
Chapter 2
Calabi–Yau Manifolds with Torsion
and Geometric Flows

Sébastien Picard

Abstract The main theme of these lectures is the study of Hermitian metrics in
non-Kähler complex geometry. We will specialize to a certain class of Hermitian
metrics which generalize Kähler Ricci-flat metrics to the non-Kähler setting. These
non-Kähler Calabi–Yau manifolds have their origins in theoretical physics, where
they were introduced in the works of C. Hull and A. Strominger. We will introduce
tools from geometric analysis, namely geometric flows, to study this non-Kähler
Calabi–Yau geometry. More specifically, we will discuss the Anomaly flow, which is
a version of the Ricci flow customized to this particular geometric setting. This flow
was introduced in joint works with Duong Phong and Xiangwen Zhang. Section 2.1
contains a review of Hermitian metrics, connections, and curvature. Section 2.2 is
dedicated to the geometry of Calabi–Yau manifolds equipped with a conformally
balanced metric. Section 2.3 introduces the Anomaly flow in the simplest case of
zero slope, where the flow can be understood as a deformation path connecting
non-Kähler to Kähler geometry. Section 2.4 concerns the Anomaly flow with α′
corrections, which is motivated from theoretical physics and canonical metrics in
non-Kähler geometry.

2.1 Review of Hermitian Geometry

We start by reviewing non-Kähler metrics in complex geometry. In particular, we
study unitary connections, torsion, and curvature associated to a Hermitian metricω.

2.1.1 Hermitian Metrics

Let X be a complex manifold of dimension n. The manifold X is covered by
holomorphic charts Uμ equipped with local holomorphic coordinates (z1, . . . , zn)
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such that X = ⋃
μ Uμ. The complexified tangent bundle of X will be denoted TX,

which splits

TX = T 1,0X ⊕ T 0,1X.

Using local coordinates, a tangent vector in T 1,0X is a combination of

{
∂

∂z1 , · · · ,
∂

∂zn

}

and a tangent vector in T 0,1X is a combination of

{
∂

∂z̄1 , · · · ,
∂

∂z̄n

}

.

We will use the notation

∂k = ∂

∂zk
, ∂k̄ = ∂

∂z̄k
.

Next, we will use Ωp,q(X) to denote differential forms of (p, q) type. This means
that in local coordinates, Ωp,q(X) is generated by

dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · dz̄jq .

We will use the following convention for the components Ψj̄1···j̄q i1···ip of a differen-
tial form Ψ ∈ Ωp,q(X)

Ψ = 1

p!q!
∑

Ψj̄1···j̄q i1···ip dz
ip ∧ · · · dzi1 ∧ dz̄jq ∧ · · · ∧ dz̄j1 . (2.1)

The exterior derivative d decomposes into

d = ∂ + ∂̄ ,

where

∂ : Ωp,q(X) → Ωp+1,q(X), ∂̄ : Ωp,q(X) → Ωp,q+1(X),

are the Dolbeault operators. A Hermitian metric g on X is a smooth section
(T 1,0X)∗ ⊗ (T 0,1X)∗ such that in local coordinates

g = gk̄j dz
j ⊗ dz̄k, (2.2)
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where gk̄j is a positive-definite Hermitian matrix at each point.

gk̄j > 0, gk̄j = gj̄k.

In (2.2) we use the summation convention, which will be used throughout these
notes, where we omit the summation sign for matching upper and lower indices. We
use the notation gjk̄ = (gk̄j )

−1 for the inverse, meaning that

gik̄gk̄j = δij .

We can identify the metric g with a Hermitian form ω ∈ Ω1,1(X,R) via

ω = igk̄j dz
j ∧ dz̄k.

The metric g induces a metric on differential forms Ωp,q(X), and we define the
Hodge star operator � : Ωp,q(X) → Ωn−q,n−p(X) by requiring

α ∧ �β̄ = g(α, β)
ωn

n! .

for all α, β ∈ Ωp,q(X).
A basic fact which will be often used in these notes is

Proposition 2.1 Let X be a compact complex manifold with Hermitian metric g

and ∂X = ∅. Let f ∈ C∞(X,R). If

gjk̄∂j ∂k̄f ≥ 0,

everywhere on X, then f is a constant function.

Proof Let c denote the maximum value attained by f on X. The set

S = f−1(c)

is closed. We claim that S is also open. Indeed, let p ∈ S. Let B be a ball in a local
chart such that f attains a maximum in the center of B and satisfies gjk̄∂j ∂k̄f ≥ 0
in B. By the Hopf strong maximum principle (e.g. Theorem 2.7 in [HL11]), we must
have f ≡ c in B. This shows that S is open, and hence S = X. �

A Hermitian metric ω is Kähler if

dω = 0.

Kähler manifolds are of fundamental importance as they lie at the crossroads of
both Riemannian geometry and algebraic geometry. In these notes, our goal is to
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generalize the Kähler condition while still retaining enough structure to develop an
interesting theory.

There are many ways to generalize the Kähler condition. There is the notion of a
pluriclosed metric, which satisfies

i∂∂̄ω = 0.

There are also astheno-Kähler metrics [JY93], which satisfy

i∂∂̄ωn−2 = 0.

It was shown by Gauduchon [GA77] that every compact complex manifold admits
a Gauduchon metric, which satisfies

i∂∂̄ωn−1 = 0.

More generally, Fu-Wang-Wu [FWW13] introduced the notion of k-Gauduchon, for
1 ≤ k ≤ n− 1, which is defined by the condition

i∂∂̄ωk ∧ ωn−k−1 = 0.

All these notions generalize Kähler metrics in different ways. In these notes, we will
mostly focus on another notion: we say a Hermitian metric ω is balanced if

dωn−1 = 0. (2.3)

The special properties of balanced metrics were noticed early in the study of Her-
mitian geometry, arising for examples in articles of Gauduchon [GA75]. Balanced
metrics were studied systematically by Michelsohn [MI82], and these metrics were
rediscovered in theoretical physics in the development of heterotic string theory
[HU186, ST86, LY05]. A main theme in Michelsohn’s work is that balanced metrics
are in some sense dual to the Kähler condition. For example, Kähler metrics are
inherited by the ambient space (via pullback) while balanced metrics can be pushed
forward [MI82].

Given a Hermitian metric ω, its torsion is defined by

T = i∂ω, T̄ = −i∂̄ω.

We see that a metric is Kähler if and only if its torsion vanishes. The components of
the torsion are given by

T = 1

2
Tk̄jmdz

m ∧ dzj ∧ dz̄k, T̄ = 1

2
T̄kj̄m̄dz̄

m ∧ dz̄j ∧ dzk.
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Explicitly, we have

Tk̄jm = ∂jgk̄m − ∂mgk̄j , T̄kj̄m̄ = ∂j̄ gm̄k − ∂m̄gj̄k. (2.4)

We can raise indices using the metric, and we will write T k
ij = gk
̄T
̄ij . We can

also contract indices, and we will use the notation

Tj = gik̄Tk̄ij .

We will also use the 1-form τ defined by

τ = Tkdz
k.

Taking norms, we have

|T |2 = gmn̄gk
̄gj īTīkmT̄j 
̄n̄, |τ |2 = gk
̄TkT̄
̄.

2.1.2 Connections

Let E → X be a complex vector bundle of rank r . The bundle E can be specified
by an open cover X = ⋃

μ Uμ together with transition matrices tμν : Uμ ∩ Uν →
GL(r,C) satisfying

tμμ
α
β = δαβ,

and

tμν
α
βtνρ

β
γ = tμρ

α
γ on Uμ ∩ Uν ∩ Uρ.

If all transition functions tμν are holomorphic, then E is a holomorphic bundle.
A section s ∈ Γ (X,E) is given by local data (Uμ, sμ

α), where

s = (sμ
1(zμ), · · · , sμr(zμ)) on Uμ,

and sμ : Uμ → Cr is a smooth map which transforms via

(sμ)
α = tμν

α
βsν

β

on Uμ ∩ Uν . On a holomorphic bundle, we say s is holomorphic if the sμ are
holomorphic.
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Let us illustrate this notation by considering the example of the holomorphic
tangent bundle T 1,0X. Here the transition functions are

tμν
i
k = ∂zμ

i

∂zνk
,

which are defined on the intersection of coordinate patches (Uμ, zμ
i) and (Uν, zν

i).
Sections of T 1,0X are vector fields V = V i∂i ∈ Γ (X, T 1,0X), and on Uμ ∩ Uν ,

Vμ
k = ∂zμ

k

∂zν

Vν


.

Next, we recall that from a bundle E, we can induce bundles such as E∗, Ē, and
detE. If the bundle E has transition matrices tμν , then sections φ ∈ Γ (X,E∗) are
given by data (Uμ, φμα) which transform according to

(φμ)α = tνμ
β
αφνβ.

Similarly, sections s ∈ Γ (X, Ē) transform by

sμ
ᾱ = tμναβ sν

β̄ ,

and sections ψ ∈ Γ (X, detE) are given by local functions ψμ : Uμ → C which
transform by

ψμ = (det tμν) ψν.

To differentiate sections of a vector bundle, we use a connection ∇. Connections
can be expressed locally as ∇ = d +Aμ, where Aμ are local matrix-valued 1-forms
(Aμ)i

α
β defined on Uμ. The local matrices (Aμ)i satisfy the transformation law

(Aμ)i = tμν (Aν)i tμν
−1 − (∂i tμν)tμν

−1. (2.5)

Here we omitted the indices for matrix multiplication. This transformation law is
designed such that for any section s ∈ Γ (X,E), its derivative ∇i s is again a section.
Explicitly, derivatives of s are given locally by

∇i s
α = ∂is

α + Ai
α
βs

β , ∇ī s
α = ∂ī s

α + Aī
α
βs

β.

with the notation

∇i = ∇ ∂

∂zi
, ∇ī = ∇ ∂

∂z̄i
.
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Given a connection on E, we can induce connections on E∗, Ē, detE, etc., by
imposing the product rule. For example, the product rule ∂k(sαφ

α) = ∇ksαφ
α +

sα∇kφ
α leads to the definition

∇kφα = ∂kφα − φβAk
β
α, ∇k̄φα = ∂k̄φα − φβAk̄

β
α

for sections φ ∈ Γ (X,E∗). Similarly, for a section u ∈ Γ (X, Ē), the induced
connection is defined by

∇ku
ᾱ = ∂ku

ᾱ + Ak̄
α
βu

β̄ , ∇k̄u
ᾱ = ∂k̄u

ᾱ + Ak
α
βu

β̄,

and for a section ψ ∈ Γ (X, detE∗), the induced connection is

∇iψ = ∂iψ − Ai
α
αψ, ∇īψ = ∂īψ − Aī

α
αψ. (2.6)

As a final example, the induced connection on Γ (X,E∗ ⊗ Ē∗) is defined by

∇khᾱβ = ∂khᾱβ − Ak̄
γ
αhγ̄ β − Ak

γ
βhᾱγ .

We now focus our attention on the holomorphic tangent bundle T 1,0X. Given a
Hermitian metric ω = igk̄j dz

j ∧ dz̄k on X, we say a connection ∇ on T 1,0X is
unitary with respect to ω if

∇igk̄j = 0.

On a Hermitian manifold (X,ω), the Chern connection is the unique unitary
connection on T 1,0X such that Ak̄ = 0. The Chern connection acts on sections
V ∈ Γ (X, T 1,0X) by

∇k(V
i∂i) = (∇kV

i)∂i, ∇k̄(V
i∂i) = (∇k̄V

i)∂i ,

where

∇kV
i = ∂kV

i + Γ i
k
V


, ∇k̄V
i = ∂k̄V

i,

and

Γ i
k
 = gip̄∂kgp̄
. (2.7)

Due to its simplicity, the Chern connection is best suited for most computations.
However, in non-Kähler geometry, there are other interesting connections on T 1,0X

to consider too. We start with the Levi-Civita connection, which acts on V ∈
Γ (X, T X) by

∇g
k (V

i∂i + V ī∂ī ) = (∇g
k V

i)∂i + (∇g
k V

ī )∂ī ,
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where

∇g
k V

i = ∂kV
i + Γ i

k
V

 − T i

k


2
V 
 − gij̄

2
T̄kj̄ 
̄V


̄,

∇g

k̄
V i = ∂k̄V

i + gim̄

2
T̄
k̄m̄V


,

and

∇g

k V
ī = ∇g

k̄
V i , ∇g

k̄
V ī = ∇g

k V
i.

To be clear, we note that here, and throughout these notes, Γ i
k
 is reserved for the

expression (2.7), which is not the Christoffel symbol of the Levi-Civita connection.
This well-known connection from Riemannian geometry preserves the metric

∇gg = 0 and has zero torsion tensor ∇g
XY−∇g

YX−[X,Y ]. For Kähler metrics, T =
0 and we see that the Levi-Civita connection coincides with the Chern connection.

However, for general Hermitian metrics, the tensor Tk̄ij is nonzero and the Levi-

Civita connection does not preserve the decomposition TX = T 1,0X ⊕ T 0,1X. In
particular, it does not define a connection on the holomorphic bundle T 1,0X.

We can add a correction to ∇g to obtain a new connection which does preserve
T 1,0X. We define

∇+ = ∇g + 1

2
g−1H, H = i(∂̄ − ∂)ω.

The new connection acts on V ∈ Γ (X, T 1,0X) by ∇+
k (V

i∂i) = (∇+
k V

i)∂i with
components

∇+
k V

i = ∂kV
i + (Γ i

k
 − T i
k
)V


, (2.8)

∇+
k̄
V i = ∂k̄V

i + gim̄T̄
k̄m̄V

.

We will call this connection the Strominger–Bismut connection [BI89, ST86]. It
evidently preserves T 1,0X, and a straightforward computation shows that

∇+gk̄j = 0,

hence ∇+ is a unitary connection. Furthermore, ∇+ = ∇g + 1
2g

−1H has the
property that its torsion 3-form

T (X, Y,Z) = g(∇+
XY − ∇+

Y X − [X,Y ], Z)

is given by the skew-symmetric 3-form H .
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Using the Chern connection ∇ and the Strominger–Bismut connection ∇+, we
can define a line of unitary connections which preserve the complex structure.

∇(κ) = (1 − κ)∇ + κ∇+,

where κ ∈ R is a parameter. This family of connections is known as the Gauduchon
line [GA97]. We note that this line collapses to a point when ω is Kähler.

There are other connections which play a role in theoretical physics which do not
preserve the complex structure. One such example is the Hull connection [HU286,
LE11, DS14], denoted by ∇− = ∇g − 1

2g
−1H . Explicitly, this connection acts on

V ∈ Γ (X, T X) by

∇−
k V

i = ∂kV
i + Γ i

k
V

 − gij̄ T̄kj̄ 
̄V


̄, (2.9)

∇−
k̄
V i = ∂k̄V

i.

Although ∇− does not preserve T 1,0X, a direct computation shows that ∇−g = 0.
Most computations in these notes will be done using the Chern connection, and

from now on we reserve ∇ to denote the Chern connection. We will use superscripts
e.g. ∇+, to denote other connections.

Next, we review integration and adjoint operators in Hermitian geometry. The
first identity is the divergence theorem for Hermitian metrics.

Lemma 2.1 Let (X,ω) be a closed Hermitian manifold. The divergence theorem
for the Chern connection ∇ is given by

∫

X

∇iV
i ωn =

∫

X

TiV
i ωn, (2.10)

for any V ∈ Γ (X, T 1,0X).

We see that the torsion components Ti play a role when integrating by parts. The
proof is similar to the Kähler case, and is omitted.

Next, we recall the L2 pairing of differential forms, given by 〈φ,ψ〉 =∫
X
g(φ,ψ) ωn, where g(φ,ψ) is the induced metric on φ,ψ ∈ Ωp,q(X). For

example, for η, β ∈ Ω1,0(X), we define

〈η, β〉 =
∫

X

gjk̄ηjβk ω
n,

and for α, χ ∈ Ω1,1(X),

〈α, χ〉 =
∫

X

gjk̄g
m̄αk̄
χj̄m ωn.
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The adjoint operators ∂† : Ωp,q(X) → Ωp−1,q(X) and ∂̄† : Ωp,q(X) →
Ωp,q−1(X) are defined by the property

〈∂φ,ψ〉 = 〈φ, ∂†ψ〉, 〈∂̄φ, ψ〉 = 〈φ, ∂̄†ψ〉.

We will also write d† = ∂† + ∂̄†. We will need an explicit expressions for these
adjoint operators in the following special case.

Lemma 2.2 Let (X,ω) be a Hermitian manifold. The adjoint operators act on α ∈
Ω1,1(X) by

(∂†α)k̄ = −gpq̄∇q̄αk̄p + gpq̄ T̄q̄αk̄p. (2.11)

(∂̄†α)k = gpq̄∇pαq̄k − gpq̄Tpαq̄k. (2.12)

Proof Let α ∈ Ω1,1(X) and β ∈ Ω0,1(X). The components of ∂β are

(∂β)k̄j = ∇jβk̄.

The inner product 〈α, ∂β〉 = 〈∂†α, β〉 expands to

∫

X

gjk̄gpq̄αk̄p(∇qβj̄ ) ω
n =

∫

X

gjk̄(∂†α)k̄βj̄ ω
n.

Applying the divergence theorem (2.10) to the left-hand side, we obtain (2.11).
A similar computation leads to (2.12). �

As a corollary, if we apply these identities to α = ω = igk̄j dz
j ∧ dz̄k , we obtain

(∂†ω)k̄ = iT̄k̄, (∂̄†ω)k = −iTk. (2.13)

and

d†ω = i(τ̄ − τ ).

2.1.3 Curvature

Let E → X be a complex vector bundle. The curvature of a connection ∇ = d +A

on E is a 2-form valued in the endomorphisms of E given by

F = dA + A ∧ A,
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with components

F = 1

2
Fkj

α
βdz

j ∧ dzk + 1

2
Fk̄j̄

α
βdz̄

j ∧ dz̄k + Fk̄j
α
β dz

j ∧ dz̄k.

The curvature form of the Chern connection of a Hermitian metricω will be denoted
Rm. In this case, one can verify that the curvature form Rm is an endomorphism-
valued (1, 1) form

Rm = Rk̄j
p
qdz

j ∧ dz̄k,

with components given by

Rk̄j
p
q = −∂k̄Γ

p
jq = −∂k̄(g

ps̄∂j gs̄q).

We may write this as

Rm = ∂̄(g−1∂g), (2.14)

which holds in a holomorphic frame on T 1,0X. We note that in general, when using
unitary connections other than the Chern connection on T 1,0X, the curvature will
have (2, 0) and (0, 2) components as well.

We can raise and lower indices of the curvature tensor using the metric gk̄j .

Rk̄jm̄
 = gm̄pRk̄j
p

 = −∂k̄∂jgm̄
 + gsr̄ ∂k̄gm̄s∂jgr̄
. (2.15)

Lemma 2.3 The curvature of the Chern connection on (X,ω) satisfies the follow-
ing Bianchi identities

Rk̄jm̄
 = Rm̄jk̄
 + ∇j T̄
m̄k̄,

Rk̄jm̄
 = Rk̄
m̄j + ∇k̄Tm̄
j .

Proof For example, we compute using the definition (2.15) and obtain

Rk̄jm̄
 − Rm̄jk̄
 = −∂k̄∂jgm̄
 + gsr̄ ∂k̄gm̄s∂jgr̄
 + ∂m̄∂jgk̄
 − gsr̄ ∂m̄gk̄s∂j gr̄


= ∂j (∂m̄gk̄
 − ∂k̄gm̄
) − gsr̄ ∂j gr̄
(∂m̄gk̄s − ∂k̄gm̄s)

= ∂j T̄
m̄k̄ − Γ
p

j
T̄pm̄k̄

= ∇j T̄
m̄k̄.

The other identity is derived in a similar way. �
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There are four notions of Ricci curvature for the Chern connection in Hermitian
geometry, and we will use the notation

Rk̄j = Rk̄j
p
p, R̃k̄j = Rp

pk̄j , R ′̄
kj

= Rk̄p
p
j , R′′̄

kj
= Rp

jk̄p.

From the Bianchi identity, we see that these notions of Ricci curvature are all
different. We will call Rk̄j the Chern–Ricci curvature, and it is also given by

Rk̄j = −∂k̄∂j log detgp̄q .

The Chern–Ricci form represents the first Chern class [ i
2π Ricω] = c1(X) and is

given by

Ricω = −∂∂̄ log det gp̄q = Rk̄jdz
j ∧ dz̄k.

There are two notions of scalar curvature, denoted by

R = g
m̄gjk̄Rk̄jm̄
 = Rp
p
j
j , R′ = gjm̄g
k̄Rk̄jm̄
 = Rp

j
j
p.

2.1.4 U(1) Principal Bundles

2.1.4.1 Definitions

We denote the group of complex numbers with length equal to 1 by U(1). A U(1)
principal bundle can be specified by an open cover X = ⋃

μ Uμ together with
smooth maps

gμν : Uμ ∩ Uν → U(1),

such that

gμμ = 1, g−1
μν = gνμ,

and

gμνgνρ = gμρ,

on an non-empty overlapUμ∩Uν ∩Uρ . In this section, we review how a connection
on a line bundle defines a connection on a U(1) principal bundle.
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Let L → X be a smooth complex line bundle with data (Uμ∩Uν, tμν), equipped
with a connection ∇A = d + A whose curvature is FA = dA. We also consider the
line bundle L′ → X given by the data

(Uμ ∩ Uν, e
iτμν ),

tμν

|tμν | = eiτμν .

To compactify the fibers, we equip L with a metric h, which is locally given by
(Uμ, hμ) where hμ are positive functions which transforms as

hμ = 1

|tμν |2hν.

The metric h provides an isomorphism of the line bundles L and L′, where the
connection d + A on L becomes the connection d + A′ given by

A′ = A − 1

2
d logh,

on L′. It can be checked that this expression satisfies the transformation law for a
connection (2.5), which in this case becomes

A′
μ = A′

ν − idτμν. (2.16)

Thus we have induced a connection d + A′ on L′ with curvature

dA′ = FA. (2.17)

Let π : P → X be the U(1) bundle determined by the data (Uμ ∩ Uν, e
iτμν ).

Locally, points in P are given by (zμ, e
iψμ) with projection π(zμ, e

iψμ) = zμ,
where the coordinates eiψμ on the fiber transform via

eiψμ = eiτμν eiψν .

In other words, on Uμ ∩ Uν , there holds

ψμ = ψβ + τμν + 2πk, (2.18)

for an integer k. Combining this with the transformation law for the connec-
tion (2.16), it follows that

θ = dψμ − iA′
μ (2.19)
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is a global 1-form on the total space of the bundle π : P → X. We call θ
the connection 1-form of the U(1) bundle P . Furthermore, by (2.17), its exterior
derivative is

dθ = −iFA.

The connection 1-form θ splits the tangent space T P of P into vertical and horizon-
tal directions. For the vertical direction, we note that by (2.18), the expression ∂

∂ψ
transforms as a global vector field on π : P → X. We define the vertical subbundle
V by

V = kerπ∗ = span

{
∂

∂ψ

}

.

The horizontal space is given by H = ker θ . The tangent bundle of P splits as

T P = V ⊕ H,

and π∗|H : H → TX is isomorphism.

2.1.4.2 Non-Kähler Manifolds Constructed from Principal Bundles

Connections on U(1) principal bundles can be used to construct non-Kähler
complex manifolds. This idea was first used by Calabi–Eckmann [CE53], and later
generalized by Goldstein–Prokushkin [GO04]. In this section, we will construct the
Calabi–Eckmann manifolds.

Our first example will use P1 as the base manifold. We cover P1 by the open sets

U0 = {[Z0, Z1] : Z0 �= 0}, U1 = {[Z0, Z1] : Z1 �= 0},

and define coordinates ζ = Z1
Z0

on U0 and ξ = Z0
Z1

on U1. The line bundle L =
O(−1) → P1 equips the covering {U0, U1} with the transition function

t01 : U0 ∩ U1 → C∗, t01 = Z0

Z1
.

This data defines a U(1) principal bundle π : P → P1 by the same covering
P1 = U0 ∪ U1 and transition function

Z0

Z1

|Z1|
|Z0| : U0 ∩ U1 → S1.
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In the trivialisation U0 × S1, we use coordinates (ζ, eiψ0), and in the trivialisation
U1 × S1, we use coordinates (ξ, eiψ1). On the overlap,

eiψ0 = ξ

|ξ |e
iψ1 .

In fact, the space P is diffeomorphic to the sphere S3. If we write

S3 = {(z0, z1) ∈ C2 : |z0|2 + |z1|2 = 1},

then a diffeomorphism is given by F : S3 → P , where

F(z0, z1) =
(

[z0, z1], z0

|z0|
)

∈ U0 × S1, z0 �= 0,

F (0, z1) = ([0, 1], z1) ∈ U1 × S1.

The inverse of F is given by

F−1(ζ, eiψ0) = 1
√

1 + |ζ |2 (e
iψ0 , ζ eiψ0), (ζ, eiψ0) ∈ U0 × S1,

F−1([0, 1], eiψ1) = (0, eiψ1), ([0, 1], eiψ1) ∈ U1 × S1.

Next, we define a connection on P .
A metric on L = O(−1) is defined by two positive functions h0 : U0 → (0,∞)

and h1 : U1 → (0,∞) satisfying h0 = h1
|t01|2 . We will take

h0 = 1 + |ζ |2, h1 = 1 + |ξ |2.

The Chern connection of (L, h) is ∇ = d + A with A = ∂ logh. As explained
in (2.19), a connection on L defines a connection 1-form θ on P given by

θ = dψ − iA′,

which satisfies

dθ = −idA′ = −i∂̄∂ logh := ωFS. (2.20)

Next, we add a trivial fiber S1 = {eiφ} to our space, and consider the manifold

M1,0 = P × S1 � S3 × S1.
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Using the connection θ , we split the tangent bundle

TM1,0 = H ⊕
〈
∂

∂ψ

〉

⊕
〈
∂

∂φ

〉

.

We can define an almost complex structure J on M1,0 by identifying H with TP1

and using the standard complex structure on ∂ψ and ∂φ . To be precise, if j is the
complex structure on P1, then

J = (π∗|Hj) ⊕ I, I
∂

∂ψ
= ∂

∂φ
, I

∂

∂φ
= − ∂

∂ψ
.

The space T 1,0M1,0 is spanned by pullbacks of T 1,0P1 and

∂

∂ψ
− i

∂

∂φ
.

To show J is integrable, we can apply the Newlander–Nirenberg theorem. If z

denotes a local holomorphic coordinate on P1, then (1, 0)-forms on M1,0 are locally
generated by

{π∗dz, θ + idφ}.

We note that θ + idφ is a (1, 0) form since it sends ∂ψ + i∂φ to zero and H = ker θ .
For local functions f1, f2, then by (2.20) we compute

d[f1dz + f2(θ + idφ)] = df1 ∧ dz + df2 ∧ (θ + idφ) + f2ωFS. (2.21)

It follows that for any η ∈ Ω1,0(M1,0), then (dη)2,0 = 0. By the Newlander–
Nirenberg theorem, we conclude that M1,0 is a complex manifold.

The complex surface M1,0 is known as the Hopf surface. Since it is topologically
S3 × S1, we see that the second Betti number of M1,0 is zero. Therefore M1,0 is a
non-Kähler complex surface.

This same construction can be applied to the manifold M1,1 = P × P , which
is a product of two copies of the U(1) principal bundle P over P1. Then M1,1 is a
complex manifold of complex dimension 3, which is a fibration over P1 × P1.

π : M1,1 → P1 × P1.

Since M1,1 � S3 × S3, this construction defines a non-Kähler complex structure on
S3 × S3.
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In fact, the threefold M1,1 does not even admit a balanced metric [MI82].
Suppose ω is a positive (1, 1) form on M1,1 such that dω2 = 0. Let D be a divisor
on the base P1 × P1. Since

∫

π∗(D)

ω2 > 0,

it follows that the class [ω2] ∈ H 4(M1,1,R) is non-trivial. This is a contradiction,
since H 4(S3 × S3,R) = 0.

The construction described above readily generalizes to Mp,q = S2p+1 ×S2q+1,
giving fibrations

π : Mp,q → Pp × Pq .

These non-Kähler complex manifolds were discovered in [CE53] and are now
named Calabi–Eckmann manifolds. A variant of this construction will be revisited in
Sect. 2.2.3.4 to produce T 2 fibrations over Calabi–Yau surfaces [GO04], and these
manifolds will play a role as a class of solutions to the Hull–Strominger system
[FY08, FY07].

2.2 Calabi–Yau Manifolds with Torsion

Let X be a compact complex manifold of complex dimension n. We assume now
and henceforth in these notes that n ≥ 3. Suppose X admits a nowhere vanishing
holomorphic (n, 0) form Ω . Given a Hermitian metric ω = igk̄j dz

j ∧dz̄k, the norm
of Ω is defined by

‖Ω‖2
ω

ωn

n! = in
2
Ω ∧ Ω̄. (2.22)

Using a local coordinate representation Ω = Ω(z) dz1 ∧ · · · ∧ dzn, this norm is

‖Ω‖2
ω = Ω(z)Ω(z)(detgk̄j )

−1.

A Hermitian metric ω on (X,Ω) is said to be conformally balanced if it satisfies

d(‖Ω‖ωωn−1) = 0. (2.23)

We see that the Hermitian metric χ = ‖Ω‖1/(n−1)
ω ω is balanced in the sense of

Michelsohn [MI82]. We will call (X,Ω,ω) a Calabi–Yau manifold with torsion.
Though Kähler manifolds provide a class of examples, Calabi–Yau manifolds

with torsion need not admit a Kähler metric. We shall see that Calabi–Yau manifolds
with torsion, though non-Kähler, still retain interesting structure. The geometry
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of Hermitian manifolds satisfying condition (2.23) belongs somewhere between
Kähler geometry and the general theory of non-Kähler complex manifold described
in Sect. 2.1. We note that there are other proposed generalizations of non-Kähler
Calabi–Yau manifolds in the literature; see e.g. [GGP08, LE11, TO15].

It was shown by Li–Yau [LY05] that condition (2.23) is equivalent to certain
SU(n) structures arising in heterotic string theory [HU186, HU286, ST86, DS14,
IP01, GMPW04]. In this section, we will explore the geometric implications of this
condition.

2.2.1 Curvature and Holonomy

2.2.1.1 Holonomy

From the point of view of differential geometry, Calabi–Yau manifolds with torsion
can be understood by imposing a holonomy constraint. While Kähler Calabi–
Yau manifolds are characterized by the Levi-Civita connection having holonomy
contained in SU(n), here we consider the holonomy of the Strominger–Bismut
connection ∇+ instead.

Lemma 2.4 ([MI82]) Let (X,ω) be a Hermitian manifold equipped with a
nowhere vanishing holomorphic (n, 0) form Ω . Define χ = ‖Ω‖1/(n−1)

ω ω. Then

d†
χχ = i(∂ log ‖Ω‖ω − τ ) − i(∂̄ log ‖Ω‖ω − τ̄ ).

Here τ is the torsion 1-form of ω, and d†
χ is the L2 adjoint with respect to χ .

Proof The torsion 1-form of χ is given by

T
χ
j = ‖Ω‖−1/(n−1)

ω gik̄
[

∂i(‖Ω‖1/(n−1)
ω gk̄j ) − ∂j (‖Ω‖1/(n−1)

ω gk̄i)

]

.

Simplifying this expression give

T
χ
j = Tj − ∂j log ‖Ω‖ω,

where Tj is the torsion of ω. We apply the identity (2.13) for the adjoint ∂†
χ of χ . �

Next, we interpret the conformally balanced condition in terms of a torsion
constraint. This relationship between T and log ‖Ω‖ω will have a recurring role
as the key identity in the subsequent computations.
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Proposition 2.2 ([MI82]) Let (X,ω) be a Hermitian manifold equipped with a
nowhere vanishing holomorphic (n, 0) form Ω . The conformally balanced condi-
tion (2.23) is equivalent to the torsion constraint

Tj = ∂j log ‖Ω‖ω, T̄j̄ = ∂j̄ log ‖Ω‖ω.

Proof Expanding the conformally balanced condition gives

0 = ∂ log ‖Ω‖ω ∧ ωn−1 + (n − 1)∂ω ∧ ωn−2.

A computation shows the following identity

(n− 1)∂ω ∧ ωn−2 = −τ ∧ ωn−1.

Therefore

∂ log ‖Ω‖ω ∧ ωn−1 = τ ∧ ωn−1.

It follows that τ = ∂ log ‖Ω‖ω. �
Our first application of the torsion constraint will be to construct parallel sections

of the canonical bundle.

Lemma 2.5 ([GA16]) Let (X,ω) be a Hermitian manifold with a nowhere van-
ishing holomorphic (n, 0) form Ω . Suppose (X,ω,Ω) satisfies the conformally
balanced condition (2.23). Then ψ = ‖Ω‖−1

ω Ω satisfies

∇+ψ = 0.

Thus ψ ∈ Γ (X,KX) is nowhere vanishing and parallel with respect to the
Strominger–Bismut connection ∇+.

Proof By (2.8) and (2.6), the induced connection ∇+ on ψ is given by

∇+
i ψ = ∂iψ − (Γ α

iα − T α
iα)ψ, ∇+

ī
ψ = ∂īψ − gkm̄T̄kīm̄ψ. (2.24)

The unbarred derivative is

∇+
i ψ = −∂i log ‖Ω‖ωψ + ‖Ω‖−1

ω ∂iΩ − Γ α
iαψ − Tiψ.

We note that

2∂i log ‖Ω‖ω = ∂iΩ

Ω
− gpq̄∂igq̄p = ∂iΩ

Ω
− Γ α

iα.
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and therefore

∇+
i ψ = (∂i log ‖Ω‖ω − Ti)ψ.

By (2.24), we also have

∇+
ī
ψ = (−∂ī log ‖Ω‖ω + T̄ī )ψ.

If (X,ω,Ω) is conformally balanced, we may use Proposition 2.2 and substitute the
torsion constraint Ti = ∂i log ‖Ω‖ω to conclude ∇+ψ = 0. �
Theorem 2.1 ([GA16]) Let (X,ω) be a compact Hermitian manifold with nowhere
vanishing holomorphic (n, 0) form Ω . Then (X,ω,Ω) satisfies the conformally
balanced condition (2.23) if and only if there exists ψ ∈ Γ (X,KX) which is
nowhere vanishing and parallel with respect to the Strominger–Bismut connection
∇+.

Proof The previous lemma constructs a nowhere vanishing parallel section if
(X,ω,Ω) is conformally balanced. On the other hand, suppose there exists a
nowhere vanishing section ψ ∈ Γ (X,KX) such that

∇+ψ = 0.

We will follow the proof given in lecture notes of Garcia-Fernandez [GA16]. Write

ψ = e−fΩ,

for a complex function f . Since ∇+gk̄j = 0, the norm of ψ is constant. Let us
assume that ‖ψ‖ω = 1. Then

1 = e−f−f̄ ‖Ω‖2
ω,

and

f + f̄ = 2 log ‖Ω‖ω.
By the formula (2.24), we obtain

0 = ∇+
i ψ = (−∂if − Ti + 2∂i log ‖Ω‖ω)ψ,

0 = ∇+
ī
ψ = (−∂īf + T̄īf )ψ. (2.25)

We know that the real part Re f is log ‖Ω‖ω, and we will now show that the
imaginary part Im f is constant. For this, we use (2.25) to compute

∂i(f − f̄ ) = 2(∂i log ‖Ω‖ω − Ti),

∂ī(f − f̄ ) = −2(∂ī log ‖Ω‖ω − T̄ī ).
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By Lemma 2.4,

id(f − f̄ ) = 2d†
χχ,

for χ = ‖Ω‖1/(n−1)
ω χ . Therefore

d†
χd(f − f̄ ) = 0,

hence 〈d(f − f̄ ), d(f − f̄ )〉χ = 0 and Im f is constant. Since Re f = log ‖Ω‖ω,
it follows that

df = d log ‖Ω‖ω
and (2.25) implies the torsion constraint

∂ log ‖Ω‖ω = τ.

By Proposition 2.2, (X,ω,Ω) is conformally balanced. �
As a consequence of the existence of parallel sections, we obtain the following

interpretation of the conformally balanced condition in terms of a holonomy
constraint.

Corollary 2.1 ([ST86, LY05]) A compact Hermitian manifold with trivial canoni-
cal bundle (X,ω,Ω) satisfies the conformally balanced condition (2.23) if and only
if

Hol(∇+) ⊆ SU(n).

2.2.1.2 Curvature

Next, we study the structure of the curvature tensor of Calabi–Yau manifolds with
torsion. We start with the curvature of the Bismut connection. By the definition (2.8),
we can write ∇+ = d + A with

Aj
p
q = Γ

p
iq − T p

jq, Aj̄
p
q = gpk̄T̄qj̄ k̄ .

From this expression, we may compute Rm+ = dA + A ∧ A. The components
(TrRm+)αβ = R+

αβ
γ
γ are

(TrRm+)kj = ∂jTk − ∂kTj , (TrRm+)k̄j̄ = −(∂j̄ T̄k̄ − ∂k̄T̄j̄ ), (2.26)

(TrRm+)k̄j = −∂k̄Tj − ∂j T̄k̄ + ∂j ∂k̄ log ‖Ω‖2
ω. (2.27)
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The following characterization is due to Fino and Grantcharov, which indicates
that conformally balanced metrics can be viewed as non-Kähler analogs of Kähler
Ricci-flat metrics.

Theorem 2.2 ([FG04]) Let (X,ω) be a compact Hermitian manifold with nowhere
vanishing holomorphic (n, 0) form Ω . Then (X,ω,Ω) is conformally balanced if
and only if

TrRm+ = 0.

Proof From (2.26) and (2.27), we see that manifolds satisfying the torsion con-
straint in Proposition 2.2 satisfy TrRm+ = 0. For the other direction, we note that
by Lemma 2.4, we can write

TrRm+ = idd†
χχ,

for χ = ‖Ω‖1/(n−1)
ω ω. It follows that if TrRm+ = 0, then 〈d†

χχ, d
†
χχ〉χ = 0 and

hence d†
χχ = 0. By Lemma 2.4, we conclude ∂ log ‖Ω‖ω = τ and hence (X,ω,Ω)

is conformally balanced. �
For most subsequent computations, we will be using the Chern connection ∇,

so we now turn to curvature of the Chern connection. This tensor satisfies certain
useful identities on Calabi–Yau manifolds with torsion that we will now describe.

Proposition 2.3 The Chern–Ricci curvature of a conformally balanced metric
(X,ω,Ω) satisfies

Rk̄j = 2∇k̄Tj .

Proof The Chern–Ricci curvature is given by

Rk̄j = ∂j ∂k̄ log ‖Ω‖2
ω.

Applying the torsion constraint (Proposition 2.2) gives the result. �
As a consequence, we obtain the following identities between Ricci curvatures

of the Chern connection.

Proposition 2.4 ([PPZ318]) A conformally balanced metric (X,ω,Ω) satisfies

R ′̄
kj

= R′′̄
kj

= 1

2
Rk̄j ,

R′ = 1

2
R, R = gjk̄∂j ∂k̄ log ‖Ω‖2

ω.
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Proof By the Bianchi identity (Lemma 2.3),

R ′̄
kj

= gpq̄Rk̄pq̄j = gpq̄ (Rk̄j q̄p + ∇k̄Tq̄jp) = Rk̄j − ∇k̄Tj .

Applying the previous proposition gives R ′̄
kj

= 1
2Rk̄j . The identity for R′′̄

kj
is

derived similarly. Taking the trace gives the relation between the scalar curvatures
R and R′. �

From the divergence theorem (2.10), we note in passing that the total scalar
curvature of the Chern connection of a Calabi–Yau manifold with torsion is positive.
In fact,

∫

X

R ωn =
∫

X

(2|τ |2) ωn.

We conclude this section with the remark that in Strominger’s work [ST86], the
condition d(‖Ω‖ωωn−1) = 0 appeared in another form. The reformulation of this
condition in terms of balanced metrics is due to Li and Yau [LY05].

Theorem 2.3 ([LY05]) Let (X,ω) be a Hermitian manifold with nowhere
vanishing holomorphic (n, 0) form Ω . The conformally balanced condition
d(‖Ω‖ωωn−1) = 0 is equivalent to the equation

d†ω = i(∂̄ − ∂) log ‖Ω‖ω.

Proof This follows from combining d†ω = i(τ̄ − τ ) (2.13) with ∂ log ‖Ω‖ω = τ

(Proposition 2.2). �

2.2.2 Rigidity Theorems

We note in this section some conditions under which a Calabi–Yau manifold with
torsion is actually Kähler. We start with a result of Ivanov–Papadopoulos [IP01].
The proof given here follows the computation of [PPZ318].

Theorem 2.4 ([IP01]) Let (X,ω,Ω) be a compact Calabi–Yau manifold with
torsion, so that d(‖Ω‖ωωn−1) = 0. Suppose

i∂∂̄ω = 0.

Then ω is a Kähler metric.

Proof We start by computing i∂∂̄ω. Its components are

i∂∂̄ω = 1

4
(i∂∂̄ω)īj̄k
 dz


 ∧ dzk ∧ dz̄j ∧ dz̄i,
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given explicitly by

(i∂∂̄ω)īj̄k
 = ∂
∂j̄ gīk − ∂
∂īgj̄k + ∂k∂īgj̄
 − ∂k∂j̄ gī
.

Using the definition of the curvature tensor (2.15) and the torsion (2.4), we find

(i∂∂̄ω)īj̄k
 = −Rīkj̄
 + Rj̄kī
 − Rj̄
īk + Rī
j̄k − gsr̄Tr̄
kT̄sīj̄ . (2.28)

Setting this expression to zero and contracting the indices, we see that pluriclosed
metrics satisfy

0 = g
j̄ gkī (i∂∂̄ω)īj̄k
 = 2R′ − 2R + |T |2.

Applying Proposition 2.4, we see that if we further assume that ω is conformally
balanced, then

gjk̄∂j ∂k̄ log ‖Ω‖2
ω = |T |2 ≥ 0.

The maximum principle for elliptic equations (Proposition 2.1) implies that
log ‖Ω‖2

ω must be constant, and hence |T |2 = 0. �
Next, we state the result of Fino–Tomassini [FT11], which builds on work of

Matsuo–Takahashi [MT01]. We follow here the computation given in [PPZ19].

Theorem 2.5 ([FT11, MT01]) Let (X,Ω,ω) be a compact Calabi–Yau manifold
with torsion of dimension n ≥ 3, so that d(‖Ω‖ωωn−1) = 0. Suppose

i∂∂̄ωn−2 = 0.

Then ω is a Kähler metric.

Proof We assume that n ≥ 4, since the statement follows from the previous theorem
when n = 3. Expanding derivatives,

i∂∂̄ωn−2 = (n − 2)i∂∂̄ω ∧ ωn−3 + i(n− 2)(n− 3)T ∧ T̄ ∧ ωn−4.

We will wedge this expression with ω to obtain an equation on top forms. For this,
we use the general identities

Φ ∧ ωn−2 = 1

2n(n− 1)

{

gij̄ gk
̄Φ
̄j̄ki

}

ωn, (2.29)

and

Ψ ∧ ωn−3 = − i

6n(n− 1)(n− 2)

{

gij̄ gk
̄gmn̄Ψn̄
̄j̄mki

}

ωn, (2.30)
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for any Φ ∈ Ω2,2(X,R) and Ψ ∈ Ω3,3(X,R), where we use the component
convention (2.1). Applying these identities gives

ω ∧ i∂∂̄ωn−2

=
[

(n− 2)

2n(n − 1)
gij̄ gk
̄(i∂∂̄ω)
̄j̄ki + (n − 3)

6n(n− 1)
gij̄ gk
̄gmn̄(T ∧ T̄ )n̄
̄j̄mki

]

ωn.

(2.31)

Symmetrizing the components of the torsion tensor T , we see that

(T ∧ T̄ )n̄
̄j̄mki = Tj̄mi T̄kn̄
̄ + T
̄miT̄kj̄ n̄ + Tn̄mi T̄k
̄j̄ + Tj̄kmT̄in̄
̄ + T
̄kmT̄ij̄ n̄

+Tn̄kmT̄i
̄j̄ + Tj̄ikT̄mn̄
̄ + T
̄ikT̄mj̄ n̄ + Tn̄ikT̄m
̄j̄ . (2.32)

Setting (2.31) to zero and substituting the expression (2.28) for i∂∂̄ω and (2.32) for
T ∧ T̄ , we obtain the following identity

0 = (n− 2)

2n(n − 1)
(2R′ − 2R + |T |2) + (n− 3)

6n(n − 1)
(6|τ |2 − 3|T |2),

satisfied by any astheno-Kähler metric ω. We now use the conformally
balanced condition by applying Proposition 2.4, which gives 2R′ − 2R =
−gjk̄∂j ∂k̄ log ‖Ω‖ω. Simplifying, we obtain

(n− 2)gjk̄∂j ∂k̄ log ‖Ω‖ω = |T |2 + 2(n− 3)|τ |2 ≥ 0.

By the maximum principle for elliptic equations (Proposition 2.1) we must have
|T |2 + 2(n− 3)|τ |2 = 0. Hence |T |2 = 0 and ω is Kähler. �

There are more theorems of this nature; for other conditions on balanced metrics
which imply that it is Kähler, see [FIUV09, LY12, LY17].

A folklore conjecture in the field (e.g. [FV16]) speculates that if a Calabi–Yau
with torsion (X,Ω,ω) admits another metric ω2 which is pluriclosed, then X must
be a Kähler. If ω2 is instead assumed to be astheno-Kähler, then X need not be
Kähler [FGV, LU17].

2.2.3 Examples

2.2.3.1 Kähler Calabi–Yau

We have already seen that conformally balanced metrics generalize Kähler Ricci-
flat metrics, since they are characterized by vanishing of the Ricci curvature of ∇+,
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and ∇+ coincides with the Levi-Civita connection for Kähler metrics. We note here
a simple direct proof that Kähler Ricci-flat metrics are conformally balanced.

Let (X,Ω) be a Kähler Calabi–Yau manifold. By Yau’s theorem [YA78], there
exists a Kähler metric ω with zero Ricci curvature. In this case, ‖Ω‖ω is constant,
since

i∂∂̄ log ‖Ω‖2
ω = i∂∂̄ logΩ(z)Ω(z)− i∂∂̄ log detgk̄j = 0,

and hence gjk̄∂j ∂k̄ log ‖Ω‖2
ω = 0. By the maximum principle, ‖Ω‖ω is constant.

Since ω is Kähler, we have dωn−1 = 0, and hence d(‖Ω‖ωωn−1) = 0.

2.2.3.2 Complex Lie Groups

Next, we study invariant metrics on complex Lie groups, which provide a class
of natural non-Kähler metrics. Let G be a complex Lie group. Choose a positive
definite inner product on the Lie algebra g, and let e1, . . . , en ∈ g be an orthonormal
frame of left-invariant holomorphic vector fields on G. The structure constants of
the Lie algebra g in this basis will be denoted

[ea, eb] = cdabed .

Taking the dual frame e1, . . . , en, we may define a left-invariant metric ω by

ω = i
∑

a

ea ∧ ēa.

We note that this metric cannot be Kähler unless G is trivial. Indeed, taking the
exterior derivative gives

∂ea = 1

2
cabde

d ∧ eb. (2.33)

Therefore

i∂̄ω = 1

2
cabd e

a ∧ ēd ∧ ēb,

i∂∂̄ω = 1

4
cabdc

a
rs e

s ∧ er ∧ ēd ∧ ēb, (2.34)

so this invariant metric is not Kähler or pluriclosed in general. We take the Calabi–
Yau form to be

Ω = e1 ∧ · · · ∧ en.
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which is a nowhere vanishing holomorphic (n, 0) form. Using (2.22), we see that

‖Ω‖ω = 1.

Checking whether ω is conformally balanced reduces to verifying that dωn−1 = 0.
This implies a condition of the structure constants, which does not hold for arbitrary
Lie groups, but still admits plenty of examples. We say that G is unimodular if its
structure constants satisfy

∑

p

cppa = 0.

This condition is well-defined on G and does not depend on the choice of frame.
It was noted by Abbena and Grassi [AG86] that dωn−1 = 0 if and only if G is
unimodular. Indeed, from (2.33) we see that T a

bd = cabd . Hence G is unimodular
if and only if Tj = 0, which holds if and only if ω is conformally balanced by
Proposition 2.2.

Thus unimodular complex Lie groups admit left invariant conformally balanced
metrics. An explicit example is given by SL(2,C). To obtain a compact threefold,
we may quotient out by a discrete group and let X = SL(2,C)/Λ.

We claim that X does not admit a Kähler metric. For this, we use the fact that
SL(2,C) admits a basis ea such that cabd = εabd the Levi-Civita symbol. Let ω =
iδba e

a ∧ ēb, and compute

(ω2)b̄d̄rs = 2(δd̄sδb̄r − δd̄rδb̄s).

In dimension 3, we have the contracted epsilon identity

εarsεabd = δrbδsd − δrdδbs. (2.35)

Therefore, by (2.34),

(i∂∂̄ω)b̄d̄rs = δdsδbr − δdrδbs.

We see that ω2 and i∂∂̄ω are proportional to each other.

i∂∂̄ω = 1

2
ω2. (2.36)

This in particular illustrates another difference with Kähler geometry, where ω2

always represents a non-zero cohomology class. Now suppose X admits a Kähler
metric χ . Then

0 =
∫

X

i∂∂̄ω ∧ χ = 1

2

∫

X

ω2 ∧ χ (2.37)

which is a contradiction since ω2 ∧ χ > 0.
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For more examples of complex Lie groups, Fei–Yau [FY15, Proposition 3.7]
classify complex unimodular Lie algebras of dimension 3 and study the Hull–
Strominger system in each case. A theorem of Wang [WA54] states that the only
compact parallelizable manifolds admitting Kahler metrics are the complex tori.

2.2.3.3 Iwasawa Manifold

We consider the action of a, b, c ∈ Z[i] on C3 given by

(x, y, z) �→ (x + a, y + c, z + āy + b). (2.38)

Let X be the quotient of C3 under this action. The manifold X is an example of an
Iwasawa manifold. We have a projection

π : X → T 4 = C/Λ × C/Λ, π(x, y, z) = (x, y).

HereΛ is the lattice generated by 1, i. The fibers are isomorphic to tori π−1(x, y) =
T 2. Hence M is a torus fibration over T 4. The form

Ω = dz ∧ dx ∧ dy,

is defined on X, and is holomorphic nowhere vanishing. We define

θ = dz − x̄dy.

This form on C3 is invariant under the action (2.38), and is thus well-defined on X.
Consider the family of metrics

ωu = euω̂ + iθ ∧ θ̄ , ω̂ = idx ∧ dx̄ + idy ∧ dȳ,

where u : T 4 → R is an arbitrary function on the base T 4. A computation shows
that

‖Ω‖ωu = e−u,

and

d(‖Ω‖ωuω2
u) = 0.

Thus (X,ωu,Ω) is conformally balanced. However, X does not admit a Kähler
metric. Let ω0 be metric with u = 0. Direct computation gives

i∂∂̄ω0 = ω̂2

2
.
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We can rule out the existence of a Kähler metric χ by considering
∫
X i∂∂̄ω0 ∧ χ as

in the previous section, see (2.37).

2.2.3.4 Goldstein–Prokushkin Fibrations

In this section, we describe a construction of Goldstein–Prokushkin [GO04] which
utilizes U(1) principal bundles to generalize the previous example. Let (S, ω̂,Ω) be
a Kähler Calabi–Yau surface equipped with two (1, 1) form ω1, ω2 ∈ 2πH 2(S,Z),
which are anti-self-dual with respect to ω̂.

�ω1 = −ω1, �ω2 = −ω2.

There exists line bundles L1, L2 over S with connections A1, A2 whose curvature
iFA1, iFA2 is equal to ω1, ω2. As detailed in Sect. 2.1.4, the line bundles L1, L2
can be compactified to form S1 principal bundles P1 → S, P2 → S equipped with
connection 1-forms θ1, θ2 satisfying

dθi = −ωi.

Let X denote the total space of the S1 × S1 principal bundle π : X → S whose
fibers are the product of the fibers of P1, P2. Locally, points of X are given by
(z, eiψ1, eiψ2). As we discussed in Sect. 2.1.4, we have the global vector fields

∂

∂ψ1
,

∂

∂ψ2
,

which span the vertical space V = kerπ∗, and satisfy

θ1

(
∂

∂ψ1

)

= 1, θ2

(
∂

∂ψ2

)

= 1.

The horizontal space is given by

H = ker θ1 ∩ ker θ2,

and the tangent space admits the decomposition

TX = H ⊕ V.

Furthermore

π�|H : H → T S
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is an isomorphism. It follows that the complex structure jS on S induces an almost
complex structure on H . We define on X the almost complex structure

J = (π∗|HjS) ⊕ I, I
∂

∂ψ1
= ∂

∂ψ2
, I

∂

∂ψ2
= − ∂

∂ψ1
.

We define the 1-form

θ = −θ1 − iθ2.

Since θ |H = 0 and θ(∂ψ1 + i∂ψ2) = 0, we see that θ(V ) = 0 for any V ∈ T 0,1X.
Thus θ is a (1, 0) form. Furthermore,

dθ = π∗(ω1 + iω2).

Similarly to our discussion of Eq. (2.21) in Sect. 2.1.4.2, we can use that (1, 0) forms
are locally generated by {π∗dz1, π∗dz2, θ} to apply the Newlander–Nirenberg
theorem and establish that J integrable. Thus X is a compact complex manifold
of dimension 3.

In fact, X is a Calabi–Yau manifold with torsion. Let

Ω = θ ∧ π∗ΩS,

which is a nowhere vanishing (3, 0) form. The form Ω is holomorphic since
dΩ = 0.

For u ∈ C∞(S,R), we consider the family of metrics

ωu = π∗(euω̂) + iθ ∧ θ̄ .

These metrics will be revisited, as they form the Fu–Yau ansatz of solutions to the
Hull–Strominger system [FY08]. We compute

iΩ ∧ Ω̄ = iθ ∧ θ̄ ∧ π∗(ΩS ∧ ΩS) = iθ ∧ θ̄ ∧ π∗
(

‖ΩS‖2
ω̂

ω̂2

2

)

,

ω2
u = π∗(e2uω̂2) + 2π∗(euω̂) ∧ iθ ∧ θ̄ , ω3

u = 3π∗(e2uω̂2) ∧ iθ ∧ θ̄ .

Since (S, ω̂) is Kähler Ricci-flat, then ‖ΩS‖ω̂ is constant, which we may normalize
such that

‖Ω‖ωu = e−u. (2.39)
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We can now compute

d(‖Ω‖ωuω2
u) = d(π∗(euω̂2) + 2π∗ω̂ ∧ iθ ∧ θ̄ )

= 2π∗ω̂ ∧ iπ∗(ω1 + iω2) ∧ θ̄ − 2π∗ω̂ ∧ iθ ∧ π∗(ω1 − iω2)

= 0,

since

ω̂ ∧ ω1 = ω̂ ∧ ω2 = 0,

as ω1, ω2 are anti-self-dual. Thus (X,ωu,Ω) is Calabi–Yau with torsion. In fact, X
is non-Kähler unless ω1 = ω2 = 0. To see this, we compute

i∂∂̄ω0 = −∂̄θ ∧ ∂θ̄ = −(π∗ω1 + iπ∗ω2)(π
∗ω1 − iπ∗ω2) = −π∗(ω2

1 + ω2
2).

Since ω1, ω2 are anti-self-dual,

i∂∂̄ω0 = π∗(ω1 ∧ �ω1 + ω2 ∧ �ω2).

If X admits a Kähler metric χ , then

0 =
∫

X

i∂∂̄ω0 ∧ χ =
∫

X

π∗(ω1 ∧ �ω1 + ω2 ∧ �ω2) ∧ χ,

which is strictly positive unless ‖ω1‖2
ω̂

= ‖ω2‖2
ω̂

= 0.

2.2.3.5 Fei Twistor Space

As our last example, we outline a construction of Fei [FE16, FE15] which
generalizes earlier constructions of Calabi [CA58] and Gray [GR69]. The example
will be a T 4 fibration over a Riemann surface.

We first describe the base of the fibration. Let (Σ, ϕ) be a Riemann surface
equipped with a nonconstant holomorphic map ϕ : Σ → P1 satisfying ϕ∗O(2) =
KΣ . This condition is known to imply that the genus of Σ must be at least three.
As a concrete example, we may take Σ to be a minimal surface in T 3 with ϕ being
the Gauss map [FHP17]. By the work of Meeks [ME90] and Traizet [TR08], there
exists minimal surfaces of genus g ≥ 3 in T 3.

Using stereographic coordinates, we may write ϕ = (α, β, γ ) with (α, β, γ ) ∈
S2 ⊆ R3. Fixing the Fubini-Study metric ωFS on P1, we pullback via ϕ an
orthonormal basis of sections of O(2) to obtain 1-forms μ1, μ2, μ3. We then equip
Σ with the metric

ω̂ = iμ1 ∧ μ̄1 + iμ2 ∧ μ̄2 + iμ3 ∧ μ̄3.
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This metric has Gauss curvature κ given by

κω̂ = −ϕ∗ωFS,

hence κ ≤ 0 and κ vanishes at branch points of ϕ.
We now describe the fibers. Let (T 4, g) be the 4-torus with flat metric, which

we will view as a hyperkähler manifold with complex structures I , J , K satisfying
IJ = K and I 2 = J 2 = K2 = −1, and corresponding Kähler metrics ωI , ωJ ,
ωK . At each z ∈ Σ , we use the map ϕ = (α, β, γ ) to equip T 4 with the complex
structure

αI + βJ + γK.

If jΣ denotes the complex structure on Σ , we may form the product X = Σ × T 4

and equip it with the complex structure

J0 = jΣ ⊕ (αI + βJ + γK).

This complex structure is integrable, thus X is a compact complex manifold of
dimension 3. In fact, X has trivial canonical bundle, and we can give an explicit
expression for a nowhere vanishing holomorphic (3, 0) form

Ω = μ1 ∧ ωI + μ2 ∧ ωJ + μ3 ∧ ωK.

Let

ω′ = αωI + βωJ + γωK

be the Kähler metric corresponding to the complex structure αI + βJ + γK on T 4.
The Fei ansatz ωf on X is the following family of conformally balanced metrics.

Proposition 2.5 ([FE16, FE15]) Given any f ∈ C∞(Σ,R), the Hermitian metric
given by

ωf = e2f ω̂ + ef ω′,

is conformally balanced. Furthermore, ‖Ω‖ωf = e−2f .

Thus X is Calabi–Yau with torsion, and in fact, it is non-Kähler.

2.2.3.6 Other Examples

We have now discussed many examples of Calabi–Yau manifolds with balanced
metrics, many of which were already listed in the pioneering work of Michelsohn
[MI82]. There are also example which will not be studied in these notes. For
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example, there is the construction of Fu et al. [FLY12] on connected sums of
S3 × S3. There are parallelizable examples on nilmanifolds and solvmanifolds
[UG07, OUV17, FIUV09, FG04, UV14, UV15]. Non-compact examples are con-
structed in [FY09, FE17, FIUV14]. There are also examples from the physics
literature, e.g. [BD02, BBDG03, DRS99, HIS16, MS11].

2.3 Anomaly Flow with Zero Slope

In this section, we will discuss a geometric flow which preserves the geometry
described in Sect. 2.2. The material in this section can be found in joint work with
Phong and Zhang [PPZ218, PPZ318, PPZ19].

A central problem in complex geometry is to detect when a given complex
manifold admits a Kähler metric. We would like to study this question on Calabi–
Yau manifolds with torsion. Motivated by Sect. 2.2.2, we will deform conformally
balanced metrics towards astheno-Kähler (i∂∂̄ωn−2 = 0).

Together with Phong and Zhang [PPZ19], we introduce the flow

d

dt
(‖Ω‖ωωn−1) = i∂∂̄ωn−2,

d(‖Ω‖ω(0)ω(0)n−1) = 0. (2.40)

We call this evolution equation the Anomaly flow with zero slope. The name comes
from an extension of the flow which adds higher order correction terms proportional
to a parameter α′, which is used to study the Hull–Strominger system and the
cancellation of anomalies in theoretical physics. We will discuss the Anomaly flow
when α′ terms are included in Sect. 2.4.

The first thing to note is that the conformally balanced property is preserved by
the flow

d(‖Ω‖ω(t)ω(t)n−1) = 0,

which follows from taking the exterior derivative of (2.40). In fact, the balanced
class of the initial metric

[‖Ω‖ω(0)ω(0)n−1] ∈ H
n−1,n−1
BC (X,R)

is also preserved, since

d

dt
[‖Ω‖ωωn−1] = [i∂∂̄ωn−2] = 0. (2.41)
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Here Hn−1,n−1
BC (X) is the Bott–Chern cohomology of X, given by

H
n−1,n−1
BC (X) = {α ∈ Ωn−1,n−1(X) : dα = 0}

{i∂∂̄β : β ∈ Ωn−2,n−2(X)} .

Stationary points ω∞ of the flow satisfy both

d(‖Ω‖ω∞ω
n−1∞ ) = 0, i∂∂̄ωn−2∞ = 0,

hence by Theorem 2.5, they are Kähler. The Anomaly flow with zero slope thus
deforms balanced metrics to a Kähler metric in a given balanced class.

2.3.1 Evolution of the Metric

The first question to ask about the flow (2.40) is whether it exists for a short-time,
and if so, we would like an explicit expression for the evolution equation of the
metric ω = igk̄j dz

j ∧ dz̄k.
We begin by deriving the evolution of the determinant of the metric.

Lemma 2.6 Suppose ω(t) = igk̄j dz
j ∧ dz̄k satisfies the evolution equation

d

dt
(‖Ω‖ωωn−1) = Ψ (t), (2.42)

for Ψ (t) ∈ Ωn−1,n−1(X,R). Then the norm of Ω evolves by

d

dt
‖Ω‖ω = − n

(n − 2)

Ψ ∧ ω

ωn
,

which follows from the identity

Tr ω̇ = 2n

(n − 2)‖Ω‖ω
Ψ ∧ ω

ωn
.

From now on, traces will always be taken with respect to the evolving metric ω.
Explicitly,

Trα = i−1gjk̄αk̄j ,

for a (1, 1) form α = αk̄j dz
j ∧ dz̄k.
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Proof Using the well-known formula

δ detgk̄j = (detgk̄j )g
jk̄(δg)k̄j ,

we differentiate

d

dt
‖Ω‖ω = d

dt
(ΩΩ̄)1/2(detg)−1/2 = −1

2
‖Ω‖ωTr ω̇.

Expanding (2.42), we obtain

(
d

dt
‖Ω‖ω

)

ωn−1 + (n − 1)‖Ω‖ωω̇ ∧ ωn−2 = Ψ.

Substituting the variation of ‖Ω‖ω gives

− 1

2
‖Ω‖ω(Tr ω̇)ωn−1 + (n − 1)‖Ω‖ωω̇ ∧ ωn−2 = Ψ. (2.43)

Next, we wedge this equation with ω to obtain the following equation of top forms.

−1

2
‖Ω‖ω(Tr ω̇)ωn + (n − 1)‖Ω‖ω (Tr ω̇)

n
ωn = Ψ ∧ ω.

From this equation we can solve for Tr ω̇. �
Lemma 2.7 Suppose ω(t) satisfies

d

dt
(‖Ω‖ωωn−1) = Ψ (t),

for Ψ (t) ∈ Ωn−1,n−1(X,R). Then the metric evolves by

∂tω =
[

n

(n − 2)‖Ω‖ω
Ψ ∧ ω

ωn

]

ω − 1

(n − 1)!‖Ω‖ω � Ψ.

Proof To extract ∂tω, we will apply the Hodge star operator � with respect to ω to
the expanded equation (2.43).

− (n− 1)!
2

‖Ω‖ω(Tr ω̇)ω + (n − 1)!‖Ω‖ω(−∂tω + (Tr ω̇)ω) = �Ψ

Here we used the identities �ωn−1 = (n − 1)!ω and

[�(α ∧ ωn−2)]q̄p = −(n− 2)!αq̄p + i(n− 2)!(Trα)gq̄p, (2.44)
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for any α ∈ Ω1,1(X). This last identity can be found in e.g. [HU305, PPZ318].
Therefore

∂tω = 1

2
(Tr ω̇)ω − 1

(n− 1)!‖Ω‖ω � Ψ.

Substituting the previous lemma gives the desired expression. �
For the Anomaly flow with zero slope, the form Ψ is given by

Ψ = i∂∂̄ωn−2 = (n− 2)i∂∂̄ω ∧ωn−3 + i(n− 2)(n− 3)T ∧ T̄ ∧ωn−4. (2.45)

To obtain an explicit expression for the evolution of the metric, we must expand the
torsion terms.

Theorem 2.6 ([PPZ19]) Suppose ω(t) solves the Anomaly flow

d

dt
(‖Ω‖ωωn−1) = i∂∂̄(ωn−2), d(‖Ω‖ω(0)ω(0)n−1) = 0.

If n = 3, then the metric evolves via

∂tgk̄j = 1

2‖Ω‖ω
[

− R̃k̄j + gm
̄gsr̄Tr̄mj T̄s
̄k̄

]

,

and if n ≥ 4, then

∂tgk̄j = 1

(n − 1)‖Ω‖ω
[

− R̃k̄j + 1

2(n− 2)
(|T |2 − 2|τ |2) gk̄j

−1

2
gqp̄gsr̄Tk̄qs T̄j p̄r̄ + gsr̄ (Tk̄js T̄r̄ + TsT̄j k̄r̄ ) + Tj T̄k̄

]

. (2.46)

The metric evolution can be compared with other flows in Hermitian geometry,
e.g. [ST10, ST11, TW15, US16, ZH16]. The expression when n = 3 is similar to
the metric evolution in the Streets–Tian pluriclosed flow [ST10], though they differ
by the presence of the determinant of the metric ‖Ω‖ω. We note that the Anomaly
flow is a flow of balanced metrics while the pluriclosed flow is a flow of pluriclosed
metrics, so these flows exist in different realms of Hermitian geometry. Such torsion-
type terms appearing in (2.46) also appear in other Ricci flows preserving other
types of geometry, such as for example the metric evolution in the G2 Laplacian
flow [KA09, BR05].

Proof We will derive the expression assuming that n ≥ 4, as the case n = 3 is easier
and follows a similar argument. We use the notation

TrΦ = i−2gpq̄gjk̄Φk̄j q̄p, TrΨ = i−3gjk̄gpq̄gsr̄Ψr̄sq̄pk̄j ,
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for Φ ∈ Ω2,2(X) and Ψ ∈ Ω3,3(X). We begin by computing

(� i∂∂̄ωn−2)q̄p

= (n − 2)[� (i∂∂̄ω ∧ ωn−3)]q̄p + i(n− 2)(n− 3)[� (T ∧ T̄ ∧ ωn−4)]q̄p
= i(n − 2)!gsr̄ (i∂∂̄ω)r̄sq̄p + i

(n− 2)!
2

(Tr i∂∂̄ω)gq̄p

+ i
(n− 2)!

2
gij̄ gsr̄ (T ∧ T̄ )r̄sj̄ iq̄p − (n − 2)!

6
(TrT ∧ T̄ )gq̄p. (2.47)

This follows from (2.45) and the following identities for the Hodge star operator

[�(Φ ∧ ωn−3)]q̄p = i(n− 3)!gsr̄Φr̄sq̄p + i
(n− 3)!

2
(TrΦ)gq̄p,

[�(Ψ ∧ ωn−4)]q̄p = (n− 4)!
2

gij̄ gsr̄Ψr̄sj̄ iq̄p + i
(n− 4)!

6
(TrΨ )gq̄p, (2.48)

which hold for any Φ ∈ Ω2,2(X,R) and Ψ ∈ Ω3,3(X,R). For a proof of these
Hodge star identities, see [PPZ19].

Next, we compute using (2.29) and (2.30),

i∂∂̄ωn−2 ∧ ω

ωn
= (n − 2)

i∂∂̄ω ∧ ωn−2

ωn
+ i(n − 2)(n− 3)

T ∧ T̄ ∧ ωn−3

ωn

= (n − 2)

2n(n − 1)
Tr (i∂∂̄ω) + i(n− 3)

6n(n− 1)
Tr (T ∧ T̄ ). (2.49)

We now substitute (2.47) and (2.49) into Lemma 2.7. The Tr (i∂∂̄ω) terms cancel
exactly, and we are left with

∂tgq̄p = − 1

(n− 1)‖Ω‖ω g
sr̄ (i∂∂̄ω)r̄sq̄p − 1

2(n − 1)‖Ω‖ω g
ij̄ gsr̄ (T ∧ T̄ )r̄sj̄ iq̄p

− i

6(n− 1)(n− 2)‖Ω‖ω Tr (T ∧ T̄ ) gq̄p. (2.50)

By identity (2.28), we have

gsr̄ (i∂∂̄ω)r̄q̄sp = −R̃q̄p + R ′̄
qp − Rq̄p + R′′

pq̄ − gsr̄gnm̄Tm̄psT̄nr̄q̄ .

We now use that the evolving metrics are conformally balanced. In this case, by
Proposition 2.4, we have

gsr̄ (i∂∂̄ω)r̄sq̄p = R̃q̄p − gsr̄gnm̄Tm̄spT̄nr̄q̄ . (2.51)
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Substituting (2.51) and (2.32) into (2.50) and expanding the torsion terms gives the
explicit expression for ∂tgq̄p. �

As a consequence of Theorem 2.6, the Anomaly flow with zero slope exists for a
short-time from any initial metric. Indeed, from (2.15) we have

R̃m̄
 = −gjk̄∂j ∂k̄gm̄
 + gjk̄gsr̄∂k̄gm̄s∂j gr̄
, (2.52)

and so R̃m̄
(g) is an elliptic operator in g. There is a slight subtlety, which is that the
proof of Theorem 2.6 only shows that the Anomaly flow with zero slope is parabolic
when restricted to variations in the space of conformally balanced metrics. One way
to resolve this issue is by using the Hamilton–Nash–Moser [HA82] implicit function
theorem, and we refer to [PPZ116, PPZ19] for details.

Corollary 2.2 ([PPZ19]) Let ω0 be a conformally balanced Hermitian metric.
There exists an ε > 0 such that Anomaly flow with zero slope admits a unique
solution on [0, ε) with ω(0) = ω0.

2.3.2 Non-Kähler Examples

We outline here some simple examples to illustrate possible behaviors of the flow.

2.3.2.1 Iwasawa Manifold

Let π : X → T 4 be the Iwasawa manifold considered in Sect. 2.2.3.3 with ansatz
ωu = euω̂ + iθ ∧ θ̄ , where

ω̂ = idx ∧ dx̄ + idy ∧ dȳ, θ = dz − x̄dy,

and u(x, y) is a smooth function u : T 4 → R. We will show that this ansatz is
preserved by the Anomaly flow. We previously computed that ‖Ω‖ωu = e−u, and so

‖Ω‖ωuω2
u = euω̂2 + 2iω̂ ∧ θ ∧ θ̄ .

Furthermore,

i∂∂̄ωu = i∂∂̄eu ∧ ω̂ + ω̂2

2
.
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The Anomaly flow with zero slope ∂t (‖Ω‖ωω2) = i∂∂̄ω reduces to

∂te
u = 1

2
(Δω̂e

u + 1). (2.53)

The flow exists for all time by linear parabolic theory. The functional defined by

M(ω(t)) =
∫

X

‖Ω‖ω(t) ω(t)3,

satisfies in this case

d

dt
M(t) = d

dt

∫

X

3euω̂2 ∧ iθ ∧ θ̄

= 3
∫

X

i∂∂̄(euω̂ ∧ iθ ∧ θ̄ ) + 3

2

∫

X

ω̂2 ∧ iθ ∧ θ̄

= 1

2

∫

X

(ω̂ + iθ ∧ θ̄ )3 > 0.

It follows that M(t) → ∞ linearly as t → ∞. The functional M(ω) is
sometimes called the dilaton functional, and was introduced in [GRST18] to develop
a variational formulation of the Hull–Strominger system.

Since (2.53) is a linear parabolic equation and
∫
eu → ∞ as t → ∞, we also

have that eu → ∞ everywhere on T 4 as t → ∞. The geometric statement is that
‖Ω‖ωu → 0 everywhere on the base T 4. The flow cannot converge in this case since
the Iwasawa manifold does not admit a Kähler metric.

2.3.2.2 Compact Quotients of SL(2, C)

Next, we study quotients of SL(2,C) by a lattice Λ as described in Sect. 2.2.3.2. Let
{ea} be a left-invariant basis of holomorphic vector fields with [ea, eb] = εabded .
We will study the ansatz

ω = ρω̂, ω̂ = iea ∧ ēa,

where ρ > 0 is a constant. This ansatz was used by Fei–Yau to solve the Hull–
Strominger system on complex Lie groups [FY15].

As computed in (2.36),

i∂∂̄ω = ρ
ω̂2

2
.
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Next, we compute using the definition of the norm (2.22) and obtain

‖Ω‖ω = ρ−3/2.

Thus

‖Ω‖ωω2 = (ρ−3/2ρ2)ω̂2.

Using the ansatz ω = ρω̂ on X = SL(2,C)/Λ, the Anomaly flow with zero slope
becomes the ODE

d

dt
(ρ1/2) = 1

2
ρ,

whose solution is given by

ρ(t) = 1

(ρ(0)−1/2 − t
2 )

2
.

We see that the flow develops a singularity as ρ → ∞ in finite time. In particular,
there exists T < ∞ such that ‖Ω‖ω → 0 as t → T . The flow cannot converge
since X does not admit a Kähler metric.

2.3.3 Kähler Manifolds

The previous two examples illustrate how the Anomaly flow can develop singular-
ities on non-Kähler manifolds. If the manifold is already known to admit a Kähler
metric, the flow should detect it. Since there are many different Kähler metrics on
a given Kähler manifold, the flow must select a single one in the limit. We will
explain this mechanism in this section and explain how the flow may provide insight
in studying the relation between the Kähler cone and the balanced cone.

Let X be a compact complex manifold with Kähler metric χ̂ = iχ̂k̄j dz
j ∧ dz̄k

and nowhere vanishing holomorphic (n, 0) form Ω . We will start the Anomaly flow
with zero slope with the initial data

‖Ω‖ω(0)ω(0)n−1 = χ̂n−1. (2.54)

This equation determines the initial metric ω(0), which is manifestly conformally
balanced and is explicitly given by the following lemma.

Lemma 2.8 Let χ ∈ Ω1,1(X,R) be a Hermitian metric and Ω ∈ Ωn,0(X) be
nowhere vanishing. The equation

‖Ω‖ωωn−1 = χn−1 (2.55)
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admits a unique Hermitian metric solution ω given by

ω = ‖Ω‖−2/(n−2)
χ χ.

Proof We let

ω = ‖Ω‖−1/(n−1)
ω χ, (2.56)

and so we only need to solve for the determinant. Taking the determinant of both
sides of (2.55) and raising to the power of −1

(n−1) gives

‖Ω‖−n/(n−1)
ω (detω)−1 = (detχ)−1.

Recall that ‖Ω‖2
ω = ΩΩ̄(detω)−1. Multiplying both sides by ΩΩ̄ , we obtain

‖Ω‖2
ω‖Ω‖−n/(n−1)

ω = ‖Ω‖2
χ .

Therefore

‖Ω‖1/(n−1)
ω = ‖Ω‖2/(n−2)

χ , (2.57)

and the existence result follows from (2.56). For uniqueness, suppose ω and ω̃

solve (2.55). Then (2.57) determines ‖Ω‖ω = ‖Ω‖ω̃ and so ω̃n−1 = ωn−1, from
which it follows [MI82] that ω = ω̃. �

We claim that the solution to the Anomaly flow with zero slope and initial
data (2.54) is given by

‖Ω‖ω(t)ω(t)n−1 = χ(t)n, (2.58)

where

χ = χ̂ + i∂∂̄ϕ > 0,

and the scalar potential ϕ satisfies

ϕ̇ = e−f (χ̂ + i∂∂̄ϕ)n

χ̂n
, ϕ(x, 0) = 0,

(we use the notation ϕ̇ = ∂tϕ), with

e−f = 1

(n − 1)‖Ω‖2
χ̂

.
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Indeed, the ansatz (2.58) solves the equation of the flow. To see this, we compute

d

dt
‖Ω‖ωωn−1 = (n − 1)χ̇ ∧ χn−2

= (n − 1)i∂∂̄ϕ̇ ∧ χn−2.

The equation for ϕ̇ can be rearranged as

ϕ̇ = 1

(n − 1)‖Ω‖2
χ

.

Therefore

d

dt
‖Ω‖ωωn−1 = i∂∂̄(‖Ω‖−2

χ ) ∧ χn−2.

On the other hand, by Lemma 2.8, we have

i∂∂̄ωn−2 = i∂∂̄(‖Ω‖−2
χ χn−2)

= i∂∂̄(‖Ω‖−2
χ ) ∧ χn−2.

It follows that the ansatz (2.58) satisfies

d

dt
‖Ω‖ωωn−1 = i∂∂̄ωn−2.

By uniqueness of solutions, the ansatz (2.58) is preserved by the Anomaly flow with
zero slope. To summarize our discussion, we state the following result.

Theorem 2.7 ([PPZ19]) Let X be a compact complex manifold of dimension n

with a nowhere vanishing holomorphic (n, 0) form Ω . Suppose X admits a Kähler
metric χ̂ . Then the Anomaly flow d

dt
‖Ω‖ωωn−1 = i∂∂̄ωn−2 with initial metric

satisfying

‖Ω‖ω(0)ω(0)n−1 = χ̂n−1 (2.59)

reduces to the following scalar flow of potentials

ϕ̇ = e−f
det(χ̂k̄j + ϕk̄j )

det χ̂k̄j
, ϕ(x, 0) = 0, (2.60)

with the positivity condition χ̂ + i∂∂̄ϕ > 0, where ef = (n−1)‖Ω‖2
χ̂

. The evolving
metric in the Anomaly flow is given by

ω(t) = ‖Ω‖−2/(n−2)
χ(t) χ(t), χ(t) = χ̂ + i∂∂̄ϕ. (2.61)
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The Monge–Ampère flow (2.60) arising here shares similarities with the Kähler–
Ricci flow and the MA−1 flow. The Kähler–Ricci flow was introduced by Cao
[CA852] and has since been an area of active research in Kähler geometry (e.g.
[CSW18, DL17, GZ17, PS06, PT17, ST07, SW13, TZ06, TZ16]). The MA−1 flow
was recently introduced by Collins–Hisamoto–Takahashi [CHT18], and is expected
to produce optimal degenerations on Fano manifolds which do not admit Kähler-
Einstein metrics.

Unlike the Kähler–Ricci flow, the logarithm does not appear in the speed of
evolution ϕ̇, and unlike the MA−1 flow, the determinant of χ appears in the
numerator instead of the denominator. For general parabolic equations, changes in
speed can have major implications in the analysis, see [FGP18] for a recent example
of this phenomenon in Kähler geometry. Though the analysis of (2.60) does differ
from the Kähler–Ricci flow and MA−1 flow, in [PPZ19] we show that a smooth
solution to the flow exists for all time t .

In contrast to the previous examples in section Sect. 2.3.2, in this case we
can easily show that ‖Ω‖ω stays bounded above and below along the flow.
Differentiating (2.60),

∂t ϕ̇ = e−f

{detχk̄j
det χ̂k̄j

}

χjk̄∂j ∂k̄ϕ̇.

This is a linear parabolic equation for ϕ̇. It follows from the maximum principle for
parabolic equations (e.g. Proposition 1.7 in [SW13]) that

inf
X
ϕ̇(x, 0) ≤ ϕ̇(x, t) ≤ sup

X

ϕ̇(x, 0).

Since ϕ(x, 0) = 0, we have

inf
X
e−f ≤ ϕ̇(x, t) ≤ sup

X

e−f .

By (2.60), we have

ef inf
X
e−f ≤ detχk̄j

det χ̂k̄j
≤ ef sup

X

e−f .

By (2.57),

‖Ω‖ω(t) = ‖Ω‖2(n−1)/(n−2)
χ = ‖Ω‖2(n−1)/(n−2)

χ̂

(
det χ̂

detχ

)(n−1)/(n−2)

.

Therefore

C−1 ≤ ‖Ω‖ω(t) ≤ C,
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along the flow, where C > 0 only depends on ‖Ω‖χ̂ and n. The degeneration of
‖Ω‖ω exhibited for non-Kähler examples in Sect. 2.3.2 does not occur in this case.

Estimating ‖Ω‖ω(t) is only the first step in the study of the flow. From here, we
can use a priori estimates and techniques from fully nonlinear PDE to establish long-
time existence and convergence. We refer to [PPZ19] for full details. The result is

Theorem 2.8 ([PPZ19]) Let X be a compact complex manifold of dimension n

with a nowhere vanishing holomorphic (n, 0) form Ω . Suppose X admits a Kähler
metric χ̂ . Then the Anomaly flow d

dt
‖Ω‖ωωn−1 = i∂∂̄ωn−2 with initial metric

satisfying

‖Ω‖ω(0)ω(0)n−1 = χ̂n−1

exists for all time, and smoothly converges to a Kähler metric ω∞.

In fact, ω∞ is given explicitly by

ω∞ = ‖Ω‖−2/(n−2)
χ∞ χ∞,

where χ∞ is the unique Kähler Ricci-flat metric in the cohomology class [χ̂], and

‖Ω‖2
χ∞ = n!

[χ̂]n
∫

X

in
2
Ω ∧ Ω̄.

To conclude this section, we note that we cannot expect the Anomaly flow on
Kähler manifolds to converge starting from an arbitrary metric. This is due to
the relationship between the Kähler cone and the balanced cone. Indeed, an initial
conformally balanced metric determines a balanced class

[‖Ω‖ω(0)ω(0)n−1] ∈ H
n−1,n−1
BC (X),

and the evolving metric ω(t) remains in this class (2.41). Stationary points of the
flow are Kähler metrics, so convergence of the flow would produce a Kähler metric
in the balanced class of the initial metric. However, there exists Kähler manifolds
with balanced classes which do not admit any Kähler metric [FX14, TO09].
Understanding which balanced classes come from Kähler classes is an interesting
problem in Hermitian geometry [FX14], and we hope that future work studying the
Anomaly flow and its singularities will provide insight.

2.4 Anomaly Flow with α′ Corrections

We will now restrict our attention to Calabi–Yau threefolds. In this section, we
modify the Anomaly flow (2.40) by adding α′ correction terms. The parameter
α ∈ R will be referred to as the slope parameter.

Let X be a compact complex manifold of dimension n = 3. Suppose X admits a
nowhere vanishing holomorphic (3, 0) form Ω . We first study the case of threefolds
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with vanishing second Chern class, so we assume that c1(X) = c2(X) = 0.
Consider the flow

d

dt
(‖Ω‖ωω2) = i∂∂̄ω − α′

4
TrRm ∧ Rm, (2.62)

d(‖Ω‖ω(0)ω(0)n−1) = 0.

Recall that we use the notation Rm for the endomorphism-valued (1, 1) form which
is the curvature of the Chern connection of ω. When α′ = 0 and n = 3, this flow
becomes (2.40) from Sect. 2.3. Stationary points ω∞ satisfy

α′

4
TrRm ∧ Rm = i∂∂̄ω∞, d(‖Ω‖ω∞ω

2∞) = 0,

which can be viewed as a sort of non-Kähler analog of the Kähler–Einstein equation

TrRm = λω, dω = 0.

More generally, if c2(X) �= 0, we can add a cancellation term Φ ∈ Ω2,2(X,R) with
[Φ] = c2(X), and consider the flow

d

dt
(‖Ω‖ωω2) = i∂∂̄ω − α′

4
(TrRm ∧ Rm − Φ(t)), (2.63)

d(‖Ω‖ω(0)ω(0)2) = 0.

Flows of type (2.63) are called Anomaly flows, as introduced in joint work with
Phong and Zhang [PPZ218, PPZ318]. The motivation for studying this evolution
equation comes from theoretical physics, which we describe next.

2.4.1 Hull–Strominger System

Our motivation for adding the α′ correction terms comes from heterotic string
theory. The Hull–Strominger system [HU186, ST86] is the following system of
equations on a Calabi–Yau threefold

F ∧ ω2 = 0, F 0,2 = F 2,0 = 0, (2.64)

i∂∂̄ω − α′

4
(TrRm ∧ Rm − TrF ∧ F) = 0, (2.65)

d(‖Ω‖ωω2) = 0. (2.66)
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The system is a coupled equation for a Hermitian meric ω on X and a metric h on a
given holomorphic vector bundle E → X. Here Rm, F are the curvature forms of
unitary connections of ω, h, viewed as endomorphism valued 2-forms.

Equation (2.64) is the Hermitian-Yang-Mills equation, which admits solutions
as long as E is stable of degree zero with respect to ω by the Donaldson-
Uhlenbeck-Yau theorem [DO85, UY85] (see [LY86, BU88] for its extension to
the Hermitian setting). Equation (2.65) is the Green-Schwarz anomaly cancellation
equation from theoretical physics [GS87]. All together, the system was introduced
by Hull and Strominger as a model for the heterotic string admitting non-zero
torsion, generalizing the equation proposed by Candelas–Horowitz–Strominger–
Witten [CA851] where the threefold is required to be Kähler with Ricci-flat metric.

For example, Kähler Calabi–Yau threefolds provide solutions to the Hull–
Strominger system. In this case, we take the gauge bundle E to be the tangent
bundle E = T 1,0X, and h = ω to be Kähler Ricci-flat. Then (2.64) and (2.65) hold
automatically, and by the argument in Sect. 2.2.3.1, we see that ω is conformally
balanced.

Going beyond Kähler geometry, there are many diverse examples of solutions
using various gauge bundles E. The first solutions in the mathematics literature
were obtained by Li and Yau [LY05] by perturbing the Kähler solutions, and the
first solutions on non-Kähler manifolds were obtained by Fu and Yau [FY08]. Since
then, there have been constructions of parallelizable examples [FIUV14, FIUV14,
FY15, OUV17, GR11], solutions on Kähler manifolds for arbitrary admissible
gauge bundles [AG121, AG122], solutions on fibrations over a Riemann surface
[FHP17], and non-compact examples [FY09, FE17, HIS16].

The Hull–Strominger system is interesting from the point of view of canonical
metrics on non-Kähler Calabi–Yau threefolds, as it is a curvature constraint (2.65)
combined with a closedness condition (2.66). There are also other proposed optimal
metrics in non-Kähler complex geometry: e.g. constant Chern scalar curvature
[ACS17], vanishing Chern–Ricci curvature [TW10, TW17, STW17], Chern–Ricci
flat balanced [FE17], just to name a few.

As a system of partial differential equations, the Hull–Strominger system is fully
nonlinear. It can be viewed as an analog of the σ2 equation, but as a full system for
the metric tensor gk̄j . There has been much progress in the study of scalar σk-type
equations in complex geometry e.g. [BL05, CJY15, DDT17, DL15, DK17, DPZ18,
HMW10, PPZ116], but very little is known about PDE systems which are nonlinear
in second derivatives.

To study the Hull–Strominger system, it was proposed in [PPZ218] to use the
Anomaly flow with Φ = TrF ∧ F coupled to the Donaldson heat flow [DO85].

h−1∂th = −ΛωF,

d

dt
(‖Ω‖ωω2) = i∂∂̄ω − α′

4
(TrRm ∧ Rm − TrF ∧ F),

d(‖Ω‖ω(0)ω(0)2) = 0.
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Stationary points solve the Hull–Strominger system. The Anomaly flow, when
restricted to certain ansatzes, provides new nonlinear equations arising naturally
from geometry and physics [PPZ217, PPZ317]. We will describe some of these new
equations in the following sections.

2.4.2 Evolution of the Metric

We now derive the evolution of the metric tensor ω = igk̄j dz
j ∧ dz̄k under the

Anomaly flow (2.63). The argument given here is similar to the one from Sect. 2.3.1.
We write

d

dt
(‖Ω‖ωω2) = Ψ,

with

Ψ =
[

i∂∂̄ω − α′

4
(TrRm ∧ Rm − Φ)

]

.

By Lemma 2.6, we already know that the trace of the evolution of the metric is
given by

Tr ω̇ = 6

‖Ω‖ω
Ψ ∧ ω

ω3 ,

which combined with identity (2.29) is

Tr ω̇ = 1

2‖Ω‖ω TrΨ. (2.67)

As in (2.43), we expand the flow to the following expression

− 1

2
(Tr ω̇)ω2 + 2ω̇ ∧ ω − 1

‖Ω‖ω Ψ = 0. (2.68)

We apply the Hodge star operator � with respect to ω to both sides of the equation.
By identities (2.44), (2.48), and �ω2 = 2ω, the components of the resulting (1, 1)
form are given by

0 = �

[

− 1

2
(Tr ω̇)ω2 + 2ω̇ ∧ ω − 1

‖Ω‖ω Ψ
]

k̄j

= −2i∂tgk̄j + i(Tr ω̇)gk̄j − 1

‖Ω‖ω
[

−igsr̄Ψr̄k̄sj + i

2
(TrΨ )gk̄j

]

. (2.69)
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Substituting the expression for Tr ω̇ (2.67) into (2.69), we see that the TrΨ terms
cancel and the evolution of the metric is

d

dt
gk̄j = 1

2‖Ω‖ω g
sr̄Ψr̄k̄sj .

From here, we can derive an explicit expression for the evolution of the metric.

Theorem 2.9 ([PPZ318]) Suppose ω(t) solves the Anomaly flow (2.63). Then the
metric evolves by

d

dt
gk̄j = 1

2‖Ω‖ω
[

− R̃k̄j + gsr̄gnm̄Tm̄sj T̄nr̄ k̄ − α′

4
gsr̄ (R[k̄s

α
βRr̄j ]βα − Φr̄k̄sj )

]

,

(2.70)

where [, ] denotes antisymmetrization in both barred and unbarred indices.

Proof We have already established

d

dt
gk̄j = 1

2‖Ω‖ω
[

− gsr̄ (i∂∂̄ω)r̄sk̄j − α′

4
gsr̄ (TrRm ∧ Rm − Φ)r̄k̄sj

]

.

By (2.51), we have an expression for gsr̄ (i∂∂̄ω)r̄k̄sj in terms of Ricci curvature and
torsion. This gives the desired expression. �

We note that (2.70) is a fully nonlinear system, as it is quadratic in the
curvature. For other geometric flows which are quadratic in the curvature, see e.g.
[FR85, GGI13, OL09]. Since the flow is fully nonlinear, we cannot expect short-time
existence for arbitrary initial data. However, from (2.70), we see that the right-hand
side is parabolic if the α′ correction terms are small. The full details are provided in
[PPZ218].

Theorem 2.10 ([PPZ218]) Let ω0 be a conformally balanced Hermitian metric on
X satisfying |α′Rm| < 1

2 . Then there exists T > 0 such that the Anomaly flow (2.63)
admits a unique solution ω(t) on [0, T ) with ω(0) = ω0.

Given any metric gk̄j , we can find λ � 1 so that λgk̄j satisfies |α′Rm| � 1.
This is simply because Rm(λg) = Rm(g) (with Rm defined as in (2.14)). Thus
to guarantee short-time existence starting from a given metric, we can rescale the
size of the manifold, or choose a small value for α′. For several examples [FHP17,
PPZ418], the condition |α′Rm| � 1 is preserved along the flow, which suggests
that it is a natural condition.



2 Calabi–Yau Manifolds with Torsion and Geometric Flows 105

2.4.3 Anomaly Flow with Fu–Yau Ansatz

2.4.3.1 Scalar Reduction

In this section, we return to the construction of Goldstein–Prokushkin described in
Sect. 2.2.3.4. We first recall the setup.

The base of the fibration (S, ω̂,ΩS) is a Calabi–Yau surface with Kähler
Ricci-flat metric ω̂ and nowhere vanishing holomorphic (2, 0) form ΩS . Let
ω1, ω2 ∈ 2πH 2(S,Z) be anti-self-dual (1, 1) forms. Using this data, Goldstein
and Prokushkin [GO04] constructed a T 2 fibration π : X → S which is non-Kähler
but admits conformally balanced metrics. Their construction builds on earlier ideas
of Calabi and Eckmann [CE53], which we discussed in detail in Sect. 2.1.4.2.

We recall that the connections of theU(1) principal bundles forming the S1 fibers
of X define θ ∈ Ω1,0(X) satisfying

∂θ = 0, ∂̄θ = ω1 + iω2.

Furthermore,

Ω = ΩS ∧ θ

is a nowhere vanishing holomorphic (3, 0) form on X, and the family of metrics

ωu = euω̂ + iθ ∧ θ̄ , (2.71)

is conformally balanced for any u : S → R. These metrics were used by Fu and
Yau [FY08, FY07] to solve the Hull–Strominger system on the threefold X.

In this section, we will start the Anomaly flow with a metric of this form, and
check whether the ansatz is preserved. For this, we compute (see (2.39))

‖Ω‖ωu = e−u, ‖Ω‖ωuω2
u = euω̂2 + 2ω̂ ∧ iθ ∧ θ̄ , (2.72)

and

i∂∂̄ωu = i∂∂̄eu ∧ ω̂ − ∂̄θ ∧ ∂θ̄ = i∂∂̄eu ∧ ω̂ − (ω2
1 + ω2

2). (2.73)

Next, we must compute the curvature terms. This calculation was done by Fu and
Yau in [FY08].

Theorem 2.11 ([FY08]) The curvature of the Chern connection of ωu satisfies

TrRm(ωu) ∧ Rm(ωu) = TrRm(ω̂) ∧ Rm(ω̂) + 2∂∂̄u ∧ ∂∂̄u + 4i∂∂̄(e−uρ),
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where ρ ∈ Ω1,1(S,R) is given by ρ = ρk̄j dz
j ∧ dz̄k with

ρk̄j = i

2
ĝpq̄ (ω1 − iω2)q̄j (ω1 + iω2)k̄p. (2.74)

Proof We work in a local coordinate chart. Since ∂̄(ω1 + iω2) = 0, there are local
functions ϕ1, ϕ2 such that

∂̄(ϕidz
i) = ω1 + iω2, (2.75)

where z1, z2 are local holomorphic coordinates on the base S . Define

θ0 = θ − ϕ1dz
1 − ϕ2dz

2.

Then {dz1, dz2, θ0} is a local holomorphic frame of Ω1,0(X). The metric can be
written as

ωu = (euĝk̄j + ϕkϕj )idz
j ∧ dz̄k

+ϕk iθ0 ∧ dz̄k + ϕk idz
k ∧ θ0 + iθ0 ∧ θ0.

Let B = (ϕ1, ϕ2). Then the metric in this local frame is given by

g =
[
(euĝ + B∗B) B∗

B 1

]

.

Its inverse is

g−1 =
[

e−uĝ−1 −e−uĝ−1B∗
−e−uBĝ−1 1 + e−uBĝ−1B∗

]

.

The curvature in this frame is Rm = ∂̄g−1∂g. Computing at a point p ∈ X, we may
assume that p = 0 and B(0) = 0. The curvature at p is then

Rm =
[
R1̄1 R1̄2
R2̄1 R2̄2

]

,

with

R1̄1 = ∂̄∂u · I + R̂m − e−uĝ−1∂B∗ ∧ ∂̄B

R2̄1 = −∂̄B ∧ ∂u − ∂̄Bĝ−1∂ĝ + ∂̄∂B

R1̄2 = ∂̄(e−uĝ−1∂B∗)

R2̄2 = −e−u∂̄Bĝ−1∂B∗.
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We must compute

TrRm ∧ Rm = TrR1̄1R1̄1 + TrR1̄2R2̄1 + TrR2̄1R1̄2 + TrR2̄2R2̄2.

Expanding this out, we obtain the following expression.

TrRm ∧ Rm

= 2(∂̄∂u)2 + Tr R̂m
2 + e−2uTr (ĝ−1∂B∗∂̄Bĝ−1∂B∗∂̄B)

+ 2∂∂̄uTr R̂m − 2e−u∂̄∂uTr ĝ−1∂B∗∂̄B − 2e−uTr(R̂mĝ−1∂B∗∂̄B)

− 2Tr(∂̄(e−uĝ−1∂B∗)∂̄B∂u) − 2Tr(∂̄(e−uĝ−1∂B∗)∂̄Bĝ−1∂ĝ)

+ 2Tr(∂̄(e−uĝ−1∂B∗)∂̄∂B) + e−2u∂̄Bĝ−1∂B∗∂̄Bg−1∂B∗.

Using the identities

−2Tr ∂̄(e−uĝ−1∂B∗)∂̄Bĝ−1∂ĝ = −2∂̄Tr(e−uĝ−1∂B∗∂̄Bĝ−1∂ĝ)

+2Tr(e−uĝ−1∂B∗∂̄B R̂m),

and

−2e−u∂̄∂uTr(ĝ−1∂B∗∂̄B) = −2∂̄Tr(e−uĝ−1∂B∗∂̄B∂u)

+2Tr ∂̄(e−uĝ−1∂B∗)(∂̄B∂u),

as well as Tr R̂m = 0, we cancel a few terms and are left with

TrRm ∧ Rm = 2(∂̄∂u)2 + TrR̂m
2 − 2∂̄Tr(e−uĝ−1∂B∗∂̄Bĝ−1∂ĝ)

−2∂̄Tr(e−uĝ−1∂B∗∂̄B∂u) + 2∂̄Tr(e−uĝ−1∂B∗∂̄∂B).

Using ∂ĝ−1 = −ĝ−1 ∂ĝ ĝ−1, this expression simplifies to

TrRm ∧ Rm = 2(∂̄∂u)2 + Tr R̂m ∧ ˆRm + 2∂̄∂Tr(e−uĝ−1∂B∗ ∧ ∂̄B).

We have by definition

∂B∗ ∧ ∂̄B =
(
∂iϕ1∂k̄ϕ1 ∂iϕ1∂k̄ϕ2

∂iϕ2∂k̄ϕ1 ∂iϕ2∂k̄ϕ1

)

dzi ∧ dz̄k.

Using (2.75), we obtain (2.74). �
We now add a gauge bundle to the system. Let ES be a stable vector bundle of

degree zero over the base Kähler surface (S, ω̂). By the Donaldson-Uhlenbeck-Yau
theorem [DO85, UY85], we may equip ES with a metric HS satisfying

F(HS) ∧ ω̂ = 0.
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On the threefold, we consider the bundle E = π∗ES → X with metric H = π∗HS .
This metric is Hermitian–Yang–Mills with respect to the Fu–Yau ansatz ωu, since

F(H)∧ ω2
u = 0

for any u ∈ C∞(S,R).
Putting together everything computed so far, we have

i∂∂̄ωu − α′

4
(TrRm(ωu) ∧ Rm(ωu) − TrF(H) ∧ F(H))

= i∂∂̄(euω̂ − α′e−uρ) − α′

2
(∂∂̄u) ∧ (∂∂̄u) + μ, (2.76)

where μ ∈ Ω2,2(S,R) is given by

μ = α′

4
(TrF(HS) ∧ F(HS) − TrRm(ω̂) ∧ Rm(ω̂)) − (ω2

1 + ω2
2).

Combining (2.72) and (2.76), we see that the Anomaly flow reduces to the following
scalar fully nonlinear PDE on the base manifold S.

d

dt
eu ω̂2 = i∂∂̄(euω̂ − α′e−uρ) + α′

2
(i∂∂̄u)2 + μ. (2.77)

This evolution equation can also be written as

d

dt
eu = 1

2

[

Δω̂e
u − α′ i∂∂̄(e−uρ)

ω̂2/2! + α′σ̂2(i∂∂̄u) + μ

ω̂2/2!
]

.

Here σ̂2(i∂∂̄u) = (i∂∂̄u)2ω̂−2 is the determinant of the complex Hessian of u with
respect to ω̂.

By standard parabolic theory, this equation admits a short-time solution as long as

ω′ = euω̂ + α′e−uρ + α′

2
i∂∂̄u > 0.

2.4.3.2 Stationary Points

For stationary points of (2.77) to exist, integrating both sides shows that we require

∫

S

μ = 0,
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which is the cohomological constraint

α′

4

∫

S

[
TrRm(ω̂) ∧ Rm(ω̂) − TrF(HS) ∧ F(HS)

] =
∫

S

[|ω1|2 + |ω2|2] ω̂
2

2! .

It is possible to construct data (S,ES, ω1, ω2, α
′) satisfying this condition. Indeed,

since we assume c1(S) = c1(ES) = 0, the constraint is

α′

4
[c2(S) − c2(ES)] =

∫

S

[∣
∣
∣
ω1

2π

∣
∣
∣
2

ω̂
+

∣
∣
∣
ω2

2π

∣
∣
∣
2

ω̂

]
ω̂2

2
.

Note that when seeking solutions to the Hull–Strominger system, after rescaling
ωu �→ λωu in (2.65) we can assume that α′

4 ∈ Z. Explicit examples are exhibited in
[FY08, FY07]; when α′ > 0, we may take S to be a K3 surface and use the theory
of stable bundles over K3 surfaces to construct ES , and when α′ < 0 we may take
S to be either a torus T 4 or a K3 surface.

The main theorem of Fu–Yau guarantees the existence of smooth solutions to the
Hull–Strominger system when the cohomological condition

∫
S μ = 0 is satisfied.

Theorem 2.12 ([FY08, FY07]) Let (S, ω̂) be a Kähler surface, α′ ∈ R, ρ ∈
Ω1,1(S,R), and μ ∈ Ω2,2(S,R). Suppose μ satisfies the condition

∫
S
μ = 0. Then

there exists a smooth function u : S → R solving

0 = i∂∂̄(euω̂ − α′e−uρ) + α′

2
(i∂∂̄u)2 + μ,

such that ω′ = euω̂ + α′e−uρ + α′
2 i∂∂̄u > 0.

For further work relating to the Fu-Yau solutions, we refer to [CHZ118, CHZ218,
GA40, LE11, PPZ117, PPZ116, PPZ216, PPZ118].

2.4.3.3 Long-Time Existence

The first observation in the Anomaly flow with Fu-Yau ansatz is the following
conserved quantity.

Lemma 2.9 Let ω(t) = eu(t)ω̂ + iθ ∧ θ̄ be a solution to the Anomaly flow with the
cohomology condition

∫
S μ = 0 satisfied. Then the conservation law

d

dt

∫

X

‖Ω‖ωω3 = 0,

holds along the flow.
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Proof In the case of the Fu-Yau ansatz ω = euω̂ + iθ ∧ θ̄ , by (2.72) we have

∫

X

‖Ω‖ωω3 =
∫

X

3euω̂2 ∧ iθ ∧ θ̄ .

Using
∫
S
μ = 0, from (2.77) we see that

d

dt

∫

S

eu ω̂2 = 0

is a conserved quantity. �
Together with D.H. Phong and X.-W. Zhang, we prove the following result.

Theorem 2.13 ([PPZ418]) There exists L0 � 1 depending only on (S, ω̂), μ, ρ,
α′ with the following property. Suppose

∫
S μ = 0. Start the Anomaly flow on the

fibration π : X → S with initial data

ω(0) = Lω̂ + iθ ∧ θ̄ ,

for any constant L ≥ L0. Then the flow exists for all time, and converges to a
solution to the Hull–Strominger system.

For initial data with small L, we suspect that the flow will develop singularities.
We will discuss in Sect. 2.4.4.1 an example of the Anomaly flow over Riemann
surfaces where this behavior is observed.

Different choices of L correspond to different balanced classes of the stationary
point. We know that the balanced class [‖Ω‖ωω2] ∈ H 4(X,R) is preserved by the
Anomaly flow, and in this case

[‖Ω‖ωω2] = [euω̂2] + 2[ω̂ ∧ iθ ∧ θ̄ ].

The class [euω̂2] ∈ H 4(S,R) is a top cohomology class on the Kähler surface S,
and is therefore parametrized by the integrals

∫

S

euω̂2 ∈ R.

Therefore the choice of
∫
S
euω̂2 in the initial data is related to the choice of balanced

class of the evolving metric.
As an aside, we note that in general, the conservation of the balanced class

[‖Ω‖ωω2] ∈ H
2,2
BC(X) along the Anomaly flow should lead to conserved quantities,

which may also be useful when studying the flow beyond the Fu–Yau ansatz.
The Bott–Chern cohomology of complex manifolds differs in general from the de
Rham cohomology, and we refer to [AT13, AN13, ADT16] for recent progress on
computing Bott–Chern cohomology.
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2.4.4 Nonlinear Blow-Up

In this section, we briefly describe a few more examples and illustrate some of the
nonlinear phenomena which can occur.

2.4.4.1 Fibrations over Riemann Surfaces

We return to the construction of fibrations p : X → Σ over a Riemann surface
(Σ, ω̂) of genus g ≥ 3 described in Sect. 2.2.3.5. We recall that these were non-
Kähler threefolds, and the Fei ansatz metrics

ωf = e2f ω̂ + ef ω′,

are conformally balanced for any smooth function f : Σ → R.
It is not immediately clear that this family of metrics will be preserved by

the Anomaly flow. It turns out that this is indeed the case, and the flow reduces
to a single scalar parabolic PDE for f on the base Σ of the fibration. The key
computation in [FE15, FHP17] gives the identity

i∂∂̄ωf − α′

4
TrRm(ωf ) ∧ Rm(ωf ) = (i∂∂̄u − κuω̂) ∧ ω′,

where

u = ef + α′

2
κe−f .

and κ ≤ 0 is the Gauss curvature of the background metric ω̂. Since

‖Ω‖ωf ω2
f = 2volT 4 + 2ef ω̂ ∧ ω′,

we can factor out ω′ in the formulation of the Anomaly flow as (2, 2) forms, and the
flow reduces to

∂t e
f = 1

2

[

ĝzz̄∂z∂z̄

(

ef + α′

2
κe−f

)

− κ

(

ef + α′

2
κe−f

)]

, (2.78)

on the Riemann surface (Σ, ω̂). The flow admits a short-time solution as long as

ef − α′

2
κe−f > 0,

which is automatic if α′ > 0. In [FHP17], together with T. Fei and Z. Huang, we
study the asymptotics of the flow.
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Theorem 2.14 ([FHP17]) There exists L0 � 1 depending on (Σ, ω̂) and α′ with
the following property. Start Anomaly flow with initial data

ω(0) = L2ω̂ + Lω′,

for any constant L ≥ L0. Then the flow exists for all time and

ωf

1
3!

∫
X

‖Ω‖ωf ω3
f

→ p∗ωΣ,

where ωΣ = q2
1 ω̂ is a smooth metric on Σ , and q1 > 0 is the first eigenfunction of

the operator −Δω̂ + 2κ .

In the above theorem, we have long-time existence, but unlike Theorem 2.13,
‖Ω‖ωf → 0 as t → ∞. This can be understood by the fact that there are no
stationary points in the large radius regime ef � 1. We note that the result in
[FHP17] is more general than the one stated above; the asymptotic behavior holds
if the initial data satisfies u(x, 0) ≥ 0.

For initial data with small L, finite-time blow-up can occur. Indeed, following
[FHP17], we consider the case when α′ > 0. If

L2 <
8α′π2(g − 1)2

‖κ‖L∞(Σ)Vol(Σ, ω̂)2 , (2.79)

then the flow encounters a singularity in finite time. To see this, we compute using
the evolution equation (2.78), and use that κ ≤ 0 and that the Laplacian integrates
to zero.

d

dt

∫

Σ

ef ω̂ = 1

2

∫

Σ

|κ |ef ω̂ − α′

4

∫

Σ

κ2e−f ω̂.

By the Cauchy–Schwarz inequality and the Gauss–Bonnet theorem,

(4π(g − 1))2 =
( ∫

Σ

|κ |ω̂
)2

≤
( ∫

Σ

ef ω̂

)( ∫

Σ

κ2e−f ω̂

)

.

Therefore

d

dt

[ ∫

Σ

ef ω̂

]

≤ ‖κ‖L∞(Σ)

2

[ ∫

Σ

ef ω̂

]

− α′

4
(4π(g − 1))2

[ ∫

Σ

ef ω̂

]−1

.

The ODE for A(t) = ∫
ef is then

d

dt
A2 ≤ ‖κ‖L∞A2 − 8α′π2(g − 1)2,
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which can be rearranged as

d

dt

(

(‖κ‖L∞ A2 − 8α′π2(g − 1)2)e−‖κ‖∞ t

)

≤ 0.

Therefore

|κ‖L∞A(t)2

≤ 8α′π2(g − 1)2 −
[

8α′π2(g − 1)2 − ‖κ‖L∞Vol(Σ)2L2
]

exp(‖κ‖L∞ t),

and we see that the flow must terminate in finite time if (2.79) holds. In fact,
‖Ω‖ωf → ∞ in finite time.

2.4.4.2 Lie Groups

For our final example, we will study the Anomaly flow using unitary connections
beyond the Chern connection. Let X be a complex Lie group of dimension n = 3,
and let {e1, e2, e3} be a frame of holomorphic vector fields. Let {e1, e2, e3} be the
dual frame of holomorphic (1, 0) forms. Denote the structure constants by

[ea, eb] = cdabed .

Consider the Hermitian metric

ω̂ = i
∑

a

ea ∧ ēa.

A section of T 1,0X can be expressed as V = V aea . By definition (2.8), Strominger–
Bismut connection ∇+ of ω̂ acts in the frame {ea} by

∇+
b V

a = ∇C
b V

a − T a
bcV

c, ∇+
b̄
V a = ∇C

b̄
V a + T̄cb̄āV

c,

where we now denote the Chern connection by ∇C for clarity. Since gāb = δab in
this frame, ∇C = d . Furthermore,

T = i∂ω = −1

2
cabde

d ∧ eb ∧ ēa.

Therefore

∇+
b V

a = ∂bV
a + cabdV

d, ∇+
b̄
V a = ∂b̄V

a − cdbaV
d.
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Along the Gauduchon line ∇(κ) = (1 − κ)∇C + κ∇+, we have

∇(κ)
b V a = ∂bV

a + A(κ)
b
a
cV

c, ∇(κ)

b̄
V a = ∂b̄V

a + A(κ)
b̄
a
cV

c,

with

A(κ)
b
a
d = κ cabd, A(κ)

b̄
a
d = −κ cdba.

The curvature form is defined by Rm = dA + A ∧ A. More specifically,

Rm = 1

2
Rkj

a
b e

j ∧ ek + 1

2
Rk̄j̄

a
b ē

j ∧ ēk + Rk̄j
a
b e

j ∧ ēk,

where the components are

Rkj
a
b = ∂ej Ak

a
b − ∂ekAj

a
b − crjkAr

a
b + Aj

a
cAk

c
b − Ak

a
cAj

c
b,

Rk̄j̄
a
b = ∂ēj Ak̄

a
b − ∂ēkAj̄

a
b − cr jkAr̄

a
b + Aj̄

a
cAk̄

c
b − Ak̄

a
cAj̄

c
b,

Rk̄j
a
b = ∂ej Ak̄

a
b − ∂ēkAj

a
b + Aj

a
cAk̄

c
b − Ak̄

a
cAj

c
b.

Using the expression for the connection A(κ) on the Gauduchon line, the compo-
nents are explicitly

Rkj
p
q = −κcrjkc

p
rq + κ2cpjrc

r
kq − κ2cpkrc

r
jq,

Rk̄j̄
p
q = κcrjkcqrp + κ2crjpcqkr − κ2crkpcqjr ,

Rk̄j
p
q = κ2(−cpjrcqkr + cr kpc

r
jq).

The surprising computation of Fei–Yau [FY15] shows that TrRm ∧ Rm is actually
a (2, 2) form, and its (2, 2) part is given by

(TrRm ∧ Rm)k̄
̄ij = 2κ2(2κ − 1)crk
csrpcqij csqp.

We refer to [FY15] for the full calculation.
We now specialize to the Lie group SL(2,C) with structure constants cijk = εijk

the Levi-Civita symbol. Let Ω = e1 ∧ e2 ∧ e3. We also fix κ = 1 for simplicity, so
that we only consider the Strominger–Bismut connection ∇+. In this case, by two
applications of the contracted epsilon identity (2.35), we derive

(TrRm+ ∧ Rm+)k̄
̄ij = 2crk
c
q
ij [ csrpcsqp ]

= 2crk
cq ij [2δrq]
= 4(δkiδ
j − δkj δ
i).
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Since ω̂ = iδike
k ∧ ēi , we have

(TrRm+ ∧ Rm+)k̄
̄ij = 2(ω̂2)k̄
̄ij .

By (2.36), we know i∂∂̄ω̂ is also proportional to ω̂2.

i∂∂̄ω̂ = 1

2
ω̂2.

By scaling the metric ω̂, we see that the diagonal ansatz

ω(t) = λ2(t)ω̂,

is preserved by the Anomaly flow

d

dt
(‖Ω‖ωω2) = i∂∂̄ω − α′

4
TrRm+ ∧ Rm+,

and becomes the ODE

d

dt
λ = 1

2
(λ2 − α′).

In the large radius regime, if we start with

ω(0) = Lω̂

where L � 1, then ‖Ω‖ω(t) → 0 in finite-time. Outside of this region, the behavior
is sensitive to initial data and sign of α′. For example, if α′ > 0, then for small initial
λ, we may have that ‖Ω‖ω(t) → ∞ in finite-time.
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