
Chapter 13
Pituitary Transcription Factor Mutations
Leading to Hypopituitarism

Peter Gergics

Abstract Congenital pituitary hormone deficiency is a disabling condition. It is part
of a spectrum of disorders including craniofacial midline developmental defects
ranging from holoprosencephaly through septo-optic dysplasia to combined and
isolated pituitary hormone deficiency. The first genes discovered in the human
disease were based on mouse models of dwarfism due to mutations in transcription
factor genes. High-throughput DNA sequencing technologies enabled clinicians and
researchers to find novel genetic causes of hypopituitarism for the more than three
quarters of patients without a known genetic diagnosis to date. Transcription factor
(TF) genes are at the forefront of the functional analysis of novel variants of
unknown significance due to the relative ease in in vitro testing in a research lab.
Genetic testing in hypopituitarism is of high importance to the individual and their
family to predict phenotype composition, disease progression and to avoid life-
threatening complications such as secondary adrenal insufficiency.

This chapter aims to highlight our current understanding about (1) the contribu-
tion of TF genes to pituitary development (2) the diversity of inheritance and
phenotype features in combined and select isolated pituitary hormone deficiency
and (3) provide an initial assessment on how to approach variants of unknown
significance in human hypopituitarism. Our better understanding on how transcrip-
tion factor gene variants lead to hypopituitarism is a meaningful step to plan
advanced therapies to specific genetic changes in the future.
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List of Abbreviations

ACTH Adrenocorticotropic hormone
AL Anterior lobe of pituitary
Bmp Bone morphogenetic protein
CGA Choriogonadotropin alpha subunit
CNS Central nervous system
CPHD Combined pituitary hormone deficiency
Fgf Fibroblast growth factor
FSH Follicle-stimulating hormone
GH Growth hormone
GHD Growth hormone deficiency
GR Glucocorticoid receptor
HH Hypogonadotropic hypogonadism
IAD Isolated ACTH deficiency
IGHD Isolated growth hormone deficiency
IL Intermediate lobe of pituitary
LH Luteinizing hormone
MSH-α Melanocyte-stimulating hormone, alpha
ONH Optic nerve hypoplasia
PC(SK) Proprotein convertase (subtilisin/kexin)
PL Posterior lobe of pituitary
POMC Pro-opiomelanocortin
PRL Prolactin
RAR Retinoic acid receptor
Shh Sonic hedgehog
TF Transcription factor
TR Thyroid hormone receptor
TSH Thyroid-stimulating hormone
VUS Variants of unknown significance
WES Whole exome sequencing
Wnt Wingless-type MMTV integration site family/beta-catenin

13.1 Introduction

13.1.1 Incidence and Diagnosis of Human Hypopituitarism

Hypopituitarism affects around 1 in 4000 live births (Castinetti et al. 2012, 2008a;
Regal et al. 2001). Combined pituitary hormone deficiency (CPHD) is defined by the
deficiency of GH (growth hormone) and at least one more hormone of TSH, ACTH,
LH, FSH, PRL (thyroid-stimulating hormone, adrenocorticotropic hormone,
luteinizing hormone, follicle-stimulating hormone, and prolactin, respectively). The
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incidence of CPHD is estimated to be 1:8000 according to the Genetics Home
Reference at the National Institutes of Health (ghr.nlm.nih.gov). The most common
pituitary hormone deficient is GH in 1:4000–1:10,000 individuals (Alatzoglou and
Dattani 2010), while other isolated pituitary hormone deficiencies are rare. Congen-
ital hypothyroidism has an incidence of 1:3000 (Grosse and Van Vliet 2011), isolated
hypogonadotropic hypogonadism (isolated HH) has an incidence under 1:10,000 and
is frequently associated with anosmia/hyposmia (Hayes et al. 1998; Seminara et al.
2000). The incidence of congenital isolated ACTH (corticotrope) deficiency (IAD) is
largely unknown (Patti et al. 2018). Overall, this places hypopituitarism in the upper
end of rare diseases (Richter et al. 2015).

Genetic factors substantially influence height, and short stature is a common
cause for referrals to endocrinologists (Pfäffle 2006). The diagnosis of pituitary
hormone deficiency is based on guidelines by professional organizations and med-
ical institutes (Ergin et al. 2015). We refer to these for specific details regarding the
clinical diagnosis of growth hormone deficiency (GHD) in children (Chinoy and
Murray 2016), GHD in adults (Molitch et al. 2011), congenital HH (Boehm et al.
2015) and congenital central hypothyroidism (Leger et al. 2014). Guidelines are not
yet established for isolated ACTH deficiency (IAD) (Andrioli et al. 2006) or PRL
deficiency in particular. The focus of this chapter is to explore the non-acquired/
genetic causes with special attention to transcription factor (TF) genes.

Transcription factors are widely recognized as regulators of pituitary develop-
ment. Mouse models provided the fundamental evidence for their role in pituitary
development; however, not all of the orthologous human genes turned out to be
involved in human pituitary disease. An extensive list of TFs involved in vertebrate
pituitary development is provided in Table 13.1 [TF classification is based on http://
tfclass.bioinf.med.uni-goettingen.de (Wingender et al. 2015)].

Around 2000 TFs are known today. Nearly a third of them are known to have
functions during development. They are classified based on protein domains and
about 80% of all TFs have C2H2-zinc-finger, homeodomain or helix-loop-helix
motifs (Vaquerizas et al. 2009). Most of the genes currently known in the patho-
genesis of human isolated growth hormone deficiency (IGHD) or CPHD are TFs
discussed in this review. Genes predominantly involved in HH are discussed else-
where (Maione et al. 2018). Also, those genes that are involved in signaling (BMP4,
CDON, FGF8, FGFR1, GPR161, HHIP, IGSF1, PROKR2, SHH, WDR11), RNA
processing (EIF2B5, HNRNPU, POLR3A, RBM28, RNPC3), and other processes
(CHD7, IFT72, 52KCNQ1, PNPLA6, ZSWIM6) (Di Iorgi et al. 2016; Fang et al.
2016b; Norppa et al. 2018; Tommiska et al. 2017) are not the focus of this review.
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Table 13.1 Transcription factors in pituitary development

TF superclass
TF class and
family

Human
gene Full name

Human
chromosomal
localization

Helix-turn-helix HD-LIM-type LHX3
LHX4
ISL1

LIM homeobox 3
LIM homeobox 4
ISL LIM homeobox 1

9q34.3
1q25.2
5q11.1

HD-NK NKX2–1 NK2 homeobox 1 14q13.3

HD-paired PAX6 Paired box 6 11p13

HD-paired-
related

PROP1
HESX1
OTX2
PITX2
PITX1

PROP paired-like homeo-
box 1
Homeobox, ES cell
expressed 1
Orthodenticle homeobox 2
Paired-like homeodomain 2
Paired-like homeodomain 1

5q35.3
3p14.3
14q22.3
4q25
5q31.1

HD-POU POU1F1 POU class 1 homeobox 1 3p11.2

HD-SINE SIX3
SIX6

Sine oculis homeobox
homolog 3
Sine oculis homeobox
homolog 6

2p21
14q23.1

HD-TALE
type-PKNOX

TGIF1 TGFB-induced factor
homeobox 1

18p11.31

HD-VAX VAX1 Ventral anterior homeobox
1

10q25.3

Forkhead and
winged helix

FOXA2
FOXL2
FOXO1

Forkhead box A2
Forkhead box L2
Forkhead box O1

20p11.21
3q22.3
13q14.11

Helix-loop-helix Per-Arnt-Sim
(PAS)-ARNT

ARNT2 Aryl-hydrocarbon receptor
nuclear translocator 2

15q25.1

Basic helix-loop-
helix (bHLH)

MyoD-ASC-
related

ASCL1 Achaete-scute family
bHLH transcription factor 1

12q23.2

Tal-related-
Neurogenin-
ATO

NEUROD1
NEUROD4

Neuronal differentiation 1
Neuronal differentiation 4

2q31.3
12q13.2

All alpha helical HMG-SOX-
related-group
B

SOX2
SOX3

SRY (sex determining
region Y)-box 2
SRY (sex determining
region Y)-box 3

3q26.33
Xq27.1

HMG-TCF-
related

TCF7L1 Transcription factor 7-like 1 2p11.2

Basic leucine
zipper

CEBP related-
PAR

TEF Thyrotrophic embryonic
factor

22q13.2

(continued)
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13.1.2 Why Does Genetic Diagnosis Matter
in Hypopituitarism?

About 15% of CPHD cases have mutations in PROP1, POU1F1, LHX3, LHX4, or
HESX1 but systematic screens have not been done for all genes implicated in the
disorder (De Rienzo et al. 2015; Fang et al. 2016b). Genetic diagnosis in hypopitu-
itarism has consequences for disease progression and family screening. The interna-
tional GENHYPOPIT network—with more than 1200 patients (Brue 2018)—reported
that only ~25% of their GHD patients were diagnosed neonatally, 32% during puberty,
and about 10% well into adulthood (Brue et al. 2017). Pituitary hormone deficiency
can evolve over the course of time; therefore, intermittent screening for new hormone
deficiency is warranted. For example, IGHD diagnosed in childhood can evolve to

Table 13.1 (continued)

TF superclass
TF class and
family

Human
gene Full name

Human
chromosomal
localization

Zn-finger (ZnF) C2H2-ZnF-
three-ZnF-
Kruppel-
related-EGR

EGR1 Early growth response 1 5q31.2

C2H2-ZnF-
more than
three adjacent
ZnF

GLI2
GLI3
ZIC2

GLI family zinc finger 2
GLI family zinc finger 3
ZIC family member 2

2q14.2
7p14.1
13q32.3

C2H2-ZnF-
multiple dis-
persed ZnF

INSM1 Insulinoma-associated 1 20p11.23

C4-ZnF-
FTZF1-related

NR5A1 Nuclear receptor subfamily
5, group A, member 1

9q33.3

C4-ZnF-
GATA-double

GATA2 GATA binding protein 2 3q21.3

Immunoglobulin
fold

RHR-NFKB-
related

NFKB2 Nuclear factor of kappa
light polypeptide gene
enhancer in B-cells
2 (p49/p100)

10q24.32

T-box-
Brachyury-
related

TBX19 T-box 19 1q24.2

CEBP CCAAT/enhancer-binding protein beta, HD homeodomain, LIM Lin-11, Isl-1, Mec-3, HMG
high mobility group, FTZF1 Fushi tarazu transcription factor-1, GATA ability to bind to GATA
nucleotide sequence, NK homologous to the naked cuticle or 93D/E gene cluster in Drosophila,
PAR proline and acidic amino acid-rich, PKNOX Pre-B-Cell Leukemia Homeobox (PBX)/Knotted
1 Homeobox 1, POU Pit1, OCT1/2 unc-86, RHR Rel homology region, SINE sine oculis, TALE
Three Amino acid Loop Extension, TGFB Transforming growth factor beta, ZIC zinc finger protein
of the cerebellum
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CPHD with TSH and LH deficiency in young adulthood, and with ACTH deficiency
later in adulthood (>30 year) (Brue et al. 2017; Coya et al. 2007; Halasz et al. 2006).
While some gene deficiencies present with a consistent phenotype (PROP1,
POU1F1), incomplete penetrance and variable expressivity pose a challenge in
predicting pituitary disease progression and extra-pituitary manifestations (i.e.,
LHX4, GLI2). The size of the pituitary is often smaller than normal in patients with
hypopituitarism; however, patients with PROP1 variants may exhibit pituitary hyper-
plasia and apparent dynamic changes in the organ size (waxing and waning)
(Obermannova et al. 2011; Turton et al. 2005a). The diagnosis of PROP1 variants
in these cases can prevent invasive procedures and spontaneous regression can be
anticipated (Dattani 2005). Additionally, the rationale for genetic testing of close
family members is quintessential to prevent serious/life-threatening conditions such
as secondary adrenal insufficiency (Pekic et al. 2011).

13.1.3 Genetic Diagnostics in Hypopituitarism

Endocrinologists and medical geneticists typically share the responsibility of
establishing the genetic diagnosis in hypopituitarism. There is no “state of the art”
hypopituitarism-specific genetic diagnostics guideline published by a medical soci-
ety to date. Family history is the most essential component in the analysis. To
identify the genetic origin for hypopituitarism it is important to consider several
genetic models: (1) large families with multiple affected individuals suggesting a
dominant inheritance; (2) consanguineous families where the odds for recessive
disorders is increased; or (3) trios with an affected child with at least one unaffected
parent, suggesting incompletely penetrant dominant, recessive, or de novo variants
in the proband. In addition, people from the Iberian Peninsula or Lithuania have a
higher probability of carrying one of the two founder mutations of PROP1
(Dusatkova et al. 2016).

The technology used to detect genetic changes includes single gene Sanger
sequencing, panel sequencing of the most well-established genes, or next-generation
sequencing technologies to assess coding regions genome-wide (Whole Exome
Sequencing—WES). Single gene sequencing revealed that around 11% of CPHD
patients had variants in PROP1, whereas POU1F1, LHX4, LHX3, and HESX1 were
around 1% each, respectively (Fang et al. 2016b). In most diseases the overall
genetic diagnosis “solve rate” of WES is ~30% and that would be an excellent
progress from the current 15% at best with traditional methods (Trujillano et al.
2017). Papers reporting on results with whole genome sequencing are scarce in
hypopituitarism. Only a few publications provide insight into the incidence of larger,
chromosomal changes. Copy number variations account for ~8% of the congenital
hypopituitarism cases (Correa et al. 2018; Dateki et al. 2010a; Takagi et al. 2015).
Recently, a targeted version of WES using the principle of molecular inversion
probes was reported to screen 51 patients for 30 known and 37 candidate genes,
which has excellent perspectives in screening and identifying more novel variants
(Perez Millan et al. 2018).
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13.2 Pituitary Gland Structure, Function, and Development

13.2.1 The Structure of the Pituitary: “One Gland Above All”

The pituitary is the major neuroendocrine gland serving as a key hub between the
central nervous system (CNS) and the majority of endocrine organs. The mammalian
pituitary can be divided into three lobes: anterior (AL), intermediate (IL), and
posterior (PL). The AL and IL are derived from the evaginating oral ectoderm
(Rathke’s cleft) and ensphere both the stalk and the anterolateral aspect of the
PL. The IL is rudimentary in humans and a common site for cystic lesions (Rathke’s
cleft cysts). A fine mesh of a portal vessel system in the anterior lobe allows direct
communication from the hypothalamus to the pituitary through blood flow. The
axon terminals are surrounded by glial-like cell types (pituicytes) and form the
posterior lobe (PL) (Goto et al. 2015).

13.2.2 The Basic Function of the Pituitary

Pituitary function is essential in growth, fertility, lactation, stress response, and
general homeostasis. The anterior lobe has five major cell types producing six
major hormones: somatotrophs (producing GH); lactotrophs (PRL); melano-
corticotropes (POMC) and its cleavage products: ACTH, α-MSH; thyrotrophs
(TSH); and gonadotrophs (LH, FSH). TSH, FSH, and LH are heterodimers of the
choriogonadotropin alpha subunit (CGA) and specific beta subunits TSHB, FSHB,
and LHB, respectively. The proportion of these cell types is unequal in the adult
pituitary such as ~40% are somatotrophs, ~40% lactotrophs, ~10% gonadotrophs,
10% corticotropes, and only 5% are thyrotropes (Kulig et al. 1998). While these
make up the majority of resident cells in the AL, there is a fraction that is hormone
negative and includes non-differentiated stem cells, progenitor cells, folliculostellate
cells, endothelial cells, pericytes, and mesenchymal cells. Defects leading to the loss
of predominant cell types can frequently result in a hypoplastic AL (Gangat and
Radovick 2017). The PL contains the axon terminals of hypothalamic neurons in the
supraoptic and paraventricular nuclei producing arginine-vasopressin (AVP) and
oxytocin (OXT). While AVP and OXT are stored in the terminals they are
surrounded by a subset of glial-like cells (Goto et al. 2015). Single cell sequencing
technologies did not reveal a new major physiological cell type so far but a better
resolution of known cell types important in critical stages of development, adapta-
tion to stimuli and neoplasia are highly anticipated (Cheung et al. 2018).
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13.3 Lessons from Mouse Pituitary Development to Human
Hypopituitarism

13.3.1 Early Patterning of the Pituitary Primordium

Spatiotemporal expression of TFs in the ventral diencephalon and the oral ectoderm
results in the formation of the AL/IL/PL between mouse E9 and E12 days. In
addition to a severe pituitary abnormality, a wide spectrum of features is present
when specific TFs are disrupted. Defects in Pitx2, Isl1, Nkx2.1 result in complex
anomalies involving the CNS, the eyes, and multiple non-ectodermal organs such as
the heart and the thyroid. Hesx1, Vax1, Pax6, Otx2, Six3, Six6 deficient mice present
with CNS, eye, and other malformations predominantly in the head region (McCabe
and Dattani 2014). Others show CNS abnormalities and disorders affecting the
ventral motor neurons [Lhx3/Lhx4, (Gergics et al. 2015)], segmental bone formation
[Gli2, (Haddad-Tovolli et al. 2015)] or the gonads [Sox3, (Rizzoti et al. 2004)]. Sox2
is essential in the specification of all pituitary hormone producing and
folliculostellate cells and is considered as a signature pituitary stem cell marker
(Fauquier et al. 2008). Sox2/Sox9 co-expressing cells are regarded as committed
progenitor cells in the pituitary (Rizzoti et al. 2013).

Pituitary organogenesis and hormone cell specification are outlined in Figs. 13.1
and 13.2.

Fig. 13.1 Schematic development of the pituitary in the mouse and human in the midsagittal
plane. By mouse embryonic day E16.5, the organ reaches its final shape. Several signaling
pathways regulate pituitary development. A continuous Shh expression gets interrupted by Wnt
signaling from the diencephalon at E9.5 and the Rathke’s pouch protrudes from the rooftop of the
oral cavity. These events result in altered expressions of Bmps and Fgfs and define the pituitary
organizer domain of the ventral diencephalon [references within Osmundsen et al. (2017)]. Fgf and
Notch signaling orchestrate the evagination of the hypothalamic floor plate of the third ventricle to
form the infundibulum and the subsequent PL (Goto et al. 2015)
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13.3.2 Progenitor Cell Determination

Prop1 (Prophet of Pit1) is a key pituitary-specific TF (Sornson et al. 1996). All
pituitary hormone producing cell types go through a Prop1 expressing progenitor
stage (Davis et al. 2016). Its main downstream target Pou1f1 is a lineage determining
factor for somatolactotrophs and most thyrotrophs (Li et al. 1990). Insm1 is key in
the differentiation of multiple neuroendocrine cell types. In the absence of Insm1, the
Sox2/Sox9+ pituitary stem/progenitor cell pool is maintained, lineage-specific tran-
scription factors (Pou1f1, Tbx19, NeuroD1, Nr5a1) are moderately expressed, but all
GH, TSH, LH/FSH cells are missing, and PRL, ACTH, and αMSH cell numbers are
drastically reduced (Welcker et al. 2013).

Fig. 13.2 Involvement of transcription factors in the development hormone producing cells in
the pituitary anterior lobe. Multiple transcription factors (TFs) participate in the specification of
pituitary hormone producing cells. Details of the three main phases of pituitary development are
described in the main text. Asterisk: Supernumerary pituitary gland formation is noted in the—Bmp
inhibitor—Noggin�/� (Davis and Camper 2007), Tg(Cga-Fgf8)Rsd (Treier et al. 2001), Six3+/�

Hesx1cre/+ (Gaston-Massuet et al. 2008), and Vax1�/� mice (Bharti et al. 2011). In the differenti-
ation phase certain TFs are needed for multiple lineages. For example,Gata2 is a major factor in the
transcriptional regulation of Cga, Tshb, Lhb (Dasen et al. 1999). An array of steroid/retinoid/thyroid
hormone receptor stimulation is also needed for physiological pituitary hormone expression. Solid
arrows mark upstream/downstream relation between factors but do not necessarily mark direct
regulation. Dotted curve represents repressive relationship. Acronyms in bold are TFs and corre-
spond to the Table 13.1
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13.3.3 Differentiation Phase

The POU1F1 Lineage (Somatolactotrophs and Thyrotrophs)
Pou1f1 (formerly Pit-1) is a signature pituitary transcription factor that directly
regulates the transcription of Gh, Prl, Tshb, and Cga (Gordon et al. 1993; Li et al.
1990). A cluster of thyrotrophs in the rostral tip develops independently of Pou1f1
(Lin et al. 1994). Notable significant other factors for this lineage are: Neurod4
(Ando et al. 2018), Foxo1 (Kapali et al. 2016) for somatotrophs, the estrogen
receptor for lactotrophs (Day et al. 1990), and thyrotroph embryonic factor (TEF)
for thyrotrophs (Drolet et al. 1991).

Gonadotroph and Melanocorticotroph Lineages
Nr5a1 (previously known as Sf1) is a hallmark TF for gonadotroph commitment
(Zhao et al. 2001). Egr1 is expressed predominantly in gonadotrophs (Man et al.
2014). Tbx19 (previously known as Tpit) is a signature TF of melanocorticotrope
commitment and in the transcriptional regulation of POMC (Budry et al. 2011).
Pax7 is a pioneer transcription factor acting as a selector to melanotrope over
corticotrope faith through chromatin remodeling (Budry et al. 2012). The expression
of specific proprotein convertases (PC or PCSK) is key in the differential cleavage of
POMC (Marcinkiewicz et al. 1993).

13.4 Human Gene Variants in Pituitary Hormone
Deficiency

13.4.1 Interpretation of Novel Genes/Variants in the Era
of Whole Exome/Genome Sequencing

The discovery of specific genes in hypopituitarism started in the 1990s with Pou1f1
about 60 years after the discovery of the Snell dwarf (Pou1f1dw/dw) (Li et al. 1990). A
dozen other genes such as PROP1, HESX1, LHX3, LHX4 were described in human
hypopituitarism in the next two decades. Thanks to the Human Genome Project and
the availability of Sanger sequencing, genetic testing improved for patients with
hypopituitarism. Single gene sequencing was amenable as long as a limited number
of candidate genes needed to be screened. As the number of candidate genes
increased, automated panel sequencing took over (Klee et al. 2011).

The rise of next-generation sequencing technologies from around 2007 changed
the landscape dramatically and dozens of novel candidate genes and variants were
identified in a decade (Warr et al. 2015). This flipped the order such that the
candidate genes and variants were found in the human first and then functional
studies in cell lines and vertebrate model organisms were implemented to discern the
pathogenicity and disease mechanism. In this new era, the most difficult task is to
evaluate the many novel genes and variants with unknown significance (VUS).
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Analyzing VUS in patients with hypopituitarism is of utmost importance since
less than 15% of hypopituitarism patients have a genetic diagnosis (De Rienzo et al.
2015; Fang et al. 2016b). Professional organizations such as the American College
of Medical Genetics (ACMG), the Association for Molecular Pathology (AMP)
(Richards et al. 2015), ClinGen Sequence Variant Interpretation (SVI) Working
Group (ClinGen SVI WG) (Strande et al. 2017) in the USA, or the Association for
Clinical Genomic Science in the UK developed recommendations for variant inter-
pretation. This effort is ongoing and expanding to develop some disease-specific
guidelines as well. These recommendations classify VUS based on evidence of
(1) known physiological expression and function, (2) changes in these when the
variant is present, as well as on (3) animal and in vitro model systems and rescue
experiments corresponding to the human disease.

Initial evaluation of VUS includes the assessment of the (1) probability for loss of
intolerance (pLI) of the gene; (2) frequency of the VUS in a matched population
[e.g., Genome Aggregation Database (gnomAD), gnomad.broadinstitute.org (Lek
et al. 2016)]; (3) protein structure and function prediction combined with evolution-
ary conservation [e.g. Combined Annotation Dependent Depletion (CADD), cadd.
gs.washington.edu, (Rentzsch et al. 2019)].

A more detailed analysis includes investigation of (4) spatial and temporal expres-
sion of the mRNA/protein especially in the disease-affected tissues (postnatally, e.g.,
Genotype-Tissue Expression (GTEx) project, gtexportal.org/home/, Tabula Muris,
tabula-muris.ds.czbiohub.org (Schaum et al. 2018), The Human Protein Atlas www.
proteinatlas.org/humanproteome/tissue) or embryonic ages (Brinkmeier et al. 2009;
Ma et al. 2009) (5) knockout vertebrate models (e.g., Mouse Genome Informatics:
www.informatics.jax.org/phenotypes.shtml, The Zebrafish Information Network
zfin.org).

These surveys can support the role of a VUS but further (6) in vitro and (7) in vivo
vertebrate studies are necessary to elevate the level of proof for pathogenicity. The
in vitro studies need to demonstrate the biological difference between the wild type
and the variant protein. The more elegant approach uses cultured native cells from
healthy and affected individuals, or immortalized or engineered cells such as induced
pluripotent stem cells (iPS) or CRISPR-edited cells (Strande et al. 2017). Established
in vitro assays are excellent to use if they are available, but many times there is no
available assay and the validation of a new one can be tedious. In vivo studies still
pose the greatest bottleneck in the analysis as time to generate a mouse carrying the
orthologous VUS can be at least 6 months. Other model systems like the Zebrafish
are excellent for knock-down and rescue experiments in a shorter time frame (Davis
et al. 2014).
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13.4.2 TF Gene Variants in Patients with Hypopituitarism

13.4.2.1 TF Gene Variants in Patients with Combined Pituitary
Hormone Deficiency and Isolated Growth Hormone Deficiency

This chapter has two comprehensive goals for clinicians and researchers who
encounter patients with hypopituitarism: (1) to describe the landscape of genetic
and phenotypic heterogeneity in hypopituitarism and (2) to create a resource for the
first steps of in vitro testing for VUS in select hypopituitarism genes based on
published scenarios.

Phenotypic Heterogeneity in Hypopituitarism
The majority of human genes tested in patients with CPHD, IGHD, IAD to date are
TFs, which are illustrated in Tables 13.2, 13.3, and 13.4. We aimed to collect
information on the genetics and common phenotypic features of around 300 pro-
bands and families. Due to space limitations of this chapter not all original references
could be cited.

An Approach to Perform In Vitro Testing of VUS in TF Genes
One can achieve a detailed analysis on a computer for a small set of novel genes/
variants in a shorter time; however, the next step is frequently to start in vitro testing.
A generalized view of active TFs is that they localize to the nucleus, bind to specific
promoter/enhancer DNA sequences with partner proteins, and change the mRNA
expression of target genes (Vaquerizas et al. 2009). Loss of function (nonsense and
select frame shift) variants may require little to no testing if the gene is sensitive to
haploinsufficiency indicated by dominant inheritance and a high pLI score (Lek et al.
2016) (Tables 13.2 and 13.4).

Depending on the affected functional domain in the TF, the assessment can
include the following by overexpressing the TF from a plasmid DNA in cell culture:
(1) quantitative assessment of protein expression by Western blot; (2) subcellular
localization of the green fluorescence protein tagged TF, (3) protein-DNA binding
assays such as electrophoretic mobility shift assay (EMSA) where the TF binds to
specific DNA sequences, (4) transactivation reporter assays, and (5) protein–protein
binding by co-immunoprecipitation.

PROP1

Patients with PROP1 variants present with a highly consistent phenotype: GH, TSH,
and more than two-thirds of the cases have ACTH, FSH/LH, PRL deficiency. Typi-
cally, they present with AL hypoplasia, 1:10 patients have AL hyperplasia, and PL is
intact. Waxing and waning of the pituitary size over time is common (Obermannova
et al. 2011; Turton et al. 2005a). Patients carry homozygous or compound heterozy-
gous variants. About three-quarters of variants are missense/nonsense while
one-quarter are splicing or large deletions (Fang et al. 2016b; Madeira et al. 2017).
Two founder mutations are well known: c. 301-302delAG from the Iberian Peninsula
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(Cogan et al. 1998; Dusatkova et al. 2016) and c. 296-297delGA from Lithuania
(Navardauskaite et al. 2014). Functional testing includes binding to/transactivation on
the PRDQ9 sequence (Kelberman et al. 2009). While the pituitary phenotype is
extremely consistent there are two reports of stating extra-pituitary features: (1) two
patients with pituitary stalk interruption syndrome (PSIS) and four with heart/kidney
malformations and deafness were described from the GENHYPOPIT network in
consanguineous patients with PROP1 and POU1F1 variants (Brue et al. 2017);
(2) one CPHD patient was described with ectopic posterior pituitary (EPP) who carried
a heterozygous c.301_302delAG, which is inconsistent with the recessive inheritance
(Avbelj Stefanija et al. 2015). However, it is possible that these individuals had
additional genetic or environmental causes of the atypical features.

Table 13.3 Pituitary and extra-pituitary morphological features in patients with CPHD/IGHD and
pituitary transcription factor gene variants

Gene

Incidence

Pituitary AL

EPP PSIS CNS OtherHypoplasia Hyperplasia

PROP1a +++++b + ND ND ND Various minor features

POU1F1a +++++ Rare ND ND ND Various minor features

LHX3 +++ + ND ND Rare Limited neck rotation,
enlarged fontanel, hearing
impairment, frontal bossing
(all +++++)

LHX4 ++++ Rare +++
+

ND Chiari
I. (+)

Underdeveloped sella (++),
thin stalk (+), micropenis (+)

HESX1 +++ ND +++ Rare SOD
(+),
ONH
(+)

Various minor features

OTX2 +++ ND +++
+

++ Chiari
I. (+)

Micro/anophtalmia (++++),
ONH (++), facial and genital
defects (+)

GLI2 ++++ ND +++ + HPE-
like (+
+)

Postaxial polydactyly (++),
cleft lip and palate (+)

GLI3 ++c ND ND ND See
other

PHS or subPHS (all)

Assessment and grading are identical to Table 14.2. Note that pituitary size/morphology can be
normal
AL anterior lobe, EPP ectopic posterior pituitary, PSIS pituitary stalk interruption syndrome, CNS
central nervous system, ND not described, SOD septo-optic dysplasia, ONH optic nerve hypoplasia,
HPE holoprosencephaly
aSee details for PSIS/CNS in (Brue et al. 2017). Incidence cannot be established
bWaxing and waning of pituitary size was described in Turton et al. (2005b) and Obermannova et al.
(2011)
c
“Pituitary agenesis” was described
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POU1F1

Patients with POU1F1 variants show the most consistent manifestation of all CPHD
patients with GH, TSH, PRL deficiency and no other hormones being affected, AL
hypoplasia, and PL placed normally. Typical inheritance is recessive (homozygous
and compound heterozygous), although there are some examples of dominant
inheritance. There are two published families with IGHD carrying a heterozygous
p.P76L (Sobrier et al. 2016) or a homozygous p.E230K (Gat-Yablonski et al. 2002).
Functional testing is performed by transactivation on theGh, Prl and Tshb promoters
(Hendriks-Stegeman et al. 2001; Turton et al. 2005b), altered promoter/enhancer
autoregulation (Vallette-Kasic et al. 2001), exon trapping of splice variants (Inoue
et al. 2012; Takagi et al. 2017; Turton et al. 2012).

POU1F1 variants with dominant inheritance have an incomplete penetrance and
reveal mechanisms other than roles as a transcriptional regulator on the known
promoters. The most common dominant variant p.R271W was shown as a dominant
negative transcriptional repressor as well as amino acid R271 binding to MATR3
and SATB1 in the nuclear matrix enabling features in chromatin remodeling (Cohen
et al. 2006; Pellegrini et al. 2006; Skowronska-Krawczyk et al. 2014). POU1F1 p.
P76L presented with IGHD, and the variant protein exhibited increased interaction
with ELK1, PITX1, and LHX3a and with the enhancer region of GH1 (Sobrier et al.
2015). Splice variants revealed either complete skipping of exon 2 (c.142+3A>G
and c.214+1G>T) (Inoue et al. 2012; Turton et al. 2012) or splicing into the longer
beta isoform of POU1F1 possessing repressor activities in vitro (c.143-83A>G)
(Takagi et al. 2017). The variant p.K216E has an increased (not decreased!) activa-
tion of Gh and Prl and drastically reduced retinoic acid dependent autoactivation of
the Pou1f1 enhancer (Cohen et al. 1999).

Table 13.4 Probability for loss of function intolerance in transcription factor genes in CPHD/
IGHD patients with few or no published cases

Gene pLI Gene pLI Gene pLI

PAX6 1 ISL1 0.896 SOX3 0.475

NFKB2 1 PITX1 0.892 NKX2–1 0.378

FOXO1 0.997 FOXL2 0.88 TCF7L1 0.36

FOXP3 0.994 VAX1 0.784 EGR1 0.327

ARNT2 0.991 NEUROD1 0.772 INSM1 0.269

NR5A1 0.991 FOXA2 0.742 NEUROD4 0.097

GATA2 0.981 SOX2 0.735 TGIF1 0.01

PITX2 0.979 ASCL1 0.697 TBX19 0

ZIC2 0.974 TEF 0.615

SIX3 0.951 SIX6 0.554

Genes with few published CPHD/IGHD cases are in bold. Cases with IAD are underlined
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LHX3

The typical hypopituitarism patient with homozygous LHX3 variants presents with
GH and TSH deficiency, two-thirds with LH/FSH and PRL deficiency while only a
third of them have ACTH deficiency (Bechtold-Dalla Pozza et al. 2012). Less than
half of the patients have abnormal pituitary size, with AL hypoplasia and eutopic
PL. Additional features are fairly common, such as limited neck rotation (not present
in Lhx3�/� mice), enlarged fontanels, hearing impairment, frontal bossing or more
rarely thinning of the corpus callosum and dolichocephaly (Bonfig et al. 2011;
Jullien et al. 2018; Kristrom et al. 2009; Rajab et al. 2008; Ramzan et al. 2017).

One family was published with a generation of two miscarriages, one child with
compound heterozygous LHX3 p.C118Y & c.252-3 C>G variants with CPHD and
limited neck rotation while members of this family carrying the c.252-3 C>G splice
variant had a high incidence of limited neck rotation (Sobrier et al. 2012). Another
heterozygous variant also showed CPHD but no other distinctive features and the
phenotype was incompletely penetrant (Jullien et al. 2018).

Variants are tested by using the activator LHX3A isoform for transactivation and
DNA binding on Cga, Gh, Prl, Tshb promoters (Bechtold-Dalla Pozza et al. 2012;
Rajab et al. 2008). Heterozygous variants are typically tested for dominant negative
effects on the same promoters together with POU1F1 interaction (Jullien et al. 2018;
Sobrier et al. 2012).

LHX4

These patients typically present with dominant inheritance and incomplete penetrance.
GH, TSH deficiency is high while more than half of the cases have ACTH and less than
half of them have gonadotroph deficiency and PRL deficiency is rare. AP hypoplasia
and EPP are typical, underdeveloped sella is common. Rare features include Chiari I
malformation and thin stalk (Castinetti et al. 2008b; Cohen et al. 2017; Dateki et al.
2010a; Machinis et al. 2001; Pfaeffle et al. 2008; Rochette et al. 2015). There are two
examples of IGHD described (Cohen et al. 2017; Gucev et al. 2016).

Functional testing is typically carried out on the same promoters as with LHX3 or
on the Pou1f1 and Fshb promoters. Haploinsufficiency appears to be the typical
mode of dominant action (same references as in previous paragraph and Fuxman
Bass et al. 2015).

The only patient with a homozygous allele (p.T126 M) described so far presented
with the features of a typical heterozygous LHX4 patient (CPHD, AP aplasia, EPP,
sella defect) but also with midfacial hypoplasia, small upturned nose with depressed
nasal bridge, low-set crumpled ears and death during the first postnatal week
(Gregory et al. 2015b). Homozygosity mapping and high conservation of amino
acid 126 suggested pathogenicity. Transactivation ability of p.T126 M alone on the
Prl promoter was not different; however, the interaction with POU1F1 was signif-
icantly reduced on the reporter construct.
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HESX1

Less than two dozen HESX1 families with hypopituitarism were described to date.
Thus far, those with recessive inheritance are all CPHD (Fang et al. 2016a; Reynaud
et al. 2011; Sobrier et al. 2006), while heterozygous HESX1 patients can be IGHD
(Cohen et al. 2003; McNay et al. 2007; Vivenza et al. 2011) or CPHD (Corneli et al.
2008; Coya et al. 2007; Reynaud et al. 2012; Tajima et al. 2003; Takagi et al. 2016;
Thomas et al. 2001). The variants identified so far are predominantly missense. The
onset of hormone deficiency is typically early and frequently evolving from IGHD to
CPHD (Coya et al. 2007; Reynaud et al. 2011). GH, TSH, ACTH deficiency is very
high while FSH/LH and PRL deficiency is gradually fewer. AL hypoplasia and EPP
are common and rare features can include variable penetrance of PSIS, thin stalk,
septo-optic dysplasia (SOD), and optic nerve hypoplasia (ONH). HESX1 is a well-
characterized gene in SOD (Dattani et al. 1998). Only a few SOD cases are reported
to have hypopituitarism (Cohen et al. 2003; Coya et al. 2007; Thomas et al. 2001).
Functional testing of variants includes testing HESX1’s ability to repress activation
caused by PROP1 on a multimerized paired HD binding site (P3E4) reporter,
binding to DNA (Cohen et al. 2003; Fang et al. 2016a; McNay et al. 2007; Reynaud
et al. 2012; Sobrier et al. 2006; Takagi et al. 2016).

SOX2

Individuals with SOX2 variants present with anophtalmia, intellectual disability, and
growth delay/short stature. Hypopituitarism is frequently not assessed (Schilter et al.
2013) and is reviewed in the works by Bakrania et al. (Bakrania et al. 2007) and
Schneider et al. (Schneider et al. 2009). Information is limited to less than 20 cases
that present with isolated HH (Bakrania et al. 2007; Errichiello et al. 2018;
Kelberman et al. 2006; Sato et al. 2007; Takagi et al. 2014b), IGHD (Kelberman
et al. 2006; Schilter et al. 2013; Schneider et al. 2009), and a few with CPHD
(Blackburn et al. 2018; Kelberman et al. 2006; Macchiaroli et al. 2014; Schneider
et al. 2009). They often have bilateral/unilateral anophtalmia (missing in Sox2-null
mice), but other features including ONH, EPP, learning disability are occasionally
present. Inheritance is dominant and in patients with hypopituitarism most variants
are de novo frame shifts. Functional testing of variants involves transactivation of
the Hesx1 promoter and binding to consensus SOX DNA binding sites (Kelberman
et al. 2006; Takagi et al. 2014b). The role of Sox2 in pituitary tumors requires further
investigation.

SOX3

The Xq26–27 chromosomal region of SOX3 was first implicated in a large family
with X-linked mental retardation (XLMR) and IGHD in 1996 (Laumonnier et al.
2002). Very few families were described to date and most of them have CPHD: GH
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and TSH deficiencies, occasional LH/FSH deficiency and rarely ACTH or PRL
(Alatzoglou et al. 2011; Bauters et al. 2014; Izumi et al. 2014; Takagi et al. 2014a;
Woods et al. 2005). In these hemizygous males, most genetic changes are small,
in-frame deletions and insertions affecting polyalanine tracts (Alatzoglou et al. 2011;
Izumi et al. 2014; Laumonnier et al. 2002). There are two examples of CPHD with
complete SOX3 duplications (Bauters et al. 2014; Woods et al. 2005). Larger
chromosomal duplications can result in XX sex reversal (Sutton et al. 2011). The
single missense variant example (p.R5Q) had CPHD and a central incisor
(Alatzoglou et al. 2011). EPP is occasionally reported (Woods et al. 2005).

The polyalanine tract changes result in perinuclear/cytoplasmic aggregates,
impair the ability to transactivate via consensus SOX DNA binding sites, and have
a reduced propensity to inhibit Wnt/Ctnnb/TCF mediated transcription (Alatzoglou
et al. 2011; Takagi et al. 2014a; Woods et al. 2005).

OTX2

Families with OTX2 variants present with an autosomal dominant inheritance and
incomplete penetrance. Incomplete penetrance and variable expressivity are well
demonstrated in Otx2�/� mice in a genetic background specific manner (Hide et al.
2002). Patients with heterozygous OTX2 variants can present with ocular only, or
ocular with hypopituitarism phenotypes, while cases of hypopituitarism-only cases
are rare (Diaczok et al. 2008). The ocular phenotype is anophtalmia/microphtalmia
typically involving both eyes (Gerth-Kahlert et al. 2013 from Ragge and Wyatt). In
the cases with ocular and pituitary phenotypes, the same ocular phenotypes were
observed as well as optic nerve hypoplasia/dysplasia/aplasia (ONH) (Dateki et al.
2008; Gorbenko Del Blanco et al. 2012; Prasov et al. 2012; Schilter et al. 2011;
Tajima et al. 2009). IGHD is almost as common as CPHD (Ashkenazi-Hoffnung
et al. 2010; Dateki et al. 2008; Delahaye et al. 2012; Henderson et al. 2009; Lonero
et al. 2016). Less than two dozen hypopituitarism cases are described, and they
typically present with CPHD (GH, TSH, and fewer ACTH and FSH/LH and rarely
PRL deficiency), EPP, and five of them had PSIS (all ONH and IGHD references and
Diaczok et al. 2008; Shimada et al. 2016; Takagi et al. 2015; Vincent et al. 2014).
The one published recessive CPHD case with an OTX2 variant is only based on in
silico prediction and segregation (Catania et al. 2019). Missense, nonsense, frame
shift variants and large deletions are all common withOTX2. Although some reviews
suggest that variants in the N-terminal region of the protein are associated with
ocular features and in the C-terminal with pituitary involvement, we believe there are
not enough cases with hypopituitarism to support this idea (Gorbenko Del Blanco
et al. 2012; Schilter et al. 2011). In vitro variant testing is performed with single or
multimerized consensus bicoid binding sites and transactivation is carried out on
native promoters of Hesx1, Pou1f1 as well (Dateki et al. 2008, 2010b; Diaczok et al.
2008; Gorbenko Del Blanco et al. 2012; Shimada et al. 2016; Tajima et al. 2009).
Knock-down of the endogenous zebrafish mRNA in combination with other genes
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resulted in a complex eye, head, and mandible phenotype comparable to the human
otocephaly-dysgnatia complex (Chassaing et al. 2012).

GLI2 and ZIC2

Patients with GLI2 variants typically show autosomal dominant inheritance with
incomplete penetrance (Babu et al. 2019; Bear et al. 2014; Flemming et al. 2013;
Franca et al. 2013; Juanes et al. 2016; Roessler et al. 2005; Shirakawa et al. 2018;
Simm et al. 2018; Zwaveling-Soonawala et al. 2018). CPHD (GH, TSH, ACTH
most of the time, LH/FSH frequently, PRL rarely deficient) is the most common
while IGHD is infrequent (Bear et al. 2014; Gregory et al. 2015a; Juanes et al. 2016;
Roessler et al. 2005; Shirakawa et al. 2018). Most patients have hypoplastic AL,
about half of the patients have EPP, and a few have absent PP/PSIS. About 10% of
the patients have postaxial polydactyly and/or HPE-like features. While most vari-
ants are unique to the family the allele affected by both p.M1352V and p.D1520N
variants was described by multiple authors in CPHD (Flemming et al. 2013; Franca
et al. 2013; Zwaveling-Soonawala et al. 2018). Most variants described are mis-
sense. Functional assessment includes binding to a consensus GLI-site in the PTCH1
promoter. Transactivation studies test variants either on the octamerized
GLI-binding site from the enhancer of Hnf3b (Foxa2) or on the single
GLI-binding site from the promoter of keratin 17. The variant testing includes two
steps on these reporter constructs: (1) Testing the mutated full-length GLI2 alone and
(2) testing the mutated full-length GLI2 together with a GLI2 cDNA construct
missing the N-terminal (1–328) repressor domain (ΔN-GLI2). The ΔN-GLI2 acts
a potent activator on these reporter constructs and co-transfection of the mutant
+ ΔN-GLI2 can demonstrate a dominant negative effect. Embryonic sarcoma cell
line (C3H10T1/2) was used to demonstrate osteogenic differentiation upon trans-
fection with normal GLI2. In vivo assays were demonstrated with frog eggs where
injection of normal GLI2 results in secondary tail formation (Babu et al. 2019;
Flemming et al. 2013; Roessler et al. 2005).

ZIC2 is a common HPE gene and a member of the GLI TF subfamily. A
heterozygous p.Gln364Leufs�2 variant was described in a child with alobar HPE,
complex facial/dental features, and the involvement of both the AL/PL with subse-
quent CPHD (GH, TSH) and central diabetes insipidus (Tasdemir et al. 2014).

GLI3

Heterozygous variants inGLI3 are known to cause Greig cephalopolysyndactyly and
Pallister–Hall syndrome (PHS). A clear genotype–phenotype correlation exists
where variants affecting the middle-third of the open reading frame (nucleotides
1998–3481) can be found in PHS only. PHS is characterized by the presence of
major criteria such as hypothalamic hamartoma and mesaxial polydactyly plus
several minor features (bifid epiglottis, IGHD, CPHD, genital hypoplasia,
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imperforate anus, and small nails) (Demurger et al. 2015; Johnston et al. 2005; Kang
et al. 1997). A sub-PHS is diagnosed when one major criterion is present with at least
one minor criterion. Most published cases with hypopituitarism or pituitary agenesis
are in patients with PHS and to lesser extent with sub-PHS. Almost all patients have
IGHD, several of the minor features and adrenal and renal agenesis (Demurger et al.
2015; Johnston et al. 2005). Very few cases were described with CPHD (Li et al.
2015; Narumi et al. 2010). Detailed imaging of the pituitary region is not available.
Functional testing is similar to GLI2.

TF Genes with Limited Evidence in Hypopituitarism

FOXA2

A few patients with heterozygous FOXA2 variants were described so far. They share
the features of CPHD (GH, TSH, ACTH), and have a high incidence of
hyperinsulinemia, hypoplastic/absent AL, EPP and have a range of minor features
such as single central incisor, dysmorphic facial features, biliary tract abnormalities,
heart defects, and neurodevelopmental delay (Boda et al. 2018; Giri et al. 2017; Tsai
et al. 2015; Vajravelu et al. 2018). These patients have either missense or large
deletions affecting 20p11.21. FOXA2 is expressed in multiple tissues corresponding
to the phenotype spectrum (Giri et al. 2017). Transactivation can be tested on the
human GLUT2 (phGT2–294), ABCC8, KCNJ11, HADH, SHH, GLI2, and NKX2–2
promoter reporters (Giri et al. 2017; Vajravelu et al. 2018).

ARNT2

ARNT2 is part of the protein complex that includes the aryl hydrocarbon receptor-
interacting protein (AIP), widely studied in specific groups of pituitary adenomas
(Raitila et al. 2010; Rostomyan et al. 2017) and cancer (Bogeas et al. 2018). ARNT2
is highly expressed in the mouse and human CNS, retina, kidney, lung, and the
pituitary (Webb et al. 2013). A recessive ARNT2 c.1373_1374dupTC variant was
identified in a large family with CPHD, kidney, urogenital tract, eye, and CNS
anomalies (postnatal microcephaly, frontotemporal hypoplasia, seizures) (Webb
et al. 2013). This variant resulted in a frame shift and nonsense mediated decay of
the transcript.

PAX6

PAX6 patients typically present with aniridia and microphtalmia (Lim et al. 2017).
Few patients were described with borderline GHD, HH, central hypothyroidism or
low cortisol levels (Hergott-Faure et al. 2012; Shimo et al. 2014; Solomon et al.
2009). PAX6 heterozygous variants were described in two cases of IGHD (Takagi
et al. 2015). One of them presented with cleft palate, optic disc cupping, AL
hypoplasia, and EPP and had a 310 kb deletion of the PAX6 enhancer. The other
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case with a missense p.N116S had AL hypoplasia. Functional analysis included
showing normal protein expression, subcellular localization, binding to a consensus
PAX6 binding element from the promoter of CD19 (Mishra et al. 2002) as well as
transactivation on a hexamer PAX6 consensus binding element where only the latter
showed significant impairment.

TGIF1

TGIF1 is highly expressed in the liver, kidney, gonads, forebrain, and several other
tissues including the pituitary during development and postnatally (Hu et al. 2011).
TGIF1 acts as a repressor in retinoid X receptor (RXR) mediated transcription in a
TGFB/SMAD-dependent manner (Bartholin et al. 2006; Bertolino et al. 1995). Patients
with heterozygous variants in TGIF1 typically present with variable degrees of midline
defects ranging from a single central incisor to HPE (Dubourg et al. 2004; El-Jaick et al.
2007). A pool of 30 patients with CPHD were screened, and only one patient had a
TGIF1 variant (p.Q267X). This individual had CPHD (GH, TSH, LH/FSH), AL
hypoplasia, and a single central incisor. No functional studies were carried out (Tatsi
et al. 2013). The repressor effect of TGIF1 is typically demonstrated in the context of
retinoic acid activating on a promoter construct of RBP2 (DR1-TATA-luc) or TGFB
activating a promoter construct of MMP1 (3-TP-lux). TGIF1 co-immunoprecipitated
with RXRA and SMAD3 (El-Jaick et al. 2007). Another patient with a complex CNS
phenotype with pituitary hypoplasia and single central incisor had a chromosomal
rearrangement affecting TGIF1 (Kantaputra et al. 2006).

PITX2

Heterozygous PITX2 variants are one cause of Axenfeld-Rieger syndrome (ARS)
characterized by the defects of the eye anterior segment, hypodontia (including
single central incisor), maxillary hypoplasia, umbilical protrusion, and heart defects
in humans (Franco et al. 2017; Seifi and Walter 2018; Semina et al. 1996). No PITX2
variants have yet been discovered in patients with hypopituitarism. A few papers
studying PITX2 variants are clear on the lack of hypopituitarism and the presence of
ARS with the patient variants studied (Quentien et al. 2011), while others have no
more indication of pituitary involvement than a flattened sella turcica (Idrees et al.
2006) and some actually state the lack of PITX2 variants (Lowry et al. 2007). Mouse
mutants heterozygous for Pitx2 loss of function alleles do not have hypopituitarism.

NKX2–1, TCF7L1, INSM1, SIX3, and SIX6

A large chromosomal deletion involving NKX2–1 (and MBIP, NKX2.8, PAX9,
SLC25A1) was described in a patient with pituitary stalk duplication and exaggerated
response to TRH stimulation (Accornero et al. 2010). So far, one nonsense variant of
NKX2–1 was implicated in one family with IGHD and HH (Balicza et al. 2018).
Heterozygous missense variants in the Wnt signaling repressor TCF7L1 were
described in two patients with IGHD and SOD-like features (Gaston-Massuet et al.
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2016). There are very few variants reported in INSM1; however, it appears to be a
very specific marker for neuroendocrine differentiation in primary lung cancer
(Mukhopadhyay et al. 2019). HPE and micro/anophtalmia is prevalent in patients
with SIX3 or SIX6 variants but there is no clear evidence for pathogenicity in human
hypopituitarism thus far (Gallardo et al. 1999; Martinez-Frias et al. 2014; Rauchman
et al. 2001).

13.4.2.2 Select Genetic Causes of Isolated Pituitary Hormone Deficiency

Isolated ACTH Deficiency (IAD)

Genetic causes for IAD include two established genes: TBX19 and POMC. Patho-
genic TBX19 TF variants result in recessive, neonatal onset ACTH deficiency, and
they represent about two-thirds of the patients with IAD (Couture et al. 2012;
Metherell et al. 2004; Pulichino et al. 2003). Patients present with severe hypogly-
cemia and high mortality unless promptly treated with hydrocortisone (Abali et al.
2019; Couture et al. 2012; Vallette-Kasic et al. 2005). Recessive mutations were
described in POMC resulting in a protein translation defect with red hair pigmenta-
tion, severe, early onset obesity, and secondary adrenal insufficiency (Aslan et al.
2014; Krude et al. 1998). The mechanism of corticotrope deficiency remains elusive
and likely indirect in patients with heterozygous, de novo NFKB2 TF mutations who
present with IAD, hypogammaglobulinemia similar to common variable immuno-
deficiency (CVID), alopecia, lymphocyte and NK-cell defects, and trachyonychia
(Brue et al. 2014; Chen et al. 2013; Lougaris et al. 2015).

Isolated TSH Deficiency (ITD)

While congenital hypothyroidism has an incidence 1:3000 congenital central hypo-
thyroidism (isolated thyrotroph deficiency) is extremely rare (<1:20,000) (Grosse
and Van Vliet 2011; van Tijn et al. 2005). Variants in TSHB and TRHR are the
longest known causes (Collu et al. 1997; Hayashizaki et al. 1989). Variants in TSHB
typically affect the “seat belt” region where TSHB binds CGA in a tightly regulated
process to form biologically active TSH (Matzuk et al. 1988; Nicholas et al. 2017).
The mechanism by which heterozygous TRHR variants lead to TSH deficiency is not
completely understood (Collu et al. 1997). The cause of isolated TSH deficiency can
be clarified with TRH stimulation testing. TSHB defects preserve the secretory
response of CGA and PRL (Bonomi et al. 2001). The response is blunted if TRHR
is defective (Collu et al. 1997).

Recently, an X-linked cause of TSH deficiency was described in men carrying
variants in IGSF1. They present with PRL deficiency and macroorchidism, but no
GHD (Asakura et al. 2015; Hughes et al. 2016; Joustra et al. 2016; Nakamura et al.
2013; Sun et al. 2012; Tajima et al. 2013; Tenenbaum-Rakover et al. 2016). TBLX1
is the newest member of genes in isolated congenital central hypothyroidism
(Heinen et al. 2016).
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Isolated Growth Hormone Deficiency (IGHD)

Typical genetic causes for IGHD remain to be those in GHRHR, GH1 while defects
in SOX3, HESX1 GLI3, OTX2 are rare (Alatzoglou and Dattani 2010; Demurger
et al. 2015). Overall, GHRH and GH1 defects are recessive (type I GHD) but a
non-insignificant pool of patients shows autosomal-dominant or X-linked inheri-
tance (Alatzoglou and Dattani 2012). SOX3, GLI3, and OTX2 were discussed
previously.

Isolated LH/FSH Deficiency

Currently more than 30 genes are implicated in congenital HH with or without
anosmia. This is a huge increase since 2000, when only four well-established
congenital HH genes were known: KAL1, GNRHR, DAX1, and PCSK1 (Seminara
et al. 2000). An extensive review was recently published (Maione et al. 2018).

13.5 Concluding Remarks

Current diagnostic opportunities have enabled physicians to establish the clinical
diagnosis of pituitary hormone deficiency with high confidence. Advancements in
DNA sequencing technology provided an incredible pool of novel candidate genes
and variants to test for the clinician and the researcher. We have just begun to
understand the functional consequences of changes in the coding region of the
genome. According to the Genetics Home Reference at the NIH, the coding infor-
mation is only 1% of our genome. Improving of the understanding of large copy
number variations as well as the “meaning” of the noncoding genome will be driven
by the progression of whole genome sequencing technology and bioinformatics
analysis. Currently, the treatment of pituitary hormone deficiency consists of
replacement of growth hormone and end organ hormones such as thyroid hormone
or steroid hormones. Creating artificial endocrine organs is at its dawn. Gene therapy
for specific genetic defects is at its very early stages for non-pituitary diseases.
Improving our understanding on how genetic defects in the most common TF
genes lead to disease such as hypopituitarism is fundamental in this progress.
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