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Chapter 1
Convergence Rate of Proximal Inertial
Algorithms Associated with Moreau
Envelopes of Convex Functions

Hedy Attouch and Juan Peypouquet

Abstract In a Hilbert space setting H, we develop new inertial proximal-based
algorithms that aim to rapidly minimize a convex lower-semicontinuous proper
function Φ : H → R ∪ {+∞}. The guiding idea is to use an accelerated
proximal scheme where, at each step, Φ is replaced by its Moreau envelope, with
varying approximation parameter. This leads to consider a Relaxed Inertial Proximal
Algorithm (RIPA) with variable parameters which take into account the effects
of inertia, relaxation, and approximation. (RIPA) was first introduced to solve
general maximally monotone inclusions, in which case a judicious adjustment of
the parameters makes it possible to obtain the convergence of the iterates towards
the equilibria. In the case of convex minimization problems, convergence analysis
of (RIPA) was initially addressed by Attouch and Cabot, based on its formulation
as an inertial gradient method with varying potential functions. We propose a
new approach to this algorithm, along with further developments, based on its
formulation as a proximal algorithm associated with varying Moreau envelopes.
For convenient choices of the parameters, we show the fast optimization property
of the function values, with the order o(k−2), and the weak convergence of the
iterates. This is in line with the recent studies of Su-Boyd-Candès, Chambolle-
Dossal, Attouch-Peypouquet. We study the impact of geometric assumptions on
the convergence rates, and the stability of the results with respect to perturbations
and errors. Finally, in the case of structured minimization problems smooth +
nonsmooth, based on this approach, we introduce new proximal-gradient inertial
algorithms for which similar convergence rates are shown.
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1.1 Introduction, Preliminary Results

In this paper, we analyze the convergence rate of a general class of inertial proximal
algorithms for convex optimization. Following [10, 16], our main motivation is to
put to the fore inertial proximal algorithms that converge for general monotone
inclusions, and which, in the case of convex minimization, give fast convergence
rates for the values. Let H be a real Hilbert space endowed with scalar product 〈·, ·〉
and norm ‖ · ‖, and let Φ : H → R ∪ {+∞} be a convex, lower-semicontinuous,
proper function. We will study the convergence rate of the Relaxed Inertial Proximal
Algorithm, (RIPA) for short,

(RIPA)

{
yk = xk + αk(xk − xk−1)

xk+1 = (1− ρk)yk + ρkproxμkΦ
(yk),

where the varying parameters αk , ρk , and μk , take into account of the inertial,
relaxation, and approximation effects, respectively. Convergence analysis of (RIPA)
was recently considered by Attouch-Cabot in [10], relying on its formulation as an
inertial gradient algorithm associated with varying Moreau envelopes. We propose
a new approach to (RIPA), based on its reformulation as an inertial proximal
algorithm. In doing so, we obtain convergence rates relying on different types of
assumptions, and enrich the analysis of (RIPA) in several aspects. We study the
impact of geometric assumptions on the convergence rates, and the stability of
the results with respect to perturbations and errors. In the case of minimization
problems with additive smooth + nonsmooth structure, our study naturally provides
new inertial proximal-gradient algorithms with fast convergence properties.

1.1.1 Introducing (RIPA) from a Dynamic Perspective

As pointed out in [9, 16], (RIPA) bears close connection with the Regularized
Inertial Gradient System, which is the non-autonomous second-order differential
equation

(RIGS) ẍ(t)+ γ (t)ẋ(t)+∇Φλ(t)(x(t)) = 0. (1.1)
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It involves two varying parameters: γ (·) is a positive viscous damping parameter,
and λ(t) is the approximation parameter entering the Moreau envelope of Φ, which
will be conveniently tuned. Recall that, for λ > 0, and x ∈ H,

Φλ(x) = inf
ξ∈H

{
Φ(ξ)+ 1

2λ
‖x − ξ‖2

}
, (1.2)

and that proxλΦ(x) is the unique point where the above minimum is achieved.
Writing the optimality condition for (1.2), we get proxλΦ(x)+ λ∂Φ

(
proxλΦ(x)

) �
x, that is proxλΦ(x) = (I + λ∂Φ)−1 (x) (see Appendix “Some Properties of the
Moreau Envelope” for further results). The regularity of the function ]0,+∞[×H �
(λ, x) �→ ∇Φλ(x) makes (1.1) a classical ordinary differential equation, whose
Cauchy problem is well posed (see Appendix, Theorem 1.6.2). This makes a big
difference with the approach based on the differential inclusion ẍ(t) + γ (t)ẋ(t) +
∂Φ(x(t)) � 0, for which the study of the existence and uniqueness of trajectories
raises significant difficulties, even in a finite dimensional setting, see [11]. Thus,
our approach will be to replace Φ by Φλ(t), while keeping λ(t) bounded below by
a positive constant. This makes sense because, for λ > 0 fixed, Φλ completely
determines Φ. This contrasts with the Yosida approximation method which is based
on λ(t)→ 0.

The time discretization of (RIGS) naturally leads to (RIPA), as follows: Take a
time step hk > 0, and set τk = ∑k

i=1 hi , xk = x(τk), λk = λ(τk), γk = γ (τk).
An implicit finite-difference scheme for (1.1) with centered second-order variation
gives

1

h2
k

(xk+1 − 2xk + xk−1)+ γk

hk
(xk − xk−1)+∇Φλk (xk+1) = 0.

Equivalently, xk+1 + h2
k∇Φλk (xk+1) = xk + (1− γkhk) (xk − xk−1), which gives

xk+1 =
(
I + h2

k∇Φλk

)−1
(xk + (1− γkhk) (xk − xk−1)) . (1.3)

Setting sk = h2
k and αk = 1− γkhk , we obtain

(RIPA)1

{
yk = xk + αk(xk − xk−1)

xk+1 = proxskΦλk
(yk).

This is an inertial proximal algorithm, where the potential function Φλk , and the step
size sk , vary at each iteration. Let us show that this algorithm can be equivalently
written as (RIPA). We have

xk+1 = proxskΦλk
(yk) = yk − sk∇(Φλk )sk (yk) = yk − sk∇Φλk+sk (yk),
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where the last equality comes from the resolvent equation (or semi-group property)
(Φλk )sk = Φλk+sk . This gives

(RIPA)2

{
yk = xk + αk(xk − xk−1)

xk+1 = yk − sk∇Φμk
(yk)

with μk = λk + sk . Note that μk > sk . Developing the above relation, we obtain

⎧⎨
⎩

yk = xk + αk(xk − xk−1)

xk+1 = λk

λk + sk
yk + sk

λk + sk
prox(λk+sk)Φ(yk).

We recover the algorithm (RIPA), with relaxation parameter ρk = sk
λk+sk , and

proximal parameter μk = λk + sk .
Conversely, let us show that (RIPA) can be equivalently formulated as (RIPA)1

or (RIPA)2. It is convenient to set Φ0 = Φ, which is in accordance with the limiting
behavior of Φλ as λ→ 0 (see Section 1.3.1 for further details).

Lemma 1.1 Suppose that the relaxation parameter ρk satisfies 0 < ρk ≤ 1 for all
k ≥ 1. Then, the algorithm (RIPA) with parameters (ρk, μk) can be equivalently
formulated either as (RIPA)1 with parameters sk = ρkμk and λk = μk(1− ρk), or
as (RIPA)2 with parameters sk = ρkμk and μk .

Proof By definition of the Yosida approximation,

(1− ρk)yk + ρkproxμkΦ
(yk) = yk − ρkμk∇Φμk

(yk).

Set sk = ρkμk . When ρk < 1 we have μk > sk . Setting μk = sk + λk , with λk > 0,
similar computation as above gives

(1− ρk)yk + ρkproxμkΦ
(yk) = yk − sk∇Φsk+λk (yk) = yk − sk∇(Φλk )sk (yk)

= proxskΦλk
(yk),

which gives (RIPA)1. When ρk = 1, we have sk = μk and λk = 0. Since Φλk =
Φ0 = Φ, it follows

(1− ρk)yk + ρkproxμkΦ
(yk) = proxμkΦ

(yk) = proxskΦ(yk) = proxskΦλk
(yk).

(RIPA)2 follows at once by a similar argument as above.

According to the formulation of the algorithm, proximal as in (RIPA)1, or
gradient as in (RIPA)2, we obtain close but different results. This is because each
method is based on a specific descent inequality. We will compare our approach,
based on (RIPA)1, to the approach developed by Attouch-Cabot in [8, Part C], and
which is based on (RIPA)2. An advantage of the proximal approach (RIPA)1 is that,
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for ρk = 0, we find the classical form of the results concerning the inertial proximal
algorithm: they express themselves directly with Φ, not with a Moreau envelope.

1.1.2 The Sequence (tk)

In the study of (RIPA), the sequence (tk), defined by

tk := 1+
+∞∑
l=k

⎛
⎝ l∏

j=k
αj

⎞
⎠ , (1.4)

plays a central role. The sequence (tk) is well defined provided the following
condition holds:

+∞∑
l=k

⎛
⎝ l∏

j=k
αj

⎞
⎠ < +∞ for every k ≥ 1. (K0)

One can simply retrieve (αk) from (tk), thanks to the following formula:

Lemma 1.2 Assume that the nonnegative sequence (αk) satisfies (K0). Then, 1 +
αktk+1 = tk for every k ≥ 1. Equivalently, αk = tk − 1

tk+1
for every k ≥ 1.

Therefore, (RIPA) can be written in an equivalent way

⎧⎨
⎩

yk = xk + tk − 1

tk+1
(xk − xk−1)

xk+1 = proxskΦλk
(yk).

(1.5)

In line with [7, 21, 26], we introduce the following property

t2
k+1 − t2

k ≤ tk+1 for every k ≥ 1. (K1)

It is convenient to introduce the following quantity, which, under assumption (K1),
is nonnegative:

δk := t2
k − t2

k+1 + tk+1. (1.6)

To prove the convergence of the iterations, we will need the slightly stronger notion:

t2
k+1 − t2

k ≤ m tk+1 for some m ∈ (0, 1) and every k ≥ 1. (K+
1 )
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So, assumption (K+
1 ) gives

δk ≥ (1−m)tk+1. (1.7)

These conditions can be found in several previous works:

• In a seminal work [33], Nesterov introduced the accelerated gradient method,
which corresponds to the sequence (tk) obtained by taking equality in (K1), that

is tk+1 = 1
2

(
1+

√
1+ 4t2

k

)
, and t1 = 1. This choice leads to an increasing

sequence (αk), whose asymptotic behavior is similar to that of 1 − 3
k

as k →
+∞. It has been further extended to structured minimization problems by Beck-
Teboulle in [21] (FISTA). This scheme exhibits the convergence rate of values
O( 1

k2 ), which is optimal among all methods having only information about the
gradient at consecutive iterates [34].

• Recently, the case αk = 1 − α
k

where α > 0 has gained special attention, see
[13, 15, 26, 38]. A rather involved but straightforward computation gives that for
α > 1, the condition (K0) is satisfied and tk = k−1

α−1 . We immediately deduce
that (K1) is equivalent to α ≥ 3, and (K+

1 ) is equivalent to α > 3. While
keeping the same computational complexity as in the case α = 3, taking α > 3
offers many advantages. First, it ensures the convergence of the sequences (xk),
as proved by Chambolle-Dossal [26], see also [13]. The convergence of the
sequences generated by (FISTA) has not been established so far. Second, as
proved by Attouch-Peypouquet in [15], it provides the better convergence rate

o
(

1
k2

)
. Thus, α = 3 appears as a critical value. The subcritical case α < 3

has been recently considered by Apidopoulos-Aujol-Dossal [3] and Attouch-
Chbani-Riahi [14].

• The case tk ≡ 1 is equivalent to αk ≡ 0, which gives the proximal algorithm
(without inertia).

• An extended study of the convergence rates of the inertial forward-backward
methods with general damping coefficient (αk) has been developed by Attouch-
Cabot [7].

1.1.3 A Model Result

Consider the case αk = 1− α
k

. The relaxed inertial proximal algorithm writes

⎧⎨
⎩ yk = xk + (1− α

k
)(xk − xk−1)

xk+1 = (1− ρk)yk + ρkproxμkΦ
(yk).

The following result is a consequence of Theorems 1.2.2 and 1.2.3 proved in the
next section:
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Theorem 1.1.1 Suppose that α > 3, and that ((1 − ρk)μk) and (ρkμk) are
nondecreasing sequences of positive numbers. Setting λk = (1 − ρk)μk , we have

Φλk (xk)−minH Φ = o
(

1
k2

)
. Equivalently, setting pk := proxλkΦxk , we have

Φ(pk)−min
H

Φ = o

(
1

k2

)
and ‖xk − pk‖ = o

(√
μk

k

)
.

Moreover, the sequence (xk) converges weakly to a minimizer of Φ if supk≥0

√
μk

k
<

+∞.

This makes a difference with the approach developed in [10], where it is assumed
that (μk) and (ρkμk) are nondecreasing sequences of positive numbers, and where
the convergence results are expressed with Φμk

instead of Φλk .

1.1.4 Organization of the Paper

In Section 1.2, we analyze the convergence properties of (RIPA), thus obtaining
new inertial proximal algorithms, with fast convergence properties. In Section 1.3,
we compare the results obtained using the proximal and gradient approaches,
and combine our results with those for general maximally monotone operators.
In Section 1.4, we obtain better convergence rates and strong convergence of the
iterates, provided the function has a strong minimum. In Section 1.5, we examine
the stability of (RIPA) with respect to perturbations and errors. In Section 1.6, we
develop regularized inertial proximal-gradient algorithms to solve structured smooth
+ nonsmooth minimization problems. The Appendix contains auxiliary technical
results used along the paper.

1.2 A Regularized Inertial Proximal Algorithm

In this section, we analyze the convergence properties of (RIPA). We set λk :=
(1 − ρk)μk and sk := ρkμk , and make the following standing assumptions on the
parameters:

(A)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

• Φ : H→ R ∪ {+∞} is a convex lower-semicontinuous proper function;
• S := argminΦ �= ∅;
• (αk) is a sequence in [0, 1] satisfying (K0);
• 0 < ρk ≤ 1 for all k ≥ 1;
• (μk) is a sequence of positive numbers;
• (λk) = ((1− ρk)μk) and (sk) = (ρkμk)

are nondecreasing sequences of positive numbers.
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As shown in Lemma 1.1, (RIPA) takes the compact proximal formulation with
varying potential functions

(RIPA)1

{
yk = xk + αk(xk − xk−1)

xk+1 = proxskΦλk
(yk).

We denote by (xk)k∈N , (yk)k∈N the sequences in H defined by (RIPA) for k ≥
0, and x−1 , x0 ∈ H. Under assumption (A), for x∗ ∈ arg minΦ, we define the
sequence (Ex∗,k)k∈N of nonnegative real numbers

Ex∗,k = t2
k

(
Φλk (xk)−min

H
Φ

)
+ 1

2sk
‖x∗ − xk−1 + tk(xk−1 − xk)‖2, (1.8)

where the sequence (tk) has been defined in (1.4). We also define the sequence
(Ek)k∈N

Ek = t2
k

(
Φλk (xk)−min

H
Φ

)
+ t2

k

2sk
‖xk−1 − xk‖2. (1.9)

We have Ek = t2
kWk , where Wk is the global energy at stage k, namely:

Wk = Φλk (xk)−min
H

Φ + 1

2sk
‖xk−1 − xk‖2. (1.10)

Remark 1.1 Recall the equalities minH Φλ = minH Φ and

Φλ(x)−min
H

Φ =
(
Φ(proxλΦx)−min

H
Φ

)
+ 1

2λ
‖proxλΦx − x‖2,

by which an upper bound of Φλ(x) − minH Φ is also an upper bound of
Φ(proxλΦx) − minH Φ and of 1

2λ‖proxλΦx − x‖2. This argument will be used
repeatedly in the sequel.

1.2.1 Preliminary Lemmas

As a classical key ingredient, we use the descent rule for the proximal method. It can
be obtained as a special case of the descent rule for the proximal-gradient method,
see, for example, [21, Lemma 2.3], [26, Lemma 3.1]. For the convenience of the
reader, we give a short proof in the case of the proximal method. Then we will
apply it to the algorithm (RIPA).
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Lemma 1.3 Let ϕ : H → R ∪ {+∞} be a convex, lower-semicontinuous, and
proper function. Let s > 0, y ∈ H, and set p = proxsϕy.

(i) For any u ∈ H we have

ϕ(p)+ 1

2s
‖u− p‖2 + 1

2s
‖y − p‖2 ≤ ϕ(u)+ 1

2s
‖u− y‖2; (1.11)

ϕ(p)+ 1

s
‖y − p‖2 + 1

s
〈y − p, u− y〉 ≤ ϕ(u). (1.12)

(ii) For any x, x∗ in H, and for any t ≥ 1 we have

t2(ϕ(p)− ϕ(x∗))+ 1

2s
‖x∗ − x + t (x − p)‖2 + t2

2s
‖y − p‖2

≤ (t2 − t)(ϕ(x)− ϕ(x∗))+ 1

2s
‖x∗ − x + t (x − y)‖2.

Proof

(i) By the definition of p, 1
s
(y−p) is a subgradient of ϕ at p. Hence, for all u ∈ H,

we have

ϕ(u) ≥ ϕ(p)+ 〈1
s
(y − p), u− p〉.

Inequality (1.11) is a consequence of 〈y − p, u − p〉 = 1
2 {‖y − p‖2 + ‖u −

p‖2−‖u−y‖2}, while (1.12) is obtained by writing u−p = (u−y)+ (y−p)

in the above inequality.
(ii) Following the proof of [22, Lemma 1.7], we set u = 1

t
x∗ + (1− 1

t
)x in (1.11),

and we use the convexity of ϕ at u:

ϕ(p)+ 1

2s

∥∥∥∥1

t
x∗ +

(
1− 1

t

)
x − p

∥∥∥∥
2

+ 1

2s
‖y − p‖2

≤ 1

t
ϕ(x∗)+

(
1− 1

t

)
ϕ(x)+ 1

2s

∥∥∥∥1

t
x∗ +

(
1− 1

t

)
x − y

∥∥∥∥
2

.

It suffices to rearrange the terms, and to multiply by t2 to obtain the desired
inequality.

��
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Lemma 1.4 Let assumption (A) hold, and let (xk) be a sequence generated by the
algorithm (RIPA).

(i) For any x∗ ∈ arg minΦ and k ≥ 0, we have

Ex∗,k+1 + δk

(
Φλk (xk)−min

H
Φ

)
+ t2

k+1

2sk
‖xk+1 − yk‖2 ≤ Ex∗,k.

(ii) The energy sequence (Wk) satisfies, for every k ≥ 1,

Wk+1 −Wk ≤ −1− α2
k

2sk
‖xk − xk−1‖2.

As a consequence, the sequence (Wk) is nonincreasing.
(iii) Assume, moreover, that condition (K1) is satisfied. Then, for each k ≥ 0, we

have

Ek+1 − tk+1

(
Φλk (xk)−min

H
Φ

)
+ tk

2sk
‖xk − xk−1‖2 ≤ Ek.

Proof

(i) We apply Lemma 1.3(ii) with ϕ = Φλk , x∗ ∈ arg minΦλk , t = tk+1, s = sk ,
x = xk and y = yk . Hence p = proxskΦλk

yk = xk+1. We obtain, for each
k ≥ 0,

t2
k+1(Φλk (xk+1)−Φλk (x

∗))+ 1

2sk
‖x∗−xk+tk+1(xk−xk+1)‖2+ t2

k+1

2sk
‖xk+1−yk‖2

≤ (t2
k+1 − tk+1)(Φλk (xk)−Φλk (x

∗))+ 1

2sk
‖x∗ − xk + tk+1(xk − yk)‖2.

By assumption (A), the sequences (λk) and (sk) are nondecreasing. These
properties, respectively, imply that for all k ≥ 0, Φλk+1 ≤ Φλk and 1

sk+1
≤

1
sk

. Moreover Φλk (x
∗) = minH Φ. Therefore, we deduce from the above

inequality that

t2
k+1(Φλk+1(xk+1)−min

H
Φ)+ 1

2sk+1
‖x∗ − xk + tk+1(xk − xk+1)‖2

+ t2
k+1

2sk
‖xk+1 − yk‖2

≤ (t2
k+1 − tk+1)(Φλk (xk)−min

H
Φ)+ 1

2sk
‖x∗ − xk + tk+1(xk − yk)‖2.
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Let us examine the last term of this inequality. By (1.5) we have

x∗−xk+tk+1(xk−yk) = x∗−xk−(tk−1)(xk−xk−1) = x∗−xk−1+tk(xk−1−xk).

Collecting these results, we obtain

t2
k+1(Φλk+1(xk+1)−min

H
Φ)+ 1

2sk+1
‖x∗ − xk + tk+1(xk − xk+1)‖2

+ t2
k+1

2sk
‖xk+1 − yk‖2

≤ (t2
k+1 − tk+1)(Φλk (xk)−min

H
Φ)+ 1

2sk
‖x∗ − xk−1 + tk(xk−1 − xk)‖2.

By definition of δk := t2
k − t2

k+1 + tk+1, and Ex∗,k we get

Ex∗,k+1 + δk

(
Φλk (xk)−min

H
Φ

)
+ t2

k+1

2sk
‖xk+1 − yk‖2 ≤ Ex∗,k,

which is the desired inequality.
(ii) In inequality (1.11) of Lemma 1.3(i), we neglect the term 1

2s ‖p − y‖2 and we
set ϕ = Φλk , s = sk , u = xk and y = yk . Hence p = proxskΦλk

yk = xk+1. For
each k ≥ 0, we obtain

Φλk (xk+1)+ 1

2sk
‖xk − xk+1‖2 ≤ Φλk (xk)+

1

2sk
‖xk − yk‖2.

Recalling that Φλk+1(xk+1) ≤ Φλk (xk+1), 1
sk+1

≤ 1
sk

, and yk−xk = tk−1
tk+1

(xk−
xk−1), we get

Φλk+1(xk+1)+ 1

2sk+1
‖xk − xk+1‖2 ≤ Φλk (xk)+

1

2sk

(tk − 1)2

t2
k+1

‖xk − xk−1‖2.

(1.13)
By Lemma 1.2 we have 1 + αktk+1 = tk . Hence, inequality (1.13) can be
equivalently formulated as

Φλk+1(xk+1)+ 1

2sk+1
‖xk−xk+1‖2 ≤ Φλk (xk)+

1

2sk
αk

2‖xk−xk−1‖2. (1.14)

According to the definition of Wk , we obtain

Wk+1 −Wk ≤ −1− α2
k

2sk
‖xk − xk−1‖2,

which is the desired inequality.



12 H. Attouch and J. Peypouquet

(iii) In inequality (1.13), we subtract minH Φ from each side, and multiply by t2
k+1,

resulting in

Ek+1 = t2
k+1

(
Φλk+1(xk+1)−min

H
Φ

)
+ t2

k+1

2sk+1
‖xk − xk+1‖2

≤ t2
k+1

(
Φλk (xk)−min

H
Φ

)
+ 1

2sk
(tk − 1)2‖xk − xk−1‖2.

In view of (K1) we have t2
k+1 ≤ tk+1 + t2

k . Since tk ≥ 1 we have (tk − 1)2 =
t2
k − tk + (1− tk) ≤ t2

k − tk . Collecting these results we obtain

Ek+1 ≤ t2
k

(
Φλk (xk)−min

H
Φ

)
+ t2

k

2sk
‖xk − xk−1‖2

+ tk+1

(
Φλk (xk)−min

H
Φ

)
− tk

2sk
‖xk − xk−1‖2,

which establishes the desired inequality.

Lemma 1.5 Let assumption (A) hold, and let (xk) be a sequence generated by the
algorithm (RIPA). Fix x∗ ∈ H, and consider the anchor sequence (hk), which is
defined by hk = 1

2‖xk − x∗‖2. We have, for every k ≥ 1,

hk+1−hk−αk(hk−hk−1)=1

2
(α2

k+αk)‖xk−xk−1‖2+〈proxskΦλk
(yk)− yk, yk − x∗〉

+ 1

2
‖proxskΦλk

(yk)− yk‖2. (1.15)

If, moreover, x∗ ∈ arg minΦ, then

hk+1− hk − αk(hk − hk−1) ≤ 1

2
(α2

k + αk)‖xk − xk−1‖2− sk(Φλk (xk+1)−minΦ).

Proof Observe that

‖yk − x∗‖2 = ‖xk + αk(xk − xk−1)− x∗‖2

= ‖xk − x∗‖2 + α2
k‖xk − xk−1‖2 + 2αk〈xk − x∗, xk − xk−1〉

= ‖xk − x∗‖2 + α2
k‖xk − xk−1‖2

+ αk‖xk − x∗‖2 + αk‖xk − xk−1‖2 − αk‖xk−1 − x∗‖2

= ‖xk−x∗‖2+αk(‖xk−x∗‖2−‖xk−1−x∗‖2)+ (α2
k + αk)‖xk − xk−1‖2

= 2[hk + αk(hk − hk−1)] + (α2
k + αk)‖xk − xk−1‖2.
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Setting briefly Ak = hk+1−hk−αk(hk−hk−1) = 1
2‖xk+1−x∗‖2−[hk+αk(hk−

hk−1)], we deduce that

Ak = 1

2
‖xk+1 − x∗‖2 − 1

2
‖yk − x∗‖2 + 1

2
(α2

k + αk)‖xk − xk−1‖2

= 〈xk+1 − yk, yk − x∗〉 + 1

2
‖xk+1 − yk‖2 + 1

2
(α2

k + αk)‖xk − xk−1‖2.

Using the equality xk+1 = proxskΦλk
(yk), we obtain (1.15).

Let us now assume that x∗ ∈ arg minΦ, and apply inequality (1.12) with φ =
Φλk , y = yk and u = x∗. By definition of (RIPA), proxskΦλk

(yk) = xk+1. Hence,

Φλk (x
∗) ≥ Φλk (xk+1)+ 1

sk
‖yk − xk+1‖2 + 1

sk
〈x∗ − yk, yk − xk+1〉.

Since Φλk (x
∗) = minΦ, we infer that

〈xk+1 − yk, yk − x∗〉 ≤ −sk(Φλk (xk+1)−minΦ)− ‖yk − xk+1‖2.

Returning to (1.15), we obtain

hk+1 − hk − αk(hk − hk−1) ≤ 1

2
(α2

k + αk)‖xk − xk−1‖2

− sk(Φλk (xk+1)−minΦ)− 1

2
‖proxskΦλk

(yk)− yk‖2.

Neglecting the last term of the inequality above, this completes the proof of
Lemma 1.5.

1.2.2 Fast Convergence of the Values

Theorem 1.2.1 Let us make assumption (A), and suppose that the sequence (tk)

satisfies (K1). Then, the following properties hold:

(i) For any x∗ ∈ arg minΦ, the sequence (Ex∗,k)k∈N is nonincreasing and
converges. Moreover, for all k ≥ 1, we have

Φλk (xk)−min
H

Φ ≤ Ex∗,0
t2
k

(1.16)
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Φ(proxλkΦxk)−min
H

Φ ≤ Ex∗,0
t2
k

(1.17)

‖proxλkΦxk − xk‖ ≤
√

2λkEx∗,0
t2
k

(1.18)

‖∇Φλk (xk)‖ ≤
√

2Ex∗,0
λkt

2
k

. (1.19)

(ii)
∞∑
k=0

δk

(
Φλk (xk)−min

H
Φ

)
< +∞.

(iii)
∞∑
k=0

skt
2
k+1‖∇Φλk+sk (yk)‖2 < +∞, and ‖∇Φλk+sk (yk)‖ = o(1/tk+1).

Proof

(i) The assertion is a consequence of Lemma 1.4(i). From the inequality Ex∗,k ≤
Ex∗,0 and the definition (1.8) of Ex∗,k we then deduce (1.16). Estima-
tions (1.17), (1.18) are consequences of (1.16) and Remark 1.1. Estima-
tion (1.19) follows from (1.18) and ∇Φλk (xk) = 1

λk
(xk − proxλkΦxk).

(ii) A consequence of Lemma 1.4(i) and of the existence of limk→+∞ Ex∗,k (notice
that δk may be zero, and the information conveyed is then void).

(iii) The same argument shows
∑∞

k=0
t2k+1
sk
‖xk+1 − yk‖2 < +∞. From the formu-

lation (RIPA)2 of the algorithm, we deduce
∑∞

k=0 skt
2
k+1‖∇Φλk+sk (yk)‖2 <

+∞. Since (sk) is nondecreasing, we deduce
∑∞

k=0 t
2
k+1‖∇Φλk+sk (yk)‖2 <

+∞. As a consequence tk+1‖∇Φλk+sk (yk)‖ → 0, as k → +∞. If (tk)k∈N is
nondecreasing, a fortiori, we have tk‖∇Φλk+sk (yk)‖ → 0, as k →+∞.

Remark 1.2 Recall that λk + sk = μk . Since λ �→ Φλ is nonincreasing, we have

Φμk
(xk)−min

H
Φ = Φλk+sk (xk)−min

H
Φ ≤ Φλk (xk)−min

H
Φ.

The same arguments as in the proof of Theorem 1.2.1(i) yield Φμk
(xk)−minH Φ ≤

Ex∗,0
t2k

, which gives for k ≥ 1

Φ(proxμkΦ
xk)−min

H
Φ ≤ Ex∗,0

t2
k

, ‖proxμkΦ
xk − xk‖ ≤

√
2μkEx∗,0

t2
k

,

and ‖∇Φ(μk)(xk)‖ ≤
√

2Ex∗,0
μkt

2
k

.
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The convergence rates are similar to [10, Theorem 2.5] (our assumptions on the
parameters are slightly different).

Remark 1.3 Take x−1 = x0. Then Ex∗,0 = t2
0

(
Φλ0(x0)−minH Φ

) + 1
2s0
‖x∗ −

x0‖2. From Theorem 1.2.1 we obtain

Φ(proxλkΦxk)−min
H

Φ ≤ 1

t2
k

(
t2
0

(
Φλ0(x0)−min

H
Φ

)
+ 1

2s0
‖x∗ − x0‖2

)
.

Since Φλ0(x0) ≤ Φ(x0), the constant entering the above rate of convergence of the
values is at least as good as in the classical inertial algorithms based on Nesterov’s
acceleration.

1.2.3 Faster Convergence

Theorem 1.2.2 Under (A), assume that the sequence (αk) satisfies (K+
1 ). Then,

for any sequence (xk) generated by the algorithm (RIPA), the following holds true:

Φλk (xk)−min
H

Φ = o

(
1∑k
i=1 ti

)
and ‖xk−xk−1‖ = o

(
sk∑k
i=1 ti

)1
2

as k→+∞,

(1.20)
thus implying

Φ(proxλkΦxk)−min
H

Φ = o

(
1∑k
i=1 ti

)

and ‖xk − proxλkΦxk‖ = o

(
μk∑k
i=1 ti

)1
2

as k→+∞. (1.21)

As a consequence, limk→+∞Ek = 0. Moreover, we have

Φ(proxλkΦxk)−min
H

Φ = o

(
1

t2
k

)
, ‖xk − proxλkΦxk‖ = o

(√
μk

tk

)

and ‖xk − xk−1‖ = o

(√
sk

tk

)
as k →+∞.

Proof In (1.7), we saw that (K+
1 ) gives δk ≥ (1−m)tk+1. According to this property,

Theorem 1.2.1(ii) implies

∞∑
l=0

tl+1(Φλl (xl)−min
H

Φ) < +∞. (1.22)
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Thus we may add
∑∞

l=k tl+1(Φλl (xl) − minH Φ) to either side of the inequality of
Lemma 1.4(iii); which gives

Ek+1 +
∞∑

l=k+1

tl+1

(
Φλl (xl)−min

H
Φ

)
+ tk

2sk
‖xk − xk−1‖2

≤ Ek +
∞∑
l=k

tl+1

(
Φλl (xl)−min

H
Φ

)
.

Therefore the positive sequence k → Ek + ∑∞
l=k tl+1

(
Φλl (xl)−minH Φ

)
is

decreasing. As a consequence,

limk→+∞ Ek exists (1.23)
∞∑
k=0

tk

2sk
‖xk − xk−1‖2 < +∞. (1.24)

Let us now observe that assumption (K1) implies tk+1 − tk ≤ tk+1
tk+1+tk ≤ 1. Since

tk ≥ 1, we deduce that tk+1 ≤ 2tk for every k ≥ 1. Then estimate (1.24) yields

+∞∑
k=1

tk+1

2sk
‖xk − xk−1‖2 < +∞.

Recall from (1.22) that
∑∞

k=0 tk+1(Φλk (xk) − minH Φ) < +∞. Adding the two
last inequalities, and by definition of Wk , we obtain

∑+∞
k=0 tk+1Wk < +∞. On the

other hand, it follows from Lemma 1.4 (iii) and 0 ≤ αk ≤ 1 that the sequence (Wk)

is nonincreasing. Hence
∑+∞

k=0 tk+1Wk+1 < +∞, which gives

+∞∑
k=1

tkWk < +∞.

We follow now the same argument as in [10], and apply Lemma 1.10 in the
Appendix, with the sequences (tk) and (Wk), respectively, in place of (τk) and (εk).
We obtain that

Wk = o

(
1∑k
i=1 ti

)
as k →+∞.

The estimates in (1.20) follow immediately. From the definition of Φμk
, we easily

deduce (1.21). In view of assumption (K1), we have t2
i+1−t2

i ≤ ti+1 for every i ≥ 1,
hence by summing from i = 1 to k − 1
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t2
k ≤ t2

1 +
k−1∑
i=1

ti+1 = t2
1 − t1 +

k∑
i=1

ti ,

and the last claims follow.

Remark 1.4 In the line of Remark 1.2, we also have Φμk
(xk)−minH Φ = o

(
t−2
k

)
,

Φ(proxμkΦ
xk)−minH Φ = o

(
t−2
k

)
, ‖proxμkΦ

xk − xk‖ = o
(√

λkt
−1
k

)
, and

‖∇Φμk
(xk)‖ = o

(
λ
−1/2
k t−1

k

)
.

1.2.4 Convergence of the Iterates

Theorem 1.2.3 Under (A), assume that the sequence (αk) satisfies (K+
1 ). Suppose,

further, that supk≥0 λkt
−2
k < +∞ and supk sk < +∞. Then, the sequences (xk),

(proxλkΦxk), (prox(λk+sk)Φxk) and (yk) converge weakly to the same minimizer of
Φ.

Proof We use Opial’s Lemma (see Appendix Lemma 1.8). Let x∗ be a minimum
point of Φ. By Theorems 1.2.1(i) and 1.2.2 we know that Ex∗,k has a limit,
and Ek converges to 0, as k → +∞. This last property is equivalent to
t2
k

(
Φλk (xk)−minH Φ

) → 0 and tk√
2sk
‖xk−1 − xk‖ → 0. Let us rewrite Ex∗,k

as

Ex∗,k = t2
k

(
Φλk (xk)−min

H
Φ

)
+ ‖ 1√

2sk

(
x∗ − xk−1

)+ tk√
2sk

(xk−1 − xk)‖2.

From the convergence of Ex∗,k and the convergence to zero of the above-mentioned
sequences, we deduce that

lim
k→+∞Ex∗,k = lim

k→+∞

∥∥∥∥ 1√
2sk

(
x∗ − xk−1

)∥∥∥∥
2

. (1.25)

The sequence (sk) has been supposedly nondecreasing and bounded from above.
Hence it converges to some positive real, which by (1.25) implies that ‖x∗ − xk−1‖
has a limit, as k →+∞. This gives the first hypothesis in Opial’s Lemma.

Let x̄ be a weak cluster point of (xk)k∈N. By Theorem 1.2.2 and the assumption
supk≥0 λkt

−2
k < +∞, x̄ is also a weak cluster point of (proxλkΦxk)k∈N. Now,

Theorem 1.2.2 also implies, along with the weak lower semicontinuity of Φ,
that x̄ is a minimum point of Φ. This gives the second hypothesis in Opial’s
Lemma, and we conclude that xk and proxλkΦxk converge weakly to x̄. Remark 1.4
shows that prox(λk+s)Φxk also converges weakly to x̄. Lastly, we have yk − xk =
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tk−1
tk+1tk

tk(xk − xk−1), where
∣∣∣ tk−1
tk+1tk

∣∣∣ < 1 (an immediate consequence of tk+1 ≥ 1),

and tk(xk − xk−1)→ 0, as k→+∞. Hence yk converges weakly to x̄ as well.

1.3 Comparison of the Various Approaches

1.3.1 The Case ρk ≡ 1

The approach developed in this paper contains, in particular, the classical Inertial
Proximal Algorithm (IPA). Indeed, when taking ρk ≡ 1, (RIPA) reduces to

(IPA)

{
yk = xk + αk(xk − xk−1)

xk+1 = proxμkΦ
(yk),

which is an inertial proximal algorithm without relaxation. A rich literature has
been devoted to this class of algorithms in recent years, see [1, 7, 15, 18, 21, 26,
27, 30, 31, 34, 37, 38]. The new aspects of the algorithm (IPA) are the general
inertial coefficients (αk), and the general proximal parameters (μk), which can
be interpreted as variable step sizes. With this choice of ρk ≡ 1, we have λk =
(1− ρk)μk = 0. As explained in the introduction, all the calculations developed in
the previous section can be conducted with Φ0 = Φ. Thus, Theorems 1.2.2 and 1.2.3
specialize to give:

Theorem 1.3.1 Under (A), assume that the sequence (αk) satisfies (K+
1 ). Suppose

also that (μk) is nondecreasing. Then for any sequence (xk) generated by the
algorithm (IPA), we have

Φ(xk)−min
H

Φ = o

(
1∑k
i=1 ti

)
and ‖xk−xk−1‖ = o

(
μk∑k
i=1 ti

)1
2

as k→+∞,

(1.26)
Moreover, if supk μk < +∞, then (xk) converges weakly to a minimizer of Φ.

The gradient approach (RIPA)2 gives the convergence rate Φ(proxμkΦ
(xk)) −

minH Φ = o

(
1∑k
i=1 ti

)
. It is expressed with the Moreau envelopes, which is close

but different from (1.26).

1.3.2 Proximal Versus Gradient Approach

The following table (Figure 1.1) shows the hypotheses and convergence results for
the Gradient formulation of (RIPA) (left column) and Proximal formulation (right



1 Combining Nesterov Acceleration with Moreau-Yosida Approximation 19

Fig. 1.1 Gradient versus proximal approach to (RIPA)

column). In both cases, αk ∈ [0, 1] for every k ≥ 1, (αk) is a sequence in [0, 1]
that satisfies (K0)-(K

+
1 ), and (ρk) is a sequence in (0, 1]. Clear similarities between

them suggest finding a unifying approach, an interesting topic for future research.
As we already noticed in Remark 1.2 the convergence rates of the values obtained

by the proximal approach are better than those for the gradient approach, since

Φμk
(xk)−min

H
Φ=Φλk+sk (xk)−min

H
Φ ≤ Φλk (xk)−min

H
Φ=Φ(1−ρk)μk

(xk)−min
H

Φ,

and the inequality is strict unless xk minimizes Φ.

1.3.3 Link with the General Maximally Monotone Case

As we already stressed in the introduction, another important motivation is to put to
the fore inertial proximal algorithms that converge for general monotone inclusions,
and which, in the case of convex minimization, give fast convergence rates of the
values in the worst case. For a general maximally monotone operator A : H→ 2H,
(RIPA) is defined by, for k ≥ 1

(RIPA)

{
yk = xk + αk(xk − xk−1)

xk+1 = (1− ρk)yk + ρkJμkA(yk)

(see [16]). In the above formula, JμA = (I + μA)−1 is the resolvent of A with
index μ > 0. When A = ∂Φ where Φ : H → R ∪ {+∞} is a convex lower-
semicontinuous proper function, JμA = proxμΦ , and we recover the algorithm
studied in this paper. The above algorithm was introduced by Attouch-Peypouquet
[16], in the case αk = 1− α

k
, and further extended by Attouch-Cabot [9] in the case

of a general inertial (extrapolation) coefficient αk .
Because of its numerical importance, let us discuss the case αk = 1 − α

k
.

Combining the results obtained here with the ones in [16], we deduce a set of
assumptions for which iterate convergence and fast minimization both hold.
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Corollary 1.3.2 For each k ≥ 1, take αk = 1− α

k
with α ≥ 3, ρk = β

k2 with

β < α(α − 2), and μk = c kr
′

for some r ′ ≥ 2 and c > 0. Let (xk) be generated by
(RIPA). Then,

a) If A is a maximally monotone operator, then xk converges weakly to a zero of

A. Moreover, ‖xk+1 − xk‖ = O
(

1
k

)
.

b) Let A = ∂Φ and Φ : H→ R∪{+∞} is convex, lower-semicontinuous, proper.
Then, Φ(pk)−minΦ = O( 1

k2 ), where pk = prox(1−ρk)μkΦ
(xk).

1.4 The Impact of Geometry on the Rates of Convergence

To assume only the convexity of Φ is not sufficient to guarantee the strong
convergence of the iterates generated by the proximal algorithm. This is known
since the seminal work of Baillon [19] on the continuous steepest descent, and the
parallel study on the proximal algorithm developed by Güler [28]. However, under
some additional geometric assumptions on Φ, one can obtain the strong convergence
property, and improve the convergence rate compared to the worst-case estimates.
An important case is when the function Φ has the strong minimum property. This
has been investigated in the case of classical proximal-gradient algorithms with
general damping coefficients in [7]. We will develop similar results for (RIPA).

We say Φ has a strong minimum at x∗ ∈ H if there is β > 0 such that

Φ(x) ≥ Φ(x∗)+ β

2
‖x − x∗‖2 (1.27)

for all x ∈ H. This clearly implies that arg minΦ = {x∗}. Under this condition,
we will determine the decay rate of the energy sequence (Wk) associated with the
algorithm (RIPA). It is easy to see that

Φλ(x) ≥ minΦ + β

2(1+ βλ)
‖x − x∗‖2. (1.28)

for all x ∈ H. Since minΦ = minΦλ, we deduce that Φλ has still a strong minimum
at x∗. The first results concerning the convergence rate of inertial algorithms
of (FISTA) type for strongly convex minimization problems were obtained in
[13, 38]. The following result is largely inspired by the techniques developed in
[7, Theorem 11] for inertial proximal-gradient algorithms with general damping
coefficient. Its adaptation to our setting is not immediate, because we have to deal
with several variable data, which makes the proof rather technical. For simplicity,
we assume that sk ≡ s.
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Theorem 1.4.1 Let Φ admit a strong minimum x∗, in the sense of (1.27). Under
(A), suppose that the sequence (1 − αk) is nonincreasing, converges to 0, and
satisfies

∑+∞
k=1(1− αk) = +∞. Suppose moreover that supk μk > 0 and sk ≡ s.

Let (xk) be a sequence generated by (RIPA), and let (Wk) be the associated
energy sequence. The following holds:

(i) If αk+1−αk = o(1−αk) as k→+∞, then for any m ∈]0, 2/3[, we have, for
k large enough,

Wk = O
(
e−m

∑k
i=1(1−αi)

)
(1.29)

Equivalently, Φλk (xk) − minH Φ = O
(
e−m

∑k
i=1(1−αi)

)
and ‖xk −

xk−1‖2 = O
(
e−m

∑k
i=1(1−αi)

)
.

Therefore, setting pk = proxλkΦxk , we have

Φ(pk)−min
H

Φ = O
(
e−m

∑k
i=1(1−αi)

)
, ‖pk−xk‖2 = O

(
e−m

∑k
i=1(1−αi)

)

and ‖pk − x∗‖2 = O
(
e−m

∑k
i=1(1−αi)

)
As a consequence, the iterates (xk) and (pk) converge strongly to the unique
minimizer x∗.

(ii) If
∑+∞

k=1(1− αk)
2 < +∞, then the estimates of (i) are satisfied for m = 2/3.

Proof By Lemma 1.5, the sequence (hk) defined by hk = 1
2‖xk − x∗‖2 satisfies for

every k ≥ 1,

hk+1−hk−αk(hk−hk−1) ≤ 1

2
(α2

k+αk)‖xk − xk−1‖2 − sk(Φλk (xk+1)−minΦ).)

≤ ‖xk − xk−1‖2 − sk(Φλk (xk+1)−minΦ))

≤ ‖xk − xk−1‖2 − sk(Φλk+1(xk+1)−minΦ))

where the last inequality comes from k �→ λk nondecreasing. From the definition of
(Wk), we have

skWk+1 = sk

(
Φλk+1(xk+1)−min

H
Φ

)
+ sk

2sk+1
‖xk+1 − xk‖2.

Combining the two above expressions we obtain

hk+1−hk−αk(hk−hk−1)+skWk+1 ≤ ‖xk−xk−1‖2+ sk

2sk+1
‖xk+1−xk‖2. (1.30)
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Recalling the expression of the decay of (Wk) given in Lemma 1.4 (iii), we have

‖xk−xk−1‖2 ≤ 2sk
1−α2

k

(Wk−Wk+1) and ‖xk+1−xk‖2 ≤ 2sk+1

1−α2
k+1

(Wk+1−Wk+2).

Multiplying inequality (1.30) by 1− α2
k+1 and using that αk ≤ αk+1, we obtain

(1− α2
k+1)[hk+1 − hk − αk(hk − hk−1)] + sk(1− α2

k+1)Wk+1 (1.31)

≤ 2sk(Wk −Wk+1)+ sk(Wk+1 −Wk+2).

Let us now define the sequence (Ŵk) by Ŵk = 2
3Wk + 1

3Wk+1. Since the sequence
(Wk) is nonnegative and nonincreasing, we have

2

3
Wk ≤ Ŵk ≤ Wk. (1.32)

Using the definition of (Ŵk), elementary computation gives

2(Wk−Wk+1)+(Wk+1−Wk+2) = 2(Wk−Wk+1)+Wk+1−(3Ŵk+1−2Wk+1) =
2Wk +Wk+1 − 3Ŵk+1 = 3(Ŵk − Ŵk+1).

We deduce from (1.31) that for every k ≥ 1,

(1−α2
k+1)[hk+1−hk−αk(hk−hk−1)]+sk

[
(1− α2

k+1)Ŵk+1 + 3(Ŵk+1 − Ŵk)
]
≤ 0.

(1.33)
Now observe that

(1− α2
k+1)[hk+1 − hk − αk(hk − hk−1)] (1.34)

= (1− α2
k+1)(hk+1 − hk)− (1− α2

k+2)αk+1(hk+1 − hk)

+ (1− α2
k+2)αk+1(hk+1 − hk)− (1− α2

k+1)αk(hk − hk−1)

= (
1− α2

k+1 − (1− α2
k+2)αk+1

)
(hk+1 − hk) (1.35)

+ (1− α2
k+2)αk+1(hk+1 − hk)− (1− α2

k+1)αk(hk − hk−1).

At this point, it is simpler to assume that sk ≡ s is constant. Let us introduce the
sequence (W̃k) given by

W̃k = Ŵk + 1

3s
(1− α2

k+1)αk(hk − hk−1). (1.36)
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Dividing inequality (1.33) by 3s and using (1.35), we infer that

1

3
(1−α2

k+1)Ŵk+1+W̃k+1−W̃k ≤ 1

3s

[
(1− α2

k+2)αk+1 − (1− α2
k+1)

]
(hk+1−hk),

which can be written, only in terms of the sequence (W̃k), as

1

3
(1− α2

k+1)W̃k+1 + W̃k+1 − W̃k (1.37)

1

3s

[
1

3
(1− α2

k+1)(1− α2
k+2)αk+1+ ≤ (1− α2

k+2)αk+1 − (1− α2
k+1)

]
(hk+1 − hk).

Using that the sequence (αk) satisfies αk ∈ [0, 1] for every k ≥ 1, we have

0 ≤ (1− α2
k+1)(1− α2

k+2)αk+1 ≤ (1− α2
k+1)

2αk+1 ≤ 4(1− αk+1)
2.

Using, moreover, that the sequence (αk) is nondecreasing, we have

0 ≤ (1− α2
k+1)− (1− α2

k+2)αk+1 = (1− α2
k+1)(1− αk+1)+ (α2

k+2 − α2
k+1)αk+1

≤ 2(1− αk+1)
2 + 2(αk+2 − αk+1).

It ensures that the term between brackets in (1.37) is comprised between −2(1 −
αk+1)

2 − 2(αk+2 − αk+1) and 4
3 (1− αk+1)

2. This implies that its absolute value is
majorized by 2(1− αk+1)

2 + 2(αk+2 − αk+1). We then deduce from (1.37) that

1

3
(1−α2

k+1)W̃k+1+W̃k+1−W̃k ≤ 2

3s

[
(1− αk+1)

2 + (αk+2 − αk+1)
]
|hk+1−hk|.

(1.38)
Now observe that

hk+1 − hk = 1

2
‖xk+1 − x∗‖2 − 1

2
‖xk − x∗‖2

= 〈xk+1 − xk, xk+1 − x∗〉 − 1

2
‖xk+1 − xk‖2.

Since |〈xk+1 − xk, xk+1 − x∗〉| ≤ 1
2‖xk+1 − xk‖2 + 1

2‖xk+1 − x∗‖2, we infer that

|hk+1 − hk| ≤ ‖xk+1 − xk‖2 + 1

2
‖xk+1 − x∗‖2. (1.39)

By the strong minimum property (1.28) we have

β

2(1+ βλk+1)
‖xk+1 − x∗‖2 ≤ Φλk+1(xk+1)−minΦ.



24 H. Attouch and J. Peypouquet

Using this inequality in (1.39), together with the assumption supk λk < +∞, we
find

|hk+1 − hk| ≤ ‖xk+1 − xk‖2 + 1+ βλk+1

β
(Φλk+1(xk+1)−minΦ)

≤ 2sC Wk+1 with C = max{1, 1+ β supk λk
2βs

}

≤ 3sC Ŵk+1 in view of (1.32). (1.40)

Since limk→+∞ αk = 1, the expression (1.36) of W̃k and inequality (1.40) show that

W̃k = Ŵk + o(Ŵk) as k→+∞. (1.41)

Let C′ > C. By combining (1.38), (1.40), and (1.41), we obtain the existence of
k0 ≥ 1 such that for every k ≥ k0,

1

3
(1− α2

k+1)W̃k+1 + W̃k+1 − W̃k ≤ 2C′ W̃k+1

[
(1− αk+1)

2 + (αk+2 − αk+1)
]
.

Noting that 1 − α2
k+1 = 2(1 − αk+1) − (1 − αk+1)

2, the above inequality can be
rewritten as

W̃k+1

(
1+ 2

3
(1− αk+1)− uk+1)

)
≤ W̃k,

where the sequence (uk) is defined by

uk =
(

1

3
+ 2C′

)
(1− αk)

2 + 2C′(αk+1 − αk).

Let n ≥ k0+ 1. By multiplying the inequalities above, as k ranges from k0 to n− 1,
we obtain

W̃n ≤ W̃k0∏n
k=k0+1

(
1+ 2

3 (1− αk)− uk

) = W̃k0 e
−
[∑n

k=k0+1 ln
(

1+ 2
3 (1−αk)−uk

)]
.

(1.42)

(i) Let us now fix m ∈]0, 2/3[ and assume that αk+1 − αk = o(1 − αk) as k →
+∞. Since limk→+∞ αk = 1, the expression of uk shows that uk = o(1−αk)

as k→+∞. It ensures that

ln

(
1+ 2

3
(1− αk)− uk

)
= 2

3
(1− αk)+ o(1− αk) as k→+∞,

and hence for k large enough,



1 Combining Nesterov Acceleration with Moreau-Yosida Approximation 25

ln

(
1+ 2

3
(1− αk)− uk

)
≥ m(1− αk).

Coming back to (1.42), we easily deduce that

W̃n = O
(
e−m

∑n
k=1(1−αk)

)
as n→+∞.

In view of (1.32) and (1.41), we immediately derive the estimate (1.29). The
other estimates follow directly.

(ii) Let us now assume that
∑+∞

k=1(1 − αk)
2 < +∞. Observe that

∑+∞
k=1(αk+1 −

αk) < +∞, resulting from the sequence (αk) is nondecreasing and tends to 1
as k → +∞. The expression of (uk) then shows that

∑+∞
k=1 uk < +∞. Using

that limk→+∞ αk = 1 and limk→+∞ uk = 0, we have for k large enough,

ln

(
1+ 2

3
(1− αk)− uk

)
= 2

3
(1− αk)− uk − 1

2

[
2

3
(1− αk)− uk

]2

+o
([

2

3
(1− αk)− uk

]2
)
.

Since
∑+∞

k=1(1 − αk)
2 < +∞ and

∑+∞
k=1 u

2
k < +∞ (recall that (uk) is

summable from what precedes), we obtain

+∞∑
k=1

[
2

3
(1− αk)− uk

]2

< +∞.

Defining the sequence (vk) by

vk = ln

(
1+ 2

3
(1− αk)− uk

)
− 2

3
(1− αk),

we deduce from what precedes that the series
∑

k vk is convergent. It ensues
that

n∑
k=k0+1

ln

(
1+ 2

3
(1− αk)− uk

)
= 2

3

n∑
k=k0+1

(1− αk)+
n∑

k=k0+1

vk

= 2

3

n∑
k=k0+1

(1− αk)

+
+∞∑

k=k0+1

vk + o(1) as n→+∞.
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Coming back to (1.42), we easily deduce that

W̃n = O
(
e−

2
3

∑n
k=1(1−αk)

)
as n→+∞.

The conclusion then follows from (1.32) and (1.41).

Corollary 1.4.2 Under (A), assume that Φ : H → R ∪ {+∞} admits a strong
minimum x∗ ∈ H.

(i) If there exists α > 0 such that αk = 1− α
k

for every k ≥ 1, then

Wk = O
(
k−

2α
3

)
as k→+∞.

(ii) If there exist α > 0 and r ∈]1/2, 1[ such that αk = 1 − α
kr

for every k ≥ 1,
then

Wk = O
(
e
− 2α

3(1−r) k1−r)
as k→+∞.

(iii) If there exist α > 0 and r ∈]0, 1[ such that αk = 1− α
kr

for every k ≥ 1, then
for any m ∈]0, 2/3[, we have

Wk = O
(
e−

mα
1−r k1−r)

as k →+∞.

Proof

(i) The condition
∑+∞

k=1(1 − αk)
2 < +∞ is clearly satisfied. It is then sufficient

to apply Theorem 1.4.1 (ii) and to recall that

k∑
i=1

1

i
= ln k + γ + o(1) as k →+∞,

for some γ ∈ R (Euler’s constant).
(ii) The condition

∑+∞
k=1(1 − αk)

2 < +∞ is guaranteed by the assumption
r ∈]1/2, 1[. Then apply Theorem 1.4.1 (ii), together with the following
asymptotic expansion

k∑
i=1

1

ir
= k1−r

1− r
+ l + o(1) as k→+∞, (1.43)

for some l ∈ R.
(iii) The condition αk+1 − αk = o(1 − αk) is satisfied as k → +∞, hence the

announced estimate is a consequence of Theorem 1.4.1 (i), combined with
the equality (1.43).
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Remark 1.5 The strong minimum assumption (1.27) is a particular case of the
Hölderian error bound inequality

Θ(x)−minΘ ≥ c dist(x, arg minΘ)p.

In our case, we have p = 2, and the set of solutions is reduced to a single
element. In the context of convex functions satisfying the above error bound
inequality, this notion is equivalent to a Kurdyka-Lojasiewicz (KL) inequality. The
connection between error bounds and Kurdyka-Lojasiewicz inequality was first
established by Bolte, Daniilidis, Ley, and Mazet in [23]. The above equivalence
was recently obtained in [24], which also provides a recent account on the rich
interaction between these concepts. Indeed, the KL property and the corresponding
desingularizing function play a central role in analyzing the convergence rate of
first-order methods in nonsmooth structured optimization. Its applicability goes well
beyond the convex case and the situation examined here, which suggests further
developments.

1.5 Stability with Respect to Perturbations, Errors

Consider the perturbed version of the evolution equation (RIGS):

(RIGS)pert ẍ(t)+ γ (t)ẋ(t)+ ∇Φλ(t)(x(t)) = g(t). (1.44)

It will serve as a guide for the introduction of perturbations, errors in the algorithm
(RIPA). The second member of (1.44), denoted by g(·), reflects an external action
on the system (source term). We can also see (1.44) as a perturbation of the initial
system (RIGS), or resulting from errors in the computation of the Moreau envelopes
of Φ. We follow a parallel approach to the time discretization procedure described
in Section 1.1.1.

Take a time step hk > 0, and set τk = ∑k
i=1 hi , xk = x(τk), λk = λ(τk), γk =

γ (τk). An implicit finite-difference scheme for (RIGS)pert with centered second-
order variation gives

1

h2
k

(xk+1 − 2xk + xk−1)+ γk

hk
(xk − xk−1)+∇Φλk (xk+1) = gk.

Equivalently, xk+1+ h2
k∇Φλk (xk+1) = xk + (1− γkhk) (xk − xk−1)+ h2

kgk, which
gives

xk+1 =
(
I + h2

k∇Φλk

)−1 (
xk + (1− γkhk) (xk − xk−1)+ h2

kgk

)
. (1.45)
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Setting sk = h2
k , αk = 1 − γkhk , and yk = xk + αk(xk − xk−1) (that’s Nesterov

extrapolation term), we get

{
yk = xk + αk(xk − xk−1)

xk+1 = proxskΦλk
(yk + skgk).

Using the resolvent equation (or semi-group property) (Φλk )sk = Φλk+sk , we obtain
the equivalent formulation

⎧⎨
⎩

yk = xk + αk(xk − xk−1)

xk+1 = λk

λk + sk
(yk + skgk)+ sk

λk + sk
prox(λk+sk)Φ(yk + skgk).

The change of parametrization sk = ρkμk, λk = μk(1 − ρk) gives the following
equivalent form of the algorithm:

(RIPA)pert

{
yk = xk + αk(xk − xk−1)

xk+1 = (1− ρk)yk + ρk proxμkΦ
(yk + skgk).

It is a relaxed inertial proximal algorithm with perturbation, hence the terminology
(RIPA)pert . When it comes to the numerical implementation of (RIPA), computa-
tional errors are unavoidable. The above approach allows us to consider that xk+1
no longer involves the proximal image of yk , as required by (1.5), but the proximal
image of a close point to yk , namely yk + skgk . For the mathematical analysis, it is
convenient to formulate (RIPA)pert with the help of the sequence (tk), which gives

⎧⎨
⎩

yk = xk + tk − 1

tk+1
(xk − xk−1)

xk+1 = proxskΦλk
(yk + skgk).

(1.46)

Recall that the sequence (tk) is linked to the sequence (αk) by (1.4) (see Sec-
tion 1.1.2). To express that yk + skgk is close to yk (all the more as k → +∞),
we will use the condition

∞∑
k=0

√
sk+1tk+1‖gk‖ < +∞. (1.47)

Under this hypothesis, we will see that system (1.46) can be studied in much the
same way as system (1.5), and retains the convergence properties of the latter. Our
study bears a natural relation to [12] and [13], which deal with the simpler situation
where the potential is fixed (without Moreau’s envelopes), as well as the parameter
sk ≡ s > 0, and without relaxation. Note that when sk ≡ s > 0, we recover the
summability condition

∑∞
k=0 tk+1‖gk‖ < +∞ introduced in the previous papers.
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In the sequel, (xk)k∈N, (yk)k∈N are sequences in H defined by x−1 , x0 given and
system (1.46) for k ≥ 0. We will use the same energy functions (Ek)k∈N and
(Ex∗,k)k∈N as in the unperturbed case: for k ≥ 0

Ek = t2
k

(
Φλk (xk)−min

H
Φ

)
+ t2

k

2sk
‖xk−1 − xk‖2, (1.48)

and

Ex∗,k = t2
k

(
Φλk (xk)−min

H
Φ

)
+ 1

2sk
‖zk − x∗‖2,

where we set

zk := xk + (tk − 1)(xk − xk−1).

Unlike the unperturbed case, where the sequence (Ex∗,k)k∈N is nonincreasing, we
will only prove that it is a convergent sequence. This will suffice to obtain similar
conclusions. The following lemma contains the basic ingredients for the Lyapunov
analysis of the perturbed algorithm (RIPA)pert .

Lemma 1.6 Let (A) hold.

(i) For any x∗ ∈ arg minΦ and k ≥ 0 we have

Ex∗,k+1+δk
(
Φλk (xk)−min

H
Φ

)
+ t2

k+1

2sk
‖xk+1−yk‖2 ≤ Ex∗,k+〈zk+1−x∗, tk+1gk〉.

(1.49)
(ii) Assume, moreover, that condition (K1) is satisfied. For each k ≥ 0, we have

Ek+1−tk+1

(
Φλk (xk)−min

H
Φ

)
+ tk

2sk
‖xk−xk−1‖2 ≤ Ek+〈xk+1−xk, t2

k+1gk〉.

(iii) In addition, assume the summability condition (1.47) is satisfied. Then,

sup
k

1√
sk
‖zk − x∗‖ < +∞. (1.50)

Proof

(i) Let us apply Lemma 1.3(ii) with ϕ = Φλk , x∗ ∈ arg minΦλk , t = tk+1,
s = sk , x = xk and y = yk + skgk . With this choice, (1.46) gives p =
proxskΦλk

(yk + skgk) = xk+1; we obtain for any k ≥ 0
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t2
k+1(Φλk (xk+1)−Φλk (x

∗))+ 1

2sk
‖x∗ − xk + tk+1(xk − xk+1)‖2

+ t2
k+1

2sk
‖xk+1 − (yk + skgk)‖2

≤ (t2
k+1−tk+1)(Φλk (xk)−Φλk (x

∗))+ 1

2sk
‖x∗−xk+tk+1(xk−(yk+skgk))‖2.

Introducing the variable zk , and using the same arguments as in the proof of
Lemma (1.4)(i), we obtain

Ex∗,k+1 + δk(Φλk (xk)−min
H

Φ)+ t2
k+1

2sk
‖xk+1 − (yk + skgk)‖2

≤ t2
k (Φλk (xk)−min

H
Φ)+ 1

2sk
‖x∗ − zk − tk+1skgk‖2.

By developing the squares involving gk , we get

Ex∗,k+1 + δk(Φλk (xk)−min
H

Φ)+ t2
k+1

2sk
‖xk+1 − yk‖2

≤ Ex∗,k + 〈zk + tk+1(xk+1 − yk)− x∗, tk+1gk〉.

Now we have

zk + tk+1(xk+1 − yk) = xk + (tk − 1)(xk − xk−1)

+tk+1

(
xk+1 − xk − tk − 1

tk+1
(xk − xk−1)

)
= xk+1 + (tk+1 − 1)(xk+1 − xk) = zk+1,

which yields (1.49).
(ii) In inequality (1.11) of Lemma 1.3(i), set ϕ = Φλk , s = sk , u = xk and

y = yk + skgk , hence p = xk+1; we obtain for any k ≥ 0

Φλk (xk+1)+ 1

2sk
‖xk − xk+1‖2 + 1

2sk
‖xk+1 − (yk + skgk)‖2

≤ Φλk (xk)+
1

2sk
‖xk − (yk + skgk)‖2.

Recalling Φλk+1(xk+1) ≤ Φλk (xk+1), and expanding the squares involving gk ,
we get
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Φλk+1(xk+1)+ 1

2sk
‖xk − xk+1‖2 + 1

2sk
‖xk+1 − yk‖2 − 〈xk+1 − yk, gk〉

≤ Φλk (xk)+
1

2sk
‖xk − yk‖2 − 〈xk − yk, gk〉.

Replacing yk by its value xk + tk−1
tk+1

(xk − xk−1) on the right-hand side, we
obtain

Φλk+1(xk+1)+ 1

2sk
‖xk − xk+1‖2 + 1

2sk
‖xk+1 − yk‖2

≤ Φλk (xk)+
(tk − 1)2

2skt2
k+1

‖xk − xk−1‖2 + 〈xk+1 − xk, gk〉.

We neglect 1
2sk
‖xk+1 − yk‖2 on the left-hand side, then we subtract minH Φ

from each side, and multiply by t2
k+1

Ek+1 ≤ t2
k+1

(
Φλk (xk)−min

H
Φ

)
+ t2

k

2sk
‖xk − xk−1‖2

− 2tk − 1

2sk
‖xk − xk−1‖2 + 〈xk+1 − xk, t

2
k+1gk〉.

In view of t2
k+1 ≤ tk+1 + t2

k and 2tk − 1 ≥ tk , we obtain further

Ek+1 ≤ t2
k

(
Φλk (xk)−min

H
Φ

)
+ t2

k

2sk
‖xk − xk−1‖2

+ tk+1

(
Φλk (xk)−min

H
Φ

)
− tk

2sk
‖xk − xk−1‖2 + 〈xk+1 − xk, t

2
k+1gk〉,

which establishes the desired inequality.
(iii) From (1.49), we deduce for k ≥ 0

Ex∗,k+1 ≤ Ex∗,k+〈zk+1 − x∗, tk+1gk〉 ≤ Ex∗,0+
k∑

l=0

〈zl+1−x∗, tl+1gl〉. (1.51)

According to the definition of Ex∗,k we obtain

1

2sk+1
‖zk+1 − x∗‖2 ≤ Ex∗,0 +

k∑
l=0

‖zl+1 − x∗‖ ‖tl+1gl‖.
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Equivalently, and after reindexing,

(
1√
sk
‖zk − x∗‖

)2

≤ 2Ex∗,0 + 2
k∑

l=1

√
sl tl‖gl−1‖

(
1√
sl
‖zl − x∗‖

)
.

Let us apply the Gronwall lemma 1.9 with ak = 1√
sk
‖zk − x∗‖ and βj =

2
√
sj tj‖gj−1‖. We obtain

1√
sk
‖zk−x∗‖ ≤

√
2Ex∗,0+2

∞∑
l=1

√
sl tl‖gl−1‖ =

√
2Ex∗,0+2

∞∑
l=0

√
sl+1tl+1‖gl‖.

(1.52)
From assumption (1.47), we deduce that

sup
k

1√
sk
‖zk − x∗‖ < +∞.

The preceding lemma, a counterpart of Lemma 1.4, leads to the same con-
vergence results as in Sections 1.2.2–1.2.4, with some obvious arrangements. For
instance, we have the following perturbed version of Theorem 1.2.1:

Theorem 1.5.1 Under (A), assume that the sequence (αk) satisfies (K1), and
the perturbation terms (gk) satisfy the summability assumption (1.47). Then, the
following properties hold:

(i) For any x∗ ∈ arg minΦ, the sequence (Ex∗,k)k∈N converges. Setting

C := Ex∗,0 +
(√

2Ex∗,0 + 2
∞∑
l=0

√
sl+1tl+1‖gl‖

) ∞∑
l=0

√
sl+1tl+1‖gl‖

which is finite, we have: for all k ≥ 1,

Φλk (xk)−min
H

Φ ≤ C

t2
k

, Φ(proxλkΦxk)−min
H

Φ ≤ C

t2
k

,

‖proxλkΦxk − xk‖ ≤
√

2Cλk

t2
k

,

‖∇Φλk (xk)‖ ≤
√

2C

λkt
2
k

.

(ii)
∞∑
k=0

δk

(
Φλk (xk)−min

H
Φ

)
< +∞.
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(iii)
∞∑
k=0

t2
k+1sk‖gk − sk∇Φλk+sk (yk + skgk)‖2 < +∞.

(iv) ‖∇Φλk+s(yk)‖ = o

(
1√

sktk+1

)
.

Proof From (1.51) and (1.52), we have for k ≥ 0

Ex∗,k ≤ Ex∗,0 +
k−1∑
l=0

〈zl+1 − x∗, tl+1gl〉

≤ Ex∗,0 +
k∑

l=0

1√
sl+1

‖zl+1 − x∗‖√sl+1tl+1‖gl‖

≤ Ex∗,0+
(√

2Ex∗,0+2
∞∑
l=0

√
sl+1tl+1‖gl‖

) ∞∑
l=0

√
sl+1tl+1‖gl‖ := C < +∞.

Assertion (i) follows directly from the above majorization, and the definitions of
Ex∗,k , Φλk (xk), ∇Φλk (xk);
From (1.49) we get

Ex∗,k+1 + δk

(
Φλk (xk)−min

H
Φ

)
≤ Ex∗,k + 1√

sk+1
‖zk+1 − x∗‖√sk+1tk+1‖gk‖.

(1.53)
Summing the above inequalities, and using (1.47), (1.50), we obtain assertion (ii).
From (1.49)

Ex∗,k+1 +
t2
k+1

2sk
‖xk+1 − yk‖2 ≤ Ex∗,k + 〈zk+1 − x∗, tk+1gk〉. (1.54)

By a similar argument as above, and by summing the corresponding inequalities,
we get

∞∑
k=0

t2
k+1

sk
‖xk+1 − yk‖2 < +∞. (1.55)

Then, assertion (iii) follows from the above inequality and xk+1 − yk = skgk −
sk∇Φλk+sk (yk + skgk).
Assertion (iv) follows from

sk∇Φλk+sk (yk) = sk(∇Φλk+sk (yk)− ∇Φλk+sk (yk + skgk))+ skgk − (xk+1 − yk)
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which implies

√
sktk+1‖∇Φλk+s(yk)‖ ≤

√
sktk+1

sk

λk + sk
‖gk‖+√sktk+1‖gk‖+ tk+1

sk
‖xk+1−yk‖.

Inequalities (1.47) and (1.55) imply that the second member of the above inequality
tends to zero as k goes to infinity, which gives the claim.

1.6 A Regularized Inertial Proximal-Gradient Algorithm

In many practical situations, the function Θ : H → R ∪ {+∞} to minimize is the
sum of two convex functions Θ = Φ + Ψ , where Φ : H → R is continuously
differentiable, and Ψ : H → R ∪ {+∞} is a lower-semicontinuous function
whose proximal mapping is easy to calculate, at least approximatively. Hence the
use of proximal-gradient methods, equivalently called forward-backward methods.
An abundant literature has been devoted to this efficient and relatively easy to
implement splitting method, see, for example, [7, 13, 15, 26, 38]. We will give an
example of adaptation of (RIPA) to this additively structured situation. The general
study is a subject to be studied further.

In order to develop relaxed inertial proximal-gradient algorithms, let us start from
the continuous dynamic that served us as an introduction to (RIPA) in Section 1.1,
namely

ẍ(t)+ α

t
ẋ(t)+∇Θλ(t)(x(t)) = 0, (1.56)

and which is associated to the minimization of the function Θ = Φ + Ψ .
Equivalently,

ẍ(t)+ α

t
ẋ(t)+ 1

λ(t)

(
x(t)− proxλ(t)Θ (x(t))

) = 0. (1.57)

Let us recall that

proxλ(t)Θ (x(t)) = arg min
ξ∈H

{Φ(ξ)+ Ψ (ξ)+ 1

2λ(t)
‖ξ − x(t)‖2}. (1.58)

To find an approximation y(t) of proxλ(t)Θ(x(t), we consider the inertial differential
inclusion associated with the minimization problem (1.58),

ÿ(t)+ α

t
ẏ(t)+ 1

λ(t)
(y(t)− x(t))+∇Φ(y(t))+ ∂Ψ (y(t)) � 0. (1.59)
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For simplicity, take λ(t) = λ constant. This argument leads us to considering the
evolution of the coupled system

⎧⎨
⎩

ẍ(t)+ α
t
ẋ(t)+ 1

λ
(x(t)− y(t)) = 0;

ÿ(t)+ α
t
ẏ(t)+ 1

λ
(y(t)− x(t))+∇Φ(y(t))+ ∂Ψ (y(t)) � 0,

(1.60)

as an approximation of (1.57). The fact that the coupling forces have opposite sign in
the two above equations can be interpreted as an action-reaction principle. Another
justification for (1.60) is the following: for Z = (x, y) ∈ H ×H set

Γ (Z) := Φ(y)+ Ψ (y)+ 1

2λ
‖x − y‖2.

Then, with Z(t) = (x(t), y(t)), (1.60) is equivalent to the inertial differential
inclusion in H ×H

Z̈(t)+ α

t
Ż(t)+ ∂Γ (Z(t)) � 0. (1.61)

As a key property, we have

inf
Z∈H×H

Γ (Z) = inf
y∈H

{Φ(y)+ Ψ (y)}.

For α > 3, the convergence analysis developed in [6, 13, 32] guarantees the rate of
convergence for the values:

Γ (Z(t))− inf
Z∈H×H

Γ (Z) = o(
1

t2 ).

Equivalently

Φ(y(t))+ Ψ (y(t))+ 1

2λ
‖x(t)− y(t)‖2 − inf

H
(Φ + Ψ ) = o(

1

t2 ),

which implies

(Φ + Ψ )(y(t))− inf
H
(Φ + Ψ ) = o(

1

t2 ).

Let us now examine the algorithmic version of the above results. One possibility
is to discretize with respect to the time variable t the equation (1.60). But, it is not
clear how to discretize the coupling term, and at what point to take the gradient of
Φ. Moreover, such an approach would require a complete analysis of the algorithm
thus obtained. We choose a different and simpler approach, which consists in
applying the existing convergence theory concerning the inertial proximal-gradient
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algorithms with inertial coefficient αk = 1 − α
k

to the structured potential function
Γ in the product space H ×H. For some recent references to these algorithms, see
[7, 13, 15, 26, 38].

a) We first examine the case where the quadratic coupling term is incorporated
into the non-smooth part. Then,

Γ (Z) = Φ̃(Z)+ Ψ̃ (Z)

where

Φ̃(Z) = Φ(y), and Ψ̃ (Z) = Ψ (y)+ 1

2λ
‖x − y‖2.

Setting Zk = (xk, yk), the algorithm writes

⎧⎨
⎩

Ξk = Zk + (1− α
k
)(Zk − Zk−1);

Zk+1 = proxsΨ̃

(
Ξk − s∇Φ̃ (Ξk)

)
.

(1.62)

Classical convex subdifferential calculus gives

∇Φ̃(Z) = (0,∇Φ(y)) , ∂Ψ̃ (Z) = (
1

λ
(x − y), ∂Ψ (y)+ 1

λ
(y − x)).

By definition proxsΨ̃ (Z) := Zs is the solution of Zs + s∂Ψ̃ (Zs) � Z. Setting
Zs = (xs, ys) this amounts to solving

⎧⎨
⎩

xs + s
λ
(xs − ys) = x;

ys + s∂Ψ (ys)+ s
λ
(ys − xs) � y.

(1.63)

Elementary computation gives

proxsΨ̃ (Z) =
(

λ

λ+ s
x + s

λ+ s
prox s(λ+s)

λ+2s Ψ

(
s

λ+ 2s
x + λ+ s

λ+ 2s
y

)
,

prox s(λ+s)
λ+2s Ψ

(
s

λ+ 2s
x + λ+ s

λ+ 2s
y

))
.

Set Ξk = (ξk, ηk), and γ = s(λ+s)
λ+2s . The above relations and (1.62) give the

Regularized Inertial Proximal-Gradient Algorithm (RIPGA-1)
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(RIPGA-1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξk = xk + (1− α
k
)(xk − xk−1);

ηk = yk + (1− α
k
)(yk − yk−1);

yk+1 = proxγΨ
(

s
λ+2s ξk + λ+s

λ+2s (ηk − s∇Φ(ηk))
)
;

xk+1 = λ
λ+s ξk + s

λ+s yk+1.

(1.64)

Then notice that ∇Φ̃ is Lipschitz continuous, with the Lipschitz constant L. We
can now state our main result.

Theorem 1.6.1 Let Ψ : H → R ∪ {+∞} be a proper, lower-semicontinuous,
and convex function. Let Φ : H → R be a convex, continuously differentiable
function, whose gradient has a Lipschitz constant L satisfying sL ≤ 1. Suppose
that arg min(Φ + Ψ ) �= ∅. Let (xk) and (yk) be sequences generated by algorithm
(RIPGA-1) with α > 3. Then,

(i) xk and yk converge weakly, as k → +∞, to the same limit x∗ ∈ arg min(Φ +
Ψ ).

(ii) (Φ + Ψ )(yk)−minH(Φ + Ψ ) = o

(
1

k2

)
.

Proof The proof follows from a direct application of the convergence results
concerning the inertial proximal-gradient algorithms with inertial coefficient αk =
1 − α

k
, see [7, 15]. Consider the structured potential function Γ = Φ̃ + Ψ̃ in the

product space H ×H. Note that

inf
Z∈H×H

Γ (Z) = inf
y∈H

{Φ(y)+ Ψ (y)}.

Precisely, by applying of [15, Theorem 1], or [7, Corollary 17] to algorithm (1.62),
for α > 3, we obtain the rate of convergence for the values

Γ (Zk)− inf
Z∈H×H

Γ (Z) = o(
1

k2 ).

Equivalently,

Φ(yk)+ Ψ (yk)+ 1

2λ
‖xk − yk‖2 − inf

H
(Φ + Ψ ) = o(

1

k2 ), (1.65)

which implies

(Φ + Ψ )(yk)− inf
H
(Φ + Ψ ) = o(

1

k2
).
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We also obtain the weak convergence of the sequence (Zk) with Zk = (xk, yk) to a
point of arg minΓ = arg min(Φ+Ψ )×arg min(Φ+Ψ ). Equivalently xk converges
weakly, as k →+∞, to a point x∗ ∈ arg min(Φ +Ψ ), and yk converges weakly, as
k →+∞, to a point y∗ ∈ arg min(Φ+Ψ ). From (1.65), we have ‖xk−yk‖ = o( 1

k
),

which clearly implies x∗ = y∗, and completes the proof.

b) Let us now incorporate the quadratic coupling term in the smooth part. We have

Γ (Z) = Φ̃(Z)+ Ψ̃ (Z)

where

Φ̃(Z) = Φ(y)+ 1

2λ
‖x − y‖2, and Ψ̃ (Z) = Ψ (y).

Then, algorithm (AVD)α writes, with Zk = (xk, yk):

⎧⎨
⎩

Ξk = Zk + (1− α
k
)(Zk − Zk−1);

Zk+1 = proxsΨ̃

(
Ξk − s∇Φ̃ (Ξk)

)
.

(1.66)

Elementary calculations give

∇Φ̃(Z) =
(

1

λ
(x − y),∇Φ(y)+ 1

λ
(y − x)

)
, proxsΨ̃ (Z) = (x, proxsΨ (y)).

Set Ξk = (ξk, ηk). Thanks to the above relations, algorithm (1.62) writes

(RIPGA-2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξk = xk + (1− α
k
)(xk − xk−1);

ηk = yk + (1− α
k
)(yk − yk−1);

xk+1 = ξk − s
λ
(ξk − ηk);

yk+1 = proxsΨ
(
ηk − s∇Φ (ηk)− s

λ
(ηk − ξk)

)
.

Then notice that ∇Φ̃ is Lipschitz continuous, with the Lipschitz constant L +
2
√

2
λ

, where L is the Lipschitz constant of ∇Φ. Assuming s(L+ 2
√

2
λ

) ≤ 1, for
α > 3, by the same argument as in the above paragraph, one can easily deduce
the convergence results:

i) The sequences (xk) and (yk) converge weakly, as k → +∞, to the same
limit x∗ ∈ arg min(Φ + Ψ ).

ii) (Φ + Ψ )(yk)−minH(Φ + Ψ ) = o

(
1

k2

)
.
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Remark 1.6 As we have already noted in the previous sections, the variables xk and
yk do not play symmetrical roles. The variable for which we obtained a result of fast
convergence of the values is yk .

Remark 1.7 A major interest of the above algorithm is that, when the trajectory is
bounded away from the diagonal Δ = {(x, y) ∈ H ×H : x = y}, the function
of the two variables Γ , which is to minimize, is strongly convex. This results in
favorable numerical features, particularly when using a restart method, see [38].

Remark 1.8 In system (1.60), the two equations involve the same parameter α.
Using different values would lead to studying inertial dynamics (with respect to
Z) with a nonisotropic diagonal damping matrix. Some corresponding results for
the heavy ball method can be found in [1]. This is an interesting topic for further
research.

Remark 1.9 As noticed in [5], the above technique, which consists in introducing an
auxiliary variable, is related to the inertial dynamics with Hessian driven damping.
To give an idea in a simple case, consider the continuous steepest descent associated
to the potential Γ (x, y) = Θ(y)+ 1

2λ‖x−y‖2, where Θ is a smooth convex function.
It writes ⎧⎨

⎩
ẋ(t) + 1

λ
(x(t)− y(t)) = 0;

ẏ(t) + ∇Θ(y(t))+ 1
λ
(y(t)− x(t)) = 0.

(1.67)

Eliminating the auxiliary variable (here x) gives

ÿ(t)+ 1

2λ
ẏ(t)+∇2Θ(y(t))ẏ(t)+ 1

λ
∇Θ(y(t)) = 0;

It is the (DIN-AVD) dynamical system [2, 17], which combines inertial features with
geometrical damping. Hessian damping is naturally linked to Newton’s method, and
is particularly convenient for poorly conditioned problems [17].

Appendix

Some Properties of the Moreau Envelope

For a detailed presentation of the Moreau envelope, we refer the reader to [20, 25,
35, 36]. We merely point out the following properties, of constant use here:

(i) the function λ ∈]0,+∞[�→ Φλ(x) is nonincreasing for each x ∈ H;
(ii) the equality infH Φ = infH Φλ holds in R ∪ {−∞} for all λ > 0;

(iii) arg minΦ = arg minΦλ for all λ > 0.
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It will be convenient to consider the Moreau envelope as a function of the two
variables x ∈ H and λ ∈]0,+∞[. Its differentiability with respect to (x, λ) plays a
crucial role in our analysis.

a

Let us first recall some classical facts concerning the differentiability of the function
x �→ Φλ(x) for fixed λ > 0. The infimum in (1.2) is attained at a unique point

proxλΦ(x) = argminξ∈H
{
Φ(ξ)+ 1

2λ
‖x − ξ‖2

}
, (1.68)

which gives

Φλ(x) = Φ(proxλΦ(x))+
1

2λ
‖x − proxλΦ(x)‖2. (1.69)

Writing the optimality condition for (1.68), we get proxλΦ(x)+λ∂Φ
(
proxλΦ(x)

) �
x, that is

proxλΦ(x) = (I + λ∂Φ)−1 (x).

Thus, proxλΦ is the resolvent of index λ > 0 of the maximal monotone operator
∂Φ. As a consequence, the mapping proxλΨ : H→ H is firmly nonexpansive. The
function x �→ Φλ(x) is continuously differentiable, with

∇Φλ(x) = 1

λ

(
x − proxλΦ(x)

)
. (1.70)

Equivalently

∇Φλ = 1

λ

(
I − (I + λ∂Φ)−1

)
= (∂Φ)λ (1.71)

which is the Yosida approximation of the maximal monotone operator ∂Φ. As such,
∇Φλ is Lipschitz continuous, with Lipschitz constant 1

λ
, and Φλ ∈ C1,1.

b

A less known result is the C1-regularity of the function λ �→ Φλ(x), for each x ∈ H.
Its derivative is given by

d

dλ
Φλ(x) = −1

2
‖∇Φλ(x)‖2. (1.72)
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This result is known as the Lax-Hopf formula for the above first-order Hamilton-
Jacobi equation, see [4, Remark 3.2; Lemma 3.27], [8, Lemma A.1], and [29].

Lemma 1.7 For each x ∈ H, the real-valued function λ �→ Φλ(x) is continuously
differentiable on ]0,+∞[, with

d

dλ
Φλ(x) = −1

2
‖∇Φλ(x)‖2. (1.73)

As a consequence, for any x ∈ H, λ > 0 and μ > 0,

(Φλ)μ(x) = Φ(λ+μ)(x). (1.74)

Indeed, (1.74) is the semi-group property satisfied by the orbits of the autonomous
evolution equation (1.72). Differentiating (1.74) with respect to x, and using (1.71)
gives the classical resolvent equation

(Aλ)μ = A(λ+μ), (1.75)

where A = ∂Φ. Indeed, (1.75) is valid for a general maximally monotone operator
A, see, for example, [20, Proposition 23.6] or [25, Proposition 2.6].

Auxiliary Results

Theorem 1.6.2 Let λ : [t0,+∞[→]0,+∞[ be continuous and nondecreasing. Let
Φ : H→ R∪{+∞} be convex, lower-semicontinuous, and proper. Then, given any
x0 and v0 in H, system (1.1) has a unique twice continuously differentiable global
solution x : [t0,+∞[→ H verifying x(t0) = x0, ẋ(t0) = v0.

Proof The assertion appeals to the most elementary form of the Cauchy-Lipschitz
theorem (see any textbook) and hinges on the (t, x)-continuity of ∇Φλ and on its
Lipschitz continuity with respect to x, uniform with respect to t .

Indeed, for t ∈ [t0,+∞[ and (x, x′) ∈ H ×H we have

‖∇Φλ(t)(x
′)− ∇Φλ(t)(x)‖ ≤ 1

λ(t)
‖x′ − x‖ ≤ 1

λ(t0)
‖x′ − x‖.

Next, the continuity of ∇Φλ(t)(x) = 1
λ(t)

(x − proxλ(t)Φx) boils down to the
continuity of the mapping (t, x) ∈ [t0,+∞[×H→ proxλ(t)Φx ∈ H. For (t, x) and
(t ′, x′) in [t0,+∞[×H we have

‖proxλ(t ′)Φx
′−proxλ(t)Φx‖ ≤ ‖proxλ(t ′)Φx

′−proxλ(t ′)Φx‖+‖proxλ(t ′)Φx−proxλ(t)Φx‖.
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But, since proxλΦ is nonexpansive

‖proxλ(t ′)Φx
′ − proxλ(t ′)Φx‖ ≤ ‖x′ − x‖;

and also (see [20, Prop. 23.28(iii)])

‖proxλ(t ′)Φx − proxλ(t)Φx‖ ≤
∣∣∣∣λ(t ′)λ(t)

− 1

∣∣∣∣ ‖proxλ(t)Φx − x‖.

Therefore

‖proxλ(t ′)Φx
′ − proxλ(t)Φx‖ ≤ ‖x′ − x‖ + |λ(t ′)− λ(t)|‖∇Φλ(t)(x)‖,

which proves the continuity of proxλΦ at point (t, x).

Let us state the discrete version of Opial’s lemma.

Lemma 1.8 Let S be a nonempty subset of H, and (xk) a sequence of elements of
H. Assume that

(i) for every z ∈ S, limk→+∞ ‖xk − z‖ exists;
(ii) every weak sequential cluster point of (xk), as k →∞, belongs to S.

Then xk converges weakly as k →∞ to a point in S.

We shall also make use of the following discrete version of the Gronwall lemma:

Lemma 1.9 Let (ak) be a sequence of nonnegative numbers such that, for all k ∈ N

a2
k ≤ c2 +

k∑
j=1

βjaj ,

where (βj ) is a summable sequence of nonnegative numbers, and c ≥ 0. Then,

ak ≤ c +
∞∑
j=1

βj for all k ∈ N.

Proof For k ∈ N, set Ak := max1≤m≤k am. Then, for 1 ≤ m ≤ k, we have

a2
m ≤ c2 +

m∑
j=1

βjaj ≤ c2 + Ak

∞∑
j=1

βj .

Taking the maximum over 1 ≤ m ≤ k, we obtain

A2
k ≤ c2 + Ak

∞∑
j=1

βj .

Bounding by the roots of the corresponding quadratic equation, we obtain the result.
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The next lemma provides an estimate of the convergence rate of a sequence that
is summable with respect to weights.

Lemma 1.10 ([7, Lemma 22]) Let (τk) be a nonnegative sequence such that∑+∞
k=1 τk = +∞. Assume that (εk) is a nonnegative and nonincreasing sequence

satisfying
∑+∞

k=1 τk εk < +∞. Then we have εk = o

(
1∑k

i=1 τi

)
as k→+∞.
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Chapter 2
Constraint Splitting and Projection
Methods for Optimal Control of Double
Integrator
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We dedicate our contribution to the memory of our friend and
mentor Jonathan Borwein

Abstract We consider the minimum-energy control of a car, which is modelled as a
point mass sliding on the ground in a fixed direction, and so it can be mathematically
described as the double integrator. The control variable, representing the accelera-
tion or the deceleration, is constrained by simple bounds from above and below.
Despite the simplicity of the problem, it is not possible to find an analytical solution
to it because of the constrained control variable. To find a numerical solution to this
problem we apply three different projection-type methods: (i) Dykstra’s algorithm,
(ii) the Douglas–Rachford (DR) method and (iii) the Aragón Artacho–Campoy
(AAC) algorithm. To the knowledge of the authors, these kinds of (projection)
methods have not previously been applied to continuous-time optimal control
problems, which are infinite-dimensional optimization problems. The problem we
study in this article is posed in infinite-dimensional Hilbert spaces. Behaviour of
the DR and AAC algorithms are explored via numerical experiments with respect
to their parameters. An error analysis is also carried out numerically for a particular
instance of the problem for each of the algorithms.
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2.1 Introduction

In this paper, we provide (to the best of our knowledge also first) application
of various best approximation algorithms to solve a continuous-time optimal
control problem. Operator splitting methods were applied previously to discrete-
time optimal control problems [19, 26], which are finite-dimensional problems.
In [26], for example, the state difference equations comprise the constraint A, and
the box constraints on the state and control variables comprise B. The condition
of belonging to the sets A and B are then appended to the objective function
via indicator functions. The original objective function that is considered in [26]
is quadratic in the state and control variables. In the next step in [26], the new
objective function is split into its quadratic and convex parts and the Douglas-
Rachford splitting method is applied to solve the problem.

In the current paper, we deal with continuous-time optimal control problems,
which are infinite-dimensional optimization problems that are set in Hilbert spaces.
After splitting the constraints of the problem, we apply Dykstra’s algorithm [11],
the Douglas–Rachford (DR) method [6, 9, 17, 18, 25, 29], and the Aragón Artacho–
Campoy (AAC) algorithm [3], all of which solve the underlying best approximation
problem.

The exposure of the current paper is more in the style of a tutorial. We pose the
problem of minimum-energy control of a simplified model of a car, amounting to
the double integrator, where the control variable has simple lower and upper bounds
and the initial and terminal state variables are specified. We split the constraints into
two, A and B, representing respectively the state differential equations (the double
integrator) along with their boundary conditions and the constraints on the control
variable. We define two subproblems, one subject to A, and the other one subject to
B. We take advantage of the relatively simple form of the optimal control problem
and derive analytical expressions for the optimality conditions and implement these
in defining the projections onto A and B.

The solutions of these subproblems provide the projections of a given point in
the control variable space onto the constraint sets A and B, respectively, in some
optimal way. By performing these projections in the way prescribed by the above-
listed algorithms, we can ensure convergence to a solution of the original optimal
control problem,

Note that while the minimum-energy control of the double integrator without any
constraints on the control variable can be solved analytically, the same problem with
(even simple bound, i.e., box) constraints on the control variable can in general be
solved only numerically. This problem should be considered within the framework
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of control-constrained linear-quadratic optimal control problems for which new
numerical methods are constantly being developed—see for example [1, 12] and
the references therein.

The current paper is a prototype for future applications of projection methods
to solving more general optimal control problems. Indeed, the minimum-energy
control of double integrator is a special case of linear quadratic optimal control
problems; so, with the reporting of the current study, an extension to more general
problems will be imminent.

The paper is organized as follows. In Section 2.2, we state the control-constrained
minimum-energy problem for the double integrator, and write down the optimality
conditions. We provide the analytical solution for the unconstrained problem. For
the control-constrained case, we briefly describe the standard numerical approach
and consider an instance of the problem which we use in the numerical experiments
in the rest of the paper. We define the constraint sets A and B. In Section 2.3,
we provide the expressions for the projections onto A and B. We describe the
algorithms in Section 2.4 and in the beginning of Section 2.5. In the remaining part
of Section 2.5, we present numerical experiments to study parametric behaviour
of the algorithms as well as the errors in the state and control variables with
each algorithm. In Section 2.6, we provide concluding remarks and list some open
problems.

2.2 Minimum-Energy Control of Double Integrator

We consider the minimum-energy control of a car, with a constrained control
variable. Consider the car as a point unit mass, moving on a frictionless ground
in a fixed line of action. Let the position of the car at time t be given by y(t) and the
velocity by ẏ(t) := (dy/dt)(t). By Newton’s second law of motion, ÿ(t) = u(t),
where u(t) is the summation of all the external forces applied on the car, in this
case the force simply representing the acceleration and deceleration of the car. This
differential equation model is referred to as the double integrator in system theory
literature, since y(t) can be obtained by integrating u(t) twice.

Optimal Control Problem Suppose that the total force on the car, i.e., the
acceleration or deceleration of the car, is constrained by a magnitude of a > 0.
Let x1 := y and x2 := ẏ. Then the problem of minimizing the energy of the car,
which starts at a position x1(0) = s0 with a velocity x2(0) = v0 and finishes at some
other position x1(1) = sf with velocity x2(1) = vf , within one unit of time, can be
posed as follows.

(P)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
1

2

∫ 1

0
u2(t) dt

subject to ẋ1(t) = x2(t) , x1(0) = s0 , x1(1) = sf ,

ẋ2(t) = u(t) , x2(0) = v0 , x2(1) = vf , |u(t)| ≤ a .
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Here, the functions x1 and x2 are referred to as the state variables and u the control
variable. As a first step in writing the conditions of optimality for this optimization
problem, define the Hamiltonian function H for Problem (P) simply as

H(x1, x2, u, λ1, λ2) := 1

2
u2 + λ1 x2 + λ2 u , (2.1)

where λ(t) := (λ1(t), λ2(t)) ∈ R2 is the adjoint variable (or costate) vector such
that (see [21])

λ̇1 = −∂H/∂x1 and λ̇2 = −∂H/∂x2 . (2.2)

Equations in (2.2) simply reduce to

λ1(t) = c1 and λ2(t) = −c1 t − c2 , (2.3)

where c1 and c2 are real constants. Let x(t) := (x1(t), x2(t)) ∈ R2 denote the state
variable vector.

Maximum Principle If u is an optimal control for Problem (P), then there exists
a continuously differentiable vector of adjoint variables λ, as defined in (2.2), such
that λ(t) �= 0 for all t ∈ [0, tf ], and that, for a.e. t ∈ [0, tf ],

u(t) = arg min
v∈[−a,a]

H(x, v, λ(t)) , (2.4)

i.e.,

u(t) = arg min
v∈[−a,a]

1

2
v2 + λ2(t) v ; (2.5)

see e.g. [21]. Condition (2.5) implies that the optimal control is given by

u(t) =

⎧⎪⎨
⎪⎩
−λ2(t) , if − a ≤ λ2(t) ≤ a ,

a , if λ2(t) ≤ −a ,
−a , if λ2(t) ≥ a .

(2.6)

From (2.6), we can also conclude that the optimal control u for Problem (P) is
continuous.

When a is large enough, the control constraint does not become active, so the
optimal control is simply −λ2, and it is a straightforward classroom exercise to find
the analytical solution as

u(t) = c1 t + c2 ,

x1(t) = 1

6
c1 t

3 + 1

2
c2 t

2 + v0 t + s0 ,

x2(t) = 1

2
c1 t

2 + c2 t + v0 ,
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Fig. 2.1 Solution of Problem (P) with large a (so that u(t) is unconstrained), s0 = 0, sf = 0,
v0 = 1, vf = 0. (a) Optimal state variables. (b) Optimal control variable

for all t ∈ [0, 1], where

c1 = −12 (sf − s0)+ 6 (v0 + vf ) ,

c2 = 6 (sf − s0)− 2 (2 v0 + vf ) .

The solution of an instance of Problem (P), with s0 = 0, sf = 0, v0 = 1, vf = 0,
and large a, say a = 9, is depicted in Figure 2.1. Note that, for all t ∈ [0, 1],
λ2(t) = −u(t) = −6 t + 4 and λ1(t) = c1 = 6. The graphs of λ1 and λ2 are not
displayed for this particular instance.

When a is not so large, say a = 2.5, as we will consider next so that the control
constraint becomes active, it is usually not possible to find an analytical solution,
i.e., a solution has to be found numerically, as described below.

Numerical Approach A straightforward and popular numerical approach to solv-
ing Problem (P) is to discretize Problem (P) over a partition of the time horizon [0, 1]
and then use some finite-dimensional optimization software to get a discrete (finite-
dimensional) solution for the state and control variables x(t) and u(t). The discrete
solution is an approximation of the continuous-time solution. This approach is often
referred to as the direct method or the (first-)discretize-then-optimize approach. A
survey and discussion of Euler discretization of linear-quadratic optimal control
problems and convergence of their discretized solutions to their continuous-time
solutions can be found in [12, Section 5].

Figure 2.2 depicts the discrete solution of Problem (P) with the instance where
a = 2.5, s0 = 0, sf = 0, v0 = 1, vf = 0. The solution was obtained by pairing
up the optimization modelling language AMPL [20] and the finite-dimensional
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optimization software Ipopt [30]. The number of discretization nodes was taken
to be 2000. The multipliers of the (Euler approximation of the) state differential
equation constraints are provided by Ipopt when it finds an optimal solution to
the discretized (finite-dimensional) problem. These multipliers have been plotted
in Figure 2.2c. It should be noted that the graph of the adjoint variable λ2(t) given
in Figure 2.2c verifies the graph of the optimal control u(t) in Figure 2.2b via the
optimal control rule in (2.6). In Figure 2.2b and c, the bounds ± 2.5 have been
marked by horizontal dashed lines for ease of viewing.

Remark 2.1 If a is too small, there will obviously be no solution to Problem (P).
For the particular instance of the problem considered here, the critical value of a,
below which there exists no solution, is somewhere between 2.414 and 2.415, as our
numerical experiments show (not reported in detail here). At this critical value, the
only feasible solution is bang–bang, i.e., u(t) switches once from −a to a at around
t = 0.71. It should be noted that, in this case, the optimal control in (2.6) requires
the adjoint variable λ2 to switch from a value α ≥ a to another value β ≤ −a, i.e.,
be discontinuous, which is not allowed by the maximum principle. In this paper, we

Fig. 2.2 Solution of direct discretization of Problem (P), with a = 2.5, s0 = 0, sf = 0, v0 = 1,
vf = 0. (a) Optimal state variables. (b) Optimal control variable. (c) Adjoint variables
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only consider the case when a is strictly greater than its critical value so that the
maximum principle can be applied.

Function Spaces For the numerical methods, we consider projection/reflection
methods in Hilbert spaces. The spaces associated with Problem (P) are set up as
follows. Let q ∈ N and L2(0, 1;Rq) be the Banach space of Lebesgue measurable
functions

z : [0, 1] → Rq

t �→ (z1(t), . . . , zq(t)),

with finite L2 norm. Namely, define

‖z‖2 :=
(

q∑
i=1

‖zi‖2
2

)1/2

,

where

‖zi‖2 :=
(∫ 1

0
|zi(t)|2 dt

)1/2

,

for i = 1, . . . , q, with | · | the modulus or absolute value. In other words,

L2(0, 1;Rq) := {
z : [0, 1] → Rq : ‖z‖2 <∞}

.

Furthermore, W 1,2(0, 1;Rq) is the Sobolev space of absolutely continuous func-
tions, namely

W 1,2(0, 1;Rq) = {z ∈ L2(0, 1;Rq) | ż = dz/dt ∈ L2(0, 1;Rq)} ,

endowed with the norm

‖z‖W 1,2 :=
(

q∑
i=1

[
‖zi‖2

2 + ‖żi‖2
2

])1/2

.

In Problem (P), the state variable x ∈ W 1,2(0, 1;R2) and the control variable u ∈
L2(0, 1;R).

Constraint Splitting Next, we split the constraints of Problem (P) into two subsets,
A and B. The subset A collects together all the feasible control functions satisfying
only the dynamics of the car. The subset B, on the other hand, collects all the control
functions whose values are constrained by −a and a.
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A := {
u ∈ L2(0, 1;R) | ∃x ∈ W 1,2(0, 1;R2) which solves

ẋ1(t) = x2(t) , x1(0) = s0 , x1(1) = sf ,

ẋ2(t) = u(t) , x2(0) = v0 , x2(1) = vf , ∀t ∈ [0, 1]} , (2.7)

B := {
u ∈ L2(0, 1;R) | −a ≤ u(t) ≤ a , for all t ∈ [0, 1]} . (2.8)

The rationale behind this sort of splitting is as follows: The problem of minimizing
the energy of the car subject to only A or only B is much easier to solve—in fact, the
solutions can be analytically written up in each case. If, for some given u, a solution
exists to the two-point boundary-value problem (TPBVP) in (2.7) then that solution
is unique by the linearity of the TPBVP [5, 28]. Note that a control solution u as
in (2.7) exists by the (Kalman) controllability of the double integrator—see [27]. So
the set A is nonempty. Note that the constraint set A is an affine subspace and B a
box.

2.3 Projections

All of the projection methods that we will consider involve projections onto the sets
A and B. The projection onto A from a current iterate u− is the point u solving the
following problem.

(P1)

⎧⎪⎪⎨
⎪⎪⎩

min
1

2

∫ 1

0
(u(t)− u−(t))2 dt

subject to u ∈ A .

In (P1), we minimize the squared L2-norm distance between u− and u. The
projection onto B from a current iterate u− is similarly the point u solving the
following problem.

(P2)

⎧⎪⎪⎨
⎪⎪⎩

min
1

2

∫ 1

0
(u(t)− u−(t))2 dt

subject to u ∈ B .

Proposition 2.1 (Projection onto A) The projection PA of u− ∈ L2(0, 1;R) onto
the constraint set A, as the solution of Problem (P1), is given by

PA(u−)(t) = u−(t)+ c1 t + c2 , (2.9)
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for all t ∈ [0, 1], where

c1 = 12 (x1(1)− sf )− 6 (x2(1)− vf ) , (2.10)

c2 = −6 (x1(1)− sf )+ 2 (x2(1)− vf ) , (2.11)

and x1(1) and x2(1) are obtained by solving the initial value problem

ẋ1(t) = x2(t) , x1(0) = s0 , (2.12)

ẋ2(t) = u−(t) , x2(0) = v0 , (2.13)

for all t ∈ [0, 1].
Proof The Hamiltonian function for Problem (P1) is

H1(x1, x2, u, λ1, λ2, t) := 1

2
(u− u−)2 + λ1 x2 + λ2 u ,

where the adjoint variables λ1 and λ2 are defined as in (2.2), with H replaced by
H1, and the subsequent solutions are given as in (2.3). The optimality condition for
Problem (P1) is akin to that in (2.4) for Problem (P) and, owing to the fact that the
control u is now unconstrained, can more simply be written as

∂H1

∂u
(x, u, λ, t) = 0 ,

which yields the optimal control as u(t) = u−(t)− λ2(t), i.e.

u(t) = u−(t)+ c1 t + c2 , (2.14)

for all t ∈ [0, 1]. We need to show that c1 and c2 are found as in (2.10)–(2.11).
Using (2.14) in (2.7) yields the following time-varying, linear two-point boundary-
value problem.

ẋ1(t) = x2(t) , x1(0) = s0 , x1(1) = sf , (2.15)

ẋ2(t) = u−(t)+ c1 t + c2 , x2(0) = v0 , x2(1) = vf , (2.16)

for all t ∈ [0, 1]. In other words, Problem (P1) is reduced to solving Equa-
tions (2.15)–(2.16) for the unknown parameters c1 and c2. Once c1 and c2 are found,
the projected point u in (2.14) is found. Since Equations (2.15)–(2.16) are linear in
x1 and x2, a simple shooting technique [5, 28] provides the solution for c1 and c2
in just one iteration. The essence of this technique is that the initial-value problem
(IVP)
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∂z1(t, c)

∂t
= z2(t, c) , z1(0, c) = s0 , (2.17)

∂z2(t, c)

∂t
= u−(t)+ c1 t + c2 , z2(0, c) = v0 , (2.18)

for all t ∈ [0, 1], is solved repeatedly, so as to make the discrepancy at t = 1
vanish. Namely, we seek a parameter c := (c1, c2) such that z1(1, c) − sf = 0
and z2(1, c) − vf = 0. The procedure is as follows. For a given c, there exists a
unique solution z(t, c) := (z1(t, c), z2(t, c)) of (2.17)–(2.18). Define the near-miss
(vector) function ϕ : R2 → R2 as follows:

ϕ(c) :=
[
z1(1, c)− sf

z2(1, c)− vf

]
. (2.19)

The Jacobian of the near-miss function is

Jϕ(c) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂z1(1, c)

∂c1

∂z1(1, c)

∂c2

∂z2(1, c)

∂c1

∂z2(1, c)

∂c2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The shooting method looks for a pair c such that ϕ(c) := 0 (i.e., a pair c such that
the terminal boundary conditions are met). Expanding ϕ about, say, c = 0, and
discarding the terms of order 2 or higher, we obtain

ϕ(c) ≈ ϕ(0)+ Jϕ(0) c .

Substituting ϕ(c) = 0 in the above expression, replacing “≈” with “=”, and re-
arranging, gives the single (Newton) iteration of the shooting method:

c = −[Jϕ(0)]−1ϕ(0) . (2.20)

The components (∂zi/∂cj )(1, c), i, j = 1, 2, of Jϕ(c), can be obtained by solving
the variational equations for (2.15)–(2.16) with respect to c1 and c2, i.e., by solving
the following system for (∂zi/∂cj )(·, c):

∂

∂t

(
∂z1

∂c1

)
(t, c) = ∂z2

∂c1
(t, c) ,

∂z1

∂c1
(0, c) = 0 ,

∂

∂t

(
∂z1

∂c2

)
(t, c) = ∂z2

∂c2
(t, c) ,

∂z1

∂c2
(0, c) = 0 ,
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∂

∂t

(
∂z2

∂c1

)
(t, c) = t ,

∂z2

∂c1
(0, c) = 0 ,

∂

∂t

(
∂z2

∂c2

)
(t, c) = 1 ,

∂z2

∂c2
(0, c) = 0 .

Elementary calculations lead to the following solution of the above system:

∂z

∂c
(t, c) =

[
t3/6 t2/2

t2/2 t

]
,

which is independent of c. Hence,

Jϕ(0) = ∂z

∂c
(1, 0) =

[
1/6 1/2

1/2 1

]
,

with inverse:

[
∂z

∂c
(1, 0)

]−1

= [
Jϕ(0)

]−1 =
[−12 6

6 −2

]
. (2.21)

Setting (x1(·), x2(·)) := (z1(·, 0), z2(·, 0)), the IVP (2.17)–(2.18) becomes (2.12)–
(2.13). Then substitution of (2.19) and (2.21) with c = 0 into Equation (2.20), and
expanding out, yield (2.10)–(2.11). The proof is complete. ��
Proposition 2.2 (Projection onto B) The projection PB of u− ∈ L2(0, 1;R) onto
the constraint set B, as the solution of Problem (P2), is given by

PB(u−)(t) =

⎧⎪⎨
⎪⎩
u−(t) , if − a ≤ u−(t) ≤ a ,

−a , if u−(t) ≤ −a ,
a , if u−(t) ≥ a ,

(2.22)

for all t ∈ [0, 1].
Proof The expression (2.22) is the straightforward solution of Problem (P2). ��

2.4 Best Approximation Algorithms

In this section, we discuss best approximation algorithms. In the following,

X is a real Hilbert space (2.23)
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with inner product 〈·, ·〉, induced norm ‖ · ‖. We also assume that

A is a closed affine subspace of X, and B is a nonempty closed convex subset of X.

(2.24)
Given z ∈ X, our aim is to find

PA∩B(z), (2.25)

the projection of z onto the intersection A ∩ B which we assume to be nonempty.
We also assume that we are able to compute the projectors PA and PB onto the
constraints A and B, respectively.

Many algorithms are known which could be employed to find PA∩B(z); here,
however, we focus on three simple methods that do not require a product space
set-up as some of those considered, in, e.g., [6, 7, 13, 14].

In the next section, we will numerically test these algorithms when X =
L2(0, 1;R), A = A, B = B, and z = 0.

2.4.1 Dykstra’s Algorithm

We start with Dykstra’s algorithm (see [11]), which operates as follows1: Set a0 := z

and q0 := 0. Given an, qn, where n ≥ 0, update

bn := PB(an + qn), an+1 := PA(bn), and qn+1 := an + qn − bn. (2.26)

It is known that both (an)n∈B and (bn)n∈N converge strongly to PA∩B(z).

2.4.2 Douglas–Rachford Algorithm

Given β > 0, we specialize the Douglas–Rachford algorithm (see [17], [25] and
[18]) to minimize the sum of the two functions f (x) = ιB(x) + β

2 ‖x − z‖2 and
g := ιA which have respective proximal mappings (see [6, Proposition 23.29(i)])
Pf (x) = PB

( 1
1+β x + β

1+β z
)

and Pg = PA. Set λ := 1
1+β ∈ ]0, 1[. It follows that

the Douglas–Rachford operator T := Id−Pf + Pg(2Pf − Id) turns into

T x = x − PB

(
λx + (1− λ)z

)+ PA

(
2PB

(
λx + (1− λ)z

)− x
)
. (2.27)

1In the general case, there is also an auxiliary sequence (pn) associated with A; however, because
A is an affine subspace, it is not needed in our setting.
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Now let x0 ∈ X and given xn ∈ X, where n ≥ 0, update

bn := PB

(
λxn + (1− λ)z

)
, xn+1 := T xn = xn − bn + PA

(
2bn − xn

)
. (2.28)

Then it is known (see [29] or [9]) that (bn)n∈N converges weakly to PA∩B(z). Note
that (2.28) simplifies to

xn+1 := xn − PB(λxn)+ PA

(
2PB(λxn)− xn

)
provided that z = 0. (2.29)

2.4.3 Aragón Artacho–Campoy Algorithm

The Aragón Artacho–Campoy (AAC) Algorithm was recently presented in [3]; see
also [2, 4]. Given two fixed parameters α and β in ]0, 1[, define

T x = (1− α)x

+ α

(
2β

(
PA

(
2β

(
PB(x + z)− z

)− x + z
)
− z

)
+ x + 2β

(
z− PB(x + z)

))

= x + 2αβ

(
PA

(
2β

(
PB(x + z)− z

)− x + z
)
− PB(x + z)

)
. (2.30)

Now let x0 ∈ X and given xn ∈ X, where n ≥ 0, update

bn := PB(xn + z), (2.31)

and

xn+1 := T xn = xn + 2αβ

(
PA

(
2β

(
bn − z

)− xn + z
)
− bn

)
. (2.32)

By [3, Theorem 4.1(iii)], the sequence (bn)n∈N converges strongly to PA∩B(z)
provided that2 z− PA∩B(z) ∈ (NA +NB)(PA∩Bz). Note that (2.32) simplifies to

xn+1 := T xn = xn + 2αβ
(
PA

(
2βPBxn − xn

)− PBxn

)
provided that z = 0.

(2.33)

2It appears that this constraint qualification is not easy to check in our setting.
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2.5 Numerical Implementation

2.5.1 The Algorithms

In this section, we gather the algorithms considered abstractly and explain how we
implemented them.

We start with Dykstra’s algorithm from Section 2.4.1.

Algorithm 1 (Dykstra)

Step 1 (Initialization) Choose the initial iterates u0 = 0 and q0 = 0. Choose a small
parameter ε > 0, and set k = 0.

Step 2 (Projection onto B) Set u− = uk + qk . Compute ũ = PB(u−) by
using (2.22).

Step 3 (Projection onto A) Set u− := ũ. Compute û = PA(u−) by using (2.9).
Step 4 (Update) Set uk+1 := û and qk+1 := uk + qk − ũ .
Step 5 (Stopping criterion) If ‖uk+1 − uk‖L∞ ≤ ε, then return ũ and stop.

Otherwise, set k := k + 1 and go to Step 2.

Next is the Douglas–Rachford method from Section 2.4.2.

Algorithm 2 (DR)

Step 1 (Initialization) Choose a parameter λ ∈ ]0, 1[ and the initial iterate u0

arbitrarily. Choose a small parameter ε > 0, and set k = 0.
Step 2 (Projection onto B) Set u− = λuk . Compute ũ = PB(u−) by using (2.22).
Step 3 (Projection onto A) Set u− := 2ũ − uk . Compute û = PA(u−) by

using (2.9).
Step 4 (Update) Set uk+1 := uk + û− ũ.
Step 5 (Stopping criterion) If ‖uk+1 − uk‖L∞ ≤ ε, then return ũ and stop.

Otherwise, set k := k + 1 and go to Step 2.

Finally, we describe the Aragón Artacho–Campoy algorithm from Section 2.4.3.

Algorithm 3 (AAC)

Step 1 (Initialization) Choose the initial iterate u0 arbitrarily. Choose a small
parameter ε > 0, two parameters3 α and β in ]0, 1[, and set k = 0.

Step 2 (Projection onto B) Set u− = uk . Compute ũ = PB(u−) by using (2.22).
Step 3 (Projection onto A) Set u− = 2βũ − uk . Compute û = PA(u−) by

using (2.9).
Step 4 (Update) Set uk+1 := uk + 2αβ(̂u− ũ).
Step 5 (Stopping criterion) If ‖uk+1 − uk‖L∞ ≤ ε, then return ũ and stop.

Otherwise, set k := k + 1 and go to Step 2.

We provide another version of each of Algorithms 1–3, as Algorithms 1b–3b,
in Appendix A. In Algorithm 1b, we monitor the sequence of iterates which are

3Aragón Artacho and Campoy recommend α = 0.9 and β ∈ [0.7, 0.8]; see [3, End of Section 7].
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the projections onto set A, instead of monitoring the projections onto set B in
Algorithm 1. On the other hand, in Algorithms 2b–3b, the order in which the
projections are done is reversed: the first projection is done onto the set A and the
second projection onto B.

Although the order of projections will not matter in view of the existing results
stating that convergence is achieved under any order—see [8, Proposition 2.5(i)],
the order does make a difference in early iterations (as well as in the number of
iterations required for convergence of Algorithms 2 and 2b, as we will elaborate on
later). If our intent is to stop the algorithm early so that we can use the current iterate
as an initial guess in more accurate computational optimal control algorithms, which
can find the junction times with a high precision (see [22–24]), then it is desirable
to implement Algorithms 1–3 above, rather than Algorithms 1b–3b, because any
iterate of Algorithms 1–3 will satisfy the constraints on the control variable, while
that of Algorithms 1b–3b will in general not.

2.5.2 Numerical Experiments

In what follows, we study the working of Algorithms 1–3 for an instance of
Problem (P). Suppose that the car is initially at a reference position 0 and has unit
speed. It is desired that the car come back to the reference position and be at rest after
one unit of time; namely that s0 = 0, sf = 0, v0 = 1, vf = 0. For these boundary
conditions, no solution exists if one takes the control variable bound a = 2.4 or
smaller but a solution does exist for a = 2.5. So, we use a = 2.5. In the ensuing
discussions, we use the stopping tolerance ε = 10−8 unless otherwise stated.

Discretization Algorithms 1–3, as well as 1b–3b, carry out iterations with func-
tions. For computations, we consider discrete approximations of the functions over
the partition 0 = t0 < t1 < . . . < tN = 1 such that

ti+1 = ti + h , i = 0, 1, . . . , N ,

h := 1/N and N is the number of subdivisions. Let ui be an approximation of
u(ti), i.e., ui ≈ u(ti), i = 0, 1, . . . , N − 1; similarly, x1,i ≈ x1(ti) and x2,i ≈
x2(ti), or xi := (x1,i , x2,i ) ≈ x(ti), i = 0, 1, . . . , N . In other words, the functions
u, x1 and x2 are approximated by the N -dimensional array uh, with components
ui , i = 0, 1, . . . , N − 1, and the (N + 1)-dimensional arrays x1,h and x2,h, with
components x1,i and x2,i , i = 0, 1, . . . , N , respectively. We define a discretization
Ph
A of the projection PA as follows.

Ph
A(u−h )(t) = u−h + c1 th + c2 , (2.34)

where th = (0, t1, . . . , tN ),
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c1 = 12 (x1,N − sf )− 6 (x2,N − vf ) , (2.35)

c2 = −6 (x1,N − sf )+ 2 (x2,N − vf ) , (2.36)

and x1,N and x2,N are obtained from the Euler discretization of (2.12)–(2.13): Given
x1,0 = s0 and x2,0 = v0,

x1,i+1 = x1,i + h x2,i , (2.37)

x2,i+1 = x2,i + h u−i (t) , (2.38)

for i = 0, 1, . . . , N − 1.

The discretization Ph
B of the projection PB can be defined in a straightforward

manner, by simply replacing u− in (2.22) with the discrete components u−i of u−h .

Parametric Behaviour Obviously, the behaviour of Algorithms 2 and 2b, the
Douglas–Rachford method, depend on the parameter λ, and the behaviour of
Algorithms 3 and 3b on the two parameters α and β. Figure 2.3 displays the
dependence of the number of iterations it takes to converge on these parameters, for
various values of a. The dependence for a given value of a appears to be continuous,
albeit the presence of downward spikes.

The graphs for Algorithms 2 and 2b, shown in parts (a) and (c) of Figure 2.3,
respectively, differ significantly from one another. The bound a = 4 corresponds to
the case when the control constraint becomes active only at t = 0—see Figure 2.1.
In other words, when a > 4 the optimal control variable is truly unconstrained.
When a = 4, the best value of λ is 1 for Algorithm 2, yielding the solution in just
6 iterations. For Algorithm 2b, the best value for λ is 0.5, as can be seen in (c),
producing the solution in 30 iterations. Going back to Algorithm 2, with decreasing
values of a, the values of λ minimizing the number of iterations shift to the right.
For example, the minimum number of iterations is 91, with a = 2.5 and λ = 0.7466
(found by a refinement of the graph).

As for Algorithm 2b, the minimizer for a = 2.5 is λ = 0.5982766 and
the corresponding minimum number of iterations is 38. This is a point where a
downward spike occurs and so the number of iterations is very sensitive to changes
in λ. For example, the rounded-off value of λ = 0.598277 results in 88 iterations
instead of 38, and λ = 0.55 yields 444 iterations for convergence. The number
of iterations is less sensitive to the local minimizer λ = 0.7608, which results in
132 iterations. It is interesting to note that the graph with a = 4 appears to be an
envelope for the number of iterations for all λ ∈]0, 1[.

The graphs for Algorithms 3 and 3b, the Aragón Artacho–Campoy algorithm,
are indistinguishable to one’s eye; therefore we only display the one in Figure 2.3b.
Part (d) of Figure 2.3 shows surface plots of the number of iterations versus the
algorithmic parameters α and β, for the same values of a as in the rest of the
graphs in the figure. It is interesting to observe that the surfaces look to be cascaded
with (roughly) the outermost surface being the one corresponding to a = 4. The
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Fig. 2.3 Numerical experiments with s0 = 0, sf = 0, v0 = 1, vf = 0. (a) Algorithm 2 (DR).
(b) Algorithms 3 (AAC) and 3b (AAC-b) for α = 1. (c) Algorithm 2b (DR-b). (d) Algorithms 3
(AAC) and 3b (AAC-b)

surface plot suggests that for minimum number of iterations, one must have α = 1.
Although theory requires α < 1, α = 1 seems to cause no concerns in this particular
instance; so, we set α = 1 for the rest of the paper. The cross-sectional curves at
α = 1 are shown with much more precision in part (b) of the figure. The spikes that
are observed in part (d) can also be seen in the graph in part (b).

In fact, the first observation one has to make here is that, for a = 4, convergence
can be achieved in merely one iteration, with β = 0.5. This is quite remarkable,
compared with Algorithms 2 and 2b. The graphs in (b) appear to be enveloped as
well by the graph for a = 4, as in part (c). For the values of a other than 4, the
globally minimum number of iterations seems to be achieved at a downward spike,
which as a result is very sensitive to changes in β. For example, for a = 2.5,
the optimal β value is 0.78249754 for a minimum 35 iterations. A rounded-off
β = 0.782 results in 111 iterations, and β = 0.7 yields 243 iterations. Sensitivity at
the local minimizer β = 0.8617 giving 64 iterations is far less: Choosing β = 0.8 or
0.9 results in 128 or 90 iterations, respectively. It is interesting to note that, as in the
case of Algorithms 2 and 2b, the graphs in Figure 2.3b are approximately enveloped
by the graph/curve drawn for a = 4.
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Behaviour in Early Iterations Figure 2.4a–c illustrates the working of all three
algorithms for the same instance. All three algorithms converge to the optimal
solution, with the stopping tolerance of ε = 10−8. The optimal values of the
algorithmic parameters, λ = 0.7466 for Algorithm 2, and α = 1 and β = 0.8617
for Algorithm 3, have been used. The third, fifth and fifteenth iterates, as well as
the solution curve, are displayed for comparisons of behaviour. At least for the
given instance of the problem, it is fair to say from Figure 2.4c that Algorithm 3
gets closer to the solution much more quickly than the others in the few initial
iterations—see the third and fifth iterates. It also achieves convergence in a smaller
number of iterations (64 as opposed to 530 and 91 iterations of the Algorithms 1
and 2, respectively).

Error Analysis via Numerical Experiments For a fixed value of N , Algo-
rithms 1–3 converge only to some approximate solution of the original Problem.
Therefore, the question as to how the algorithms behave as the time partition is
refined, i.e., N is increased, needs to be investigated. For the purpose of a numerical
investigation, we define, in the kth iteration, the following errors. Suppose that the
pair (u∗, x∗) is the optimal solution of Problem (P) and (ukh, x

k
h) an approximate

solution of Problem (P) in the kth iteration of a given algorithm. Define

σk
u := max

0≤i≤N−1
|uki − u∗(ti)| and σk

x := max
0≤i≤N ||x

k
i − x∗(ti)||∞ ,

where || · ||∞ is the �∞-norm in R2. For large N , these expressions are reminiscent
of the L∞-norm, and therefore they will be referred to as the L∞-error.

For (u∗, x∗) in the error expressions, we have used the discretized (approximate)
solution obtained for the Euler-discretized Problem (P) utilizing the Ipopt–AMPL
suite, with N = 106 and the tolerance set at 10−14.

For N = 2000, these errors are depicted in Figure 2.4d and e. From the graphs
it is immediately clear that no matter how much smaller the stopping tolerance is
selected, the best error that is achievable with N = 2000 is around 10−2 for the
control variable and around 10−3 for the state variable vector. In fact, the graphs also
tell that perhaps a much smaller stopping threshold than 10−8 would have achieved
the same approximation to the continuous-time solution of Problem (P). By just
looking at the graphs, one can see that Algorithm 1 could have been run just for
about 300 iterations instead of 530, and Algorithms 2 and 3 could have been run for
about 50 iterations to achieve the best possible approximation with N = 2000.

In Figure 2.5, we depict the same errors for N = 103 (parts (a) and (b)), N = 104

(in parts (c) and (d)) and N = 105 (in parts (e) and (f)). It is observed that, with a
ten-fold increase in N (which is a ten-fold decrease in h) the errors in both u and x

are reduced by ten-folds, implying that the error (both in x and in u) depends on the
stepsize h linearly. This is in line with the theory of Euler-discretization of optimal
control problems; see, for example, [15, 16]. Furthermore, even for very large values
of N , it can be seen from these graphs that a stopping threshold slightly smaller than
10−8 would suffice to get even more stringent error levels, such as around 10−4 for
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Fig. 2.4 Numerical experiments with a = 2.5, s0 = 0, sf = 0, v0 = 1, vf = 0, and the number of
discretization subintervals N = 2000. The graphs in (a)–(c) show approximations of the optimal
control function with Algorithms 1–3, after k = 3, 5, 15 iterations, with ε = 10−8. All algorithms
are observed to converge to the optimal solution indicated by k →∞, in various rates. The semi-
log graphs in (d) and (e) show the L∞ errors in the state and control variables, respectively, in each
iteration of the three algorithms
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Fig. 2.5 Numerical experiments with a = 2.5, s0 = 0, sf = 0, v0 = 1, vf = 0. The semi-log
graphs show the L∞ errors in the state and control variables, respectively, in each iteration of the
three algorithms, with various N from coarse (N = 1000) to fine (N = 100000). (a) L∞-error in
control with N = 103. (b) L∞-error in states with N = 103. (c) L∞-error in control with N = 104.
(d) L∞-error in states with N = 104. (e) L∞-error in control with N = 105. (f) L∞-error in states
with N = 105

the control variable and around 10−5 for the state variable vector. A larger stopping
threshold would obviously result in smaller number of iterations.

Table 2.1 displays the values of the errors, separately in u and x, after the
stopping criteria with ε = 10−8 was satisfied, for each of the three algorithms. A
precise 10-fold reduction in error with a 10-fold increase in N can be verified with
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Table 2.1 Least errors that can be achieved by Algorithms 1–3 and Ipopt, with ε = 10−8

N Dykstra DR AAC Ipopt

(a) L∞-error in control, σk
u

103 3.2× 10−2 2.5× 10−2 2.8× 10−2 3.2× 10−2

104 3.2× 10−3 2.5× 10−3 2.8× 10−3 7.7× 10−3

105 3.0× 10−4 2.4× 10−4 2.6× 10−4 1.6× 10−2

(b) L∞-error in states, σk
x

103 2.2× 10−3 3.6× 10−3 3.0× 10−3 2.2× 10−3

104 2.1× 10−4 3.6× 10−4 2.9× 10−4 2.3× 10−4

105 2.0× 10−5 3.4× 10−5 2.8× 10−5 8.7× 10−5

Table 2.2 CPU times [sec] taken by Algorithms 1–3 and Ipopt. For N = 103, 104, 105,
respectively: ε = 10−6, 10−6, 10−7 for Algorithm 1, ε = 10−5, 10−5, 10−7 for Algorithm 2,
and ε = 10−4, 10−5, 10−6 for Algorithm 3, have been used. The tolerance for Ipopt was set as
10−14

N Dykstra DR AAC Ipopt

103 0.03 0.01 0.01 0.08

104 0.16 0.05 0.05 0.71

105 1.6 0.41 0.28 7.3

these numbers, as discussed in the previous paragraph. We have added the experi-
ments we have carried out with Ipopt, version 3.12, an interior point optimization
software [30], which solved the direct Euler-discretization of Problem (P), with the
same values of N and the same tolerance 10−8. Ipopt, running with linear solver
MA57, was paired up with the optimization modelling language AMPL [20]. The
same 10-fold decreases in error cannot be observed with Ipopt, unless one sets the
tolerance for Ipopt to be much smaller than 10−8, say 10−14 (which also means
longer computational times). With the tolerance set at 10−14, the error values with
Ipopt becomes pretty much the same as those with Dykstra (still with ε = 10−8),
which is interesting to note.

As we pointed out earlier, the same errors listed in Table 2.1 can be achieved
with bigger stopping thresholds. For N = 103, 104, 105, respectively: with ε =
10−6, 10−6, 10−7, Algorithm 1 converges in 281, 359 and 454 iterations; with ε =
10−5, 10−5, 10−7, Algorithm 2 converges in 65, 50 and 101 iterations; with ε =
10−4, 10−5, 10−6, Algorithm 3 converges in 49, 60 and 70 iterations.

In Table 2.2, the CPU times (in seconds) each algorithm takes, with the respective
ε values listed above, are tabulated. Note that Algorithms 1–3 have been coded
and run on Matlab, 64-bit (maci64) version R2017b. All software, including AMPL
and Ipopt, were run on MacBook Pro, with operating system macOS Sierra version
10.12.6, processor 3.3 GHz Intel Core i7 and memory 6 GB 2133 MHz LPDDR3.
In Table 2.2, the CPU times for Ipopt are listed with the tolerance 10−14, since with
only this fine tolerance it is possible to obtain the same order of the error magnitudes
as those obtained by Algorithms 1–3. With ε = 10−8, the CPU times for Ipopt are



66 H. H. Bauschke et al.

0.06, 0.45 and 4.4 seconds, respectively, which are significantly higher than the
times taken by Algorithms 1–3, in addition to worse errors.

Numerical observations suggest two joint winners: Algorithms 2 and 3, i.e., the
Douglas–Rachford method and the Aragón Artacho–Campoy algorithm, in both
accuracy and speed.

2.6 Conclusion and Open Problems

We have applied three well-known projection methods to solve an optimal control
problem, i.e., control-constrained minimum-energy control of double integrator.
We have derived the projectors for the optimal control problem and demonstrated
that they can be used in Dykstra’s algorithm, the Douglas–Rachford (DR) method
and the Aragón Artacho–Campoy (AAC) algorithm, effectively. We carried out
extensive numerical experiments for an instance of the problem and concluded
that the DR and AAC algorithms (Algorithms 2 and 3) were jointly the most
successful. We also made comparisons with the standard discretization approach,
only to witness the benefit of using projection methods.

It is interesting to note that when we apply alternating projections, we also seem
to converge to PA∩B(0) even though this is not supported by existing theory.

To the best of authors’ knowledge, the current paper constitutes the first of
its kind which involves projection methods and continuous-time optimal control
problems. It can be considered as a prototype for future studies in this direction.
Some of the possible directions are listed as follows.

• The setting we have introduced could be extended to general control-
constrained linear-quadratic problems.

• We have used some discretization of the projector as well as the associated IVP
in (2.34)–(2.38). This might be extended to problems in more general form.
On the other hand, for the particular problem we have dealt with in the present
paper, one might take into account the fact that if u−(t) is piecewise linear then
its projection is piecewise linear. This might simplify further the expressions
given in Proposition 2.1.

• Although theory for projection methods can in principle vouch convergence
only for convex problems, it is well-known that the DR method can be suc-
cessful for nonconvex problems, see, for example, [10]. It would be interesting
to extend the formulations in the current paper to nonconvex optimal control
problems.

• For a certain value of an algorithmic parameter, Figure 2.3 exhibits downward
spikes. It would be interesting to see if this phenomenon is also observed
in other control-constrained optimal control problems, as well as under other
stopping criteria.
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Appendix

Algorithm 1b (Dykstra-b)

Steps 1–4 (Initialization) Do as in Steps 1–4 of Algorithm 1.
Step 5 (Stopping criterion) If ‖uk+1 − uk‖L∞ ≤ ε, then return uk+1 and stop.

Otherwise, set k := k + 1 and go to Step 2.

Algorithm 2b (DR-b)

Step 1 (Initialization) Choose a parameter λ ∈ ]0, 1[ and the initial iterate u0

arbitrarily. Choose a small parameter ε > 0, and set k = 0.
Step 2 (Projection onto A) Set u− = λuk . Compute ũ = PA(u−) by using (2.9).
Step 3 (Projection onto B) Set u− := 2ũ − uk . Compute û = PB(u−) by

using (2.22).
Step 4 (Update) Set uk+1 := uk + û− ũ.
Step 5 (Stopping criterion) If ‖uk+1 − uk‖L∞ ≤ ε, then return ũ and stop.

Otherwise, set k := k + 1 and go to Step 2.

Algorithm 3b (AAC-b)

Step 1 (Initialization) Choose the initial iterate u0 arbitrarily. Choose a small
parameter ε > 0, two parameters α and β in ]0, 1[, and set k = 0.

Step 2 (Projection onto A) Set u− = uk . Compute ũ = PA(u−) by using (2.9).
Step 3 (Projection onto B) Set u− = 2βũ − uk . Compute û = PB(u−) by

using (2.22).
Step 4 (Update) Set uk+1 := uk + 2αβ(̂u− ũ).
Step 5 (Stopping criterion) If ‖uk+1 − uk‖L∞ ≤ ε, then return ũ and stop.

Otherwise, set k := k + 1 and go to Step 2.
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Chapter 3
Numerical Explorations of Feasibility
Algorithms for Finding Points in the
Intersection of Finite Sets

Heinz H. Bauschke, Sylvain Gretchko, and Walaa M. Moursi

Dedicated to the memory of Jonathan Borwein

Abstract Projection methods are popular algorithms for iteratively solving feasi-
bility problems in Euclidean or even Hilbert spaces. They employ (selections of)
nearest point mappings to generate sequences that are designed to approximate a
point in the intersection of a collection of constraint sets. Theoretical properties
of projection methods are fairly well understood when the underlying constraint
sets are convex; however, convergence results for the nonconvex case are more
complicated and typically only local. In this paper, we explore the perhaps simplest
instance of a feasibility algorithm, namely when each constraint set consists of only
finitely many points. We numerically investigate four constellations: either few or
many constraint sets, with either few or many points. Each constellation is tackled
by four popular projection methods each of which features a tuning parameter. We
examine the behaviour for a single and for a multitude of orbits, and we also consider
local and global behaviour. Our findings demonstrate the importance of the choice
of the algorithm and that of the tuning parameter.
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3.1 Introduction

Background Let X be a Euclidean space (i.e., a finite-dimensional Hilbert space),
with inner product 〈·, ·〉 and norm ‖·‖. The feasibility problem is a common problem
in science and engineering: given finitely many closed subsets C1, . . . , Cm of X, it
asks to

Find x ∈ C := C1 ∩ · · · ∩ Cm. (FP)

We henceforth assume that the intersection C is nonempty. Algorithms for solving
(3.1) exist when the constraint sets Ci allow for simple projectors PCi

(i.e., nearest-
point mappings). When Ci is convex, then the projector PCi

is a nice (firmly
nonexpansive and single-valued) operator defined on the entire space X; when Ci is
not convex, then PCi

is nonempty and set-valued. For notational simplicity, we will
use PCi

to denote an arbitrary but fixed selection of the set-valued projector. (If S is
a subset of X, then PS(x) is a minimizer of the function s �→ ‖x− s‖, where s ∈ S.
For other notions not explicitly defined in this paper, we refer the reader to [1].)

Assuming that the operators PC1 , . . . , PCm are readily available and imple-
mentable, one may try to solve (3.1) iteratively by generating a sequence (xk)k∈N
of vectors in X that employs the projection operators PCi

in some fashion to
produce the next update. There are hundreds of papers dealing with algorithms for
solving convex or nonconvex feasibility problems. Thus, we refrain from providing
a comprehensive list of references and rather point to the following recent books
and “meta” papers as starting points: [1, 2, 4, 10, 12–15]. (We note that the recent
manuscript [5] deals with a feasibility problem where one set is a doubleton.) The
convergence theory in the nonconvex case is much more challenging and usually of
local character.

Goal of This Paper The goal of this paper is to showcase the surprising numerical
complexity of the most simple instance of (3.1); namely, when each constraint set

Ci contains a finite number of points.

In this case, the projection operator is very easy to implement—this is achieved
by simply measuring the distance of the point to each point in Ci and returning
the closest one. Furthermore, we will restrict ourselves to the simple case when the
underlying space

X = R
2
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is simply the Euclidean plane. Even in this setting, the difficulty and richness of
the dynamic behaviour is impressively illustrated.

It is our hope that the complexity revealed will spark further analytical research
in feasibility algorithms with the goal to explain the observed complexity and
ultimately to aid in the design of new algorithms for solving difficult feasibility
problems.

Organization of the Paper The remainder of the paper is organized as follows.
In Section 3.2, we present the four constellations we will use for our numerical
exploration throughout the remainder of the paper. These constellations correspond
to feasibility problems that we will attempt to solve using the algorithms listed
in Section 3.3. Section 3.4 provides details on the implementation and execution
of the numerical experiments. The “best” tuning parameter λbest is determined in
Section 3.5. We then track typical orbits of the algorithms in Section 3.6. Local
and global behaviour is investigated in Section 3.7. Some interesting (and beautiful)
behaviour outside of the main numerical experiments are collected in Section 3.8.
The final Section 3.9 contains some concluding remarks.

3.2 The Four Constellations

Even though we restrict ourselves already to finitely many constraint sets with
finitely many points in the Euclidean plane, the infinitely many possibilities to
experiment make it a daunting task to explore this space. We opted to probe this
universe as follows.

The points in each constraint set Ci are chosen randomly. We will ensure that the
origin belongs to each set Ci

0 ∈ Ci ⊂ [−10, 10] × [−10, 10]

to have a consistent feasibly problem with

C = C1 ∩ · · · ∩ Cm = {0}.

We will focus on two alternatives for the number of constraint sets, either “few”
or “many”. We will also consider constraint sets with a maximum number of points
in the constraint sets, either “few” or “many”. From now on, we will use the
following language:
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• The number of few sets is 3.
• The number of many sets is 10.
• The number of few points is 20.
• The number of many points is 100.

This will give rise to four constellations: few sets with few points, few sets with
many points, many sets with few points, and many sets with many points. The four
constellations used in our numerical experiments are shown in Figure 3.1.

Fig. 3.1 The four constellations explored in this paper. See Section 3.2 for further information .
(a) Few sets with few points. (b) Few sets with many points. (c) Many sets with few points. (d)
Many sets with many points
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3.3 The Four Feasibility Algorithms

We will numerically solve instances of (3.1) using four algorithms which we briefly
review in this section. While there is a myriad of competing algorithms available,
our selection consists of trustworthy “work horses” that have been employed
elsewhere and for which the convergence theory in the convex case is fairly well
understood. Each of these algorithms has a “tuning” parameter λ in the range ]0, 2[.
The default value λdflt is 1. Guided by experiments, we will also (numerically) look
for the “best” value λbest. We now turn to these four algorithms. Each algorithm will
have a governing sequence driving the iteration, and a (possibly different) monitored
sequence which is meant to find a solution of (3.1).

Cyclic Projections (CycP) Given x0 ∈ X, the governing sequence is defined by

xk+1 :=
(
(1− λ)Id+ λPCm

) ◦ · · · ◦ ((1− λ)Id+ λPC1

)
xk. (3.1)

The default parameter is λdflt = 1, from the range ]0, 2[. The sequence monitored
is
( 1
m

∑m
i=1 PCi

xk
)
k∈N. Selected references: [1, 2, 4, 10, 11, 13, 15].

Extrapolated Parallel Projections (ExParP) Given x0 ∈ X, the governing and
monitored sequence is defined by

xk+1 := xk + λ ·
∑m

i=1 ‖xk − PCi
xk‖2

‖∑m
i=1(xk − PCi

xk)‖2

m∑
i=1

(PCi
xk − xk) (3.2)

if xk /∈ C; xk+1 = xk otherwise. The default parameter is λdflt = 1, from the
range ]0, 2[. Selected references: [2, 3, 14].

Douglas–Rachford (DR) Given x0 ∈ X, x0 := (x0,1, . . . , x0,m) = (x0, . . . , x0) ∈
X := Xm, xk = (xk,1, . . . , xk,m) ∈ X, and x̄k := 1

m

∑m
i=1 xk,i , the next iterate is

xk+1 = (xk+1,1, . . . , xk+1,m), where

(∀i ∈ {1, . . . , m}) xk+1,i := xk,i + λ
(
PCi

(2x̄k − xk,i)− x̄k
)
. (3.3)

The default parameter is λdflt = 1, from the range ]0, 2[. The sequence monitored
is (x̄k)k∈N. Selected references: [2, 6, 17–19].

Cyclic Douglas–Rachford (CycDR) Given x0 ∈ X, the governing sequence is
defined by
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xk+1 :=
(
(1− λ

2 )PCm + λ
4

(
Id+ RC1RCm

)) ◦ · · · ◦(
(1− λ

2 )PC2 + λ
4

(
Id+ RC3RC2

)) ◦ ((1− λ
2 )PC1 + λ

4

(
Id+ RC2RC1

))
xk.

(3.4)

The default parameter is λdflt = 1, from the range ]0, 2[. The sequence monitored
is
( 1
m

∑m
i=1 PCi

xk
)
k∈N. Selected references: [16, 20, 21]. (For other cyclic version of

DR, see [7, 9]. Also, if m = 2 and C1 = C2 = {0}, then (xk)k∈N = ((λ/2)kx0)k∈N
is actually unbounded when x0 �= 0 and λ > 2.)

3.4 Setting Up the Numerical Explorations

Stopping Criteria The feasibility measure

d : X→ R+ : x �→
√ ∑m

i=1‖x − PCi
x‖2∑m

i=1‖x0 − PCi
x0‖2

,

where x0 ∈ X � C, vanishes exactly when x ∈ C. We stop each algorithm with
monitored sequence (yk)k∈N either when

d(yk) < ε := 10−6

or when the maximum number of iterations, which we set to 1000, is reached. These
values were chosen to allow a reasonable exploration of the feasibility problem
while maintaining computational efficiency.

Details on Program A program was developed in C++ to run the different
experiments, see Figure 3.2 for two screenshots which we describe next. In the
main tab of the user interface one can select the algorithm to be used and set up
the problem to be solved by choosing the number of sets and the maximum number
of elements per set. By clicking on the diagram showing the current constellation
of points, the user can select a starting point and immediately observe the resulting
orbit being rendered over the constellation. The graph of the feasibility measure d,
corresponding to the current orbit, is also displayed.

The Cartographer tab allows the exploration of a very large number of starting
points to construct a picture of the performance of a given algorithm. This two-
dimensional plot shows for each starting point the number of iterations required to
solve the problem, ranging from zero (black) to the maximum number of iterations
allowed (white). The plot is generated progressively and uses Quasi-Monte Carlo
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sampling for the selection of the starting points. This is the most computationally
intensive part of the software, and it is fully multi-threaded to take advantage of
modern processor architectures.

Fig. 3.2 The software developed for this work. Setting the constellation of points and the
algorithm to be used is done in the main tab, shown in (a). The generation of a performance plot is
done in the cartographer tab, shown in (b)
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3.5 Determining the “best” Parameter λbest

In this section, we consider our four constellations (see Section 3.2) and run on
each of them the four algorithms (see Section 3.3) with the parameter λ ranging
over ]0, 2[. The curves shown in Figures 3.3, 3.4, 3.5, and 3.6 give an estimate of
the success rate of each algorithm, evaluated for 200 evenly-spaced values of λ.
For each value of λ, 5000 starting points are drawn from [−10, 10] × [−10, 10]
using Quasi-Monte Carlo sampling, and the success rate is estimated by dividing
the number of times the algorithm is successful by this number of starting points.
Thus, a “best” parameter λbest is determined. It is this parameter that we will use to
compare with the default parameter λdflt, which is 1 in all cases.

Fig. 3.3 Success rates in terms of λ for the few sets with few points constellation. (a) CycP. (b)
ExParP. (c) DR. (d) CycDR

Fig. 3.4 Success rates in terms of λ for the few sets with many points constellation. (a) CycP. (b)
ExParP. (c) DR. (d) CycDR

Fig. 3.5 Success rates in terms of λ for the many sets with few points constellation. (a) CycP. (b)
ExParP. (c) DR. (d) CycDR
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Fig. 3.6 Success rates in terms of λ for the many sets with many points constellation. (a) CycP.
(b) ExParP. (c) DR. (d) CycDR

Fig. 3.7 Best parameters λbest chosen by inspecting the success rates curves

Discussion For each of the four constellations considered above, we visually
inspected the λ-curves indicating success rates. We then picked for each algorithm
a parameter called λbest which improved performance over the default parameter
λdflt = 1. The results are recorded in the table in Figure 3.7.

We will use the parameters λbest for the experiments in subsequent sections.

3.6 Tracking Orbits

In this section, we consider our four given constellations (see Section 3.2). For each
constellation, which is organized in a separate subsection, the same starting point is
used. We then consider each of our four fixed algorithms (see Section 3.3) and show
orbits for λdflt = 1 and for λbest (see Section 3.5), and the corresponding feasibility
measure d (see Section 3.4).
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3.6.1 Few Sets with Few Points

Fig. 3.8 Orbits and errors for CycP, ExParP, DR, and CycDR in the few sets with few points
constellation. (a) λdflt orbit. (b) λdflt error. (c) λbest orbit. (d) λbest error. (e) λdflt orbit. (d) λdflt
error. (g) λbest orbit. (h) λbest error. (i) λdflt orbit. (j) λdflt error. (k) λbest orbit. (l) λbest error. (m)
λdflt orbit. (n) λdflt error. (o) λbest orbit. (p) λbest error
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3.6.2 Few Sets with Many Points

Fig. 3.9 Orbits and errors for CycP, ExParP, DR, and CycDR in the few sets with many points
constellation. (a) λdflt orbit. (b) λdflt error. (c) λbest orbit. (d) λbest error. (e) λdflt orbit. (f) λdflt
error. (g) λbest orbit. (h) λbest error. (i) λdflt orbit. (j) λdflt error. (k) λbest orbit. (l) λbest error. (m)
λdflt orbit. (n) λdflt error. (o) λbest orbit. (p) λbest error



80 H. H. Bauschke et al.

3.6.3 Many Sets with Few Points

Fig. 3.10 Orbits and errors for CycP, ExParP, DR, and CycDR in the many sets with few points
constellation. (a) λdflt orbit. (b) λdflt error. (c) λbest orbit. (d) λbest error. (e) λdflt orbit. (f) λdflt
error. (g) λbest orbit. (h) λbest error. (i) λdflt orbit. (j) λdflt error. (k) λbest orbit. (l) λbest error. (m)
λdflt orbit. (n) λdflt error. (o) λbest orbit. (p) λbest error
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3.6.4 Many Sets with Many Points

M

Fig. 3.11 Orbits and errors for CycP, ExParP, DR, and CycDR in the many sets with many points
constellation. (a) λdflt orbit. (b) λdflt error. (c) λbest orbit. (d) λbest error. (e) λdflt orbit. (f) λdflt
error. (g) λbest orbit. (h) λbest error. (i) λdflt orbit. (j) λdflt error. (k) λbest orbit. (l) λbest error. (m)
λdflt orbit. (n) λdflt error. (o) λbest orbit. (p) λbest error
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3.6.5 Discussion

The numerical results in this subsection suggest the following: The most challenging
constellation is the one with few sets and many points. The least challenging
constellation is the one with many sets and few points for which all algorithms
are successful.

The worst algorithm is CycP. ExParP with λbest solves all four constellations. DR
solves all constellations but λ has to be chosen appropriately. CycDR works well
with λdflt in terms of number of iterations required; however, it was not able to solve
the constellation with few sets and many points.

The experiments in this section suggest that (i) ExParP, DR, and CycDR are
algorithms worthwhile exploring and that (ii) experimenting with λ may lead to
improved convergence.

Because the results in this section feature a fixed starting point, we will explore
in the next section the four constellations for a multitude of starting points.

3.7 Local and Global Behaviour

In this section, we continue to consider our four constellations (see Section 3.2)
which our four algorithms attempt to solve (see Section 3.3).

In contrast to Section 3.6 where we tracked a single orbit, we here illustrate local
and global behaviour of the algorithms for a multitude of starting points, sampled
from [−10, 10] × [−10, 10] and [−100, 100] × [−100, 100], respectively. We do
this for λdflt = 1 and for λbest (see the table in Figure 3.7 in Section 3.5);

For each starting point in the given range, these plots display as gray levels
the number of iterations the algorithm needed in its attempt to solve the problem
represented by the given constellation. Black corresponds to the minimum number
of iterations (zero), and white to the maximum number of iterations (1000). The
latter is obtained when the algorithm is unsuccessful. Therefore, the darker the
image, the better the performance.

To quantitatively assess the performance of each algorithm, success rates are
also provided. These are obtained by dividing the number of times the algorithm is
successful by the number of starting points used.

Each of these images was generated using at least 15 million starting points.
Depending on the constellation, the time required to generate these pictures ranged
between a few minutes to about 3 hours using a quad-core computer.
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3.7.1 Few Sets with Few Points

Fig. 3.12 Behaviour of CycP, ExParP, DR, and CycDR for the few sets with few points
constellation (success rates indicated in parentheses). (a) λdflt local (57%). (b) λdflt global (57%). (c)
λbest local (95%). (d) λbest global (98%). (e) λdflt local (68%). (f) λdflt global (52%). (g) λbest local (100%). (h)
λbest global (100%). (i) λdflt local (96%). (j) λdflt global (94%). (k) λbest local (100%). (l) λbest global (100%). (m)
λdflt local (93%). (n) λdflt global (91%). (o) λbest local (100%). (p) λbest global (100%)
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3.7.2 Few Sets with Many Points

Fig. 3.13 Behaviour of CycP, ExParP, DR, and CycDR for the few sets with many points
constellation (success rates indicated in parentheses). (a) λdflt local (6.8%). (b) λdflt global (0.1%). (c)
λbest local (11%). (d) λbest global (12%). (e) λdflt local (10%). (f) λdflt global (0.9%). (g) λbest local (99%). (h)
λbest global (99%). (i) λdflt local (15%). (j) λdflt global (0.2%). (k) λbest local (80%). (l) λbest global (81%). (m)
λdflt local (17%). (n) λdflt global (0.2%). (o) λbest local (18%). (p) λbest global (4.9%)
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3.7.3 Many Sets with Few Points

Fig. 3.14 Behaviour of CycP, ExParP, DR, and CycDR for the many sets with few points
constellation (success rates indicated in parentheses). (a) λdflt local (100%). (b) λdflt global (100%). (c)
λbest local (100%). (d) λbest global (100%). (e) λdflt local (100%). (f) λdflt global (100%). (g) λbest local (100%). (h)
λbest global (100%). (i) λdflt local (100%). (j) λdflt global (100%). (k) λbest local (100%). (l) λbest global (100%).
(m) λdflt local (100%). (n) λdflt global (100%). (o) λbest local (100%). (p) λbest global (100%)
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3.7.4 Many Sets with Many Points

Fig. 3.15 Behaviour of CycP, ExParP, DR, and CycDR for the many sets with many points
constellation (success rates indicated in parentheses). (a) λdflt local (24%). (b) λdflt global (2.2%). (c)
λbest local (38%). (d) λbest global (47%). (e) λdflt local (100%). (f) λdflt global (100%). (g) λbest local (100%). (h)
λbest global (100%). (i) λdflt local (53%). (j) λdflt global (40%). (k) λbest local (56%). (l) λbest global (57%). (m)
λdflt local (83%). (n) λdflt global (66%). (o) λbest local (84%). (p) λbest global (82%)
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3.7.5 Discussion

Comparing the success rates reported in the figures above, it appears that ExParP,
DR, and CycDR are good choices; we recommend that CycP be not used. The effect
of the tuning parameter λ is very striking for most algorithms when comparing
performance of λdflt with λbest.

3.8 Divertissements

We experimented also with other constellations and encountered some interesting
behaviour of ExParP. This algorithm seems to exhibit fractal-like behaviour for
some constellations—whether they are created randomly or not. In the following,
we present three images that we found particularly delightful in Figures 3.16
and 3.17.

3.9 Concluding Remarks

We encountered a somewhat surprising complexity in the behaviour of four algo-
rithms for solving feasibility problems in a simple nonconvex case. The importance
of the tuning parameter λ is apparent as is the proximity to solutions (local vs global
behaviour). Further studies are needed to find effective guidelines for users in terms
of choice of algorithms and the choice of the parameter λ. Finally, and similarly to
[8], we encountered beauty in our numerical explorations. It is our hope that others
will join us and explore theoretically and numerically this fascinating universe of
constellations.
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Fig. 3.16 Shown in (a) is the
performance of ExParP on a
constellation consisting of 3
sets with 20 points each, with
λ = 0.998, within the region
[−10, 10] × [−10, 10]. A
close-up of the centre-left
region of (a) is presented
in (b)
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Fig. 3.17 ExParP for a constellation with λ = 0.995, consisting of 2 subsets of concentric circles
centred at the origin, with radii 4 and 8, containing 8 and 16 equispaced points, respectively
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Chapter 4
Variable Metric ADMM for Solving
Variational Inequalities with Monotone
Operators over Affine Sets

Radu Ioan Boţ, Ernö Robert Csetnek, and Dennis Meier

Abstract We propose an iterative scheme for solving variational inequalities with
monotone operators over affine sets in an infinite dimensional Hilbert space setting.
We show that several primal-dual algorithms in the literature as well as the classical
ADMM algorithm for convex optimization problems, together with some of its vari-
ants, are encompassed by the proposed numerical scheme. Furthermore, we carry
out a convergence analysis of the generated iterates and provide convergence rates
by using suitable dynamical step sizes together with variable metric techniques.

Keywords ADMM algorithm · Primal-dual algorithm · Monotone operators ·
Convex optimization

AMS 2010 Subject Classification 47H05, 65K05, 90C25

4.1 Introduction

Many problems in fields like signal and image processing, portfolio optimization,
cluster analysis, location theory, network communication and machine learning as
well as inverse problems can be formulated as a convex optimization problem of the
form

inf
x∈H,z∈G

{f (x)+ h(x)+ g(z)}, (4.1)

s.t. L1x + L2z = d

where H,G and Z are real Hilbert spaces, f : H → R := R ∪ {±∞} and g :
G → R are proper, convex and lower semicontinuous functions, h : H → R is
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a convex and Fréchet differentiable function with Lipschitz continuous gradient,
L1 : H→ Z, L2 : G→ Z are linear continuous operators and d ∈ Z.

One of the most prominent numerical algorithms one can find in the literature for
solving optimization problems of the form (4.1) is the alternating direction method
of multipliers (ADMM). In the case h = 0, which represents the standard setting
in the literature addressing ADMM methods, the augmented Lagrangian associated
with problem (4.1) is given for a fixed real number c > 0 as

Lc : H × G× Z→ R,

Lc(x, z, y) = f (x)+ g(z)+ 〈y, L1x + L2z− d〉 + c

2
‖L1x + L2z− d‖2.

The ADMM algorithm generates a sequence (xk, zk, yk)k≥0 ∈ H × G × Z by
iterating for every k ≥ 0

xk+1 ∈ arg min
x∈H

Lc(x, z
k, yk) = arg min

x∈H

{
f (x)+ c

2
‖L1x + L2z

k − d + c−1yk‖2
}

zk+1 ∈ arg min
z∈G

Lc(x
k+1, z, yk) = arg min

x∈G

{
g(z)+ c

2
‖L1x

k+1 + L2z− d + c−1yk‖2
}

yk+1 = yk + c(L1x
k+1 + L2z

k+1 − d).

Since the function f and the operator L1 are not evaluated independently in
the first line of the algorithm, the minimization with respect to the variable x

does not lead to a proximal step (the same is true for the second minimization).
This results in less attractiveness for implementations than for primal-dual splitting
algorithms, which represent the second class of prominent iterative methods for
solving (4.1). This drawback has been overcome in the literature by introducing
a suitable regularizer equipped with a (semi-)metric, see, for example, [10] for a
finite dimensional approach (in case G = Z, L2 = − Id and d = 0 see also [15],
and also [1] for an extension of the ADMM algorithm by involving also smooth
parts in the objective, by employing variable metrics and by working in an infinite
dimensional Hilbert setting). This so-called alternating direction proximal method
of multipliers (AD-PMM) reveals a bridge which connects the classical ADMM
algorithm with primal-dual methods. This observation served as the starting point
for the investigations made in [4], where a generalization of the AD-PMM algorithm
to monotone inclusions was proposed and investigated from the point of view of its
convergence properties.

In this paper we propose an iterative algorithm for solving variational inequalities
with monotone operators of the type

find (x, z) ∈ H × G such that 0 ∈ (Ax + Cx)× Bz+NS(x, z),

where A : H ⇒ H and B : G ⇒ G are maximally monotone operators,
C : H → H is an η-cocoercive operator, for η ≥ 0, S := {(x, z) ∈ H × G :
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L1x + L2z = d}, and NS denotes the normal cone operator to the set S. This
delivers a unifying framework for solving monotone inclusions in Hilbert spaces
which encompasses in particular the ADMM algorithm in [4], several primal-dual
iterative methods [5, 7, 9, 16] as well as the classical ADMM algorithm designed
to solve problems of type (4.1) (and its variants from [10, 15], see also [6, 11, 12]).
After giving the necessary preliminaries, we formulate the ADMM iterative scheme
for variational inequalities and carry out a convergence analysis. Furthermore, under
additional strong monotonicity assumptions, we derive convergence rates for the
primal iterates by using a dynamic step size strategy combined with variable metric
techniques.

4.2 Notation and Preliminaries

Throughout, H, G and Z denote real Hilbert spaces with scalar products 〈·, ·〉 and
associated norms ‖ · ‖ (since there is no risk of confusion, they are denoted in the
same way). Let M : H ⇒ H be an arbitrary set-valued operator. We denote by
graM := {(x, u) ∈ H ×H : u ∈ Mx} its graph, by domM := {x ∈ H : Mx �= ∅}
its domain and by M−1 : H ⇒ H its inverse operator, defined by (u, x) ∈ graM−1

if and only if (x, u) ∈ graM . M is said to be monotone, if 〈x−y, u− v〉 ≥ 0 for all
(x, u), (y, v) ∈ graM . A monotone operator M is said to be maximally monotone,
if there exists no proper monotone extension of the graph of M on H ×H. For an
arbitrary γ > 0, the operator M is called γ -strongly monotone, if 〈x − y, u− v〉 ≥
γ ‖x − y‖2 for all (x, u), (y, v) ∈ graM .

The resolvent of M is the mapping JM : H ⇒ H, defined by JA := (Id+M)−1.
If M is maximally monotone, then JM : H → H is single-valued and maximally
monotone (see [2, Proposition 23.7 and Corollary 23.10]). Furthermore, for an
arbitrary γ > 0 we have (see [2, Proposition 23.18])

JγM + γ Jγ−1M−1 ◦ γ−1 Id = Id, (4.2)

where Id denotes the identity operator on H.
For a linear continuous operator L : H → G, its adjoint operator L∗ : G → H

is defined by 〈L∗y, x〉 = 〈y, Lx〉 for all (x, y) ∈ H × G. The norm of L is defined
by ‖L‖ := sup{‖Lx‖ : x ∈ H, ‖x‖ ≤ 1}. The linear operator L is said to be
skew, if 〈x, Lx〉 = 0 for all x ∈ H. A single-valued operator M : H → H is
said to be β-cocoercive, for β ≥ 0, if β〈x − y,Mx −My〉 ≥ ‖Mx −My‖2 for all
(x, y) ∈ H×H. Moreover, M is β-Lipschitz continuous, if ‖Mx−My‖ ≤ β‖x−y‖
for all (x, y) ∈ H ×H.

We write

S+(H) := {L : H→ H : L is linear, bounded, positive semidefinite and L = L∗}.
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The Loewner partial ordering on S+(H) is defined by

(∀U ∈ S+(H))(∀V ∈ S+(H)) U � V :⇔ (∀x ∈ H) 〈x,Ux〉 ≥ 〈x, V x〉.

Further, for every U ∈ S+(H), we define a semi-scalar product and a semi-
norm by

(∀x ∈ H)(∀y ∈ H) 〈x, y〉U := 〈x,Uy〉 and ‖x‖U :=
√〈x,Ux〉,

respectively. For α > 0 we set

Pα(H) := {U ∈ S+(H) | U � α Id}.

Since we will also address convex optimization problems, we recall some elements
of convex analysis. For a function f : H → R we denote by dom f := {x ∈
H : f (x) < +∞} its effective domain and say that f is proper, if dom f �= ∅
and f (x) �= −∞ for all x ∈ H. The (convex) conjugate function f ∗ : H → R

of f is defined by f ∗(u) := supx∈H{〈u, x〉 − f (x)} for all u ∈ H. The (convex)
subdifferential ∂f : H ⇒ H of f is given by

∂f (x) := {p ∈ H : f (y)− f (x) ≥ 〈p, y − x〉 ∀y ∈ H},

for x ∈ H with f (x) ∈ R and ∂f (x) = ∅, otherwise. In case f is a proper,
convex and lower semi-continuous function, ∂f : H ⇒ H is a maximally monotone
operator [14].

For f, g : H→ R two proper functions, the infimal convolution f�g : H→ R

is defined by (f�g)(x) = infu∈H{f (u)+ g(x − u)} for all x ∈ H.
For a proper, convex and lower semi-continuous function f : H→ R and γ > 0,

for every x ∈ H we denote by proxγf (x) the proximal point of parameter γ of f at
x, which is defined by

proxγf (x) := argminy∈H
{
f (y)+ 1

2γ
‖y − x‖2

}
.

Since Jγ ∂f = (Id+γ ∂f )−1 = proxγf , this gives a single-valued operator proxγf :
H→ H fulfilling the extended Moreau’s decomposition formula

proxγf +γ proxγ−1f ∗ ◦γ−1 Id = Id .

Last, for a nonempty convex subset S of H and for x ∈ H, the normal cone to S at
x is

NS(x) =
{ {u ∈ H | sup〈s − x, u〉 ≤ 0 ∀s ∈ S}, if x ∈ S

∅, if x �∈ S
.
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4.3 A Variable Metric ADMM for Monotone Operators

In this section we present the variational inequality problem to solve, formulate the
iterative numerical scheme and prove convergence for the sequence of generated
iterates.

4.3.1 Problem Formulation and Algorithm

We start by describing the problem under investigation.

Problem 4.1 Let H, G and Z be real Hilbert spaces, A : H ⇒ H and B : G ⇒ G

be maximally monotone operators and C : H → H an η-cocoercive operator, for
η ≥ 0. Further, let L1 : H→ Z and L2 : G→ Z be linear continuous operators and
S := {(x, z) ∈ H× G : L1x +L2z = d}. To solve is the variational inequality with
monotone operators over the set S

find (x, z) ∈ H × G such that 0 ∈ (Ax + Cx)× Bz+NS(x, z), (4.3)

which can be reformulated as

find (x, z) ∈ S such that ∃(p, q) ∈ −(Ax + Cx)× (−Bz) with the property

〈(p, q), (u, v)− (x, z)〉 ≤ 0 ∀(u, v) ∈ S.

We will propose an algorithm for determining the KKT points associated to the
variational inequality (4.3), namely, those (x, z, y) ∈ H × G× Z which fulfill

−L∗1y ∈ Ax + Cx, − L∗2y ∈ Bz and L1x + L2z = d. (4.4)

Remark 4.1 If (x, z, y) ∈ H × G× Z is a KKT point of (4.3), then, obviously,

(−L∗1y,−L∗2y) ∈ (Ax + Cx)× Bz+NS(x, z),

which means that (x, z) is a solution of (4.3).
On the other hand, if (x, z) ∈ H × G is a solution of (4.3), then there exists

(p, q) ∈ −(Ax + Cx)× (−Bz) such that

L1x + L2z = d and (x, z) ∈ arg min
(u,v)∈S

〈(−p,−q), (u, v)〉.

Using duality theory, we obtain under suitable constraint qualifications the existence
of y ∈ Z such that
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〈(−p,−q), (x, z)〉 = inf
(u,v)∈H×G

{〈(−p,−q), (u, v)〉 + 〈y, L1u+ L2v − d〉}

= inf
u∈H

〈u,−p + L∗1y〉 + inf
v∈G
〈z,−q + L∗2y〉 − 〈y, d〉.

Since the term on the left-hand side is finite, this holds only when p = L∗1y and
q = L∗2y. In other words, (x, z, y) is a KKT point of (4.3).

Next, we relate Problem 4.1 to a particular convex optimization problem with
affine constraints.

Problem 4.2 Let H, G and Z real Hilbert spaces, f : H → R, g : G → R be
proper, convex and lower semicontinuous functions, h : H → R a convex and
Fréchet differentiable function with η-Lipschitz continuous gradient, for η ≥ 0,
L1 : H→ Z, L2 : G→ Z linear continuous operators and d ∈ Z. We consider the
convex optimization problem

inf
x∈H,z∈G

{f (x)+ h(x)+ g(z)}. (4.5)

s.t. L1x + L2z = d

The system of KKT optimality conditions associated to this optimization problem
is given by

−L∗1y ∈ ∂f (x)+ ∇h(x), − L∗2y ∈ ∂g(z) and L1x + L2z = d. (4.6)

If (x, z, y) is a solution of (4.6), then (x, z) is an optimal solution of (4.5) and y is
an optimal solution of its dual problem

sup
y∈G

{−(f ∗�h∗)(−L∗1y)− g∗(−L∗2y)− 〈d, y〉
}
, (4.7)

The system of KKT optimality conditions (4.6) is for

A := ∂f, B := ∂g, C := ∇h (4.8)

nothing else than (4.4). Notice that ∂f and ∂g are maximally monotone operators,
while, by the Baillon-Haddad Theorem (see [2, Corollary 18.16]), the gradient of h
is η-cocoercive.

Remark 4.2 Consider the optimization problem

inf
y∈Z
{f (L1y)+ g(L2y)}, (4.9)

where f : H → R and g : G → R are proper, convex and lower semicontinuous
functions, and L1 : Z → H and L2 : Z → G are linear continuous operators. The
associated dual problem can be written as
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inf
(p,q)∈H×G

{f ∗(p)+ g∗(q)}, (4.10)

s.t. L∗1p + L∗2q = 0

while (4.9) is on its turn the dual problem of (4.10). Finding a solution (p, q, y) of
the system of KKT optimality conditions associated to (4.10)

−L1y ∈ ∂f ∗(p), − L2y ∈ ∂g∗(y) and L∗1p + L∗2q = 0

provides an optimal solution y of the problem (4.9) and an optimal solution (p, q)

of the problem (4.10).

We propose the following iterative scheme for determining the KKT points of
the variational inequality (4.3).

Algorithm 4.11 Let Mk
1 ∈ S+(H), Mk

2 ∈ S+(G) and c > 0 be such that cL∗1L1+Mk
1 ∈ Pαk (H)

and cL∗2L2 +Mk
2 ∈ Pβk (G), with αk, βk > 0, for all k ≥ 0. Choose (x0, z0, y0) ∈ H×G×Z. For

all k ≥ 0 generate the sequence (xk, zk, yk)k≥0 as follows:

xk+1 := (cL∗1L1 +Mk
1 + A)−1

[
cL∗1(−L2z

k + d − c−1yk)+Mk
1x

k − Cxk
]

(4.11a)

zk+1 := (cL∗2L2 +Mk
2 + B)−1

[
cL∗2(−L1x

k+1 + d − c−1yk)+Mk
2 z

k
]

(4.11b)

yk+1 := yk + c(L1x
k+1 + L2z

k+1 − d). (4.11c)

Remark 4.3 For the choice G := Z, L2 := − Id and d := 0, the variational
inequality to solve simplifies to the following monotone inclusion problem

find x ∈ H such that 0 ∈ Ax + Cx + (L∗1 ◦ B ◦ L1)(x),

while Algorithm 4.11 becomes the iterative scheme proposed in [4] for solving it.
We show in the following that the numerical scheme above encompasses several

other algorithms from the literature. For all k ≥ 0, the equations (4.11a) and (4.11b)
are equivalent to

−cL∗1(L1x
k+1 + L2z

k − d + c−1yk)+Mk
1 (x

k − xk+1)− Cxk ∈ Axk+1,

(4.12)

and, respectively,

−cL∗2(L1x
k+1 + L2z

k+1 − d + c−1yk)+Mk
2 (z

k − zk+1) ∈ Bzk+1. (4.13)
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In the variational setting of Problem 4.2, i.e. considering the particular choice (4.8),
the inclusion (4.12) becomes

0 ∈ ∂f (xk+1)+ cL∗1(L1x
k+1 + L2z

k − d + c−1yk)+Mk
1 (x

k+1 − xk)+∇h(xk),

which is equivalent to

xk+1 = arg min
x∈H

{
f (x)+ 〈x − xk,∇h(xk)〉 + c

2
‖L1x + L2z

k − d + c−1yk‖2

+ 1

2
‖x − xk‖2

Mk
1

}
.

On the other hand, (4.13) becomes

−cL∗2(L1x
k+1 + L2z

k+1 − d + c−1yk)+Mk
2 (z

k − zk+1) ∈ ∂g(zk+1),

which is equivalent to

zk+1 = arg min
x∈G

{
g(z)+ c

2
‖L1x

k+1 + L2z− d + c−1yk‖2 + 1

2
‖z− zk‖2

Mk
2

}
.

In conclusion, the iterative scheme (4.11a)–(4.11c) applied to the variational setting
of Problem 4.2 reads

xk+1 = arg min
x∈H

{
f (x)+ 〈x − xk,∇h(xk)〉 + c

2
‖L1x + L2z

k − d + c−1yk‖2

+ 1

2
‖x − xk‖2

Mk
1

}
(4.14)

zk+1 = arg min
x∈G

{
g(z)+ c

2
‖L1x

k+1 + L2z− d + c−1yk‖2 + 1

2
‖z− zk‖2

Mk
2

}
(4.15)

yk+1 = yk + c(L1x
k+1 + L2z

k+1 − d). (4.16)

The situation when h = 0 and the sequences (Mk
1 )k≥0, (M

k
2 )k≥0 are constant

has been considered, for example, in [10]. The case G = Z, L2 = − Id and
d = 0 delivers the algorithm formulated and investigated by Banert, Boţ and
Csetnek in [1]. The latter is a generalization of the iterative scheme proposed by
Shefi and Teboulle [15], which addresses the case when h = 0 and the sequences
(Mk

1 )k≥0, (M
k
2 )k≥0 are constant in the setting of finite dimensional Hilbert spaces.

Finally, when h = 0 and Mk
1 = Mk

2 = 0 for all k ≥ 0, the iterative scheme
(4.14)–(4.16) collapses into the classical version of the ADMM algorithm (see, for
example, [11, 12]).



4 Variable Metric ADMM for Solving Variational Inequalities with Monotone. . . 99

We refer the reader to [4, Remark 5], where it is shown that several primal-dual-
type algorithms from the literature [5, 7, 9, 16] can be embedded in the algorithm
designed for the situation where G = Z, L2 = − Id and d = 0 and, consequently, in
the general algorithm considered above.

4.3.2 Convergence Analysis

An important ingredient for our convergence analysis will be the following version
of the Opial Lemma (see [8, Theorem 3.3]).

Lemma 4.1 Let C be a nonempty subset of H and (xk)k≥0 be a sequence in H. Let
α > 0 and Wk ∈ Pα(H) be such that Wk � Wk+1 for all k ≥ 0. Assume that:

(i) for all z ∈ C and for all k ≥ 0: ‖xk+1 − z‖Wk+1 ≤ ‖xk − z‖Wk .
(ii) every weak sequential cluster point of (xk)k≥0 belongs to C.

Then (xk)k≥0 converges weakly to an element in C.

The following theorem is the main result of this section.

Theorem 4.1 In the context of Problem 4.1, assume that the set of KKT points of
the variational inequality with monotone operators (4.3) is nonempty and that Mk

1−
η
2 Id ∈ S+(H), Mk

1 � Mk+1
1 , Mk

2 ∈ S+(G), Mk
2 � Mk+1

2 , and Mk
2+cL∗2L2 ∈ S+(G)

for all k ≥ 0. Let (xk, zk, yk)k≥0 be the sequence generated by Algorithm 4.11.
Suppose that one of the following assumptions is fulfilled:

(I) there exist α1, β1 > 0 such that Mk
1 − η

2 Id ∈ Pα1(H) and Mk
2 + cL∗2L2 ∈

Pβ1(G) for all k ≥ 0;
(II) there exist α2, β2 > 0 such that L∗1L1 ∈ Pα2(H) and Mk

2 ∈ Pβ2(G) for all
k ≥ 0;

(III) there exist α3, β3 > 0 such that Mk
1 − η

2 Id+cL∗1L1 ∈ Pα3(H), L∗2L2 ∈
Pβ3(G) and 2Mk+1

2 � Mk
2 � Mk+1

2 for all k ≥ 0.

Then (xk, zk, yk)k≥0 converges weakly to a KKT point of the variational inequality
(4.3).

Proof Let (x∗, z∗, y∗) be a KKT point of the variational inequality with monotone
operators (4.3). Then

−L∗1y∗ − Cx∗ ∈ Ax∗, − L∗2y∗ ∈ Bz∗ and L1x
∗ + L2z

∗ = d.

Let k ≥ 0 be fixed. By (4.12), (4.13) and the monotonicity of A and B, we obtain
the inequalities
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〈−cL∗1(L1x
k+1 + L2z

k − d + c−1yk)+Mk
1 (x

k − xk+1)− Cxk + L∗1y∗

+ Cx∗, xk+1 − x∗〉 ≥ 0

and

〈−cL∗2(L1x
k+1 + L2z

k+1 − d + c−1yk)+Mk
2 (z

k − zk+1)+ L∗2y∗, zk+1 − z∗〉 ≥ 0.

Since C is η-cocoercive, we have

η〈Cx∗ − Cxk, x∗ − xk〉 ≥ ‖Cx∗ − Cxk‖2.

We consider first the case when η > 0. Summing up the three inequalities from
above we get

c〈−L1x
k+1 − L2z

k + d, L1x
k+1 − L1x

∗〉 + 〈y∗ − yk, L1x
k+1 − L1x

∗〉
+ 〈Cx∗ − Cxk, xk+1 − x∗〉 + 〈Mk

1 (x
k − xk+1), xk+1 − x∗〉

+ c〈L∗2(−L1x
k+1 − L2z

k+1 + d), zk+1 − z∗〉 + 〈−L∗2yk + L∗2y∗, zk+1 − z∗〉
+ 〈Mk

2 (z
k − zk+1), zk+1 − z∗〉 + 〈Cx∗ − Cxk, x∗ − xk〉 − η−1‖Cx∗ − Cxk‖2 ≥ 0.

By taking into account (4.11c) we also obtain

〈y∗ − yk, L1x
k+1 − L1x

∗〉 + 〈−L∗2yk + L∗2y∗, zk+1 − z∗〉
= 〈y∗ − yk, L1x

k+1 − L1x
∗〉 + 〈y∗ − yk, L2(z

k+1 − z∗)〉
= 〈y∗ − yk, L1x

k+1 + L2z
k+1 − (L1x

∗ + L2z
∗)︸ ︷︷ ︸

=d
〉

= c−1〈y∗ − yk, yk+1 − yk〉.

Hence the above inequality reads as

c〈(d − L2z
k)− L1x

k+1, L1x
k+1 − L1x

∗〉 + c−1〈y∗ − yk, yk+1 − yk〉
+ 〈Cx∗ − Cxk, xk+1 − xk〉 + 〈Mk

1 (x
k − xk+1), xk+1 − x∗〉

+ c〈(d − L1x
k+1)− L2z

k+1, L2z
k+1 − L2z

∗〉 + 〈Mk
2 (z

k − zk+1), zk+1 − z∗〉
− η−1‖Cx∗ − Cxk‖2 ≥ 0.

By expressing the inner products through norms the above inequality becomes
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c

2

(
‖(d − L2z

k)− L1x
∗‖2 − ‖(d − L2z

k)− L1x
k+1‖2 − ‖L1x

k+1 − L1x
∗‖2

)
+ c

2

(
‖(d − L1x

k+1)− L2z
∗‖2− ‖(d − L1x

k+1)− L2z
k+1‖2− ‖L2z

k+1 − L2z
∗‖2

)

+ 1

2c

(
‖y∗ − yk‖2 + ‖yk+1 − yk‖2 − ‖yk+1 − y∗‖2

)

+ 1

2

(
‖xk − x∗‖2

Mk
1
− ‖xk − xk+1‖2

Mk
1
− ‖xk+1 − x∗‖2

Mk
1

)

+ 1

2

(
‖zk − z∗‖2

Mk
2
− ‖zk − zk+1‖2

Mk
2
− ‖zk+1 − z∗‖2

Mk
2

)
+ 〈Cx∗ − Cxk, xk+1 − xk〉 − η−1‖Cx∗ − Cxk‖2 ≥ 0.

By using again that yk+1 = yk + c(L1x
k+1 + L2z

k+1 − d) and by taking into
account that

〈Cx∗ − Cxk, xk+1 − xk〉 − η−1‖Cx∗ − Cxk‖2

= −η
∥∥∥∥η−1(Cx∗ − Cxk)+ 1

2
(xk − xk+1)

∥∥∥∥
2

+ η

4
‖xk − xk+1‖2,

we obtain

1

2
‖xk+1 − x∗‖2

Mk
1
+ 1

2
‖zk+1 − z∗‖2

Mk
2
+ 1

2
‖L2z

k+1 − L2z
∗‖2

c Id +
1

2c
‖yk+1 − y∗‖2 ≤

1

2
‖xk − x∗‖2

Mk
1
+ 1

2
‖zk − z∗‖2

Mk
2
+ 1

2
‖(d − L2z

k)− L1x
∗‖2

c Id +
1

2c
‖y∗ − yk‖2

− c

2
‖(d − L2z

k)− L1x
k+1‖2 − 1

2
‖xk − xk+1‖2

Mk
1− η

2 Id
− 1

2
‖zk − zk+1‖2

Mk
2

−η
∥∥∥∥η−1(Cx∗ − Cxk)+ 1

2
(xk − xk+1)

∥∥∥∥
2

.

Since (d − L2z
k) − L1x

∗ = −L2z
k + L2z

∗ and by using the monotonicity
assumptions on (Mk

1 )k≥0 and (Mk
2 )k≥0 it yields

1

2
‖xk+1 − x∗‖2

Mk+1
1
+ 1

2
‖zk+1 − z∗‖2

Mk+1
2 +cL∗2L2

+ 1

2c
‖yk+1 − y∗‖2 ≤

1

2
‖xk − x∗‖2

Mk
1
+ 1

2
‖zk − z∗‖2

Mk
2+cL∗2L2

+ 1

2c
‖y∗ − yk‖2

− c

2
‖L1x

k+1 + L2z
k − d‖2 − 1

2
‖xk − xk+1‖2

Mk
1− η

2 Id
− 1

2
‖zk − zk+1‖2

Mk
2

−η−1
∥∥∥∥η(Cx∗ − Cxk)+ 1

2
(xk − xk+1)

∥∥∥∥
2

.

(4.17)
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In the case when η = 0, by repeating the above calculations, we obtain

1

2
‖xk+1 − x∗‖2

Mk+1
1
+ 1

2
‖zk+1 − z∗‖2

Mk+1
2 +cL∗2L2

+ 1

2c
‖yk+1 − y∗‖2 ≤

1

2
‖xk − x∗‖2

Mk
1
+ 1

2
‖zk − z∗‖2

Mk
2+cL∗2L2

+ 1

2c
‖y∗ − yk‖2

− c

2
‖L1x

k+1 + L2z
k − d‖2 − 1

2
‖xk − xk+1‖2

Mk
1
− 1

2
‖zk − zk+1‖2

Mk
2
. (4.18)

By using arguments involving telescoping sums, each of the inequalities (4.17) and
(4.18) yields

∑
k≥0

‖L1x
k+1 + L2z

k − d‖2 < +∞,
∑
k≥0

‖xk − xk+1‖2
Mk

1− η
2 Id

< +∞,

∑
k≥0

‖zk − zk+1‖2
Mk

2
< +∞. (4.19)

Assume that condition (I) holds. By neglecting the negative terms (notice that
Mk

1 − η
2 Id ∈ S+(H) for all k ≥ 0), from each of the inequalities (4.17) and

(4.18) it follows that assumption (i) the Opial Lemma holds, when applied in the
product space H× G× Z, for the sequence (xk, zk, yk)k≥0, for Wk := (Mk

1 ,M
k
2 +

cL∗2L2, c
−1 Id) for k ≥ 0, and for C ⊆ H × G × Z the set of KKT points of the

variational inequality (4.3).
Since Mk

1 − η
2 Id ∈ Pα1(H) for all k ≥ 0 with α1 > 0, we get from (4.19)

xk − xk+1 → 0 (k →+∞) (4.20)

and

L1x
k+1 + L2z

k − d → 0 (k→+∞). (4.21)

Therefore

‖zk+1 − zk‖L∗2L2 =‖L2z
k+1 − L2z

k‖
≤‖L1x

k+2 + L2z
k+1 − d‖ + ‖L1x

k+1 + L2z
k − d‖

+ ‖L1x
k+1 − L1x

k+2‖,

which means that

‖zk+1 − zk‖L∗2L2 → 0 (k→+∞).
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Using the third condition in (4.19) and the fact that Mk
2 + cL∗2L2 ∈ Pβ1(G) we

conclude

zk − zk+1 → 0 (k→+∞). (4.22)

From (4.11c) we derive

‖yk − yk+1‖ = c‖L1x
k+1 + L2z

k+1 − d‖
≤ c

(
‖L1x

k+1 + L2z
k − d‖ + ‖L2z

k+1 − L2z
k‖
)
,

hence, by (4.21) and (4.22)

yk − yk+1 → 0 (k→+∞). (4.23)

Now we are able to verify the second assumption in the Opial Lemma for C taken
as the set of KKT points of (4.3). Let (x̄, z̄, ȳ) ∈ H × G × Z be such that there
exists (kn)n≥0, kn → +∞ (as n → +∞), and (xkn, zkn, ykn) converges weakly
to (x̄, z̄, ȳ) (as n → +∞). From (4.20) and the linearity of L1 we obtain that
(L1x

kn+1 + L2z
kn)n≥0 converges weakly to L1x̄ + L2z̄ (as n → +∞), which

combined with (4.21) yields L1x̄ + L2z̄ = d. For n ≥ 0, we use now the following
notations

a∗n := cL∗1(−L1x
kn+1 − L2z

kn + d)+ L∗1(ykn+1 − ykn)

+M
kn
1 (xkn − xkn+1)+ Cxkn+1 − Cxkn

an := xkn+1

b∗n :=M
kn
2 (zkn − zkn+1)

bn := zkn+1

c∗n := − L1x
kn+1 − L2z

kn+1 + d

cn := ykn+1.

From (4.12) we have

a∗n ∈ (A+ C)an + L∗1cn (4.24)

and by combining (4.13) with (4.11c) we obtain

b∗n ∈ Bbn + L∗2cn (4.25)
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for all n ≥ 0. From (4.20), (4.22) and (4.23) we have that

(an, bn, cn) converges weakly to (x̄, z̄, ȳ) (as n→+∞). (4.26)

Moreover, by (4.20)–(4.23) and the Lipschitz continuity of C we obtain

(a∗n, b∗n, c∗n) converges strongly to (0, 0, 0) (as n→+∞). (4.27)

Next we define the maximally monotone operator

T : H × G× Z ⇒ H × G× Z, (x, z, y) �→ ((A+ C)x, Bz, 0) ,

and the linear continuous operator

K̃ : H × G× Z→ H × G× Z, (x, z, y) �→ (L∗1y, L∗2y,−L1x − L2z).

For all (x, z, y) ∈ H × G× Z we have

〈K̃(x, z, y), (x, z, y)〉 = 〈L∗1y, x〉 + 〈L∗2y, z〉 + 〈−L1x − L2z, y〉
= 〈y, L1x〉 + 〈y, L2z〉 − 〈L1x, y〉 − 〈L2z, y〉 = 0,

hence K̃ is maximally monotone and therefore the shifted operator

K : H × G× Z→ H × G× Z,K(x, y, z) := K̃(x, y, z)+ (0, 0, d),

is maximally monotone, as well. Since K has full domain we obtain that

T +K is a maximally monotone operator. (4.28)

On the other hand, from (4.24) and (4.25) we have that

(
(an, bn, cn), (a

∗
n, b

∗
n, c

∗
n)
) ∈ gra(T +K) ∀n ≥ 0. (4.29)

Since the graph of a maximally monotone operator is sequentially closed with
respect to the weak×strong topology (see [2, Proposition 20.33]), from (4.26),
(4.27), (4.28) and (4.29) we derive that

((x̄, z̄, ȳ), (0, 0, 0)) ∈ gra(T +K),

which is equivalent to

(0, 0, 0) ∈ ((A+ C)x̄ + L∗1ȳ, Bz̄+ L∗2ȳ,−L1x̄ − L2z̄+ d).
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The latter means nothing else than saying that (x̄, z̄, ȳ) is a KKT point of (4.3), thus
assumption (ii) in the Opial Lemma is verified, too. In conclusion, (xk, zk, yk)k≥0
converges weakly to a KKT point of (4.3).

Consider now the situation in assumption (II). From (4.17) and (4.18) it follows
that (4.21) and (4.22) hold. From (4.11c), (4.21) and (4.22) we obtain (4.23). Finally,
by using that L∗1L1 ∈ Pα2(H) for α2 > 0, relation (4.20) holds, too.

On the other hand, (4.17) and (4.18) yield that

∃ lim
k→+∞

(
1

2
‖xk − x∗‖2

Mk
1
+ 1

2
‖zk − z∗‖2

Mk
2+cL∗2L2

+ 1

2c
‖yk − y∗‖2

)
, (4.30)

hence (yk)k≥0 and (zk)k≥0 are bounded. Combining this with

α2‖xk − x∗‖2 ≤ ‖L1x
k − L1x

∗‖2

≤ 1

3
‖L1x

k + L2z
k − d‖2

+ 1

3
‖L1x

∗ + L2z
∗ − d‖2 + 1

3
‖L2z

∗ − L2z
k‖2,

which holds for all k ≥ 0, and using (4.11c), we derive that (xk)k≥0 is bounded, too.
Hence there exists a weakly convergent subsequence of (xk, zk, yk)k≥0. By using
the same arguments as in the second part of the proof of (I) it follows that every
weak sequential cluster point of (xk, zk, yk)k≥0 is a KKT point of (4.3).

Now we show that the set of weak sequential cluster points of (xk, zk, yk)k≥0
is a singleton. Let (x1, z1, y1), (x2, z2, y2) be two such weak sequential cluster
points. Then there exist (kp)p≥0, (kq)q≥0, kp → +∞ (as p → +∞), kq → +∞
(as q → +∞), a subsequence (xkp , zkp , ykp )p≥0 which converges weakly to
(x1, z1, y1) (as p → +∞), and a subsequence (xkq , zkq , ykq )q≥0 which converges
weakly to (x2, z2, y2) (as q → +∞). As seen above, (x1, z1, y1) and (x2, z2, y2)

are KKT points of (4.3), thus L1xi +L2zi = d for i ∈ {1, 2}. From (4.30), which is
true for every KKT point of (4.3), we derive

∃ lim
k→+∞

(
E(xk, zk, yk; x1, z1, y1)− E(xk, zk, yk; x2, z2, y2)

)
, (4.31)

where

E(xk, zk, yk; x, z, y) := 1

2
‖xk − x‖2

Mk
1
+ 1

2
‖zk − z‖2

Mk
2+cL∗2L2

+ 1

2c
‖yk − y‖2.

We have for all k ≥ 0
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1

2
‖xk − x1‖2

Mk
1
− 1

2
‖xk − x2‖2

Mk
1
= 1

2
‖x2 − x1‖2

Mk
1
+ 〈xk − x2,M

k
1 (x2 − x1)〉,

1

2
‖zk − z1‖2

Mk
2+cL∗2L2

− 1

2
‖zk − z2‖2

Mk
2+cL∗2L2

= 1

2
‖z2 − z1‖2

Mk
2+cL∗2L2

+ 〈zk − z2, (M
k
2 + cL∗2L2)(z2 − z1)〉

and

1

2c
‖yk − y1‖2 − 1

2c
‖yk − y2‖2 = 1

2c
‖y2 − y1‖2 + 1

c
〈yk − y2, y2 − y1〉.

According to[13, Théorème 104.1] there exist M1 ∈ S+(H) such that (Mk
1 )k≥0

converges pointwise to M1 in the strong topology (as k → +∞). Similarly, the
monotonicity condition imposed on (Mk

2 )k≥0 implies that supk≥0 ‖Mk
2 + cL∗2L2‖ <

+∞. Thus, according to [8, Lemma 2.3], there exists α′ > 0 and M2 ∈ Pα′(G)
such that (M2

k + cL∗2L2)k≥0 converges pointwise to M2 in the strong topology (as
k →+∞).
Taking the limit in (4.31) along the subsequences (kp)p≥0 and (kq)q≥0 and using
the last three identities above, we obtain

1

2
‖x1 − x2‖2

M1
+ 〈x1 − x2,M1(x2 − x1)〉 + 1

2
‖z1 − z2‖2

M2
+ 〈z1 − z2,M2(z2 − z1)〉

+ 1

2c
‖y1 − y2‖2 + 1

c
〈y1 − y2, y2 − y1〉

=1

2
‖x1 − x2‖2

M1
+ 1

2
‖z1 − z2‖2

M2
+ 1

2c
‖y1 − y2‖2,

hence

−‖x1 − x2‖2
M1
− ‖z1 − z2‖2

M2
− 1

c
‖y1 − y2‖2 = 0,

thus z1 = z2 and y1 = y2. Further, since L1xi + L2zi = d for i ∈ {1, 2},

α2‖x1 − x2‖2 ≤ ‖L1x1 − L1x2‖2

≤ 1

3
‖L1x1 + L2z1 − d‖2 + 1

3
‖L1x2 + L2z2 − d‖2 + 1

3
‖L2z1 − L2z2‖2

= 0,

thus x1 = x2. In conclusion, (xk, zk, yk)k≥0 converges weakly to a KKT point of
(4.3).
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Finally, we consider the situation when the hypotheses in assumption (III) hold.
Let k ≥ 1 be fixed. Combining (4.13) with (4.11c) gives

−L∗2yk+1 +Mk
2 (z

k − zk+1) ∈ Bzk+1.

Considering this monotone inclusion for consecutive iterates and by taking into
account the monotonicity of B, we obtain

〈zk+1 − zk,−L∗2(yk+1 − yk)+Mk
2 (z

k − zk+1)−Mk−1
2 (zk−1 − zk)〉 ≥ 0,

hence

〈zk+1 − zk,−L∗2(yk+1 − yk)〉
≥ ‖zk+1 − zk‖2

Mk
2
+ 〈zk+1 − zk,Mk−1

2 (zk−1 − zk)〉

≥ ‖zk+1 − zk‖2
Mk

2
− 1

2
‖zk+1 − zk‖2

Mk−1
2
− 1

2
‖zk − zk−1‖2

Mk−1
2

.

Using that yk+1 − yk = c(L1x
k+1 + L2z

k+1 − d), the last inequality yields

‖zk+1 − zk‖2
Mk

2
− 1

2
‖zk+1 − zk‖2

Mk−1
2
− 1

2
‖zk − zk−1‖2

Mk−1
2

≤ c〈L2z
k+1 − L2z

k,−L1x
k+1 − L2z

k+1 + d〉
= c

2

(
‖L1x

k+1 + L2z
k − d‖2 − ‖L2z

k+1 − L2z
k‖2 − ‖L1x

k+1 + L2z
k+1 − d‖2

)
,

which, after adding it with (4.17) and using (4.11c), leads to

1

2
‖xk+1 − x∗‖2

Mk+1
1
+ 1

2
‖zk+1 − z∗‖2

Mk+1
2 +cL∗2L2

+ 1

2c
‖yk+1 − y∗‖2+

1

2
‖zk+1 − zk‖2

3Mk
2−Mk−1

2

≤ 1

2
‖xk − x∗‖2

Mk
1
+ 1

2
‖zk − z∗‖2

Mk
2+cL∗2L2

+ 1

2c
‖y∗ − yk‖2 + 1

2
‖zk − zk−1‖2

Mk−1
2
−

1

2
‖xk − xk+1‖2

Mk
1− η

2 Id
− c

2
‖L2z

k+1 − L2z
k‖2 − 1

2c
‖yk+1 − yk‖2−

η‖η−1(Cx∗ − Cxk)+ 1

2
(xk − xk+1)‖2.

Taking into account that according to (III) we have 3Mk
2 − Mk−1

2 � Mk
2 , we can

conclude that for all k ≥ 1 it holds
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1

2
‖xk+1 − x∗‖2

Mk+1
1
+ 1

2
‖zk+1 − z∗‖2

Mk+1
2 +cL∗2L2

+ 1

2c
‖yk+1 − y∗‖2 + 1

2
‖zk+1 − zk‖2

Mk
2

≤ 1

2
‖xk − x∗‖2

Mk
1
+ 1

2
‖zk − z∗‖2

Mk
2+cL∗2L2

+ 1

2c
‖y∗ − yk‖2 − 1

2
‖xk − xk+1‖2

Mk
1− η

2 Id
−

1

2
‖zk+1 − zk‖2

cL∗2L2
− 1

2c
‖yk+1 − yk‖2 + 1

2
‖zk − zk−1‖2

Mk−1
2
−

η−1‖η(Cx∗ − Cxk)+ 1

2
(xk − xk+1)‖2, (4.32)

while, by using when η = 0 (4.18) instead of (4.17), it yields

1

2
‖xk+1 − x∗‖2

Mk+1
1
+ 1

2
‖zk+1 − z∗‖2

Mk+1
2 +cL∗2L2

+ 1

2c
‖yk+1 − y∗‖2 + 1

2
‖zk+1 − zk‖2

Mk
2

≤ 1

2
‖xk − x∗‖2

Mk
1
+ 1

2
‖zk − z∗‖2

Mk
2+cL∗2L2

+ 1

2c
‖y∗ − yk‖2 + 1

2
‖zk − zk−1‖2

Mk−1
2
−

1

2
‖xk − xk+1‖2

Mk
1
− 1

2
‖zk+1 − zk‖2

cL∗2L2
− 1

2c
‖yk+1 − yk‖2. (4.33)

Using telescoping sum arguments, we obtain that ‖xk − xk+1‖2
Mk

1− η
2 Id

→ 0, yk −
yk+1 → 0 and zk − zk+1 → 0 as k →+∞. Using (4.11c), it follows that L1(x

k −
xk+1)→ 0 as k → +∞, which, combined with the hypotheses imposed on Mk

1 −
η
2 Id+cL∗1L1, implies that xk − xk+1 → 0 as k → +∞. Consequently, L1x

k+1 +
L2z

k − d → 0 as k → +∞. Hence the relations (4.20)–(4.23) are fulfilled. On the
other hand, from (4.32) and (4.33) if follows that the limit

lim
k→+∞

(
1

2
‖xk − x∗‖2

Mk
1
+ 1

2
‖zk − z∗‖2

Mk
2+cL∗2L2

+ 1

2c
‖yk − y∗‖2 + 1

2
‖zk − zk−1‖2

Mk−1
2

)
.

exists. By using that

‖zk − zk−1‖2
Mk−1

2
≤ ‖zk − zk−1‖2

M0
2
≤ ‖M0

2‖‖zk − zk−1‖2 ∀k ≥ 1,

it follows that limk→+∞ ‖zk − zk−1‖2
Mk−1

2
= 0, which further implies that (4.30)

holds. From here the conclusion follows by arguing as in the second part of the
proof provided in the setting of assumption (II). ��
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4.4 Convergence Rates in the Case When A + C Is Strongly
Monotone

In this section we address the following modification of the Problem 4.1.

Problem 4.3 In the context of Problem 4.1, we replace the cocoercivity of C by the
assumptions that C is monotone and μ-Lipschitz continuous, for μ ≥ 0. Further, we
assume that the sum A+ C is γ -strongly monotone for γ > 0, and that d = 0.

We have the following characterization for a KKT point of (4.3):

∃(x, z, y) ∈ H × G× Z :
⎧⎨
⎩
−L∗1y∈ Ax + Cx

−L∗2y∈ Bz

L1x = −L2z

⇔ ∃(x, z, y) ∈ H × G× Z :
⎧⎨
⎩
−L∗1y∈ Ax + Cx

z ∈ B−1 ◦ (−L∗2)y
L1x = −L2z

⇔ ∃(x, y) ∈ H × Z :
{−L∗1y∈ Ax + Cx

L1x ∈ (−L2) ◦ B−1 ◦ (−L∗2)y.
The latter means that (x, y) is a so-called primal-dual solution associated to the
monotone inclusion problem

find x ∈ H such that 0 ∈ Ax + Cx + (L∗1 ◦ B̄ ◦ L1)(x),

and its Attouch-Thera dual inclusion problem, where B̄ := [(−L2) ◦ B−1 ◦
(−L∗2)]−1. Algorithm 14 in [4] designed to determine these primal-dual solutions in
a setting which is similar to the one in Problem 4.3 gives rise to Algorithm 4.34.

Algorithm 4.34 For all k ≥ 0, let Mk
2 : Z→ Z be a linear, continuous and self-adjoint operator

such that τkL1L
∗
1 +Mk

2 ∈ Pαk (Z), for αk > 0. Choose (x0, z0, y0) ∈ H × G × Z. For all k ≥ 0
generate the sequence (xk, zk, yk)k≥0 as follows:

yk+1 =
(
τkL1L

∗
1 +Mk

2 + (−L2) ◦ B−1 ◦ (−L∗2)
)−1 [−τkL1(z

k − τ−1
k xk)+Mk

2y
k] (4.34a)

zk+1 =
(
θk

λ
− 1

)
L∗1yk+1 + θk

λ
Cxk

+ θk

λ
(Id+λτ−1

k+1A
−1)−1(−L∗1yk+1 + λτ−1

k+1x
k − Cxk) (4.34b)

xk+1 =xk + τk+1

θk
(−L∗1yk+1 − zk+1), (4.34c)

where λ, τk, θk > 0.
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Algorithm 4.35 For all k ≥ 0, let Mk
2 : G→ G be a linear, continuous and self-adjoint operator

such that τkL
−1
2 L1(L

−1
2 L1)

∗ + L−1
2 Mk

2 (L
∗
2)
−1 ∈ Pαk (Z) for αk > 0. Choose (x0, z0, y0) ∈

H × G× G. For all k ≥ 0 generate the sequence (xk, zk, yk)k≥0 as follows:

yk+1 = (−L∗2)−1 ◦
(
τkL

−1
2 L1(L

−1
2 L1)

∗ + L−1
2 Mk

2 (L
∗
2)
−1 + B−1

)−1 ◦

(−L2)
−1[−τkL1(z

k − τ−1
k xk)+Mk

2y
k] (4.35a)

zk+1 =
(
θk

λ
− 1

)
L∗1yk+1 + θk

λ
Cxk+

θk

λ
(Id+λτ−1

k+1A
−1)−1(−L∗1yk+1 + λτ−1

k+1x
k − Cxk) (4.35b)

xk+1 = xk + τk+1

θk
(−L∗1yk+1 − zk+1), (4.35c)

where λ, τk, θk > 0.

In case G = Z and the linear continuous operator L2 : G → G is invertible, we
obtain Algorithm 4.35, which is a full splitting formulation for Algorithm 4.34.

Concerning the parameters involved in Algorithm 4.34, we assume that

μτ1 < 2γ, λ ≥ μ+ 1, (4.36)

that there exists σ0 > 0 such that

σ0τ1‖L1‖2 ≤ 1, (4.37)

and that for all k ≥ 0

θk = 1√
1+ τk+1λ−1(2γ − μτk+1)

(4.38)

τk+2 = θkτk+1 (4.39)

σk+1 = θ−1
k σk (4.40)

τkL1L
∗
1 +Mk

2 � σ−1
k Id (4.41)

τk

τk+1
L1L

∗
1 +

1

τk+1
Mk

2 �
τk+1

τk+2
L1L

∗
1 +

1

τk+2
Mk+1

2 . (4.42)

The following convergence rate result follows from [4, Theorem 19].

Theorem 4.2 Consider the setting of Problem 4.3 in the hypothesis (−L2) ◦B−1 ◦
(−L∗2) is maximally monotone. Let (x, z, y) be a KKT point of the variational
inequality (4.3). Let (xk, zk, yk)k≥0 be the sequence generated by Algorithm 4.34
and assume that the relations (4.36)–(4.42) are fulfilled. Then we have for all n ≥ 2
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λ‖xn − x‖2

τ 2
n+1

+ 1− σ0τ1‖L1‖2

σ0τ1
‖yn − y‖2 ≤

λ‖x1 − x‖2

τ 2
2

+
‖y1 − y‖2

τ1L1L
∗
1+M1

2

τ2
+ ‖x

1 − x0‖2

τ 2
1

+ 2

τ1
〈L1(x

1 − x0), y1 − y〉.

Moreover, lim
n→+∞ nτn = λ

γ
, hence one obtains for (xn)n≥0 an order of convergence

of O( 1
n
).

Remark 4.4 Conditions guaranteeing the maximal monotonicity of compositions
of a maximally monotone operator with a linear continuous operator have been
intensively studied in the Hilbert space setting; for more insights we refer the reader
to [2] and [3] and to the references therein.
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Chapter 5
Regularization of Ill-Posed Problems
with Non-negative Solutions

Christian Clason, Barbara Kaltenbacher, and Elena Resmerita

Dedicated to the memory of Jonathan M. Borwein

Abstract This survey reviews variational and iterative methods for reconstruct-
ing non-negative solutions of ill-posed problems in infinite-dimensional spaces.
We focus on two classes of methods: variational methods based on entropy-
minimization or constraints, and iterative methods involving projections or non-
negativity-preserving multiplicative updates. We summarize known results and
point out some open problems.

Keywords Convex optimization · Fenchel duality · Entropy · Regularization ·
Sparsity · Signal processing
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5.1 Introduction

Many inverse problems are concerned with the reconstruction of parameters that
are a priori known to be non-negative, such as material properties or densities (in
particular, probability densities). Non-negative solutions also frequently occur in
astronomy and optical tomography, in particular in Poisson models for positron
emission tomography (PET), see [57, 61]. Note that the literature on the finite-
dimensional setting is very rich, and quite comprehensive surveys are already
available; see, e.g., [10–12].
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Borwein and collaborators dealt in a series of papers with the case involving
operators with finite-dimensional range; see, e.g., [4–6]. Concerned with recon-
structing a density function from a finite number n of density moments, they have
approached the problem from a few perspectives. For instance, it has been shown in
[5] that the best (Boltzmann–Shannon) entropy estimates converge in the L1-norm
to the best entropy estimate of the limiting problem as n → ∞. Along with this
result, strong properties of the Boltzmann–Shannon entropy such as a Kadec–Klee
property have been derived. Note that the dual problem of the maximum entropy
estimates problem has been quite instrumental in showing further results such as
error bounds. From a computational point of view, choosing one entropy (e.g.,
Dirac–Fermi or Burg) over the other has been the main topic in [4]. The work [3]
studies the case of operators with infinite-dimensional range by proposing relaxed
problems in the spirit of Morozov and Tikhonov regularization (cf. Section 5.3).

The context of infinite-dimensional function spaces for reconstructing non-
negative solutions of ill-posed operator equations has been much less investigated in
the literature. Therefore, this work focuses on methods for problems in such spaces
from a deterministic point of view.

We will primarily consider linear operator equations

Au = y (5.1)

with the operator A : X → Y mapping between suitable infinite-dimensional
function spaces X and Y . We assume that (5.1) admits a non-negative solution
u† ≥ 0 (which we will make precise below) and that it is ill-posed in the sense that
small perturbations of y can lead to arbitrarily large perturbations on u (or even lead
to non-existence of a solution). Besides enforcing non-negativity of the solution for
given data, a solution approach therefore also needs to have regularizing properties,
i.e., be stable even for noisy data yδ with

‖yδ − y‖Y ≤ δ, (5.2)

in place of y and yield reconstructions uδ that converge to u† as δ → 0. Two
approaches are widespread in the literature:

(i) Variational methods are based on minimizing a weighted sum of a discrepancy
term and a suitable regularization term (Tikhonov regularization) or on mini-
mizing one of these terms under a constraint on the other (Ivanov or Morozov
regularization, respectively).

(ii) Iterative methods construct a sequence of iterates approximating—for exact
data—the solution u†; regularization is introduced by stopping the iteration
based on a suitable discrepancy principle.

Regarding the regularization theory for ill-posed problems, we refer, e.g., to the
classical work [22]; of particular relevance in the context of non-negative solutions
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are regularization terms or iterations based on the Boltzmann–Shannon entropy and
the associated Kullback–Leibler divergence, and we will focus especially on such
methods.

This chapter is organized as follows. Section 5.2 recalls useful algebraic and
topological properties of the mentioned entropy functionals. Section 5.3 reviews
several variational entropy-based regularization methods (Morozov, Tikhonov,
Ivanov), while Section 5.4 is dedicated to iterative methods for general linear ill-
posed equations, both ones involving projections onto the non-negative cone and
ones based on multiplicative updates preserving non-negativity.

5.2 Preliminaries

Let Ω be an open and bounded subset of R
d . The negative of the Boltzmann–

Shannon entropy is the function f : L1(Ω)→ (−∞,+∞], given by1

f (u) =
{∫

Ω
u(t) log u(t) dt if u ∈ L1+(Ω) and u log u ∈ L1(Ω),

+∞ otherwise.

Here and in what follows, we set for p ∈ [1,∞]

L
p
+(Ω) := {

u ∈ Lp(Ω) : u(x) ≥ 0 for almost every x ∈ Ω
}
,

while ‖ · ‖p denotes, as usual, the norm of the space Lp(Ω).
We recall some useful properties of the negative Boltzmann–Shannon entropy

from, e.g., [1, proof of Thm. 1], [18, Lem. 2.1, 2.3], [52, § 3.4].

Lemma 5.1 The followings properties hold:

(i) The function f is convex.
(ii) The function f is weakly lower semicontinuous in L1(Ω).

(iii) For any c > 0, the sublevel set

{
v ∈ L1+(Ω) : f (v) ≤ c

}

is convex, weakly closed, and weakly compact in L1(Ω).
(iv) The domain of the function f is strictly included in L1+(Ω).
(v) The interior of the domain of the function f is empty.

(vi) The set ∂f (u) is nonempty if and only if u belongs to L∞+ (Ω) and is bounded
away from zero. In this case, ∂f (u) = {1+ log u}.

1We use the convention 0 log 0 = 0.
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(vii) The directional derivative of the function f is given by

f ′(u; v) =
∫
Ω

v(t)[1+ log u(t)] dt,

whenever it is finite.

Based on Lemma 5.1 (vi), we define in the following

dom ∂f = {
u ∈ L∞+ (Ω) : u bounded away from zero a.e.

}
.

The Kullback–Leibler divergence, which coincides with the Bregman distance
with respect to the Bolzmann–Shannon entropy, can be defined as d : dom f ×
dom f → [0,+∞] by

d(v, u) = f (v)− f (u)− f ′(u; v − u),

where f ′(u; ·) is the directional derivative at u. One can also write

d(v, u) =
∫ [

v(t) log
v(t)

u(t)
− v(t)+ u(t)

]
dt,

when d(v, u) is finite. We list below several properties of the Kullback–Leibler
divergence.

Lemma 5.2 The followings properties hold:

(i) The function (v, u) �→ d(v, u) is convex.
(ii) The function d(·, u∗) is weakly lower semicontinuous in L1(Ω) whenever u∗ ∈

dom f .
(iii) For any c > 0 and any non-negative u ∈ L1(Ω), the sublevel set

{
v ∈ L1+(Ω) : d(v, u) ≤ c

}

is convex, weakly closed, and weakly compact in L1(Ω).
(iv) The set ∂d(·, u∗)(u) is nonempty for u∗ ∈ dom f if and only if u belongs to

L∞+ (Ω) and is bounded away from zero. Moreover, ∂d(·, u∗)(u) = {logu −
log u∗}.

Finally, the Kullback–Leibler divergence provides a bound on the L1 distance.

Lemma 5.3 For any u, v ∈ dom f , one has

‖u− v‖2
1 ≤

(
2

3
‖v‖1 + 4

3
‖u‖1

)
d(v, u). (5.3)
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5.3 Variational Methods

Tikhonov regularization with additional convex constraints such as the non-negative
cone is now classical; we refer, e.g., to [47] for linear and [13, 48] for nonlinear
inverse problems in Hilbert spaces and to [27] for the Banach space setting. We
therefore focus in this section on methods that are based on minimizing some
combination of the regularization functional R ∈ {f, d(·, u0)}, where u0 ∈
dom f ⊆ L1+(Ω) is an a priori guess, with the residual norm either as a penalty,
i.e., as Tikhonov regularization

min
u∈L1+(Ω)

1
2‖Au− yδ‖2

Y + αR(u)

for some regularization parameter α > 0, or as a constraint, i.e., as Morozov
regularization

min
u∈L1+(Ω)

R(u) s.t. ‖Au− yδ‖Y ≤ δ,

where δ is the noise level according to (5.2). Throughout this section we will set
X = L1(Ω) and assume A : X → Y to be a bounded linear operator mapping into
some Banach space Y . Moreover, we will assume existence of a solution u† to (5.1)
with finite entropy R(u†) <∞ (which is therefore in particular non-negative).

5.3.1 Morozov-Entropy Regularization

The historically first study of regularizing properties of such methods can be found
in [1] for the Morozov-entropy method

min
u∈L1+(Ω)

f (u) s.t. ‖Au− yδ‖Y ≤ δ. (5.4)

The reader is referred also to [3, Theorem 3.1], where a version of Morozov
regularization is discussed.

We first of all state existence of a solution to (5.1) that maximizes the entropy,
i.e., minimizes f .

Theorem 5.1 (Existence of Maximum Entropy Solution for Exact Data [1,
Thm. 4]) There exists a minimizer u† ∈ L1+(Ω) of

min
u∈L1+(Ω)

f (u) s.t. Au = y.
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Theorem 5.2 (Existence of Regularizer [1, Thm. 1]) For every δ > 0 and yδ ∈ Y

satisfying (5.2), there exists a minimizer uδ of (5.4).

Both theorems follow from weak compactness of sublevel sets and weak lower
semicontinuity of f (Lemma 5.1 (ii), (iii)) together with weak closedness and
nonemptiness of

{
u ∈ L1+(Ω) : Au = y

}
and

{
u ∈ L1+(Ω) : ‖Au− yδ‖Y ≤ δ

}
.

Finally, it can be shown that (5.4) indeed defines a regularization method.

Theorem 5.3 (Convergence as δ → 0 [1, Thm. 5]) Let (yδ)δ>0 be a family of
data satisfying (5.2). Then

‖uδ − u†‖1 → 0 as δ→ 0. (5.5)

Stability of (5.4) in the sense that small perturbations in yδ lead to small
perturbations in uδ has not been shown in [1]. Since one is actually interested in
approaching u† rather than uδ , such stability results might be considered as of lower
importance than the convergence in (5.5). We will therefore not state such stability
results for the remaining variational methods either.

Convergence rates are not stated in [1], but they could be proved as in Theo-
rem 5.6 or Theorem 5.10 below under a similar source condition.

5.3.2 Tikhonov-Entropy Regularization

The work [1] also mentions the Tikhonov-entropy regularization

min
u∈L1+(Ω)

1
2‖Au− yδ‖2

Y + αf (u), (5.6)

pointing out from [60] that a regularization parameter choice α = α(δ) exists such
that minimizers of (5.6) coincide with minimizers of (5.4). Hence, Theorem 5.3 also
yields convergence of solutions of (5.6); however, this does not provide a concrete
rule for choosing α.

A more detailed analysis of the constrained Tikhonov-entropy regularization

min
u∈D

1
2‖Au− yδ‖2

Y + αf (u) (5.7)

with an appropriate subset D of L1+(Ω)—including a priori regularization parame-
ter choice rules—can be found in [24]. The analysis relies on a nonlinear transforma-
tion T : L2

−e−1/2(Ω)→ L1(Ω) for L2
−e−1/2(Ω) = {

v ∈ L2(Ω) : v ≥ −e−1/2 a.e.
}

satisfying

f (T (v)) = ‖v‖2
2 − e−1/2.



5 Regularization of Ill-Posed Problems with Non-negative Solutions 119

This leads to replacing (5.1) with the nonlinear problem F(v) = y for F :=
A ◦ T : L2

−e−1/2(Ω) ⊇ B → Y . The theory on Tikhonov regularization
for nonlinear problems in Hilbert spaces, in combination with a proof of weak
sequential closedness of F , allows the authors of [24] to prove well-definedness
and convergence of minimizers of (5.7) under the assumption that B = T −1(D) is
compact in measure.

Theorem 5.4 (Existence of Minimizers) For every α > 0, δ > 0 and yδ ∈ Y

satisfying (5.2), there exists a minimizer uδα of (5.7).

This result also follows from Lemma 5.1 (ii), (iii) together with [24,
Lem. 3.1,3.2].

Theorem 5.5 (Convergence as δ → 0 [24, Thm. 3.7]) Let (yδ)δ>0 be a family of
data satisfying (5.2), and let α = α(δ) be chosen such that

α→ 0 and
δ2

α
→ 0 as δ→ 0. (5.8)

Then

‖uδα − u†‖1 → 0 as δ→ 0.

The reader is referred also to [3, Theorem 3.3] for convergence in the case of
exact data.

Furthermore, a classical result on convergence rates for nonlinear Tikhonov
regularization in Hilbert spaces from [23] can be employed to yield the following
statement.

Theorem 5.6 (Convergence Rates [24, Thm. 3.8]) Assume that u† satisfies the
source condition

1+ log u† = A∗w (5.9)

for some sufficiently small w ∈ Y ∗. Let (yδ)δ>0 be a family of data satisfying (5.2),
and let α = α(δ) be chosen such that

α ∼ δ as δ→ 0. (5.10)

Then

‖uδα − u†‖1 = O(
√
δ) as δ→ 0.

The work [24] also treats the generalized negative Boltzmann–Shannon entropy
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f (u) =
{∫

Ω
u(t) log u(t)

u0(t)
dt if u ≥ 0 a.e. and u log u

u0
∈ L1(Ω),

+∞ otherwise,

for some non-negative function u0 carrying a priori information on u. In this case,
the source condition (5.9) becomes

1+ log
u†

u0
= A∗w.

Finally, we point out that the convergence analysis in [24] includes the practically
relevant case of inexact minimization of the Tikhonov functional.

5.3.3 Tikhonov–Kullback–Leibler Regularization

Replacing the negative Boltzmann–Shannon entropy in (5.7) by the Kullback–
Leibler divergence results in the problem

min
u∈L1+(Ω)

1
2‖Au− yδ‖2

Y + αd(u, u0), (5.11)

which was investigated in [18]. In contrast to the analysis of the similar-looking
problem (5.7) in [24], the analysis in [18] treats (5.11) directly by convexity
arguments and does not require a nonlinear transformation. More precisely, the
fact that both parts of the Tikhonov functional can be written as Bregman distances
yields the estimate

1
2‖A(u− uδα)‖2

Y + αd(u, uδα)

≤ 1
2‖Au− yδ‖2

Y + αd(u, u0)− 1
2‖Auδα − yδ‖2

Y − αd(uδα, u0)

for a minimizer uδα of (5.11) and all u ∈ L1+(Ω); cf. [9] and [18, Thm. 3.1]. In
addition, the estimate

1
2‖A(ũδα − uδα)‖2

Y + αd(ũδα, u
δ
α) ≤ 2‖ỹδ − yδ‖2

Y

holds for a minimizer ũδα of (5.11) with yδ replaced by ỹδ; cf. [18, Thm. 3.3]. These
two inequalities are the basis for the following results.

We first consider existence of minimizers. Assuming the existence of a solution
u† ∈ L1+(Ω) to (5.1) of finite Kullback–Leibler divergence, one obtains (as in
Theorem 5.1) an existence result for exact data from the weak compactness of
sublevel sets and the weak lower semicontinuity of d(·, u0) (Lemma 5.2 (ii), (iii))
as well as the weak continuity of A.
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Theorem 5.7 (Existence of Minimum-KL Solution for Exact Data) For every
u0 ∈ dom f , there exists a minimizer u† of

min
u∈L1+(Ω)

d(·, u0) s.t. Au = y.

Next we consider the well-definedness of (5.11) for noisy data, where one also
obtains uniqueness as well as a uniform positivity property of the minimizer.

Theorem 5.8 (Existence, Uniqueness, and Uniform Positivity of Regularizer
[18, Thm. 2.4]) For every α > 0, δ > 0, and yδ ∈ Y satisfying (5.2), there exists a

unique minimizer uδα ∈ L1+(Ω) of (5.11). Moreover, uδα
u0

is bounded away from zero.

From this, the following convergence and convergence rate results can be stated.

Theorem 5.9 (Convergence as δ → 0 [18, Thm. 4.1]) Let (yδ)δ>0 be a family of
data satisfying (5.2), and let α = α(δ) be chosen according to (5.8). Then

‖uδα − u†‖1 → 0 as δ→ 0.

Theorem 5.10 (Convergence Rates; [18, Thm. 4.2]) Assume that u† satisfies the
source condition

log
u†

u0
= A∗w. (5.12)

Let (yδ)δ>0 be a family of data satisfying (5.2), and let α = α(δ) be chosen
according to (5.10). Then

‖uδ − u†‖1 = O(
√
δ) as δ→ 0. (5.13)

We remark that in [18], compactness of A is assumed, but an inspection of the
proofs shows that actually boundedness of A suffices, since this implies weak lower
semicontinuity of the mapping u �→ 1

2‖Au−yδ‖2
Y and therefore (by Lemma 5.2 (ii)

and the elementary inequality lim inf(an) + lim inf(bn) ≤ lim inf(an + bn)) of the
Tikhonov functional.

5.3.4 Nonquadratic Data Misfit

In the remainder of this section, we remark on some possible extensions and open
problems.

First, the quadratic term 1
2‖Au − yδ‖2

Y can be replaced by some other convex
data misfit functional to take into account special features of the data or of the
measurement noise. In particular, we mention the case of non-negative data resulting
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from a positivity preserving operator A : L1+(Ω) → L1+(Ω) as in, e.g., [52] or
Poisson noise as in, e.g., [63].

Indeed, it was shown in [52] that Theorems 5.8, 5.9, 5.10 also hold for the
entropy–entropy regularization

min
u∈L1+(Ω)

d(yδ, Au)+ αd(u, u0)

with Y = L1(Ω) and (5.2) replaced by

d(yδ, y) ≤ δ2, (5.14)

provided A is positivity preserving in the sense that x > 0 almost everywhere
implies Ax > 0 almost everywhere.

The key estimates for proving convergence and convergence rates in this case are

d(yδ, Auδα)+ αd(uδα, u0) ≤ d(yδ, Au†)+ αd(u†, u0) ≤ δ2 + αd(u†, u0),

which follows from minimality and (5.14), and

d(yδ, Auδα)+ αd(uδα, u
†)

= d(yδ, Auδα)+ α

(
d(uδα, u

†)− d(u†, u0)−
∫
Ω

log
u†(t)

u0(t)
(uδα(t)− u†(t)) dt

)

≤ δ2 − α〈w,A(uδα − u†)〉Y ∗,Y
= δ2 + α〈w, y − yδ〉Y ∗,Y − α〈w,Auδα − yδ〉Y ∗,Y
≤ δ2 + 4

3α‖w‖Y ∗(‖yδ‖1 + ‖y‖1 + ‖Auδα‖1)
1
2 (δ + d(yδ, Auδα)

1
2 ).

The last two inequalities hold due to the source condition (5.12) and to (5.3). By
using the a priori choice α ∼ δ, the latter estimate implies d(yδ, Auδα) = O(δ2) and
d(uδα, u

†) = O(δ). The inequality (5.3) now yields the rate (5.13).
Finally, as mentioned in [52], convergence can also be extended to the symmetric

Kullback-Leibler functional as a regularizing term in

min
u∈L1+(Ω)

d(yδ, Au)+ α(d(u, u0)+ d(u0, u)).

5.3.5 Measure Space Solutions

In particular in the context of probability densities, it could be appropriate to look for
solutions in the space of positive measures M+(Ω) instead of L1+(Ω), i.e., consider
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min
u∈M+(Ω)

1
2‖Au− yδ‖2

Y + αR(u). (5.15)

For a definition of entropy functionals on measure spaces we refer, e.g., to [59].
Minimization of some data misfit with a norm penalty but without imposing non-
negativity as in [8, 14] or with non-negativity constraints but without adding a
penalty as in [15] has been shown to yield sparse solutions in the sense that the
support of the minimizers will typically have zero Lebesgue measure. Here it
would be interesting to investigate whether an entropy penalty R could overcome
singularity of the optimality conditions (cf., e.g., [15]) for attainable data that is
present also for the measure space norm as penalty. Other relevant possibilities
include the Wasserstein-1 and Kantorovich–Rubinstein norms considered in [41].

5.3.6 Nonlinear Problems

A natural extension would be to consider Tikhonov regularization for a nonlinear
operator F : dom(F )→ Y , i.e.,

min
u∈D

1
2‖F(u)− yδ‖2

Y + αR(u),

for R ∈ {f, d(·, u0)} and D ⊆ dom(F ) ∩ L1+(Ω). For Tikhonov-entropy
regularization, the analysis of [24] by way of nonlinear transformation was extended
to nonlinear operators in [25]. In addition, recent analysis for Tikhonov regulariza-
tion with abstract regularization functionals from, e.g., [26, 31, 51, 62] together
with Lemmas 5.1, 5.2 shows that the existence and convergence results from
Theorems 5.4, 5.5, 5.8, 5.9 remain valid if A is replaced by a nonlinear operator
which is weakly continuous on L1(Ω) and Y and if D is weakly closed in L1(Ω).
Furthermore, Theorems 5.6, 5.10 can be recovered in the nonlinear case by replacing
A in the source conditions (5.9), (5.12) by the Fréchet derivative F ′(u†). However,
uniform positivity results like those from Theorem 5.8 and [52, Section 4.2] do not
follow from this theory and would have to be subject of additional investigations.

5.3.7 Ivanov Regularization

Ivanov regularization (also called method of quasi-solutions), cf., e.g., [17, 35–37,
42, 49, 56], defines uδρ as a solution to

min
u∈L1+(Ω)

‖Au− yδ‖Y s.t. R(u) ≤ ρ
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with R ∈ {f, d(·, u0)}. Here, regularization is controlled by the parameter ρ > 0,
with larger parameters corresponding to weaker regularization. If the respective
minimizers are unique, all three variational regularization methods (Tikhonov,
Morozov, and Ivanov) are equivalent for a certain choice of the regularization
parameters α and ρ, cf. [42, Thm. 2.3]. Nevertheless, a practically relevant regu-
larization parameter choice might lead to different solutions; the three formulations
also entail different numerical approaches, some of which might be better suited
than others in concrete applications. Furthermore, as a counterexample in [42]
shows, the methods are no longer equivalent in the non-convex case arising from
a nonlinear forward operator F .

Concerning well-definedness and convergence for (5.3.7), one can again rely
on general results on the entropy functionals as stated in Section 5.2. Indeed, the
properties of sublevel sets according to Lemma 5.1 (iii) or Lemma 5.2 (iii) together
with weak sequential lower semicontinuity of the mapping u �→ 1

2‖Au − yδ‖2

guarantee existence of a minimizer for any ρ > 0. In case the maximal entropy or
the minimal Kullback–Leibler divergence of a solution to (5.1) is known, the ideal
parameter choice is of course ρ = R(u†); note that this choice of ρ is independent
of δ. In this case, we obtain from minimality of uδρ that

‖Auδρ − yδ‖Y ≤ ‖Au† − yδ‖Y ≤ δ.

We can thus argue similarly to the convergence proof for the Morozov formulation
(5.4) to obtain convergence ‖uδρ − u†‖1 → 0 as δ → 0. Convergence rates under
source conditions of the type (5.9) can also be derived. To see this in case R = f ,
observe that minimality of uδρ and admissibility of u† together with Lemma 5.1 (vii)
and (5.9) yields

d(uδρ, u
†) = f (uδρ)−f (u†)−f ′(u†, uδρ−u†) ≤ −〈w,A(uδρ−u†)〉Y ∗,Y ≤ 2‖w‖Y ∗δ.

Hence, (5.3) implies the rate (5.13). A practical choice of ρ can be carried out, e.g.,
by Morozov’s discrepancy principle, see [39].

5.4 Iterative Methods

In practice, solutions to the approaches given in Section 5.3 cannot be computed
directly but require iterative methods. This makes applying iterative regularization
methods directly to (5.1) attractive. For the particular case of non-negativity
constraints, there are two general approaches: The constraints can be imposed
during the iteration by projection, or the iteration can be constructed such that non-
negativity of the starting value is preserved. In this section, we will review examples
of both methods.
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5.4.1 Projected Landweber Method for Non-negative Solutions
of Linear Ill-Posed Equations

The classical Landweber method for the solution of (5.1) in Hilbert spaces consists
in choosing u0 = 0, τ ∈ (0, 2‖A‖−2), and setting

uk+1 = uk + τA∗(y − Auk), k = 0, . . . .

By spectral methods, one can show that the iterates converge strongly to the
minimum norm solution u† for exact data y ∈ ranA. For noisy data y =
yδ ∈ ranA \ ranA, one also initially observes convergence, but at some point
the iterates start to diverge from the solution; this behavior is often referred to
as semi-convergence. It is therefore necessary to choose an appropriate stopping
index k∗ := k∗(δ, yδ) < ∞ such that uδk∗ → u† as δ → 0; a frequent choice is a
discrepancy principle, e.g., of Morozov.

This method was generalized in [21] to constrained inverse problems of the form

Au = y s.t. u ∈ C

for a convex and closed set C ⊂ X; in our context, the obvious choice is X = L2(Ω)

and

C = {u ∈ X : u(x) ≥ 0 for almost every x ∈ Ω} .

The corresponding projected Landweber method then consists in the iteration

uk+1 = PC

[
uk + τA∗(y − Auk)

]
, k = 0, . . . , (5.16)

where PC denotes the metric (in our case pointwise almost everywhere) projection
onto C. This coincides with a forward–backward splitting or proximal gradient
descent applied to ‖Au− y‖2

Y + δC(u), where δC denotes the indicator function of
C in the sense of convex analysis; see, e.g., [16]. Thus, a standard proof yields weak
convergence of the iterates in the case of exact data y ∈ A(C) := {Au : u ∈ C}.
Theorem 5.11 ([21, Thm. 3.2]) Let u0 = 0 and τ ∈ (0, 2‖A‖−2). If y ∈ A(C),
then the sequence of iterates {uk}k∈N ⊂ C of (5.16) converges weakly to a solution
u† ∈ C of Au = y.

In contrast to the unconstrained Landweber iteration, strong convergence can
only be shown under additional restrictive conditions or by including additional
terms in the iteration; in the setting considered here, this holds if Id−τA∗A is
compact, see [21, Thm. 3.3].

Regarding noisy data yδ /∈ ranA, the following stability estimate holds.

Theorem 5.12 ([21, Thm. 3.4]) Let uδ0 = u0 = 0 and τ ∈ (0, 2‖A‖−2). If y ∈
A(C) and yδ ∈ Y with ‖yδ − y‖Y ≤ δ, then the sequences of iterates {uk}k∈N ⊂ C

and {uδk}k∈N ⊂ C of (5.16) with y and yδ , respectively, satisfy
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‖uδk − uk‖X ≤ τ‖A‖δk, k = 0, . . . . (5.17)

By usual arguments, this can be used—together with a monotonicity property for
noisy data—to derive stopping rules and thus regularization properties. However, to
the best of our knowledge, this has not been done in the literature so far. It should
also be pointed out that the estimate (5.17) is weaker than in the unconstrained case,
where an O(

√
k) estimate can be shown.

In addition, [21] proposes a “dual” projected Landweber iteration: Setting w0 =
0, compute for k = 0, . . . , the iterates

{
uk = PC[A∗wk],

wk+1 = wk + τ(y − Auk).

(This can be interpreted as a backward–forward splitting.) Under the same assump-
tions as above, one obtains strong convergence uk → u† (without assuming
compactness of Id−τA∗A), see [21, Thm. 3.5], and the stability estimate (5.17),
see [21, Thm. 3.6]. Numerical examples for integral equations with non-negative
solutions in L2(Ω) using both methods can be found in [21]. Acceleration by
stationary preconditioning—i.e., replacing the scalar τ by a fixed self-adjoint,
positive definite, linear operator D—was considered in [50]. It is an open problem
whether further acceleration by Nesterov-type extrapolation or a more general
inertial approach is possible.

If X and Y are Banach spaces, the above iterations are not applicable. A version
of Landweber iteration in Banach spaces that can treat convex constraints has been
proposed in [2]. The iteration can be formulated as

⎧⎨
⎩

ξk+1 = ξk − τA∗JY (y − Axk),

xk+1 ∈ arg min
x∈X G(x)− 〈ξk+1, x〉X,

for x0 = 0 and ξ0 = 0, where JY denotes the so-called duality mapping between Y ∗
and Y , and G : X → R ∪ {∞} is proper, convex, and lower semicontinuous. Here
the choice G = δC yields the projected Landweber iteration in Banach spaces,
while G = δC + f would be the choice if a non-negative minimum-entropy
solution is searched for. However, convergence in [2] could only be shown under
the assumption that the interior of C is non-empty in X (which is not the case for
X = Lp(Ω), p < ∞; see, e.g., [7]), G is p-convex with p ≥ 2 (in particular,
excluding both G = δC and G = δC + f ), and Y is uniformly smooth (requiring
Y to be reflexive). The first assumption was removed in [38], allowing application
to the case X = Lp(Ω) for 2 ≤ p < ∞ with G = δC + f + 1

p
‖ · ‖pX and

Y = Lq(Ω) for 2 ≤ q < ∞. Another open issue is the practical realization for
p, q > 2, in particular of the second step, which requires computing a generalized
metric projection in a Banach space.
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Alternatively, a natural first step of moving from Tikhonov-type variational
regularization towards iterative methods is the so-called non-stationary Tikhonov
regularization [30] (which is a proximal point method), whose entropy-based
version can be formulated as

uk = arg min
u∈L1+(Ω)

1
2‖Au− yδ‖2

Y + αkd(u, uk−1),

where {αk}k∈N is a bounded sequence of positive numbers. This has been shown to
converge in finite dimension; see, e.g., [34] and the references therein. We expect
that an analysis of the infinite-dimensional counterpart can be carried out using the
tools presented in this review.

5.4.2 EM Method for Integral Equations with Non-negative
Data and Kernel

We now consider (5.1) in the special case that A is a Fredholm integral operator of
the first kind, i.e.,

A : L1(Ω)→ L1(Σ), (Au)(s) =
∫
Ω

a(s, t)u(t) dt , (5.18)

where Ω,Σ ⊂ R
d , d ≥ 1, are compact, and the kernel a and the data y are positive

pointwise almost everywhere. In this case, the following multiplicative iteration can
be seen to preserve non-negativity for u0 ≥ 0:

uk+1(t) = uk(t)

∫
Σ

a(s, t)y(s)

(Auk)(s)
ds, t ∈ Ω, k = 0, . . . . (5.19)

This method was introduced in [40] as the method of convergent weights, motivated
by some problems arising in nuclear physics. Writing this concisely as

uk+1 = uk A
∗ y

Auk
, k = 0, . . . ,

where the multiplication and division are to be understood pointwise almost
everywhere, relates (5.19) to the popular method known in the finite-dimensional
setting as the expectation-maximization (EM) algorithm for Poisson models for
PET, cf. [57, 61], and as the Lucy–Richardson algorithm in astronomical imaging,
see [43, 55].

The study of (5.19) was initiated by the series of papers [44–46] primarily
for the setting A : C([0, 1]) → C([0, 1]). More precisely, some monotonicity
features have been derived, while convergence has not been shown yet. Modified
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EM algorithms allowing for better convergence properties have been investigated in
infinite-dimensional settings; see [19, 20].

In the following, we summarize, based on [19, 33], the convergence properties for
the case A : L1(Ω) → L1(Σ) using a similar notation as in [53, 54]. Specifically,
we make the following assumptions:

(A1) The kernel a is a positive and measurable function satisfying

∫
Σ

a(s, t) ds = 1 for almost all t ∈ Ω.

(A2) There exist m,M > 0 such that

m ≤ a(s, t) ≤ M a.e. on Σ ×Ω.

(A3) The exact data y in (5.1) satisfies
∫
Σ
y(s) ds = 1 and

y(s) ≤ M ′ a.e. on Σ

for some M ′ > 0.
(A4) Equation (5.1) admits a solution u† ∈ L1+(Ω) \ {0}.
Furthermore, let

Δ =
{
u ∈ L1+(Ω) :

∫
Ω

u(t) dt = 1

}
.

By noticing that a positive solution of (5.1) is also a minimizer of the function
u �→ d(y,Au) subject to u ≥ 0 (which is related to a maximum likelihood problem
in statistical setting), we formulate a classical monotonicity result for (5.19) for
exact data.

Proposition 5.1 ([53, Prop. 3.3]) Let (A1) and (A3) be satisfied and let u0 ∈ Δ

such that d(u†, u0) < ∞. Then, for any k ≥ 0, the iterates uk generated by (5.19)
satisfy

d(u†, uk) <∞,

d(uk+1, uk) ≤ d(y,Auk)− d(y,Auk+1),

d(y,Auk)− d(y,Au†) ≤ d(u†, uk)− d(u†, uk+1).

Therefore, the sequences {d(u†, uk)}k∈N and {d(y,Auk)}k∈N are nonincreasing.
Moreover,
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lim
k→∞ d(y,Auk) = d(y,Au†),

lim
k→∞ d(uk+1, uk) = 0.

We point out that from this result, one also obtains that limk→∞ ‖Auk−y‖1 = 0
and limk→∞ ‖uk+1 − uk‖1 = 0.

Since ill-posedness is an infinite-dimensional phenomenon, and the EM algo-
rithm has been shown to be highly unstable, we recall also the approach in [53]
which investigates the noise influence on the iterations. Similar properties of the
iterates (as in the noise free data case) are derived there by stopping the procedure
according to a discrepancy rule, as one can see below.

For the noisy data yδ , we make the following assumptions.

(A5) yδ ∈ L∞(Σ) satisfies
∫
Σ
yδ(s) ds = 1 and

‖yδ − y‖1 ≤ δ, δ > 0.

(A6) There exist m1,M1 > 0 such that for all δ > 0,

m1 ≤ yδ(s) ≤ M1, a.e. on Σ.

For further use, we define

γ := max
{∣∣ ln m1

M

∣∣ , ∣∣ ln M1
m

∣∣} , (5.20)

where m,M > 0 are the constants from (A2).
Let now uδk denote the iterates generated by (5.19) with yδ in place of y and

uδ0 = u0 ∈ Δ. In this case, the iterates get closer and closer to the solution as long
as the residual lies above the noise level.

Theorem 5.13 ([53, Thm. 6.3]) Fix δ > 0. If assumptions (A1)–(A6) are satisfied,
then

d(u†, uδk+1) ≤ d(u†, uδk)

for all k ≥ 0 such that

d(yδ, Auδk) ≥ δγ.

The above result indicates a possible choice of the stopping index for the
algorithm (5.19) as

k∗(δ) = min
{
k ∈ N : d(yδ, Auδk) ≤ τδγ

}
(5.21)
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for some fixed τ > 1 and γ as given by (5.20). The next statement guarantees
existence of such a stopping index.

Theorem 5.14 ([53, Thm. 6.4]) Let assumptions (A1)–(A6) be satisfied and
choose u0 ∈ Δ such that d(u†, u0) <∞. Then:

(i) For all δ > 0, there exists a k∗(δ) satisfying (5.21) and

k∗(δ)τδγ ≤ k∗(δ)d(yδ, Auδk∗(δ)−1) ≤ d(u†, u0)+ k∗(δ)δγ.

(ii) The stopping index k∗(δ) is finite with k∗(δ) = O
(
δ−1

)
and

lim
δ→0+

‖Auδk∗(δ) − y‖p = 0

for any p ∈ [1,+∞).

An interesting open problem would be to investigate the behavior of (5.19) in
conjunction with other stopping rules, e.g., a monotone error-type rule defined by
means of the KL divergence in a way similar to the one dealt with in [29].

5.4.3 Modified EM Algorithms

In this section, we present some modifications of algorithm (5.19) which improve
its stability or its performance.

5.4.3.1 EM Algorithms with Smoothing Steps

In order to stabilize (5.19), the work [58] proposed the so-called EMS algorithm

uk+1 = S

(
uk A

∗ y

Auk

)
, k = 0, . . . ,

with u0 ≡ 1 and the smoothing operator

Su(s) =
∫
Ω

b(s, t)u(t) dt,

where b : Ω × Ω → R is continuous, positive and obeys a normalization
condition similar to (A1). Note that [58] presents the EMS method from a statistical
perspective, while the continuous formulation mentioned above can be found in
[19]. Although this yields faster convergence in practice, more information on limit
points (or the unique limit point, as the numerical experiments strongly suggest) has
not been provided.
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The work [19] also proposes the following nonlinear smoothing procedure, called
NEMS:

uk+1 = S

(
N(uk)A

∗ y

Auk

)
, k = 0, . . . ,

with u0 ≡ 1 and

Nu(t) = exp
([S∗(log u)](t)) for all t ∈ Ω.

Properties typical to EM iterations are shown in [19]. In particular, [19, Thm. 4.1]
proves that the iterates produced by the NEMS algorithm converge to solutions of

min
u∈L1+(Ω)

d(y,ANu)−Nu+
∫
Ω

u,

in analogy with (5.19) which is designed for approximating minimizers in L1+(Ω)

of d(y,Au).

5.4.3.2 EM-Kaczmarz Type Algorithms

The ordered-subsets expectation maximization algorithm (OS-EM) proposed in [32]
is a variation of the EM iteration that has proved to be quite efficient in computed
tomography. It resembles a Kacmarz-type method, being conceptually based on
grouping the data y into an ordered sequence of N subsets yj . A single outer
iteration step then is composed of N EM-steps, where in each step j one updates
the current estimate by working only with the corresponding data subset yj . An
extension of the OS-EM to the infinite-dimensional setting was introduced in [28],
and numerical experiments reported there indicate this to be at least as efficient as
the classical discrete OS-EM algorithm.

Let Σj be (not necessarily disjoint) subsets of Σ with Σ0 ∪ · · · ∪ ΣN−1 = Σ ,
and denote yj := y|Σj

. Set aj := a|Ω×Σj
.

Thus, one can rewrite (5.18) as

Aj : L1(Ω)→ L1(Σj ), (Aju)(s) :=
∫
Ω

aj (s, t) u(t) dt, j = 0, . . . , N − 1.

(5.22)
Then (5.18) can be formulated as a system of integral equations of the first kind

Aju = yj , j = 0, . . . , N − 1. (5.23)

Clearly, u is a solution of (5.23) if and only if u solves (5.18). Without loss of
generality, one can work with a common domain Σ instead of Σj , thus considering
Aj : L1(Ω)→ L1(Σ) and yj ∈ L1(Σ). Therefore, the system (5.23) can be solved
by simultaneously minimizing
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d(yj , Aju), j = 0, . . . , N − 1.

The corresponding OS-EM algorithm for solving system (5.23) can be written in
the form

uk+1 = uk

∫
Σ

aj (s, ·) yj (s)
(Ajuk)(s)

ds, k = 0, . . . , (5.24)

where j = [k] := (k mod N).
Under assumptions similar to the ones in Section 5.4.2, the following results hold

for exact data.

Theorem 5.15 ([28, Thm. 3.3]) Let the sequence {uk}k∈N be defined by iteration
(5.24), and let u† ∈ Δ \ {0} be a solution of (5.22) with d(u†, u0) < ∞. Then one
has

(i) f[k](uk+1) ≤ f[k](uk), for every k = 0, . . . ;
(ii) the sequence {d(u†, uk)}k∈N is nonincreasing;

(iii) lim
k→∞ f[k](uk) = 0;

(iv) lim
k→∞ d(uk+1, uk) = 0;

(v) for each 0 ≤ j ≤ N − 1 and p ∈ [1,∞) we have

lim
m→∞‖Ajuj+mN − yj‖p = 0;

(vi) if u0 ∈ L∞(Ω) and {uk}k∈N is bounded in Lp(Ω) for some p ∈ (1,∞), then
there exists a subsequence converging weakly in Lp(Ω) to a solution of (5.23).

Finally, we address the case of noisy data, where the noise is allowed to be
different for each group of data. Specifically, we consider yδj ∈ L1(Σ) with

‖yj − yδj‖1 ≤ δj , j = 0, . . . , N − 1,

and set δ := (δ0, . . . , δN−1). Correspondingly, the stopping rules are independently
defined for each group of data. This leads to the following loping OS-EM iteration
for (5.23) with noisy data:

uδk+1 =
⎧⎨
⎩uδk

∫
Σ

a[k](s,·) yδ[k](·)
(A[k]uδk)(s)

ds d(yδj , Aju
δ
k) > τγ δ[k],

uδk else,

for τ > 1 and γ as defined in (5.20).
Under similar assumptions on kernels and data as in Section 5.4.2, one can

show analogously to Theorem 5.14 that there exists a finite stopping index k∗(δ),
after which the iteration for all groups is terminated, and that (under additional
assumptions) Aju

δ
k∗(δ) → yj for all j and uδk∗(δ) ⇀ u† in Lp as δ → 0, see

[28, Thm. 4.4].
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and Its Variants
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Abstract Convergence of projection-based methods for nonconvex set feasibility
problems has been established for sets with ever weaker regularity assumptions.
What has not kept pace with these developments is analogous results for conver-
gence of optimization problems with correspondingly weak assumptions on the
value functions. Indeed, one of the earliest classes of nonconvex sets for which
convergence results were obtainable, the class of so-called super-regular sets (Lewis
et al., Comput. Math. 9(4), 485–513, 2009), has no functional counterpart. In this
work, we amend this gap in the theory by establishing the equivalence between
a property slightly stronger than super-regularity, which we call Clarke super-
regularity, and subsmootheness of sets as introduced by Aussel, Daniilidis and
Thibault (Amer. Math. Soc. 357, 1275–1301, 2004). The bridge to functions shows
that approximately convex functions studied by Ngai, Luc and Thera (J. Nonlinear
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6.1 Introduction

The notion of a super-regular set was introduced by Lewis, Luke, and Malick [10]
who recognized the property as an important ingredient for proving convergence
of the method of alternating projections without convexity. This was generalized
in subsequent publications [3, 6, 7, 11], with the weakest known assumptions
guaranteeing local linear convergence of the alternating projections algorithm for
two-set, consistent feasibility problems to date found in [15, Theorem 3.3.5]. The
regularity assumptions on the individual sets in these subsequent works are vastly
weaker than super-regularity, but what has not kept pace with these generalizations
is their functional analogs. Indeed, it appears that the notion of a super-regular
function has not yet been articulated. In this note, we bridge this gap between
super-regularity of sets and functions as well as establishing connections to other
known function-regularities in the literature. A missing link is yet another type of
set regularity, what we call Clarke super-regularity, which is a slightly stronger
version of super-regularity and, as we show, this is equivalent to other existing
notions of regularity. For a general set that is not necessarily the epigraph of a
function, we establish an equivalence between subsmoothness as introduced by
Aussel, Daniilidis, and Thibault [1] and Clarke super-regularity.

To begin, in Section 6.2 we recall different concepts of the normal cones to a
set as well as notions of set regularity, including Clarke regularity (Definition 6.3)
and (limiting) super-regularity (Definition 6.4). Next, in Section 6.3 we introduce
the notion of Clarke super-regularity (Definition 6.5) and relate it to the notion of
subsmoothness (Theorem 6.1). We also provide an example illustrating that Clarke
super-regularity at a point is a strictly weaker condition than Clarke regularity
around the point (Example 6.2). Finally, in Section 6.4, we provide analogous
statements for Lipschitz continuous functions, relating the class of approximately
convex functions to super-regularity of the epigraph. After completing this work
we received a preprint [16] which contains results of this flavor, including a
characterization of (limiting) super-regularity in terms of (metric) subsmoothness.

6.2 Normal Cones and Clarke Regularity

The notation used throughout this work is standard for the field of variational
analysis, as can be found in [14]. The closed ball of radius r > 0 centered at x ∈ R

n

is denoted Br (x) and the closed unit ball is denoted B := B1(0). (metric) projector
onto a set Ω ⊂ R

n, denoted by PΩ : Rn ⇒ Ω , is the multi-valued mapping
defined by

PΩ(x) := {ω ∈ Ω : ‖x − ω‖ = d(x,Ω)},



6 Characterizations of Super-Regularity 139

where d(x,Ω) denotes the distance of the point x ∈ R
n to the set Ω . When Ω is

nonempty and closed, its projector PΩ is everywhere nonempty. A selection from
the projector is called a projection.

Given a set Ω , we denote its closure by clΩ , its convex hull by convΩ ,
and its conic hull by coneΩ . In this work we shall deal with two fundamental
tools in nonsmooth analysis; normal cones to sets and subdifferentials of functions
(Section 6.4).

Definition 6.1 (Normal Cones) Let Ω ⊆ R
n and let ω̄ ∈ Ω .

(i) The proximal normal cone of Ω at ω̄ ∈ Ω is defined by

NP
Ω(ω̄) = cone

(
P−1
Ω ω̄ − ω̄

)
.

Equivalently, ω̄∗ ∈ NP
Ω(ω̄) whenever there exists σ ≥ 0 such that

〈ω̄∗, ω − ω̄〉 ≤ σ‖ω − ω̄‖2, ∀ω ∈ Ω.

(ii) The Fréchet normal cone of Ω at ω̄ is defined by

N̂Ω(ω̄) = {
ω̄∗ ∈ R

n : 〈ω̄∗, ω − ω̄〉 ≤ o(‖ω − ω̄‖), ∀ω ∈ Ω
}
,

Equivalently, ω̄∗ ∈ N̂Ω(ω̄), if for every ε > 0 there exists δ > 0 such that

〈ω̄∗, ω − ω̄〉 ≤ ε‖ω − ω̄‖, for all ω ∈ Ω ∩ Bδ(ω̄). (6.1)

(iii) The limiting normal cone of Ω at ω̄ is defined by

NΩ(ω̄) = Lim sup
ω→ω̄

N̂Ω(ω̄),

where the limit superior denotes the Painlevé–Kuratowski outer limit.
(iv) The Clarke normal cone of Ω at ω̄ is defined by

NC
Ω(ω̄) = cl convNΩ(ω̄).

When ω̄ �∈ Ω , all of the aforementioned normal cones at ω̄ are defined to be empty.

Central to our subsequent analysis is the notion of a truncation of a normal cone.
Given r > 0, one defines the r-truncated version of each of the above cones to
be its intersection with a ball centered at the origin of radius r . For instance, the
r-truncated proximal normal cone of Ω at ω̄ ∈ Ω is defined by

N rP
Ω (ω̄) = cone

(
P−1
Ω ω̄ − ω̄

)
∩ Br ,
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that is, ω̄∗ ∈ N rP
Ω (ω̄) whenever ‖ω̄∗‖ ≤ r and for some σ ≥ 0 we have

〈ω̄∗, ω − ω̄〉 ≤ σ‖ω − ω̄‖2, ∀ω ∈ Ω.

In general, the following inclusions between the normal cones can deduce
straightforwardly from their respective definitions:

NP
Ω(ω̄) ⊆ N̂Ω(ω̄) ⊆ NΩ(ω̄) ⊆ NC

Ω(ω̄). (6.2)

The regularity of sets is characterized by the relation between elements in the
graph of the normal cones to the sets and directions constructable from points in
the sets. The weakest kind of regularity of sets that has been shown to guarantee
convergence of the alternating projections algorithm is elemental subregularity (see
[7, Cor.3.13(a)] and [15, Theorem 3.3.5]). It was called elemental (sub)regularity
in [8, Definition 5] and [11, Definition 3.1] to distinguish regularity of sets from
regularity of collections of sets. Since we are only considering the regularity of sets,
and later functions, we can drop the “elemental” qualifier in the present setting. We
also streamline the terminology and variations on elemental subregularity used in
[8, 11], replacing uniform elemental subregularity with a more versatile and easily
distinguishable variant.

Definition 6.2 (Subregularity [8, Definition 5]) Let Ω ⊆ R
n and ω̄ ∈ Ω . The set

Ω is said to be ε-subregular relative to Λ at ω̄ for (ω̂, ω̂∗) ∈ gphNΩ if it is locally
closed at ω̄ and there exists an ε > 0 together with a neighborhood U of ω̄ such that

〈
ω̂∗ − (ω′ − ω), ω − ω̂

〉 ≤ ε||ω̂∗−(ω′−ω)||‖ω−ω̂‖ , ∀ω′ ∈ Λ∩U, ∀ω ∈ PΩ(ω′).
(6.3)

If for every ε > 0 there is a neighborhood (depending on ε) such that (6.3) holds,
then Ω is said to be subregular relative to Λ at ω̄ for (ω̂, ω̂∗) ∈ gphNΩ .

The property that distinguishes the degree of regularity of sets is the diversity of
vectors (ω̂, ω̂∗) ∈ gphNΩ for which (6.3) holds, as well as the choice of the set Λ.
Of particular interest to us are Clarke regular sets, which satisfy (6.3) for all ε > 0
and for all Clarke normal vectors at ω̄.

Definition 6.3 (Clarke Regularity) The set Ω is said to be Clarke regular at ω̄ ∈
Ω if it is locally closed at ω̄ and for every ε > 0 there exists δ > 0 such that for all
(ω̄, ω̄∗) ∈ gphNC

Ω〈
ω̄∗, ω − ω̄

〉 ≤ ε ||ω̄∗||‖ω − ω̄‖, ∀ω ∈ Ω ∩ Bδ(ω̄). (6.4)

Note that (6.4) is (6.3) with Λ = Ω and U = Bδ(ω̄), which in the case of
Clarke regularity holds for all (ω̄, ω̄∗) ∈ gphNC

Ω . A short argument shows that, for
Ω Clarke regular at ω̄, the Clarke and Fréchet normal cones coincide at ω̄. Indeed,
this property is used to define Clarke regularity in [14, Definition 6.4]. It is also
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immediately clear from the definitions that if Ω is Clarke regular at ω̄, then it is
subregular relative to Λ = Ω at ω̄ for all ω̄∗ ∈ NΩ(ω̄).

By setting Λ = R
n, letting ω̂ ∈ Ω be in a neighborhood of ω̄ and fixing ω̂∗ = 0

in the context of Definition 6.2, we arrive at super-regularity which, when stated
explicitly, takes the following form.

Definition 6.4 (Super-Regularity [10, Definition 4.3]) Let Ω ⊆ R
n and ω̄ ∈ Ω .

The set Ω is said to be super-regular at ω̄ if it is locally closed at ω̄ and for every
ε > 0 there is a δ > 0 such that for all (ω̂, 0) ∈ gphNΩ ∩ {(Bδ(ω̄), 0)}
〈
ω′ − ω, ω̂ − ω

〉 ≤ ε ||ω′ − ω||‖ω̂ − ω‖, ∀ω′ ∈ Bδ(ω̄), ∀ω ∈ PΩ(ω′). (6.5)

Rewriting the above leads the following equivalent characterization of super-
regularity, which is more useful for our purposes.

Proposition 6.1 ([10, Proposition 4.4]) The set Ω ⊆ R
n is super-regular at ω̄ ∈ Ω

if and only if it is locally closed at ω̄ and for every ε > 0 there exists δ > 0 such
that

〈
ω∗1, ω2 − ω1

〉 ≤ ε ||ω∗1||‖ω2 − ω1‖,
∀(ω1, ω

∗
1) ∈ gphNΩ ∩

(
Bδ(ω̄)× R

n
)
,∀ω2 ∈ Ω ∩ Bδ(ω̄).(6.6)

It is immediately clear from this characterization that super-regularity implies
Clarke regularity. By continuing our development of increasingly nicer regularity
properties to convexity, we have the following relationships involving stronger
notions of regularity.

Proposition 6.2 Let Ω ⊆ R
n be locally closed at ω̄ ∈ Ω .

(i) If Ω is prox-regular at ω̄ (i.e., there exists a neighborhood of x on which the
projector is single-valued), then there is a constant γ > 0 such that for all
ε > 0

〈
ω∗1, ω2 − ω1

〉 ≤ ε||ω∗1 ||‖ω2 − ω1‖ ,
∀(ω1, ω

∗
1) ∈ gphNΩ ∩

(
Bγ ε(ω̄)× R

n
)
, ∀ω2 ∈ Ω ∩ Bγ ε(ω̄). (6.7)

(ii) If Ω is convex, then

〈
ω∗1, ω2 − ω1

〉 ≤ 0 , ∀(ω1, ω
∗
1) ∈ gphNΩ, ∀ω2 ∈ Ω. (6.8)

Proof The proof of (i) can be found in [8, Proposition 4(vi)]. Part (ii) is classical.
��

Example 6.1 (Pac-Man) Let x = 0 ∈ R
2 and consider two subsets of R2 given by

A = {(x1, x2) ∈ R
2 | x2

1 + x2
2 ≤ 1, − (1/2)x1 ≤ x2 ≤ x1, x1 ≥ 0},



142 A. Danillidis et al.

Fig. 6.1 An illustration of
the sets in Example 6.1

B = {(x1, x2) ∈ R
2 | x2

1 + x2
2 ≤ 1, x1 ≤ |x2|}.

The set B looks like a “Pac-Man”’ with mouth opened to the right and the set A, if
you like, a piece of pizza. For an illustration, see Fig. 6.1. The set B is subregular
relative to A at x = 0 for all (b, v) ∈ gph (NB ∩ A) for ε = 0 on all neighborhoods
since, for all a ∈ A, aB ∈ PB(a) and v ∈ NB(b) ∩ A. To see this, we simply note
that

〈v − (a − aB), aB − b〉 = 〈v, aB − b〉 − 〈a − aB, aB − b〉 = 0.

In other words, from the perspective of the piece of pizza, Pac-Man looks convex.
The set B, however, is only ε-subregular at x = 0 relative to R

2 for any v ∈ NB(0)
for ε = 1 since, by choosing x = tv ∈ B (where 0 �= v ∈ B ∩ NB(0), t ↓ 0),
we have 〈v, x〉 = ‖v‖‖x‖ > 0. Clearly, this also means that Pac-Man is not Clarke
regular.

6.3 Super-Regularity and Subsmoothness

In the context of the definitions surveyed in the previous section, we introduce
an even stronger type of regularity that we identify, in Theorem 6.1, with sub-
smoothness as studied in [1]. This will provide a crucial link to the analogous
characterizations of regularity for functions considered in Theorem 6.2, in particular,
to approximately convex functions studied in [12].

Definition 6.5 (Clarke Super-Regularity) Let Ω ⊆ R
n and ω̄ ∈ Ω . The set Ω

is said to be Clarke super-regular at ω̄ if it is locally closed at ω̄ and for every
ε > 0 there exists δ > 0 such that for every (ω̂, ω̂∗) ∈ gphNC

Ω ∩ (Bδ(ω̄)× R
n), the

following inequality holds

〈
ω̂∗, ω − ω̂

〉 ≤ ε ||ω̂∗||‖ω − ω̂‖, ∀ω ∈ Ω ∩ Bδ(ω̄). (6.9)
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Fig. 6.2 A sketch of the
function f and the sequence
(ωk) given in Example 6.2

The only difference between Clarke super-regularity and super-regularity is
that, in the case of Clarke super-regularity, the key inequality above holds for all
nonzero Clarke normals in a neighborhood instead holding only for limiting normals
(compare (6.6) with (6.9)). It therefore follows that Clarke super-regularity at a point
implies Clarke regularity there. Nevertheless, even this stronger notion of regularity
does not imply Clarke regularity around ω̄, as the following counterexample shows.

Example 6.2 (Regularity Only At a Point) Let f : R2 → R be the continuous,
piecewise linear function (see Figure 6.2) defined by

f (x) :=

⎧⎪⎨
⎪⎩

0, if x ≤ 0
− 1

2k
(x − 1

2k
)− 1

3·4k ,if
1

2k+1 ≤ x ≤ 1
2k

(for k = 1, 2, . . . )
− 1

12 , if x ≥ 1
2 .

Notice that

− 4

3
x2 ≤ f (x) ≤ −1

3
x2, ∀x ∈

[
0,

1

2

]
. (6.10)

Let Ω = epi f denote the epigraph of f . Thanks to (6.10) it is easily seen that
Ω is Clarke regular at ω̄ = (0, 0) in the sense of Definition 6.3. However, Ω
is not Clarke regular at the sequence of points ωk = ( 1

2k+1 ,
1
2k
) converging to ω̄.

Indeed, the Fréchet normal cones N̂Ω(ωk) are reduced to {0} for all k ≥ 1, while
the corresponding limiting normal cones are given by

NΩ(ωk) = R+
{(
− 1

2k
,−1

)
,

(
− 1

2k+1
,−1

)}
, ∀k ∈ N.

A missing link in the cascade of set regularity is subsmooth and semi-subsmooth
sets, introduced and studied by Aussel, Daniilidis and Thibault in [1, Defini-
tions 3.1 & 3.2].
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Definition 6.6 ((Semi-)subsmooth Sets) Let Ω ⊂ R
n be closed and let ω̄ ∈ Ω .

(i) The set Ω is subsmooth at ω̄ ∈ Ω if, for every r > 0 and ε > 0, there exists
δ > 0 such that for all ω1, ω2 ∈ Bδ(ω̄) ∩ Ω , all ω∗1 ∈ N rC

Ω (ω1) and all ω∗2 ∈
N rC

Ω (ω2) we have:

〈ω∗1 − ω∗2, ω1 − ω2〉 ≥ −ε‖ω1 − ω2‖. (6.11)

(ii) The set Ω is semi-subsmooth at ω̄ if, for every r > 0 and ε > 0, there exists
δ > 0 such that for all ω ∈ Bδ(ω̄) ∩Ω , all ω∗ ∈ N rC

Ω (ω) and all ω̄∗ ∈ N rC
Ω (ω̄)

〈ω∗ − ω̄∗, ω − ω̄〉 ≥ −ε‖ω − ω̄‖. (6.12)

It is clear from the definitions that subsmoothness at a point implies semi-
subsmoothness at the same point. The next theorem establishes the precise con-
nection between subsmoothness and Clarke super-regularity (Definition 6.5).

Theorem 6.1 (Characterization of Subsmoothness) Let Ω ⊆ R
n be closed and

nonempty.

(i) The set Ω is subsmooth at ω̄ ∈ Ω if and only if Ω is Clarke super-regular at ω̄.
(ii) The set Ω is semi-subsmooth at ω̄ ∈ Ω if and only if for each constant ε > 0

there is a δ > 0 such that for every (ω̄, ω̄∗) ∈ gphNC
Ω〈

ω̄∗, ω − ω̄
〉 ≤ ε ||ω̄∗||‖ω − ω̄‖, ∀ω ∈ Ω ∩ Bδ(ω̄)

and for all (ω, ω∗) ∈ gphNC
Ω ∩ (Bδ(ω̄)× R

n),

〈
ω∗, ω̄ − ω

〉 ≤ ε ||ω∗||‖ω̄ − ω‖.

Proof (i) Assume Ω is subsmooth at ω̄ ∈ Ω and fix an ε > 0. Set r = 1 and
let δ > 0 be given by the definition of subsmoothness. Then for every ω1, ω2 ∈
Ω ∩ Bδ(ω̄) and ω∗2 ∈ NC

Ω(ω2)�{0}, applying (6.11) for ω∗1 = {0} ∈ N
(r=1)C
Ω (ω1)

and ||ω∗2||−1ω∗2 ∈ N
(r=1)C
Ω (ω2) we deduce (6.9). The same argument applies in the

case that ω∗2 = 0 and ω∗1 �= 0. If both ω∗1 = ω∗2 = 0, then the required inequality
holds trivially.

Let us now assume that Ω is Clarke super-regular at ω̄ and fix r > 0 and ε > 0.
Let δ > 0 be given by the definition of Clarke super-regularity corresponding to
ε′ = ε/2r and let ω1, ω2 ∈ Bδ(ω̄) ∩ Ω , ω∗1 ∈ N rC

Ω (ω1) and ω∗2 ∈ N rC
Ω (ω2). It

follows from (6.9) that
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〈
ω∗1, ω1 − ω2

〉 ≥ − ε

2r
||ω∗1||‖ω1 − ω2‖ ≥ −ε

2
‖ω1 − ω2‖

and〈−ω∗2, ω1 − ω2
〉 ≥ − ε

2r
||ω∗2||‖ω1 − ω2‖ ≥ −ε

2
‖ω1 − ω2‖.

We conclude by adding the above inequalities.

Part (ii) is nearly identical and the proof is omitted. ��
The following corollary utilizes Theorem 6.1 to summarize the relations between

various notions of regularity for sets, the weakest of these being the weakest known
regularity assumption under which local convergence of alternating projections has
been established [15, Theorem 3.3.5].

Corollary 6.1 Let Ω ⊆ R
n be closed, let ω̄ ∈ Ω and consider the following

assertions.

(i) Ω is prox-regular at ω̄.
(ii) Ω is subsmooth at ω̄.

(iii) Ω is Clarke super-regular at ω.
(iv) Ω is (limiting) super-regular at ω.
(v) Ω is Clarke regular at ω.

(vi) Ω is subregular at ω relative to some nonempty Λ ⊂ R
n for all (ω, ω∗) ∈

V ⊂ gphNP
Ω .

Then (i) %⇒ (ii) ⇐⇒ (iii) %⇒ (iv) %⇒ (v) %⇒ (vi).

Proof (i) %⇒ (ii): This was shown in [1, Proposition 3.4(ii)]. (ii) ⇐⇒ (iii): This
is Theorem 6.1(i). (iii) %⇒ (iv) %⇒ (v) %⇒ (vi): These implications follow
from the definitions. ��
Remark 6.1 (Amenablility) A further regularity between convexity and prox-
regularity is amenability [14, Definition 10.23]. This was shown in [13,
Corollary 2.12] to imply prox-regularity. Amenability plays a larger role in the
analysis of functions and is defined precisely in this context below.

6.4 Regularity of Functions

The extension of the above notions of set regularity to analogous notions for
functions typically passes through the epigraphs. Given a function f : R

n →
[−∞,+∞], recall that its domain is dom f := {x ∈ R

n : f (x) < +∞} and
its epigraph is

epi f := {(x, α) ∈ R
n × R : f (x) ≤ α}.
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The subdifferential of a function at a point x̄ can be defined in terms of the normal
cone to its epigraph at that point. Let f : Rn → (−∞,+∞] and let x̄ ∈ dom f .
The proximal subdifferential of f at x̄ is defined by

∂Pf (x̄) = {v ∈ R
n : (v,−1) ∈ NP

epi f ((x̄, f (x̄))}. (6.13)

The Fréchet (resp. limiting, Clarke) subdifferential, denoted ∂̂f (x̄) (resp. ∂f (x̄),
∂Cf (x̄)), is defined analogously by replacing normal cone NP

epi f (ω̄) with N̂epi f (ω̄)

(resp. Nepi f (ω̄), N
C
epi f (ω̄)) in (6.13) where ω̄ = (x̄, f (x̄)). The horizon and Clarke

horizon subdifferentials at x are defined, respectively, by

∂∞f (x̄) = {v ∈ R
n : (v, 0) ∈ Nepi f ((x̄, f (x̄))},

∂C∞f (x̄) = {v ∈ R
n : (v, 0) ∈ NC

epi f ((x̄, f (x̄))}.

In what follows, we define regularity of functions in terms of the regularity of
their epigraphs. We refer to a regularity defined in such a way as epi-regularity.

Definition 6.7 (Epi-Regular Functions) Let f : Rn → (−∞,+∞], x̄ ∈ dom f ,
Λ ⊆ dom f , and (y, v) ∈ gph ∂f ∪ gph ∂∞f .

(i) f is said to be ε-epi-subregular at x̄ ∈ dom f relative to Λ ⊆ dom f for (y, v)
whenever epi f is ε-subregular at x̄ ∈ dom f relative to {(x, α) ∈ epi f | x ∈
Λ} for (y, (v, e)) with fixed e ∈ {−1, 0}.

(ii) f is said to be epi-subregular at x̄ relative to Λ ⊆ dom f for (y, v) whenever
epi f is subregular at (x̄, f (x)) relative to {(x, α) ∈ epi f | x ∈ Λ} for
(y, (v, e)) with fixed e ∈ {−1, 0}.

(iii) f is said to be epi-Clarke regular at x̄ whenever epi f is Clarke regular at
(x̄, f (x)). Similarly, the function is said to be epi-Clarke super-regular (resp.
epi-super-regular, epi-prox-regular) at x̄ whenever its epigraph is Clarke super-
regular (resp. super-regular, or prox-regular) at (x̄, f (x)).

Recent work [2, 4] makes use of the directional regularity (in particular Lipschitz
regularity) of functions or their gradients. The next example illustrates how this fits
naturally into our framework.

Example 6.3 The negative absolute value function f (x) = −|x| is the classroom
example of a function that is not Clarke regular at x = 0. It is, however, ε-epi-
subregular relative to R at x = 0 for all limiting subdifferentials there for the same
reason that the Pac-Man of Example 6.1 is ε-subregular relative to R

2 at the origin
for ε = 1. Indeed, ∂f (0) = {−1,+1} and at any point (x, y) below epi f the vector
(x, y) − Pepi f (x, y) ∈ {α(−1,−1), α(1,−1)} with α ≥ 0. So by the Cauchy-
Schwarz inequality

〈
(±1,−1)− α(±1,−1), Pepi f (x, y)

〉
≤ ||(±1,−1)− α(±1,−1)||‖Pepi f (x, y)‖ , ∀(x, y) ∈ R

2. (6.14)
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In particular, any point (x, x) ∈ gph f we have

Pepi f (x, x) = (x, x) and (x, x)− Pepi f (x, x) = (0, 0),

so the inequality is tight for the subgradient −1 ∈ ∂f (0). Following (6.3), this
shows that epi f is ε-subregular at the origin relative to R

2 for all limiting normals
(in fact, for all Clarke normals) at (0, 0) for ε = 1. In contrast, the function f is
not epi-subregular at x = 0 relative to R since the inequality above is tight on all
balls around the origin, just as with the Pac-Man of Example 6.1. If one employs
the restriction Λ = {x | x < 0}, then epi-subregularity of f is recovered at the
origin relative to the negative orthant for the subgradient v = 1 for ε = 0 on the
neighborhood U = R, that is, −|x| looks convex from this direction!

In a subsequent section, we develop an equivalent, though more elementary,
characterizations of these regularities of functions defined in Definition 6.7.

6.4.1 Lipschitz Continuous Functions

In this section, we consider the class of locally Lipschitz functions, which allows us
to avoid the horizon subdifferential (since this is always {0} for Lipschitz functions).
Recall that a set Ω is called epi-Lipschitz at ω̄ ∈ Ω if it can be represented near ω̄ as
the epigraph of a Lipschitz continuous function. Such a function is called a locally
Lipschitz representation of Ω at ω̄.

The following notion of approximately convex functions was introduced by Ngai,
Luc and Thera [12] and turns out to fit naturally within our framework.

Definition 6.8 (Approximate Convexity) A function f : Rn → (−∞,+∞] is
said to be approximately convex at x̄ ∈ R

n if for every ε > 0 there exists δ > 0 such
that

(∀x, y ∈ Bδ(x̄))(∀t ∈ ]0, 1[ ) :
f (tx + (1− t)y) ≤ tf (x)+ (1− t)f (y)+ εt (1− t)‖x − y‖.

Daniilidis and Georgiev [5] and subsequently Daniilidis and Thibault [1, The-
orem 4.14] showed the connection between approximately convex functions and
subsmooth sets. Using our results in the previous section, we are able to provide
the following extension of their characterization. In what follows, set ω = (x, t) ∈
R
n × R and denote by π(ω) = x its projection onto R

n.

Proposition 6.3 (Subsmoothness of Lipschitz Epigraphs) Let Ω be an epi-
Lipschitz subset of R

n and let ω̄ ∈ bdryΩ . Then the following statements are
equivalent:

(i) Ω is Clarke super regular at ω̄.
(ii) Ω is subsmooth at ω̄.
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(iii) every locally Lipschitz representation f of Ω at ω̄ is approximately convex at
π(ω̄).

(iv) some locally Lipschitz representation f of Ω at ω̄ is approximately convex at
π(ω̄).

Proof The equivalence of (i) and (ii) follows from Theorem 6.1(i), and does
not require Ω to be epi-Lipschitz. The equivalence of (ii), (iii), and (iv) by [1,
Theorem 4.14]. ��
Remark 6.2 The equivalences in Theorem 6.3 actually hold in the Hilbert space
setting without any changes. In fact, the equivalence of (ii)-(iv) remains true in
Banach spaces [1, Theorem 4.14].

The following characterization extends [5, Theorem 2].

Theorem 6.2 (Characterizations of Approximate Convexity) Let f : Rn → R

be locally Lipschitz on R
n and let x̄ ∈ R

n. Then the following are equivalent:

(i) epi f is Clarke super-regular at x̄.
(ii) f is approximately convex at x̄.

(iii) For every ε > 0, there exists a δ > 0 such that

(∀x, y ∈ Bδ(x̄))(∀v ∈ ∂Cf (x)) f (y)− f (x) ≥ 〈v, y − x〉 − ε‖y − x‖.

(iv) ∂f is submonotone [5, Definition 7] at x0, that is, for every ε there is a δ such
that for all x1, x2 ∈ Bδ(x0) ∩ dom ∂f , and all x∗i ∈ ∂f (xi) (i = 1, 2), one has

〈
x∗1 − x∗2 , x1 − x2

〉 ≥ −ε‖x1 − x2‖. (6.15)

Proof (i) ⇐⇒ (ii): Since f is locally Lipschitz at x̄, it is trivially a local Lipschitz
representation of Ω = epi f at ω̄ = (x̄, f (x̄)) ∈ Ω . The result thus follows from
Proposition 6.3. (ii) ⇐⇒ (iii) ⇐⇒ (iv): This is [5, Theorem 2]. ��

6.4.2 Non-Lipschitzian Functions

In this section, we collect results which hold true without assuming local Lipschitz
continuity.

Proposition 6.4 Let f : Rn → R be lower semicontinuous (lsc) and approximately
convex. Then epi f is Clarke-super regular.

Proof As a proper, lsc, approximately convex function is locally Lipschitz at each
point in the interior of its domain [12, Proposition 3.2] and dom f = R

n, the result
follows from Theorem 6.2. ��



6 Characterizations of Super-Regularity 149

Example 6.4 (Clarke Super-Regularity Does Not Imply Approximate Convexity)
Consider the counting function f : Rn → {0, 1, . . . , n} defined by

f (x) = ‖x‖0 :=
n∑

j=1

|sign(xj )|, where sign(t) :=
⎧⎨
⎩
−1 for t < 0
0 for t = 0
+1 for t > 0 .

This function is lower-semicontinuous and Clarke epi-super-regular almost every-
where, but not locally Lipschitz at x whenever ‖x‖0 < n; a fortiori, f it is
actually discontinuous at all such points. Indeed, the epigraph of f is locally
convex almost everywhere and, in particular, at any point (x, α) with α > f (x).
At the point (x, f (x)) however, the epigraph is not even Clarke regular when
‖x‖0 < n. Nevertheless, it is ε-subregular, for the limiting subgradient 0 with ε = 1.
Conversely, if x is any point with ‖x‖0 = n, then the counting function is locally
constant and so in fact locally convex. These observations agree nicely with those
in [9], namely, that the rank function (a generalizaton of the counting function) is
subdifferentially regular everywhere (i.e., all the various subdifferentials coincide)
with 0 ∈ ∂‖x‖0 for all x ∈ R

n.

In order to state the following corollary, recall that an extended real-valued
function f is strongly amenable at x̄ is if f (x̄) is finite and there exists an open
neighborhood U of x̄ on which f has a representation as a composite g ◦ F with F

of class C2 and g a proper, lsc, convex function on R
n.

Proposition 6.5 Let f : Rn → (−∞,+∞] and consider the following assertions:

(i) f is strongly amenable at x̄.
(ii) f is prox-regular at x̄.

(iii) epi f is Clarke super-regular at (x̄, f (x̄)).

Then: (i) %⇒ (ii) %⇒ (iii).

Proof The fact that strong amenability implies prox-regularity is discussed in [13,
Proposition 2.5]. To see that (ii) implies (iii), suppose f is prox-regular at x̄. Then
epi f is prox-regular at (x̄, f (x̄)) by [13, Theorem 3.5] and hence Clarke super-
regular at (x̄, f (x̄)) by Theorem 6.1. ��

To conclude, we establish a primal characterization of epi-subregularity anal-
ogous to the characterization of Clarke epi-super-regularity in Theorem 6.2. It is
worth noting that, unlike the results in Section 6.4.1, this characterization includes
the possibility of horizon normals. In what follows, we denote the epigraph of a
function f restricted to a subset Λ ⊂ dom f by epi(fΛ) := {(x, α) ∈ epi f | x ∈
Λ}.
Proposition 6.6 Consider a function f : Rn → (−∞,+∞], let x ∈ dom f and
let (x, v) ∈ (gph ∂Cf ∪ gph ∂C∞f ). Then the following assertions hold:

(i) f has an ε-subregular epigraph at x̄ ∈ dom f relative to Λ ⊆ dom f for (x, v)
if and only if for some constant ε > 0 there is a neighborhood U of (x, f (x))
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such that, for all (x, α) ∈ epi(fΛ) ∩ U , one of the following two inequalities
holds:

f (x)+ 〈v, x − x〉 ≤ α

+ ε‖v‖‖x − x‖
((

1+ ‖v‖−2
) (

1+ |α − f (x)|2‖x − x‖−2
)) 1

2

(6.16a)

〈v, x − x〉 ≤ ε‖v‖‖x − x‖
(

1+ |α − f (x)|2‖x − x‖−2
) 1

2
. (6.16b)

(ii) f is epi-subregular at x̄ ∈ dom f for (x, v) relative to Λ ⊆ dom f if and only
if for all ε > 0 there is a neighborhood (depending on ε) of (x, f (x)) such
that, for all (x, α) ∈ epi(fΛ) ∩ U , either (6.16a) or (6.16b) holds.

Proof

(i): First observe that since

Nepi f (x) ⊇ {(v,−1) | v ∈ ∂f (x)} ∪ {(v, 0) | v ∈ ∂∞f (x)} , and

NC
epi f (x) ⊇

{
(v,−1) | v ∈ ∂Cf (x)

}
∪
{
(v, 0) | v ∈ ∂C∞f (x)

}
,

any point (x, v) ∈ (gph ∂f ∪ gph ∂∞f ) corresponds to either a normal vector
of the form (v,−1) or a horizon normal of the form (v, 0). Suppose first that f
is ε-epi-subregular at x relative to Λ ⊂ dom f for v ∈ ∂Cf (x) with constant ε
and neighborhood U ′ of x. Then epi f is ε-subregular at (x, f (x)) relative to
epi(fΛ) for (v,−1) ∈ NC

epi f (x, f (x)) with constant ε and neighborhood U of
(x, f (x)) in (6.3). Thus, for all (x, α) ∈ epi(fΛ) ∩ U , we have

〈(v,−1), (x, α)− (x, f (x))〉 ≤ ε‖(v,−1)‖‖(x, α)− (x, f (x))‖

⇐⇒ 〈v, x − x〉 − α + f (x) ≤ ε
(
‖v‖2 + 1

) 1
2
(
‖x − x‖2 + (α − f (x))2

) 1
2

= ε‖v‖‖x − x‖
(

1+ ‖v‖−2
) 1

2

(
1+ (α − f (x))2‖x − x‖−2

) 1
2

which from the claim follows.
The only other case to consider is that f is ε-epi-subregular at x relative
to Λ ⊂ dom f for v ∈ ∂C∞f (x) with constant ε and neighborhood U ′
of x. In this case, epi f is ε-subregular at (x, f (x)) relative to epi(fΛ) for
(v, 0) ∈ NC

epi f (x, f (x)) with constant ε and neighborhood U of (x, f (x)) in
(6.3). Thus, for all (x, α) ∈ epi(fΛ) ∩ U , we have



6 Characterizations of Super-Regularity 151

〈(v, 0), (x, α)− (x, f (x))〉 ≤ ε‖(v, 0)‖‖(x, α)− (x, f (x))‖

⇐⇒ 〈v, x − x〉 ≤ ε‖v‖
(
‖x − x‖2 + (α − f (x))2

)1/2

⇐⇒ 〈v, x − x〉 ≤ ε‖v‖‖x − x‖
(

1+ (α − f (x))2‖x − x‖−2
)1/2

,

which completes the proof of (i).
(ii): Follows immediately from the definition.

��
Remark 6.3 (Indicator Functions of Subregular Sets) When f = ιΩ for a closed set
Ω the various subdifferentials coincide with the respective normal cones to Ω . In
this case, inequality (6.16b) subsumes (6.16a) since all subgradients are also horizon
subgradients and (6.16b) reduces to (6.3) in agreement with the corresponding
notions of regularity of sets.
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Chapter 7
The Inverse Function Theorems
of L. M. Graves

Asen L. Dontchev

Abstract The classical inverse/implicit function theorem revolves around solving
an equation involving a differentiable function in terms of a parameter and tells
us when the solution mapping associated with this equation is a differentiable
function. Already in 1927 Hildebrand and Graves observed that one can put aside
differentiability using instead Lipschitz continuity. Subsequently, Graves developed
various extensions of this idea, most known of which are the Lyusternik-Graves
theorem, where the inverse of a function is a set-valued mapping with certain
Lipschitz type properties, and the Bartle-Graves theorem which establishes the
existence of a continuous and calm selection of the inverse. In the last several
decades more sophisticated results have been obtained by employing various
concepts of regularity of mappings acting in metric spaces, mainly aiming at
applications to numerical analysis and optimization. This paper presents a unified
view to the inverse function theorems that originate from the works of Graves. It has
a historical flavor, but not entirely, tracing the development of ideas from a personal
perspective rather than surveying the literature.

Keywords Inverse function theorem · Nonsmooth analysis · Set-valued
mapping · Metric regularity · Calmness · Continuous selection

AMS 2010 Subject Classification 47J07, 49J53, 49K40, 90C31

7.1 Introduction

Lawrence Murry Graves (1896–1973) earned his Ph.D. in calculus of variations
in 1924 from the University of Chicago; his advisor was G. A. Bliss. Thanks to
Mathematics Genealogy Project, one can trace the mathematical roots of Graves:
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Bliss was a student of O. Bolza, who was a student of C. Felix Klein, who had
two advisers: J. Plüker and R. O. S. Lipschitz. Lipschitz also had two advisers, G.
Dirichlet and M. Ohm, and Dirichlet’s advisers were S. Poisson and J.-B. Fourier.
Poisson also had two advisers, J. L. Lagrange and Laplace, while Fourier’s adviser
was Lagrange, and the advisor of Lagrange was L. Euler. So everything goes right
to the origins of the calculus of variations.

After staying at Harvard for two years on a National Research Fellowship, Graves
returned to the University of Chicago in 1926 and spent the rest of his career there,
retiring in 1961. From 1930 to 1952 he supervised at least 18 PhD students, among
them L. Alaoglu, E. McShane, H. Goldstine and Robert G. Bartle. Robert (Bob)
Bartle recruited me, the author of the present paper, to Mathematical Reviews in
1990, where he was Executive Editor at that time. Around 1992 I read the paper [11]
by Graves and discovered that what is written about it in [6] is not correct; this is
explained in detail in the paper [8]. Around that time and later I had the opportunity
to spend a number of hours with Bob Bartle, talking also about Graves and his
mathematics. According to Bob Bartle, Professor Graves, as he always called him,
was a private man, who did not like meetings and preferred to communicate with
his students by mail (not by e-mail!). He was very rigorous and even meticulous in
his mathematical writings, always looking for the precise statement under minimal
assumption, and this could be seen in his papers.

H. Hildebrand (who apparently met Graves in Harvard but spent most of his
professional life at the University of Michigan) and L. M. Graves are most likely the
authors of the first nonsmooth implicit function theorem, published in [12], about
50 years before the beginning of the era of nonsmooth analysis. Section 2 of this
paper is devoted to the Hildebrand–Graves theorem and extensions, reaching out to
recent developments in that direction.

Section 7.3 is devoted to the most known nowadays theorem of Graves, which is
now commonly called the Lyusternik–Graves theorem but other names are used
as well. It plays a major role in modern variational analysis and optimization,
and not only. According to the author’s knowledge, it is the first inverse function
theorem where the inverse is not a function but a set-valued mapping having
a certain Lipschitz-type property. A number of papers and several monographs
have been written about this theorem and around, the most recent being [13],
which I enthusiastically recommend. In Section 7.3 a nonsmooth Lyusternik–Graves
theorem is presented, which is proved in the recent paper [4].

In the late 90s there was a Mathematical Reviews Executive Committee meeting
and Jon Borwein came to Ann Arbor as a member of that committee. We met
with Jon already in the early 80s when we tried to solve an open problem in
approximation theory (which was solved about 20 years later by L. Qi, H. Qi and
me). In Ann Arbor we with Jon had had extensive conversations about mathematics
but not only, and I mentioned to him one of the theorems (Theorem 4) in the paper
[1] by Bartle and Graves and a generalization of it by Páles [16]. Jon jumped on
that and, as a result, we published the paper [2]. I gave the paper to Bob who was
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already diagnosed with cancer1; shortly after he sent us a letter, in which he wrote
the following2:

Your results are, indeed, an impressive and far-reaching extension of the theorem that
Professor Graves and I published over a half-century ago. I was a student in a class of Graves
in which he presented the theorem in the case that the parameter domain is the interval [0, 1].
He expressed the hope that it could be generalized to a more general domain, but said that
he didn’t see how to do so. By a stroke of luck, I had attended a seminar a few months before
given by André Weil, which he titled “On a theorem by Stone.” I (mis)understood that he
was referring to M. H. Stone, rather than A. H. Stone, and attended. Fortunately, I listened
carefully enough to learn about paracompactness and continuous partition of unity3 (which
were totally new to me) and which I found to be useful in extending Graves’ proof. So
the original theorem was entirely due to Graves; I only provided an extension of his proof,
using methods that were not known to him. However, despite the fact that I am merely a
‘middleman,’ I am pleased that this result has been found to be useful.

In the Bartle-Graves paper [1] there are several theorems, and together with Jon
we generalized one of them, Theorem 4. In the late 1990s Hector Sussmann wrote
to me about a problem he bumped into when doing his constructions in geometric
control. I got lucky to connect his problem to another theorem (Theorem 6) in
the paper by Bartle and Graves [1]. This theorem is about a continuous and calm
selection of the inverse of a smooth function whose derivative at the reference point
is surjective. On the way to solving Sussmann’s problem, I generalized in [9] that
theorem for set-valued mapping. Section 7.4 of this paper discusses that Bartle-
Graves theorem (Theorem 6 in [1]) and its generalization, and states a conjecture
concerning a possible extension of that theorem to nonsmooth mappings.

There is another basic theorem in optimization which is not connected with the
name of Graves but perhaps should be: this is the Karush-Kuhn-Tucker theorem. As
is well known now, Kuhn and Tucker published this theorem in 1948 but in the 60s
it was discovered that the result is contained in the master thesis of W. Karush from
1939 written under the supervision of Graves. Specifically, in his vita at the end of
his master thesis of 25 pages, published in [15], Karush wrote: “. . .particular thanks
are due to Professor Graves for his guidance as a teacher and in the writing of this
dissertation.” The work of Karush, guided by Graves, had remained unknown for
quite a while, but the computers were still in the future and the finite-dimensional
optimization was not regarded as important as it is now.

This paper presents a unified view to the inverse/implicit function theorems
that originated from the works of Graves. To keep things simple, the focus is on
inverse function theorems; their implicit function versions are not discussed. The
terminology and notations are from the book [10], where the reader can find a
broader coverage of some of the results given here. This paper also presents some
more recent developments and poses open problems.

1Bob passed away September 18, 2002.
2This letter is also published in [9] and [10].
3Michael’s theorem was not known at that time.
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7.2 Hildebrand–Graves Theorem

Recall that the Lipschitz modulus of a function f acting between Banach spaces X
and Y and having x̄ in the interior of its domain, is defined as follows:

lip(f ; x̄) := lim sup
x′,x→x̄

x �=x′

‖f (x′)− f (x)‖
‖x′ − x‖ .

Also recall that, given a set-valued mapping F : X →→ Y and a point (x̄, ȳ) in its
graph gphF , the mapping F is said to have a single-valued graphical localization
around x̄ for ȳ whenever there exist neighborhoods U of x̄ and V of ȳ such that the
truncated mapping

U � x �→ F(x) ∩ V

is single-valued, a function. If this function is Lipschitz continuous on U , we say that
the mapping F has a Lipschitz localization around x̄ for ȳ. The following definition
goes back to Robinson [18]: A mapping F : X →→ Y with (x̄, ȳ) ∈ gphF is said to
be strongly regular at x̄ for ȳ whenever F−1 has a Lipschitz localization around ȳ

for x̄. For a function f we simply say that f is strongly regular at x̄ (dropping for
f (x̄)).

We start with the following slightly extended inverse function version of the
Hildebrand–Graves theorem [12, Theorem 4]. Since this result is central in this
paper, and also for pedagogical purposes, we supply it with a short proof which
is close to the original proof.4

Theorem 7.1 Let X be a Banach space and consider a function f : X→ X and a
linear bounded mapping A : X→ X which is invertible. Suppose that

lip(f − A; x̄) · ‖A−1‖ < 1. (7.1)

Then f is strongly regular at x̄.

Proof Without loss of generality, let f (x̄) = 0. Choose a positive κ such that

lip(f − A; x̄) < κ < 1/‖A−1‖

and let a > 0 be such that the function f − A is Lipschitz continuous on IBa(x̄)

with Lipschitz constant κ . Let y ∈ IBκa(0) and consider the function

4Interestingly enough, Hildebrand and Graves cite the 1922 paper by Banach published in
Fundamenta Mathematicae, where Banach presented his contraction mapping theorem, but they
prove it independently in their Theorem 1. Apparently, the contracting mapping iteration was
known to Picard and Goursat long before Banach.



7 The Inverse Function Theorems of L. M. Graves 157

IBa(x̄) � x �→ Φy(x) := −A−1[(f − A)(x)− y].

We have

‖x̄ −Φy(x̄)‖ = ‖x̄ + A−1(−Ax̄ − y)‖ = ‖A−1y‖ ≤ κa/κ = a.

Further, for any x, x′ ∈ IBa(x̄) we obtain

‖Φy(x)−Φy(x
′)‖ ≤ ‖A−1‖‖f (x)− f (x′)− A(x − x′)‖ ≤ ‖A−1‖κ‖x − x′‖;

that is, Φy is Lipschitz continuous on IBa(x̄) with Lipschitz constant ‖A−1‖κ < 1.
By the contraction mapping theorem, see, e.g., [10, Theorem 1A.2], we obtain that
for each y ∈ IBκa(0) there exists only one x(y) ∈ f−1(y)∩ IBa(x̄), that is, f−1 has
a single-valued graphical localization around x̄. Let y, y′ ∈ IBκa(0). Then

‖x(y)− x(y′)‖ = ‖Φy(x(y))−Φy′(x(y
′))‖

≤ ‖Φy(x(y))−Φy(x(y
′))‖ + ‖Φy(x(y

′))−Φy′(x(y
′))‖

≤ ‖A−1‖κ‖x(y)− x(y′)‖ + ‖A−1‖‖y − y′‖.

Hence, the graphical localization y �→ x(y) is Lipschitz continuous on IBa(x̄) with
Lipschitz constant ‖A−1‖/(1− κ‖A−1‖). ��

Recall that f is strictly differentiable at x̄ with derivative Df (x̄) if and only if
lip(f − Df (x̄); x̄) = 0. Thus, the Hildebrand–Graves theorem implies the basic
(Dini) inverse function theorem.

The main novelty in the Hildebrand–Graves theorem is that differentiability is
replaced by Lipschitz continuity. This is not spelled out clearly in their paper [12]
but can be gleaned from their proof.

To the best of the author’s knowledge, the next nonsmooth implicit function
theorem came almost 50 years after the theorem of Hildebrand and Graves and is
due to F. H. Clarke [5]. Here we adopt the following inverse function version of it:

Theorem 7.2 Consider a function f : IRn → IRn which is Lipschitz continuous
around x̄ and suppose that all matrices in the Clarke generalized Jacobian ∂f (x̄)

are nonsingular. Then f is strongly regular at x̄.

Note that the Hildebrand–Graves theorem is stated in Banach spaces, while the
Clarke theorem is finite dimensional.5 These two theorems are of different nature,
and do not follow from each other. If it were true, however, that

inf
A∈∂f (x̄) lip(f − A; x̄) = 0, (7.2)

5There are some partial extensions to infinite dimensions but we shall not go into that here.
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then the assumption (7.1) would hold automatically and Hildebrand–Graves the-
orem would imply Clarke’s theorem. The relation (7.2) is actually not true; for a
simple counterexample,6 take X = IR, f (x) = |x| whose generalized Jacobian is
the interval [−1, 1], and x̄ = 0; then the infimum on the left of (7.2) is 1.

Clarke’s implicit function theorem has found important applications in opti-
mization and beyond, most notably for solving nonsmooth equations, e.g., by the
semismooth Newton methods. This came after another seminal contribution to
variational analysis—the implicit function theorem of S. M. Robinson published
in [18]. We will state this theorem in the following inverse function form:

Theorem 7.3 Let X be a Banach space and consider a function f : X → X

which is strictly differentiable at x̄ and any set-valued mapping F : X →→ X. Let
ȳ ∈ f (x̄) + F(x̄). Then f + F is strongly regular at x̄ for ȳ if and only if the
mapping

x �→ f (x̄)+Df (x̄)(x − x̄)+ F(x) (7.3)

has the same property.

Robinson stated his theorem for variational inequalities, i.e., when the map F is
the normal cone mapping. To the best of my knowledge, it was first noted in [7] that
the theorem remains valid for any set-valued mapping F . Moreover, in the same
paper [7] it was shown that that if the graphical localization of the inverse of the
linearized mapping (7.3) is not only Lipschitz continuous but also differentiable (in
the sense of Fréchet, Gateaux, Bouligand, or directionally) at the reference point ȳ,
then the graphical localization of (f +F)−1 has the same property; for an extended
version of this result, see [10, Theorem 2B.9].

In the paper [14] A. F. Izmailov made a significant step ahead by merging
the Robinson and Clarke inverse function theorems. Specifically, he obtained7 the
following result:

Theorem 7.4 Let f : IRn → IRn be Lipschitz continuous around x̄, let F :
IRn →→ IRn, and let ȳ ∈ f (x̄) + F(x̄). Suppose that for every A ∈ ∂f (x̄) the
mapping f (x̄)+A(· − x̄)+F(·) is strongly regular at x̄ for ȳ. Then f +F has the
same property.

If f is strictly differentiable at x̄, Theorem 7.4 implies Robinson’s theorem in
finite dimensions; if F is the zero mapping, it implies Clarke’s theorem.

In [3], we generalized Izmailov’s theorem to Banach spaces, as follows:

6This counterexample was communicated to the author by Radek Cibulka.
7The original proof in [14] has a gap which was later fixed by Radek Cibulka and me in [3].
Subsequently, Izmailov sent us a nice letter saying that, yes, a student of his found the gap, and
yes, it is now fixed.
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Theorem 7.5 Let (x̄, ȳ) ∈ X × Y , let f : X → Y and F : X →→ Y be such that
ȳ ∈ f (x̄) + F(x̄). Suppose that there exist a convex subset A of L(X, Y ) and a
constant c > 0 such that

(i) there exists r > 0 such that for each u and v in IBr(x̄) one can find A ∈ A such
that

‖f (v)− f (u)− A(v − u)‖ ≤ c‖v − u‖;

(ii) for every A ∈ A the mapping

GA : x �→ f (x̄)+ A(x − x̄)+ F(x) (7.4)

is strongly regular at x̄ for ȳ; moreover, if sA is any single-valued graphical
localization of G−1

A around ȳ for x̄, then

(c + χ(A)) sup
A∈A

lip(sA; ȳ) < 1,

where χ(A) is the measure of non-compactness of the set A. Then the mapping
f + F is strongly regular at x̄ for ȳ.

When X = Y = IRn, Theorem 7.5 reduces to Theorem 7.4.

7.3 The Lyusternik-Graves Theorem

Recall that, for a positively homogeneous mapping H acting between Banach spaces
X and Y , the inner norm is defined as

‖H‖− = sup
‖x‖≤1

inf
y∈H(x)

‖y‖. (8)

When H is linear and bounded singe-valued mapping, this gives us the operator
norm. The following theorem is a restatement of the Banach open mapping
principle:

Theorem 7.6 Let A be a linear and bounded mapping acting between Banach
spaces X and Y . Then the following are equivalent:

(a) A is surjective;
(b) A is open (at every point);
(c) ‖A−1‖− <∞.
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In 1950 L. M. Graves published a theorem8 in [11], which we present next in a
form similar to the Hildebrand–Graves Theorem 7.1:

Theorem 7.7 Let X, Y be Banach spaces and consider a function f : X→ Y and
a point x̄ ∈ int dom f along with a bounded linear mapping A : X → Y which is
surjective and such that

lip(f − A; x̄) · ‖A−1‖− < 1. (7.5)

Then there exist a positive constant κ and neighborhoods U of x̄ and V of f (x̄)
such that

sup
x∈f−1(y)∩U

d
(
x, f−1(y′)

) ≤ κ‖y − y′‖ for every y, y′ ∈ V. (7.6)

If A is not just surjective but also invertible, then condition (7.5) becomes the
same as (7.1). If f−1 has a single-valued graphical localization around f (x̄), then
condition (7.6) implies that this localization is Lipschitz continuous around f (x̄);
that is, f is strongly regular at x̄. But it is possible that any graphical localization
of the inverse f−1 is multi-valued. Still, the inverse has a Lipschitz-type property,
which is now called the Aubin property, and the theorem itself can be regarded as
an inverse mapping theorem. It turned out that the Aubin property of the inverse is
equivalent to a property of the mapping itself, which was called metric regularity by
Jon Borwein in 1986, and the name remained, even after so much recent re-naming
in the area.

Let X and Y be metric spaces. A mapping F : X →→ Y is said to be metrically
regular at x̄ for ȳ when ȳ ∈ F(x̄), gphF is locally closed at (x̄, ȳ) and there is a
constant τ ≥ 0 together with neighborhoods U of x̄ and V of ȳ such that

d
(
x, F−1(y)

) ≤ τd
(
y, F (x)

)
for every (x, y) ∈ U × V.

The infimum of all constants τ ≥ 0 for which this inequality holds is the regularity
modulus of F at x̄ for ȳ denoted by reg(F ; x̄ | ȳ).

The following theorem is extracted from [10, Chapter 5] and combines extended
versions of both Robinson’s theorem and the Lyusternik-Graves theorem in metric
spaces.

Theorem 7.8 Let X be a complete metric space, Y be a linear metric space with
shift-invariant metric. Suppose that

1) κ and μ are positive constants with κμ < 1.
2) F : X→→ Y is [strongly] metrically regular at x̄ for ȳ with reg(F ; x̄ | ȳ) ≤ κ .
3) g : X→ Y and lip(g; x̄) ≤ μ.

8A predecessor of that theorem was given by Lyusternik, for a statement and a comparison, see
[10, Section 5D].
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Then g + F is [strongly] metrically regular at x̄ for ȳ + g(x̄) with

reg(g + F ; x̄ |g(x̄)+ ȳ) ≤ (κ−1 − μ)−1.

In 1977 B. H. Pourciau [17] proved that a function f : IRn → IRd , with d ≤ n,
which is Lipschitz continuous around x̄, is metrically regular at x̄ if every element
of ∂f (x̄) has full rank. This result is very much in line with Clarke’s Theorem 7.2
which gives a sufficient condition for Lipschitz invertibility. A generalization of the
theorem of Pourciau in the spirit of Theorem 7.5 was obtained recently in [4], as
follows:

Theorem 7.9 Let X and Y be Banach spaces. Consider a function f : X → Y ,
a set-valued mapping F : X →→ Y , and a point (x̄, ȳ) ∈ gph(f + F) with x̄ ∈
int dom f . Consider also a convex subset A of L(X, Y ) and a constant μ ≥ 0, and
assume that condition (i) in Theorem 7.5 is satisfied and, moreover, the following
conditions hold:

• for every A ∈ A the mapping GA defined in (7.4) is metrically regular at x̄ for
ȳ and, in addition,

ß
(
c + χ(A)

)
< 1,

where ß := sup
A∈A

reg(GA; x̄ | ȳ) and χ(A) is the measure of non-compactness of

the set A;
• there are neighborhoods U of x̄ and V of ȳ such that the set G−1

A (v) ∩ U is
convex whenever v ∈ V and A ∈ A.

Then the mapping f + F is metrically regular at x̄ for ȳ; moreover,

reg(f + F ; x̄ | ȳ) ≤ (ß−1 − (c + χ(A))−1.

The convexity requirement in the second assumption of the theorem comes from
the Michael selection theorem which we use in the proof; it is an open question
whether it could be relaxed.

7.4 Bartle–Graves Theorem

In this section X and Y are Banach spaces unless stated differently. The Theorem 7.7
published in by Graves in [11] implies that, for a function f : X → Y which is
strictly differentiable at x̄ and such that the strict derivative Df (x̄) is surjective,
then f−1 has the Aubin property at f (x̄) for x̄. Only two years after the publication
of [11], Bartle and Graves published in [1] a theorem claiming that under the same
assumptions, the inverse f−1 has a continuous local selection which is calm. The
original statement of that Bartle–Graves theorem is as follows:
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Theorem 7.10 Let X and Y be Banach spaces and let f : X → Y be a function
which is strictly differentiable at x̄ and such that the derivative Df (x̄) is surjective.
Then there is a neighborhood V of f (x̄) along with a constant γ > 0 such that f−1

has a continuous selection s on V with the property

‖s(y)− x̄‖ ≤ γ ‖y − f (x̄)‖ for every y ∈ V.

It should be noted that if we restrict our attention to Hilbert spaces, then it is easy
to obtain the existence of a local selection which is even differentiable. Specifically,
we have the following (see [10, Exercise 5J.2]):

Theorem 7.11 Let X and Y be Hilbert spaces and let f : X → Y be a function
which is strictly differentiable at x̄ and such that the derivative A := Df (x̄) is
surjective. Then the inverse f−1 has a local selection s around ȳ := f (x̄) for x̄

which is strictly differentiable at ȳ with derivative Ds(ȳ) = A∗(AA∗)−1, where A∗
is the adjoint of A.

The following generalization of Theorem 7.10 for set-valued mapping was
published in [9]9:

Theorem 7.12 Consider a mapping G : X →→ Y and any (x̄, ȳ) ∈ gphG and
suppose that for some c > 0 the mapping IBc(ȳ) � y �→ G−1(y) ∩ IBc(x̄) is
closed-convex-valued. Consider also a function g : X → Y with x̄ ∈ int dom g.10

Let κ and μ be nonnegative constants such that

κμ < 1, reg(G; x̄ | ȳ) ≤ κ and lip(g; x̄) ≤ μ.

Then for every γ > κ/(1 − κμ) the mapping (g + G)−1 has a continuous local
selection s around g(x̄)+ ȳ for x̄ with the property

‖s(y)− x̄‖ ≤ γ ‖y − ȳ‖ for every y ∈ V.

Here again, the convexity requirement comes from Michael’s selection
theorem—see the open question at the end of the preceding section.

Is there a Bartle-Graves theorem of the kind of Theorem 7.10 for the case when
the function g is merely Lipschitz continuous, as in the theorems of Clarke and
Pourciau? Specifically, putting aside the set-valued part, is the following statement
true?

Conjecture (A Nonsmooth Bartle-Graves Theorem) Consider a function f : IRn →
IRm which is Lipschitz continuous around x̄ and suppose that all matrices in

9A more general version of Theorem 7.12 will be presented in author’s paper Bartle-Graves
theorem revisited, submitted to Set-Valued and Variational Analysis, July 2019.
10As noted by the referee of this paper, here it is sufficient to assume that x̄ is in the core of the
domain of g.
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the generalized Jacobian ∂f (x̄) are surjective. Then f−1 has a continuous local
selection around f (x̄) for x̄ which is calm at ȳ.
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Chapter 8
Block-Wise Alternating Direction
Method of Multipliers with Gaussian
Back Substitution for Multiple-Block
Convex Programming

Xiaoling Fu, Bingsheng He, Xiangfeng Wang, and Xiaoming Yuan

Abstract We consider the linearly constrained convex minimization model with
a separable objective function which is the sum of m functions without coupled
variables, and discuss how to design an efficient algorithm based on the fundamental
technique of splitting the augmented Lagrangian method (ALM). Our focus is
the specific big-data scenario where m is huge. A pretreatment on the original
data is to regroup the m functions in the objective and the corresponding m

variables as t subgroups, where t is a handleable number (usually t ≥ 3 but
much smaller than m). To tackle the regrouped model with t blocks of functions
and variables, some existing splitting methods in the literature are applicable. We
concentrate on the application of the alternating direction method of multiplier
with Gaussian back substitution (ADMM-GBS) whose efficiency and scalability
have been well verified in the literature. The block-wise ADMM-GBS is thus
resulted and named when the ADMM-GBS is applied to solve the t-block regrouped
model. To alleviate the difficulty of the resulting ADMM-GBS subproblems, each of
which may still require minimizing more than one function with coupled variables,
we suggest further decomposing these subproblems but regularizing these further
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decomposed subproblems with proximal terms to ensure the convergence. With this
further decomposition, each of the resulting subproblems only requires handling
one function in the original objective plus a simple quadratic term; it thus may
be very easy for many concrete applications where the functions in the objective
have some specific properties. Moreover, these further decomposed subproblems
can be solved in parallel, making it possible to handle big-data by highly capable
computing infrastructures. Consequently, a splitting version of the block-wise
ADMM-GBS is proposed for the particular big-data scenario. The implementation
of this new algorithm is suitable for a centralized-distributed computing system,
where the decomposed subproblems of each block can be computed in parallel by
a distributed-computing infrastructure and the blocks are updated by a centralized-
computing station. For the new algorithm, we prove its convergence and establish
its worst-case convergence rate measured by the iteration complexity. Two refined
versions of this new algorithm with iteratively calculated step sizes and linearized
subproblems are also proposed, respectively.

Keywords Convex programming · Alternating direction method of multipliers ·
Operator splitting · Convergence rate

AMS 2010 Subject Classification 49M20, 65K10, 90C30

8.1 Introduction

We consider a separable convex minimization problem with linear constraints and its
objective function is the sum of more than one function without coupled variables:

min
{ m∑

i=1

θi(xi)
∣∣ m∑

i=1

Aixi = b, xi ∈ Xi, i = 1, . . . , m
}
, (8.1.1)

where θi : Rni → R (i = 1, . . . , m) are convex (not necessarily smooth) and
continuous, ni (i = 1, . . . , m) are the dimensions of variables xi and

∑m
i=1 ni = n;

Ai ∈ R
�×ni , b ∈ R

�, and Xi ⊆ R
ni (i = 1, · · · ,m) are closed convex sets. The

solution set of (8.1.1) is assumed to be nonempty throughout our discussions in this
paper. We also assume that matrices AT

i Ai (i = 1, . . . , m) are all nonsingular.
Our discussion is under the assumption that each function θi in the objective

of (8.1.1) has some specific properties and it is worthwhile to take advantage of
them in algorithmic design. One representative case, which has wide applications in
many sparse- and/or low-rank-related fields, is when the following problem

arg min
xi∈Rni

{
θi(xi)+ τ

2
‖xi − ai‖2} (8.1.2)
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has a closed-form solution for any given vector ai ∈ R
ni and scalar τ > 0.

In (8.1.2), ‖ · ‖ denotes the standard �2 norm. Note that solving (8.1.2) is equivalent
to estimating the proximal operator of θi . Thus, we do not discuss the case where
the model (8.1.1) is treated as a whole and its separable structures are ignored
in algorithmic design. Instead, we are interested in such an algorithm whose xi-
subproblems at each iteration are all of the difficulty of solving

arg min
xi∈Xi

{
θi(xi)+ τ

2
‖xi − ai‖2}, ai ∈ R

ni , (8.1.3)

or, at most, of

arg min
xi∈Xi

{
θi(xi)+ τ

2
‖Aixi − ai‖2}, ai ∈ R

�. (8.1.4)

Note that when the problem (8.1.2) has a closed-form solution, solving (8.1.3)
or (8.1.4) could be generally easy, especially for the case where Xi = R

ni . For
instance, if Xi = R

ni , the problem (8.1.4) can be iteratively solved by linearizing
the quadratic term in (8.1.4) because the linearized subproblem reduces to a problem
in form of (8.1.2). This is indeed an implementation of the forward–backward
splitting method which was originated in [27]. Therefore, to expose our main idea
of algorithmic design with easier notation, we mainly focus on the discussion of
designing an algorithm with subproblems in form of (8.1.4) and only briefly mention
its advanced version with subproblems in form of (8.1.3).

The augmented Lagrangian method (ALM) in [24, 29] is the basis for a number of
splitting methods in the literature for solving the model (8.1.1). Let the Lagrangian
function of (8.1.1) be

Lm(x1, x2, . . . , xm, λ) =
m∑
i=1

θi(xi)− λT (

m∑
i=1

Aixi − b), (8.1.5)

with λ ∈ R
� the Lagrange multiplier and it be defined on " = X1 × X2 × · · · ×

Xm × R
�. The augmented Lagrangian function is

Lm
β (x1, . . . , xm, λ) = Lm(x1, . . . , xm, λ)+ β

2
‖

m∑
i=1

Aixi − b‖2, (8.1.6)

where Lm(x1, x2, . . . , xm, λ) is given by (8.1.5) and β > 0 is a penalty parameter
with respect to the violation of the linear constraints in (8.1.1). If we treat the primal
variables in model (8.1.1) as a whole and apply directly the ALM, then the resulting
scheme is
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{
(xk+1

1 , xk+1
2 , . . . , xk+1

m ) = arg min
{Lm

β (x1, x2, . . . , xm, λ
k)

∣∣ xi ∈ Xi, i = 1, . . . , m
}
,

λk+1 = λk − β(
∑m

i=1 Aix
k+1
i − b).

(8.1.7)

The minimization subproblem in (8.1.7) is clearly not efficient under the men-
tioned assumption that each θi has specific properties. Thus, when considering
the model (8.1.1), the scheme (8.1.7) is only of conceptual sense. But it is the
basis of a number of efficient methods in the literature whose common feature
is decomposing the minimization subproblem in (8.1.7) appropriately and then to
ensure the convergence with some additional steps if necessary. The most successful
case is decomposing the minimization subproblem in (8.1.7) in Gauss–Seidel order
for the special case of (8.1.1) with m = 2:

⎧⎪⎨
⎪⎩
xk+1

1 = arg min
{L2

β(x1, x
k
2 , λ

k)
∣∣ x1 ∈ X1

}
,

xk+1
2 = arg min

{L2
β(x

k+1
1 , x2, λ

k)
∣∣ x2 ∈ X2

}
,

λk+1 = λk − β(A1x
k+1
1 + A2x

k+1
2 − b).

(8.1.8)

This is the so-called alternating direction method of multiplier (ADMM) in [11]
and it has found many efficient applications in a broad spectrum of application
domains such as image processing, statistical learning, computer vision, network
optimization, and so on. We refer to [3, 8, 10] for some review papers on the ADMM.

With the efficiency of ADMM, it is natural to consider directly extending the
scheme (8.1.8) to the case of (8.1.1) with m > 2. The resulting direct extension of
ADMM reads as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = arg min

{Lm
β (x1, x

k
2 , . . . , x

k
m, λ

k)
∣∣ x1 ∈ X1

}
,

...

xk+1
i = arg min

{Lm
β (x

k+1
1 , . . . , xk+1

i−1 , xi, x
k
i+1, . . . , x

k
m, λ

k)
∣∣ xi ∈ Xi

}
,

...

xk+1
m = arg min

{Lm
β (x

k+1
1 , . . . , xk+1

m−1, xm, λ
k)
∣∣ xm ∈ Xm

}
,

λk+1 = λk − β(
∑m

i=1 Aix
k+1
i − b).

(8.1.9)

Empirically, the direct extension of ADMM scheme (8.1.9) indeed works well
for some applications, as shown in, e.g., [28, 30]. However, it was shown in [6]
that theoretically the scheme (8.1.9) is not necessarily convergent. Hence, like the
extreme case of treating (8.1.1) as a whole and applying no splitting at all to
the ALM (8.1.7), this scheme (8.1.9) resulted by applying a full splitting to the
ALM (8.1.7) does not work either.

In the literature, some surrogates with provable convergence and numerical
performance competitive to (8.1.9) have been well studied. For example, the
schemes in [15, 16] treat the output of (8.1.9) as a predictor and suggest correcting
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it appropriately to ensure the convergence. These schemes are all in the prediction-
correction framework. The scheme in [17] requires no correction step, but it
slightly changes the order of updating the Lagrange multiplier and twists some
of the subproblems appropriately to obtain the convergence. Accordingly, the
(x2, · · · , xm)-subproblems can be solved in parallel but they should be regular-
ized by appropriate proximal terms with sufficiently large proximal coefficients.
Moreover, the scheme in [25] suggests attaching a shrinking factor to the Lagrange
multiplier updating step in (8.1.9). In [6], it was shown that it could be very difficult
to find such a factor to guarantee the convergence of the direct extension of the
ADMM scheme (8.1.9). Let us recall the ADMM with a Gaussian back substitution
(ADMM-GBS for short) proposed in [15] whose iterative scheme reads as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̄k+1
1 = arg min

{Lm
β (x1, x

k
2 , . . . , x

k
m, λ

k)
∣∣ x1 ∈ X1

}
,

...

x̄k+1
i = arg min

{Lm
β (x̄

k+1
1 , . . . , x̄k+1

i−1 , xi, x
k
i+1, . . . , x

k
m, λ

k)
∣∣ xi ∈ Xi

}
,

...

x̄k+1
m = arg min

{Lm
β (x̄

k+1
1 , . . . , x̄k+1

m−1, xm, λ
k)
∣∣ xm ∈ Xm

}
,

λ̄k+1 = λk − β(
∑m

i=1 Aix̄
k+1
i − b),

xk+1
1 = x̄k+1

1 ,

vk+1 = vk − αP−1(vk − v̄k+1), α ∈ (0, 1),

(8.1.10)

where Lm
β is defined in (8.1.6) and the matrix P is a block-wise upper triangular

matrix defined as

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

In2(A
T
2 A2)

−1AT
2 A3 · · · (AT

2 A2)
−1AT

2 Am 0

0
. . .

. . .
...

...

...
. . .

. . . (AT
m−1Am−1)

−1AT
m−1Am 0

0 · · · 0 Inm 0

0 · · · 0 0 I�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8.1.11)

Here, the matrix P ∈ R
(n−n1+�)×(n−n1+�). Note that in (8.1.10), v represents

the collection of variables (xT2 , · · · , xTm, λT )T ∈ R
(n−n1+�) which are essentially

required in the iteration, and we have
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vk =

⎛
⎜⎜⎜⎝

xk2
...

xkm
λk

⎞
⎟⎟⎟⎠ , v̄k =

⎛
⎜⎜⎜⎝

x̄k2
...

x̄km
λ̄k

⎞
⎟⎟⎟⎠ . (8.1.12)

As mentioned in [3], the first variable x1 is not required to execute the iteration;
it is “intermediate” in the iteration. This is why in the scheme (8.1.10), the back
substitution procedure is only implemented to v, without x1. Clearly, the last step
in (8.1.10) can be written as

P(vk+1 − vk) = α(v̄k+1 − vk).

Thus, with the block-wise upper triangular matrix P defined in (8.1.11), the entries
of vk+1 can be updated in the order of λ→ xm → · · · → x2, just like the standard
Gaussian back substitution procedure for solving a system of liner equations.

For the ADMM-GBS (8.1.10), the ADMM splitting step (i.e., the xi-subproblems
in (8.1.9)) is mainly for yielding easier subproblems so that it becomes possi-
ble to exploit the properties of θi’s individually. However, yielding these easier
subproblems means that the individual m xi-subproblems in (8.1.10) is only
an approximation of the ALM subproblem in (8.1.7) and thus the decomposed
subproblems, even if all are solved exactly, are not necessarily accurate enough to
provide a qualified input to update the Lagrange multiplier such that the convergence
can be still ensured. This is an explanation of the failure of convergence for the
direct extension of ADMM (8.1.9) for m > 2, see the counter example given in [6]
showing the divergence of the direct extension of ADMM (8.1.9). The Gaussian
back substitution step in (8.1.10) can thus be regarded as a correction step to
compensate the inaccuracy resulted by the decomposition on the ALM and so as
to ensure the contraction property for the iterative sequence to the solution set. With
this contraction, the convergence of (8.1.10) can be established from the contraction
method perspective.

In this paper, we focus on the particular case of (8.1.1) which arises from a big-
data scenario; thus, m is assumed to be huge. Under this big-data scenario with a
huge m, a pretreatment on the original model (data) is usually implemented. For
example, we can classify the original functions and the corresponding variables
into t classes by identifying some common features or data-processing in particular
applications. A more specific case is that t represents the number of features
in a data-mining application of the abstract model (8.1.1). In general, t is a
handleable number but it is much smaller than m. The general model (8.1.1) is
thus treated as a separable model with t blocks of functions and variables. For
the r-th block (r = 1, 2, . . . , t), let mr be the number of variables in the r-
th block and thus

∑t
r=1 mr = m. That is, we consider regrouping the variables

x = (x1, x2, . . . , xm) and functions (θ1, θ2, . . . , θm) in (8.1.1) as (x1, x2, . . . , xt )

with xr = (xr1 , xr2 , . . . , xrmr
) and (ϑ1(x1), ϑ2(x2), . . . , ϑt (xt )) with ϑr(xr ) =∑mr

j=1 θrj (xrj ), respectively; and furthermore, we define
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Ar = (Ar1 , . . . , Armr
), Xr =

mr∏
j=1

Xrj , r = 1, . . . , t. (8.1.13)

Then, the model (8.1.1) can be reformulated as the block-wise form

min

{
t∑

r=1

ϑr(xr )
∣∣ t∑
r=1

Arxr = b, xr ∈ Xr , r = 1, . . . , t

}
. (8.1.14)

Note that the block-wise reformulation (8.1.14) may account for the application
where each block of variables and functions represents a specific set of decision
variables and cost functions in the same classification. Accordingly, the Lagrangian
function (8.1.5) can be written as the block-wise

Lt(x1, . . . , xt , λ) =
t∑

r=1

ϑr(xr )− λT (
∑t

r=1Arxr − b), (8.1.15)

and thus the augmented Lagrangian function (8.1.6) as

Lt
β(x1, . . . , xt , λ) = Lt(x1, . . . , xt , λ)+ β

2
‖∑t

r=1Arxr − b‖2. (8.1.16)

When t = 2, the original ADMM scheme (8.1.8) can be applicable to the block-wise
reformulation (8.1.14) and its iterative scheme reads as

⎧⎪⎨
⎪⎩

xk+1
1 = arg min

{L2
β(x1, x

k
2, λ

k)
∣∣ x1 ∈ X1

}
,

xk+1
2 = arg min

{L2
β(x

k+1
1 , x2, λ

k)
∣∣ x2 ∈ X2

}
,

λk+1 = λk − β(A1x
k+1
1 +A2x

k+1
2 − b).

(8.1.17)

We refer to [19, 23] for the discussion of how to further decompose the subproblems
in (8.1.17) and obtain solvable subproblems in form of (8.1.4).

We focus on the case of t ≥ 3 and discuss how to design implementable
algorithms for the block-wise reformulation (8.1.14). Recall that the scheme (8.1.9)
is not necessarily convergent. Thus, its block-wise extension to (8.1.14), which
reads as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = arg min

{Lt
β (x1, x

k
2, . . . , x

k
t , λ

k)
∣∣ x1 ∈ X1

}
,

...

xk+1
r = arg min

{Lt
β (x

k+1
1 , . . . , xk+1

r−1, xr , x
k
r+1, . . . , x

k
t , λ

k)
∣∣ xr ∈ Xr

}
,

...

xk+1
t = arg min

{Lt
β (x

k+1
1 , . . . , xk+1

t−1 , xt , λ
k)
∣∣ xt ∈ Xt

}
,

λk+1 = λk − β(
∑t

r=1 Arx
k+1
r − b),

(8.1.18)
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is not necessarily convergent, either; and it is important to investigate how to design
implementable algorithms for (8.1.14) based on the scheme (8.1.18). Because of
the well-verified efficiency and stability of the ADMM-GBS (8.1.10) in some areas
such as image processing, statistical learning, and SDP, it is natural to consider
extending it to a block-wise form. The resulting block-wise version of the ADMM-
GBS (8.1.10) for the regrouped model (8.1.14) reads as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̄k+1
1 = arg min

{Lt
β(x1, x

k
2, . . . , x

k
t , λ

k)
∣∣ x1 ∈ X1

}
,

...

x̄k+1
r = arg min

{Lt
β(x̄

k+1
1 , . . . , x̄k+1

r−1, xr , x
k
r+1, . . . , x

k
t , λ

k)
∣∣ xr ∈ Xr

}
,

...

x̄k+1
t = arg min

{Lt
β(x̄

k+1
1 , . . . , x̄k+1

t−1 , xt , λ
k)
∣∣ xt ∈ Xt

}
,

λ̄k+1 = λk − β(
∑t

r=1 Ar x̄
k+1
r − b),

xk+1
1 = x̄k+1

1 ,

vk+1 = vk − αP−1(vk − v̄k+1), α ∈ (0, 1),

(8.1.19)

where Lt
β is defined in (8.1.16) and the matrix P in (8.1.19) is a block-wise upper

triangular matrix similar as in (8.1.11), see (8.3.2) for details. Note that this block-
matrix P makes the output of (8.1.18) updated via a Gaussian back substitution
procedure in block-wise form in the scheme (8.1.19).

The convergence of the block-wise scheme (8.1.19) is certainly ensured provided
that all the resulting subproblems are solved exactly. For a general case, however,
similar as (8.1.18), each of the minimization subproblems in (8.1.19) involves more
than one function in its objective and the mr variables are coupled by the quadratic
term in (8.1.16). This may make it difficult to solve these subproblems exactly
unless the special case mr = 1. Recall that we only consider the case where each
subproblem to be solved is in the form of (8.1.3) or (8.1.4). Thus, we suggest further
decomposing the xr -subproblem in (8.1.19) as mr smaller subproblems so that each
function θi is treated individually. More specifically, the block-wise xr -subproblem
in (8.1.19) is decomposed as the following mr smaller subproblems:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̄k+1
r1

= arg min
{Lt

β (x̄
k+1
1 , . . . , x̄k+1

r−1, xr1 , x
k
r2
, . . . , xkrmr

, xk
r+1, . . . , x

k
t , λ

k)
∣∣ xr1 ∈ Xr1

}
,

.

.

.

x̄k+1
rj

= arg min
{Lt

β (x̄
k+1
1 , . . . , x̄k+1

r−1, x
k
r1
, · · ·, xkrj−1

, xrj , x
k
rj+1

, . . ., xkrmr
,

xk
r+1, . . . , x

k
t , λ

k)
∣∣ xrj ∈ Xrj

}
,

.

.

.

x̄k+1
rmr

= arg min
{Lt

β (x̄
k+1
1 , . . . , x̄k+1

r−1, x
k
r1
, . . . , xkrmr−1

, xrmr
, xk

r+1, . . . , x
k
t , λ

k)
∣∣ xrmr

∈ Xrmr

}
.

(8.1.20)
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Note that we only consider implementing the parallel decomposition to the xr -
subproblem in (8.1.19). This makes it possible to implement parallel computation
to tackle each block of subproblems by, e.g., a distributed-computing system. To
summarize, the implementation of the new algorithm can be ordered as t main
phases which are proceeded sequentially according to the block-wise ADMM-GBS
scheme (8.1.19); and for the r-th phase, there are mr subtasks in form of (8.1.4)
which can be proceeded in parallel. This feature is useful for big-data scenarios
where parallel computation is necessary.

The rest of this paper is organized as follows: In Section 8.2, we review
some known results and prove some preliminary propositions which are useful for
further analysis. The new algorithm is presented in Section 8.3, followed by some
remarks. Then, we prove the convergence for the new algorithm in Section 8.4,
and establish its worst-case convergence rate in Section 8.5. In Section 8.6, we
elucidate some special cases of the new algorithm and see its relationship to some
existing schemes in the literature. We present a refined version for the new algorithm
with an iteratively calculated step size in Section 8.7, and briefly mention its
convergence analysis. In Section 8.8, we present a linearized version of the new
algorithm proposed in Section 8.3, whose subproblems are in form of (8.1.3) rather
than (8.1.4). In addition, two key results which essentially guarantee its convergence
are established for this linearized version. In Section 8.9, we repost some numerical
results to verify the convergence of the new algorithms and the fact that different
grouping strategies may result in different numerical performance. Finally, we make
some conclusions in Section 8.10.

8.2 Preliminaries

In this section, we summarize some results known in the literature and introduce
some additional notations for the convenience of analysis later.

8.2.1 Variational Inequality Characterization

Let
(
x∗1 , x∗2 , . . . , x∗m, λ∗

)
be a saddle point of the Lagrangian function (8.1.5), it

follows that

supλ∈R� Lm(x∗1 , x∗2 , . . . , x∗m, λ) ≤ Lm(x∗1 , x∗2 , . . . , x∗m, λ∗)

≤ infxi∈Xi, i=1,...,m Lm(x1, x2, . . . , xm, λ
∗).

Then, finding a saddle point of Lm(x1, x2, . . . , xm, λ) is equivalent to finding
(x∗1 , x∗2 , . . . , x∗m, λ∗) ∈ " = X1 ×X2 × · · · ×Xm × R

� such that
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x∗1 ∈ X1, θ1(x1)− θ1(x
∗
1 )+ (x1 − x∗1 )T (−AT

1 λ
∗) ≥ 0, ∀x1 ∈ X1,

x∗2 ∈ X2, θ2(x2)− θ2(x
∗
2 )+ (x2 − x∗2 )T (−AT

2 λ
∗) ≥ 0, ∀x2 ∈ X2,

...

x∗m ∈ Xm, θm(xm)− θm(x
∗
m)+ (xm − x∗m)T (−AT

mλ
∗) ≥ 0, ∀xm ∈ Xm,

λ∗ ∈ R
�, (λ− λ∗)T (

∑m
i=1 Aix

∗
i − b) ≥ 0, ∀λ ∈ R

�.

(8.2.1)
We denote by "∗ the set of all saddle points of Lm(x1, x2, . . . , xm, λ). More
compactly, (8.2.1) can be written as the following variational inequality:

VI(", F, θ) w∗ ∈ ", ϑ(x)− ϑ(x∗)+ (w − w∗)T F (w∗) ≥ 0, ∀w ∈ ",

(8.2.2a)
where

x =
⎛
⎜⎝

x1
...

xm

⎞
⎟⎠ , w =

⎛
⎜⎜⎜⎝

x1
...

xm

λ

⎞
⎟⎟⎟⎠ , ϑ(x) =

m∑
i=1

θi(xi), F (w) =

⎛
⎜⎜⎜⎝

−AT
1 λ
...

−AT
mλ∑m

i=1 Aixi − b

⎞
⎟⎟⎟⎠ .

(8.2.2b)
Here, F is monotone. Using the mentioned block-wise notation, we can
rewrite (8.2.1)–(8.2.2), respectively, as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x∗1 ∈ X1, ϑ1(x1)− ϑ1(x
∗
1)+ (x1 − x∗1)T (−AT

1 λ
∗) ≥ 0, ∀x1 ∈ X1,

x∗2 ∈ X2, ϑ2(x2)− ϑ2(x
∗
2)+ (x2 − x∗2)T (−AT

2 λ
∗) ≥ 0, ∀x2 ∈ X2,

...

x∗t ∈ Xt , ϑt (xt )− ϑt (x
∗
t )+ (xt − x∗t )T (−AT

mλ
∗) ≥ 0, ∀xt ∈ Xt ,

λ∗ ∈ R
�, (λ− λ∗)T (

∑t
r=1 Arx

∗
r − b) ≥ 0, ∀λ ∈ R

�,

(8.2.3)
and

VI(", F, θ) w∗ ∈ ", ϑ(x)− ϑ(x∗)+ (w − w∗)T F (w∗) ≥ 0, ∀w ∈ ",

(8.2.4a)
where

x=
⎛
⎜⎝

x1
...

xt

⎞
⎟⎠ , w =

⎛
⎜⎜⎜⎝

x1
...

xt

λ

⎞
⎟⎟⎟⎠ , ϑ(x)=

t∑
r=1

ϑr(xr ), F (w) =

⎛
⎜⎜⎜⎝

−AT
1 λ
...

−AT
t λ∑t

r=1 Arxr − b

⎞
⎟⎟⎟⎠ .

(8.2.4b)
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8.2.2 Some Properties

Recall the matrices Ar ’s defined in (8.1.13). Then, for Ar and As , we have

AT
r As =

⎛
⎜⎜⎜⎜⎝
AT
r1
As1 · · · · · · AT

r1
Asms

...
. . .

...
...

. . .
...

AT
rmr

As1 · · · · · · AT
rmr

Asms

⎞
⎟⎟⎟⎟⎠ .

The matrices Ar ’s have a useful property for further analysis. We summarize it in
the following lemma and omit its trivial proof.

Lemma 8.2.1 For the matrix Ar defined in (8.1.13), if we define

diag(AT
r Ar ) :=

⎛
⎜⎜⎜⎜⎝
AT
r1
Ar1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 AT

rmr
Armr

⎞
⎟⎟⎟⎟⎠ , (8.2.5)

then we have

mr · diag(AT
r Ar ) � AT

r Ar , r = 1, . . . , t. (8.2.6)

Proof Clearly, we have

mr · diag(AT
r Ar )−AT

r Ar

=

⎛
⎜⎜⎜⎜⎝
mrA

T
r1
Ar1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 mrA

T
rmr

Armr

⎞
⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎝
AT
r1
Ar1 · · · · · · AT

r1
Armr

...
. . .

...
...

. . .
...

AT
rmr

Ar1 · · · · · · AT
rmr

Armr

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝
(mr − 1)AT

r1
Ar1 · · · · · · −AT

r1
Armr

...
. . .

...
...

. . .
...

−AT
rmr

Ar1 · · · · · · (mr − 1)AT
rmr

Armr

⎞
⎟⎟⎟⎟⎠
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= AT
r

⎛
⎜⎜⎜⎜⎝
(mr − 1)I� · · · · · · −I�

...
. . .

...
...

. . .
...

−I� · · · · · · (mr − 1)I�

⎞
⎟⎟⎟⎟⎠Ar � 0. (8.2.7)

��
Furthermore, we define

τr ≥ mr − 1, and Dr = (τr + 1)diag(AT
r Ar ), r = 1, . . . , t. (8.2.8)

8.3 The Block-Wise ADMM with Gaussian Back
Substitution

In this section, we propose an implementable version of the block-wise ADMM-
GBS with solvable subproblems in form of (8.1.4). In particular, this block-wise
ADMM-GBS turns out to be a unified scheme including the existing algorithms in
[15, 17] as special cases. Some remarks are also given.

8.3.1 The New Algorithm

Based on the previous discussion, we now propose the new algorithm which embeds
the parallel computation (8.1.4) into the block-wise ADMM-GBS (8.1.19). As
analyzed in [14, 23], if we replace the xr -subproblems in (8.1.19) directly by the
further decomposed subproblems in (8.1.20), the convergence is not guaranteed.
In fact, the proximity to the last iterate should be controlled when solving the
further subproblems in (8.1.20). Therefore, we should embed not the subproblems
in (8.1.20), but their regularized counterparts:

xk+1
rj

= arg min

{Lt
β (x

k+1
1 , . . . , xk+1

r−1, x
k
r1
, . . . , xk

rj−1, xrj , x
k
rj+1, . . . , x

k
rmr

, xk
r+1, . . . , x

k
t , λ

k)

+ τr β
2 ‖Arj (xrj−xkrj )‖2

∣∣∣∣xrj ∈Xrj

}

(8.3.1)

with τr (r = 1, · · · , t) into the block-wise ADMM-GBS (8.1.19). By defining a
matrix
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P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 · · · 0 0

0 I D−1
2 AT

2 A3 · · · D−1
2 AT

2 At 0

0 0
. . .

. . .
...

...

...
...

. . .
. . . D−1

t−1AT
t−1At 0

0 0 · · · 0 I 0

0 0 · · · 0 0 I�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8.3.2)

where P ∈ R
(n+�)×(n+�) and Dr is defined in (8.2.8), we summarize the resulting

algorithm as follows.

Algorithm 1: A splitting version of the block-wise ADMM-GBS (8.1.19)
for (8.1.1)

Initialization: Specify a regrouping for the model (8.1.1) with determined
values of t and mr for r = 1, 2, . . . , t . Choose constants τr such that τr ≥
mr − 1 for r = 1, . . . , t and β > 0. Let P be defined in (8.3.2). Choose
w0 = (x0

1, x
0
2, · · · , x0

t , λ
0) ∈ X1 × X2 × · · · × Xt × R

�, for every k ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for r = 1, 2, . . . t , do:
for j = 1, . . . mr , parallel do:

x̄k+1
rj

= arg min

{Lt
β

(
x̄k+1

1 , . . . , x̄k+1
r−1, x

k
r1
, . . . , xkrj−1

, xrj , x
k
rj+1

, . . . , xkrmr
,

xk
r+1, . . . , x

k
t , λ

k
)+ τr β

2 ‖Arj (xrj − xkrj )‖2

∣∣∣∣xrj ∈ Xrj

}
;

end.
end.
λ̄k+1 = λk − β

(∑t
r=1Ar x̄

k+1
r − b

)
.

P(wk+1 − wk) = α(w̄k+1 − wk), α ∈ (0, 1).
(8.3.3)

Remark 8.3.1 To implement the proposed algorithm (8.3.3), at most max{m1, . . .,
mt }work stations are needed. Also, the proximal parameters τr is only dependent on
the number of variables mr of the r-th group; they thus can be significantly smaller
than m − 1 as required in (8.3.5). This feature thus can avoid slow convergence
due to too large proximal coefficients. Certainly, when a specific application of the
abstract model (8.1.1) is considered, the user can optimally determine the values of
t and mr for r = 1, 2, . . . , t , so that the balance among the sequential and parallel
computation is achieved and the optimal overall performance is achieved. But in this
paper, we focus on the general methodology of algorithmic design for the generic



178 X. Fu et al.

case of (8.1.1), and do not discuss the specific regrouping strategies among variables
which are case-dependent.

8.3.2 Some Remarks

It is easy to see that at each iteration, the new algorithm (8.3.3) mainly requires
solving m subproblems in form of (8.1.4). We use the proximal terms τrβ

2 ‖Arj (xrj −
xkrj )‖2 to regularize the further decomposed subproblems in (8.3.3). But, just like the

analysis in [22], we can instead use the terms τrβ
2 ‖xrj − xkrj ‖2, or more generally

τrβ
2 ‖xrj − xkrj ‖2

G with a positive definite matrix G. Therefore, for the case where Ai

is not the identity matrix while θi is simple in the sense that its proximal operator
defined in (8.1.3) has a closed-form representation, then we can easily further
consider linearizing the quadratic term in its corresponding subproblem in (8.3.3)
and thus propose a linearized version of the algorithm (8.3.3). The corresponding
analysis is not much different from our analysis to be presented. We thus will
only briefly discuss the linearized version in Section 8.8, and mainly focus on the
discussion for the scheme (8.3.3) for the purpose of exposing our main idea with
easier notation.

It is also worthwhile to mention that if the alternating decomposition is imple-
mented to the xr -subproblem in (8.1.19), then the resulting scheme reduces to
the original ADMM-GBS (8.1.10). Recall that the ADMM-GBS (8.1.10) requires
solving all the decomposed subproblems in a completely sequential way. Hence,
when the big-data scenario is considered where m is huge in (8.1.1), the waiting
time resulted by the sequential computing might be too expensive if the ADMM-
GBS (8.1.10) is directly used. We are thus interested in implementing the ADMM-
GBS in the block-wise form (8.1.19) but further decomposing the block-wise
subproblems in the parallel way of (8.1.20). In this way, the advantage of the
ADMM-GBS such as its efficiency and stability is preserved among blocks while
the parallel computation to tackle big-data scenarios is applicable within each block.
This is the main motivation of the new algorithm to be proposed.

We have emphasized the importance of parallel computation to tackle the big-
data scenarios of the model (8.1.1). One may ask why not just implement the full
parallel decomposition directly to the ALM (8.1.7) and thus obtain the following
scheme whose m xi-subproblems can be solved fully in parallel:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = arg min

{Lm
β (x1, x

k
2 , . . . , x

k
m, λ

k)
∣∣ x1 ∈ X1

}
,

...

xk+1
i = arg min

{Lm
β (x

k
1 , . . . , x

k
i−1, xi, x

k
i+1, . . . , x

k
m, λ

k)
∣∣ xi ∈ Xi

}
,

...

xk+1
m = arg min

{Lm
β (x

k
1 , . . . , x

k
m−1, xm, λ

k)
∣∣ xm ∈ Xm

}
,

λk+1 = λk − β(
∑m

i=1 Aix
k+1
i − b).

(8.3.4)
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In fact, the scheme (8.3.4) requires m work stations to realize the parallel com-
putation. When m is huge for a big-data scenario, it might be too expensive to
be practical. Moreover, from methodological point of view, as shown in [13], the
scheme (8.3.4) is not necessarily convergent even for m = 2. Later, it was shown in
[18] that the convergence of (8.3.4) can be guaranteed if all the xi-subproblems are
proximally regularized by certain proximal term⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = arg min

{Lm
β (x1, x

k
2 , . . . , x

k
m, λ

k)+ sβ
2 ‖A1(x1 − xk1 )‖2

∣∣ x1 ∈ X1
}
,

.

.

.

xk+1
i = arg min

{Lm
β (x

k
1 , . . . , x

k
i−1, xi , x

k
i+1, . . . , x

k
m, λ

k)+ sβ
2 ‖Ai(xi − xki )‖2

∣∣ xi ∈ Xi

}
,

.

.

.

xk+1
m = arg min

{Lm
β (x

k
1 , . . . , x

k
m−1, xm, λ

k)+ sβ
2 ‖Am(xm − xkm)‖2

∣∣ xm ∈ Xm

}
,

λk+1 = λk − β(
∑m

i=1 Aix
k+1
i − b),

(8.3.5)

where the proximal parameter s is required to be greater than m − 1. The xi-
subproblems in the scheme (8.3.5) are also eligible for parallel computation. But
recall that we are considering the big-data scenarios where m is huge. Thus, the
proximal terms in (8.3.5) with s ≥ m − 1 play a dominate role in the objective
functions and the convergence is doomed to be extremely slow due to the huge value
of m − 1, though the convergence can be guaranteed asymptotically. Therefore,
we do not expect that the existing schemes based on the technique of directly
decomposing the ALM (8.1.7) in a parallel way are applicable for the big-data
scenarios of (8.1.1) with a huge m. Note that in [12, 13], it was also suggested
to correct the output of (8.3.4) by certain correction steps and the proximal terms
are not needed to regularize the decomposed subproblems. But these schemes also
require m work stations to realize the parallel computation.

8.4 Convergence

In this section, we prove the global convergence for the proposed algorithm (8.3.3).

8.4.1 Some Matrices

First of all, for the convenience of analysis, let us define some matrices and prove
some useful properties for these matrices. Let
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Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β(D1 −AT
1 A1) 0 · · · · · · 0 0

0 βD2
. . .

...
...

0 βAT
3 A2

. . .
. . .

...
...

...
...

. . .
. . . 0 0

0 βAT
t A2 · · · βAT

t At−1 βDt 0

0 −A2 · · · −At−1 −At
1
β
I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8.4.1)

where Ar and Dr are defined in (8.1.13) and (8.2.8), respectively.
In fact, the matrix Q in (8.4.1) can be written as the block-wise form

Q =
⎛
⎜⎝β(D1 −AT

1 A1) 0 0
0 βQe 0
0 −A 1

β
I

⎞
⎟⎠ , (8.4.2)

with

A = (A2, . . . ,At ) (8.4.3)

and

Qe =

⎛
⎜⎜⎜⎜⎝

D2 0 · · · 0

AT
3 A2 D3

. . .
...

...
. . .

. . . 0
AT

t A2 · · · AT
t At−1 Dt

⎞
⎟⎟⎟⎟⎠ . (8.4.4)

Moreover, we use De to denote the diagonal part of Qe, i.e.,

De =

⎛
⎜⎜⎜⎜⎝
D2 0 · · · 0

0 D3
. . .

...
...

. . .
. . . 0

0 · · · 0 Dt

⎞
⎟⎟⎟⎟⎠ . (8.4.5)

With the just defined matrices A, Qe, and De, we further define

M =
⎛
⎝ I 0 0

0 Q−Te De 0
0 −βA I

⎞
⎠ , (8.4.6)
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where M ∈ R
(n+�)×(n+�). These matrices will help us present the upcoming analysis

more succinctly.
Indeed, proving the convergence for the proposed algorithm (8.3.3) crucially

depends on some important properties of the just defined matrices. We summarize
them in the following two lemmas.

Lemma 8.4.1 For the matrices A, Qe, and De which are defined in (8.4.3), (8.4.4),
and (8.4.5), respectively, we have

QT
e +Qe

{� De +ATA, τr ≥ mr − 1, r = 1, . . . , t;
( De +ATA, τr > mr − 1, r = 1, . . . , t.

(8.4.7)

Proof Using the structure of the matrices Qe and De (see (8.4.4) and (8.4.5)), we
obtain

QT
e +Qe = De +

⎛
⎜⎜⎜⎜⎝

D2 AT
2 A3 · · · AT

2 At

AT
3 A2 D3

. . .
...

...
. . .

. . . AT
t−1At

AT
t A2 · · · AT

t At−1 Dt

⎞
⎟⎟⎟⎟⎠ .

Since we choose τr ≥ (resp. >) mr − 1, it follows that

Dr = (τr + 1)diag(AT
r Ar ) � (Resp., ()AT

r Ar , r = 1, . . . , t,

and consequently,

⎛
⎜⎜⎜⎜⎝

D2 AT
2 A3 · · · AT

2 At

AT
3 A2 D3

. . .
...

...
. . .

. . . AT
t−1At

AT
t A2 · · · AT

t At−1 Dt

⎞
⎟⎟⎟⎟⎠ � (Resp., ()ATA.

The assertions (8.4.7) hold immediately. ��
Lemma 8.4.2 For the matrices Q and M defined in (8.4.1) and (8.4.6), respec-
tively, let

H := QM−1 (8.4.8a)

and

G := QT +Q− αMTHM. (8.4.8b)
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Then, we have the following conclusions:

(i) The matrix H defined in (8.4.8a) is symmetric and positive definite.
(ii) For the matrix G defined in (8.4.8b), we have

G=QT+Q−αMTHM

⎧⎪⎨
⎪⎩
{( 0, ∀α ∈ (0, 1),
� 0, α = 1,

if τr ≥ mr − 1, r = 1, . . . , t;

( 0, ∀α ∈ (0, 1], if τr > mr − 1, r = 1, . . . , t.
(8.4.9)

Proof First, we check the positive definiteness of the matrix H . For the matrix M

defined in (8.4.6), we have

M−1 =
⎛
⎝ I 0 0

0 D−1
e QT

e 0
0 βAD−1

e QT
e I

⎞
⎠ .

Thus, according to the definition of the matrix H (see (8.4.8a)), we conclude that

H = QM−1 =

⎛
⎜⎜⎜⎝
β(D1 −AT

1 A1) 0 0

0 βQe 0

0 −A 1
β
I

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
I 0 0

0 D−1
e QT

e 0

0 βAD−1
e QT

e I

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝
β(D1 −AT

1 A1) 0 0

0 βQeD−1
e QT

e 0

0 0 1
β
I

⎞
⎟⎟⎟⎠

is symmetric and positive definite.
Now, we turn to check the positive definiteness of the matrix G. Note that

QT +Q =

⎛
⎜⎜⎜⎝

2β(D1 −AT
1 A1) 0 0

0 β(QT
e +Qe) −AT

0 −A 2
β
I

⎞
⎟⎟⎟⎠

(8.4.7)�

⎛
⎜⎜⎜⎝

2β(D1 −AT
1 A1) 0 0

0 β(De +ATA) −AT

0 −A 2
β
I

⎞
⎟⎟⎟⎠
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and

MTHM = MTQ = QTM =

⎛
⎜⎜⎜⎝
β(D1 −AT

1 A1) 0 0

0 βQT
e −AT

0 0 1
β
I

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
I 0 0

0 Q−Te De 0

0 −βA I

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎝
β(D1 −AT

1 A1) 0 0

0 β(De +ATA) −AT

0 −A 1
β
I

⎞
⎟⎟⎠ . (8.4.10)

From the definition of G (see (8.4.8b) and the two different cases of (8.4.7)), it
follows that

G = QT +Q− αMTHM

(�
(
)
⎛
⎜⎜⎜⎝
(2− α)β(D1 −AT

1 A1) 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎠+ (1− α)

⎛
⎜⎜⎜⎝

0 0 0

0 β(De +ATA) −AT

0 −A 1
β
I

⎞
⎟⎟⎟⎠

� 0.

The assertion (8.4.9) is proved. ��
As we shall see, Lemma 8.4.2 actually play a very important role in proving the

convergence for the proposed algorithm (8.3.3).

8.4.2 A Prediction-Correction Reformulation of (8.3.3)

Now, with the matrices introduced in the last subsection, we can rewrite the
proposed algorithm (8.3.3) as the following prediction-correction form.
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Prediction. For the given wk = (xk1 , x
k
2 . . . , x

k
m, λ

k) = (xk
1, . . . , x

k
t , λ

k),
generate the predictor w̃k = (x̃k1 , x̃

k
2 . . . , x̃

k
m, λ̃

k) = (x̃k
1, . . . , x̃

k
t , λ̃

k) by the
following steps:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for r = 1, 2, . . . t , do:
for j = 1, . . . mr , parallel do:

x̃krj= arg min

{Lt
β

(
x̃k1, . . . , x̃

k
r−1, x

k
r1
, . . . , xkrj−1

, xrj , x
k
rj+1

, . . . , xkrmr
,

xk
r+1, . . . , x

k
t , λ

k
)+ τrβ

2 ‖Arj (xrj − xkrj )‖2

∣∣∣∣xrj ∈Xrj

}
;

end.
end.

(8.4.11a)
Additionally, we define

λ̃k = λk − β
(A1x̃k1 +

∑t
j=2Ajx

k
j − b

)
. (8.4.11b)

Correction. The new iterate wk+1 is given by

wk+1 = wk − αM(wk − w̃k), (8.4.12a)

where w̃k is the predictor generated by (8.4.11), the matrix M is defined
in (8.4.6) and

α ∈
{
(0, 1), if τr ≥ mr − 1, r = 1, . . . , t;
(0, 1], if τr > mr − 1, r = 1, . . . , t.

(8.4.12b)

As mentioned in [23], we conduct the convergence analysis in the context of the
prediction-correction form (8.4.11)–(8.4.12) because the proof of the convergence
is essentially to prove the Féjer monotonicity property with respect to the solution
set, while the progress of the proximity to the solution set is measured by the
quantity ‖wk − w̃k‖2

G, where G is defined in (8.4.8b). Thus, it is convenient to
explicitly analyze the predictor w̃k and accordingly revisit the algorithm (8.3.3)
from the prediction-correction perspective. The other reason is that this prediction-
correction reformulation enables us to investigate the relationship between the
proposed algorithm (8.3.3) and some existing schemes in the literature by a unified
framework, as elaborated in Sections 8.6.1 and 8.6.2.

Let us take a closer look at the correction step (8.4.12). Recall that the matrix M

defined in (8.4.6) and the matrices Qe, De in M are defined in (8.4.4) and (8.4.5),
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respectively. Moreover, using (8.4.3) and (8.4.11b), we can see that the correction
step (8.4.12) consists of the following computations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 − xk

1 = α(x̃k
1 − xk

1),

D−1
e QT

e

⎛
⎜⎝

xk+1
2 − xk

2
...

xk+1
t − xk

t

⎞
⎟⎠ = α

⎛
⎜⎝

x̃k
2 − xk

2
...

x̃k
t − xk

t

⎞
⎟⎠ ,

λk+1 = λk − αβ
(∑t

s=1As x̃
k
s − b

)
.

(8.4.13)

Notice that D−1
e QT

e is a block-wise upper triangular matrix whose diagonal parts are
identities. Thus, the block-wise variables (x2, x3, . . . , xt ) are updated consecutively
in the back substitution order: xk+1

t → xk+1
t−1 → · · · · · · → xk+1

2 . Recall that within
each block variable, the further decomposed subproblems are eligible for parallel
computation. Thus, the correction step (8.4.12) can be viewed as a Gaussian back
substitution procedure to correct the output of (8.4.11).

Now, let us come back to the prediction step (8.4.11). In the following lemma, we
analyze the optimality conditions of the x̃rj -subproblems in (8.4.11) and represent
the predictor generated by (8.4.11) as a VI reformulation. This VI reformulation
helps us better discern its difference from the VI characterization (8.2.4) of the
original model (8.1.1), and thus clearly see how far the predictor w̃k is from a
solution point. It also inspires the correction step (8.4.12).

Lemma 8.4.3 Let x̃k be generated by (8.4.11a) from the given vector wk and λ̃k be
defined by (8.4.11b). Then, the predictor w̃k ∈ " satisfies

w̃k ∈ ", ϑ(x)−ϑ(x̃k)+ (w− w̃k)T F (w̃k) ≥ (w− w̃k)T Q(wk− w̃k), ∀w ∈ ",

(8.4.14)
where Q is defined in (8.4.1).

Proof Using the notation of the augmented Lagrangian function (see (8.1.16)), we
observe the optimality condition of the xrj -subproblem in the r-th group of (8.4.11a)
for r = 1, . . . , t . Ignoring some constant terms in the objective function of the
subproblems, we have

x̃krj = arg min

{Lt
β

(
x̃k

1, . . . , x̃
k
r−1, x

k
r1
, . . . , xkrj−1

, xrj , x
k
rj+1

, . . . , xkrmr
,

xk
r+1, . . . , x

k
t , λ

k
)+ τrβ

2 ‖Arj (xrj − xkrj )‖2

∣∣∣∣xrj ∈ Xrj

}

(8.1.6)= arg min

{
θrj (xrj )− (λk)T Arj xrj + β

2 ‖Arj (xrj − xkrj )+
∑r−1

s=1 As x̃
k
s

+∑t
s=r Asx

k
s − b‖2 + τrβ

2 ‖Arj (xrj − xkrj )‖2

∣∣∣∣xrj ∈Xrj

}
.
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The optimality condition of the above convex minimization problem is

x̃krj ∈ Xrj , θrj (xrj )− θrj (x̃
k
rj
)+ (xrj − x̃krj )

T
{− AT

rj
λk

βAT
rj

[∑r−1
s=1 As x̃

k
s +

∑t
s=r Asx

k
s − b

]
+ (τr + 1)βAT

rj
Arj (x̃

k
rj
− xkrj )

} ≥ 0, ∀xrj ∈ Xrj .

For r = 2, . . . , m, by using the definition of λ̃k (see (8.4.11b)), we have

λk = λ̃k + β
(A1x̃

k
1 +

∑t
s=2Asx

k
s − b

)
.

Substituting it into the last inequality, we obtain

x̃krj ∈ Xrj , θrj (xrj )− θrj (x̃
k
rj
)+ (xrj − x̃krj )

T
{− AT

rj
λ̃k

+βAT
rj

[∑r−1
s=2 As(x̃

k
s − xk

s )
]+ (τr + 1)βAT

rj
Arj (x̃

k
rj
− xkrj )

} ≥ 0, ∀xrj ∈ Xrj .

Applying this inequality for the cases of j = 1, . . . , mr , and summarizing the
resulting inequalities, we get

x̃k
r ∈ Xr , ϑr(xr )− ϑr(x̃

k
r )+ (xr − x̃k

r )
T
{−AT

r λ̃
k + βAT

r

[∑r−1
s=2 As(x̃

k
s − xk

s )
]

+ (τr + 1)βdiag(AT
r Ar )(x̃

k
r − xk

r )
} ≥ 0, ∀xr ∈ Xr .

(8.4.15)

For r = 1, recall the optimality condition and combine the definition of λ̃k . We
obtain that

x̃k
1 ∈ X1, ϑ1(x1)− ϑ1(x̃

k
1)+ (x1 − x̃k

1)
T
{−AT

1 λ̃
k

−βAT
1 A1(x̃

k
1 − xk

1)+ (τ1 + 1)βdiag(AT
1 A1)(x̃

k
1 − xk

1)
} ≥ 0, ∀x1 ∈ X1.

Using the notation of matrix D1 (see (8.2.8)), it can be written as

x̃k
1 ∈ X1, ϑ1(x1)− ϑ1(x̃

k
1)+ (x1 − x̃k

1)
T
{−AT

1 λ̃
k + β(D1 −AT

1 A1)(x̃
k
1 − xk

1)
}

≥ 0, ∀x1 ∈ X1. (8.4.16)

In addition, by using (8.4.11b), we have

(

t∑
r=1

Ar x̃
k
r − b)−

t∑
s=2

As(x̃
k
s − xk

s )+
1

β
(λ̃k − λk) = 0,

and it can be rewritten as

λ̃k ∈ R
�, (λ−λ̃k)T {( t∑

r=1

Ar x̃
k
r−b)−

t∑
s=2

As(x̃
k
s−xk

s )+
1

β
(λ̃k−λk)} ≥ 0, ∀ λ ∈ R

�.

(8.4.17)
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Combining (8.4.16), (8.4.15) (r = 2, . . . , t), and (8.4.17) together and using the
notations F(w), Q, and Dr (see (8.2.2), (8.4.1), and (8.2.8)), we have the result of
this lemma. ��

Recall the VI reformulation (8.2.4a)–(8.2.4b) of the model (8.1.1). Lemma 8.4.3
thus indicates that the accuracy of the predictor w̃k to a solution point w∗ is
measured by the quantity max{(w − w̃k)T Q(wk − w̃k) | w ∈ "}. This is also the
reason we search for a better iterate at the correct step (8.4.12) along the direction
−(wk−w̃k) to further reduce the proximity and to guarantee that the whole sequence
is monotonically closer to the solution set. With this strict contraction property, it
becomes standard to prove the convergence from the contraction method perspective
in [2].

8.4.3 An Illustrative Example of Lemma 8.4.3

For better understanding the proposed algorithm (8.3.3) and seeing the assertion in
Lemma 8.4.3 more specifically, we consider the special case of (8.1.1) with m = 6:

min
{ 6∑
i=1

θi(xi)
∣∣ 6∑
i=1

Aixi = b, xi ∈ Xi, i = 1, 2, · · · , 6
};

and regroup the variables as

x =
⎛
⎝x1

x2

x3

⎞
⎠ with x1 =

(
x1

x2

)
, x2 =

(
x3

x4

)
and x3 =

(
x5

x6

)
.

(8.4.18a)
Therefore, m1 = m2 = m3 = 2. Accordingly, we regroup

A1 = (A1, A2), A2 = (A3, A4), A3 = (A5, A6), (8.4.18b)

and

X1 = X1 ×X2, X2 = X3 ×X4, X3 = X5 ×X6. (8.4.18c)

The corresponding augmented Lagrangian function is

L6
β(x1, x2, x3, x4, x5, x6, λ) =

6∑
i=1

θi(xi)−λT (
6∑

i=1

Aixi − b)+β

2

∥∥ 6∑
i=1

Aixi−b
∥∥2
.

(8.4.19)

With the given wk = (xk1 , x
k
2 , x

k
3 , x

k
4 , x

k
5 , x

k
6 , λ

k), the prediction step (8.4.11) at
the k-th iteration can be specified as
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{
x̃k1 = arg min

{L6
β(x1, x

k
2 , x

k
3 , x

k
4 , x

k
5 , x

k
6 , λ

k)+ τ1β
2 ‖A1(x1 − xk1 )‖2

∣∣ x1 ∈ X1
}
,

x̃k2 = arg min
{L6

β(x
k
1 , x2, x

k
3 , x

k
4 , x

k
5 , x

k
6 , λ

k)+ τ1β
2 ‖A2(x2 − xk2 )‖2

∣∣ x2 ∈ X2
};

(8.4.20a){
x̃k3 = arg min

{L6
β(x̃

k
1 , x̃

k
2 , x3, x

k
4 , x

k
5 , x

k
6 , λ

k)+ τ2β
2 ‖A3(x3 − xk3 )‖2

∣∣ x3 ∈ X3
}
,

x̃k4 = arg min
{L6

β(x̃
k
1 , x̃

k
2 , x

k
3 , x4, x

k
5 , x

k
6 , λ

k)+ τ2β
2 ‖A4(x4 − xk4 )‖2

∣∣ x4 ∈ X4
};

(8.4.20b){
x̃k5 = arg min

{L6
β(x̃

k
1 , x̃

k
2 , x̃

k
3 , x̃

k
4 , x5, x

k
6 , λ

k)+ τ3β
2 ‖A5(x5 − xk5 )‖2

∣∣ x5 ∈ X5
}
,

x̃k6 = arg min
{L6

β(x̃
k
1 , x̃

k
2 , x̃

k
3 , x̃

k
4 , x

k
5 , x6, λ

k)+ τ3β
2 ‖A6(x6 − xk6 )‖2

∣∣ x6 ∈ X6
};

(8.4.20c)

λ̃k = λk − β
(
A1x̃

k
1 + A2x̃

k
2 +

∑6
j=3Ajx

k
j − b

)
. (8.4.20d)

Using (8.4.19) and combining the notations in (8.4.18), we obtain

ϑ(x1)− ϑ(x̃k
1)+ (x1 − x̃k

1)
T {−AT

1 λ̃
k − βAT

1 A1(x̃
k
1 − xk

1)

+ (τ1 + 1)βdiag(AT
1 A1)(x̃

k
1 − xk

1)} ≥ 0, ∀ x1 ∈ X1. (8.4.21)

ϑ(x2)−ϑ(x̃k
2)+(x2−x̃k

2)
T {−AT

2 λ̃
k+(τ2+1)βdiag(AT

2 A2)(x̃
k
2−xk

2)} ≥ 0, ∀ x2 ∈ X2.

(8.4.22)

ϑ(x3)− ϑ(x̃k
3)+ (x3 − x̃k

3)
T {−AT

3 λ̃
k

+ βAT
3 A2(x̃

k
2 − xk

2)+ (τ3 + 1)βdiag(AT
3 A3)(x̃

k
3 − xk

3)} ≥ 0, ∀ x3 ∈ X3.

(8.4.23)

Using the notations in (8.4.18), we rewrite (8.4.20d) as

λ̃k ∈ R
�, (λ− λ̃k)T

{
(

3∑
r=1

Ar x̃
k
r − b)−A2(x̃

k
2 − xk

2)−A3(x̃
k
3 − xk

3)

+ 1

β
(λ̃k − λk)

} ≥ 0, ∀ λ ∈ R
�. (8.4.24)

Combining (8.4.21), (8.4.22), (8.4.23), and (8.4.24) together, and using the
VI (8.2.2), the predictor w̃k ∈ " satisfies (8.4.14) with the concrete matrix Q

defined as

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(τ1+1)βdiag(AT
1 A1)− βAT

1 A1 0 0 0

0 (τ2+1)βdiag(AT
2 A2) 0 0

0 βAT
3 A2 (τ3+1)βdiag(AT

3 A3) 0

0 −A2 −A3
1
β
I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.
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Therefore, for a given scenario of the abstract model (8.1.1) and when the
regrouping strategy is determined, the matrix Q in (8.4.14) can be easily specified.

8.4.4 Convergence Proof

With the proved propositions, we are now ready to prove the convergence for
the proposed algorithm (8.3.3). First of all, let us further analyze the term (w −
w̃k)T Q(wk − w̃k) in the right-hand side of (8.4.14), which will help us show the
strict contraction for the sequence {wk} generated by (8.3.3) with respect to the
solution set "∗.

Theorem 8.4.4 Let {wk} be the sequence generated by the proposed algo-
rithm (8.3.3). We have

ϑ(x)− ϑ(x̃k)+ (w − w̃k)T F (w̃k)

≥ 1

2α

(‖w − wk+1‖2
H − ‖w − wk‖2

H

)+ 1

2
‖wk − w̃k‖2

G, ∀w ∈ ".(8.4.25)

Proof First, it follows from (8.4.8a) that Q = HM . We thus have

(w − w̃k)T Q(wk − w̃k) = 1

α
(w − w̃k)T H(wk − wk+1).

Together with (8.4.14), this identity means

ϑ(x)− ϑ(x̃k)+ (w − w̃k)T F (w̃k) ≥ 1

α
(w − w̃k)T H(wk − wk+1), ∀w ∈ ".

(8.4.26)
Applying the identity

(a − b)T H(c − d) = 1

2

(‖a − d‖2
H − ‖a − c‖2

H

)+ 1

2

(‖c − b‖2
H − ‖d − b‖2

H

)
,

to the term (w − w̃k)T H(wk − wk+1) in the right-hand side of (8.4.26) with

a = w, b = w̃k, c = wk, and d = wk+1,

we thus obtain

(w − w̃k)T H(wk − wk+1) = 1

2

(‖w − wk+1‖2
H − ‖w − wk‖2

H

)
+ 1

2
(‖wk − w̃k‖2

H − ‖wk+1 − w̃k‖2
H ). (8.4.27)
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For the last group term of (8.4.27), we have

‖wk − w̃k‖2
H − ‖wk+1 − w̃k‖2

H

= ‖wk − w̃k‖2
H − ‖(wk − w̃k)− (wk − wk+1)‖2

H

(8.4.8a)= ‖wk − w̃k‖2
H − ‖(wk − w̃k)− αM(wk − w̃k)‖2

H

= 2α(wk − w̃k)T HM(wk − w̃k)− α2(wk − w̃k)T MTHM(wk − w̃k)

= α(wk − w̃k)T [QT +Q− αMTHM](wk − w̃k)

(8.4.8b)= α‖wk − w̃k‖2
G. (8.4.28)

Substituting (8.4.27), (8.4.28) in (8.4.26), the assertion of this theorem is proved.
��

Now, we are ready to show the strict contraction property of the sequence {wk}
generated by the proposed scheme (8.3.3).

Theorem 8.4.5 Let {wk} be the sequence generated by the proposed algo-
rithm (8.3.3). Then we have

‖wk+1 − w∗‖2
H ≤ ‖wk − w∗‖2

H − α‖wk − w̃k‖2
G, ∀w∗ ∈ "∗. (8.4.29)

Proof Setting w = w∗ in (8.4.25), we get

‖wk − w∗‖2
H − ‖wk+1 − w∗‖2

H ≥ α‖wk − w̃k‖2
G + 2α{ϑ(x̃k)− ϑ(x∗)

+ (w̃k − w∗)T F (w̃k)}.

Using the optimality of w∗ and the monotonicity of F(w), we have

ϑ(x̃k)− ϑ(x∗)+ (w̃k −w∗)T F (w̃k) ≥ ϑ(x̃k)− ϑ(x∗)+ (w̃k −w∗)T F (w∗) ≥ 0,

and thus

‖wk − w∗‖2
H − ‖wk+1 − w∗‖2

H ≥ α‖wk − w̃k‖2
G.

The assertion (8.4.29) follows directly. ��
Finally, the convergence of {wk} generated by the algorithm (8.3.3) can be proved

easily. We summarize it in the following theorem.

Theorem 8.4.6 The sequence {wk} generated by the proposed algorithm (8.3.3)
converges to a solution point of VI(", F, θ).

Proof First, according to (8.4.29), it holds that {wk} is bounded and

lim
k→∞‖w

k − w̃k‖G = 0. (8.4.30)
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Thus, {wk} (and {w̃k}) has a cluster point w∞. Using the continuity of ϑ and F

and (8.4.30), then (8.4.14) becomes

w̃∞ ∈ ", ϑ(x)− ϑ(x̃∞)+ (w − w̃∞)T F (w̃∞) ≥ 0, ∀w ∈ ",

and thus w̃∞ is a solution point of VI(", F, θ). According to (8.4.29), the sequence
{wk} cannot have another cluster point and it converges to w̃∞. The proof is
complete. ��

8.5 Convergence Rate

In this section, we establish the O(1/T ) worst-case convergence rates measured
by the iteration complexity in both the ergodic and nonergodic senses for the
new algorithm (8.3.3), where t denotes the iteration counter. Recall the prediction-
correction algorithm (8.4.11)–(8.4.12) is a reformulation of (8.3.3).

8.5.1 Convergence Rate in the Ergodic Sense

We first establish a worst-case O(1/T ) convergence rate for the scheme (8.3.3)
in the ergodic sense. The proof is inspired by our earlier work in [20] for the
ADMM (8.1.8).

For this convergence rate analysis, we need to recall a characterization of the
solution set "∗, which is described in the following theorem. Its proof can be found
in [9] (Theorem 2.3.5) or [20] (Theorem 2.1).

Theorem 8.5.1 The solution set of VI(", F, θ) is convex and it can be character-
ized as

"∗ =
⋂
w∈"

{
w̃ ∈ " : (ϑ(x)− ϑ(x̃)

)+ (w − w̃)T F (w) ≥ 0
}
. (8.5.1)

For given ε > 0, w̃ ∈ " is called an ε-approximate solution of VI(", F, θ) if it
satisfies

ϑ(x)− ϑ(x̃)+ (w − w̃)T F (w) ≥ −ε, ∀ w ∈ D(w̃),

where

D(w̃) = {w ∈ " | ‖w − w̃‖ ≤ 1}.

We refer the reader to [26] (Definition 1 therein) for the definition of an ε-
approximate solution using the above set.
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In the following, we shall show that based on T iterations generated by the
proposed algorithm (8.3.3), we can find w̃ ∈ " such that

w̃ ∈ " and sup
w∈D(w̃)

{
ϑ(x̃)− ϑ(x)+ (w̃ − w)T F (w)

} ≤ ε, (8.5.2)

with ε = O(1/T ). Theorem 8.4.4 is also the basis for the upcoming analysis about
the worst-case convergence rate.

Note that it follows from the monotonicity of F that

(w − w̃k)T F (w) ≥ (w − w̃k)T F (w̃k).

Substituting it into (8.4.25), we obtain

ϑ(x)−ϑ(x̃k)+ (w− w̃k)T F (w)+ 1

2α
‖w−wk‖2

H ≥
1

2α
‖w−wk+1‖2

H , ∀w ∈ ".

(8.5.3)
Note that the above assertion holds whenever G � 0.

Theorem 8.5.2 Let {wk} be generated by the proposed algorithm (8.3.3) and {w̃k}
be defined in (8.4.11). For any integer T > 0, let w̃T be defined as

w̃T = 1

T + 1

T∑
k=0

w̃k. (8.5.4)

Then, we have w̃T ∈ " and

ϑ(x̃T )−ϑ(x)+(w̃T −w)T F (w) ≤ 1

2α(T + 1)
‖w−w0‖2

H , ∀w ∈ ". (8.5.5)

Proof First, it holds that w̃k ∈ " for all k ≥ 0. Together with the convexity of X and
R
�, (8.5.4) implies that w̃T ∈ ". Applying (8.5.3) to the cases with k = 0, 1, . . . , T ,

and adding all the resulting inequalities together, we obtain

(T + 1)ϑ(x)−
T∑

k=0

ϑ(x̃k)+
(
(T + 1)w −

T∑
k=0

w̃k
)T

F (w)

+ 1

2α
‖w − w0‖2

H ≥ 0, ∀w ∈ ".

Using the notation of w̃T , it can be written as

1

T + 1

T∑
k=0

ϑ(x̃k)−ϑ(x)+(w̃T −w)T F (w) ≤ 1

2α(T + 1)
‖w−w0‖2

H , ∀w ∈ ".

(8.5.6)
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Since ϑ(x) is convex and

x̃T = 1

T + 1

T∑
k=0

x̃k,

we have that

ϑ(x̃t ) ≤ 1

T + 1

T∑
k=0

ϑ(x̃k).

Substituting it in (8.5.6), the assertion of this theorem follows directly. ��
Recall (8.5.2) and the conclusion (8.5.5) thus indicates that based on T iter-

ations of the proposed algorithm (8.3.3), we can find an approximate solution
of VI(", F, θ) (i.e., w̃T defined in (8.5.4)) with an accuracy of O(1/T ). That
is, a worst-case O(1/T ) convergence rate is established for the proposed algo-
rithm (8.3.3) in the ergodic sense.

8.5.2 Convergence Rate in a Nonergodic Sense

In this subsection, we establish a worst-case O(1/T ) convergence rate in a
nonergodic sense for the proposed Algorithm 1. The proof is inspired by our earlier
work in [21] for the ADMM (8.1.8). We first need to prove the following lemma.

Lemma 8.5.3 For the sequences {wk} and {w̃k} generated by the proposed
prediction-correction algorithm (8.4.11)–(8.4.12), we have

(wk − w̃k)T MTHM{(wk − w̃k)− (wk+1 − w̃k+1)}

≥ 1

2α
‖(wk − w̃k)− (wk+1 − w̃k+1)‖2

(QT+Q)
. (8.5.7)

Proof First, set w = w̃k+1 in (8.4.14), we have

ϑ(x̃k+1)−ϑ(x̃k)+ (w̃k+1− w̃k)T F (w̃k) ≥ (w̃k+1− w̃k)T Q(wk− w̃k). (8.5.8)

Note that (8.4.14) is also true for k := k + 1. Thus, we have

ϑ(x)−ϑ(x̃k+1)+(w−w̃k+1)T F (w̃k+1) ≥ (w−w̃k+1)T Q(wk+1−w̃k+1), ∀w ∈ ".
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Setting w = w̃k in the above inequality, we obtain

ϑ(x̃k)− ϑ(x̃k+1)+ (w̃k − w̃k+1)T F (w̃k+1) ≥ (w̃k − w̃k+1)Q(wk+1 − w̃k+1).

(8.5.9)
Adding (8.5.8) and (8.5.9), and using the monotonicity of F , we get

(w̃k − w̃k+1)T Q{(wk − w̃k)− (wk+1 − w̃k+1)} ≥ 0. (8.5.10)

Further, adding the term

{(wk − w̃k)− (wk+1 − w̃k+1)}T Q{(wk − w̃k)− (wk+1 − w̃k+1)}

to both sides of (8.5.10), and using wT Qw = 1
2wT (QT +Q)w, we obtain

(wk−wk+1)T Q{(wk−w̃k)−(wk+1−w̃k+1)} ≥ 1

2
‖(wk−w̃k)−(wk+1−w̃k+1)‖2

(QT+Q)
.

Substituting (wk − wk+1) = αM(wk − w̃k) into the left-hand side of the last
inequality and using Q = HM , we obtain (8.5.7) and the lemma is proved. ��

In the following theorem, we prove a key inequality for establishing the
worst-case O(1/T ) convergence rate in a nonergodic sense for the proposed
algorithm (8.3.3).

Theorem 8.5.4 For the sequences {wk} and {w̃k} generated by the proposed
prediction-correction algorithm (8.4.11)–(8.4.12), we have

‖M(wk+1 − w̃k+1)‖H ≤ ‖M(wk − w̃k)‖H , ∀ k > 0, (8.5.11)

where M and H are defined in (8.4.6) and (8.4.8a), respectively.

Proof Setting a = M(wk − w̃k) and b = M(wk+1 − w̃k+1) in the identity

‖a‖2
H − ‖b‖2

H = 2aT H(a − b)− ‖a − b‖2
H ,

we obtain

‖M(wk − w̃k)‖2
H − ‖M(wk+1 − w̃k+1)‖2

H

= 2(wk − w̃k)T MTHM[(wk − w̃k)

− (wk+1 − w̃k+1)] − ‖M[(wk − w̃k)− (wk+1 − w̃k+1)]‖2
H .
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Inserting (8.5.7) into the first term of the right-hand side of the last equality, we
obtain

‖M(wk − w̃k)‖2
H − ‖M(wk+1 − w̃k+1)‖2

H

≥ 1

α
‖(wk − w̃k − (wk+1 − w̃k+1)‖2

(QT+Q)

−‖M[(wk − w̃k)− (wk+1 − w̃k+1)]‖2
H

(8.4.8b)= 1

α
‖(wk − w̃k)− (wk+1 − w̃k+1)‖2

G ≥ 0,

where the last inequality is because of the positive definiteness of the matrix (QT +
Q)− αMTHM � 0. The assertion (8.5.11) follows immediately. ��

Note that it follows from G ( 0 and Theorem 8.4.5 that there exists a constant
c0 > 0 such that

‖wk+1 − w∗‖2
H ≤ ‖wk − w∗‖2

H − c0‖M(wk − w̃k)‖2
H , ∀w∗ ∈ "∗.

Since αM(wk − w̃k) = (wk − wk+1), we have a constant c > 0 such that

‖wk+1 − w∗‖2
H ≤ ‖wk − w∗‖2

H − c‖wk − wk+1‖2
H , ∀w∗ ∈ "∗. (8.5.12)

Now, with (8.5.12) and (8.5.11), we are ready to establish a worst-case O(1/T )
convergence rate in a nonergodic sense for the proposed algorithm (8.3.3).

Theorem 8.5.5 Let {wk} be the sequence generated by the proposed algo-
rithm (8.3.3). For any integer T > 0, we have

‖wT − wT+1‖2
H ≤

1

(T + 1)c
‖w0 − w∗‖2

H , ∀w∗ ∈ "∗, (8.5.13)

with a constant c > 0.

Proof First, it follows from (8.5.12) that

∞∑
k=0

c‖wk − wk+1‖2
H ≤ ‖w0 − w∗‖2

H , ∀w∗ ∈ "∗. (8.5.14)

According to Theorem 8.5.4, the sequence {‖wk −wk+1‖2
H } is monotonically non-

increasing. Therefore, we have
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(T + 1)‖wT − wT+1‖2
H ≤

T∑
k=0

‖wk − wk+1‖2
H . (8.5.15)

The assertion (8.5.13) follows from (8.5.14) and (8.5.15) immediately. ��
Let d := inf{‖w0−w∗‖H |w∗ ∈ "∗}. Then, for any given ε > 0, Theorem 8.5.5

shows that the proposed algorithm (8.3.3) needs at most )d2/cε* iterations to ensure
that ‖wk − wk+1‖2

H ≤ ε. Recall (8.4.26) and α > 0 is a constant. It indicates
that wk is a solution point of VI(", F, θ) if ‖wk − wk+1‖2

H = 0. A worst-case
O(1/T ) convergence rate in a nonergodic sense is thus established for the proposed
algorithm (8.3.3).

8.6 Some Special Cases

In this section, we discuss some special cases when a regrouping strategy for (8.1.1)
is specified and demonstrate the new algorithm in some more specific contexts. In
particular, we show that the existing algorithms in [15, 17] can both be recovered
by regrouping the variables in (8.1.1) appropriately. Therefore, the convergence rate
results established in Sections 8.5.1 and 8.5.2 are applicable to the methods in [15,
17]. This is a by-product of this paper.

In such special cases, we always consider the first group as x1, thus we have

x1 = x1, and m1 = 1. (8.6.1)

In addition, we take

τ1 = m1 − 1 = 0.

Because x1 = x1 and τ1 = 0, the first subproblem in the prediction step (8.4.11a)
becomes

x̃k
1 = arg min

{Lt
β [x1, x

k
2, . . . , x

k
t , λ

k] ∣∣ x1 ∈ X1
}
.

For this case, the prediction step (8.4.11) can be specified as follows.
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Prediction. For given vk = (xk2 , . . . , x
k
m, λ

k) = (xk
2, . . . , x

k
t , λ

k),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃k
1= arg min

{Lt
β [x1, x

k
2, . . . , x

k
t , λ

k] ∣∣ x1 ∈ X1
};

for r = 2, . . . t , do:
for j = 1, . . . mr , do:

x̃krj = arg min

{Lt
β

(
x̃k

1, . . . , x̃
k
r−1, x

k
r1
, . . . , xkrj−1

, xrj , x
k
rj+1

, . . . , xkrmr
,

xk
r+1, . . . , x

k
t , λ

k
)+ τrβ

2 ‖Arj (xrj−xkrj )‖2

∣∣∣∣xrj∈Xrj

}
;

end.
end.

(8.6.2a)
Additionally, we define

λ̃k = λk − β
(
A1x̃

k
1 +

t∑
r=2

Arx
k
r − b

)
. (8.6.2b)

According to (8.6.2), because we choose x1 = x1 and τ1 = 0, then x1 = x1
is an intermediate variable and it is not needed in the iteration. In other words,
to implement the proposed algorithm (8.3.3) with x1 = x1, we only need vk =
(xk

2, . . . , x
k
t , λ

k). Moreover, note that β(D1 − AT
1 A1) is the unique non-zero

elements in the first row and first column of the matrix Q (see (8.4.1)). In this case,

D1 = (τ1 + 1)diag(AT
1 A1) = diag(AT

1 A1)

and (D1 −AT
1 A1) becomes the zero matrix. Accordingly, Lemma 8.4.3 is reduced

to the following lemma (for convenience, we still use the same letters to denote the
matrices).

Lemma 8.6.1 Let x̃k be generated by (8.6.2a) from the given vector vk and λ̃k be
defined by (8.6.2b). Then, the predictor w̃k ∈ " satisfies

w̃k ∈ ", ϑ(x)− ϑ(x̃k)+ (w − w̃k)T F (w̃k) ≥ (v − ṽk)T Q(vk − ṽk), ∀w ∈ ",

(8.6.3)
where Q is defined by

Q =
(
βQe 0
−A 1

β
I

)
, (8.6.4)

A and Qe are defined by (8.4.3) and (8.4.4), respectively.

Note that the matrix Q in (8.6.4) can be generated by cutting off the first row
and column of the matrix Q given in (8.4.1). This is because the first block-wise
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variable x1 is just an intermediate variable for the special case under our current
consideration. Thus, the matrix Q originally given in (8.4.1) for the generic case of
Algorithm 1 has all zeros in its first row and column for the special case where
x1 = x1; hence, we only consider (8.6.4) for this special case. Likewise, with
the specific Q in (8.6.4), we can also define the corresponding matrix H and G

as in (8.4.8a) and (8.4.8b), respectively. Moreover, as shown in Lemma 8.4.2, the
positive definiteness of these two matrices is crucial for proving the convergence of
Algorithm 1 for the special case where x1 = x1.

Moreover, the correction step (8.4.12) in the generic setting can be specified as
follows.

Correction. The new iterate vk+1 is given by

vk+1 = vk − αM(vk − ṽk), (8.6.5a)

where

M =
(
Q−Te De 0

−βA I

)
, α ∈

{
(0, 1), if τr ≥ mr − 1, r = 2, . . . , t;
(0, 1], if τr > mr − 1, r = 2, . . . , t,

(8.6.5b)

and ṽk is the related sub-vector of the predictor w̃k generated by (8.6.2).

The matrices Qe, De in (8.6.5b) are defined in (8.4.4) and (8.4.5), respectively. It
follows from (8.6.5b) that

M =
(Q−Te De 0
−βA I

)
and A = (A2, A3, . . . , Am).

Also, because of (8.6.2b), we have

λk+1 = λk − αβ
(∑m

j=1Aj x̃
k
j − b

)
. (8.6.6a)

In addition, the variables x2, · · · , xm are updated by the back substitution procedure:

D−1
e QT

e

⎛
⎜⎝

xk+1
2 − xk

2
...

xk+1
t − xk

t

⎞
⎟⎠ = α

⎛
⎜⎝

x̃k
2 − xk

2
...

x̃k
t − xk

t

⎞
⎟⎠ . (8.6.6b)

In the following, we show that both the methods in [15, 17] are special cases of
the proposed algorithm (8.3.3) with x1 = x1.
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8.6.1 The ADMM-GBS in [15]

Let us consider the special regrouping strategy with xi = xi for i = 1, · · · ,m
for (8.1.1). That is, each block of variables only consists of one variable. For this
case, we have

x =

⎛
⎜⎜⎜⎝

x1

x2
...

xm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x1

x2
...

xm

⎞
⎟⎟⎟⎠ , where xi = xi, i = 1, . . . , m. (8.6.7)

Clearly, for this regrouping strategy, in the implementation of the proposed algo-
rithm (8.3.3), we have

τi = 0, i = 1, 2, . . . , m,

and thus the matrix Qe (8.4.4) and De can be specified as

Qe =

⎛
⎜⎜⎜⎜⎜⎜⎝

AT
2 A2 0 · · · 0

AT
3 A2 AT

3 A3
. . .

...

...
. . .

. . . 0

AT
mA2 · · · AT

mAm−1 AT
mAm

⎞
⎟⎟⎟⎟⎟⎟⎠

and De =

⎛
⎜⎜⎜⎜⎜⎜⎝

AT
2 A2 0 · · · 0

0 AT
3 A3

. . .
...

...
. . .

. . . 0

0 · · · 0 AT
mAm

⎞
⎟⎟⎟⎟⎟⎟⎠
,

respectively. According to (8.6.2), the prediction step (8.4.11) is reduced to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃k1 = arg min
{Lm

β (x1, x
k
2 , x

k
3 , . . . , x

k
m, λ

k)
∣∣ x1 ∈ X1

};
x̃k2 = arg min

{Lm
β (x̃

k
1 , x2, x

k
3 , . . . , x

k
m, λ

k)
∣∣ x2 ∈ X2

};
...

x̃ki = arg min
{Lm

β (x̃
k
1 , . . . , x̃

k
i−1, xi, x

k
i+1, . . . , x

k
m, λ

k)
∣∣ xi ∈ Xi

};
...

x̃km = arg min
{Lm

β (x̃
k
1 , . . . , x̃

k
m−1, xm, λ

k)
∣∣ xm ∈ Xm

}
,

(8.6.8a)

and

λ̃k = λk − β
(
A1x̃

k
1 +

m∑
j=2

Ajx
k
j − b

)
. (8.6.8b)

The new iterate vk+1 is given by (8.6.5). Since τi = mi − 1 = 0, the step size
α ∈ (0, 1).

If we denote the output (8.6.8a) by x̄k+1
1 , x̄k+1

2 , . . . , x̄k+1
m , namely
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̄k+1
1 = arg min

{Lm
β (x1, x

k
2 , x

k
3 , . . . , x

k
m, λ

k)
∣∣ x1 ∈ X1

};
x̄k+1

2 = arg min
{Lm

β (x̄
k+1
1 , x2, x

k
3 , . . . , x

k
m, λ

k)
∣∣ x2 ∈ X2

};
...

x̄k+1
i = arg min

{Lm
β (x̄

k+1
1 , . . . , x̄k+1

i−1 , xi, x
k
i+1, . . . , x

k
m, λ

k)
∣∣ xi ∈ Xi

};
...

x̄k+1
m = arg min

{Lm
β (x̄

k+1
1 , . . . , x̄k+1

m−1, xm, λ
k)
∣∣ xm ∈ Xm

}
,

(8.6.9a)
and set

λ̄k+1 = λk − β
( m∑
j=1

Aj x̄
k+1
j − b

)
. (8.6.9b)

The implementation of (8.6.6) becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
D−1

e QT
e

⎛
⎜⎝

xk+1
2 − xk2

...

xk+1
m − xkm

⎞
⎟⎠ = α

⎛
⎜⎝

x̄k+1
2 − xk2

...

x̄k+1
m − xkm

⎞
⎟⎠ ,

λk+1 − λk = α(λ̄k+1 − λk).

(8.6.10)

Note that for this special case, we have

D−1
e QT

e =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

In2(A
T
2 A2)

−1AT
2 A3 · · · (AT

2 A2)
−1AT

2 Am

0
. . .

. . .
...

...
. . .

. . . (AT
m−1Am−1)

−1AT
m−1Am

0 · · · 0 Inm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is just the left-upper part of the matrix P (see (8.1.11)). Thus, the method (8.6.9)–
(8.6.10) reduces to the ADMM-GBS in [15].

8.6.2 The Splitting Method in [17]

Then, we consider another regrouping for (8.1.1):
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x =

⎛
⎜⎜⎜⎝

x1

x2
...

xm

⎞
⎟⎟⎟⎠ =

(
x1

x2

)
, where x1 = x1 and x2 =

⎛
⎜⎝

x2
...

xm

⎞
⎟⎠ . (8.6.11)

For this regrouping, we have

m1 = 1 and m2 = m− 1.

Besides (8.6.1), for the implementation of the new algorithm (8.3.3), we have

τ2 = τ > m− 2 = m2 − 1

and thus the matrix Qe given in (8.4.4) is specified as

Qe = De =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(τ + 1)AT
2 A2 0 · · · 0

0 (τ + 1)AT
3 A3

. . .
...

...
. . .

. . . 0

0 · · · 0 (τ + 1)AT
mAm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(8.6.12)
Thus, according to (8.6.2), the prediction step (8.4.11) is reduced to

⎧⎪⎪⎨
⎪⎪⎩
x̃k1 = arg min

{L2
β(x1, x

k
2 , x

k
3 , . . . , x

k
m, λ

k)
∣∣ x1 ∈ X1

};
x̃ki = arg min

{L2
β(x̃

k
1 , x

k
2 . . . , x

k
i−1, xi , x

k
i+1, . . . , x

k
m, λ

k)

+ τβ
2 ‖Ai(xi − xki )‖2

∣∣∣∣ xi ∈ Xi

}
, i = 2, . . . , m,

(8.6.13a)
and

λ̃k = λk − β
(
A1x̃

k
1 +

m∑
j=2

Ajx
k
j − b

)
. (8.6.13b)

Since τ2 = τ > m2 − 1 = m − 2, we take the step size α = 1 in the correction
step (8.6.5). The new iterate is given by

vk+1 = vk −M(vk − ṽk).

Because x2 = (x2, . . . , xm), we have Qe = De (see (8.4.4) and (8.4.5)). Thus the
matrix M in (8.6.5b) becomes

M =
(

I 0

−βA I

)
.
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Using Qe = De and α = 1, the implementation of correction (8.6.5) is reduced to

λk+1 = λk − β
(∑m

j=1Aj x̃
k
j − b

)
, (8.6.14a)

and ⎛
⎜⎝
xk+1

2
...

xk+1
m

⎞
⎟⎠ =

⎛
⎜⎝

x̃k2
...

x̃km

⎞
⎟⎠ . (8.6.14b)

Therefore, (8.6.13) and (8.6.14) can be represented by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xk+1
1 = arg min

{L2
β(x1, x

k
2 , x

k
3 , . . . , x

k
m, λ

k)
∣∣ x1 ∈ X1

};
xk+1
i = arg min

{L2
β(x

k+1
1 , xk2 . . . , x

k
i−1, xi, x

k
i+1, . . . , x

k
m, λ

k)

+ τβ
2 ‖Ai(xi − xki )‖2

∣∣ xi ∈ Xi

}
, i = 2, . . . , m.

λk+1 = λk − β
(∑m

j=1 Ajx
k+1
j − b

)
.

(8.6.15)
To clearly see the relationship between (8.6.15) and the method in [17], let us

summarize a conclusion in the following lemma.

Lemma 8.6.2 Let the augmented Lagrangian function Lm
β (x1, . . . , xm, λ) be

defined in (8.1.6). Then we have

arg min
{
Lm
β (x

k+1
1 , xk2 . . . , xki−1, xi, x

k
i+1, . . . , x

k
m, λ

k)+ τβ

2
‖Ai(xi − xki )‖2

∣∣ xi ∈ Xi

}

= arg min
{
θi(xi)− (λk+

1
2 )T Aixi + (τ + 1)β

2
‖Ai(xi − xki )‖2

∣∣ xi ∈ Xi

}
,

(8.6.16)

where

λk+
1
2 = λk − β

(
A1x

k+1
1 +

m∑
i=2

Aix
k
i − b

)
. (8.6.17)

Proof Let us observe the xi-subproblems in the left-hand side of (8.6.16). Notice
that

Lm
β (x

k+1
1 , xk2 . . . , x

k
i−1, xi, x

k
i+1, . . . , x

k
m, λ

k)

= θi(xi)− θi(x
k
i )+

∑m
j=1θj (x

k
j )− (λk)T [A1x

k+1
1 + Aixi +∑m

j=2,j �=iAjx
k
j − b]

+ β
2 ‖Ai(xi − xki )+ A1x

k+1
1 +∑m

j=2Ajx
k
j − b‖2.
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Ignoring some constant terms in the objective function of the minimization problem,
we have

arg min
{Lm

β (x
k+1
1 , xk2 . . . , xki−1, xi , x

k
i+1, . . . , x

k
m, λ

k)+ τβ
2 ‖Ai(xi − xki )‖2|xi ∈ Xi}

= arg min

{
θi(xi)− (λk)T Aixi + β

2 ‖Ai(xi − xki )+ A1x
k+1
1 +∑m

j=2Ajx
k
j − b‖2

+ τβ
2 ‖Ai(xi − xki )‖2

∣∣∣∣xi ∈ Xi

}
.

Thus, the optimality condition of the xi-subproblem is

xk+1
i ∈ Xi, θi(xi)− θi(x

k+1
i )+ (xi − xk+1

i )T
{− AT

i λ
k+

+βAT
i

[
Ai(x

k+1
i − xki )+ (A1x

k+1
1 +∑m

j=2 Ajx
k
j − b)

]
+ τβAT

i Ai(x
k+1
i − xki )

} ≥ 0, ∀xi ∈ Xi.

It follows from (8.6.17) that

λk = λk+
1
2 + β

(
A1x

k+1
1 +∑m

j=2Ajx
k
j − b

)
.

Substituting this identity into the last inequality, we obtain

xk+1
i ∈ Xi, θi(xi)− θi(x

k+1
i )

+ (xi − xk+1
i )T

{− AT
i λ

k+ 1
2 + (1+ τ)βAT

i Ai(x
k+1
i − xki )

} ≥ 0, ∀ xi ∈ Xi.

This is just the optimality condition of the xi-subproblem of the right-hand side
of (8.6.16). ��

Thus, by setting μ = τ + 1, the scheme (8.6.15) can be represented as the
following scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = arg min

{Lm
β (x1, x

k
2 , x

k
3 , . . . , x

k
m, λ

k)
∣∣ x1 ∈ X1

};
λk+ 1

2 = λk − β
(
A1x

k+1
1 +∑m

i=2 Aix
k
i − b

);
xk+1
i = arg min

{
θi(xi)− (λk+ 1

2 )T Aixi + μβ
2 ‖Ai(xi − xki )‖2

∣∣ xi ∈ Xi

}
,

i = 2, . . . , m.

λk+1 = λk − β
(∑m

j=1 Ajx
k+1
j − b

)
.

(8.6.18)
This is just the method proposed in [17]. Recall that μ > m− 1 (since τ > m− 2)
is the condition to ensure the convergence of the method in [17].
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8.7 A Refined Version of Algorithm 1 with Calculated Step
Sizes

Instead of taking the constant step size α in the correction step (8.4.12), we can
refine the algorithm (8.3.3) by choosing a calculated step size αk at each iteration.
Recall the role of the correction step in the algorithm (8.3.3) is to ensure the strict
contraction property of the sequence (see (8.4.29)). The main idea of refining the
algorithm (8.3.3) is that we can find a better step size, which is iteration-dependent,
for each iteration such that the proximity to the solution set can be further reduced.
For the case where calculating the step size is not computationally expensive,
this refined version can accelerate the convergence and the number of iteration
can be reduced, while the computation per iteration is just slightly increased.
However, if the step size itself is computationally expensive, we still recommend
the scheme (8.3.3) with a constant step size because for this case, the computation
per iteration might be significantly increased; thus, the overall convergence might
be slower even though the number of iteration might be smaller.

To see how to find a better step size to further reduce the proximity to the solution
set, let us revisit Lemma 8.4.3. Indeed, setting w = w∗ in (8.4.14), we get

(w̃k − w∗)T Q(wk − w̃k) ≥ ϑ(x̃k)− ϑ(x∗)− (w̃k − w∗)T F (w̃k), ∀w∗ ∈ "∗.

Using the monotonicity of F and (8.2.4), it follows that

(w̃k − w∗)T Q(wk − w̃k) ≥ 0 (8.7.1)

and consequently

(wk − w∗)T Q(wk − w̃k) ≥ (wk − w̃k)T Q(wk − w̃k), ∀w∗ ∈ "∗. (8.7.2)

Because Q = HM , it follows that

〈H(wk − w∗),M(wk − w̃k)〉 ≥ 1

2
‖wk − w̃k‖2

(QT+Q)
, ∀w∗ ∈ "∗.

This means that M(w̃k − wk) is a descent direction of the distance function ‖w −
w∗‖2

H at the point wk , even if w∗ is unknown. Along the direction M(w̃k−wk) with
well-chosen step size α, we can reduce the unknown distance function ‖w−w∗‖2

H .
We define the step-size-dependent new iterate by

wk+1(α) = wk − αM(wk − w̃k), (8.7.3)

and

p(α) = ‖wk − w∗‖2
H − ‖wk+1(α)− w∗‖2

H . (8.7.4)
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By using HM = Q, we have

p(α) = ‖wk − w∗‖2
H − ‖wk+1(α)− w∗‖2

H

= ‖wk − w∗‖2
H − ‖(wk − w∗)− αM(wk − w̃k)‖2

H

= 2α(wk − w∗)T Q(wk − w̃k)− α2‖M(wk − w̃k)‖2
H .

Ideally we want to maximize the quadratic function p(α). However, it is impossible
due to the lack of the unknown solution point w∗. By using (8.7.2), we obtain

p(α) ≥ q(α), (8.7.5)

where

q(α) = 2α(wk − w̃k)T Q(wk − w̃k)− α2‖M(wk − w̃k)‖2
H . (8.7.6)

We thus turn to the second best choice: Maximizing the quadratic function q(α)

which is a lower bound of p(α). This promotes us to take the value of α as

α∗k =
(wk − w̃k)T Q(wk − w̃k)

‖M(wk − w̃k)‖2
H

= (wk − w̃k)T Q(wk − w̃k)

(wk − w̃k)T (MTHM)(wk − w̃k)
. (8.7.7)

We take α = γα∗k with γ ∈ (0, 2). According to (8.4.9), we have

QT +Q−MTHM � 0

and thus

α∗k ≥
1

2
. (8.7.8)

Therefore, the iteration-dependent step size calculated by (8.7.7) is bounded away
from 0.

Moreover, it is worth to mention that it follows from (8.4.10) that

MTHM =
⎛
⎜⎝β(D1 −AT

1 A1) 0 0
0 β(De +ATA) −AT

0 −A 1
β
I

⎞
⎟⎠ .

Therefore, the denominator in (8.7.7) can be calculated directly based on the matrix
defined above before implementing the Gaussian back substitution procedure and
there is no need to calculate the inverse of any matrix for determining αk .

So, the proposed algorithm (8.3.3) can be altered to a refined version where the
constant step size α in (8.4.12b) is iteratively calculated by (8.7.7). The resulting
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refined version differs from the proposed algorithm (8.3.3) only in its correction
step as shown below.

Correction step: The new iterate wk+1 is given by

wk+1 = wk − αkM(wk − w̃k), (8.7.9a)

where w̃k is generated by the prediction step (8.4.11) and M is given by (8.4.6).
The step size αk is given by

αk = γα∗k , γ ∈ (0, 2) and α∗k =
(wk − w̃k)T Q(wk − w̃k)

(wk − w̃k)T (MTHM)(wk − w̃k)
.

(8.7.9b)

Note that it follows from (8.7.6) and (8.7.7) that

q(γ α∗k ) = 2γα∗k (wk − w̃k)T Q(wk − w̃k)− (γ α∗k )2‖M(wk − w̃k)‖2
H

= γ (2− γ )(α∗k )2‖M(wk − w̃k)‖2
H . (8.7.10)

The following theorem shows the strict contraction property of the sequence
generated by the refined algorithm with the iteratively calculated step size (8.7.7).
Its proof is similar as Theorem 8.4.5 and thus omitted.

Theorem 8.7.1 Let {wk} be the sequence generated by the refined algorithm
of (8.3.3) with the iteratively calculated step size (8.7.7). Then, it holds

‖wk+1 − w∗‖2
H ≤ ‖wk − w∗‖2

H −
γ (2− γ )

4
‖M(wk − w̃k)‖2

H , ∀w∗ ∈ "∗.
(8.7.11)

Based on Theorem 8.7.1, the convergence and the convergence rates can all
be established similar as the analysis in Sections 8.4 and 8.5. We omit them for
succinctness.

8.8 A Linearized Splitting Block-Wise ADMM with
Gaussian Back Substitution

As analyzed, the xrj -subproblems (see (8.3.1)) in the proposed splitting version of
block-wise ADMM-GBS (8.3.3) are in form of (8.1.4) and we can further alleviate
them by linearizing their quadratic terms if these subproblems are still too hard
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for a particular application of the model (8.1.1). More specifically, recall the xrj -
subproblem (8.3.1) in (8.3.3) and ignore some constant terms in its objective. Then,
if its quadratic term is linearized, the resulting linearized subproblem becomes

x̄k+1
rj

= arg min

{ θrj (xrj )− (λk)T Arj xrj + (xrj − xkrj )
T

βAT
rj

(∑r−1
s=1As x̄

k+1
s +∑t

s=rAsx
k
s − b

)+ νrβ
2 ‖xrj − xkrj ‖2,

}

(8.8.1)

which is indeed in form of (8.1.3). Note that in (8.8.1), the constant νr > 0
plays the role of controlling the proximity of the linearization, and it should be
sufficiently large to ensure the accuracy of this linearized subproblem and finally the
convergence. As well studied in the literature such as [20, 22, 31–33], we require

νr > ρ(AT
r Ar ), r = 1, . . . , t, (8.8.2)

where ρ(·) denotes the spectrum radius of a matrix.
Therefore, replacing the xrj -subproblems in (8.3.3) by their linearized counter-

parts given in (8.8.1), we can obtain a linearized version of the proposed splitting
block-wise ADMM-GBS (8.3.3) whose xrj -subproblems are in form of (8.1.3).

8.8.1 Algorithm

For the algorithm in this section, we define the matrix

PL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0 0 0

0 I 1
ν2
AT

2 A3 · · · 1
ν2
AT

2 At 0

0 0
. . .

. . .
...

...

...
. . . I 1

νt−1
AT

t−1At 0

0 0 · · · 0 I 0

0 0 · · · 0 0 I�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8.8.3)

where PL ∈ R
(n+�)×(n+�), and we summarize the linearized version of the

scheme (8.3.3) as follows.
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Algorithm 2: A linearized version of the splitting block-wise ADMM-
GBS (8.3.3) for (8.1.1)

Initialization: Specify a regrouping for the model (8.1.1) with determined
values of t and mr for r = 1, 2, . . . , t . Choose constants νr such that
νr > ρ(AT

r Ar ) for r = 1, . . . , t . Let PL be defined in (8.8.3). Choose
w0 = (x0

1, x
0
2, . . . , x

0
t , λ

0) ∈ X1 × X2 × · · · × Xt × R
�, for every k ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for r = 1, 2, . . . t , do:
for j = 1, 2, . . . , mr , parallel do:
x̄k+1
rj

= arg min

{ θrj (xrj )− (λk)T Arj xrj + (xrj − xkrj )
T

βAT
rj

(∑r−1
s=1As x̄

k+1
s +∑t

s=rAsx
k
s − b

)+ νrβ
2 ‖xrj − xkrj ‖2

∣∣∣∣xrj ∈ Xrj

}
;

end.
end.
λ̄k+1 = λk − β

(∑t
r=1Ar x̄

k+1
r − b

)
.

PL(w
k+1 − wk) = (w̄k+1 − wk).

(8.8.4)

Remark 8.8.1 Just like the scheme (8.3.3), with the block-wise upper triangular
matrix PL defined in (8.1.11), the entries of vk+1 can be updated in the order
of λ → xm → · · · x2 by the Gaussian back substitution procedure when
implementing (8.8.4). Moreover, the matrix PL does not require computing any
inverse of matrix, not like the matrix P defined in (8.3.2). Therefore, it is an easier
substitution procedure compared with the one in (8.3.3). Meanwhile, theoretically it
is required to estimate ρ(AT

r Ar ) for r = 1, 2, · · · , t , which might not be easy. This
is the cost of alleviating the difficulty levels of subproblems from (8.1.4) to (8.1.3)
for (8.8.4). Finally, it is worth to mention that the requirements νr > ρ(AT

r Ar ) for
r = 1, 2, · · · , t are sufficient conditions to ensure the convergence of the linearized
version (8.8.4) and they represent conservative estimates on the parameters νr ’s.
In implementation, usually we can choose smaller values for νr ’s which might not
satisfy these sufficient conditions while can lead to better numerical performance.

Remark 8.8.2 In the scheme (8.8.4), we take the step size as 1 constantly in the
Gaussian back substitution procedure. As in Section 8.7, we can analogously discuss
how to choose an iteratively calculated step size for the Gaussian back substitution
step in (8.8.4). For succinctness, we omit it and refer to [22] for some useful
analysis.

8.8.2 Convergence Analysis

In this subsection, we prove two important results for the proposed linearized
version (8.8.4). Based on them, the convergence analysis including both the global
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convergence and the worst-case convergence rates can be established analogously
as the analysis in Sections 8.4 and 8.5. As in Section 8.4, we need to rewrite
the scheme (8.8.4) as a prediction-correction form for analysis. For this purpose,
similarly as in Section 8.4.1, we first write the matrix Q as the block-wise form

Q =
⎛
⎜⎝β(ν1I −AT

1 A1) 0 0
0 βQe 0
0 −A 1

β
I

⎞
⎟⎠ , (8.8.5)

with A defined in (8.4.3) and

Qe =

⎛
⎜⎜⎜⎜⎝

ν2I 0 · · · 0

AT
3 A2 ν3I

. . .
...

...
. . .

. . . 0
AT

t A2 · · · AT
t At−1 νt I

⎞
⎟⎟⎟⎟⎠ . (8.8.6)

Moreover, we use De = diag(ν2I, ν3I, . . . , νt I ) to denote the diagonal part of Qe.
Using (8.8.2), we have

QT
e +Qe ( De +ATA. (8.8.7)

With these matrices, we can rewrite the scheme (8.8.4) as follows.

Prediction. For the given wk = (xk1 , x
k
2 . . . , x

k
m, λ

k) = (xk
1, . . . , x

k
t , λ

k),
generate the predictor w̃k = (x̃k1 , x̃

k
2 . . . , x̃

k
m, λ̃

k) = (x̃k
1, . . . , x̃

k
t , λ̃

k) by the
following steps:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for r = 1, 2, . . . t , do:
for j = 1, . . . mr , parallel do:

x̃krj = arg min

{ θrj (xrj )−(λk)T Arj xrj+(xrj−xkrj )T

βAT
rj

(∑r−1
s=1As x̃

k
s+

∑t
s=rAsx

k
s−b

)+ νrβ
2 ‖xrj−xkrj ‖2

∣∣∣∣xrj ∈Xrj

}
;

end.
end.

(8.8.8a)

Additionally, we define

λ̃k = λk − β
(A1x̃

k
1 +

∑t
j=2Ajx

k
j − b

)
. (8.8.8b)
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Correction. The new iterate wk+1 is given by

wk+1 = wk −M(wk − w̃k), (8.8.9a)

where w̃k is the predictor generated by (8.8.8) and

M =
⎛
⎝ I 0 0

0 Q−Te De 0
0 −βA I

⎞
⎠ . (8.8.9b)

Note that the matrix M in (8.8.9b) is the same form as the matrix defined
in (8.4.6). In the following, we prove a result similar as Lemma 8.4.3. This assertion
enables us to discern the difference between the predictor w̃k and a solution point
w∗.

Lemma 8.8.3 Let x̃k be generated by (8.8.8a) from the given vector wk and λ̃k be
defined by (8.8.8b). Then, the predictor w̃k ∈ " satisfies

w̃k ∈ ", ϑ(x)−ϑ(x̃k)+ (w− w̃k)T F (w̃k) ≥ (w− w̃k)T Q(wk− w̃k), ∀w ∈ ",

(8.8.10)
where

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β(ν1I −AT
1 A1) 0 · · · · · · 0 0

0 βν2I
. . .

...
...

0 βAT
3 A2

. . .
. . .

...
...

...
...

. . .
. . . 0 0

0 βAT
t A2 · · · βAT

t At−1 βνt I 0

0 −A2 · · · −At−1 −At
1
β
I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (8.8.11)

Proof The optimality condition of the convex minimization problem (8.8.8a) is

x̃krj ∈ Xrj , θrj (xrj )− θrj (x̃
k
rj
)+ (xrj − x̃krj )

T
{− AT

rj
λk

+βAT
rj

[∑r−1
s=1 As x̃

k
s +

∑t
s=r Asx

k
s − b

]
+ νrβ(x̃

k
rj
− xkrj )

} ≥ 0, ∀xrj ∈ Xrj .

For r = 2, . . . , m, using the definition of λ̃k (see (8.8.8b)), we have

λk = λ̃k + β
(A1x̃

k
1 +

∑t
s=2Asx

k
s − b

)
.
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Substituting it into the last inequality, we obtain

x̃krj ∈ Xrj , θrj (xrj )− θrj (x̃
k
rj
)+ (xrj − x̃krj )

T
{− AT

rj
λ̃k

+βAT
rj

[∑r−1
s=2 As(x̃

k
s − xk

s )
]+ νrβ(x̃

k
rj
− xkrj )

} ≥ 0, ∀xrj ∈ Xrj .

Applying this inequality for the cases of j = 1, . . . , mr , and summarizing the
resulting inequalities, we get

x̃k
r ∈ Xr , ϑr(xr )− ϑr(x̃

k
r )+ (xr − x̃k

r )
T
{−AT

r λ̃
k

+βAT
r

[∑r−1
s=2 As(x̃

k
s − xk

s )
]+ νrβ(x̃

k
r − xk

r )
} ≥ 0, ∀xr ∈ Xr .

(8.8.12)

For r = 1, recall the optimality condition and the definition of λ̃k . We obtain

x̃k
1 ∈ X1, ϑ1(x1)− ϑ1(x̃

k
1)+ (x1 − x̃k

1)
T
{−AT

1 λ̃
k

+β(ν1I −AT
1 A1)(x̃

k
1 − xk

1)
} ≥ 0,∀x1 ∈ X1. (8.8.13)

In addition, by using (8.8.8b), we have

(

t∑
r=1

Ar x̃
k
r − b)−

t∑
s=2

As(x̃
k
s − xk

s )+
1

β
(λ̃k − λk) = 0,

and it can be rewritten as

λ̃k ∈ R
�, (λ−λ̃k)T {( t∑

r=1

Ar x̃
k
r−b)−

t∑
s=2

As(x̃
k
s−xk

s )+
1

β
(λ̃k−λk)} ≥ 0, ∀ λ ∈ R

�.

(8.8.14)

Combining (8.8.13), (8.8.12) (r = 2, . . . , t), and (8.8.14) together and using the
notations F(w), Q (see (8.2.2) and (8.8.11)), the assertion of this lemma is followed
directly. ��

Then, in the following lemma, we prove some assertions with respect to the
matrices defined before.

Lemma 8.8.4 For the matrices Q and M defined in (8.8.11) and (8.8.9b), respec-
tively, let

H := QM−1 (8.8.15a)

and

G := QT +Q−MTHM. (8.8.15b)

Then, both the matrices H and G are symmetric and positive definite.
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Proof First, we check the positive definiteness of the matrix H . For the matrix M

defined in (8.8.9b), we have

M−1 =
⎛
⎝ I 0 0

0 D−1
e QT

e 0
0 βAD−1

e QT
e I

⎞
⎠ .

Thus, according to the definition of the matrix H (see (8.8.15a)), we conclude that

H = QM−1 =

⎛
⎜⎜⎜⎝
β(ν1I −AT

1 A1) 0 0

0 βQeD−1
e QT

e 0

0 0 1
β
I

⎞
⎟⎟⎟⎠

is symmetric and positive definite.
Now, we turn to check the positive definiteness of the matrix G. Note that

QT +Q =

⎛
⎜⎜⎜⎝

2β(ν1I −AT
1 A1) 0 0

0 β(QT
e +Qe) −AT

0 −A 2
β
I

⎞
⎟⎟⎟⎠ (8.8.16)

and

MTHM = QTM =

⎛
⎜⎜⎝
β(ν1I −AT

1 A1) 0 0

0 β(De +ATA) −AT

0 −A 1
β
I

⎞
⎟⎟⎠ . (8.8.17)

Then, it follows from (8.8.16), (8.8.17), and (8.8.7)) that

G = QT +Q−MTHM

=

⎛
⎜⎜⎜⎝
β(ν1I −AT

1 A1) 0 0

0 β(QT
e +Qe)− β(De +ATA) 0

0 0 1
β
I

⎞
⎟⎟⎟⎠ ( 0.

The assertion of this lemma is proved. ��
Based on Lemmas 8.8.3 and 8.8.4, and following the analysis in Sections 8.4.4

and 8.5, we can easily establish the convergence and worst-case convergence rate
for the linearized version (8.8.4). We omit the detail for succinctness.
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8.9 Numerical Experiments

In this section, we provide some numerical results to verify the convergence of
the proposed Algorithm 1, and its refined versions with iteratively calculated step
sizes and linearized subproblems, respectively. Three subsections are thus organized
accordingly.

Recall that our emphasis is discussing the big-data scenario of (8.1.1) with a
huge value of m, and we pay particular attention to the case where each function θi
is simple in sense of that the subproblems (8.1.3) or (8.1.4) can be easily solved.
Moreover, we want to test the affection of different grouping strategies in the
block-wise reformulation (8.1.14), i.e., the difference in numerical performance for
different values of the group number t . With these considerations, the basis pursuit
problem is a good choice to generate various synthetic datasets in this desired setting
and thus verify the theoretical assertions.

The basis pursuit (BP) problem can be mathematically modeled as

min ‖x‖1 s.t. Ax = b, x ∈ R
m, (8.9.1)

where A ∈ R
�×m with � , m and b ∈ R

�, see, e.g., [4, 5, 7]. This model captures
a wide range of applications in areas such as signal processing, sparse optimization,
variable selection, dimension reduction, and so on. Certainly, the model (8.9.1) is a
special case of (8.1.1) with θi(xi) = |xi |, ni = 1 and Xi = R for i = 1, . . . , m.

Our code was written by Matlab R2014b and all our experiments were performed
on a desktop with Windows 7 system and 4 Intel(R)-i7 CPU processor (3.10 GHz)
and 8.00 GB memory.

8.9.1 Convergence of Algorithm 1

We first verify the convergence of Algorithm 1 by the BP model (8.9.1). We generate
a matrix A ∈ R

�×m randomly using the standard Gaussian distribution; then a sparse
vector x ∈ R

m using the standard Gaussian distribution with a 6% sparsity level
(meaning 94% components of x being zero); and finally a vector b ∈ R

� by b = Ax.
For completeness, we test both the cases of � , m (the case with sparse-solution-
seeking explanation) and � = m (the case of a general �1 minimization model with
linear constraints).

Then, we consider different grouping strategies for the model (8.1.1), i.e.,
choosing different values for t in (8.1.14) and regrouping all the functions and
variables equally as t groups, each having m

t
components. For simplicity, we assume

that t can be divided by m without remainder. Algorithm 1 with t groups is denoted
by “ADMM-GBS-t .” Note that when t is chosen as m, then the BP model (8.9.1) is
considered as a m-block convex minimization model whose function is simply |xi |
and variable is xi for each block. It is easy to see that for “ADMM-GBS-t ,” each
subproblem arising in Algorithm 1 can be computed easily by
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x̃krj = arg min
xrj

∣∣xrj ∣∣+ β

2

∥∥∥∥∥∥Arj xrj +
r−1∑
j=1

Aj x̃
k
j +

rmr∑
j=r1,j �=rj

Aj x
k
j +

t∑
j=r+1

Ajx
k
j − b − λk

β

∥∥∥∥∥∥
2

+ τrβ

2

∥∥∥Arj (xrj − rkrj )

∥∥∥2

= shrinkage

(
1

AT
rj
Arj

AT
rj

[
arj + τrbrj

]
,

1

(τr + 1)β(AT
rj
Arj )

)
, (8.9.2)

where

arj = b + λk

β
−

r−1∑
j=1

Aj x̃
k
j −

rmr∑
j=r1,j �=rj

Ajx
k
j −

t∑
j=r+1

Ajx
k
j ,

brj = Arj x
k
rj

, and the operator shrinkage : R� × R → R
� is defined component-

wisely as

shrinkage(x, τ ) = sign(x). ∗max(|x| − τ, 0). (8.9.3)

For comparison, we also apply the direct extension of ADMM (8.1.9) to this
model because of its empirical efficiency even without provable convergence, and
denote it by “ADMM-Direct.” In our experiments, the penalty parameter β is set
to be 0.01 for “ADMM-Direct” and all cases of “ADMM-GBS-t .” For all cases
of “ADMM-GBS-t ,” the parameter α is set to be 0.99 and τr := m/t − 1.
Before presenting the stopping criterion, we calculate a nearly optimal solution by
implementing the code available on the website “http://stanford.edu/boyd/papers/
admm/” and denote it by xoptimal . For all the tested cases, the stopping criterion is
set to be

max

{∥∥xk+1 − xk
∥∥∥∥xk

∥∥ , ‖Ax − b‖
}
≤ 10−4, and

∥∥∥xk+1
∥∥∥

1
≤ ∥∥xoptimal

∥∥
1 .

We report the numerical results in terms of number of iterations (“Iter”), objective
function values (“Obj”), computing time in seconds (“Time”), the difference of xk+1

and xk measured by ‖xk+1−xk‖2/
∥∥xk

∥∥
2 (“Error”), and the constraint violation of

‖Ax − b‖2 (“Constraint”). Note that for the case t ≤ m where the xr -subproblem
is further splitted into m/t subproblems in parallel in Algorithm 1, we only count
the computing time of the subproblem with the longest computing time because we
can only use a sequential computation to simulate the parallel computation for these
further splitted subproblems.

From Tables 8.1 and 8.2, we see that all the tested cases of Algorithm 1
with different group numbers perform favorably with a convergence; thus, the
convergence of Algorithm 1 is well verified. Moreover, it is shown that extreme
values of t , meaning too small or too close to m, perform less efficiently than

http://stanford.edu/boyd/papers/admm/
http://stanford.edu/boyd/papers/admm/
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Table 8.1 Comparison of Algorithm 1 and ADMM-Direct for (8.9.1) with � = m

Dimension Method Iter Obj Time Error Constraint

� = m =
1000

ADMM-GBS-20 3537 162.178 5.187096 5.074078e−05 9.665843e−05

ADMM-GBS-50 1944 162.178 3.900150 6.764180e−05 9.911781e−05

ADMM-GBS-100 805 162.178 1.975037 8.561838e−05 9.101627e−05

ADMM-GBS-200 426 162.178 1.785631 6.736172e−05 9.795935e−05

ADMM-GBS-250 247 162.178 1.784326 7.288522e−05 9.086058e−05

ADMM-GBS-500 272 162.178 2.621949 6.958933e−05 9.192190e−05

ADMM-GBS-1000 289 162.178 5.112578 8.596721e−05 9.789457e−05

ADMM-Direct 321 162.178 11.365211 6.601057e−05 9.894851e−05

� = m =
5000

ADMM-GBS-20 16,405 768.328 492.757187 8.994438e−06 9.949918e−05

ADMM-GBS-50 8759 768.328 290.486375 1.389909e−05 9.802019e−05

ADMM-GBS-100 4317 768.328 186.969837 1.532337e−05 9.828724e−05

ADMM-GBS-200 2084 768.328 123.789375 2.148270e−05 9.986633e−05

ADMM-GBS-250 1059 768.328 101.603750 2.932857e−05 9.741456e−05

ADMM-GBS-500 849 768.328 102.531844 3.641548e−05 9.525081e−05

ADMM-GBS-1000 446 768.328 100.180726 7.609816e−05 9.191748e−05

ADMM-GBS-1250 282 768.328 115.009375 8.196895e−05 9.305580e−05

ADMM-GBS-2500 281 768.328 127.253906 8.850048e−05 9.065167e−05

ADMM-GBS-5000 263 768.328 211.710938 7.253421e−05 9.617933e−05

ADMM-Direct 327 768.328 234.125578 9.766126e−05 8.707594e−05

� = m =
10000

ADMM-GBS-20 33,592 1608.342 3567.999828 3.530865e−06 9.998092e−05

ADMM-GBS-50 18,050 1608.342 2001.936219 4.834372e−06 9.973279e−05

ADMM-GBS-100 7836 1608.342 1008.372188 7.528407e−06 9.977020e−05

ADMM-GBS-200 4192 1608.342 649.298438 8.119648e−05 9.879046e−05

ADMM-GBS-250 2215 1608.342 461.073125 7.393204e−05 9.983498e−05

ADMM-GBS-500 1741 1608.342 411.725000 2.153406e−05 9.712915e−05

ADMM-GBS-1000 930 1608.342 356.833594 2.118703e−05 9.946718e−05

ADMM-GBS-1250 552 1608.342 379.593750 5.508611e−05 8.041246e−05

ADMM-GBS-2500 919 1608.342 813.880859 5.741985e−05 4.547159e−05

ADMM-GBS-5000 523 1608.342 853.058594 7.560450e−05 6.447262e−05

ADMM-GBS-10,000 341 1608.342 1011.812500 7.357012e−05 9.878123e−05

ADMM-Direct 234 1608.342 849.640625 8.980877e−05 3.806441e−05

moderate values. For example, for the case where � = 100 and m = 1000,
the choices of t = 100, 200 or 250 are much better than the extreme cases of
t = 20, 50, 1000. As mentioned, this is because a larger t means a higher extent
of splitting on the augmented Lagrangian function outside but easier subproblems
with smaller proximal parameters and lower extent of parallelism inside, while the
opposite for a smaller t . Thus, an appropriate value of t can balance the loss of
accuracy to the augmented Lagrangian function outside and the solvability of the
subproblems inside; extreme values of t cannot achieve this balance and thus lead
to less favorable performance.
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Table 8.2 Comparison of Algorithm 1 and ADMM-Direct for (8.9.1) with �, m

Dimension Method Iter Obj Time Error Constratints

� = 100,
m = 1000

ADMM-GBS-20 24,712 73.112 19.723581 6.084257e−05 9.973273e−05

ADMM-GBS-50 24,768 73.112 27.347500 7.910947e−05 9.915442e−05

ADMM-GBS-100 8932 73.112 18.612819 7.650294e−05 9.830939e−05

ADMM-GBS-200 6731 73.112 25.433852 8.547038e−05 9.688150e−05

ADMM-GBS-250 3483 73.112 23.978025 8.159635e−05 9.781603e−05

ADMM-GBS-500 4304 73.113 34.582416 7.826775e−05 9.961987e−05

ADMM-GBS-1000 3462 73.113 57.752663 8.844657e−05 9.821201e−05

ADMM-Direct 3316 73.113 45.125785 8.606919e−05 9.869295e−05

� = 500,
m = 5000

ADMM-GBS-20 23,342 127.522 72.566731 7.132412e−05 9.992486e−05

ADMM-GBS-50 19,221 127.522 70.582162 9.455009e−05 9.963828e−05

ADMM-GBS-100 15,224 127.522 62.960977 7.305311e−05 9.886987e−05

ADMM-GBS-200 9123 127.522 55.292716 6.437095e−05 9.978086e−05

ADMM-GBS-250 4916 127.522 50.874821 8.685067e−05 9.949931e−05

ADMM-GBS-500 4672 127.522 42.775000 7.349265e−05 9.955053e−05

ADMM-GBS-1000 3696 127.522 50.490625 8.261306e−05 9.971985e−05

ADMM-GBS-1250 3873 127.522 87.723192 8.530503e−05 9.774368e−05

ADMM-GBS-2500 3326 127.522 94.406066 6.515167e−05 9.855248e−05

ADMM-GBS-5000 7338 127.522 453.875000 7.647595e−05 9.729608e−05

ADMM-Direct 3218 127.522 135.281250 8.525945e−05 9.852127e−05

� = 1000,
m = 10,000

ADMM-GBS-20 50,000 184.680 496.394914 6.673783e−04 3.149458e−03

ADMM-GBS-50 50,000 184.680 376.299071 6.437142e−04 1.058711e−03

ADMM-GBS-100 25,636 184.660 182.541629 7.201667e−05 9.992378e−05

ADMM-GBS-200 17,266 184.660 145.324531 7.371996e−05 9.989235e−05

ADMM-GBS-250 11,274 184.660 120.511632 6.823286e−05 9.975338e-05

ADMM-GBS-500 8813 184.660 105.782215 7.657899e−05 9.519138e−05

ADMM-GBS-1000 6221 184.660 101.566047 8.601931e−05 9.782919e−05

ADMM-GBS-1250 5532 184.660 182.300125 6.413814e−05 9.743909e−05

ADMM-GBS-2500 4232 184.660 162.531762 7.124923e−05 9.879833e−05

ADMM-GBS-5000 3621 184.660 256.775816 8.551503e−05 9.947986e−05

ADMM-GBS-10,000 2206 184.660 293.561335 7.182545e−05 9.109035e−05

ADMM-Direct 1406 184.660 215.156502 9.184770e−05 7.911372e−05

To further discern the numerical difference of different tested cases, in Fig-
ures 8.1 and 8.2, we choose the particular two cases, where � = m = 5000 and
(� = 500,m = 5000), to plot the evaluations of the objective function values and
constraint violations with respect to iterations. For each row, the right-hand side
figure is a zoom-in counterpart of the left-hand side one, to show the difference
more clearly.
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Fig. 8.1 Evolutions of Algorithm 1 and ADMM-Direct for (8.9.1) with � = m = 5000

8.9.2 Convergence of Algorithm 1 with Iteratively Calculated
Step Sizes

In this subsection, we verify the convergence of the refined version of Algorithm 1
(denoted by “R-ADMM-GBS”) whose step size is iteratively calculated by the
scheme (8.7.9), and the acceleration with the refined step sizes. We still use the
BP model (8.9.1). For succinctness, we only report the results for the cases where
� = m = 5000 and (� = 500,m = 5000), and report their results in Tables 8.3
and 8.4, respectively. To compare, the results of “ADMM-Direct” are also reported.
The parameters are set exactly as those in the last subsection. The additional
parameter γ in (8.7.9) is set as 1.8.

According to Tables 8.3 and 8.4, we see that the R-ADMM-GBS requires less
iterations than the ADMM-GBS, it is faster for most of the tested cases. This is
because the refined step size is chosen with the purpose of reducing the proximity
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Fig. 8.2 Evolutions of Algorithm 1 and ADMM-Direct for (8.9.1) with � = 500, m = 5000

to the solution set, or improving the contraction of the sequence. Thus, the R-
ADMM-GBS requires less iterations to achieve the same level of accuracy. But
the calculation of the step sizes itself needs time; thus, the overall computing time
of R-ADMM-GBS is not necessary to be less. We recommend the R-ADMM-
GBS especially when the computation of step sizes is cheap. Moreover, the data
in Tables 8.3 and 8.4 still reflects the fact that a non-extreme value of t can lead to
better numerical results.

8.9.3 Convergence of Algorithm 2

Finally, we verify the convergence of the linearized version of the splitting block-
wise ADMM-GBS (denoted by “Linearized-ADMM-GBS”), i.e., Algorithm 2,
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whose subproblems are in form of (8.1.4) and a linearization is used to make the
subproblems easier.

We still use the BP model (8.9.1) and regroup it as an equally grouped t-block
reformulation in form of (8.1.14), where t > 3. We compare the proposed Algo-
rithm 2 with the block-wise versions of both the direct extension of ADMM (8.1.18)
and the ADMM-GBS (8.1.19). Note that for this grouped case of (8.9.1), the
subproblems arising in (8.1.18) and (8.1.19) are all in dimensionality of m

t
as

x̃k+1
rj

= arg min
xrj

∥∥xrj ∥∥1
+ β

2

∥∥∥∥∥∥Arj xrj +
r−1∑
i=1

Ai x̃
k+1
i +

mr∑
i=1,i �=j

Aix
k
i +

t∑
i=r+1

Aix
k
i −

λk

β

∥∥∥∥∥∥
2

+ τrβ

2

∥∥∥Arj (xrj − xkrj )

∥∥∥2
. (8.9.4)

In general, Arj ∈ R
�×m

t is in generally not an identity matrix. Thus, the subprob-
lem (8.9.4) generally has no closed-form solution and must be solved iteratively. In
our experiments, we apply the FISTA in [1] to solve these subproblems iteratively,
and denote the combination of FISTA with (8.1.18) and (8.1.19) by “ADMM-Direct-
FISTA” and “ADMM-GBS-FISTA,” respectively. Recall that when Algorithm 2 is
implemented to this particular regrouped case of (8.9.1), the subproblems (8.9.4)
are solved by linearizing their quadratic terms, not further splitting in parallel
as Algorithm 1. Accordingly, a subproblem of Algorithm 2 has the closed-form
solution given by

x̃k+1
rj

= arg min
xrj

∥∥xrj ∥∥1
+ νrβ

2

∥∥∥∥∥xrj − xkrj +
1

νrβ

(
r−1∑
i=1

Ai x̃
k+1
i +

t∑
i=r

Aix
k
i −

λk

β

)∥∥∥∥∥
2

= shrinkage

(
xkrj −

1

νrβ

(
r−1∑
i=1

Ai x̃
k+1
i +

t∑
i=r

Aix
k
i −

λk

β

)
,

1

νrβ

)
, (8.9.5)

where the operator shrinkage is also defined in (8.9.3).
For all the algorithms, the parameter β is set as 0.01 for all methods. For

Algorithm 2, νr is set as 1.01 × ρ(AT
r Ar ). For ADMM-GBS, α = 0.99 and

τr = m/t − 1. The stopping criterion for all the algorithms is set as

max

{∥∥xk+1 − xk
∥∥∥∥xk

∥∥ , ‖Ax − b‖
}
≤ ε. (8.9.6)

To implement FISTA to solve the subproblems for ADMM-Direct-FISTA and
ADMM-GBS-FISTA, we calculate the maximal eigenvalues for the matrices AT

rj
Arj

and estimate the Lipschitz constants for the objective function in (8.9.4). For
succinctness, we only report the results for (8.9.1) with � = m = 1000 and t = 100.
We choose different levels of tolerance in (8.9.6) as ε = 10−3, 10−4, 10−5, 10−6;
and for each case of ε in (8.9.6), we test different levels of tolerance internally
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Table 8.5 Comparison of Algorithm 2 with ADMM-GBS-FISTA and ADMM-Direct-FISTA
for (8.9.1) with � = m = 1000

ε

Method 10−3 10−4 10−5 10−6

ADMM-GBS-FISTA(100 · ε) 3.6962 4.6703 9.2634 17.6497

ADMM-GBS-FISTA(10 · ε) 3.0765 5.5917 12.3913 24.7783

ADMM-GBS-FISTA(ε) 3.3162 7.1126 15.2145 32.4819

ADMM-GBS-FISTA(0.1 · ε) 4.7231 9.3329 22.1796 47.0625

ADMM-Direct-FISTA(100 · ε) 3.1294 4.1179 6.2247 12.3386

ADMM-Direct-FISTA(10 · ε) 2.8815 4.6812 7.7629 19.3764

ADMM-Direct-FISTA(ε) 3.0047 5.8647 10.0718 25.2881

ADMM-Direct-FISTA(0.1 · ε) 4.0562 7.2977 18.6328 33.7715

Linearized-ADMM-GBS 1.2754 2.8862 4.3315 10.6922

Bold values indicate best result

for FISTA as 100 · ε, 10 · ε, ε, and 0.1 · ε. The computing times in seconds are
reported in Table 8.5, in which the numbers in parentheses are the tolerance levels
for implementing FISTA for a given ε in (8.9.6).

The efficiency of Algorithm 2 is supported by the results reported in Table 8.5.
Indeed, the advantage of Algorithm 2 is because of the fact that when the quadratic
term in (8.9.4) is linearized, then the resulting subproblem has a closed-form
solution. This specific linearization technique thus can fully take advantage of
the remaining ‖ · ‖1 function, and it is generally better than a generic strategy of
solving it iteratively. It is also worthwhile to mention that for solving the internal
subproblems (8.9.4) iteratively, the tolerance generally should be less accurate than
that for the outside iterations and it is not beneficial to pursue too accurate solutions
for the subproblems, especially at the first phase of the iteration process. Finally,
in Figure 8.3, we plot the evolutions of objective function values and constraint
violations with respect to the first 500 iterations for Linearized-ADMM-GBS, and
some cases of ADMM-GBS-FISTA and ADMM-Direct-FISTA.

8.10 Conclusions

In this paper, we discuss how to develop an algorithm for the separable multiple-
block convex minimization models with linear constraints and an objective function
which is in the sum of m functions without coupled variables. We focus on
the big-data scenario with a huge m, to which the existing splitting schemes in
the literature seem not to be directly applicable. With the assumption that the
variables and functions are regrouped as more than two blocks, we investigate
how to apply the alternating direction method of multiplier with a Gaussian back
substitution (ADMM-GBS) in [15] to the regrouped model which is still in a
multiple-block form. The resulting block-wise ADMM-GBS, however, may involve
hard subproblems. To yield solvable easier subproblems, we suggest embedding
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Fig. 8.3 Evolutions of linearized-ADMM-GBS, ADMM-GBS-FISTA, and ADMM-Direct,
for (8.9.1) with � = m = 1000

a parallel computation into the block-wise ADMM-GBS, and consequently pro-
pose a splitting version of the block-wise ADMM-GBS which is suitable for a
distributed-centralized computing system. The global convergence and the worst-
case convergence rates measured by the iteration complexity in both the ergodic
and nonergodic senses are established for the new algorithm. Moreover, the new
algorithm turns to include some existing schemes as special cases; thus, a by-
product of this paper is that the convergence rates for these existing schemes are
also established. We also discuss how to refine the new scheme by choosing an
iteratively calculated step size and further alleviating the resulting subproblems.
Thus, two advanced versions with refined step sizes and linearized subproblems
are proposed, respectively.

We verify the convergence of the proposed algorithms and the importance of
an appropriate grouping strategy by the basis pursuit problem in several settings.
Particularly, we show that the grouping strategy adopted in the block-wise refor-
mulation (8.1.14), or more concretely, how to determine an appropriate value for
the group number t , is very important because different strategies may result in
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different numerical performance. For the synthetic datasets tested in our numerical
experiments, there is no obvious difference in different functions and variables.
We thus group them “blindly” with the only consideration of function and variable
numbers. For a particular application of (8.1.14), based on some known information
or features (e.g., by a learning process), we may group the functions and variables
more smartly so that the subproblems could be easier while the group number may
be smaller. We would emphasize that how to group the variables and functions
smartly or even optimally for a particular application really depends on the particular
structure and features of a given application itself. In this paper, we just provide the
methodology and theoretical analysis to guarantee the convergence for the most
general setting in form of (8.1.1).

The proposed scheme is a basic scheme which can easily inspire specific
algorithms when concrete applications of the abstract model under consideration
are specified. For example, as mentioned, we can consider further linearizing the
subproblems such that each subproblem is of the difficulty level of estimating a
function’s proximal operator. Also, in addition to the Gaussian back substitution,
other correction steps in the literature (e.g., [12, 13, 16]) can be used. In [23], we
focused on the case where the model (8.1.1) is regrouped as two groups and thus
a block-wise version of the original ADMM (8.1.8) is applied. In this paper, we
consider the case where the model (8.1.1) is regrouped as at least three groups
and thus the direct extension of ADMM (8.1.9) is not necessarily convergent.
Because of the significant difference between the two- and three-block cases in
ADMM-oriented schemes (see [6]), we regard this paper complementary to the most
recent one [23] for using block-wise ADMM-based schemes for the multiple-block
separable convex minimization model (8.1.1).
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Chapter 9
Variable Metric Algorithms Driven
by Averaged Operators

Lilian E. Glaudin

Abstract The convergence of a new general variable metric algorithm based
on compositions of averaged operators is established. Applications to monotone
operator splitting are presented.
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Fixed point iteration · Monotone operator splitting · Primal-dual algorithm ·
Variable metric
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9.1 Introduction

Iterations of averaged nonexpansive operators provide a synthetic framework for the
analysis of many algorithms in nonlinear analysis, e.g., [3, 4, 7, 9, 18]. We establish
the convergence of a new general variable metric algorithm based on compositions
of averaged operators. These results are applied to the analysis of the convergence
of a new forward-backward algorithm for solving the inclusion

0 ∈ Ax + Bx, (9.1)

where A and B are maximally monotone operators on a real Hilbert space. The
theory of monotone operators is used in many applied mathematical fields, including
optimization [10], partial differential equations and evolution inclusions [5, 21, 23],
signal processing [13, 17], and statistics and machine learning [12, 19, 20]. In recent
years, variants of the forward-backward algorithm with variable metric have been
proposed in [15, 16, 22, 24], as well as variants involving overrelaxations [18].
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The goal of the present paper is to unify these two approaches in the general
context of iterations of compositions of averaged operators. In turn, this provides
new methods to solve the problems studied in [1, 4, 6, 8, 9, 14].

The paper is organized as follows: Section 9.2 presents the background and
notation. We establish the proof of the convergence of the general algorithm in
Section 9.3. Special cases are provided in Section 9.4. Finally, by recasting these
results in certain product spaces, we present and solve a general monotone inclusion
in Section 9.5.

9.2 Notation and Background

Throughout this paper, H, G, and (Gi )1�i�m are real Hilbert spaces. We use 〈· | ·〉
to denote the scalar product of a Hilbert space and ‖ · ‖ for the associated norm.
Weak and strong convergence are, respectively, denoted by ⇀ and →. We denote
by B (H,G) the space of bounded linear operators from H to G, and set B (H) =
B (H,H) and S (H) = {

L ∈ B (H)
∣∣ L = L∗

}
, where L∗ denotes the adjoint of

L, and Id denotes the identity operator. The Loewner partial ordering on S (H) is
defined by

(∀U ∈ S (H))(∀V ∈ S (H)) U � V ⇔ (∀x ∈ H) 〈Ux | x〉 � 〈V x | x〉.
(9.2)

Let α ∈ ]0,+∞[. We set

Pα(H) = {
U ∈ S (H)

∣∣ U � α Id
}
, (9.3)

and we denote by
√
U the square root of U ∈ Pα(H). Moreover, for every U ∈

Pα(H), we define a scalar product and a norm by

(∀x ∈ H)(∀y ∈ H) 〈x | y〉U = 〈Ux | y〉 and ‖x‖U =
√〈Ux | x〉, (9.4)

and we denote this Hilbert space by (H, U). Let A : H → 2H be a set-
valued operator. We denote by dom A = {

x ∈ H
∣∣ Ax �= ∅

}
the domain of

A, by graA = {
(x, u) ∈ H ×H

∣∣ u ∈ Ax
}

the graph of A, by ranA ={
u ∈ H

∣∣ (∃ x ∈ H) u ∈ Ax
}

the range of A, by zerA = {
x ∈ H

∣∣ 0 ∈ Ax
}

the
set of zeros of A, and by A−1 the inverse of A which is the operator with graph{
(u, x) ∈ H ×H

∣∣ u ∈ Ax
}
. The resolvent of A is JA = (Id+A)−1. Moreover, A

is monotone if

(∀(x, u) ∈ graA)(∀(y, v) ∈ graA) 〈x − y | u− v〉 � 0, (9.5)

and maximally monotone if there exists no monotone operator B : H → 2H such
that graA ⊂ graB �= graA. The parallel sum of A : H→ 2H and B : H→ 2H is

A�B = (A−1 + B−1)−1. (9.6)
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An operator B : H→ 2H is cocoercive with constant β ∈ ]0,+∞[ if

(∀x ∈ H)(∀y ∈ H) 〈x − y | Bx − By〉 � β‖Bx − By‖2. (9.7)

Let C be a nonempty subset of H. The interior of C is intC. Finally, the set of
summable sequences in [0,+∞[ is denoted by �1+(N).

Definition 9.1 Let μ ∈ ]0,+∞[, let U ∈ Pμ(H), let α ∈ ]0, 1], and let
T : H→ H be an operator. Then T is an α-averaged operator on (H, U) if

(∀x ∈ H)(∀y ∈ H) ‖T x − Ty‖2
U � ‖x − y‖2

U −
1− α

α
‖T x − x‖2

U . (9.8)

If α = 1, T is nonexpansive on (H, U).

Lemma 9.1 ([4, Proposition 4.46]) Let m � 1 be an integer. For every i ∈
{1, . . . , m}, let Ti : H→ H be averaged. Then T1 · · · Tm is averaged.

Lemma 9.2 ([4, Proposition 4.35]) Let μ ∈ ]0,+∞[, let U ∈ Pμ(H), let α ∈
]0, 1], and let T be an α-averaged operator on (H, U). Then the operator R =
(1− 1/α) Id+(1/α)T is nonexpansive on (H, U).

Lemma 9.3 ([4, Lemma 5.31]) Let (αn)n∈N and (βn)n∈N be sequences in
[0,+∞[, let (ηn)n∈N and (εn)n∈N be sequences in ∈ �1+(N) such that

(∀n ∈ N) αn+1 � (1+ ηn)αn − βn + εn. (9.9)

Then (βn)n∈N ∈ �1+(N).

Lemma 9.4 ([15, Proposition 4.1]) Let α ∈ ]0,+∞[, let (Wn)n∈N be in Pα(H),
let C be a nonempty subset of H, and let (xn)n∈N be a sequence in H such that

(∃ (ηn)n∈N ∈ �1+(N)
)(∀z ∈ C

)(∃ (εn)n∈N ∈ �1+(N)
)
(∀n ∈ N)

‖xn+1 − z‖2
Wn+1

� (1+ ηn)‖xn − z‖2
Wn
+ εn. (9.10)

Then (xn)n∈N is bounded and, for every z ∈ C, (‖xn − z‖Wn)n∈N converges.

Proposition 9.1 ([15, Theorem 3.3]) Let α ∈ ]0,+∞[, and let (Wn)n∈N and W be
operators in Pα(H) such that Wn → W pointwise, as is the case when

sup
n∈N

‖Wn‖ < +∞ and (∃ (ηn)n∈N ∈ �1+(N))(∀n ∈ N) (1+ ηn)Wn � Wn+1.

(9.11)

Let C be a nonempty subset of H, and let (xn)n∈N be a sequence in H such that
(9.10) is satisfied. Then (xn)n∈N converges weakly to a point in C if and only if
every weak sequential cluster point of (xn)n∈N is in C.
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Proposition 9.2 ([16, Proposition 3.6]) Let α ∈ ]0,+∞[, let (νn)n∈N ∈ �1+(N),
and let (Wn)n∈N be a sequence in Pα(H) such that supn∈N ‖Wn‖ < +∞ and (∀n ∈
N) (1 + νn)Wn+1 � Wn. Furthermore, let C be a subset of H such that intC �= ∅

and let (xn)n∈N be a sequence in H such that

(∃ (εn)n∈N ∈ �1+(N)
)(∃ (ηn)n∈N ∈ �1+(N)

)
(∀x ∈ H)(∀n ∈ N)

‖xn+1 − x‖2
Wn+1

� (1+ ηn)‖xn − x‖2
Wn
+ εn. (9.12)

Then (xn)n∈N converges strongly.

Proposition 9.3 ([15, Proposition 3.4]) Let α ∈ ]0,+∞[, let (Wn)n∈N be a
sequence in Pα(H) such that supn∈N ‖Wn‖ < +∞, let C be a nonempty closed
subset of H, and let (xn)n∈N be a sequence in H such that

(∃ (εn)n∈N ∈ �1+(N)
)(∃ (ηn)n∈N ∈ �1+(N)

)
(∀z ∈ C)(∀n ∈ N)

‖xn+1 − z‖2
Wn+1

� (1+ ηn)‖xn − z‖2
Wn
+ εn. (9.13)

Then (xn)n∈N converges strongly to a point in C if and only if lim dC(xn) = 0.

Lemma 9.5 ([16, Lemma 3.1]) Let α ∈ ]0,+∞[, let μ ∈ ]0,+∞[, and let A and
B be operators in S (H) such that μ Id � A � B � α Id. Then the following hold:

(i) α−1 Id � B−1 � A−1 � μ−1 Id.
(ii) (∀x ∈ H) 〈A−1x | x〉 � ‖A‖−1‖x‖2.

(iii) ‖A−1‖ � α−1.

9.3 Main Convergence Result

We present our main result.

Theorem 9.1 Let α ∈ ]0,+∞[, let (ηn)n∈N ∈ �1+(N), and let (Un)n∈N be a
sequence in Pα(H) such that

μ = sup
n∈N

‖Un‖ < +∞ and (∀n ∈ N) (1+ ηn)Un+1 � Un. (9.14)

Let ε ∈ ]0, 1[, let m � 1 be an integer, and let x0 ∈ H. For every i ∈ {1, . . . , m} and
every n ∈ N, let αi,n ∈ ]0, 1[, let Ti,n : H → H be αi,n-averaged on (H, U−1

n ), let
φn be an averagedness constant of T1,n · · · Tm,n, let λn ∈ ]0, φn], and let ei,n ∈ H.
Iterate

for n = 0, 1, . . .⌊
yn = T1,n

(
T2,n

( · · · Tm−1,n(Tm,nxn + em,n)+ em−1,n · · ·
)+ e2,n

)
+ e1,n

xn+1 = xn + λn(yn − xn).

(9.15)
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Suppose that

S =
⋂
n∈N

Fix (T1,n · · · Tm,n) �= ∅ (9.16)

and

(∀i ∈ {1, . . . , m})
∑
n∈N

λn‖ei,n‖U−1
n

< +∞, (9.17)

and define

(∀i ∈ {1, . . . , m})(∀n ∈ N) Ti+,n =
{
Ti+1,n · · · Tm,n, if i �= m;
Id, if i = m.

(9.18)

Then the following hold:

(i)
∑

n∈N λn(1/φn − λn)‖T1,n · · · Tm,nxn − xn‖2
U−1
n

< +∞.

(ii) Suppose that (∀n ∈ N) λn ∈ ]0, ε + (1− ε)/φn]. Then (∀x ∈ S)

max
1�i�m

∑
n∈N

λn(1− αi,n)

αi,n

∥∥(Id−Ti,n)Ti+,nxn − (Id−Ti,n)Ti+,nx
∥∥2
U−1
n

< +∞.

(9.19)

(iii) (xn)n∈N converges weakly to a point in S if and only if every weak sequential
cluster point of (xn)n∈N is in S. In this case, the convergence is strong if intS �=
∅.

(iv) (xn)n∈N converges strongly to a point in S if and only if lim dS(xn) = 0.

Proof Let n ∈ N and let x ∈ S. Set

Tn = T1,n · · · Tm,n (9.20)

and

en = yn − Tnxn. (9.21)

Using the nonexpansiveness on (H, U−1
n ) of the operators (Ti,n)1�i�m, we first

derive from (9.21) that

‖en‖U−1
n

�
m∑
i=1

‖ei,n‖U−1
n
. (9.22)

Let us rewrite (9.15) as

xn+1 = xn + λn
(
Tnxn + en − xn

)
, (9.23)

and set

Rn = (1− 1/φn) Id+(1/φn)Tn and μn = φnλn. (9.24)
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Then FixRn = Fix Tn and, by Lemmas 9.1 and 9.2, Rn is nonexpansive on
(H, U−1

n ). Furthermore, (9.23) can be written as

xn+1 = xn + μn

(
Rnxn − xn

)+ λnen, where μn ∈ ]0, 1[ . (9.25)

Now set zn = xn + μn(Rnxn − xn). Since x ∈ FixRn, we derive from [4,
Corollary 2.14] that

‖zn − x‖2
U−1
n
= (1− μn)‖xn − x‖2

U−1
n
+ μn‖Rnxn − Rnx‖2

U−1
n

− μn(1− μn)‖Rnxn − xn‖2
U−1
n

(9.26)

� ‖xn − x‖2
U−1
n
− λn(1/φn − λn)‖Tnxn − xn‖2

U−1
n
. (9.27)

Hence, (9.25), (9.14), and (9.27) yield

‖xn+1 − x‖
U−1
n+1

�
√

1+ ηn‖zn − x‖
U−1
n
+ λn

√
1+ ηn‖en‖U−1

n
(9.28)

�
√

1+ ηn‖xn − x‖
U−1
n
+ λn

√
1+ ηn‖en‖U−1

n
(9.29)

and, since
∑

k∈N λk‖ek‖Uk
< +∞, it follows from Lemma 9.4 that

ν =
∑
k∈N

λk‖ek‖U−1
k
+ 2sup

k∈N
‖xk − x‖

U−1
k

< +∞. (9.30)

Moreover, using (9.28) and (9.27) we write

(1+ ηn)
−1‖xn+1 − x‖2

U−1
n+1

� ‖zn − x‖2
U−1
n

+ (2‖zn − x‖
U−1
n
+ λn‖en‖U−1

n
)λn‖en‖U−1

n

(9.31)

� ‖xn − x‖2
U−1
n
− λn(1/φn − λn)‖Tnxn − xn‖2

U−1
n

+ νλn‖en‖U−1
n
. (9.32)

(i): This follows from (9.32), (9.20), (9.16), (9.30), and Lemma 9.3.
(ii): We apply the definition of averagedness of the operators (Ti,n)1�i�m to obtain

‖Tnxn − x‖2
U−1
n
= ∥∥T1,n · · · Tm,nxn − T1,n · · · Tm,nx

∥∥2
U−1
n

�
∥∥T2,n · · · Tm,nxn − T2,n · · · Tm,nx

∥∥2
U−1
n

− 1− α1,n

α1,n

∥∥(Id−T1,n)T2,n · · · Tm,nxn

− (Id−T1,n)T2,n · · · Tm,nx
∥∥2
U−1
n
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...

� ‖xn − x‖2
U−1
n

−
m∑
i=1

1− αi,n

αi,n

∥∥(Id−Ti,n)Ti+,nxn − (Id−Ti,n)Ti+,nx
∥∥2
U−1
n

.

(9.33)

Note also that

λn � ε + 1− ε

φn
⇒ 1

ε
λn � (

1

ε
− 1)

1

φn

⇔ λn − 1 �
(

1

ε
− 1

)(
1

φn
− λn

)
. (9.34)

Thus (9.31), the definition of zn, and [4, Corollary 2.14] yield

(1+ ηn)
−1‖xn+1−x‖2

U−1
n+1

� ‖(1−λn)(xn − x)+λn(Tnxn − x)‖2
U−1
n
+νλn‖en‖U−1

n

= (1− λn)‖xn − x‖2
U−1
n
+ λn‖Tnxn − x‖2

U−1
n

+ λn(λn − 1)‖Tnxn − xn‖2
U−1
n
+ νλn‖en‖U−1

n

� (1− λn)‖xn − x‖2
U−1
n
+ λn‖Tnxn − x‖2

U−1
n
+ εn,

(9.35)

where

εn = λn

(
1

ε
− 1

)(
1

αn
− λn

)
‖Tnxn − xn‖2

U−1
n
+ νλn‖en‖U−1

n
. (9.36)

Now set

βn = λn max
1�i�m

(
1− αi,n

αi,n

∥∥(Id−Ti,n)Ti+,nxn − (Id−Ti,n)Ti+,nx
∥∥2
U−1
n

)
.

(9.37)
On the one hand, it follows from (i), (9.30), and (9.16) that

∑
k∈N

εk < +∞. (9.38)

On the other hand, combining (9.33) and (9.35), we obtain

(1+ ηn)
−1‖xn+1 − x‖2

U−1
n+1

� ‖xn − x‖2
U−1
n
− βn + εn. (9.39)
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Consequently, Lemma 9.3 implies that
∑

k∈N βk < +∞.

(iii)–(iv): The results follow from (9.39), (9.38), and Proposition 9.1 for the weak
convergence, and Propositions 9.2 and 9.3 for the strong convergence.

��
Remark 9.1 Suppose that (∀n ∈ N) Un = Id and λn � (1 − ε)(1/φn + ε). Then
Theorem 9.1 reduces to [18, Theorem 3.5] which itself extends [9, Section 3] in the
case (∀n ∈ N) λn � 1. As far as we know, it is the first inexact overrelaxed variable
metric algorithm based on averaged operators.

9.4 Applications to the Forward-Backward Algorithm

A special case of Theorem 9.1 of interest is the following.

Corollary 9.1 Let α ∈ ]0,+∞[, let (ηn)n∈N ∈ �1+(N), and let (Un)n∈N be a
sequence in Pα(H) such that

μ = sup
n∈N

‖Un‖ < +∞ and (∀n ∈ N) (1+ ηn)Un+1 � Un. (9.40)

Let ε ∈ ]0, 1[ and let x0 ∈ H. For every n ∈ N, let α1,n ∈ ]0, 1/(1+ ε)], let α2,n ∈
]0, 1/(1+ ε)], let T1,n : H→ H be α1,n-averaged on (H, U−1

n ), let T2,n : H→ H

be α2,n-averaged on (H, U−1
n ), let e1,n ∈ H, and let e2,n ∈ H. In addition, for

every n ∈ N, let

λn ∈
[
ε, ε + 1− ε

φn

]
, where φn = α1,n + α2,n − 2α1,nα2,n

1− α1,nα2,n
, (9.41)

and iterate

xn+1 = xn + λn

(
T1,n

(
T2,nxn + e2,n

)+ e1,n − xn

)
. (9.42)

Suppose that

S=
⋂
n∈N

Fix (T1,nT2,n) �= ∅,
∑
n∈N

λn‖e1,n‖ < +∞, and
∑
n∈N

λn‖e2,n‖ < +∞.

(9.43)
Then the following hold:

(i)
∑

n∈N ‖T1,nT2,nxn − xn‖2 < +∞.
(ii) (∀x ∈ S)

∑
n∈N ‖T1,nT2,nxn − T2,nxn + T2,nx − x‖2 < +∞.

(iii) (∀x ∈ S)
∑

n∈N ‖T2,nxn − xn − T2,nx + x‖2 < +∞.
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(iv) Suppose that every weak sequential cluster point of (xn)n∈N is in S. Then
(xn)n∈N converges weakly to a point in S, and the convergence is strong if
intS �= ∅.

(v) (xn)n∈N converges strongly to a point in S if and only if lim dS(xn) = 0.

Proof For every n ∈ N,

1√
μ
‖e1,n‖ � ‖e1,n‖U−1

n
and

1√
μ
‖e2,n‖ � ‖e2,n‖U−1

n
, (9.44)

and T1,nT2,n is φn-averaged by [4, Proposition 4.44]. Thus, we apply Theorem 9.1
with m = 2.

(i)–(iii): This follows from Theorem 9.1(i) that

(∀x ∈ S)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
n∈N

λn(1− α1,n)

α1,n

∥∥(Id−T1,n)T2,nxn−(Id−T1,n)T2,nx
∥∥2
U−1
n

< +∞
∑
n∈N

λn(1− α2,n)

α2,n

∥∥(Id−T2,n)xn − (Id−T2,n)x
∥∥2
U−1
n

< +∞
∑
n∈N

λn

( 1

φn
− λn

) ∥∥T1,nT2,nxn − xn
∥∥2
U−1
n

< +∞.

(9.45)
However, we derive from the assumptions that

(∀x ∈ S)(∀n ∈ N)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

T1,nT2,nx = x
λn(1− α1,n)

α1,n
� ε2

λn(1− α2,n)

α2,n
� ε2

λn

( 1

φn
− λn

)
� ε

1− φn

φn
� 2ε2

2ε + 1
.

(9.46)

Combining (9.40), (9.45), and (9.46) completes the proof.
(iv)–(v): This follows from Theorem 9.1(iii)–(iv).

��
Remark 9.2 This corollary is a variable metric version of [18, Corollary 4.1] where
(∀n ∈ N) Un = Id and λn � (1− ε)(1/φn + ε).

We recall the definition of a demiregular operator. See [2] for examples of
demiregular operators.

Definition 9.2 ([2, Definition 2.3]) An operator A : H → 2H is demiregular at
x ∈ dom A if, for every sequence ((xn, un))n∈N in graA and every u ∈ Ax such
that xn ⇀ x and un → u, we have xn → x.
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Proposition 9.4 Let α ∈ ]0,+∞[, let U ∈ Pα(H), let A : H → 2H be a
maximally monotone operator, let β ∈ ]0,+∞[, let γ ∈ ]0, 2β/‖U‖], and let B
a β-cocoercive operator. Then the following hold:

(i) JγUA is a 1/2-averaged operator on (H, U−1).
(ii) Id−γUB is a γ ‖U‖/(2β)-averaged operator on (H, U−1).

Proof

(i): [16, Lemma 3.7].
(ii): We derive from (9.7) and Lemma 9.5(iii) that for every x ∈ H and for every

y ∈ H〈x − y | UBx − UBy〉U−1 = 〈x − y | Bx − By〉
� β〈Bx − By | Bx − By〉
= β〈U−1(UBx − UBy) | UBx − UBy〉U−1

� ‖U‖−1β‖UBx − UBy‖2
U−1 . (9.47)

Thus, for every x ∈ H and for every y ∈ H

‖(x − γUBx)− (y − γUBy)‖2
U−1 = ‖x − y‖2

U−1 + ‖γUBx − γUBy‖2
U−1

− 2γ 〈x − y | UBx − UBy〉U−1

(9.48)

� ‖x − y‖2
U−1

− γ (2β/‖U‖ − γ )‖UBx − UBy‖2
U−1 ,

(9.49)

which concludes the proof. ��
Next, we introduce a new variable metric forward-backward splitting algorithm.

Proposition 9.5 Let β ∈ ]0,+∞[, let ε ∈ ]0,min{1/2, β}[, let α ∈ ]0,+∞[, let
(ηn)n∈N ∈ �1+(N), and let (Un)n∈N be a sequence in Pα(H) such that

μ = sup
n∈N

‖Un‖ < +∞ and (∀n ∈ N) (1+ ηn)Un+1 � Un. (9.50)

Let x0 ∈ H, let A : H → 2H be maximally monotone, and let B : H → H be
β-cocoercive. Furthermore, let (an)n∈N and (bn)n∈N be sequences in H such that∑

n∈N ‖an‖ < +∞ and
∑

n∈N ‖bn‖ < +∞. Suppose that zer (A + B) �= ∅ and,
for every n ∈ N, let

γn ∈
[
ε,

2β

(1+ ε)‖Un‖
]

and λn ∈
[
ε, 1+ (1− ε)

(
1− γn‖Un‖

2β

)]
,

(9.51)
and iterate
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xn+1 = xn + λn

(
JγnUnA

(
xn − γnUn(Bxn + bn)

)+ an − xn

)
. (9.52)

Then the following hold:

(i)
∑

n∈N ‖JγnUnA(xn − γnUnBxn)− xn‖2 < +∞.
(ii) Let x ∈ zer (A+ B). Then

∑
n∈N ‖Bxn − Bx‖2 < +∞.

(iii) (xn)n∈N converges weakly to a point in zer (A+ B).
(iv) Suppose that one of the following holds:

(i) A is demiregular at every point in zer (A+ B).
(ii) B is demiregular at every point in zer (A+ B).

(iii) intS �= ∅.

Then (xn)n∈N converges strongly to a point in zer (A+ B).

Proof We apply Corollary 9.1. Set

(∀n ∈ N) T1,n=JγnUnA, T2,n= Id−γnUnB, e1,n=an, and e2,n = −γnUnbn.

(9.53)
Then, for every n ∈ N, T1,n is α1,n-averaged on (H, U−1

n ) with α1,n = 1/2 and
T2,n is α2,n-averaged on (H, U−1

n ) with α2,n = γn‖Un‖/(2β) by Proposition 9.4.
Moreover, for every n ∈ N,

φn = α1,n + α2,n − 2α1,nα2,n

1− α1,nα2,n
= 2β

4β − γn‖Un‖ (9.54)

and, therefore, (9.51) yields

λn ∈
[
ε, ε + 1− ε

φn

]
. (9.55)

Hence, we derive from (9.54) and (9.55) that (∀n ∈ N) λn � 2+ ε. Consequently,

{∑
n∈N λn‖e1,n‖ = (2+ ε)

∑
n∈N ‖an‖ < +∞∑

n∈N λn‖e2,n‖ � 2β(2+ ε)μα−1 ∑
n∈N ‖bn‖ < +∞.

(9.56)

Furthermore, it follows from [4, Proposition 26.1(iv)] that

(∀n ∈ N) S = zer (A+ B) = Fix (T1,nT2,n) �= ∅. (9.57)

Hence, the assumptions of Corollary 9.1 are satisfied.

(i): This is a consequence of Corollary 9.1(i) and (9.53).
(ii): Corollary 9.1(ii), (9.53), and Lemma 9.5(iii) yield

∑
n∈N

‖Bxn − Bx‖2 =
∑
n∈N

γ−2
n ‖U−1

n (T2,nxn − xn − T2,nx + x)‖2
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� 1

ε2α2

∑
n∈N

‖T2,nxn − xn − T2,nx + x‖2

< +∞. (9.58)

(iii): Let (kn)n∈N be a strictly increasing sequence in N and let y ∈ H be such that
xkn ⇀ y. In view of Corollary 9.1(iv), it remains to show that y ∈ zer (A+ B).
Set

(∀n ∈ N)

⎧⎨
⎩
yn = JγnUnA(xn − γnUnBxn)

un = γ−1
n U−1

n (xn − yn)− Bxn

vn = Bxn

(9.59)

and let z ∈ zer (A + B). Hence, we derive from (i) that yn − xn → 0. Then
ykn ⇀ y and by (ii) Bxn → Bz. Altogether, ykn ⇀ y, vkn ⇀ Bz, ykn−xkn → 0,
ukn + vkn → 0, and, for every n ∈ N, ukn ∈ Aykn and vkn ∈ Bxkn . It therefore
follows from [11, Lemma 4.5(ii)] that y ∈ zer (A+ B).

(iv): The proof is the same that in [18, Proposition 4.4(iv)].

��
Remark 9.3 Suppose that (∀n ∈ N) Un = Id and λn � (1 − ε)(1/φn + ε). Then
Proposition 9.5 captures [18, Proposition 4.4]. Now suppose that (∀n ∈ N) λn � 1.
Then Proposition 9.5 captures [16, Theorem 4.1].

Using the averaged operators framework allows us to obtain an extended
forward-backward splitting algorithm in Euclidean spaces.

Example 9.1 Let α ∈ ]0,+∞[, let (ηn)n∈N ∈ �1+(N), and let (Un)n∈N be a
sequence in Pα(H) such that

μ = sup
n∈N

‖Un‖ < +∞ and (∀n ∈ N) (1+ ηn)Un+1 � Un. (9.60)

Let ε ∈ ]0, 1/2[, let A : H → 2H be a maximally monotone operator, let β ∈
]0,+∞[, let B a β-cocoercive operator, and let (γn)n∈N and (μn)n∈N be sequences
in [ε,+∞[ such that

φn = 2μnβ

4β − ‖Un‖γn � 1− ε. (9.61)

Let x0 ∈ H and iterate

(∀n ∈ N) xn+1 = xn + μn

(
JγnUnA(xn − γnUnB)− xn

)
. (9.62)

Suppose that H is finite-dimensional and that zer (A + B) �= ∅. Then (xn)n∈N
converges to a point in zer (A+ B).
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Proof Set (∀n ∈ N) Tn = Id+μn(JγnUnA(Id−γnUnB) − Id). Remark that, for
every n ∈ N, Tn is φn-averaged. Hence we apply Theorem 9.1 with m = 1 and
λ ≡ 1. It follows from Theorem 9.1(i) and (9.61) that Tnxn − xn → 0. Since H is
finite-dimensional, the claim follows from Theorem 9.1(iii). ��
Remark 9.4 An underrelaxation or an appropriate choice of the metric of the
algorithm allows us to exceed the classical bound 2/β for (γn)n∈N. For instance,
the parameters γn ≡ 2.99/β, μn ≡ 1/2, and Un ≡ Id satisfy the assumptions.

9.5 A Composite Monotone Inclusion Problem

We study the composite monotone inclusion presented in [14].

Problem 9.1 Let z ∈ H, let A : H → 2H be maximally monotone, let μ ∈
]0,+∞[, let C : H → H be μ-cocoercive, and let m be a strictly positive integer.
For every i ∈ {1, . . . , m}, let ri ∈ Gi , let Bi : Gi → 2Gi be maximally monotone,
let νi ∈ ]0,+∞[, let Di : Gi → 2Gi be maximally monotone and νi-strongly
monotone, and suppose that 0 �= Li ∈ B (H,Gi ). The problem is to find x ∈ H

such that

z ∈ Ax +
m∑
i=1

L∗i
(
(Bi �Di)(Lix − ri)

)+ Cx, (9.63)

the dual problem of which is to find v1 ∈ G1, . . . , vm ∈ Gm such that

(∃ x ∈ H)

{
z−∑m

i=1 L
∗
i vi ∈ Ax + Cx

(∀i ∈ {1, . . . , m}) vi ∈ (Bi �Di)(Lix − ri).
(9.64)

The following corollary is an overrelaxed version of [16, Corollary 6.2].

Corollary 9.2 In Problem 9.1, suppose that

z ∈ ran

(
A+

m∑
i=1

L∗i
(
(Bi �Di)(Li · −ri)

)+ C

)
, (9.65)

and set

β = min{μ, ν1, . . . , νm}. (9.66)

Let ε ∈ ]0,min{1, β}[, let α ∈ ]0,+∞[, let (λn)n∈N be a sequence in ]0,+∞[, let
x0 ∈ H, let (an)n∈N and (cn)n∈N be absolutely summable sequences in H, and let
(Un)n∈N be a sequence in Pα(H) such that (∀n ∈ N) Un+1 � Un. For every i ∈
{1, . . . , m}, let vi,0 ∈ Gi , and let (bi,n)n∈N and (di,n)n∈N be absolutely summable
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sequences in Gi , and let (Ui,n)n∈N be a sequence in Pα(Gi ) such that (∀n ∈ N)

Ui,n+1 � Ui,n. For every n ∈ N, set

δn =
(√√√√ m∑

i=1

‖√Ui,nLi

√
Un‖2

)−1

− 1, (9.67)

suppose that

ζn = 1+ δn

(1+ δn)max{‖Un‖, ‖U1,n‖, . . . , ‖Um,n‖} �
1

2β − ε
, (9.68)

and let

λn ∈
[
ε, 1+ (1− ε)

(
1− 1

2ζnβ

)]
. (9.69)

Iterate

for n = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pn = JUnA

(
xn − Un

(∑m
i=1 L

∗
i vi,n + Cxn + cn − z

))+ an

yn = 2pn − xn

xn+1 = xn + λn(pn − xn)

for i = 1, . . . , m⌊
qi,n = J

Ui,nB
−1
i

(
vi,n + Ui,n

(
Liyn −D−1

i vi,n − di,n − ri
))+ bi,n

vi,n+1 = vi,n + λn(qi,n − vi,n).

(9.70)

Then the following hold for some solution x to (9.63) and some solution
(v1, . . . , vm) to (9.64):

(i) xn ⇀ x.
(ii) (∀i ∈ {1, . . . , m}) vi,n ⇀ vi .

(iii) Suppose that C is demiregular at x. Then xn → x.
(iv) Suppose that, for some j ∈ {1, . . . , m}, D−1

j is demiregular at vj . Then vj,n →
vj .

Proof Set G = G1 ⊕ · · · ⊕ Gm, K = H⊕ G, and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ã : K→ 2K : (x, v1, . . . , vm) �→ (
∑m

i=1 L
∗
i vi − z+ Ax)

×(r1 − L1x + B−1
1 v1)× · · · × (rm − Lmx + B−1

m vm)

B̃ : K→ K : (x, v1, . . . , vm) �→
(
Cx,D−1

1 v1, . . . , D
−1
m vm

)
S̃ : K→ K : (x, v1, . . . , vm) �→

(∑m
i=1 L

∗
i vi ,−L1x, . . . ,−Lmx

)
.

(9.71)
Now, for every n ∈ N, define
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ũn : K→ K : (x, v1, . . . , vm) �→

(
Unx,U1,nv1, . . . , Um,nvm

)
Ṽn : K→ K :

(x, v1, . . . , vm) �→
(
U−1
n x −∑m

i=1 L
∗
i vi ,

(− Lix + U−1
i,n vi

)
1�i�m

)
(9.72)

and⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̃n = (xn, v1,n, . . . , vm,n)

ỹn = (pn, q1,n, . . . , qm,n)

ãn = (an, b1,n, . . . , bm,n)

c̃n = (cn, d1,n, . . . , dm,n)

d̃n = (U−1
n an, U

−1
1,nb1,n, . . . , U

−1
m,nbm,n)

and b̃n = (S̃ + Ṽn)̃an + c̃n − d̃n.

(9.73)

It follows from the proof of [16, Corollary 6.2] that (9.70) is equivalent to

(∀n ∈ N) x̃n+1 = x̃n + λn

(
J
Ṽ−1
n Ã

(̃
xn − Ṽ −1

n (B̃x̃n + b̃n)
)+ ãn − x̃n

)
,

(9.74)

that the operators Ã and B̃ are maximally monotone, and B̃ is β-cocoercive on
H. Furthermore, for every (x, v) ∈ zer (Ã + B̃), x solves (9.63) and v solves

(9.64). Now set ρ = 1/α +
√∑m

i=1 ‖Li‖2. We deduce from the proof of [16,

Corollary 6.2] that (∀n ∈ N) ‖Ṽ −1
n ‖ � ζ−1

n � 2β−ε and Ṽ −1
n+1 � Ṽ −1

n ∈ P1/ρ(K).
We observe that (9.74) has the structure of the variable metric forward-backward
splitting algorithm (9.52) and that all the conditions of Proposition 9.5 are satisfied.

(i)&(ii): Proposition 9.5(iii) asserts that there exists

x̃ = (x, v1, . . . , vm) ∈ zer (Ã+ B̃) (9.75)

such that x̃n ⇀ x̃.

(iii)&(iv): It follows from Proposition 9.5(ii) that B̃x̃n → B̃x̃. Hence, (9.71), (9.73),
and (9.75) yield

Cxn → Cx and
(∀i ∈ {1, . . . , m}) D−1

i vi,n → D−1
i vi . (9.76)

We derive the results from Definition 9.2 and (i)–(ii) above.

��
Remark 9.5 Suppose that (∀n ∈ N) λn � 1. Then Corollary 9.2 captures [15,
Corollary 6.2].
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Chapter 10
A Glimpse at Pointwise Asymptotic
Stability for Continuous-Time and
Discrete-Time Dynamics

Rafal Goebel

Abstract Given a dynamical system, pointwise asymptotic stability, also called
semistability, of a set requires that every point in the set be a Lyapunov stable
equilibrium, and that every solution converge to one of the equilibria in the set. This
note provides examples of pointwise asymptotic stability related to optimization
and states select results from the literature, focusing on necessary and sufficient
Lyapunov and Lyapunov-like conditions for and robustness of this stability property.
Background on the classical asymptotic stability is included.

Keywords Pointwise asymptotic stability · Differential inclusion · Difference
inclusion · Monotone operator · Set-valued Lyapunov function

AMS 2010 Subject Classification 93D05, 49J53, 90C25, 34D20, 47H05

10.1 Introduction

Asymptotic stability is an important concept in dynamical systems and control
theory. It is often the goal of control engineering design. Given a dynamical system,
asymptotic stability of a set requires that the set be Lyapunov stable, i.e., solutions
originating near that set remain near that set, and that the distance of every solution
to the set decrease asymptotically to 0. Pointwise asymptotic stability is a related
property, which requires that every point in the set be a Lyapunov stable equilibrium,
and that every solution converge to one of the equilibria in the set. The property
appears naturally in algorithms in convex optimization, when the algorithms are
viewed as discrete-time dynamical systems; in continuous-time dynamics generated
by monotone operators, including the steepest descent for a convex function and
the so-called saddle dynamics; in control algorithms for multi-agent systems when
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consensus is an objective; and in biological, chemical, physiological, and engineered
systems not related to optimization.

This note reviews the notion of asymptotic stability; defines and provides
examples of pointwise asymptotic stability; and collects some results characterizing
these stability properties, with focus on necessary and sufficient Lyapunov and
Lyapunov-like conditions, which feature set-valued Lyapunov mappings for the
pointwise property, and on robustness of the properties. Continuous-time and
discrete-time dynamics are considered and are modeled, respectively, by differential
inclusions and difference inclusions.

10.2 Dynamics

Continuous-time dynamics in this note are modeled by differential inclusions

ẋ ∈ F(x), (10.1)

where F : Rn ⇒ R
n is a set-valued mapping.1 For a general theory of differential

inclusions, see [7] or [60]. A solution to (10.1) is a function φ : I → R
n, where

I is an interval containing and beginning at 0, such that φ is absolutely continuous
on every compact subinterval of I and φ̇(t) = dφ

dt
(t) ∈ F(φ(t)) for almost all

t ∈ I . A solution is maximal if it cannot be extended, and complete if its domain is
unbounded.

The differential inclusion (10.1), or the mapping F , is said to satisfy basic
assumptions if

• F is locally bounded2 and outer semicontinuous (osc)3 and for every x ∈ R
n,

F(x) is nonempty and convex.

The basic assumptions are sufficient for existence of solutions to (10.1), and also
ensure some regularity of the space of solutions to (10.1); see [7, Chapter 2].
Further assumptions on F , like linear growth, or the knowledge that all solutions
are bounded, may ensure that maximal solutions are complete.

1The set-valued terminology in this note follows [56]. In particular, a set-valued mapping F :
R
n ⇒ R

n associates to each x ∈ R
n, a subset F(x) ⊂ R

n.
2F : Rn ⇒ R

n is locally bounded if for every bounded set C ⊂ R
n, F(C) := ⋃

x∈C F(x) is
bounded.
3F : Rn ⇒ R

n is outer semicontinuous at x ∈ R
n if for every xi → x and every convergent

yi ∈ F(xi), limi→∞ yi ∈ F(x). F is outer semicontinuous if it is outer semicontinuous at every
x ∈ R

n. If F is locally bounded and has closed (hence compact) values, outer semicontinuity at
x is equivalent to a property of a set-valued F often called upper semicontinuity at x: for every
ε > 0, there exists δ > 0 such that F(x + δB) ⊂ F(x) + εB. Here, and in the remainder of this
note, B ⊂ R

n is a closed unit ball centered at 0; x + δB is the closed ball of radius δ centered at x;
and F(x)+ εB is the Minkowski sum of F(x) and εB, i.e., {y + z | y ∈ F(x), z ∈ εB}.
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Discrete-time dynamics in this note are modeled by difference inclusions

x+ ∈ G(x), (10.2)

where G : Rn ⇒ R
n is a set-valued mapping. A solution to (10.2) is a function

φ : N0 → R
n such that φ(j + 1) ∈ G(φ(j)) for all j ∈ N0 := {0, 1, 2, . . . }. The

difference inclusion (10.2), or the mapping G, satisfies basic assumptions if

• G is locally bounded and outer semicontinuous and for every x ∈ R
n, G(x) is

nonempty.

Nonemptiness of values of G ensures existence and completeness of maximal
solutions for (10.2); further conditions in the basic assumptions ensure that the sets
of solutions to (10.2) depend outer semicontinuously on initial conditions.

Several concepts, definitions, and results recalled in this note stated for (10.1)
have parallel results for (10.2) and vice versa. In fact, they often extend to the setting
where constraints are present, i.e., to

ẋ ∈ F(x), x ∈ C, (10.3)

where C ⊂ R
n, and

x+ ∈ G(x), x ∈ D, (10.4)

where D ⊂ R
n. In such cases, basic assumptions require that C, or D, be closed.

Furthermore, some results carry over to the so-called hybrid dynamical systems,
which combine (10.3) and (10.4); see [33].

To quickly suggest what hybrid systems are and to illustrate some concepts that
follow, an example from [31] is recalled. Let x1, x2, . . . , xK ∈ R

m represent the
positions of K agents. Agents move towards an agreed-upon target a, according to
ẋk = a − xk , and every T > 0 amount of time update the target a by picking a ∈
Γ (x1, x2, . . . , xK), where Γ is some set-valued mapping. The resulting dynamical
system, with τ serving as a timer variable, is

ẋk = a − xk, ȧ = 0, τ̇ = −1 if τ ∈ [0, T ],
x+k = xk, a+ ∈ Γ (x1, x2, . . . , xK), τ+ = T if τ = 0,

which fits the combination of (10.3) and (10.4) by taking x = (x1, . . . , xK, a, τ ) ∈
R
(K+1)m+1, C = R

(K+1)m×(0, T ], D = R
(K+1)m×{0}, and F and G as determined

by the dynamics above. If Γ (x1, x2, . . . , xK) is the convex hull of xk’s, namely,
the smallest convex set containing x1, x2, . . . , xK , then, as time and the number of
updates of a and τ go to ∞, xk’s converge to a common limit. In fact, the set {x ∈
R
(K+1)m+1 | x1 = · · · = xK = a} has a kind of pointwise asymptotic property. The

property can be shown by noting that the convex hull of xk’s and a (a is included to
account for a bad initial condition for a, i.e., when a is initially not in the convex hull
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of xk’s) is not increasing along solutions and does not remain constant forever unless
it consists of a single point. This approach can be made formal, and generalized,
using set-valued Lyapunov functions.

10.2.1 Why Basic Assumptions?

Basic assumptions lead to desirable structure of the set of solutions to (10.1) and
(10.2). For (10.1), they also have an interesting control engineering motivation.
A control system is, in rough terms, a differential equation where the right-hand
side depends not just on the state x of the system but also on the input, or control,
u. A control system can be thus represented by ẋ = c(x, u). Feedback control
of a control system is about letting the control u be a function of the state x,
u = k(x). In some cases, control objectives—including asymptotic stability—
cannot be achieved through continuous feedback k, even if c is continuous, but can
be achieved using discontinuous k. See [4] for an example. Discontinuous k may
lead to discontinuous x �→ c(x, k(x)), and thus to a differential equation ẋ = f (x)

with a discontinuous right-hand side. Solutions to such differential equations may
be quite sensitive to initial conditions. When such differential equations result from
a discontinuous feedback u = k(x) applied to a control system, the sensitivity may
be to measurement error as well. That is, small errors represented here by e and
the application of u = k(x + e) can result in behaviors quite different from those
resulting from u = k(x).

Let f : Rn → R
n be a function. An absolutely continuous φ : [0, T ] → R

n

is a Hermes solution to the differential equation ẋ = f (x) if there exist sequences
φi : [0, T ] → R

n of absolutely continuous functions converging uniformly to φ and
ei : [0, T ] → R

n of measurable functions converging uniformly to the 0 function
such that

φ̇i (t) = f (φi(t)+ ei(t)) for almost all t ∈ [0, T ].

An absolutely continuous φ : [0, T ] → R
n is a Krasovskii solution to ẋ = f (x) if

it is a solution to the differential inclusion (10.1) with F : Rn ⇒ R
n defined by4

F(x) =
⋂
δ>0

conf (x + δB) ∀x ∈ R
n.

The set-valued regularization above, of the possibly discontinuous f , comes from
[43] and differs from the one used by Filippov [26] in that the latter excludes from
x + δB sets of 0 measure. Both regularizations lead to F that satisfies the basic

4conf (x + δB) is the closure of the convex hull of f (x + δB), i.e., of the smallest convex set
containing f (x + δB).
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assumptions. The connection between the two notions of generalized solutions to
ẋ = f (x), stated below, was observed by [37] and formally proved in [35]; see also
an extension to hybrid systems in [58].

Theorem 10.1 If f : Rn → R
n is locally bounded, then φ : [0, T ] → R

n is a
Hermes solution to ẋ = f (x) if and only if it is a Krasovskii solution.

In summary, the effect of small perturbations, including measurement error in a
control system, on a differential equation with a discontinuous right-hand side can
be studied by passing to a well-behaved differential inclusion.

To illustrate the role of basic assumptions in the study of convergence of solutions
to the difference inclusion (10.2), a result of [64] is recalled below. In the nonlinear
programming setting of [64], (10.2) was understood as an algorithm with a set of
solutions (minimizers), denoted below by A. In that sense, the conclusion of the
result is that an algorithm either terminates in finite number of steps at a solution or
generates a sequence, the convergent subsequences of which converge to solutions.

Theorem 10.2 Let G : Rn ⇒ R
n be a set-valued map. Let A ⊂ R

n be a set.
Suppose that:

• There exists a continuous V : Rn → R such that

if x �∈ A then for every x+ ∈ G(x), V (x+) < V (x);
if x ∈ A then for every x+ ∈ G(x), V (x+) ≤ V (x).

• For every x �∈ A, G(x) is nonempty and G is outer semicontinuous at x.

Let φ be a bounded maximal solution to (10.2). Then either the domain of φ is
bounded, given by {0, 1, . . . , J }, and x(J ) ∈ A; or φ is complete and the limit of
any convergent subsequence of {φ(j)}∞j=0 is in A.

The gist of the proof is that if φ is a complete solution to (10.2), then a limit of any
convergent subsequence, denoted x, satisfies x ∈ A. Indeed, otherwise G(x) �= ∅
and for some y ∈ G(x), V (y) = V (x), which cannot hold if x �∈ A. The result
and the method of proof resemble what in control theory is known as the Invariance
Principle [10, 44] where, usually, one of the assumptions requires that level sets of
V that are invariant under the dynamics be in A.

10.3 Asymptotic Stability

A set A ⊂ R
n is asymptotically stable for the differential inclusion (10.1) if every

maximal solution to (10.1) is complete; if

• A is Lyapunov stable: for every ε > 0 there exists δ > 0 so that, for every
complete solution φ to (10.1), if dA(φ(0)) < δ then dA(φ(t)) < ε for all t ≥ 0;
and if

• A is attractive: for every complete solution φ to (10.1), limt→∞ dA(φ(t)) = 0.
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Above, dA is the distance to A, i.e., dA(x) = infa∈A ‖x − a‖. The property just
defined is usually referred to as global asymptotic stability or asymptotic stability in
the large, as opposed to local asymptotic stability that requires Lyapunov stability
and local attractivity of A: only solutions from a neighborhood of A are required
to satisfy limt→∞ dA(φ(t)) = 0. For simplicity of presentation, only the global
concept is discussed here and the adjective is skipped.

Well-known sufficient conditions for asymptotic stability, dating back to Lya-
punov [46], involve a function that decreases along solutions to (10.1). A variety
of conditions involving generalized derivatives of a Lyapunov functions have been
used to describe that decrease; see [8]. Roughly, they take the form

∂V (x) · f ≤ −W(x) ∀f ∈ F(x), (10.5)

where V is a Lyapunov function, ∂V is an appropriate generalized gradient of V ,
and the nonnegative W represents the rate of decrease of V along solutions to (10.1):
the inequality (10.5) should ensure that V (φ(t)) decreases along a solution φ with
rate W(φ(t)). Here, for simplicity—and also because existence of such functions
can be shown if the dynamics or the asymptotic stability is somewhat regular, only
smooth Lyapunov functions are precisely defined. A function V : Rn → [0,∞) is
a smooth Lyapunov function for (10.1) and a compact set A if it is C∞, V (x) = 0 if
and only if x ∈ A, lim|x|→∞ V (x) = ∞, and

∇V (x) · f ≤ −V (x) ∀x ∈ R
n, f ∈ F(x). (10.6)

Theorem 10.3 If every maximal solution to (10.1) is complete and there exists a
smooth Lyapunov function for (10.1) and a compact set A, then A is asymptotically
stable for (10.1).

Less known and usually harder to prove are converse Lyapunov results, guar-
anteeing the existence of Lyapunov functions for asymptotically stable differential
and difference inclusions. For linear dynamics with an asymptotically stable origin,
Lyapunov showed that there exist quadratic Lyapunov functions, but for nonlinear
dynamics, many converse results produce irregular Lyapunov functions. For a
historical accounting, see the survey [40]. A strong converse result, guaranteeing the
existence of a smooth Lyapunov function for (10.1), was given by [23, Theorem 1.2]
for A = {0} and extended to more general A, and more general stability concepts,
in [61]. The result below follows from Theorems 1, 3 and Proposition 3 in [61].

Theorem 10.4 If F satisfies the basic assumptions and a compact set A is
asymptotically stable for (10.1), then there exists a smooth Lyapunov function for
(10.1) and A.

The approach in [23, 61] to the converse result is to first establish robustness
of asymptotic stability and then rely on robustness to smooth out a possibly
discontinuous and nonsmooth Lyapunov function candidate. The set A is robustly
asymptotically stable for (10.1) if it is asymptotically stable and there exists a
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continuous function ρ : R→ [0,∞), with ρ(x) = 0 if and only if x ∈ A, such that
A is asymptotically stable for

ẋ ∈ Fρ(x), (10.7)

where the set-valued mapping Fρ : Rn ⇒ R
n is

Fρ(x) = conF (x + ρ(x)B)+ ρ(x)B ∀x ∈ R
n. (10.8)

In common words, robustness of asymptotic stability of A requires that the property
remain true if the dynamics are enlarged, or inflated, away from A. The result below
follows from Theorem 3 and Proposition 3 in [61].

Theorem 10.5 If F satisfies the basic assumptions and a compact set A is
asymptotically stable for (10.1), then A is robustly asymptotically stable for (10.1).

In fact, robust asymptotic stability of a compact set A is, essentially, equivalent
to the existence of a smooth Lyapunov function. This is visible in [23, Theorem 1.2,
Proposition 3.1] for the case of A = {0}, and explicitly stated in greater generality in
[61, Theorem 1]. Subject to adding some conditions on the completeness of maximal
solutions, one can conclude that the following are equivalent:

• A is robustly asymptotically stable for (10.1);
• there exists a smooth Lyapunov function for (10.1) and A.

This and the other ideas and results above carry over to discrete dynamics
[41, 42] and generalize to hybrid dynamical systems [33]. For completeness, the
definition parallel to (10.6) and results parallel to Theorem 10.3 and Theorem 10.4,
in the setting of (10.2) are given below, summarizing [41, 42]. Note that only
continuity is required below; this property, for difference inclusions, plays the role
that smoothness (though continuity of the gradient is what matters the most) plays
for differential inclusions. However, converse results in [41, 42] do yield smooth V .

A function V : Rn → [0,∞) is a continuous Lyapunov function for (10.2) and a
compact set A if it is continuous, V (x) = 0 if and only if x ∈ A, lim|x|→∞ V (x) =
∞, and

V (g) ≤ 1

e
V (x) ∀x ∈ R

n, g ∈ G(x).

The constant 1/e above is picked to mimic the exponential decay of V in (10.5);
any positive constant less than 1 leads to asymptotic stability.

Theorem 10.6 If there exists a continuous Lyapunov function for (10.2) and a
compact set A, then A is asymptotically stable for (10.2). If (10.2) satisfies the
basic assumptions and a compact set A is asymptotically stable for (10.2), then
there exists a continuous Lyapunov function for (10.2).
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10.4 Pointwise Asymptotic Stability: Some Examples

A set A ⊂ R
n is pointwise asymptotically stable for the differential inclusion (10.1)

if every maximal solution to (10.1) is complete; if

• every point a ∈ A is Lyapunov stable: for every ε > 0 there exists δ > 0 so that,
for every complete solution φ to (10.1), if ‖φ(0)− a‖ < δ then ‖φ(t)− a‖ < ε

for all t ≥ 0; and if
• every complete solution φ to (10.1) is convergent and limt→∞ φ(t) ∈ A.

As it was the case for asymptotic stability, the concept above is global/in the large
and the adjective is skipped. If A is a singleton, the pointwise asymptotic stability
is the same as asymptotic stability. If A is compact, pointwise asymptotic stability
implies asymptotic stability. Indeed, given an ε > 0 and, for each a ∈ A, a δa > 0
that verifies Lyapunov stability of a, compactness of A leads to a single δ > 0
verifying Lyapunov stability of A. If A is unbounded, this is no longer the case,
and Lyapunov stability of every a ∈ A need not imply Lyapunov stability of A

in the sense of Section 10.3. Thus, for unbounded A, asymptotic and pointwise
asymptotic stability properties are not comparable. Furthermore, an asymptotically
stable compact set A consisting of equilibria of (10.1) only, i.e., points with F(x) =
0, need not be pointwise asymptotically stable, as pointed out in a nice example [12,
Example 1.1]: for a system on R

2 given by

ẋ = f (x) := sign(x2
1 + x2

2 − 1)
∣∣∣x2

1 + x2
2 − 1

∣∣∣α (−x1

−x2

)

+ sign(x2
1 + x2

2 − 1)
∣∣∣x2

1 + x2
2 − 1

∣∣∣β ( x2

−x1

)
,

the unit circle consists of equilibria, but depending on the parameters α, β, solutions
can converge, in distance, to the unit circle while winding themselves around it
infinitely many times, violating Lyapunov stability of each point on the circle; or
may have limits in the unit circle, leading to pointwise asymptotic stability.

A linear differential equation ẋ = Mx has a pointwise asymptotically stable
subspace if and only if M has index 0 or 1 and its nonzero eigenvalues have negative
real parts; equivalently, if limt→∞ eMt exists. Such matrices are called semistable
[19]. The name semistability was adopted to study pointwise asymptotic stability in
general nonlinear differential equations and more general settings by [12, 38] and
others. Pointwise asymptotic stability is the name adopted by the author, beginning
in [27], but it has appeared before, including in [63] in the setting of saddle-
point dynamics. The reason for a different name was that while, for a matrix M ,
semistability is indeed weaker than stability,5 for nonlinear dynamics and compact

5A square matrix M is stable, or Hurwitz, if all of its eigenvalues have negative real parts. For such
a matrix and a linear differential equation ẋ = Mx, the origin is not just (Lyapunov) stable but also
attractive, and hence asymptotically stable.



10 Pointwise Asymptotic Stability for Continuous-Time and Discrete-Time Dynamics 251

sets A, pointwise asymptotic stability is in fact a stronger property than asymptotic
stability.

Examples of pointwise asymptotic stability presented below are related to
optimization of convex functions, dynamics are generated by monotone mappings
and have a nonexpansive property, and, consequently, the pointwise asymptotic
stability is particularly nice: Lyapunov stability of equilibria is verified with δ = ε.
The example from [12], recalled above, does not have this feature. Further examples
where pointwise asymptotic stability appears include modeling of hysteresis [51],
biological and physiological systems [34], and mass-action kinetics in chemistry
[21].

10.4.1 Fejér Monotonicity

A sequence {xj }∞j=0 is Fejér monotone with respect to a set A if, for every n ∈ N0,

‖xj+1 − a‖ ≤ ‖xj − a‖ ∀a ∈ A.

Clearly, if G is nonexpansive, i.e., Lipschitz continuous with constant 1, then
solutions to (10.2) are Fejér monotone with respect to the set A of equilibria/fixed
points of G, i.e., points a with G(a) = a. Several algorithms in convex optimization,
whose purpose is to find a minimum of a function f , generate sequences that are
Fejér monotone with respect to the set of minimizers of f ; see [25] for an exposition.
In the terminology of this note, if every solution to (10.2) is Fejér monotone with
respect to the set of equilibria of (10.2), then every equilibrium is Lyapunov stable.
If, additionally, every solution to (10.2) converges to an equilibrium, then the set of
equilibria is pointwise asymptotically stable.

10.4.2 Steepest Descent for Convex Functions, and Beyond

A prototype for the differential inclusions considered in this section is the steepest
descent or gradient flow ẋ = −∇f (x) for a convex and differentiable function
f : Rn → R. A natural generalization is to consider convex, but nondifferentiable
f , leading to the subdifferential inclusion ẋ ∈ −∂f (x). A further generalization,
motivated by the consideration of constraints, is to consider extended-valued convex
functions f : Rn → R ∪ {∞}. A different extension is to begin with a function
convex in one variable, concave in the other variable—for example, the Lagrangian
for a convex optimization problem—and consider the steepest descent in the first
variable, steepest ascent in the second.

These generalizations fit under the umbrella of differential inclusions defined by
maximal monotone mappings, discussed in the next section. The cases of convex
and convex-concave functions follow.



252 R. Goebel

To account for constraints and so to only consider solutions to the dynamics
(10.1) or (10.2) that remain in a particular subset of the state space, in the remainder
of Section 10.4 the following variant of pointwise asymptotic stability is considered:
Given a set C ⊂ R

n, a set A ⊂ R
n is pointwise asymptotically stable relative to

C for the differential inclusion (10.1) if every maximal solution φ to (10.1) with
φ(0) ∈ C is complete; if every point a ∈ A is Lyapunov stable relative to C: for
every ε > 0 there exists δ > 0 so that, for every complete solution φ to (10.1) with
φ(0) ∈ C, if ‖φ(0) − a‖ < δ then ‖φ(t) − a‖ < ε for all t ≥ 0; and if every
complete solution φ to (10.1) with φ(0) ∈ C is convergent and limt→∞ φ(t) ∈ A.

10.4.2.1 Differential Inclusions Given by Maximal Monotone Mappings

Let M : Rn ⇒ R
n be a maximal monotone mapping.6 Consider the differential

inclusion

ẋ ∈ −M(x), (10.9)

i.e., consider (10.1) with F = −M . Then [15], [7, Chapter 3, Section 2]:

• For every x0 ∈ domM7 there exists a unique maximal solution to (10.9) with
φ(0) = x0 and this solution is complete.

• For any two complete solutions φ,ψ to (10.9), t �→ ‖φ(t) − ψ(t)‖ is
nonincreasing. Indeed,

d

dt

1

2
‖φ(t)− ψ(t)‖2 = (φ(t)− ψ(t)) · (φ̇(t)− ψ̇(t)

) ≤ 0,

where the inequality follows directly from monotonicity of M . In particular, the
solutions to (10.9) depend continuously on initial conditions.

Furthermore, for every solution φ to (10.9), ‖φ̇(t)‖ is nonincreasing, and, for almost
all t ≥ 0,

φ̇(t) = m(−M(φ(t))) ,

where m(S) is the element of the closed set S with minimum norm. In other words,
every solution is “slow,” “heavy,” or “lazy.”

6A set-valued mapping M : Rn ⇒ R
n is monotone if for every x, x′ ∈ R

n, every v ∈ M(x),
v′ ∈ M(x′), one has (x−x′) · (v− v′) ≥ 0. It is maximal monotone if it is monotone and its graph,
{(x, v) ∈ R

2n | v ∈ M(x)}, cannot be enlarged without violating monotonicity. In particular, a
linear M given by M(x) = Lx is monotone if and only if L is positive semidefinite, and if such M

is monotone then it is maximal monotone.
7For a set-valued mapping M : Rn ⇒ R

n, its effective domain, denoted domM , is the set {x ∈
R
n |M(x) �= ∅}.
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Let A be the set of equilibria of (10.9). Clearly, every a ∈ A is Lyapunov stable,
and if A �= ∅, then every solution to (10.9) is bounded. If, additionally, every
solution converges to a point in A, the set A is pointwise asymptotically stable
relative to domM . A natural sufficient condition for such convergence, proposed
by [17], is demipositivity. Let x be a complete solution to (10.9) and let a be an
equilibrium of (10.9), i.e., 0 ∈ M(a). Then

d

dt

1

2
‖φ(t)− a‖2 = (φ(t)− a) · φ̇(t) ≤ 0,

and there must exist ti ↗ ∞ such that (φ(ti) − a) · φ̇(ti) → 0. Without loss of
generality, one can assume that φ(ti) and φ̇(ti) converge. If x = limi→∞ φ(ti) is an
equilibrium of (10.9), then it is Lyapunov stable, and consequently, limt→∞ φ(t) =
x. This leads to the definition: M is demipositive if there exists a ∈ A such that,
for every convergent sequence xi and every bounded sequence vi ∈ M(xi), if
(xi − a) · vi → 0 then limi→∞ xi ∈ A. The original definition, given in an infinite-
dimensional Hilbert space setting, considered weak convergence of xi . Here, since
the graph of a maximally monotone M : R

n ⇒ R
n is closed, demipositivity

furthermore reduces to a property sometimes referred to as firm positivity: there
exists a ∈ A such that, if v · (x − a) = 0 for some v ∈ M(x) then x ∈ A.

Sufficient conditions for demipositivity include strict and strong monotonicity
of M ,8 or the interior of A being nonempty. For more, see [54, Proposition 6.2].
In case of strict monotonicity, A reduces to a singleton {a} and ‖φ(t) − ψ(t)‖ is
strictly decreasing for any two solutions φ, ψ whenever φ(t) �= ψ(t). In case of
strong monotonicity, A is also a singleton, the function V (x) = ‖x − a‖2 turns out
to be a smooth Lyapunov function, and the convergence is exponential.9

10.4.2.2 Steepest Descent for a Convex Function

An important case of a maximal monotone mapping is the subdifferential of a
proper, lower semicontinuous (lsc), and convex function f : Rn → R ∪ {∞}.10

The subdifferential mapping ∂f : Rn ⇒ R
n of such a function is defined, at every

x ∈ R
n, where f (x) <∞, by

8A monotone M : Rn ⇒ R
n is strictly monotone if for every x, x′ ∈ R

n with x �= x′, every
v ∈ M(x), v′ ∈ M(x′), one has (x−x′) · (v−v′) > 0, and strongly monotone if there exists ρ > 0
such that, for every x, x′ ∈ R

n, every v ∈ M(x), v′ ∈ M(x′), one has (x−x′)·(v−v′) ≥ ρ‖x−x′‖2.
9In systems theory, a system where ‖φ(t) − ψ(t)‖ is eventually decreasing to 0, for all
solutions, often with appropriately understood uniform decrease rate over ‖φ(0)−ψ(0)‖ is called
incrementally stable, see [3] and the references therein, and contractive if ‖φ(t) − ψ(t)‖ is
decreasing, often at an exponential rate, see [2]. For applications of the contractive property, not
related to monotonicity of the dynamics, see the survey [2] and the references therein.
10A function f : Rn → R ∪ {∞} is proper if it is not identically equal to ∞ and lsc if, for every
x ∈ R

n and every xi → x, lim infi→∞ f (xi) ≥ f (x). A useful condition, equivalent to f being
proper, lsc, and convex is that the epigraph of f , namely the set {(x, r) ∈ R

n | r = f (x)} be
nonempty, closed, and convex.
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∂f (x) = {v ∈ R
n | f (x′) ≥ f (x)+ v · (x′ − x) ∀x′ ∈ R

n}. (10.10)

The subdifferential mapping is maximal monotone, [56, Theorem 12.17], and
when f is a differentiable convex function, ∂f = ∇f . Strong convexity of f

is equivalent to strong monotonicity of ∂f , see [56, Exercise 12.59], and thus
implies demipositivity of ∂f . A similar equivalence and implication holds for strict
convexity, see [56, Theorem 12.17].

To illustrate the reason to consider convex functions that are not necessarily
differentiable or even finite-valued, and the utility of the subdifferential, consider
the question of minimizing a convex and differentiable function g : Rn → R over
a nonempty, closed, and convex C ⊂ R

n. The question is equivalent to that of
minimizing, over Rn, a proper, lsc, and convex f : Rn → R ∪ {∞} given by

f (x) =
{
g(x) if x ∈ C,

∞ if x �∈ C.
(10.11)

The subdifferential of this function is given by

∂f (x) =
{∇g(x)+NC(x) if x ∈ C,

∅ if x �∈ C.

Here, NC(x) is the normal cone to C at x.11 At points x in the interior of C, ∂f (x) =
∇g(x), while at points on the boundary of C, ∂f (x) is naturally unbounded, and so
∂f does not satisfy the basic assumptions. To ensure that solutions to ẋ = −∇g(x)
remain in the set C, projected dynamics are often considered, i.e., at the boundary
points of C, −∇g(x) is projected onto the tangent cone to C at x. It turns out that
the projection is the same as the minimum norm element of −∂f (x), with f given
by (10.11), and so solutions to the projected gradient dynamics are the same as those
to ẋ ∈ −∂f (x); see [36] or the recent [16, Corollary 2]. These solutions converge
to minimizers, if the minimizers exist.

Indeed, consider any proper, lsc, and convex function f : Rn → R ∪ {∞} with
a nonempty set of minimizers. Then ∂f is demipositive/firmly positive. To see this,
note that a ∈ A := arg min f if and only if 0 ∈ ∂f (a), which follows from (10.10),
and then v · (x − a) = 0 with v ∈ ∂f (x) ensures, via (10.10), that f (x) = f (a).
Additionally, in the case of M being the subdifferential of a proper, lsc, and convex
function, the existence of solutions to (10.9) holds not just for x0 ∈ dom∂f but for
every x0 ∈ domf ; see [14, Theorem 22].12

11The normal cone to a closed and convex set C ⊂ R
n at x ∈ C is NC(x) = {v ∈ R

n | v ·(x′−x) ≤
0 ∀x′ ∈ C}.
12For a function f : Rn → R ∪ {∞}, domf is the effective domain of f , i.e., the set {x ∈
R
n | f (x) ∈ R}.
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Theorem 10.7 Let f : Rm → R ∪ {∞} be lower semicontinuous and convex and
suppose A := arg min f �= ∅. Then A is pointwise asymptotically stable, relative to
domf , for

ẋ ∈ −∂f (x).

The case of steepest descent/steepest ascent for a convex-concave function is
more interesting.

10.4.2.3 Saddle-Point Dynamics for a Convex-Concave Function

Let H : Rn+m → R ∪ {−∞,∞} be a proper and closed, in the sense of [55],
convex-concave function. Closedness plays here a role similar to the role lower
semicontinuity plays for convex functions, but the definition is more technical. See
[55, Chapter 33] for details and Theorem 10.8 below for an example of a proper and
closed function with ∞ and −∞ as values. The convex-concave subdifferential of
H , namely the mapping

(x, y) �→ ∂xH(x, y)×
(
−∂̃yH(x, y)

)
, (10.12)

where ∂xH(x, y) is the convex analysis subdifferential of the convex function x �→
H(x, y), and ∂̃yH(x, y) is the negative of the subdifferential of the convex function
y �→ −H(x, y), is maximal monotone; see [55, Corollary 37.5.2]. Consequently,
saddle-point dynamics

ẋ ∈ −∂xH(x, y), ẏ ∈ ∂̃yH(x, y), (10.13)

are a special case of (10.9). Equilibria of (10.13) are saddle points of H , namely,
points (x∗, y∗) such that H(x∗, y) ≤ H(x∗, y∗) ≤ H(x, y∗) for all x ∈ R

n and
all y ∈ R

m, and the set of all saddle points of H is a closed convex product set,
denoted X∗ × Y ∗. Every saddle point of H is thus Lyapunov stable for (10.13),
but convergence of solutions to (10.13) is more delicate than what was the case
for steepest descent. In particular, the simple convex-concave H : R2 → R given
by H(x, y) = xy has a unique saddle point (0, 0) and every solution to (10.13) is
periodic. This example also shows that, in general, (10.12) is not demipositive.

Sufficient conditions for convergence of every solution to (10.13) to a saddle
point of H include, of course, strong convexity in x and strong concavity in y, as
then the convex-concave subdifferential is strongly monotone; and strict convexity
in x and strict concavity in y, as then the subdifferential is strictly monotone.
A weaker sufficient condition, leading to demipositivity of the convex-concave
subdifferential, is the existence of a saddle point (x∗, y∗) such that, if (x, y) satisfies
H(x∗, y) = H(x∗, y∗) = H(x, y∗), then (x, y) is a saddle point too; see [20].
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A similar, but weaker sufficient condition, requiring a kind of partial demiposi-
tivity was noted in [62] for differentiable H extended to include constraints x ∈ X

and y ∈ Y for closed convex sets X and Y in [63]; and was recently revisited to
allow nondifferentiable H in [29, Theorem 3.3].

Theorem 10.8 Let h : Rn+m → R be a convex-concave function, let X ⊂ R
n,

Y ⊂ R
m be nonempty, closed, and convex sets, and let H : Rn+m → R∪{−∞,∞}

be given by

H(x, y) =
⎧⎨
⎩
h(x, y) if x ∈ X, y ∈ Y,

∞ if x �∈ X,

−∞ if x ∈ X, y �∈ Y.

If the set of saddle points of H , X∗ × Y ∗, is nonempty and either H(x∗, y∗) <

H(x, y∗) for all x∗ ∈ X∗, y∗ ∈ Y ∗, x �∈ X∗ or H(x∗, y) < H(x∗, y∗) for all
x∗ ∈ X∗, y∗ ∈ Y ∗, y �∈ Y ∗, then X∗ × Y ∗ is pointwise asymptotically stable,
relative to X × Y , for (10.13).

An example where the assumptions of the theorem hold but (10.12) is not
demipositive is H(x, y) = x2 + xy. For further discussion and a proof of the result
above, and several references with applications of saddle-point dynamics to control
engineering problems, see [29].

10.4.3 Consensus Algorithms

For x = (x1, x2, . . . , xK) ∈ R
Km, where xk ∈ R

m and which could model positions
of K agents, consider

ẋi =
K∑
k=1

aik(xk − xi), i = 1, 2, . . . , K (10.14)

for some constants aik ∈ R, i, k = 1, 2, . . . , K . If these constants are nonnegative
and aik = aki , then (10.14) is the steepest descent ẋ = −∇f (x) for the convex
function f : RKm → R given by

f (x) = 1

4

K∑
i,k=1

aik(xi − xk)
2.

From Theorem 10.7, the set of equilibria in (10.14) is pointwise asymptotically
stable. Of particular interest in control literature is the case when the set of equilibria
of (10.14) is
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A = {x ∈ R
mK | x1 = x2 = · · · = xK}, (10.15)

in which case convergence to A represents the agents reaching consensus. This
occurs in particular when nonnegative aik = aki’s represent weights in an undirected
communication graph between the agents—for example, it may be that aik =
aki = 1 if the agents communicate, 0 otherwise—and the communication graph is
connected. See the surveys [52, 53] for a broader exposition, [59] and the literature
therein for some generalizations of (10.14) that come from more general convex
functions or that allow for rapid changes in the communication graph, and [38] for
links between consensus and pointwise asymptotic stability. Many of the mentioned
generalizations fit under a broader umbrella of a switching system, as noted in
[32], leading to the result below. For a general exposition of switching systems
in control, see [45]. In common words, a switching system is a differential (or
difference) equation (or inclusion) where the right-hand side switches, according
to usually a time-dependent but sometimes a state-dependent rule, between several
given mappings.

Consider the switching system

ẋ ∈ −∂fq(x), (10.16)

where Q is a set and for each q ∈ Q, fq : Rn → R ∪ {∞} is a convex function.
A switching signal is a function σ : [0,∞) → Q such that there exist 0 = t0 <

t1 < t2 < . . . with tj ↗ ∞ such that σ is constant on each [tj , tj+1). Given a
switching signal σ , a solution to (10.16) is a locally absolutely continuous function
φ : [0, T ] → R

n or φ : [0,∞) → R
n such that φ̇(t) ∈ −∂fσ(t)(φ(t)) for almost

every t in the domain of φ. The following is shown in [32]. The proof relies on
picking a ∈ A∞ and using ‖x − a‖2 as a kind of Lyapunov function, which is
nondecreasing. (Below, μ stands for the Lebesgue measure, and reduces to a sum of
lengths of intervals.)

Theorem 10.9 Suppose that Q = {1, 2, . . . , p}; for every q ∈ Q, fq : Rn →
R ∪ {∞} is a proper, lsc, and convex function; and that

⋂
q∈Q arg min fq �= ∅. Let

σ : [0,∞)→ Q be a switching signal and let

Tq(σ ) := μ ({t ≥ 0 | σ(t) = q}) , Q∞(σ ) := {q ∈ Q | Tq(σ ) = ∞}.

Then every complete and uniformly continuous solution to (10.16) converges to A∞,
where

A∞(σ ) :=
⋂

q∈Q∞(σ )

arg min fq.

In the setting of Theorem 10.9, the distance of every solution to (10.16) to the
set

⋂
q∈Q arg min fq and to A∞(σ ) is nondecreasing, and so, subject to further

existence and uniform continuity assumptions, pointwise asymptotic stability of A∞
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can be concluded. In this setting, the issue of agents reaching consensus reduces to
the question whether A∞(σ ), the set of common minimizers of fq for q ∈ Q∞(σ ),
correspond to points representing consensus (10.15).

The switching system (10.16) is a particular kind of time-varying dynamics
generalizing (10.9). Different time dependence is considered in, for example, [9]
and [5]. When arbitrarily fast switching in (10.16) is allowed, solutions approximate
those to ẋ ∈ −F(x) where F(x) is the convex hull of the union of ∂fq(x). Arbitrary
solutions to this inclusion are not expected to converge to common minimizers.
However, slow solutions to the inclusion, i.e., solutions to ẋ = m(−F(x)), are
expected to converge to common minimizers if they exist, and to Pareto optimal
points in general; see [6, 48] and earlier works referenced therein. Ideas similar
to what is behind Theorem 10.9 are related to the ideas behind the alternating or
cyclic projection method and other methods of finding common zeros of monotone
mappings; see [11, 57], and the numerous references therein. In the discrete-time
consensus algorithm setting, this relationship is discussed in [50].

10.5 Pointwise Asymptotic Stability: Some Results

Pointwise asymptotic stability theory has seen contributions in [12, 13, 19, 38, 39],
and more, under the name “semistability,” and in the work by the author [27, 28], and
[31]. Selected results are recalled below. Focus is on set-valued Lyapunov functions
which enable necessary and sufficient conditions for pointwise asymptotic stability
and characterizations of its robustness, inspired by what was previously done for
asymptotic stability, as recalled in Section 10.3.

10.5.1 Sufficient Conditions

The usual Lyapunov conditions for asymptotic stability of a set A don’t imply
pointwise asymptotic stability, unless A consists of a single point. Additional
conditions can be posed ensure pointwise asymptotic stability. For example, [12]
considered Lyapunov conditions and appropriately understood nontangent to A

behavior of solutions, in the setting of differential equations. A condition of a
different nature, which is sufficient for Lyapunov stability and can be combined
with other conditions to yield pointwise asymptotic stability, is based on the length
of solutions. In the setting of a difference inclusion (10.2), let Length : Rn →
R ∪ {−∞,∞} be defined by

Length(x0) = sup {length(φ) |φ is a solution to (10.2), φ(0) = x0} ,

where
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length(φ) =
∞∑
j=0

‖φ(j + 1)− φ(j)‖.

If Length(x) = 0 and the function Length is upper semicontinuous at x, equiv-
alently, continuous at x, then x is Lyapunov stable. See [47], where the length
was considered in a general metric space and for a difference inclusion; [13] for
related results for differential equations, where the length of a complete solution
x : [0,∞)→ R

n is
∫∞

0 ‖φ̇(t)‖ dt ; and [31] for hybrid systems.
Consensus issues for multiagent systems modeled by difference equations led

[49] to introduce a set-valued Lyapunov function, to its use in a sufficient condition
for pointwise asymptotic stability, and to applications of the condition to particular
cases where the convex hull of the positions of agents can serve as a set-valued
Lyapunov function.

Let A ⊂ R
n be a closed set. A set-valued mapping W : Rn ⇒ R

n is a set-valued
Lyapunov function for A and the difference inclusion (10.2) if:

• x ∈ W(x) for every x ∈ R
n, W(x) = {x} if and only if x ∈ A, W is outer

semicontinuous at every x ∈ A, and W is locally bounded;
• there exists a continuous α : Rn → [0,∞) such that α(x) = 0 if and only if
x ∈ A and

W(G(x))+ α(x)B ⊂ W(x) ∀x ∈ R
n. (10.17)

In [49], an inequality involving some measure of the size of W was used in place of
(10.17); the inclusion (10.17) is from [27], and is meant to resemble a version of a
Lyapunov inequality: V (G(x)) ≤ V (x)− α(x), i.e., V (G(x))+ α(x) ≤ V (x). The
result below is thus a minor variation of [49, Theorem 4].

Theorem 10.10 If there exists a set-valued Lyapunov function for a closed set A ⊂
R
n and the difference inclusion (10.2), then A is pointwise asymptotically stable for

(10.2).

The proof relies on the fact that, for every solution φ to (10.2),

φ(j)+
j−1∑
i=0

α(φ(i))B ⊂ W(φ(0)).

Then, boundedness of solutions follows from φ(j) ∈ W(φ(0)); Lyapunov stability
of every a ∈ A follows from φ(j) ∈ W(φ(0)), W(a) = {a}, and outer
semicontinuity of W at a; while convergence, for complete solutions, follows from
summability of the series of α(φ(i)). Details can be found in [31, Theorem 3.3,
Theorem 3.7], in a hybrid system setting. In absence of strict decrease of W , i.e., if
(10.17) is replaced by W(G(x)) ⊂ W(x), invariance-based arguments can lead to
similar conclusions.
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For completeness, a set-valued mapping W : Rn ⇒ R
n is a set-valued Lyapunov

function for A and the constrained differential inclusion (10.3) if:

• x ∈ W(x) for every x ∈ C, W(x) = {x} if and only if x ∈ A, W is outer
semicontinuous at every x ∈ A, and W is locally bounded;

• there exists a continuous α : Rn → [0,∞) such that α(x) = 0 if and only if
x ∈ A and, for every solution φ : [0, T ] → R

n to (10.3),

W(φ(t))+
(∫ t

0
α(φ(s)) ds

)
B ⊂ W(φ(0)) ∀t ∈ [0, T ].

Existence of such a W is sufficient for pointwise asymptotic stability; see [31,
Theorem 3.3, Theorem 3.7].

10.5.2 Reachable Sets and Limits of Solutions

Consider the difference inclusion (10.2). Let R≤J : Rn ⇒ R
n be the finite-horizon

reachable set, i.e., the set-valued mapping given by

R≤J (x0) = {φ(j) |φ is a solution to (10.2) with φ(0) = x0, j = 0, 1, . . . , J } ,

let R∞ : Rn ⇒ R
n be the infinite-horizon reachable set, given by

R∞(x0) = {φ(j) |φ is a solution to (10.2) with φ(0) = x0, j ∈ N0} ,

and let R∞ : Rn ⇒ R
n be its closure, i.e., R∞(x0) = R∞(x0). When all complete

solutions to (10.2) converge, the limit set-valued mapping L : Rn ⇒ R
n can be

defined by

L(x0) =
{

lim
j→∞φ(j) |φ is a complete solution to (10.2) with φ(0) = x0

}
.

Parallel definitions can be stated for the differential inclusion (10.1).
Simple examples show that neither the infinite-horizon reachable sets nor limits

of solutions, if they exist in the first place, need to depend regularly on initial
conditions. The presence of an asymptotically stable compact set does not fix this.
For example, for ẋ = x2(1 − x), [0, 1] is asymptotically stable (in fact, it is the
smallest asymptotically stable set), while the infinite horizon reachable set from
x < 0 is R∞(x) = [x, 0); for x = 0, R∞(x) = {0}; and for 0 < x < 1,
R∞(x) = [x, 1). Both R∞ and R∞ fail to be outer semicontinuous at x = 0.
Similarly, L(x) = {0} for x ≤ 0 and L(x) = {1} for x > 0, and both inner
and outer semicontinuity of L fail at x = 0. On the other hand, the existence and
continuous dependence of limits of solutions on initial conditions does not imply
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Lyapunov stability of equilibria. For ṙ = 0, θ̇ = θ(2π − θ) in polar coordinates,
where θ ∈ [0, 2π), the limit of a solution from (r, θ) is (r, 0), and each such limit is
an equilibrium, but only (0, 0) is Lyapunov stable.

The presence of a closed and pointwise asymptotically stable set does lead to
regularity of R∞ and L.

Theorem 10.11 Suppose that A ⊂ R
n is a nonempty, closed, and pointwise

asymptotically stable for (10.2) set and that G satisfies the basic assumptions. Then

(a) the set-valued mappings R∞ and L are locally bounded and outer semicontin-
uous, and for every x0 ∈ R

n, R∞(x0) = R∞(x0) ∪ L(x0);
(b) for every ε > 0 there exists J ∈ N0 such that R∞(x0) ⊂ R≤J (x0)+ εB.

If, additionally, G is continuous, then R∞ and L are continuous.

The result (a) is in [27, Proposition 4.1], (b) is in [28, Lemma 2.12], and the
conclusion on continuity—which follows from (b) and continuity of the finite-
horizon reachable set for continuous dynamics—is in [28, Proposition 2.13].
Parallel results for a differential inclusion (10.1) hold, but for the conclusions about
continuity of R∞ and L, an assumption of local Lipschitz continuity of F is needed.

10.5.3 Converse Set-Valued Lyapunov Results and Robustness

The set-valued Lyapunov function concept allows for converse results and charac-
terization of robustness of pointwise asymptotic stability for the difference inclusion
(10.2). A converse of Theorem 10.10, first given in [27], is below.

Theorem 10.12 If the difference inclusion (10.2) satisfies the basic assumptions
and a compact set A ⊂ R

n is pointwise asymptotically stable for (10.2), then there
exists a set-valued Lyapunov function for A and (10.2).

One approach to proving this is as follows. By Theorem 10.11, the closure of the
reachable set R∞ : Rn ⇒ R

n is locally bounded and osc. Also, by the definition
of the reachable set, for every x ∈ R

n, x ∈ R∞(x) and R∞(G(x)) ⊂ R∞(x).
By Lyapunov stability of every a ∈ A, for each such a one has R∞(a) = {a}.
What is missing is the strict decrease along solutions, as required by (10.17). Since
A is asymptotically stable for (10.2), by Theorem 10.6 there exists a continuous
Lyapunov function V : Rn → [0,∞), so that V (g) ≤ 1

e
V (x) for every x ∈ R

n,
g ∈ G(x). Then

W(x) = R∞(x)+ V (x)B

satisfies (10.17) with α(x) = (1 − 1/e)V (x) and thus W : Rn ⇒ R
n as defined

above is a set-valued Lyapunov function for A and (10.2).
Under further assumptions on the data in (10.2), R∞ is a continuous set-valued

mapping, and then so is the W constructed above.
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Corollary 10.1 If the difference inclusion (10.2) satisfies the basic assumptions,
G is continuous, and a compact set A ⊂ R

n is pointwise asymptotically stable for
(10.2), then there exists a continuous set-valued Lyapunov function for A and (10.2).

Continuity of a set-valued Lyapunov function is important, since it relates
to robustness of pointwise asymptotic stability. The set A is robustly pointwise
asymptotically stable for (10.2) if it is pointwise asymptotically stable and there
exists a continuous function ρ : R → [0,∞), with ρ(x) = 0 if and only if x ∈ A,
such that A is pointwise asymptotically stable for x+ ∈ Gρ(x), where the set-valued
mapping Gρ : Rn ⇒ R

n is

Gρ(x) =
⋃

y∈G(x+ρ(x)B)
y + ρ(y)B ∀x ∈ R

n. (10.18)

The result below is [28, Theorem 4.3].

Theorem 10.13 Suppose that G : Rn ⇒ R
n is locally bounded. Let the compact

set A ⊂ R
n be pointwise asymptotically stable for (10.2). Then, the following are

equivalent:

(a) A is robustly pointwise asymptotically stable for (10.2).
(b) There exists a continuous set-valued Lyapunov function for A and (10.2).

The more involved part of the proof, of the implication (a) %⇒ (b), takes
an outer semicontinuous set-valued Lyapunov function W , the existence of which
is guaranteed by Theorem 10.12, and using the robustness margin ρ, constructs
from W a continuous (in fact locally Lipschitz) set-valued Lyapunov function. The
construction uses the technique that was used in [23, Proposition 3.5] to smooth a
Lyapunov function candidate when proving Theorem 10.4, but applies it to W and
not to the dynamics.

It is not immediate how robustness of pointwise asymptotic stability for discrete
dynamics, as defined by the perturbation (10.18) of (10.2), and characterized by
Corollary 10.1 and Theorem 10.13, relates to sensitivity of optimization algorithms
to computational errors [65] and, in particular, to quasi-Fejér monotonicity [24].
Clearly, robustness considered here deals with stability and convergence, while most
considerations in the optimization literature focus on convergence only.

Results for continuous-time dynamics (10.1), parallel to Theorem 10.12, Corol-
lary 10.1, and Theorem 10.13 in particular the robustness of pointwise asymptotic
stability for continuous (in the set-valued sense) dynamics are expected to hold
but have not been published. What is not clear is whether robustness of pointwise
asymptotic stability of a compact set automatically holds for outer semicontinuous
dynamics, as it is the case for asymptotic stability (recall Theorem 10.5). Partial
results in this direction, in the setting of differential inclusions (10.1), have
been shown in [29], for the maximal monotone case, and announced in [30] for
constrained dynamics with a local Fejér property. A special case of the latter result
is below.
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Note that even if the dynamics (10.1) are given by a monotone mapping, which
ensures the Fejér property in Theorem 10.14, the inflated dynamics (10.8) in the
definition of robustness are different from the enlargements of monotone mappings
used in analysis of discrete-time optimization algorithms [18] and (10.8) is not
monotone. Similarly, the inflated dynamics (10.8) are not single-valued and so
robustness considered below is different from what is considered, for example, in
[1, 22]. Relating these approaches to robustness properties to one another may be of
interest.

Theorem 10.14 Suppose that (10.1) satisfies the basic assumptions; a nonempty,
compact A ⊂ R

n is asymptotically stable for (10.1); and (10.1) is locally Fejér
monotone with respect to A, in the sense that there exists a neighborhood U of A
such that, for every solution φ to (10.1) with φ(0) ∈ U , ‖φ(t)−a‖ ≤ ‖φ(0)−a‖ for
every a ∈ A, every t ∈ domφ. Then A is robustly pointwise asymptotically stable
for (10.1).

An outline of the proof is given, to illustrate the utility of the asymptotic stability
results of Section 10.3. By Theorem 10.5, there exists a continuous ρ0 : Rn →
[0,∞), with ρ0(x) = 0 if and only if x ∈ A, such that A is asymptotically stable for

ẋ ∈ Fρ0(x),

where Fρ0 is given by (10.8). By Theorem 10.4, there exists a smooth Lyapunov
function for this inclusion and A. Without loss of generality suppose that {x ∈
R
n |V (x) ≤ 1} ⊂ U , where U comes from the definition of local Fejér

monotonicity of (10.1) with respect to A. Let

Ri :=
{
x ∈ R

n | 2−i ≤ V (x) ≤ 2−i+1
}
, i = 1, 2, . . .

which are nonempty compact sets, and let

ci := min
x∈Ri

min
a∈A ‖x − a‖, di = ci − ci+1, ri = min

x∈Ri

ρ0(x)

which are positive. Compactness-based arguments show that, for each i = 1, 2, . . . ,
there exists a positive ρi ≤ ri such that, for every solution φ to (10.8) where ρ is
given by ρ(x) = ρi for all x ∈ R

n and where φ(0) ∈ Ri ; for every t such that
φ(t) ∈ Ri ; and for every a ∈ A, one has

‖φ(t)− a‖ ≤ ‖φ(0)− a‖ + di . (10.19)

Let ρ : Rn → [0,∞) be continuous, with ρ(x) = 0 if and only if x ∈ A, and such
that ρ(x) ≤ ρi for all x ∈ Ri . Then ρ ≤ ρ0 and so A is asymptotically stable for
(10.8). It is left to show that every a ∈ A is Lyapunov stable for (10.8). Indeed, for
a compact set, this property combined with asymptotic stability implies pointwise
asymptotic stability.
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Let a ∈ A. Let φ be a solution to (10.8) with φ(0) ∈ Ri for some i. Let tj ,
j = 1, 2, . . . be such that V (x(tj )) = 2−i−j+1. By (10.19), for t ∈ [0, t1], ‖x(t)−
a‖ ≤ ‖x(0) − a‖ + di . For t ∈ [t1, t2], ‖x(t) − a‖ ≤ ‖x(t1) − a‖ + di+1 ≤
‖x(0) − a‖ + di + di+1. In general, for t ∈ [tj , tj+1], j = 1, 2, . . . , ‖x(t) − a‖ ≤
‖x(0)− a‖ +∑i+j

k=i dk . Hence, for every t ∈ [0,∞),

‖x(t)−a‖ ≤ ‖x(0)−a‖ +
∞∑
k=i

dk = ‖x(0)− a‖ + ci ≤ ‖x(0)− a‖ + ‖x(0)− a‖.

Lyapunov stability of a follows, by taking δ = min{ε/2, 1} for any given ε > 0.
A minor variation of the proof above shows that, in the setting of Theorem 10.14,

given any ε > 0, the robustness margin ρ : R → [0,∞) can be picked so that
not only is A pointwise asymptotically stable for (10.7), but also there exists a
neighborhood U of A such that, for every solution φ to (10.7) with φ(0) ∈ U ,
‖φ(t) − a‖ ≤ (1 + ε)‖φ(0) − a‖ for every a ∈ A, every t ∈ domφ. That is, Fejér
monotonicity is almost preserved locally by the inflated dynamics (10.8).
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Algorithms for Solving Vector
Optimization Problems
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Abstract In this survey paper we present the existing generalizations of the proxi-
mal point method from scalar to vector optimization problems, discussing some of
their advantages and drawbacks, respectively, presenting some open challenges and
sketching some possible directions for future research.
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11.1 Introduction

The usual way to solve a vector optimization problem is by scalarizing it, i.e.
by attaching to it a scalar optimization problem whose optimal solutions are also
optimal in some sense to the original problem. However, this approach can often
lead to unbounded scalar optimization problems, hence the necessity to address
the vector optimization problems directly, especially when it comes to numerically
solving them. One can find some results on the choice of scalarizing parameters in
order to guarantee the existence of optimal solutions of the scalarized problems in
the literature, but the imposed conditions are quite restrictive (see [47, 62]) and their
verification, when possible, may prove to be too expensive from a computational
point of view. There are some scalarization methods (for instance the one with the
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scalarization function introduced by Tammer (Gerstewitz) in [43] or by means of
a (semi-)norm, see also [49, Chapter 4]) that lead to scalar optimization problems
that are bounded from below, however the objective functions of the latter consist
of compositions of functions that are often unsuitable for the existing algorithms.
This situation has motivated research on iterative methods for directly solving
multiobjective or vector optimization problems consisting in vector-minimizing a
vector function, sometimes subject to (geometric) constraints, that are more or
less immediate extensions of scalar algorithms. Some of the first contributions
to this direction can be found in [54–56, 64] and the interest towards such
algorithms remained active during the next decades (see, for instance, [11, 60, 61]),
several other methods being adapted or developed. More recently, one can find
generalizations from the scalar case to the vector one of several classical methods
for solving both smooth optimization problems, such as the Newton’s method (cf.
[42]), the projected gradient method (cf. [46]) or the steepest descent method (cf.
[48]), and nonsmooth ones, for instance the proximal point method (cf. [24, 75]),
the proximal bundle one (cf. [58]) or the subgradient method (cf. [40]). Moreover,
one can find even methods for solving vector optimization problems that rely on
dynamical systems, such as the ones proposed in [5–7].

In this survey we focus on the existing generalizations of the proximal point
method from scalar to vector optimization problems, briefly presenting them and
discussing about their advantages and drawbacks, respectively, mentioning some
open problems and sketching some possible directions for future research. The
(already classical) proximal point algorithm was first proposed by Martinet in [59]
and shortly afterwards developed and extended by Rockafellar for solving monotone
inclusions, in particular convex (scalar) optimization problems. Since then there
were many contributions to this area of research, proximal point type algorithms
being now available for various complexly structured convex optimization problems
as well as for some classes of nonconvex optimization problems. We refer the reader
to [9] for more on the state of the art on this topic.

The first major contribution to extending the proximal point method from scalar
to vector optimization problems is the paper [24] due to Bonnel, Iusem and Svaiter.
One could argue that the earlier contributions [61] and [45, Section 4.2] contain
some proximal point type algorithms for solving vector optimization problems,
too, however, in the introduction of [24] the authors explicitly address this issue,
stressing that in these works the proximal point steps are actually applied on
scalar optimization problems. The mentioned work, written roughly fifteen years
ago and cited over one hundred times (according to google scholar) is still the
(gold) standard in the field and basically every further paper containing a proximal
point type method for solving vector optimization problems builds on it. In the
following we discuss around thirty such subsequent contributions (see [4, 12–
17, 19, 27–39, 41, 51–53, 67–75]) where one finds algorithms for solving vector
optimization problems of various types, where the objective functions are cone-
convex, cone-quasiconvex, differences of cone-convex functions or sums of such,
have a special structure or are arbitrary and map from Euclidean, Hilbert, Banach
or even Hadamard spaces to Euclidean or Banach ones, being minimized over
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the whole space or only over some sets or even subject to some other explicitly
formulated constraints. In some of these papers the proximality paradigm is present
in a classical manner, in some the proximal terms contain Bregman distances, quasi-
distances, or are formulated via viscosity functions. There are also two papers where
inertial/memory effects or hybrid constructions are added to the algorithm, and we
mention, too, some contributions where the regularization is performed by means of
a Tikhonov type function instead of the Moreau-Yosida one from the proximal point
algorithms.

The method proposed in [24] and extended and refined in subsequent contri-
butions does not directly scalarize the original vector optimization problem. The
proximal step of the algorithm consists in choosing as the next iterate a weakly
efficient solution of the intermediate vector optimization problem corresponding to
the current iteration. The intermediate vector optimization problems are constructed
by means of a Moreau-Yosida type regularization and, consequently, they always
have weakly efficient solutions. Moreover, the scalarized optimization problems
attached to them by any nonzero linear continuous functional from the dual cone of
the ordering cone have optimal solutions and, thus, deliver weakly efficient solutions
to the intermediate vector optimization problems. This observation is used in the
convergence proof, however it does not mean that the original vector optimization
problem or the intermediate ones have to be actually scalarized when the algorithm
is running. Note also that most of the proximal point type algorithms for vector
optimization problems deliver weakly efficient solutions or even, in the nonconvex
case, critically efficient solutions to them. The convergence to efficient solutions can
be then guaranteed under additional hypotheses.

Note that we have used in this survey the vector optimization problems as they
were considered in the original works, i.e. in Euclidean, Hilbert or Banach spaces
and with or without constraints, respectively. In order to maintain a reasonable
length of the work, we gave for each algorithm only a convergence statement, not
other related results such as well definiteness of the iterations.

Most of the proximal point type algorithms for solving vector optimization
problems are formulated as theoretical schemes and some of them are accompanied
by inexact versions that should be more suitable for implementation. While the
papers presenting algorithms for solving scalar optimization problems usually
contain applications and computational results, this is rarely the case for the ones
dealing with methods for solving vector optimization problems. The algorithm
introduced in [24] is explicitly presented as a theoretical scheme meant to be
implemented someday and many of its followers are introduced in a similar
manner. We discuss later the difficulties encountered while trying to actually
numerically test such algorithms. However, making use of additional methods in
order to solve the intermediate problems, various authors managed to provide viable
implementations of the proximal point type algorithms they introduced for solving
vector optimization problems and hence to deliver concrete computational results.
We mention in the following, where applicable, on which classes of problems were
the considered algorithms tested.
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11.2 Preliminaries

In the following we present the general framework we consider within this study,
following [24]. Where necessary we mention the changes to this setting. Note,
however, that this work is not completely self-contained and the reader is referred
to the original sources for some definitions and more properties of notions that are
only briefly employed or mentioned within this study.

Let X be a Hilbert space and (Y, ‖ · ‖) a separable Banach space that is partially
ordered by a pointed closed convex cone C ⊆ Y . Recall that C ⊆ Y is said to be
a cone when tC ⊆ C for all t ≥ 0, that is called pointed when −C ∩ C = {0}.
The partial ordering induced by C on Y is denoted by “�C” (i.e. it holds x �C y

when y − x ∈ C, where x, y ∈ Y ) and we write x ≤C y if x �C y and x �= y.
A greatest element with respect to “�C” denoted by ∞C which does not belong to
Y is attached to this space, and let Y • = Y ∪ {∞C}. Then for any y ∈ Y one has
y ≤C ∞C and we consider on Y • the operations y +∞C = ∞C + y = ∞C for
all y ∈ Y • and t · ∞C = ∞C for all t ≥ 0. By 〈y∗, y〉 we denote the value at
y ∈ Y of the linear continuous functional y∗ ∈ Y ∗, where (Y ∗, ‖ · ‖∗) is the dual
space of Y , and by convention we take 〈y∗,∞C〉 = +∞ for all y∗ ∈ C∗, where
C∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 ∀y ∈ C} is the dual cone to C. The restricted
polar to the cone C is Kδ = {z∗ ∈ Y ∗ : 〈z∗, y〉 ≥ δ‖y‖‖z∗‖ for all y ∈ C} for
some δ > 0. Given a subset U of X, by clU , coneU , intU and δU we denote its
closure, conical hull, interior and indicator function, respectively. As intC ∪ {0}
is a convex cone, too, we also write x <C y when y − x ∈ intC. A set W ⊆ Y

is said to have the domination property with respect to C, if there exists w ∈ Y

such that W ⊆ w + C. The closed unit ball of Y is denoted by BY and its unit
sphere by SY . The convergence in the (corresponding) weak topology is denoted
by “⇀”, idX : X → X is the identity operator on X and by PrU we denote the
projection onto the (closed convex) set U ⊆ X. When Y is finitely dimensional we
consider it endowed with the Euclidean norm, unless otherwise specified. Denote
also e = (1, . . . , 1)/ ∈ R

m.
A Banach space (Z, ‖·) is said to be strictly convex if ‖(1/2)(x + y)‖ < 1 for all

x, y ∈ Z with ‖x‖ = ‖y‖ = 1 and x �= y, and uniformly convex if limn→+∞ ‖xn −
yn‖ = 0 for any two sequences (xn)n, (yn)n ⊆ SZ such that limn→+∞(‖xn +
yn‖)/2 = 1. One says that Z is (uniformly) smooth if the limit limt→0(‖x+ty‖x‖)/t
exists (and is attained uniformly) for all x, y ∈ SZ . The normalized duality mapping
of Z is JZ : Z→ 2Z

∗
defined by JZ(x) = {x∗ ∈ Z∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2∗}.

When f : X → R = R ∪ {±∞} is proper (i.e. is nowhere equal to −∞ and
has at least a real value) and ε ≥ 0, if f (x) ∈ R the (convex) ε-subdifferential of
f at x is ∂εf (x) = {x∗ ∈ X∗ : f (y) − f (x) ≥ 〈x∗, y − x〉 − ε ∀y ∈ X}, while
if f (x) = +∞ we take by convention ∂εf (x) = ∅. The ε-subdifferential of f

becomes in case ε = 0 its classical (convex) subdifferential denoted by ∂f . Then
x̄ ∈ X is a minimum of f if and only if 0 ∈ ∂f (x̄). Denote also by [t]+ = max{t, 0}
for any t ∈ R.
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A vector function F : X → Y • = Y ∪ {∞C} is said to be proper if its
domain domF = {x ∈ X : F(x) ∈ Y } is nonempty, (strictly) C-convex if
F(tx + (1 − t)y) �C (<C)tF (x) + (1 − t)F (y) for all x, y ∈ X and all
t ∈ (0, 1) and positively C-lower semicontinuous (in the literature also star C-
lower semicontinuous) when the function x �→ 〈z∗, F (x)〉, further denoted by
(z∗F) : X → R, is lower semicontinuous for all z∗ ∈ C∗ \ {0}. A slightly stronger
generalization of the classical lower semicontinuity to vector functions is the one
due to Penot and Théra (cf. [66]) who called F to be C-lower semicontinuous x ∈ X

if for any neighborhood V of 0 and for any b ∈ Y satisfying b �C F(x), there exists
a neighborhood U of x in X such that F(U) ⊆ b+V +C∪{∞C}. Last but not least,
F is called (cf. [36, 37, 39]) positively partially continuous if (z∗F) is continuous
on every closed convex subset of domF for every z∗ ∈ C∗, and C∗-asymptotically
uniformly continuous when for every bounded sequences (xn)n, (yn)n ⊆ X such
that limn→+∞ ‖xn − yn‖ = 0 and each sequence (z∗n)n ⊆ C∗ weakly∗-converging
to some z∗ ∈ C∗ there holds limn→+∞〈F(xn) − F(yn), z

∗
n − z∗〉 = 0. Related

to this one can also define F to be C∗-uniformly semicontinuous (on some closed
convex set S ⊆ X) when for every weakly convergent sequence (xn)n ⊆ S to some
x ∈ S and each sequence (z∗n)n ⊆ C∗ weakly∗-converging to some z∗ ∈ C∗, one
has limn→+∞ |〈z∗n, F (xn) − F(yn)〉 − 〈z∗, F (x) − F(yn)〉| = 0 for any sequence
(yn)n ⊆ S for which limn→+∞ ‖xn − yn‖ = 0. A generalization of the (convex)
ε-subdifferential for vector functions is necessary for our presentation, too. When
F : Rn → R

m, K ⊆ R
m is a convex cone and ε ≥ 0, the (vector) ε-subdifferential

of F at x ∈ R
n is ∂εF (x) = {V ∈ R

m×n : F(x) + V T (y − x) �K F(y) + εe

∀y ∈ X} and it becomes the (vector) subdifferential of F denoted by ∂F when
ε = 0.

Some notions of nonconvex nonsmooth analysis are necessary as well. Let
f : R

n → R be locally Lipschitz at x ∈ R
n and d ∈ R

n. The Clarke
directional derivative of f at x in the direction d is defined as f C(x; d) =
limt↓0 supy→x(f (y + td) − f (y))/t , while the Clarke subdifferential of f at x
is ∂Cf (x) = {w ∈ R

n : w/d ≤ f C(x; d) ∀d ∈ R
n}.

In order to introduce some generalized distances, the following notions are
necessary. A function d : Rn×R

n → R+ ∪ {+∞} is said to be a proximal distance
with respect to a nonempty open convex set S ⊆ R

n (cf. [8]) if for each y ∈ S it
satisfies the following properties

(P1) d(·, y) is proper, convex and continuously differentiable on S;
(P2) dom d(·, y) ⊆ cl S and dom∇1d(·, y) = S, where ∇1 denotes the gradient

map with respect to the first variable;
(P3) d(·, y) is level bounded on R

n, i.e., lim‖x‖→+∞ d(x, y) = +∞;
(P4) d(y, y) = 0.

Moreover, a function H : Rn × R
n → R+ ∪ {+∞} is called the induced proximal

distance to a given proximal distance d if H is finitely valued on cl S × S and for
each y, z ∈ S it satisfies H(y, y) = 0, ∇1d(z, y)

/(x − z) ≤ H(x, y) − H(x, z)

for all x ∈ cl S and H(x, ·) is level bounded on S, for all x ∈ cl S. One denotes by
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F∗(cl S) the set of pairs (d,H) as introduced above that satisfy the following two
additional properties

(P5) if (yn)n ⊆ S is a bounded sequence in S and ȳ ∈ cl S such that
limn→+∞H(ȳ, yn) = 0, then limn→+∞ yn = ȳ;

(P6) if (yn)n ⊆ S converges to y, then at least one of the relations
limn→+∞H(y, yn) = 0 and limn→+∞H(ȳ, yn) = +∞ for all ȳ ∈ S

such that ȳ �= y holds true.

On the other hand, one says that q : Rn×R
n → R+ is a quasi-distance (cf. [72])

when for any x, y, z ∈ R
n it holds

(Q1) q(x, y) = q(y, x) = 0⇔ x = y;
(Q2) q(x, z) ≤ q(x, y)+ q(y, z).

In [33] a vector-valued Bregman distance function was introduced. Let the
proper, strictly C-convex and C-lower semicontinuous vector function G : Rn →
(Rm)• whose domain is closed, convex and has a nonempty interior, on which it
is Gâteaux differentiable with the Gâteaux derivative DG(·). The vector-valued
Bregman distance with respect to G is the map BG : domG × int(domG) → R

m,
defined by BG(z, x) = G(z)−G(x)−DG(x)(z− x). Moreover, G is said to be a
vector-valued Bregman distance function if it satisfies the following hypotheses

(A1) for any x, y, z ∈ int(domG), if (DG(x) − DG(y))/(z − x) /∈ − intC, then
(DG(x)−DG(y))/(z− x) ∈ C;

(A2) for any x ∈ domG, λ ∈ {a ∈ R
m+ : ‖a‖ = 1}, bounded sequences

(xn)n, (yn)n ⊆ int(domG) such that limn→+∞ ‖xn − yn‖ = 0, it holds
limn→+∞(BG(x, xn)− BG(x, yn))

/λ = 0;
(A3) for any bounded sequences (xn)n, (yn)n ⊆ int(domG) such that

limn→+∞ yn = y and, for any λ ∈ {a ∈ R
m+ : ‖a‖ = 1},

limn→+∞ BG(xn, yn)
/λ = 0, one has limn→+∞ xn = y.

A vector-valued Bregman distance function G : Rn → (Rm)• that satisfies also
the condition

(A4) for every y ∈ R
n and λ ∈ R

m+ ∩ SRm , there exists x ∈ int(domG) such that
DG(x)/λ = y;

is said to be a strengthened vector-valued Bregman distance function.
On the other hand, a vector-valued coercive viscosity function G : Rn → (Rm)•

is a proper, strictly C-convex and C-lower semicontinuous vector function with a
closed convex domain with a nonempty interior, that is Gâteaux differentiable on
the interior of its domain and whose Gâteaux derivative DG(·) is nonexpansive on
domG such that there exists an x ∈ domG with ‖x‖ < +∞ such that DG(x) = 0.

When Z is a smooth Banach space, one defines the Lyapunov functional as L :
Z × Z → R+, defined by L(x, y) = ‖x‖2 − 2〈JZ(y), x〉 + ‖y‖2, x, y ∈ Z. For
further properties of this function that are relevant for the algorithms discussed in
this paper the reader is referred to [35, Section 2].

Let S ⊆ X. A mapping A : S → X is said to be monotone when 〈Ax −Ay, x −
y〉 ≥ 0 for all x, y ∈ S. Using it, one can define a monotone variational inequality
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problem that consists of determining an x ∈ S such that 〈Ax, y − x〉 ≥ 0 for all
y ∈ S and whose set of solutions is denoted by V I (A, S).

Assume further, unless explicitly stated otherwise, that intC �= ∅. Consider the
vector optimization problem

(V P ) Min
x∈X F(x),

where F : X → Y • is a proper vector function. When Y = R
m we usually write

F = (F1, . . . , Fm)
/.

In case the vector minimization of F is considered subject to some nonempty
subset S of X such that domF∩S �= ∅, we consider the vector optimization problem

(V PG) Min
x∈S F (x).

Later in Remark 11.33 a vector optimization problem with both geometric
and equality constraints is briefly discussed, while in Section 11.5 we consider
other vector optimization problems whose objective functions consist of sums or
differences of (C-convex) vector functions.

In the literature one can find different solution notions for vector optimization
problems. We present here the ones needed for our presentation. An element
x̄ ∈ domF is said to be an efficient solution to (V P ) if there is no x ∈ X

such that F(x) ≤C F(x̄) and a weakly efficient solution to (V P ) if (F (x̄) −
intC) ∩ F(domF) = ∅, respectively. We denote by E(V P ) the efficiency set
to (V P ), i.e. set of all efficient solutions to (V P ), and by WE(V P ) the one
of all weakly efficient ones, i.e. the weak efficiency set. Moreover, x̄ ∈ domF

is a properly efficient solution (in the sense of Henig and Lampe) to (V P ) if
there is a pointed closed convex cone K ⊆ Y such that C \ {0} ⊆ intK and
(F (domF) − F(x̄)) ∩ (−K) = {0}, and we denote this by x̄ ∈ PE(V P ). Another
proper efficiency notion considered in this presentation is the following (for other
types of properly efficient solutions to (V P ), such as the ones due to Borwein from
[25, 26], we refer to [21, Section 2.4]). We say, for δ ∈ (0, 1], that x̄ ∈ domF is
a properly efficient solution (with respect to Kδ) to (V P ) when there exists some
z∗ ∈ Kδ \ {0} such that 〈z∗, F (x̄)〉 ≤ 〈z∗, F (x)〉 for all x ∈ X and we write
this x̄ ∈ PEδ(V P ). The corresponding efficiency notions for (V PG) are defined
analogously, by replacing X by S and domF by domF ∩ S in the definitions.
Further, when X = R

n, Y = R
m and F : R

n → R
m is locally Lipschitz,

an element x̄ ∈ R
n is said to be a (Pareto-Clarke) critically efficient solution

to (V P ) if, for any direction d ∈ R
n, there exists a j̄ ∈ {1, . . . , m}, such that

FC
j (x̄; d) ≥ 0. When F can be written as the difference of two C-convex functions

F1, F2 : Rn → R
m the last definition collapses to the existence of a u ∈ C∗ ∩ SRm

such that 0 ∈ (∂F1(x)− ∂F2(x))
/u. Theoretically nice, but without much practical

relevance are the so-called ideally efficient solutions to (V P ) in case Y = R
m,

defined as those x̄ ∈ domF for which Fj (x̄) ≤ Fj (x) for all x ∈ X, where
F = (F1, . . . , Fm)

/.
From [21, Corollary 2.4.26] one has the following characterization of the weakly

efficient solutions to (V P ) in the convex setting.
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Lemma 11.1 If F is also C-convex, then x̄ ∈WE(V P ) if and only if

∃z∗ ∈ C∗ \ {0} : 〈z∗, F (x̄)〉 ≤ 〈z∗, F (x)〉 ∀x ∈ X.

Remark 11.1 As noted above, there are quite simple vector optimization problems
where an unfortunate choice of the scalarizing function can often lead to unbounded
scalar optimization problems. Take, for instance, the example presented in [24,
Remark 1], where X = Y = R

2, C = R
2+ and F(x1, x2) = (x2

1 − x2, x2)
/. For

every z∗ = (z∗1, z∗2)/ ∈ C∗ = R
2+ with z∗1 �= z∗2 the scalarized optimization problem

infx∈X(z∗F)(x) is unbounded from below, hence it has no optimal solutions and
is of little use in identifying the weakly efficient solutions to the original vector
optimization problem. Only the scalarization functionals based on z∗ = (z∗1, z∗2)/ ∈
R

2+ \ {0} with z∗1 = z∗2 generate scalarized optimization problems that have
optimal solutions, delivering hence weakly efficient solutions to the original vector
optimization problem.

For guaranteeing the convergence of many of the algorithms that are presented
in this work the following notion is necessary. Note that it is defined in a more
general framework in [57, Definition 3.2]. It is followed by a weaker version needed
only for the convergence of the method from [28, 38] (see Theorem 11.15 and
Theorem 11.16).

Definition 11.1 (cf. [24]) Given x ∈ X, the set F(X) ∩ (F (x) − C) is said to be
C-complete when for all sequences (an)n ⊆ X with a0 = x such that F(an+1) �C

F(an) for all n ≥ 1 there exists an a ∈ X such that F(a) �C F(an) for all n ≥ 1.

Definition 11.2 (cf. [28]) Given x ∈ S, where S ⊆ X is a closed convex set, the
set F(S) ∩ (F (x)− C) is said to be C-quasicomplete for S when for all sequences
(an)n ⊆ X with a0 = x such that F(an+1) �C F(an) for all n ≥ 1 one has
F(a) �C F(an) for all n ≥ 1 and all a ∈WE(V P )∩V I (S,A), where A : S → X

is a monotone mapping.

11.3 The Original Proximal Point Type Method for Vector
Optimization Problems

As mentioned above, the first work where the classical proximal point method was
actually extended from scalar optimization to vector optimization problems is [24].
The algorithm introduced there, on which basically all the future contributions to
this field rely on, is the following one.

Algorithm 1 Choose the starting point x1 ∈ domF and the exogenous sequences
(αn)n ⊆ (0, α], with α > 0, and (en)n ⊆ intC such that ‖en‖ = 1 for all n ≥ 1.
Consider the following iterative steps
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1 let n = 1;
2 if xn ∈WE(V P ), then xn+p = xn for all p ≥ 1;

3 otherwise find xn+1 ∈ WE
{
F(x) + αn

2 ‖x − xn‖2en : x ∈ Ωn

}
, where Ωn =

{x ∈ X : F(x) �C F(xn)};
4 take n := n+ 1 and go to Step 2.

Under usual convexity and topological hypotheses applied on F one can prove
the following weak convergence result.

Proposition 11.1 (cf. [24, Proposition 3.3]) Let F be C-convex and positively C-
lower semicontinuous. If the sequence (xn)n generated by Algorithm 1 has a weak
cluster point, then it is weakly convergent towards a weakly efficient solution to
(V P ).

However, in order to prove the weak convergence of this algorithm towards a
weakly efficient solution to (V P ) regardless of the knowledge available only after
running it, an additional hypothesis is necessary.

Theorem 11.1 (cf. [24, Theorem 3.1]) Let F be C-convex and positively C-lower
semicontinuous and assume that F(X) ∩ (F (x1) − C) is C-complete. Then any
sequence (xn)n generated by Algorithm 1 converges weakly towards a weakly
efficient solution to (V P ).

Some comments are in order.

Remark 11.2 When Y = R and C = R+ (i.e. in the scalar case), Algorithm 1
collapses to the classical proximal point method for scalar optimization problems,
supporting thus the fact that it is a direct extension of the latter.

Remark 11.3 In every iteration of Algorithm 1 a different intermediate vector
optimization problem is addressed, each of them having a smaller feasible set than
its predecessor.

Remark 11.4 The operation that takes place in Step 3 of Algorithm 1 can be
considered as a vector counterpart of determining the proximal point of a scalar
function at a given point, i.e. one could call the set-valued mapping

v �→WE
{
F(x)+ αn

2
‖x − v‖2en : x ∈ Ωv

}
, (11.1)

where Ωv = {x ∈ X : F(x) �C F(v)}, vector proximal point operator.
Of course the analogy is not perfect, since the scalar (Moreau) proximal point
operator is single-valued if the involved scalar function is proper, convex and
lower-semicontinuous. Note also that the arg min operation within is unconstrained.
However, (11.1) is at the moment the closest construction to the scalar (Moreau)
proximal point operator one has in the vector case and when particularized to the
scalar framework it coincides with the latter.
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Remark 11.5 The construction of xn+1 in Algorithm 1 guarantees the decreasing
monotonicity of the sequence (F (xn))n with respect to the cone C. However, this is
not enough to guarantee its convergence.

Remark 11.6 Alternate stopping rules to the one used in the formulation of
Algorithm 1 can be found in [24, Remark 2 and Proposition 3.2]. Since it is
usually not an easy task to verify whether xn ∈ WE(V P ), one can instead check if
xn+1 = xn.

Remark 11.7 At a first look the construction of the new iterate in Algorithm 1
contradicts the basic fact that the subproblems that are employed in an iterative
process have to be simpler and more easily solvable than the original optimization
problem one aims to solve with the method in discussion, as the intermediate
problems have more complicated objective functions than (V P ) and, on the top of
it, they are constrained (in a world where the proximal point methods still lack the
ability to solve general constrained optimization problems even in the scalar setting).
However, any z∗ ∈ C∗ \ {0} provides a suitable scalarization functional (whose
existence is guaranteed by Lemma 11.1 under the hypotheses of Theorem 11.1) for
the vector optimization problems in Step 3 of Algorithm 1. This endows the method
with additional flexibility properties that may prove to be useful when implementing
it. Moreover, even if the function

x �→
〈
z∗, F (x)+ αn

2
‖x − xn‖2en

〉
+ δΩn(x)

has, because it is lower semicontinuous and strongly convex, exactly one minimum
that is xn+1, the sequence (xn)n is not uniquely determined because for each choice
of z∗ ∈ C∗ \ {0} one deals with a different such function. This does not mean
that the vector optimization problem (V P ) is a priori scalarized by means of a
linear continuous functional, because this scalarization is applied to the intermediate
vector optimization problems not to (V P ).

Remark 11.8 Different to the classical proximal point method, in the convergence
statement Theorem 11.1 it is not necessary to assume the existence of a solution
of the considered optimization problem, i.e. a weakly efficient solution to (V P ),
in order to prove the convergence of Algorithm 1. The role of such a hypothesis
in showing the convergence of the method has been fully covered in the proof of
Theorem 11.1 (see [24, Theorem 3.1]) by the assumed C-completeness hypothesis.
Considering the former instead of the latter, the role of ∩n≥1Ωn would be taken
by WE(V P ) in the proof of Theorem 11.1 (i.e. [24, Theorem 3.1]). However,
then is the inclusion WE(V P ) ⊆ Ωn for all n ≥ 1 not obviously guaranteed by
construction and should be separately investigated (or imposed). Note moreover
that assuming the existence of some x̄ ∈ WE(V P ) does not automatically deliver
the corresponding scalarizing parameter z̄∗ that exists according to Lemma 11.1,
which would probably be needed in formulating the algorithm under the mentioned
hypothesis.
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Remark 11.9 In the scalar setting (i.e. when Y = R and C = R+), when the set
of minimizers of a function f : X → R is nonempty, for every x1 ∈ domF

the intersection (f (x1) − R+) ∩ f (X) is R+-complete, i.e. the C-completeness
hypothesis of Theorem 11.1 is always satisfied. However, in even slightly more
complex frameworks this hypothesis is no longer automatically valid and its even-
tual fulfillment is not always easy to verify. Sufficient conditions for guaranteeing
that F(X)∩ (F (x1)−C) is C-complete were proposed in [57, Lemma 3.5], namely

• the set (F (x1)− C) ∩ F(X) is compact;
• the set (F (x1)− C) ∩ F(X) is weakly compact;
• the set (F (x1)−C)∩F(X) is closed and has a lower bound and the cone C has

the Daniell property (i.e., any decreasing net having a lower bound converges
to its infimum).

On the other hand, it could be interesting to investigate whether the weaker hypoth-
esis of C-quasicompleteness imposed on F(X)∩(F (x1)−C) in Theorem 11.15 and
Theorem 11.16 could prove to be sufficient for convergence for other algorithms as
well.

Remark 11.10 For determining the optimal solutions of the scalarized optimization
problems attached to the vector optimization problems in Step 3 of Algorithm 1
one can try to employ a splitting type algorithm designed for finding the optimal
solutions of optimization problems consisting in minimizing sums of convex
functions, like the ones proposed in [9, 18, 20, 22]. However, the processing of
the functions δΩn , n ≥ 1, may prove to be quite difficult, due to the special
structure of the sets Ωn, n ≥ 1. A way to go round this nuisance is, as seen
in [4, 19, 52, 53, 67–69], by employing some other algorithms for solving the
intermediate scalar optimization problems, for instance one based on interior point
methods.

In [24, Section 4] it is discussed about the additional hypotheses needed by
Algorithm 1 in order to deliver efficient solutions to (V P ) instead of weakly
efficient ones. In this case it is not necessary to have intC �= ∅.

Theorem 11.2 (cf. [24, Theorem 4.1]) Let F be C-convex and positively C-lower
semicontinuous and assume that F(X)∩ (F (x1)−C) is C-complete and that there
exists some δ > 0 such that the set Kδ is nonempty. Then any sequence (xn)n
generated by Algorithm 1 with the selection

xn+1 = arg min
x∈Ωn

〈z∗n, F (x)+ αn

2
‖x − xn‖2en〉,

where (z∗n)n ⊆ Kδ , converges weakly towards an efficient solution to (V P ).

Last but not least, an inexact version of Algorithm 1 is proposed in [24, Section 5]
for the purpose of providing an implementable iterative scheme, that, however,
was not concretely tested on an example or an application. As the authors put
it, the Step 3 in Algorithm 2 is formulated in a scalar manner in order to avoid
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unnecessary complications, but xn+1 could be as well taken as some approximate
weakly efficient solution to the corresponding intermediate vector optimization
problem in Algorithm 1.

Algorithm 2 Choose the starting point x1 ∈ domF , the relative error tolerance
σ ∈ [0, 1) and the exogenous sequences (αn)n ⊆ (0, α], with α > 0, (en)n ⊆ intC
such that ‖en‖ = 1 for all n ≥ 1 and (z∗n)n ∈ C∗ such that ‖z∗n‖ = 1 for all n ≥ 1.
Consider the following iterative steps

1 let n = 1;
2 if xn ∈ E(V P ), then xn+p = xn for all p ≥ 1;
3 otherwise find xn+1 ∈ X as a solution of the inclusion 0 ∈ ∂εn〈z∗n, F (x) +

δΩn〉 + αn〈z∗n, en〉(x − xn), where εn ≤ σ αn
2 〈z∗n, en〉‖x − xn‖2;

4 take n := n+ 1 and go to Step 2.

The convergence of Algorithm 2 is obtained in a similar manner to the one of
Algorithm 1 and in [24, Remark 6] it is stated that one can also obtain efficient
solutions to (V P ) under the additional hypotheses from Theorem 11.2.

Theorem 11.3 (cf. [24, Theorem 5.1]) Let F be C-convex and positively C-lower
semicontinuous and assume that F(X) ∩ (F (x1) − C) is C-complete. Then any
sequence (xn)n generated by Algorithm 2 converges weakly towards a weakly
efficient solution to (V P ).

Remark 11.11 As noted in [19, Remark 11], vector optimization problems with
the ordering cones of the image spaces having empty interiors, but nonempty
generalized interiors can be found in finance mathematics (see, for instance, [1, 44])
and other research fields. This has motivated the weakening of the definition of the
weakly efficient solutions to (V P ) (cf. [44, 49, 50]) for the case when intC = ∅ by
replacing this hypothesis with the nonemptiness of the quasi interior of C (i.e. the
set of all y ∈ Y such that cl(cone(V −y)) = Y ). In order to characterize these more
general weakly efficient solutions to (V P ) one can use [50, Corollary 9] instead
of Lemma 11.1. However, since the key result [23, Lemma 2.2] does not hold in
case intC = ∅, the proof of the algorithm convergence statement Theorem 11.1
has to be modified, for instance, by scalarizing all the subproblems with the same
z̄∗ ∈ C∗ \ {0}. On the other hand, in finitely dimensional spaces so-called relatively
weakly efficient solutions to (V P ) can be defined when C has an empty interior
but a nonempty relative interior and they can be characterized by means of linear
scalarization (cf. [49]) while the impediment mentioned above does not occur due
to the equivalence of the corresponding weak and strong topologies.

Remark 11.12 Algorithm 1 is applied in [31] for vector-minimizing in the finitely
dimensional setting where X = R

n and Y = R
m the composition of a vector

function with a linear continuous mapping subject to a geometric constraint. We
have not included this method in Section 11.5 because the author merely replaced
in Algorithm 1 the vector function F : Rp → (Rm)• with its composition with
the considered linear continuous mapping A : R

n → R
p and did not apply

some splitting method in order to process F and A separately during the iterative
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process. In order to guarantee the convergence of the method towards a weakly
efficient solution to the considered vector optimization problem no C-completeness
hypothesis is employed, however the domination property of the image of the
objective vector function is imposed and the weak efficiency set is taken to be
compact.

Remark 11.13 In the literature one can find contributions where the convergence of
Algorithm 1 (or of its inexact version) is proven under different hypotheses than the
ones of Theorem 11.1, in the sense that the objective function F of the considered
vector optimization problem needs not be C-convex in order to achieve the desired
result. In the following we discuss briefly the results of [4, 12, 14, 15, 69]. Consider
the finitely dimensional setting with X = R

n, Y = R
m and, moreover, C = R

m+.
In [12] Algorithm 1 (with the difference that the elements of the sequence (xn)n are
additionally asked to lie in S) is employed for solving (V PG) (the geometrically
constrained counterpart of (V P )). The components of the vector function F are
asked to be locally Lipschitz and, under some additional hypotheses imposed on
the involved sequences it is shown in [12, Theorem 3] that every cluster point of
(xn)n is a critically efficient solution to (V PG). Taking the components of F to
be quasiconvex and imposing the R

m+-completeness hypothesis, the convergence of
the generated sequence (xn)n towards a critically efficient solution to (V PG) is
achieved. An application to the compromise solution problem is discussed, however
no numerical results are provided. The same algorithm is employed in [15] for
vector minimizing a vector function F : Rn → R

m whose components are maxima
of continuously differentiable functions over some given subset of R

n. In [15,
Theorem 1] the convergence of the iterative method is investigated and it is shown
that each cluster point of the generated sequence is a critically efficient solution to
(V PG). Under additional hypotheses the convergence of the generated sequence
towards a weakly efficient solution to (V PG) is achieved. Further, in [14] a
proximal point type algorithm that solves at each step a scalarized version (by means
of a special case of the Tammer scalarization function - the so-called maximum
scalarization, see also Remark 11.31 and Remark 11.32) of the corresponding
intermediate vector optimization problem from Algorithm 1 is proposed, with the
convergence of the generated sequence towards a critically efficient solution to
(V P ) shown under quasiconvexity hypotheses imposed on the components of F

in [14, Theorem 4.1]. It is also shown that under stronger assumptions the sequence
can converge towards a weakly efficient solution to (V P ) and even an efficient one
in [14, Theorem 4.3], while an application to behavioural science is also discussed.
Last but not least in [4, 69] one finds proximal point type algorithms for solving
(V P ) with the components of F taken quasiconvex, where the iterations are defined
as zeros of subdifferential inclusions, in the vein of Algorithm 2 but without the
error sequence (εn)n and with the Clarke and Fréchet subdifferential, respectively,
instead of the convex one. The convergence of the generated sequence is guaranteed
towards critically efficient solutions (and, under additional convexity hypotheses
imposed on the components of F , also towards weakly efficient solutions) to (V P )

in [4] and towards a minimizing set (and, under additional continuity hypotheses
imposed on the components of F , also towards weakly efficient, and, if these are
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taken also convex, even efficient solutions) to (V P ). Worth noticing, however, is
that in both these papers computational results obtained in MATLAB are presented,
too. Note also that in [4] one can find an application to location theory, while in
[69] an inexact version of the considered algorithm and an application to consumer
demand theory are given as well.

11.4 Modifications and Extensions of the Original Method

Several authors have proposed various modifications and extensions of the proximal
point type method introduced in [24]. Besides the extensions towards nonconvex
vector optimization problems mentioned in Remark 11.13, there are algorithms
where the norm distance from the classical proximal point iteration is replaced by a
quasi-distance, a Bregman distance, a Lyapunov distance or is formulated by means
of a viscosity function and proximal point type algorithms with inertial/memory
effects or hybrid constructions. Generalizations of the algorithm from [24] towards
Hadamard and Banach spaces were proposed, too. We also briefly mention some
contributions where the regularization is performed by means of a Tikhonov type
function instead of the Moreau-Yosida type one from the proximal point algorithms.

We begin with algorithms where the classical distance expressed via a norm is
replaced by a generalization of it.

11.4.1 Algorithms with Bregman-Type Distances

In [75], a so-called interior proximal method is proposed for solving a geometrically
constrained version of (V P ) in finitely-dimensional spaces, i.e. (V PG), where F :
R
n → (Rm)• is a proper vector function and S ⊆ R

n is a closed convex set with
nonempty interior. The algorithm employs a proximal distance d with respect to
int S and before formulating it one assumes that S ⊆ domF .

Algorithm 3 Choose the starting point x1 ∈ int S and the exogenous sequences
(αn)n ⊆ (0, α], with α > 0, and (en)n ⊆ intC such that ‖en‖ = 1 for all n ≥ 1.
Consider the following iterative steps

1 let n = 1;
2 if xn ∈WE(V PG), then xn+p = xn for all p ≥ 1;

3 otherwise find xn+1 ∈WE
{
F(x)+ αnd(x, xn)en : x ∈ Ωn

}
;

4 take n := n+ 1 and go to Step 2.

For the statement on convergence towards a weakly efficient solution to (V PG),
the following additional hypotheses are required

(B1) ∃z̃ ∈ C∗ \ {0} such that z̃/F(x) > −∞ for all x ∈ S;
(B2) d(·, u) is coercive for any u ∈ S in R

n.
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Theorem 11.4 (cf. [75, Theorem 4.1]) Let F be C-convex and positively C-lower
semicontinuous and assume that F(S)∩ (F (x1)−C) is C-complete, the conditions
(B1) − (B2) hold and (d,H) ∈ F∗(cl S). Then any sequence (xn)n generated by
Algorithm 3 converges towards a weakly efficient solution to (V PG).

Remark 11.14 In [75, Section 5] an inexact version of Algorithm 3 was proposed,
too, with the corresponding convergence towards a weakly efficient solution to
(V PG) obtained in [75, Theorem 5.1] under some additional hypotheses.

Remark 11.15 Another inexact algorithm based on a proximal distance was pro-
posed in [17] for vector minimizing a vector function F : R

n → R
m whose

components are maxima of continuously differentiable functions over some given
subset of Rn, like the one treated in [15]. In [17, Theorem 4.1] the convergence of
the iterative method is investigated and it is shown that each cluster point of the
generated sequence is a critically efficient solution to (V PG). An application to a
problem of distributive justice is also presented together with some ideas for future
research.

A somehow similar algorithm was proposed in [33] for solving (V PG), with the
difference that the authors take F : S → (Rm)• and assume that int S∩domF �= ∅.
In order to introduce it, one needs to consider a strengthened vector-valued Bregman
distance function G : Rn → (Rm)•.

Algorithm 4 Assume that a starting point x1 ∈ int S ∩ domF such that {x ∈ R
n :

F(x) �C F(x1)} ⊆ domF ∩ int(domG) exists and choose the exogenous sequence
(αn)n ⊆ (0, α], with α > 0. Consider the following iterative steps

1 let n = 1;
2 if xn ∈WE(V PG), then xn+p = xn for all p ≥ 1;

3 otherwise find xn+1 ∈WE
{
F(x)+ αn

2 BG(x, xn) : x ∈ Ωn

}
;

4 take n := n+ 1 and go to Step 2.

The statement on convergence of the sequence generated via Algorithm 4 towards
a weakly efficient solution to (V PG) follows. Note that, unlike its counterparts
presented above, it requires no C-completeness in order to achieve the convergence,
however the domination property of the image of the objective vector function is
imposed.

Theorem 11.5 (cf. [33, Theorem 3.3]) Let F be C-convex and C-lower semicon-
tinuous such that F(Rn) has the domination property, WE(V PG) is nonempty and
compact and DG is norm-to-norm continuous. Then any sequence (xn)n generated
by Algorithm 4 converges towards a weakly efficient solution to (V PG).

Further generalizations of the classical distance function can be found in the
class of the so-called quasi-distances. Successfully employed in proximal point type
algorithms, they ended up being used in iterative methods for determining weakly
efficient solutions to vector optimization problems, too, for instance in [72], as
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follows, where F = (F1, . . . , Fm)
/ : Rn → R

m, C = R
m+ and q : Rn × R

n → R+
is a quasi-distance.

Algorithm 5 Choose the starting point x1 ∈ R
n and the exogenous sequence

(αn)n ⊆ (η, α], with 0 < η < α. Consider the following iterative steps

1 let n = 1;
2 if xn ∈WE(V P ), then xn+p = xn for all p ≥ 1;

3 otherwise find xn+1 ∈WE
{
F(x)+ αn

2 q2(x, xn) : x ∈ Ωn

}
;

4 take n := n+ 1 and go to Step 2.

The convergence statement of Algorithm 5 follows, noting that the uniqueness of
the cluster point of the sequence generated by the method is not guaranteed. Worth
noticing is also that the considered hypotheses imply the usual C-completeness
assumption needed in the rest of the paper for guaranteeing the convergence of the
considered algorithms.

Theorem 11.6 (cf. [72, Theorem 3.1]) Let Fi be convex, i = 1, . . . , m, and
assume that there is some j ∈ {1, . . . , m} such that lim‖x‖→+∞ Fj (x) = +∞.
Suppose there are positive constants a and b such that a‖x − y‖ ≤ q(x, y) ≤
b‖x−y‖ for any x, y ∈ R

n. Then any cluster point of any sequence (xn)n generated
by Algorithm 5 is a weakly efficient solution to (V P ).

Remark 11.16 Computational results obtained by implementing Algorithm 5 in
MATLAB are presented in [72, Section 4].

Remark 11.17 An inexact version of Algorithm 5 was proposed in [70] by means
of the limiting subdifferential. The usage of this nonsmooth subdifferential instead
of the classical convex one is justified by the fact that even if F is taken R

m+-convex,
the quasi-distance needs not be convex.

11.4.2 Algorithms with Viscosity Functions and Tikhonov Type
Regularizations

In order to present the proximal point type algorithms for solving vector optimiza-
tion problems where the regularization is done by means of viscosity functions that
were introduced in [30, 39] one needs to take X = R

n and Y = R
m within this

subsection. Moreover, let G : Rn → R
m be a vector-valued coercive viscosity

function such that domF ∩ int(domG) �= ∅.
We begin with the method proposed in [30] for determining weakly efficient

solutions to (V P ).

Algorithm 6 Choose the starting point x1 ∈ domF ∩ int(domG) and the
exogenous sequences (αn)n ⊆ (0,+∞), with limn→+∞ αn = +0, and (βn)n ⊆
[0, 1] with limn→+∞ βn = 0. Consider the following iterative steps
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1 let n = 1;
2 if xn ∈WE(V P ), then xn+p = xn for all p ≥ 1;

3 otherwise find yn+1 ∈WE
{
F(x)+ αnG(x) : x ∈ Ωn

}
;

4 take xn+1 = (1− βn)yn + βnxn;
5 take n := n+ 1 and go to Step 2.

The convergence statement of Algorithm 6 follows. Note that the constructions
considered in this subsection do not require the usual C-completeness hypothesis
needed in the rest of the paper for guaranteeing the convergence of the considered
algorithms, its role being covered by asking WE(V P ) to be nonempty and compact.
Connected to this issue see also the discussion in Remark 11.8.

Theorem 11.7 (cf. [30, Theorem 3.3]) Let F be C-convex, C-lower semicontinu-
ous and C∗-asymptotically uniformly continuous such that WE(V P ) is nonempty
and compact. Further suppose that there exist a sequence (ηn)n ∈ R such that
‖yn − xn‖ ≤ ηn for all n ≥ 1 and

∑
n≥1 ηn < +∞, where (xn)n and (yn)n

are sequences generated by Algorithm 6. Then (xn)n converges towards a weakly
efficient solution to (V P ).

Remark 11.18 An legitimate question regarding Theorem 11.7 concerns the neces-
sity of both topological assumptions imposed on F , the C-lower semicontinuity
and the C∗-asymptotically uniform continuity in order to achieve the statement.
However, at the moment we are unaware of any result connecting or comparing
these two notions in some way.

A modification of Algorithm 6 proposed in [39] guarantees the convergence
of the generated sequence towards an efficient solution to (V P ). More precisely,
instead of determining weakly efficient solutions of the intermediate problems, one
looks in Step 3 for properly efficient ones with respect to Kδ . In this case it is not
necessary to have intC �= ∅.

Algorithm 7 Choose the starting point x1 ∈ domF ∩ int(domG) and the
exogenous sequences (αn)n ⊆ (0,+∞), with limn→+∞ αn = +0, and (βn)n ⊆
[0, 1] with limn→+∞ βn = 0. Assume moreover that there exists some δ ∈ (0, 1]
such that the set Kδ is nonempty. Consider the following iterative steps

1 let n = 1;
2 if xn ∈ E(V P ), then xn+p = xn for all p ≥ 1;

3 otherwise find yn+1 ∈ PEδ

{
F(x)+ αnG(x) : x ∈ Ωn

}
;

4 take xn+1 = (1− βn)yn + βnxn;
5 take n := n+ 1 and go to Step 2.

The convergence statement [39, Theorem 3.4] is different to the others presented
so far since it does not guarantee the convergence of the sequence generated by
Algorithm 7 (towards an efficient solution to (V P )). Adding to it an additional
hypothesis from Theorem 11.7 guarantees the unicity of the cluster point of this
sequence.
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Theorem 11.8 (cf. [39, Theorem 3.4]) Let F be C-convex, C-lower semicontin-
uous, positively partially continuous and C∗-asymptotically uniformly continuous
such that WE(V P ) is nonempty and compact. Further suppose that there exist a
sequence (αn)n ∈ R such that ‖yn − xn‖ ≤ αn for all n ≥ 1 and

∑
n≥1 αn <

+∞, where (xn)n and (yn)n are sequences generated by Algorithm 7. Then (xn)n
converges towards an efficient solution to (V P ).

Remark 11.19 Examining the proof of [39, Theorem 3.4] (and that of [37, The-
orem 3.2], cited below as Theorem 11.13), one can note that the usage of the
property of positive C-lower semicontinuity of F can be covered by its positive
partial continuity, so the firstly mentioned hypothesis seems to be redundant. On the
other hand, at least at a first look, the role of the second hypothesis in the proof is
not crucial and it can be replaced by the first one as well. Connected to this issue, a
discussion on whether a positively partially continuous vector function is in general
also positively C-lower semicontinuous could prove to be interesting as well, taking
also in consideration that positively partially continuous vector functions (at least
under this name) can be found only in [36, 37, 39].

Related to Algorithm 6 and Algorithm 7 from which special cases can be derived
when βn = 0 for all n ≥ 1 and G = ‖ · ‖ẽ, for some suitable ẽ ∈ R

m+ (respectively
ẽ ∈ C) are the methods proposed in [34, 36] where the regularization in the iterative
steps is performed by means of a Tikhonov type function instead of the Moreau-
Yosida type one from the proximal point algorithms.

The algorithm proposed in [34] for determining weakly efficient solutions to
(V PG) is the following, where domF ∩ int S �= ∅.

Algorithm 8 Choose the starting point x1 ∈ domF ∩ int S and the exogenous
sequences (αn)n ⊆ (0,+∞), with limn→+∞ αn = +0, and (en)n ⊆ R

m+ with
‖en‖ = 1 for all n ≥ 1. Consider the following iterative steps

1 let n = 1;
2 if xn ∈WE(VGP), then xn+p = xn for all p ≥ 1;

3 otherwise find xn+1 ∈WE
{
F(x)+ αn‖x‖2en : x ∈ Ωn

}
;

4 take n := n+ 1 and go to Step 2.

Theorem 11.9 (cf. [34, Theorem 3.2]) Let F be C-convex and C-lower semicon-
tinuous, S be closed and convex, and WE(V PG) nonempty and compact. Then
any sequence (xn)n generated by Algorithm 8 converges towards a weakly efficient
solution to (V PG).

Finally, we also present the algorithm proposed in [36] for determining efficient
solutions to (V P ). In this case it is not necessary to have intC �= ∅.

Algorithm 9 Choose the starting point x1 ∈ domF and the exogenous sequences
(αn)n ⊆ (0,+∞), with limn→+∞ αn = 0, and (en)n ⊆ C with ‖en‖ = 1 for all
n ≥ 1. Assume moreover that there exists some δ ∈ (0, 1] such that the set Kδ is
nonempty. Consider the following iterative steps
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1 let n = 1;
2 if xn ∈ E(V P ), then xn+p = xn for all p ≥ 1;

3 otherwise find xn+1 ∈ PEδ

{
F(x)+ αn‖x‖2en : x ∈ Ωn

}
;

4 take n := n+ 1 and go to Step 2.

The corresponding convergence statement follows, although in a different man-
ner than many of the other ones presented in this survey, as the unicity of the
cluster point of the sequence generated by Algorithm 9 is not guaranteed. The idea
presented in Remark 11.19 is valid for this result as well.

Theorem 11.10 (cf. [36, Theorem 3.1]) Let F be C-convex, C-lower semicontin-
uous and positively partially continuous, and E(V P ) is nonempty and compact.
Then any sequence (xn)n generated by Algorithm 9 converges towards an efficient
solution to (V P ).

11.4.3 Algorithms with Lyapunov-Type Distances

A more general framework, even than the one in [24], is considered in the papers
[32, 35, 37], where algorithms of proximal point type for solving (V P ) are
formulated by means of the Lyapunov functional. In this subsection let (X, ‖ · ‖)
be a uniformly convex and uniformly smooth Banach space. We begin with the
algorithm proposed in [35].

Algorithm 10 Choose the starting point x1 ∈ domF and the exogenous sequences
(αn)n ⊆ (0, α], with α > 0, and (en)n ⊆ intC such that ‖en‖ = 1 for all n ≥ 1.
Consider the following iterative steps

1 let n = 1;
2 if xn ∈WE(V P ), then xn+p = xn for all p ≥ 1;

3 otherwise find xn+1 ∈WE
{
F(x)+ αn

2 L(x, xn)en : x ∈ Ωn

}
;

4 take n := n+ 1 and go to Step 2.

Because of the more general framework, the convergence of the method towards
a weakly efficient solution to (V P ) can be guaranteed under some additional
hypotheses to the ones in Theorem 11.1.

Theorem 11.11 (cf. [35, Theorem 3.5]) Let F be C-convex and positively C-lower
semicontinuous and assume that F(S) ∩ (F (x1) − C) is C-complete, WE(V P ) is
nonempty and JX is weak-to-weak continuous. Then any sequence (xn)n generated
by Algorithm 10 converges weakly towards a weakly efficient solution to (V P ).

Remark 11.20 In the proof of [35, Theorem 3.5] it is claimed that the weak limit
of the sequence generated by Algorithm 10 under the hypotheses of Theorem 11.11
was the only weakly efficient solution to (V P ). However, nothing supports this fact,
as there it is shown only that any such sequence has a unique weak cluster point.
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Moreover, the hypothesis of nonemptiness of WE(V P ) in Theorem 11.11 seems, in
the light of Remark 11.8, superfluous.

Closely related to this method is the approximate one proposed in [32].

Algorithm 11 Choose the starting point x1 ∈ domF and the exogenous sequences
(αn)n ⊆ (0, α], with α > 0, and (en)n ⊆ intC such that ‖en‖ = 1 for all n ≥ 1,
as well as the error sequence (εn)n ⊆ X∗ satisfying

∑
n≥1 ‖εn‖∗ < +∞. Consider

the following iterative steps

1 let n = 1;
2 if xn ∈WE(V P ), then xn+p = xn for all p ≥ 1;

3 otherwise find xn+1 ∈WE
{
F(x)+ αn

2 (L(x, xn)− 〈εn+1, x〉)en : x ∈ Ωn

}
;

4 take n := n+ 1 and go to Step 2.

The corresponding convergence statement is similar to Theorem 11.11 to which
a hypothesis regarding the error sequence and involving the generated sequence is
added. Note that Remark 11.20 applies for the following statement, too.

Theorem 11.12 (cf. [32, Theorem 3.5]) Let F be C-convex and positively C-lower
semicontinuous and assume that F(S)∩ (F (x1)−C) is C-complete, WE(V PG) is
nonempty and JX is weak-to-weak continuous. Then any sequence (xn)n generated
by Algorithm 11 converges weakly towards a weakly efficient solution to (V P ) when∑

n≥1〈εn, xn〉 exists and is finite.

A modification of Algorithm 11 proposed in [37] delivers efficient solutions to
(V P ). In this case it is not necessary to have intC �= ∅.

Algorithm 12 Choose the starting point x1 ∈ domF and the exogenous sequences
(αn)n ⊆ (0, α], with α > 0, and (en)n ⊆ intC such that ‖en‖ = 1 for all n ≥ 1,
as well as the error sequence (εn)n ⊆ X∗ satisfying

∑
n≥1 ‖εn‖∗ < +∞. Assume

moreover that there exists some δ > 0 such that the set Kδ is nonempty. Consider
the following iterative steps

1 let n = 1;
2 if xn ∈ E(V P ), then xn+p = xn for all p ≥ 1;

3 otherwise find xn+1 ∈ PEδ

{
F(x)+ αn

2 (L(x, xn)− 〈εn+1, x〉)en : x ∈ Ωn

}
;

4 take n := n+ 1 and go to Step 2.

The convergence statement contains both the hypotheses of Theorem 11.12 and
the additional requirement imposed on F to be positively partially continuous.

Theorem 11.13 (cf. [37, Theorem 3.2]) Let F be C-convex, positively C-lower
semicontinuous and positively partially continuous, and assume that F(S) ∩
(F (x1)−C) is C-complete, and JX is weak-to-weak continuous. Then any sequence
(xn)n generated by Algorithm 12 converges weakly towards an efficient solution to
(V P ) when

∑
n≥1〈εn, xn〉 exists and is finite.
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11.4.4 Algorithms with Hybrid and Inertial Steps

In this subsection we have gathered some algorithms for solving vector optimization
problems where the proximal point steps are combined with other ideas, leading to
so-called hybrid methods and inertial type algorithms.

In [29] one can find the following method for determining weakly efficient
solutions to vector optimization problems.

Algorithm 13 Choose the starting point x1 ∈ domF and the sequences (αn)n ⊆
(0, α), where α > 0, (βn)n ⊆ [0, 1], (θn)n ⊆ X and (en)n ⊆ intC such that
‖en‖ = 1 for all n ≥ 1. Consider the following iterative steps

1 let n = 1;
2 if xn ∈WE(V P ), then xn+p = xn for all p ≥ 1;

3 find yn ∈WE
{
F(x)+ αn

2 ‖x − xn − θn‖2en : x ∈ Ωn

}
;

4 take xn+1 = βnxn + (1− βn)yn;
5 take n := n+ 1 and go to Step 2.

Different to Algorithm 1 is not only the fact that an additional iterative sequence
(yn)n was employed in order to define the one that will converge towards a weakly
efficient solution to (V P ) (as seen below), but also the usage of another sequence
(θn)n in the proximal step. The corresponding convergence statement follows, with
a dynamic condition that cannot be verified before running the algorithm. Note also
that the comment from Remark 11.18 applicable here, too.

Theorem 11.14 (cf. [29, Theorem 3.1]) Let F be C-convex, positively C-lower
semicontinuous and C∗-asymptotically uniformly continuous and assume that
F(S)∩ (F (x1)−C) is C-complete. Let the sequences (xn)n and (yn)n be generated
by Algorithm 13. If there is a bounded sequence (ηn)n ⊆ (0,+∞) such that∑

n≥1 η
2
n < +∞ and ‖θn‖ ≤ ηn‖xn − yn‖ and a constant δ ∈ (0, 1) such that

0 ≤ βn ≤ 1− δ for all n ≥ 1, and it holds limn→+∞ βn = 0, then (xn)n converges
weakly towards a weakly efficient solution to (V P ).

In [29] one can find also a modification of Algorithm 13 where the usual distance
is replaced by a Bregman type one as follows, where h : X → R is a strictly
convex function that is Gâteaux differentiable with the Gâteaux derivative Dh(·)
and Bh : X × X → R is the corresponding Bregman distance with respect to h,
namely Bh(x, y) = h(x)− h(y)−Dh(y)(x − y).

Algorithm 14 Choose the starting point x1 ∈ domF and the sequences (αn)n ⊆
(0, α), where α > 0, (βn)n ⊆ [0, 1], (θn)n ⊆ X and (en)n ⊆ intC such that
‖en‖ = 1 for all n ≥ 1. Consider the following iterative steps

1 let n = 1;
2 if xn ∈WE(V P ), then xn+p = xn for all p ≥ 1;

3 find xn ∈WE
{
F(x)+ αn

2 (2h(x)+ ‖x −Dh(xn)− θn‖2)en : x ∈ Ωn

}
;

4 take n := n+ 1 and go to Step 2.
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Remark 11.21 The weak convergence of Algorithm 14 towards a weakly efficient
solution to (V P ) is achieved in [29, Theorem 4.1]. Different to Theorem 11.14,
the hypothesis of C∗-asymptotically uniform continuity of F seems no longer
necessary, however Dh is required to be weak-to-weak sequentially continuous
and the boundedness condition imposed on the sequence (θn)n is replaced with
‖θn‖ ≤ ηnD

1/2
h (xn+1, xn).

Remark 11.22 In [29] one can also find an inexact version of Algorithm 13
called relative approximate proximal algorithm, whose weak convergence towards a
weakly efficient solution to (V P ) is obtained in [29, Theorem 5.1]. Interestingly, the
hypothesis of C∗-asymptotically uniform continuity of F seems no longer necessary
for this statement either.

A further development of Algorithm 13 can be found in [28] in the form
of a hybrid proximal point type algorithm for finding weakly efficient solutions
to (V PG), where the iterative steps contain projections and involve monotone
mappings, while a variational inequality is involved in the convergence statement.
Note that in this case actually four sequences are generated during the iterative
process in order to construct the one that actually converges towards a weakly
efficient solutions to (V PG). Let S be closed and convex and A : S → X be
monotone.

Algorithm 15 Choose the starting point x1 ∈ domF ∩ S and the sequences
(αn)n ⊆ (0, α), where α > 0, (λn)n ⊆ (0, 1), (βn)n ⊆ [0, 1], (ηn)n ⊆ [0, 1],
(θn)n ⊆ X and (en)n ⊆ intC such that ‖en‖ = 1 for all n ≥ 1. Consider the
following iterative steps

1 let n = 1;
2 if xn ∈WE(V PG), then xn+p = xn for all p ≥ 1;
3 take yn = PrS(xn − λnAxn);
4 take zn = ηnxn + (1− ηn)PrS(xn − λnAyn);

5 find wn ∈WE
{
F(x)+ αn

2 ‖x − zn − θn‖2en : x ∈ Ωn

}
;

6 take xn+1 = βnxn + (1− βn)wn;
7 take n := n+ 1 and go to Step 2.

The convergence statement is apparently more complicated than the others, as
it solves not only the considered vector optimization problem but also an attached
variational inequality.

Theorem 11.15 (cf. [28, Theorem 3.1]) Let F be C-convex, positively C-lower
semicontinuous and C∗-uniformly semicontinuous and assume that F(S)∩(F (x1)−
C) is C-quasicomplete. Assume that A is Lipschitz continuous with the Lipschitz
constant κ > 0, such that WE(V PG) ∩ V I (S,A) �= ∅ and that there is a bounded
sequence (ηn)n ⊆ (0,+∞) such that

∑
n≥1 η

2
n < +∞ and ‖θn‖ ≤ ηn‖xn − yn‖,

where the sequences (xn)n and (yn)n are generated by Algorithm 15. When there
are some ε, δ ∈ (0, 1) such that (βn)n ⊆ (ε, δ), c ∈ [0, 1) such that (ηn)n ⊆ [0, c)
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and a, b ∈ (0, 1/κ) such that (λn)n ⊆ [a, b], then (xn)n converges weakly towards
a weakly efficient solution to (V PG) that also lies in V I (S,A).

Remark 11.23 In [28] one can also find a modification of Algorithm 15 where the
usual distance is replaced by a Bregman type one in the spirit of Algorithm 14
as well as an inexact version of Algorithm 15 called relative hybrid approximate
proximal algorithm, whose weak convergences towards weakly efficient solutions
to (V PG) (that also lie in V I (S,A)) are obtained in [28, Theorem 4.3 &
Theorem 5.1], respectively, under some additional hypotheses to the ones from The-
orem 11.15. Like above (see Remark 11.22), the hypothesis of C∗-asymptotically
uniform semicontinuity of F seems no longer necessary for these statements.

Another modification of Algorithm 15 is available in [38], where it is shown
to deliver efficient solutions to (V PG). In this case it is not necessary to have
intC �= ∅.

Algorithm 16 Choose the starting point x1 ∈ domF ∩ S and the sequences
(αn)n ⊆ (0, α), where α > 0, (λn)n ⊆ (0, 1), (βn)n ⊆ [0, 1], (ηn)n ⊆ [0, 1],
(θn)n ⊆ X and (en)n ⊆ intC such that ‖en‖ = 1 for all n ≥ 1. Assume moreover
that there exists some δ ∈ (0, 1] such that the set Kδ is nonempty. Consider the
following iterative steps

1 let n = 1;
2 if xn ∈ E(V PG), then xn+p = xn for all p ≥ 1;
3 take yn = PrS(xn − λnAxn);
4 take zn = ηnxn + (1− ηn)PrS(xn − λnAyn);

5 find wn ∈ PEδ

{
F(x)+ αn

2 ‖x − zn − θn‖2en : x ∈ Ωn

}
;

6 take xn+1 = βnxn + (1− βn)wn;
7 take n := n+ 1 and go to Step 2.

For the convergence one basically needs the hypotheses of Theorem 11.15.

Theorem 11.16 (cf. [38, Theorem 3.1]) Let F be C-convex, positively C-lower
semicontinuous and C∗-uniformly semicontinuous and assume that F(S)∩(F (x1)−
C) is C-quasicomplete. Assume that A is Lipschitz continuous with the Lipschitz
constant κ > 0 and that there is a bounded sequence (ηn)n ⊆ (0,+∞) such that∑

n≥1 η
2
n < +∞ and ‖θn‖ ≤ ηn‖xn − yn‖, where the sequences (xn)n and (yn)n

are generated by Algorithm 15. When there are some ε, δ ∈ (0, 1) such that (βn)n ⊆
(ε, δ), c ∈ [0, 1) such that (ηn)n ⊆ [0, c) and a, b ∈ (0, 1/κ) such that (λn)n ⊆
[a, b], then (xn)n converges weakly towards a weakly efficient solution to (V PG)

that, when xn /∈ E(V PG) for all n ≥ 1, also lies in V I (S,A).

Remark 11.24 In [38] one can also find a modification of Algorithm 16 where the
usual distance is replaced by a Bregman type one in the spirit of Algorithm 14 as
well as an inexact version of Algorithm 16 called relative hybrid approximate prox-
imal algorithm, whose weak convergences towards efficient solutions to (V PG)

(that also lie in V I (S,A) provided that xn /∈ E(V PG) for all n ≥ 1) are obtained in
[38, Theorem 4.1 & Theorem 5.1], respectively, under some additional hypotheses
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to the ones from Theorem 11.16. Like above (see Remark 11.22), the hypothesis
of C∗-asymptotically uniform semicontinuity of F seems no longer necessary for
these statements.

Further we also present an inertial proximal point algorithms with memory
effects for solving vector optimization problems. The inertial proximal point
methods with memory effects, first proposed by Alvarez and Attouch (cf. [2, 3]),
were inspired from heavy ball with friction dynamical systems and have as a
characteristic feature the fact that an iteration variable depends on the previous
two elements of the same sequence, not only on its predecessor as it is usually the
case for many algorithmic approaches. This modification accelerates the original
proximal point method and makes it more robust. We propose an inertial version of
Algorithm 1 that is slightly more general than the special case of Algorithm 19
(introduced later in Section 11.5) that can be employed for solving (V P ). For
completeness sake, since it cannot be found in the published literature, the proof
of the convergence of this algorithm towards a weakly efficient solution to (V P ) is
provided in an Appendix at the end of the paper.

Algorithm 17 Choose the starting points x0, x1 ∈ domF and the sequences
(λn)n ⊆ (0,+∞), (αn)n ⊆ [α,+∞), where α > 0, (βn)n ⊆ [0, β), where
0 < β < 1/3, and (en)n ⊆ intC such that (αn)n is bounded, (βn)n is nondecreasing
and ‖en‖ = 1 for all n ≥ 1. Consider the following iterative steps

1 let n = 1;
2 if xn ∈WE(V P ), then xn+p = xn for all p ≥ 1;

3 find xn+1 ∈WE
{
λnF (x)+ αn

2 ‖x − xn − βn(xn − xn−1)‖2en : x ∈ Ωn

}
;

4 take n := n+ 1 and go to Step 2.

Remark 11.25 When βn = 0 and λn = 1 for all n ≥ 1, Algorithm 17 collapses to
Algorithm 1. On the other hand, when Y = R and C = R+, Algorithm 17 becomes
the inertial proximal point method for scalar optimization problems that can be
derived from the algorithm for finding zeros of maximally monotone operators
proposed in [3].

Theorem 11.17 Let F be C-convex and positively C-lower semicontinuous and
F(X) ∩ (F (x1) − C) be C-complete. Then any sequence (xn)n generated by
Algorithm 17 converges weakly towards a weakly efficient solution to (V P ).

Remark 11.26 The conclusion of Theorem 11.17 remains valid when the sequence
(xn)n generated by Algorithm 17 fulfills the condition

∑+∞
n=1 βn‖xn − xn−1‖2 <

+∞, in which case (βn)n needs not necessarily be nondecreasing and one can take
β ∈ [0, 1). However, this dynamic condition might be more difficult to verify since it
involves the generated sequence (xn)n, while the static hypotheses considered above
can simply be imposed while defining the parameters β and (βn)n, respectively.
Different to the inertial proximal methods proposed in the literature for solving
scalar optimization problems or monotone inclusions (see, for instance, [3]), in
Theorem 11.17 it is not necessary to assume the existence of a weakly efficient
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solution to (V P ) in order to prove the convergence of Algorithm 17. Analogous to
Remark 11.8, in this case the role of such a hypothesis in showing the convergence
of the method has been fully covered by the assumed C-completeness hypothesis.

Remark 11.27 Motivated by Remark 11.6, one can consider also in Algorithm 17 a
stopping rule that is easier to check than the original one. It can be shown in a similar
manner to [24, Proposition 3.2] that if three consecutive iterations of the sequence
(xn)n generated by Algorithm 17 coincide, they represent a weakly efficient solution
to (V P ).

One can provide an inexact version of Algorithm 17 inspired by Algorithm 2 as
follows.

Algorithm 18 Choose the starting points x0, x1 ∈ domF , the sequences (λn)n ⊆
(0,+∞), (αn)n ⊆ [α,+∞), where α > 0, (βn)n ⊆ [0, β), where 0 < β <

1/4, (z∗n)n ⊆ C∗ \ {0}, and (en)n ⊆ intC such that (αn)n is bounded, (βn)n is
nondecreasing, ‖z∗n‖ = 1 and ‖en‖ = 1 for all n ≥ 1, as well as the constant
σ ∈ [0, 1− 4β). Consider the following iterative steps

1 let n = 1;
2 if xn ∈WE(V P ), then xn+p = xn for all p ≥ 1;
3 find xn+1 ∈ domF such that

0 ∈ ∂εn(〈z∗n, F (·)〉 + δΩn)(xn+1)+ αn〈z∗n, en〉(xn+1 − xn − βn(xn − xn−1))

for some 0 ≤ εn ≤ σ αn
2 〈z∗n, en〉‖xn+1 − xn − βn(xn − xn−1)‖2;

4 take n := n+ 1 and go to Step 2.

Remark 11.28 When βn = 0 and λn = 1 for all n ≥ 1 and β ↓ 0, Algorithm 18
collapses to Algorithm 2.

The convergence of Algorithm 18 towards a weakly efficient solution to (V P )

can be guaranteed under the same hypotheses as the one of its exact version Algo-
rithm 17, the proof relying on the ones of Theorem 11.17 and [24, Theorem 5.1].

Theorem 11.18 Let F be C-convex and positively C-lower semicontinuous and
F(X) ∩ (F (x1) − C) be C-complete. Then any sequence (xn)n generated by
Algorithm 17 converges weakly towards a weakly efficient solution to (V P ).

Remark 11.29 Another possible way to provide an inexact version of Algorithm 17
may be investigated by making use of the approximative inertial type proximal
scheme proposed in [2, Section 3.2].

Remark 11.30 Another inertial type proximal point method was proposed in [27]
for determining ideally efficient solutions to (V P ) in case Y = R

m. We opted
not to present it here because of the limited significance of the ideally efficient
solutions to (V P ) and also due to the way it is constructed that required introducing
maximally monotone operators. Note however that this algorithm is accompanied
by applications to convex feasibility problems and to the problem of common fixed
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points for nonexpansive potential mappings and also that some convergence rates
are derived for the method.

Remark 11.31 In the literature there are also some proximal point type algo-
rithms for solving vector optimization problems whose objective functions map
from Hadamard manifolds to Euclidean spaces. The algorithmic schemes are not
much different from the ones presented above, however one needs to define the
whole Hadamard manifolds setting in order to give the corresponding convergence
statements. In [13] a proximal point type scheme is proposed for determining
weakly efficient solutions to the Hadamard version of (V PG), where F is taken
as mentioned above. Weakly efficient elements to the Hadamard version of (V P )

are obtained in [16] by means of a proximal point type algorithm where the
intermediate optimization problems are scalarized versions of the ones in [13] by
means of a special case of the scalarization function introduced by Tammer (then
Gerstewitz) in [43]. An inexact version of the method that converges towards weakly
efficient elements to the considered vector optimization problem is proposed as well.
Another special case of Tammer’s scalarization function, the so-called maximum
scalarization, is employed in [74] for proposing an inexact proximal point method
for determining efficient solutions to the Hadamard version of (V P ). Because of
the special structure of its objective function, the scalarized optimization problem
should apparently be not so difficult to solve and a rate of convergence of the
proposed method is provided, too.

Remark 11.32 One could include in this section also the algorithms in [41, 51,
71, 73], as they are proximal point type methods for solving vector optimization
problems as well. However, in all of them the new iteration xn+1 is calculated as an
optimal solution to a scalar optimization problem that is a scalarization of a vector
one, not as some sort of an efficient solution to some vector optimization problem,
failing thus to satisfy the criteria stated in [24]. The algorithm proposed in [41]
employs the Tammer scalarization function (see also Remark 11.31). This function
leads to scalar optimization problems that are bounded from below by 0, excluding
thus the possibility to have to deal with unbounded scalar optimization problems
that may occur when working with the linear scalarization. However, the objective
functions of the scalar optimization problems derived by means of this scalarization
contain compositions of functions that are unfortunately still unsuitable for the
existing proximal point type algorithms and, moreover, this scalarization does not
guarantee a descent property for the values of the objective function either. On the
other hand, worth noticing is that the intermediate optimization problems in the
algorithm designed in [41] for delivering weakly efficient solutions to (V P ) are
unconstrained, i.e. they do not require defining the sets Ωn, n ≥ 1. An inexact
method that converges towards weakly efficient elements to the considered vector
optimization problem is proposed in the Hadamard manifolds framework discussed
in Remark 11.31 in [73] by means of a generalized proximal distance, where
the original problem is scalarized by a special case of the Tammer scalarization
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function. In [51, 71] there are proposed some logarithmic proximal point type
algorithms for solving (V P ) in Euclidean spaces. However, these are essentially
methods for minimizing some scalar functions called strict scalar representations
of the objective function of the original vector optimization problem. Note that the
method proposed in [51] can be modelled, to some extent, to deal also with vector
optimization problems with convex inequality constraints. On the other hand, the
one from [71] employs a quasi-distance instead of the classical distance induced
by a norm in the proximal step and is employed for numerically solving some test
problems.

Remark 11.33 There are some papers where proximal point type algorithms for
solving vector optimization problems consisting in vector-minimizing a vector
function subject to both geometric and linear equality constraints are proposed, in
the finitely dimensional framework where X = R

n, S ⊆ X is convex and compact,
Y = R

m, C ⊆ R
m is a convex cone, A ∈ R

p×n, b ∈ R
p and F : Rn → R

m. The
constrained vector optimization problem considered in [67, 68] is

(V PC) WMin
Ax=b,
x∈S

F (x).

However, the methods proposed in the mentioned papers for determining weakly
efficient and efficient solutions to (V PC) fail to satisfy the criteria stated in [24] (see
also Remark 11.32), as they consist of solving some minmax scalar optimization
problems that contain scalarizations of the objective function of (V PC) and some
other terms based on the equality constraint. The algorithms are shown to converge
towards weakly efficient solutions to (V PC) and, under additional assumptions,
towards efficient ones (called strongly efficient in [68]) to it. Applications to supply
chain network risk management and computational results obtained in MATLAB are
provided, too in both these works, despite the fact that usually minmax optimization
problems are not easy to solve numerically. Note also that in [72, Remark 3.3] a
vector optimization problem with a linear objective function and both geometric
and linear inequality constraints is mentioned and a numerical scheme for solving it
is sketched, however without actually exploiting the structure of the constraint set.

11.5 Proximal Point Type Algorithms for Other Vector
Optimization Problems

In this section we present proximal point type algorithms for solving vector opti-
mization problems with more complicated structure than (V P ) (or its constrained
counterparts (V PG) and (V PC)), namely ones with a sum or difference of vector
functions as an objective function. Many of the remarks we gave in Section 11.3
remain valid for some of these classes of vector optimization problems as well and
we will not mention them again here.
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11.5.1 Vector-Minimization of Sums of Vector Functions

Consider next the so-called composite vector optimization problem consisting
in vector-minimizing the sum of two vector functions, whose weakly efficient
solutions were obtained in [19] by means of a forward-backward proximal point
method with inertial/memory effects

(V PS) WMin
x∈X

[
F(x)+G(x)

]
,

where F : X → Y • is a proper vector function and G : X → Y is a Fréchet
differentiable vector function with an L-Lipschitz continuous gradient ∇G.

The exact proximal inertial forward-backward iterative method proposed in [19]
for determining the weakly efficient solutions to (V PS) is the following.

Algorithm 19 Choose the starting points x0, x1 ∈ X and the sequences (βn)n ⊆
[0, β), (z∗n)n ⊆ C∗ \ {0} and (en)n ⊆ intC such that (βn)n is nondecreasing, β <

1/9, ‖z∗n‖ = 1 and 〈z∗n, en〉 = 1 for all n ≥ 1. Consider the following iterative steps

1 let n = 1;
2 if xn ∈WE(V PS), then xn+p = xn for all p ≥ 1;

3 find xn+1 ∈WE
{
F(x)+ L

2

∥∥x − (
xn + βn(xn − xn−1)− 1

L
∇(z∗nG)(xn)

)∥∥2
en :

x ∈ ΩS
n

}
, where ΩS

n = {x ∈ X : (F +G)(x) �C (F +G)(xn)};
4 take n := n+ 1 and go to Step 2.

Remark 11.34 When G ≡ 0, Algorithm 19 becomes an inertial proximal point
method for solving vector optimization problems that is a special case of Algo-
rithm 17, and by additionally taking βn = 0 for all n ≥ 1 it collapses into
the proximal point method for vector-minimizing a nonsmooth vector function
introduced in [24] and presented above as Algorithm 1. On the other hand, when
Y = R and C = R+ (i.e. in the scalar case), Algorithm 19 becomes the inertial
proximal-gradient method for scalar optimization problems, that can be derived
from the algorithm for finding zeros of maximally monotone operators proposed
in [63]. When, furthermore, G ≡ 0, it collapses into the one from [3], while when
βn = 0 for all n ≥ 1 it becomes the celebrated ISTA method, however in a more
general framework.

The convergence of Algorithm 19 is achieved in a similar setting to the one of
Algorithm 1.

Theorem 11.19 (cf. [19, Theorem 2.1]) Let F be C-convex and positively C-lower
semicontinuous, G be C-convex and assume that (F +G)(X)∩ (F (x1)+G(x1)−
C) is C-complete. Then any sequence (xn)n generated by Algorithm 19 converges
weakly towards a weakly efficient solution to (V PS).

Remark 11.35 The conclusion of Theorem 11.19 remains valid when one takes only
F +G to be C-convex instead of both F and G and Remark 11.26 applies here as
well. The additional hypotheses of Theorem 11.2 guarantee the weak convergence
of any sequence (xn)n generated by Algorithm 19 towards an efficient solution
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to (V PS), too. Note also that the intermediate vector optimization problems
can be solved as such or can be scalarized for this, in which case an obvious
choice for the scalarizing functional are the corresponding z∗n’s. Of course, the
sequence (z∗n)n can be taken constant, situation in which the intermediate vector
optimization problems differ despite having the same objective vector function
because their feasible sets become smaller at each iteration. This does not mean
that the vector optimization problem (V PS) is a priori scalarized by means of a
linear continuous functional, because this scalarization is applied to the intermediate
vector optimization problems not to (V PS).

Remark 11.36 For implementation purposes one can provide an inexact version of
Algorithm 19 as well, where Step 3 is replaced by

3’ find xn+1 ∈ X such that

0 ∈ ∂εn(〈z∗n, F (·)+ L

2
‖ · −xn − βn(xn − xn−1)+ 1

L
∇(z∗nG)(xn)‖2en〉

+ δΩS
n
(·))(xn+1),

where the additional sequence of tolerable nonnegative errors (εn)n fulfills some
hypotheses, such as the ones considered in [24] or those from [2, 63]. Employing the
later, i.e.

∑
n≥1 εn < +∞, the convergence statement obtained by correspondingly

modifying Theorem 11.19 remains valid. Moreover, as an alternative stopping rule
that is easier to check than Step 2 of Algorithm 19 one can verify whether three
consecutive iterations of the sequence (xn)n generated by the method coincide,
in which case they represent a weakly efficient solution to (V PS). Note also that
xn−1 = xn does not necessarily imply that xn+1 coincides with them, too. This can
prove to be useful when starting the algorithm because one can begin with x0 = x1
without affecting the convergence of the method.

In [19] also the following (Nesterov type) modification of Algorithm 19 was
proposed, the difference between them residing in the point where the value of
∇(z∗nG) is calculated. The above remarks remain basically valid for it as well.

Algorithm 20 Choose the starting points x0, x1 ∈ X and the sequences (βn)n ⊆
[0, β), (z∗n)n ⊆ C∗ \ {0} and (en)n ⊆ intC such that (βn)n is nondecreasing, β <

1/9, ‖z∗n‖ = 1 and 〈z∗n, en〉 = 1 for all n ≥ 1. Consider the following iterative steps

1 let n = 1;
2 if xn ∈WE(V PS), then xn+p = xn for all p ≥ 1;

3 find xn+1 ∈WE
{
F(x)+ L

2

∥∥x−(
xn+βn(xn−xn−1)− 1

L
∇(z∗nG)(xn+βn(xn−

xn−1))
)∥∥2

en : x ∈ ΩS
n

}
;

4 take n := n+ 1 and go to Step 2.

Remark 11.37 In the scalar case, when Y = R and C = R+, Algorithm 20 becomes
a more general version of the celebrated FISTA method from [10], that can be
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recovered by taking βn = (tn − 1)/tn+1, where tn+1 = (1 +√
1+ 4t2

n)/2, n ≥ 1,
with t1 = 1, and restricting the framework to finitely dimensional spaces.

The convergence statement concerning Algorithm 20 is similar to Theo-
rem 11.19.

Theorem 11.20 (cf. [19, Theorem 3.1]) Let F be C-convex and positively C-lower
semicontinuous, G be C-convex and assume that (F +G)(X)∩ (F (x1)+G(x1)−
C) is C-complete. Then any sequence (xn)n generated by Algorithm 20 converges
weakly towards a weakly efficient solution to (V PS).

Remark 11.38 One can additionally provide, following [10, Theorem 4.4], when
the sequence (z∗n)n is constant and for the choice of the parameters βn, n ≥
1, mentioned in Remark 11.37, a convergence rate statement for the values of
the objective functions of the scalarized intermediate problems in Algorithm 20.
Moreover, when taking the sequence (z∗n)n constant it is no longer necessary to take
‖z∗n‖ = 1 for all n ≥ 1.

Stripping any of Algorithm 19 or Algorithm 20 of its inertial terms, it collapses
into a forward-backward method, whose convergence is derivable from Theo-
rem 11.19 or Theorem 11.20, as follows.

Algorithm 21 Choose the starting point x1 ∈ X and the sequences (z∗n)n ⊆ C∗\{0}
and (en)n ⊆ intC such that ‖z∗n‖ = 1 and 〈z∗n, en〉 = 1 for all n ≥ 1. Consider the
following iterative steps

1 let n = 1;
2 if xn ∈WE(V PS), then xn+p = xn for all p ≥ 1;

3 find xn+1 ∈WE
{
F(x)+ L

2

∥∥x − (
xn − 1

L
∇(z∗nG)(xn)

)∥∥2
en : x ∈ ΩS

n

}
;

4 take n := n+ 1 and go to Step 2.

A convergence rate statement for the values of the objective functions of the
scalarized intermediate problems in Algorithm 21 can be deduced analogously to
[10, Theorem 3.1].

Theorem 11.21 (cf. [19, Theorem 2.2]) Let F be C-convex and positively C-lower
semicontinuous, G be C-convex and assume that (F+G)(X)∩(F (x1)+G(x1)−C)

is C-complete. Consider the sequence (xn)n generated by Algorithm 21, where one
takes z∗n = z∗ ∈ C∗ \ {0}, n ≥ 1. Then for any n ≥ 1 and x̃ ∈ ∩n≥1Ω

S
n one has

〈z∗, F (xn)+G(xn)− F(x̃)−G(x̃)〉 ≤ L‖x̃ − x1‖2

2n
.

Remark 11.39 Unlike most of the mentioned papers where iterative methods for
solving vector optimization problems were proposed, but their implementation was
left for later due to the difficulty of solving the employed subproblems, in [19,
Section 4] a concrete application in finance mathematics was solved in MATLAB via
the inexact versions of both Algorithm 19 and Algorithm 21, whose performances
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are then compared, showing that a good choice of the inertial parameters can
considerably reduce the resources needed for identifying a weakly efficient solution
to (V PS).

11.5.2 Vector-Minimization of Differences of Cone-Convex
Vector Functions

The last class of vector optimization problems considered in this survey consists in
vector-minimizing the difference of two cone-convex (DC) vector functions subject
to a geometric constraint in finitely dimensional spaces. One can find in [52, 53]
proximal point type algorithms for solving such problems, however, due to their
structure, only critically efficient solutions are determined. In the convex case the
critically efficient solutions turn out to be weakly efficient, however this cannot
happen in this setting. Consider the DC vector optimization problem

(V PD) WMin
x∈S

[
F(x)−G(x)

]
,

where F,G : Rn → R
m are proper C-convex vector functions, C ⊆ R

m being a
convex cone, and S ⊆ R

n is a closed convex set.
The proximal point type algorithm for solving (V PD) proposed in [53] is the

following.

Algorithm 22 Choose the starting point x1 ∈ R
n, the exogenous sequence (αn)n ⊆

(0,+∞) and ε > 0. Consider the following iterative steps

1 let n = 1;
2 find Vn ∈ ∂G(xn);

3 find xn+1 = arg minx∈S max
u∈C∗∩SRm

{
u/F(x)− u/Vn(x − xn)+ αn

2 ‖x − xn‖2
}

;

4 if ‖xn+1 − xn‖ ≤ ε: STOP;
5 take n := n+ 1 and go to Step 2.

The convergence statement regarding Algorithm 22 follows. Note however that
only the fact that every cluster point of (xn)n is a critically efficient solution to
(V PD) is guaranteed and that even for this a condition involving the structure of
the sequence (xn)n is imposed.

Theorem 11.22 (cf. [53, Theorem 7]) Let S be bounded and assume that for n ≥
1 large enough there is some u ∈ C∗ ∩ SRm such that xn+1 ∈ S ∩ (

∂G/u +
αn idRn

)−1(
V /n u+ αnxn

)
, where the sequence (xn)n is generated by Algorithm 22

and it has infinitely many iterations. Then any cluster point of (xn)n is a critically
efficient solution to (V PD).

Remark 11.40 In [53] one can find also a second proximal point type algorithm for
solving (V PD) where the role of αn is taken by r/n u, where (rn)n ⊆ R

m is some
iterative sequence that satisfies r/n u > 0. Moreover, an inexact version of Algo-
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rithm 22 called ε-proximal algorithm is proposed, where the vector subdifferential
of G is replaced (also in the hypotheses of the convergence statement) by its vector
ε-subdifferential.

Remark 11.41 A special case of Algorithm 22 obtained when C = R
m+ can be found

in the earlier paper [52] together with an inexact version and an application to port-
folio optimization that is also numerically solved in MATLAB, some computational
results being provided.

Remark 11.42 Note that in Algorithm 22 the sets Ωn play no role and the
intermediate problems are only geometrically constrained. On the other hand, at
the first look they do not satisfy the criterion mentioned in [24] (see Remark 11.32),
as they are scalar minmax optimization problems. However we opted to include
Algorithm 22 here and not only to mention it in a remark because it employs
the vector subdifferential of G and not one of some scalarization of it and, on
the other hand, since the method can be seen as a splitting type one where the
involved functions are processed separately, as one determines an element of the
vector subdifferential of G and then uses it in a sort of a backward step. Another
argument for the inclusion of this algorithm in this work is the fact that in [53] it
is applied for numerically solving in MATLAB a problem of probabilistic lot sizing
with service levels and computational results are provided, too. Note also that the
hypotheses of the convergence statement do not include the usual C-completeness
assumption considered in most of its counterparts gathered in this survey.

11.6 Conclusions and Further Research Directions

At the moment one can find more than thirty papers whose authors claim to
introduce new proximal point type algorithms for solving vector optimization
problems or to refine some existing ones. In most of these the method proposed in
the seminal contribution due to Bonel, Iusem and Svaiter is extended in some way,
usually by replacing the norm distance in the iterative step by some other (quasi-
)distance function or by relaxing the hypotheses that are necessary for ensuring
the convergence of the algorithm. Moreover, there are some contributions where
one also has constraints or the objective function has a more complicated structure,
being a sum or difference of vector functions or a composition of such a function
with a linear operator.

The first conclusion one can draw is that in the decade and a half since
the mentioned paper was published the interest around iteratively solving vector
(and multiobjective) optimization problems by means of proximal point methods
has steadily increased. Various techniques were extended from scalar to vector
optimization and it seems that others would follow soon. There are proximal
point type algorithms for approaching nonconvex vector optimization problems
and some that deliver efficient (and not only weakly efficient) solutions to the
considered vector optimization problem. The authors of the original paper have
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actually admitted that their algorithm was merely a theoretical scheme and many
of the ones who followed it contain no numerical results either, however in some
recent contributions one can find concrete applications with computational results.

On the other hand, one can notice that the algorithmic scheme of Bonel,
Iusem and Svaiter is still the standard in this research area, as many of the
subsequent contributions are mostly theoretical variations or improvements. Despite
the progress in relaxing the hypotheses of the convergence statement, there are
still no real alternatives to the cone-completeness hypothesis, as the compactness
of the (weak) efficiency set cannot usually be a priori verified. However, the most
important issue relies in the construction of the intermediate vector optimization
problems that have to be solved in the iterative steps. The fact that these are
constrained makes the existing splitting proximal point methods not really useful
in approaching them and they have to be solved via other algorithms or solvers.
The role of these constraints is to ensure that the values of the objective function
decrease with respect to the ordering cone, thus a possible idea could be here to
find another way to guarantee this descending property of the generated sequence
without making the intermediate problems constrained. Moreover, there are almost
no results on convergence rates for such algorithms and the existing ones require
quite restrictive hypotheses. On the other hand, with or without constraints, there
is still room for improvements with respect to the implementations of this class of
algorithms, as only a few contributions contain actual computational results.

Of course, the difficulties encountered while trying to adapt techniques from
scalar optimization into the vector optimization framework are far from being
trivial. For instance, at each iteration one has to deal with a different intermediate
vector optimization problem, while in the scalar case the objective function of the
considered problem is usually not modified as the algorithm advances. Moreover,
at the moment there is still no characterization via a monotone inclusion of the
efficient solutions of a vector optimization problem, so directly adapting a method
from that area without going through the scalar case is still out of the question.
And, as mentioned above, the constraints of the intermediate vector optimization
problems are not making the life easier.

Besides these, there are many other challenges regarding proximal point methods
for solving vector optimization problems that are more or less solvable. We list in
the following some of them. A first one would be to identify weaker hypotheses
or the necessary modifications of the existing algorithms in order to guarantee the
identification of (properly) efficient solutions to the considered vector optimization
problems instead of weakly efficient or even critically efficient ones. Some the
methods known at the moment to function only in Euclidean spaces are expected
to work, under additional assumptions, in infinitely dimensional settings such as
Hilbert spaces, too. As suggested in a paper by Bento, da Cruz Neto and Soubeyran,
and, on the other hand, in one due to Rocha, Oliveira, Gregório and Souza, in the
nonconvex case one can try to employ functions having the Kurdyka-Łojasiewicz
property, too. Things are at the moment only at the beginning with respect to vector
optimization problems with objective functions consisting of sums or differences
of vector functions and/or compositions with linear continuous mappings. Other
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splitting schemes besides the forward-backward one could be applied. Speaking
of the later, as mentioned in the cited paper of Boţ and the author, it would be
interesting to identify a way to modify the proposed forward-backward algorithms
in order to encompass as a special case also the projected gradient method proposed
by Graña Drummond and Iusem for vector-minimizing a smooth cone-convex
vector function. Adding constraints to the considered vector optimization problems
obviously complicates things, however since the intermediate problems are already
constrained it would be interesting to find some ways to approach these both, too,
maybe by means of duality. Last but not least, as the ordering cones that occur
in vector optimization often have empty interiors, modifications of the existing
algorithms in order to maintain their convergence towards weakly efficient solutions
defined by means of generalized interiors should be taken into consideration as well.

Appendix: Proof of Theorem 11.17

In the following we provide an example of a convergence proof for a proximal
point algorithm for determininig weakly efficient solutions to a vector optimization
problem. It originates from an earlier version of [19] and incorporates some ideas
from the proofs of [24, Theorem 3.1] and [3, Theorem 2.1 and Proposition 2.1].
Before formulating it, we recall the celebrated Opial’s Lemma (cf. [65]).

Lemma 11.2 Let (xn)n ⊆ X a sequence such that there exists a nonempty set S ⊆
X such that

(a) limn→+∞ ‖xn − x‖ exists for every x ∈ S;
(b) if xnj ⇀ x̂ for a subsequence nj →+∞, then x̂ ∈ S.

Then, there exists an x̄ ∈ S such that xk ⇀ x̄ when k→+∞.

Theorem 11.17 Let F be C-convex and positively C-lower semicontinuous and
F(X) ∩ (F (x1) − C) be C-complete. Then any sequence (xn)n generated by
Algorithm 17 converges weakly towards a weakly efficient solution to (V P ).

Proof We show first that the algorithm is well-defined. Assuming that we have
obtained an xn, where n ≥ 1, we have to secure the existence of xn+1. Take a
z∗n ∈ C∗ \ {0} and without loss of generality assume that ‖z∗n‖ = 1 for all n ≥ 1.
Then 〈z∗n, en〉 > 0 and the function

x �→ 〈z∗n, λnF (x)+ αn

2
‖x − xn − βn(xn − xn−1)‖2en〉 + δΩn(x)

is lower semicontinuous, being a sum of continuous and lower semicontinuous
functions, respectively, and strongly convex, as the sum of some convex functions
and a squared norm, having thus exactly one minimum. By Lemma 11.1 this
minimum is a weakly efficient solution to the vector optimization problem in Step
3 of Algorithm 17 and we denote it by xn+1.
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The next step is to show the Fejér monotonicity of the sequence (xn)n with
respect to the set Ω = {x ∈ X : F(x) �C F(xk) ∀k ≥ 0}, that is nonempty because
of the C-completeness hypothesis. Let n ≥ 1. The function x �→ 〈z∗n, λnF (x) +
(αn/2)‖x − xn − βn(xn − xn−1)‖2en〉 + δΩn(x) attains its only minimum at xn+1,
and this fact can be equivalently written as

0 ∈ ∂
(〈z∗n, λnF (·)+ αn

2
‖ · −xn − βn(xn − xn−1)‖2en〉 + δΩn(·)

)
(xn+1).

Using the continuity of the norm, this yields (e.g. via [21, Theorem 3.5.6])
0 ∈ ∂

(〈z∗n, λnF (·)〉 + δΩn(·)
)
(xn+1) + ∂

(
(αn/2)〈z∗n, en〉‖ · −xn − βn(xn −

xn−1)‖2
)
(xn+1) = ∂

(〈z∗n, λnF (·)〉 + δΩn(·)
)
(xn+1) +αn〈z∗n, en〉(xn+1 − xn −

βn(xn − xn−1)). Then, since xn+1 ∈ Ωn, for any x ∈ Ωn it holds

λn〈z∗n, F (x)− F(xn+1)〉 ≥ αn〈z∗n, en〉〈xn+1 − xn − βn(xn − xn−1), xn+1 − x〉.
(11.2)

Let us take an element x̃ ∈ Ω . By construction x̃ ∈ Ωn, thus (11.2) yields, after
taking into consideration that F(x̃) �C F(xn+1), λn > 0 and z∗n ∈ C∗ \ {0}, that
αn〈z∗n, en〉〈xn+1 − xn − βn(xn − xn−1), x̃ − xn+1〉 ≥ 0.

For each k ≥ 0 denote ϕk = (1/2)‖xk − x̃‖2. The previous inequality, after
dividing with the positive number αn〈z∗n, en〉, can be rewritten as

ϕn+1 − ϕn + 1

2
‖xn+1 − xn‖2 − βn〈xn − xn−1, xn+1 − x̃〉 ≤ 0,

and, since 〈xn − xn−1, xn+1 − x̃〉 = ϕn − ϕn−1 + (1/2)‖xn − xn−1‖2 + 〈xn −
xn−1, xn+1 − xn〉, it turns into

ϕn+1 − ϕn − βn(ϕn − ϕn−1) ≤ βn

2
‖xn − xn−1‖2+

βn〈xn − xn−1, xn+1 − xn〉 − 1

2
‖xn+1 − xn‖2. (11.3)

Since the right-hand side of (11.3) is less than or equal to ((βn − 1)/2)‖xn+1 −
xn‖2 + βn‖xn − xn−1‖2, denoting μk = ϕk − βkϕk−1 + βk‖xk − xk−1‖2, k ≥ 1, it
follows that

μn+1 − μn ≤ 3β − 1

2
‖xn+1 − xn‖2 ≤ 0, (11.4)

thus the sequence (μk)k is nonincreasing, as n ≥ 1 was arbitrarily chosen. Then
ϕn ≤ βnϕ0+μ1/(1−β) and one also gets ‖xn+1−xn‖2 ≤ (2/(1−3β))(μn−μn+1).
Employing (11.4), one obtains then
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n∑
k=1

‖xk+1 − xk‖2 ≤ 2

1− 3β
(μ1 − μn+1) ≤ 2

1− 3β

(
βn+1ϕ0 + μ1

1− β

)
< +∞,

in particular

+∞∑
k=1

‖xk+1 − xk‖2 ≤ 2μ1

(1− β)(1− 3β)
< +∞. (11.5)

The right-hand side of (11.3) can be rewritten as (1/2)(βn(βn+1)‖xn−xn−1‖2−
‖xn+1 − xn − βn(xn − xn−1)‖2). Denoting τk+1 = xk+1 − xk − βk(xk − xk−1),
θk = ϕk − ϕk−1 and δk = βk‖xk − xk−1‖2 for k ≥ 0 and taking into consideration
that βn ∈ [0, 1/3), (11.3) yields

θn+1 − βnθn ≤ δn − 1

2
‖τn+1‖2. (11.6)

Then [θn+1]+ ≤ (1/3)[θn]+ + δn, followed by [θn+1]+ ≤ (1/3n)[θ1]+ +∑n−1
k=0 δn−k/3k . Hence

∑+∞
k=0[θk+1]+ ≤ 3/2([θ1]+ +∑+∞

k=0 δk) and, as the right-
hand side of this inequality is finite due to (11.5), so is

∑+∞
k=1[θk]+, too. This yields

that the sequence (wk)k defined as wk = ϕk −∑k
j=1[θj ]+, k ≥ 0, is bounded.

Moreover, wk+1 − wk = ϕk+1 − ϕk − [ϕk+1 − ϕk]+ = ϕk+1 − ϕk + min{0, ϕk −
ϕk+1} ≤ 0 for all k ≥ 1, thus (wk)k is convergent. Consequently, limk→+∞ ϕk =
limk→+∞wk +∑+∞

j=1[θj+1]+, therefore (ϕk)k is convergent. Finally, (‖xk − x̃‖2)k
is convergent, too, i.e. (a) in Lemma 11.2 with S = Ω is fulfilled.

We show now that (xk)k is weakly convergent. The convergence of (ϕk)k implies
that (xk)k is bounded, so it has weak cluster points. Let x̂ ∈ X be one of them
and (xkj )j the subsequence that converges towards it. Then, as F is positively C-
lower semicontinuous and C-convex, it follows that for any z∗ ∈ C∗ the function
〈z∗, F (·)〉 is lower semicontinuous and convex, thus

〈z∗, F (x̂)〉 ≤ lim
j→+∞〈z

∗, F (xkj )〉 = inf
k≥0
〈z∗, F (xk)〉, (11.7)

with the last equality following from the fact that the sequence (F (xk))k is by
construction nonincreasing. Assuming that there exists a k ≥ 0 such that F(x̂) �C

F(xk), there exists a z̃ ∈ C∗\{0} such that 〈z̃, F (x̂)−F(xk)〉 > 0, which contradicts
(11.7), consequently F(x̂) �C F(xk) for all k ≥ 0, i.e. x̂ ∈ Ω , therefore one can
employ Lemma 11.2 with S = Ω since its hypothesis (b) is fulfilled as well. This
guarantees then the weak convergence of (xk)k to a point x̄ ∈ Ω .

The last step is to show that x̄ ∈ WE(V P ). Assuming that x̄ /∈ WE(V P ), there
exists an x′ ∈ X such that F(x′) <C F(x̄). This yields x′ ∈ Ω . As ‖z∗k‖ = 1 for
all k ≥ 0, the sequence (z∗k)k has a weak∗ cluster point, say z̄∗, that is the limit of
a subsequence (z∗kj )j . Because z∗k ∈ C∗ for all k ≥ 0 and C∗ is weakly∗ closed, it
follows that z̄∗ ∈ C∗. Moreover, z̄∗ �= 0, since it can be shown via [23, Lemma 2.2]
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that 〈z̄∗, c〉 > 0 for any c ∈ intC. Consequently, 〈z̄∗, F (x′) − F(x̄)〉 < 0. For any
j ≥ 0 it holds by (11.2)

λkj 〈z∗kj , F (x′)−F(xkj+1)〉 ≥ −〈αkj 〈z∗kj , ekj 〉(xkj+1− xkj −βkj (xkj − xkj−1), x
′−

xkj+1〉 ≥ −αkj 〈z∗kj , ekj 〉‖x′−xkj+1‖
(‖xkj+1−xkj ‖+βkj ‖xkj−xkj−1‖

)
. (11.8)

Because of (11.5), (‖xk − xk−1‖)k converges towards 0 for k → +∞, therefore
so does the last expression in the inequality chain (11.8) when j → +∞ as well.
Letting j converge towards+∞, (11.8) yields 〈z̄∗, F (x′)−F(x̄)〉 ≥ 0, contradicting
the inequality obtained above. Consequently, x̄ ∈WE(V P ). ��
Remark 11.43 In order to guarantee the lower semicontinuity of the functions
δΩn , n ≥ 1, it is enough to have the vector function F only C-level closed
(i.e. the set {x ∈ X : F(x) �C y} is closed for any y ∈ Y ), a hypotheses
weaker than the positive C-lower semicontinuity imposed on F in Theorem 11.17
and Theorem 11.18. However, the latter is also necessary in the proofs of these
statements in order to guarantee the lower semicontinuity of the functions (z∗nF ),
n ≥ 1.

Acknowledgements This work was partially supported by FWF (Austrian Science Fund), project
M-2045 and DFG (German Research Foundation), project GR3367/4 − 1 The author is grateful
to an anonymous reviewer for making him aware of the paper [73] and for carefully reading this
survey, and to the editors of this volume for the invitation to the CMO-BIRS Workshop on Splitting
Algorithms, Modern Operator Theory, and Applications (17w5030) in Oaxaca.

References

1. Aliprantis, C., Florenzano, M., da Rocha, V.M., Tourky, R.: Equilibrium analysis in financial
markets with countably many securities. Journal of Mathematical Economics 40, 683–699
(2004)

2. Alvarez, F.: On the minimizing property of a second order dissipative system in Hilbert spaces.
SIAM Journal on Control and Optimization 38, 1102–1119 (2000)

3. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via
discretization of a nonlinear oscillator with damping. Set-Valued Analysis 9, 3–11 (2001)

4. Apolinário, H., Quiroz, E.P., Oliveira, P.: A scalarization proximal point method for quasicon-
vex multiobjective minimization. Journal of Global Optimization 64, 79–96 (2016)

5. Attouch, H., Garrigos, G.: Multiobjective optimization - an inertial dynamical approach to
Pareto optima. arXiv 1506.02823 (2015)

6. Attouch, H., Garrigos, G., Goudou, X.: A dynamic gradient approach to Pareto optimization
with nonsmooth convex objective functions. Journal of Mathematical Analysis and Applica-
tions 422, 741–771 (2015)

7. Attouch, H., Goudou, X.: A continuous gradient-like dynamical approach to Pareto-
optimization in Hilbert spaces. Set-Valued and Variational Analysis 22, 189–219 (2014)

8. Auslender, A., Teboulle, M.: Interior gradient and proximal methods for convex and conic
optimization. SIAM Journal on Optimization 16, 697–725 (2006)



306 S.-M. Grad

9. Bauschke, H., Combettes, P.: Convex Analysis and Monotone Operator Theory in Hilbert
Spaces. CMS Books in Mathematics / Ouvrages de mathématiques de la SMC. Springer-
Verlag, New York (2011)

10. Beck, A., Teboulle, M.: A fast iterative shrinkage-tresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences 2, 183–202 (2009)

11. Benker, H., Hamel, A.H., Tammer, C.: An algorithm for vectorial control approximation
problems. In: Multiple Criteria Decision Making (Hagen, 1995), Lecture Notes in Economics
and Mathematical Systems, vol. 448, pp. 3–12. Springer-Verlag, Berlin (1997)

12. Bento, G.C., da Cruz Neto, J.X., López, G., Soubeyran, A., Souza, J.C.O.: The proximal point
method for locally Lipschitz functions in multiobjective optimization with application to the
compromise problem. SIAM Journal on Optimization 28, 1104–1120 (2018)

13. Bento, G.C., da Cruz Neto, J.X., de Meireles, L.V.: Proximal point method for locally Lipschitz
functions in multiobjective optimization of Hadamard manifolds. Journal of Optimization
Theory and Applications 179, 37–52 (2018)

14. Bento, G.C., da Cruz Neto, J.X., Soubeyran, A.: A proximal point-type method for multicriteria
optimization. Set-Valued and Variational Analysis 22, 557–573 (2014)

15. Bento, G.C., Ferreira, O.P., Junior, V.L.S.: Proximal point method for a special class of
nonconvex multiobjective optimization functions. Optimization Letters 12, 311–320 (2018)

16. Bento, G.C., Ferreira, O.P., Pereira, Y.R.L.: Proximal point method for vector optimization on
Hadamard manifolds. Operations Research Letters 46, 13–18 (2018)

17. Bento, G.C., Ferreira, O.P., Soubeyran, A., de Sousa Júnior, V.L., Valdinês, L.: Inexact multi-
objective local search proximal algorithms: application to group dynamic and distributive
justice problems. Journal of Optimization Theory and Applications 177, 181–200 (2018)
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19. Boţ, R.I., Grad, S.M.: Inertial forward-backward methods for solving vector optimization
problems. Optimization 67, 959–974 (2018)
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Non-polyhedral Extensions of the Frank
and Wolfe Theorem
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Abstract In 1956 Marguerite Frank and Paul Wolfe proved that a quadratic
function which is bounded below on a polyhedron P attains its infimum on P . In
this work we search for larger classes of sets F with this Frank-and-Wolfe property.
We establish the existence of non-polyhedral Frank-and-Wolfe sets, obtain internal
characterizations by way of asymptotic properties, and investigate stability of the
Frank-and-Wolfe class under various operations.
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12.1 Introduction

In this paper we investigate extensions of the famous Frank and Wolfe theorem
[1, 5–8], which states that a quadratic function f which is bounded below on a
closed convex polyhedron P attains its infimum on P . This has applications to linear
complementarity problems, and a natural question is whether this property is shared
by larger classes of non-polyhedral convex sets F .
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The present work expands on [15], where the Frank-and-Wolfe property was
successfully related to asymptotic properties of a set F . Following this line, we
presently obtain a complete characterization of the Frank-and-Wolfe property within
the class of Motzkin decomposable sets. In particular, the converse of a result of
Kummer [12] is obtained.

A second theme addresses versions of the Frank-and-Wolfe theorem where the
class of quadratic functions is further restricted. One may, for instance, ask for sets
F on which convex or quasi-convex quadratics attain their finite infima. It turns
out that this class has a complete characterization as those sets which have no
flat asymptotes in the sense of Klee. As a consequence we obtain a version of the
Frank-and-Wolfe theorem which extends a result of Rockafellar [17, Sect. 27] and
Belousov and Klatte [4] on convex polynomials.

Invariance of Frank-and-Wolfe type sets under various operations such as finite
intersections, unions, cross-products, sums, and under affine images and pre-images
are also investigated.

The structure of the chapter is as follows. In section 12.2 we give the definition
and collect basic information on FW-sets. In section 12.3 we consider quasi-Frank-
and-Wolfe sets, where a version of the Frank and Wolfe theorem for quasi-convex
quadratics is discussed. It turns out that the same class allows many more applica-
tions, as it basically suffices to have polynomial functions which have at least one
convex sub-level set. In section 12.4 we consider sets with a generalized Motzkin
decomposition of the form F = K + D with K compact and D a closed convex
cone. This class was used by Kummer [12], who proved a version of the Frank and
Wolfe theorem in this class when D is polyhedral. We give a new proof of this result
and also establish its converse, that is, if a Motzkin set satisfies the Frank and Wolfe
theorem, then the cone D must be polyhedral. Section 12.5 discusses invariance
properties of the class of Motzkin sets with the Frank and Wolfe property.

Notations

We generally follow Rockafellar’s book [17]. The closure of a set F is F . The
Euclidean norm in R

n is ‖ · ‖, and the Euclidean distance is dist(x, y) = ‖x − y‖.
For subsets M,N of Rn we write dist(M,N) = inf{‖x − y‖ : x ∈ M,y ∈ N}. A
direction d with x + td ∈ F for every x ∈ F and every t ≥ 0 is called a direction
of recession of F , and the cone of all directions of recession is denoted as 0+F .

A function f (x) = 1
2x

TAx + bTx + c with A = AT ∈ R
n×n, b ∈ R

n, c ∈ R

is called quadratic. The quadratic f : Rn → R is quasi-convex on a convex set
F ⊂ R

n if the sub-level sets of f|F : F → R are convex. Similarly, f is convex on
the set F if f|F is convex.
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12.2 Frank-and-Wolfe Sets

The following definition is the basis for our investigation:

Definition 12.1 A set F ⊂ R
n is called a Frank-and-Wolfe set, for short a FW-set,

if every quadratic function f which is bounded below on F attains its infimum on F .

In [15] this notion was introduced for convex sets F , but in the present note
we extend it to arbitrary sets, as this property is not really related to convexity.
The classical Frank-and-Wolfe theorem says that every closed convex polyhedron
is a FW-set, cf. [5–8]. Here we are interested in identifying and characterizing
more general classes of sets with this property. We start by collecting some basic
information about FW-sets.

Proposition 12.1 Affine images of FW-sets are again FW-sets.

Proof Let F be a FW-set in R
n and T : Rn → R

m an affine mapping. We have to
show that T (F ) is a FW-set. Let f be a quadratic on R

m which is bounded below
on T (F ), then f ◦ T is a quadratic on R

n, which is bounded below on F , hence
attains its infimum at some x ∈ F . Then f attains its infimum at T x ∈ T (F ). ��

It is equally easy to see that every FW-set is closed, because if x ∈ F , then the
quadratic function f = ‖ · −x‖2 has infimum 0 on F , and if this infimum is to be
attained, then x ∈ F . As a consequence, a bounded set F is FW iff it is closed, so
there is nothing interesting to report on bounded FW-sets, and the property is clearly
aimed at the analysis of unbounded sets.

One can go a little further than just proving closedness of FW-sets and get first
information about their asymptotic behavior. We need the following:

Definition 12.2 An affine manifold M in R
n is called an f -asymptote of the set

F ⊂ R
n if F ∩M = ∅ and dist(F,M) = 0.

This expands on Klee [11], who introduced this notion for convex sets F . The
symbol f stands for flat asymptote. This allows us now to propose the following:

Proposition 12.2 Let F be a FW-set. Then F has no f-asymptotes.

Proof Let M be an affine subspace such that dist(F,M) = 0. We have to show that
M ∩ F �= ∅. Let M = {x ∈ R

n : Ax − b = 0} for a suitable matrix A and vector
b. Put f (x) = ‖Ax − b‖2, then f is quadratic, and γ = inf{f (x) : x ∈ F } ≥ 0.
Now there exist xk ∈ F and yk ∈ M with dist(xk, yk) → 0. But Ayk = b, and
‖A(xk − yk)‖ ≤ ‖A‖‖xk − yk‖ → 0, hence Axk → b, which implies γ = 0.
Now since F is a FW -set, this infimum is attained, hence there exists x ∈ F with
f (x) = 0, which means Ax = b, hence x ∈ M . That shows F ∩M �= ∅, so M is
not an f -asymptote of F . ��
Remark 12.1 An immediate consequence of Propositions 12.1, 12.2 is that affine
images of FW-sets, and in particular, projections of FW-sets, are always closed.
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Yet another trivial fact is the following:

Proposition 12.3 Finite unions of FW-sets are FW.

We conclude this preparatory section by looking at invariance of the FW -class
under affine pre-images. First we need the following:

Proposition 12.4 If F ⊂ R
n is a FW-set and M ⊂ R

m is an affine manifold, then
F ×M is a FW-set in R

n × R
m.

Proof Since translates of FW -sets are FW -sets, we may assume that M is a linear
subspace, and then there is no loss of generality in assuming that M = R

m.

Moreover, by an easy induction argument, we only need to consider the case when
m = 1, because F × R

m = (F × R)× R
m−1.

Let q be a quadratic function on R
n×R bounded below on F ×R. We can write

q (x, t) = 1
2x

TAx + 1
2bt

2 + tcTx + dTx + et + f for suitable A, b, c, d, e and f.

Clearly, b ≥ 0, as otherwise q could not be bounded below on F ×R. Now we have
inf(x,t)∈F×R q (x, t) = infx∈F inft∈R q (x, t) .

First consider the case b > 0. Then the inner infimum in the preceding

expression is attained at t = − cTx+e
b

. Hence we have inf(x,t)∈F×R q (x, t) =
infx∈F q

(
x,− cTx+e

b

)
. Given that q

(
x,− cTx+e

b

)
is a quadratic function of x and

is obviously bounded below on F, it attains its infimum over F at some x ∈ F.

Therefore q attains its infimum over F × R at
(
x,− cTx+e

b

)
.

Now consider the case b = 0, c �= 0. Here F must be contained in
the hyperplane cTx + e = 0. Substituting this, we get inf(x,t)∈F×R q (x, t) =
infx∈F

{
1
2x

TAx + dTx
}
+f. Hence, the quadratic function given by 1

2x
TAx+ dTx

is bounded below on F and, for every minimizer x ∈ F and every t ∈ R, the point
(x, t) is a minimizer of q over F × R.

Finally, when b = 0, c = 0 it follows that we must also have e = 0, so q no
longer depends on t , and we argue as in the previous case. ��
Remark 12.2 As we shall see in the next section (example 1), the cross product
F1 × F2 of two FW -sets Fi is in general no longer a FW -set, so Proposition 12.4
exploits the very particular situation.

We have the following consequence:

Corollary 12.1 Let F be a FW-set in R
n and M an affine subspace of Rn. Then

F +M is a FW-set.

Proof F × M is a FW-set by Proposition 12.4, and its image under the mapping
(x, y)→ x + y is a FW-set by Proposition 12.1, and that set is F +M . ��

Concerning pre-images, we have the following consequence of Proposition 12.4:

Proposition 12.5 Let T be an affine operator and suppose the FW -set F is
contained in the range of T . Then T −1(F ) is a FW -set.
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Proof Since the notion of a FW -set is invariant under translations and under
coordinate changes, we can assume that T is a surjective linear operator T : Rn →
R
m and F ⊂ R

m. Now F̃ = (T|ker(T )⊥)
−1(F ) is an affine image of the FW -set

F , hence by Proposition 12.1 is a FW -subset of R
n. By Corollary 12.1 the set

F̃ + ker(T ) is a FW -set, but this set is just T −1(F ). ��

Remark 12.3 It is not clear whether this result remains true when F is not entirely
contained in the range of T , i.e., when only F ∩ range(T ) �= ∅. In contrast, see
Corollary 12.3 and Proposition 12.9.

More sophisticated invariance properties of the class of FW-sets will be
investigated later. For instance, one may ask whether or under which conditions
finite intersections, cartesian products, or closed subsets of FW-sets are again FW.

12.3 Frank-and-Wolfe Theorems for Restricted Classes of
Quadratic Functions

Following [15] it is also of interest to investigate versions of the Frank and Wolfe
theorem, where the class of quadratic functions is further restricted. The following
notion is from [15]:

Definition 12.3 A convex set F ⊂ R
n is called a quasi-Frank-and-Wolfe set, for

short a qFW-set, if every quadratic function f which is quasi-convex on F and
bounded below on F attains its infimum on F .

Note that for the class of qFW-sets we have to maintain convexity as part of
the definition, because quasi-convex functions have to be defined on convex sets.
(Otherwise, for instance with F = {(x, y) ∈ R

2 : y = x2}, the norm squared
f (x, y) = x2 + y2 would not be quasi-convex on F ). Hence the notion is precisely
as introduced in [15].

Remark 12.4 Every convex FW-set is clearly a qFW-set. The converse is not true,
i.e., qFW-sets need not be FW, as will be seen in Example 12.1. It is again clear that
qFW-sets are closed, and that affine images of qFW-sets are qFW.

It turns out that f -asymptotes are the key to understanding the quasi-Frank-and-
Wolfe property. We have the following:

Theorem 12.1 Let F be a convex set in R
n. Then the following statements are

equivalent:

(1) Every polynomial f which has at least one nonempty convex sub-level set on F

and which is bounded below on F attains its infimum on F .
(2) F is a qFW-set.
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(3) Every quadratic function q which is convex on F and bounded below on F

attains its infimum on F .
(4) F has no f-asymptotes.
(5) T (F ) is closed for every affine mapping T .
(6) P(F) is closed for every orthogonal projection P .

Proof The implication (1) %⇒ (2) is clear, because for a quasi-convex function
on F every sub-level set on F is convex. The implication (2) %⇒ (3) is also
evident. Implication (3) %⇒ (4) follows immediately with the same proof as
Proposition 12.2, because the quadratic f (x) = ‖Ax − b‖2 used there is convex.

Let us prove (4) %⇒ (5). We may without loss of generality assume that T is
linear, as properties (4) and (5) are invariant under translations. Suppose T (F ) is not
closed and pick y ∈ T (F ) \ T (F ). Put M = T −1(y), then M is an affine manifold.
Note that M∩F = ∅, because T (M) = {y}. Now pick yk ∈ T (F ) such that yk → y,
and choose xk ∈ T −1(yk) ∩ F . Since T is linear, and hence an isomorphism from
ker(T )⊥ onto T (Rn), there exist x′k ∈ T −1(yk) such that x′k → x′ ∈ T −1(y). (Take
x′k = (T|ker(T )⊥)

−1(yk)). We have ‖xk − (x′ − x′k + xk)‖ → 0, with xk ∈ F , and
since xk − x′k ∈ ker(T ), we have x′ − x′k + xk ∈ x′ + ker(T ) = M . That proves
dist(F,M) = 0, and so F has M as an f -asymptote, a contradiction.

The implication (5) %⇒ (6) is clear. Let us prove (6) %⇒ (1). We will
prove this by induction on n. For n = 1 the implication is clearly true, because any
polynomial f : R→ R which is bounded below on a convex set F ⊂ R satisfying
(6) attains its infimum on F , as (6) implies that F is closed. Suppose therefore that
the result is true for dimension n − 1, and consider a polynomial f : Rn → R

which is bounded below on a set F ⊂ R
n with property (6) such that Sα := {x ∈

F : f (x) ≤ α} is nonempty and convex for some α ∈ R. We may without loss of
generality assume that the dimension of F is n, i.e., that F has nonempty interior, as
otherwise F is contained in a hyperplane, and then the result follows directly from
the induction hypothesis. If α = γ := inf{f (x) : x ∈ F }, then f clearly attains α,
so we assume from now on that α > γ . If Sα := {x ∈ F : f (x) ≤ α} is bounded,
then by the Weierstrass extreme value theorem the infimum of f over Sα is attained,
because by hypothesis (6) the set F is closed. But this infimum is also the infimum
of f over F , so in this case we are done. Assume therefore that Sα is unbounded.
Since Sα is a closed convex set, it has a direction of recession d, that is, x+ td ∈ Sα
for every t ≥ 0 and every x ∈ Sα . Fix x ∈ Sα . This means

γ ≤ f (x + td) ≤ α (12.1)

for every t ≥ 0. Since t �→ f (x+ td) is a polynomial on the real line, which is now
bounded on [0,∞), it must be constant as a function of t , so that f (x) = f (x+ td)

for all t ≥ 0, and then clearly also f (x + td) = f (x) for every t ∈ R. But the
argument is valid for every x ∈ Sα . By assumption F has dimension n, so Sα has
nonempty interior. That shows f (x + td) = f (x) for all x in a nonempty open set
contained in Sα and all t ∈ R. Altogether, since f is a polynomial, we obtain

f (x + td) = f (x) for every x ∈ R
n and every t ∈ R. (12.2)
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Now let P be the orthogonal projection onto the hyperplane H = d⊥. Then
f̃ := f|H is a polynomial on the (n − 1)-dimensional space H and takes the same
values as f due to (12.2). In particular, f̃ = f|H is bounded below on the set
F̃ = P(F).

We argue that the induction hypothesis applies to F̃ . Indeed, F̃ being the image
of F under a projection, is closed by condition (6). Its dimension is n − 1, and
moreover, every projection of F̃ is closed, because any such projection is also a
projection of F .

It remains to prove that the restriction of f̃ to F̃ has a nonempty convex sub-level
set. To this end it will suffice to prove that, for S̃α := {x ∈ F̃ : f̃ (x) ≤ α}, one has
S̃α = P (Sα) . This will easily follow from the observation that f̃ ◦P = f, which is
an immediate consequence of (12.2). Let x ∈ S̃α. Since x ∈ F̃ , we have P

(
x′
) = x

for some x′ ∈ F , and hence f
(
x′
) = (

f̃ ◦ P ) (x′) = f̃
(
P
(
x′
)) = f̃ (x) ≤ α,

which proves that x′ ∈ Sα. Therefore x ∈ P (Sα), which shows S̃α ⊂ P (Sα) . To
prove the opposite inclusion, let x ∈ P (Sα) . We then have x = P

(
x′
)

for some
x′ ∈ Sα. From the inclusion Sα ⊂ F, it follows that x ∈ P(F) = F̃ . On the other
hand, f̃ (x) = f

(
x′
) ≤ α. This shows x ∈ S̃α and proves the inclusion P (Sα) ⊂ S̃α

and hence our claim S̃α = P (Sα) .

Altogether, f̃ now attains its infimum on F̃ by the induction hypothesis, and then
f , having the same values, also attains its infimum on F . This proves the validity
of (1). ��
Remark 12.5 The equivalence of (4) and (6) can already be found in [11].

Remark 12.6 All that matters in condition (1) is the rigidity of polynomials. Any
class F(L) of continuous functions defined on affine subspaces L of Rn with the
following properties would work as well:

(i) F(L) is defined for every L ⊂ R
n and every n.

(ii) If f ∈ F(R) is bounded below on a closed interval on R, then f attains its
infimum.

(iii) If f ∈ F(Rn) and H is a hyperplane in R
n, then f|H ∈ F(H).

(iv) If f ∈ F(Rn) is bounded (above and below) on some ray x+R
+d ⊂ R

n, then
f does not depend on d, i.e., f (x) = f (x + td) for all t ∈ R.

We had seen in section 12.2 that FW-sets have no f -asymptotes. Moreover, from
the results of this section we see that if F is convex and has no f -asymptotes, then it
is already a qFW-set. This raises the question whether the absence of f -asymptotes
also serves to characterize FW-sets, or if not, whether it does so at least for convex
F . We indicate by way of two examples that this is not the case, i.e., the absence of
f -asymptotes does not characterize Frank-and-Wolfe sets. Or put differently, there
exist quasi-Frank-and-Wolfe sets which are not Frank-and-Wolfe.

Example 12.1 We construct a closed convex set F without f -asymptotes which
is not Frank-and-Wolfe. We use Example 2 of [14], which we reproduce here for
convenience. Consider the optimization program
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minimize q(x) = x2
1 − 2x1x2 + x3x4 + 1

subject to c1(x) = x2
1 − x3 ≤ 0

c2(x) = x2
2 − x4 ≤ 0

x ∈ R
4

then as Lou and Zhang [14] show the constraint set F = {x ∈ R
4 : c1(x) ≤

0, c2(x) ≤ 0} is closed and convex, and the quadratic function q has infimum γ = 0
on F , but this infimum is not attained.

Let us show that F has no f -asymptotes. Note that F = F1 × F2, where F1 =
{(x1, x3) ∈ R

2 : x2
1 − x3 ≤ 0}, F2 = {(x2, x4) ∈ R

2 : x2
2 − x4 ≤ 0}. Observe

that F1 ∼= F2, and that F1 does not have asymptotes, being a parabola. Therefore, F
does not have f -asymptotes either. This can be seen from the following:

Proposition 12.6 Any nonempty finite intersection of qFW -sets is again a qFW -
set.

Proof By Theorem 12.1 the result follows immediately from a theorem of Klee [11,
Thm. 4], which says that finite intersections of sets without f -asymptotes have no
f -asymptotes. ��
Corollary 12.2 If F1, . . . , Fm are qFW -sets, then the cartesian product F1×· · ·×
Fm is again a qFW -set.

Proof Consider for the ease of notation the case of two sets Fi ⊂ R
di , i = 1, 2.

Then write

F1 × F2 =
(
F1 × R

d2
)
∩
(
R
d1 × F2

)
.

Now F1 × R
d2 is also qFW, and so is Rd1 × F2, and hence the result follows from

Proposition 12.6. The fact that F1 × R
d2 is qFW is easily seen as follows: If M is a

f -asymptote of F1 × R
d2 , then L = {x : (x, y) ∈ M for some y} is a f -asymptote

of F1. ��
Remark 12.7 Example 1 also tells us that the sum of FW -sets need not be a FW -
set even when closed, as follows from the identity F1 × F2 = (F1 × {0}) +
({0} × F2). Note that even though F1 × F2 fails to be FW , it remains qFW due to
Corollary 12.2.

Example 12.2 Let F be the epigraph of f (x) = x2 + exp(−x2) in R
2. Then

q(x, y) = y − x2 is bounded below on F , but does not attain its infimum, so F

is not FW. However, F has no f -asymptotes, so it is qFW.

Remark 12.8 In [15] it is shown explicitly that the ice-cream cone is not qFW. Here
is a simple synthetic argument. The ice cream cone D ⊂ R

3 can be cut by a plane
L in such a way that F = D ∩ L has a hyperbola as boundary curve. Since F has
asymptotes, it is not qFW, hence neither is the cone D.
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The method of proof in implication (6) %⇒ (1) in Theorem 12.1 can be used to
show that sub-level sets of convex polynomials are qFW-sets, see [3, Chap. II, §4,
Thm. 13]. We obtain the following extension of [4, Thm. 3]:

Corollary 12.3 Let F0 be a qFW -set and let f1, . . . , fm be convex polynomials on
F0 such that the set F = {x ∈ F0 : fi(x) ≤ 0, i = 1, . . . , m} is non-empty. Let f be
a polynomial which is bounded below on F and has at least one nonempty convex
sub-level set on F . Then f attains its infimum on F .

Remark 12.9 From Corollary 12.2 and Proposition 12.6 we learn that the class of
qFW-sets is closed under finite intersections and cross products, while Example 12.1
tells us that this is no longer true for FW-sets. Yet another invariance property of
qFW-sets is the following:

Corollary 12.4 Let T : Rn → R
m be an affine operator, and let F ⊂ R

m be a
qFW-set. If T −1(F ) is nonempty, then it is a qFW-set, too.

Proof We use property (4) of Theorem 12.1. Suppose T −1(F ) had an f -asymptote
M , then T (M) would be an f -asymptote of F . ��
Corollary 12.5 (See [4], [17, Cor. 27.3.1]) Let f be a polynomial which is convex
and bounded below on a qFW-set F . Then f attains its infimum on F .

The following consequence of Theorem 12.1 is surprising.

Corollary 12.6 Let F be a convex cone. Then the following are equivalent:

(1) F is a FW-set;
(2) F is a qFW-set;
(3) F is polyhedral.

Proof (1) %⇒ (2) is clear, because F is convex. (2) %⇒ (3): Let F ⊂ R
n

be qFW, then by condition (iv) of Theorem 12.1 every orthogonal projection P(F)

on any two-dimensional subspace of Rn is closed. Therefore, by Mirkil’s theorem,
which we give as Lemma 12.1 below, F is polyhedral. (3) %⇒ (1): By the classical
Frank-and-Wolfe theorem every polyhedral convex cone is FW. ��
Lemma 12.1 (Mirkil’s Theorem [16]) Let D be a convex cone in R

n such that
every orthogonal projection on any two-dimensional subspace is closed. Then D is
polyhedral.

Remark 12.10 This result puts an end to hopes to get new results for the linear
complementarity problem by investigating FW -cones.

We end this section with a nice consequence of Mirkil’s theorem. First we need
the following characterization of f -asymptotes:

Proposition 12.7 For a closed convex set F and a linear subspace L, the following
statements are equivalent:
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1) No translate of L is an f-asymptote of F.
2) The orthogonal projection of F onto the orthogonal complement L⊥ is closed.
3) F + L is closed.

Proof 1)⇒2) Let x ∈ PL⊥ (F ). Since P−1
L⊥ (x) = x + L, we can easily prove that

dist(F, x + L) = dist
(
PL⊥ (F ) , x

) = 0. Since x + L is not an f -asymptote of F,
we have F ∩ (x + L) �= ∅, which amounts to saying that x ∈ PL⊥ (F ) .

2)⇒3) Let xk ∈ F and yk ∈ L (k = 1, 2, . . .) be such that the sequence xk + yk
converges to some point z. Then PL⊥(z) = limPL⊥ (xk + yk) = limPL⊥ (xk) ∈
PL⊥ (F ) due to closedness of PL⊥(F ). But PL⊥(F ) = (F + L) ∩ L⊥ ⊂ F + L,
hence PL⊥(z) ∈ F + L. Now z = PL⊥(z)+ PL(z) ∈ F + L+ L = F + L.

3)⇒1) Let us assume that x + L is an f -asymptote of F for some x.

Then 0 ≤ dist (x, F + L) ≤ dist
(
x, (F + L) ∩ L⊥

) = dist
(
x, PL⊥ (F )

) =
dist (F, x + L) = 0, hence dist (x, F + L) = 0. Since F +L is closed, this implies
x ∈ F + L. This is equivalent to saying that F ∩ (x + L) �= ∅, a contradiction to
the assumption that x + L is an f -asymptote of F. ��
Remark 12.11 An immediate consequence is that a convex set F is a qFW-set if
and only if F + L is closed for every linear subspace L.

The consequence of Mirkil’s Theorem we have in mind is the following:

Proposition 12.8 For a closed convex cone D in R
n (with n > 2), the following

statements are equivalent:

1) D is polyhedral.
2) C +D is a convex polyhedron for every convex polyhedron C.
3) L+D is closed for every (n− 2)-dimensional subspace L.
4) D has no (n− 2)-dimensional f-asymptotes.

Proof Implications 1) ⇒ 2) ⇒ 3) are immediate. Implication 3) %⇒ 1) is a conse-
quence of 3)⇒ 2) of Proposition 12.7 combined with Mirkil’s Theorem. Implication
3) %⇒ 4) follows from 3) %⇒ 1) of Proposition 12.7. Finally, implication 4) %⇒
3) can be easily derived from implication 1) %⇒ 3) of Proposition 12.7. ��

12.4 Motzkin Type Sets

Following [9, 10], a convex set F is called Motzkin decomposable if it may be
written as the Minkowski sum of a compact convex set C and a closed convex cone
D, that is, F = C+D. Motzkin’s classical result states that every convex polyhedron
has such a decomposition. We extend this definition as follows:
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Definition 12.4 A closed set F ⊂ R
n is called a Motzkin set, for short an M-set, if

it can be written as F = K+D, where K is a compact set and D is a closed convex
cone.

We shall continue to reserve the term Motzkin decomposable for the case where
the set F is convex. A Motzkin set F which is convex is then clearly Motzkin
decomposable.

Remark 12.12 Let F = K +D be a Motzkin set, then similarly to the convex case
D is uniquely determined by F . Indeed, taking convex hulls, we have co(F ) =
co(K)+ co(D) = co(K)+D, hence co(F ) is a convex Motzkin set, i.e., a Motzkin
decomposable set. Then from known results on Motzkin decomposable sets [9, 10],
D = 0+co(F ), the recession cone of co(F ). Now if we define the recession cone
of F in the same way as in the convex case, i.e., 0+F = {u ∈ R

n : x + tu ∈
F for all x ∈ F and all t ≥ 0}, then 0+F ⊂ 0+co(F ) = D ⊂ 0+F , proving D =
0+F . In particular, F and co(F ) have the same recession cone.

Theorem 12.2 Let F be a Motzkin set in R
n, represented as F = K + D = K +

0+F . Then the following are equivalent:

(1) F is a FW -set.
(2) The recession cone 0+F of F is polyhedral.
(3) F has no f -asymptotes.

Proof We prove (1) %⇒ (2). Let P be an orthogonal projection of R
n onto a

subspace L of Rn. Since F = K +D is a FW -set, P(F) is closed. Since P(F) =
P(K)+ P(D) and P(F) = P(K)+ P(D), this means P(K)+ P(D) = P(K)+
P(D). We have to show that this implies P(D) = P(D). This follows from the
so-called order cancellation law, which we give as Lemma 12.2 below. It is applied
to the convex sets A = P(D), B = P(D), and for the compact set P(K). This
shows indeed P(D) = P(D). This means every projection of D is closed, hence by
Mirkil’s theorem (Lemma 12.1), the cone D is polyhedral.

Lemma 12.2 (Order Cancellation Law, see [10]) Let A,B ⊂ R
n be convex sets,

K ⊂ R
n a compact set. If A+K ⊂ B +K , then A ⊂ B.

Let us now prove (2) %⇒ (1). Write F = K + D for K compact and D a
polyhedral convex cone. Now consider a quadratic function q(x) = 1

2x
TAx + bTx

bounded below by γ on F . Hence

inf
x∈F q(x) = inf

y∈K inf
z∈D q(y + z) = inf

y∈K

(
q(y)+ inf

z∈D

[
yTAz+ q(z)

])
≥ γ.

(12.3)
Observe that for fixed y ∈ K the function qy : z �→ yTAz+ q(z) is bounded below
on D by η = γ −maxy′∈K q(y′). Indeed, for z ∈ D we have
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yTAz+ q(z) ≥
(
q(y)+ inf

z′∈D

[
yTAz′ + q(z′)

])
− q(y)

≥ inf
y∈K

(
q(y)+ inf

z′∈D

[
yTAz′ + q(z′)

])
− max

y′∈K
q(y′)

≥ γ − max
y′∈K

q(y′) = η.

Since qy is a quadratic function bounded below on the polyhedral cone D, the inner
infimum is attained at some z = z(y). This is in fact the classical Frank and Wolfe
theorem on a polyhedral cone. In consequence the function f : Rn → R ∪ {−∞}
defined as

f (y) = inf
z∈D

(
yTAz+ q(z)

)
,

satisfies f (y) = yTAz(y) + q(z(y)) > −∞ for every y ∈ K , so the compact
set K is contained in the domain of f . But now a stronger result holds, which
one could call a parametric Frank and Wolfe theorem, and which we shall prove
in Lemma 12.3 below. We show that f is continuous relative to its domain. Once
this is proved, the infimum (12.3) can then be written as

inf
x∈F q(x) = inf

y∈K (q(y)+ f (y)) ,

and this is now attained by the Weierstrass extreme value theorem due to the
continuity of q + f on the compact K . Continuity of f on K is now a consequence
of the following ��
Lemma 12.3 Let D be a polyhedral convex cone and define

f (c) = inf
x∈D

(
cTx + 1

2x
TGx

)
,

where G = GT. Then dom(f ) is a polyhedral convex cone, and f is continuous
relative to dom(f ).

Proof If xTGx < 0 for some x ∈ D, then dom(f ) = ∅, so we may assume for the
remainder of the proof that xTGx ≥ 0 for every x ∈ D. The proof is now divided
into three parts. In part 1) we establish a formula for the domain dom(f ). In part 2)
we use this formula to show that dom(f ) is polyhedral, and in part 3) we show that
the latter implies continuity of f relative to dom(f ).

(1) We start by proving that

dom(f ) =
{
c : cTx ≥ 0 for every x ∈ D such that xTGx = 0

}
. (12.4)
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The inclusion ⊆ being obvious, we have to prove the following implication:

cTx ≥ 0 for every x ∈ D such that xTGx = 0 %⇒ inf
x∈D

(
cTx + 1

2x
TGx

)
> −∞.

We establish this by induction on the number l of generators of D. The case l = 1
being clear, let l > 1, and suppose the implication is correct for every polyhedral
convex cone D′ with l′ < l generators. Let c be such that cTx ≥ 0 for every x ∈ D

having xTGx = 0. We have to show that c ∈ dom(f ). Assume on the contrary that

inf
x∈D

(
cTx + 1

2x
TGx

)
= −∞, (12.5)

and choose a sequence xk ∈ D with ‖xk‖ → ∞ such that

cTxk + 1
2x

T
k Gxk −→ −∞. (12.6)

Passing to a subsequence, we can assume that the sequence yk = xk/‖xk‖ converges
to some y ∈ D. We must have yTGy = 0, as otherwise we would have cTxk +
1
2x

T
k Gxk = ‖xk‖ cTyk + 1

2 ‖xk‖2 yT
k Gyk −→ +∞, a contradiction. Hence, by our

assumption, cTy ≥ 0. We cannot have cTy > 0, as otherwise for large enough k we
would have cTxk = ‖xk‖ cTyk > 0 and thus cTxk+ 1

2x
T
k Gxk > 0 due to xT

k Gxk ≥ 0,
which is impossible because of (12.6). Therefore cTy = 0. This will be used later.

Collecting more facts about y, note that as a consequence of our standing
assumption xTGx ≥ 0 for x ∈ D, y is a minimizer of the quadratic form 1

2x
TGx

over D, which implies that Gy belongs to the positive polar cone of D, that is,
xTGy ≥ 0 for every x ∈ D. This property will also be used below.

Let E = {e1, . . . , el} be the set of generating rays of D, and for i =
1, . . . , l denote by Di and D̂i the cones generated by E \ {ei} and (E \ {ei}) ∪
{y} , respectively. As the induction hypothesis applies to each Di , we have

infx∈Di

(
cTx + 1

2x
TGx

)
> −∞ for every i, so the infimum m of cTx + 1

2x
TGx

over
l⋃

i=1
Di is finite.

Now observe that

D =
l⋃

i=1

D̂i . (12.7)

Indeed, the inclusion ⊇ being clear, take x ∈ D and write it as x = ∑l
i=1 λie

i for
certain λi ≥ 0. Since y ∈ D \ {0}, we have y = ∑

i∈I μie
i for some ∅ �= I ⊂

{1, . . . , l} and μi > 0. Put ν = min{λi/μi : i ∈ I } =: λi0/μi0 , then
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x =
∑
i∈I

λie
i +

∑
j �∈I

λj e
j + ν

(
y −

∑
i∈I

μie
i

)
=
∑
i∈I

(λi − νμi) e
i +

∑
j �∈I

λj e
j + νy.

Since λi − νμi ≥ 0 for every i ∈ I , and λi0 − νμi0 = 0, we have shown x ∈ D̂i0 .
That proves (12.7).

Now, using (12.7), for every x ∈ D there exist i ∈ {1, . . . , l} , z ∈ Di, and
λ ≥ 0 such that x = z + λy. We then have cTx + 1

2x
TGx = cTz + λcTy +

1
2z

TGz + λzTGy + 1
2λ

2yTGy = cTz + 1
2z

TGz + λzTGy ≥ cTz + 1
2z

TGz ≥ m,

which gives infx∈D
(
cTx + 1

2x
TGx

)
= m, contradicting (12.5). This shows that

our claim (12.4) was correct.
(2) Now by the Farkas-Minkowski-Weyl theorem (cf. [17, Thm. 19.1] or [18,

Cor. 7.1a]) the polyhedral cone D is the linear image of the positive orthant of a
space R

p of appropriate dimension, i.e. D = {Zu : u ∈ R
p, u ≥ 0}. Using (12.4),

this implies

dom(f ) = {c : cTZu ≥ 0 for every u ≥ 0 such that uTZTGZu = 0}.

Now observe that if u ≥ 0 satisfies uTZTGZu = 0, then it is a minimizer of
the quadratic function uTZTGZu on the cone u ≥ 0, hence ZTGZu ≥ 0 by the
Kuhn-Tucker conditions. Therefore we can write the set P = {u ∈ R

p : u ≥
0, uTZTGZu = 0} as

P =
⋃

I⊂{1,...,p}
PI ,

where the PI are the polyhedral convex cones

PI = {u ≥ 0 : ZTGZu ≥ 0, ui = 0 for all i ∈ I, (ZTGZu)j = 0 for all j �∈ I }.

For every I ⊂ {1, . . . , p} choose mI generators uI1, . . . , uImI
of PI . Then,

dom(f ) =
{
c : cTZu ≥ 0 for every u ∈ P

}
(12.8)

=
{
c : cTZu ≥ 0 for every u ∈⋃

I⊂{1,...,p} PI

}
=⋂

I⊂{1,...,p}
{
c : cTZu ≥ 0 for every u ∈ PI

}
=⋂

I⊂{1,...,p}
{
c : cTZuIj ≥ 0 for all j = 1, . . . , mI

}
.

Since a finite intersection of polyhedral cones is polyhedral, this proves that dom(f )

is a polyhedral convex cone.
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(3) To conclude, continuity of f relative to its domain now follows from
polyhedrality of dom(f ), and using [17, Thm. 10.2], since f is clearly concave
and upper semicontinuous. This completes the proof of (2) %⇒ (1).

(1) %⇒ (3) was proved in Proposition 12.2. Let us prove (3) %⇒ (2). By
Mirkil’s theorem (Lemma 12.1) it suffices to show that every orthogonal projection
P(F) is closed. Suppose this is not the case, and let y ∈ P(F) \ P(F). Let L =
y + ker(P ), then F ∩ L = ∅. Now choose yk ∈ F such that P(yk) → P(y) = y.
Then yk = P(yk) + zk with zk ∈ ker(P ). Hence P(y) + zk ∈ L, but ‖(P (yk) +
zk) − (P (y) + zk)‖ → 0, which shows dist(F,L) = 0. That means that F has an
f -asymptote, a contradiction. ��
Remark 12.13 The main implication (2) %⇒ (1) in Theorem 12.2 was first proved
by Kummer [12]. Our proof of (2) %⇒ (1) is slightly stronger in so far as it gives
additional information on the polyhedrality of the domain of f in Lemma 12.3.

Remark 12.14 We refer to Bank et al. [2, Thm. 5.5.1 (4)] for a result related to
Lemma 12.3 in the case where G � 0. For the indefinite case see also Tam [19]. For
further comments on this result, see also Klatte [4].

Remark 12.15 The statement of Theorem 12.2 is no longer correct if one drops the
hypothesis that F is a Motzkin set. We take the convex F = {(x, y) ∈ R

2 : x >

0, y > 0, xy ≥ 1}, then F , being limited by a hyperbola, has f -asymptotes, hence
is not qFW, but 0+F is the positive orthant, which is polyhedral.

Corollary 12.7 A Motzkin decomposable set F without f -asymptotes is Frank-
and-Wolfe.

Proof Since F has no f -asymptotes and is convex, it is a qFW -set by Theo-
rem 12.1. But then by Theorem 12.2, F is even a FW -set. ��
Remark 12.16 Let F = K + 0+F = K +D be a Motzkin set, then as our analysis
shows, we need 0+F to be polyhedral if we want all affine images T (F ) of F closed.
Naturally, this leaves still room to investigate when or whether for a fixed affine
mapping T the image T (F ) is closed. The latter reduces to the question whether
T (D) is closed, and in [13, Sect. 5] the authors relate this to infeasibility of suitable
conic linear programs. For cones D their notion of asymptote coincides with Klee’s
f -asymptotes, which is at the basis of our Definition 12.2.

12.5 Invariance Properties of Motzkin FW-Sets

We have seen in Example 12.1 that finite intersections of FW -sets need no longer be
FW -sets, not even when convexity is assumed. In contrast, the class of qFW -sets
turned out closed under finite intersections. This raises the question whether more
amenable sub-classes of the class of FW-sets with better invariance properties may
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be identified. In response we show in this chapter that the class of Motzkin FW-sets,
for short FWM-sets, is better behaved with regard to invariance properties.

Lemma 12.4 Consider a set of the form K + D, where K is compact and D is a
polyhedral closed convex cone in R

n. Let L be a linear subspace of Rn. Then there
exists a compact set K0 such that (K +D) ∩ L = K0 + (D ∩ L).

Proof 1) We assume for the time being that the cone D ∩ L is pointed. For fixed
x ∈ K consider the polyhedron Px := (x + D) ∩ L. Define M(Px) = {x′ ∈ Px :
(x′ − (D ∩ L)) ∩ Px = {x′}}, and let K(Px) be the closed convex hull of M(Px).
Then according to [9, Thm. 19] the set K(Px) is compact, and we have the minimal
Motzkin decomposition Px = K(Px) + (D ∩ L). This uses the fact that D ∩ L is
the recession cone of Px . It follows that

(K +D) ∩ L =
⋃
x∈K

(x +D) ∩ L =
⋃
x∈K

K(Px)+ (D ∩ L),

so all we have to do is show that the set
⋃

x∈K K(Px) is bounded, as then its
closure K0 is the compact set announced in the statement of the Lemma. To
prove boundedness of

⋃
x∈K K(Px) it clearly suffices to show that

⋃
x∈K M(Px)

is bounded.
Let F be the finite set of faces of D, where we assume that D itself is a face. Let

x′ ∈ M(Px), then x′ is in the relative interior of one of the faces x + F , F ∈ F, of
the shifted cone x +D.

We divide the faces F ∈ F of the cone D into two types: F1 is the class of those
faces F ∈ F for which there exists d ∈ L, d �= 0, such that d is a direction of
recession of F , i.e., those where F ∩L does not reduce to {0}. The class F2 gathers
the remaining faces of D which are not in the class F1.

Now suppose the set
⋃

x∈K M(Px) is unbounded. Then there exists a sequence
xk ∈ K and x′k ∈ M(Pxk ) with ‖x′k‖ → ∞. From the above we know that each x′k is
in the relative interior of xk+Fk for some Fk ∈ F. Since there are only finitely many
faces, we can extract a subsequence, also denoted xk and satisfying ‖x′k‖ → ∞,
such that the x′k are relative interior points of xk +F for the same fixed face F ∈ F.
Due to compactness of K we may, in addition, assume that xk → x ∈ K . Using the
definition of M(Pxk ) write x′k = xk+ tkdk ∈ L with dk ∈ F ⊂ D, ‖dk‖ = 1, tk > 0,
tk →∞. Passing to yet another subsequence, assume that dk → d, where ‖d‖ = 1.
It follows that d ∈ L, because in the expression x′k/tk = xk/tk + dk the middle term
tends to 0 due to compactness of K and tk → ∞, while the left hand term is in L

because x′k belongs to L. Since F is a cone, it also follows that x + R+d ⊂ x + F ,
hence d ∈ F . This shows that the face F is in the class F1.

2) So far we have shown that
⋃

F∈F2
{x′ ∈ M(Px) : x ∈ K, x′ ∈ ri(x + F)} is a

bounded set. It remains to prove that this set contains already all points x′ ∈ M(Px),
x ∈ K , i.e., that x′ ∈ M(Px) cannot be a relative interior point of any of the faces
x + F with F ∈ F1.
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3) Contrary to what is claimed, consider x ∈ K\L such that x′ ∈ M(Px) satisfies
x′ ∈ ri(x+F) for some F ∈ F1. By definition of the class F1 there exists d ∈ L∩F ,
d �= 0. Since x′ ∈ L by the definition of M(Px), we have x′ +Rd ⊂ L. But this line
is also contained in x+ span(F ), because we have d ∈ span(F ) and x′ = x+ d ′ for
some d ′ ∈ F , hence x′ + Rd ⊂ x + span(F ).

Since x′ is a relative interior point of x + F , there exists ε > 0 such that Nε =
{x′ + sd : |s| < ε} is contained in x + F . Since d ∈ F ∩ L ⊂ D ∩ L, we have
arrived at a contradiction with the fact that x′ ∈ M(Px). Namely, moving in Nε we
can stay in Px while going from x′ slightly in the direction of−d ∈ −(D∩L). This
contradiction shows that what was claimed in 2) is true. The Lemma is therefore
proved for pointed D ∩ L.

4) Suppose now D is allowed to contain lines. With a change of coordinates
we may arrange that Rn = R

m × R
p and D ⊂ R

m × {0}, where the possibility
p = 0 is not excluded and corresponds to the case where D − D = R

n. Now
consider the space R

m × R
m × R

p and define the cone D̃ ⊂ R
m × R

m × R
p as

D̃ = {(x+, x−, 0) : x± ∈ R
m, x± ≥ 0, x+ − x− ∈ D}. Then D̃ is polyhedral and

pointed. Let T be the mapping (x+, x−, y) �→ (x+−x−, y), then T (D̃) = D. Since
T maps Rm×R

m×R
p onto R

m×R
p, there exists a compact set K̃ ⊂ R

m×R
m×R

p

such that T (K̃) = K . Put L̃ = T −1(L). Now since D̃ is pointed, the first part of the
proof gives a compact K̃0 ⊂ R

m×R
m×R

p such that (K̃+D̃)∩L̃ = K̃0+(D̃∩L̃).
Applying T on both sides, and using the fact that L̃ is a pre-image, we deduce
(K +D) ∩ L = T (K̃0)+ (D ∩ L). On putting K0 = T (K̃0) which is compact, we
get the desired statement (K +D) ∩ L = K0 + (D ∩ L). That completes the proof
of the Lemma. ��
Corollary 12.8 Any finite intersection of sets of the form K + D with K compact
and D a polyhedral convex cone is again a set of this form.

Proof It suffices to consider the case of two sets Fi = Ki + Di in R
n, i = 1, 2,

with compact Ki and Di polyhedral convex cones. We build the set F = F1×F2 in
R
n × R

n, which is of the same form, because trivially (K1 +D1) × (K2 +D2) =
(K1×K2)+(D1×D2), and since the product of two polyhedral cones is a polyhedral
cone.

Now by Lemma 12.4 the intersection of F1×F2 with the diagonal Δ = {(x, x) :
x ∈ R

n} is a set of the form K + D with K compact and D a polyhedral convex
cone, because the diagonal is a linear subspace. Finally, F1 ∩ F2 is the image of
K+D under the projection p : (x, y)→ x onto the first coordinate, hence is of the
form p(K)+ p(D), and since p(D) is a polyhedral convex cone, we are done. ��

We conclude with the following invariance property of the class FWM:

Proposition 12.9 If the pre-image of a FWM-set under an affine mapping is
nonempty, then it is a FWM-set.

Proof Let T be an affine mapping and F be a FWM-set such that T −1 (F ) �= ∅.
Since translates of FWM-sets are FWM , there is no loss of generality in assuming
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that T is linear. Then the restriction of T to ker(T )⊥ is a bijection from ker(T )⊥
onto R (T ), and one has

T −1 (F ) = (
T|ker(T )⊥

)−1
(F ∩ R (T ))+ ker(T ).

Since R (T ) is a subspace, hence a convex polyhedron, and T −1 (F ) �= ∅, the set
F ∩R (T ) is FWM by Corollary 12.8. Since

(
T|ker(T )⊥

)−1 is an isomorphism from

R (T ) onto ker(T )⊥, the set
(
T|ker(T )⊥

)−1
(F ∩ R (T )) is FWM . Hence it suffices

to observe that ker(T ), being a subspace, is FWM , and that the class of FWM-sets
is closed under taking sums. ��
Remark 12.17 It is worth mentioning that in general the affine pre-image of a
Motzkin decomposable set need not be Motzkin decomposable. To wit, consider
the ice cream cone F in R

3 and the mapping T : (x1, x2, x3) �→ (1, x2, x3), then the
linear function x3 − x2 does not attain its infimum on T −1(F ), which proves that
T −1(F ) is not Motzkin decomposable.

Remark 12.18 In Proposition 12.5 we had proved that the affine pre-image T −1(F )

of a FW -set is FW if F is contained in the range of T . A priori this additional
range condition cannot be removed, because we have no result which guarantees
that F ∩ range(T ) is still a FW -set (if nonempty). As we just saw, this range
condition can be removed for FWM-sets, and also for qFW -sets, so these two
classes are invariant under affine pre-images without further range restriction.

Open Question Let F be a FW-set and L a linear subspace, is F ∩ L a FW-set?

Remark 12.19 Altogether we have found the class of FWM-sets to be closed under
finite products, finite intersections, images and pre-images under affine maps. If
we call a set FWMU if it is a finite union of FWM-sets, then sets in this class
are still FW-sets. By De Morgan’s law the class FWMU remains closed under
finite intersections. The class FWMU remains also closed under affine pre-images,
because the pre-image of a union coincides with the union of the pre-images.
Similarly the class FWMU remains closed under affine images.

12.6 Parabolic Sets

As we have seen in Theorem 12.2, the search for new FW-sets does not lead very far
beyond polyhedrality within the Motzkin class, because if a Motzkin set F = K+D

is to be FW , then its recession cone D = 0+F must already be polyhedral. The
question is therefore whether one can find FW -sets which exhibit non-polyhedral
asymptotic behavior, those then being necessarily outside the Motzkin class. The
following result, with the terminology slightly adapted, shows that such FW-sets do
indeed exist.
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Theorem 12.3 (Luo and Zhang [14]) Let P be a closed convex polyhedron and
define F = {x ∈ P : xTQx + q/x + c ≤ 0}, where Q = QT � 0. Then F is a
FW -set.

The result generalizes the Frank and Wolfe theorem in the following sense: if
we add just one convex quadratic constraint xTQx + qTx + c ≤ 0 to a linearly
constrained quadratic program, then finite infima of quadratics are still attained. As
Example 12.1 shows, adding a second convex quadratic constraint already fails.

The question is now: can the Luo-and-Zhang theorem, just like the Frank-and-
Wolf theorem, be extended from polyhedra P to FWM-sets F = K + D? That
means, if F = K + D is a FWM-set, and if Q = QT � 0, will the set F = {x ∈
F : xTQx+qTx+ c ≤ 0} still be a FW-set ? We show by way of a counterexample
that the answer is in the negative.

Example 12.3 We consider the cylinder F = {(x1, x2, x3, x4) ∈ R
4 : (x1 − 1)2 +

x2
2 ≤ 1}. Note that F is a FWM-set, because it can be represented as F = K + L

for the compact convex set K = {(x1, x2, 0, 0) ∈ R
4 : (x1 − 1)2 + x2

2 ≤ 1} and the
subspace L = {0} × {0} × R× R.

Now we add the convex quadratic constraint x2
3 ≤ x4 to the constraint set F ,

which leads to the set

F = {x ∈ F : x2
3 ≤ x4} = {x ∈ R

4 : (x1 − 1)2 + x2
2 ≤ 1, x2

3 ≤ x4}.

We will show that F is no longer a FW-set. This means that the extension of
Theorem 12.3 from polyhedra P to FWM-sets F fails.

Consider the quadratic function q(x) = x4x1 − 2x2x3 + 2. We claim that q is
bounded below on F by 0. Indeed, since x1 ≥ 0 on the feasible domain F, we
have x4x1 ≥ x2

3x1 on the feasible domain, hence q(x) ≥ x2
3x1 − 2x2x3 + 2 =

q(x1, x2, x3, x
2
3), the expression on the right no longer depending on x4. Let us

compute the infimum of that expression on F. This comes down to globally solving
the program

(P )
minimize x2

3x1 − 2x2x3 + 2
subject to (x1 − 1)2 + x2

2 ≤ 1

and it is not hard to see that (P ) has infimum 0, but that this infimum is not attained.
(Solve for x3 with fixed x1, x2 and show that the value at (x1, x2, x2/x1) goes to 0
as x1 → 0+, (x1 − 1)2 + x2

2 = 1, but that 0 is not attained).
Now if xk ∈ F is a minimizing sequence for q, then ξk := (xk1 , x

k
2 , x

k
3 , (x

k
3 )

2) ∈
F is also feasible and gives q(xk) ≥ q(ξk), so the sequence ξk is also minimizing,
showing that the infimum of q on F is the same as the infimum of (P ), which is zero.
But then the infimum of q on F could not be attained, as otherwise the infimum of
(P ) would also be attained. Indeed, if the infimum of q on F is attained at x̄ ∈ F,
then it must also be attained at ξ̄ = (x̄1, x̄2, x̄3, x̄

2
3) ∈ F because q(x̄) ≥ q(ξ̄ ), and

then the infimum of (P ) is attained at (x̄1, x̄2, x̄3), contrary to what was shown.
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Remark 12.20 We can write the set F as F = K ′ × F ′, where K ′ = {(x1, x2) :
(x1 − 1)2 + x2

2 ≤ 1} is compact convex, and where F ′ is the Luo-Zhang set F ′ =
{(x3, x4) : x2

3 ≤ x4}, which by Theorem 12.3 is a FW-set. This shows that the cross
product of a convex FW-set (which is not FWM) and a compact convex set need no
longer be a FW-set.

Remark 12.21 We can also write F = (K + L) ∩ (F +M), where L,M are linear
subspaces of R4. Indeed, K,L are as in Example 12.3, while F = {(0, 0, x3, x4) :
x2

3 ≤ x4} and M = R×R×{0}×{0}. Here K+L is FWM, while F+M is a FW-set
by Theorem 12.3. Hence the intersection of a FWM-set and a FW-set (which is not
FWM) need not be FW.

Remark 12.22 Note that F is a qFW -set by Proposition 12.6, see also [14, Cor. 2].
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Chapter 13
A Note on the Equivalence of Operator
Splitting Methods

Walaa M. Moursi and Yuriy Zinchenko

Abstract This note provides a comprehensive discussion of the equivalences
between some splitting methods. We survey known results concerning these equiva-
lences which have been studied over the past few decades. In particular, we provide
simplified proofs of the equivalence of the ADMM and the Douglas–Rachford
method and the equivalence of the ADMM with intermediate update of multipliers
and the Peaceman–Rachford method.

Keywords Alternating Direction Method of Multipliers (ADMM) ·
Chambolle–Pock method · Douglas–Rachford algorithm · Dykstra method ·
Equivalence of splitting methods · Fenchel–Rockafellar duality ·
Peaceman–Rachford algorithm
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13.1 Introduction

Splitting methods have become popular in solving convex optimization problems
that involve finding a minimizer of the sum of two proper lower semicontin-
uous convex functions. Among these methods are the Douglas–Rachford and
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the Peaceman–Rachford methods introduced in the seminal work of Lions and
Mercier [24], the forward-backward method (see, e.g., [12, 17] and [29]), Dykstra’s
method (see, e.g., [3] and [10]), and the Method of Alternating Projections (MAP)
(see, e.g., [19]).

When the optimization problem features the composition of one of the functions
with a bounded linear operator, a popular technique is the Alternating-Direction
Method of Multipliers (ADMM) (see [22, Section 4], [16, Section 10.6.4] and also
[7, Chapter 15]). The method has a wide range of applications including large-
scale optimization, machine learning, image processing and portfolio optimization,
see, e.g., [9, 15] and [20]. A powerful framework to use ADMM in the more
general setting of monotone operators is developed in the work of Briceño-Arias
and Combettes [13] (see also [8] and [14]). Another relatively recent method is the
Chambolle–Pock method introduced in [11].

Equivalences between splitting methods have been studied over the past four
decades. For instance, it is known that ADMM is equivalent to the Douglas–
Rachford method [24] (see, also [21]) in the sense that with a careful choice of
the starting point, one can prove that the sequences generated by both algorithms
coincide. (See, e.g., [22, Section 5.1] and [6, Remark 3.14].) A similar equivalence
holds between ADMM (with intermediate update of multiplier) and Peaceman–
Rachford method [24] (see [22, Section 5.2]). In [25], the authors proved the
correspondence of Douglas–Rachford and Chambolle–Pock methods.

The rest of this paper is organized as follows: Section 13.2 provides a brief
literature review of ADMM, Douglas–Rachford and Peaceman–Rachford methods.
In Sections 13.3 and 13.4 we explicitly describe the equivalence of ADMM (respec-
tively ADMM with intermediate update of multipliers) and Douglas–Rachford
(respectively Peaceman–Rachford) method introduced by Gabay in [22, Sec-
tions 5.1&5.2]. We provide simplified proofs of these equivalences. Section 13.5
focuses on the recent work of O’Connor and Vandenberghe concerning the equiva-
lence of Douglas–Rachford and Chambolle–Pock methods (see [25]). Our notation
is standard and follows largely, e.g., [5].

13.2 Three Techniques

In this paper, we assume that

X and Y are real Hilbert spaces,

and that
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f : X→ ]−∞,+∞] , g : Y → ]−∞,+∞] are convex lower

semicontinuous and proper.

Alternating-Direction Method of Multipliers (ADMM) In the following we
assume that1

L : Y → X is linear such that L∗L is invertible,

that

argmin(f ◦ L+ g) �= ∅, (13.1)

and that

0 ∈ sri(dom f − L(dom g)), (13.2)

where sri S denotes the strong relative interior of a subset S of X with respect to the
closed affine hull of S. When X is finite-dimensional we have sri S = ri S, where
ri S is the relative interior of S defined as the interior of S with respect to the affine
hull of S.

Consider the problem

minimize
y∈Y f (Ly)+ g(y). (13.3)

Note that (13.1) and (13.2) imply that (see, e.g., [5, Proposition 27.5(iii)(a)1])

argmin(f ◦L+g) = zer(∂(f ◦L)+∂g) = zer(L∗ ◦(∂f )◦L+∂g) �= ∅. (13.4)

In view of (13.4), solving (13.3) is equivalent to solving the inclusion:

Find y ∈ Y such that 0 ∈ L∗(∂f (Ly))+ ∂g(y). (13.5)

The augmented Lagrangian associated with (13.3) is the function

1The adjoint of L is the unique operator L∗ : X → Y that satisfies 〈Ly, x〉 = 〈y, L∗x〉 (∀(x, y) ∈
X × Y ).
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L : X×Y×X→ ]−∞,+∞] : (a, b, u) �→ f (a)+g(b)+〈u,Lb−a〉+1

2
‖Lb−a‖2.

(13.6)
The ADMM (see [22, Section 4] and also [16, Section 10.6.4]) applied to
solve (13.3) consists in minimizing L over b then over a and then applying a
proximal minimization step with respect to the Lagrange multiplier u. The method
applied with a starting point (a0, u0) ∈ X × X generates three sequences (an)n∈N;
(bn)n≥1 and (un)n∈N via (∀n ∈ N):

bn+1 :=(L∗L+ ∂g)−1(L∗an − L∗un), (13.7a)

an+1 :=Proxf (Lbn+1 + un), (13.7b)

un+1 :=un + Lbn+1 − an+1, (13.7c)

where Proxf : X→ X : x �→ argminy∈X
(
f (y)+ 1

2‖x − y‖2
)

.

Let (xn)n∈N be a sequence in X and let x ∈ X. In the following we shall use xn →
x (respectively xn ⇀ x) to indicate that (xn)n∈N converges strongly (respectively
weakly) to x.

Fact 13.1 (Convergence of ADMM (See [22, Theorem 4.1])) Let (a0, u0) ∈ X×
X, and let (an)n∈N, (bn)n≥1 and (un)n∈N be defined as in (13.7). Then, there exists
b ∈ Y such that bn ⇀ b ∈ argmin(f ◦ L+ g).

The Douglas–Rachford Method Suppose that Y = X and that L = Id. In this
case Problem (13.3) becomes

minimize
x∈X f (x)+ g(x). (13.8)

The Douglas–Rachford (DR) method, introduced in [24], applied to the ordered
pair (f, g) with a starting point x0 ∈ X to solve (13.8) generates two sequences
(xn)n∈N and (yn)n∈N via:

yn :=Proxf xn, (13.9a)

xn+1 :=T DRxn, (13.9b)

where

TDR := T DR(f, g) = 1
2 (Id+RgRf ) = Id−Proxf +Proxg(2 Proxf − Id),

(13.10)
and where Rf := 2 Proxf − Id.

To lighten the notation, in the sequel we shall use T DR to denote T DR(f, g). Let
T : X→ X. Recall that the set of fixed points of T , denoted by Fix T , is defined as
Fix T := {

x ∈ X
∣∣ x = T x

}
.
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Fact 13.2 (Convergence of Douglas–Rachford Method (See, e.g., [24, Theo-
rem 1] or [5, Corollary 28.3])) Let x0 ∈ X and let (xn)n∈N and (yn)n∈N be defined
as in (13.9). Then, there exists x ∈ Fix TDR such that xn ⇀ x and yn ⇀ Proxf x ∈
argmin(f + g).

The Peaceman–Rachford Method Let h : X → ]−∞,+∞] be proper and let
β > 0. We say that h is strongly convex if f − β

2 ‖·‖2 is convex, i.e., (∀(x, y) ∈
dom f ×dom f ) (∀α ∈ ]0, 1[) we have f (αx+ (1−α)y)+α(1−α)φ(‖x−y‖)+
β
2 ‖x − y‖2 ≤ αf (x)+ (1− α)f (y).

When g is strongly convex, the Peaceman–Rachford (PR) method, introduced in
[24], can be used to solve (13.8). In this case, given x0 ∈ X, PR method generates
the sequences (xn)n∈N and (yn)n∈N via:

yn :=Proxf xn, (13.11a)

xn+1 :=TPRxn, (13.11b)

where

TPR = TPR(f, g) = RgRf = (2 Proxg − Id)(2 Proxf − Id). (13.12)

To lighten the notation, in the sequel we shall use TPR to denote T PR(f, g).

Fact 13.3 (Convergence of Peaceman–Rachford Method (See, e.g., [24, Propo-
sition 1] or [5, Proposition 28.8])) Suppose that g is strongly convex. Let y be the
unique minimizer of f + g, let x0 ∈ X and let (xn)n∈N and (yn)n∈N be defined as
in (13.11). Then yn → y.

In the sequel we use the notation

g∨ : X→ ]−∞,+∞] : x �→ g(−x). (13.13)

Recall that the Fenchel–Rockafellar dual of (13.3) is

minimize
x∈X f ∗(x)+ g∗(−L∗x). (13.14)

Remark 13.1

(i) One can readily verify that ∂g∨ = (− Id) ◦ ∂g ◦ (− Id). Therefore, in view of
[27, Theorem A] and [20, Lemma 3.5 on page 125 and Lemma 3.6 on page 133]
(see also [4, Corollaries 4.2 and 4.3]) we have2

TDR(f, g) = TDR(f
∗, g∗∨), (13.15)

2It is straightforward to verify that g∨∗ = (g∗)∨ (see, e.g., [5, Proposition 13.23(v)]).
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and

TPR(f, g) = TPR(f
∗, g∗∨). (13.16)

(ii) When (L, Y ) = (Id, X), inclusion (13.5) reduces to: Find y ∈ X such that 0 ∈
∂f (y)+∂g(y) and the dual inclusion (corresponding to the Fenchel–Rockafellar
dual (13.14)) is: Find y ∈ X such that 0 ∈ ∂f ∗(y) − ∂g∗(−y) = (∂f )−1y −
(∂g)−1(−y), which in this case coincide with the Attouch–Thera dual of (13.5)
(see [2]).

One can use DR method to solve (13.14) where (f, g) in Fact 13.2 is replaced by
(f ∗, g∗ ◦ (−L∗)). Recalling (13.15) we learn that TDR = TDR(f

∗, g∗ ◦ (−L∗)) =
TDR(f

∗∗, (g∗ ◦ (−L∗))∨∗) = TDR(f, (g
∗ ◦ L∗)∗), where the last identity follows

from [5, Proposition 13.44].
In view of (13.10) (13.15), and [5, Proposition 15.23(v)] we have

13.3 ADMM and Douglas–Rachford Method

In this section we discuss the equivalence of ADMM and DR method. This
equivalence was first established by Gabay in [22, Section 5.1] (see also [6,
Remark 3.14]). Let (x0, a0, u0) ∈ X3. Throughout the rest of this section, we
assume that the sequences (xn)n∈N and (yn)n∈N are as defined in (13.9), i.e.,

(xn+1, yn)n∈N = (TDRxn,Proxf xn), (13.19)

T DR = T DR(f ∗, g∗ ◦ (−L∗)) = T DR(f, (g∗ ◦ L∗)∗)

= Id − Proxf + Prox(g∗◦L∗)∗(2 Proxf − Id). (13.17)

Similarly, under additional assumptions (see Fact 13.3), one can use PR method to
solve (13.14) where (f, g) in Theorem 13.3 is replaced by (f ∗, g∗ ◦ (−L∗)). In this
case (13.12), (13.16) and [5, Proposition 15.23(v)] imply that

TPR = TPR(f ∗, g∗ ◦ (−L∗)) = TPR(f, (g∗ ◦ L∗)∗)

= (2 Prox(g∗◦L∗)∗ − Id)(2 Proxf − Id). (13.18)

For completeness, we provide a concrete proof of the formula for Prox(g∗◦L∗)∗
in Appendix 1 (see Proposition 13.3(viii) below). We point out that the formula for
Prox(g∗◦L∗)∗ in a more general setting is given in [22, Proposition 4.1] (see also [16,
Section 10.6.4]).
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TDR := TDR(f, (g
∗ ◦ L∗)∗) = Id−Proxf +L(L∗L+ ∂g)−1L∗(2 Proxf − Id).

(13.20)
Note that the second identity in (13.20) follows from (13.17) and Proposi-
tion 13.3(viii). We also assume that

(an, un, bn+1)n∈N is defined as in (13.7).

The following lemma will be used later to clarify the equivalence of DR and
ADMM.

Lemma 13.1 Let (b−, a−, u−) ∈ Y ×X ×X and set

(b, a, u) := ((L∗L+ ∂g)−1(L∗a− − L∗u−),Proxf (Lb + u−), u− + Lb − a),

(13.21a)

(b+, a+, u+) := ((L∗L+ ∂g)−1(L∗a − L∗u),Proxf (Lb+ + u), u+ Lb+ − a+).
(13.21b)

Then

TDR(Lb + u−) = Lb+ + u, (13.22a)

Proxf TDR(Lb + u−) = a+. (13.22b)

Proof Indeed, it follows from (13.20), (13.21), (13.22a) and (13.22b) that

TDR(Lb + u−) = (Lb + u−)− Proxf (Lb + u−)

+ L(L∗L+ ∂g)−1L∗(2 Proxf (Lb + u−)− (Lb + u−))
(13.23a)

= (Lb + u−)− a + L(L∗L+ ∂g)−1L∗(2a − (Lb + u−))
(13.23b)

= (Lb + u−)− a + L(L∗L+ ∂g)−1L∗(a − (Lb + u− − a))

(13.23c)

= u+ L(L∗L+ ∂g)−1(L∗a − L∗u) (13.23d)

= Lb+ + u, (13.23e)

where (13.23a) follows from (13.20), (13.23b) and (13.23d) follow from (13.21a),
and (13.23e) follow from (13.21b). This proves (13.22a). Now (13.22b) follows
from combining (13.22a) and (13.21b). ��

We now prove the main result in this section by induction.
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Theorem 13.4 The following hold:

(i) (DR as ADMM Iteration) Using DR method with a starting point x0 ∈ X to
solve (13.14) is equivalent to using ADMM with a starting point (a0, u0) :=
(Proxf x0, x0 − Proxf x0) to solve (13.3), in the sense that (xn)n≥1 = (Lbn +
un−1)n≥1 and (yn)n∈N = (an)n∈N.

(ii) (ADMM as DR Iteration) Using ADMM with a starting point (a0, u0) ∈ X×X
to solve (13.3) is equivalent to using DR method with a starting point x0 =
Lb1 + u0 to solve (13.14), in the sense that (xn)n∈N = (Lbn+1 + un)n∈N and
(yn)n∈N = (an+1)n∈N.

Proof For simplicity, set T = TDR. (i): Note that (13.19) implies that y0 = a0. Now,
when n = 1 we have

x1 = T x0 = x0 − Proxf x0 + L(L∗L+ ∂g)−1L∗(2 Proxf x0 − x0)

(by (13.17))

= x0 − a0 + L(L∗L+ ∂g)−1L∗(2a0 − x0) (by (13.19))

= (x0 − a0)+ L(L∗L+ ∂g)−1L∗(a0 − (x0 − a0))

= u0 + L(L∗L+ ∂g)−1L∗(a0 − u0)

= u0 + Lb1. (by (13.7a))

Combining with (13.19) and (13.7b) we get y1 = Proxf T x0 = Proxf x1 =
Proxf (u0 + Lb1) = a1, which verifies the base case. Now suppose for some n ≥ 1
we have xn = Lbn + un−1 and yn = an and use Lemma 13.1 with (b−, a−, u−)
replaced by (bn−1, an−1, un−1) to learn that xn+1 = Lbn+1 + un and yn+1 = an+1.
Consequently, (xn)n≥1 = (Lbn + un−1)n≥1 and (yn)n∈N = (an)n∈N as claimed.

(ii): At n = 0, x0 = Lb1 + u0 = Lb0+1 + u0, and therefore (13.9a) implies
that y0 = Proxf x0 = Proxf (Lb1 + u0) = a1 by (13.7b). Now suppose that for
some n ≥ 0 we have xn = Lbn+1 + un and yn = an+1. The conclusion follows by
applying Lemma 13.1 with (b−, a−, u−) replaced by (bn, an, un). ��

13.4 ADMM and Peaceman–Rachford Method

We now turn to the equivalence of ADMM with intermediate update of multiplier
and PR method. This equivalence was established in [22, Section 5.2]. Given
(a0, u0) ∈ X ×X, the ADMM with an intermediate update of multiplier applied to
solve (13.3) generates four sequences (an)n∈N, (un)n∈N, (bn)n≥1 and (wn)n≥1 via
(∀n ∈ N):

bn+1 :=(L∗L+ ∂g)−1(L∗an − L∗un), (13.24a)

wn+1 :=un + Lbn+1 − an, (13.24b)
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an+1 :=Proxf (Lbn+1 + wn+1), (13.24c)

un+1 :=wn+1 + Lbn+1 − an+1. (13.24d)

Fact 13.5 (Convergence of ADMM with Intermediate Update of Multipliers
(See [22, Theorem 5.4])) Suppose that g is strongly convex. Let (a0, u0) ∈ X×X,
and let (bn)n≥1, (wn)n≥1, (an)n∈N and (un)n∈N be defined as in (13.24). Then, there
exists b ∈ Y such that bn → b ∈ argmin(f ◦ L+ g).

In this section we work under the additional assumption that

g is strongly convex.

Let (x0, a0, u0) ∈ X3. Throughout the rest of this section we assume that the
sequences (xn)n∈N and (yn)n∈N are as defined in (13.11), i.e.,

(xn+1, yn)n∈N = (TPRxn,Proxf xn)n∈N (13.25)

where

TPR := TPR(f, (g
∗ ◦ L∗)∗) = 2L(L∗L+∂g)−1L∗(2 Proxf − Id)−2 Proxf + Id .

(13.26)

Note that the second identity in (13.26) follows from (13.18) and Proposi-
tion 13.3(viii). We also assume that

(an, un, bn+1, wn+1)n∈N is defined as in (13.24).

Before we proceed further, we prove the following useful lemma.

Lemma 13.2 Let (b−, w−, a−, u−) ∈ Y ×X ×X ×X and set

(b,w, a, u) = ((L∗L+ ∂g)−1(L∗a− − L∗u−), u− + Lb − a−,

Proxf (Lb + w),w + Lb − a), (13.27a)

(b+, w+, a+, u+) = ((L∗L+ ∂g)−1(L∗a − L∗u), u+ Lb+ − a,

Proxf (Lb+ + w+), w+ + Lb+ − a+). (13.27b)
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Then

TPR(Lb + w) = Lb+ + w+, (13.28a)

Proxf T PR(Lb + w) = a+. (13.28b)

Proof Indeed, by (13.26), (13.27a) and (13.27b) we have

T PR(Lb + w) = Lb + w − 2 Proxf (Lb + w)

+ 2L(L∗L+ ∂g)−1L∗(2 Proxf (Lb + w)− (Lb + w))

(by (13.26))

= Lb + w − a − a + 2L(L∗L+ ∂g)−1L∗(a − (Lb + w − a))

(by (13.27a))

= u− a + 2L(L∗L+ ∂g)−1L∗(a − u) = u− a + 2Lb+
(by (13.27b))

= Lb+ + w+, (by (13.27b))

which proves (13.28a). Now (13.28b) is a direct consequence of (13.28a) in view of
(13.27b). ��

We are now ready for the main result in this section.

Theorem 13.6 Suppose that g is strongly convex. Then the following hold:

(i) (PR as ADMM Iteration) Using PR method with a starting point x0 ∈ X

to solve (13.14) is equivalent to using ADMM with intermediate update of
multipliers with starting points (a0, u0) := (Proxf x0, x0 − Proxf x0) to solve
(13.3), in the sense that (xn)n≥1 = (Lbn + wn)n≥1 and (yn)n∈N = (an)n∈N.

(ii) (ADMM as PR Iteration) Using ADMM with intermediate update of multipli-
ers with a starting point (a0, u0) ∈ X×X to solve (13.3) is equivalent to using
PR method with starting point x0 = Lb1+w1 to solve (13.14), in the sense that
(xn)n∈N = (Lbn+1 + wn+1)n∈N and (yn)n∈N = (an+1)n∈N.

Proof We proceed by induction. (i): We have

x1 = T PRx0 = x0 − 2 Proxf x0 + L(L∗L+ ∂g)−1L∗(2 Proxf x0 − x0)

(by (13.26))

= x0 − 2a0 + 2L(L∗L+ ∂g)−1L∗(2a0 − x0)

= (x0 − a0)− a0 + 2L(L∗L+ ∂g)−1L∗(a0 − (x0 − a0))

= u0 − a0 + 2Lb1 = u0 − a0 + Lb1 + Lb1

= Lb1 + w1, (by (13.24b))
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which verifies the base case. Now suppose for some n ≥ 1 we have xn = Lbn+wn.

The conclusion follows from applying Lemma 13.2 with (b−, w−, a−, u−) replaced
by (bn−1, wn−1, an−1, un−1) in view of (13.24).

(ii): At n = 0, the base case clearly holds in view of (13.25) and (13.24c). Now
suppose that for some n ≥ 0 we have xn = Lbn+1 + wn+1 and yn = an+1 and use
Lemma 13.2 with (b−, w−, a−, u−) replaced by (bn,wn, an, un) in view of (13.24).

��

13.5 Chambolle–Pock and Douglas–Rachford Methods

In this section we survey the recent work by O’Connor and Vandenberghe [25]
concerning the equivalence of Douglas–Rachford method and Chambolle–Pock
method. (For a detailed study of this correspondence in the more general framework
of the primal-dual hybrid gradient method and DR method with relaxation, as well
as connection to linearized ADMM, we refer the reader to [25].) We work under the
assumption that3

A : X→ Y is linear, σ > 0, τ > 0, and στ‖A‖2 < 1. (13.31)

Consider the problem

minimize
x∈X f (x)+ g(Ax) (13.32)

and its Fenchel–Rockafellar dual given by

minimize
x∈X f ∗(−Ax)+ g∗(x). (13.33)

To proceed further, in the following we assume that

argmin(f + g ◦ A) �= ∅ and 0 ∈ sri(dom g − A(dom f )). (13.34)

Note that (13.34) implies that (see, e.g., [5, Proposition 27.5(iii)(a)1])

argmin(f+g◦A) = zer(∂f+∂(g◦A)) = zer(∂f+A∗◦(∂g)◦A) �= ∅. (13.35)

3In passing, we point out that, when X is a finite-dimensional Hilbert space, the condition
τσ‖A‖2 < 1 can be relaxed to τσ‖A‖2 ≤ 1. The convergence in this case is proved in [18,
Theorem 3.3].



342 W. M. Moursi and Y. Zinchenko

In view of (13.35), solving (13.32) is equivalent to solving the inclusion:

Find x ∈ X such that 0 ∈ ∂f (x)+ A∗(∂g(Ax)). (13.36)

The Chambolle–Pock (CP) method applied with a staring point (u0, v0) ∈ X×Y

to solve (13.32) generates the sequences (un)n∈N, and (vn)n∈N via:

un = Proxτf (un−1 − τA∗vn−1), (13.37a)

vn = Proxσg∗(vn−1 + σA(2un − un−1)), (13.37b)

where τ and σ are as defined in (13.31).

Fact 13.7 (Convergence of Chambolle–Pock Method (See [11, Theorem 1], [30,
Theorem 3.1] and Also [18, Theorem 3.1])) Let (u0, v0) ∈ X×Y and let (un)n∈N
and (vn)n∈N be defined as in (13.37). Then, there exists (u, v) ∈ X × Y such that
(un, vn)n∈N ⇀ (u, v), u ∈ argmin(f + g ◦ A) and v ∈ argmin(f ∗ ◦ (−A∗)+ g∗).

It is known that the method in (13.37) reduces to DR method (see, e.g., [11,
Section 4.2]) when A = Id. We state this equivalence in Proposition 13.1 below.

Proposition 13.1 (DR as a CP Iteration) Suppose that X = Y , and that A =
Id. Then, using DR method, defined as in (13.9), with a starting point x0 ∈ X to
solve (13.32) is equivalent to using CP method with a starting point (u0, v0) ∈{
(u, v)

∣∣ u− v = x0
} ⊆ X ×X to solve (13.32) in the sense that (xn)n∈N = (un −

vn)n∈N and (yn)n∈N = (un)n∈N.

Proof We use induction. When n = 0, the base case is obviously true. Now suppose
that for some n ≥ 0 we have xn = un − vn and yn = un. Then,

xn+1 = Proxf xn − Proxg∗(2 Proxf xn − xn) (13.38a)

= Proxf (un − vn)− Proxg∗(2 Proxf (un − vn)− (un − vn)) (13.38b)

= un+1 − Proxg∗(vn + 2un+1 − un) = un+1 − vn+1. (13.38c)

Here (13.38a) follows from Lemma 13.5 below (applied with γ = 1), (13.38b)
follows from the inductive hypothesis, and (13.38c) follows from (13.37) applied
with (τ, σ,A) replaced by (1, 1, Id). The claim about yn+1 follows directly and the
proof is complete. ��
Chambolle–Pock as a DR Iteration: The O’Connor–Vandenberghe Technique
Let Z be a real Hilbert space. In the following, we assume that C : Z → Y is linear
and that

B : X × Z→ Y : (x, z) �→ Ax + Cz satisfies that στBB∗ = Id. (13.39)
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Note that one possible choice of C is to set C2 := Id−στAA∗, where the existence
of C follows from, e.g., [26, Theorem on page 265]. Now consider the problem

minimize
(x,z)∈X×Z

f̃ (x, z)+ g(B(x, z)), (13.40)

where

f̃ : X × Z→ ]−∞,+∞] : (x, z) �→ f (x)+ ι{0}(z). (13.41)

The following result, proved in [25, Section 4] in the more general framework
of primal-dual hybrid gradient method, provides an elegant way to construct the
correspondence between the DR sequence when applied to solve (13.40) and the
CP sequence when applied to solve (13.32). We restate the proof for the sake of
completeness.

Proposition 13.2 (CP Corresponds to a DR Iteration) Using CP method with
starting point (u0, v0) ∈ X × Z to solve (13.32) corresponds to using DR with
starting point x0 := (u0, 0) − τB∗v0 ∈ X × Z to solve (13.40), in the sense that
(xn)n∈N = ((un, 0)− τB∗vn)n∈N and (yn)n∈N = (un+1, 0)n∈N.

Proof We apply DR to solve (13.40) with (f̃ , g) replaced by (τ f̃ , τg). The proof
proceeds by induction. When n = 0, by assumption we have x0 = (u0, 0)− τB∗v0.
It follows from Proposition 13.4(i)&(vii) below applied with f̃ replaced by τ f̃

that y0 = Prox
τ f̃

x0 = Proxτ f̃ ((u0, 0) − τ(A∗v0, C
∗v0)) = Proxτ f̃ (u0 −

τA∗v0,−τC∗v0) = (Proxτf (u0 − τA∗v0), 0). Now suppose that for some n ≥ 0
we have

xn = (un, 0)− τB∗vn, (13.42a)

yn = (un+1, 0). (13.42b)

Then

(un+1, 0)− τB∗vn+1 = (un+1, 0)− τB∗(Proxσg∗(vn + σA(2un+1 − un)))

(13.43a)

= yn − τB∗(Proxσg∗(vn + σB(2(un+1, 0)− (un, 0))))
(13.43b)

= yn − τB∗(Proxσg∗(στBB∗vn + σB(2(un+1, 0)− (un, 0))))
(13.43c)

= yn − τB∗ Proxσg∗(σB(2(un+1, 0)− ((un, 0)− τB∗vn)))
(13.43d)

= yn − Prox(τg◦B)∗(2yn − xn)) = xn+1, (13.43e)
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where (13.43a) follows from (13.37b), (13.43b) follows from (13.42b) and
Proposition 13.4(iii) below, (13.43c) follows from (13.39), and (13.43e) follows
from (13.42a), Proposition 13.4(viii) and (13.49b) below applied with (γ, g)

replaced by (τ, g ◦ B).
Now by (13.37a) and Proposition 13.4(vii) below we have

(un+2, 0) = (Proxτf (un+1 − τA∗vn+1), 0) (13.44a)

= Prox
τ f̃

(un+1 − τA∗vn+1,−τC∗vn+1) (13.44b)

= Prox
τ f̃

((un+1, 0)− τ(A∗vn+1, C
∗vn+1)) (13.44c)

= Prox
τ f̃

((un+1, 0)− τB∗vn+1) (13.44d)

= Prox
τ f̃

xn+1 = yn+1. (13.44e)

��
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Appendices

Appendix 1

Let A : X→ X be linear. Define

qA : X→ R : x �→ 1
2 〈x,Ax〉. (13.45)

Recall that a linear operator A : X → X is monotone if (∀x ∈ X) 〈x,Ax〉 ≥ 0,
and is strictly monotone if (∀x ∈ X � {0}) 〈x,Ax〉 > 0. Let h : X → R and
let x ∈ X. We say that h is Fréchet differentiable at x if there exists a linear
operator Dh(x) : X → R, called the Fréchet derivative of h at x, such that
lim0 �=‖y‖→0

h(x+y)−h(x)−Dh(x)y
‖y‖ = 0; and h is Fréchet differentiable on X if it is

Fréchet differentiable at every point in X.
The following lemma is a special case of [5, Proposition 17.36].

Lemma 13.3 Let A : X → X be linear, strictly monotone, self-adjoint and
invertible. Then the following hold:

(i) qA and qA−1 are strictly convex, continuous, Fréchet differentiable. Moreover,
(∇qA,∇qA−1) = (A,A−1).

(ii) q∗A = qA−1 .
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Proof Note that, likewise A, A−1 is linear, strictly monotone, self-adjoint (since
(A−1)∗ = (A∗)−1 = A−1) and invertible. Moreover, ranA = ranA−1 = X. (i):
This follows from [5, Example 17.11 and Proposition 17.36(i)] applied to A and A−1

respectively. (ii): It follows from [5, Proposition 17.36(iii)], [28, Theorem 4.8.5.4]
and the invertibility of A that q∗A = qA−1 + ιranA = qA−1 + ιX = qA−1 . ��
Proposition 13.3 Let L : Y → X be linear. Suppose that L∗L is invertible.
g : Y → ]−∞,+∞] be convex, lower semicontinuous, and proper. Then the
following hold:

(i) kerL = {0}.
(ii) L∗L is strictly monotone.

(iii) dom(qL∗L + g)∗ = X.
(iv) ∂(qL∗L + g) = ∇qL∗L + ∂g = L∗L+ ∂g.
(v) (qL∗L + g∗)∗ is Fréchet differentiable on X.

(vi) (L∗L+ ∂g∗)−1 is single-valued and dom(L∗L+ ∂g∗)−1 = X.
(vii) Proxg∗◦L∗ = Id−L(L∗L+ ∂g)−1L∗.

(viii) Prox(g∗◦L∗)∗ = L(L∗L+ ∂g)−1L∗.

Proof (i): Using [5, Fact 2.25(vi)] and the assumption that L∗L is invertible we
have kerL = kerL∗L = {0}. (ii): Using (i) we have (∀x ∈ X � {0}) 〈L∗Lx, x〉 =
〈Lx,Lx〉 = ‖Lx‖2 > 0, hence L∗L is strictly monotone. (iii): By (ii) and
Lemma 13.3(i) applied with A replaced by L∗L we have dom qL∗L = dom q∗L∗L =
X, hence

dom qL∗L − dom g = X − dom g = X. (13.46)

It follows from (13.46), [1, Corollary 2.1] and Lemma 13.3(ii)&(i) that dom(qL∗L+
g)∗ = dom q∗L∗L + dom g∗ = dom q(L∗L)−1 + dom g∗ = X + dom g∗ = X. (iv):
Combine (13.46), [1, Corollary 2.1] and Lemma 13.3(i). (v): Since qL∗L is strictly
convex, so is qL∗L + g, which in view of [5, Proposition 18.9] and (iii) implies that
(qL∗L + g)∗ is Fréchet differentiable on X = int dom(qL∗L + g)∗. (vi): Using (iv),
Fact 13.8(i) applied with f replaced by qL∗L + g, (v) and [5, Proposition 17.31(i)]
we have (L∗L+ ∂g)−1 = (∂(qL∗L + g))−1 = ∂(qL∗L + g)∗ = {∇(qL∗L + g)∗} is
single-valued with dom(L∗L+ ∂g)−1 = X.

(vii): Let x ∈ X = dom(L∗L+∂g)−1 and let y ∈ X such that y = x−L(L∗L+
∂g)−1L∗x. Then using (vi) we have

x = y + Lu where u = (L∗L+ ∂g)−1L∗x. (13.47)

Consequently, L∗y + L∗Lu = L∗x ∈ L∗Lu + ∂g(u), hence L∗y ∈ ∂g(u), equiv-
alently, in view of Fact 13.8(i) applied with f replaced by g, u ∈ (∂g)−1(L∗y) =
∂g∗(L∗y). Combining with (13.47) we learn that

x ∈ y + L ◦ (∂g∗) ◦ L∗(y). (13.48)
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Note that [5, Fact 2.25(vi) and Fact 2.26] implies that ranL∗ = ranL∗L = X,
hence 0 ∈ sri(dom g∗ − ranL∗). Therefore one can apply [5, Corollary 16.53(i)]
to re-write (13.48) as x ∈ (Id+∂(g∗ ◦ L∗))y. Therefore, y = Proxg∗◦L∗ x by [5,
Proposition 16.44]. (viii): Apply Fact 13.8(ii) with f replaced by g∗ ◦ L∗. ��

Appendix 2

Lemma 13.4 Let g : Y → ]−∞,+∞] be convex, lower semicontinuous, and
proper. Consider the following statements:

(i) g is strongly convex.
(ii) g∗ is Fréchet differentiable and ∇g∗ is Lipschitz continuous.

(iii) g∗ ◦L∗ is Fréchet differentiable and ∇(g∗ ◦L∗) = L ◦ (∇g∗) ◦L∗ is Lipschitz
continuous.

(iv) (g∗ ◦ L∗)∗ is strongly convex.

Then (i)⇔(ii)⇒(iii)⇔(iv).

Proof (i)⇔(ii): See [5, Theorem 18.15]. (ii)⇒(iii): Clearly g∗ ◦ L∗ is Fréchet
differentiable. Now let (x, y) ∈ X × X and suppose that β > 0 is a Lipschitz
constant of ∇g∗. It follows from [5, Corollary 16.53] that ‖∇(g∗ ◦ L∗)x − ∇(g∗ ◦
L∗)y‖ = ‖L◦(∇g∗)◦L∗x−L◦(∇g∗)◦L∗y‖ = ‖L((∇g∗◦L∗)x−(∇g∗◦L∗)y)‖ ≤
‖L‖‖(∇g∗ ◦ L∗)x − (∇g∗ ◦ L∗)y‖ ≤ β‖L‖‖L∗x − L∗y‖ ≤ β‖L‖‖L∗‖‖x −
y‖. (iii)⇔(iv): Use the equivalence of (i) and (ii) applied with g replaced by
(g∗ ◦ L∗)∗. ��

Appendix 3

We start by recalling the following well-known fact.

Fact 13.8 Let f : X → ]−∞,+∞] be convex, lower semicontinuous and proper
and let γ > 0. Then the following hold:

(i) (∂f )−1 = ∂f ∗.
(ii) Proxγf +Prox(γf )∗ = Id.

Proof (i): See, e.g., [27, Remark on page 216] or [23, Théorème 3.1].
(ii): See, e.g., [5, Theorem 14.3(iii)]. ��

Lemma 13.5 Let γ > 0. The Douglas–Rachford method given in (13.9) applied
to the ordered pair (γf, γg) with a starting point x0 ∈ X to solve (13.8) can be
rewritten as:
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yn = Proxγf xn (13.49a)

xn+1 = yn − Prox(γg)∗(2yn − xn). (13.49b)

Proof Using (13.9a), (13.10), and Fact 13.8(ii) applied with f replaced by g we
have

xn+1 = xn − Proxγf xn + Proxγg(2 Proxγf xn − xn) = xn − yn + Proxγg(2yn − xn)

= xn − yn + 2yn − xn − Prox(γg)∗(2yn − xn) = yn − Prox(γg)∗(2yn − xn),

(13.50)

and the conclusion follows. ��

Appendix 4

Proposition 13.4 Let (x, y, z) ∈ X × Y × Z and let B and f̃ be defined as in
(13.39) and (13.41). Then the following hold:

(i) B∗y = (A∗y, C∗y).
(ii) dom f̃ = dom f × {0}.

(iii) (∀(x, z) ∈ dom f̃ ) we have z = 0 and B(x, z) = Ax.
(iv) B(dom f̃ ) = A(dom f ).
(v) 0 ∈ sri(dom g − B(dom f̃ )).

(vi) argmin(f̃ + g ◦ B) = argmin(f + g ◦ A)× {0} �= ∅.
(vii) Proxf̃ (x, z) = (Proxf x, 0).

(viii) Prox(τg◦B)∗ = τB∗ Proxσg∗(σB).

Proof (i): This clearly follows from (13.39). (ii): It follows from (13.41) that
dom f̃ = dom f × dom ι{0} = dom f × {0}. (iii): The claim that z = 0 follows
from (ii). Now combine with (13.39). (iv): Combine (ii) and (iii). (v): Combine (iv)
and (13.34). (vi): We have

argmin(f̃ + g ◦ B) = zer(∂f̃ + B∗ ◦ ∂g ◦ B) (13.51a)

= zer(∂f ×N{0} + ((A∗ ◦ ∂g ◦ A)× (C∗ ◦ ∂g ◦ C)))

(13.51b)

= (zer(∂f + A∗ ◦ ∂g ◦ A))× (zer(N{0} + C∗ ◦ ∂g ◦ C)),

(13.51c)

where (13.51a) follows from (v) and (13.4) applied with (f, g, L) replaced by
(g, f̃ , B), and (13.51b) follows from (13.39) and (13.41). Therefore, (x, z) ∈
argmin(f̃ + g ◦ B) ⇔ [z = 0 and x ∈ zer(∂f + A∗ ◦ ∂g ◦ A)] ⇔ (x, z) ∈
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argmin(f + g ◦ A) × {0}. Now combine with (13.4). (vii): Combine (13.41) and
[5, Proposition 23.18]. (viii): Indeed, Proposition 13.3(viii) implies

Prox(τg◦B)∗ = B∗(BB∗ + (τ∂g)∗)−1B = B∗(σ−1τ−1 Id+∂g∗ ◦ τ−1 Id)−1B

(13.52a)

= B∗(σ−1(Id+σ∂g∗)τ−1 ◦ Id)−1B = τB∗ Proxσg∗(σB).

(13.52b)

��

References

1. Attouch, H., Brézis, H.: Duality for the sum of convex functions in general Banach spaces.
In: Aspects of Mathematics and Its Applications 34, pp. 125–133. North-Holland, Amsterdam
(1986)

2. Attouch, H., Théra, M.: A general duality principle for the sum of two operators. J. Convex
Anal. 3, 1–24 (1996)

3. Bauschke, H.H., Combettes, P.L.: A Dykstra-like algorithm for two monotone operators.
Pacific J. Optim. 4, 383–391 (2008)
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Chapter 14
Quasidensity: A Survey and Some
Examples

Stephen Simons

Abstract In three previous papers, we discussed quasidense multifunctions from
a Banach space into its dual, or, equivalently, quasidense subsets of the product of
a Banach space and its dual. In this paper, we survey (without proofs) some of the
main results about quasidensity, and give some simple limiting examples in Hilbert
spaces, reflexive Banach spaces, and nonreflexive Banach spaces.

Keywords Multifunction · Maximal monotonicity · Quasidensity · Sum
theorem · Subdifferential · Strong maximality · Type (FPV) · Type (FP)

AMS 2010 Subject Classification 47H05, 47N10, 52A41, 46A20

14.1 Introduction

This is a sequel to the papers [17] and [18], in which we discussed quasidense
multifunctions from a Banach space into its dual. A number of the results in [17]
depend on the somewhat more abstract analysis that appears in [16].

In Section 14.2, we give some Banach space notation and definitions.
Let S be a multifunction (not assumed to be monotone) from a Banach space into

its dual. We define the quasidensity of S in Definition 14.1. In Theorem 14.4, we
establish that the (appropriately defined) subdifferential of a proper (not necessarily
convex) lower semicontinuous function is quasidense, and we show in the simple
Example 14.6 that the condition (14.2), which is sufficient for the quasidensity, is
not necessary.

In Section 14.4, we start our investigation of monotone multifunctions and
collect together some of the results that were proved in [17], with references
to the original proofs in [17] or [16], as the case may be. We point out in
Theorem 14.7 and Example 14.8 that every closed, monotone quasidense multi-
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function is maximally monotone, but that there exist maximally monotone linear
operators that are not quasidense. We point out in Theorem 14.9 that the sub-
differential of any proper, convex lower semicontinuous function is quasidense.
By virtue of Theorem 14.7, Theorem 14.9 generalizes Rockafellar’s result that
such subdifferentials are maximally monotone. In Theorem 14.10 we prove that
the sum of a pair of closed, monotone quasidense multifunctions that satisfy
the Rockafellar constraint qualification is closed, monotone and quasidense. We
note that it is apparently not known whether the sum of a pair of maximally
monotone multifunctions that satisfy the Rockafellar constraint qualification is
necessarily maximally monotone. (This is known as the sum problem.) In The-
orem 14.11 we give a “parallel” sum theorem for a pair of closed, monotone
quasidense multifunctions that satisfy the “dual” of the Rockafellar constraint
qualification. In the process of doing this we introduce the Fitzpatrick function and
Fitzpatrick extension of a closed, monotone, quasidense multifunction. In Prob-
lems 14.13 and 14.16 we give two questions that merit further study.

Quasidensity has connections with many of the subclasses of the maximally
monotone multifunctions that have been investigated over the years. We explore just
three of these in Section 14.5: type (FPV), type (FP) and strongly maximal. Prob-
lems 14.20, 14.23 and 14.26 contain open questions about these three subclasses
of the maximally monotone multifunctions. Other related subclasses are discussed
in [17, Theorem 8.1], [17, Theorem 8.2], [16, Theorem 11.6, p. 1045] and [16,
Theorem 11.9, pp. 1045–1046].

In the final three sections, we show how quasidensity behaves in three special
cases: Hilbert spaces in Section 14.6, reflexive Banach spaces in Section 14.7 and
nonreflexive Banach spaces in Section 14.8.

The author would like to express his thanks to Hedy Attouch and Heinz Bauschke
for constructive discussions about the topics discussed in this paper. He would also
like to thank Xianfu Wang for constructive comments about an earlier version of
this paper.

14.2 Banach Space Notation and Definitions

If X is a nonzero real Banach space and f : X →]−∞,∞], we write dom f for
the set

{
x ∈ X : f (x) ∈ R

}
. dom f is the effective domain of f . We say that f is

proper if dom f �= ∅. We write PCLSC(X) for the set of all proper convex lower
semicontinuous functions from X into ]−∞,∞].

We write X∗ for the dual space of X
(
with the pairing 〈·, ·〉 : X × X∗ → R

)
. If

f ∈ PCLSC(X) then, as usual, we define the Fenchel conjugate, f ∗, of f to be the
function on X∗ given by x∗ �→ supX

[
x∗ − f

]
.

We write X∗∗ for the bidual of X
(
with the pairing 〈·, ·〉 : X∗ × X∗∗ → R

)
.

If f ∈ PCLSC(X) and f ∗ ∈ PCLSC(X∗), we define f ∗∗ : X∗∗ → ]−∞,∞] by
f ∗∗(x∗∗) := supX∗

[
x∗∗ − f ∗

]
. If x ∈ X, we write x̂ for the canonical image of x

in X∗∗, that is to say, for all (x, x∗) ∈ X ×X∗, 〈x∗, x̂〉 = 〈x, x∗〉.
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If f ∈ PCLSC(X), then the convex subdifferential of f is the multifunction
∂f : E ⇒ E∗ that satisfies

x∗ ∈ ∂f (x)⇐⇒ f (x)+ f ∗(x∗) = 〈x, x∗〉.
We suppose that E is a nonzero real Banach space with dual E∗. For all (x, x∗) ∈
E × E∗, we write ‖(x, x∗)‖ := √‖x‖2 + ‖x∗‖2. We represent (E × E∗)∗ by
E∗ × E∗∗, under the pairing〈

(x, x∗), (y∗, y∗∗)
〉 := 〈x, y∗〉 + 〈x∗, y∗∗〉.

The dual norm on E∗ × E∗∗ is given by ‖(y∗, y∗∗)‖ := √‖y∗‖2 + ‖y∗∗‖2.

Now let S : E ⇒ E∗. We write G(S) for the graph of S, D(S) for the domain of
S and R(S) for the range of S. We will always suppose that G(S) �= ∅ (equivalently,
D(S) �= ∅ or R(S) �= ∅). We say that S is closed if G(S) is closed. If x ∈ E, we
define the multifunction xS : E ⇒ E∗ by xS = (S−1−x)−1. Then xS(t) = S(t+x).
We write J : E ⇒ E∗ for the duality map. We recall that J is maximally monotone
and

x∗ ∈ Jx ⇐⇒ 1
2‖x‖2 + 1

2‖x∗‖2 = 〈x, x∗〉 ⇐⇒ ‖x‖2 = ‖x∗‖2 = 〈x, x∗〉.
(14.1)

14.3 Quasidensity

Definition 14.1 We say that S is quasidense if, for all (x, x∗) ∈ E × E∗,

inf(s,s∗)∈G(S)

[ 1
2‖s − x‖2 + 1

2‖s∗ − x∗‖2 + 〈s − x, s∗ − x∗〉] ≤ 0.

See [17, Definition 3.1] and [16, Example 7.1, eqn. (28), p. 1031)].

We have the following simple result connecting J and quasidensity:

Lemma 14.2 Let S : E ⇒ E∗ and, for all x ∈ E, xS + J be surjective. Then S is
quasidense.

Proof Let (x, x∗) ∈ E × E∗. Choose t ∈ D(xS) such that (xS + J )t = x∗. So
there exists s∗ ∈ S(t + x) such that (t, x∗ − s∗) ∈ G(J ). Thus, writing s := t + x,
(s, s∗) ∈ G(S) and (s − x, x∗ − s∗) = (t, x∗ − s∗) ∈ G(J ), that is to say

1
2‖s − x‖2 + 1

2‖x∗ − s∗‖2 = 〈s − x, x∗ − s∗〉.

Equivalently,

1
2‖s − x‖2 + 1

2‖s∗ − x∗‖2 + 〈s − x, s∗ − x∗〉 = 0.

This obviously implies that S is quasidense. ��
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We now discuss a significant example of quasidensity. The following definition
was made in [18, Definition 2.1, p. 633].

Definition 14.3 A ubiquitous subdifferential, ∂u, is a rule that associates with
each proper lower semicontinuous function f : E →]−∞,∞] a multifunction
∂uf : E ⇒ E∗ such that

• ∂uf (x) = ∅ if x �∈ dom f ,
• 0 ∈ ∂uf (x) if f attains a strict global minimum at x,
• ∂u(f + h)(x) ⊆ ∂uf (x) + ∂h(x) whenever x ∈ dom f and h is a continuous

convex real function on E (here ∂h is the convex subdifferential of h).

There is a list of abstract subdifferentials that satisfy these conditions in the
remarks following [18, Definition 2.1]. Now suppose that ∂u is a ubiquitous
subdifferential. We have the following result:

Theorem 14.4 Let f : E → R be proper and lower semicontinuous. Let
a0, b0, c0 ∈ R with a0 < 1

2 and,

for all x ∈ E, f (x) ≥ −a0‖x‖2 − b0‖x‖ − c0. (14.2)

Then ∂uf is quasidense.

Proof See [18, Theorem 3.2, pp. 634–635]. The proof of this is based on the
“elementary” proof of Theorem 14.9, that is [17, Theorem 4.6]. ��
Corollary 14.5 Let f : E →]−∞,∞] be proper, lower semicontinuous and
dominate a continuous affine function. Then ∂uf is quasidense.

Proof This is immediate from Theorem 14.4. ��
Example 14.6 In this example, we suppose that E = R and that ∂u has the special
property that, whenever f is a polynomial, ∂uf (x) = {f ′(x)}. For instance, ∂u
could be the Clarke–Rockafellar subdifferential. Let f be a polynomial. Then the
statement that ∂uf is quasidense can be rewritten:

for all z ∈ R, infs∈R 1
2 (s + f ′(s)− z)2 ≤ 0.

Let λ ∈ R and f (x) := −λx2. So ∂uf is quasidense if, and only if,

for all z ∈ R infs∈R 1
2 (s − 2λs − z)2 ≤ 0.

• If λ �= 1
2 , then taking s := z/(1− 2λ) shows that ∂uf is quasidense.
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• If λ = 1
2 , then taking z �= 0 shows that ∂uf is not quasidense.

Thus the condition (14.2) is sufficient but not necessary for the quasidensity of
∂uf .
This example (with different justification) is taken from [18, Example 3.5,
p. 636].

14.4 Monotone Multifunctions: Basic Results

For the rest of this paper, we will discuss the very rich theory of the quasidensity of
monotone multifunctions.

Theorem 14.7 (Quasidensity and Maximality) Let S : E ⇒ E∗ be closed,
monotone and quasidense. Then S is maximally monotone.

Proof See [17, Theorem 3.2], [16, Theorem 7.4(a), pp. 1032–1033] or [16, Lemma
4.7, p. 1027]. ��
Example 14.8 (The Tail Operator) Let E = �1, and define the linear map
T : �1 �→ �∞ = E∗ by (T x)n = ∑

k≥n xk . T is maximally monotone, but not
quasidense. See [16, Example 7.10, pp. 1034–1035].

Theorem 14.9 below is a very important result. By virtue of Theorem 14.7, it
generalizes Rockafellar’s result [11] that subdifferentials of proper, convex, lower
semicontinuous functions are maximally monotone. The first proof of this result
mentioned below was the source of Theorem 14.4.

Theorem 14.9 Let f ∈ PCLSC(E). Then ∂f is closed, monotone and
quasidense.

Proof The more elementary proof of this result (see [17, Theorem 4.6]) uses
the Brøndsted–Rockafellar theorem [4] and Rockafellar’s formula [10] for the
subdifferential of a sum. There is a slicker but more sophisticated proof using the
properties of Fitzpatrick functions (see below) in [16, Theorem 7.5, p. 1033]. ��

As we noted in the introduction, it is apparently not known whether the result
corresponding to Theorem 14.10 with “closed, monotone and quasidense” replaced
by “maximally monotone” is true.

Theorem 14.10 (Sum Theorem with Domain Cconstraints) Let S, T : E ⇒ E∗
be closed, monotone and quasidense and D(S) ∩ intD(T ) �= ∅. Then S + T is
closed, monotone and quasidense.

Proof This is a special case of [16, Theorem 8.4(a)%⇒(d), pp. 1036–1037]. ��
There is a “dual” version of Theorem 14.10 that we will state in Theorem 14.11.

Before discussing this, we introduce the Fitzpatrick function, ϕS : E × E∗ →
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]−∞,∞], and the Fitzpatrick extension, SF : E∗ ⇒ E∗∗, of a closed, monotone,
quasidense multifunction S : E ⇒ E∗. The function ϕS is defined by

ϕS(x, x
∗) := sup(s,s∗)∈G(S)

[〈s, x∗〉 + 〈x, s∗〉 − 〈s, s∗〉].
See [5], [17, Definition 3.4] and many other places. The multifunction SF was
defined in [17, Definition 5.1] by

(y∗, y∗∗) ∈ G(SF) exactly when ϕS
∗(y∗, y∗∗) = 〈y∗, y∗∗〉.

(There is a more abstract version of this in [16, Definition 8.5, p. 1037].) The word
extension is justified by the easily verifiable fact that

(x, x∗) ∈ G(S) ⇐⇒ (x∗, x̂) ∈ G(SF).

It was shown in [17, Section 11] that (y∗, y∗∗) ∈ G(SF) exactly when (y∗∗, y∗) is
in the Gossez extension of G(S)

(
see [8, Lemma 2.1, p. 275]

)
.

Theorem 14.11 (Sum Theorem with Range Constraints) Let S, T : E ⇒ E∗ be
closed, monotone and quasidense and R(S)∩ intR(T ) �= ∅. Then the multifunction
y �→ (SF+T F)−1(ŷ) is closed, monotone and quasidense. Under certain additional
technical conditions, the parallel sum (S−1 + T −1)−1 is closed, monotone and
quasidense.

Proof This is a special case of [16, Theorem 8.8, p. 1039]. ��
If S : E ⇒ E∗ is closed, monotone and quasidense, then it is easily seen that SF

is monotone. In fact, we have the following stronger nontrivial result:

Theorem 14.12 Let S : E ⇒ E∗ be closed, monotone and quasidense. Then the
multifunction SF : E∗ ⇒ E∗∗ is maximally monotone.

Proof See [16, Lemma 12.5, p. 1047]. There is also a sketch of a proof in
[17, Section 11]. ��

This leads to the following problem:

Problem 14.13 Let S : E ⇒ E∗ be closed, monotone and quasidense. Then is the
multifunction SF : E∗ ⇒ E∗∗ necessarily quasidense?

Theorem 14.14 Let f ∈ PCLSC(E). Then (∂f )F = ∂(f ∗).

Proof See [17, Theorem 5.7]. ��
Remark 14.15 Theorem 14.14 is equivalent to [8, Théorème 3.1, pp. 376–378].

Problem 14.16 The proof of [17, Theorem 5.7] (invoked in Theorem 14.14) is
quite convoluted. Is there a simple direct proof of this result?
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Remark 14.17 Theorems 14.14 and 14.9 show that if f ∈ PCLSC(E) then (∂f )F

is quasidense, in other words, in this restricted situation we have a positive solution
to Problem 14.13.

14.5 Quasidensity and the Classification of Maximally
Monotone Multifunctions

The closed, monotone, quasidense multifunctions have relationships with many
other subclasses of the maximally monotone multifunctions. We shall discuss just
three of these. Four others are mentioned in the introduction.

Definition 14.18 Let S : E ⇒ E∗ be monotone. We say that S is of type (FPV)
or maximally monotone locally if, whenever U is an open convex subset of E,
U ∩D(S) �= ∅, (w,w∗) ∈ U × E∗ and

(s, s∗) ∈ G(S) and s ∈ U %⇒ 〈s − w, s∗ − w∗〉 ≥ 0,

then (w,w∗) ∈ G(S). (If we take U = E, we see that every monotone
multifunction of type (FPV) is maximally monotone.) See [15, pp. 150–151].

Theorem 14.19 Any closed, monotone, quasidense multifunction is maximally
monotone of type (FPV).

Proof See [17, Theorem 7.2]. ��
Problem 14.20 Is every maximally monotone multifunction of type (FPV)? The
tail operator (see Example 14.8) does not provide a negative example because it
was proved in Fitzpatrick–Phelps, [6, Theorem 3.10, p. 68] that if S : E ⇒ E∗ is
maximally monotone and D(S) = E then S is of type (FPV). Also, it was proved in
[15, Theorem 46.1, pp. 180–182] that if S : E ⇒ E∗ is maximally monotone and
G(S) is convex then S is of type (FPV). A negative example would lead to a negative
solution for the sum problem. See [15, Theorem 44.1, p. 170]

Definition 14.21 Let S : E ⇒ E∗ be monotone. We say that S is of type (FP) or
locally maximally monotone if, whenever Ũ is a convex open subset of E∗, Ũ ∩
R(S) �= ∅, (w,w∗) ∈ E × Ũ and

(s, s∗) ∈ G(S) and s∗ ∈ Ũ %⇒ 〈s − w, s∗ − w∗〉 ≥ 0,

then (w,w∗) ∈ G(S).
(
If we take Ũ = E∗, we see that every monotone

multifunction of type (FP) is maximally monotone.
)

See [15, pp. 149–150].

Theorem 14.22 A maximally monotone multifunction is quasidense ⇐⇒ it is of
type (FP).
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Proof See [17, Theorem 10.3]. This result is related to results of Marques Alves
and Svaiter, [1, Theorem 1.2(1⇐⇒5), p. 885], Voisei and Zălinescu, [19, Theorem
4.1, pp. 1027–1028] and Bauschke, Borwein, Wang and Yao, [2, Theorem 3.1, pp.
1878–1879]. ��
Problem 14.23 The proof of (%⇒) in Theorem 14.22 relies on [17, Lemma 10.1].
Is there a simple direct proof of this result? In this connection, see also the proof of
[17, Lemma 12.2], which is hardly simple and direct.

Definition 14.24 Let S : E ⇒ E∗ be monotone. We say that S is strongly maximal
(see [13, Theorems 6.1-2, pp. 1386–1387]) if, whenever w ∈ E and W̃ is a
nonempty w(E∗, E)–compact convex subset of E∗ such that

for all (s, s∗) ∈ G(S), max〈s − w, s∗ − W̃ 〉 ≥ 0,

then Sw ∩ W̃ �= ∅ and, further, whenever W is a nonempty w(E,E∗)–compact
convex subset of E, w∗ ∈ E∗ and,

for all (s, s∗) ∈ G(S), max〈s −W, s∗ − w∗〉 ≥ 0,

then w∗ ∈ S(W). This property was originally proved for convex subdifferentials.
If S is strongly maximal, then clearly S is maximal.

Theorem 14.25 Let S : E ⇒ E∗ be closed, monotone and quasidense. Then S is
strongly maximal.

Proof See [17, Theorem 8.5]. ��
Problem 14.26 Is every maximally monotone multifunction strongly maximal?
The tail operator (see Example 14.8) does not provide a negative example because it
was proved in Bauschke–Simons, [3, Theorem 1.1, pp. 166–167] that if the function
S : D(S) ⊂ E → E∗ is linear and maximally monotone then S is strongly
maximal. More generally, it was proved in [15, Theorem 46.1, pp. 180–182] that if
S : E ⇒ E∗ is maximally monotone and G(S) is convex then S is strongly maximal.

14.6 The Hilbert Space Case

Let H be a real Hilbert space and I : H → H be the identity map. As usual, we
identify H ∗ with H . Let S : H ⇒ H . From Definition 14.1 and the properties of
Hilbert spaces, S is quasidense exactly when, for all (x, x∗) ∈ H ×H ,

inf(s,s∗)∈G(S)
1
2‖s + s∗ − x − x∗‖2 ≤ 0,
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that is to say, for all z∗ ∈ H , inf(s,s∗)∈G(S)
1
2‖s + s∗ − z∗‖2 ≤ 0. This is equivalent

to the statement that {s+ s∗ : (s, s∗) ∈ G(S)} is dense in H , that is to say R(S+ I )

is dense in H . This leads to the following result:

Theorem 14.27 Let S : H ⇒ H be closed and monotone. Then S is quasidense if,
and only if, S + I is surjective.

Proof “If” is obvious from the comments above. Suppose, conversely, that S

is quasidense. Then, from Theorem 14.7, S is maximally monotone, and the
surjectivity of S + I follows from Minty’s theorem. ��

Monotonicity plays a mysterious role in Theorem 14.27. This is shown by the
following example.

Example 14.28 Define S : R ⇒ R by

S(x) :=
{{1/x − x}(x �= 0);
∅ (x = 0).

Clearly, S is closed. Then

(S + I )(x) =
{{1/x}(x �= 0);
∅ (x = 0).

Thus R(S + I ) = R \ {0}. Since this is dense in R, S is quasidense. But S + I is
manifestly not surjective.

14.7 The Reflexive Banach Space Case

Let E be a real reflexive Banach space.

Theorem 14.29 Let S : E ⇒ E∗ be closed and monotone. Then S is quasidense if,
and only if, for all x ∈ E, xS + J is surjective.

Proof “If” was established in Lemma 14.2. Suppose, conversely, that S is quasi-
dense and x ∈ E. Since G(xS) = G(S) − (x, 0), xS is closed, monotone
and quasidense. Theorem 14.7 implies that xS is maximally monotone, and the
surjectivity of xS + J follows from [14, Theorem 10.7, p. 24]. ��
Remark 14.30 If the norm of E is produced by an Asplund renorming, one can use
Rockafellar’s generalization [12] of Minty’s theorem instead of the result cited from
[14] to prove that xS + J is surjective in Theorem 14.29(%⇒).

We shall see in Example 14.31 below that the surjectivity of S + J alone is not
enough to ensure the quasidensity of S in Theorem 14.29(⇐%).
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Example 14.31 Define the norms ‖·‖1 and ‖·‖∞ on R
2 by ‖(x1, x2)‖1 = |x1|+|x2|

and ‖(y1, y2)‖∞ = |y1| ∨ |y2|. Let E := (R2, ‖ · ‖1). Then E∗ = (R2, ‖ · ‖∞). Let
A be the union of the two axes in E, that is to say, A = (R, 0) ∪ (0,R). Define
S : E ⇒ E∗ by

S(x) =
{
J (x)(x ∈ A);
∅ (x �∈ A).

Since G(S) = G(J ) ∩ (A× E∗), S is closed and monotone. We shall prove that

S + J is surjective (14.3)

but

S is not quasidense. (14.4)

Let P be the square {y ∈ E∗ : ‖y‖∞ = 1}, PE be the line segment {1}×[−1, 1], PN

be the line segment [−1, 1] × {1}, PW be the line segment −PE , and PS be the line
segment−PN . (E, N , W and S stand for East, North, West and South, respectively.)
Clearly, P = PE ∪ PN ∪ PW ∪ PS . Let e1 = (1, 0) and e2 = (0, 1).

(a) If y ∈ PE , then 1
2‖e1‖2

1 + 1
2‖y‖2∞ = 1

2 + 1
2 = 1 = 〈e1, y〉. Thus y ∈ J (e1).

(b) If y ∈ PN , then interchanging the indices 1 and 2 in (a), y ∈ J (e2).
(c) If y ∈ PW , then −y ∈ PE . From (a), −y ∈ J (e1), and so y ∈ J (−e1).
(d) If y ∈ PS , then −y ∈ PN . From (b), −y ∈ J (e2), and so y ∈ J (−e2).
(e) Let V be the set consisting of the four points ±e1 and ±e2. It follows from

(a)–(d) that P ⊂ J (V ).
(f) Let λ > 0. From (e), λP ⊂ λJ (V ) = J (λV ) ⊂ J (A). Furthermore, (0, 0) ∈

J (0, 0) ⊂ J (A). Thus R2 =⋃
λ>0 λP ∪{(0, 0)} ⊂ J (A). Since J is monotone,

so is S and, since A is closed, so is S.
(f) shows that S is surjective. Now R(S + J ) ⊃ R(S + S) ⊃ R(2S) = 2R(S), and

so S + J is surjective, giving (14.3). However, since G(S) is a proper subset of
G(J ), S is not maximally monotone thus, from Theorem 14.7 not quasidense,
giving (14.4).

This example is patterned after two examples (one due to S. Fitzpatrick and the
other due to H. Bauschke) that appear in [14, p. 25] in which S is monotone, S + J

is surjective but S is not maximally monotone. However, in both of these examples,
S is not closed.

14.8 The Nonreflexive Banach Space Case

We now suppose that E is a nonreflexive Banach space, and we discuss a possible
analog of Theorem 14.29. Theorem 14.29(⇐%) is true in this case too, since
the proof does not depend on the reflexivity of E (or even the monotonicity or



14 Quasidensity: A Survey and Some Examples 361

closedness of S). We shall show in Example 14.32 below that Theorem 14.29(%⇒)
fails in the most spectacular way.

Example 14.32 Since E is not reflexive, from James’s theorem (see Pryce [9] or
Ruiz Galán–Simons [7]), there exists x∗ ∈ E∗ \ {0} such that x ∈ E and ‖x‖ =
1 %⇒ 〈x, x∗〉 < ‖x∗‖. It follows that x ∈ E \ {0} %⇒ 〈x, x∗〉 < ‖x‖‖x∗‖. We
now prove that x∗ �∈ R(J ). Indeed, if there existed x ∈ E such that x∗ ∈ Jx

then, from (14.1), 1
2‖x‖2 + 1

2‖x∗‖2 = 〈x, x∗〉 < ‖x‖‖x∗‖, which is manifestly
impossible. Thus x∗ �∈ R(J ), and so J is not surjective. Now let S = 0. Then,
for all x ∈ E, xS = 0 and so xS + J is not surjective. On the other hand, S is
(closed, monotone and) quasidense. The fastest way of seeing this is to note that S
is a convex subdifferential and use Theorem 14.9. However, for the benefit of the
reader, we will now give a direct proof of the quasidensity of S.

Let (x, x∗) ∈ E×E∗ and ε > 0. The definition of ‖x∗‖ provides an element t of
E such that ‖t‖ ≤ ‖x∗‖ and 〈t, x∗〉 ≥ ‖x∗‖2 − ε. (If x∗ = 0, we take t = 0). Thus,
writing s = t + x,

1
2‖s − x‖2 + 1

2‖0− x∗‖2 + 〈s − x, 0− x∗〉 = 1
2‖t‖2 + 1

2‖x∗‖2 − 〈t, x∗〉
≤ ‖x∗‖2 − 〈t, x∗〉 < ε.

Since (s, 0) ∈ G(S), this establishes the quasidensity of S.
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Chapter 15
On the Acceleration of
Forward-Backward Splitting via
an Inexact Newton Method

Andreas Themelis, Masoud Ahookhosh, and Panagiotis Patrinos

Abstract We propose a Forward-Backward Truncated-Newton method (FBTN)
for minimizing the sum of two convex functions, one of which smooth. Unlike
other proximal Newton methods, our approach does not involve the employment of
variable metrics, but is rather based on a reformulation of the original problem as the
unconstrained minimization of a continuously differentiable function, the forward-
backward envelope (FBE). We introduce a generalized Hessian for the FBE that
symmetrizes the generalized Jacobian of the nonlinear system of equations repre-
senting the optimality conditions for the problem. This enables the employment of
conjugate gradient method (CG) for efficiently solving the resulting (regularized)
linear systems, which can be done inexactly. The employment of CG prevents the
computation of full (generalized) Jacobians, as it requires only (generalized) direc-
tional derivatives. The resulting algorithm is globally (subsequentially) convergent,
Q-linearly under an error bound condition, and up to Q-superlinearly and Q-
quadratically under regularity assumptions at the possibly non-isolated limit point.

Keywords Forward-backward splitting · Linear Newton approximation ·
Truncated-Newton method · Backtracking linesearch · Error bound · Superlinear
convergence
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15.1 Introduction

In this work we focus on convex composite optimization problems of the form
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where f : Rn → R is convex, twice continuously differentiable and with Lf -
Lipschitz-continuous gradient, and g : Rn → R ∪ {∞} has a cheaply computable
proximal mapping [51]. To ease the notation, throughout the chapter we indicate

ϕ* := infϕ and X* := argminϕ. (15.2)

Problems of the form (15.1) are abundant in many scientific areas such as control,
signal processing, system identification, machine learning, and image analysis, to
name a few. For example, when g is the indicator of a convex set then (15.1)
becomes a constrained optimization problem, while for f (x) = 1

2‖Ax − b‖2

and g(x) = λ‖x‖1 it becomes the �1-regularized least-squares problem (lasso)
which is the main building block of compressed sensing. When g is equal to the
nuclear norm, then (15.1) models low-rank matrix recovery problems. Finally, conic
optimization problems such as linear, second-order cone, and semidefinite programs
can be brought into the form of (15.1), see [31].

Perhaps the most well-known algorithm for problems in the form (15.1) is
the forward-backward splitting (FBS) or proximal gradient method [16, 40], that
interleaves gradient descent steps on the smooth function and proximal steps on the
nonsmooth one, see Section 15.3.1. Accelerated versions of FBS, based on the work
of Nesterov [5, 54, 77], have also gained popularity. Although these algorithms share
favorable global convergence rate estimates of order O(ε−1) or O(ε−1/2) (where ε

is the solution accuracy), they are first-order methods and therefore usually effective
at computing solutions of low or medium accuracy only. An evident remedy is to
include second-order information by replacing the Euclidean norm in the proximal
mapping with that induced by the Hessian of f at x or some approximation
of it, mimicking Newton or quasi-Newton methods for unconstrained problems
[6, 32, 42]. However, a severe limitation of the approach is that, unless Q has a
special structure, the computation of the proximal mapping becomes very hard. For
example, if ϕ models a lasso problem, the corresponding subproblem is as hard as
the original problem.

In this work we follow a different approach by reformulating the nonsmooth
constrained problem (15.1) into the smooth unconstrained minimization of the
forward-backward envelope (FBE) [57], a real-valued, continuously differentiable,
exact penalty function for ϕ. Although the FBE might fail to be twice continuously
differentiable, by using tools from nonsmooth analysis we show that one can
design Newton-like methods to address its minimization, that achieve Q-superlinear
asymptotic rates of convergence under nondegeneracy and (generalized) smooth-
ness conditions on the set of solutions. Furthermore, by suitably interleaving FBS
and Newton-like iterations the proposed algorithm also enjoys good complexity
guarantees provided by a global (non-asymptotic) convergence rate. Unlike the
approaches of [6, 32], where the corresponding subproblems are expensive to solve,
our algorithm only requires the inexact solution of a linear system to compute
the Newton-type direction, which can be done efficiently with a memory-free CG
method.
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Our approach combines and extends ideas stemming from the literature on merit
functions for variational inequalities (VIs) and complementarity problems (CPs),
specifically the reformulation of a VI as a constrained continuously differentiable
optimization problem via the regularized gap function [23] and as an unconstrained
continuously differentiable optimization problem via the D-gap function [79] (see
[19, §10] for a survey and [38, 58] for applications to constrained optimization and
model predictive control of dynamical systems).

15.1.1 Contributions

We propose an algorithm that addresses problem (15.1) by means of a Newton-like
method on the FBE. Differently from a direct application of the classical Newton
method, our approach does not require twice differentiability of the FBE (which
would impose additional properties on f and g), but merely twice differentiability
of f . This is possible thanks to the introduction of an approximate generalized
Hessian which only requires access to∇2f and to the generalized (Clarke) Jacobian
of the proximal mapping of g, as opposed to third-order derivatives and classical
Jacobian, respectively. Moreover, it allows for inexact solutions of linear systems
to compute the update direction, which can be done efficiently with a truncated
CG method; in particular, no computation of full (generalized) Hessian matrices
is necessary, as only (generalized) directional derivatives are needed. The method
is thus particularly appealing when the Clarke Jacobians are sparse and/or well
structured, so that the implementation of CG becomes extremely efficient. Under an
error bound condition and a (semi)smoothness assumption at the limit point, which
is not required to be isolated, the algorithm exhibits asymptotic Q-superlinear rates.
For the reader’s convenience we collect explicit formulas of the needed Jacobians
of the proximal mapping for a wide range of frequently encountered functions,
and discuss when they satisfy the needed semismoothness requirements that enable
superlinear rates.

15.1.2 Related Work

This work is a revised version of the unpublished manuscript [59] and extends
ideas proposed in [57], where the FBE is first introduced. Other FBE-based
algorithms are proposed in [69, 71, 75]; differently from the truncated-CG type of
approximation proposed here, they all employ quasi-Newton directions to mimic
second-order information. The underlying ideas can also be extended to enhance
other popular proximal splitting algorithms: the Douglas Rachford splitting (DRS)
and the alternating direction method of multipliers (ADMM) [74], and for strongly
convex problems also the alternating minimization algorithm (AMA) [70].
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The algorithm proposed in this chapter adopts the recent techniques investigated
in [71, 75] to enhance and greatly simplify the scheme in [59]. In particular,
Q-linear and Q-superlinear rates of convergence are established under an error
bound condition, as opposed to uniqueness of the solution. The proofs of superlinear
convergence with an error bound pattern the arguments in [82, 83], although with
less conservative requirements.

15.1.3 Organization

The work is structured as follows. In Section 15.2 we introduce the adopted notation
and list some known facts on generalized differentiability needed in the sequel.
Section 15.3 offers an overview on the connections between FBS and the proximal
point algorithm, and serves as a prelude to Section 15.4 where the forward-backward
envelope function is introduced and analyzed. Section 15.5 deals with the proposed
truncated-Newton algorithm and its convergence analysis. In Section 15.6 we collect
explicit formulas for the generalized Jacobian of the proximal mapping of a rich list
of nonsmooth functions, needed for computing the update directions in the proposed
algorithm. Finally, Section 15.7 draws some conclusions.

15.2 Preliminaries

15.2.1 Notation and Known Facts

Our notation is standard and follows that of convex analysis textbooks [2, 8, 28,
63]. For the sake of clarity we now properly specify the adopted conventions, and
briefly recap known definitions and facts in convex analysis. The interested reader
is referred to the above-mentioned textbooks for the details.

Matrices and Vectors The n×n identity matrix is denoted as In, and the Rn vector
with all elements equal to 1 is as 1n; whenever n is clear from context we simply
write I or 1, respectively. We use the Kronecker symbol δi,j for the (i, j)-th entry
of I. Given v ∈ R

n, with diag v we indicate the n × n diagonal matrix whose i-th
diagonal entry is vi . With S(Rn), S+(Rn), and S++(Rn) we denote respectively the
set of symmetric, symmetric positive semidefinite, and symmetric positive definite
matrices in R

n×n.

The minimum and maximum eigenvalues of H ∈ S(Rn) are denoted as λmin(H)

and λmax(H), respectively. For Q,R ∈ S(Rn) we write Q � R to indicate that
Q − R ∈ S+(Rn), and similarly Q ( R indicates that Q − R ∈ S++(Rn). Any
matrix Q ∈ S+(Rn) induces the semi-norm ‖ · ‖Q on R

n, where ‖x‖2
Q
:= 〈x,Qx〉;

in case Q = I, that is, for the Euclidean norm, we omit the subscript and simply



15 On the Acceleration of Forward-Backward Splitting via an Inexact Newton Method 367

write ‖ · ‖. No ambiguity occurs in adopting the same notation for the induced
matrix norm, namely ‖M‖ := max{‖Mx‖|x ∈ R

n, ‖x‖ = 1|} for M ∈ R
n×n.

Topology The convex hull of a set E ⊆ R
n, denoted as convE, is the smallest

convex set that contains E (the intersection of convex sets is still convex). The affine
hull affE and the conic hull coneE are defined accordingly. Specifically,

convE :=
{∑k

i=1 αixi | k ∈ N, xi ∈ E, αi ≥ 0,
∑k

i=1 αi = 1
}
,

coneE :=
{∑k

i=1 αixi | k ∈ N, xi ∈ E, αi ≥ 0
}
,

affE :=
{∑k

i=1 αixi | k ∈ N, xi ∈ E, αi ∈ R,
∑k

i=1 αi = 1
}
.

The closure and interior of E are denoted as clE and intE, respectively, whereas
its relative interior, namely the interior of E as a subspace of affE, is denoted as
relintE. With B(x; r) and B(x; r) we indicate, respectively, the open and closed
balls centered at x with radius r .

Sequences The notation (ak)k∈K represents a sequence indexed by elements of the
set K , and given a set E we write (ak)k∈K ⊂ E to indicate that ak ∈ E for all indices
k ∈ K . We say that (ak)k∈K ⊂ R

n is summable if
∑

k∈K ‖ak‖ is finite, and square-
summable if (‖ak‖2)k∈K is summable. We say that the sequence converges to a point
a ∈ R

n superlinearly if either ak = a for some k ∈ N, or ‖ak+1−a‖/‖ak−a‖ → 0;
if ‖ak+1−a‖/‖ak−a‖q is bounded for some q > 1, then we say that the sequence
converges superlinearly with order q, and in case q = 2 we say that the convergence
is quadratic.

Extended-Real Valued Functions The extended-real line is R = R ∪ {∞}. Given
a function h : Rn → [−∞,∞], its epigraph is the set

epi h := {
(x, α) ∈ R

n × R | h(x) ≤ α
}
,

while its domain is

dom h := {
x ∈ R

n | h(x) <∞}
,

and for α ∈ R its α-level set is

lev≤α h :=
{
x ∈ R

n | h(x) ≤ α
}
.

Function h is said to be lower semicontinuous (lsc) if epi h is a closed set in R
n+1

(equivalently, h is said to be closed); in particular, all level sets of an lsc function
are closed. We say that h is proper if h > −∞ and dom h �= ∅, and that it is level
bounded if for all α ∈ R the level set lev≤α h is a bounded subset of Rn.



368 A. Themelis et al.

Continuity and Smoothness A function G : Rn → R
m is ϑ-Hölder continuous

for some ϑ > 0 if there exists L ≥ 0 such that

‖G(x)−G(x′)‖ ≤ L‖x − x′‖ϑ (15.3)

for all x, x′. In case ϑ = 1 we say that G is (L-)Lipschitz continuous. G is strictly
differentiable at x̄ ∈ R

n if the Jacobian matrix JG(x̄) := (
∂Gi

∂xj
(x̄)

)
i,j

exists and

lim
x,x′→x̄
x �=x′

‖G(x′)− JG(x̄)(x′ − x)−G(x)‖
‖x′ − x‖ = 0. (15.4)

The class of functions h : Rn → R that are k times continuously differentiable is
denoted as Ck(Rn). We write h ∈ C1,1(Rn) to indicate that h ∈ C1(Rn) and that∇h
is Lipschitz continuous with modulus Lh. To simplify the terminology, we will say
that such an h is Lh-smooth. If h is Lh-smooth and convex, then for any u, v ∈ R

n

0 ≤ h(v)− [
h(u)+ 〈∇h(u), v − u〉] ≤ Lh

2 ‖v − u‖2. (15.5)

Moreover, having h ∈ C1,1(Rn) and μh-strongly convex is equivalent to having

μh‖v − u‖2 ≤ 〈∇h(v)−∇h(u), v − u〉 ≤ Lh‖v − u‖2 (15.6)

for all u, v ∈ R
n.

Set-Valued Mappings We use the notation H : Rn ⇒ R
m to indicate a point-to-

set function H : Rn → P(Rm), where P(Rm) is the power set of Rm (the set of all
subsets of Rm). The graph of H is the set

gphH := {
(x, y) ∈ R

n × R
m | y ∈ H(x)

}
,

while its domain is

domH := {
x ∈ R

n | H(x) �= ∅} .
We say that H is outer semicontinuous (osc) at x̄ ∈ domH if for any ε > 0 there
exists δ > 0 such that H(x) ⊆ H(x̄)+B(0; ε) for all x ∈ B(x̄; δ). In particular, this
implies that whenever (xk)

k∈N ⊆ domH converges to x and (yk)
k∈N converges to

y with yk ∈ H(xk) for all k, it holds that y ∈ H(x). We say that H is osc (without
mention of a point) if H is osc at every point of its domain or, equivalently, if gphH
is a closed subset of R

n × R
m (notice that this notion does not reduce to lower

semicontinuity for a single-valued function H ).
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Convex Analysis The indicator function of a set S ⊆ R
n is denoted as δS : Rn →

R, namely

δS(x) =
{

0 if x ∈ S,

∞ otherwise.
(15.7)

If S is nonempty closed and convex, then δS is proper convex and lsc, and both
the projection PS : Rn → R

n and the distance dist( · , S) : Rn → [0,∞) are
well-defined functions, given by PS(x) = argminz∈S ‖z − x‖ and dist(x, S) =
minz∈S ‖z− x‖, respectively.

The subdifferential of h is the set-valued mapping ∂h : Rn ⇒ R
n defined as

∂h(x) :=
{
v ∈ R

n | h(z) ≥ h(x)+ 〈v, z− x〉 ∀z ∈ R
n
}
. (15.8)

A vector v ∈ ∂h(x) is called a subgradient of h at x. It holds that dom ∂h ⊆ domh,
and if h is proper and convex, then dom ∂h is a nonempty convex set containing
relint dom h, and ∂h(x) is convex and closed for all x ∈ R

n.
A function h is said to be μ-strongly convex for some μ ≥ 0 if h − μ

2 ‖ · ‖2 is
convex. Unless differently specified, we allow for μ = 0 which corresponds to h

being convex but not strongly so. If μ > 0, then h has a unique (global) minimizer.

15.2.2 Generalized Differentiability

Due to its inherent nonsmooth nature, classical notions of differentiability may not
be directly applicable in problem (15.1). This subsection contains some definitions
and known facts on generalized differentiability that will be needed later on in the
chapter. The interested reader is referred to the textbooks [15, 19, 65] for the details.

Definition 15.2.1 (Bouligand and Clarke Subdifferentials) Let G : Rn → R
m

be locally Lipschitz continuous, and let CG ⊆ R
n be the set of points at which G

is differentiable (in particular R
n \ CG has measure zero). The B-subdifferential

(also known as Bouligand or limiting Jacobian) of G at x̄ is the set-valued mapping
∂BG : Rn ⇒ R

m×n defined as

∂BG(x̄) :=
{
H ∈ R

m×n | ∃(xk)k∈N ⊂ CG with xk → x̄, JG(xk)→ H
}
,

(15.9)

whereas the (Clarke) generalized Jacobian of G at x̄ is ∂CG : Rn ⇒ R
m×n given by

∂CG(x̄) := conv(∂BG(x̄)). (15.10)

If G : Rn → R
m is locally Lipschitz on R

n, then ∂CG(x) is a nonempty, convex,
and compact subset of Rm×n matrices, and as a set-valued mapping it is osc at every
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x ∈ R
n. Semismooth functions [60] are precisely Lipschitz-continuous mappings for

which the generalized Jacobian (and consequently the B-subdifferential) furnishes
a first-order approximation.

Definition 15.2.2 (Semismooth Mappings) Let G : R
n → R

m be locally
Lipschitz continuous at x̄. We say that G is semismooth at x̄ if

lim sup
x→x̄

H∈∂CG(x)

‖G(x)+H(x̄ − x)−G(x̄)‖
‖x − x̄‖ = 0. (15.11a)

We say that G is ϑ-order semismooth for some ϑ > 0 if the condition can be
strengthened to

lim sup
x→x̄

H∈∂CG(x)

‖G(x)+H(x̄ − x)−G(x̄)‖
‖x − x̄‖1+ϑ <∞, (15.11b)

and in case ϑ = 1 we say that G is strongly semismooth.

To simplify the notation, we adopt the small-o and big-O convention to
write expressions as (15.11a) in the compact form G(x) + H(x̄ − x) − G(x̄) =
o(‖x− x̄‖), and similarly (15.11b) as G(x)+H(x̄− x)−G(x̄) = O(‖x− x̄‖1+ϑ).
We remark that the original definition of semismoothness given by [49] requires G
to be directionally differentiable at x. The definition given here is the one employed
by [25]. It is also worth remarking that ∂CG(x) can be replaced with the smaller
set ∂BG(x) in Definition 15.2.2. Fortunately, the class of semismooth mappings
is rich enough to include many functions arising in interesting applications. For
example, piecewise smooth (PC1) mappings are semismooth everywhere. Recall
that a continuous mapping G : Rn → R

m is PC1 if there exists a finite collection
of smooth mappings Gi : Rn → R

m, i = 1, . . . , N , such that

G(x) ∈ {G1(x), . . . ,GN(x)} ∀x ∈ R
n. (15.12)

The definition of PC1 mapping given here is less general than the one of, e.g.,
[66, §4] but it suffices for our purposes. For every x ∈ R

n we introduce the set of
essentially active indices

I eG(x) :=
{
i | x ∈ cl

(
int {w | G(w) = Gi(w)} )} . (15.13)

In other words, I eG(x) contains only indices of the pieces Gi for which there
exists a full-dimensional set on which G agrees with Gi . In accordance with
Definition 15.2.1, the generalized Jacobian of G at x is the convex hull of the
Jacobians of the essentially active pieces, i.e., [66, Prop. 4.3.1]

∂CG(x) = conv
{
JGi(x) | i ∈ I eG(x)

}
. (15.14)

The following definition is taken from [19, Def. 7.5.13].
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Definition 15.2.3 (Linear Newton Approximation) Let G : R
n → R

m be
continuous on R

n. We say that G admits a linear Newton approximation (LNA)
at x̄ ∈ R

n if there exists a set-valued mapping H : Rn ⇒ R
m×n that has nonempty

compact images, is outer semicontinuous at x̄, and

lim sup
x→x̄
H ∈H(x)

‖G(x)+H(x̄ − x)−G(x̄)‖
‖x − x̄‖ = 0.

If for some ϑ > 0 the condition can be strengthened to

lim sup
x→x̄
H ∈H(x)

‖G(x)+H(x̄ − x)−G(x̄)‖
‖x − x̄‖1+ϑ <∞,

then we say that H is a ϑ-order LNA, and if ϑ = 1 we say that H is a strong LNA.

Functions G as in Definition 15.2.3 are also referred to as H-semismooth in the
literature, see, e.g., [78], however we prefer to stick to the terminology of [19] and
rather say that H is a LNA for G. Arguably the most notable example of a LNA for
semismooth mappings is the generalized Jacobian, cf. Definition 15.2.1. However,
semismooth mappings can admit LNAs different from the generalized Jacobian.
More importantly, mappings that are not semismooth may also admit a LNA.

Lemma 15.2.4 ([19, Prop. 7.4.10]) Let h ∈ C1(Rn) and suppose that H : Rn ⇒
R
n×n is a LNA for ∇h at x̄. Then,

lim
x→x̄
H ∈H(x)

h(x)− h(x̄)− 〈∇h(x̄), x − x̄〉 − 1
2 〈H(x − x̄), x − x̄〉

‖x − x̄‖2 = 0. (15.15)

We remark that although [19, Prop. 7.4.10] assumes semismoothness of ∇h at x̄
and uses ∂C(∇h) in place of H; however, exactly the same arguments apply for any
LNA of ∇h at x̄ even without the semismoothness assumption.

15.3 Proximal Algorithms

15.3.1 Proximal Point and Moreau Envelope

The proximal mapping of a proper closed and convex function h : Rn → R with
parameter γ > 0 is proxγ h : Rn → R

n, given by

proxγ h(x) := argminw∈Rn

{ Mh
γ (w;x)

h(w)+ 1
2γ ‖w − x‖2

}
. (15.16)
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The majorization model Mh
γ (x; · ) is a proper and strongly convex function, and

therefore has a unique minimizer. The value function, as opposed to the minimizer,
defines the Moreau envelope hγ : Rn → R, namely

hγ (x) := min
w∈Rn

{
h(w)+ 1

2γ ‖w − x‖2
}
, (15.17)

which is real valued and Lipschitz differentiable, despite the fact that h might be
extended-real valued. Properties of the Moreau envelope and the proximal mapping
are well documented in the literature, see, e.g., [2, §24]. For example, proxγ h is
nonexpansive (Lipschitz continuous with modulus 1) and is characterized by the
implicit inclusion

x̂ = proxγ h(x) ⇔ 1
γ
(x − x̂) ∈ ∂h(x̂). (15.18)

For the sake of a brief recap, we now list some other important known properties.
Theorem 15.3.1 provides some relations between h and its Moreau envelope
hγ , which we informally refer to as sandwich property for apparent reasons, cf.
Figure 15.1. Theorem 15.3.2 highlights that the minimization of a (proper, lsc and)
convex function can be expressed as the convex smooth minimization of its Moreau
envelope.

Theorem 15.3.1 (Moreau Envelope: Sandwich Property [2, 12]) For all γ > 0
the following hold for the cost function ϕ:

(i) ϕγ (x) ≤ ϕ(x) − 1
2γ ‖x − x̂‖2 for all x ∈ R

n where x̂ := proxγ ϕ(x);

(ii) ϕ(x̂) = ϕγ (x)− 1
2γ ‖x − x̂‖2 for all x ∈ R

n where x̂ := proxγ ϕ(x);
(iii) ϕγ (x) = ϕ(x) iff x ∈ argminϕ.

Proof

• 15.3.1(i). This fact is shown in [12, Lem. 3.2] for a more general notion
of proximal point operator; namely, the square Euclidean norm appearing
in (15.16) and (15.17) can be replaced by arbitrary Bregman divergences. In
this simpler case, since 1

γ
(x− x̂) is a subgradient of ϕ at x̂, cf. (15.18), we have

ϕ(x) ≥ ϕ(x̂)+ 〈 1
γ
(x − x̂), x − x̂〉 = ϕ(x̂)+ 1

γ
‖x − x̂‖2. (15.19)

The claim now follows by subtracting 1
2γ ‖x − x̂‖2 from both sides.

• 15.3.1(ii). Follows by definition, cf. (15.16) and (15.17).
• 15.3.1(iii). See [2, Prop. 17.5]. ��

��
Theorem 15.3.2 (Moreau Envelope: Convex Smooth Minimization Equivalence
[2]) For all γ > 0 the following hold for the cost function ϕ:
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Fig. 15.1 Moreau envelope of the function
ϕ(x) = 1

3x
3 + x2 − x + 1+ δ[0,∞)(x) with parameter γ = 0.2.

At each point x, the Moreau envelope ϕγ is the minimum of the quadratic majorization model
M

ϕ
γ = ϕ + 1

2γ ( · − x)2, the unique minimizer being, by definition, the proximal point x̂ :=
proxγϕ(x). It is a convex smooth lower bound to ϕ, despite the fact that ϕ might be extended-real
valued. Function ϕ and its Moreau envelope ϕγ have same inf and argmin; in fact, the two functions
agree (only) on the set of minimizers. In general, ϕγ is sandwiched as ϕ ◦ proxγϕ ≤ ϕγ ≤ ϕ

(i) ϕγ is convex and smooth with Lϕγ = γ−1 and ∇ϕγ (x) = γ−1
(
x −

proxγ ϕ(x)
)
;

(ii) infϕ = infϕγ ;
(iii) x* ∈ argminϕ iff x* ∈ argminϕγ iff ∇ϕγ (x*) = 0.

Proof

• 15.3.2(i). See [2, Prop.s 12.15 and 12.30].
• 15.3.2(ii). See [2, Prop. 12.9(iii)].
• 15.3.2(iii). See [2, Prop. 17.5]. ��

��
As a consequence of Theorem 15.3.2, one can address the minimization of

the convex but possibly nonsmooth and extended-real-valued function ϕ by
means of gradient descent on the smooth envelope function ϕγ with stepsize
0 < τ < 2/Lϕγ = 2γ . As first noticed by Rockafellar [64], this simply amounts to
(relaxed) fixed-point iterations of the proximal point operator, namely

x+ = (1− λ)x + λ proxγ ϕ(x), (15.20)
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where λ = τ/γ ∈ (0, 2) is a possible relaxation parameter. The scheme, known
as proximal point algorithm (PPA) and first introduced by Martinet [45], is well
covered by the broad theory of monotone operators, where convergence properties
can be easily derived with simple tools of Fejérian monotonicity, see, e.g., [2, Thm.s
23.41 and 27.1]. Nevertheless, not only does the interpretation as gradient method
provide a beautiful theoretical link, but it also enables the employment of accel-
eration techniques exclusively stemming from smooth unconstrained optimization,
such as Nesterov’s extrapolation [26] or quasi-Newton schemes [13], see also [7]
for extensions to the dual formulation.

15.3.2 Forward-Backward Splitting

While it is true that every convex minimization problem can be smoothened
by means of the Moreau envelope, unfortunately it is often the case that the
computation of the proximal operator (which is needed to evaluate the envelope)
is as hard as solving the original problem. For instance, evaluating the Moreau
envelope of the cost of modeling a convex QP at one point amounts to solving
another QP with same constraints and augmented cost. To overcome this limitation
there comes the idea of splitting schemes, which decompose a complex problem in
small components which are easier to operate onto. A popular such scheme is the
forward-backward splitting (FBS), which addresses minimization problems of the
form (15.1).

Given a point x ∈ R
n, one iteration of forward-backward splitting (FBS) for

problem (15.1) with stepsize γ > 0 and relaxation λ > 0 consists in

x+ = (1− λ)x + λTγ (x), (15.21)

where

Tγ (x) := proxγg (x − γ∇f (x)) (15.22)

is the forward-backward operator, characterized as

x̄ = Tγ (x) ⇔ 1
γ
(x − x̄)− (∇f (x)− ∇f (x̄)) ∈ ∂ϕ(x̄), (15.23)

as it follows from (15.18). FBS interleaves a gradient descent step on f and a
proximal point step on g, and as such it is also known as proximal gradient method.
If both f and g are (lsc, proper and) convex, then the solutions to (15.1) are exactly
the fixed points of the forward-backward operator Tγ . In other words,

x* ∈ argminϕ iff Rγ (x*) = 0, (15.24)
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where

Rγ (x) := 1
γ

(
x − proxγg (x − γ∇f (x)) ) (15.25)

is the forward-backward residual.1 FBS iterations (15.21) are well known to
converge to a solution to (15.1) provided that f is smooth and that the parameters
are chosen as γ ∈ (0, 2/Lf ) and λ ∈ (0, 2 − γLf/2) [2, Cor. 28.9] (λ = 1, which is
always feasible, is the typical choice).

15.3.3 Error Bounds and Quadratic Growth

We conclude the section with some inequalities that will be useful in the sequel.

Lemma 15.3.3 Suppose that X* is nonempty. Then,

ϕ(x)− ϕ* ≤ dist(0, ∂ϕ(x)) dist(x,X*) ∀x ∈ R
n. (15.26)

Proof From the subgradient inequality it follows that for all x* ∈ X* and v ∈ ∂ϕ(x)

we have

ϕ(x)− ϕ* = ϕ(x)− ϕ(x*) ≤ 〈v, x − x*〉 ≤ ‖v‖‖x − x*‖ (15.27)

and the claimed inequality follows from the arbitrarity of x* and v. ��
Lemma 15.3.4 Suppose that X* is nonempty. For all x ∈ R

n and γ > 0 the
following holds:

‖Rγ (x)‖ ≥ 1
1+γLf

dist
(
0, ∂ϕ(Tγ (x))

)
(15.28)

Proof Let x̄ := Tγ (x). The characterization (15.23) of Tγ implies that

‖Rγ (x)‖ ≥ dist
(
0, ∂ϕ(x̄)

)−‖∇f (x)−∇f (x̄)‖ ≥ dist
(
0, ∂ϕ(x̄)

)−γLf ‖Rγ (x)‖.
(15.29)

After trivial rearrangements the sought inequality follows. ��
Further interesting inequalities can be derived if the cost function ϕ satisfies an

error bound, which can be regarded as a generalization of strong convexity that
does not require uniqueness of the minimizer. The interested reader is referred to
[3, 17, 43, 55] and the references therein for extensive discussions.

1Due to apparent similarities with gradient descent iterations, having x+ = x − γRγ (x) in FBS,
Rγ is also referred to as (generalized) gradient mapping, see, e.g., [17]. In particular, if g = 0, then
Rγ = ∇f whereas if f = 0 then Rγ = ∇gγ . The analogy will be supported by further evidence
in the next section where we will see that, up to a change of metric, indeed Rγ is the gradient of
the forward-backward envelope function.
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Definition 15.3.5 (Quadratic Growth and Error Bound) Suppose that X* �= ∅.
Given μ, ν > 0, we say that

(a) ϕ satisfies the quadratic growth with constants (μ, ν) if

ϕ(x)− ϕ* ≥ μ
2 dist(x,X*)

2 ∀x ∈ lev≤ϕ*+ν ϕ; (15.30)

(b) ϕ satisfies the error bound with constants (μ, ν) if

dist(0, ∂ϕ(x)) ≥ μ
2 dist(x,X*) ∀x ∈ lev≤ϕ*+ν ϕ. (15.31)

In case ν = ∞ we say that the properties are satisfied globally.

Theorem 15.3.6 ([17, Thm. 3.3]) For a proper convex and lsc function, the
quadratic growth with constants (μ, ν) is equivalent to the error bound with same
constants.

Lemma 15.3.7 (Globality of Quadratic Growth) Suppose that ϕ satisfies the
quadratic growth with constants (μ, ν). Then, for every ν′ > ν it satisfies the
quadratic growth with constants (μ′, ν′), where

μ′ := μ
2 min

{
1, ν

ν′−ν
}
. (15.32)

Proof Let ν′ > ν be fixed, and let x ∈ lev≤ϕ*+ν′ be arbitrary. Since μ′ ≤ μ, the
claim is trivial if ϕ(x) ≤ ϕ*+ ν; we may thus suppose that ϕ(x) > ϕ*+ ν. Let z be
the projection of x onto the (nonempty closed and convex) level set lev≤ϕ*+ν , and
observe that ϕ(z) = ϕ* + ν. With Lemma 15.3.3 and Theorem 15.3.6 we can upper
bound ν as

ν = ϕ(z)− ϕ* ≤ dist(0, ∂ϕ(z)) dist(z,X*) ≤ 2
μ

dist(0, ∂ϕ(z))2. (15.33)

Moreover, it follows from [28, Thm. 1.3.5] that there exists a subgradient v ∈ ∂ϕ(z)

such that 〈v, x − z〉 = ‖v‖‖x − z‖. Then,

ϕ(x) ≥ ϕ(z)+ 〈v, x − z〉 = ϕ(z)+ ‖v‖‖x − z‖ ≥ ϕ(z)+ dist(0, ∂ϕ(z))‖x − z‖
(15.33)
≥ ϕ(z)+

√
μν
2 ‖x − z‖. (15.34)

By subtracting ϕ(z) from the first and last terms we obtain

‖x − z‖ ≤
√

2
μν

(
ϕ(x)− ϕ(z)

) ≤ √
2
μν

(ν′ − ν), (15.35)

which implies

‖x − z‖ ≥
√

μν
2

1
ν′−ν ‖x − z‖2. (15.36)
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Thus,

ϕ(x)− ϕ*
(15.34)≥ ϕ(z)− ϕ* +

√
μν
2 ‖x − z‖

using the quadratic growth at z and the inequality (15.36)

≥ μ
2 dist(z,X*)

2 + μν
2(ν′−ν)‖x − z‖2

≥ μ
2 min

{
1, ν

ν′−ν
} [

dist(z,X*)
2 + ‖x − z‖2

]
.

By using the fact that a2 + b2 ≥ 1
2 (a + b)2 for any a, b ∈ R together with the

triangular inequality dist(x,X*) ≤ ‖x − z‖ + dist(z,X*), we conclude that ϕ(x)−
ϕ* ≥ μ′

2 dist(x,X*)
2, with μ′ as in the statement. Since μ′ depends only on μ, ν,

and ν′, from the arbitrarity of x ∈ lev≤ϕ*+ν′ the claim follows. ��
Theorem 15.3.8 ([17, Cor. 3.6]) Suppose that ϕ satisfies the quadratic growth with
constants (μ, ν). Then, for all γ ∈ (0, 1/Lf ) and x ∈ lev≤ϕ*+ν ϕ we have

dist(x,X*) ≤ (γ + 2/μ)(1+ γLf )‖Rγ (x)‖. (15.37)

15.4 Forward-Backward Envelope

There are clearly infinite ways of representing the (proper, lsc and) convex function
ϕ in (15.1) as the sum of two convex functions f and g with f smooth, and each
of these choices leads to a different FBS operator Tγ . If f = 0, for instance, then
Tγ reduces to proxγ ϕ , and consequently FBS (15.21) to the PPA (15.20). A natural
question then arises, whether a function exists that serves as “envelope” for FBS in
the same way that ϕγ does for proxγ ϕ . We will now provide a positive answer to
this question by reformulating the nonsmooth problem (15.1) as the minimization
of a differentiable function. To this end, the following requirements on f and g will
be assumed throughout the chapter without further mention.

Assumption I (Basic Requirements) In problem (15.1),

(i) f : Rn → R is convex, twice continuously differentiable and Lf -smooth;
(ii) g : Rn → R is lsc, proper, and convex.
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Compared to the classical FBS assumptions, the only additional requirement
is twice differentiability of f . This ensures that the forward operator x �→ x −
γ∇f (x) is differentiable; we denote its Jacobian as Qγ : Rn → R

n×n, namely

Qγ (x) := I− γ∇2f (x). (15.38)

Notice that, due to the bound ∇2f (x) 3 Lf I (which follows from Lf -smoothness
of f , see [53, Lem. 1.2.2]) Qγ (x) is invertible (in fact, positive definite) whenever
γ < 1/Lf . Moreover, due to the chain rule and Theorem 15.3.2(i) we have that

∇[gγ ◦ (id−γ∇f )](x) = γ−1Qγ (x)
[
x − γ∇f (x)− proxγg (x − γ∇f (x)) ]

= Qγ (x)
[
Rγ (x)−∇f (x)

]
.

Rearranging,

Qγ (x)Rγ (x) = ∇f (x)− γ∇2f (x)∇f (x)+∇[gγ ◦ (id−γ∇f )](x)
= ∇f (x)−∇

[
γ
2 ‖∇f ‖2

]
(x)+∇[gγ ◦ (id−γ∇f )](x)

= ∇
[
f − γ

2 ‖∇f ‖2 + gγ ◦ (id−γ∇f )
]
(x)

we obtain the gradient of a real-valued function, which we define as follows.

Definition 15.4.1 (Forward-Backward Envelope) The forward-backward
envelope (FBE) for the composite minimization problem (15.1) is the function
ϕγ : Rn → R defined as

ϕγ (x) := f (x)− γ
2 ‖∇f (x)‖2 + gγ (x − γ∇f (x)). (15.39)

In the next section we discuss some of the favorable properties enjoyed by the FBE.

15.4.1 Basic Properties

We already verified that the FBE is differentiable with gradient

∇ϕγ (x) = Qγ (x)Rγ (x). (15.40)
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In particular, for γ < 1/Lf one obtains that a FBS step is a (scaled) gradient
descent step on the FBE, similarly as the relation between Moreau envelope and
PPA; namely,

Tγ (x) = x − γQγ (x)
−1∇ϕγ (x). (15.41)

To take the analysis of the FBE one step further, let us consider the equivalent
expression of the operator Tγ as

Tγ (x) = argminw∈Rn

{ M
f,g
γ (w;x)

f (x)+ 〈∇f (x), w − x〉 + 1
2γ ‖w − x‖2 + g(w)

}
.

(15.42)

Differently from the quadratic model Mϕ
γ in (15.16), Mf,g

γ replaces the differen-
tiable component f with a linear approximation. Building upon the idea of the
Moreau envelope, instead of the minimizer Tγ (x) we consider the value attained
in the subproblem (15.42), and with simple algebra one can easily verify that this
gives rise once again to the FBE:

ϕγ (x) = min
w∈Rn

{
f (x)+ 〈∇f (x), w − x〉 + 1

2γ ‖w − x‖2 + g(w)
}
. (15.43)

Starting from this expression we can easily mirror the properties of the Moreau enve-
lope stated in Theorems 15.3.1 and 15.3.2. These results appeared in the indepen-
dent works [54] and [57], although the former makes no mention of an “envelope”
function and simply analyzes the majorization-minimization model Mf,g

γ .

Theorem 15.4.2 (FBE: Sandwich Property) Let γ > 0 and x ∈ R
n be fixed, and

denote x̄ = Tγ (x). The following hold:

(i) ϕγ (x) ≤ ϕ(x) − 1
2γ ‖x − x̄‖2;

(ii) ϕγ (x)− 1
2γ ‖x − x̄‖2 ≤ ϕ(x̄) ≤ ϕγ (x)− 1−γLf

2γ ‖x − x̄‖2.

In particular,

(iii) ϕγ (x*) = ϕ(x*) iff x* ∈ argminϕ.

In fact, the assumption of twice continuous differentiability of f can be dropped.

Proof

• 15.4.2(i) Since the minimum in (15.43) is attained at w = x̄, cf. (15.42), we
have

ϕγ (x) = f (x)+ 〈∇f (x), x̄ − x〉 + 1
2γ ‖x̄ − x‖2 + g(x̄) (15.44)
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≤ f (x)+ 〈∇f (x), x̄ − x〉 + 1
2γ ‖x̄ − x‖2 + g(x)

+ 〈 1
γ
(x − x̄)−∇f (x), x̄ − x〉

= f (x)+ g(x)− 1
2γ ‖x − x̄‖2

where in the inequality we used the fact that 1
γ
(x − x̄) − ∇f (x) ∈ ∂g(x̄),

cf. (15.23).
• 15.4.2(ii) Follows by using (15.5) (with h = f , u = x and v = x̄) in (15.44).
• 15.4.2(iii) Follows by 15.4.2(i) and the optimality condition (15.24). ��

��
Notice that by combining Theorems 15.4.2(i) and 15.4.2(ii) we recover the

“sufficient decrease” condition of (convex) FBS [54, Thm. 1], that is

ϕ(x̄) ≤ ϕ(x)− 2−γLf

2γ ‖x − x̄‖2 (15.45)

holding for all x ∈ R
n with x̄ = Tγ (x).

Theorem 15.4.3 (FBE: Smooth Minimization Equivalence) For all γ > 0

(i) ϕγ ∈ C1(Rn) with ∇ϕγ = QγRγ .

Moreover, if γ ∈ (0, 1/Lf ) then the following also hold:

(ii) infϕ = infϕγ ;
(iii) x* ∈ argminϕ iff x* ∈ argminϕγ iff ∇ϕγ (x*) = 0.

Proof

• 15.4.3(i). Since f ∈ C2(Rn) and gγ ∈ C1(Rn) (cf. Theorem 15.3.2(i)), from
the definition (15.39) it is apparent that ϕγ is continuously differentiable for all
γ > 0. The formula for the gradient was already shown in (15.40).

Suppose now that γ < 1/Lf .

• 15.4.3(ii). infϕ ≤ infx∈Rn ϕ(Tγ (x))
15.4.2(ii)≤ infx∈Rn ϕγ (x) = infϕγ

15.4.2(i)≤ infϕ.
• 15.4.3(iii). We have

x* ∈ argminϕ
(15.24)⇔ Rγ (x*) = 0 ⇔ Qγ (x*)Rγ (x*) = 0

15.4.3(i)⇔ ∇ϕγ (x*) = 0,
(15.46)

where the second equivalence follows from the invertibility of Qγ .
Suppose now that x* ∈ argminϕγ . Since ϕγ ∈ C1(Rn) the first-order necessary
condition reads ∇ϕγ = 0, and from the equivalence proven above we conclude
that argminϕγ ⊆ argminϕ. Conversely, if x* ∈ argminϕ, then

ϕγ (x*)
15.4.2(iii)= ϕ(x*) = infϕ

15.4.3(ii)= infϕγ , (15.47)

proving x* ∈ argminϕγ , hence the inclusion argminϕγ ⊇ argminϕ. ��
��
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Proposition 15.4.4 (FBE and Moreau Envelope [54, Thm. 2]) For any γ ∈
(0, 1/Lf ), it holds that

ϕ
γ

1−γLf ≤ ϕγ ≤ ϕγ . (15.48)

Proof We have

ϕγ (x) = min
w∈Rn

{
f (x)+ 〈∇f (x), w − x〉 + 1

2γ ‖w − x‖2 + g(w)
}

(15.5)
≤ min

w∈Rn

{
f (w)− Lf

2 ‖w − x‖2 + 1
2γ ‖w − x‖2 + g(w)

}

= min
w∈Rn

{
f (w)+ g(w)+ 1−γLf

2γ ‖w − x‖2
}
= ϕ

γ
1−γLf (x).

Using the upper bound in (15.5) instead yields the other inequality. ��
Since ϕγ is upper bounded by the γ−1-smooth function ϕγ with which it shares

the set of minimizers X*, from (15.5) we easily infer the following quadratic upper
bound.

Corollary 15.4.5 (Global Quadratic Upper Bound) If X* �= ∅, then

ϕγ (x)− ϕ* ≤ 1
2γ dist(x,X*)

2 ∀x ∈ R
n. (15.49)

Although the FBE may fail to be convex, for γ < 1/Lf its stationary points
and minimizers coincide and are the same as those of the original function ϕ

(Figure 15.2). That is, the minimization of ϕ is equivalent to the minimization of the
differentiable function ϕγ . This is a clear analogy with the Moreau envelope, which
in fact is the special case of the FBE corresponding to f ≡ 0 in the decomposition
of ϕ. In the next result we tighten the claims of Theorem 15.4.3(i) when f is a
convex quadratic function, showing that in this case the FBE is convex and smooth
and thus recover all the properties of the Moreau envelope.

Theorem 15.4.6 (FBE: Convexity & Smoothness for Quadratic f [24, Prop.
4.4]) Suppose that f is convex quadratic, namely f (x) = 1

2 〈x,Hx〉 + 〈h, x〉 for
some H ∈ S+(Rn) and h ∈ R

n. Then, for all γ ∈ (0, 1/Lf ] the FBE ϕγ is convex
and smooth, with

Lϕγ = 1−γμf

γ
and μϕγ = min

{
μf (1− γμf ), Lf (1− γLf )

}
, (15.50)

where Lf = λmax(H) and μf = λmin(H). In particular, when f is μf -strongly
convex the strong convexity of ϕγ is maximized for γ = 1

μf+Lf
, in which case

Lϕγ = Lf and μϕγ = Lf μf

μf+Lf
. (15.51)
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Fig. 15.2 FBE of the function ϕ as in Figure 15.1 with same parameter γ = 0.2, relative to the
decomposition as the sum of f (x) = x2 + x − 1 and g(x) = 1

3x
3 + δ[0,∞)(x).

For γ < 1/Lf (Lf = 2 in this example) at each point x the FBE ϕγ is the minimum of the

quadratic majorization model Mf,g
γ ( · , x) for ϕ, the unique minimizer being the proximal gradient

point x̄ = Tγ (x). The FBE is a differentiable lower bound to ϕ and since f is quadratic in this
example, it is also smooth and convex (cf. Theorem 15.4.6). In any case, its stationary points and
minimizers coincide, and are equivalent to the minimizers of ϕ

Proof Letting Q := I− γH , we have that Qγ ≡ Q and x − γ∇f (x) = Qx − γ h.
Therefore,

γ 〈∇ϕγ (x)−∇ϕγ (y), x − y〉(15.40)= 〈Q(Rγ (x)− Rγ (y)), x − y〉
= 〈Q(x−y), x−y〉 − 〈Q(Tγ (x)− Tγ (y)), x − y〉
= ‖x − y‖2

Q

− 〈 proxγg(Qx − γ h)

− proxγg(Qy − γ h),Q(x − y)〉.

From the firm nonexpansiveness of proxγg (see [2, Prop.s 4.35(iii) and 12.28]) it
follows that

0 ≤ 〈 proxγg(Qx−γ h)− proxγg(Qy−γ h),Q(x−y)〉 ≤ ‖Q(x−y)‖2. (15.52)

By combining with the previous inequality, we obtain

1
γ
‖x − y‖2

Q−Q2 ≤ 〈∇ϕγ (x)−∇ϕγ (y), x − y〉 ≤ 1
γ
‖x − y‖2

Q. (15.53)
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Since λmin(Q) = 1− γLf and λmax(Q) = 1− γμf , from Lemma 2 we conclude
that

μϕγ ‖x − y‖2 ≤ 〈∇ϕγ (x)−∇ϕγ (y), x − y〉 ≤ Lϕγ ‖x − y‖2 (15.54)

with μϕγ and Lϕγ as in the statement, hence the claim, cf. (15.6). ��
Lemma 15.4.7 Suppose that ϕ has the quadratic growth with constants (μ, ν), and
let ϕ* := minϕ. Then, for all γ ∈ (0, 1/Lf ] and x ∈ lev≤ϕ*+ν ϕγ it holds that

ϕγ (x)− ϕ* ≤ γ
[ 1

2 + (1+ 2/γμ)(1+ γLf )
2]‖Rγ (x)‖2. (15.55)

Proof Fix x ∈ lev≤ϕ*+ν ϕγ and let x̄ := Tγ (x). We have

ϕγ (x)− ϕ*
15.4.2(ii)
≤ γ

2 ‖Rγ (x)‖2 + ϕ(x̄)− ϕ*

15.3.3
≤ γ

2 ‖Rγ (x)‖2 + dist(x̄,X*) dist(0, ∂ϕ(x̄))

15.3.4
≤ [ γ

2 ‖Rγ (x)‖ + (1+ γLf ) dist(x̄,X*)
]‖Rγ (x)‖

and since x̄ ∈ lev≤ϕ*+ν ϕ (cf. Theorem 15.4.2(ii)), from Theorem 15.3.8 we can
bound the quantity dist(x̄,X*) in terms of the residual as

≤ [ γ
2 ‖Rγ (x)‖ + (γ + 2/μ)(1+ γLf )

2‖Rγ (x̄)‖
]‖Rγ (x)‖.

The proof now follows from the inequality ‖Rγ (x̄)‖ ≤ ‖Rγ (x)‖, see [4, Thm.
10.12], after easy algebraic manipulations. ��

15.4.2 Further Equivalence Properties

Proposition 15.4.8 (Equivalence of Level Boundedness) For any γ ∈ (0, 1/Lf ),
ϕ has bounded level sets iff ϕγ does.

Proof Theorem 15.4.2 implies that lev≤α ϕ ⊆ lev≤α ϕγ for all α ∈ R, therefore
level boundedness of ϕγ implies that of ϕ. Conversely, suppose that ϕγ is not
level bounded, and consider (xk)k∈N ⊆ lev≤α ϕγ with ‖xk‖ → ∞. Then from
Theorem 15.4.2 it follows that ϕ(x̄k) ≤ ϕγ (xk)− 1

2γ ‖xk−x̄k‖2 ≤ α− 1
2γ ‖xk−x̄k‖2,

where x̄k = Tγ (xk). In particular, (x̄k)k∈N ⊆ lev≤α ϕ. If (x̄k)k∈N is bounded, then
infϕ = −∞; otherwise, lev≤α ϕ contains the unbounded sequence (x̄k)k∈N. Either
way, ϕ cannot be level bounded. ��
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Proposition 15.4.9 (Equivalence of Quadratic Growth) Let γ ∈ (0, 1/Lf ) be
fixed. Then,

(i) if ϕ satisfies the quadratic growth condition with constants (μ, ν), then so does

ϕγ with constants (μ′, ν), where μ′ := 1−γLf

(1+γLf )
2

μγ

(2+γμ)2 μ;

(ii) conversely, if ϕγ satisfies the quadratic growth condition, then so does ϕ with
same constants.

Proof Since ϕ and ϕγ have same infimum and minimizers (cf. Theorem 15.4.3),
15.4.9(ii) is a straightforward consequence of the fact that ϕγ ≤ ϕ (cf. Theo-
rem 15.4.2(i)).

Conversely, suppose that ϕ satisfies the quadratic growth with constants (μ, ν).
Then, for all x ∈ lev≤ϕ*+ν ϕγ we have that x̄ := Tγ (x) ∈ lev≤ϕ*+ν ϕ, therefore

ϕγ (x)− ϕ*
15.4.2(ii)
≥ ϕ(x̄)− ϕ* + γ

1−γLf

2 ‖Rγ (x)‖2 ≥ μ′
2 dist(x,X*), (15.56)

where in the last inequality we discarded the term ϕ(x̄) − ϕ* ≥ 0 and used
Theorem 15.3.8 to lower bound ‖Rγ (x)‖2. ��
Corollary 15.4.10 (Equivalence of Strong Minimality) For all γ ∈ (0, 1/Lf ), a
point x* is a (locally) strong minimizer for ϕ iff it is a (locally) strong minimizer for
ϕγ .

Lastly, having showed that for convex functions the quadratic growth can be
extended to arbitrary level sets (cf. Lemma 15.3.7), an interesting consequence of
Proposition 15.4.9 is that, although ϕγ may fail to be convex, it enjoys the same
property.

Corollary 15.4.11 (FBE: Globality of Quadratic Growth) Let γ ∈ (0, 1/Lf ) and
suppose that ϕγ satisfies the quadratic growth with constants (μ, ν). Then, for every
ν′ > ν there exists μ′ > 0 such that ϕγ satisfies the quadratic growth with constants
(μ′, ν′).

15.4.3 Second-Order Properties

Although ϕγ is continuously differentiable over Rn, it fails to be C2 in most cases;
since g is nonsmooth, its Moreau envelope gγ is hardly ever C2. For example, if g is
real valued, then gγ is C2 (and proxγg is C1) if and only if g is C2 [33]. Therefore,
we hardly ever have the luxury of assuming continuous differentiability of ∇ϕγ and
we must resort to generalized notions of differentiability stemming from nonsmooth
analysis. Specifically, our analysis is largely based on generalized differentiability
properties of proxγg which we study next.

Theorem 15.4.12 For all x ∈ R
n, ∂C(proxγg)(x) �= ∅ and any P ∈ ∂C(proxγg)(x)

is a symmetric positive semidefinite matrix that satisfies ‖P ‖ ≤ 1.
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Proof Nonempty-valuedness of ∂C(proxγg) is due to Lipschitz continuity of
proxγg . Moreover, since g is convex, its Moreau envelope is a convex function as
well, therefore every element of ∂C(∇gγ )(x) is a symmetric positive semidefinite
matrix (see, e.g., [19, §8.3.3]). Due to Theorem 15.3.2(i), we have that proxγg(x) =
x − γ∇gγ (x), therefore

∂C(proxγg)(x) = I− γ ∂C(∇gγ )(x). (15.57)

The last relation holds with equality (as opposed to inclusion in the general case)
due to the fact that one of the summands is continuously differentiable. Now,
from (15.57) we easily infer that every element of ∂C(proxγg)(x) is a symmetric
matrix. Since ∇gγ (x) is Lipschitz continuous with Lipschitz constant γ−1, using
[15, Prop. 2.6.2(d)], we infer that every H ∈ ∂C(∇gγ )(x) satisfies ‖H‖ ≤ γ−1.
Now, according to (15.57) it holds that

P ∈ ∂C(proxγg)(x) ⇔ P = I − γH, H ∈ ∂C(∇gγ )(x). (15.58)

Therefore, for every d ∈ R
n and P ∈ ∂C(proxγg)(x),

〈d, Pd〉 = ‖d‖2 − γ 〈d,Hd〉 ≥ ‖d‖2 − γ γ−1‖d‖2 = 0. (15.59)

On the other hand, since proxγg is Lipschitz continuous with Lipschitz constant 1,
using [15, Prop. 2.6.2(d)] we obtain that ‖P ‖ ≤ 1 for all P ∈ ∂C(proxγg)(x). ��

We are now in a position to construct a generalized Hessian for ϕγ that will allow
the development of Newton-like methods with fast asymptotic convergence rates.
An obvious route to follow would be to assume that ∇ϕγ is semismooth and employ
∂C(∇ϕγ ) as a generalized Hessian for ϕγ . However, this approach would require
extra assumptions on f and involve complicated operations to evaluate elements of
∂C(∇ϕγ ). On the other hand, what is really needed to devise Newton-like algorithms
with fast local convergence rates is a linear Newton approximation (LNA), cf.
Definition 15.2.3, at some stationary point of ϕγ , which by Theorem 15.4.3(iii) is
also a minimizer of ϕ, provided that γ ∈ (0, 1/Lf ).

The approach we follow is largely based on [72], [19, Prop. 10.4.4]. Without any
additional assumptions we can define a set-valued mapping ∂̂2ϕγ : Rn ⇒ R

n×n
with full domain and whose elements have a simpler form than those of ∂C(∇ϕγ ),
which serves as a LNA for ∇ϕγ at any stationary point x* provided proxγg is
semismooth at x* − γ∇f (x*). We call it approximate generalized Hessian of ϕγ
and it is given by

∂̂2ϕγ (x) :=
{
γ−1Qγ (x)(I− PQγ (x)) | P ∈ ∂C(proxγg)(x − γ∇f (x))

}
.

(15.60)
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Notice that if f is quadratic, then ∂̂2ϕγ ≡ ∂C∇ϕγ ; more generally, the key idea
in the definition of ∂̂2ϕγ , reminiscent of the Gauss-Newton method for nonlinear
least-squares problems, is to omit terms vanishing at x* that contain third-order
derivatives of f .

Proposition 15.4.13 Let x̄ ∈ R
n and γ > 0 be fixed. If proxγg is (ϑ-order)

semismooth at x̄ − γ∇f (x̄) (and ∇2f is ϑ-Hölder continuous around x̄), then

Rγ (x) :=
{
γ−1(I− PQγ (x)) | P ∈ ∂C proxγg (x − γ∇f (x))

}
(15.61)

is a (ϑ-order) LNA for Rγ at x̄.

Proof We shall prove only the ϑ-order semismooth case, as the other one is shown
by simply replacing all occurrences of O(‖ · ‖1+ϑ) with o(‖ · ‖) in the proof. Let
qγ = id−γ∇f be the forward operator, so that the forward-backward operator Tγ
can be expressed as Tγ = proxγg ◦qγ . With a straightforward adaptation of the
proof of [19, Prop. 7.2.9] to include the ϑ-Hölderian case, it can be shown that

qγ (x)− qγ (x̄)−Qγ (x)(x − x̄) = O(‖x − x̄‖1+ϑ). (15.62)

Moreover, since ∇f is Lipschitz continuous and thus so is qγ , we also have

qγ (x)− qγ (x̄) = O(‖x − x̄‖). (15.63)

Let Ux ∈ Rγ (x) be arbitrary; then, there exists Px ∈ ∂C proxγg (x − γ∇f (x)) such

that Ux = γ−1(I− PxQγ (x))(x̄ − x). We have

Rγ (x)+ Ux(x̄ − x)− Rγ (x̄)

= Rγ (x)+ γ−1(I− PxQγ (x))(x̄ − x)− Rγ (x̄)

= γ−1[ proxγg(qγ (x̄))− proxγg(qγ (x))− PxQγ (x)(x̄ − x)
]

due to ϑ-order semismoothness of proxγg at qγ (x̄),

= γ−1Px

[
qγ (x̄)− qγ (x)+O(‖qγ (x̄)− qγ (x)‖1+ϑ)−Qγ (x)(x̄ − x)

]
(15.63)
= γ−1Px

[
qγ (x̄)− qγ (x)−Qγ (x̄)(x̄ − x)+O(‖x̄ − x‖1+ϑ)

]
(15.62)
= γ−1PxO(‖x̄ − x‖1+ϑ) = O(‖x̄ − x‖1+ϑ),

where in the last equality we used the fact that ‖Px‖ ≤ 1, cf. Theorem 15.4.12. ��
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Corollary 15.4.14 Let γ ∈ (0, 1/Lf ) and x* ∈ X*. If proxγg is (ϑ-order)

semismooth at x* − γ∇f (x*) (and ∇2f is locally ϑ-Hölder continuous around
x*), then ∂̂2ϕγ is a (ϑ-order) LNA for ∇ϕγ at x*.

Proof Let Hx ∈ ∂̂2ϕγ (x) =
{
Qγ (x)U | U ∈ Rγ (x)

}
, so that Hx = Qγ (x)Ux for

some Ux ∈ Rγ (x). Then,

‖∇ϕγ (x)+Hx(x* − x)−∇ϕγ (x*)‖ = ‖Qγ (x)Rγ (x)+Qγ (x)Ux(x − x*))‖
= ‖Qγ (x)[Rγ (x)+ Ux(x − x*)− Rγ (x*)]‖
≤ ‖Rγ (x)+ Ux(x − x*)− Rγ (x*)‖,

where in the equalities we used the fact that ∇ϕγ (x*) = Rγ (x*) = 0, and in the
inequality the fact that ‖Qγ ‖ ≤ 1. Since Rγ is a (ϑ-order) LNA of Rγ at x*, the last
term is o(‖x − x*‖) (resp. O(‖x − x*‖1+ϑ)). ��

As shown in the next result, although the FBE is in general not convex, for γ
small enough every element of ∂̂2ϕγ (x) is a (symmetric and) positive semidefinite
matrix. Moreover, the eigenvalues are lower and upper bounded uniformly over all
x ∈ R

n.

Proposition 15.4.15 Let γ ≤ 1/Lf and H ∈ ∂̂2ϕγ (x) be fixed. Then, H ∈ S+(Rn)

with

λmin(H) = min
{
(1− γμf )μf , (1− γLf )Lf

}
and λmax(H) = γ−1(1− γμf ),

(15.64)
where μf ≥ 0 is the modulus of strong convexity of f .

Proof Fix x ∈ R
n and let Q := Qγ (x). Any H ∈ ∂̂2ϕγ (x) can be expressed as

H = γ−1Q(I − PQ) for some P ∈ ∂C(proxγg)(x − γ∇f (x)). Since both Q and
P are symmetric (cf. Theorem 15.4.12), it follows that so is H . Moreover, for all
d ∈ R

n

〈Hd, d〉 = γ−1〈Qd, d〉 − γ−1〈PQd,Qd〉 (15.65)
15.4.12
≥ γ−1〈Qd, d〉 − γ−1‖Qd‖2

= 〈(I− γ∇2f (x))∇2f (x)d, d〉
2
≥ min

{
(1− γμf )μf , (1− γLf )Lf

} ‖d‖2.

On the other hand, since P � 0 (cf. Theorem 15.4.12) and thus QPQ � 0, we can
upper bound (15.65) as

〈Hd, d〉 ≤ γ−1〈Qd, d〉 ≤ ‖Q‖‖d‖2 ≤ γ−1(1− γμf )‖d‖2.

��
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The next lemma links the behavior of the FBE close to a solution of (15.1) and
a nonsingularity assumption on the elements of ∂̂2ϕγ (x*). Part of the statement
is similar to [19, Lem. 7.2.10]; however, here ∇ϕγ is not required to be locally
Lipschitz around x*.

Lemma 15.4.16 Let x* ∈ argminϕ and γ ∈ (0, 1/Lf ). If proxγg is semismooth at
x* − γ∇f (x*), then the following conditions are equivalent:

(a) x* is a locally strong minimum for ϕ (or, equivalently, for ϕγ );
(b) every element of ∂̂2ϕγ (x*) is nonsingular.

In any such case, there exist δ, κ > 0 such that

‖x − x*‖ ≤ κ‖Rγ (x)‖ and max
{
‖H‖, ‖H−1‖

}
≤ κ, (15.66)

for any x ∈ B(x*; δ) and H ∈ ∂̂2ϕγ (x).

Proof Observe first that Corollary 15.4.14 ensures that ∂̂2ϕγ is a LNA of ∇ϕγ at
x*, thus semicontinuous and compact valued (by definition). In particular, the last
claim follows from [19, Lem. 7.5.2].

• 15.4.16(a) ⇒ 15.4.16(b) It follows from Corollary 15.4.10 that there exists
μ, δ > 0 such that ϕγ (x)−ϕ* ≥ μ

2 ‖x−x*‖2 for all x ∈ B(x*; δ). In particular,

for all H ∈ ∂̂2ϕγ (x*) and x ∈ B(x*; δ) we have

μ
2 ‖x−x*‖2 ≤ ϕγ (x)−ϕ* = 1

2 〈H(x−x*), x−x*〉+o(‖x−x*‖2). (15.67)

Let vmin be a unitary eigenvector of H corresponding to the minimum eigen-
value λmin(H). Then, for all ε ∈ (−δ, δ) the point xε = x*+ εvmin is δ-close to
x* and thus

1
2λmin(H)ε2 ≥ μ

2 ε
2 + o(ε2) ≥ μ

4 ε
2, (15.68)

where the last inequality holds up to possibly restricting δ (and thus ε). The
claim now follows from the arbitrarity of H ∈ ∂̂2ϕγ (x*).

• 15.4.16(a)⇐ 15.4.16(b) Easily follows by reversing the arguments of the other
implication. ��

��

15.5 Forward-Backward Truncated-Newton Algorithm
(FBTN)

Having established the equivalence between minimizing ϕ and ϕγ , we may recast
problem (15.1) into the smooth unconstrained minimization of the FBE. Under some
assumptions the elements of ∂̂2ϕγ mimic second-order derivatives of ϕγ , suggesting
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Algorithm 15.1 (FBTN) Forward-Backward Truncated-Newton method

REQUIRE γ ∈ (0, 1/Lf ); σ ∈ (0,
γ (1−γLf )

2 ); η̄, ζ ∈ (0, 1); ρ, ν ∈ (0, 1]
initial point x0 ∈ R

n; accuracy ε > 0
PROVIDE ε-suboptimal solution xk (i.e., such that ‖Rγ (x

k)‖ ≤ ε)
INITIALIZE k ← 0
1: while ‖Rγ (x

k)‖ > ε do
2: δk ← ζ‖∇ϕγ (xk)‖ν , ηk ← min

{
η̄, ‖∇ϕγ (xk)‖ρ

}
, εk ← ηk‖∇ϕγ (xk)‖

3: Apply CG(Alg. 15.2) to find an εk-approximate solution dk to

[
Hk + δkI

]
dk ≈ − ∇ϕγ (xk) (15.69)

for some Hk ∈ ∂̂2ϕγ (x
k)

4: Let τk be the maximum in
{
2−i | i ∈ N

}
such that

ϕγ (x
k+1) ≤ ϕγ (x

k)− σ‖Rγ (x
k)‖2 (15.70)

where xk+1 ← (1− τk)Tγ (x
k)+ τk

[
xk + dk

]
5: k← k + 1 and go to step 1
6: end while

the employment of Newton-like update directions d = −(H + δI)−1∇ϕγ (x) with
H ∈ ∂̂2ϕγ (x) and δ > 0 (the regularization term δI ensures the well definedness
of d, as H is positive semidefinite, see Proposition 15.4.15). If δ and ε are suitably
selected, under some nondegeneracy assumptions updates x+ = x + d are locally
superlinearly convergent. Since such d’s are directions of descent for ϕγ , a possible
globalization strategy is an Armijo-type linesearch. Here, however, we follow the
simpler approach proposed in [71, 75] that exploits the basic properties of the
FBE investigated in Section 15.4.1. As we will discuss shortly after, this is also
advantageous from a computational point of view, as it allows an arbitrary warm
starting for solving the underlying linear system.

Let us elaborate on the linesearch. To this end, let x be the current iterate; then,
Theorem 15.4.2 ensures that ϕγ (Tγ (x)) ≤ ϕγ (x) − γ

1−γLf

2 ‖Rγ (x)‖2. Therefore,

unless Rγ (x) = 0, in which case x would be a solution, for any σ ∈ (0, γ
1−γLf

2 ) the

strict inequality ϕγ (Tγ (x)) < ϕγ (x)−σ‖Rγ (x)‖2 is satisfied. Due to the continuity
of ϕγ , all points sufficiently close to Tγ (x) will also satisfy the inequality, thus so
will the point x+ = (1 − τ)Tγ (x) + τ(x + d) for small enough stepsizes τ . This
fact can be used to enforce the iterates to sufficiently decrease the value of the FBE,
cf. (15.70), which straightforwardly implies optimality of all accumulation points
of the generated sequence. We defer the details to the proof of Theorem 15.5.1.
In Theorems 15.5.4 and 15.5.5 we will provide conditions ensuring acceptance of
unit stepsizes so that the scheme reduces to a regularized version of the (undamped)
linear Newton method [19, Alg. 7.5.14] for solving ∇ϕγ (x) = 0, which, under due
assumptions, converges superlinearly.



390 A. Themelis et al.

In order to ease the computation of dk , we allow for inexact solutions of the linear
system by introducing a tolerance εk > 0 and requiring ‖(Hk+δkI)dk+∇ϕγ (xk)‖ ≤
εk . Since Hk + δkI is positive definite, inexact solutions of the linear system can be
efficiently retrieved by means of CG(Alg. 15.2) , which only requires matrix-vector
products and thus only (generalized) directional derivatives, namely, (generalized)
derivatives (denoted as ∂

∂λ
) of the single-variable functions t �→ proxγg(x+ tλ) and

t �→ ∇f (x + tλ), as opposed to computing the full (generalized) Hessian matrix.
To further enhance computational efficiency, we may warm start the CG method
with the previously computed direction, as eventually subsequent update directions
are expected to have a small difference. Notice that this warm starting does not
ensure that the provided (inexact) solution dk is a direction of descent for ϕγ ; either
way, this property is not required by the adopted linesearch, showing a considerable
advantage over classical Armijo-type rules. Putting all these facts together we obtain
the proposed FBE-based truncated-Newton algorithm FBTN(Alg. 15.1) for convex
composite minimization.

Remark 15.1 (Adaptive Variant When Lf Is Unknown) In practice, no prior
knowledge of the global Lipschitz constant Lf is required for FBTN. In fact,
replacing Lf with an initial estimate L > 0, the following instruction can be added
at the beginning of each iteration, before step 1:

0: x̄k ← Tγ (x
k)

while f (x̄k) > f (xk)+ 〈∇f (xk), x̄k − xk〉 + L
2 ‖x̄k − xk‖2 do

γ ← γ/2, L← 2L, x̄k ← Tγ (x
k)

Algorithm 15.2 (CG) Conjugate Gradient for computing the update direction

REQUIRE ∇ϕγ (xk); δk; εk; dk−1 (set to 0 if k = 0)

(generalized) directional derivatives λ �→ ∂.0 proxγg
∂λ

(xk − γ∇f (xk)) and

λ �→ ∂.0∇f
∂λ

(xk)

PROVIDE update direction dk

INITIALIZE e, p←−∇ϕγ (xk); warm start dk ← dk−1

1: while ‖e‖ > εk do
2: u ← ∂∇f

∂p
(xk)

3: v ← p − γ u 5 v = Qγ (x
k)p

4: w ← p − ∂ proxγg
∂v

(xk − γ∇f (xk))
5: z ← δkp + w − γ

∂∇f
∂w

(xk) 5 z = Hkp

6: α ← ‖e‖2/〈p, z〉
7: dk ← dk + αp, e+ ← e − αz

8: p ← e+ + (‖e+‖/‖e‖)2
p

9: e ← e+
10: end while
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Moreover, since positive definiteness of Hk + δkI is ensured only for γ ≤ 1/Lf

where Lf is the true Lipschitz constant of ∇ϕγ (cf. Proposition 15.4.15), special
care should be taken when applying CG in order to find the update direction dk .
Specifically, CG should be stopped prematurely whenever 〈p, z〉 ≤ 0 in step 6, in
which case γ ← γ/2, L← 2L and the iteration should start again from step 1.

Whenever the quadratic bound (15.5) is violated with L in place of Lf , the
estimated Lipschitz constant L is increased, γ is decreased accordingly, and the
proximal gradient point x̄k with the new stepsize γ is evaluated. Since replacing
Lf with any L ≥ Lf still satisfies (15.5), it follows that L is incremented only a
finite number of times. Therefore, there exists an iteration k0 starting from which γ

and L are constant; in particular, all the convergence results here presented remain
valid starting from iteration k0, at latest. Moreover, notice that this step does not
increase the complexity of the algorithm, since both x̄k and ∇f (xk) are needed for
the evaluation of ϕγ (xk).

15.5.1 Subsequential and Linear Convergence

Before going through the convergence proofs let us spend a few lines to emphasize
that FBTN is a well-defined scheme. First, that a matrix Hk as in line 1 exists is
due to the nonemptyness of ∂̂2ϕγ (x

k) (cf. Section 15.4.3). Second, since δk > 0
and Hk � 0 (cf. Proposition 15.4.15) it follows that Hk + δkI is (symmetric and)
positive definite, and thus CG is indeed applicable at line 3.

Having clarified this, the proof of the next result falls as a simplified version
of [75, Lem. 5.1 and Thm. 5.6]; we elaborate on the details for the sake of self-
inclusiveness. To rule out trivialities, in the rest of the chapter we consider the
limiting case of infinite accuracy, that is ε = 0, and assume that the termination
criterion ‖Rγ (x

k)‖ = 0 is never met. We shall also work under the assumption that
a solution to the investigated problem (15.1) exists, thus in particular that the cost
function ϕ is lower bounded.

Theorem 15.5.1 (Subsequential Convergence) Every accumulation point of the
sequence (xk)

k∈N generated by FBTN(Alg. 15.1) is optimal.

Proof Observe that

ϕγ
(
xk − γRγ (x

k)
)15.4.2≤ ϕγ (x

k)− γ
1−γLf

2 ‖Rγ (x
k)‖2 < ϕγ (x

k)− σ‖Rγ (x
k)‖2

(15.71)
and that xk+1 → Tγ (x

k) as τk → 0. Continuity of ϕγ ensures that for small enough

τk the linesearch condition (15.70) is satisfied, in fact, regardless of what dk is.
Therefore, for each k the stepsize τk is decreased only a finite number of times. By
telescoping the linesearch inequality (15.70) we obtain

σ
∑
k∈N

‖Rγ (x
k)‖2 ≤

∑
k∈N

[
ϕγ (x

k)− ϕγ (x
k+1)

] ≤ ϕγ (x
0)− ϕ* <∞ (15.72)
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and in particular Rγ (x
k) → 0. Since Rγ is continuous we infer that every

accumulation point x* of (xk)
k∈N satisfies Rγ (x*) = 0, hence x* ∈ argminϕ,

cf. (15.24). ��
Remark 15.2 Since FBTN is a descent method on ϕγ , as ensured by the linesearch
condition (15.70), from Proposition 15.4.8 it follows that a sufficient condition for
the existence of cluster points is having ϕ with bounded level sets or, equivalently,
having argminϕ bounded (cf. Lemma 1).

As a straightforward consequence of Lemma 15.4.7, from the linesearch con-
dition (15.70) we infer Q-linear decrease of the FBE along the iterates of FBTN
provided that the original function ϕ has the quadratic growth property. In particular,
although the quadratic growth is a local property, Q-linear convergence holds
globally, as described in the following result.

Theorem 15.5.2 (Q-Linear Convergence of FBTN Under Quadratic Growth)
Suppose that ϕ satisfies the quadratic growth with constants (μ, ν). Then, the
iterates of FBTN(Alg. 15.1) decrease Q-linearly the value of ϕγ as

ϕγ (x
k+1)−ϕ* ≤

(
1− 2σμ′

γμ+2(2+γμ′)(1+γLf )
2

)
(ϕγ (x

k)−ϕ*) ∀k ∈ N, (15.73)

where

μ′ :=
{
μ if ϕγ (x0) ≤ ϕ* + ν,
μ
2 min

{
1, ν

ϕγ (x0)−ϕ*−ν
}

otherwise.
(15.74)

Proof Since FBTN is a descent method on ϕγ , it holds that (xk)
k∈N ⊆ lev≤α ϕγ

with α = ϕγ (x
0). It follows from Lemma 15.3.7 that ϕ satisfies the quadratic growth

condition with constants (μ′, ϕγ (x0)), with μ′ is as in the statement. The claim now
follows from the inequality ensured by linesearch condition (15.70) combined with
Lemma 15.4.7. ��

15.5.2 Superlinear Convergence

In this section we provide sufficient conditions that enable superlinear convergence
of FBTN. In the sequel, we will make use of the notion of superlinear directions
that we define next.

Definition 15.5.3 (Superlinear Directions) Suppose that X* �= ∅ and consider the
iterates generated by FBTN(Alg. 15.1). We say that (dk)

k∈N ⊂ R
n are superlinearly

convergent directions if

lim
k→∞

dist(xk + dk,X*)

dist(xk,X*)
= 0.
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If for some q > 1 the condition can be strengthened to

lim sup
k→∞

dist(xk + dk,X*)

dist(xk,X*)q
<∞

then we say that (dk)
k∈N are superlinearly convergent directions with order q.

We remark that our definition of superlinear directions extends the one given in
[19, §7.5] to cases in which X* is not a singleton. The next result constitutes a key
component of the proposed methodology, as it shows that the proposed algorithm
does not suffer from the Maratos’ effect [44], a well-known obstacle for fast local
methods that inhibits the acceptance of the unit stepsize. On the contrary, we will
show that whenever the directions (dk)

k∈N computed in FBTN are superlinear, then
indeed the unit stepsize is eventually always accepted, and the algorithm reduces
to a regularized version of the (undamped) linear Newton method [19, Alg. 7.5.14]
for solving ∇ϕγ (x) = 0 or, equivalently, Rγ (x) = 0, and dist(xk,X*) converges
superlinearly.

Theorem 15.5.4 (Acceptance of the Unit Stepsize and Superlinear Conver-
gence) Consider the iterates generated by FBTN(Alg. 15.1). Suppose that ϕ

satisfies the quadratic growth (locally) and that (dk)
k∈N are superlinearly conver-

gent directions (with order q). Then, there exists k̄ ∈ N such that

ϕγ (x
k + dk) ≤ ϕγ (x

k)− σ‖Rγ (x
k)‖2 ∀k ≥ k̄. (15.75)

In particular, eventually the iterates reduce to xk+1 = xk + dk , and dist(xk,X*)

converges superlinearly (with order q).

Proof Without loss of generality we may assume that (xk)
k∈N and (xk + dk)

k∈N
belong to a region in which quadratic growth holds. Denoting ϕ* := minϕ, since
ϕγ also satisfies the quadratic growth (cf. Proposition 15.4.9(i)) it follows that

ϕγ (x
k)− ϕ* ≥ μ′

2 dist(xk,X*)
2 (15.76)

for some constant μ′ > 0. Moreover, we know from Lemma 15.4.7 that

ϕγ (x
k + dk)− ϕ* ≤ c‖Rγ (x

k + dk)‖2 ≤ c′ dist(xk + dk,X*)
2 (15.77)

for some constants c, c′ > 0, where in the second inequality we used Lipschitz
continuity of Rγ (Lemma 3) together with the fact that Rγ (x*) = 0 for all points
x* ∈ X*. By combining the last two inequalities, we obtain

tk := ϕγ (x
k + dk)− ϕ*

ϕγ (xk)− ϕ*
≤ 2c′ dist(xk + dk,X*)

2

μ′ dist(xk,X*)2
→ 0 as k→∞. (15.78)
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Moreover,

ϕγ (x
k)− ϕ* ≥ ϕγ (x

k)− ϕ(Tγ (x
k))

15.4.2(ii)≥ γ
1−γLf

2 ‖Rγ (x
k)‖2. (15.79)

Thus,

ϕγ (x
k + dk)− ϕγ (x

k) = [
ϕγ (x

k + dk)− ϕ*
]− [

ϕγ (x
k)− ϕ*

]
= (tk − 1)

[
ϕγ (x

k)− ϕ*
]

and since tk → 0, eventually it holds that tk ≤ 1− 2σ
γ (1−γLf )

∈ (0, 1), resulting in

≤ − σ‖Rγ (x
k)‖2.

��
Theorem 15.5.5 Consider the iterates generated by FBTN(Alg. 15.1). Suppose
that ϕ satisfies the quadratic growth (locally), and let x* be the limit point of
(xk)

k∈N.2 Then, (dk)
k∈N are superlinearly convergent directions provided that

(i) either Rγ is strictly differentiable at x*3 and there exists D > 0 such that

‖dk‖ ≤ D‖∇ϕγ (xk)‖ for all k’s,
(ii) or X* = {x*} and proxγg is semismooth at x*−γ∇f (x*). In this case, if proxγg

is ϑ-order semismooth at x*−γ∇f (x*) and ∇2f is ϑ-Hölder continuous close
to x*, then the order of superlinear convergence is at least 1+min {ρ, ϑ, ν}.

Proof Due to Proposition 15.4.9 and Theorem 15.5.2, if X* = {x*} then the
sequence (xk)

k∈N converges to x*. Otherwise, the hypothesis ensure that

‖xk+1 − xk‖ = τk‖dk‖ ≤ D‖∇ϕγ (xk)‖ ≤ D‖Rγ (x
k)‖, (15.80)

from which we infer that (‖xk+1 − xk‖)k∈N is R-linearly convergent, hence that
(xk)

k∈N is a Cauchy sequence, and again we conclude that the limit point x* indeed
exists. Moreover, in light of Proposition 15.4.9 we have that (xk)

k∈N is contained
in a level set of ϕγ where ϕγ has quadratic growth. To establish a notation, let
ek := [Hk + δkI]dk +∇ϕγ (xk) be the error in solving the linear system at line 3, so
that

‖ek‖ ≤ εk ≤ ‖∇ϕγ (xk)‖1+ρ, (15.81)

(cf. line 1), and let Hk = Qγ (x
k)Uk for some Uk ∈ Rγ (x

k), see (15.61). Let us now
analyze the two cases separately.

2As detailed in the proof, under the assumptions the limit point indeed exists.
3From the chain rule of differentiation it follows that Rγ is strictly differentiable at x* if proxγg is
strictly differentiable at x* − γ∇f (x*) (strict differentiability is closed under composition).
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• 15.5.5(i) Let xk* := PX*
xk , so that dist(xk,X*) = ‖xk − xk*‖. Recall that

∇ϕγ = QγRγ and that (1 − γLf )I 3 Qγ 3 I. Since Rγ (x
k
* ) = 0, from

Lemma 3 and Theorem 15.3.8 we infer that there exist r1, r2 > 0 such that

‖Rγ (x
k)‖ ≥ r1 dist(xk,X*) and ‖∇ϕγ (xk)‖ ≤ r2 dist(xk,X*). (15.82)

In particular, the assumption on dk ensures that ‖dk‖ = O
(

dist(xk,X*)
)
. We

have

r1 dist(xk + dk,X*)
(15.82)≤ ‖Rγ (x

k + dk)‖
≤ ‖Rγ (x

k+dk)− Rγ (x
k)− Ukd

k‖︸ ︷︷ ︸
(a)

+ ‖Rγ (x
k)+Ukd

k‖︸ ︷︷ ︸
(b)

.

As to quantity (a), we have

(a) ≤ ‖Rγ (x
k + dk)− Rγ (x

k)− JRγ (x*)d
k‖ + ‖Uk − JR(x*)‖‖dk‖

= o
(

dist(xk,X*)
)
,

where we used strict differentiability and the fact that ∂CRγ (x*) =
{
JRγ (x*)

}
[15, Prop. 2.2.4] which implies Uk → JR(x*). In order to bound (b), recall that
δk = ζ‖∇ϕγ (xk)‖ν (cf. line 1). Then,

(b) = ‖Qγ (x
k)−1(ek − δkd

k)‖
(15.81)
≤ 1

1−γLf
‖∇ϕγ (xk)‖

(
‖∇ϕγ (xk)‖ρ + ζ‖∇ϕγ (xk)‖ν−1‖dk‖

)
.

(15.82)
≤ r2

1−γLf
dist(xk,X*)

(
r
ρ
2 dist(xk,X*)

ρ + ζ‖∇ϕγ (xk)‖ν−1‖dk‖
)

= O
(

dist(xk,X*)
1+min{ρ,ν}),

and we conclude that dist(xk + dk,X*) ≤ (a)+ (b) ≤ o
(

dist(xk,X*)
)
.

• 15.5.5(ii) In this case dist(xk,X*) = ‖xk − x*‖ and the assumption of
(ϑ-order) semismoothness ensures through Proposition 15.4.13 that Rγ is a
(ϑ-order) LNA for Rγ at x*. Moreover, due to Lemma 15.4.16 there exists c > 0

such that ‖[Hk + δkI]−1‖ ≤ c for all k’s. We have

‖xk + dk − x*‖ =
∥∥xk + [Hk + δkI]−1(ek −∇ϕγ (xk))− x*

∥∥
≤ ∥∥[Hk + δkI]−1

∥∥∥∥[Hk + δkI](xk − x*)+ ek −∇ϕγ (xk)
∥∥

≤ c
∥∥Hk(x

k − x*)− ∇ϕγ (xk)
∥∥+ cδk‖xk − x*‖ + c‖ek‖

= c
∥∥Qγ (x

k)
(
Uk(x

k − x*)−Rγ (x
k)
)∥∥+cδk‖xk−x*‖+c‖ek‖.
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Since Rγ is a LNA at x*, it follows that the quantity emphasized in the bracket

is a o(‖xk − x*‖), whereas in case of a (ϑ-order) LNA the tighter estimate
O(‖xk − x*‖1+ϑ) holds. Combined with the fact that δk = O(‖xk − x*‖ν)
and ‖ek‖ = O(‖xk − x*‖1+ρ), we conclude that (dk)

k∈N are superlinearly
convergent directions, and with order at least 1 + min {ρ, ϑ, ν} in case of ϑ-
order semismoothness. ��

��
Problems where the residual is (ϑ-order) semismooth are quite common. For

instance, piecewise affine functions are everywhere strongly semismooth, as it is the
case for the residual in lasso problems [67]. On the contrary, when the solution is not
unique the condition ‖dk‖ ≤ D‖∇ϕγ (xk)‖ (or, equivalently, ‖dk‖ ≤ D′‖Rγ (x

k)‖)
is trickier. As detailed in [82, 83], this bound on the directions is ensured if ρ = 1
and for all iterates xk and points x close enough to the limit point the following
smoothness condition holds:

‖Rγ (x
k)+ Uk(x − xk)‖ ≤ c‖x − xk‖2 (15.83)

for some constant c > 0. This condition is implied by and closely related to local
Lipschitz differentiability of Rγ and thus conservative. We remark that, however,
this can be weakened by requiring ρ ≥ ν, and a notion of ϑ-order semismoothness
at the limit point with some degree of uniformity on the set of solutions X*, namely

lim sup
x,x′→x*

x′∈X*, x �=x′
U∈Rγ (x)

‖Rγ (x)+ U(x′ − x)‖
‖x′ − x‖1+ϑ <∞ (15.84)

for some ϑ ∈ [ν, 1]. This weakened requirement comes from the observation that
point x in (15.83) is in fact xk* , the projection of xk onto X*, set onto which Rγ is

constant (equal to 0). To see this, notice that (15.84) implies that ‖Rγ (x
k)+Uk(x

k
*−

xk)‖ ≤ c‖xk* − xk‖1+ϑ for some c > 0. In particular, mimicking the arguments in
the cited references, since Hk � 0 and ‖Qγ ‖ ≤ 1, observe that

‖[Hk + δkI]−1Qγ (x
k)‖ ≤ ‖[Hk + δkI]−1‖ ≤ δ−1

k (15.85a)

and

‖[Hk + δkI]−1Hk‖ = ‖I− δk[Hk + δkI]−1‖ ≤ 2. (15.85b)

Therefore,

‖dk‖ = ∥∥[Hk + δkI]−1(ek − ∇ϕγ (xk))∥∥
≤ ∥∥[Hk + δkI]−1

∥∥‖ek‖ + ∥∥[Hk + δkI]−1Qγ (x
k)
(
Rγ (x

k)+ Uk(x
k
* − xk)

)∥∥
+ ∥∥[Hk + δkI]−1Hk(x

k
* − xk)

∥∥
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(15.85)
≤ δ−1

k ‖∇ϕγ (xk)‖1+ρ + cδ−1
k ‖xk* − xk‖1+ϑ + 2‖xk* − xk‖

= ζ−1‖∇ϕγ (xk)‖1+ρ−ν + cζ−1‖xk* − xk‖1+ϑ−ν + 2‖xk* − xk‖
= O

(
dist(xk,X*)

1+min{0,ρ−ν,ϑ−ν}),
which is indeed O(‖∇ϕγ (xk)‖) whenever ν ≤ min {ϑ, ρ}. Some comments are in
order to expand on condition (15.84).

(i) If X* = {x̄} is a singleton, then x′ is fixed to x* and the requirement reduces to
ϑ-order semismoothness at x*.

(ii) This notion of uniformity is a local property: for any ε > 0 the set X* can be
replaced by X* ∩ B(x*; ε).

(iii) The condition U ∈ Rγ (x) in the limit can be replaced by U ∈
R̂γ (x) := {

γ−1(I− PQγ (x)) | P ∈ ∂B proxγg (x − γ∇f (x))}, since

Rγ (x) = conv
(
R̂γ (x)

)
.

In particular, by exploiting this last condition it can be easily verified that if Rγ is
piecewise ϑ-Hölder differentiable around x*, then (15.84) holds, yet the stronger
requirement (15.83) in [82, 83] does not.

15.6 Generalized Jacobians of Proximal Mappings

In many interesting cases proxγg is PC1 and thus semismooth. Piecewise quadratic
(PWQ) functions comprise a special but important class of convex functions whose
proximal mapping is PC1. A convex function g is called PWQ if dom g can be
represented as the union of finitely many polyhedral sets, relative to each of which
g(x) is given by an expression of the form 1

2 〈x,Hx〉 + 〈q, x〉 + c (H ∈ R
n×n must

necessarily be symmetric positive semidefinite) [65, Def. 10.20]. The class of PWQ
functions is quite general since it includes e.g., polyhedral norms, indicators and
support functions of polyhedral sets, and it is closed under addition, composition
with affine mappings, conjugation, inf-convolution and inf-projection [65, Prop.s
10.22 and 11.32]. It turns out that the proximal mapping of a PWQ function is
piecewise affine (PWA) [65, 12.30] (Rn is partitioned in polyhedral sets relative to
each of which proxγg is an affine mapping), hence strongly semismooth [19, Prop.
7.4.7]. Another example of a proximal mapping that is strongly semismooth is the
projection operator over symmetric cones [73].

A big class with semismooth proximal mapping is formed by the semi-algebraic
functions. We remind that a set A ⊆ R

n is semi-algebraic if it can be expressed as

A =
p⋃

i=1

q⋂
j=1

{
x ∈ R

m | Pij (x) = 0, Qij (x) < 0
}

(15.86)
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for some polynomial functions Pij ,Qij : Rn → R, and that a function h : Rn →
R
m is semi-algebraic if gph h is a semi-algebraic subset of Rn+m.

Proposition 15.6.1 If g : Rn → R is semi-algebraic, then so are gγ and proxγg .
In particular, gγ and proxγg are semismooth.

Proof Since gγ and proxγg are both Lipschitz continuous, semismoothness will
follow once we show that they are semi-algebraic [11, Rem. 4]. Every polynomial is
clearly semi-algebraic, and since the property is preserved under addition [10, Prop.
2.2.6(ii)], the function (x,w) �→ g(w)+ 1

2γ ‖w− x‖2 is semi-algebraic. Moreover,
since parametric minimization of a semi-algebraic function is still semi-algebraic
(see, e.g., [1, §2]), it follows that the Moreau envelope gγ is semi-algebraic and
therefore so is h(x,w) := g(w) + 1

2γ ‖w − x‖2 − gγ (x). Notice that proxγg(x) =
{w ∈ R

n | h(x,w) ≤ 0}, therefore

gph proxγg =
{
(x, x̄) ∈ R

n × R
n | proxγg(x) = x̄

}
= {

(x, x̄) ∈ R
n × R

n | h(x, x̄) ≤ 0
}

= h−1((−∞, 0])

is a semi-algebraic set, since the interval (−∞, 0] is clearly semi-algebraic and thus
so is h−1((−∞, 0]) [10, Prop. 2.2.7]. ��

In fact, with the same arguments it can be shown that the result still holds if
“semi-algebraic” is replaced with the broader notion of “tame”, see [11]. Other
conditions that guarantee semismoothness of the proximal mapping can be found
in [46–48, 50]. The rest of the section is devoted to collecting explicit formulas of
∂C proxγg for many known useful instances of convex functions g.

15.6.1 Properties

a. Separable functions.
Whenever g is (block) separable, i.e., g(x) = ∑N

i=1 gi(xi), xi ∈ R
ni ,∑N

i=1 ni = n, then every P ∈ ∂C(proxγg)(x) is a (block) diagonal matrix. This
has favorable computational implications especially for large-scale problems.
For example, if g is the �1 norm or the indicator function of a box, then the
elements of ∂C proxγg(x) (or ∂B proxγg(x)) are diagonal matrices with diagonal
elements in [0, 1] (or in {0, 1}).

b. Convex conjugate.
With a simple application of the Moreau’s decomposition [2, Thm. 14.3(ii)],
all elements of ∂C proxγg∗ are readily available as long as one can compute
∂C proxg/γ . Specifically,

∂C(proxγg∗)(x) = I− ∂C(proxg/γ )(x/γ ). (15.87)



15 On the Acceleration of Forward-Backward Splitting via an Inexact Newton Method 399

c. Support function.
The support function of a nonempty closed and convex set D is the proper
convex and lsc function σD(x) := supy∈D〈x, y〉. Alternatively, σD can be
expressed as the convex conjugate of the indicator function δD , and one can
use the results of Section §15.6.1b to find that

∂C(proxγg)(x) = I− ∂C(PD)(x/γ ). (15.88)

Section 15.6.2 offers a rich list of sets D for which a closed form expression
exists.

d. Spectral functions.
The eigenvalue function λ : S(Rn×n) → R

n returns the vector of eigenvalues
of a symmetric matrix in nonincreasing order. Spectral functions are of the form

G := h ◦ λ : S(Rn×n)→ R. (15.89)

where h : R
n → R is proper, lsc, convex, and symmetric, i.e., invariant

under coordinate permutations [35]. Such G inherits most of the properties of h
[36, 37]; in particular, its proximal mapping is [56, §6.7]

proxγG(X) = Q diag(proxγ h(λ(X)))Q/, (15.90)

where X = Q diag(λ(X))Q/ is the spectral decomposition of X (Q is an
orthogonal matrix). If, additionally,

h(x) = g(x1)+ · · · + g(xN) (15.91)

for some g : R→ R, then

proxγ h(x) = (proxγg(x1), . . . , proxγg(xN)), (15.92)

and therefore the proximal mapping of G can be expressed as

proxγG(X) = Q diag(proxγg(λ1(X)), . . . , proxγg(λn(X)))Q/, (15.93)

[9, Chap. V], [29, Sec. 6.2]. Now we can use the theory of nonsmooth sym-
metric matrix-valued functions developed in [14] to analyze differentiability
properties of proxγG. In particular, proxγG is (strongly) semismooth at X iff
proxγg is (strongly) semismooth at the eigenvalues of X [14, Prop. 4.10].
Moreover, for any X ∈ S(Rn×n) and P ∈ ∂B(proxγG)(X) we have [14, Lem.
4.7]

P(X) = Q
(
Ω

γg
λ,λ 6 (Q/XQ)

)
Q/, (15.94)
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where 6 denotes the Hadamard product and for vectors u, v ∈ R
n we defined

Ω
γg
u,v as the n× n matrix

(Ω
γg
u,v)ij :=

⎧⎨
⎩
∂B proxγg(ui) if ui = vj ,{

proxγg(ui )−proxγg(vj )
ui−vj

}
otherwise.

(15.95)

e. Orthogonally invariant functions. A function G : R
m×n → R is called

orthogonally invariant if G(UXV/) = G(X) for all X ∈ R
m×n and orthogonal

matrices U ∈ R
m×m, V ∈ R

n×n.4

A function h : Rq → R is absolutely symmetric if h(Qx) = h(x) for all
x ∈ R

q and any generalized permutation matrix Q, i.e., a matrix Q ∈ R
q×q that

has exactly one nonzero entry in each row and each column, that entry being
±1 [34]. There is a one-to-one correspondence between orthogonally invariant
functions on R

m×n and absolutely symmetric functions on R
q . Specifically, if

G is orthogonally invariant, then

G(X) = h(σ(X)) (15.96)

for the absolutely symmetric function h(x) = G(diag(x)). Here, for X ∈ R
m×n

and q := min {m, n} the spectral function σ : Rm×n → R
q returns the vector

of its singular values in nonincreasing order. Conversely, if h is absolutely
symmetric, then G(X) = h(σ(X)) is orthogonally invariant. Therefore, convex
analytic and generalized differentiability properties of orthogonally invariant
functions can be easily derived from those of the corresponding absolutely
symmetric functions [34]. For example, assuming for simplicity that m ≤ n,
the proximal mapping of G is given by [56, Sec. 6.7]

proxγG(X) = U diag(proxγ h(σ (X)))V/1 , (15.97)

where X = U
[
diag(σ (X)) 0

] [
V1 V2

]/
is the singular value decomposition of

X. If we further assume that h has a separable form as in (15.91), then

proxγG(X) = UΣg(X)V/1 , (15.98)

where Σg(X) = diag(proxγg(σ1(X)), . . . , proxγg(σn(X))). Functions of this
form are called nonsymmetric matrix-valued functions. We also assume that g
is a non-negative function such that g(0) = 0. This implies that proxγg(0) = 0
and guarantees that the nonsymmetric matrix-valued function (15.98) is well
defined [80, Prop. 2.1.1]. Now we can use the results of [80, §2] to draw
conclusions about generalized differentiability properties of proxγG.

4In case of complex-valued matrices, functions of this form are known as unitarily invariant [34].
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For example, through [80, Thm. 2.27] we have that proxγG is continuously
differentiable at X if and only if proxγg is continuously differentiable at the
singular values of X. Furthermore, proxγG is (strongly) semismooth at X if
proxγg is (strongly) semismooth at the singular values of X [80, Thm. 2.3.11].
For any X ∈ R

m×n the generalized Jacobian ∂B(proxγG)(X) is well defined
and nonempty, and any P ∈ ∂B(proxγG)(X) acts on H ∈ R

m×n as [80, Prop.
2.3.7]

P(H) = U

[(
Ω

γg
σ,σ 6

(
H1+H/1

2

)
+Ω

γg
σ,−σ 6

(
H1−H/1

2

))
, (Ω

γg

σ,0 6H2)

]
V/,

(15.99)

where V = [V1 V2], H1 = U/HV1 ∈ R
m×m, H2 = U/HV2 ∈ R

m×(n−m) and
matrices Ω are as in (15.95).

15.6.2 Indicator Functions

Smooth constrained convex problems

minimizex∈Rn f (x) subject to x ∈ D (15.100)

can be cast in the composite form (15.1) by encoding the feasible set D with the
indicator function g = δD . Whenever PD is efficiently computable, then algorithms
like the forward-backward splitting (15.21) can be conveniently considered. In the
following we analyze the generalized Jacobian of some of such projections.

a. Affine sets. D = {x ∈ R
n | Ax = b} for some A ∈ R

m×n and b ∈ R
m.

In this case, PD(x) = x − A†(Ax − b) where A† is the Moore-Penrose
pseudoinverse of A. For example, if A is surjective (i.e., it has full row rank
and thus m ≤ n), then A† = A/(AA/)−1, whereas if it is injective (i.e., it has
full column rank and thus m ≥ n), then A† = (A/A)−1A/. Obviously PD is
an affine mapping, thus everywhere differentiable with

∂C(PD)(x) = ∂B(PD)(x) = {∇PD(x)} =
{

I− A†A
}
. (15.101)

b. Polyhedral sets. D = {x ∈ R
n | Ax = b, Cx ≤ d}, for some A ∈ R

p×n, b ∈
R
p, C ∈ R

q×n and d ∈ R
q .

It is well known that PD is piecewise affine. In particular, let

ID :=
{
I ⊆ {1 . . . q} | ∃x ∈Rn : Ax = b, Ci·x= di i ∈ I, Cj ·x <dj j /∈ I} .

(15.102)
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Then, the faces of D can be indexed with the elements of I [66, Prop. 2.1.3]:
for each I ∈ ID let

FI := {x ∈ D | Ci·x = di, i ∈ I }

be the I -th face of D,

SI := affFI =
{
x ∈ R

n | Ax = b, Ci·x = di, i ∈ I
}

be the hyperplane containing the I -th face of D,

NI := ranA/+ cone
{
C/I ·

}

be the normal cone to any point in the relative interior of FI [66, Eq. (2.44)],5

and

RI := FI +NI .

We then have PD(x) ∈
{
PSI (x) | I ∈ ID

}
, i.e., PD is a piecewise affine

function. The affine pieces of PD are the projections on the corresponding
affine subspaces SI (cf. Section §15.6.2a). In fact, for each x ∈ RI we have
PD(x) = PSI (x), each RI is full dimensional and R

n = ⋃
I∈ID RI [66,

Prop.s 2.4.4 and 2.4.5]. For each I ∈ ID let

PI := ∇PSI = I−
(
A

CI

)†(
A

CI

)
, (15.103)

and for each x ∈ R
n let

ID(x) := {I ∈ ID | x ∈ RI } . (15.104)

Then,

∂C(PD)(x) = conv ∂B(PD)(x) = conv {PI | I ∈ ID(x)} . (15.105)

Therefore, an element of ∂B PD(x) is PI as in (15.103) where I =
{i | Cix̄ = di} is the set of active constraints of x̄ = PD(x). For a more
general analysis we refer the reader to [27, 39].

5Consistently with the definition in [66], the polyhedron P can equivalently be expressed by
means of only inequalities as P = {x ∈ R

n | Ax ≤ b, − Ax ≤ −b, Cx ≤ b}, resulting indeed
in cone[A/, − A/, C/] = ranA/+ coneC/.
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c. Halfspaces. H = {x ∈ R
n | 〈a, x〉 ≤ b} for some a ∈ R

n and b ∈ R.
Then, denoting the positive part of r ∈ R as [r]+ := max {0, r},

PH (x) = x − [〈a,x〉−b]+
‖a‖2 a

and

∂C(PH )(x) =
⎧⎨
⎩
{
I− ‖a‖−2aa/

}
if x /∈ H,

{I} if 〈a, x〉 < b,

conv
{
I, I− ‖a‖−2aa/

}
if 〈a, x〉 = b.

d. Boxes. D = {x ∈ R
n | � ≤ x ≤ u} for some �, u ∈ [−∞,∞]n.

We have

PD(x) = min {max {x, �} , u} ,

and since the corresponding indicator function δD is separable, every element
of ∂C(PD)(x) is diagonal with (cf. Section §15.6.1a)

∂C(PD)(x)ii =
⎧⎨
⎩
[0, 1] if xi ∈ {�i, ui} ,
{1} if �i < xi < ui,

{0} otherwise,

e. Unit simplex. D = {
x ∈ R

n | x ≥ 0,
∑n

i=1 xi = 1
}
.

By writing down the optimality conditions for the corresponding projection
problem, one can easily see that

PD(x) = [x − λ1]+, (15.106)

where λ solves 〈1, [x − λ1]+〉 = 1. Since the unit simplex is a polyhedral set,
we are dealing with a special case of Section §15.6.2b, where A = 1/, b = 1,
C = −I, and d = 0. Therefore, in order to calculate an element of the
generalized Jacobian of the projection, we first compute PD(x) and then
determine the set of active indices J := {i | PD(x)i = 0}. An element P ∈
∂B(PD)(x) is given by

Pij =
{
δi,j − 1

n−|J | if i, j /∈ J,

0 otherwise,
(15.107)

where |J | denotes the cardinality of the set J . Notice that P is block diagonal
after a permutation of rows and columns.



404 A. Themelis et al.

f. Euclidean unit ball. B = B(0; 1).
We have

PB(x) =
{
x if x ∈ B,

x/‖x‖ otherwise,

and

∂C(PB)(x) =
⎧⎨
⎩
{I} if ‖x‖ < 1,
conv

{‖x‖−1(I− ww/), I
}

if ‖x‖ = 1,{‖x‖−1(I− ww/)
}

if x /∈ B,

where w := x/‖x‖.
g. Second-order cone. K = {

(x0, x̄) ∈ R× R
n−1 | x0 ≥ ‖x̄‖

}
.

Let x := (x0, x̄), and for w ∈ R
n and α ∈ R define

Mw,α := 1
2

[
1 w/
w (1− α)In−1 + αww/

]
. (15.108)

Then, ∂C(PK)(x) = conv(∂B(PK)(x)) where, for w̄ := x̄/‖x̄‖ and ᾱ :=
−x0/‖x̄‖, we have [30, Lem. 2.6]

∂B(PK)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{0} if x0 < −‖x̄‖,
{In} if x0 > ‖x̄‖,{
Mw̄,ᾱ

}
if −‖x̄‖ < x0 < ‖x̄‖,{

In, Mw̄,ᾱ

}
if x0 = ‖x̄‖ �= 0,{

0, Mw̄,ᾱ

}
if x0 = −‖x̄‖ �= 0,

{0, In} ∪
{
Mw,α | |α| ≤ 1, ‖w‖ ≤ 1

}
if x0 = x̄ = 0.

(15.109)
h. Positive semidefinite cone. S+ = S+(Rn×n).

For any symmetric matrix M it holds that

PS+(M) = Q[diag(λ)]+Q/, (15.110)

where M = Q diag(λ)Q/ is any spectral decomposition of M . This coincides
with (15.93), as δS+ can be expressed as in (15.89), where h has the separable
form (15.91) with g = δR+ , so that for r ∈ R we have

proxγg(r) = [r]+ and ∂B(proxγg)(r) =
⎧⎨
⎩
{0} if r < 0,
{0, 1} if r = 0,
{1} if r > 0.

(15.111)

An element of ∂B PS+(Rn×n)(X) is thus given by (15.94).
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15.6.3 Norms

a. �1 norm. g(x) = ‖x‖1.
The proximal mapping is the well-known soft-thresholding operator

(proxγg(x))i = sign(xi)[|xi | − γ ]+, i = 1, . . . , n. (15.112)

Function g is separable, and thus every element of ∂B(proxγg) is a diagonal
matrix, cf. Section §15.6.1a. Specifically, the nonzero elements are

∂C(proxγg)(x)ii =
⎧⎨
⎩
{1} if |xi | > γ,

[0, 1] if |xi | = γ,

{0} if |xi | < γ.

(15.113)

We could also arrive to the same conclusion by applying the Moreau decompo-
sition of Section §15.6.1b to the function of Section §15.6.2d with u = −� =
1n, since the �1 norm is the conjugate of the indicator of the �∞-norm ball.

b. �∞ norm. g(x) = ‖x‖∞.
Function g is the convex conjugate of the indicator of the unit simplex
D analyzed in Section §15.6.2e. From the Moreau decomposition, see Sec-
tion §15.6.1b, we obtain

∂C(proxγg)(x) = I− ∂C(PD)(x/γ ). (15.114)

Then, PD(x/γ ) = [x/γ − λ1]+ where λ ∈ R solves 〈1, [x/γ − λ1]+〉 = 1. Let
J = {i | PD(x/γ )i = 0}, then an element of ∂B(proxγg)(x) is given by

Pij =
{

1
n−|J | if i, j /∈ J,

δi,j otherwise.
(15.115)

c. Euclidean norm. g(x) = ‖x‖.
The proximal mapping is given by

proxγg(x) =
{
(1− γ ‖x‖−1)x if ‖x‖ ≥ γ,

0 otherwise.
(15.116)

Since proxγg is a PC1 mapping, its B-subdifferential can be computed by
simply computing the Jacobians of its smooth pieces. Specifically, denoting
w = x/‖x‖ we have

∂C(proxγg)(x) =
⎧⎨
⎩
{
I− γ ‖x‖−1(I− ww/)

}
if ‖x‖ > γ,

{0} if ‖x‖ < γ,

conv
{
I− γ ‖x‖−1(I− ww/), 0

}
otherwise.

(15.117)



406 A. Themelis et al.

d. Sum of Euclidean norms. g(x) = ∑
s∈S ‖xs‖, where S is a partition of

{1, . . . , n}.
Differently from the �1-norm which induces sparsity on the whole vector, this
function serves as regularizer to induce group sparsity [81]. For s ∈ S, the
components of the proximal mapping indexed by s are

(proxγg(x))s = (1− γ ‖xs‖−1)+xs. (15.118)

Any P ∈ ∂B(proxγg)(x) is block diagonal with the s-block equal to

Ps =
⎧⎨
⎩

I− γ ‖xs‖−1
(
I− ‖xs‖−2xsx

/
s ) if ‖xs‖ > γ,

I if ‖xs‖ < γ,

any of these two matrices if ‖xs‖ = γ.

(15.119)

e. Matrix nuclear norm. G(X) = ‖X‖* for X ∈ R
m×n.

The nuclear norm returns the sum of the singular values of a matrix X ∈ R
m×n,

i.e., G(X) =∑m
i=1 σi(X) (for simplicity we are assuming that m ≤ n). It serves

as a convex surrogate for the rank, and has found many applications in systems
and control theory, including system identification and model reduction [20–22,
41, 61]. Other fields of application include matrix completion problems arising
in machine learning [62, 68] and computer vision [52, 76], and nonnegative
matrix factorization problems arising in data mining [18].
The nuclear norm can be expressed as G(X) = h(σ(X)), where h(x) = ‖x‖1
is absolutely symmetric and separable. Specifically, it takes the form (15.91)
with g = | · |, for which g(0) = 0 and 0 ∈ ∂g(0), and whose proximal
mapping is the soft-thresholding operator. In fact, since the case of interest here
is x ≥ 0 (because σi(X) ≥ 0), we have proxγg(x) = [x − γ ]+, cf. (15.116).
Consequently, the proximal mapping of ‖X‖* is given by (15.98) with

Σg(X) = diag([σ1(X)− γ ]+, . . . , [σm(X)− γ ]+). (15.120)

For x ∈ R+ we have that

∂C(proxγg)(x) =
⎧⎨
⎩

0 if 0 ≤ x < γ,

[0, 1] if x = γ,

1 if x > γ,

(15.121)

then ∂B(proxγG)(X) takes the form as in (15.99).

15.7 Conclusions

A forward-backward truncated-Newton method (FBTN) is proposed that mini-
mizes the sum of two convex functions one of which Lipschitz continuous and
twice continuously differentiable. Our approach is based on the forward-backward
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envelope (FBE), a continuously differentiable tight lower bound to the original (non-
smooth and extended-real valued) cost function sharing minima and minimizers.
The method requires forward-backward steps, Hessian evaluations of the smooth
function and Clarke Jacobians of the proximal map of the nonsmooth term. Explicit
formulas of Clarke Jacobians of a wide variety of useful nonsmooth functions
are collected from the literature for the reader’s convenience. The higher-order
operations are needed for the computation of symmetric and positive semidefinite
matrices that serve as surrogate for the Hessian of the FBE, allowing for a
generalized (regularized, truncated-) Newton method for its minimization. The
algorithm exhibits global Q-linear convergence under an error bound condition, and
Q-superlinear or even Q-quadratic if an additional semismoothness assumption at
the limit point is satisfied.
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Appendix: Auxiliary Results

Lemma 1 Any proper lsc convex function with nonempty and bounded set of
minimizers is level bounded.

Proof Let h be such function; to avoid trivialities we assume that dom h is
unbounded. Fix x* ∈ argmin h and let R > 0 be such that argminh ⊆ B :=
B(x*;R). Since domh is closed, convex, and unbounded, it holds that h attains a
minimum on the compact set bdryB, be it m, which is strictly larger than h(x*)

(since dist(argminh, bdryB) > 0 due to compactness of argmin h and openness of
B). For x /∈ B, let sx = x* + R x−x*‖x−x*‖ denote its projection onto bdryB, and let

tx := ‖x−x*‖
R

≥ 1. Then,

h(x) = h
(
x* + tx(sx − x*)) ≥ h(x*)+ tx

(
h(sx)− h(x*)

) ≥ h(x*)+ tx
(
m− h(x*)

)
where in the first inequality we used the fact that tx ≥ 1. Since m− h(x*) > 0 and
tx →∞ as ‖x‖ → ∞, we conclude that h is coercive, and thus level bounded. ��
Lemma 2 Let H ∈ S+(Rn) with λmax(H) ≤ 1. Then H −H 2 ∈ S+(Rn) with

λmin(H −H 2) = min {λmin(H)(1− λmin(H)), λmax(H)(1− λmax(H))} .
(15.122)

Proof Consider the spectral decomposition H = S/DS for some orthogonal matrix
S and diagonal D. Then, H − H 2 = S/D̃S where D̃ = D − D2. Apparently, D̃
is diagonal, hence the eigenvalues of H − H 2 are exactly

{
λ− λ2 | λ ∈ eigs(H)

}
.
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The function λ �→ λ− λ2 is concave, hence the minimum in eigs(H̃ ) is attained at
one extremum, that is, either at λ = λmin(H) or λ = λmax(H), which proves the
claim. ��
Lemma 3 For any γ ∈ (0, 2/Lf ) the forward-backward operator Tγ (15.22)

is nonexpansive (in fact, 2
4−γLf

-averaged), and the residual Rγ is Lipschitz

continuous with modulus 4
γ (4−γLf )

.

Proof By combining [2, Prop. 4.39 and Cor. 18.17] it follows that the gradient
descent operator x �→ x−γ∇f (x) is γLf/2-averaged. Moreover, since the proximal
mapping is 1/2-averaged [2, Prop. 12.28] we conclude from [2, Prop. 4.44] that the
forward-backward operator Tγ is α-averaged with α = 2

4−γLf
, thus nonexpansive

[2, Rem. 4.34(i)]. Therefore, by definition of α-averagedness there exists a 1-
Lipschitz continuous operator S such that Tγ = (1 − α) id+αS and consequently
the residual Rγ = 1

γ

(
id−Tγ

) = α
γ
(id−S) is (2α/γ )-Lipschitz continuous. ��
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Chapter 16
Hierarchical Convex Optimization
by the Hybrid Steepest Descent Method
with Proximal Splitting
Operators—Enhancements
of SVM and Lasso

Isao Yamada and Masao Yamagishi

Abstract The breakthrough ideas in the modern proximal splitting methodologies
allow us to express the set of all minimizers of a superposition of multiple
nonsmooth convex functions as the fixed point set of computable nonexpansive
operators. In this paper, we present practical algorithmic strategies for the hierar-
chical convex optimization problems which require further strategic selection of a
most desirable vector from the solution set of the standard convex optimization. The
proposed algorithms are established by applying the hybrid steepest descent method
to special nonexpansive operators designed through the art of proximal splitting.
We also present applications of the proposed strategies to certain unexplored
hierarchical enhancements of the support vector machine and the Lasso estimator.

Keywords Convex optimization · Proximal splitting algorithms · Hybrid steepest
descent method · Support Vector Machine (SVM) · Lasso · TREX · Signal
processing · Machine learning · Statistical estimation

AMS 2010 Subject Classification 49M20, 65K10, 90C30

16.1 Introduction

Convex optimization has been playing a central role in a broad range of mathemat-
ical sciences and engineering. Many optimization tasks in such applications can be
interpreted as special instances of the following simple model:
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minimize f (x)+ g(Ax) subject to x ∈ X, (16.1)

where (X, 〈·, ·〉X, ‖ · ‖X), (K, 〈·, ·〉K, ‖ · ‖K) are real Hilbert spaces, f : X →
(−∞,∞] and g : K → (−∞,∞] are proper lower semicontinuous convex
functions, i.e., f ∈ Γ0(X) and g ∈ Γ0(K), and A : X → K is a bounded
linear operator, i.e., A ∈ B(X,K). Such a unified simplification is indebted entirely
to the remarkable expressive ability of the abstract Hilbert space. For example, a
seemingly much more general model:

find x* ∈ S := argmin
x∈X

[
Φ(x) := f (x)+

m∑
i=1

gi(Aix)

]
�= ∅, (16.2)

where (X, 〈·, ·〉X, ‖·‖X) and (Ki , 〈·, ·〉Ki
, ‖·‖Ki

) (i = 1, 2, . . . , m) are real Hilbert
spaces, f ∈ Γ0(X), gi ∈ Γ0(Ki ) (i = 1, 2, . . . , m), and Ai ∈ B(X,Ki ) (i =
1, 2, . . . , m), can also be translated into the problem in (16.1) by redefining a new
Hilbert space

K := K1 × · · · ×Km = {x = (x1, . . . , xm) | xi ∈ Ki (i = 1, . . . , m)} (16.3)

equipped with the addition (x, y) �→ (x1 + y1, . . . , xm + ym), the scalar multi-
plication (α, x) �→ (αx1, . . . , αxm), and the inner product (x, y) �→ 〈x, y〉K :=∑m

i=1〈xi, yi〉Ki
, a new convex function

g :=
m⊕
i=1

gi : K→ (−∞,∞] : (x1, . . . , xm) �→
m∑
i=1

gi(xi), (16.4)

and a new bounded linear operator

A : X→ K : x �→ (A1x, . . . , Amx). (16.5)

Indeed, for many years, the model (16.2) has been accepted widely as a standard,
where all players, f, gi ◦ Ai ∈ Γ0(X) (i = 1, . . . , m) in (16.2) are designed
strategically by users in order to achieve, after optimization, a valuable vector
satisfying their requirements.

The so-called proximal splitting methodology has been built, on the rich mathe-
matical foundations of convex analysis, monotone operator theory and fixed point
theory of nonexpansive operators (see, e.g., [9, 45, 47, 139]), in order to broaden
the applicability of the proximity operators of convex functions [101], e.g., to the
model (16.2). It is well-known that the solution set S in (16.2) can be characterized
completely as the zero of the set-valued operator ∂Φ : X → 2X : x �→ {u ∈
X | Φ(y) ≥ Φ(x) + 〈y − x, u〉X (∀y ∈ X)}, called the subdifferential of Φ.
The maximal monotonicity of ∂Φ provides us with further equivalent fixed point
characterization in terms of a single valued operator proxΦ := (I+ ∂Φ)−1 : X →
X : x �→ argminy∈XΦ(y) + 1

2‖x − y‖2
X called the proximity operator of Φ

(see Section 16.2.2) [Note: The identity operator is denoted by I : X → X but the
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common notation I is going to be used for the identity operator on any real Hilbert
space in this paper]. This fact is simply stated as

(∀z ∈ X) z ∈ S⇔ 0 ∈ ∂Φ(z)⇔ z = proxΦ(z) (16.6)

and some algorithms can generate, from any x0 ∈ X, a weakly convergent sequence
xn ∈ X (n ∈ N) to a point in S in (16.2) if proxΦ is available as a computational
tool (see, e.g., [98, 99, 121]). A simplest example of such algorithms generates a
sequence (xn)n∈N by

xn+1 = proxΦ(xn) (n = 0, 1, 2, . . .). (16.7)

The algorithm (16.7) can be interpreted as a straightforward application of Kras-
nosel’skiı̆-Mann Iterative Process (see Fact 16.6 in Section 16.2.2) because proxΦ
is known to be firmly nonexpansive, i.e., 2proxΦ − I : X → X is a nonexpansive
operator (see (16.27)). Although the above strategy in (16.7) is conceptually simple
and elegant, its applicability has been very limited because the computation of
proxΦ(x) requires to solve a regularized convex optimization problem minΦ(·) +
1
2‖x − ·‖2

X whose unique solution is still hard to be computed for most scenarios of
type (16.2) in many application areas.

On the other hand, there are many scenarios that fall in the model (16.2) where
the proximity operators of the all players, i.e., proxf : X → X and proxgi :
Ki → Ki (i = 1, . . . , m), are available as computational tools while proxΦ is
not practically available (see, e.g., [42, 45]). A major goal of recent active studies
(see, e.g., [40, 44, 47, 139, 150]) on the proximal splitting methodology has been
the creation of more applicable iterative algorithms, for (16.2) and its variations,
than (16.7) by utilizing computable tools proxf and proxgi (i = 1, . . . , m)
simultaneously. Such effort has culminated in many powerful algorithms which
have been applied successfully to the broader classes of optimizations including
the standard model (16.2).

Usually, the standard model (16.2) is formulated in the form of a weighted
average of multiple convex functions and the weights are designed in accordance
with the level of importance of each convex function. However quantification of
the level of importance is often challenging as well as influential to the final
results of optimizations (see Section 16.5.1 for a recent advanced strategy of such
a parameter tuning for the Lasso estimator which is a standard sparsity aware
statistical estimation method). By keeping in mind (i) the remarkable flexibility of
the standard model (16.2) proven extensively in many successful applications of
the modern proximal splitting methodology, as well as (ii) the inherent difficulty
in the weight design of multiple convex functions in (16.2), a question arises: Is
there any alternative model of (16.2) which can also serve as a natural optimization
strategy for multiple convex criteria ? To see the light of the tunnel regarding this
primitive question, let us start to imagine important elements for us to consider
in finding residence. We may consider the house rent, the residential environment
including living space and housing equipment, the neighborhood environment, the
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accessibility to public transportation systems, and the commuting time, etc. We
would prioritize the elements, e.g., firstly by narrowing down the candidates to
the set S1 of all residents of which the rents and commuting times are in your
acceptable range. Next we may try to narrow down the candidates to the set
S2(⊂ S1) of all residents whose living spaces achieve maximum level among all
in S1. Further, we may probably like to select residents in S2 as final choices by
choosing the best ones, e.g., in the sense of the neighborhood environment or the
housing equipment. This simple example suggests that we often optimize multiple
criteria one by one hierarchically rather than optimize the sum of different criteria
at once certainly because there exists no universal justification for adding different
criteria. In fact, many mathematicians and scientists have been challenging to pave
the way for the so-called hierarchical convex optimization problems (see, e.g.,
[3, 8, 18, 32, 33, 36, 46, 55, 95, 107, 114, 133, 142, 146–149]). Landmark theories
toward M-stage hierarchical convex optimization are found, e.g., in [3, 18] where,
for given Φi ∈ Γ0(X) (i = 0, 1, . . . ,M) satisfying Si := argmin

x∈Si−1

Φi(x) �= ∅ (i =
0, 1, . . . ,M) with S−1 := X, their major goals are set to establish computational
strategies for iterative approximation of a point in SM. (Note: Every point in
Si of the hierarchical convex optimization is called a viscosity solution of Si−1
(i = 1, 2, . . . ,M). To avoid confusion with “bilevel optimization” in the sense
of [19, 30, 138], we do not use the designation bilevel optimization for S1 in our
hierarchical convex optimization). Under the assumptions that dim(X) < ∞ and
that Φi ∈ Γ0(X) (i = 1, 2, . . . ,M) are real valued, Cabot [18] showed that the
sequence (xn)n∈N defined by

xn+1 := prox(
Φ0+ε(1)n Φ1+ε(2)n Φ2+···+ε(M)

n ΦM

)(xn)

=
(

I+ ∂
(
Φ0 + ε(1)n Φ1 + ε(2)n Φ2 + · · · + ε(M)

n ΦM

))−1
(xn) (16.8)

satisfies (i) limn→∞ d(xn, SM) = 0 and (ii) (∀i ∈ {0, 1, . . . ,M}) limn→∞Φi(xn) =
minx∈Si−1 Φi(x) if positive number sequences (ε

(0)
n := 1)n∈N and (ε

(i)
n )n∈N

(i ∈ {1, . . . ,M}) satisfy certain technical conditions including lim
n→∞ ε(i)n = 0,

lim
n→∞

ε
(i)
n

ε
(i−1)
n

= 0 (i = 1, 2, . . . ,M), and
∑∞

n=0 ε
(M)
n = ∞ [Note: The

scheme (16.8) is a simplified version of the original scheme in [18] by restricting to
the case λn = 1 and ηn = 0 (n ∈ N)].

Clearly, the algorithms (16.8) and (16.7) have essentially a common
limitation in their practical applicabilities because (16.8) requires prox(
Φ0 + ε

(1)
n Φ1 + ε

(2)
n Φ2 + · · · + ε

(M)
n ΦM

)
, or its very good approximation, for

every update in generation of (xn)n∈N. By recalling the breakthrough ideas
developed in the recent proximal splitting methodology for resolution of the inherent
limitation in (16.7), an ideal as well as possibly realistic assumption to be imposed
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upon each player Φi : X → (−∞,∞] (i = 0, 1, . . . ,M) in the above M-stage
hierarchical convex optimization seems to be certain differentiability assumptions
or proximal decomposability assumptions, e.g.

Φi(x) := fi(x)+
Mi∑

ι(i)=1

gι(i) (Aι(i)x), (16.9)

with real Hilbert spaces (Kι(i) , 〈·, ·〉Kι(i)
, ‖·‖Kι(i)

) (ι(i) = 1, 2, . . . ,Mi), fi ∈Γ0(X),
gι(i) ∈ Γ0(Ki ) (i = 0, 1, . . . ,M), and bounded linear operators Aι(i) : X → Kι(i)

(ι(i) = 1, 2, . . . ,Mi), where proxfi : X → X and proxgι(i)
: Kι(i) → Kι(i) (ι(i) =

1, . . . ,Mi), are available as computational tools while proxΦi
is not necessarily

available.
In this paper, we choose to cast our primary target in the iterative approximation

of a solution of

minimize Ψ (x*) subject to x* ∈ argmin
x∈X

[
Φ(x) := f (x)+

m∑
i=1

gi(Aix)

]
�= ∅,

(16.10)
i.e., a viscosity solution of the convex optimization problem (16.2), where we
assume that Ψ ∈ Γ0(X) is Gâteaux differentiable with Lipschitzian gradient
∇Ψ : X→ X, i.e.,

(∃κ > 0, ∀x, y ∈ X) ‖∇Ψ (x)− ∇Ψ (y)‖ ≤ κ‖x − y‖, (16.11)

and that proxf : X → X and proxgi : Ki → Ki (i = 1, . . . , m) are available as
computational tools.

Although the application of such iterative algorithms is certainly restrictive com-
pared to the overwhelming potential of the general hierarchical convex optimization,
our target is realistic and still allows us to cover many applications of interest to
practitioners who are searching for a step ahead optimization strategy and yet to
be able to exploit maximally the central ideas in the modern proximal splitting
methodologies. Especially for practitioners, we remark that if the suppression of∑L

k=1 ψk ◦ Bk ∈ Γ0(X) over argminx∈XΦ(x) is required, where, for each k ∈
{1, 2, . . . , L}, Yk is a real Hilbert space, ψk ∈ Γ0(Yk), proxγψk

: Yk → Yk (γ > 0)
is available as computational tools, and Bk ∈ B(X,Yk), such a mission could be
achieved satisfactorily by considering an alternative problem below of type (16.10):

minimize Ψ (x*) :=
L∑

k=1

γ ψk(Bkx
*)

subject to x* ∈ argmin
x∈X

[
Φ(x) := f (x)+

m∑
i=1

gi(Aix)

]
�= ∅, (16.12)
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where (i) γ ψk : Yk → R : yk �→ miny∈Yk
ψk(y)+ 1

2γ ‖y− yk‖2
Yk

(k = 1, 2, . . . , L)
are the Moreau envelopes (or the Moreau-Yosida regularizations) of a sufficiently
small index γ > 0 (see Fact 16.8 in Section 16.2.2 and [149]). This is because
limγ↓0

γ ψk(yk) = ψk(yk) (∀yk ∈ domψk := {y ∈ Yk | ψk(y) < ∞}) and γ ψk is

Gâteaux differentiable with 1
γ

-Lipschitzian ∇γ ψk : Yk → Yk : yk �→ yk−proxγψk
(yk)

γ

and therefore

(∀x1, x2 ∈ X)

∥∥∥∥∥∇
L∑

k=1

(
γ ψk ◦ Bk

)
(x1)−∇

L∑
k=1

(
γ ψk ◦ Bk

)
(x2)

∥∥∥∥∥
X

=
∥∥∥∥∥

L∑
k=1

B∗k∇γ ψk (Bkx1)−
L∑

k=1

B∗k∇γ ψk (Bkx2)

∥∥∥∥∥
X

≤
L∑

k=1

‖Bk‖2
op

γ
‖x1 − x2‖X,

where B∗k ∈ B(Yk,X) is the conjugate of Bk ∈ Bk(X,Yk) and ‖ · ‖op stands for the
operator norm.

Fortunately, by introducing the exactly same translation used in the reformulation
of Problem (16.2) as an instance of Problem (16.1), our problem (16.10) can also be
simplified as

minimize Ψ (x*) subject to x* ∈ Sp := argmin
x∈X

[f (x)+ g(Ax)] �= ∅, (16.13)

where K, g : K → (−∞,∞] and A : X → K are defined, respectively,1

by (16.3), (16.4), and (16.5), and we can assume that (i) Ψ ∈ Γ0(X) is Gâteaux
differentiable with Lipschitzian gradient∇Ψ : X→ X, and that (ii) proxf : X→ X

and proxg : K→ K are available as computational tools because

proxg(x) := argmin
y∈K

[
g(y)+ 1

2
‖y− x‖2

K

]

= argmin
(y1,...,ym)∈K1×···×Km

m∑
i=1

[
gi(yi)+ 1

2
‖yi − xi‖2

Ki

]

= (
proxg1

(x1), . . . , proxgm(xm)
)
. (16.14)

The following two scenarios suggest the remarkable advantage achieved by
algorithmic solutions to (16.10).

Scenario 1 (Unification of Conditional Optimization Models) Let f〈D〉 ∈
Γ0(X) and gi〈D〉 ∈ Γ0(Ki ) (i = 1, 2, . . . , m) be nonnegative valued functions
which are defined with observed data D. Suppose that there exists a well-established
data analytic strategy which utilizes with Ψ ∈ Γ0(X) as

1There are many practical conditions for (f, g,A) to guarantee Sp �= ∅, see, e.g., [9, 153] and
Fact 16.2 in Section 16.2.1.
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find x* ∈ argmin
x∈S0

Ψ (x),

where S0 : =
{
x ∈ X | f〈D〉(x)=gi〈D〉(Ax)=0 (i=1, 2, . . . , m)

}
, (16.15)

provided that the data D is consistent, i.e., it satisfies S0 �= ∅.
However, to deal with more general data D, it is important to establish a

mathematically sound extension of the above data analytic strategy to be applicable
even to inconsistent data D s.t. S0 = ∅. One of the most natural extensions
of (16.15) would be the following hierarchical formulation:

find x** ∈ argmin
x*∈S〈D〉

Ψ (x*),

where S〈D〉 := argmin
x∈X

[
f〈D〉(x)+

m∑
i=1

gi〈D〉(Aix)

]
, (16.16)

because S〈D〉 �= ∅ holds under weaker assumption than S0 �= ∅, and S〈D〉 = S0
holds true if S0 �= ∅. However, the well-established data analytic strategies only for
consistent data D in the form of (16.15) have often been modified, with the so-called
tuning parameter C > 0, to

find x̃* ∈ argmin
x∈X

[
1

C
Ψ (x)+ f〈D〉(x)+

m∑
i=1

gi〈D〉(Aix)

]
, (16.17)

which is not really an extension of (16.15) because the model (16.17) unfortunately
has no guarantee to produce x* in (16.15) even if D satisfies S0 �= ∅.

Scenario 2 Suppose that we are in a desired vector in X at which the functions
f, gi ◦ Ai ∈ Γ0(X) (i = 1, . . . , m) in (16.2) are known to achieve small values and
therefore the model (16.2) has been employed as an estimation strategy. Suppose
also that we newly found another effective criterion Ψ ∈ Γ0(X) which likely to
achieve small values around the desired vector to be estimated. In such a case, our
common utilization of Ψ , for improvement of the previous strategy, has often been
modeled as a new optimization problem:

find x̃* ∈ S̃ := argmin
x∈X

[
f (x)+

m∑
i=1

gi(Aix)+ Ψ (x)

]
�= ∅. (16.18)

However, it is essentially hard to tell which is better between the estimation
strategies (16.2) and (16.18) because the criteria in these optimizations are different.
Indeed, x̃* does not necessarily achieve best in the sense of the model (16.2) while
x* certainly achieves best in the sense of the model (16.2). On the other hand, if
we formulate a new optimization problem, from a hierarchical optimization point of
view, e.g., as
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find x** ∈ argmin
x*∈S

Ψ (x*), where S := argmin
x∈X

[
f (x)+

m∑
i=1

gi(Aix)

]
�= ∅,

(16.19)
its solution x** certainly meets more faithfully all the requirements than x* ∈ S

because both x**, x* ∈ S and Ψ (x**) ≤ Ψ (x*) are achieved.

The following examples suggest that the hierarchical optimization has been
offering well-grounded direction for advancement of computational strategies in
inverse problems and data sciences.

Example 16.1 (Hierarchical Convex Optimizations in Real-World Applications2)

(a) (Generalized inverse/Moore-Penrose inverse [9, 12, 100, 111, 118]) Let X and
K be real Hilbert spaces, let A ∈ B(X,K) be such that ran(A) := {A(x) ∈
K | x ∈ X} is closed. Then for every y ∈ K, Cy := {x ∈ X | ‖Ax −
y‖K = minz∈X ‖Az − y‖K} = {x ∈ X | A∗A(x) = A∗(y)} �= ∅. The
generalized inverse (in the sense of Moore-Penrose) A† ∈ B(K,X) is defined
as A† : K→ X : y �→ PCy (0),where PCy is the orthogonal projection onto Cy .
A†(y) can be seen as the unique solution to the hierarchical convex optimization
problem (16.19) for f (z) := ‖A(z) − y‖K, gi(z) := 0 (i = 1, 2, . . . , m) and
Ψ (z) = 1

2‖z‖2
X. The Moore-Penrose inverse A† ∈ B(K,X) of A ∈ B(X,K)

has been serving as one of the most natural generalizations of the inverse of
A, typically in Scenario 1, under the situations where the existence of A−1 ∈
B(K,X) is not guaranteed. In particular, for finite dimensional settings, there
are many ways to express A†. These include the singular value decomposition
of A† in terms of the singular value decomposition of A.

(b) (Tikhonov approximation [3, 9, 55, 133]) Let Ψ, f ∈ Γ0(X) and argmin(f ) ∩
dom(Ψ ) �= ∅ where Ψ is coercive and strictly convex. Then Ψ admits a
unique minimizer x0 over argmin(f ). This x0 can be seen as the solution of the
hierarchical convex optimization in (16.19) for gi(z) := 0 (i = 1, 2, . . . , m).
Moreover, if we define xε ∈ X as the unique minimizer of the regularized
problem

miminize f (x)+ εΨ (x) subject to x ∈ X (16.20)

2To the best of the authors’ knowledge, little has been reported on the hierarchical nonconvex
optimization. We remark that the MV-PURE (minimum-variance pseudo-unbiased reduced-rank
estimator) (see, e.g., [112, 113, 144]), for the unknown vector possibly subjected to linear
constraints, is defined by a closed form solution of a certain hierarchical nonconvex optimization
problem which characterizes a natural reduced rank extension of the Gauss-Markov (BLUE)
estimator [85, 93] to the case of reduced-rank estimator. It was shown in [113] that specializations
of the MV-PURE include Marquardt’s reduced rank estimator [97], Chipman-Rao estimator [29],
and Chipman’s reduced rank estimator [28]. In Section 16.5.2 of this paper, we newly present a
special instance of a hierarchical nonconvex optimization problem which can be solved through
multiple hierarchical convex optimization subproblems.
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for every ε > 0, the desired x0 can be approximated as (i) xε ⇀ x0 (as
ε ↓ 0) and (ii) Ψ (xε) → Ψ (x0) (as ε ↓ 0). This fact suggests a strategy
for approximating x0 if we have a practical way of computing xεn for positive
sequence (εn)

∞
n=1 satisfying εn ↓ 0 (as n → ∞). Many computational

approaches to the hierarchical convex optimization seem to have been designed
along this strategy.3 We remark that many formulations of type (16.17) in
Scenario 1 can be seen as instances of (16.20) with ε = 1

C . However, in general,
the hierarchical optimality can never be guaranteed by the solution of (16.20)
for a fixed constant ε > 0.

(c) Assuming differentiability, the iteration of (16.8) for M = 1 can also be
interpreted as an implicit discretization of the continuous dynamical system:

ẋ(t)+∇Φ0 (x(t))+ ε(t)∇Φ1 (x(t)) = 0, t ≥ 0, (16.21)

where ε : R+ → R is a control parameter tending to 0 when t → ∞. This
observation has been motivating explicit discretization of (16.21) for iterative
approximation of point in S1, e.g. by

xn+1 ∈ xn + λn∂(Φ0 + εnΦ0)(xn), (16.22)

and its variations (see, e.g., [78, 79, 127, 128]), where λn is a nonnegative
stepsize. However this class of algorithms cannot exploit recent advanced
proximal splitting techniques for dealing with the constrained set S0.

(d) Under the assumption that (i) Ψ is Gâteaux differentiable with Lipschitzian
gradient ∇Ψ : X → X, and (ii) proxf : X → X is available as
a computable tool, the inertial forward-backward algorithm with vanishing
Tikhonov regularization was proposed [4], along in the frame of accelerated
forward-backward methods,4 for an iterative approximation of the solution of a
hierarchical convex optimization in (16.19) for gi = 0 (i = 1, 2, . . . , m).

(e) In general, the convex optimization problems, especially in the convex fea-
sibility problems [7, 22, 31], have infinitely many solutions that could be
considerably different in terms of other criteria. However most iterative algo-
rithms for convex optimization can approximate an anonymous solution of the
problem. For pursuing a better solution in some other aspects, superiorization
[21, 80, 104, 110] introduces proactively designed perturbations into the original
algorithms with preserving preferable convergence properties. Essentially, by
adopting another criterion Ψ , these methods aim to lower the value of Ψ with
incorporating a perturbation involving the descent direction of Ψ . Apparently,

3The behavior of (xε)ε∈(0,1) ⊂ X can be analyzed in the context of approximating curve for
monotone inclusion problem. For recent results combined with Yosida regularization, see [37].
4See [4] on the stream of research, to name but a few, [11, 24], originated from Nesterov’s seminal
paper [103].
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as reported in [150], the hierarchical convex optimization can serve as one of
the ideal formulations for the superiorization.

(f) Let Ψ ∈ Γ0(X) be Gâteaux differentiable and its gradient ∇Ψ : X → X

is Lipschitzian. Suppose that f ∈ Γ0(X) is also Gâteaux differentiable with
Lipschitzian gradient ∇f : X → X and admits argmin(f + ιK) �= ∅ for a
nonempty closed convex set K ⊂ X, where ιK is the indicator function, i.e.,

ιK(x) :=
{

0 if x ∈ K,

∞ otherwise.
(16.23)

Then

minimize Ψ (x) subject to x ∈ argmin(f + ιK) (16.24)

can be seen as an instance of the hierarchical convex optimization in (16.19) for
g1 := ιK and gi = 0 (i = 2, 3, . . . , m). By applying the hybrid steepest descent
method [52, 141, 142, 146–148] to several expressions of the set argmin(f+ιK)

as the fixed point set of certain computable nonexpansive operators T : X→ X

(see, e.g., [146, Proposition 2.5], [149, Example 17.6(b)]), practical algorithms
have been established to produce a sequence xn ∈ X (n = 0, 1, 2, . . .) which
is guaranteed to converge to a solution to Problem (16.24). These cover a
version of projected Landweber method [63, 115, 123] for Ψ (x) := 1

2‖x‖2
X

and f (x) := ‖A(x) − b‖K, where A ∈ B(X,K) and the metric projection
PK : X→ K is assumed available as a computational tool. As will be discussed
below, the main idea of the present paper specialized for Problem (16.13) (or
equivalently Problem (16.10)) is along this simple hierarchical optimization
strategy [86, 107, 146, 149, 150] of applying the hybrid steepest descent method
(HSDM: see Section 16.2.4) to the precise expressions of the solution sets of
the convex optimization problems in terms of fixed point sets of computable
nonexpansive operators defined on a certain real Hilbert space H which is not
necessarily the same as the original Hilbert space X.

Apparently, to tackle Problem (16.13) (or equivalently Problem (16.10)), we need
to exploit full information on Sp which is an infinite set in general. Moreover, even
by using the recently developed powerful proximal splitting algorithms, specially
designed for (16.1), we can produce only some vector sequence that converges to
just an anonymous point in Sp, which implies that we need to add further a new
twist to the well-known strategies applicable to Problem (16.1).

Fortunately, the unified perspective from the viewpoint of convex analysis
and monotone operator theory (see, e.g., [9]) often enables us to enjoy notable
characterizations of the solution set Sp in terms of the set of all fixed points of a
computable nonexpansive operator defined on certain real Hilbert spaces. Indeed,
almost all existing proximal splitting algorithms for Problem (16.1) more or less
rely on the following type of characterizations of Sp:
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Sp = argmin
x∈X

f (x)+ g(Ax) = Ξ (Fix(T )) :=
⋃

z∈Fix(T )

Ξ(z) ⊂ X, (16.25)

Fix(T ) := {z ∈ H | T (z) = z} (Fixed point set of T ), (16.26)

where (H, 〈·, ·〉H, ‖ · ‖H) is a certain real Hilbert space (not necessarily H = X),
T : H→ H is a computable nonexpansive operator, i.e., an operator satisfying

(∀z1, z2 ∈ H) ‖T (z1)− T (z2)‖H ≤ ‖z1 − z2‖H, (16.27)

and Ξ : H → 2X is a certain set valued operator. Examples of such characteri-
zations are found in [62, 150] for the augmented Lagrangian method [81, 116], in
[44, 45] for the forward-backward splitting approach [66, 109, 134], in [40, Propo-
sition 18(iii)] for the Douglas-Rachford splitting approach (see Section 16.2.3) [91],
in [61, 150] for the alternating direction method of multipliers (ADMM) [66, 76, 91],
in [47, 139] for the primal-dual splitting method, and in [150] for a generalized
version (see Section 16.2.3) of the linearized augmented Lagrangian method [151].

If we find a computable nonexpansive operator T satisfying (16.25) as well as
a computationally tractable way to extract a point in Ξ(z)(⊂ X) for a given z ∈
Fix(T ), we can realize an algorithmic solution to Problem (16.1) by applying the
so-called Krasnosel’skiı̆-Mann Iterative Process (see Fact 16.6 in Section 16.2.2)
to T , and can produce a weak convergent sequence to a fixed point z ∈ FixT ,
followed by a point extraction from Ξ(z). Indeed, the powerful proximal splitting
methodologies for Problem (16.2) seem to have been built more or less along this
strategy through innovative designs of computable nonexpansive operators by using
proxf : X→ X and proxgi : Ki → Ki (i = 1, . . . , m) as computational tools.

On the other hand, every nonexpansive operator T : H→ H can also be plugged
into the hybrid steepest descent method for minimizing Θ ∈ Γ0(H), whose gradient
∇Θ : H → H is Lipschitz continuous, over the fixed point set Fix(T ) �= ∅ (see
Section 16.2.4).5 Moreover, for Problem (16.1), if such a computable nonexpansive
operator T can be used to express Sp as in (16.25) but more nicely with some
computable bounded linear operator Ξ ∈ B(H,X), we can apply the hybrid
steepest descent method to Problem (16.13) after translating it into

find z* ∈ argmin
z∈Fix(T )

Θ(z), (16.28)

5By extending the idea in [75], another algorithm, which we refer to as the generalized
Haugazeau’s algorithm, was developed for minimizing a strictly convex function in Γ0(H) over
the fixed point set of a certain quasi-nonexpansive operator [33]. In particular, this algorithm
was specialized in a clear way for finding the nearest fixed point of a certain quasi-nonexpansive
operator [8] and applied successfully to an image recovery problem [39]. If we focus on the case
of a nonstrictly convex function, the generalized Haugazeau’s algorithm is not applicable, while
some convergence theorems of the hybrid steepest descent method suggest its sound applicability
provided that the gradient of the function is Lipschitzian.



424 I. Yamada and M. Yamagishi

where Θ := Ψ ◦ Ξ , because Θ ∈ Γ0(H) is certainly Gâteaux differentiable
with Lipschitzian gradient ∇Θ : z �→ Ξ∗∇Ψ (Ξz) and Ξ(z*) ∈ X is a solution
of (16.13).

The goal of this paper is to demonstrate that plugging the modern proximal
splitting operators into the hybrid steepest descent method is a powerful com-
putational strategy for solving highly valuable hierarchical convex optimization
problems (16.10) in Scenario 1 and Scenario 2. The remainder of the paper is
organized as follows. In the next section, as preliminaries, we introduce elements
of convex analysis and fixed point theoretic view of the modern proximal splitting
algorithms. These include key ideas behind fixed point characterizations of Sp in
Problem (16.13) as well as the hybrid steepest descent method for nonexpansive
operators. Section 16.3 contains the main idea of the hierarchical convex opti-
mization based on the hybrid steepest descent method applied to modern proximal
splitting operators. In Section 16.4, as a typical example of Scenario 1, we present
an application of the proposed strategies to a hierarchical enhancement of the
support vector machine [48, 135, 136] where we demonstrate how we can compute
the best linear classifier which achieves the maximal margin among all linear
classifiers having least empirical hinge loss. The proposed best linear classifier
can be applied to general training data whether it is linearly separable or not. In
particular, for linearly separable data, the proposed best linear classifier, which
does not require any parameter tuning, is guaranteed to reproduce successfully
the original support vector machine specially defined in [136]. To the best of
the authors’ knowledge, such a unified generalization of original support vector
machine for linearly separable data has not been achieved by previously reported
SVMs (see, e.g., [14, 25, 48, 73, 125, 126, 131] and Section 16.4.2). In Section 16.5,
as a typical example along Scenario 2, we present an application of the proposed
strategy to a hierarchical enhancement of Lasso [73, 132]. This enhancement
is achieved by utilizing maximally the Douglas-Rachford splitting applied to a
recently established proximity operator [35, 38] of a perspective function for the
TREX problem [89] which is certainly the state-of-the-art nonconvex formulation
for automatic sparsity control of Lasso. The proposed application can optimize
further an additional convex criterion over the all solutions of the TREX problem.
Finally, in Section 16.6, we conclude this paper with some remarks on other possible
advanced applications of the hybrid steepest descent method.

16.2 Preliminary

Let X be a real Hilbert space equipped with6 an inner product 〈·, ·〉 and its induced
norm ‖ · ‖ = √〈·, ·〉, which is denoted by (X, 〈·, ·〉, ‖ · ‖). Let (K, 〈·, ·〉K, ‖ · ‖K) be
another real Hilbert space. Let A : X→ K be a bounded linear operator of which the

6Often 〈·, ·〉X denotes 〈·, ·〉 to explicitly describe its domain.
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norm is defined by ‖A‖op := supx∈X : ‖x‖≤1 ‖Ax‖K. For a bounded linear operator
A : X→ K, A∗ : K→ X denotes its adjoint or conjugate, i.e.,

(∀(x, u) ∈ X×K) 〈x,A∗u〉 = 〈Ax, u〉K.

16.2.1 Selected Elements of Convex Analysis and Optimization

For readers’ convenience, we list minimum elements, in convex analysis, which will
be used in the later sections (for their detailed accounts, see, e.g., [7, 9, 35, 38, 44,
64, 82, 122, 143, 152]).

(Convex Set) A set C ⊂ X is said to be convex if λx + (1 − λ)y ∈ C for all
λ ∈ (0, 1) and for all x, y ∈ C.

(Proper Lower Semicontinuous Convex Function; See, e.g., [9, Chapter 9]) A
function f : X→ (−∞,∞] is said to be proper if its effective domain dom(f ) :=
{x ∈ X | f (x) < ∞} is nonempty. A function f : X → (−∞,∞] is said to be
lower semicontinuous if its lower level set lev≤αf := {x ∈ X | f (x) ≤ α}(⊂ X)

is closed for every α ∈ R. A function f : X → (−∞,∞] is said to be convex if
f (λx+(1−λ)y) ≤ λf (x)+(1−λ)f (y) for all λ ∈ (0, 1) and for all x, y ∈ dom(f ).
In particular, f is said to be strictly convex if f (λx + (1 − λ)y) < λf (x) + (1 −
λ)f (y) for all λ ∈ (0, 1) and for all x, y ∈ dom(f ) such that x �= y. The set of all
proper lower-semicontinuous convex functions defined over the real Hilbert space
X is denoted by Γ0(X).

(Coercivity and Supercoercivity; See, e.g., [9, Chapter 11]) A function f : X→
(−∞,∞] is said to be coercive if

‖x‖ → ∞ ⇒ f (x)→∞

and supercoercive if

‖x‖ → ∞ ⇒ f (x)

‖x‖ → ∞.

Obviously, supercoercivity of f implies coercivity of f . Coercivity of f ∈ Γ0(X)

implies that lev≤α f = {x ∈ X | f (x) ≤ α} is bounded for every α ∈ R as well
as argminx∈X f (x) �= ∅. Strict convexity of f ∈ Γ0(X) implies that the set of
minimizers is at most singleton.

Fact 16.2 (See, e.g., [9, Section 11.4]) Let f ∈ Γ0(X), g ∈ Γ0(K) and A ∈
B(X,K) such that dom(f ) ∩ dom(g ◦ A) �= ∅. Then the following conditions

(a) argmin(f + g ◦ A)(X) is nonempty, closed, and bounded;

(b) f + g ◦ A is coercive;
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(c) f is coercive, and g is bounded below;

(d) f is super-coercive;

satisfy that ((d) or (c))⇒ (b)⇒ (a).

(Gâteaux Differential; See, e.g., [9, Section 2.6]) Let U be an open subset of X.
Then a function f : U → R is said to be Gâteaux differentiable at x ∈ U if there
exists a(x) ∈ X such that

lim
δ→0

f (x + δh)− f (x)

δ
= 〈a(x), h〉 (∀h ∈ X). (16.29)

In this case, ∇f (x) := a(x) is called Gâteaux gradient (or gradient) of f at x. Let
f ∈ Γ0(X) be Gâteaux differentiable at x* ∈ X. Then x* is a minimizer of f if and
only if ∇f (x*) = 0.

(Subdifferential; See, e.g., [9, Chapter 16]) For a function f ∈ Γ0(X), the
subdifferential of f is defined as the set valued operator

∂f : X→ 2X : x �→ {u ∈ X | 〈y − x, u〉 + f (x) ≤ f (y),∀y ∈ X}.

Every element u ∈ ∂f (x) is called a subgradient of f at x. For a given function
f ∈ Γ0(X), x* ∈ X is a minimizer of f if and only if 0 ∈ ∂f (x*). Note that if
f ∈ Γ0(X) is Gâteaux differentiable at x ∈ X, then ∂f (x) := {∇f (x)}.
(Conjugate Function; See, e.g., [9, Chapter 13 and Chapter 16]) For a function
f ∈ Γ0(X), the conjugate of f is defined by

f ∗ : X→ [−∞,∞] : u �→ sup
x∈X

(〈x, u〉 − f (x)) = sup
x∈dom(f )

(〈x, u〉 − f (x)).

Let f ∈ Γ0(X). Then f ∗ ∈ Γ0(X) and f ∗∗ = f are guaranteed. Moreover, we have

(∀(x, u) ∈ X× X) u ∈ ∂f (x)⇔ f (x)+ f ∗(u) = 〈x, u〉 ⇔ x ∈ ∂f ∗(u),

which implies that (∂f )−1(u) := {x ∈ X | u ∈ ∂f (x)} = ∂f ∗(u) and
(∂f ∗)−1(x) := {u ∈ X | x ∈ ∂f ∗(u)} = ∂f (x). Often

(∀x ∈ dom(∂f ))(∀u ∈ ∂f (x)) f (x)+ f ∗(u) = 〈x, u〉 (16.30)

is referred to as Fenchel-Young identity.
For hierarchical enhancement of Lasso in Section 16.5, we exploit the following

nontrivial example.
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Example 16.3 (Subdifferential of Perspective; See [38, Lemma 2.3]) For given
supercoercive ϕ ∈ Γ0(R

N), the function

ϕ̃ : R× R
N → (−∞,∞] : (η, y) �→

⎧⎪⎪⎨
⎪⎪⎩
ηϕ(y/η), if η > 0;

sup
x∈dom(ϕ)

[ϕ(x+ y)− ϕ(x)], if η = 0;
+∞, otherwise.

(16.31)
satisfies ϕ̃ ∈ Γ0

(
R× R

N
)

and is called the perspective of ϕ.
The subdifferential of ϕ̃ is given by

∂ϕ̃(η, y) =
⎧⎨
⎩
{
(ϕ(y/η)− 〈y/η,u〉,u) ∈ R× R

N | u ∈ ∂ϕ(y/η)
}
, if η > 0;

{(μ,u) ∈ R× R
N | μ+ ϕ∗(u) ≤ 0}, if η = 0 and y = 0;

∅, otherwise.
(16.32)

(Conical Hull, Span, Convex Sets; See, e.g., [9, Chapter 6]) For a given
nonempty set C ⊂ X, cone(C) := {λx | λ > 0, x ∈ C} is called the conical
hull of C, and span(C) denotes the intersection of all the linear subspaces of X

containing C. The closure of span(C) is denoted by span(C).
The strong relative interior of a convex set C ⊂ X is defined by

sri(C) := {x ∈ C | cone(C − x) = span(C − x)},

where C − x := {y − x ∈ X | y ∈ C}.
Similarly, the relative interior of a convex set C ⊂ X is defined by

ri(C) := {x ∈ C | cone(C − x) = span(C − x)}.

By cone(C − x) ⊂ span(C − x) ⊂ span(C − x) for every x ∈ C, we have sri(C) ⊂
ri(C). Moreover, sri(C) = ri(C) if span(C − x) = span(C − x) for every x ∈ C,
which implies

dim(X) <∞ ⇒ sri(C) = ri(C). (16.33)

(Indicator Function) For a nonempty closed convex set C ⊂ X, the indicator
function of C is defined by

ιC : X→ (−∞,∞] : x �→
{

0, if x ∈ C;
+∞, otherwise,

which belongs to Γ0(X). In particular, for a closed subspace V ⊂ X,

u ∈ ∂ιV (x) ⇔ x ∈ V and u ∈ V ⊥ := {y ∈ X | (∀v ∈ V ) 〈v, y〉 = 0}. (16.34)
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Furthermore, the indicator function ι{0} ∈ Γ0(X) of {0} ⊂ X has the following
properties: for all x, u ∈ X

∂ι{0}(x) =
{
X, if x = 0;
∅, otherwise,

(16.35)

ι∗{0}(u) = sup
y∈X

(〈y, u〉 − ι{0}(y)) = 0, (16.36)

∂ι∗{0}(u) = {0}. (16.37)

(Fenchel-Rockafellar Duality for Convex Optimization Problem Involving
Linear Operator; See, e.g., [9, Definition 15.19]) Let f ∈ Γ0(X), g ∈ Γ0(K),
and A ∈ B(X,K). The primal problem associated with the composite function
f + g ◦ A is

minimizex∈X f (x)+ g(Ax), (16.38)

its dual problem is

minimizeu∈K f ∗(A∗u)+ g∗(−u), (16.39)

μ := infx∈X(f (x) + g(Ax)) is called the primal optimal value, and μ∗ :=
infu∈K(f ∗(A∗u)+ g∗(−u)) the dual optimal value.

Fact 16.4 (See, e.g., [9, Theorem 15.23, Theorem 16.47, Corollary 16.53]) The
condition

0 ∈ sri(dom(g)− A dom(f ))

(sri can be replaced by ri in the case of dim(K) <∞, see (16.33))

}
(16.40)

is the so-called qualification condition for problem (16.38).

(a) The condition (16.40) guarantees that the dual problem (16.39) has a minimizer
and satisfies

μ = inf
x∈X

(f (x)+ g(Ax)) = −min
u∈K

(f ∗(A∗u)+ g∗(−u)) = −μ∗; (16.41)

(b) The condition (16.40) guarantees that the subdifferential of f + g ◦ A can be
decomposed as

∂(f + g ◦ A) = ∂f + A∗ ◦ (∂g) ◦ A; (16.42)

(c) The qualification condition (16.40) with f ≡ 0 becomes 0 ∈ sri(dom(g) −
ran(A)), where ran(A) := A(X) := {Ax ∈ K | x ∈ X}. Under this condition,
(a), (b), and (16.36) guarantee
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⎡
⎢⎣μ = infx∈X g(Ax) = infx∈X ι∗{0}(x)+ g(Ax) = −minu∈K(ι{0}(A∗u)+ g∗(−u))

= −minu∈N(A∗) g∗(−u) = −μ∗
∂(g ◦ A) = A∗ ◦ ∂g ◦ A.

Fact 16.5 ([9, Theorem 19.1]) Suppose that 0 ∈ dom(g)− A dom(f ) (Note: This
condition is not sufficient for (16.40)). Let (x, u) ∈ X ×K. Then the following are
equivalent:

(i) x is a solution of the primal problem (16.38), u is a solution of the dual
problem (16.39), and μ = −μ∗.

(ii) A∗u ∈ ∂f (x) and −u ∈ ∂g(Ax).
(iii) x ∈ ∂f ∗(A∗u) ∩ A−1(∂g∗(−u)).

16.2.2 Selected Elements of Fixed Point Theory of
Nonexpansive Operators for Application to Hierarchical
Convex Optimization

For readers’ convenience, we list minimum elements in fixed point theory of nonex-
pansive mapping specially for application to hierarchical convex optimization in this
paper (for their detailed accounts, see, e.g., [7, 9, 38, 42, 44, 51, 82, 122, 130, 143]).

(Monotone Operator; See, e.g., [9, Section 20.1]) A set-valued operator T : X→
2X is said to be monotone over S(⊂ X) if

(∀x, y ∈ S)(∀u ∈ T x)(∀v ∈ Ty) 〈u− v, x − y〉 ≥ 0.

In particular, it is said to be η-strongly monotone over S if

(∃η > 0)(∀x, y ∈ S)(∀u ∈ T x)(∀v ∈ Ty) 〈u− v, x − y〉 ≥ η‖x − y‖2.

(Nonexpansive Operator; See, e.g., [7] and [9, Chapter 4]) An operator T : X→
X is said to be Lipschitz continuous with Lipschitz constant κ > 0 (or κ-
Lipschitzian) if

(∀x, y ∈ X) ‖T x − Ty‖ ≤ κ‖x − y‖.
In particular, an operator T : X → X is said to be nonexpansive if it is 1-
Lipschitzian, i.e.,

(∀x, y ∈ X) ‖T x − Ty‖ ≤ ‖x − y‖.
A nonexpansive operator T is said to be α-averaged (or averaged with constant α)
[5, 9] if there exist α ∈ (0, 1) and a nonexpansive operator T̂ : X→ X such that

T = (1− α)I+ αT̂ , (16.43)
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i.e., T is an average of the identity operator I and some nonexpansive operator T̂ .
If (16.43) holds for α = 1/2, T is said to be firmly nonexpansive. A nonexpansive
operator T is α-averaged if and only if

(∀x, y ∈ X) ‖T x−Ty‖2 ≤ ‖x−y‖2− 1− α

α
‖(x−T x)−(y−Ty)‖2. (16.44)

Suppose that a nonexpansive operator T has the fixed point set Fix(T ) := {x ∈
X | T x = x} �= ∅. Then Fix(T ) can be expressed as the intersection of closed
halfspaces:

Fix(T ) =
⋂
y∈X

{
x ∈ X | 〈y − T (y), x〉 ≤ ‖y‖

2 − ‖T (y)‖2

2

}

and therefore Fix(T ) is closed and convex (see, e.g., [70, Proposition 5.3], [142,
Fact 2.1(a)], and [9, Corollary 4.24]). In addition, a nonexpansive operator T with
Fix(T ) �= ∅ is said to be attracting [7] if

(∀x �∈ Fix(T ))(∀z ∈ Fix(T )) ‖T x − z‖ < ‖x − z‖.

The condition (16.44) implies that α-averaged nonexpansive operator T is attracting
if Fix(T ) �= ∅. Note that other useful properties on α-averaged nonexpansive
operators are found, e.g., in [20, 45, 105].

Fact 16.6 (Krasnosel’skiı̆–Mann (KM) Iteration [71] (See Also [9, Section 5.2],
[20, 56, 88, 96, 119])) For a nonexpansive operator T : X → X with Fix(T ) �= ∅

and any initial point x0 ∈ X, the sequence (xn)n∈N generated by

xn+1 = (1− αn)xn + αnT xn

converges weakly7 to a point in Fix(T ) if (αn)n∈N ⊂ [0, 1] satisfies
∑

n∈N αn(1 −
αn) = ∞ (Note: The weak limit of (xn)n∈N depends on the choices of x0 and
(αn)n∈N).8 In particular, if T is α-averaged for some α ∈ (0, 1) (see (16.43)), a
simple iteration

7(Strong and weak convergences) A sequence (xn)n∈N ⊂ X is said to converge strongly to a point
x ∈ X if the real number sequence (‖xn−x‖)n∈N converges to 0, and to converge weakly to x ∈ X

if for every y ∈ X the real number sequence (〈xn− x, y〉)n∈N converges to 0. If (xn)n∈N converges
strongly to x, then (xn)n∈N converges weakly to x. The converse is true if X is finite dimensional,
hence in finite dimensional case we do not need to distinguish these convergences.

(Sequential cluster point) If a sequence (xn)n∈N ⊂ X possesses a subsequence that strongly
(weakly) converges to a point x ∈ X, then x is a strong (weak) sequential cluster point of (xn)n∈N.
For weak topology of real Hilbert space in the context of Hausdorff space, see [9, Lemma 2.30].
8Some extensions to uniformly convex Banach spaces are found in [71, 119].
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xn+1 = T xn = (1− α)xn + αT̂ xn (16.45)

converges weakly to a point in Fix(T ) = Fix(T̂ ).

(Proximity Operator [101, 102] (See Also [9, Chapter 24])) The proximity
operator of f ∈ Γ0(X) is defined by

proxf : X→ X : x �→ argmin
y∈X

f (y)+ 1

2
‖y − x‖2.

Note that proxf (x) ∈ X is well defined for all x ∈ X due to the coercivity and the

strict convexity of f (·) + 1
2‖ · −x‖2 ∈ Γ0(X). It is also well known that proxf is

nothing but the resolvent of ∂f , i.e., proxf = (I+∂f )−1 =: J∂f , which implies that

x ∈ Fix(proxf ) ⇔ proxf (x) = x ⇔ (I+ ∂f )−1(x) = x

⇔ x ∈ (I+ ∂f )(x) ⇔ 0 ∈ ∂f (x) ⇔ x ∈ argmin
y∈X

f (y). (16.46)

Thanks to this fact, the set of all minimizers of f ∈ Γ0(X) can be characterized in
terms of a single-valued map, i.e., proxf . Moreover, since the proximity operator is
1/2-averaged nonexpansive, i.e., rproxf := 2proxf−I is nonexpansive, the iteration

xn+1 = proxf (xn) (16.47)

converges weakly to a point in argminx∈X f (x) = Fix(proxf ) by (16.45) in
Fact 16.6. The iterative algorithm (16.47) is known as proximal point algorithm
[121] (see (16.7)).

In this paper, f ∈ Γ0(X) is said to be proximable if proxf is available as a
computable operator. Note that if f ∈ Γ0(X) is proximable, so is f ∗ ∈ Γ0(X). This
is verified by

proxf ∗ = J∂f ∗ = J(∂f )−1 = I− J∂f = I− proxf ,

which is a special example of the inverse resolvent identity [9, Proposition 23.20].
Note that the sum of two proximable convex functions is not necessarily proximable.
Moreover, for A ∈ B(X,K), the composition g ◦ A ∈ Γ0(X) for a proximable
function g ∈ Γ0(K) is not necessarily proximable. There are many useful formula
to compute the proximity operator (see, e.g., [9, Chapter 24], [42]).

Example 16.7

(a) (Indicator function; see, e.g., [9, Example 12.25]) For a nonempty closed
convex set C ⊂ X,

(∀x ∈ X) proxιC (x) = argmin
y∈X

(
ιC(y)+ 1

2
‖y − x‖2

)
= argmin

y∈C
1

2
‖y−x‖2 =: PC(x)
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holds, which implies that proxιC is identical to the metric projection onto C. In
particular, if ιC is proximable, C is said to be simple.

(b) (Semi-orthogonal linear transform of proximable function; see, e.g., [9,
Proposition 24.14] and [42, Table 10.1])
For g ∈ Γ0(K) and A ∈ B(X,K) such that AA∗ = νI with some ν > 0,

(∀x ∈ X) proxg◦A(x) = x + ν−1A∗(proxνg(Ax)− Ax). (16.48)

(c) (Hinge loss function; see, e.g., [1] and [9, Example 24.36]) For γ > 0 and

h : R→ [0,∞) : t �→ max{0, 1− t}, (16.49)

(∀t ∈ R) proxγ h(t) = min{t + γ,max{t, 1}}. (16.50)

(d) (�1 norm; see, e.g., [9, 44]) For γ ≥ 0 and the �1 norm ‖ · ‖1 ∈ Γ0(R
N)

(x = (x1, x2, . . . , xN) ∈ R
N) ‖x‖1 :=

N∑
j=1

|xi |,

the i-th component of the proximity operator of γ ‖ · ‖1 is given as

(∀x = (x1, x2, . . . , xN ) ∈ R
N) [proxγ ‖·‖1

(x)]i =
{
xi − sgn(xi)γ, if |xi | > γ ;
0, otherwise,

where sgn : R → R is the signum function, i.e., sgn(x) = 0 if x = 0 and
sgn(x) = x/|x| otherwise. proxγ ‖·‖1

is also known as soft-thresholding [53, 54].
(e) (Proximity operator of perspective of ‖·‖q ; see e.g. [38]) Let β > 0 and q > 1.

The perspective ϕ̃q of ϕq(·) := ‖ · ‖q/β (see also (16.31) in Example 16.3) is
given by

ϕ̃q : R× R
N → (−∞,∞] : (η, y) �→

⎧⎪⎨
⎪⎩

‖y‖q
βηq−1 , if η > 0;
0, if η = 0 and y = 0;
+∞, otherwise,

(16.51)
and its proximity operator can be expressed as

proxϕ̃q : R× R
N → R× R

N

: (η, y) �→
{(

η + +
q∗ ‖p‖q

∗
, y− p

)
, if q∗η + +‖y‖q∗ > 0;

(0, 0), if q∗η + +‖y‖q∗ ≤ 0,
(16.52)

where q∗ := q

q − 1
, + := (

β(1− 1/q∗)
)q∗−1

, p :=
{
τ

y
‖y‖ , if y �= 0;

0, if y = 0,
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and τ ∈ (0,∞) is uniquely determined as the solution to the equation:

τ 2q∗−1 + q∗η
+

τq
∗−1 + q∗‖y‖

+2 = 0.

The proximity operator of the translation, by (a,b) ∈ R× R
N , of ϕ̃q

τ(a,b) ϕ̃q : R× R
N → R× R

N : (η, y) �→ ϕ̃q (η − a, y− b) ,

which can be expressed as

prox
τ(a,b) ϕ̃q

: R× R
N → R× R

N : (η, y) �→ (a,b)+ proxϕ̃q (η − a, y− b) ,

will play an important role in Section 16.5.

Fact 16.8 (Moreau Envelope (See, e.g., [9, Section 12.4], [101, 102])) For f ∈
Γ0(X),

γ f : X→ R : x �→ min
y∈X

(
f (y)+ 1

2γ
‖x − y‖2

)

is called the Moreau envelope (or Moreau-Yosida regularization) [101, 102] of f of
the index γ > 0. The function γ f is Gâteaux differentiable convex with Lipschitzian
gradient

∇γ f : X→ X : x �→ 1

γ
(I− proxγf (x)).

The Moreau envelope of f converges pointwise to f on dom(f ) as γ ↓ 0 (see, e.g.,
[9, Proposition 12.33(ii)]), i.e., limγ↓0

γ f (x) = f (x) (∀x ∈ dom(f )).

16.2.3 Proximal Splitting Algorithms and Their Fixed Point
Characterizations

In this section, we introduce the Douglas-Rachford splitting method9 (see, e.g.,
[9, 10, 34, 40, 61, 91]) and the linearized augmented Lagrangian method (see, e.g.,
[150, 151]) as examples of the proximal splitting algorithms built on computable
nonexpansive operators with a great deal of potential in their applications to the

9See [10, 42] for the history of the Douglas-Rachford splitting method, originated from Douglas-
Rachford’s seminal paper [57] for solving matrix equations of the form u = Ax + Bx, where
A and B are positive-definite matrices (see also [137]). For recent applications, of the Douglas-
Rachford splitting method, to image recovery, see, e.g., [26, 40, 58, 60], and to data sciences, see,
e.g., [38, 67, 68]. Lastly, we remark that it was shown in [61] that the alternating direction method
of multipliers (ADMM) [17, 62, 66, 91, 150] can be seen as a dual variant of the Douglas-Rachford
splitting method.
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hierarchical convex optimization problem. As explained briefly just after (16.25–
16.27), these proximal splitting algorithms are essentially realized by applying
Fact 16.6 (see Section 16.2.2) to certain computable nonexpansive operators.

Proposition 16.9 (DRS Operator and Douglas-Rachford Splitting Method10)
Let (X, 〈·, ·〉X, ‖ · ‖X) be a real Hilbert space and f, g ∈ Γ0(X). Suppose that

argmin(f + g)(X) �= ∅, (16.53)

argmin(f ∗ + g∗ ◦ (−I))(X) �= ∅, (16.54)

min(f + g)(X) = −min(f ∗ + g∗ ◦ (−I))(X). (16.55)

Then the DRS operator

TDRS := (2 proxf −I) ◦ (2 proxg −I) (16.56)

satisfies:

(a) proxg(Fix(TDRS)) = argmin(f + g)(X);
(b) TDRS is nonexpansive;
(c) By using (αn)n∈N ⊂ [0, 1] satisfying

∑
n∈N αn(1− αn) = ∞ in Fact 16.6 (see

Section 16.2.2), the sequence (yn)n∈N ⊂ X generated by

yn+1 = (1− αn)yn + αnTDRS(yn) (16.57)

converges weakly to a point in Fix(TDRS). Moreover, (proxg(yn))n∈N converges
weakly to a point in argmin(f + g)(X).

The iterative algorithm to produce (proxg(yn))n∈N with (16.57) can be seen as a
simplest example of the so-called Douglas-Rachford splitting method.

The proof of Proposition 16.9(a) is given in Appendix A because the con-
ditions (16.53–16.55) are newly imposed for applications of TDRS (in (16.56))
to hierarchical convex optimizations in Theorem 16.15 and in Theorem 16.17
(see Remark 16.16(b) and Remark 16.18(b) in Section 16.3.1) and different
from [40, Condition (6)] which is also in the context of convex optimization.
Proposition 16.9(b) is obvious from the properties of the proximity operator just
after (16.46). For weak convergence of (proxg(yn))n∈N in Proposition 16.9(c), see,
e.g., [9, Corollary 28.3(iii)] while the weak convergence of (yn)n∈N is obvious from
Fact 16.6.

The linearized augmented Lagrangian method (LALM) seems to have been
proposed originally as an algorithmic solution to the minimization of the nuclear
norm of a matrix subject to a linear constraint [151]. Inspired by the operator defined

10We should remark that Proposition 16.9 can also be reproduced from [9, Proposition 26.1(iii)
and Theorem 26.11(i)(iii)] in the context of the monotone inclusion problems. For completeness,
we present Proposition 16.9 and its proof in the scenario of convex optimization.
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as the iterative update [151, (3.7)] in the method for this special convex optimization
problem, we extended in [150] the operator to TLAL in (16.61) to be applicable to
the general convex optimization problem (16.1) and showed the nonexpansiveness
of TLAL for solving efficiently the hierarchical convex optimization (16.13) by
plugging the extended operator TLAL into the HSDM.

Proposition 16.10 (LAL Operator and Linearized Augmented Lagrangian
Method) Let (X, 〈·, ·〉X, ‖ · ‖X) and (K, 〈·, ·〉K, ‖ · ‖K) be real Hilbert spaces.
Suppose that f ∈ Γ0(X), g = ι{0} ∈ Γ0(K) and A ∈ B(X,K) satisfy

SpLAL := argmin(f + ι{0} ◦ A)(X) �= ∅, (16.58)

SdLAL := argmin(f ∗ ◦ A∗)(K) �= ∅, (16.59)

min(f + ι{0} ◦ A)(X) = −min(f ∗ ◦ A∗)(K), (16.60)

where SpLAL is the solution set of the primal problem and SdLAL is the solution set
of the dual problem. Define the LAL operator TLAL : X × K → X × K : (x, ν) �→
(xT , νT ) by

[
xT := proxf (x − A∗Ax + A∗ν)
νT := ν − AxT .

(16.61)

Then

(a) Fix(TLAL) = SpLAL × SdLAL;
(b) TLAL is nonexpansive if ‖A‖op ≤ 1;
(c) By using (αn)n∈N ⊂ [0, 1] satisfying

∑
n∈N αn(1− αn) = ∞ in Fact 16.6 (see

Section 16.2.2), the sequence (xn, νn)n∈N ⊂ X×K generated by

(xn+1, νn+1) = (1− αn)(xn, νn)+ αnTLAL(xn, νn) (16.62)

converges weakly to a point in SpLAL × SdLAL if ‖A‖op ≤ 1;
(d) If ‖A‖op < 1, the sequence (xn, νn)n∈N ⊂ X × K generated by (16.62) with

αn = 1 (n ∈ N) converges weakly to a point in SpLAL × SdLAL.

The iterative algorithms, in Proposition 16.10 (c) and (d), to produce (xn)n∈N
with (16.62) can be seen as simplest examples of the so-called linearized augmented
Lagrangian method.

The proof of Proposition 16.10(a) is given in Appendix B for completeness
because the conditions (16.58–16.60) are newly imposed for applications of TLAL
to hierarchical convex optimizations in Theorem 16.19 and in Theorem 16.21 (see
Remark 16.20(b) and Remark 16.22(a) in Section 16.3.2) and different from [150,
(32)]. For the proof of Proposition 16.10(b), see [150]. Proposition 16.10(c) is
a straightforward application of Fact 16.6 to Proposition 16.10(b). The proof of
Proposition 16.10(d) is given in Appendix B.
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Remark 16.11 A primitive idea behind the update of the LAL operator TLAL is
found in minimization of the augmented Lagrangian function [81, 116]:

L : X×K→ (−∞,∞] : (x, ν) �→ f (x)− 〈ν,Ax〉K + 1

2
‖Ax‖2

K. (16.63)

Indeed, by introducing

(∀x̂ ∈ X)(∀ν̂ ∈ K)

[
L
(ν̂)
1 : X→ (−∞,∞]: x �→ L(x, ν̂);

L
(x̂)
2 : K→ (−∞,∞]: ν �→ L(x̂, ν),

the zero (x*, ν*) ∈ X ×K of the partial subdifferentials of (16.63) is characterized
as [

0 ∈ ∂L
(ν*)
1 (x*)

0 ∈ ∂L
(x*)
2 (ν*)

]
⇔

[
0 ∈ ∂f (x*)− A∗ν* + A∗(Ax*)
0 = −Ax*

]

⇔
[
x* = proxf (x* − A∗Ax* + A∗ν*)
ν* = ν* − Ax*

]

⇔ (x*, ν*) ∈ Fix(TLAL).

16.2.4 Hybrid Steepest Descent Method

Consider the problem

find x* ∈ argmin
x∈Fix(T )

Θ(x) =: Ω �= ∅, (16.64)

where Θ ∈ Γ0(H) is Gâteaux differentiable over T (H) and T : H → H is a
nonexpansive operator with Fix(T ) �= ∅. The hybrid steepest descent method
(HSDM)

xn+1 = T (xn)− λn+1∇Θ(T (xn)) (16.65)

generates a sequence (xn)n∈N to approximate successively a solution of Prob-
lem (16.64).

Fact 16.12 (Hybrid Steepest Descent Method for Nonexpansive Operators)

I. [142, special case of Theorems 3.2 and 3.3 for more general variational
inequality problems] Let T : H → H be a nonexpansive mapping with
Fix(T ) �= ∅. Suppose that the gradient ∇Θ is κ-Lipschitzian and η-strongly
monotone over T (H) := {T (x) ∈ H | x ∈ H}, which guarantees
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|Ω| = 1. Then, by using any sequence (λn+1)n∈N ⊂ [0,∞) satisfying (W1)
limn→+∞ λn = 0, (W2)

∑
n∈N λn+1 = +∞, (W3)

∑
n∈N |λn+1 − λn+2| < ∞

[or (λn+1)n∈N ⊂ (0,∞) satisfying (L1) limn→+∞ λn = 0, (L2)
∑

n∈N λn+1 =
+∞, (L3) limn→+∞(λn − λn+1)λ

−2
n+1 = 0], the sequence (xn)n∈N ⊂ H

generated, for arbitrary x0 ∈ H, by (16.65) converges strongly to the uniquely
existing solution of Problem (16.64).

II. (Nonstrictly convex case [105, 106, 149]) Assume that dim(H) < ∞. Suppose
that (i) T : H → H is an attracting nonexpansive operator with bounded
Fix(T ) �= ∅, (ii) ∇Θ is κ-Lipschitzian over T (H), which guarantees Ω �= ∅.
Then, by using11 (λn+1)n∈N ∈ �2+ \ �1+, the sequence (xn)n∈N generated
by (16.65), for arbitrary x0 ∈ H, satisfies limn→∞ dΩ(xn) = 0, where
dΩ(xn) := miny∈Ω ‖xn − y‖.

Remark 16.13

(a) (Comparison between Fact 16.12(I) and Fact 16.6) Fact 16.6 in Sec-
tion 16.2.2 is available for generation of a weak convergent sequence to a point
in Fix(T ), where the weak limit depends on the choices of x0 and (αn)n∈N.
Fact 16.12(I) guarantees the strong convergence of (xn)n∈N to a point in Fix(T ),
where the strong limit is optimal in Fix(T ) because it minimizes Θ able to be
designed strategically for many applications. Note that, thanks to Fact 16.12(I),
we present that the LAL operator plugged into the HSDM yields an iterative
approximation, of a solution of Problem (16.64), whose strong convergence is
guaranteed if Θ has the strongly monotone Lipschitzian gradient over H (see
Theorem 16.19 below).

(b) (Boundedness assumption of Fix(T ) in Fact 16.12(II)) For readers who
get worried about the boundedness assumption in Fact 16.12(II), we present
some sufficient conditions, in Section 16.3.3, to guarantee the boundedness
for Fix(T ) in the context of DRS operators and LAL operators. These con-
ditions hold automatically in the application to the hierarchical enhancement
of the Lasso, in Section 16.5.2. However, the boundedness assumption in
Fact 16.12(II) may not be restrictive for most practitioners by just modifying
our original target (16.64) into

minimizeΘ(x) subject to x ∈ B(0, r) ∩ Fix(T ) �= ∅ (16.66)

with a sufficiently large closed ball B(0, r). Note that Fact 16.12(II) is applica-
ble to (16.66) because PB(0,r) ◦ T is nonexpansive and satisfies Fix(PB(0,r) ◦
T ) = B(0, r) ∩ Fix(T ) (see [145, Proposition 1(d)]). Similar strategy will
be utilized in the application to the hierarchical enhancement of the SVM in
Section 16.4.2.

11�1+ denotes the set of all summable nonnegative sequences. �2+ denotes the set of all square-
summable nonnegative sequences.
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(c) (Conditions for Θ) The condition for Θ ∈ Γ0(H) in (16.64), where it is
required to have the Lipschitzian gradient∇Θ , may not be restrictive as well for
practitioners just by passing through the smooth regularizations, e.g. Moreau-
Yosida regularization (see (16.12) and Fact 16.8 in Section 16.2.2).

Remark 16.14 (On the Hybrid Steepest Descent Method)

(a) The HSDM was established originally as a generalization of the so-called
Halpern-type iteration (or anchor method) [6, 72, 90] for iteratively computing
PFix(T )(x) for a nonexpansive operator T : H → H and x ∈ H. Indeed, by
choosing Ψ (·) := 1

2‖ · −x‖2, the iteration (16.65) is reduced to the Halpern-
type iteration.

(b) One can relax (L3) to limn→∞ λn
λn+1

= 1 in [140]. Moreover, if T is an averaged
nonexpansive operator it was shown in [83] that only (W1) and (W2) are
required to guarantee the strong convergence.

(c) The HSDM can be robustified against the numerical errors produced possibly
in the computation of T [146].

(d) Parallel versions of the HSDM were developed in [129]. Specifically, convex
optimization over the Cartesian product of the intersections of the fixed
point sets of nonexpansive operators is considered, where strong convergence
theorems are established under a certain contraction assumption with respect to
the weighted maximum norm.

(e) The HSDM has been extended for the variational inequality problems over
the fixed point set of certain class of quasi-nonexpansive operators including
subgradient projection operators [145, 149] and has been applied to signal
processing problems (see, e.g., [108, 149]).

(f) The mathematical properties of the HSDM, e.g., in [142, 145] have been studied
extensively in various directions by many mathematicians (see, e.g., [27, 94] for
extensions in Banach spaces).

16.3 Hierarchical Convex Optimization with Proximal
Splitting Operators

In this section, we present our central strategy for iterative approximation of the
solution of the hierarchical convex optimization (16.13) by plugging proximal
splitting operators into the HSDM. For simplicity, we focus on the DRS and
the LAL operators as such proximal splitting operators.12 Assume that Prob-
lem (16.13) has a solution, i.e., there exists at least one minimizer of Ψ over

12In [149, Sec. 17.5], the authors introduced briefly the central strategy of plugging the Douglas-
Rachford splitting operator into the HSDM for hierarchical convex optimization. For applications
of the HSDM to other proximal splitting operators, e.g., the forward-backward splitting operator
[44], the primal-dual splitting operator [47, 139] for the hierarchical convex optimization of
different types from (16.13), see [107, 149].
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Sp, and that (f, g,A) satisfies its qualification condition (16.40) (Note: The
condition (16.40) holds automatically for many instances of (16.1), see, e.g.,
Section 16.4.2 [(16.148)] and Section 16.5.2 [Lemma 16.27 and (16.205)]). As
explained briefly just around (16.28) in Section 16.1, for applications of the
HSDM (16.65) to Problem (16.13), we need characterization of the constraint set as
Sp = Ξ(Fix(T )) with a computable nonexpansive operator T : H→ H and with a
bounded linear operator Ξ ∈ B(H,X) which ensures the Gâteaux differentiability
of Θ := Ψ ◦ Ξ ∈ Γ0(H) with Lipschitzian gradient ∇Θ . In the following,
we introduce three examples of such pair of computable nonexpansive operator
T : H→ H and Ξ ∈ B(H,X).

16.3.1 Plugging DRS Operators into Hybrid Steepest Descent
Method

We introduce a nonexpansive operator called TDRSI of Type-I, as an instance of
the DRS operator, that can characterize Sp (see (16.79)) and demonstrate how this
nonexpansive operator can be plugged into the HSDM for (16.13).

Theorem 16.15 (HSDM with the DRS Operator in Product Space of Type-
I) Let f ∈ Γ0(X), g ∈ Γ0(K), and A ∈ B(X,K) in Problem (16.13) satisfy
Sp �= ∅ and the qualification condition (16.40). Suppose that Ψ ∈ Γ0(X) is
Gâteaux differentiable with Lipschitzian gradient ∇Ψ over X and that Ω :=
argmin
x*∈Sp

Ψ (x*) �= ∅. Then the operator

TDRSI : X×K→ X×K : (x, y) �→ (xT , yT ), (16.67)

where

⎡
⎣p = x − A∗(I+ AA∗)−1(Ax − y)

(x1/2, y1/2) = (2p − x, 2Ap − y)

(xT , yT ) = (2 proxf (x1/2)− x1/2, 2 proxg(y1/2)− y1/2),

(16.68)

can be plugged into the HSDM (16.65), with any α ∈ (0, 1) and any (λn+1)n∈N ∈
�2+ \ �1+, as

⎡
⎢⎢⎢⎣
(xn+1/2, yn+1/2) = (1− α)(xn, yn)+ αTDRSI(xn, yn)

x*n+1 = xn+1/2 − A∗(I+ AA∗)−1(Axn+1/2 − yn+1/2)

xn+1 = xn+1/2 − λn+1(I− A∗(I+ AA∗)−1A) ◦ ∇Ψ (x*n+1)

yn+1 = yn+1/2 − λn+1((I+ AA∗)−1A) ◦ ∇Ψ (x*n+1).

(16.69)
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The algorithm (16.69) generates, for any (x0, y0) ∈ X×K, a sequence (x*n+1)n∈N ⊂
X which satisfies

lim
n→∞ dΩ(x*n) = 0 (16.70)

if dim(X×K) <∞ and Fix(TDRSI) is bounded.

Remark 16.16 (Idea Behind the Derivation of Theorem 16.15)

(a) The operator TDRSI in (16.67) can be expressed as13

TDRSI = (2 proxF −I) ◦ (2 proxι
N(Ǎ)

−I) = (2 proxF −I) ◦ (2P
N(Ǎ)

− I)

(16.71)

which is nothing but the DRS operator in the sense of Proposition 16.9 (see
Section 16.2.3) specialized for

minimize (F + ι
N(Ǎ)

)(X×K), (16.72)

where

F : X×K→ (−∞,∞]: (x, y) �→ f (x)+ g(y), (16.73)

Ǎ : X×K→ K : (x, y) �→ Ax − y, (16.74)

and N(Ǎ) stands for the null space of Ǎ ∈ B(X × K,K). Note that exactly
in the same way as in (16.14), proxF : X × K → X × K : (x, y) �→
(proxf (x), proxg(y)) can be used as a computational tool if proxf and proxg are

available. Moreover, proxι
N(Ǎ)

= P
N(Ǎ)

: X ×K→ N(Ǎ) : (x, y) �→ (p,Ap)

is also available if p in (16.68) is computable, hence Problem (16.72) is mini-
mization of the sum of two proximable functions. Obviously, Problem (16.72) is
a reformulation of Problem (16.13) in a higher dimensional space in the sense of

Sp[in (16.13)] = QX

[
argmin

(x,y)∈X×K
(F (x, y)+ ι

N(Ǎ)
(x, y))

]
, (16.75)

where

QX : X×K→ X : (x, y) �→ x, (16.76)

13The use of the DRS operator in a product space as in (16.71) is found explicitly or implicitly in
various applications, mainly for solving (16.2) (see, e.g., [23, 41, 43, 59, 67, 68, 117]).
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which is verified by

argminx∈X f (x)+ g(Ax)

= QX

[
argmin(x,y)∈X×K f (x)+ g(y)+ ι{0}(Ax − y)

]
= QX

[
argmin(x,y)∈X×K F(x, y)+ ι

N(Ǎ)
(x, y)

]
.

(b) For application of the HSDM (based on Fact 16.12(II) in Section 16.2.4),
Theorem 16.15 uses the convenient expression:

Sp[in (16.13)]
see below= QX(proxι

N(Ǎ)
(Fix(TDRSI)) (16.77)

= QX(P
N(Ǎ)

(Fix(TDRSI)) (16.78)

= ΞDRSI(Fix(TDRSI)) = ΞDRSI(Fix((1− α)I+ αTDRSI)) (16.79)

in terms of attracting operator (1− α)I+ αTDRSI with α ∈ (0, 1) (see (16.44)),
where

ΞDRSI := QX ◦ PN(Ǎ)
∈ B(X×K,X). (16.80)

Note that the characterization (16.79) is illustrated in Figure 16.3 (see Sec-
tion 16.5.1) and is utilized, in Section 16.5.2, in the context of the hierarchical
enhancement of Lasso. To prove (16.77) based on Proposition 16.9(a) in
Section 16.2.3, we need:

Claim 16.15 If f ∈ Γ0(X), g ∈ Γ0(K), and A ∈ B(X,K) in Problem (16.13)
satisfy Sp �= ∅ and the qualification condition (16.40), we have

argmin(F + ι
N(Ǎ)

)(X×K) �= ∅, (16.81)

argmin(F ∗ + ι∗
N(Ǎ)

◦ (−I))(X×K) �= ∅, (16.82)

min(F + ι
N(Ǎ)

)(X×K) = −min(F ∗ + ι∗
N(Ǎ)

◦ (−I))(X×K). (16.83)

Note that (16.81–16.83) correspond to (16.53–16.55) in Proposition 16.9 for
minimization of F + ι

N(Ǎ)
and therefore Claim 16.15 is the main step in the

proof of Theorem 16.15.
(c) To plug the operator TDRSI : H→ H, with H := X×K, into the HSDM based

on Fact 16.12(II) in Section 16.2.4, the characterization Sp = ΞDRSI(Fix((1 −
α)I+ αTDRSI)) in (16.79) is utilized in the translation [exactly in the same way
as in (16.28)]:
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Ω[in Theorem 16.15] = ΞDRSI(ΩDRSI), (16.84)

where ΩDRSI := argmin
z∈Fix(TDRSI )

ΘDRSI(z) = argmin
z∈Fix((1−α)I+αTDRSI )

ΘDRSI(z),

(16.85)

and ΘDRSI = Ψ ◦ΞDRSI ∈ Γ0(X×K).
(d) Application of the HSDM to (16.85) yields⎡

⎢⎣ zn+1/2 = [(1− α)I+ αTDRSI ](zn),
zn+1 = zn+1/2 − λn+1∇ΘDRSI(zn+1/2)

= zn+1/2 − λn+1Ξ
∗
DRSI

∇Ψ (ΞDRSI zn+1/2),

(16.86)

where Ξ∗
DRSI

is the conjugate of ΞDRSI in (16.80). By letting zn =: (xn, yn) ∈
X ×K, zn+1/2 =: (xn+1/2, yn+1/2) ∈ X ×K, and x*n+1 := ΞDRSI zn+1/2 ∈ X,
as well as, by noting

Ξ∗
DRSI

= P
N(Ǎ)

◦ Q∗X : X→ X×K : x �→ ((I− A∗(I+ AA∗)−1A)x, (I+ AA∗)−1Ax),

we can verify the equivalence between (16.86) and (16.69).
(e) Fact 16.12(II) in Section 16.2.4 guarantees limn→∞ dΩDRSI

(zn) = 0. Moreover,
by noting that ΞDRSIPΩDRSI

(zn+1/2) ∈ Ω (see (16.84)) and ΩDRSI ⊂ Fix((1−
α)I+ αTDRSI) (see (16.85)), (16.70) is verified as

dΩ(x*n+1) = dΩ(ΞDRSI zn+1/2)

≤ ‖ΞDRSI zn+1/2 −ΞDRSIPΩDRSI
(zn+1/2)‖X

≤ ‖ΞDRSI‖op‖zn+1/2 − PΩDRSI
(zn+1/2)‖H

≤ ‖ΞDRSI‖opdΩDRSI
(zn)→ 0 (n→∞).

(The proof of Theorem 16.15 is given in Appendix C).
Next, we introduce another nonexpansive operator called TDRSII of Type-II, as an

instance of the DRS operator, that can characterize Sp (see (16.99)) and demonstrate
how this nonexpansive operator can be plugged into the HSDM for (16.13). The
operator TDRSII is designed based on Example 16.7(b) in Section 16.2.2.

Theorem 16.17 (HSDM with the DRS Operator in Product Space of Type-II)
Let K = R

m. Let f ∈ Γ0(X), g = ⊕m
i=1 gi ∈ Γ0(K), A : X → K : x �→

Ax = (A1x,A2x, . . . , Amx) with Ai ∈ B(X,R) \ {0} (i = 1, 2, . . . , m) in
Problem (16.13) satisfy Sp �= ∅ and the qualification condition (16.40). Suppose
that Ψ ∈ Γ0(X) is Gâteaux differentiable with Lipschitzian gradient ∇Ψ over X

and that Ω := argmin
x*∈Sp

Ψ (x*) �= ∅. Then the operator

TDRSII : Xm+1 → Xm+1 : (x(1), x(2), . . . , x(m+1)) �→ (x
(1)
T , x

(2)
T , . . . , x

(m+1)
T ),

(16.87)
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where

⎡
⎢⎢⎢⎣
x̄ = 1

m+1

∑m+1
j=1 x(j)

x
(i)
T = (2x̄ − x(i))+ 2(AiA

∗
i )
−1A∗i (prox(AiA

∗
i )gi
[Ai(2x̄ − x(i))] − Ai(2x̄−x(i)))

(i = 1, 2, . . . , m)

x
(m+1)
T = 2 proxf (2x̄ − x(m+1))− (2x̄ − x(m+1)),

can be plugged into the HSDM (16.65), with any α ∈ (0, 1) and any (λn+1)n∈N ∈
�2+ \ �1+, as

⎡
⎢⎢⎢⎢⎢⎣

(
x
(1)
n+1/2, . . . , x

(m+1)
n+1/2

)
= (1− α)

(
x
(1)
n , . . . , x

(m+1)
n

)
+αTDRSII

(
x
(1)
n , . . . , x

(m+1)
n

)
x*n+1 = 1

m+1

∑m+1
j=1 x

(j)

n+1/2

x
(i)
n+1 = x

(i)
n+1/2 − λn+1

m+1∇Ψ (x*n+1) (i = 1, 2, . . . , m+ 1).

(16.88)

The algorithm (16.88) generates, for any
(
x
(1)
0 , . . . , x

(m+1)
0

)
∈ Xm+1, a sequence

(x*n+1)n∈N ⊂ X which satisfies

lim
n→∞ dΩ(x*n) = 0 (16.89)

if dim(X) <∞ and Fix(TDRSII) is bounded.

Remark 16.18 (Idea Behind the Derivation of Theorem 16.17)

(a) The operator TDRSII in (16.87) can be expressed as

TDRSII = (2 proxH −I) ◦ (2 proxιD −I) = (2 proxH −I) ◦ (2PD − I)
(16.90)

which is the DRS operator in the sense of Proposition 16.9 (see Section 16.2.3)
specialized for

minimize (H + ιD)(X
m+1), (16.91)

where

H : Xm+1 → (−∞,∞]: (x(1), . . . , x(m+1)) �→
m∑
i=1

gi(Aix
(i))+ f (x(m+1)),

(16.92)

D := {(x(1), . . . , x(m+1)) ∈ Xm+1 | x(i) = x(j) (i, j = 1, 2, . . . , m+ 1)}.
(16.93)
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Note that exactly in the same way as in (16.14),

proxH (x(1), x(2), . . . , x(m+1))

= (proxg1◦A1
(x(1)), . . . , proxgm◦Am

(x(m)), proxf (x
(m+1)))

can be used with (16.48), in Example 16.7(b) (see Section 16.2.2), as a compu-
tational tool if proxf and proxAiA

∗
i g

(i = 1, 2, . . . , m) are available. Moreover,

proxιD = PD : Xm+1 → Xm+1 : (x(1), x(2), . . . , x(m+1)) �→ (x̄, . . . , x̄) with

x̄ := 1
m+1

∑m+1
i=1 x(i) is also available. Hence Problem (16.91) is minimization

of the sum of two proximable functions (Note: Thanks to AiA
∗
i ∈ R++ := {r ∈

R | r > 0}, the computation of TDRSII in (16.90) does not require any matrix
inversion). Obviously, Problem (16.91) is a reformulation of Problem (16.13)
in a higher dimensional space in the sense of

Sp[in (16.13)] = QX(1)

[
argmin

(x(1),...,x(m+1))∈Xm+1
(H + ιD)(x

(1), . . . , x(m+1)))

]
,

(16.94)

where

QX(1) : Xm+1 → X : (x(1), . . . , x(m+1)) �→ x(1), (16.95)

which is verified by

argminx∈X g(Ax)+ f (x)

= argminx∈X
m∑
i=1

gi(Aix)+ f (x)

= QX(1)

[
argmin(x(1),...,x(m+1))∈Xm+1 (H + ιD) (x

(1), . . . , x(m+1))
]
.

(16.96)

(b) For application of the HSDM (based on Fact 16.12(II) in Section 16.2.4),
Theorem 16.17 uses the convenient expression:

Sp[in (16.13)]

see below= QX(1) (proxιD (Fix(TDRSII)) (16.97)

= QX(1) (PD(Fix(TDRSII)) (16.98)

= ΞDRSII(Fix(TDRSII)) = ΞDRSII(Fix((1− α)I+ αTDRSII)) (16.99)



16 Hierarchical Convex Optimization by the Hybrid Steepest Descent Method 445

in terms of attracting operator (1−α)I+αTDRSII with α ∈ (0, 1) (see (16.44)),
where

ΞDRSII := QX(1) ◦ PD ∈ B(Xm+1,X). (16.100)

To prove (16.97) based on Proposition 16.9(a) in Section 16.2.3, we need:

Claim 16.17 If dim(K) < ∞, f ∈ Γ0(X), g = ⊕m
i=1 gi ∈ Γ0(K),

A : X → K : x �→ Ax = (A1x,A2x, . . . , Amx) with Ai ∈ B(X,R) \
{0} (i = 1, 2, . . . , m) in Problem (16.13) satisfy Sp �= ∅ and the qualification
condition (16.40), we have

argmin(H + ιD)(X
m+1) �= ∅, (16.101)

argmin(H ∗ + ι∗D ◦ (−I))(Xm+1) �= ∅, (16.102)

min(H + ιD)(X
m+1) = −min(H ∗ + ι∗D ◦ (−I))(Xm+1). (16.103)

Note that (16.101–16.103) correspond to (16.53–16.55) in Proposition 16.9 for
minimization of H + ιD and therefore Claim 16.17 is the main step in the proof
of Theorem 16.17.

(c) To plug the operator TDRSII : H→ H, with H := Xm+1, into the HSDM based
on Fact 16.12(II) in Section 16.2.4, the characterization Sp = ΞDRSII(Fix((1−
α)I+αTDRSII)) in (16.99) is utilized in the translation [exactly in the same way
as in (16.28)]:

Ω[in Theorem 16.17] = ΞDRSII(ΩDRSII),

where ΩDRSII := argmin
X∈Fix(TDRSII )

ΘDRSII(X) = argmin
X∈Fix((1−α)I+αTDRSII )

ΘDRSII(X),

(16.104)

and ΘDRSII = Ψ ◦ΞDRSII ∈ Γ0(X
m+1).

(d) Application of the HSDM to (16.104) yields

⎡
⎢⎣Xn+1/2 = [(1− α)I+ αTDRSII ](Xn),

Xn+1 = Xn+1/2 − λn+1∇ΘDRSII(Xn+1/2)

= Xn+1/2 − λn+1Ξ
∗
DRSII

∇Ψ (ΞDRSII Xn+1/2),

(16.105)

where Ξ∗
DRSII

is the conjugate of ΞDRSII in (16.100). By letting Xn =:
(x

(1)
n , . . . , x

(m+1)
n ) ∈ Xm+1, Xn+1/2 =: (x(1)n+1/2, . . . , x

(m+1)
n+1/2 ) ∈ Xm+1, and

x*n+1 := ΞDRSII Xn+1/2 ∈ X, as well as, by noting

Ξ∗
DRSII

= PD ◦ Q∗X(1) : X→ Xm+1 : x �→ 1

m+ 1
(x, x, . . . , x),

we can verify the equivalence between (16.105) and (16.88).
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(e) In the same way as in Remark 16.16(e), Fact 16.12(II) in Section 16.2.4
guarantees limn→∞ dΩDRSII

(Xn) = 0 and (16.89).

(The proof of Theorem 16.17 is given in Appendix D).

16.3.2 Plugging LAL Operator into Hybrid Steepest Descent
Method

We introduce a nonexpansive operator called TLAL, as an instance of the LAL oper-
ator, that can characterize Sp (see (16.114)) and demonstrate how this nonexpansive
operator can be plugged into the HSDM for (16.13). In particular, if ∇Ψ is strongly
monotone over X, TLAL can be plugged into the HSDM based on Fact 16.12(I) in
Section 16.2.4, which results in a strongly convergent iterative algorithm for (16.13)
(see Theorem 16.19). Of course, TLAL can also be plugged into the HSDM based
on Fact 16.12(II) (see Theorem 16.21).

Theorem 16.19 (Strong Convergence Achieved by HSDM with LAL Operator)
Let f ∈ Γ0(X), g ∈ Γ0(K) and A ∈ B(X,K) in Problem (16.13) satisfy not only
Sp �= ∅ and the qualification condition (16.40) but also ‖Ǎ‖op ≤ 1

u (∃u > 0)

with Ǎ in (16.74). Suppose also that Ψ ∈ Γ0(X) is Gâteaux differentiable with
Lipschitzian as well as strongly monotone gradient ∇Ψ over X. Then the operator

TLAL : X×K×K→ X×K×K (16.106)

:
⎛
⎝x

y

ν

⎞
⎠ �→

⎛
⎝xT

yT

νT

⎞
⎠ =

⎛
⎜⎝ proxf (x − u2(A∗Ax − A∗y)+ uA∗ν)

proxg(y − u2(−Ax + y)− uν)

ν − u(AxT − yT )

⎞
⎟⎠

can be plugged into the HSDM (16.65), with any α ∈ (0, 1] and any ηxy, ην > 0, as

⎡
⎢⎢⎣
(xn+1/2, yn+1/2, νn+1/2) = (1− α)(xn, yn, νn)+ αTLAL(xn, yn, νn)

xn+1 = xn+1/2 − λn+1(∇Ψ (xn+1/2)+ ηxyA
∗(Axn+1/2 − yn+1/2))

yn+1 = yn+1/2 + λn+1ηxy(Axn+1/2 − yn+1/2)

νn+1 = νn+1/2 − λn+1ηνvn+1/2.

(16.107)

The algorithm (16.107) generates, for any (x0, y0, ν0) ∈ X × K × K, a sequence
(xn)n∈N ⊂ X which converges strongly to the uniquely existing solution of Prob-
lem (16.13) if (λn+1)n∈N ⊂ [0,∞) satisfies conditions (W1–W3) [or (λn+1)n∈N ⊂
(0,∞) satisfies (L1–L3)] in Fact 16.12(I) in Section 16.2.4.
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Remark 16.20 (Idea Behind the Derivation of Theorem 16.19)

(a) The operator TLAL in (16.106) can be expressed as

(z, ν) �→ (zT , νT ) with

{
zT = proxF (z− (uǍ)∗(uǍ)z+ (uǍ)∗ν)
νT = ν − uǍzT

(16.108)

by introducing z := (x, y) and zT := (xT , yT ), which is the LAL operator of
Proposition 16.10 (see Section 16.2.3) specialized for

minimize (F + ι{0} ◦ (uǍ))(X×K), (16.109)

where F and Ǎ are defined, respectively, in (16.73) and in (16.74). Note that
exactly in the same way as in (16.14), proxF : X × K → X × K : (x, y) �→
(proxf (x), proxg(y)) can be used as a computational tool if proxf and proxg are
available. Obviously, Problem (16.109) is a reformulation of Problem (16.13)
in a higher dimensional space in the sense of

Sp[in (16.13)] = QX

[
argmin

(x,y)∈X×K
F(x, y)+ ι{0}(uǍ(x, y))

]
, (16.110)

where QX is defined as in (16.76), which is verified by

Sp = argminx∈X f (x)+ g(Ax)

= QX

[
argmin(x,y)∈X×K f (x)+ g(y)+ ι{0}(Ax − y)

]
= QX

[
argmin(x,y)∈X×K F(x, y)+ ι{0}(uǍ(x, y))

]
. (16.111)

(b) For application of the HSDM (based on Fact 16.12(I) in Section 16.2.4),
Theorem 16.19 uses the convenient expression:

Sp[in (16.13)]

= QX ◦ QX×K
[
argmin(F + ι{0} ◦ (uǍ))(X×K)× argmin(F ∗ ◦ (uǍ)∗)(K)

]
(16.112)

see below= QX ◦ QX×K(Fix(TLAL)) (16.113)

= ΞLAL(Fix(TLAL)) = ΞLAL(Fix((1− α)I+ αTLAL)) (16.114)

in terms of nonexpansive operator (1−α)I+αTLAL with α ∈ (0, 1] (Note: The
nonexpansiveness of TLAL is ensured by Proposition 16.10(b) in Section 16.2.3
with ‖uǍ‖op ≤ 1)
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QX×K : X×K×K→ X×K : (x, y, ν) �→ (x, y) (16.115)

ΞLAL := QX ◦ QX×K ∈ B(X×K×K,X), (16.116)

where QX is defined as in (16.76). To prove (16.113) based on Proposi-
tion 16.10(a) in Section 16.2.3, we need:

Claim 16.19 If f ∈ Γ0(X), g ∈ Γ0(K) and A ∈ B(X,K) in Problem (16.13)
satisfy not only Sp �= ∅ and the qualification condition (16.40) but also
‖Ǎ‖op ≤ 1

u (∃u > 0) with Ǎ in (16.74), we have

argmin(F + ι{0} ◦ (uǍ))(X×K) �= ∅, (16.117)

argmin(F ∗ ◦ (uǍ)∗)(K) �= ∅, (16.118)

min(F + ι{0} ◦ (uǍ))(X×K) = −min(F ∗ ◦ (uǍ)∗)(K). (16.119)

Note that (16.117–16.119) correspond to (16.58–16.60) in Proposition 16.10 for
minimization of F+ι{0} ◦(uǍ) and therefore Claim 16.19 is the main step in the
proof of Theorem 16.19. In Claim 16.19, we also remark that (uǍ)∗ in (16.118)
is the conjugate of uǍ and given by

(uǍ)∗ : K→ X×K : ν �→ (uA∗ν,−uν). (16.120)

(c) To plug the operator TLAL : H → H, with H := X × K × K, into the
HSDM based on Fact 16.12(I) in Section 16.2.4, the characterization Sp =
ΞLAL(Fix((1− α)I+ αTLAL)) in (16.114) is utilized in the translation:

Ω[in Theorem 16.19] = ΞLAL(Ω
reg
LAL), (16.121)

where Ω
reg
LAL := argmin

w∈Fix(TLAL)

Θ
reg
LAL(w) = argmin

w∈Fix((1−α)I+αTLAL)

Θ
reg
LAL(w),

(16.122)

Θ
reg
LAL : X×K×K→ R

: w* �→ Ψ (ΞLALw*)+ ηxy

2
‖Ǎ ◦ QX×Kw*‖2

K +
ην

2
‖QKw*‖2

K,

for ηxy, ην > 0 with QK : X × K × K : (x, y, ν) �→ ν. Note that, since ∇Ψ
is strongly monotone over X, the gradient ∇Θ reg

LAL is strongly monotone over
X×K×K (for the proof, see [150, Theorem 2(d)]).

(d) Application of the HSDM to (16.122) yields

[
wn+1/2 = [(1− α)I+ αTLAL](wn)

wn+1 = wn+1/2 − λn+1∇Θ reg
LAL(wn+1/2).

(16.123)
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By letting wn := (xn, yn, νn) ∈ X × K × K and wn+1/2 :=
(xn+1/2, yn+1/2, νn+1/2) ∈ X×K×K, as well as, by noting

Ξ∗
LAL = Q∗X×K ◦ Q∗X : X→ X×K×K : x �→ (x, 0, 0), (16.124)

(Ǎ ◦ QX×K)∗ : K→ X×K×K : y �→ (A∗y,−y, 0),

Q∗K : K→ X×K×K : ν �→ (0, 0, ν),

we can verify the equivalence between (16.123) and (16.107).
(e) Fact 16.12(I) in Section 16.2.4 guarantees that (wn)n∈N converges strongly to a

point in Ω
reg
LAL. Hence, (ΞLALwn(= xn))n∈N also converges strongly to a point

in Ω (see (16.121)).

(The proof of Theorem 16.19 is given in Appendix E).

Theorem 16.21 (HSDM with the LAL Operator Based on Fact 16.12(II)) Let
f ∈ Γ0(X), g ∈ Γ0(K) and A ∈ B(X,K) in Problem (16.13) satisfy not only
Sp �= ∅ and the qualification condition (16.40) but also ‖Ǎ‖op ≤ 1

u (∃u > 0)

with Ǎ in (16.74). Suppose also that Ψ ∈ Γ0(X) is Gâteaux differentiable with
Lipschitzian gradient ∇Ψ over X and that Ω := argmin

x*∈Sp

Ψ (x*) �= ∅. Then the

operator TLAL in (16.106) can be plugged into HSDM (16.65), with any α ∈ (0, 1)
and any (λn+1)n∈N ∈ �2+ \ �1+, as

[
(xn+1/2, yn+1, νn+1) = (1− α)(x*n, yn, νn)+ αTLAL(x

*
n, yn, νn)

x*n+1 = xn+1/2 − λn+1∇Ψ (xn+1/2).
(16.125)

The algorithm (16.125) generates, for any (x*0, y0, ν0) ∈ X × K × K, a sequence
(x*n)n∈N ⊂ X which satisfies

lim
n→∞ dΩ(x*n) = 0 (16.126)

if dim(X×K×K) <∞ and Fix(TLAL) is bounded.

Remark 16.22 (Idea Behind the Derivation of Theorem 16.21)

(a) Following Remark 16.20(a)(b), we obtain the characterization

Sp[in (16.13)] = ΞLAL(Fix((1− α)I+ αTLAL)),

in (16.114) (see also ΞLAL in (16.116)), with the attracting operator (1− α)I+
αT LAL for α ∈ (0, 1) (see (16.44)). This characterization is utilized, to plug
TLAL : H→ H (H := X×K×K) into the HSDM based on Fact 16.12(II) in
Section 16.2.4, in the translation [see also (16.28)]:

Ω[in Theorem 16.21] = ΞLAL(ΩLAL),
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where ΩLAL := argmin
w∈Fix(TLAL)

ΘLAL(w) = argmin
w∈Fix((1−α)I+αTLAL)

ΘLAL(w) (16.127)

and ΘLAL := Ψ ◦ΞLAL ∈ Γ0(X×K×K).
(b) Application of the HSDM to (16.127) yields

⎡
⎣wn+1/2 = [(1− α)I+ αTLAL](wn),

wn+1 = wn+1/2 − λn+1∇ΘLAL(wn+1/2)

= wn+1/2 − λn+1Ξ
∗
LAL∇Ψ (ΞLALwn+1/2),

(16.128)

where Ξ∗
LAL is the conjugate of ΞLAL. By letting wn =: (x*n, yn, νn) ∈ X ×

K × K and wn+1/2 =: (xn+1/2, yn+1/2, νn+1/2) ∈ X × K × K, as well as, by
noting (16.124), we can verify the equivalence between (16.128) and (16.125).

(c) In the same way as in Remark 16.16(e), Fact 16.12(II) in Section 16.2.4
guarantees limn→∞ dΩLAL(wn) = 0 and (16.126).

(The proof of Theorem 16.21 is omitted, see Remark 16.22).

16.3.3 Conditions for Boundedness of Fixed Point Sets of DRS
and LAL Operators

In Theorems 16.15, 16.17, and 16.21, the boundednesses of Fix(TDRSI),
Fix(TDRSII), and Fix(TLAL) are required for the algorithms (16.69), (16.88),
and (16.125) to produce (x*n+1)n∈N satisfying limn→∞ dΩ(x*n) = 0. Theorem 16.23
below presents sufficient conditions for the boundednesses of these fixed point
sets. Corollary 16.24 below presents a stronger condition which will be used in
Section 16.5.2 to guarantee the boundedness of Fix(TDRSI) in the context of the
hierarchical enhancement of Lasso.

Theorem 16.23 Let f ∈ Γ0(X), g ∈ Γ0(K) and A ∈ B(X,K) in Problem (16.13)
satisfy Sp �= ∅ and the qualification condition (16.40). Let (A∗)−1 : X→ 2K : x �→
{y ∈ K | x = A∗y}. Then we have

(a) Sp, ∂f (Sp), and
⋃

x∈Sp

([−(A∗)−1(∂f (x))] ∩ ∂g(Ax)
) ⊂ K are bounded

⇒ Fix
(
TDRSI

) ⊂ X×K in Theorem 16.15 is bounded.

(b) If Ǎ in (16.74) satisfies ‖Ǎ‖op ≤ 1
u (∃u > 0), then

Sp and
⋃
x∈Sp

(
[−(A∗)−1(∂f (x))] ∩ ∂g(Ax)

)
⊂ K are bounded

⇒ Fix (TLAL) ⊂ X×K×K in Theorem 16.21 is bounded.
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(c) If, in particular, K = R
m, g = ⊕m

i=1 gi ∈ Γ0(R
m), A : X → R

m : x �→
Ax = (A1x,A2x, . . . , Amx) with Ai ∈ B(X,R) \ {0} (i = 1, 2, . . . , m) in
Problem (16.13), then

Sp and
⋃

x∈Sp

([�m
j=1 A

∗
j ∂gj (Ajx)

]
× [

∂f (x) ∩ (−∑m
i=1 A

∗
i ∂gi(Aix)

)])
are bounded

⇒ Fix
(
TDRSII

) ⊂ Xm+1 in Theorem 16.17 is bounded.

(The proof of Theorem 16.23 is given in Appendix F.)
The following simple relations

⋃
x∈Sp

([−(A∗)−1(∂f (x))] ∩ ∂g(Ax)
)

[in Theorem 16.23(a)(b)]

⊂ [
(−(A∗)−1(∂f (Sp))) ∩ ∂g(K)

]
and⋃

x∈Sp

([�m
j=1 A

∗
j ∂gj (Ajx)

]
× [

∂f (x) ∩ (−∑m
i=1 A

∗
i ∂gi(Aix)

)])
[in Theorem 16.23(c)]

⊂
[�m

j=1 A
∗
j ∂gj (R)

]
× [−∑m

i=1 A
∗
i ∂gi(R)

]
lead to the corollary below.

Corollary 16.24 Let f ∈ Γ0(X), g ∈ Γ0(K), A ∈ B(X,K) in Problem (16.13),
and Ǎ in (16.74) satisfy Sp �= ∅, the qualification condition (16.40), and ‖Ǎ‖op ≤
1
u (∃u > 0). Then we have
(a) Sp, ∂f (Sp) and (−(A∗)−1(∂f (Sp))) ∩ ∂g(K) are bounded (16.129)

⇒
[

Fix
(
TDRSI

) ⊂ X×K in Theorem 16.15 is bounded;
Fix (TLAL) ⊂ X×K×K in Theorem 16.21 is bounded.

(b) If, in particular, K = R
m, g = ⊕m

i=1 gi ∈ Γ0(R
m), A : X → R

m : x �→
Ax = (A1x,A2x, . . . , Amx) with Ai ∈ B(X,R) \ {0} (i = 1, 2, . . . , m) in
Problem (16.13), then

Sp and ∂gi(R) (i = 1, 2, . . . , m) are bounded

⇒ Fix
(
TDRSII

) ⊂ Xm+1 in Theorem 16.17 is bounded.

16.4 Application to Hierarchical Enhancement of Support
Vector Machine

16.4.1 Support Vector Machine

Consider a supervised learning problem for estimating a binary function

L : Rp → {−1, 1} (16.130)
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with a given training dataset D := {(xi , yi) ∈ R
p × {−1, 1} | i = 1, 2, . . . , N},

where yi is a possibly corrupted version of the label L(xi ) of the point xi . The
support vector machine (SVM) has been recognized as one of the most successful
supervised machine learning algorithms for such a learning problem. For simplicity,
we focus on the linear SVM because the nonlinear SVM exploiting the so-called
Kernel trick can be viewed as an instance of the linear classifiers in the Reproducing
Kernel Hilbert Spaces (RKHS).

The dataset D is said to be linearly separable if there exists (w, b) ∈ (Rp \ {0})×
R defining a (p − 1)-dimensional hyperplane

Π(w,b) := {x ∈ R
p | w/x− b = 0} = Πt(w,b) (∀t > 0) (16.131)

which satisfies

{xi ∈ R
p | (xi , 1) ∈ D} ⊂ Π+

(w,b) := {x ∈ R
p | w/x− b > 0}

{xi ∈ R
p | (xi ,−1) ∈ D} ⊂ Π−

(w,b) := {x ∈ R
p | w/x− b < 0}

}
. (16.132)

In such a case, the so-called linear classifier is defined as a mapping

L(w,b) : Rp → {−1, 1} : x �→
{
+1 if x ∈ Π+

(w,b),

−1 if x ∈ Π−
(w,b),

(16.133)

which is hopefully a good approximation of the function L observed partially
through the training dataset D. If D is linearly separable, there also exists infinitely
many (w, b) ∈ R

p × R satisfying

D+ := {xi ∈ R
p | (xi , 1) ∈ D} ⊂ Π

≥1
(w,b) := {x ∈ R

p | w/x− b ≥ 1}
D− := {xi ∈ R

p | (xi ,−1) ∈ D} ⊂ Π
≤−1
(w,b) := {x ∈ R

p | w/x− b ≤ −1}

}
,

(16.134)
which is confirmed by rescaling (w, b) ∈ R

p × R in (16.131) with a constant t ≥
1/min{|w/xi − b|}Ni=1 > 0.

The half-spaces Π
≥1
(w,b) and Π

≤−1
(w,b) defined in (16.134) are main players in

the following consideration on the linear classifier L(w,b) even for linearly non-
separable data D. In this paper, the margin of the linear classifier L(w,b) in (16.133)
is defined by

1

2
dist

(
Π
≥1
(w,b),Π

≤−1
(w,b)

)
= 1

2
min

x+∈Π≥1
(w,b)

,x−∈Π≤−1
(w,b)

‖x+ − x−‖ = 1

‖w‖ . (16.135)

By using the function h in (16.49) and
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(∀z ∈ R
p)

⎡
⎢⎢⎢⎢⎣

d
(

z,Π≥1
(w,b)

)
=
{ ∣∣w/z−b−1

∣∣
‖w‖ = 1−(w/z−b)

‖w‖ if z �∈ Π
≥1
(w,b),

0 otherwise,

d
(

z,Π≤−1
(w,b)

)
=
{ ∣∣w/z−b+1

∣∣
‖w‖ = 1+(w/z−b)

‖w‖ if z �∈ Π
≤−1
(w,b),

0 otherwise,
(16.136)

we deduce

‖w‖
⎡
⎣ ∑

z∈D+
d
(

z,Π≥1
(w,b)

)
+

∑
z∈D−

d
(

z,Π≤−1
(w,b)

)⎤⎦ = N∑
i=1

h
(
yi

(
w/xi − b

))
(16.137)

which clarifies the geometric interpretation of “the empirical hinge loss of L(w,b)”
defined in the right-hand side of (16.137) and ensures

Condition (16.134) ⇔
N∑
i=1

h
(
yi

(
w/xi − b

))
= 0. (16.138)

For linearly separable data D, among all L(w,b) satisfying (16.134), the Support
Vector Machine (SVM) L(w*,b*) was proposed in 1960s by Vapnik (see, e.g.,[135,
136]) as a special linear classifier which achieves maximal margin, i.e.,

1

2
dist

(
Π
≥1
(w*,b*),Π

≤−1
(w*,b*)

)
= max

(w,b) satisfies (16.138)

1

2
dist

(
Π
≥1
(w,b),Π

≤−1
(w,b)

)
.

(16.139)
Therefore the SVM L(w*,b*) for linearly separable D is given as the solution of

the following convex optimization problem:

minimize ‖w‖2subject to
N∑
i=1

h
(
yi

(
w/xi − b

))
= 0 (16.140)

8

minimize ‖w‖2subject to (w, b) ∈ argmin
(ŵ,b̂)∈Rp×R

N∑
i=1

h
(
yi

(
ŵ/xi − b̂

))
, (16.141)

where the last equivalence holds true under the linear separability of D because of
the nonnegativity of h in (16.49).

The SVM defined equivalently in (16.139) or (16.140) or (16.141) for linearly
separable training data has been extended for applications to even possibly linearly
nonseparable training data D where the existence of (w, b) ∈ R

p × R satisfy-
ing (16.134) is no longer guaranteed. One of the most widely accepted extensions
of (16.141) is known as the soft margin hyperplane [14, 25, 48, 73] which is
characterized as a solution to the optimization problem:
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minimize, w.r.t. (w, b),
1

2
‖w‖2 + C

N∑
i=1

h
(
yi(w/xi − b)

)
(16.142)

or equivalently

minimize, w.r.t. (w, b, ξ),
1

2
‖w‖2 + C

N∑
i=1

ξi

subject to yi

(
w/x−b

)
≥ 1−ξi and ξi ≥ 0 (i=1, 2, . . . , N), (16.143)

where C > 0 is a tuning parameter, and ξi (i = 1, 2, . . . , N) are slack variables.
Along the Cover’s theorem (on the capacity of a space in linear dichotomies)

[49], saying that the probability of any grouping of the points x1, x2, . . . , xN,∈ R
l ,

in general position, into two classes to be linearly separable tends to unity as l →∞,
another extension of the strategy L(w*,b*) of (16.139) into higher dimensional spaces
was made in [16, 49], for application to possibly linearly nonseparable training data
D, by passing through a certain nonlinear transform N : Rp → R

l (l 9 p) of
the original training data D := {(xi , yi) ∈ R

p × {−1, 1} | i = 1, 2, . . . , N} to
D := {(N(xi ), yi) ∈ R

l×{−1, 1} | i = 1, 2, . . . , N}, where the nonlinear transform
N is defined usually in terms of kernel built in the theory of the Reproducing Kernel
Hilbert Space (RKHS) [2, 124, 126] for exploiting the so-called kernel trick.

16.4.2 Optimal Margin Classifier with Least Empirical Hinge
Loss

As suggested in [48, Sec.3], the original goal behind the soft margin hyperplane in
(16.142) or (16.143) seems to determine (w**, b**) ∈ (Rp \ {0})×R as the solution
of the following nonconvex hierarchical optimization:

minimize
1

2
‖w*‖2 (16.144)

subject to (w*, b*) ∈ argmin
(w,b)

|E(w, b)| , (16.145)

where | · | stands for the cardinality of a set and E(w, b) ⊂ D+ ∪D− is the training
error set defined as

E(w, b) :=
{

z ∈ D+ | d
(

z,Π≥1
(w,b)

)
> 0

}
∪
{

z ∈ D− | d
(

z,Π≤−1
(w,b)

)
> 0

}
,

(16.146)
i.e., determining a special hyperplane (w**, b**), which achieves maximal margin
in the set argmin(w,b) |E(w, b)|, is desired.
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Unfortunately, since the problem to determine (w*, b*) in (16.145) is in general
NP-hard [15, 48, 84] and since (16.137) implies that

(16.145) ⇔ (w*, b*) ∈ argmin
(w,b)

N∑
i=1

[
lim
σ↓0

hσ
(
yi(w/xi − b)

)]
,

the original goal set in (16.144–16.146) was replaced in [48, Sec.3] by a realistic
goal (16.142) [or (16.143)] for a sufficiently large constant C > 0. However, unlike
the desired solution of (16.144–16.146), the soft margin hyperplane in (16.142)
applied to linearly separable data has no guarantee to reproduce the original SVM
in (16.139).

The above observations induce a natural question:
Is the solution of (16.142) for general training data really a mathematically
sound extension of the original SVM defined equivalently in (16.139) or (16.140)
or (16.141) specialized for linearly separable training data?14

Clearly, this question comes from essentially common concern as seen in Sce-
nario 1, therefore, an alternative natural extension of the original SVM in (16.141)
would be the solution of the optimization problem:

minimize
1

2
‖w*‖2 subject to (w*, b*) ∈ Γ := argmin

(w,b)∈Rp×R

N∑
i=1

h
(
yi(w/xi − b)

)
(16.147)

which does not seem different from (16.141) at a glance but is defined even possibly
for linearly nonseparable training data D. Remark that the hierarchical convex opti-
mization problem (16.147) is a more faithful convex relaxation of (16.144–16.146)
than the convex optimization (16.142) [or its equivalent formulation (16.143) with
slack variables.15] for the soft margin hyperplane. This is because the solution
of (16.147) for linearly separable data certainly reproduces the original SVM
in (16.139). As remarked in Example 16.1(b) in Section 16.1, in general, the soft

14This question is common even for the soft margin SVM applied to the transformed data D
employed in [16] because the linear separability of D is not always guaranteed.
15In terms of slack variables, Problem (16.147) can also be restated as

minimize
1

2
‖w*‖2

subject to (w*, b*, ξ*) ∈ argmin
(w,b,ξ)∈Rp×R×RN

N∑
i=1

[
ξi + ιSi (w, b, ξ)+ ιΞi

(w, b, ξ)
]
,

where Si :=
{
(w, b, ξ) ∈ R

p × R× R
N | yi

(
w/xi − b

)
≥ 1− ξi

}
and Ξi :=

{
(w, b, ξ) ∈ R

p × R× R
N | ξi ≥ 0

}
(i = 1, 2, . . . , N).
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margin hyperplane via (16.142) for a fixed constant C > 0 does not achieve the
hierarchical optimality in the sense of (16.147). Fortunately, Problem (16.147) falls
in the class of the hierarchical convex optimization problems of type (16.13).

In the following, we demonstrate how Problem (16.147) can be solved by a
proposed strategy in Section 16.3. Let X := R

p × R, Ai : X → R : (w, b) �→
yi(x/i w − b) (i = 1, 2, . . . , N), f : X → R : (w, b) �→ h(AN(w, b)), g :=⊕N−1

i=1 h, and A : Rp+1 → R
N−1 : (w, b) �→ (Ai(w, b))N−1

i=1 . By using these
translations, we can express the hinge loss function, in the form of the first stage
cost function of (16.13), as

N∑
i=1

h
(
yi(w/xi − b)

)
= g ◦ A(w, b)+ f (w, b)

and its associated qualification condition (see (16.40)) is verified by

ri (dom(g)− A dom(f )) = ri
(
R
N−1 − A dom(f )

)
= ri

(
R
N−1

)
= R

N−1 � 0.

(16.148)

Note that, for any γ ∈ R++, the proximity operator proxγ h can be computed
as (16.50) in Example 16.7(c) (see Section 16.2.2) and therefore proxf = proxh◦AN

can also be computed by applying (16.48) and (16.50) in Example 16.7(b)(c).
Moreover, by introducing Ψ : Rp × R → R : (w, b) �→ 1

2‖w‖2, we can regard
Problem (16.147) as an instance of Problem (16.13) under the assumption of Sp :=
Γ �= ∅. In fact, we can apply Theorem 16.15, Theorem 16.17, and Theorem 16.21
to (16.147) because Ψ is not strictly convex. In the following numerical experiment,
we applied Theorem 16.17 to (16.147) with slight modification.16

16If we need to guarantee Sp[in (16.13)] �= ∅, we recommend the following slight modification
of (16.147):

minimize
w*∈Γ̃

1

2
‖w*‖2 subject to Γ̃ := argmin

(w,b)∈Rp×R

⎡
⎣Φ(w, b) := ι

B(0,r)(w, b)+
N∑
i=1

h
(
yi (w

/xi − b)
)⎤⎦

with a sufficiently large closed ball B(0, r), where Sp := Γ̃ �= ∅ is guaranteed due to the
coercivity of Φ. Fortunately, our strategies in Section 16.3 are still applicable to this modified
problem because it is also an instance of (16.10) which can be translated into (16.13) as explained
in Section 16.1. In the application of Theorem 16.17 in Section 16.3.1 to this modification,
the boundedness of Fix(TDRSII ) is automatically guaranteed because of Corollary 16.24(b) (see
Section 16.3.3) and the boundedness of both Γ̃ ⊂ B(0, r) and ∂h(R) = ∂h(R \ {1}) ∪ ∂h({1}) =
[−1, 0].
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16.4.3 Numerical Experiment: Margin Maximization with
Least Empirical Hinge Loss

We demonstrate that, as an extension of the original SVM in (16.139), the
hierarchical enhancement of the SVM in (16.147) is more faithful to the original
SVM than the soft margin SVM (16.142). In our experiment, we applied the original
SVM in (16.139), the soft margin SVM in (16.142), and the proposed hierarchical
enhancement of the SVM in (16.147) to the Iris dataset which is a famous dataset
used firstly in Fisher’s paper [65]. This data set has 150 sample points, which are
divided into three classes (I(setosa), II(versicolor), III(virginica)), and each sample
point has four features (sepal length, sepal width, petal length, and petal width).
From Iris dataset, we construct two datasets: separable Dsep ⊂ R

2 × {−1, 1} with
|Dsep| = 100 comprising all the samples of Class I and Class II having only sepal
length and sepal width; and non-separable Dnsep ⊂ R

2×{−1, 1}with |Dnsep| = 100
comprising all the samples of Class II and Class III having only petal length and
petal width. For each linear classifier L(w,b) of our interest, the three hyperplanes
Π(w,b), Π(w,b+1), Π(w,b−1) (see (16.131) and (16.134)) are drawn in Figs. 16.1
and 16.2, in cyan for “Original SVM,” in green for “Soft Margin SVM,” and in
magenta for the proposed “M2LEHL” (which stands for the Margin Maximization
with Least Empirical Hinge Loss), respectively, where (w, b)org is obtained by
applying a quadratic programming solver quadprog in Matlab to (16.139),
(w, b)soft is obtained by applying a soft margin SVM solver fitcsvm (with the
default setting, i.e., C = 1) in Matlab to (16.142), and (w, b)M2LEHL is obtained by
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Fig. 16.1 Comparison between M2LEHL, Original SVM, and Soft Margin SVM (Case of a
separable training dataset Dsep): M2LEHL reproduces Original SVM
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Fig. 16.2 Comparison between M2LEHL and Soft Margin SVM (Case of a nonseparable training
dataset Dnsep)

applying the proposed algorithmic solution in Section 16.4.2, to (16.147), designed
based on Theorem 16.17 with slight modification.17

Figure 16.1 illustrates the resulting separating hyperplanes for the separable
dataset Dsep. Since the magenta lines are completely overlapped with cyan lines,
“M2LEHL” reproduces “Original SVM,” as explained in just after (16.147). “Soft
Margin SVM” does not succeed in maximizing the margin, i.e., (16.147) is a
more faithful extension of the original SVM in (16.139) than the soft margin
SVM (16.142).

Figure 16.2 illustrates the resulting separating hyperplanes for the nonseparable
dataset Dnsep. Since the original SVM (16.139) has no solution, “Original SVM” is
not depicted. As the performance measure, we employ the number of errors |E(·)|
defined in (16.146) along the original goal (16.144) (as suggested in [48, Sec. 3]).
Though “Soft Margin SVM” has 21 errors, “M2LEHL” achieves only 6 errors,
which demonstrates that (16.147) is more effective formulation for approaching to
the original goal (16.144) than the soft margin SVM (16.142).

16.5 Application to Hierarchical Enhancement of Lasso

16.5.1 TREX: A Nonconvex Automatic Sparsity Control of
Lasso

Consider the estimation of a sparse vector btru ∈ R
p in the standard linear regression

model:

17See footnote 16.
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z = Xbtru + σe, (16.149)

where z = (z1, . . . , zN)
/ ∈ R

N is a response vector, X ∈ R
N×p a design matrix,

σ > 0 a constant, e = (ε1, . . . , εN )
/ the noise vector, each εi is the realization of a

random variable with mean zero and variance 1.
The Lasso (Least Absolute Shrinkage and Selection Operator) [132] has been

used widely as one of the most well-known sparsity aware statistical estimation
methods [73, 74]. The Lasso for (16.149) is defined as a minimizer of the least
squares criterion with �1 penalty, i.e.,

bLasso(λ) ∈ argmin
b∈Rp

1

2N
‖z− Xb‖2

2 + λ‖b‖1, (16.150)

where the tuning parameter λ > 0 aims at controlling the sparsity of bLasso(λ).
However selection of λ > 0 is highly influential to bLasso(λ) and therefore its
reliable way of selection has been strongly desired. Among many efforts toward
automatic sparsity control of Lasso, the following prediction bound offers a firm
basis and has been applied widely in recent strategies including [50, 69, 77, 89].

Fact 16.25 (A Prediction Bound of Lasso [87, 120]) For λ ≥ 2
∥∥X/(z−Xbtru)

∥∥∞
N

, it

holds ‖XbLasso(λ)−Xbtru‖2

N
≤ 2λ‖btru‖1.

The TREX (Tuning-free Regression that adapts to the Entire noise σe and the
design matrix X) [89] is one of the state-of-the-art strategies based on Fact 16.25.
The TREX is defined as a solution of a nonconvex optimization problem:

find bTREX ∈ argmin
b∈Rp

‖Xb− z‖2∥∥X/ (Xb− z)
∥∥∞ + β‖b‖1, (16.151)

where
∥∥X/ (Xb− z)

∥∥∞ = max1≤j≤p
∣∣∣X/:j (Xb− z)

∣∣∣, X:j denotes the j th column

of X, and the parameter β can be set to a constant value (β = 1/2 being the default
choice).

The authors in [13] cleverly decomposed the nonconvex optimization (16.151)
into 2p subproblems:

find b(j)

TREX ∈ argmin
b∈Rp

x/j (Xb−z)>0

[
‖Xb− z‖2

βx/j (Xb− z)
+ ‖b‖1

]
, (16.152)
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where

xj =
{

X:j (j = 1, 2, . . . , p);
−X:j−p(j = p + 1, p + 2, . . . , 2p).

(16.153)

More precisely, bTREX in (16.151) is characterized as

bTREX ∈ Q̂Rp

⎡
⎢⎢⎣ argmin
(b,j)∈Rp×{1,2,...,2p}

x/j (Xb−z)>0

(
‖Xb− z‖2

βx/j (Xb− z)
+ ‖b‖1

)⎤⎥⎥⎦ , (16.154)

where

Q̂Rp : Rp × {1, 2, . . . , 2p} → R
p : (b, j) �→ b. (16.155)

Remarkably, each subproblem (16.152) was shown to be a convex optimization
and solved in [13] with a second-order cone program (SOCP) [92].

Recently, for sound extensions of the subproblem (16.152) as well as for sound
applications of proximal splitting, a successful reformulation of (16.154) was made
for general q > 1 in [38] as

bTREXq ∈ STREXq := Q̂Rp

[
argmin

(b,j)∈Rp×{1,2,...,2p}
g(j,q)(Mjb)+ ‖b‖1

]
(16.156)

whose solution bTREXq is given, by passing through 2p convex subproblems, as

b(j*)

TREXq
, where

⎡
⎢⎣

b(j)

TREXq
∈ S(j,q) := argmin

b∈Rp

[
g(j,q)(Mjb)+ ‖b‖1

]
(j = 1, 2, . . . , 2p);

j* ∈ argmin
j∈{1,2,...,2p}

[
g(j,q)(Mjb(j)

TREXq
)+ ‖b(j)

TREXq
‖1

]
,

(16.157)

g(j,q) : R× R
N → (−∞,∞] : (η, y) �→

⎧⎪⎨
⎪⎩

‖y−z‖q
β(η−x/j z)q−1 , if η > x/j z;
0, if y = z and η = x/j z;
+∞, otherwise

(16.158)
is a proper lower semicontinuous convex function, and

Mj : Rp → R× R
N : b �→

(
x/j Xb,Xb

)
(16.159)
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is a bounded linear operator. The estimator bTREXq in (16.156) is called the
generalized TREX in [38] where, as its specialization, bTREX2 is also called TREX.
Note that, in view of Example 16.7(d)(e) in Section 16.2.2 and a relation between
g(j,q) and ϕ̃q in (16.51) [38, in Sec. 4.3.2]:

(∀(η, y) ∈ R× R
N) g(j,q)(η, y) = τ(

x/
j

z,z
) ϕ̃q (η, y) = ϕ̃q

(
η − x/j z, y− z

)
,

(16.160)
each convex subproblem in (16.157) is an instance of Problem (16.1).

For the subproblem (16.157), the Douglas-Rachford splitting method (see Propo-
sition 16.9 in Section 16.2.3) was successfully applied in [38]. For completeness,
we reproduce this result in the style of (16.25–16.27) followed by application
of Fact 16.6 (in Section 16.2.2) to the characterization (16.78). Suppose that
for (16.157) the qualification condition (see (16.40))

0 ∈ ri(dom(g(j,q))−Mj dom(‖ · ‖1)) (16.161)

holds.18 Then, by using

[
M̌j : Rp × R

N+1 → R
N+1 : (b, c) �→ Mjb− c,

QRp : Rp × R
N+1 → R

p : (b, c) �→ b,
(16.162)

we obtain

S(j,q) = QRp ◦ P
N(M̌j )

(
Fix

(
T(j,q)

DRSI

))
(16.163)

(which is a specialization of (16.78) for (16.157), see Figure 16.3), where

T(j,q)

DRSI
: Rp × R

N+1 → R
p × R

N+1 : (b, c) �→ (bT , cT ) (16.164)

is the DRS operator of Type-I (c.f., (16.68) and (16.71)) specialized for (16.157)
and is defined by

⎡
⎢⎣p = b−M∗

j (I+MjM∗
j )
−1(Mjb− c)

(b1/2, c1/2) = (2p− b, 2Mjp− c))
(bT , cT ) = (2 prox‖·‖1

(b1/2)− b1/2, 2 proxg(j,q) (c1/2)− c1/2),

(16.165)

18In [38], the qualification condition (16.161) seems to be assumed implicitly. If we assume
additionally that X ∈ R

N×p has no zero column, it is automatically guaranteed as will be shown
in Lemma 16.27 in Section 16.5.2.
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Fig. 16.3 Illustration of the fixed point characterization of S(j,q) in (16.157) via the Douglas-

Rachford splitting operator T(j,q)

DRSI
in (16.164)

or equivalently by

T(j,q)

DRSI
:= (2 proxF(j,q)

−I) ◦ (2P
N(M̌j )

− I) (16.166)

with F(j,q) : Rp×R
N+1 → (−∞,∞]: (b, c) �→ g(j,q)(c)+‖b‖1. Note that T(j,q)

DRSI

can be computed efficiently if (I+MjM∗
j )
−1 is available as a computational tool.

The above characterization (16.163) and Fact 16.6 (see Section 16.2.2) lead to
the following algorithmic solution of (16.157).

Fact 16.26 (Douglas–Rachford Splitting Method for Subproblems of General-
ized TREX) Under the qualification condition (16.161) for S(j,q) in (16.157), the
sequence (bn, cn)n∈N ⊂ R

p × R
N+1 generated, with (αn)n∈N ⊂ [0, 1] satisfying∑

n∈N αn(1−αn) = ∞ in Fact 16.6 (see Section 16.2.2) and (b0, c0) ∈ R
p×R

N+1,
by

(bn+1, cn+1) = (1− αn)(bn, cn)+ αnT(j,q)
DRSI

(bn, cn) (16.167)

converges to a point (b*, c*) in Fix
(

T(j,q)
DRSI

)
as well as the sequence (QRp ◦

P
N(M̌j )

(bn, cn))n∈N converges to QRp ◦ P
N(M̌j )

(b*, c*) ∈ S(j,q), where

QRp ◦ P
N(M̌j )

: Rp × R
N+1 → R

p : (b, c) �→ b−M∗
j (I+MjM∗

j )
−1(Mjb− c).
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Note that the sequence (QRp ◦ P
N(M̌j )

(bn, cn))n∈N can be generated efficiently

by (16.167) if (I+MjM∗
j )
−1 is available as a computational tool.

16.5.2 Enhancement of Generalized TREX Solutions with
Hierarchical Optimization

Along Scenario 2 in Section 16.1, suppose that we found newly an effective
criterion Ψ ∈ Γ0(R

p) whose gradient is Lipschitzian over R
p and we hope to

select a most desirable vector, in the sense of Ψ , from the solution set STREXq

in (16.156). This task is formulated as a hierarchical nonconvex optimization
problem (see (16.155), (16.158), and (16.159) for Q̂Rp , g(j,q), and Mj ):

minimize Ψ (b*) (16.168)

subject to b* ∈ STREXq = Q̂Rp

[
argmin

(b,j)∈Rp×{1,2,...,2p}
g(j,q)(Mjb)+ ‖b‖1

]

whose solution bHTREXq is given, by passing through 2p (hierarchical convex

optimization) subproblems, as b(j**)

HTREXq
, where

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b(j)

HTREXq
∈ Ω

(j,q)

DRSI
:= argmin

b*∈S(j,q)

Ψ (b*),

S(j,q) = argmin
b∈Rp

[
g(j,q)(Mjb)+ ‖b‖1

]
(j = 1, 2, . . . , 2p) [in (16.157)];

J* := argmin
j∈{1,2,...,2p}

[
g(j,q)(Mjb(j)

HTREXq
)+ ‖b(j)

HTREXq
‖1

]
;

j** ∈ argmin
j*∈J*

Ψ (b(j*)

HTREXq
).

(16.169)
Note that the coercivity of ‖ · ‖1 and the nonnegativity of g(j,q) ensure that S(j,q) is
nonempty and bounded (see Fact 16.2(c) in Section 16.2.1), which also guarantees
Ω

(j,q)

DRSI
= argmin(ιS(j,q)

+ Ψ )(Rp) �= ∅ (j = 1, 2, . . . , 2p) by the classical
Weierstrass theorem.

In the following, we focus on how to compute the solution b(j)

HTREXq
(j =

1, 2, . . . , 2p) in (16.169) by a proposed strategy in Section 16.3. We assume that
the design matrix X ∈ R

N×p in (16.149) has no zero column, to guarantee the
qualification condition (16.161) for S(j,q) in (16.157) for each j = 1, 2, . . . , 2p.

Lemma 16.27 Suppose that the design matrix X ∈ R
N×p has no zero column.

Then the qualification condition (16.161) for S(j,q) in (16.157) is guaranteed
automatically for each j = 1, 2, . . . , 2p.

(The proof of Lemma 16.27 is given in Appendix G).
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Theorem 16.28 (Algorithmic Solution to Hierarchical TREXq ) Suppose that X
has no zero column and Ψ ∈ Γ0(R

p) is Gâteaux differentiable with Lipschitzian
gradient ∇Ψ over Rp. Then, for T(j,q)

DRSI
in (16.164) (j = 1, 2, . . . , 2p),

(a) Fix(T(j,q)
DRSI

) is bounded;

(b) T(j,q)
DRSI

can be plugged into the HSDM (16.65), with any α ∈ (0, 1) and

(λn+1)n∈N ∈ �2+ \ �1+, as

⎡
⎢⎢⎢⎣
(bn+1/2, cn+1/2) = (1− α)(bn, cn)+ αT(j,q)

DRSI
(bn, cn)

b*
n+1 = bn+1/2 −M∗

j (I+MjM∗
j )
−1(Mjbn+1/2 − cn+1/2)

bn+1 = bn+1/2 − λn+1(I−M∗
j (I+MjM∗

j )
−1Mj ) ◦ ∇Ψ (b*

n+1)

cn+1 = cn+1/2 − λn+1((I+MjM∗
j )
−1Mj ) ◦ ∇Ψ (b*

n+1).

(16.170)

The algorithm (16.170) generates, for any (b0, c0) ∈ R
p × R

N+1, a sequence
(b*

n+1)n∈N ⊂ R
p which satisfies

lim
n→∞ d

Ω
(j,q)
DRSI

(b*
n) = 0,

where Ω
(j,q)
DRSI

�= ∅ is defined in (16.169).

Remark 16.29 (Idea Behind Derivation of Theorem 16.28)

(a) Recall that T(j,q)

DRSI
is a DRS operator of Type-I (see (16.164) and Theo-

rem 16.15 in Section 16.3.1). By applying Corollary 16.24(a) in Section 16.3.3
to Lemma 16.27, the boundedness of S(j,q) �= ∅, and the boundedness of the
image of ∂‖ · ‖1 : Rp → [−1, 1]p : b = (b1, b2, . . . , bp) �→ �p

i=1 ∂| · |(bi),
we deduce the relation:[

−(M/
j )
−1(∂‖ · ‖1(S(j,q)))

]
∩ ∂g(j,q)(R

N+1) is bounded (16.171)

⇒ Fix(T(j,q)

DRSI
) is bounded,

where (M/
j )
−1 : Rp → 2R

N+1 : b �→ {c ∈ R
N+1 | b = M/

j c} (see (16.159)

for Mj ). Now, by ∂g(j,q)(R
N+1) = ∂ϕ̃q(R

N+1) (due to (16.160)) and the
supercoercivity of ϕq and ϕ∗q (due to [9, Example 13.2 and Example 13.8]), for

proving the boundedness of Fix(T(j,q)

DRSI
) from (16.171), it is sufficient to show

the following claim:

Claim 16.28 Suppose that X has no zero column. Let S ⊂ R
p be bounded,

and ϕ ∈ Γ0(R
N) a supercoercive function having supercoercive ϕ∗ ∈ Γ0(R

N).
Then (M/

j )
−1(S) ∩ ∂ϕ̃(RN+1) is bounded.

Note that Claim 16.28 is the main step in the proof of Theorem 16.28.
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(b) We have already confirmed the qualification condition (16.161) in Lemma 16.27,
S(j,q) �= ∅, and Ω

(j,q)

DRSI
�= ∅ (j = 1, 2, . . . , 2p) (see the short remark just

after (16.169)). Therefore, application of Theorem 16.15 (in Section 16.3.1) to
the subproblems to compute b(j)

HTREXq
(j = 1, 2, . . . , 2p) in (16.169) guarantees

the statement of Theorem 16.28(b).

(The proof of Theorem 16.28 is given in Appendix H).

16.5.3 Numerical Experiment: Hierarchical TREX2

We demonstrate that the proposed estimator bHTREX2 , i.e., Hierarchical TREX2
in (16.168) (see Section 16.5.2) can enhance further the estimation accuracy
achieved by bTREX2 in (16.156) if we can exploit another new criterion Ψ : Rp → R

for promoting characteristics, of btru, which is not utilized in TREX2. Consider the
situation where we like to estimate unknown vector

btru = 1√
p
(0, 0, 0, 1, 1, 1, 0, . . . , 0)/ ∈ R

p (16.172)

from the noisy observation z ∈ R
N in (16.149). We suppose to know that btru is not

only sparse but also fairly flat. Here, the fairly flatness of btru means that the energy
of oscillations (i.e., the sum of the squared gaps between the adjacent components)
of btru is small, which is supposed to be our additional knowledge not utilized in the
TREX2 and Lasso estimators. If we have such prior knowledge, suppression of

Ψ : Rp → R : b �→ 1

2
‖Db‖2, with D :=

⎛
⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0
0 −1 1 0 0 0

. . .
. . .

0 0 0 −1 1 0
0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎠ ∈ R

(p−1)×p,

(16.173)

is expected to be effective for estimation of btru because Ψ can distinguish btru

from b̃ := 1√
p
(0, 1, 0, 0, 1, 1, 0, . . . , 0)/ ∈ R

p of the same sparsity as btru (i.e.,

‖btru‖0 = ‖̃b‖0 and ‖btru‖1 = ‖̃b‖1) by Ψ (btru) < Ψ (̃b). Now, our new goal
for enhancement of TREX2 is to minimize Ψ while keeping the optimality of the
TREX2 in the sense of (16.156) for q = 2 (see Scenario 2 in Section 16.1). This
goal is achieved by solving the hierarchical nonconvex optimization (16.168) for
q = 2.

In our experiments, the design matrix X ∈ R
N×p in (16.149) is given to satisfy

X:2 = X:3 = X:4 with a sample of zero-mean Gaussian random variable followed
by normalization to satisfy ‖X:j‖ =

√
N (j = 1, . . . , p). The additive noise
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e ∈ R
N in (16.149) is drawn from the unit white Gaussian distribution. We

tested the performances of the estimators under (SNR) = 10 log
( ‖Xbtru‖2

‖σe‖2

)
∈

[10, 1000] ∪ {+∞}, where σ ∈ R is adjusted to obtain a specific SNR. Note that,
in this setting,

{
b ∈ R

p | Xb = Xbtru and ‖b‖1 = ‖btru‖1
}

is apparently an infinite
set containing both btru and b̃.

We compared the performances of bTREX2 in (16.156) (β = 1/2) and bHTREX2

in (16.168) employing Ψ in (16.173). To approximate iteratively b(j)

TREX2
(j =

1, 2, . . . , 2p) for (16.157) and b(j)

HTREX2
(j = 1, 2, . . . , 2p) for (16.169), we used

respectively TREX2 (16.167) (Fact 16.26 with αn = 1.95 (n ∈ N)) and the
proposed algorithm (16.170) (HTREX2 with α = 1.95 and λn = 1

n
for n ∈ N).

As performance measures, we used, in Figures 16.4 and 16.5,

[
Function Value (see (16.168)) minj=1,...,2p(g(j,2)(Mjbn)+ ‖bn‖1),

Distance ‖bn − btru‖.
(16.174)

The experiments were performed both in an over-determined case (N = 30 and
p = 20) in Figure 16.4 and an under-determined case (N = 20 and p = 30) in
Figure 16.5.

Figures 16.4(a) and 16.5(a) illustrate the process of convergences of TREX2 and
HTREX2 in the absence of noise, i.e., e = 0 ∈ R

N . From these figures, we observe
that (i) Function Values of TREX2 and HTREX2 converge to the same level, and that
(ii) Distance (to btru) of HTREX2 converges to a lower level than that of TREX2.
Figures 16.4(b) and 16.5(b) summarize the behavior of Distance (to btru), against
various SNR, by TREX2 and HTREX2 after 10000 iterations. For all the SNR,
HTREX2 seems to succeed in improving the performance of TREX2.

16.6 Concluding Remarks

In this paper, we have demonstrated how the modern proximal splitting operators
can be plugged nicely into the hybrid steepest descent method (HSDM) for their
applications to the hierarchical convex optimization problems which require further
strategic selection of a most desirable vector from the set of all solutions of the
standard convex optimization. For simplicity as well as for broad applicability, we
have chosen to cast our target in the iterative approximation of a viscosity solution
of the standard convex optimization problem, where the 1st stage cost function is
given as a superposition of multiple nonsmooth convex functions, involving linear
operators, while its viscosity solution is a minimizer of the 2nd stage cost function
which is Gâteaux differentiable convex function with Lipschitzian gradient. The
key ideas for the successful collaboration between the proximal splitting operators
and the HSDM are not only in (i) the previously known expressions of the solution
set of the standard convex optimization problem as the fixed point set of computable
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Fig. 16.4 Transient performances in an over-determined case; Criteria “Function Value,” “Dis-

tance” are given in (16.174) and (SNR) = 10 log
( ‖Xbtru‖2

‖σe‖2

)
[dB]. (a) Comparison of TREX2 and

HTREX2 in the process of convergences under the noise e = 0. (b) Estimation accuracy achieved
by TREX2 and HTREX2 for various SNR

nonexpansive operators but also in (ii) linear relations built strategically between the
solution set and the fixed point set. Fortunately, we have shown that such key ideas
can be achieved by extending carefully the strategies behind the Douglas-Rachford
splitting operators as well as the LAL operators defined in certain product Hilbert
spaces. We have also presented applications of the proposed algorithmic strategies
to certain unexplored hierarchical enhancements of the support vector machine and
the Lasso estimator.
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Fig. 16.5 Transient performances in an under-determined case; Criteria “Function Value,” “Dis-

tance” are given in (16.174) and (SNR) = 10 log
( ‖Xbtru‖2

‖σe‖2

)
[dB]. (a) Comparison of TREX2 and

HTREX2 in the process of convergences under the noise e = 0. (b) Estimation accuracy achieved
by TREX2 and HTREX2 for various SNR
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Appendices

A: Proof of Proposition 16.9(a)

Fact 16.5(i)⇔(ii) in Section 16.2.1 yields

(16.53–16.55) ⇔ (∃ν* ∈ K) ν* ∈ ∂f (x*) and − ν* ∈ ∂g(x*)

⇔ 0 ∈ ∂f (x*)+ ∂g(x*).

The remaining follows from the proof in [40, Proposition 18]. ��

B: Proof of Proposition 16.10(a)(d)

(a) From (16.58) and (16.59), there exists (x*, ν*) ∈ SpLAL × SdLAL.
Fact 16.5(i)⇔(ii) in Section 16.2.1 yields the equivalence

(x*, ν*) ∈ SpLAL × SdLAL and (16.60)

⇔ A∗ν* ∈ ∂f (x*) and − ν* ∈ ∂ι{0}(Ax*) (16.175)

⇔ A∗ν* ∈ ∂f (x*) and Ax* = 0 (16.176)

⇔ x* = proxf (x* − A∗Ax* + A∗ν*) and ν* = ν* − Ax*

⇔ (x*, ν*) ∈ Fix(TLAL). (16.177)

��
(d) Choose arbitrarily (x̄, ν̄) ∈ Fix(TLAL), i.e.,

(x̄, ν̄) = TLAL(x̄, ν̄) =
(

proxf (x̄ − A∗Ax̄ + A∗ν̄), ν̄ − Ax̄

)
.



470 I. Yamada and M. Yamagishi

Let (xn, νn)n∈N ⊂ X×K be generated, with any (x0, ν0) ∈ X×K, by

(xn+1, νn+1) = TLAL(xn, νn) =
(

proxf (xn − A∗Axn + A∗νn), νn − Axn+1

)
.

(16.178)

Then [150, (B.3)] yields

0 ≤‖xn − x̄‖2
X − ‖xn+1 − x̄‖2

X − ‖(xn+1 − xn)− (x̄ − x̄)‖2
X

+ ‖Axn+1 − Ax̄ − (Axn − Ax̄)‖2
K − ‖Axn − Ax̄‖2

K

− ‖Axn+1 − Ax̄ + ν̄ − νn‖2
K + ‖ν̄ − νn‖2

K

=‖xn − x̄‖2
X − ‖xn+1 − x̄‖2

X − ‖xn+1 − xn‖2
X

+ ‖Axn+1 − Axn‖2
K − ‖Axn‖2

K − ‖ν̄ − νn+1‖2
K + ‖ν̄ − νn‖2

K

≤(‖xn − x̄‖2
X + ‖νn − ν̄‖2

K)− (‖xn+1 − x̄‖2
X + ‖νn+1 − ν̄‖2

K)

+ (‖A‖2
op − 1)‖xn+1 − xn‖2

X − ‖Axn‖2
K. (16.179)

Equation (16.179) and ‖A‖op < 1 imply that (‖xn−x̄‖2
X+‖νn−ν̄‖2

K)n∈N decreases
monotonically, i.e., (xn, νn)n∈N is Fejér monotone with respect to Fix(TLAL), and
(‖xn − x̄‖2

X + ‖νn − ν̄‖2
K)n∈N converges to some c ≥ 0. From this observation, we

have

N∑
n=0

[
(1− ‖A‖2

op)‖xn+1 − xn‖2
X + ‖Axn‖2

K

]

≤
N∑
n=0

[
(‖xn − x̄‖2

X + ‖νn − ν̄‖2
K)− (‖xn+1 − x̄‖2

X + ‖νn+1 − ν̄‖2
K)

]

= (‖x0 − x̄‖2
X + ‖ν0 − ν̄‖2

K)− (‖xN+1 − x̄‖2
X + ‖νN+1 − ν̄‖2

K)

→ (‖x0 − x̄‖2
X + ‖ν0 − ν̄‖2

K)− c <∞ (N →∞)

and thus

lim
n→∞‖xn+1 − xn‖X = 0 and lim

n→∞‖Axn‖K = 0. (16.180)

By [51, Theorem 9.12], the bounded sequence of (xn, νn)n∈N has some subsequence
(xnj , νnj )j∈N which converges weakly to some point, say (x*, ν*), in the Hilbert
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space X ×K. Therefore, by applying [9, Theorem 9.1(iii)⇔(i)] to f ∈ Γ0(X), we
have

f (x*) ≤ liminf
j→∞ f (xnj ) (16.181)

and, by the Cauchy-Schwarz inequality and (16.180),

‖Ax*‖2
K = 〈Ax* − Axnj , Ax*〉K + 〈Axnj , Ax*〉K
≤ 〈x* − xnj , A

∗Ax*〉X + ‖Axnj ‖K‖Ax*‖K → 0 (j →∞),

which implies Ax* = 0.
Meanwhile, by (16.178), we have

xnj = proxf (xnj−1 − A∗Axnj−1 + A∗νn)

= (I+ ∂f )−1(xnj−1 − A∗Axnj−1 + A∗νnj−1)

⇔ xnj−1 − xnj − A∗Axnj−1 + A∗νnj−1 ∈ ∂f (xnj )

⇔ (∀x ∈ X) f (xnj )+ 〈xnj−1 − xnj − A∗Axnj−1 + A∗νnj−1, x − xnj 〉X ≤ f (x),

(16.182)

where the inner product therein satisfies

lim
j→∞〈xnj−1 − xnj − A∗Axnj−1 + A∗νnj−1, x − xnj 〉X = 〈A∗ν*, x − x*〉X,

(16.183)

which is verified by Ax* = 0, the triangle inequality, the Cauchy-Schwarz
inequality, and (16.180), as follows:

(∀x ∈ X)

|〈xnj−1 − xnj − A∗Axnj−1 + A∗νnj−1, x − xnj 〉X − 〈A∗ν*, x − x*〉X|
= |〈xnj−1 − xnj , x − xnj 〉X − 〈Axnj−1, A(x − xnj )〉K

+ 〈νnj−1, A(x − xnj )〉K − 〈ν*, Ax〉K|
= |〈xnj−1 − xnj , x − xnj 〉X − 〈Axnj−1, A(x − xnj )〉K

+ 〈νnj−1,−Axnj 〉K − 〈νnj − νnj−1, Ax〉K − 〈ν* − νnj , Ax〉K|
≤ (‖xnj−1 − xnj ‖X‖x − xnj ‖X + ‖Axnj−1‖K‖A(x − xnj )‖K

+ ‖νnj−1‖K‖ − Axnj ‖K + ‖Axnj ‖K‖Ax‖K + |〈ν* − νnj , Ax〉K|)
→0 (j →∞).
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Now, by (16.182), (16.181), and (16.183), we have for any x ∈ X

f (x) ≥ f (x*)+ liminf
j→∞ 〈xnj−1 − xnj − A∗Axnj−1 + A∗νnj−1, x − xnj 〉X

= f (x*)+ lim
j→∞〈xnj−1 − xnj − A∗Axnj−1 + A∗νnj−1, x − xnj 〉X

= f (x*)+ 〈A∗ν*, x − x*〉X,

which implies

A∗ν* ∈ ∂f (x*). (16.184)

By recalling (16.176)⇔(16.177), (16.184) and Ax* = 0 prove (x*, ν*) ∈
Fix(TLAL). The above discussion implies that every weak sequential cluster point
(see Footnote 7 in Section 16.2.2) of (xn, νn)n∈N, which is Fejér monotone with
respect to Fix(TLAL), belongs to Fix(TLAL). Therefore, [9, Theorem 5.5] guarantees
that (xn, νn)n∈N converges weakly to a point in Fix(TLAL). ��

C: Proof of Theorem 16.15

Now by recalling Proposition 16.9 in Section 16.2.3 and Remark 16.16 in Sec-
tion 16.3.1, it is sufficient to prove Claim 16.15. Let x* ∈ Sp �= ∅. Then the
Fermat’s rule, Fact 16.4(b) (applicable due to the qualification condition (16.40))
in Section 16.2.1, Ǎ∗ : K → X × K : ν �→ (A∗ν,−ν) for Ǎ in (16.74), the
property of ι{0} in (16.35), the straightforward calculations, and Fact 16.5(ii)⇔(i)
(in Section 16.2.1) yield

x* ∈ Sp ⇔ 0 ∈ ∂(f + g ◦ A)(x*) = ∂f (x*)+ A∗∂g(Ax*)

⇔ y* = Ax* and 0 ∈ ∂f (x*)+ A∗∂g(y*)

⇔ (∃ν* ∈ K) y* = Ax* and

{
A∗ν* ∈ ∂f (x*)

−ν* ∈ ∂g(y*)

⇔ (∃ν* ∈ K) Ǎ(x*, y*) = 0 and Ǎ∗ν* ∈ ∂F (x*, y*)

⇔ (∃ν* ∈ K) − ν* ∈ ∂ι{0}(Ǎ(x*, y*)) and Ǎ∗ν* ∈ ∂F (x*, y*)

⇒ (∃ν* ∈ K) − Ǎ∗ν* ∈ Ǎ∗∂ι{0}(Ǎ(x*, y*)) and Ǎ∗ν* ∈ ∂F (x*, y*)

⇒ (∃ν* ∈ K) − Ǎ∗ν* ∈ ∂(ι{0} ◦ Ǎ)(x*, y*) and Ǎ∗ν* ∈ ∂F (x*, y*)

⇔ (∃ν* ∈ K) − Ǎ∗ν* ∈ ∂ι
N(Ǎ)

(x*, y*) and Ǎ∗ν* ∈ ∂F (x*, y*)
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⇔ (∃ν* ∈ K)

⎧⎪⎪⎨
⎪⎪⎩
(x*, y*) ∈ argmin(F + ι

N(Ǎ)
)(X×K)

Ǎ∗ν* ∈ argmin(F ∗ + ι∗
N(Ǎ)

◦ (−I))(X×K)

min(F + ι
N(Ǎ)

)(X×K) = −min(F ∗ + ι∗
N(Ǎ)

◦ (− I))(X×K),

which confirms Claim 16.15. ��

D: Proof of Theorem 16.17

Now by recalling Proposition 16.9 in Section 16.2.3 and Remark 16.18 in Sec-
tion 16.3.1, it is sufficient to prove (16.97) by verifying Claim 16.17. We will use

A∗ ◦ ∂g ◦ A =
m∑
i=1

A∗i ◦ ∂gi ◦ Ai =
m∑
i=1

∂(gi ◦ Ai) (16.185)

which is verified by g = ⊕m
i=1 gi , Fact 16.4(c) (see Section 16.2.1), and

ri(dom(gj ) − ran(Aj )) = ri(dom(gj ) − R) = R � 0 (j = 1, 2, . . . , m). Let

x
(m+1)
* ∈ Sp �= ∅. Then by using the Fermat’s rule, Fact 16.4(b) (applicable due

to (16.40)), (16.185), D in (16.93), and H in (16.92), we deduce the equivalence

x(m+1)
* ∈ Sp

⇔ 0 ∈ ∂(f + g ◦ A)(x(m+1)
* ) = ∂f (x(m+1)

* )+ A∗∂g(Ax(m+1)
* )

= ∂f (x(m+1)
* )+

m∑
i=1

∂(gi ◦ Ai)(x
(m+1)
* )

⇔ (j = 1, . . . , m) x
(j)
* = x(m+1)

* and 0 ∈ ∂f (x(m+1)
* )+

m∑
i=1

∂(gi ◦ Ai)(x
(i)
* )

⇔ (∃ν(1), . . . , ν(m) ∈ X)(j = 1, . . . , m)

⎧⎪⎨
⎪⎩
x
(j)
* = x

(m+1)
*

ν(j) ∈ ∂(gj ◦ Aj)(x
(j)
* )

−∑m
i=1 ν

(i) ∈ ∂f (x
(m+1)
* )

⇔ (∃ν(1), . . . , ν(m) ∈ X)⎧⎪⎨
⎪⎩
(x

(1)
* , . . . , x

(m+1)
* ) ∈ D(

ν(1), . . . , ν(m),−∑m
i=1 ν

(i)
)∈[�m

j=1 ∂(gj ◦ Aj)(x
(j)
* )

]
×∂f (x

(m+1)
* )

= ∂H(x
(1)
* , . . . , x

(m+1)
* ).

(16.186)
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Then by − (
ν(1), . . . , ν(m),−∑m

i=1 ν
(i)
) ∈ D⊥ = ∂ιD(x

(1)
* , . . . , x

(m+1)
* )

(see (16.34)) and by Fact 16.5(ii)⇔(i) in Section 16.2.1, we have

x(m+1)
* ∈ Sp ⇔ (∃ν(1), . . . , ν(m) ∈ X){

− (
ν(1), . . . , ν(m),−∑m

i=1 ν
(i)
) ∈ ∂ιD(x

(1)
* , . . . , x

(m+1)
* )(

ν(1), . . . , ν(m),−∑m
i=1 ν

(i)
) ∈ ∂H(x

(1)
* , . . . , x

(m+1)
* )

⇔ (∃ν(1), . . . , ν(m) ∈ X)⎧⎪⎨
⎪⎩
(x

(1)
* , . . . , x

(m+1)
* ) ∈ argmin(H + ιD)(X

m+1)(
ν(1), . . . , ν(m),−∑m

i=1 ν
(i)
) ∈ argmin(H ∗ + ι∗D ◦ (−I))(Xm+1)

min(H+ιD)(X
m+1) = −min(H ∗ + ι∗D ◦ (−I))(Xm+1),

which confirms Claim 16.17. ��

E: Proof of Theorem 16.19

Now by recalling Proposition 16.10 in Section 16.2.3 and Remark 16.20 in
Section 16.3.2, it is sufficient to prove Claim 16.19. Let x* ∈ Sp �= ∅. Then the
Fermat’s rule, Fact 16.4(b) (applicable due to (16.40)) in Section 16.2.1, Ǎ∗ : K→
X × K : ν �→ (A∗ν,−ν) for Ǎ in (16.74), the property of ι{0} in (16.35), the
straightforward calculations, and Fact 16.5(ii)⇔(i) (in Section 16.2.1) yield

x* ∈ Sp ⇔ 0 ∈ ∂(f + g ◦ A)(x*) = ∂f (x*)+ A∗∂g(Ax*)

⇔ y* = Ax* and 0 ∈ ∂f (x*)+ A∗∂g(y*)

⇔ (∃ν* ∈ K) y* = Ax* and

{
uA∗ν* ∈ ∂f (x*)

−uν* ∈ ∂g(y*)

⇔ (∃ν* ∈ K) (uǍ)(x*, y*) = 0 and (uǍ)∗ν* ∈ ∂F (x*, y*)

⇔ (∃ν* ∈ K) − ν* ∈ ∂ι{0}((uǍ)(x*, y*)) and (uǍ)∗ν* ∈ ∂F (x*, y*)

⇔ (∃ν* ∈ K)⎧⎨
⎩
(x*, y*) ∈ argmin (F + ι{0} ◦ (uǍ))(X×K)

ν* ∈ argmin(F ∗ ◦ (uǍ)∗)(K)

min (F + ι{0} ◦ (uǍ))(X×K) = −min(F ∗ ◦ (uǍ)∗)(K),

which confirms Claim 16.19. ��
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F: Proof of Theorem 16.23

(a) We have seen in (16.78) that, under the assumptions of Theorem 16.23(a), for
any vector x* ∈ X,

x* ∈ Sp[in (16.13)] if and only if (x*, y*) = P
N(Ǎ)

(ζ*) (16.187)

for some y* ∈ X and some ζ* ∈ Fix
(
TDRSI

)
, where Ǎ : X×K→ K : (x, y) �→

Ax − y (see (16.74)), N(Ǎ) = {(x,Ax) ∈ X × K | x ∈ X}, and TDRSI =
(2 proxF −I)◦(2P

N(Ǎ)
−I) for F : X×K→ (−∞,∞]: (x, y) �→ f (x)+g(y)

(see (16.71) and (16.73)).
Choose ζ* := (ζ x* , ζ

y
* ) ∈ Fix

(
TDRSI

)
arbitrarily and let z* := (x*, y*) :=

P
N(Ǎ)

(ζ*). Then we have

ζ* ∈ Fix
(
TDRSI

)
and P

N(Ǎ)
(ζ*) = z*

⇔ (2 proxF −I) ◦ (2P
N(Ǎ)

− I)(ζ*) = ζ* and P
N(Ǎ)

(ζ*) = z* (16.188)

⇒ (2 proxF −I)(2z* − ζ*) = ζ* ⇔ proxF (2z* − ζ*) = z*

⇔ (I+ ∂F )−1(2z* − ζ*) = z* ⇔ 2z* − ζ* ∈ z* + ∂F (z*)

⇔ z* − ζ* ∈ ∂F (z*) = ∂f (x*)× ∂g(y*) (16.189)

⇔ x* − ζ x* ∈ ∂f (x*) and y* − ζ
y
* ∈ ∂g(y*). (16.190)

Meanwhile, we have

z* = P
N(Ǎ)

(ζ*) ⇔ (∀z = (x,Ax) ∈ N(Ǎ)) 〈ζ* − z*, z〉X×K = 0

⇔ (∀x ∈ X)
〈
ζ x* − x*, x

〉
X
+ 〈

ζ
y
* − y*,Ax

〉
K
= 0

⇔ (∀x ∈ X)
〈
(ζ x* − x*)+ A∗(ζ y* − y*), x

〉
X
= 0

⇔ A∗(ζ y* − y*) = −(ζ x* − x*). (16.191)

Equations (16.191) and (16.190) imply

ζ* ∈ Fix
(
TDRSI

)
and P

N(Ǎ)
(ζ*) = z*

⇒ x* − ζ x* ∈ ∂f (x*) and y* − ζ
y
* ∈ (−(A∗)−1(∂f (x*))) ∩ ∂g(y*)

⇒ ζ*= (ζ x* , ζ
y
* )∈(x*, y*)−

(
∂f (x*)× [(−(A∗)−1(∂f (x*))) ∩ ∂g(y*)]

)
.

(16.192)

Moreover, by noting that (16.187) ensures x* ∈ Sp and y* = Ax*, we have
from (16.192)
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ζ* ∈ Fix
(
TDRSI

)
and (x*, Ax*) = P

N(Ǎ)
(ζ*)

⇒ ζ* ∈ (x*, Ax*)−
(
∂f (x*)× [(−(A∗)−1(∂f (x*))) ∩ ∂g(Ax*)]

)
⇒ ζ* ∈

⋃
x′∈Sp

(x′, Ax′)−
⋃

x′′∈Sp

(
∂f (x′′)× [(−(A∗)−1(∂f (x′′))) ∩ ∂g(Ax′′)]

)

Since ζ* is chosen arbitrarily from Fix
(
TDRSI

)
, we have

Fix
(
TDRSI

) ⊂ ⋃
x′∈Sp

(x′, Ax′)−
⋃

x′′∈Sp

(
∂f (x′′)

×[(−(A∗)−1(∂f (x′′))) ∩ ∂g(Ax′′)]
)
, (16.193)

from which Theorem 16.23(a) is confirmed.
(b) We have seen in (16.113) that, under the assumptions of Theorem 16.23(b), for

any vector x* ∈ X,

x* ∈ Sp[in (16.13)] if and only if (x*, y*, ν*) ∈ Fix(T LAL) (16.194)

for some (y*, ν*) ∈ K×K, where

TLAL : X×K×K→ X×K×K

:
⎛
⎝x

y

ν

⎞
⎠ = (

z
ν

)
�→

⎛
⎝xT

yT

νT

⎞
⎠ = (

zT
νT

)
=
(

proxF (z− (uǍ)∗(uǍ)z+ (uǍ)∗ν)
ν − uǍzT

)

and (uǍ)∗ : K→ X×K : ν �→ (uA∗ν,−uν) (see (16.108) and (16.120)).
Choose (z*, ν*) ∈ Fix(TLAL) arbitrarily and denote z* = (x*, y*) ∈ X×K. By
passing similar steps in (16.177)⇔(16.176), we deduce

(z*, ν*) ∈ Fix(TLAL)

⇔ (uǍ)∗ν* ∈ ∂F (z*) = ∂f (x*)× ∂g(y*) and uǍ(z*) = 0, (16.195)

and then, from (16.195), straightforward calculations yield

(x*, y*, ν*) ∈ Fix(TLAL)⇔
⎡
⎣uA∗ν* = A∗(uν*) ∈ ∂f (x*)

−uν* ∈ ∂g(y*)

Ax* = y*

⎤
⎦

⇒ − uν* ∈
[
−(A∗)−1(∂f (x*))

]
∩ ∂g(Ax*) and Ax* = y*

⇔ − u(x*, y*, ν*) ∈ {−u(x*, Ax*)} × [−(A∗)−1(∂f (x*)) ∩ ∂g(Ax*)].
(16.196)
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Moreover, by noting that (16.194), we have from (16.196)

(x*, y*, ν*) ∈ Fix(TLAL)

⇒ − u(x*, y*, ν*) ∈
⋃
x∈Sp

{−u(x,Ax)} × [−(A∗)−1(∂f (x)) ∩ ∂g(Ax)].

Since (x*, y*, ν*) is chosen arbitrarily from Fix(TLAL), we have

−u Fix(TLAL) ⊂
⋃
x∈Sp

{−u(x,Ax)} ×
[
−(A∗)−1(∂f (x)) ∩ ∂g(Ax)

]

from which Theorem 16.23(b) is confirmed.
(c) We have seen in (16.98) that, under the assumptions of Theorem 16.23(c), for

any vector x* ∈ X,

x* ∈ Sp[in (16.13)] if and only if (x*, x*, . . . , x*) = PD(X*) (16.197)

for some X* ∈ Fix
(
TDRSII

)
, where D = {(x(1), . . . , x(m+1)) ∈ Xm+1 |

x(i) = x(j) (i, j = 1, 2, . . . , m + 1)} (see (16.93)), H : Xm+1 →
(−∞,∞]: (x(1), . . . , x(m+1)) �→ ∑m

i=1 gi(Aix
(i)) + f (x(m+1)) (see (16.92)),

and TDRSII = (2 proxH −I) ◦ (2PD − I) (see (16.90)) [For the availability of
proxH and PD as computational tools, see Remark 16.18(a)].

Choose X* := (ζ
(1)
* , . . . , ζ

(m+1)
* ) ∈ Fix

(
TDRSII

)
arbitrarily, and let X* :=

(x*, . . . , x*) = PD(X*). Then we have

X* ∈ Fix
(
TDRSII

)
and PD(X*) = X*

⇔ (2 proxH −I) ◦ (2PD − I)(X*) = X* and PD(X*) = X*. (16.198)

Now, by passing similar steps for (16.188)⇒(16.189), we deduce that

X* ∈ Fix
(
TDRSII

)
and PD(X*) = X*

⇒ X* − X* ∈ ∂H(X*) =
⎡
⎣ m�

j=1

∂(gj ◦ Aj)(x*)

⎤
⎦× ∂f (x*)

⇔ (j = 1, 2, . . . , m) x* − ζ
(j)
* ∈ ∂(gj ◦ Aj)(x*) and x* − ζ (m+1)

* ∈ ∂f (x*)

⇔ (j = 1, 2, . . . , m) x* − ζ (i)* ∈ A∗j ∂gj (Ajx*) and x* − ζ (m+1)
* ∈ ∂f (x*),

(16.199)
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where the last equivalence follows from Fact 16.4(c) (applicable due to
ri(dom(gj )− ran(Aj )) = ri(dom(gj )− R) = R � 0). Meanwhile, we have

X* = PD(X*) ⇔ x* = 1

m+ 1

m+1∑
i=1

ζ (i)* ⇔ x* − ζ (m+1)
* = −

m∑
i=1

(x* − ζ (i)* ).

(16.200)

Equations (16.200) and (16.199) imply

X* ∈ Fix
(
TDRSII

)
and PD(X*) = X*

⇒
{
(j = 1, 2, . . . , m) x* − ζ

(j)
* ∈ A∗j ∂gj (Ajx*)

x* − ζ
(m+1)
* ∈ ∂f (x*) ∩

[−∑m
i=1 A

∗
i ∂gi(Aix*)

]

⇒ X* − X*∈
⎡
⎣ m�

j=1

A∗j ∂gj (Ajx*)

⎤
⎦×

[
∂f (x*) ∩

(
−

m∑
i=1

A∗i ∂gi(Aix*)

)]
.

(16.201)

Moreover, by noting that (16.197) ensures x* ∈ Sp, we have from (16.201)

X* ∈ Fix
(
TDRSII

)
and PD(X*) = X* = (x*, . . . , x*)

⇒ X* ∈ Sm+1
p −

⋃
x∈Sp

⎛
⎝
⎡
⎣ m�

j=1

A∗j ∂gj (Ajx)

⎤
⎦×

[
∂f (x) ∩

(
−

m∑
i=1

A∗i ∂gi(Aix)

)]⎞
⎠.

Since X* is chosen arbitrarily from Fix(TDRSII), we have

Fix
(
TDRSII

) ⊂ Sm+1
p

−
⋃
x∈Sp

⎛
⎝
⎡
⎣ m�

j=1

A∗j ∂gj (Ajx)

⎤
⎦×

[
∂f (x) ∩

(
−

m∑
i=1

A∗i ∂gi(Aix)

)]⎞
⎠ ,

(16.202)

from which Theorem 16.23(c) is confirmed. ��

G: Proof of Lemma 16.27

Obviously, we have from (16.158)

(j = 1, 2, . . . , 2p) dom(g(j,q)) ⊃ {η ∈ R | η > x/j z} × R
N. (16.203)
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By recalling 0 �= xj ∈ R
N in (16.153) and Mj ∈ R

(N+1)×p in (16.159), we have

(j = 1, 2, . . . , 2p)

⎡
⎢⎣
‖X/xj‖ ≥ ‖xj‖2 > 0

t (‖X/xj‖)−2MjX/xj =
(

t

t
XX/xj
‖X/xj ‖2

)
(∀t ∈ R),

and therefore

(j = 1, 2, . . . , 2p) Mj dom(‖ · ‖1) = Mj (R
p) ⊃ span

(
1

XX/xj
‖X/xj ‖2

)
.

(16.204)

To prove dom(g(j,q)) − Mj dom(‖ · ‖1) = R × R
N , choose arbitrarily (η, y) ∈

R× R
N . Then (16.203) and (16.204) guarantee

(
η

y

)
=

⎛
⎝ x/j z+ 1

y+ (x/j z+ 1− η)
XX/xj
‖X/xj ‖2

⎞
⎠−

⎛
⎝ x/j z+ 1− η

(x/j z+ 1− η)
XX/xj
‖X/xj ‖2

⎞
⎠

∈ {η̃ ∈ R | η̃ > x/j z} × R
N − span

(
1

XX/xj
‖X/xj ‖2

)

⊂ dom(g(j,q))−Mj dom(‖ · ‖1),

implying thus

ri(dom(g(j,q))−Mj dom(‖ · ‖1)) = ri(R× R
N) = R× R

N � 0. (16.205)

��

H: Proof of Theorem 16.28

By recalling Remark 16.29 in Section 16.5.2, it is sufficient to prove Claim 16.28,
for which we use the following inequality: for each j = 1, 2, . . . , 2p,

(∀(η, y) ∈ R× R
N)

∥∥∥∥M/
j

(
η

y

)∥∥∥∥ ≥
∣∣∣η‖xj‖2 + 〈xj , y〉

∣∣∣ , (16.206)

where xj ∈ R
N in (16.153) and Mj ∈ R

(N+1)×p in (16.159). Equation (16.206) is
confirmed by
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(j = 1, 2, . . . , 2p)(∀(η, y) ∈ R× R
N) M/

j

(
η

y

)
= ηX/xj + X/y (16.207)

and{[
ηX/xj + X/y

]
j
= η‖xj‖2 + 〈xj , y〉 if j ∈ {1, 2, . . . , p}[

ηX/xj + X/y
]
j−p = −η‖xj‖2 − 〈xj , y〉 if j ∈ {p + 1, p + 2, . . . , 2p}.

Let US := sup{‖b‖ | b ∈ S}(<∞). By supercoercivity of ϕ and Example 16.3,
the subdifferential of its perspective ϕ̃ at each (η, y) ∈ R × R

N can be expressed
as (16.32), and thus, to prove Claim 16.28, it is sufficient to show

(i) (M/
j )
−1(S) ∩ ∂ϕ̃(R++ × R

N) is bounded;

(ii) (M/
j )
−1(S) ∩ ∂ϕ̃(0, 0) is bounded.

Proof of (i) Choose (η, y) ∈ R++ × R
N arbitrarily. Then, from (16.32), every

c(η,y) ∈ (M/
j )
−1(S)∩∂ϕ̃(η, y) ⊂ R×R

N can be expressed with some u ∈ ∂ϕ(y/η)
as

c(η,y) = (ϕ(y/η)− 〈y/η,u〉,u) = (−ϕ∗(u),u), (16.208)

where the last equality follows from ϕ(y/η)+ϕ∗(u) = 〈y/η,u〉 due to the Fenchel-
Young identity (16.30). By M/

j c(η,y) ∈ S and by applying the inequality (16.206)
to (16.208), we have

US ≥ ‖M/
j c(η,y)‖ =

∥∥∥∥M/
j

(−ϕ∗(u)
u

)∥∥∥∥ ≥
∣∣∣(−ϕ∗(u))‖xj‖2 + 〈

xj ,u
〉∣∣∣

= |Υ (u)| ≥ Υ+(u), (16.209)

where Υ : RN → R : v �→ ϕ∗(v)‖xj‖2 − 〈
xj , v

〉
and Υ+ : RN → R : v �→

max{Υ (v), 0} are coercive convex functions (see Section 16.2.1) and independent
from the choice of (η, y). The coercivity of Υ+ ensures the existence of an open ball
B(0, Û(i)) of radius Û(i) > 0 such that lev≤US

Υ+ := {v ∈ R
N | Υ+(v) ≤ US} ⊂

B(0, Û(i)), and thus (16.209) implies

‖u‖ ≤ Û(i). (16.210)

Moreover, by xj �= 0, the triangle inequality, the Cauchy-Schwarz inequal-
ity, (16.209), and (16.210), we have
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|ϕ∗(u)| =
∣∣∣∣∣ Υ (u)
‖xj‖2 +

〈
xj ,u

〉
‖xj‖2

∣∣∣∣∣ ≤
∣∣∣∣ Υ (u)
‖xj‖2

∣∣∣∣+
∣∣∣∣∣
〈
xj ,u

〉
‖xj‖2

∣∣∣∣∣
≤

∣∣∣∣ Υ (u)
‖xj‖2

∣∣∣∣+ ‖u‖
‖xj‖ ≤

US

‖xj‖2 +
Û(i)

‖xj‖ =: U(i), (16.211)

which yields c(η,y) = (−ϕ∗(u),u) ∈ [−U(i), U(i)] × B(0, Û(i)). Since (η, y) ∈
R++ × R

N is chosen arbitrarily and c(η,y) ∈ (M/
j )
−1(S) ∩ ∂ϕ̃(η, y) is also chosen

arbitrarily, we have

(M/
j )
−1(S) ∩ ∂ϕ̃(R++ × R

N) ⊂ [−U(i), U(i)] × B(0, Û(i)),

which confirms the statement (i).

Proof of (ii) By introducing

B :=
{

v ∈ R
N

∣∣∣∣
∣∣∣∣
〈

2

‖xj‖2 xj , v
〉∣∣∣∣ > |ϕ∗(v)|

}
, (16.212)

we can decompose the set (M/
j )
−1(S) ∩ ∂ϕ̃(0, 0) into

(M/
j )
−1(S) ∩ ∂ϕ̃(0, 0) ∩ (R×B) and (M/

j )
−1(S) ∩ ∂ϕ̃(0, 0) ∩ (R×Bc).

(16.213)

In the following, we show the boundedness of each set in (16.213).
First, we show the boundedness of B by contradiction. Suppose that B �⊂

B(0, r) for all r > 0. Then there exists a sequence (uk)k∈N ⊂ R
N such that

(∀k ∈ N)
2

‖xj‖ ≥
∣∣∣∣
〈

2

‖xj‖2 xj ,
uk

‖uk‖
〉∣∣∣∣ > |ϕ∗(uk)|

‖uk‖ and ‖uk‖ ≥ k, (16.214)

which contradicts the supercoercivity of ϕ∗, implying thus the existence of r∗ > 0
such that B ⊂ B(0, r∗).

Next, we show the boundedness of the former set in (16.213). Choose arbitrarily

(μ,u) ∈ (M/
j )
−1(S) ∩ ∂ϕ̃(0, 0) ∩ (R×B). (16.215)

By xj �= 0, M/
j (μ,u/)/ ∈ S ⊂ B(0, US), the inequality (16.206), the triangle

inequality, the Cauchy-Schwarz inequality, and u ∈ B ⊂ B(0, r∗), we have

US

‖xj‖2
≥ 1

‖xj‖2

∥∥∥∥M/
j

(
μ

u

)∥∥∥∥ ≥ 1

‖xj‖2
|μ‖xj‖2 + 〈xj ,u〉|
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≥ |μ| −
∣∣∣∣
〈

xj
‖xj‖2 ,u

〉∣∣∣∣ ≥ |μ| − ‖u‖
‖xj‖ ≥ |μ| −

r∗
‖xj‖

which yields

Û(iia) := US

‖xj‖2
+ r∗
‖xj‖ ≥ |μ|.

Therefore, we have (μ,u) ∈ [−Û(iia), Û(iia)] × B(0, r*). Since (μ,u) ∈
(M/

j )
−1(S) ∩ ∂ϕ̃(0, 0) ∩ (R×B) is chosen arbitrarily, we have

(M/
j )
−1(S) ∩ ∂ϕ̃(0, 0) ∩ (R×B) ⊂ [−Û(iia), Û(iia)] × B(0, r*). (16.216)

Finally, we show the boundedness of the latter set in (16.213). Let

(μ,u) ∈ (M/
j )
−1(S) ∩ ∂ϕ̃(0, 0) ∩ (R×Bc). (16.217)

From (16.32), we have

∂ϕ̃(0, 0) = {(μ′,u′) ∈ R× R
N | μ′ + ϕ∗(u′) ≤ 0}. (16.218)

Note that coercivity of ϕ∗ (⇒ ∃minϕ∗(RN) ∈ R, see Fact 16.2) and (16.218) yield
ϕ∗(u) ∈ [minϕ∗(RN),−μ] and thus

|ϕ∗(u)| ≤ max{|minϕ∗(RN)|, |μ|} ≤ |minϕ∗(RN)| + |μ|. (16.219)

By xj �= 0, M/
j (μ,u/)/ ∈ S ⊂ B(0, US) (see (16.217)), the inequality (16.206),

the triangle inequality, u ∈ Bc (see (16.217) and (16.212)), and (16.219), we have

2

‖xj‖2US ≥ 2

‖xj‖2

∥∥∥∥M/
j

(
μ

u

)∥∥∥∥ ≥ 2

‖xj‖2 |μ‖xj‖2 + 〈xj ,u〉|

≥ 2|μ| −
∣∣∣∣
〈

2

‖xj‖2 xj ,u
〉∣∣∣∣ ≥ 2|μ| − |ϕ∗(u)|

≥ 2|μ| − |minϕ∗(RN)| − |μ| = |μ| − |minϕ∗(RN)|

and thus, with (16.219),

Û(iib) := 2

‖xj‖2US + 2|minϕ∗(RN)| ≥ |μ| + |minϕ∗(RN)| ≥ |ϕ∗(u)| ≥ ϕ∗(u).

(16.220)
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Hence, we have

(μ,u) ∈ [−Û(iib), Û(iib)] × lev≤Û(iib)
(ϕ∗).

Since (μ,u) ∈ (M/
j )
−1(S) ∩ ∂ϕ̃(0, 0) ∩ (R×Bc) is chosen arbitrarily, we have

(M/
j )
−1(S) ∩ ∂ϕ̃(0, 0) ∩ (R×Bc) ⊂ [−Û(iib), Û(iib)] × lev≤Û(iib)

(ϕ∗).
(16.221)

Consequently, by using (16.216) and (16.221) and by letting U(ii) :=
max{Û(iia), Û(iib)}, we have

(M/
j )
−1(S) ∩ ∂ϕ̃(0, 0) ⊂ [−U(ii), U(ii)] × [lev≤U(ii)(ϕ

∗) ∪ B(0, r*)],

which guarantees the boundedness of (M/
j )
−1(S) ∩ ∂ϕ̃(0, 0), due to the coercivity

of ϕ∗, implying thus finally the statement (ii).
��
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