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Abstract This chapter provides a brief introduction to procedures for estimating
Hilbert space multi-dimensional (HSM) models from data. These models, which
are built from quantum probability theory, are used to provide a simple and coherent
account of a collection of contingency tables. The collection of tables are obtained
by measurement of different overlapping subsets of variables. HSM models provide
a representation of the collection of the tables in a low dimensional vector space,
even when no single joint probability distribution across the observed variables can
reproduce the tables. The parameter estimates from HSM models provide simple
and informative interpretation of the initial tendencies and the inter-relations among
the variables.
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1 Introduction

This chapter provides an introduction to computational tools, based on what we call
Hilbert space multi-dimensional theory, which can be used for representing data
tables from multiple sources by a single coherent vector space and linear operations
on the space. For more complete descriptions of this theory, see the original articles
by the authors Busemeyer and Wang [8, 9], which include detailed worked out
examples. Here we plan to outline the main steps of building a program and also
point to computer programs available to process collections of data tables.
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Fig. 1 Illustration of a
collection of contingency data
tables
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Figure 1 illustrates the basic problem that we wish to address. Suppose large
medical data sites provide information about co-occurrence of various kinds of
symptoms, labeled A, B, C, and D in the figure. The symptoms can be manifest
to different degrees. For example, symptom B is binary valued, symptom A has
three levels, symptom C has four degrees, and symptom D has five rating values.
Suppose different methods for querying the sites yield different contingency tables
summarizing co-occurrence of pairs of variables and co-occurrence of triples of
variables, which produce the tables shown in the figure. The cells of the contingency
tables contain the frequency of a combination of symptoms. For example, the A by
B by C table is a 3 by 2 by 4 table, and each cell contains the frequency that a
particular combination of values was assigned to the variables A, B, C, using one
query method.

The following problem arises from considering all these contingency tables.
How does a data scientist integrate and synthesize these seven different tables into
a compressed, coherent, and interpretable representation? This is a problem that
often arises in relational database theory [1]. It is common to apply categorical data
analysis [3] to a single table (e.g., a single A by B by C by D table). However,
the problem is different here because there are a collection of seven tables of
varying dimensions rather than a single four-way table. Alternatively, one could try
Bayesian networks, which require assuming that all the tables are generated from a
single latent four-way joint distribution [10]. Unfortunately, however, it may be the
case that no four-way joint distribution exists that can reproduce all the observed
tables! This occurs when the data tables violate consistency constraints, forced by
marginalization, upon which Bayes nets rely to fit the tables [11].

Hilbert space multi-dimensional (HSM) models are based on quantum probabil-
ity theory [13]. They provide a way to account for a collection of tables, such as
illustrated in Fig. 1, even when no four-way joint distribution exists. HSM models
provide an estimate of the target population’s initial tendencies in the form of a
state vector, and HSM models represent the inter-relationships between the different
variables (symptoms in this example) using “rotations” of the basis of the vector
space.
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This chapter is organized as follows: First, we summarize the basic principles of
quantum probability theory, then we summarize the steps required to build an HSM
model, and finally we refer to programs available on the web for applying an HSM
model to real data.

2 Basics of Quantum Probability Theory

The idea of applying quantum probability to the field of judgment began from
several directions [2, 4, 5, 14]. The first to apply these ideas to the field of
information retrieval was by van Rijsbergen [18]. For more recent developments
concerning the application of quantum theory to information retrieval, see [16]. van
Rijsbergen argues that quantum theory provides a sufficiently general yet rigorous
formulation for integration of three different approaches to information retrieval—
logical, vector space, and probabilistic. Another important reason for considering
quantum theory is that human judgments (e.g., judging presence of symptoms by
doctors) have been found to violate rules of Kolmogorov probability, and quantum
probability provides a formulation for explaining these puzzling findings (see, e.g.,
[7]).

HSM models are based on quantum probability theory and so we need to briefly
review some of the basic principles used from this theory.1

In quantum theory, a variable (e.g., variable A) is called an observable, which
corresponds to the Kolmogorov concept of a random variable. The pair of a
measurement of a variable and an outcome generated by measuring a variable is an
event (e.g., measurement of variable A produces the outcome 3, so that we observe
A = 3).

Kolmogorov theory represents events as subsets of a sample space, �. Quantum
theory represents events as subspaces of a Hilbert space H .2 Each subspace, such
as A, corresponds to an orthogonal projector, denoted PA for subspace A. An
orthogonal projector is used to project vectors into the subspace it represents.

In Kolmogorov theory, the conjunction “A and B” of two events, A and B, is
represented by the intersection of the two subsets representing the events (e.g.,
(A = 3) ∩ (B = 1)). In quantum theory, a sequence of events, such as A and
then B, denoted AB, is represented by the sequence of projectors PBPA. If the
projectors commute, PAPB = PBPA, then the product of the two projectors is a
projector corresponding to the subspace A ∩ B, that is, PBPA = P(A ∩ B); and
the events A and B are said to be compatible. However, if the two projectors do not
commute, PBPA �= PAPB , then neither their product is a projector, and the events

1See [7, 15, 16, 18] for tutorials for data and information scientists.
2Technically, a Hilbert space is a complex valued inner product vector space that is complete. Our
vectors spaces are finite, and so they are always complete.
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are incompatible. The concept of incompatibility is a new contribution of quantum
theory, which is not present in Kolmogorov theory.

Kolmogorov theory defines a state as a probability measure p that maps events
to probabilities. Quantum theory uses a unit length state vector, here denoted ψ , to
assign probabilities to events.3 Probabilities are then computed from the quantum
algorithm

p(A) = ‖PAψ‖2 . (1)

Both Kolmogorov and quantum probabilities satisfy the properties for an additive
measure. In the Kolmogorov case, p(A) ≥ 0, p(�) = 1, and if (A ∩ B) = 0, then
p(A ∪ B) = p(A) + p(B).4 In the quantum case, p(A) ≥ 0, p(H) = 1, and if
PAPB = 0, then p(A ∨ B) = p(A) + p(B).5 In fact, Eq. (1) is the unique way
to assign probabilities to subspaces that form an additive measure for dimensions
greater than 2 [12].

Kolmogorov theory defines a conditional probability function as follows:

p(B|A) = p(A ∩ B)

p(A)
,

so that the joint probability equals p(A ∩ B) = p(A)p(B|A) = p(B)p(A|B) =
p(B∩A), and order does not matter. In quantum theory, the corresponding definition
of a conditional probability is

p(B|A) = ‖PBPAψ‖2

p(A)
,

and so the probability of the sequence AB equals p(AB) = p(A) · p(B|A) =
‖PBPAψ‖2. In the quantum case, this definition of conditional probability incor-
porates the property of incompatibility: if the projectors do not commute, so that
PAPB �= PBPA, then p(AB) �= p(BA), and order of measurement matters.
Extensions to sequences with more than two events follow the same principles for
both classical and quantum theories. For example, the quantum probability of the
sequence (AB)C equals ‖PC (PBPA) ψ‖2.

3A more general approach uses what is called a density operator rather than a pure state vector, but
to keep ideas simple, we use the latter.
4∪ is the union of subsets A,B.
5∨ is the span of subspaces A,B.
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3 Steps to Build an HSM Model

An HSM model is constructed from the following six steps:

1. Determine the compatibility and incompatibility relations among the variables.
2. Determine the dimension of the Hilbert space based on assumed compatibility

relations.
3. Define the initial state given the dimension of the Hilbert space.
4. Define the projectors for the variables using unitary transformations to change

the basis.
5. Compute the choice probabilities given the initial state and the projectors.
6. Estimate model parameters, compare fit of models.

3.1 How to Determine the Compatibility Relations

There are two ways to investigate and determine compatibility between a pair
of variables. The direct way is to empirically determine whether or not the joint
frequencies change depending on order of presentation. If there are order effects,
then that is evidence for incompatibility. An indirect way is to compare fits of
models that assume different compatibility relations. This indirect methods might
be needed if no empirical tests of order effects are available.

3.2 How to Determine the Dimension

The basic idea of HSM modeling is to start with the minimum dimension required,
and then add dimensions only if needed to obtain a satisfactory fit to the data.
Of course this model comparison and model selection process needs to provide a
reasonable balance between accuracy and parsimony. For example, when fitting the
models using maximum likelihood estimation, model comparison indices such as
Bayesian information criterion or Akaike information criterion can be used.

The minimum dimension is determined by the maximum number of combina-
tions of values produced by the maximum number of compatible variables. For
example, in Fig 1, suppose variables B and C are compatible with each other, and
variables A and D are compatible with each other, but the pair B,C is incompatible
with the pair A,D. In this case, there are at most two compatible variables. The B,C
pair produces 2 · 4 = 8 combinations of values, but the A,D pair produces 3 · 5 =
15 combinations. The minimum dimension needs to include all 15 combinations
produced by the A,D pair. Therefore, the minimum dimension is 15 in this example.
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3.3 Define the Initial State

The compatible variables can be chosen to form the basis used to define the
coordinates of the initial state ψ . In this example, the space is 15 dimensional,
and the compatible pair, A,D can be chosen to define the initial basis for the unit
length 15 × 1 column matrix ψ . Each coordinate ψij represents the amplitude
corresponding to the pair of values (A = i,D = j), i = 1, 2, 3; j = 1, 2, . . . , 5,

for representing the initial state. The squared magnitude of a coordinate equals
the probability of the combination, p(A = i,D = j) = ∣

∣ψij

∣
∣2. In general, the

coordinates can be complex, but in practice they are usually estimated as real values.

3.4 Define the Projectors

The orthogonal projector for an event that is defined in the initial basis is simply
an indicator matrix that picks out the coordinates that correspond to the event. For
example, using the previous example, the projector for the event (A = i,D = j)

is simply PA=i,D=j = diag
[

0 · · · 1 · · · 0
]

, where the one is located in the row
corresponding to (i, j), which is a one-dimensional projector. The projector for the
event (A = i) equals PA=i = ∑

j PA=i,D=j and the projector for the event (D = j)

equals PD=j = ∑

i PA=i,D=j , and these are multi-dimensional projectors.
The projectors for the incompatible events require changing the basis from the

original basis to the new basis for the incompatible variables. For example, suppose
we wish to define the events for the variables B,C. If we originally defined the
initial state ψ in the B,C basis from the start, then these projectors would simply
be defined by indicator matrices as well. Recall that the dimension of the space is
15, and there are only 8 combination of values for B,C. Therefore one or more
of the combinations for B,C need to be defined by a multi-dimensional projector,
Mkl , which is simply an indicator matrix, such as Mkl = diag

[

1 0 . . . 1 0
]

that
picks out two or more coordinates for the event (B = k, C = l). The collection of
indicator matrices, {Mkl , k = 1, 2; l = 1, 2, 3, 4}, forms a complete orthonormal
set of projectors. The projector for the event (B = k), in the B,C basis, is simply
p(B = k) = ∑

l MB=k,C=l , and the projector for (C = l) in the B,C basis is
p(C = l) = ∑

k MB=k,C=l .

We did not, however, define the initial state ψ in terms of the B,C basis. Instead
we defined the initial state ψ in terms of the A,D basis. Therefore we need to “rotate”
the basis from the A,D basis to the B,C basis to form the B,C projectors as follows:
PB=k,C=l = U ·Mjk ·U†, where U is a unitary matrix (an orthonormal matrix). Now
the projector for the event (B = k), in the A,D basis, is p(B = k) = ∑

l PB=k,C=l ,
and the projector for (C = l) in the A,D basis is p(C = l) = ∑

k PB=k,C=l .

Any unitary matrix can be constructed from a Hermitian matrix H = H † by the
matrix exponential U = exp(−i · H). Therefore, the most challenging problem is
to construct a Hermitian matrix that captures the change in bases. This is facilitated
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by using substantive theory from the domain under investigation. We describe this
step in more detail in the original articles.

3.5 Compute the Choice Probabilities

Once the projectors have been defined, it is straightforward to compute the prob-
abilities for any contingency table using the quantum algorithm described earlier.
For example, the probabilities for the AB table are obtained from the equation
p(A = i, B = j) = ∥

∥PB=jPA=iψ
∥
∥

2, and the probabilities for the A,B,D table are

obtained from the equation p(A = i, B = k,D = j) = ∥
∥PD=jPB=kPA=i · ψ

∥
∥2.

3.6 Estimate Model Parameters, Compare and Test Models

Once the model has been defined, the parameters of the initial state ψ and the
parameters in the Hamiltonian matrix H can be estimated from the frequencies
contained within contingency table data. This can be accomplished by using
maximum likelihood estimation procedures. Suppose the dimension equals n (n =
15 in our example). If we use a real valued initial state, then initial state has n − 1
parameters (because the state is restricted to unit length). If the Hamiltonian is
restricted to real values, then the Hamiltonian has (n · (n + 1)/2) − 1 parameters
(one diagonal entry is arbitrary). However, often it is possible to use a lower number
of parameters for the Hamiltonian. Model comparison methods, such as Bayesian
information criterion or Akaike information criterion, can be used to compare
models for accuracy adjusted for parsimony (defined by number of parameters).

HSM models can also be empirically tested using a generalization criterion. After
estimating the projectors from two-way tables shown in Fig. 1, the model can be
used to make a priori predictions for table A by D or for a three-way table such as
A by B by D. This provides strong empirical tests of the model predictions.

The model also provides interpretable parameters to help understand the complex
array of contingency tables. The estimate of the initials state ψ provides the initial
tendencies to respond to questions. In the previous example, ψ represents the
probabilities to respond to the A,D questions. The rotation, U†ψ gives the initial
tendencies to respond to the B,C questions. The squared magnitude of an entry in
the unitary matrix,

∣
∣ujk

∣
∣
2, represents the squared correlation between a basis vector

representing an event in one basis (e.g., an event in the A,D basis) and a basis
vector representing an event in another basis (e.g., the B,C basis). These squared
correlations describe the inter-relations between the variables, independent of the
initial state.
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4 Computer Programs

We have started developing computer programs for fitting HSM models
to different collections of contingency tables. These programs are cur-
rently located at the following site http://mypage.iu.edu/~jbusemey/quantum/
HilbertSpaceModelPrograms.htm.

The site contains a link to some commonly used programs required for all of the
models. It also contains programs designed to fit (a) collections of one and two-way
tables made from binary variables, such as those that appear in [9], (b) one and two-
way tables for variables with 2, 3, 4 values, such as those that appear in [8], (c) a
model for order effects between a pair of variables with a relatively large (e.g., nine
or greater) levels of rating scale values, such as those that appear in [19].

5 Concluding Comments

HSM models provide a simple and low dimensional method for representing
multiple contingency tables formed from measurement of subsets of variables. This
simple representation in low dimensional spaces is achieved by using “rotation” of
the basis vectors to generate new incompatible variables. Bayesian network models
can also be applied to collections of tables; however, these types of models assume
the existence of a complete joint distribution of the observed variables, and it is
often the case that no complete joint distribution can reproduce the tables because
of violations of constraints imposed by marginalization. HSM models can be applied
to collections of tables even when no complete joint distribution exists to reproduce
the collection. Of course, HSM models do not provide the only way, and there are
other probabilistic models that could be considered such as the use of probabilistic
data base programming methods [6]. However, HSM models have been shown to
provide successful accounts of actual empirical data [8, 9, 17, 19], as well as the
possibility for providing new a priori predictions for new data, which is not the case
for probabilistic database programming methods.
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