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Abstract This chapter contains a brief introduction to the mathematical formalism
and axiomatics of quantum mechanics (QM). Recently quantum mathematics and
methodology started to be widely used for modeling decision making for humans
and AI-systems, including quantum-like modeling information retrieval. Experts
in such areas do not go deeply into the details of quantum theory. Moreover,
typically such consumers of quantum theory do not use all its components. Quantum
measurement theory is the most useful for application, including information
retrieval. The main issue is the quantum treatment of incompatible observables
represented mathematically by noncommuting Hermitian operators. At the level of
statistical data incompatibility is represented as interference of probabilities, in the
form of modification of the formula of total probability by adding the interference
term.

1 Introduction

Recently the mathematical formalism and methodology of QM, especially theory
of quantum measurement, started to be widely applied outside of physics1: to
cognition, psychology, economics, finances, decision making, AI, game theory,
and information retrieval (for the latter, see, e.g., [24, 51–53, 56, 58, 59] and
the chapters in this book). This chapter contains a brief introduction to the
mathematical formalism and axiomatics of QM. It is oriented to non-physicists.
Since QM is a statistical theory it is natural to start with the classical probability

1See, for example, [1–10, 15, 27, 28, 32, 38–41, 43–48, 55, 57].
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model (Kolmogorov [49]). Then we present basics of theory of Hilbert spaces and
Hermitian operators, representation of pure and mixed states by normalized vectors
and density operators. This introduction is sufficient to formulate the axiomatics of
QM in the form of five postulates. The projection postulate (the most questionable
postulate of QM) is presented in a separate section. We distinguish sharply the cases
of quantum observables represented by Hermitian operators with nondegenerate
and degenerate spectra, the von Neumann’s and Lüders’ forms of the projection
postulate. The axiomatics is completed by a short section on the main interpretations
of QM. The projection postulate (in Lüders’ form) plays the crucial role in the
definition of quantum conditional (transition) probability. By operating with the
latter we consider interference of probabilities for two incompatible observables,
as a modification of the formula of total probability by adding the interference term.
This viewpoint to interference of probabilities was elaborated in a series of works
of Khrennikov (see, e.g., [29–38]).

Since classical probability theory is based on the Boolean algebra of events a
violation of the law of total probability can be treated as the probabilistic sign of a
violation of the laws of the Boolean logics. From this viewpoint, quantum theory
can be considered as representing a new kind of logic, the so-called quantum logic.
The latter is also briefly presented in a separate section.

We continue this review with a new portion of “quantum mathematics,” namely
the notion of the tensor product of Hilbert spaces and the tensor product of operators.
After the section on Dirac’s notation with ket- and bra-vector, we discuss briefly the
notion of qubit and entanglement of a few qubits. This chapter is finished with the
presentation of the detailed analysis of the probabilistic structure of the two-slit
experiment, as a bunch of different experimental contexts. This contextual structure
leads to a violation of the law of total probability and the non-Kolmogorovean
probabilistic structure of this experiment.

We hope that this chapter would be interesting for newcomers to quantum-like
modeling. May be even experts can find something useful, say the treatment of
interference of probabilities as a violation of the law of total probability. In any
event, this chapter can serve as the mathematical and foundational introduction to
other chapters of this book devoted to the concrete applications.

2 Kolmogorov’s Axiomatics of Classical Probability

The main aim of QM is to provide probabilistic predictions on the results of
measurements. Moreover, statistics of the measurements of a single quantum
observable can be described by classical probability theory. In this section we shall
present an elementary introduction to this theory.

We remark that classical probability theory is coupled to experiment in the
following way:
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• Experimental contexts (system’s state preparations) are represented by probabil-
ities.

• Observables are represented by random variables.

In principle, we can call probability a state and this is the direct analog of
the quantum state (Sect. 6.1, the ensemble interpretation). However, we have to
remember that the word “state” has the meaning “statistical state,” the state of an
ensemble of systems prepared for measurement.

The Kolmogorov probability space [49, 50] is any triple

(�,F , P),

where � is a set of any origin and F is a σ -algebra of its subsets, P is a
probability measure on F . The set � represents random parameters of the model.
Kolmogorov called elements of � elementary events. This terminology is standard
in mathematical literature. Sets of elementary events are regarded as events. The key
point of Kolmogorov’s axiomatization of probability theory is that not any subset
of � can be treated as an event. For any stochastic model, the system of events F
is selected from the very beginning. The key mathematical point is that F has to
be a σ -algebra. (Otherwise it would be very difficult to develop a proper notion of
integral. And the latter is needed to define average of a random variable.)

We remind that a σ -algebra is a system of sets which contains � and empty set,
it is closed with respect to the operations of countable union and intersection and to
the operation of taking the complement of a set. For example, the collection of all
subsets of � is a σ -algebra. This σ -algebra is used in the case of finite or countable
sets:

� = {ω1, . . . , ωn, . . .}. (1)

However, for “continuous sets,” e.g., � = [a, b] ⊂ R, the collection of all possible
subsets is too large to have applications. Typically it is impossible to describe a σ -
algebra in the direct terms. To define a σ -algebra, one starts with a simple system
of subsets of � and then consider the σ -algebra which is generated from this simple
system with the aid of aforementioned operations. In particular, one of the most
important for applications σ -algebras, the so-called Borel σ -algebra, is constructed
in this way by staring with the system consisting of all open and closed intervals of
the real line. In a metric space (in particular, in a Hilbert space), the Borel σ -algebra
is constructed by starting with the system of all open and closed balls.

Finally, we remark that in American literature the term σ -field is typically used,
instead of σ -algebra.

The probability is defined as a measure, i.e., a map from F to nonnegative real
numbers which is σ -additive:

P(∪jAj ) =
∑

j

P(Aj ), (2)
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where Aj ∈ F and Ai ∩ Aj = ∅, i �= j. The probability measure is always
normalized by one:

P(�) = 1. (3)

In the case of a discrete probability space, see (1), the probability measures have the
form

P(A) =
∑

ωj ∈A

pj , pj = P({ωj }).

In fact, any finite measure μ, i.e., μ(�) < ∞, can be transformed into the
probability measure by normalization:

P(A) = μ(A)

μ(�)
,A ∈ F . (4)

A (real) random variable is a map ξ : � → R which is measurable with respect
to the Borel σ -algebra B of R and the σ -algebra F of �. The latter means that, for
any set B ∈ B, its preimage ξ−1(B) = {ω ∈ � : ξ(ω) ∈ B} belongs to F . This
condition provides the possibility to assign the probability to the events of the type
“values of ξ belong to a (Borel) subset of the real line.” The probability distribution
of ξ is defined as

Pξ (B) = P(ξ−1(B)). (5)

In the same way we define the real (and complex) vector-valued random variables,
ξ : � → Rn and ξ : � → Cn.

Let ξ1, . . . , ξk be real-valued random variables. Their join probability distribution
Pξ1,...,ξk

is defined as the probability distribution of the vector-valued random
variable ξ = (ξ1, . . . , ξk). To determine this probability measure, it is sufficient
to define probabilities

Pξ1,...,ξk
(�1 × · · · × �k) = P(ω ∈ � : ξ1(ω) ∈ �1, . . . ., ξk(ω) ∈ �k),

where �j , j = 1, . . . , k, are intervals (open, closed, half-open) of the real line.
Suppose now that random variables ξ1, . . . , ξk represent observables a1, . . . , ak.

For any point ω ∈ �, the values of the vector ξ composed of these random
variables are well defined ξ(ω) = (ξ1(ω), . . . , ξk(ω)). This vector represents a joint
measurement of the observables and Pξ1,...,ξk

represents the probability distribution
for the outcomes of these jointly measured observables. Thus classical probability
theory is applicable for jointly measurable observables, compatible observables in
the terminology of QM (Sect. 5).



Basics of Quantum Theory for Quantum-Like Modeling Information Retrieval 55

A random variable is called discrete if its image consists of finite or countable
number of points, ξ = α1, . . . , αn, . . . . In this case its probability distribution has
the form

P(B) =
∑

αj ∈B

Pαj
, Pαj

= P(ω ∈ � : ξ(ω) = αj ). (6)

The mean value (average) of a real-valued random variable is defined as its
integral (the Lebesgue integral)

Eξ =
∫

�

ξ(ω)dP (ω). (7)

For a discrete random variable, its mean value has the simple representation:

Eξ =
∑

αj ∈B

αjPαj
. (8)

In the Kolmogorov model the conditional probability is defined by the Bayes
formula

P(B|A) = P(B ∩ A)

P(A)
, P(A) > 0. (9)

We stress that other axioms are independent of this definition.
We also present the formula of total probability (FTP) which is a simple

consequence of the Bayes formula. Consider the pair, a and b, of discrete random
variables. Then

P(b = β) =
∑

α

P(a = α)P(b = β|a = α). (10)

Thus the b-probability distribution can be calculated from the a-probability dis-
tribution and the conditional probabilities P(b = β|a = α). These conditional
probabilities are known as transition probabilities.

This formula plays the crucial role in Bayesian inference. It is applicable to the
plenty of phenomena, in insurance, finances, economics, engineering, biology, AI,
game theory, decision making, and programming. However, as was shown by the
author of this review, in quantum domain FTP is violated and it is perturbed by
the so-called interference term. Recently it was shown that even data collected
in cognitive science, psychology, game theory, and decision making can violate
classical FTP [1–10, 18, 38–41, 44–48].
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3 Quantum Mathematics

We present the basic mathematical structures of QM and couple them to quantum
physics.

3.1 Hermitian Operators in Hilbert Space

We recall the definition of a complex Hilbert space. Denote it by H. This is a com-
plex linear space endowed with a scalar product (a positive-definite nondegenerate
Hermitian form) which is complete with respect to the norm corresponding to the
scalar product, 〈·|·〉. The norm is defined as

‖φ‖ = √〈φ|φ〉.

In the finite-dimensional case the norm and, hence, completeness are of no use.
Thus those who have no idea about functional analysis (but know essentials of linear
algebra) can treat H simply as a finite-dimensional complex linear space with the
scalar product.

For a complex number z = x + iy, x, y ∈ R, its conjugate is denoted by z̄, here
z̄ = x − iy. The absolute value of z is given by |z|2 = zz̄ = x2 + y2.

For reader’s convenience, we recall that the scalar product is a function from the
Cartesian product H × H to the field of complex numbers C, ψ1, ψ2 → 〈ψ1|ψ2〉,
having the following properties:

1. Positive-definiteness: 〈ψ |ψ〉 ≥ 0 with 〈ψ,ψ〉 = 0 if and only if ψ = 0.

2. Conjugate symmetry: 〈ψ1|ψ2〉 = 〈ψ2|ψ1〉
3. Linearity with respect to the second argument2: 〈φ|k1ψ1 + k2ψ2〉 = k1〈φ|ψ1〉 +

k2〈φ|ψ2〉, where k1, k2 are the complex numbers.

A reader who does not feel comfortable in the abstract framework of functional
analysis can simply proceed with the Hilbert space H = Cn, where C is the set of
complex numbers, and the scalar product

〈u|v〉 =
∑

i

ui v̄i , u = (u1, . . . , un), v = (v1, . . . , vn). (11)

In this case the above properties of a scalar product can be easily derived from (11).
Instead of linear operators, one can consider matrices.

2In mathematical texts one typically considers linearity with respect to the first argument. Thus a
mathematician has to pay attention to this difference.
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We also recall a few basic notions of theory of linear operators in complex Hilbert
space. A map â : H → H is called a linear operator, if it maps linear combination
of vectors into linear combination of their images:

â(λ1ψ1 + λ2ψ2) = λ1âψ1 + λ2âψ2,

where λj ∈ C, ψj ∈ H, j = 1, 2.

For a linear operator â the symbol â∗ denotes its adjoint operator which is
defined by the equality

〈̂aψ1|ψ2〉 = 〈ψ1 |̂a∗ψ2〉. (12)

Let us select in H some orthonormal basis (ei), i.e., 〈ei |ej 〉 = δij . By denoting the
matrix elements of the operators â and â∗ as aij and a∗

ij , respectively, we rewrite
the definition (12) in terms of the matrix elements:

a∗
ij = āj i .

A linear operator â is called Hermitian if it coincides with its adjoint operator:

â = â.

If an orthonormal basis in H is fixed, (ei), and â is represented by its matrix, A =
(aij ), where aij = 〈̂aei |ej 〉, then it is Hermitian if and only if

āij = aji .

We remark that, for a Hermitian operator, all its eigenvalues are real. In fact,
this was one of the main reasons to represent quantum observables by Hermitian
operators. In the quantum formalism, the spectrum of a linear operator (the set of
eigenvalues while we are in the finite-dimensional case) coincides with the set of
possibly observable values (Sect. 4, Postulate 3). We also recall that eigenvectors
of Hermitian operators corresponding to different eigenvalues are orthogonal. This
property of Hermitian operators plays some role in justification of the projection
postulate of QM, see Sect. 5.1.

A linear operator â is positive-semidefinite if, for any φ ∈ H,

〈̂aφ|φ〉 ≥ 0.

This is equivalent to positive-semidefiniteness of its matrix.
For a linear operator â, its trace is defined as the sum of diagonal elements of its

matrix in any orthonormal basis:

Tr â =
∑

i

aii =
∑

i

〈̂aei |ei〉,
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i.e., this quantity does not depend on a basis.
Let L be a subspace of H. The orthogonal projector P : H → L onto this

subspace is a Hermitian, idempotent (i.e., coinciding with its square), and positive-
semidefinite operator3:

(a) P ∗ = P ;
(b) P 2 = P ;
(c) P ≥ 0.

Here (c) is a consequence of (a) and (b). Moreover, an arbitrary linear operator
satisfying (a) and (b) is an orthogonal projector—onto the subspace PH.

3.2 Pure and Mixed States: Normalized Vectors and Density
Operators

Pure quantum states are represented by normalized vectors, ψ ∈ H : ‖ψ‖ = 1.

Two colinear vectors,

ψ ′ = λψ, λ ∈ C, |λ| = 1, (13)

represent the same pure state. Thus, rigorously speaking, a pure state is an
equivalence class of vectors having the unit norm: ψ ′ ∼ ψ for vectors coupled
by (13). The unit sphere of H is split into disjoint classes—pure states. However, in
concrete calculations one typically uses just concrete representatives of equivalent
classes, i.e., one works with normalized vectors.

Each pure state can also be represented as the projection operator Pψ which
projects H onto one dimensional subspace based on ψ. For a vector φ ∈ H,

Pψφ = 〈φ|ψ〉 ψ. (14)

The trace of the one dimensional projector Pψ equals 1:

Tr Pψ = 〈ψ |ψ〉 = 1.

We summarize the properties of the operator Pψ representing the pure state ψ.

It is

(a) Hermitian,
(b) positive-semidefinite,
(c) trace one,
(d) idempotent.

3To simplify formulas, we shall not put the operator-label “hat” in the symbols denoting projectors,
i.e., P ≡ P̂ .
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Moreover, any operator satisfying (a)–(d) represents a pure state. Properties (a) and
(d) characterize orthogonal projectors, property (b) is their consequence. Property
(c) implies that the projector is one dimensional.

The next step in the development of QM was the extension of the class of
quantum states, from pure states represented by one dimensional projectors to states
represented by linear operators having the properties (a)–(c). Such operators are
called density operators. (This nontrivial step of extension of the class of quantum
states was based on the efforts of Landau and von Neumann.) The symbol D(H)

denotes the space of density operators in the complex Hilbert space H.

One typically distinguishes pure states, as represented by one dimensional
projectors, and mixed states, the density operators which cannot be represented by
one dimensional projectors. The terminology “mixed” has the following origin: any
density operator can be represented as a “mixture” of pure states (ψi) :

ρ =
∑

i

piPψi
, pi ∈ [0, 1],

∑

i

pi = 1. (15)

(To simplify formulas, we shall not put the operator-label “hat” in the symbols
denoting density operators, i.e., ρ ≡ ρ̂.) The state is pure if and only if such a
mixture is trivial: all pi, besides one, equal zero. However, by operating with the
terminology “mixed state” one has to take into account that the representation in
the form (15) is not unique. The same mixed state can be presented as mixtures of
different collections of pure states.

Any operator ρ satisfying (a)–(c) is diagonalizable (even in infinite-dimensional
Hilbert space), i.e., in some orthonormal basis it is represented as a diagonal matrix,
ρ = diag(pj ), where pj ∈ [0, 1],∑j pj = 1. Thus it can be represented in the
form (15) with mutually orthogonal one dimensional projectors. The property (d)
can be used to check whether a state is pure or not.

We point out that pure states are merely mathematical abstractions; in real
experimental situations, it is possible to prepare only mixed states. The degree of
purity is defined as

purity(ρ) = Trρ2.

Experimenters are satisfied by getting this quantity near one.

4 Quantum Mechanics: Postulates

We state again that H denotes complex Hilbert space with the scalar product 〈·, ·〉
and the norm ‖ · ‖ corresponding to the scalar product.

Postulate 1 (The Mathematical Description of Quantum States) Quantum (pure)
states (wave functions) are represented by normalized vectors ψ (i.e., ‖ψ‖2 =
〈ψ,ψ〉 = 1) of a complex Hilbert space H. Every normalized vector ψ ∈ H may
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represent a quantum state. If a vector ψ corresponding to a state is multiplied by
any complex number c, |c| = 1, the resulting vector will correspond to the same
state.4

The physical meaning of “a quantum state” is not defined by this postulate, see
Sect. 6.1.

Postulate 2 (The Mathematical Description of Physical Observables) A physical
observable a is represented by a Hermitian operator â in complex Hilbert space H.

Different observables are represented by different operators.

Postulate 3 (Spectral) For a physical observable a which is represented by the
Hermitian operator â we can predict (together with some probabilities) values λ ∈
Spec(̂a).

We restrict our considerations by simplest Hermitian operators which are
analogous to discrete random variables in classical probability theory. We recall
that a Hermitian operator â has purely discrete spectrum if it can be represented as

â = α1P
a
α1

+ · · · + αmP a
αm

+ · · · , αm ∈ R, (16)

where P a
αm

are orthogonal projection operators related to the orthonormal eigenvec-
tors {ea

km}k of â corresponding to the eigenvalues αm by

P a
αm

ψ =
∑

k

〈ψ, ea
km〉ea

km, ψ ∈ H. (17)

Here k labels the eigenvectors ea
km which belong to the same eigenvalue αm of â.

Postulate 4 (Born’s Rule) Let a physical observable a be represented by a Her-
mitian operator â with purely discrete spectrum. The probability Pψ(a = αm) to
obtain the eigenvalue αm of â for measurement of a in a state ψ is given by

Pψ(a = αm) = ‖P a
mψ‖2. (18)

If the operator â has nondegenerate (purely discrete) spectrum, then each αm is
associated with one dimensional subspace. The latter can be fixed by selecting any
normalized vector, say ea

m. In this case orthogonal projectors act simply as

P a
αm

ψ = 〈ψ, ea
m〉ea

m. (19)

Formula (18) takes a very simple form

Pψ(a = αm) = |〈ψ, ea
m〉|2. (20)

4Thus states are given by elements of the unit sphere of the Hilbert space H.
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It is Born’s rule in the Hilbert space formalism.
It is important to point out that if state ψ is an eigenstate of operator â

representing observable a, i.e., âψ = αψ, then the outcome of observable a equals
α with probability one.

We point out that, for any fixed quantum state ψ, each quantum observable â

can be represented as a classical random variable (Sect. 2). In the discrete case the
corresponding probability distribution is defined as

P(A) =
∑

αm∈A

Pψ(a = αm),

where Pψ(a = αm) is given by Born’s rule.
Thus each concrete quantum measurement can be described by the classical

probability model.
Problems (including deep interpretational issues) arise only when one tries to

describe classically data collected for a few incompatible observables (Sect. 5).
By using the Born’s rule (18 ) and the classical probabilistic definition of average

(Sect. 2), it is easy to see that the average value of the observable a in the state ψ

(belonging to the domain of definition of the corresponding operator â) is given by

〈a〉ψ = 〈̂a ψ,ψ〉. (21)

For example, for an observable represented by an operator with the purely discrete
spectrum, we have

〈a〉ψ =
∑

m

αmPψ(a = αm) =
∑

m

αm‖P a
mψ‖2 = 〈̂a ψ,ψ〉.

Postulate 5 (Time Evolution of Wave Function) Let Ĥ be the Hamiltonian of
a quantum system, i.e., the Hermitian operator corresponding to the energy
observable. The time evolution of the wave function ψ ∈ H is described by the
Schrödinger equation

i
d

dt
ψ(t) = Ĥψ(t) (22)

with the initial condition ψ(0) = ψ.

5 Compatible and Incompatible Observables

Two observables a and b are called compatible if a measurement procedure for their
joint measurement can be designed, i.e., a measurement of the vector observable
d = (a, b). In such a case their joint probability distribution is well defined.
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In the opposite case, i.e., when such a joint-measurement procedure does not
exist, observables are called incompatible. The joint probability distribution of
incompatible observables has no meaning.

In QM, compatible observables a and b are represented by commuting Hermitian
operators â and b̂, i.e., [̂a, b̂] = 0; consequently, incompatible observables a

and b are represented by noncommuting operators, i.e., [̂a, b̂] �= 0. Thus in
the QM-formalism compatibility–incompatibility is represented as commutativity–
noncommutativity.

Postulate 4a (Born’s Rule for Joint Measurements) Let observables a and b be
represented by Hermitian operators â and b̂ with purely discrete spectrum. The
probability to obtain the eigenvalues αm and βk in a joint measurement of a and b

in a state ψ—the joint probability distribution—is given by

Pψ(a = αm, b = βk) = ‖P b
k P a

mψ‖2 = ‖P a
mP b

k ψ‖2. (23)

It is crucial that the spectral projectors of commuting operators commute, so the
probability distribution does not depend on the order of the values of observables.
This is a classical probability distribution (Sect. 2). Any pair of compatible observ-
ables a and b can be represented by random variables: for example, by using the
joint probability distribution as the probability measure.

A family of compatible observables a1, . . . , an is represented by commuting
Hermitian operators â1, . . . , ân, i.e., [̂ai, âj ] = 0 for all pairs i, j. The joint
probability distribution is given by the natural generalization of rule (23):

Pa1,...,an;ψ(α1m, . . . , αnk) ≡ Pψ(a1 = α1m, . . . , an = αnk)

= ‖P an

k . . . .P a1
m ψ‖2 = · · · . = ‖P a1

m . . . .P
an

k ψ‖2, (24)

where all possible permutations of projectors can be considered.
Now we point to one distinguishing feature of compatibility of quantum observ-

ables which is commonly not emphasized. The relation of commutativity of
operators is the pairwise relation, it does not involve say triples of operators.
Thus, for joint measurability of a group of quantum observables a1, . . . , an, their
pairwise joint measurability is sufficient. Thus if we are able to design measurement
procedures for all possible pairs, then we are always able to design a joint-
measurement procedure for the whole group of quantum observables a1, . . . , an.

This is the specialty of quantum observables. In particular, if there exist all pairwise
joint probability distributions Pai ,aj ;ψ, then the joint probability Pa1,...,an;ψ is
defined as well.

The Born’s rule can be generalized to the quantum states represented by density
operators (Sect. 9.1, formula (40)).
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5.1 Post-Measurement State From the Projection Postulate

The projection postulate is one of the most questionable and debatable postulates of
QM. We present it in the separate section to distinguish it from other postulates of
QM, Postulates 1–5, which are commonly accepted.

Consider pure state ψ and quantum observable (Hermitian operator) â repre-
senting some physical observable a. Suppose that â has nondegenerate spectrum;
denote its eigenvalues by α1, .., αm, . . . and the corresponding eigenvectors by
ea

1 , . . . , ea
m, . . . (here αi �= αj , i �= j.) This is an orthonormal basis in H. We

expand the vector ψ with respect to this basis:

ψ = k1e
a
1 + · · · + kmea

m + · · · , (25)

where (kj ) are complex numbers such that

‖ψ‖2 = |k1|2 + · · · + |km|2 + · · · = 1. (26)

By using the terminology of linear algebra we say that the pure state ψ is a
superposition of the pure states ej . The von Neumann projection postulate describes
the post-measurement state and it can be formulated as follows:

Postulate 6VN (Projection Postulate, von Neumann) Measurement of observable
a resulting in output αi induces reduction of superposition (25) to the basis vector
ea
i .

The procedure described by the projection postulate can be interpreted in the
following way:

Superposition (25) reflects uncertainty in the results of measurements for an
observable a. Before measurement a quantum system “does not know how it will
answer to the question a.” The Born’s rule presents potentialities for different
answers. Thus a quantum system in the superposition state ψ does not have
propensity to any value of a as its objective property. After the measurement the
superposition is reduced to the single term in the expansion (25) corresponding to
the value of a obtained in the process of measurement.

Consider now an arbitrary quantum observable a with purely discrete spectrum,
i.e., â = α1P

a
α1

+ · · · + αmP a
αm

+ · · · . The Lüders projection postulate describes
the post-measurement state and it can be formulated as follows:

Postulate 6L (Projection Postulate, Lüders) Measurement of observable a result-
ing in output αm induces projection of state ψ on state

ψαm = P a
αm

ψ

‖P a
αm

ψ‖ .

In contrast to the majority of books on quantum theory, we sharply distinguish
the cases of quantum observables with nondegenerate and degenerate spectra. von
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Neumann formulated Postulate 6VN only for observables with nondegenerate spec-
tra. Lüders “generalized” von Neumann’s postulate to the case of observables with
degenerate spectra. However, for such observables, von Neumann formulated [60]
a postulate which is different from Postulate 6L. The post-measurement state need
not be again a pure state.

We remark that Postulate 6L can be applied even to quantum states which are
represented by density operators (Sect. 9.1, formula (41)).

6 Interpretations of Quantum Mechanics

Now we are going to discuss one of the most important and complicated issues of
quantum foundations, the problem of an interpretation of a quantum state. There
were elaborated numerous interpretations which can differ crucially from each
other. This huge diversity of interpretations is a sign of the deep crises in quantum
foundations.

In this section, we briefly discuss a few basic interpretations. Then in Sect. 9.1 we
shall consider the Växjö (realist ensemble contextual) interpretation. Its presentation
needs additional mathematical formulas. Therefore we placed it into a separate
section.

6.1 Ensemble and Individual Interpretations

The Ensemble Interpretation A (pure) quantum state provides a description of
certain statistical properties of an ensemble of similarly prepared quantum systems.

This interpretation is upheld, for example, by Einstein, Popper, Blokhintsev,
Margenau, Ballentine, Klyshko, and recent years by, e.g., De Muynck, De Baere,
Holevo, Santos, Khrennikov, Nieuwenhuizen, Adenier, Groessing, and many others.

The Copenhagen Interpretation A (pure) quantum state provides the complete
description of an individual quantum system.

This interpretation was supported by a great variety of members, from
Schrödinger’s original attempt to identify the electron with a wave function
solution of his equation to the several versions of the Copenhagen interpretation
[12–14, 53, 54] (for example, Heisenberg, Bohr, Pauli, Dirac, von Neumann,
Landau, Fock, and recent years by, e.g., Greenberger, Mermin, Lahti, Peres,
Summhammer). Nowadays the individual interpretation is extremely popular,
especially in quantum information and computing.

Instead of Einstein’s terminology “ensemble interpretation,” Ballentine [7–9]
used the terminology “statistical interpretation.” However, Ballentine’s terminol-
ogy is rather misleading, because the term “statistical interpretation” was also used
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by von Neumann [60] for individual randomness! For him “statistical interpretation”
had the meaning which is totally different from the Ballentine’s “ensemble-
statistical interpretation.” J. von Neumann wanted to emphasize the difference
between deterministic (Newtonian) classical mechanics in that the state of a system
is determined by values of two observables (position and momentum) and quantum
mechanics in that the state is determined not by values of observables, but by
probabilities. We shall follow Albert Einstein and use the terminology ensemble
interpretation.

We remark that following von Neumann [60] the supporters of the individual
interpretation believe in irreducible quantum randomness, i.e., that the behavior of
an individual quantum system is irreducibly random. Why does it behave in such
a way? Because it is quantum, so it can behave so unusually. Nowadays this von
Neumann’s claim is used to justify superiority of the quantum technology over the
classical technology. For example, superiority of quantum random generators.

6.2 Information Interpretations

The quantum information revolution generated a variety of information interpre-
tations of QM (see, for example, [16, 17, 19, 20]). By these interpretations the
quantum formalism describes special way of information processing, more general
than the classical information processing. Roughly speaking one can forget about
physics and work solely with probability, entropy, and information. Quantum
Bayesianism (QBism) [25, 26] can be considered as one of such information, in
its extreme form: the quantum formalism describes very general scheme of assign-
ments of subjective probabilities to possible outcomes of experiments, assignment
by human agents.

7 Quantum Conditional (Transition) Probability

In the classical Kolmogorov probabilistic model (Sect. 2), besides probabilities one
operates with the conditional probabilities defined by the Bayes formula (see Sect. 2,
formula (9)). The Born’s postulate defining quantum probability should also be
completed by a definition of the conditional probability. We have remarked that,
for one concrete observable, the probability given by Born’s rule can be treated
classically. However, the definition of the conditional probability involves two
observables. Such situations cannot be treated classically (at least straightforwardly,
cf. Sect. 2). Thus conditional probability is really a quantum probability.

Let physical observables a and b be represented by Hermitian operators with
purely discrete (may be degenerate) spectra:

â =
∑

m

αmP a
αm

, b̂ =
∑

m

βmP b
βm

. (27)
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Let ψ be a pure state and let P a
αk

ψ �= 0. Then the probability to get the value
b = βm under the condition that the value a = αk was observed in the preceding
measurement of the observable a on the state ψ is given by the formula

Pψ(b = βm|a = αk) ≡ ‖P b
βm

P a
αk

ψ‖2

‖P a
αk

ψ‖2 . (28)

One can motivate this definition by appealing to the projection postulate (Lüders’
version). After the a-measurement with output a = αk initially prepared state ψ is
projected onto the state

ψαk
= P a

αk
ψ

‖P a
αk

ψ‖ .

Then one applies Born’s rule to the b-measurement for this state.
Let the operator â has nondegenerate spectrum, i.e., for any eigenvalue α the

corresponding eigenspace (i.e., generated by eigenvectors with âψ = αψ) is one
dimensional. We can write

Pψ(b = βm|a = αk) = ‖P b
βm

ea
k‖2 (29)

(here âea
k = αke

a
k ). Thus the conditional probability in this case does not depend

on the original state ψ. We can say that the memory about the original state was
destroyed. If also the operator b̂ has nondegenerate spectrum, then we have: Pψ(b =
βm|a = αk) = |〈eb

m, ea
k 〉|2 and Pψ(a = αk|b = βm) = |〈ea

k , eb
m〉|2. By using

symmetry of the scalar product we obtain the following result:
Let both operators â and b̂ have purely discrete nondegenerate spectra and let

P a
k ψ �= 0 and P b

mψ �= 0. Then conditional probability is symmetric and it does not
depend on the original state ψ :

Pψ(b = βm|a = αk) = Pψ(a = αk|b = βm) = |〈eb
m, ea

k 〉|2. (30)

8 Observables with Nondegenerate Spectra:
Double-Stochasticity of the Matrix of Transition
Probabilities

We remark that classical (Kolmogorov–Bayes) conditional probability is not sym-
metric, besides very special situations. Thus QM is described by a very specific
probabilistic model.

Consider two nondegenerate observables. Set pβ|α = P(b = β|a = α). The
matrix of transition probabilities Pb|a = (pβ|α) is not only stochastic, i.e.,

∑

β

pβ|α = 1
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but it is even doubly stochastic:

∑

α

pβ|α =
∑

α

|〈eb
β, ea

α〉|2 = 〈eb
β, eb

β〉 = 1.

In Kolmogorov’s model, stochasticity is the general property of matrices of transi-
tion probabilities. However, in general classical matrices of transition probabilities
are not doubly stochastic. Hence, double stochasticity is a very specific property of
quantum probability.

We remark that statistical data collected outside quantum physics, e.g., in
decision making by humans and psychology, violates the quantum law of double
stochasticity [38]. Such data cannot be mathematically represented with the aid
of Hermitian operators with nondegenerate spectra. One has to consider either
Hermitian operators with degenerate spectra or positive operator valued measures
(POVMs).

9 Formula of Total Probability with the Interference Term

We shall show that the quantum probabilistic calculus violates the conventional
FTP (10), one of the basic laws of classical probability theory. In this section,
we proceed in the abstract setting by operating with two abstract incompatible
observables. The concrete realization of this setting for the two-slit experiment
demonstrating interference of probabilities in QM will be presented in Sect. 16
which is closely related to Feynman’s claim [22, 23] on the nonclassical proba-
bilistic structure of this experiment.

Let H2 = C×C be the two dimensional complex Hilbert space and let ψ ∈ H2 be
a quantum state. Let us consider two dichotomous observables b = β1, β2 and a =
α1, α2 represented by Hermitian operators b̂ and â, respectively (one may consider
simply Hermitian matrices). Let eb = {eb

β} and ea = {ea
α} be two orthonormal bases

consisting of eigenvectors of the operators. The state ψ can be represented in the
two ways

ψ = c1e
a
1 + c2e

a
2 , cα = 〈ψ, ea

α〉; (31)

ψ = d1e
b
1 + d2e

b
2, dβ = 〈ψ, eb

β〉. (32)

By Postulate 4 we have

P(a = α) ≡ Pψ(a = α) = |cα|2. (33)

P(b = β) ≡ Pψ(b = β) = |dβ |2. (34)
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The possibility to expand one basis with respect to another basis induces connection
between the probabilities P(a = α) and P(b = β). Let us expand the vectors ea

α

with respect to the basis eb

ea
1 = u11e

b
1 + u12e

b
2 (35)

ea
2 = u21e

b
1 + u22e

b
2, (36)

where uαβ = 〈ea
α, eb

β〉. Thus d1 = c1u11 + c2u21, d2 = c1u12 + c1u22. We obtain
the quantum rule for transformation of probabilities:

P(b = β) = |c1u1β + c2u2β |2. (37)

On the other hand, by the definition of quantum conditional probability, see (28),
we obtain

P(b = β|a = α) ≡ Pψ(b = β|a = α) = |〈ea
α, eb

β〉|2. (38)

By combining (33), (34) and (37), (38) we obtain the quantum formula of total
probability—the formula of the interference of probabilities:

P(b = β) =
∑

α

P(a = α)P(b = β|a = α) (39)

+2 cos θ
√

P(a = α1)P(b = β|a = α1)P(a = α2)P(b = β|a = α2).

In general cos θ �= 0. Thus the quantum FTP does not coincide with the classical
FTP (10) which is based on the Bayes’ formula.

We presented the derivation of the quantum FTP only for observables given
by Hermitian operators acting in the two dimensional Hilbert space and for pure
states. In Sect. 9.1, we give (without proving) the formula for spaces of an arbitrary
dimension and states represented by density operators (see [42] for quantum FTP
for observables represented by POVMs).

9.1 Växjö (Realist Ensemble Contextual) Interpretation of
Quantum Mechanics

The Växjö interpretation [33] is the realist ensemble contextual interpretation of
QM. Thus, in contrast to Copenhagenists or QBists, by the Växjö interpretation
QM is not complete and it can be emergent from a subquantum model. This
interpretation is the ensemble interpretation This interpretation is contextual, i.e.,
experimental contexts have to be taken into account really seriously.
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By the Växjö interpretation the probabilistic part of QM is a special mathemat-
ical formalism to work with contextual probabilities for families of contexts, which
are, in general, incompatible. Of course, the quantum probabilistic formalism is not
the only possible formalism to operate with contextual probabilities.

The main distinguishing feature of the formalism of quantum probability is its
complex Hilbert space representation and the Born’s rule. All quantum contexts can
be unified with the aid of a quantum state ψ (wave function, complex probability
amplitude). A state represents only a part of context, the second part is given by
an observable a. Thus the quantum probability model is not just a collection of
Kolmogorov probability spaces. These spaces are coupled by quantum states.

Each theory of probability has two main purposes: descriptive and predictive. In
classical probability theory its predictive machinery is based on Bayesian inference
and, in particular, FTP (Sect. 2, formula (10)).

Can the probabilistic formalism of QM be treated as a generalization of Bayesian
inference?

My viewpoint is that the quantum FTP with the interference term (Sect. 9,
formula (39)) is, in fact, a modified rule for the probability update. QM provides the
following inference machinery. There are given a mixed state represented by density
operator ρ and two quantum observables a and b represented mathematically by
Hermitian operators â and b̂ with purely discrete spectra. The first measurement of
a can be treated as collection of information about the state ρ. The result a = αi

appears with the probability

pa(αi) = TrP a
i ρ. (40)

This is generalization of the Born’s rule to mixed states.
Postulate 6L (the projection postulate in the Lüders’ form) can be extended to

mixed states. Initial state ρ is transferred to the state

ρai
= P a

i ρP a
i

TrP a
i ρP a

i

. (41)

Then, for each state ρai
, we perform measurement of b and obtain probabilities

p(βj |αi) = TrP b
j ρai

. (42)

These are quantum conditional (transition) probabilities for the initial state given by
a density operator (generalization of the formalism of Sect. 7).

We now recall the general form of the quantum FTP [42]:

p(b = β) =
∑

k

p(b = β|a = αk)p(a = αk) (43)

+2
∑

k<m

cos φj ;k,m

√
p(b = β|a = αk)p(a = αk)p(b = β|αm)p(a = αm).
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Thus we can predict the probability of the result βj for the b-observable on the
basis of the probabilities for the results αi for the a-observable and conditional
probabilities. Of course, the main nonclassical feature of this probability update
rule is the presence of phase angles. In the case of dichotomous observables of
the von Neumann–Lüders type the phase angles φj can be expressed in terms of
probabilities.

10 Quantum Logic

von Neumann and Birkhoff [11, 61] suggested to represent events (propositions) by
orthogonal projectors in complex Hilbert space H.

For an orthogonal projector P, we set HP = P(H), its image, and vice versa, for
subspace L of H, the corresponding orthogonal projector is denoted by the symbol
PL.

The set of orthogonal projectors is a lattice with the order structure: P ≤ Q iff
HP ⊂ HQ or equivalently, for any ψ ∈ H, 〈ψ |Pψ〉 ≤ 〈ψ |Qψ〉.

We recall that the lattice of projectors is endowed with operations “and” (∧)
and “or” (∨). For two projectors P1, P2, the projector R = P1 ∧ P2 is defined as
the projector onto the subspace HR = HP1 ∩ HP2 and the projector S = P1 ∨
P2 is defined as the projector onto the subspace HR defined as the minimal linear
subspace containing the set-theoretic union HP1 ∪HP2 of subspaces HP1 ,HP2 : this
is the space of all linear combinations of vectors belonging to these subspaces. The
operation of negation is defined as the orthogonal complement: P ⊥ = {y ∈ H :
〈y|x〉 = 0 for all x ∈ HP }.

In the language of subspaces the operation “and” coincides with the usual set-
theoretic intersection, but the operations “or” and “not” are nontrivial deformations
of the corresponding set-theoretic operations. It is natural to expect that such
deformations can induce deviations from classical Boolean logic.

Consider the following simple example. Let H be two dimensional Hilbert space
with the orthonormal basis (e1, e2) and let v = (e1 + e2)/

√
2. Then Pv ∧ Pe1 = 0

and Pv ∧Pe2 = 0, but Pv ∧ (Pe1 ∨Pe2) = Pv. Hence, for quantum events, in general
the distributivity law is violated:

P ∧ (P1 ∨ P2) �= (P ∧ P1) ∨ (P ∧ P2). (44)

The lattice of orthogonal projectors is called quantum logic. It is considered as a
(very special) generalization of classical Boolean logic. Any sub-lattice consisting
of commuting projectors can be treated as classical Boolean logic.

At the first sight the representation of events by projectors/linear subspaces might
look exotic. However, this is simply a prejudice which springs from too common
usage of the set-theoretic representation of events (Boolean logic) in the modern
classical probability theory. The tradition to represent events by subsets was firmly
established by A. N. Kolmogorov in 1933. We remark that before him the basic
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classical probabilistic models were not of the set-theoretic nature. For example, the
main competitor of the Kolmogorov model, the von Mises frequency model, was
based on the notion of a collective.

As we have seen, quantum logic relaxes some constraints posed on the operations
of classical Boolean logic, in particular, the distributivity constraint. This provides
novel possibilities for logically consistent reasoning.

Since human decision makers violate FTP [32, 38]—the basic law of classical
probability, it seems that they process information by using nonclassical logic.
Quantum logic is one of the possible candidates for logic of human reasoning.
However, one has to remember that in principle other types of nonclassical logic
may be useful for mathematical modeling of human decision making.

11 Space of Square Integrable Functions as a State Space

Although we generally proceed with finite-dimensional Hilbert spaces, it is useful
to mention the most important example of infinite-dimensional Hilbert space used
in QM. Consider the space of complex valued functions, ψ : Rm → C, which are
square integrable with respect to the Lebesgue measure on R

m :

‖ψ‖2 =
∫

Rm

|ψ(x)|2dx < ∞. (45)

It is denoted by the symbol L2(Rm). Here the scalar product is given by

〈ψ1|ψ2〉 =
∫

Rm

ψ̄1(x)ψ2(x)dx.

A delicate point is that, for some measurable functions, ψ : Rm → C, which are
not identically zero, the integral

∫

Rm

|ψ(x)|2dx = 0. (46)

We remark that the latter equality implies that ψ(x) = 0 a.e. (almost everywhere).
Thus the quantity defined by (45) is, in fact, not norm: ‖ψ‖ = 0 does not imply
that ψ = 0. To define a proper Hilbert space, one has to consider as its elements not
simply functions, but classes of equivalent functions, where the equivalence relation
is defined as ψ ∼ φ if and only if ψ(x) = φ(x) a.e. In particular, all functions
satisfying (46) are equivalent to the zero-function.
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12 Operation of Tensor Product

Let both state spaces be L2-spaces, the spaces of complex valued square integrable
functions: H1 = L2(Rk) and L2(Rm).

Take two functions: ψ ≡ ψ(x) belongs to H1 and φ ≡ φ(y) belongs
to H2. By multiplying these functions we obtain the function of two variables
�(x, y) = ψ(x) × φ(y), where × denotes the usual point wise product.5 It is
easy to check that this function belongs to the space H = L2(Rk+m). Take now n

functions, ψ1(x), . . . , ψn(x), from H1 and n functions, φ1(y), . . . φn(y), from H2
and consider the sum of their pairwise products:

�(x, y) =
∑

i

ψi(x) × φi(y). (47)

This function also belongs to H.

It is possible to show that any function belonging to H can be represented as (47),
where the sum is in general infinite. Multiplication of functions is the basic example
of the operation of the tensor product. The latter is denoted by the symbol ⊗. Thus
in the example under consideration ψ ⊗φ(x, y) = ψ(x)×φ(y). The tensor product
structure on H = L2(Rk+m) is symbolically denoted as H = H1 ⊗ H2.

Consider now two arbitrary orthonormal bases in spaces Hk, (e
(k)
j ), k = 1, 2.

Then functions (eij = e
(1)
i ⊗ e

(2)
j ) form an orthonormal basis in H : any � ∈ H can

be represented as

� =
∑

cij eij ≡
∑

cij e
(1)
i ⊗ e

(2)
j , (48)

where

∑
|cij |2 < ∞. (49)

Consider now two arbitrary finite-dimensional Hilbert spaces, H1,H2. For each
pair of vectors ψ ∈ H1, φ ∈ H2, we form a new formal entity denoted by ψ ⊗ φ.

Then we consider the sums � = ∑
i ψi ⊗ φi. On the set of such formal sums we

can introduce the linear space structure. (To be mathematically rigorous, we have
to constraint this set by some algebraic relations to make the operations of addition
and multiplication by complex numbers well defined.) This construction gives us
the tensor product H = H1 ⊗ H2. In particular, if we take orthonormal bases in
Hk, (e

(k)
j ), k = 1, 2, then (eij = e

(1)
i ⊗ e

(2)
j ) form an orthonormal basis in H, any

� ∈ H can be represented as (48) with (49).

5Here it is convenient to use this symbol, not just write as �(x, y) = ψ(x)φ(y).
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The latter representation gives the simplest possibility to define the tensor
product of two arbitrary (i.e., may be infinite-dimensional) Hilbert spaces as the
space of formal series (48) satisfying the condition (49).

Besides the notion of the tensor product of states, we shall also use the notion of
the tensor product of operators. Consider two linear operators âi : Hi → Hi, i =
1, 2. Their tensor product â ≡ â1 ⊗ â2 : H → H is defined starting with the tensor
products of two vectors:

â ψ ⊗ φ = (̂a1ψ) ⊗ (̂a2φ).

Then it is extended by linearity. By using the coordinate representation (48) the
tensor product of operators can be represented as

â � =
∑

cij âeij ≡
∑

cij â1e
(1)
i ⊗ â2e

(2)
j , (50)

If operators âi , i = 1, 2, are represented by matrices (a
(i)
kl ), with respect to the fixed

bases, then the matrix (akl.nm) of the operator â with respect to the tensor product
of these bases can be easily calculated.

In the same way one defines the tensor product of Hilbert spaces, H1, . . . , Hn,

denoted by the symbol H = H1 ⊗ · · · ⊗ Hn. We start with forming the formal
entities ψ1 ⊗ · · · ⊗ ψn, where ψj ∈ Hj , j = 1, . . . , n. Tensor product space is
defined as the set of all sums

∑
j ψ1j ⊗ · · · ⊗ ψnj (which has to be constrained

by some algebraic relations, but we omit such details). Take orthonormal bases in
Hk, (e

(k)
j ), k = 1, . . . , n. Then any � ∈ H can be represented as

� =
∑

α

cαeα ≡
∑

α=(j1...jn)

cj1...jne
(1)
j1

⊗ · · · ⊗ e
(n)
jn

, (51)

where
∑

α |cα|2 < ∞.

13 Ket- and Bra-Vectors: Dirac’s Symbolism

Dirac’s notations [21] are widely used in quantum information theory. Vectors of H

are called ket-vectors, they are denoted as |ψ〉. The elements of the dual space H ′
of H, the space of linear continuous functionals on H, are called bra-vectors, they
are denoted as 〈ψ |.

Originally the expression 〈ψ |φ〉 was used by Dirac for the duality form between
H ′ and H, i.e., 〈ψ |φ〉 is the result of application of the linear functional 〈ψ | to
the vector |φ〉. In mathematical notation it can be written as follows. Denote the
functional 〈ψ | by f and the vector |φ〉 by simply φ. Then 〈ψ |φ〉 ≡ f (φ). To
simplify the model, later Dirac took the assumption that H is Hilbert space, i.e., the
H ′ can be identified with H. We remark that this assumption is an axiom simplifying
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the mathematical model of QM. However, in principle Dirac’s formalism [21] is
applicable for any topological linear space H and its dual space H ′; so it is more
general than von Neumann’s formalism [60] rigidly based on Hilbert space.

Consider an observable a given by the Hermitian operator â with nondegenerate
spectrum and restrict our consideration to the case of finite dimensional H. Thus the
normalized eigenvectors ei of A form the orthonormal basis in H. Let âei = αiei .

In Dirac’s notation ei is written as |αi〉 and, hence, any pure state can be written as

|ψ〉 =
∑

i

ci |αi〉,
∑

i

|ci |2 = 1. (52)

Since the projector onto |αi〉 is denoted as Pαi
= |αi〉〈αi |, the operator â can be

written as

â =
∑

i

αi |αi〉〈αi |. (53)

Now consider two Hilbert spaces H1 and H2 and their tensor product H =
H1 ⊗ H2. Let (|αi〉) and (|βi〉) be orthonormal bases in H1 and H2 corresponding
to the eigenvalues of two observables A and B. Then vectors |αi〉 ⊗ |βj 〉 form
the orthonormal basis in H. Typically in physics the sign of the tensor product is
omitted and these vectors are written as |αi〉|βj 〉 or even as |αiβj 〉. Thus any vector
ψ ∈ H = H1 ⊗ H2 can be represented as

ψ =
∑

ij

cij |αiβj 〉, (54)

where cij ∈ C (in the infinite-dimensional case these coefficients are constrained by
the condition

∑
ij |cij |2 < ∞).

14 Qubit

In particular, in quantum information theory typically qubit states are represented
with the aid of observables having the eigenvalues 0, 1. Each qubit space is two
dimensional:

|ψ〉 = c0|0〉 + c1|1〉, |c0|2 + |c1|2 = 1. (55)

A pair of qubits is represented in the tensor product of single qubit spaces, here pure
states can be represented as superpositions:

|ψ〉 = c00|00〉 + c01|01〉 + c10|10〉 + c11|00〉, (56)
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where
∑

ij |cij |2 = 1. In the same way the n-qubit state is represented in the tensor
product of n one-qubit state spaces (it has the dimension 2n) :

|ψ〉 =
∑

xj =0,1

cx1...xn |x1 . . . xn〉, (57)

where
∑

xj =0,1 |cx1...xn |2 = 1. We remark that the dimension of the n qubit state
space grows exponentially with the growth of n. The natural question about possible
physical realizations of such multi-dimensional state spaces arises. The answer to it
is not completely clear; it depends very much on the used interpretation of the wave
function.

15 Entanglement

Consider the tensor product H = H1 ⊗ H2 ⊗ · · · ⊗ Hn of Hilbert spaces
Hk, k = 1, 2, . . . , n. The states of the space H can be separable and non-separable
(entangled). We start by considering pure states. The states from the first class,
separable pure states, can be represented in the form:

|ψ〉 = ⊗n
k=1|ψk〉 = |ψ1 . . . ψn〉, (58)

where |ψk〉 ∈ Hk. The states which cannot be represented in this way are called
non-separable or entangled. Thus mathematically the notion of entanglement is very
simple, it means impossibility of tensor factorization.

For example, let us consider the tensor product of two one-qubit spaces. Select
in each of them an orthonormal basis denoted as |0〉, |1〉. The corresponding
orthonormal basis in the tensor product has the form |00〉, |01〉, |10〉, |11〉. Here we
used Dirac’s notations, see Sect. 13, near the end. Then the so-called Bell’s states

|�+〉 = (|00〉 + |11〉)/√2, |�−〉 = (|00〉 − |11〉)/√2; (59)

|�+〉 = (|01〉 + |10〉)/√2, |�−〉 = (|01〉 − |10〉)/√2 (60)

are entangled.
Although the notion of entanglement is mathematically simple, its physical

interpretation is one of the main problems of modern quantum foundations. The
common interpretation is that entanglement encodes quantum nonlocality, the
possibility of action at the distance (between parts of a system in an entangled
state). Such an interpretation implies the drastic change of all classical physical
presentations about nature, at least about the microworld. In the probabilistic terms
entanglement induces correlations which are too strong to be described by classical
probability theory. (At least this is the common opinion of experts in quantum
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information theory and quantum foundations.) Such correlations violate the famous
Bell inequality which can be derived only in classical probability framework. The
latter is based on the use of a single probability space covering probabilistic data
collected in a few incompatible measurement contexts.

Now consider a quantum state given by density operator ρ in H. This state is
called separable if it can be factorized in the product of density operators in spaces
Hk :

ρ = ⊗n
k=1ρk, (61)

otherwise the state ρ is called entangled. We remark that an interpretation of
entanglement for mixed states is even more complicated than for pure states.

16 Violation of Formula of Total Probability in Two-Slit
Experiment

Consider the famous two-slit experiment with the symmetric setting: the source of
photons is located symmetrically with respect to two slits, Fig. 1.

Consider the following pair of observables a and b. We select a as the “slit
passing observable,” i.e., a = 0, 1, see Fig. 1 (we use indexes 0, 1 to be close to
qubit notation) and observable b as the position on the photo-sensitive plate, see
Fig. 2. We remark that the b-observable has the continuous range of values, the
position x on the photo-sensitive plate. We denote P(a = i) by P(i) (i = 0, 1), and

photo-sensitive plate

slit1

slit0

photon

Fig. 1 Experimental setup
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photo-sensitive plate

slit1

photon

slit0

Fig. 2 Context with both slits is open

P(b = x) by P(x). Physically the a-observable corresponds to measurement
of position (coarse grained to “which slit?”) and the b-observable represents
measurement of momentum.

In quantum foundational studies, various versions of the two-slit experiment
have been successfully performed, not only with photons, but also with electrons
and even with macroscopic molecules (by Zeilinger’s group). All those experiment
demonstrated matching with predictions of QM. Experimenters reproduce the
interference patterns predicted by QM and calculated by using the wave functions.

The probability that a photon is detected at position x on the photo-sensitive plate
is represented as

P(x) =
∣∣∣∣

1√
2
ψ0(x) + 1√

2
ψ1(x)

∣∣∣∣
2

= 1

2
|ψ0(x)|2 + 1

2
|ψ1(x)|2 + |ψ0(x)| |ψ1(x)| cos θ, (62)

where ψ0 and ψ1 are two wave functions, whose squared absolute values |ψi(x)|2
give the distributions of photons passing through the slit i = 0, 1, see Figs. 3 and 4.
Here we explored the rule of addition of complex probability amplitudes, a quantum
analog of the rule of addition of probabilities. This rule is the direct consequence of
the linear space structure of quantum state spaces.

The term

|ψ0(x)| |ψ1(x)| cos θ
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photo-sensitive plate

slit1

slit0

photon

Fig. 3 Context with one slit is closed-I

photo-sensitive plate

slit1

slit0

photon

Fig. 4 Context with one slit is closed-II

implies the interference effect of two wave functions. Let us denote |ψi(x)|2 by
P(x|i), then Eq. (62) is represented as

P(x) = P(0)P(x|0) + P(1)P(x|1) + 2
√

P(0)P(x|0)P(1)P(x|1) cos θ. (63)

Here the values of probabilities P(0) and P(1) are equal to 1/2 since we consider the
symmetric settings. For general experimental settings, P(0) and P(1) can be taken
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as the arbitrary nonnegative values satisfying P(0) + P(1) = 1. In the above form,
the classical probability law (FTP)

P(x) = P(0)P(x|0) + P(1)P(x|1) (64)

is violated, and the term of interference 2
√

P(x|0)P(0)P(x|1)P(1) cos θ specifies
the violation.

The crucial point is that the two-slit experiment has the multi-contextual
structure: Ci, i = 0, 1, only the ith slit is open, and C01, both slits are open,
see Figs. 3, 4, and 2. Comparison of possibilities is represented as comparison of
the corresponding probability distributions P(x|i), P(x). In the contextual notations
they can be written as

pb
Ci

(x) ≡ P(b = x|Ci), p
b
C01

(x) ≡ P(b = x|C01).

Here conditioning is not classical probabilistic event conditioning, but context
conditioning: different contexts are mathematically represented by different
Kolmogorov probability spaces. The general contextual probability theory including
its representation in complex Hilbert space is presented in very detail in my
monograph [37].
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