constraints is to ensure that the values of the objective function
decrease with respect to the ordering cone, thus a possible idea could be here to
find another way to guarantee this descending property of the generated sequence
without making the intermediate problems constrained. Moreover, there are almost
no results on convergence rates for such algorithms and the existing ones require
quite restrictive hypotheses. On the other hand, with or without constraints, there
is still room for improvements with respect to the implementations of this class of
algorithms, as only a few contributions contain actual computational results.

Of course, the difficulties encountered while trying to adapt techniques from
scalar optimization into the vector optimization framework are far from being
trivial. For instance, at each iteration one has to deal with a different intermediate
vector optimization problem, while in the scalar case the objective function of the
considered problem is usually not modified as the algorithm advances. Moreover,
at the moment there is still no characterization via a monotone inclusion of the
efficient solutions of a vector optimization problem, so directly adapting a method
from that area without going through the scalar case is still out of the question.
And, as mentioned above, the constraints of the intermediate vector optimization
problems are not making the life easier.

Besides these, there are many other challenges regarding proximal point methods
for solving vector optimization problems that are more or less solvable. We list in
the following some of them. A first one would be to identify weaker hypotheses
or the necessary modifications of the existing algorithms in order to guarantee the
identification of (properly) efficient solutions to the considered vector optimization
problems instead of weakly efficient or even critically efficient ones. Some the
methods known at the moment to function only in Euclidean spaces are expected
to work, under additional assumptions, in infinitely dimensional settings such as
Hilbert spaces, too. As suggested in a paper by Bento, da Cruz Neto and Soubeyran,
and, on the other hand, in one due to Rocha, Oliveira, Gregório and Souza, in the
nonconvex case one can try to employ functions having the Kurdyka-Łojasiewicz
property, too. Things are at the moment only at the beginning with respect to vector
optimization problems with objective functions consisting of sums or differences
of vector functions and/or compositions with linear continuous mappings. Other
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splitting schemes besides the forward-backward one could be applied. Speaking
of the later, as mentioned in the cited paper of Boţ and the author, it would be
interesting to identify a way to modify the proposed forward-backward algorithms
in order to encompass as a special case also the projected gradient method proposed
by Graña Drummond and Iusem for vector-minimizing a smooth cone-convex
vector function. Adding constraints to the considered vector optimization problems
obviously complicates things, however since the intermediate problems are already
constrained it would be interesting to find some ways to approach these both, too,
maybe by means of duality. Last but not least, as the ordering cones that occur
in vector optimization often have empty interiors, modifications of the existing
algorithms in order to maintain their convergence towards weakly efficient solutions
defined by means of generalized interiors should be taken into consideration as well.

Appendix: Proof of Theorem 11.17

In the following we provide an example of a convergence proof for a proximal
point algorithm for determininig weakly efficient solutions to a vector optimization
problem. It originates from an earlier version of [19] and incorporates some ideas
from the proofs of [24, Theorem 3.1] and [3, Theorem 2.1 and Proposition 2.1].
Before formulating it, we recall the celebrated Opial’s Lemma (cf. [65]).

Lemma 11.2 Let (xn)n ⊆ X a sequence such that there exists a nonempty set S ⊆
X such that

(a) limn→+∞ ‖xn − x‖ exists for every x ∈ S;
(b) if xnj

⇀ x̂ for a subsequence nj → +∞, then x̂ ∈ S.

Then, there exists an x̄ ∈ S such that xk ⇀ x̄ when k → +∞.

Theorem 11.17 Let F be C-convex and positively C-lower semicontinuous and
F(X) ∩ (F (x1) − C) be C-complete. Then any sequence (xn)n generated by
Algorithm 17 converges weakly towards a weakly efficient solution to (V P ).

Proof We show first that the algorithm is well-defined. Assuming that we have
obtained an xn, where n ≥ 1, we have to secure the existence of xn+1. Take a
z∗
n ∈ C∗ \ {0} and without loss of generality assume that ‖z∗

n‖ = 1 for all n ≥ 1.
Then 〈z∗

n, en〉 > 0 and the function

x �→ 〈z∗
n, λnF (x) + αn

2
‖x − xn − βn(xn − xn−1)‖2en〉 + δΩn(x)

is lower semicontinuous, being a sum of continuous and lower semicontinuous
functions, respectively, and strongly convex, as the sum of some convex functions
and a squared norm, having thus exactly one minimum. By Lemma 11.1 this
minimum is a weakly efficient solution to the vector optimization problem in Step
3 of Algorithm 17 and we denote it by xn+1.
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The next step is to show the Fejér monotonicity of the sequence (xn)n with
respect to the set Ω = {x ∈ X : F(x) �C F(xk) ∀k ≥ 0}, that is nonempty because
of the C-completeness hypothesis. Let n ≥ 1. The function x �→ 〈z∗

n, λnF (x) +
(αn/2)‖x − xn − βn(xn − xn−1)‖2en〉 + δΩn(x) attains its only minimum at xn+1,
and this fact can be equivalently written as

0 ∈ ∂
(〈z∗

n, λnF (·) + αn

2
‖ · −xn − βn(xn − xn−1)‖2en〉 + δΩn(·)

)
(xn+1).

Using the continuity of the norm, this yields (e.g. via [21, Theorem 3.5.6])
0 ∈ ∂

(〈z∗
n, λnF (·)〉 + δΩn(·)

)
(xn+1) + ∂

(
(αn/2)〈z∗

n, en〉‖ · −xn − βn(xn −
xn−1)‖2

)
(xn+1) = ∂

(〈z∗
n, λnF (·)〉 + δΩn(·)

)
(xn+1) +αn〈z∗

n, en〉(xn+1 − xn −
βn(xn − xn−1)). Then, since xn+1 ∈ Ωn, for any x ∈ Ωn it holds

λn〈z∗
n, F (x) − F(xn+1)〉 ≥ αn〈z∗

n, en〉〈xn+1 − xn − βn(xn − xn−1), xn+1 − x〉.
(11.2)

Let us take an element x̃ ∈ Ω . By construction x̃ ∈ Ωn, thus (11.2) yields, after
taking into consideration that F(x̃) �C F(xn+1), λn > 0 and z∗

n ∈ C∗ \ {0}, that
αn〈z∗

n, en〉〈xn+1 − xn − βn(xn − xn−1), x̃ − xn+1〉 ≥ 0.
For each k ≥ 0 denote ϕk = (1/2)‖xk − x̃‖2. The previous inequality, after

dividing with the positive number αn〈z∗
n, en〉, can be rewritten as

ϕn+1 − ϕn + 1

2
‖xn+1 − xn‖2 − βn〈xn − xn−1, xn+1 − x̃〉 ≤ 0,

and, since 〈xn − xn−1, xn+1 − x̃〉 = ϕn − ϕn−1 + (1/2)‖xn − xn−1‖2 + 〈xn −
xn−1, xn+1 − xn〉, it turns into

ϕn+1 − ϕn − βn(ϕn − ϕn−1) ≤ βn

2
‖xn − xn−1‖2+

βn〈xn − xn−1, xn+1 − xn〉 − 1

2
‖xn+1 − xn‖2. (11.3)

Since the right-hand side of (11.3) is less than or equal to ((βn − 1)/2)‖xn+1 −
xn‖2 + βn‖xn − xn−1‖2, denoting μk = ϕk − βkϕk−1 + βk‖xk − xk−1‖2, k ≥ 1, it
follows that

μn+1 − μn ≤ 3β − 1

2
‖xn+1 − xn‖2 ≤ 0, (11.4)

thus the sequence (μk)k is nonincreasing, as n ≥ 1 was arbitrarily chosen. Then
ϕn ≤ βnϕ0+μ1/(1−β) and one also gets ‖xn+1−xn‖2 ≤ (2/(1−3β))(μn−μn+1).
Employing (11.4), one obtains then
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n∑
k=1

‖xk+1 − xk‖2 ≤ 2

1 − 3β
(μ1 − μn+1) ≤ 2

1 − 3β

(
βn+1ϕ0 + μ1

1 − β

)
< +∞,

in particular

+∞∑
k=1

‖xk+1 − xk‖2 ≤ 2μ1

(1 − β)(1 − 3β)
< +∞. (11.5)

The right-hand side of (11.3) can be rewritten as (1/2)(βn(βn+1)‖xn−xn−1‖2−
‖xn+1 − xn − βn(xn − xn−1)‖2). Denoting τk+1 = xk+1 − xk − βk(xk − xk−1),
θk = ϕk − ϕk−1 and δk = βk‖xk − xk−1‖2 for k ≥ 0 and taking into consideration
that βn ∈ [0, 1/3), (11.3) yields

θn+1 − βnθn ≤ δn − 1

2
‖τn+1‖2. (11.6)

Then [θn+1]+ ≤ (1/3)[θn]+ + δn, followed by [θn+1]+ ≤ (1/3n)[θ1]+ +∑n−1
k=0 δn−k/3k . Hence

∑+∞
k=0[θk+1]+ ≤ 3/2([θ1]+ + ∑+∞

k=0 δk) and, as the right-
hand side of this inequality is finite due to (11.5), so is

∑+∞
k=1[θk]+, too. This yields

that the sequence (wk)k defined as wk = ϕk − ∑k
j=1[θj ]+, k ≥ 0, is bounded.

Moreover, wk+1 − wk = ϕk+1 − ϕk − [ϕk+1 − ϕk]+ = ϕk+1 − ϕk + min{0, ϕk −
ϕk+1} ≤ 0 for all k ≥ 1, thus (wk)k is convergent. Consequently, limk→+∞ ϕk =
limk→+∞ wk + ∑+∞

j=1[θj+1]+, therefore (ϕk)k is convergent. Finally, (‖xk − x̃‖2)k
is convergent, too, i.e. (a) in Lemma 11.2 with S = Ω is fulfilled.

We show now that (xk)k is weakly convergent. The convergence of (ϕk)k implies
that (xk)k is bounded, so it has weak cluster points. Let x̂ ∈ X be one of them
and (xkj

)j the subsequence that converges towards it. Then, as F is positively C-
lower semicontinuous and C-convex, it follows that for any z∗ ∈ C∗ the function
〈z∗, F (·)〉 is lower semicontinuous and convex, thus

〈z∗, F (x̂)〉 ≤ lim
j→+∞〈z∗, F (xkj

)〉 = inf
k≥0

〈z∗, F (xk)〉, (11.7)

with the last equality following from the fact that the sequence (F (xk))k is by
construction nonincreasing. Assuming that there exists a k ≥ 0 such that F(x̂) �C

F(xk), there exists a z̃ ∈ C∗\{0} such that 〈z̃, F (x̂)−F(xk)〉 > 0, which contradicts
(11.7), consequently F(x̂) �C F(xk) for all k ≥ 0, i.e. x̂ ∈ Ω , therefore one can
employ Lemma 11.2 with S = Ω since its hypothesis (b) is fulfilled as well. This
guarantees then the weak convergence of (xk)k to a point x̄ ∈ Ω .

The last step is to show that x̄ ∈ WE(V P ). Assuming that x̄ /∈ WE(V P ), there
exists an x′ ∈ X such that F(x′) <C F(x̄). This yields x′ ∈ Ω . As ‖z∗

k‖ = 1 for
all k ≥ 0, the sequence (z∗

k)k has a weak∗ cluster point, say z̄∗, that is the limit of
a subsequence (z∗

kj
)j . Because z∗

k ∈ C∗ for all k ≥ 0 and C∗ is weakly∗ closed, it
follows that z̄∗ ∈ C∗. Moreover, z̄∗ �= 0, since it can be shown via [23, Lemma 2.2]
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that 〈z̄∗, c〉 > 0 for any c ∈ int C. Consequently, 〈z̄∗, F (x′) − F(x̄)〉 < 0. For any
j ≥ 0 it holds by (11.2)

λkj
〈z∗

kj
, F (x′)−F(xkj +1)〉 ≥ −〈αkj

〈z∗
kj

, ekj
〉(xkj +1 − xkj

−βkj
(xkj

− xkj −1), x
′−

xkj +1〉 ≥ −αkj
〈z∗

kj
, ekj

〉‖x′−xkj +1‖
(‖xkj +1−xkj

‖+βkj
‖xkj

−xkj −1‖
)
. (11.8)

Because of (11.5), (‖xk − xk−1‖)k converges towards 0 for k → +∞, therefore
so does the last expression in the inequality chain (11.8) when j → +∞ as well.
Letting j converge towards +∞, (11.8) yields 〈z̄∗, F (x′)−F(x̄)〉 ≥ 0, contradicting
the inequality obtained above. Consequently, x̄ ∈ WE(V P ). ��
Remark 11.43 In order to guarantee the lower semicontinuity of the functions
δΩn , n ≥ 1, it is enough to have the vector function F only C-level closed
(i.e. the set {x ∈ X : F(x) �C y} is closed for any y ∈ Y ), a hypotheses
weaker than the positive C-lower semicontinuity imposed on F in Theorem 11.17
and Theorem 11.18. However, the latter is also necessary in the proofs of these
statements in order to guarantee the lower semicontinuity of the functions (z∗

nF ),
n ≥ 1.
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21. Boţ, R.I., Grad, S.M., Wanka, G.: Duality in Vector Optimization. Vector Optimization.
Springer-Verlag, Berlin (2009)
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