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Preface

The study and the construction of complex non-Kähler manifolds is a demanding
and interesting mathematical problem, with applications to Theoretical Physics. On
the one side, in the words of [dBT13], “a sort of chemical analysis of symplectic
and holomorphic contribution can be successfully performed in order to better
understand the role of the different components of the theory” of Kähler Geometry,
which “represents a perfect synthesis of the Symplectic and the Holomorphic
worlds.” On the other side, deeply studied problems in Kähler geometry have often
a non-Kähler counterpart that is naturally motivated by Theoretical Physics, as, for
example, the Hull-Strominger system [Str86, Hul86, GF16] that extends the Calabi–
Yau theorem to non-Kähler manifolds. When studying such problems, one has to
deal with the lack of examples and techniques or at least with choosing the right
context where doing so.

The CIME Summer School on “Complex non-Kähler Geometry”, held in Cetraro
(Italy), on July 9–13, 2018, was aimed at introducing young students and researchers
to this field, by presenting a vast range of techniques from different aspects of the
theory: from complex analysis to complex differential geometry, from holomorphic
dynamics to geometric analysis.

In complex dimension one, the classification of holomorphic curves is the “crown
jewel of differential geometry” [Gro00]. In higher dimension, even in complex
dimension two, the classification of compact complex manifolds is still an open
problem. The classification of compact complex surfaces was started by the Italian
school of algebraic geometry and then continued by Kunihiko Kodaira in the
1950s, (see e.g., [BHPV04, Nak84]). The incomplete steps regard minimal compact
complex surfaces with Kodaira dimension −∞ and with first Betti number equal to
one and positive second Betti number b2 > 0: Masahide Kato gave a fascinating
construction of complex surfaces in this class [Kat78], characterized by containing
b2 rational curves [DOT03]. Therefore, the problem of completing the classification
of compact complex surfaces reduces to the construction of rational curves. Andrei
Teleman gave important contributions in this direction [Tel05, Tel10]. His course
on “Non-Kählerian Compact Complex Surfaces” presents the classical theory on
Enriques-Kodaira classification and non-Kählerian surfaces, class VII surfaces, and
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vi Preface

the construction and the classification of Kato surfaces. He also pointed out the main
ideas of his gauge theoretical methods to prove the existence of cycles of curves on
class VII surfaces with small second Betti number, as well as of his recent results
obtained with Dloussky [DT18] towards classification up to biholomorphism.

A construction of a compact complex surface in class VII, with a complicated
fractal subset, can be done starting from a Hénon map to obtain a compact
dynamical system. This idea by Hubbard et al. [HPV00] has been presented in
his talk on “Compact complex surfaces from Hénon mappings, and a surprising
surgery.”

In higher dimension (complex dimension n ≥ 2), examples of non-Kähler (not
even symplectic) complex manifolds are given by LVM manifolds that have been
initially introduced and studied by López de Medrano and Verjovsky [LMV97].
This construction was then generalized by Meersseman [Mee97, Mee00] and Bosio
[Bos01], and these manifolds are known as LVMB manifolds. The essential idea
(discovered by André Haefliger) is that one can obtain non-algebraic complex
manifolds as the space of leaves of holomorphic foliations of complex algebraic
manifolds. In his course on “Intersection of quadrics in Cn, moment-angle mani-
folds, complex manifolds and convex polytopes”, Alberto Verjovsky explains in
details how to make use of such a general principle: we start with a linear action
of Cm in Cn for n > 2m or, in other words, with a configuration of n vectors in
Cm. If the configuration is “admissible” (more precisely, if it satisfies the “weak
hyperbolicity” and “Siegel conditions”), the holomorphic (singular) foliation F in
the projective space CPn−1 is the one given by the orbits of the linear action we start
with.

Such examples confirm a conjecture by Bogomolov [Bog96] on the realizability
of any compact complex manifold by a transverse embedding into a projective
manifold equipped with an algebraic foliation. In his talk “Algebraic embeddings
of complex and almost complex structures” Jean-Pierre Demailly explained a recent
work joint with Gaussier [DG17] in the direction of the Bogomolov conjecture: they
show an embedding theorem for compact almost complex manifolds as subvarieties
transverse to an algebraic distribution in a complex affine algebraic manifold.

Another way to study and try to understand complex non-Kähler manifolds
is to look for “canonical” metrics, where the word “canonical” may refer to
some cohomological or curvature properties, e.g., having constant curvature. The
story begins with the Calabi conjecture [Cal54] in Kähler geometry and its 40-
year-old solution by Yau [Yau77, Yau78]. Together with [Aub76] and the recent
works [CDS14, CDS15, Tia15] on the Yau-Tian-Donaldson conjecture, they give
a complete description of Kähler-Einstein metrics. Kähler metrics being Ricci-flat
are also characterized by the restricted Riemannian holonomy being in SU(n), and
(both elliptic and parabolic) complex Monge–Ampère equations are useful tools for
their investigation. There are different ways to generalize the notion of Kähler Ricci-
flat metrics to Hermitian non-Kähler manifolds. One possibility is to consider the
so-called Calabi-Yau manifolds with torsion. They are characterized by the Bismut
connection having restricted holonomy in SU(n), namely, by a Bismut-Ricci-flat
metric, and they are motivated by heterotic string theory [Hul86, Str86, LY05].
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The course “The Anomaly flow and Hull-Strominger system” by Sébastien Picard
focused on the problem of constructing canonical Hermitian metrics on complex
non-Kähler manifolds. In particular, the lectures focused on the “Anomaly flow,”
a tool that Sébastien Picard, in joint work with Phong et al. [PPZ18a, PPZ18b,
PPZ19], recently introduced and investigated to study this non-Kähler Calabi-Yau
geometry. The simplest case, the “Anomaly flow with zero slope,” preserves the
conformally balanced condition and deforms conformally balanced metrics towards
astheno-Kähler metrics, so that stationary points are Kähler. In this sense, it can be
understood as a deformation path connecting non-Kähler to Kähler geometry.

Another possible way to generalize the Calabi conjecture to non-Kähler mani-
folds has been studied by Tosatti and Weinkove [TW10]. More precisely, they prove
that each element in the first Bott-Chern class can be represented as the first Chern-
Ricci form of a Hermitian metric. The result is obtained as a corollary of uniform
estimates for a complex Monge–Ampère-type equation on a compact Hermitian
manifold. Their work has been presented by Eleonora Di Nezza in the talk “The
Calabi conjecture on compact Hermitian manifolds.”

Geometric flows, such as the Kähler-Ricci flow or the Anomaly flow, give another
way to study and construct canonical metrics on a compact Kähler or Hermitian
manifold. The basic idea is very simple: we pick a random initial metric, we run the
flow, and we hope that such flow of metrics will converge to a special one. This is
what happens, for example, on a compact Kähler manifold with negative or zero first
Chern class [Cao85]. The problem is that, in general, it may happen that the time of
existence of the flow is finite and that the limit metric is singular. One then needs
to restart the flow with a singular data. This is the reason why studying geometric
flows in a weak sense is of major importance in this respect. “Pluripotential Theory
on Hermitian Manifolds” was instead the subject of the course of Sławomir Dinew.
The aim of the course was to introduce the Hermitian version of complex Monge–
Ampère equations, mostly trying to generalize the analytic techniques coming from
the Kählerien counterpart. First of all, he defined several “Kähler-type” conditions
(such as “balanced,” “Gauduchon,” “astheno-Kähler,” and “pluriclosed” metrics),
giving a variety of examples. If we fix one of these conditions, a “canonical”
metric on a compact Hermitian manifold has to satisfy such a condition and to have
some special curvature property. Once again, the problem boils down to a complex
Monge–Ampère equation. He then introduced the first notions of pluripotential
theory on compact Hermitian manifolds in order to treat (even in contexts presenting
singularities) such equations. This last part mostly relies on his works [Din16,
DK12].

Recently, Guedj et al. [GLZ18] developed a parabolic pluripotential theory on
compact Kähler manifolds, defining and studying the “weak” Kähler-Ricci flow
and, more precisely, the weak solutions to degenerate parabolic complex Monge–
Ampère equations. The results were announced in the talk by Vincent Guedj.
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Chapter 1
Lectures on Pluripotential Theory
on Compact Hermitian Manifolds

Sławomir Dinew

Abstract The note is an extended version of lectures pluripotential theory in the
setting of compact Hermitian manifolds given by the author in July 2018 at Cetraro.

1.1 Introduction

Let (X, J ) be a compact complex and connected manifold with J denoting the
fixed (integrable) almost complex structure. Unless otherwise stated by n we shall
always denote the complex dimension of X. We begin with the basic fact in complex
geometry which follows easily from patching local data in coordinate charts:

Theorem 1.1 (X, J ) admits a Hermitian metric.

If g is such a Hermitian metric then in local coordinates we write

g = (g)j k̄ :=
n∑

j,k=1

gjk̄dzj ⊗ dz̄k,

where the coefficients gjk̄ are smooth local complex valued functions, such that
pointwise gjk̄(z) is a positive definite Hermitian symmetric matrix.

Given a Hermitian metric g on X we identify it with the positive definite (not
necessarily closed!) (1, 1) form ω defined by

∀X,Y ∈ TzX ω(z)(X, Y ) := g(z)(JX, Y ). (1.1)

This form is often called the Kähler form of g in the literature, but we shall not use
this terminology in order to avoid confusion with the Kähler condition.

S. Dinew (�)
Institute of Mathematics, Jagiellonian University, Kraków, Poland
e-mail: slawomir.dinew@im.uj.edu.pl
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The very existence of a Hermitian metric has profound implications on the
geometry and analysis of X. For example there is a natural volume form given
locally by det (gjk̄)dV . (Note that the formula differs from its Riemmanian
counterpart as there is no square root over the determinant!)

Exercise 1.2 Show that this locally defined volume form is global in the sense that
it does not depend on the choice of the coordinate chart.

Just as in the Riemmanian geometry the metric allows one to compute length, to
measure angles etc.

The construction based on gluing local data implies in fact that Hermitian metrics
exist in abundance. Hence a very natural question appears:

Question 1.3 Are there Hermitian metrics that are better than the others?

While the question is far too vague it raises various problems related to geometry
and analysis.

One of the classical “good” Hermitian metrics are the Kähler ones.

Definition 1.4 Let (X, J ) be a Hermitian manifold equipped with a Hermitian form
ω. If dω = 0 the metric is called Kähler. A complex manifold X is called a Kähler
manifold if it admits a Kähler metric.

There are many reasons why kählerness is a natural condition both geometrically
and analytically: its Levi-Civita connection coincides with the Chern connection,
one has ∇J = 0, we have the so-called Kähler identities relating the canonical
operators, the i∂∂̄-lemma holds and so on. Analytically kählerness means that (in
a suitable coordinates) the metric is Euclidean up to terms of order 2. Also locally
there exist potentials for the (1, 1)-Kähler form associated to the metric.

Note that each Kähler metric defines a de Rham cohomology class in
H 1,1(X,R). The i∂∂̄-lemma (see [Dem]) which holds on Kähler manifolds allows
the following relation between two cohomologous Kähler metrics:

Theorem 1.5 Let X be a Kähler manifold. If ω1, ω2 are two Kähler metrics
representing the same de Rham cohomology class then there exists a smooth real
valued function ϕ such that

ω2 = ω1 + i∂∂̄ϕ.

The theorem says that the only way to perturb a Kähler metric within its
cohomology class (and to remain Kähler!) is by adding i∂∂̄ of a smooth function.

Of course such a perturbation by any function defines a closed (1, 1)—form and
it will be Kähler form if it is additionally positive definite.

Definition 1.6 A smooth real valued function ϕ is called admissible (or smooth
strictly ω-plurisubharmonic) if

ω + i∂∂̄ϕ > 0.
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We shall call these functions ω-psh and we shall often use the notation ωϕ for
ω + i∂∂̄ϕ.

Returning to the general Hermitian setting a question arises: how to perturb a
given Hermitian metric hoping to get metrics with better properties? Since there are
no obvious cohomological constraints in general the answer pretty much depends
on one’s background: people from conformal geometry may for example wish to
perturb the Hermitian form ω by a multiplicative factor eρ with ρ being some
smooth function.

People coming from Kähler geometry may in turn hope that ω + i∂∂̄ϕ for a
suitably chosen function ϕ might still be a good choice even though there is no
cohomology class to be preserved.

In the lectures we shall pursue this second approach (which does not mean that
the first one is not worth a try too!). Relying on the existent theory in the Kähler
setting we shall investigate what remains true in the general Hermitian setting, what
are the new phenomena to cope with and so on.

Pluripotential theory in the setting of compact Kähler manifolds has proven to
be a very effective tool in the study of degeneration of metrics in geometrically
motivated problems (see [Kol98, Kol03, EGZ09, KT08], which is by far incomplete
list of the literature on the subject). Usually in such a setting singular Kähler metrics
do appear as limits of smooth ones. Then pluripotential theory provides a natural
background for defining the singular volume forms associated to such metrics.
More importantly it provides useful information on the behavior of the Kähler
potentials exactly along the singularity locus, which is hard to achieve by standard
PDE techniques. On the other hand the theory does not rely on strong geometric
assumptions, as most of the results are either local in nature or are modelled on
local ones. It is therefore natural to expect that at least some of the methods and
applications carry through in the more general Hermitian setting.

Of course there is inevitably some price to pay. Computations on general
Hermitian manifolds are messier. We lack many important tools from the Kähler
setting. Arguably the most important difference for us however will be the lack of
invariance of the total volume

∫
X
(ω + ddcu)n for an admissible function u (which

is easily seen after two applications of Stokes theorem). As one will soon verify this
leads to troublesome additional terms involving dω and/or dω∧dcω and controlling
these in a suitable sense is the main technical difficulty in the whole theory.

The interest towards Hermitian versions of the complex Monge-Ampère equation
has grown rapidly in the recent years. The first steps were laid down by the French
school most notably by Cherrier [Che87] and Delanoë [De81]. In these papers the
Authors followed Aubin and Yau’s arguments [Y78] to get existence of smooth
solutions of the Monge-Ampère equation in the case of smooth data. The Authors
were successful only in particular cases (that is under geometric assumptions on the
background metric). The main problem to overcome were the a priori estimates
needed to establish the closedness part in the continuity method. The renewed
interest towards Hermitian Monge-Ampère equations came with the breakthroughs
by Guan-Li [GL10] and especially Tosatti-Weinkove [TW10a, TW10b]. Guan
and Li were able to solve the equation assuming geometric conditions different
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than these from [Che87] and [De81], while the missing uniform estimate was
finally established without any assumptions in [TW10b]. Parallel to these recent
advances foundations of the corresponding pluripotential theory were laid down
(see [DK12, BL11] and [KN1, KN2, KN3]). The theory is still in an infant state,
and the techniques are technical modifications of their Kählerian counterparts.

In order to motivate the construction of such a theory we shall list a couple of
arguments relying on (Kählerian) pluripotential reasonings and try to investigate
what happens in the Hermitian realm. One of our first discoveries is that there
is a condition strictly more general than kählerness that yields almost the same
pluripotential theory. It was studied by Guan and Li [GL10]. The Authors assumed
that ddcω = 0 and ddc(ω2) = 0. Under this condition almost every pluripotential
argument from the Kähler setting carries through verbatim. It should be emphasized
that in Hermitian geometry there are many other conditions imitating kählerness.
These are motivated by various geometric considerations. Some of these conditions
have consequences that are relevant to pluripotential theory.

The notes are organized as follows. We start with some basic notation and
motivate the theory by listing some applications of Kähler pluripotential theory.
Section 1.4 is devoted to some explicit constructions of bad plurisubharmonic
functions and Hermitian metrics. Hopefully these examples shed more light on what
kind of singular behavior can be expected within the theory. Later we define some
of the “close-to-Kähler” conditions which can be found in the literature. In the next
section we describe some explicit examples of Hermitian manifolds and “canonical”
metrics on them. This list is of course only a glimpse into the vast world of
Hermitian geometry. The existence of suitable adapted coordinates (due to [GL10])
is shown in Sect. 1.7. Such a coordinate system will turn out to be very useful in the
proof of higher order a priori estimates for the Dirichlet problem later on. The main
pluripotential tools are discussed in Sect. 1.8. In particular we show that the complex
Monge-Ampère operator is well defined on bounded ω-plurisubharmonic functions
and it shares the convergence properties known from the Kähler case. Section 1.9 is
devoted to the most important tool in the whole theory—the comparison principle.
As explained it differs considerably from the one known in the Kähler setting unless
the form ω satisfies some restrictive additional conditions. In the next section the
solution of the Dirichlet problem is presented in detail. For the openness part we
follow [TW10a], while for the C2 estimates we borrow the main idea from [GL10].
The uniform estimate is taken from [DK12]. Then we solve the Monge-Ampère
equation with right hand side being an Lp function with p > 1 following [KN1].

These are expanded lecture notes of the course that I taught during a C.I.M.E
workshop “Complex non-Kähler geometry” in Cetraro 9-13.07.2018. The lectures
are based on the manuscript [D16] and more recent developments. It is a great
pleasure to thank the organizers of this event for the invitation.
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1.2 Notation

Throughout the paper X will denote a compact, complex and connected manifold.
Unless otherwise specified n will always be the complex dimension of X.

As usual d will denote the exterior differentiation operator, while ∂ and ∂̄ will
be the (1, 0) and (0, 1) part of it under the standard splitting. In some arguments
involving integration by parts it is more convenient to use the operator dc := i(∂̄ −
∂), so that ddc = 2i∂∂̄. These will be used interchangeably. We shall also make use
of the standard notation ωu standing for ω + ddcu.

δij will denote the Kronecker delta symbol. We shall make use of Einstein
summation convention unless otherwise stated.

Throughout the note we shall use the common practice of denoting constants
independent of the relevant quantities by C. In particular these constants may vary
line-to-line. If special distinction between the constants is needed in some arguments
these will be further distinguished by C̃, C̄, Ci and so on.

A special constant that controls the geometry of (X,ω) (see below for details) is
denoted by B—it is the infimum over all positive numbers b satisfying

− bω2 ≤ ni∂∂̄ω ≤ bω2 and (1.2)

−bω3 ≤ n2i∂ω ∧ ∂̄ω ≤ bω3.

It should be emphasized that this constant measures how far our metric is from
satisfying a special condition studied by Guan and Li [GL10]. Of course if ω is
Kähler then B = 0.

1.3 Why Pluripotential Theory?

In this section we shall briefly list some applications of the pluripotential theory on
Hermitian manifolds. As the theory is still developing it is expected that this list will
grow rapidly in the near future.

To begin with we recall that a basic example of a local plurisubharmonic function
is log(||F(z)||) with F being a local holomorphic mapping. Thus the theory is
tightly linked to complex analysis. More globally let L be a holomorphic line bundle
over (X,ω) with σ a (holomorphic) section (for analysts: it will be a collection
of nowhere vanishing holomorphic functions gαβ defined on the intersections of
coordinate charts Uαβ := Uα ∩ Uβ which satisfy the relations gαα = Id and
gαβgβγ gγα = Id). If ||· || is a smooth norm on the space of sections (collections of
holomorphic functions fα on Uα such that on intersections fα = gαβfβ ), then

u(z) := log||σ(z)||
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is a global function which is smooth except on the divisor {σ = 0} and
i∂∂̄log||σ || ≥ −Cω, for some constant C dependent only on the choice of the
norm on X \ {σ = 0}. It can be proven that this inequality extends past {σ = 0} in
the distributional sense—u is quasiplurisubharmonic.

This simple observation has important consequences: pluripotential theory might
be useful for constructing analytic objects on the manifold as −∞-values of suitably
constructed functions. Unfortunately for a general ω-psh function u its −∞ locus is
much more complicated and hard to deal with as we shall see in the next section.

Reversing a bit the discussion above a natural question is whether one can
construct ω-psh functions with prescribed singularities. One way of doing so is
by solving suitable Monge-Ampère equations. Such an approach was initiated
in the paper [TW12], which was motivated by the fundamental paper [Dem93].
Precisely the Authors goal was to construct ω-plurisubharmonic functions with
prescribed logarithmic singularities at a collection of isolated points. Such singular
quasiplurisubharmonic functions can be applied as weights in various Ohsawa-
Takegoshi type L2 extension problems or ∂̄ problems.

The construction based on Demailly’s idea in [Dem93] is by solving a family of
Monge-Ampère equations with right hand sides converging to Dirac delta measures.
More specifically in the Kähler case a family of Monge-Ampère equations

⎧
⎪⎪⎨

⎪⎪⎩

φε ∈ C∞(X), supXφε = 0

ω + ddcφε > 0

(ω + ddcφε)
n = χεω

n

(1.3)

is considered, where for each ε > 0 χε is a smooth strictly positive function with
suitably normalized total integral. Moreover it is required that χε converge weakly
to a combination

∑
cj δj of weighted Dirac delta measures as ε tends to zero. Then

the weak limit of the solutions (which exist by the Calabi-Yau theorem [Y78]) is the
required function.

In the Hermitian setting such a technique requires a modification of the approxi-
mating equations:

⎧
⎪⎪⎨

⎪⎪⎩

φε ∈ C∞(X), supXφε = 0

ω + ddcφε > 0

(ω + ddcφε)
n = ecεχεω

n,

(1.4)

where cε is some constant (the equations are then solvable by [TW10b]). Successful
repetition of the argument relies crucially on controlling total volumes, that is on the
uniform control of the constants cε . This is why the results in [TW12] are complete
only in dimension 2 and 3.

It is worth pointing out that construction of ω-psh functions with non-isolated
analytic singularities is substantially harder, partially due to a lack of reasonable
Monge-Ampère theory for such functions.
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The Monge-Ampère equation is also related to the Ricci curvature in the Kähler
setting through the following construction:

Given a Kähler metric ω0 and a representative α of the first Chern class on a
manifold X the Calabi problem boils down to finding a metric ω cohomologous
to ω0, such that Ric(ω) = α. By the ddc lemma any such ω can be written as
ω0 + ddcφ for some smooth potential φ. Furthermore Ric(ω0) = α + ddch, where
the Ricci potential h is a function uniquely defined modulo an additive constant
(which can be fixed if we assume the normalization

∫
X
ehωn

0 = ∫
X
ωn). Recall that

in the Kähler setting one has Ric(ω) = −ddclog((ω)n) with ωn denoting n-th
wedge product of ω (modulo the identification of the coefficient of the volume form
with the volume form itself). Hence Ric(ω) = α is equivalent to

Ric(ω0 + ddcφ) = Ric(ω0)− ddch ⇔ −ddclog
(ω0 + ddcφ)n

(ω0)n
= −ddch

⇔ (ω0 + ddcφ)n = eh+cωn
0

for some constant c. Exploiting the kählerness of ω0 and integration by parts one
easily sees that under our normalization c = 0 and we end up with the standard
Monge-Ampère equation

(ω0 + ddcφ)n = ehωn
0 (1.5)

with prescribed right hand side.
This equation for smooth h and ω0 was solved in the celebrated paper of Yau

[Y78]. In modern Kähler geometry it is of crucial importance to understand the
behavior of the potential φ (or the form ω0 +ddcφ itself) if we drop the smoothness
assumptions on h and/or the strict positivity of ω0. Such a situation occurs if we
work on mildly singular Kähler varieties (see for example [EGZ09]) or when one
tries to understand the limiting behavior of the Kähler-Ricci flow (see [KT08]
and references therein). It is exactly the setting where pluripotential theory can
be applied an indeed in such settings the uniform estimate for the potential φ (a
starting point for the regularity analysis) is usually obtained in this way (compare
[EGZ09, KT08]).

Returning to the Hermitian background the picture described above has to be
modified. The obvious obstacles are that a Hermitian metric ω0 need not define a
cohomology class and the ddc lemma may fail. On the bright side the first Chern
class can still be reasonably defined in the Bott-Chern cohomology, that is the
cohomology given by

H
p,q
BC = ker{d : Cp,q(X) → Cp,q+1(X)⊕ Cp+1,q(X)}

Im{ddcCp−1,q−1(X)} , (1.6)

where Cp,q(X) denotes the space of smooth (p, q)-forms.
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Given a Hermitian metric ω0 its first Chern form can be defined analogously to
the Kähler setting by

RicBC(ω0) := −ddclog(ωn
0 ).

It turns out that the first Ricci forms represent the first Bott-Chern cohomology class
cBC

1 (X) in the Bott-Chern cohomology. Hence a natural question arises whether any
form α in cBC

1 (X) is representable as the Ricci form of some metric ω0 + ddcφ.
A computation analogous to the one above shows that such a φ has to satisfy the
equation

(ω0 + ddcφ)n = eh+cωn
0 , (1.7)

with a function h as above and some constant c > 0. Contrary to the Kähler case,
however, the constant need not be equal to zero and thus the Hermitian Monge-
Ampère equation has one more degree of freedom. As we shall see later this adds
some technical difficulties into the solution of the equation.

The discussion above resulted in the fact that solutions to Hermitian Monge-
Ampère equation prescribe the Ricci form in the Bott-Chern cohomology. Thus
weakening of the smoothness assumptions on f and/or strict positivity of ω0 is
helpful in situations analogous to the ones in the Kähler setting above.

Arguably one of the most exciting problems in Hermitian geometry is the
classification of class V II surfaces. To this end the conjectural picture reduces the
problem to finding rational curves on such a surface. This is an extremely hard
geometric problem. Essentially the only working tool in some special cases is a
deep gauge theoretic argument of Teleman [T10].

It thus worth mentioning that another approach to construction of rational
curves exploiting some singularity magnifying Monge-Ampère equations has been
proposed by Siu [Siu09].

It is thus quite intriguing to investigate the relationships between Monge-Ampère
equations and the existence of rational curves.

1.4 A Couple of Inspiring Examples

1.4.1 Local Theory

As we have already mentioned the functions

log(||F(z)||)

are plurisubharmonic for holomorphic mappings. Thus obviously analytic sets are
locally contained in a −∞-locus of some plurisubharmonic functions.
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Is this the general picture? Let us begin with the following example:

Example 4.1 Let � be the disk centered at zero with radius 1/2 in C. Let {an}∞n=1
be the set of all complex numbers in � \ {0} with both coefficients being rational
(ordered in some fashion). Consider a sequence of real positive numbers bn
decreasing sufficiently rapidly to 0 such that

∞∑

n=1

bnlog|an| > −∞.

Consider the function

u(z) :=
∞∑

n=1

bnlog|z − an|.

Obviously um := ∑m
n=1 bnlog|z − an| are subharmonic and decrease towards u.

Hence u is also subharmonic, u(0) > −∞, yet {u = −∞} contains a dense subset
of �!

Our next example taken from [Dem] is, in a sense, even more surprising—it
shows that even if a plurisubharmonic function is nowhere equal to −∞ it still may
fail to be locally bounded from below:

Example 4.2 The function

v(z) :=
∞∑

k=1

1

k2 log(|z − 1/k| + e−k3
)

is everywhere finite but is not locally bounded from below at zero.

Exercise 4.3 Is it possible, using a countable collection of such v’s for every
rational complex number to get a dense set of points such that a plurisubharmonic
function is everywhere finite but unbounded from below near any point from the
dense set?

These examples lead to the following definitions:

Definition 4.4 A set E is said to be pluripolar if it is locally contained in a −∞
locus of a plurisubharmonic function. Given any plurisubharmonic function the set
{u = −∞} is called the pole set of u.

Exercise 4.5 A pluripolar set is contained in a pole set of some function but need
not be equal to a pole set. Construct an example in C2 of a pluripolar set which is
not a pole set.
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Definition 4.6 Given a plurisubharmonic function u the unbounded locus set of u

is the set of points z, such that u is not bounded from below in every neighborhood
of z.

In pluripotential theory there are different tools for measuring the pointwise
singularities of plurisubharmonic functions. Among the basic ones (see [Dem]) is
the Lelong number:

Definition 4.7 (Lelong Number) Let u be a plurisubharmonic function defined in
a neighbourhood of a point z0 ∈ C

n. Then the limit limr→0+ of the quantity

∫

|z−z0|≤r

ddcu ∧ (ddclog|z− z0|)n−1 = 1

r2n−2

∫

|z−z0|≤r

ddcu ∧ βn−1

is called a Lelong number of the function u at z0.

Note that unless u is unbounded near z0 the Lelong number vanishes. This is
however not a sufficient condition as the plurisubharmonic function −log(−log|z|)
near zero shows. Intuitively speaking the Lelong number measures whether u has
logarithmic singularity at z0—these are the heaviest singularities that plurisubhar-
monic functions could have.

The equality above (whose proof can be found in [Dem]) in particular implies
that the quantity 1

r2n−2

∫
|z−z0|≤r

ddcu∧ βn−1 (which is up to a universal multiplica-

tive constant equal to 1
r2n−2

∫
|z−z0|≤r

�u) is increasing with r . This implies that the
set

Ec(u) := {z|u has a Lelong number at least c at z}

is small for any c > 0. More precisely for any ε > 0 it has zero 2n−2+ε Hausdorff
measure.

It turns out however that more is true: a deep theorem of Siu [Siu] states that the
set Ec(u) are always analytic for c > 0:

Theorem 4.8 (Siu) Let u be a plurisubharmonic function in a domain � ⊂ Cn.
Then for any c > 0 the set Ec(u) is an analytic subset of �.

This result is one instance of appearance of analytic objects in pluripotential
theory.

1.4.2 Kähler Versus Hermitian

Below we discuss an example where general Hermitian pluripotential theory
behaves differently to its Kählerian counterpart.

A broad field where pluripotential theory applies is the study of singular metrics
i.e. in the case where the background (1, 1)-form fails to be a metric. One such
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instance occurs if some of the eigenvalues are zero i.e. we deal simply with
semipositive forms.

Suppose ωj is a sequence of smooth Kähler forms converging smoothly to a
limiting smooth semipositive form ω. The local example to keep in mind is

ωj = idz1 ∧ dz̄1 + i

j
dz2 ∧ dz̄2

in C2.
Geometrically these metrics shrink the z2 direction, so the limiting space can be

identified as a metric space with C× {0} as the z2-factor is collapsed (this is a very
easy example of Gromov-Hausdorff convergence).

Recall that the Frobenius theorem (under mild additional assumptions) implies
that the kernel of ω is an integrable distribution i.e. we get a foliation by
holomorphic leaves. As a result we end up with a limiting space that has some
sort of complex structure.

In the Hermitian case obviously there is no Frobenius type theorem for the
limiting form. Can we thus extract a sort of complex structure in the limit? The
following example shows that the answer is no in general:

Example 4.9 ([TW14]) Consider the standard Hopf surface X i.e. C2 \ {(0, 0)}
modulo the action of the group generated by the contraction (z1, z2) → ( 1

2z1,
1
2z2)

equipped with the family of metrics

ω(t) =
2∑

j,k=1

1

|z1|2 + |z2|2 ((1 − 2t)δjk + 2t
z̄j zk

|z1|2 + |z2|2 )idzj ∧ dz̄k.

for t ∈ (0, 1
2 ). As t converges to 1

2 the metrics converge to the nonnegative form

ω(1/2) =
2∑

j,k=1

z̄j zk

(|z1|2 + |z2|2)2 idzj ∧ dz̄k.

It is easy to see that the kernel distribution of ω(1/2) are the vectors X = ∑
j Xj ∂

∂zj

satisfying
∑n

j=1 z̄jXj = 0 i.e. the complex tangent directions of the spheres in C2

centered at zero.

Exercise 4.10 If the distribution were integrable that would mean that the boundary
of the unit sphere in C

2 would contain locally a holomorphic curve. Show that this
is impossible.

More careful analysis shows that ω(t) collapses, as t tends to 1
2 , the spheres

centered at zero. It can be shown that the limiting space is in fact the radial direction
modulo the group action i.e. a circle! For obvious reasons then the limiting space
cannot admit a complex structure!
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1.5 Kähler Type Conditions

Given a fixed Hermitian manifold X it is natural to search for the “best” metric that
X admits. The reason is at least twofold: nice metrics usually significantly simplify
computations and more importantly it is sometimes possible to deduce geometric or
topological information from the existence of these.

Unlike the Kähler case there is a large number of mutually different “Kähler
type” conditions. Below we list the most common ones. Our discussion is borrowed
from [D16].

Definition 5.1 (Balanced Metric) Let (X,ω) be a n-dimensional Hermitian man-
ifold. The form ω is said to be balanced if it satisfies

d(ωn−1) = 0.

Of course this definition differs from the Kähler condition only if n ≥ 3. The
motivation behind such a condition partially comes from string theory (see [AB95,
FIUV09, FLY12] and the references therein). There are various constructions of
explicit examples of non-Kähler, balanced manifolds in the literature. For example
using conifold transitions Fu, Li and Yau in [FLY12] proved that such a metric exists
on the connected sum �kS

3 ×S3 of k copies of the product of two three-dimensional
spheres. Another example is the Iwasawa manifold which will be given in the next
section.

Balanced metrics impose some geometric restrictions on the underlying manifold
(for example it follows from the Stokes theorem that no smooth one-codimensional
complex subvariety can be homologous to zero) and hence not every manifold can
be endowed with such a metric.

From potential theoretic point of view the most important property of such
metrics is that the Laplacian of any admissible (or even merely smooth) function
u on X integrates to zero. Namely if we choose the canonical Laplacian associated
to the Chern connection on X then we get

∫

X

(�ωu)ω
n = n

∫

X

i∂∂̄u ∧ ωn−1 = −n

∫

X

∂̄u ∧ ∂(ωn−1) = 0.

An interesting exercise, left to the Reader, is to check that in the intermediate
cases between the balanced and Kähler conditions we do not get anything besides
Kählerness:

Exercise 5.2 Suppose 1 < k < n− 1. If ω is a form such that

d(ωn−k) = 0,

then dω = 0 i.e. ω is Kähler.

A second family that we consider are the so-called Gauduchon metrics [Ga].
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Definition 5.3 (Gauduchon Metric) Let (X,ω) be a n-dimensional Hermitian
manifold. The form ω is said to be Gauduchon if it satisfies

ddc(ωn−1) = 0.

Unlike balanced ones, these exist on any compact Hermitian manifold. Moreover
a theorem of Gauduchon [Ga] states that given any Hermitian form ω there exists
a conformal factor eφω such that the new form eφωω is Gauduchon. Gauduchon
metrics are useful in many geometric contexts, for example the notion of a degree
of a line bundle over a Gauduchon manifold is well defined via the formula

degω(L) =
∫

c1(L) ∧ ωn−1,

where c1(L) is the first Chern class of L. This is the starting point for a stability
theory for vector bundles in the Hermitian setting (see [LT95]).

Yet another difference is that after the exchange of the power n − 1 to a lesser
power we do get nontrivial new conditions. This is in fact how Astheno-Kähler
metrics are defined.

Definition 5.4 (Astheno-Kähler Metric) Let (X,ω) be a n-dimensional Hermi-
tian manifold (n ≥ 2). The form ω is said to be Astheno-Kähler if it satisfies

ddc(ωn−2) = 0.

This condition was used by Jost and Yau [JY93] in their study of harmonic maps
from Hermitian manifolds to general Riemmanian manifolds.

Unlike the Gauduchon metrics Astheno-Kähler metrics impose some constraints
on the underlying manifold. It can be shown that any holomorphic 1-form on such
a manifold must be closed. Explicit examples of Astheno-Kähler but non-Kähler
manifolds can be found in dimension 3 where they coincide with the pluriclosed
metrics to be defined below. Another type of examples are the so-called Calabi-
Eckmann manifolds. These are topologically products S2n−1×S2m−1, (m > 1, n >

1) of odd dimensional spheres. Any such manifold admits families of complex
structures which can be constructed using Sasakian geometry. In [Mi09] it was
shown that a special choice of such a complex structure yields an Astheno-Kähler
manifold. Since H 2(S2n−1 × S2m−1) = 0 such manifolds are never Kähler.

Much more information regarding Astheno-Kähler geometry can be found in
[FT].

Finally the important notion of the aforementioned pluriclosed metrics is defined
as follows:

Definition 5.5 (Pluriclosed Metric) Let (X,ω) be a n-dimensional Hermitian
manifold. The form ω is said to be pluriclosed if it satisfies

ddcω = 0.
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The pluriclosed metrics are also known as SKT (strong Kähler with torsion)
in the literature [FPS04]. Of course in dimension 2 this notion coincides with
the Gauduchon condition, hence any complex surface admits pluriclosed metrics.
In complex dimension 3 some nontrivial examples of non-Kähler nilmanifolds
admitting pluriclosed metrics were constructed by Fino, Parton and Salamon in
[FPS04].

As is easily verified, Gauduchon metrics also have the property that the Laplacian
of a smooth function integrates to zero. This is not the case for Astheno-Kähler and
pluriclosed metrics in general.

A strengthened version of the Gauduchon condition was considered by Popovici
in [Pop13]:

Definition 5.6 (Strongly Gauduchon Metric) If (X,ω) is n-dimensional Hermi-
tian manifold, the form ω is said to be strongly Gauduchon if ∂(ωn−1) is ∂̄ exact.

Of course strongly Gauduchon implies Gauduchon and these notions coincide if the
∂∂̄-lemma holds on X (see [Pop13]) but in general the inclusion is strict. Note also
that any balanced metric is strongly Gauduchon.

The strongly Gauduchon condition was introduced by Popovici in [Pop13] in
connection with studies of deformation limits of projective or Kähler manifolds. We
refer to [Pop13] for the geometric conditions imposed by this structure. In particular
a necessary and sufficient condition of existence of such a metric on a manifold X

is the nonexistence of a positive d-exact (1, 1)-current on X.
None of the conditions above actually guarantee the invariance of the total

volume of the perturbed metric. More precisely the value
∫
X(ω + ddcu)n does

depend on u and this is the main source of troubles in pluripotential theory. Still a
condition weaker that being Käher can be imposed so that the total volume remains
invariant. This condition has been investigated by Guan and Li [GL10]:

Definition 5.7 A metric satisfies the condition imposed by Guan and Li if ddcω =
0 and ddc(ω2) = 0.

Observe that this is weaker than Kähler yet by twofold application of Stokes’
theorem it can be shown that the total volume remains invariant. Let us also stress
once again that the constant B from Sect. 1.2 measures how far our metric is from
satisfying the above condition.

Remark 5.8 Recently Chiose [Chi] has shown that Guan and Li condition is
equivalent to the constancy of the total volume

∫
X
ωn for all ω differing by a ddc of

a quasiplurisubharmonic function.

Remark 5.9 Non Kähler metrics satisfying the above property do exist. A trivial
example, taken from [TW10a], is simply the product of a compact complex curve
equipped with a Kähler metric and a non-Kähler complex surface equipped with a
Gauduchon metric.

We refer the interested reader to the article [Pop14], for more explicit examples
and interactions between the notions above.
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1.6 Explicit Examples of Non-Kähler Hermitian Manifolds

We begin this section by defining the most classical examples of non-Kähler
manifolds—the Hopf manifolds. These were historically the first ones and were
discovered by Hopf in 1948 [Ho48].

Definition 6.1 (Hopf Manifold) Let t be any nonzero complex number satisfying
|t| �= 1. Then it induces a Z action on Cn \ {0} by scaling i.e.

(k,w) → tkw,

for any k ∈ Z, w ∈ Cn \ {0}. The action is discrete and properly discontinuous,
hence the quotient manifold Cn \ {0}/Z is a smooth manifold.

Remark 6.2 In the literature more general definitions are being considered. In
particular some Authors define Hopf manifolds as above but with the Z action
induced by any contracting-to-zero biholomorphic mapping of Cn \ {0} into itself.

It can be proved that the Hopf manifolds are all diffeomorphic to S2n−1 × S1,
hence the first Betti numbers are odd—in particular these are never Kähler. Another
obstruction is that H 2(X,R) vanishes which also shows that X cannot be Kähler. In
fact it can be proven that Hopf manifolds do not admit even balanced metrics.

On the bright side a Gauduchon metric is explicitly computable in the simplest
case. Indeed, suppose that n = 2, then the metric

ω = idz ∧ dz̄+ idw ∧ dw̄

|z|2 + |w|2

is clearly invariant under the group action, hence descends onto the quotient
manifold. Moreover it is easy to check that ddcω = 0, so this metric is pluriclosed
(or Gauduchon).

In the two dimensional case Hopf manifolds do belong to the special class of
the so-called class VII surfaces, named after the original Kodaira classification
list [Kod64, Kod66, Kod68a, Kod68b]. These are characterized by two conditions:
the first Betti number b1(X) is equal to 1, while the Kodaira dimension κ(X)

is minus infinity. Class VII minimal surfaces are the only remaining class of
two dimensional manifolds that is not fully classified yet. More precisely the
classification was obtained by the works of Kato, Nakamura and most notably
Teleman [Ka78, Na84, T10] in the cases when the second Betti number b2(X) is
small. Classification is complete in the case b2(X) ≤ 2 (see [T10]). In the remaining
cases a theorem of Dloussky-Oeljeklaus-Toma [DOT03] yields a classification
provided one can find b2(X) rational curves (possibly singular) on X. Conjecturally
this is always the case and indeed this holds in the classified cases b2(X) ≤ 2. Hence
the classification problem boils down to the construction of rational curves.

Let us now present one of the simplest examples of a class VII manifold, called
Inoue surface [In74] (in this case b2(X) = 0).
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Definition 6.3 (Inoue Surface) Let M be a 3 × 3 integer valued matrix with
determinant equal to 1. Suppose that it has a positive eigenvalue α and two
complex eigenvalues β and β̄. Let also (a1, a2, a3) and (b1, b2, b3) be eigenvectors
corresponding to α and β respectively. The Inoue surface is defined as the quotient
H×C, H being the upper half plane, by a group G generated by the following four
automorphisms:

g0(w, z) := (αw, βz),

gi(w, z) = (w + ai, z+ bi) i = 1, 2, 3.

Remark 6.4 It can be proven that the action is discrete and properly discontinuous,
hence the quotient is a smooth manifold. An important property of G in this
construction is that it is not an Abelian group but is a solvable one. There are two
other classes of surfaces defined by Inoue, also being quotients of H × C by a
solvable group.

On Inoue surfaces one can also find an explicit pluriclosed/Gauduchon metric:

Definition 6.5 (Tricerri Metric) Let ω(z,w) := idw∧dw̄

Im2(w)
+ Im(w)idz ∧ dz̄. This

metric is invariant under the action of G and hence descends to the Inoue surface. It
can be computed that ddcω = 0.

Our last example is known as Iwasawa threefold. It is not Kähler for it admits a
non-closed holomorphic 1-form:

Definition 6.6 (Iwasawa Manifold) Let

M := {A ∈ GL3(C)| A =
⎡

⎣
1 z1 z3

0 1 z2

0 0 1

⎤

⎦ , zi ∈ C, i = 1, 2, 3}.

The Iwasawa threefold is defined as quotient of M by the lattice of such matrices
with coefficients being Gaussian integers acting on M by a left multiplication.

It is easily observed that dz1, dz2 and dz3 − z1dz2 are invariant holomorphic one
forms on M . As d(dz3 − z1dz2) = −dz1 ∧ dz2 is also invariant, it descends to a
non-zero 2-form. Thus dz3 − z1dz2 is a non closed holomorphic one form on M . It
can be shown that

idz1 ∧ dz̄1 + idz2 ∧ dz̄2 + i(dz3 − z1dz2) ∧ (dz3 − z1dz2)

descends to a balanced (hence strongly Gauduchon) metric on the Iwasawa three-
fold.
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1.7 Canonical Coordinates

In the Kähler setting many local computations are significantly simplified by the use
of canonical coordinates. More specifically such coordinates not only diagonalize
the metric at a given point (which we assume to be the center of the associated
coordinate chart) but also yield vanishing of all third order derivative terms while
the fourth order terms are the coefficients of the curvature tensor.

Of course in the general Hermitian setting one cannot expect vanishing of all
third order terms. Yet getting more information than pointwise diagonalization is
crucial in some laborious computations. Hence a question appears whether some
milder “interpolating” conditions on third order terms are achievable. As observed
by Guan and Li [GL10] this is indeed possible:

Theorem 7.1 (Guan-Li) Given a Hermitian manifold (X,ω) and a point p ∈ X it
is possible to choose coordinates near p, such that gij̄ (p) = δij and for any pair

i, k one has
∂giī
∂zk

(p) = 0.

Proof Choose first local coordinates zi around p (identified with 0 in the coordinate
chart), such that at this point the metric is diagonalized. Then rechoose coordinates
by adding some quadratic terms:

wr = zr +
∑

m�=r

∂grr̄

∂zm
zmzr + 1

2

∂grr̄

∂zr
z2
r .

Observe that

∂zr

∂wi

= δri at p; (1.8)

∂2zr

∂wi∂wk

= −
∑

m�=r

∂grr̄

∂zm
(
∂zm

∂wi

∂zr

∂wk

+ ∂zm

∂wk

∂zr

∂wi

)− ∂grr̄

∂zr

∂zr

∂wi

∂zr

∂wk

. (1.9)

Computing now g̃ij̄ := g( ∂
∂wi

, ∂
∂w̄j

), one gets

∂g̃ij̄

∂wk

=
n∑

r,s=1

grs̄
∂2zr

∂wi∂wk

∂z̄s

∂w̄j

+
n∑

r,s,p=1

∂grs̄

∂zp

∂zp

∂wk

∂zr

∂wi

∂z̄s

∂w̄j

.
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Plugging now (1.8) and (1.9) into the formula above we get

∂g̃iī

∂wk
=

n∑

r=1

(−
∑

m�=r

−∂grr̄

∂zm
(δmiδrk + δmkδri)δri − ∂grr̄

∂zr
δriδrk)

+
n∑

r,s,p=1

∂grs̄

∂zp
δpkδriδsi = 0.

��

1.8 Basic Notions of Pluripotential Theory: Currents
and Capacities

In this section we shall define all the basic tools in Hermitian pluripotential theory. A
good reference for classical plurisubharmonic functions is [Hö2]. The pluripotential
theory in the local setting was developed by Bedford and Taylor in [BT82]. For
Kählerian counterparts of the discussed notions we refer to [Kol03, GZ05].

1.8.1 Some Linear Algebra

Given a (1, 1)-form α = αjkidzj ∧ dz̄k it is easy to see that α is real (α = α) iff
the coefficients pointwise form a Hermitian matrix. Hence the following definition
is natural:

Definition 8.1 Let ω be a real (1, 1)-form. Then ω is said to be positive if the
coefficients ωjk̄ form pointwise a nonnegative Hermitian matrix.

Exercise 8.2 Let μ be any smooth (1, 0)-form. Show that iμ∧μ is positive. Show
that any constant coefficient positive (1, 1)-form in C

n can be written as a sum of at
most n forms of the type iμ ∧ μ.

By duality any (n − 1, n − 1) real form is representable by a n × n matrix of
its coefficients and once again one can define positivity through the positivity of the
Hermitian matrix.

In intermediate degrees the coefficient matrix is substantially larger. One may
still use its positivity properties for a definition:

Definition 8.3 Let τ be a (p, p)-form in Cn, where 1 < p < n − 1. We say that
τ is strictly positive if the coefficient matrix is pointwise a nonnegative Hermitian
matrix.
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Way subtler notion of positivity (which is however more useful!) can be given
through an action on simple positive forms:

Definition 8.4 A (p, p)-form is said to be simple positive if it can be written as
�

p
j=1(iμj ∧ μj) for some (1, 0)-forms μj . A (n − p, n − p)-form γ is said to be

positive if for any simple positive (p, p)-form η one has γ ∧ η ≥ 0.

Exercise 8.5 Inspect the differences between positivity and strict positivity in the
first nontrivial case i.e. when p = 2 and n = 4.

1.8.2 Currents

Below we recall the notion of a current which generalizes in a sense the notion of
an analytic subvariety. First we define the space of test forms.

Definition 8.6 Let Dp,q(�) denote the space of smooth (p, q)-forms with compact
support in � equipped with the Schwartz topology (i.e. a sequence αj converges to
α if the coefficients converge in C∞ and the union of the supports of αj is compact).
Elements of Dp,q(�) are called test forms.

Exercise 8.7 Let χ : C → R be any smooth function with compact support.
Consider the forms αj (z) := χ(z+j)idz∧dz̄. Do αj converge to 0 in the Schwartz
topology?

Given the space of test forms we define its dual—the space of currents:

Definition 8.8 A current of bidegree (n− p, n− q) (or of bidimension (p, q)) is a
continuous linear functional on the space Dp,q(�).

Currents have all the standard properties of linear functionals: they can be
added, multiplied by a scalar etc. A special feature of currents is that they can be
differentiated. Formally if D denotes any partial derivative then

DT (α) := εT (Dα)

with ε ∈ {−1, 1} depending on the bidegree so that the sign is consistent with the
standard Stokes formula.

Exercise 8.9 Determine the sign of ε in terms of p and q .

Exercise 8.10 Let the Dirac delta measure δz act on a (1, 1) form f (z)idz ∧ dz̄ in
C by

δz(f ) = f (z).
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Determine whether the following operators are currents of dimension (1, 1)

a)

∞∑

j=1

δj ;

b)

∞∑

j=1

∂j

∂j z
δj ;

c)

∞∑

j=1

∂j

∂jz
δ0.

A current T which is equal to its conjugate T is called real (this is only possible
if p = q). A very special role in pluripotential theory is played by positive currents:

Definition 8.11 A real current T of bidimension (p, p) is said to be positive if for
any simple positive test form γ one has

T (γ ) ≥ 0.

Exercise 8.12 Determine which of the currents from the previous exercise are
positive.

A crucial fact that shall be used repeatedly is that positive currents have
coefficients that are particularly nice:

Theorem 8.13 (Riesz Theorem) Let T be a current of bidimension (p, p). It can
be written uniquely as

T =
′∑

|J |=n−p,|K |=n−p

TJKdzj1 ∧ · · · dzjn−p ∧ dz̄k1 ∧ · · · dz̄kn−p ,

where ′ denotes summation over increasing multiindices and TJK are distributions
(currents of bidimension (0, 0)). If T is positive then TJK are complex valued
measures.

Exercise 8.14 Riesz theorem states that a distribution satisfying T (ϕ) ≥ 0 for
any nonnegative test function ϕ has to be a (positive) measure. Deduce from this
that a positive (1, 1)-current has (complex valued) measures μjk̄ as coefficients.
Furthermore μjj̄ is a real measure, whereas μjk̄(A) = μ̄kj̄ (A) for any Borel set A.
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1.8.3 Plurisubharmonic Functions

We begin this Section by recalling the definition of the basic object of study: the
ω-plurisubharmonic functions:

Definition 8.15 The ω-plurisubharmonic functions are the elements of the function
class

PSHω(X) := {u ∈ L1(X,ω) : ddcu ≥ −ω, u ∈ C↑(X)},

where C↑(X) denotes the space of upper semicontinuous functions and the inequal-
ity is understood in the weak sense of currents.

We call the functions that belong to PSHω(X) either ω-plurisubharmonic or ω-psh
for short. Recall the handy notation ωu := ω + ddcu.

Note that the definition coincides with the usual one in the Kähler setting. In
particular ω-psh functions are locally standard plurisubharmonic functions plus
some smooth function.

Let now U be a coordinate chart in a compact complex Hermitian manifold
(X,ω). Shrinking U a bit if necessary one can find two smooth local strictly
plurisubharmonic functions ρ1 and ρ2 such that �1 := ddcρ1 ≤ ω, while
ω ≤ �2 := ddcρ2. This simple observation has powerful consequences: as ω-psh
functions are (locally) �2-plurisubharmonic all local properties of ω-psh functions
are essentially the same as in the Kähler setting.

We note that all functions u in PSHω(X), normalized by the condition supXu =
0 are uniformly integrable. This follows from classical results in potential theory
(see [Kol98]). We provide a proof following quite closely the one in [GZ05], where
the Authors treat the Kähler case.

Proposition 8.16 Let u ∈ PSHω(X) be a function satisfying supXu = 0. Then
there exists a constant C dependent only on X, ω such that

∫

X

|u|ωn ≤ C.

Proof Consider a double cover of X by coordinate balls B1
s ⊂⊂ B2

s ⊂ X, s =
1, · · · , N . In each B2

s there exists a strictly plurisubharmonic potential ρs satisfying
the following properties:

⎧
⎪⎪⎨

⎪⎪⎩

ρs |∂B2
s
= 0

infB2
s
ρs ≥ −C

ddcρs = ω2,s ≥ ω,



22 S. Dinew

where C is a constant dependent only on the covering and ω. Note that plurisub-
harmonicity coupled with the first condition above yields the inequality ρs ≤ 0 on
B2

s .
Suppose now that there exists a sequence uj ∈ PSHω(X), supXuj = 0

satisfying limj→∞
∫
X
|uj |ωn = ∞. After choosing subsequence (which for the

sake of brevity we still denote by uj ) we may assume that

∫

X

|uj |ωn ≥ 2j (1.10)

and moreover a sequence of points xj where uj attains maximum is contained in
some fixed ball B1

s .
Note that ρs + uj is an ordinary plurisubharmonic function in B2

s and by the
submean value property one has

ρs(xj ) = ρs(xj )+ uj (xj ) ≤ C

∫

B2
s

ρs(z)+ uj (z)dV ≤ C

∫

B2
s

uj (z)dV + C,

(1.11)

where dV is the Lebesgue measure in the local coordinate chart, while C denotes
constants dependent only on B1

s and B2
s . Thus (1.11) implies that for some constant

C one has
∫

B2
s

|uj(z)|dV ≤ C. (1.12)

Consider the function v := ∑∞
j=1

uj

2j . By classical potential theory this is again an

ω-psh function or constantly −∞. By (1.12), however, the integral of v over B2
s is

finite, thus it is a true ω-psh function. By the same reasoning we easily obtain that
v ∈ L1(B1

t ) for any t ∈ 1, · · · , N and hence v ∈ L1(X). This contradicts (1.10),
and thus the existence of a uniform bound is established. ��
Exercise 8.17 In the Kähler case a much neater argument can be used to establish
this fact. In fact suppose that

∫
X ωn = 1 and let the function Gω(z,w) satisfy

(ωz + ddc
zG(z,w)) ∧ ωn−1

z = δw with δw being the Dirac delta measure (G is thus
the Green function with respect to ω). Then

u(w) =
∫

X

u(z)(ωz + ddc
zG(z,w)) ∧ ωn−1

z

and integration by parts finishes the proof.
Check for which classes of special Hermitian metrics this Green type arguments

works without any adjustment assuming that the Green function exists.

In fact a much stronger result is true: ω-psh functions are uniformly exponentially
integrable. To prove this we need the following ingredient (see Lemma 4.4 in [Hö1])
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Lemma 8.18 Let u be a negative plurisubharmonic function in BR(0) ⊂ Cn and λ

be any positive number. Assume further that u(0) ≥ −1. Then

∫

Br(0)
e−λu(z)dV (z) ≤ C

for any r ≤ Re−λ/2 and some constant C dependent only on n, λ and R.

Assuming this fact the following theorem holds:

Theorem 8.19 Let (X,ω) be a compact Hermitian manifold. Then there exists
positive constants α and C, dependent only on X,ω such that for any ω-psh function
φ, supXφ = 0 one has

∫

X

e−αφωn ≤ C.

Proof This result in the Kähler case can be found in [T89]. If 2r is the injectivity
radius of (X,ω) we fix a r/4—net of points {x1, · · · xN } i.e. a collection of points
such that the geodesic balls Br/4(xi) cover X and N is the smallest cardinality of
such configuration. Using the uniform integrability of ω-psh functions we have for
any ω-psh function φ normalized so that supXφ = 0 the inequalities

supBr/4(xi)φ ≥ − C∫
Br/4(xi)

ωn
.

If ρi is a Kähler potential of a metric � > ω in B2r (xi) then ρi is uniformly bounded
in B 3r

4
(xi) and hence the local plurisubharmonic function ρi + φ satisfies

(ρi + φ)(yi) := supBr/4(xi)ρi + φ ≥ − C∫
Br/4(xi)

ωn
,

ρi + φ ≤ C in B 3r
4
(xi)

for some constant C under control. Taking α := C+ mini

∫
Br/4(xi )

ωn

C+1 by Lemma 8.18
we get

∫

Br/2(yi)

e−α(ρi+φ−C)dV ≤ C.

It remains to observe that yi are (by definition) in Br/4(xi), hence Br/4(xi) ⊂
Br/2(yi) and adding the integrals above we get the statement. ��
Remark 8.20 Note that we used a similar localization argument as in the proof of
uniform integrability. As the exponent α depends on the geometry of (X,ω) we
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needed a more delicate reasoning. In fact in Kähler geometry the supremum of all
such α for fixed (X,ω) is a very important invariant (known as the α-invariant) and
its computation is a subtle problem. It is yet to be seen whether its Hermitian analog
has interesting geometric applications.

1.8.4 The Monge-Ampère Measure

By construction ω + ddcu is a positive (1, 1)-current i.e. a differential form with
distributional coefficients. This raises a serious problem in defining (ω + ddcu) ∧
(ω + ddcu)—we would have to multiply distributions to get the coefficients!

We will follow Bedford and Taylor’s idea [BT82, BT76] to construct this product.
First, by Riesz theorem a positive current has measure coefficients i.e. each of the
distributional coefficients is a complex valued measure.

The crucial observation in Bedford-Taylor theory is that for a locally bounded
plurisubharmonic function u the current u(ddcu) also has measure coefficients.
Note that this may still be the case for some unbounded functions but in general
there is no reason why the product of an integrable function and a measure may still
be a measure.

Theorem 8.21 (Bedford-Taylor) The inductively constructed currents

(ddcu)k := ddc(u(ddcu)k−1)

are well defined, closed and positive. Furthermore if uj is a decreasing sequence of
locally bounded plurisubharmonic functions with u as a limit then

(ddcuj )
k → (ddcu)k

as currents.

Proof Recall that Tj → T as currents if for any test form ψ one has
limj→∞Tj (ψ) = T (ψ).

We begin with the following basic observation: if Tj is a sequence of currents
converging to T then ddcTj → ddcT i.e. distributional differentiation is continuous
with respect to convergence of currents. The proof hinges on the fact that, by
definition, ddcTj (ψ) = Tj (dd

cψ) and is left as an easy exercise.
Note that once we know that (ddcu)k−1 is a positive current it has measure

coefficients, and hence u(ddcu)k−1 is well defined. Thus it remains to show that
(ddcu)k is positive.

Pick ũj a local sequence of smooth plurisubharmonic functions decreasing
towards u (such a sequence can be constructed using a standard mollification with
a smoothing kernel). Note that ũj (dd

cu)k−1 → u(ddcu)k−1 since (ddcu)k−1 has
measure coefficients and we can use dominated convergence theorem.
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But on the other hand ddc(ũj (dd
cu)k−1) is equal to ddcũj ∧ (ddcu)k−1 by

definition once ũj is smooth and (ddcu)k−1 is closed. Finally ddcũj ∧ (ddcu)k−1 is
positive since it is a product of a positive current and a (1, 1)-positive form. Passing
to the limit we obtain the positivity of (ddcu)k .

It remains to prove the claimed convergence for decreasing sequences. As the
result is purely local it suffices to prove it in any small ball Br/2(z0) ⊂ Br(z0).
Furthermore if ρ(z) := A(|z−z0|2−r2) for a large enough A taking the maximums
of uj ’s and u with ρ we get new functions Uj ,U agreeing with the old ones on
Br/2(z0) and smoothly approaching zero near ∂Br(z0). Then it suffices to show that
Uj(dd

cUj )
k−1 → U(ddcU)k−1 on Br(z0).

We show this convergence in two steps. First of all we show that any cluster point
of Uj(dd

cUj )
k−1 in the weak topology of currents has to be bounded from above by

U(ddcU)k−1 as a current (note that Uj(dd
cUj )

k−1 is locally of finite mass, hence
cluster points exist by the Banach-Alaouglu theorem).

To this end suppose (relabelling if necessary) that the whole sequence weakly
converges. Fix ψ a smooth positive closed test form of the appropriate bidegree. Fix
also j0 ∈ N. Note that

limj→∞Uj (dd
cUj )

k−1 ∧ ψ ≤ Uj0(dd
cUj )

k−1 ∧ ψ ≤ gj0(dd
cUj )

k−1 ∧ ψ,

where gj0 is any continuous function majorizing Uj0 . But then the right hand side
converges as measures to gj0(dd

cU)k−1 ∧ ψ . As Uj0 is a decreasing limit of such
continuous functions gj0 we obtain

limj→∞Uj(dd
cUj )

k−1 ∧ ψ ≤ Uj0(dd
cU)k−1 ∧ ψ.

Passing now with j0 to ∞ we obtain the claimed bound.
Next we will show that the inverse inequality holds for the total masses of the

currents involved. Note that
∫

Br (z0)

U(ddcU)k−1 ∧ ψ

≤
∫

Br (z0)

Uj (dd
cU)k−1 ∧ ψ =

∫

Br (z0)

UddcUj ∧ (ddcU)k−2 ∧ ψ

≤
∫

Br (z0)

Ujdd
cUj ∧ (ddcU)k−2 ∧ ψ · · · ≤

∫

Br(z0)

Uj (dd
cUj )

k−1 ∧ ψ.

Taking the limit as j → ∞ concludes the proof.
��

Exercise 8.22 In the proof above we modified uj ’s so that they are smooth near the
boundary and vanish on the boundary. Where is this used? Also where the continuity
of gj0 was used?
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Returning to the Hermitian setting we argue in a local chart where a Kähler form
� = ddcη can be found so that � > ω.

Then formally in that chart

(ω+ddcu)k = (ddc(η+u)−(�−ω))k =
k∑

j=0

(
k

j

)
(−1)k−j (ddc(η+u))j∧(�−ω)k−j

and all the terms on the right hand side are well defined by the Bedford-Taylor
construction.

To get the convergence for decreasing sequences we write

ddcuj + ω = ddc(uj + η)− T , T = (�− ω).

Then by the Newton expansion again

(ddcuj + ω)k = (ddcuj +�)k − k(ddcuj +�)k−1 ∧ T + . . .± T k. (1.13)

By the convergence theorem for local psh functions all the terms on the right
converge as currents, and the sum of their limits is

(ddcu+�)k − k(ddcu+�)k−1 ∧ T + . . .± T k = (ddcu+ ω)k.

This allows the use of some local results from pluripotential theory developed by
Bedford and Taylor in [BT82]. In particular the Monge-Ampère operator

ωn
u := ωu ∧ · · · ∧ ωu

is well defined for bounded ω-psh functions.
Having the convergence for monotonely decreasing sequences it is natural to

ask whether continuity of the Monge-Ampère operator holds for any sequence uj

of plurisubharmonic functions converging weakly towards u ∈ PSH ∩ L∞
loc. The

answer (a bit surprisingly) is no as shown by Cegrell [CE83]:

Example 8.23 There is a plurisubharmonic function u ∈ L∞
loc in C2 and a sequence

uj ∈ PSH ∩ L∞
loc such that uj → u weakly (in fact the convergence is even in Lp

for any p ∈ [1,∞)) but

(ddcuj )
2
� (ddcu)2.

Proof Let f (z), g(z) be non negative subharmonic functions of one complex
variable. Then (f (z1) + g(z2))

2 is a plurisubharmonic function in (z1, z2) with
Monge-Ampère measure equal to

8(f + g)2ddcf ∧ ddcg + 8(f + g)[dg ∧ dcg ∧ ddcf + df ∧ dcf ∧ ddcg].
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Pick now g(z) = |z|2, say. It will be sufficient to show that the convergence
fj�fj → f�f need not hold if fj are bounded subharmonic functions converging
weakly to a bounded subharmonic function f (we leave the details of this and the
previous computation as an exercise).

To show the latter fact consider a compactly supported probability measure μ

such that the potential

f̃ (z) :=
∫

log(|z −w|)dμ(w)

is bounded from below—the (normalized) Lebesgue measure restricted to the unit
disc would do. Let a := inf f̃ and define

f (z) := f̃ (z)− a + 1.

By definition f ≥ 1 everywhere. Consider now an approximation of dμ by
combinations of discrete Dirac delta measures dμj := ∑i(j)

i=1 a
(j)
i δ

b
(j)
i

for some

a
(j)

i ≥ 0, b(j)

i ∈ suppμ. Then f̃j (z) :=
∫
log(|z −w|)dμj (w) converge weakly to

f̃ yet they are clearly unbounded from below. Take then fj (z) = max{f̃j (z)− a +
1, 0}. As f̃j ’s converge to f̃ ≥ a in Lp it is easy to see that fj ’s converge to f in
Lp too. Note however that f�f ≥ �f has total mass at least one while fj�fj = 0
as measures since f̃j ’s are harmonic off their singularities. ��

Next we prove three very important inequalities known as Chern-Levine-
Nirenberg (CLN) inequalities in the literature (see [CLN69]):

Theorem 8.24

(i) (Local version) Let u1, · · · un ∈ PSH(�) ∩ L∞(�). Then for any two open
relatively compact subsets K � L � � there is a constant C = C(K,L,�)

such that
∫

K

ddcu1 ∧ · · · ∧ ddcun ≤ C(K,L,�)�n
j=1||uj ||L∞(L);

(ii) (Local integral version) Let K,L and uj be as above. Then there is a
constant C = C(K,L,�) such that for any plurisubharmonic function v (not
necessarily bounded!) normalized so that sup�v ≤ 0 one has

∫

K

−vddcu1 ∧ · · · ∧ ddcun ≤ C(K,L,�)||v||L1(L)�
n
j=1||uj ||L∞(L);

(iii) (Global version) Let (X,ω) be a compact Hermitian manifold. Then there is a
constant C dependent only on X,ω such that for any bounded ω-psh functions
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φj , j = 1, · · · , n and a non-positive ω-psh function ψ one has

∫

X

−ψ(ω + ddcφ1) ∧ · · · ∧ (ω + ddcφn)

≤ C[||ψ||L1(X,ω) + 1]�n
j=1(||φj ||L∞(X) + 1).

Proof The first statement follows from (iterated) multiplication by a cut-off function
and integration by parts. We leave the details as an exercise to the Reader.

Next we claim that (ii) implies (iii). To this end we again use localization in
charts. In each chart of a triple cover Ui � Vi � Wi we find potentials ρi of a local
Kähler metric � > ω. Then the integral over Ui of

−ψ(ω + ddcφ1) ∧ · · · ∧ (ω + ddcφn)

is majorized by
∫
Ui

−ψ(ddc(ρi + φ1)) ∧ · · · ∧ (ddc(ρi + φn)). Applying the local
integral version of the CLN inequalities this is bounded by

C[||ψ||L1(Vi ,ω) + 1]�n
j=1(||φj + ρi ||L∞(Vi))

and the claim follows, since ρi is uniformly under control in Vi

It remains to prove (ii). As the result is local we shall argue in a fixed ball
Br/2(z0) � Br(z0), such that B2r (z0) is relatively compact in L. Just as in the
proof of Theorem 8.21 we may modify uj ’s close to the boundary so that they agree
on Br/2(z0) with the original uj ’s and vanish smoothly on ∂Br(z0) in the sense that
they are all equal to A(|z− z0|2 − r2) for a constant A under control.

We also assume that v is smooth, the general case follows then by approximation.
Hence

∫

Br/2(z0)

−vddcu1 ∧ · · · ∧ ddcun ≤
∫

Br(z0)

−vddcu1 ∧ ddcu2 ∧ · · · ∧ ddcun.

At this stage we claim that in the last integral we can exchange each ddcuj factor
by Addc|z|2. Indeed

∫

Br (z0)

−vddcu1 ∧ ddcu2 ∧ · · · ∧ ddc[un − A(|z− z0|2 − r2)]

=
∫

Br (z0)

−[un − A(|z− z0|2 − r2)]ddcu1 ∧ ddcu2 ∧ · · · ∧ ddcv

≤ C

∫

Br (z0)

ddcu1 ∧ ddcu2 ∧ · · · ∧ ddcv,

as is seen after two integrations by part (and we use the fact the last factor is
constantly zero near the boundary).
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Arguing as in (i) the last integral is controlled by

C

∫

B 3
2 r

(z0)

(ddc|z|2)n−1 ∧ ddcv,

and after yet another multiplication by a cut-off function and integration by parts we
end up with

∫
B2r (z0)

−vdλ ≤ ||v||L1(L).
Arguing then in the same manner with the remaining factors ddcuj we end up

with
∫

Br/2(z0)

−vddcu1 ∧ · · · ∧ ddcun ≤ C||v||L1(L) +
∫

Br(z0)

−v(ddc|z|2)n,

which yields the claim. ��
Exercise 8.25 Check carefully the localization argument. It is obvious provided
that uj ’s are uniformly negative on Br(z0). Can we claim such a uniform bound?

1.8.5 Bedford-Taylor Capacities

In [BT76] Bedford and Taylor introduced a new capacity which has proven to be an
extremely useful tool in pluripotential theory. Below we recall the definition:

Definition 8.26 Let � be a domain in Cn. Given a Borel subset E ⊂ � its capacity
is given by

cap(E,�) := sup{
∫

E

(ddcu)n|u ∈ PSH(�), 0 ≤ u ≤ 1}.

Exercise 8.27 Let K be a compact subset of �. Show that cap(K,�) is finite. Is
cap(�,�) finite for �—a ball in Cn?

This notion was transplanted in [Kol03] to the setting of compact Kähler
manifolds. The same construction can be applied in the Hermitian case.

If (X,ω) is Hermitian the Monge-Ampère capacity associated to (X,ω) is the
function defined on Borel sets by

Capω(E) := sup{
∫

E

(ω + ddcu)n / u ∈ PSH(X,ω) and 0 ≤ u ≤ 1}.

Exercise 8.28 In the Kähler case Capω(E) ≤ sup
∫
X
(ω + ddcu)n = ∫

X
ωn,

hence the so-defined quantity is bounded. This reasoning fails in the Hermitian case.
Nevertheless show, using Theorem 8.24 and integration by parts, that Capω(K) is
finite for any Borel subset K of the Hermitian manifold (X,ω).
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We refer the reader to [Kol03, GZ05] for the basic properties of this capacity
in the Kähler setting. In the Hermitian case one can repeat much of the Kählerian
picture. Below we list some basic properties of capω that will be useful later on:

Proposition 8.29

(i) If E1 ⊂ E2 ⊂ X then capω(E1) ≤ capω(E2),

(ii) If U is open then capω(U) = sup{capω(K)| K − compact, K ⊂ U},
(iii) If Uj ↗ U, Uj − open then capω(U) = limj→∞capω(Uj ).

Proof The first property follows from the very definition of capω. To prove the
second fix ε > 0 and a competitor u for the supremum, such that

capω(U) ≤
∫

U

ωn
u + ε.

Since ωn
u is a regular Borel measure by inner regularity there is a compact set

K ⊂ U satisfying

∫

U

ωn
u ≤

∫

K

ωn
u + ε ≤ capω(K)+ ε.

Coupling the above facts and letting ε converge to zero we end up with capω(U) ≤
sup{capω(K)|K−compact, K ⊂ U}, and the reverse inequality follows from the
first property.

Finally the third one can be proved as follows. Fix once more ε > 0 and a
compact set K ⊂ U , such that

capω(U) ≤ capω(K)+ ε.

Observe that for j large enough K ⊂ Uj and hence

capω(K) ≤ capω(Uj ) ≤ limj→∞capω(Uj ).

As a result we obtain

capω(U) ≤ limj→∞capω(Uj ),

while the reverse inequality is obvious. ��
For ω-Kähler the patched local Bedford-Taylor capacity was studied in [Kol03].

That is for a fixed double covering B1
s ⊂⊂ B2

s ⊂ X of coordinate balls, we define
the capacity cap′

ω of a Borel set E by

cap′
ω(E) :=

n∑

s=1

cap(E ∩ B1
s , B

2
s ),
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with cap(E ∩ B1
s , B

2
s ) denoting the classical Bedford-Taylor capacity [BT82]. It

was shown in [Kol03] that capω and cap′
ω are equicontinuous in the Kähler case.

Our next result shows this equicontinuity in the Hermitian setting:

Proposition 8.30 Let (X,ω) be a compact Hermitian manifold with a fixed double
cover B1

s � B2
s of coordinate charts. Then there exist a constant C > 0 dependent

only on X,ω and the double cover such that for any Borel set E

C−1cap′
ω(E) ≤ capω(E) ≤ Ccap′

ω(E).

Proof From the continuity properties of capacities it suffices to prove the result for
compact sets.

To show the left inequality we fix a compact set K ⊂ X and let Ks := K ∩ B1
s .

It suffices to prove that capω(K) ≥ capω(Ks) ≥ Ccap(Ks, B
2
s ) for every fixed s.

To this end fix a smooth function χ on X with values in [−1, 0], such that χ ≡ 0
off B2

s , while χ |B1
s
= −1. Then there is a small constant δ < 1

2 such that 2δχ is
ω-psh. Note that this δ depends only on X,ω and the covering.

Fix any ε > 0. Then from the definition there is a local plurisubharmonic
function u on Bs

2, such that 0 ≤ u ≤ 1, and

∫

Ks

(ddcu)n ≥ cap(Ks, B
2
s )− ε.

Consider now the function

ϕ :=
{
max{2δχ(z), δ(u(z)− 1)} + 1 z ∈ B2

s

2δχ + 1 z ∈ X \ B2
s .

(1.14)

By construction ϕ is a global ω-psh function equal to δ(u− 1)+ 1 on B1
s . Note that

1 ≥ ϕ ≥ −2δ + 1 > 0. Then

capω(K) ≥
∫

K

(ω + ddcϕ)n ≥
∫

Ks

(ω + ddcϕ)n ≥
∫

Ks

(ω + ddcδu)n.

Exploiting the positivity of ddcu this can be further estimated from below by

∫

Ks

(ddcδu)n = δn
∫

Ks

(ddcu)n ≥ δn[cap(Ks, B
2
s )− ε].

As ε was arbitrary passing to zero yields the left of the claimed inequalities.
In order to prove the right one note that in each chart B2

s there is a bounded
strictly plurisubharmonic function ρs , such that ddcρs ≥ ω. Normalizing by adding
a constant we may assume that for any s we have 0 ≤ ρs ≤ C, with C > 0 a
constant dependent only on the covering and the geometry of the manifold.
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Again fix an ε and ϕ which is an ω-psh competitor in the definition of capω, (we
assume 0 ≤ ϕ ≤ 1) such that

∫

K

(ω + ddcϕ)n ≥ capω(K)− ε.

The point is that the local function us := ϕ+ρs

C+1 is plurisubharmonic and satisfies
0 ≤ us ≤ 1. Indeed, the inequalities are clear. As

ddcϕ + ddcρs ≥ ddcϕ + ω ≥ 0

us is plurisubharmonic on B2
s .

But then

capω(K)− ε ≤
∫

K

(ω + ddcϕ)n ≤
∑

s

∫

Ks

(ω + ddcϕ)n.

Exploiting the definition of ρs this string of inequalities continues as

∑

s

∫

Ks

(ddc(ρs + ϕ))n = (C + 1)n
∫

Ks

(ddcus)
n ≤ (C + 1)n

∑

s

cap(Ks, B
2
s ),

as claimed. ��
Before we proceed further we recall a basic local solvability result of Kolodziej

(se [Kol05] for a much more general version):

Theorem 8.31 Let B be a ball in Cn and the function f be Lp integrable on B for
some p > 1. Then the Dirichlet problem

⎧
⎪⎪⎨

⎪⎪⎩

v ∈ PSH(B) ∩ C(B)

(ddcv)n = f

v|∂B = 0

(1.15)

admits unique solution v. Moreover there is a constant c > 0 dependent only on
n, p and the diameter of the ball B, such that

supB(−v) ≤ c||f ||
1
n

Lp(B).

Theorem 8.31 yields immediately a comparison between the volume and capacity
of a set:

Proposition 8.32 Let K be a compact subset of a ball B ⊂ C
n. Then for any q > 1

there is a constant C dependent only on n, q and the diameter of the ball such that
V (K) ≤ Ccap(K,B)q with V (K) denoting the Lebesgue measure of K .
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Proof If V (K) = 0 the inequality trivially holds. Suppose that V (K) > 0 and
consider the function f := χK

V (K)
1− 1

q

, where χK is the characteristic function of the

set K . Obviously
∫
B
f p = 1 for p > 1 such that 1

p
+ 1

q
= 1. Using Theorem 8.31

one finds a continuous solution v to the problem

⎧
⎪⎪⎨

⎪⎪⎩

v ∈ PSH(B) ∩ C(B)

(ddcv)n = f

v|∂B = 0,

for which −c ≤ v ≤ 0 for some uniform c > 0. But then u := v
c
+1 is a competitor

in the definition of capacity. Hence

cap(K,B) ≥
∫

K

(ddcu)n = 1

cn

∫

K

(ddcv)n = 1

cn

∫

K

χK

V (K)
1− 1

q

= V (K)
1
q

cn
,

which yields the proof. ��
Remark 8.33 It can be proven using subtler tools that the volume is controlled by
the capacity in an even stronger way. See [Kol05] for details.

The local results above can be used to prove a volume-capacity estimate on a
compact Hermitian manifold:

Theorem 8.34 Let p > 1 and f be a non negative function belonging to Lp(ωn).
Then for any compact K ⊂ X one has

∫

K

fωn ≤ C(p,X)||f ||pcapω(K)2,

where C(p,X) is a constant dependent only on p and (X,ω).

Proof As
∫
K

fωn ≤ ||f ||p(
∫
K

ωn)
p−1
p it suffices to prove that

∫

K

ωn ≤ C(q,X)capω(K)q

for any q > 1. To this end consider the double covering B1
s � B2

s as in
Proposition 8.30. We assume that the number of the balls is fixed, and their radii
are under control. Recall that Ks := K ∩ B1

s .
Then

∫

K

ωn ≤
∑

s

∫

K∩B1
s

ωn ≤ C
∑

s

∫

Ks

dV,
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as ωn on compact subsets of coordinate charts differs from the Lebesgue measure
by a bounded function. Invoking now Proposition 8.32 we have

∫

K

ωn ≤ C
∑

s

cap(Ks, B
2
s )

q ≤ C(
∑

s

cap(Ks, B
2
s ))

q .

But by Proposition 8.30 the latter quantity is controlled by Ccapω(K)q , as claimed.
��

As yet another consequence of psh-like property of ω-psh functions one gets the
capacity estimate of sublevel sets of those functions.

Proposition 8.35 Let u ∈ PSHω(X), supXu = 0. Then there exists an indepen-
dent constant C such that for any s > 1 capω({u < −t}) ≤ C

t
.

Proof We shall use the double covering introduced in Proposition 8.16. Fix a
function v ∈ PSHω(X), 0 ≤ v ≤ 1. Then we obtain

∫

{u<−t}
ωn
v ≤ 1

t

∫

X

−uωn
v .

Now by the generalized Chern-Levine-Nirenberg inequalities (Theorem 8.24) one
obtains that the last quantity can be estimated by

C
1

t
||u||L1(ωn) ≤

C

t

which completes the proof. ��
We finish this Section with a lemma which shall be used throughout the note.

It follows from the proof of the comparison principle by Bedford and Taylor in
[BT76].

Lemma 8.36 Let u, v be bounded PSHω(X) functions and T a (positive but non
necessarily closed) current of the form ωu1 ∧ · · · ∧ ωun−1 for bounded functions ui

belonging to PSHω(X). Then

∫

{u<v}
ddc(u− v) ∧ T ≥

∫

{u<v}
dc(u− v) ∧ dT .

Proof Suppose first that u, v and the boundary of the set {u < v} are smooth. If ρ is
a smooth defining function of {u < v}, then u− v = αρ for some positive function
α on the closure of {u < v}.

Given any smooth positive (n− 1, n− 1) form θ we thus get the equality

∫

∂{u<v}
dc(u− v) ∧ θ =

∫

∂{u<v}
αdcρ ∧ θ.
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On the other hand if σ denotes the surface area element on ∂{u < v} induced by ω

then σ = ∗dρ
||dρ|| , where ∗ stands for the Hodge star operator with respect to ω.

Now if dcρ ∧ θ = f dσ for some function f we end up with the equality

αdρ ∧ dcρ ∧ θ = αf dρ ∧ ∗dρ
||dρ|| .

But dρ ∧ dcρ ∧ θ ≥ 0, which yields that αf ≥ 0 and thus

∫

{u<v}
(ddc(u− v) ∧ θ − dc(u− v) ∧ dθ) =

∫

∂{u<v}
dc(u− v) ∧ θ

=
∫

∂{u<v}
αf dσ ≥ 0.

The case of a current T of the given form is done by approximation of each uj

by a decreasing sequence of smooth ω-psh functions.
Finally if either u, v or ∂{u < v} is not smooth we consider an approximating

sequence of smooth ω-psh functions uj , vj . By the Sard theorem for almost every
t the sets {uj < vj + t} have smooth boundary. Thus we can apply the argument
above to the pair (uj , vj + t) and then let t to zero. Finally we let j → ∞ and the
desired inequality follows. ��

1.9 Comparison Principle in Hermitian Setting

In the Kähler setting the comparison principle says that for any u, v ∈ PSHω(X)∩
L∞(X) we have

∫

{u<v}
ωn
v ≤

∫

{u<v}
ωn
u.

In a sense this integral inequality makes up for the lack of a classical maximum
principle in pluripotential theory. It is a basic ingredients in many proofs—see
[Kol05].

Such an inequality is in general impossible on Hermitian manifolds due to the
following proposition:

Proposition 9.1 A necessary condition for the comparison principle to hold is that

∀u ∈ PSHω(X) ∩ L∞(X)

∫

X

(ω + ddcu)n =
∫

X

ωn.
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Proof Note that for any bounded ω-psh function u we can find a constant C such
that u − C < 0 < u + C. Then applying the comparison principle to the pairs
(u−C, 0) and (0, u+C) (the integration takes place over the whole of X) one gets
that

∫
X
ωn
u = ∫

X
ωn, whence the result. ��

It was recently proven by Chiose1 [Chi] that such an invariance of total volume is
in fact equivalent to the Guan-Li type conditions ddcω = 0, dω∧dcω = 0 imposed
on ω.

Thus unless ω is of special type we have to allow some additional error terms
into the inequality. The next theorem shows that such a result indeed holds. Below
we present a weaker form of a comparison principle with “error terms” which will
be useful in obtaining a priori estimates:

Theorem 9.2 ([DK12]) Let ω be a Hermitian metric on a complex compact
manifold X and let u, v ∈ PSHω(X) ∩ L∞(X). Then there exists a polynomial
Pn of degree n− 1 and zeroth degree coefficient equal to 0, such that

∫

{u<v}
ωn
v ≤

∫

{u<v}
ωn
u + Pn(BM)

n∑

k=0

∫

{u<v}
ωk
u ∧ ωn−k,

where B is defined by (1.2) and M = sup{u<v}(v − u). The coefficients of the
polynomial are nonnegative and depend only on the dimension of X.

This claim says that provided the product of B and the supremum of v − u is
small enough the error terms are small. Of course these error terms are bounded
anyway and can be incorporated in the coefficients of the polynomial Pn but here it
is emphasized that Pn is independent of the functions u and v and also that the error
terms involve lower order Hessians of ωu. In general it is impossible to control these
pointwise but it will turn out later that these can be controlled by ωn

u in the integral
sense over specific subdomains.

Proof Note that

∫

{u<v}
ωn
v =

∫

{u<v}
ω ∧ ωn−1

v +
∫

{u<v}
ddcv ∧ ωn−1

v ≤
∫

{u<v}
ω ∧ ωn−1

v

+
∫

{u<v}
ddcu ∧ ωn−1

v +
∫

{u<v}
dc(v − u) ∧ d(ωn−1

v ),

where we have used Lemma 8.36. Again by (1.2) we have

ddc(ωn−1
v ) ≤ B[ω2 ∧ ωn−2

v + ω3 ∧ ωn−3
v ].

1Professor Demailly informed me that he was aware of this equivalence long time ago.
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Thus by Stokes’ theorem

∫

{u<v}
ωn
v ≤

∫

{u<v}
ωu ∧ ωn−1

v −
∫

{u<v}
d(v − u) ∧ dc(ωn−1

v ) ≤
∫

{u<v}
ωu ∧ ωn−1

v

+
∫

{u<v}
(v − u) ∧ ddc(ωn−1

v ) ≤
∫

{u<v}
ωu ∧ ωn−1

v

+ sup{u<v}(v − u)B

∫

{u<v}
(ω2 ∧ ωn−2

v + ω3 ∧ ωn−3
v ).

Repeating the above procedure of replacing ωv by ω and ωu in the end one obtains
the statement. ��
In the computations above it is easy to see that the term

∫
{u<v} ωn−1

u ∧ ω will
never appear on the right hand side but we shall not use this fact. Also for
small n the polynomials Pn are explicitly computable: in particular one can take
P2(x) = 2x, P3(x) = 2x2 + 4x. In general we can use the following (very) crude
count: In the process we exchange a term

∫
{u<v} ωk

v ∧ ωl
u ∧ ωk−l for the term∫

{u<v} ω
k−1
v ∧ ωl+1

u ∧ ωk−l and
∫
{u<v}(v − u)ddc(ωk−1

v ∧ ωl
u ∧ ωk−l ). The latter

term splits into six pieces and each of them contains ωv with power no higher than
k − 1. Of course there are special cases when some of these terms coincide or do
not appear, but the upshot is that there will be at most 7n terms in the very end. Thus
one can take Pn as Pn(x) = 7n(x + x2 + · · · + xn−1).

Below we shall state a technical refined version of the above theorem. It works
only for special sublevel domains but has the advantage that all the lower order
Hessian terms are incorporated into the ωn

u-term at the cost of enlarging the constant
1 in front of it. This inequality was proven by Cuong and Kolodziej in [KN1]:

Theorem 9.3 (Comparison Principle-Refined Version) Let X,ω, u and v be as
above. Take 0 < ε < 1 and let m(ε) = infX(u − (1 − ε)v). Then for any small

constant 0 < s < ε3

16B

∫

{u<(1−ε)v+m(ε)+s}
ωn
(1−ε)v ≤

(
1 + n214n sB

εn

)∫

{u<(1−ε)v+m(ε)+s}
ωn
u

for some universal constant C dependent only on X,n and ω.

Observe that this comparison principle works only for sublevel sets very close to the
empty set {u < (1− ε)v+m(ε)}. The bonus is that we control not only ωn

v but also
the (integrals of) lower order Hessians of ωv .

Proof Observe that (1 − ε)v +m(ε)+ s is ω-psh. Denote by

ak =
∫

{u<(1−ε)v+m(ε)+s}
ωk
u ∧ ωn−k.
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Plugging u and (1− ε)v+m(ε)+ s in the first version of the comparison principle,
we obtain that

sup{u<(1−ε)v+m(ε)+s}{(1 − ε)v +m(ε)+ s − u} ≤ s.

Observe that from the assumptions made on s Bs is small, hence Pn(Bs) ≤ n7nBs

(since xk ≤ x for k ≥ 1, x ∈ (0, 1)). Then it is enough to get rid of the lower order
Hessians of ωu.

Note that εω ≤ ω(1−ε)v+m(ε)+s and hence

εak ≤
∫

{u<(1−ε)v+m(ε)+s}
ωk
u ∧ ω(1−ε)v ∧ ωn−k−1.

Swapping now (1 − ε)v +m(ε)+ s with u as in the previous proof we get

εak ≤ ak+1 + sB(ak + ak−1 + ak−2) (1.16)

(with the understanding that a−1 = a−2 = 0). Now we shall prove inductively
that ak ≤ 2

ε
ak+1. Indeed for k = 0, 1 this follows from inequality (1.16) and the

assumption that sB ≤ ε3

16 . Suppose now that the inequality is true for k−2 and k−1
then (1.16) results in

εak ≤ ak+1 + ε3

16

(
ak + 2

ε
ak + 4

ε2 ak

)
≤ ak+1 + ε

2
ak,

which proves the claim.
Our inductive argument gives us the inequality ak ≤ 2n

εn
an, so the integrals

of lower order Hessians can be estimated by
∫
{u<(1−ε)v+m(ε)+s}ω

n
u and the result

follows. ��
Observe that when B = 0 (in particular when ω is Kähler) the theorem above

gives us the standard comparison principle.
Finally we prove an analog of the comparison principles for the Laplacian with

respect to a Gauduchon metric.

Proposition 9.4 Let ω be a Gauduchon metric and let φ, ψ ∈ PSHω(X)∩L∞(X).
Then

∫

{φ<ψ}
ωψ ∧ ωn−1 ≤

∫

{φ<ψ}
ωφ ∧ ωn−1.

Proof The claimed inequality can be rewritten as

∫

{φ<ψ}
(ddc[φ − ψ]) ∧ ωn−1 ≥ 0.
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But this as an immediate consequence of the proof of Lemma 8.36 since the latter
integral is at least

∫

{φ<ψ}
dc[φ − ψ]) ∧ dωn−1 =

∫

{φ<ψ}
[φ − ψ] ∧ ddcωn−1 = 0

by the Gauduchon property of ω. Note that in the last integration by parts we used
that φ − ψ = 0 on the boundary. ��

1.10 The Complex Monge-Ampère Equation on Compact
Hermitian Manifolds

In this section we shall discuss in detail the solvability of the Dirichlet problem
for the complex Monge-Ampère equation in the Hermitian setting. First we shall
prove existence and uniqueness in the smooth case. Although this is not part of
pluripotential theory we include the detailed argument for the sake of completeness.
Our goal will be the following theorem:

Theorem 10.1 Let (X,ω) be a compact Hermitian manifold of complex dimension
n. Let also f be any smooth strictly positive function on X. Then the following
problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u ∈ C∞(X), ω + ddcu > 0,

supXu = 0,

c ∈ R,

(ω + ddcu)n = ecf ωn, f ∈ C∞(X)

(1.17)

admits a unique solution (u, c). Furthermore there exist constants Ck, k =
0, 1, 2, · · · dependent only on X, ω and f , such that the Ck-th norm of the function
u is bounded by Ck .

Note that we do not assume compatibility conditions on f (i.e. we do not assume
that

∫
X fωn = ∫

X ωn) but instead we introduce an additional constant c in the
equation.

In the case when ω is Kähler the solvability of this equation was proved by Yau
in his seminal paper [Y78]. The Hermitian case was studied by Cherrier [Che87],
and later by Guan-Li, Tosatti-Weinkove [GL10, TW10a] up until the final resolution
by Tosatti and Weinkove in [TW10b].

Our exposition is borrowed from [D16].
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The method of proof will follow the classical continuity method approach. More
precisely we consider the family of problems

(∗)t

⎧
⎪⎪⎨

⎪⎪⎩

ut ∈ PSHω(X),

supXut = 0,

(ω + ddcut )
n = ect (1 − t + tf )ωn f ∈ C∞(X), f > 0,

(1.18)

for t ∈ [0, 1]. Clearly the problem (∗)0 is solvable and it is enough to prove that the
set

A := {T ∈ [0, 1]| (∗)t is solvable for every t ≤ T }

is open and closed in [0, 1].
To this end we shall first prove uniqueness of the constant c and uniqueness of

the solution u. Then we pass to the openness. The hard part of the argument is the
closedness which is achieved by establishing a priori estimates for the solutions.

1.10.1 Uniqueness

In [TW10b] the authors proved that if u, v are smooth ω-psh functions and their
Monge-Ampère measures satisfy ωn

u = ec1fωn, ωn
v = ec2fωn for some smooth

function f and some constants c1 and c2 then in fact c1 = c2 and u and v differ
by a constant. This is the counterpart of the uniqueness of potentials in the Calabi
conjecture from the Kähler case.

The equality u = v is easy. Indeed, suppose that we already knew that c1 = c2.
Then we have

0 = ec1fωn − ec1fωn = ωn
u − ωn

v = ddc(u− v) ∧ (

n−1∑

k=0

ωk
u ∧ ωn−1−k

v ).

This can be treated as a linear strictly elliptic equation with respect to u− v for the
coefficients of the form

∑n−1
k=0 ωk

u ∧ ωn−1−k
v pointwise give strictly positive definite

matrix. But then the strong maximum principle yields that u− v must be a constant.
Now we show that c1 = c2. The proof is taken from [DK12] and is in the spirit

of pluripotential theory. Suppose, to the contrary, that

ωn
u = ec1fωn, ωn

v = ec2fωn

for some smooth u, v and c1 �= c2. We can without loss of generality assume that
c2 > c1.
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Consider the Hermitian metric ω + ddcu. Since by the assumptions above it is
smooth and strictly positive one finds a unique Gauduchon function φu, such that

infXφu = 0, ddc(e(n−1)φu(ω + ddcu)n−1) = 0.

Then one can apply the comparison principle for the Laplacian with respect to
the Gauduchon metric (Proposition 9.4) eφu(ω + ddcu) which yields

∫

{u<v}
e(n−1)φu(ω + ddcu)n−1 ∧ ωv ≤

∫

{u<v}
e(n−1)φuωn

u.

Exchanging now v with v + C (which does not affect the reasoning above) for big
enough C one obtains

∫

X

e(n−1)φu(ω + ddcu)n−1 ∧ ωv ≤
∫

X

e(n−1)φuωn
u.

Note that the left hand side can be estimated from below using (pointwise) the AM-
GM inequality:

∫

X

e(n−1)φu(ω + ddcu)n−1 ∧ ωv ≥
∫

X

e(n−1)φu+ (c2−c1)
n ωn

u.

Coupling the above estimates one obtains

1 < e
(c2−c1)

n ≤ 1,

a contradiction.

1.10.2 Continuity Method: Openness

The openness part boils down to showing that if (∗)T is solvable then the problem
(∗)t is also solvable for t close enough to T . This is achieved by applying the
implicit function theorem between well chosen Banach spaces and linearization
of the equation. Here the linearized operator is essentially the Laplacian, and we
shall prove that this operator is bijective in our setting. The details are taken from
[TW10a].

First of all we need the following classical fact:

Proposition 10.2 Let ω be a Gauduchon metric on X and let �ω be the Laplacian
operator with respect to ω. Then, given any f ∈ L2(X,ω) there is a unique W 2,2

function u which solves the problem

�ωu = f,

∫

X

vωn = 0
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if and only if
∫
X fωn = 0. Furthermore if α ∈ (0, 1) and f ∈ Cα(X), then u ∈

C2,α(X).

Proof Uniqueness of normalized solutions follows from the ellipticity of �ω. The
formal computation

∫

X

< �ωu, g > ωn =
∫

X

gddcu ∧ ωn−1 =
∫

X

uddc(gωn−1)

=
∫

X

(uddcg ∧ ωn−1 + udg ∧ dc(ωn−1)− udcg ∧ d(ωn−1))

=
∫

X

< u,�∗
ωg > ωn

shows that the adjoint operator �∗
ω is second order elliptic and moreover it contains

no zero order term (note that we use the Gauduchon condition here!) thus it contains
only constant functions in its kernel. On the other hand, again by classical elliptic
theory the image of �ω in L2 is perpendicular to the kernel of �∗

ω which proves
the first assertion. The second assertion is a consequence of the classical Schauder
theory of linear elliptic equations. ��

Suppose now that at time T we have a smooth solution u to the problem (∗)T
(we skip the index T for the ease of notation). Let φu denote the Gauduchon
function associated to ωu. We normalize it by adding a constant if needed so that∫
X
e(n−1)φu(ω+ddcu)n = 1. We also fix a small positive constant α < 1 (dependent

on X, ω and n—the dependence will be important in the later stages when we prove
higher order a priori estimates).

Consider the two Banach manifolds

B1 := {w ∈ C2,α(X)|
∫

X

we(n−1)φuωn
u = 0}

and

B2 := {h ∈ Cα(X)|
∫

X

eh+(n−1)φuωn
u = 1}.

Consider the mapping T : B1 → B2 given by

T (v) := log
(ω + ddcu+ ddcv)n

(ω + ddcu)n
− log

∫

X

e(n−1)φu(ω + ddcu+ ddcv)n.

Observe that T (0) = 0 and that any function v sufficiently close to 0 in C2,α-norm
is (ω + ddcu)—plurisubharmonic.
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By the implicit function theorem the equation T (v) = h is solvable for any
h ∈ B2 sufficiently close in Cα norm to zero if the Frechet derivative

(DT ) : T0B1 = B1 → T0B2 = {g ∈ Cα(X)|
∫

X

ge(n−1)φuωn
u = 0}

is an invertible linear mapping.
But a computation shows that

(DT )(η) = �ω+ddcuη − n

∫

X

e(n−1)φuωn−1
u ∧ ddcη.

Note that the last summand is zero because eφu(ω + ddcu) is Gauduchon. The
question is thus whether �ω+ddcu : B1 → T0B2 is a continuous bijective mapping.

By Proposition 10.2 (recall that eφu(ω + ddcu) is Gauduchon metric!) the
equation

�eφu(ω+ddcu)(η) = τ

is solvable if and only if
∫
X τenφu(ω+ ddcu)n = 0 and the solution is unique up to

an additive constant. Thus we can assume that
∫
X ηe(n−1)φuωn

u = 0. Furthermore,
if τ ∈ Cα(X) then η belongs to C2,α(X) and hence it belongs to B1. Note that
�eφu(ω+ddcu)(η) = e−φu�(ω+ddcu)(η) thus (DT )(η) = τ is solvable if and only
if

∫
X τe(n−1)φu(ω + ddcu)n = 0 i.e. exactly if τ belongs to T0B2. This proves

the surjectivity of (DT ) and injectivity follows from the normalization condition.
Finally continuity of (DT ) follows from the Schauder C2,α a priori estimates for the
Laplace equation.

1.10.3 Continuity Method: Closedness—Higher Order
Estimates

Before starting the proofs of a priori estimates let us stress that third and higher
order ones follow from standard Schauder elliptic theory as long as C2,α estimates
are proven for some small positive α < 1. Thus we are left with proving estimates
up to order 2 + α.

By the complex version of the Evans-Krylov theory (see [TWWY14] for a nice
overview) there is a constant

C = C(X,ω, n, ||�u||C0 , ||u||C0, ||f ||C1)
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and 0 < α < 1 dependent on the same quantities, such that if u solves Eq. (1.17)
then

||u||C2,α ≤ C.

Thus what remains is to prove uniform bound for the Laplacian of u, and of u itself.

1.10.4 Continuity Method: Closedness—Second Order
Estimate

The aim of this subsection is to prove the following estimate:

Theorem 10.3 ([GL10]) If u is a solution to Eq. (1.17) then there exists a constant
C = C(X,ω, n, ||�f ||C0, ||u||C0), such that

0 ≤ n+�u ≤ C,

where the Laplacian is the ordinary Chern Laplacian with respect to the metric ω.

Once we have second order estimates the gradient estimate follows by interpolation.
Our proof will differ slightly from the one in [GL10] but, of course, the main idea
remains the same.

Proof Consider the function A(u) := log(n+�u)+h◦u, where h is an additional
uniformly bounded strictly decreasing function that we shall choose later on. If we
can prove that at the point z where A attains maximum we have that n + �u is
bounded then we are done since at any other point x we have

log(n+�u)(x) ≤ A(z)− h(u(x)) ≤ C.

Thus let us fix a point of maximum of A and identify it with zero in a local chart.
We shall use ordinary partial derivatives in this chart—in particular gij̄ ,k will denote
∂gij̄
∂zk

and so on. Let us also denote by g′ the metric gij̄ + uij̄ , while gkl̄, g
′kl̄ will

denote the inverse transposed matrices of g and g′ respectively.
In order to simplify the computations let us assume that we have chosen

coordinates diagonalizing the metric gij̄ and ∂2u
∂zi∂z̄j

and then rechoose the canonical
coordinates so that additionally giī,k(0) = 0 for any i, k. Observe that the Hessian
of u is still diagonal at zero. Moreover we can safely assume that �u(0) ≥ 1, say,
for otherwise we are done.

Applying logarithm to both sides of Eq. (1.17) and differentiating twice at z we
get

g
′pr̄(gpr̄,k + upr̄k) = log(f )k + gpr̄gpr̄,k; (1.19)
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−g
′ps̄g

′hr̄ (ghs̄,l̄ + uhs̄l̄ )(gpr̄,k̄ + upr̄k̄)+ g
′pr̄ (gpr̄,kl̄ + upr̄kl̄)

= log(f )kl̄ − gps̄ghr̄ghs̄,l̄gpr̄,k + gpr̄gpr̄,kl̄ . (1.20)

Taking trace in the second equation we obtain

−g
′pp̄g

′rr̄ |grp̄,k + urp̄k|2 + g
′rr̄ (grr̄,kk̄ + urr̄kk̄) = �log(f )− |gpr̄,k|2 + grr̄,kk̄ .

(1.21)

Let us now investigate the function A at the point of maximum. From the
vanishing of the first derivative of A we get the equalities

0 = g
ij̄

,k uij̄ + gij̄ uij̄ k

�u+ n
+ h′uk = uiīk

�u+ n
+ h′uk. (1.22)

(The first term in the first summand vanishes because we have chosen the special
coordinates!) Taking now the trace of the Hessian of A at the point z with respect to
g′ we obtain the inequality

0 ≥ g
′kk̄Akk̄ = g

′kk̄[ (g
ij̄ uij̄ )kk̄

�u+ n
− |∑i uiīk|2

(�u+ n)2 + h′ukk̄ + h′′|uk|2]. (1.23)

From Eq. (1.22) the second term can be exchanged by −(h′)2g
′kk̄|uk|2, while the

third one reads h′(n−∑
k g

′kk̄). In order to estimate the first term we observe that

(gij̄ uij̄ )kk̄ = giī

,kk̄
uiī + uiīkk̄ + 2Re(g

ij̄
k uij̄ k̄).

The fourth order term, after taking trace with g
′kk̄ can be exchanged using Eq. (1.21).

Note that, exploiting the diagonality of g at z one has

g
ij̄

,k = −gis̄glj̄ gls̄,k = −gj ī,k.

Altogether the first term then reads

g
′kk̄ (g

ij̄ uij̄ ),kk̄

�u+ n
= g

′kk̄ giī

kk̄
uiī

�u+ n
− g

′kk̄ 2Re(gj ī,kuij̄ k̄)

�u+ n
− g

′kk̄ gkk̄,iī −�logf

�u+ n

− |grk̄,i |2
�u+ n

+ g
′rr̄g

′kk̄|grk̄,i + urk̄i |2
�u+ n

.

Note that the first summand above is controlled from below by −C
∑

k g
′kk̄ with

the constant C dependent on the sup norm of all second order derivatives of g. The



46 S. Dinew

same goes for all the terms in the third and fourth summand (the dependence of C
on the relevant quantities is clear—note also that in a sense these terms are even
“better” due to the Laplacian in the denominator).

Summing up our computations up to now inequality (1.23) results in

0 ≥ [−h′ − C]
∑

k

g
′kk̄ − C + [h′′ − (h′)2]

∑

k

g
′kk̄|uk|2 +

g
′rr̄ g

′kk̄|grk̄,i + urk̄i |2
�u+ n

− g
′kk̄ 2Re(gj ī,kuij̄ k̄)

�u+ n
.

The last summand can be rewritten as follows:

g
′kk̄ 2Re(gj ī,kuij̄ k̄)

�u+ n
= g

′kk̄ 2Re(gj ī,kuik̄j̄ )

�u+ n
= g

′kk̄ 2Re(gj ī,k(gik̄,j̄ + uik̄j̄ − gik̄,j̄ ))

�u+ n

= g
′kk̄ ∑

i �=j

√
g
′iīg

′
iī

2Re(gj ī,kg
′
ik̄,j̄

)

�u+ n
− g

′kk̄ 2Re(gj ī,kgik̄,j̄ )

�u+ n
.

(We sum only over indices i �= j for in the special coordinates giī,k = 0.) Applying
Schwarz inequality the latter is bounded above by

g
′kk̄ ∑

i �=j

g
′iī

|g′
ik̄,j̄

|2
�u+ n

+ g
′kk̄ ∑

i �=j

g
′
iī
|gj ī,k|2

n+�u
+ C

∑

k

g
′kk̄ ≤

∑

i �=j

g
′kk̄g

′iī
|g′

ik̄,j̄
|2

�u+ n

+ C
∑

k

g
′kk̄,

where we have also used the elementary inequality g
′
iī
≤ �u+ n.

Thus our main inequality reduces to

0 ≥ [−h′ − C]
∑

k

g
′kk̄ − C + [h′′ − (h′)2]

∑

k

g
′kk̄|uk|2 +

g
′rr̄g

′kk̄|g′
rk̄,k

|2
�u+ n

The last term can be handled as follows

g
′rr̄g

′kk̄|g′
rk̄,k

|2
�u+ n

= g
′rr̄

[(∑k g
′kk̄|g′

rk̄,k
|2)(∑k g

′
kk̄
)]

(�u+ n)2 ≥ g
′rr̄ |

∑
k(urk̄k + grk̄,k)|2
(�u+ n)2

= g
′rr̄ |h′ur +

∑
k grk̄,k

�u+ n
|2,

where in the last equality we have made use of Eq. (1.22).
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Expanding the squares and applying Schwarz inequality once more we end up
with

g
′rr̄g

′kk̄|g′
rk̄,k

|2
�u+ n

≥ g
′rr̄ ((h′)2 + h′)|ur |2 − |h′|g′rr̄ |

∑
k grk̄,k|2

(�u+ n)2
,

and the last summand is estimated by C
∑

r g
′rr̄ .

Summing up our main inequality now reads

0 ≥ [−h′ − C]
∑

k

g
′kk̄ − C + [h′′ − h′]

∑

k

g
′kk̄|uk|2.

So if we choose the function h(t) = Ce−t for a sufficiently large constant C, and
assuming a bound on oscXu we end up with

0 ≥ C
∑

k

g
′kk̄ − C,

which shows that g
′kk̄ are upper bounded and hence g

′
kk̄

are also lower bounded.

From the equation we immediately get that g
′
kk̄

are upper bounded at the point z

which establishes the desired estimate. ��
Exercise 10.4 We used the special coordinates introduced in Sect. 1.7 in the
computations. Check whether the usage is just simplifying the calculations or is
it used in a substantial way.

1.10.5 Continuity Method: Closedness—Uniform Estimate

The last and historically the hardest step is to establish the uniform C0 estimate.
The uniform estimate was proven by Cherrier, Guan-Li and Tosatti-Weinkove
[Che87, GL10, TW10a] under various additional assumptions on the metric ω. The
general result with no assumptions on ω was first accomplished by Tosatti and
Weinkove in [TW10b]. There the Authors used a version of Moser iteration to obtain
the following bound:

V ol({u < infXu+ ε}) ≥ δ, (1.24)

for some fixed constants ε and δ. Roughly speaking such an estimate tells us that
there is some control from below on the volume of “small” sublevel sets. This
coupled with suitable Sobolev inequality completes the proof, see [TW10b] for
details.
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Below we prove the uniform estimate using techniques from pluripotential
theory taken from [DK12]. For different approaches we refer also to [BL11]. More
specifically we shall prove the following result

Theorem 10.5 Let u be a solution to Eq. (1.17). Then there exists a constant C > 0
dependent on ||f ||p, p,X,ω, n, such that infX u ≥ −C.

In the proof we shall prove and exploit a similar bound to (1.24) but we shall use
the capacity instead of the volume. Thus our goal is the inequality

capω({u < infXu+ ε}) ≥ δ.

Indeed suppose that such an inequality is already proven. Then exploiting
Proposition 8.35 we immediately get a uniform bound of infXu and we are done.

Let us first establish an additional capacity inequality which is modelled on an
analogous argument from the Kähler setting:

Proposition 10.6 ([DK12, KN1]) Let u be a ω-psh solution of the equation ωn
u =

fωn, where f ∈ Lp(X,ω) for some p > 1 and v be any bounded continuous
ω-psh function satisfying −C0 ≤ v ≤ 0. Take a constant 0 < ε < 1 and let
0 < t << ε, 0 < s << ε be two sufficiently small constants. Then there is a
constant C = C(n,X,ω, p, ε, C0), such that

tncapω({u < (1 − ε)v + infX[u− (1 − ε)v] + s})
≤ C||f ||Lpcapω({u < (1 − ε)v + infX[u− (1 − ε)v] + s + t})2.

Proof For notational simplicity we denote by m(ε) the quantity

infX[u− (1 − ε)v]

and by U(s, ε) the set {u < (1 − ε)v + m(ε) + s}. Throughout the proof we
shall assume s and t are small enough, so that all technical requirements for the
application of Theorem 9.3 are satisfied.

Pick any ω-psh function w such that 0 ≤ w ≤ 1. As w is a competitor for
the supremum in the definition of the capacity we need to bound from above the
quantity tn

∫
{u<(1−ε)v+m(ε)+s}ω

n
w .

To this end observe that the following inequality holds:

m(ε)− (C0 + 1)t ≤ infX[u− (1 − ε)((1 − t)v + tw)] ≤ m(ε)
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Thus we get the following string of set inclusions

U(s, ε) = {u < (1 − ε)v +m(ε)+ s} ⊂ {u < (1 − ε)((1 − t)v + tw)+m(ε)+ s}

⊂ {u < (1−ε)((1−t)v+tw)+infX[u−(1−ε)((1−t)v+tw)]+s+(C0+1)t} = V

⊂ {u < (1 − ε)v +m(ε)+ s + 2(C0 + 1)t} = U(s + 2(C0 + 1)t, ε).

Note that (1 − t)v + tw is a ω-psh function, and the set V is defined so that
Theorem 9.3 can be applied for the pair (u, (1 − t)v + tw) provided s and t are
sufficiently small. Thus

((1 − ε)t)n
∫

U(s,ε)

ωn
w ≤ ((1 − ε)t)n

∫

V

ωn
w ≤

∫

V

ωn
(1−ε)((1−t )v+tw)

≤ C

∫

V

ωn
u ≤ C

∫

U(s+2(C0+1)t,ε)
ωn
u,

where we have made use of Theorem 9.3 in the penultimate inequality. Note that the
constant C depends on ε but is independent of u and v.

Continuing the string of inequalities we get

C

∫

U(s+2(C0+1)t,ε)
ωn
u ≤ C||f ||Lpcapω(U(s + 2(C0 + 1)t, ε))2,

where the last inequality follows from Theorem 8.34. Thus our claim follows after
we exchange t with 2(C0 + 1)t . ��
Remark 10.7 Observe that we haven’t made use of the continuity of v. This
assumption will be used later to guarantee openness of the sets U(s, ε).

Let us now explain how the above estimate implies that

capω({u < infXu+ ε}) ≥ δ

for some ε and δ. In fact we shall prove the following more general statement:

Proposition 10.8 There exists a small constant s0, such that for any s < s0 one has

s ≤ ||f ||1/nLp Ccapω(U(s, ε))
1
n , for a constant C dependent on n, ε,X,C0, p and ω.

In particular we get our desired bound by plugging v = 0 and taking any fixed
positive ε < 1.

Proof Suppose s0 is chosen so small that Proposition 10.6 applies for any s, t ≤ s0.
Define inductively si to be the supremum of all numbers between 0 and si−1 such
that

2capω(U(s, ε)) < capω(U(si−1, ε))}.
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Then si is clearly a decreasing sequence and any si is well defined for the sets
shrink to the empty set as s decreases to zero. Observe also that U(s, ε) are
open sets and from the continuity of the capacity for increasing open sets (recall
Proposition 8.29) we get 2capω(U(si+1, ε)) ≤ capω(U(si , ε)), while by definition
lims→s+i

2capω(U(s, ε)) ≥ capω(U(si−1, ε)).
Take now an s, such that si ≤ s < si−1. Then from Proposition 10.6 we get

(si−1 − s)ncapω(U(s, ε)) ≤ Ccapω(U(si−1, ε))
2.

Observe that since s ≥ si we have 2capω(U(s, ε)) ≥ capω(U(si−1, ε)).
Coupling these inequalities we obtain

(si−1 − s)n ≤ 4Ccapω(U(s, ε)) ≤ 4C(
1

2
)i−1capω(U(s0, ε)),

where the last inequality follows from iteration.
If we now let s to si , then take n-th roots and finally sum up the inequalities over

i we will obtain

s0 =
∞∑

i=1

(si − si+1) ≤ (4C)1/n
∞∑

j=0

(
1

2
)j

1
n capω(U(s0, ε))

1
n ,

which is the claimed result. ��

1.11 Weak Solutions for Degenerate Right Hand Side

We have already proved that solutions to the smooth Dirichlet problem for the
complex Monge-Ampère equation exist and are unique. Furthermore the argument
provides an a priori uniform bound for the solutions if the Lp norm of the right
hand side is under control for some p > 1.

In this section we shall discuss the solvability of the Dirichlet problem

{
u ∈ PSHω(X), supXu = 0

(ω + ddcu)n = ecfωn f ∈ Lp(X,ω), p > 1, f ≥ 0.
(1.25)

The strategy is to use the smooth solvability to approximate the singular right hand
sides by smooth functions fj in a suitable way, and then to extract a convergent
subsequence of solutions uj . This approach leads to a problem, namely the behavior
of the constants cj in such an approximation procedure. The technical heart of the
matter if we want to extract convergent subsequences is to show that these cj ’s are
bounded from above and below independently of the supremum norms of fj . This
was proven in [KN1]:



1 Lectures on Pluripotential Theory on Compact Hermitian Manifolds 51

Theorem 11.1 Let X,ω, f �= 0 and p be as above. Let also fj be a sequence
of smooth strictly positive functions convergent in Lp norm to f . Then the
corresponding sequence of constants cj associated to the problems

(∗)i

⎧
⎪⎪⎨

⎪⎪⎩

ui ∈ PSHω(X),

supXui = 0,

(ω + ddcui)
n = eci fiω

n

(1.26)

is uniformly bounded from above and below.

Proof Let us first give a lower bound for cj ’s. For the sake of brevity we drop the
index j in what follows. Recall that from the proof of Proposition 10.6 applied to
ε = 1

2 , say, and v = 0 one has

tncapω({u < infXu+ s}) ≤ Ccapω({u < infXu+ s + t})2

for all t, s smaller than a fixed constant ε0. Taking t = s and estimating the capacity
on the right hand side by an uniform constant, which is legitimate since capω({u <

infXu+ s + t}) ≤ capω(X), one gets the inequality

capω({u < infXu+ s}) ≤ C

sn
.

On the other hand from Proposition 10.8 one has

s ≤ (C̃ec||f ||Lp)1/ncapω({u < infXu+ s0}) 1
n .

Coupling these one obtains

s2 ≤ C̄ec/n||f ||1/nLp ,

for all s ≤ ε0. But then obviously c cannot decrease to minus infinity, hence we get
a lower bound.

The upper bound is established as follows: since fj converge to f in Lp , conver-

gence also holds for f
1/n
j towards f 1/n in L1 (we have to use the compactness of

X here). Thus for j large enough

∫

X

f
1/n
j ωn >

∫
X f 1/nωn

2
> 0.

But from the AM-GM inequality one has (ω+ddcuj )∧ωn−1 ≥ (ecj fj )
1/nωn thus

ecj /n ≤ 2∫
X f 1/nωn

∫

X

(ω + ddcuj ) ∧ ωn−1.
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if we multiply ωn−1 in the last integral by the Gauduchon function e(n−1)φ (which
is uniformly bounded) we get

ecj /n ≤ 2∫
X
f 1/nωn

e−(n−1)inf φ

∫

X

(ω + ddcuj ) ∧ e(n−1)φωn−1

= 2∫
X
f 1/nωn

e−(n−1)inf φ

∫

X

e(n−1)φωn

by the Stokes theorem. ��
Now we are ready for the proof of the existence theorem:

Theorem 11.2 The Dirichlet problem (1.25) admits a continuous solution.

Proof It is enough to show that the sequence of solutions uj of the problems (1.26)
admits a Cauchy subsequence in the uniform topology. Indeed then one can extract
a continuous limit. The Monge-Ampère operator is continuous with respect to
uniform convergence, thus the limiting function solves the equation.

First of all we can assume that (after passing to a subsequence) the sequence of
the constants cj is convergent to some c. Let us still denote this subsequence by cj .

Note that the family uj is normalized by supXuj = 0, hence it forms a relatively
compact subset in the L1-topology. Thus we can assume that the sequence uj

converges in L1 to a ω-psh function u (take another subsequence if necessary).
Observe now that in the Dirichlet problems (1.26) the right hand sides are

uniformly bounded in Lp for the chosen subsequence. By Theorem 10.5 we get
that the sequence uj is then uniformly bounded. Let then C0 > 0 be a constant such
that uj ≥ −C0 for every j .

We shall argue by contradiction. To this end consider the quantities Skj :=
infX(uk − uj ) ≤ 0. Since supX(uk − uj ) = −infX(uj − uk), it is enough to
prove that the numbers Skj converge to zero as k and j tend to infinity.

Suppose that this is not the case and let 1 > ε > 0 be a constant such that
Skj ≤ −(C0 + 3)ε for arbitrarily large j �= k (we can further decrease ε if needed).
Then if mkj (ε) as usual denotes the infimum over X of the quantity uk − (1 − ε)uj

we obtain the inequality mkj (ε) ≤ Skj .
As in the proof of Proposition 10.6 suppose that s, t << ε. Then we have a set

inclusion

{uk < (1 − ε)uj +mkj (ε)+ s + t} ⊂ {uk < uj + Skj + εC0 + s + t},

and the last set is in turn contained in

{uk < uj − ε} ⊂ {|uk − uj | ≥ ε}

by our assumption on the constants Skj .
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From the proof of Proposition 10.6 we then know that for all t and s smaller than
a (fixed) ε

tncapω({uk < (1 − ε)uj +mkj (ε)+ s})

≤ C

∫

{uk<(1−ε)uj+mkj (ε)+s+t}
ωn
uk

≤ C

∫

|uk−uj |≥ε

ωn
uk

= C

∫

|uk−uj |≥ε

eckfkω
n

≤ C||eckfk ||Lp(V ol(|uk − uj | ≥ ε))p/(p−1).

The latter quantity converges to zero as j, k → ∞, as uk converge to u in L1. But
arguing analogously to the proof of Proposition 10.8 the capacity term on the left
hand side cannot converge to zero when t and s are fixed, a contradiction. ��

Note that the argument above yields existence, but not the uniqueness of the
solutions.

Exercise 11.3 Recall the uniqueness argument in the smooth setting. What exactly
fails if we try to apply it in the non-smooth setting as above?

Uniqueness and better regularity of the solutions can be nevertheless obtained,
at least for strictly positive right hand side. This was proven in [KN3], where tools
beyond the scope of these notes were used. We state the main results of [KN3]
without proof:

Theorem 11.4 Let u, v be ω-psh functions, such that ωu = fωn, ωn
v = gωn and

supXu = supXv = 0. Assume that f ≥ c > 0,
∫
X
gωn > 0 and both f, g ∈

Lp(ωn) for some p > 1. Then for every α < 1
n+1 there is a constant C dependent

on n, α, ||f ||Lp, ||g||Lp , such that

supX|u− v| ≤ C||f − g||αLp .

In particular the Dirichlet problem with Lp strictly positive right hand side admits
a unique solution.

Theorem 11.5 Let u be an ω-psh function, such that ωu = fωn for some f ∈
Lp(ωn), p > 1. Assume that f ≥ c > 0. Then u is Hölder continuous with any
Hölder exponent α, such that

α <
2(p − 1)

pn(n + 1)+ p − 1
.

It is unknown whether the strict positivity assumptions in the above theorems can
be relaxed.
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Chapter 2
Calabi–Yau Manifolds with Torsion
and Geometric Flows

Sébastien Picard

Abstract The main theme of these lectures is the study of Hermitian metrics in
non-Kähler complex geometry. We will specialize to a certain class of Hermitian
metrics which generalize Kähler Ricci-flat metrics to the non-Kähler setting. These
non-Kähler Calabi–Yau manifolds have their origins in theoretical physics, where
they were introduced in the works of C. Hull and A. Strominger. We will introduce
tools from geometric analysis, namely geometric flows, to study this non-Kähler
Calabi–Yau geometry. More specifically, we will discuss the Anomaly flow, which is
a version of the Ricci flow customized to this particular geometric setting. This flow
was introduced in joint works with Duong Phong and Xiangwen Zhang. Section 2.1
contains a review of Hermitian metrics, connections, and curvature. Section 2.2 is
dedicated to the geometry of Calabi–Yau manifolds equipped with a conformally
balanced metric. Section 2.3 introduces the Anomaly flow in the simplest case of
zero slope, where the flow can be understood as a deformation path connecting
non-Kähler to Kähler geometry. Section 2.4 concerns the Anomaly flow with α′
corrections, which is motivated from theoretical physics and canonical metrics in
non-Kähler geometry.

2.1 Review of Hermitian Geometry

We start by reviewing non-Kähler metrics in complex geometry. In particular, we
study unitary connections, torsion, and curvature associated to a Hermitian metric ω.

2.1.1 Hermitian Metrics

Let X be a complex manifold of dimension n. The manifold X is covered by
holomorphic charts Uμ equipped with local holomorphic coordinates (z1, . . . , zn)
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such that X = ⋃
μ Uμ. The complexified tangent bundle of X will be denoted TX,

which splits

TX = T 1,0X ⊕ T 0,1X.

Using local coordinates, a tangent vector in T 1,0X is a combination of

{
∂

∂z1 , · · · ,
∂

∂zn

}

and a tangent vector in T 0,1X is a combination of

{
∂

∂z̄1 , · · · ,
∂

∂z̄n

}
.

We will use the notation

∂k = ∂

∂zk
, ∂k̄ = ∂

∂z̄k
.

Next, we will use Ωp,q(X) to denote differential forms of (p, q) type. This means
that in local coordinates, Ωp,q(X) is generated by

dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · dz̄jq .

We will use the following convention for the components Ψj̄1···j̄q i1···ip of a differen-
tial form Ψ ∈ Ωp,q(X)

Ψ = 1

p!q!
∑

Ψj̄1···j̄q i1···ip dz
ip ∧ · · · dzi1 ∧ dz̄jq ∧ · · · ∧ dz̄j1 . (2.1)

The exterior derivative d decomposes into

d = ∂ + ∂̄ ,

where

∂ : Ωp,q(X) → Ωp+1,q(X), ∂̄ : Ωp,q(X) → Ωp,q+1(X),

are the Dolbeault operators. A Hermitian metric g on X is a smooth section
(T 1,0X)∗ ⊗ (T 0,1X)∗ such that in local coordinates

g = gk̄j dzj ⊗ dz̄k, (2.2)
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where gk̄j is a positive-definite Hermitian matrix at each point.

gk̄j > 0, gk̄j = gj̄k.

In (2.2) we use the summation convention, which will be used throughout these
notes, where we omit the summation sign for matching upper and lower indices. We
use the notation gjk̄ = (gk̄j )

−1 for the inverse, meaning that

gik̄gk̄j = δij .

We can identify the metric g with a Hermitian form ω ∈ Ω1,1(X,R) via

ω = igk̄j dzj ∧ dz̄k.

The metric g induces a metric on differential forms Ωp,q(X), and we define the
Hodge star operator � : Ωp,q(X) → Ωn−q,n−p(X) by requiring

α ∧ �β̄ = g(α, β)
ωn

n! .

for all α, β ∈ Ωp,q(X).
A basic fact which will be often used in these notes is

Proposition 2.1 Let X be a compact complex manifold with Hermitian metric g

and ∂X = ∅. Let f ∈ C∞(X,R). If

gjk̄∂j ∂k̄f ≥ 0,

everywhere on X, then f is a constant function.

Proof Let c denote the maximum value attained by f on X. The set

S = f−1(c)

is closed. We claim that S is also open. Indeed, let p ∈ S. Let B be a ball in a local
chart such that f attains a maximum in the center of B and satisfies gjk̄∂j ∂k̄f ≥ 0
in B. By the Hopf strong maximum principle (e.g. Theorem 2.7 in [HL11]), we must
have f ≡ c in B. This shows that S is open, and hence S = X. ��

A Hermitian metric ω is Kähler if

dω = 0.

Kähler manifolds are of fundamental importance as they lie at the crossroads of
both Riemannian geometry and algebraic geometry. In these notes, our goal is to
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generalize the Kähler condition while still retaining enough structure to develop an
interesting theory.

There are many ways to generalize the Kähler condition. There is the notion of a
pluriclosed metric, which satisfies

i∂∂̄ω = 0.

There are also astheno-Kähler metrics [JY93], which satisfy

i∂∂̄ωn−2 = 0.

It was shown by Gauduchon [GA77] that every compact complex manifold admits
a Gauduchon metric, which satisfies

i∂∂̄ωn−1 = 0.

More generally, Fu-Wang-Wu [FWW13] introduced the notion of k-Gauduchon, for
1 ≤ k ≤ n− 1, which is defined by the condition

i∂∂̄ωk ∧ ωn−k−1 = 0.

All these notions generalize Kähler metrics in different ways. In these notes, we will
mostly focus on another notion: we say a Hermitian metric ω is balanced if

dωn−1 = 0. (2.3)

The special properties of balanced metrics were noticed early in the study of Her-
mitian geometry, arising for examples in articles of Gauduchon [GA75]. Balanced
metrics were studied systematically by Michelsohn [MI82], and these metrics were
rediscovered in theoretical physics in the development of heterotic string theory
[HU186, ST86, LY05]. A main theme in Michelsohn’s work is that balanced metrics
are in some sense dual to the Kähler condition. For example, Kähler metrics are
inherited by the ambient space (via pullback) while balanced metrics can be pushed
forward [MI82].

Given a Hermitian metric ω, its torsion is defined by

T = i∂ω, T̄ = −i∂̄ω.

We see that a metric is Kähler if and only if its torsion vanishes. The components of
the torsion are given by

T = 1

2
Tk̄jmdzm ∧ dzj ∧ dz̄k, T̄ = 1

2
T̄kj̄m̄dz̄m ∧ dz̄j ∧ dzk.
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Explicitly, we have

Tk̄jm = ∂jgk̄m − ∂mgk̄j , T̄kj̄m̄ = ∂j̄ gm̄k − ∂m̄gj̄k. (2.4)

We can raise indices using the metric, and we will write T k
ij = gk�̄T�̄ij . We can

also contract indices, and we will use the notation

Tj = gik̄Tk̄ij .

We will also use the 1-form τ defined by

τ = Tkdz
k.

Taking norms, we have

|T |2 = gmn̄gk�̄gj īTīkmT̄j �̄n̄, |τ |2 = gk�̄TkT̄�̄.

2.1.2 Connections

Let E → X be a complex vector bundle of rank r . The bundle E can be specified
by an open cover X = ⋃

μ Uμ together with transition matrices tμν : Uμ ∩ Uν →
GL(r,C) satisfying

tμμ
α
β = δαβ,

and

tμν
α
βtνρ

β
γ = tμρ

α
γ on Uμ ∩ Uν ∩ Uρ.

If all transition functions tμν are holomorphic, then E is a holomorphic bundle.
A section s ∈ Γ (X,E) is given by local data (Uμ, sμ

α), where

s = (sμ
1(zμ), · · · , sμr(zμ)) on Uμ,

and sμ : Uμ → Cr is a smooth map which transforms via

(sμ)
α = tμν

α
βsν

β

on Uμ ∩ Uν . On a holomorphic bundle, we say s is holomorphic if the sμ are
holomorphic.
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Let us illustrate this notation by considering the example of the holomorphic
tangent bundle T 1,0X. Here the transition functions are

tμν
i
k = ∂zμ

i

∂zνk
,

which are defined on the intersection of coordinate patches (Uμ, zμ
i) and (Uν, zν

i).
Sections of T 1,0X are vector fields V = V i∂i ∈ Γ (X, T 1,0X), and on Uμ ∩ Uν ,

Vμ
k = ∂zμ

k

∂zν�
Vν

�.

Next, we recall that from a bundle E, we can induce bundles such as E∗, Ē, and
detE. If the bundle E has transition matrices tμν , then sections φ ∈ Γ (X,E∗) are
given by data (Uμ, φμα) which transform according to

(φμ)α = tνμ
β
αφνβ.

Similarly, sections s ∈ Γ (X, Ē) transform by

sμ
ᾱ = tμν

α
β sν

β̄ ,

and sections ψ ∈ Γ (X, detE) are given by local functions ψμ : Uμ → C which
transform by

ψμ = (det tμν) ψν.

To differentiate sections of a vector bundle, we use a connection ∇. Connections
can be expressed locally as ∇ = d+Aμ, where Aμ are local matrix-valued 1-forms
(Aμ)i

α
β defined on Uμ. The local matrices (Aμ)i satisfy the transformation law

(Aμ)i = tμν (Aν)i tμν
−1 − (∂i tμν)tμν

−1. (2.5)

Here we omitted the indices for matrix multiplication. This transformation law is
designed such that for any section s ∈ Γ (X,E), its derivative∇i s is again a section.
Explicitly, derivatives of s are given locally by

∇i s
α = ∂is

α + Ai
α
βs

β , ∇ī s
α = ∂ī s

α + Aī
α
βs

β.

with the notation

∇i = ∇ ∂

∂zi
, ∇ī = ∇ ∂

∂z̄i
.
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Given a connection on E, we can induce connections on E∗, Ē, detE, etc., by
imposing the product rule. For example, the product rule ∂k(sαφ

α) = ∇ksαφ
α +

sα∇kφ
α leads to the definition

∇kφα = ∂kφα − φβAk
β
α, ∇k̄φα = ∂k̄φα − φβAk̄

β
α

for sections φ ∈ Γ (X,E∗). Similarly, for a section u ∈ Γ (X, Ē), the induced
connection is defined by

∇ku
ᾱ = ∂ku

ᾱ + Ak̄
α
βu

β̄ , ∇k̄u
ᾱ = ∂k̄u

ᾱ + Ak
α
βu

β̄,

and for a section ψ ∈ Γ (X, detE∗), the induced connection is

∇iψ = ∂iψ − Ai
α
αψ, ∇īψ = ∂īψ − Aī

α
αψ. (2.6)

As a final example, the induced connection on Γ (X,E∗ ⊗ Ē∗) is defined by

∇khᾱβ = ∂khᾱβ − Ak̄
γ
αhγ̄ β − Ak

γ
βhᾱγ .

We now focus our attention on the holomorphic tangent bundle T 1,0X. Given a
Hermitian metric ω = igk̄j dz

j ∧ dz̄k on X, we say a connection ∇ on T 1,0X is
unitary with respect to ω if

∇igk̄j = 0.

On a Hermitian manifold (X,ω), the Chern connection is the unique unitary
connection on T 1,0X such that Ak̄ = 0. The Chern connection acts on sections
V ∈ Γ (X, T 1,0X) by

∇k(V
i∂i) = (∇kV

i)∂i, ∇k̄(V
i∂i) = (∇k̄V

i)∂i ,

where

∇kV
i = ∂kV

i + Γ i
k�V

�, ∇k̄V
i = ∂k̄V

i,

and

Γ i
k� = gip̄∂kgp̄�. (2.7)

Due to its simplicity, the Chern connection is best suited for most computations.
However, in non-Kähler geometry, there are other interesting connections on T 1,0X

to consider too. We start with the Levi-Civita connection, which acts on V ∈
Γ (X, T X) by

∇g
k (V

i∂i + V ī∂ī ) = (∇g
k V

i)∂i + (∇g
k V

ī )∂ī ,
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where

∇g
k V

i = ∂kV
i + Γ i

k�V
� − T i

k�

2
V � − gij̄

2
T̄kj̄ �̄V

�̄,

∇g

k̄
V i = ∂k̄V

i + gim̄

2
T̄�k̄m̄V �,

and

∇g

k V
ī = ∇g

k̄
V i , ∇g

k̄
V ī = ∇g

k V
i.

To be clear, we note that here, and throughout these notes, Γ i
k� is reserved for the

expression (2.7), which is not the Christoffel symbol of the Levi-Civita connection.
This well-known connection from Riemannian geometry preserves the metric

∇gg = 0 and has zero torsion tensor ∇g
XY−∇g

YX−[X,Y ]. For Kähler metrics, T =
0 and we see that the Levi-Civita connection coincides with the Chern connection.

However, for general Hermitian metrics, the tensor Tk̄ij is nonzero and the Levi-

Civita connection does not preserve the decomposition TX = T 1,0X ⊕ T 0,1X. In
particular, it does not define a connection on the holomorphic bundle T 1,0X.

We can add a correction to ∇g to obtain a new connection which does preserve
T 1,0X. We define

∇+ = ∇g + 1

2
g−1H, H = i(∂̄ − ∂)ω.

The new connection acts on V ∈ Γ (X, T 1,0X) by ∇+
k (V i∂i) = (∇+

k V i)∂i with
components

∇+
k V i = ∂kV

i + (Γ i
k� − T i

k�)V
�, (2.8)

∇+
k̄
V i = ∂k̄V

i + gim̄T̄�k̄m̄V �.

We will call this connection the Strominger–Bismut connection [BI89, ST86]. It
evidently preserves T 1,0X, and a straightforward computation shows that

∇+gk̄j = 0,

hence ∇+ is a unitary connection. Furthermore, ∇+ = ∇g + 1
2g

−1H has the
property that its torsion 3-form

T (X, Y,Z) = g(∇+
XY −∇+

Y X − [X,Y ], Z)

is given by the skew-symmetric 3-form H .
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Using the Chern connection ∇ and the Strominger–Bismut connection ∇+, we
can define a line of unitary connections which preserve the complex structure.

∇(κ) = (1 − κ)∇ + κ∇+,

where κ ∈ R is a parameter. This family of connections is known as the Gauduchon
line [GA97]. We note that this line collapses to a point when ω is Kähler.

There are other connections which play a role in theoretical physics which do not
preserve the complex structure. One such example is the Hull connection [HU286,
LE11, DS14], denoted by ∇− = ∇g − 1

2g
−1H . Explicitly, this connection acts on

V ∈ Γ (X, T X) by

∇−
k V i = ∂kV

i + Γ i
k�V

� − gij̄ T̄kj̄ �̄V
�̄, (2.9)

∇−
k̄
V i = ∂k̄V

i.

Although ∇− does not preserve T 1,0X, a direct computation shows that ∇−g = 0.
Most computations in these notes will be done using the Chern connection, and

from now on we reserve ∇ to denote the Chern connection. We will use superscripts
e.g. ∇+, to denote other connections.

Next, we review integration and adjoint operators in Hermitian geometry. The
first identity is the divergence theorem for Hermitian metrics.

Lemma 2.1 Let (X,ω) be a closed Hermitian manifold. The divergence theorem
for the Chern connection ∇ is given by

∫

X

∇iV
i ωn =

∫

X

TiV
i ωn, (2.10)

for any V ∈ Γ (X, T 1,0X).

We see that the torsion components Ti play a role when integrating by parts. The
proof is similar to the Kähler case, and is omitted.

Next, we recall the L2 pairing of differential forms, given by 〈φ,ψ〉 =∫
X
g(φ,ψ) ωn, where g(φ,ψ) is the induced metric on φ,ψ ∈ Ωp,q(X). For

example, for η, β ∈ Ω1,0(X), we define

〈η, β〉 =
∫

X

gjk̄ηjβk ω
n,

and for α, χ ∈ Ω1,1(X),

〈α, χ〉 =
∫

X

gjk̄g�m̄αk̄�χj̄m ωn.



66 S. Picard

The adjoint operators ∂† : Ωp,q(X) → Ωp−1,q(X) and ∂̄† : Ωp,q(X) →
Ωp,q−1(X) are defined by the property

〈∂φ,ψ〉 = 〈φ, ∂†ψ〉, 〈∂̄φ, ψ〉 = 〈φ, ∂̄†ψ〉.

We will also write d† = ∂† + ∂̄†. We will need an explicit expressions for these
adjoint operators in the following special case.

Lemma 2.2 Let (X,ω) be a Hermitian manifold. The adjoint operators act on α ∈
Ω1,1(X) by

(∂†α)k̄ = −gpq̄∇q̄αk̄p + gpq̄ T̄q̄αk̄p. (2.11)

(∂̄†α)k = gpq̄∇pαq̄k − gpq̄Tpαq̄k. (2.12)

Proof Let α ∈ Ω1,1(X) and β ∈ Ω0,1(X). The components of ∂β are

(∂β)k̄j = ∇jβk̄.

The inner product 〈α, ∂β〉 = 〈∂†α, β〉 expands to

∫

X

gjk̄gpq̄αk̄p(∇qβj̄ ) ω
n =

∫

X

gjk̄(∂†α)k̄βj̄ ωn.

Applying the divergence theorem (2.10) to the left-hand side, we obtain (2.11).
A similar computation leads to (2.12). ��

As a corollary, if we apply these identities to α = ω = igk̄j dz
j ∧ dz̄k , we obtain

(∂†ω)k̄ = iT̄k̄, (∂̄†ω)k = −iTk. (2.13)

and

d†ω = i(τ̄ − τ ).

2.1.3 Curvature

Let E → X be a complex vector bundle. The curvature of a connection ∇ = d +A

on E is a 2-form valued in the endomorphisms of E given by

F = dA+ A ∧ A,
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with components

F = 1

2
Fkj

α
βdz

j ∧ dzk + 1

2
Fk̄j̄

α
βdz̄

j ∧ dz̄k + Fk̄j
α
β dzj ∧ dz̄k.

The curvature form of the Chern connection of a Hermitian metric ω will be denoted
Rm. In this case, one can verify that the curvature form Rm is an endomorphism-
valued (1, 1) form

Rm = Rk̄j
p
qdz

j ∧ dz̄k,

with components given by

Rk̄j
p
q = −∂k̄Γ

p
jq = −∂k̄(g

ps̄∂j gs̄q).

We may write this as

Rm = ∂̄(g−1∂g), (2.14)

which holds in a holomorphic frame on T 1,0X. We note that in general, when using
unitary connections other than the Chern connection on T 1,0X, the curvature will
have (2, 0) and (0, 2) components as well.

We can raise and lower indices of the curvature tensor using the metric gk̄j .

Rk̄jm̄� = gm̄pRk̄j
p
� = −∂k̄∂jgm̄� + gsr̄ ∂k̄gm̄s∂jgr̄�. (2.15)

Lemma 2.3 The curvature of the Chern connection on (X,ω) satisfies the follow-
ing Bianchi identities

Rk̄jm̄� = Rm̄jk̄� +∇j T̄�m̄k̄,

Rk̄jm̄� = Rk̄�m̄j +∇k̄Tm̄�j .

Proof For example, we compute using the definition (2.15) and obtain

Rk̄jm̄� − Rm̄jk̄� = −∂k̄∂jgm̄� + gsr̄ ∂k̄gm̄s∂jgr̄� + ∂m̄∂jgk̄� − gsr̄ ∂m̄gk̄s∂j gr̄�

= ∂j (∂m̄gk̄� − ∂k̄gm̄�)− gsr̄ ∂j gr̄�(∂m̄gk̄s − ∂k̄gm̄s)

= ∂j T̄�m̄k̄ − Γ
p

j�T̄pm̄k̄

= ∇j T̄�m̄k̄.

The other identity is derived in a similar way. ��
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There are four notions of Ricci curvature for the Chern connection in Hermitian
geometry, and we will use the notation

Rk̄j = Rk̄j
p
p, R̃k̄j = Rp

pk̄j , R ′̄
kj

= Rk̄p
p
j , R′′̄

kj
= Rp

jk̄p.

From the Bianchi identity, we see that these notions of Ricci curvature are all
different. We will call Rk̄j the Chern–Ricci curvature, and it is also given by

Rk̄j = −∂k̄∂j log detgp̄q .

The Chern–Ricci form represents the first Chern class [ i
2π Ricω] = c1(X) and is

given by

Ricω = −∂∂̄ log det gp̄q = Rk̄jdz
j ∧ dz̄k.

There are two notions of scalar curvature, denoted by

R = g�m̄gjk̄Rk̄jm̄� = Rp
p
j
j , R′ = gjm̄g�k̄Rk̄jm̄� = Rp

j
j
p.

2.1.4 U(1) Principal Bundles

2.1.4.1 Definitions

We denote the group of complex numbers with length equal to 1 by U(1). A U(1)
principal bundle can be specified by an open cover X = ⋃

μ Uμ together with
smooth maps

gμν : Uμ ∩ Uν → U(1),

such that

gμμ = 1, g−1
μν = gνμ,

and

gμνgνρ = gμρ,

on an non-empty overlap Uμ∩Uν ∩Uρ . In this section, we review how a connection
on a line bundle defines a connection on a U(1) principal bundle.
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Let L → X be a smooth complex line bundle with data (Uμ∩Uν, tμν), equipped
with a connection ∇A = d + A whose curvature is FA = dA. We also consider the
line bundle L′ → X given by the data

(Uμ ∩ Uν, e
iτμν ),

tμν

|tμν | = eiτμν .

To compactify the fibers, we equip L with a metric h, which is locally given by
(Uμ, hμ) where hμ are positive functions which transforms as

hμ = 1

|tμν |2 hν.

The metric h provides an isomorphism of the line bundles L and L′, where the
connection d + A on L becomes the connection d + A′ given by

A′ = A− 1

2
d logh,

on L′. It can be checked that this expression satisfies the transformation law for a
connection (2.5), which in this case becomes

A′
μ = A′

ν − idτμν. (2.16)

Thus we have induced a connection d + A′ on L′ with curvature

dA′ = FA. (2.17)

Let π : P → X be the U(1) bundle determined by the data (Uμ ∩ Uν, e
iτμν ).

Locally, points in P are given by (zμ, e
iψμ) with projection π(zμ, e

iψμ) = zμ,
where the coordinates eiψμ on the fiber transform via

eiψμ = eiτμν eiψν .

In other words, on Uμ ∩ Uν , there holds

ψμ = ψβ + τμν + 2πk, (2.18)

for an integer k. Combining this with the transformation law for the connec-
tion (2.16), it follows that

θ = dψμ − iA′
μ (2.19)
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is a global 1-form on the total space of the bundle π : P → X. We call θ

the connection 1-form of the U(1) bundle P . Furthermore, by (2.17), its exterior
derivative is

dθ = −iFA.

The connection 1-form θ splits the tangent space T P of P into vertical and horizon-
tal directions. For the vertical direction, we note that by (2.18), the expression ∂

∂ψ
transforms as a global vector field on π : P → X. We define the vertical subbundle
V by

V = kerπ∗ = span

{
∂

∂ψ

}
.

The horizontal space is given by H = ker θ . The tangent bundle of P splits as

T P = V ⊕H,

and π∗|H : H → TX is isomorphism.

2.1.4.2 Non-Kähler Manifolds Constructed from Principal Bundles

Connections on U(1) principal bundles can be used to construct non-Kähler
complex manifolds. This idea was first used by Calabi–Eckmann [CE53], and later
generalized by Goldstein–Prokushkin [GO04]. In this section, we will construct the
Calabi–Eckmann manifolds.

Our first example will use P1 as the base manifold. We cover P1 by the open sets

U0 = {[Z0, Z1] : Z0 �= 0}, U1 = {[Z0, Z1] : Z1 �= 0},

and define coordinates ζ = Z1
Z0

on U0 and ξ = Z0
Z1

on U1. The line bundle L =
O(−1) → P1 equips the covering {U0, U1} with the transition function

t01 : U0 ∩ U1 → C∗, t01 = Z0

Z1
.

This data defines a U(1) principal bundle π : P → P1 by the same covering
P1 = U0 ∪ U1 and transition function

Z0

Z1

|Z1|
|Z0| : U0 ∩ U1 → S1.
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In the trivialisation U0 × S1, we use coordinates (ζ, eiψ0), and in the trivialisation
U1 × S1, we use coordinates (ξ, eiψ1). On the overlap,

eiψ0 = ξ

|ξ |e
iψ1 .

In fact, the space P is diffeomorphic to the sphere S3. If we write

S3 = {(z0, z1) ∈ C2 : |z0|2 + |z1|2 = 1},

then a diffeomorphism is given by F : S3 → P , where

F(z0, z1) =
(
[z0, z1], z0

|z0|
)
∈ U0 × S1, z0 �= 0,

F (0, z1) = ([0, 1], z1) ∈ U1 × S1.

The inverse of F is given by

F−1(ζ, eiψ0) = 1√
1 + |ζ |2 (e

iψ0 , ζ eiψ0), (ζ, eiψ0) ∈ U0 × S1,

F−1([0, 1], eiψ1) = (0, eiψ1), ([0, 1], eiψ1) ∈ U1 × S1.

Next, we define a connection on P .
A metric on L = O(−1) is defined by two positive functions h0 : U0 → (0,∞)

and h1 : U1 → (0,∞) satisfying h0 = h1
|t01|2 . We will take

h0 = 1 + |ζ |2, h1 = 1 + |ξ |2.

The Chern connection of (L, h) is ∇ = d + A with A = ∂ logh. As explained
in (2.19), a connection on L defines a connection 1-form θ on P given by

θ = dψ − iA′,

which satisfies

dθ = −idA′ = −i∂̄∂ logh := ωFS. (2.20)

Next, we add a trivial fiber S1 = {eiφ} to our space, and consider the manifold

M1,0 = P × S1 � S3 × S1.
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Using the connection θ , we split the tangent bundle

TM1,0 = H ⊕
〈

∂

∂ψ

〉
⊕

〈
∂

∂φ

〉
.

We can define an almost complex structure J on M1,0 by identifying H with T P1

and using the standard complex structure on ∂ψ and ∂φ . To be precise, if j is the
complex structure on P1, then

J = (π∗|Hj)⊕ I, I
∂

∂ψ
= ∂

∂φ
, I

∂

∂φ
= − ∂

∂ψ
.

The space T 1,0M1,0 is spanned by pullbacks of T 1,0P1 and

∂

∂ψ
− i

∂

∂φ
.

To show J is integrable, we can apply the Newlander–Nirenberg theorem. If z

denotes a local holomorphic coordinate on P1, then (1, 0)-forms on M1,0 are locally
generated by

{π∗dz, θ + idφ}.

We note that θ + idφ is a (1, 0) form since it sends ∂ψ + i∂φ to zero and H = ker θ .
For local functions f1, f2, then by (2.20) we compute

d[f1dz+ f2(θ + idφ)] = df1 ∧ dz+ df2 ∧ (θ + idφ)+ f2ωFS. (2.21)

It follows that for any η ∈ Ω1,0(M1,0), then (dη)2,0 = 0. By the Newlander–
Nirenberg theorem, we conclude that M1,0 is a complex manifold.

The complex surface M1,0 is known as the Hopf surface. Since it is topologically
S3 × S1, we see that the second Betti number of M1,0 is zero. Therefore M1,0 is a
non-Kähler complex surface.

This same construction can be applied to the manifold M1,1 = P × P , which
is a product of two copies of the U(1) principal bundle P over P1. Then M1,1 is a
complex manifold of complex dimension 3, which is a fibration over P1 × P1.

π : M1,1 → P1 × P1.

Since M1,1 � S3 × S3, this construction defines a non-Kähler complex structure on
S3 × S3.
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In fact, the threefold M1,1 does not even admit a balanced metric [MI82].
Suppose ω is a positive (1, 1) form on M1,1 such that dω2 = 0. Let D be a divisor
on the base P1 × P1. Since

∫

π∗(D)

ω2 > 0,

it follows that the class [ω2] ∈ H 4(M1,1,R) is non-trivial. This is a contradiction,
since H 4(S3 × S3,R) = 0.

The construction described above readily generalizes to Mp,q = S2p+1 ×S2q+1,
giving fibrations

π : Mp,q → Pp × Pq .

These non-Kähler complex manifolds were discovered in [CE53] and are now
named Calabi–Eckmann manifolds. A variant of this construction will be revisited in
Sect. 2.2.3.4 to produce T 2 fibrations over Calabi–Yau surfaces [GO04], and these
manifolds will play a role as a class of solutions to the Hull–Strominger system
[FY08, FY07].

2.2 Calabi–Yau Manifolds with Torsion

Let X be a compact complex manifold of complex dimension n. We assume now
and henceforth in these notes that n ≥ 3. Suppose X admits a nowhere vanishing
holomorphic (n, 0) form Ω . Given a Hermitian metric ω = igk̄j dz

j ∧dz̄k, the norm
of Ω is defined by

‖Ω‖2
ω

ωn

n! = in
2
Ω ∧ Ω̄. (2.22)

Using a local coordinate representation Ω = Ω(z) dz1 ∧ · · · ∧ dzn, this norm is

‖Ω‖2
ω = Ω(z)Ω(z)(detgk̄j )

−1.

A Hermitian metric ω on (X,Ω) is said to be conformally balanced if it satisfies

d(‖Ω‖ωωn−1) = 0. (2.23)

We see that the Hermitian metric χ = ‖Ω‖1/(n−1)
ω ω is balanced in the sense of

Michelsohn [MI82]. We will call (X,Ω,ω) a Calabi–Yau manifold with torsion.
Though Kähler manifolds provide a class of examples, Calabi–Yau manifolds

with torsion need not admit a Kähler metric. We shall see that Calabi–Yau manifolds
with torsion, though non-Kähler, still retain interesting structure. The geometry
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of Hermitian manifolds satisfying condition (2.23) belongs somewhere between
Kähler geometry and the general theory of non-Kähler complex manifold described
in Sect. 2.1. We note that there are other proposed generalizations of non-Kähler
Calabi–Yau manifolds in the literature; see e.g. [GGP08, LE11, TO15].

It was shown by Li–Yau [LY05] that condition (2.23) is equivalent to certain
SU(n) structures arising in heterotic string theory [HU186, HU286, ST86, DS14,
IP01, GMPW04]. In this section, we will explore the geometric implications of this
condition.

2.2.1 Curvature and Holonomy

2.2.1.1 Holonomy

From the point of view of differential geometry, Calabi–Yau manifolds with torsion
can be understood by imposing a holonomy constraint. While Kähler Calabi–
Yau manifolds are characterized by the Levi-Civita connection having holonomy
contained in SU(n), here we consider the holonomy of the Strominger–Bismut
connection ∇+ instead.

Lemma 2.4 ([MI82]) Let (X,ω) be a Hermitian manifold equipped with a
nowhere vanishing holomorphic (n, 0) form Ω . Define χ = ‖Ω‖1/(n−1)

ω ω. Then

d†
χχ = i(∂ log ‖Ω‖ω − τ )− i(∂̄ log ‖Ω‖ω − τ̄ ).

Here τ is the torsion 1-form of ω, and d†
χ is the L2 adjoint with respect to χ .

Proof The torsion 1-form of χ is given by

T
χ
j = ‖Ω‖−1/(n−1)

ω gik̄

[
∂i(‖Ω‖1/(n−1)

ω gk̄j )− ∂j (‖Ω‖1/(n−1)
ω gk̄i)

]
.

Simplifying this expression give

T
χ
j = Tj − ∂j log ‖Ω‖ω,

where Tj is the torsion of ω. We apply the identity (2.13) for the adjoint ∂†
χ of χ . ��

Next, we interpret the conformally balanced condition in terms of a torsion
constraint. This relationship between T and log ‖Ω‖ω will have a recurring role
as the key identity in the subsequent computations.
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Proposition 2.2 ([MI82]) Let (X,ω) be a Hermitian manifold equipped with a
nowhere vanishing holomorphic (n, 0) form Ω . The conformally balanced condi-
tion (2.23) is equivalent to the torsion constraint

Tj = ∂j log ‖Ω‖ω, T̄j̄ = ∂j̄ log ‖Ω‖ω.

Proof Expanding the conformally balanced condition gives

0 = ∂ log ‖Ω‖ω ∧ ωn−1 + (n− 1)∂ω ∧ ωn−2.

A computation shows the following identity

(n− 1)∂ω ∧ ωn−2 = −τ ∧ ωn−1.

Therefore

∂ log ‖Ω‖ω ∧ ωn−1 = τ ∧ ωn−1.

It follows that τ = ∂ log ‖Ω‖ω. ��
Our first application of the torsion constraint will be to construct parallel sections

of the canonical bundle.

Lemma 2.5 ([GA16]) Let (X,ω) be a Hermitian manifold with a nowhere van-
ishing holomorphic (n, 0) form Ω . Suppose (X,ω,Ω) satisfies the conformally
balanced condition (2.23). Then ψ = ‖Ω‖−1

ω Ω satisfies

∇+ψ = 0.

Thus ψ ∈ Γ (X,KX) is nowhere vanishing and parallel with respect to the
Strominger–Bismut connection ∇+.

Proof By (2.8) and (2.6), the induced connection ∇+ on ψ is given by

∇+
i ψ = ∂iψ − (Γ α

iα − T α
iα)ψ, ∇+

ī
ψ = ∂īψ − gkm̄T̄kīm̄ψ. (2.24)

The unbarred derivative is

∇+
i ψ = −∂i log ‖Ω‖ωψ + ‖Ω‖−1

ω ∂iΩ − Γ α
iαψ − Tiψ.

We note that

2∂i log ‖Ω‖ω = ∂iΩ

Ω
− gpq̄∂igq̄p = ∂iΩ

Ω
− Γ α

iα.
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and therefore

∇+
i ψ = (∂i log ‖Ω‖ω − Ti)ψ.

By (2.24), we also have

∇+
ī
ψ = (−∂ī log ‖Ω‖ω + T̄ī )ψ.

If (X,ω,Ω) is conformally balanced, we may use Proposition 2.2 and substitute the
torsion constraint Ti = ∂i log ‖Ω‖ω to conclude ∇+ψ = 0. ��
Theorem 2.1 ([GA16]) Let (X,ω) be a compact Hermitian manifold with nowhere
vanishing holomorphic (n, 0) form Ω . Then (X,ω,Ω) satisfies the conformally
balanced condition (2.23) if and only if there exists ψ ∈ Γ (X,KX) which is
nowhere vanishing and parallel with respect to the Strominger–Bismut connection
∇+.

Proof The previous lemma constructs a nowhere vanishing parallel section if
(X,ω,Ω) is conformally balanced. On the other hand, suppose there exists a
nowhere vanishing section ψ ∈ Γ (X,KX) such that

∇+ψ = 0.

We will follow the proof given in lecture notes of Garcia-Fernandez [GA16]. Write

ψ = e−fΩ,

for a complex function f . Since ∇+gk̄j = 0, the norm of ψ is constant. Let us
assume that ‖ψ‖ω = 1. Then

1 = e−f−f̄ ‖Ω‖2
ω,

and

f + f̄ = 2 log ‖Ω‖ω.
By the formula (2.24), we obtain

0 = ∇+
i ψ = (−∂if − Ti + 2∂i log ‖Ω‖ω)ψ,

0 = ∇+
ī
ψ = (−∂īf + T̄īf )ψ. (2.25)

We know that the real part Re f is log ‖Ω‖ω, and we will now show that the
imaginary part Im f is constant. For this, we use (2.25) to compute

∂i(f − f̄ ) = 2(∂i log ‖Ω‖ω − Ti),

∂ī(f − f̄ ) = −2(∂ī log ‖Ω‖ω − T̄ī ).
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By Lemma 2.4,

id(f − f̄ ) = 2d†
χχ,

for χ = ‖Ω‖1/(n−1)
ω χ . Therefore

d†
χd(f − f̄ ) = 0,

hence 〈d(f − f̄ ), d(f − f̄ )〉χ = 0 and Im f is constant. Since Re f = log ‖Ω‖ω,
it follows that

df = d log ‖Ω‖ω
and (2.25) implies the torsion constraint

∂ log ‖Ω‖ω = τ.

By Proposition 2.2, (X,ω,Ω) is conformally balanced. ��
As a consequence of the existence of parallel sections, we obtain the following

interpretation of the conformally balanced condition in terms of a holonomy
constraint.

Corollary 2.1 ([ST86, LY05]) A compact Hermitian manifold with trivial canoni-
cal bundle (X,ω,Ω) satisfies the conformally balanced condition (2.23) if and only
if

Hol(∇+) ⊆ SU(n).

2.2.1.2 Curvature

Next, we study the structure of the curvature tensor of Calabi–Yau manifolds with
torsion. We start with the curvature of the Bismut connection. By the definition (2.8),
we can write ∇+ = d + A with

Aj
p
q = Γ

p
iq − T p

jq, Aj̄
p
q = gpk̄T̄qj̄ k̄ .

From this expression, we may compute Rm+ = dA + A ∧ A. The components
(TrRm+)αβ = R+

αβ
γ
γ are

(TrRm+)kj = ∂jTk − ∂kTj , (TrRm+)k̄j̄ = −(∂j̄ T̄k̄ − ∂k̄T̄j̄ ), (2.26)

(TrRm+)k̄j = −∂k̄Tj − ∂j T̄k̄ + ∂j ∂k̄ log ‖Ω‖2
ω. (2.27)
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The following characterization is due to Fino and Grantcharov, which indicates
that conformally balanced metrics can be viewed as non-Kähler analogs of Kähler
Ricci-flat metrics.

Theorem 2.2 ([FG04]) Let (X,ω) be a compact Hermitian manifold with nowhere
vanishing holomorphic (n, 0) form Ω . Then (X,ω,Ω) is conformally balanced if
and only if

TrRm+ = 0.

Proof From (2.26) and (2.27), we see that manifolds satisfying the torsion con-
straint in Proposition 2.2 satisfy TrRm+ = 0. For the other direction, we note that
by Lemma 2.4, we can write

TrRm+ = idd†
χχ,

for χ = ‖Ω‖1/(n−1)
ω ω. It follows that if TrRm+ = 0, then 〈d†

χχ, d†
χχ〉χ = 0 and

hence d†
χχ = 0. By Lemma 2.4, we conclude ∂ log ‖Ω‖ω = τ and hence (X,ω,Ω)

is conformally balanced. ��
For most subsequent computations, we will be using the Chern connection ∇,

so we now turn to curvature of the Chern connection. This tensor satisfies certain
useful identities on Calabi–Yau manifolds with torsion that we will now describe.

Proposition 2.3 The Chern–Ricci curvature of a conformally balanced metric
(X,ω,Ω) satisfies

Rk̄j = 2∇k̄Tj .

Proof The Chern–Ricci curvature is given by

Rk̄j = ∂j ∂k̄ log ‖Ω‖2
ω.

Applying the torsion constraint (Proposition 2.2) gives the result. ��
As a consequence, we obtain the following identities between Ricci curvatures

of the Chern connection.

Proposition 2.4 ([PPZ318]) A conformally balanced metric (X,ω,Ω) satisfies

R ′̄
kj

= R′′̄
kj

= 1

2
Rk̄j ,

R′ = 1

2
R, R = gjk̄∂j ∂k̄ log ‖Ω‖2

ω.
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Proof By the Bianchi identity (Lemma 2.3),

R ′̄
kj

= gpq̄Rk̄pq̄j = gpq̄ (Rk̄j q̄p +∇k̄Tq̄jp) = Rk̄j −∇k̄Tj .

Applying the previous proposition gives R ′̄
kj

= 1
2Rk̄j . The identity for R′′̄

kj
is

derived similarly. Taking the trace gives the relation between the scalar curvatures
R and R′. ��

From the divergence theorem (2.10), we note in passing that the total scalar
curvature of the Chern connection of a Calabi–Yau manifold with torsion is positive.
In fact,

∫

X

R ωn =
∫

X

(2|τ |2) ωn.

We conclude this section with the remark that in Strominger’s work [ST86], the
condition d(‖Ω‖ωωn−1) = 0 appeared in another form. The reformulation of this
condition in terms of balanced metrics is due to Li and Yau [LY05].

Theorem 2.3 ([LY05]) Let (X,ω) be a Hermitian manifold with nowhere
vanishing holomorphic (n, 0) form Ω . The conformally balanced condition
d(‖Ω‖ωωn−1) = 0 is equivalent to the equation

d†ω = i(∂̄ − ∂) log ‖Ω‖ω.

Proof This follows from combining d†ω = i(τ̄ − τ ) (2.13) with ∂ log ‖Ω‖ω = τ

(Proposition 2.2). ��

2.2.2 Rigidity Theorems

We note in this section some conditions under which a Calabi–Yau manifold with
torsion is actually Kähler. We start with a result of Ivanov–Papadopoulos [IP01].
The proof given here follows the computation of [PPZ318].

Theorem 2.4 ([IP01]) Let (X,ω,Ω) be a compact Calabi–Yau manifold with
torsion, so that d(‖Ω‖ωωn−1) = 0. Suppose

i∂∂̄ω = 0.

Then ω is a Kähler metric.

Proof We start by computing i∂∂̄ω. Its components are

i∂∂̄ω = 1

4
(i∂∂̄ω)īj̄k� dz

� ∧ dzk ∧ dz̄j ∧ dz̄i,
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given explicitly by

(i∂∂̄ω)īj̄k� = ∂�∂j̄ gīk − ∂�∂īgj̄k + ∂k∂īgj̄� − ∂k∂j̄ gī�.

Using the definition of the curvature tensor (2.15) and the torsion (2.4), we find

(i∂∂̄ω)īj̄k� = −Rīkj̄� + Rj̄kī� − Rj̄�īk + Rī�j̄k − gsr̄Tr̄�kT̄sīj̄ . (2.28)

Setting this expression to zero and contracting the indices, we see that pluriclosed
metrics satisfy

0 = g�j̄ gkī (i∂∂̄ω)īj̄k� = 2R′ − 2R + |T |2.

Applying Proposition 2.4, we see that if we further assume that ω is conformally
balanced, then

gjk̄∂j ∂k̄ log ‖Ω‖2
ω = |T |2 ≥ 0.

The maximum principle for elliptic equations (Proposition 2.1) implies that
log ‖Ω‖2

ω must be constant, and hence |T |2 = 0. ��
Next, we state the result of Fino–Tomassini [FT11], which builds on work of

Matsuo–Takahashi [MT01]. We follow here the computation given in [PPZ19].

Theorem 2.5 ([FT11, MT01]) Let (X,Ω,ω) be a compact Calabi–Yau manifold
with torsion of dimension n ≥ 3, so that d(‖Ω‖ωωn−1) = 0. Suppose

i∂∂̄ωn−2 = 0.

Then ω is a Kähler metric.

Proof We assume that n ≥ 4, since the statement follows from the previous theorem
when n = 3. Expanding derivatives,

i∂∂̄ωn−2 = (n− 2)i∂∂̄ω ∧ ωn−3 + i(n− 2)(n− 3)T ∧ T̄ ∧ ωn−4.

We will wedge this expression with ω to obtain an equation on top forms. For this,
we use the general identities

Φ ∧ ωn−2 = 1

2n(n− 1)

{
gij̄ gk�̄Φ�̄j̄ki

}
ωn, (2.29)

and

Ψ ∧ ωn−3 = − i

6n(n− 1)(n− 2)

{
gij̄ gk�̄gmn̄Ψn̄�̄j̄mki

}
ωn, (2.30)
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for any Φ ∈ Ω2,2(X,R) and Ψ ∈ Ω3,3(X,R), where we use the component
convention (2.1). Applying these identities gives

ω ∧ i∂∂̄ωn−2

=
[

(n− 2)

2n(n− 1)
gij̄ gk�̄(i∂∂̄ω)�̄j̄ki +

(n− 3)

6n(n− 1)
gij̄ gk�̄gmn̄(T ∧ T̄ )n̄�̄j̄mki

]
ωn.

(2.31)

Symmetrizing the components of the torsion tensor T , we see that

(T ∧ T̄ )n̄�̄j̄mki = Tj̄mi T̄kn̄�̄ + T�̄miT̄kj̄ n̄ + Tn̄mi T̄k�̄j̄ + Tj̄kmT̄in̄�̄ + T�̄kmT̄ij̄ n̄

+Tn̄kmT̄i�̄j̄ + Tj̄ikT̄mn̄�̄ + T�̄ikT̄mj̄ n̄ + Tn̄ikT̄m�̄j̄ . (2.32)

Setting (2.31) to zero and substituting the expression (2.28) for i∂∂̄ω and (2.32) for
T ∧ T̄ , we obtain the following identity

0 = (n− 2)

2n(n− 1)
(2R′ − 2R + |T |2)+ (n− 3)

6n(n− 1)
(6|τ |2 − 3|T |2),

satisfied by any astheno-Kähler metric ω. We now use the conformally
balanced condition by applying Proposition 2.4, which gives 2R′ − 2R =
−gjk̄∂j ∂k̄ log ‖Ω‖ω. Simplifying, we obtain

(n− 2)gjk̄∂j ∂k̄ log ‖Ω‖ω = |T |2 + 2(n− 3)|τ |2 ≥ 0.

By the maximum principle for elliptic equations (Proposition 2.1) we must have
|T |2 + 2(n− 3)|τ |2 = 0. Hence |T |2 = 0 and ω is Kähler. ��

There are more theorems of this nature; for other conditions on balanced metrics
which imply that it is Kähler, see [FIUV09, LY12, LY17].

A folklore conjecture in the field (e.g. [FV16]) speculates that if a Calabi–Yau
with torsion (X,Ω,ω) admits another metric ω2 which is pluriclosed, then X must
be a Kähler. If ω2 is instead assumed to be astheno-Kähler, then X need not be
Kähler [FGV, LU17].

2.2.3 Examples

2.2.3.1 Kähler Calabi–Yau

We have already seen that conformally balanced metrics generalize Kähler Ricci-
flat metrics, since they are characterized by vanishing of the Ricci curvature of ∇+,
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and ∇+ coincides with the Levi-Civita connection for Kähler metrics. We note here
a simple direct proof that Kähler Ricci-flat metrics are conformally balanced.

Let (X,Ω) be a Kähler Calabi–Yau manifold. By Yau’s theorem [YA78], there
exists a Kähler metric ω with zero Ricci curvature. In this case, ‖Ω‖ω is constant,
since

i∂∂̄ log ‖Ω‖2
ω = i∂∂̄ logΩ(z)Ω(z)− i∂∂̄ log detgk̄j = 0,

and hence gjk̄∂j ∂k̄ log ‖Ω‖2
ω = 0. By the maximum principle, ‖Ω‖ω is constant.

Since ω is Kähler, we have dωn−1 = 0, and hence d(‖Ω‖ωωn−1) = 0.

2.2.3.2 Complex Lie Groups

Next, we study invariant metrics on complex Lie groups, which provide a class
of natural non-Kähler metrics. Let G be a complex Lie group. Choose a positive
definite inner product on the Lie algebra g, and let e1, . . . , en ∈ g be an orthonormal
frame of left-invariant holomorphic vector fields on G. The structure constants of
the Lie algebra g in this basis will be denoted

[ea, eb] = cdabed .

Taking the dual frame e1, . . . , en, we may define a left-invariant metric ω by

ω = i
∑

a

ea ∧ ēa.

We note that this metric cannot be Kähler unless G is trivial. Indeed, taking the
exterior derivative gives

∂ea = 1

2
cabde

d ∧ eb. (2.33)

Therefore

i∂̄ω = 1

2
cabd ea ∧ ēd ∧ ēb,

i∂∂̄ω = 1

4
cabdc

a
rs e

s ∧ er ∧ ēd ∧ ēb, (2.34)

so this invariant metric is not Kähler or pluriclosed in general. We take the Calabi–
Yau form to be

Ω = e1 ∧ · · · ∧ en.
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which is a nowhere vanishing holomorphic (n, 0) form. Using (2.22), we see that

‖Ω‖ω = 1.

Checking whether ω is conformally balanced reduces to verifying that dωn−1 = 0.
This implies a condition of the structure constants, which does not hold for arbitrary
Lie groups, but still admits plenty of examples. We say that G is unimodular if its
structure constants satisfy

∑

p

cppa = 0.

This condition is well-defined on G and does not depend on the choice of frame.
It was noted by Abbena and Grassi [AG86] that dωn−1 = 0 if and only if G is
unimodular. Indeed, from (2.33) we see that T a

bd = cabd . Hence G is unimodular
if and only if Tj = 0, which holds if and only if ω is conformally balanced by
Proposition 2.2.

Thus unimodular complex Lie groups admit left invariant conformally balanced
metrics. An explicit example is given by SL(2,C). To obtain a compact threefold,
we may quotient out by a discrete group and let X = SL(2,C)/Λ.

We claim that X does not admit a Kähler metric. For this, we use the fact that
SL(2,C) admits a basis ea such that cabd = εabd the Levi-Civita symbol. Let ω =
iδba e

a ∧ ēb, and compute

(ω2)b̄d̄rs = 2(δd̄sδb̄r − δd̄rδb̄s).

In dimension 3, we have the contracted epsilon identity

εarsεabd = δrbδsd − δrdδbs. (2.35)

Therefore, by (2.34),

(i∂∂̄ω)b̄d̄rs = δdsδbr − δdrδbs.

We see that ω2 and i∂∂̄ω are proportional to each other.

i∂∂̄ω = 1

2
ω2. (2.36)

This in particular illustrates another difference with Kähler geometry, where ω2

always represents a non-zero cohomology class. Now suppose X admits a Kähler
metric χ . Then

0 =
∫

X

i∂∂̄ω ∧ χ = 1

2

∫

X

ω2 ∧ χ (2.37)

which is a contradiction since ω2 ∧ χ > 0.
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For more examples of complex Lie groups, Fei–Yau [FY15, Proposition 3.7]
classify complex unimodular Lie algebras of dimension 3 and study the Hull–
Strominger system in each case. A theorem of Wang [WA54] states that the only
compact parallelizable manifolds admitting Kahler metrics are the complex tori.

2.2.3.3 Iwasawa Manifold

We consider the action of a, b, c ∈ Z[i] on C3 given by

(x, y, z)  → (x + a, y + c, z+ āy + b). (2.38)

Let X be the quotient of C3 under this action. The manifold X is an example of an
Iwasawa manifold. We have a projection

π : X → T 4 = C/Λ× C/Λ, π(x, y, z) = (x, y).

Here Λ is the lattice generated by 1, i. The fibers are isomorphic to tori π−1(x, y) =
T 2. Hence M is a torus fibration over T 4. The form

Ω = dz ∧ dx ∧ dy,

is defined on X, and is holomorphic nowhere vanishing. We define

θ = dz− x̄dy.

This form on C3 is invariant under the action (2.38), and is thus well-defined on X.
Consider the family of metrics

ωu = euω̂ + iθ ∧ θ̄ , ω̂ = idx ∧ dx̄ + idy ∧ dȳ,

where u : T 4 → R is an arbitrary function on the base T 4. A computation shows
that

‖Ω‖ωu = e−u,

and

d(‖Ω‖ωuω
2
u) = 0.

Thus (X,ωu,Ω) is conformally balanced. However, X does not admit a Kähler
metric. Let ω0 be metric with u = 0. Direct computation gives

i∂∂̄ω0 = ω̂2

2
.



2 Calabi–Yau Manifolds with Torsion and Geometric Flows 85

We can rule out the existence of a Kähler metric χ by considering
∫
X i∂∂̄ω0 ∧ χ as

in the previous section, see (2.37).

2.2.3.4 Goldstein–Prokushkin Fibrations

In this section, we describe a construction of Goldstein–Prokushkin [GO04] which
utilizes U(1) principal bundles to generalize the previous example. Let (S, ω̂,Ω) be
a Kähler Calabi–Yau surface equipped with two (1, 1) form ω1, ω2 ∈ 2πH 2(S,Z),
which are anti-self-dual with respect to ω̂.

�ω1 = −ω1, �ω2 = −ω2.

There exists line bundles L1, L2 over S with connections A1, A2 whose curvature
iFA1, iFA2 is equal to ω1, ω2. As detailed in Sect. 2.1.4, the line bundles L1, L2
can be compactified to form S1 principal bundles P1 → S, P2 → S equipped with
connection 1-forms θ1, θ2 satisfying

dθi = −ωi.

Let X denote the total space of the S1 × S1 principal bundle π : X → S whose
fibers are the product of the fibers of P1, P2. Locally, points of X are given by
(z, eiψ1, eiψ2). As we discussed in Sect. 2.1.4, we have the global vector fields

∂

∂ψ1
,

∂

∂ψ2
,

which span the vertical space V = kerπ∗, and satisfy

θ1

(
∂

∂ψ1

)
= 1, θ2

(
∂

∂ψ2

)
= 1.

The horizontal space is given by

H = ker θ1 ∩ ker θ2,

and the tangent space admits the decomposition

TX = H ⊕ V.

Furthermore

π�|H : H → T S
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is an isomorphism. It follows that the complex structure jS on S induces an almost
complex structure on H . We define on X the almost complex structure

J = (π∗|HjS)⊕ I, I
∂

∂ψ1
= ∂

∂ψ2
, I

∂

∂ψ2
= − ∂

∂ψ1
.

We define the 1-form

θ = −θ1 − iθ2.

Since θ |H = 0 and θ(∂ψ1 + i∂ψ2) = 0, we see that θ(V ) = 0 for any V ∈ T 0,1X.
Thus θ is a (1, 0) form. Furthermore,

dθ = π∗(ω1 + iω2).

Similarly to our discussion of Eq. (2.21) in Sect. 2.1.4.2, we can use that (1, 0) forms
are locally generated by {π∗dz1, π∗dz2, θ} to apply the Newlander–Nirenberg
theorem and establish that J integrable. Thus X is a compact complex manifold
of dimension 3.

In fact, X is a Calabi–Yau manifold with torsion. Let

Ω = θ ∧ π∗ΩS,

which is a nowhere vanishing (3, 0) form. The form Ω is holomorphic since
dΩ = 0.

For u ∈ C∞(S,R), we consider the family of metrics

ωu = π∗(euω̂)+ iθ ∧ θ̄ .

These metrics will be revisited, as they form the Fu–Yau ansatz of solutions to the
Hull–Strominger system [FY08]. We compute

iΩ ∧ Ω̄ = iθ ∧ θ̄ ∧ π∗(ΩS ∧ΩS) = iθ ∧ θ̄ ∧ π∗
(
‖ΩS‖2

ω̂

ω̂2

2

)
,

ω2
u = π∗(e2uω̂2)+ 2π∗(euω̂) ∧ iθ ∧ θ̄ , ω3

u = 3π∗(e2uω̂2) ∧ iθ ∧ θ̄ .

Since (S, ω̂) is Kähler Ricci-flat, then ‖ΩS‖ω̂ is constant, which we may normalize
such that

‖Ω‖ωu = e−u. (2.39)
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We can now compute

d(‖Ω‖ωuω
2
u) = d(π∗(euω̂2)+ 2π∗ω̂ ∧ iθ ∧ θ̄ )

= 2π∗ω̂ ∧ iπ∗(ω1 + iω2) ∧ θ̄ − 2π∗ω̂ ∧ iθ ∧ π∗(ω1 − iω2)

= 0,

since

ω̂ ∧ ω1 = ω̂ ∧ ω2 = 0,

as ω1, ω2 are anti-self-dual. Thus (X,ωu,Ω) is Calabi–Yau with torsion. In fact, X
is non-Kähler unless ω1 = ω2 = 0. To see this, we compute

i∂∂̄ω0 = −∂̄θ ∧ ∂θ̄ = −(π∗ω1 + iπ∗ω2)(π
∗ω1 − iπ∗ω2) = −π∗(ω2

1 + ω2
2).

Since ω1, ω2 are anti-self-dual,

i∂∂̄ω0 = π∗(ω1 ∧ �ω1 + ω2 ∧ �ω2).

If X admits a Kähler metric χ , then

0 =
∫

X

i∂∂̄ω0 ∧ χ =
∫

X

π∗(ω1 ∧ �ω1 + ω2 ∧ �ω2) ∧ χ,

which is strictly positive unless ‖ω1‖2
ω̂
= ‖ω2‖2

ω̂
= 0.

2.2.3.5 Fei Twistor Space

As our last example, we outline a construction of Fei [FE16, FE15] which
generalizes earlier constructions of Calabi [CA58] and Gray [GR69]. The example
will be a T 4 fibration over a Riemann surface.

We first describe the base of the fibration. Let (Σ, ϕ) be a Riemann surface
equipped with a nonconstant holomorphic map ϕ : Σ → P1 satisfying ϕ∗O(2) =
KΣ . This condition is known to imply that the genus of Σ must be at least three.
As a concrete example, we may take Σ to be a minimal surface in T 3 with ϕ being
the Gauss map [FHP17]. By the work of Meeks [ME90] and Traizet [TR08], there
exists minimal surfaces of genus g ≥ 3 in T 3.

Using stereographic coordinates, we may write ϕ = (α, β, γ ) with (α, β, γ ) ∈
S2 ⊆ R3. Fixing the Fubini-Study metric ωFS on P1, we pullback via ϕ an
orthonormal basis of sections of O(2) to obtain 1-forms μ1, μ2, μ3. We then equip
Σ with the metric

ω̂ = iμ1 ∧ μ̄1 + iμ2 ∧ μ̄2 + iμ3 ∧ μ̄3.
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This metric has Gauss curvature κ given by

κω̂ = −ϕ∗ωFS,

hence κ ≤ 0 and κ vanishes at branch points of ϕ.
We now describe the fibers. Let (T 4, g) be the 4-torus with flat metric, which

we will view as a hyperkähler manifold with complex structures I , J , K satisfying
IJ = K and I 2 = J 2 = K2 = −1, and corresponding Kähler metrics ωI , ωJ ,
ωK . At each z ∈ Σ , we use the map ϕ = (α, β, γ ) to equip T 4 with the complex
structure

αI + βJ + γK.

If jΣ denotes the complex structure on Σ , we may form the product X = Σ × T 4

and equip it with the complex structure

J0 = jΣ ⊕ (αI + βJ + γK).

This complex structure is integrable, thus X is a compact complex manifold of
dimension 3. In fact, X has trivial canonical bundle, and we can give an explicit
expression for a nowhere vanishing holomorphic (3, 0) form

Ω = μ1 ∧ ωI + μ2 ∧ ωJ + μ3 ∧ ωK.

Let

ω′ = αωI + βωJ + γωK

be the Kähler metric corresponding to the complex structure αI + βJ + γK on T 4.
The Fei ansatz ωf on X is the following family of conformally balanced metrics.

Proposition 2.5 ([FE16, FE15]) Given any f ∈ C∞(Σ,R), the Hermitian metric
given by

ωf = e2f ω̂ + ef ω′,

is conformally balanced. Furthermore, ‖Ω‖ωf = e−2f .

Thus X is Calabi–Yau with torsion, and in fact, it is non-Kähler.

2.2.3.6 Other Examples

We have now discussed many examples of Calabi–Yau manifolds with balanced
metrics, many of which were already listed in the pioneering work of Michelsohn
[MI82]. There are also example which will not be studied in these notes. For
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example, there is the construction of Fu et al. [FLY12] on connected sums of
S3 × S3. There are parallelizable examples on nilmanifolds and solvmanifolds
[UG07, OUV17, FIUV09, FG04, UV14, UV15]. Non-compact examples are con-
structed in [FY09, FE17, FIUV14]. There are also examples from the physics
literature, e.g. [BD02, BBDG03, DRS99, HIS16, MS11].

2.3 Anomaly Flow with Zero Slope

In this section, we will discuss a geometric flow which preserves the geometry
described in Sect. 2.2. The material in this section can be found in joint work with
Phong and Zhang [PPZ218, PPZ318, PPZ19].

A central problem in complex geometry is to detect when a given complex
manifold admits a Kähler metric. We would like to study this question on Calabi–
Yau manifolds with torsion. Motivated by Sect. 2.2.2, we will deform conformally
balanced metrics towards astheno-Kähler (i∂∂̄ωn−2 = 0).

Together with Phong and Zhang [PPZ19], we introduce the flow

d

dt
(‖Ω‖ωωn−1) = i∂∂̄ωn−2,

d(‖Ω‖ω(0)ω(0)n−1) = 0. (2.40)

We call this evolution equation the Anomaly flow with zero slope. The name comes
from an extension of the flow which adds higher order correction terms proportional
to a parameter α′, which is used to study the Hull–Strominger system and the
cancellation of anomalies in theoretical physics. We will discuss the Anomaly flow
when α′ terms are included in Sect. 2.4.

The first thing to note is that the conformally balanced property is preserved by
the flow

d(‖Ω‖ω(t)ω(t)n−1) = 0,

which follows from taking the exterior derivative of (2.40). In fact, the balanced
class of the initial metric

[‖Ω‖ω(0)ω(0)n−1] ∈ H
n−1,n−1
BC (X,R)

is also preserved, since

d

dt
[‖Ω‖ωωn−1] = [i∂∂̄ωn−2] = 0. (2.41)
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Here H
n−1,n−1
BC (X) is the Bott–Chern cohomology of X, given by

H
n−1,n−1
BC (X) = {α ∈ Ωn−1,n−1(X) : dα = 0}

{i∂∂̄β : β ∈ Ωn−2,n−2(X)} .

Stationary points ω∞ of the flow satisfy both

d(‖Ω‖ω∞ωn−1∞ ) = 0, i∂∂̄ωn−2∞ = 0,

hence by Theorem 2.5, they are Kähler. The Anomaly flow with zero slope thus
deforms balanced metrics to a Kähler metric in a given balanced class.

2.3.1 Evolution of the Metric

The first question to ask about the flow (2.40) is whether it exists for a short-time,
and if so, we would like an explicit expression for the evolution equation of the
metric ω = igk̄j dz

j ∧ dz̄k.
We begin by deriving the evolution of the determinant of the metric.

Lemma 2.6 Suppose ω(t) = igk̄j dz
j ∧ dz̄k satisfies the evolution equation

d

dt
(‖Ω‖ωωn−1) = Ψ (t), (2.42)

for Ψ (t) ∈ Ωn−1,n−1(X,R). Then the norm of Ω evolves by

d

dt
‖Ω‖ω = − n

(n− 2)

Ψ ∧ ω

ωn
,

which follows from the identity

Tr ω̇ = 2n

(n− 2)‖Ω‖ω
Ψ ∧ ω

ωn
.

From now on, traces will always be taken with respect to the evolving metric ω.
Explicitly,

Trα = i−1gjk̄αk̄j ,

for a (1, 1) form α = αk̄j dz
j ∧ dz̄k.
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Proof Using the well-known formula

δ detgk̄j = (detgk̄j )g
jk̄(δg)k̄j ,

we differentiate

d

dt
‖Ω‖ω = d

dt
(ΩΩ̄)1/2(detg)−1/2 = −1

2
‖Ω‖ωTr ω̇.

Expanding (2.42), we obtain

(
d

dt
‖Ω‖ω

)
ωn−1 + (n− 1)‖Ω‖ωω̇ ∧ ωn−2 = Ψ.

Substituting the variation of ‖Ω‖ω gives

− 1

2
‖Ω‖ω(Tr ω̇)ωn−1 + (n− 1)‖Ω‖ωω̇ ∧ ωn−2 = Ψ. (2.43)

Next, we wedge this equation with ω to obtain the following equation of top forms.

−1

2
‖Ω‖ω(Tr ω̇)ωn + (n− 1)‖Ω‖ω (Tr ω̇)

n
ωn = Ψ ∧ ω.

From this equation we can solve for Tr ω̇. ��
Lemma 2.7 Suppose ω(t) satisfies

d

dt
(‖Ω‖ωωn−1) = Ψ (t),

for Ψ (t) ∈ Ωn−1,n−1(X,R). Then the metric evolves by

∂tω =
[

n

(n− 2)‖Ω‖ω
Ψ ∧ ω

ωn

]
ω − 1

(n− 1)!‖Ω‖ω � Ψ.

Proof To extract ∂tω, we will apply the Hodge star operator � with respect to ω to
the expanded equation (2.43).

− (n− 1)!
2

‖Ω‖ω(Tr ω̇)ω + (n− 1)!‖Ω‖ω(−∂tω + (Tr ω̇)ω) = �Ψ

Here we used the identities �ωn−1 = (n− 1)!ω and

[�(α ∧ ωn−2)]q̄p = −(n− 2)!αq̄p + i(n− 2)!(Trα)gq̄p, (2.44)
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for any α ∈ Ω1,1(X). This last identity can be found in e.g. [HU305, PPZ318].
Therefore

∂tω = 1

2
(Tr ω̇)ω − 1

(n− 1)!‖Ω‖ω � Ψ.

Substituting the previous lemma gives the desired expression. ��
For the Anomaly flow with zero slope, the form Ψ is given by

Ψ = i∂∂̄ωn−2 = (n− 2)i∂∂̄ω ∧ωn−3 + i(n− 2)(n− 3)T ∧ T̄ ∧ωn−4. (2.45)

To obtain an explicit expression for the evolution of the metric, we must expand the
torsion terms.

Theorem 2.6 ([PPZ19]) Suppose ω(t) solves the Anomaly flow

d

dt
(‖Ω‖ωωn−1) = i∂∂̄(ωn−2), d(‖Ω‖ω(0)ω(0)n−1) = 0.

If n = 3, then the metric evolves via

∂tgk̄j = 1

2‖Ω‖ω
[
− R̃k̄j + gm�̄gsr̄Tr̄mj T̄s�̄k̄

]
,

and if n ≥ 4, then

∂tgk̄j = 1

(n− 1)‖Ω‖ω
[
− R̃k̄j +

1

2(n− 2)
(|T |2 − 2|τ |2) gk̄j

−1

2
gqp̄gsr̄Tk̄qs T̄j p̄r̄ + gsr̄ (Tk̄js T̄r̄ + TsT̄j k̄r̄ )+ Tj T̄k̄

]
. (2.46)

The metric evolution can be compared with other flows in Hermitian geometry,
e.g. [ST10, ST11, TW15, US16, ZH16]. The expression when n = 3 is similar to
the metric evolution in the Streets–Tian pluriclosed flow [ST10], though they differ
by the presence of the determinant of the metric ‖Ω‖ω. We note that the Anomaly
flow is a flow of balanced metrics while the pluriclosed flow is a flow of pluriclosed
metrics, so these flows exist in different realms of Hermitian geometry. Such torsion-
type terms appearing in (2.46) also appear in other Ricci flows preserving other
types of geometry, such as for example the metric evolution in the G2 Laplacian
flow [KA09, BR05].

Proof We will derive the expression assuming that n ≥ 4, as the case n = 3 is easier
and follows a similar argument. We use the notation

Tr Φ = i−2gpq̄gjk̄Φk̄j q̄p, TrΨ = i−3gjk̄gpq̄gsr̄Ψr̄sq̄pk̄j ,
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for Φ ∈ Ω2,2(X) and Ψ ∈ Ω3,3(X). We begin by computing

(� i∂∂̄ωn−2)q̄p

= (n− 2)[� (i∂∂̄ω ∧ ωn−3)]q̄p + i(n− 2)(n− 3)[� (T ∧ T̄ ∧ ωn−4)]q̄p
= i(n− 2)!gsr̄ (i∂∂̄ω)r̄sq̄p + i

(n− 2)!
2

(Tr i∂∂̄ω)gq̄p

+ i
(n− 2)!

2
gij̄ gsr̄ (T ∧ T̄ )r̄sj̄ iq̄p − (n− 2)!

6
(TrT ∧ T̄ )gq̄p. (2.47)

This follows from (2.45) and the following identities for the Hodge star operator

[�(Φ ∧ ωn−3)]q̄p = i(n− 3)!gsr̄Φr̄sq̄p + i
(n− 3)!

2
(TrΦ)gq̄p,

[�(Ψ ∧ ωn−4)]q̄p = (n− 4)!
2

gij̄ gsr̄Ψr̄sj̄ iq̄p + i
(n− 4)!

6
(TrΨ )gq̄p, (2.48)

which hold for any Φ ∈ Ω2,2(X,R) and Ψ ∈ Ω3,3(X,R). For a proof of these
Hodge star identities, see [PPZ19].

Next, we compute using (2.29) and (2.30),

i∂∂̄ωn−2 ∧ ω

ωn
= (n− 2)

i∂∂̄ω ∧ ωn−2

ωn
+ i(n− 2)(n− 3)

T ∧ T̄ ∧ ωn−3

ωn

= (n− 2)

2n(n− 1)
Tr (i∂∂̄ω)+ i(n− 3)

6n(n− 1)
Tr (T ∧ T̄ ). (2.49)

We now substitute (2.47) and (2.49) into Lemma 2.7. The Tr (i∂∂̄ω) terms cancel
exactly, and we are left with

∂tgq̄p = − 1

(n− 1)‖Ω‖ω gsr̄ (i∂∂̄ω)r̄sq̄p − 1

2(n− 1)‖Ω‖ω gij̄ gsr̄ (T ∧ T̄ )r̄sj̄ iq̄p

− i

6(n− 1)(n− 2)‖Ω‖ω Tr (T ∧ T̄ ) gq̄p. (2.50)

By identity (2.28), we have

gsr̄ (i∂∂̄ω)r̄q̄sp = −R̃q̄p + R ′̄
qp − Rq̄p + R′′

pq̄ − gsr̄gnm̄Tm̄psT̄nr̄q̄ .

We now use that the evolving metrics are conformally balanced. In this case, by
Proposition 2.4, we have

gsr̄ (i∂∂̄ω)r̄sq̄p = R̃q̄p − gsr̄gnm̄Tm̄spT̄nr̄q̄ . (2.51)
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Substituting (2.51) and (2.32) into (2.50) and expanding the torsion terms gives the
explicit expression for ∂tgq̄p. ��

As a consequence of Theorem 2.6, the Anomaly flow with zero slope exists for a
short-time from any initial metric. Indeed, from (2.15) we have

R̃m̄� = −gjk̄∂j ∂k̄gm̄� + gjk̄gsr̄∂k̄gm̄s∂j gr̄�, (2.52)

and so R̃m̄�(g) is an elliptic operator in g. There is a slight subtlety, which is that the
proof of Theorem 2.6 only shows that the Anomaly flow with zero slope is parabolic
when restricted to variations in the space of conformally balanced metrics. One way
to resolve this issue is by using the Hamilton–Nash–Moser [HA82] implicit function
theorem, and we refer to [PPZ116, PPZ19] for details.

Corollary 2.2 ([PPZ19]) Let ω0 be a conformally balanced Hermitian metric.
There exists an ε > 0 such that Anomaly flow with zero slope admits a unique
solution on [0, ε) with ω(0) = ω0.

2.3.2 Non-Kähler Examples

We outline here some simple examples to illustrate possible behaviors of the flow.

2.3.2.1 Iwasawa Manifold

Let π : X → T 4 be the Iwasawa manifold considered in Sect. 2.2.3.3 with ansatz
ωu = euω̂ + iθ ∧ θ̄ , where

ω̂ = idx ∧ dx̄ + idy ∧ dȳ, θ = dz− x̄dy,

and u(x, y) is a smooth function u : T 4 → R. We will show that this ansatz is
preserved by the Anomaly flow. We previously computed that ‖Ω‖ωu = e−u, and so

‖Ω‖ωuω
2
u = euω̂2 + 2iω̂ ∧ θ ∧ θ̄ .

Furthermore,

i∂∂̄ωu = i∂∂̄eu ∧ ω̂ + ω̂2

2
.
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The Anomaly flow with zero slope ∂t (‖Ω‖ωω2) = i∂∂̄ω reduces to

∂te
u = 1

2
(Δω̂e

u + 1). (2.53)

The flow exists for all time by linear parabolic theory. The functional defined by

M(ω(t)) =
∫

X

‖Ω‖ω(t) ω(t)3,

satisfies in this case

d

dt
M(t) = d

dt

∫

X

3euω̂2 ∧ iθ ∧ θ̄

= 3
∫

X

i∂∂̄(euω̂ ∧ iθ ∧ θ̄ )+ 3

2

∫

X

ω̂2 ∧ iθ ∧ θ̄

= 1

2

∫

X

(ω̂ + iθ ∧ θ̄ )3 > 0.

It follows that M(t) → ∞ linearly as t → ∞. The functional M(ω) is
sometimes called the dilaton functional, and was introduced in [GRST18] to develop
a variational formulation of the Hull–Strominger system.

Since (2.53) is a linear parabolic equation and
∫
eu → ∞ as t → ∞, we also

have that eu → ∞ everywhere on T 4 as t → ∞. The geometric statement is that
‖Ω‖ωu → 0 everywhere on the base T 4. The flow cannot converge in this case since
the Iwasawa manifold does not admit a Kähler metric.

2.3.2.2 Compact Quotients of SL(2, C)

Next, we study quotients of SL(2,C) by a lattice Λ as described in Sect. 2.2.3.2. Let
{ea} be a left-invariant basis of holomorphic vector fields with [ea, eb] = εabded .
We will study the ansatz

ω = ρω̂, ω̂ = iea ∧ ēa,

where ρ > 0 is a constant. This ansatz was used by Fei–Yau to solve the Hull–
Strominger system on complex Lie groups [FY15].

As computed in (2.36),

i∂∂̄ω = ρ
ω̂2

2
.
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Next, we compute using the definition of the norm (2.22) and obtain

‖Ω‖ω = ρ−3/2.

Thus

‖Ω‖ωω2 = (ρ−3/2ρ2)ω̂2.

Using the ansatz ω = ρω̂ on X = SL(2,C)/Λ, the Anomaly flow with zero slope
becomes the ODE

d

dt
(ρ1/2) = 1

2
ρ,

whose solution is given by

ρ(t) = 1

(ρ(0)−1/2 − t
2 )

2
.

We see that the flow develops a singularity as ρ → ∞ in finite time. In particular,
there exists T < ∞ such that ‖Ω‖ω → 0 as t → T . The flow cannot converge
since X does not admit a Kähler metric.

2.3.3 Kähler Manifolds

The previous two examples illustrate how the Anomaly flow can develop singular-
ities on non-Kähler manifolds. If the manifold is already known to admit a Kähler
metric, the flow should detect it. Since there are many different Kähler metrics on
a given Kähler manifold, the flow must select a single one in the limit. We will
explain this mechanism in this section and explain how the flow may provide insight
in studying the relation between the Kähler cone and the balanced cone.

Let X be a compact complex manifold with Kähler metric χ̂ = iχ̂k̄j dz
j ∧ dz̄k

and nowhere vanishing holomorphic (n, 0) form Ω . We will start the Anomaly flow
with zero slope with the initial data

‖Ω‖ω(0)ω(0)n−1 = χ̂n−1. (2.54)

This equation determines the initial metric ω(0), which is manifestly conformally
balanced and is explicitly given by the following lemma.

Lemma 2.8 Let χ ∈ Ω1,1(X,R) be a Hermitian metric and Ω ∈ Ωn,0(X) be
nowhere vanishing. The equation

‖Ω‖ωωn−1 = χn−1 (2.55)
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admits a unique Hermitian metric solution ω given by

ω = ‖Ω‖−2/(n−2)
χ χ.

Proof We let

ω = ‖Ω‖−1/(n−1)
ω χ, (2.56)

and so we only need to solve for the determinant. Taking the determinant of both
sides of (2.55) and raising to the power of −1

(n−1) gives

‖Ω‖−n/(n−1)
ω (detω)−1 = (detχ)−1.

Recall that ‖Ω‖2
ω = ΩΩ̄(detω)−1. Multiplying both sides by ΩΩ̄ , we obtain

‖Ω‖2
ω‖Ω‖−n/(n−1)

ω = ‖Ω‖2
χ .

Therefore

‖Ω‖1/(n−1)
ω = ‖Ω‖2/(n−2)

χ , (2.57)

and the existence result follows from (2.56). For uniqueness, suppose ω and ω̃

solve (2.55). Then (2.57) determines ‖Ω‖ω = ‖Ω‖ω̃ and so ω̃n−1 = ωn−1, from
which it follows [MI82] that ω = ω̃. ��

We claim that the solution to the Anomaly flow with zero slope and initial
data (2.54) is given by

‖Ω‖ω(t)ω(t)n−1 = χ(t)n, (2.58)

where

χ = χ̂ + i∂∂̄ϕ > 0,

and the scalar potential ϕ satisfies

ϕ̇ = e−f (χ̂ + i∂∂̄ϕ)n

χ̂n
, ϕ(x, 0) = 0,

(we use the notation ϕ̇ = ∂tϕ), with

e−f = 1

(n− 1)‖Ω‖2
χ̂

.
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Indeed, the ansatz (2.58) solves the equation of the flow. To see this, we compute

d

dt
‖Ω‖ωωn−1 = (n− 1)χ̇ ∧ χn−2

= (n− 1)i∂∂̄ϕ̇ ∧ χn−2.

The equation for ϕ̇ can be rearranged as

ϕ̇ = 1

(n− 1)‖Ω‖2
χ

.

Therefore

d

dt
‖Ω‖ωωn−1 = i∂∂̄(‖Ω‖−2

χ ) ∧ χn−2.

On the other hand, by Lemma 2.8, we have

i∂∂̄ωn−2 = i∂∂̄(‖Ω‖−2
χ χn−2)

= i∂∂̄(‖Ω‖−2
χ ) ∧ χn−2.

It follows that the ansatz (2.58) satisfies

d

dt
‖Ω‖ωωn−1 = i∂∂̄ωn−2.

By uniqueness of solutions, the ansatz (2.58) is preserved by the Anomaly flow with
zero slope. To summarize our discussion, we state the following result.

Theorem 2.7 ([PPZ19]) Let X be a compact complex manifold of dimension n

with a nowhere vanishing holomorphic (n, 0) form Ω . Suppose X admits a Kähler
metric χ̂ . Then the Anomaly flow d

dt
‖Ω‖ωωn−1 = i∂∂̄ωn−2 with initial metric

satisfying

‖Ω‖ω(0)ω(0)n−1 = χ̂n−1 (2.59)

reduces to the following scalar flow of potentials

ϕ̇ = e−f
det(χ̂k̄j + ϕk̄j )

det χ̂k̄j

, ϕ(x, 0) = 0, (2.60)

with the positivity condition χ̂+ i∂∂̄ϕ > 0, where ef = (n−1)‖Ω‖2
χ̂

. The evolving
metric in the Anomaly flow is given by

ω(t) = ‖Ω‖−2/(n−2)
χ(t) χ(t), χ(t) = χ̂ + i∂∂̄ϕ. (2.61)
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The Monge–Ampère flow (2.60) arising here shares similarities with the Kähler–
Ricci flow and the MA−1 flow. The Kähler–Ricci flow was introduced by Cao
[CA852] and has since been an area of active research in Kähler geometry (e.g.
[CSW18, DL17, GZ17, PS06, PT17, ST07, SW13, TZ06, TZ16]). The MA−1 flow
was recently introduced by Collins–Hisamoto–Takahashi [CHT18], and is expected
to produce optimal degenerations on Fano manifolds which do not admit Kähler-
Einstein metrics.

Unlike the Kähler–Ricci flow, the logarithm does not appear in the speed of
evolution ϕ̇, and unlike the MA−1 flow, the determinant of χ appears in the
numerator instead of the denominator. For general parabolic equations, changes in
speed can have major implications in the analysis, see [FGP18] for a recent example
of this phenomenon in Kähler geometry. Though the analysis of (2.60) does differ
from the Kähler–Ricci flow and MA−1 flow, in [PPZ19] we show that a smooth
solution to the flow exists for all time t .

In contrast to the previous examples in section Sect. 2.3.2, in this case we
can easily show that ‖Ω‖ω stays bounded above and below along the flow.
Differentiating (2.60),

∂t ϕ̇ = e−f

{detχk̄j

det χ̂k̄j

}
χjk̄∂j ∂k̄ϕ̇.

This is a linear parabolic equation for ϕ̇. It follows from the maximum principle for
parabolic equations (e.g. Proposition 1.7 in [SW13]) that

inf
X

ϕ̇(x, 0) ≤ ϕ̇(x, t) ≤ sup
X

ϕ̇(x, 0).

Since ϕ(x, 0) = 0, we have

inf
X

e−f ≤ ϕ̇(x, t) ≤ sup
X

e−f .

By (2.60), we have

ef inf
X

e−f ≤ detχk̄j

det χ̂k̄j

≤ ef sup
X

e−f .

By (2.57),

‖Ω‖ω(t) = ‖Ω‖2(n−1)/(n−2)
χ = ‖Ω‖2(n−1)/(n−2)

χ̂

(
det χ̂

detχ

)(n−1)/(n−2)

.

Therefore

C−1 ≤ ‖Ω‖ω(t) ≤ C,
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along the flow, where C > 0 only depends on ‖Ω‖χ̂ and n. The degeneration of
‖Ω‖ω exhibited for non-Kähler examples in Sect. 2.3.2 does not occur in this case.

Estimating ‖Ω‖ω(t) is only the first step in the study of the flow. From here, we
can use a priori estimates and techniques from fully nonlinear PDE to establish long-
time existence and convergence. We refer to [PPZ19] for full details. The result is

Theorem 2.8 ([PPZ19]) Let X be a compact complex manifold of dimension n

with a nowhere vanishing holomorphic (n, 0) form Ω . Suppose X admits a Kähler
metric χ̂ . Then the Anomaly flow d

dt
‖Ω‖ωωn−1 = i∂∂̄ωn−2 with initial metric

satisfying

‖Ω‖ω(0)ω(0)n−1 = χ̂n−1

exists for all time, and smoothly converges to a Kähler metric ω∞.

In fact, ω∞ is given explicitly by

ω∞ = ‖Ω‖−2/(n−2)
χ∞ χ∞,

where χ∞ is the unique Kähler Ricci-flat metric in the cohomology class [χ̂], and

‖Ω‖2
χ∞ = n!

[χ̂]n
∫

X

in
2
Ω ∧ Ω̄.

To conclude this section, we note that we cannot expect the Anomaly flow on
Kähler manifolds to converge starting from an arbitrary metric. This is due to
the relationship between the Kähler cone and the balanced cone. Indeed, an initial
conformally balanced metric determines a balanced class

[‖Ω‖ω(0)ω(0)n−1] ∈ H
n−1,n−1
BC (X),

and the evolving metric ω(t) remains in this class (2.41). Stationary points of the
flow are Kähler metrics, so convergence of the flow would produce a Kähler metric
in the balanced class of the initial metric. However, there exists Kähler manifolds
with balanced classes which do not admit any Kähler metric [FX14, TO09].
Understanding which balanced classes come from Kähler classes is an interesting
problem in Hermitian geometry [FX14], and we hope that future work studying the
Anomaly flow and its singularities will provide insight.

2.4 Anomaly Flow with α′ Corrections

We will now restrict our attention to Calabi–Yau threefolds. In this section, we
modify the Anomaly flow (2.40) by adding α′ correction terms. The parameter
α ∈ R will be referred to as the slope parameter.

Let X be a compact complex manifold of dimension n = 3. Suppose X admits a
nowhere vanishing holomorphic (3, 0) form Ω . We first study the case of threefolds
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with vanishing second Chern class, so we assume that c1(X) = c2(X) = 0.
Consider the flow

d

dt
(‖Ω‖ωω2) = i∂∂̄ω − α′

4
TrRm ∧ Rm, (2.62)

d(‖Ω‖ω(0)ω(0)n−1) = 0.

Recall that we use the notation Rm for the endomorphism-valued (1, 1) form which
is the curvature of the Chern connection of ω. When α′ = 0 and n = 3, this flow
becomes (2.40) from Sect. 2.3. Stationary points ω∞ satisfy

α′

4
Tr Rm ∧ Rm = i∂∂̄ω∞, d(‖Ω‖ω∞ω2∞) = 0,

which can be viewed as a sort of non-Kähler analog of the Kähler–Einstein equation

Tr Rm = λω, dω = 0.

More generally, if c2(X) �= 0, we can add a cancellation term Φ ∈ Ω2,2(X,R) with
[Φ] = c2(X), and consider the flow

d

dt
(‖Ω‖ωω2) = i∂∂̄ω − α′

4
(Tr Rm ∧ Rm−Φ(t)), (2.63)

d(‖Ω‖ω(0)ω(0)2) = 0.

Flows of type (2.63) are called Anomaly flows, as introduced in joint work with
Phong and Zhang [PPZ218, PPZ318]. The motivation for studying this evolution
equation comes from theoretical physics, which we describe next.

2.4.1 Hull–Strominger System

Our motivation for adding the α′ correction terms comes from heterotic string
theory. The Hull–Strominger system [HU186, ST86] is the following system of
equations on a Calabi–Yau threefold

F ∧ ω2 = 0, F 0,2 = F 2,0 = 0, (2.64)

i∂∂̄ω − α′

4
(TrRm ∧ Rm− TrF ∧ F) = 0, (2.65)

d(‖Ω‖ωω2) = 0. (2.66)
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The system is a coupled equation for a Hermitian meric ω on X and a metric h on a
given holomorphic vector bundle E → X. Here Rm, F are the curvature forms of
unitary connections of ω, h, viewed as endomorphism valued 2-forms.

Equation (2.64) is the Hermitian-Yang-Mills equation, which admits solutions
as long as E is stable of degree zero with respect to ω by the Donaldson-
Uhlenbeck-Yau theorem [DO85, UY85] (see [LY86, BU88] for its extension to
the Hermitian setting). Equation (2.65) is the Green-Schwarz anomaly cancellation
equation from theoretical physics [GS87]. All together, the system was introduced
by Hull and Strominger as a model for the heterotic string admitting non-zero
torsion, generalizing the equation proposed by Candelas–Horowitz–Strominger–
Witten [CA851] where the threefold is required to be Kähler with Ricci-flat metric.

For example, Kähler Calabi–Yau threefolds provide solutions to the Hull–
Strominger system. In this case, we take the gauge bundle E to be the tangent
bundle E = T 1,0X, and h = ω to be Kähler Ricci-flat. Then (2.64) and (2.65) hold
automatically, and by the argument in Sect. 2.2.3.1, we see that ω is conformally
balanced.

Going beyond Kähler geometry, there are many diverse examples of solutions
using various gauge bundles E. The first solutions in the mathematics literature
were obtained by Li and Yau [LY05] by perturbing the Kähler solutions, and the
first solutions on non-Kähler manifolds were obtained by Fu and Yau [FY08]. Since
then, there have been constructions of parallelizable examples [FIUV14, FIUV14,
FY15, OUV17, GR11], solutions on Kähler manifolds for arbitrary admissible
gauge bundles [AG121, AG122], solutions on fibrations over a Riemann surface
[FHP17], and non-compact examples [FY09, FE17, HIS16].

The Hull–Strominger system is interesting from the point of view of canonical
metrics on non-Kähler Calabi–Yau threefolds, as it is a curvature constraint (2.65)
combined with a closedness condition (2.66). There are also other proposed optimal
metrics in non-Kähler complex geometry: e.g. constant Chern scalar curvature
[ACS17], vanishing Chern–Ricci curvature [TW10, TW17, STW17], Chern–Ricci
flat balanced [FE17], just to name a few.

As a system of partial differential equations, the Hull–Strominger system is fully
nonlinear. It can be viewed as an analog of the σ2 equation, but as a full system for
the metric tensor gk̄j . There has been much progress in the study of scalar σk-type
equations in complex geometry e.g. [BL05, CJY15, DDT17, DL15, DK17, DPZ18,
HMW10, PPZ116], but very little is known about PDE systems which are nonlinear
in second derivatives.

To study the Hull–Strominger system, it was proposed in [PPZ218] to use the
Anomaly flow with Φ = Tr F ∧ F coupled to the Donaldson heat flow [DO85].

h−1∂th = −ΛωF,

d

dt
(‖Ω‖ωω2) = i∂∂̄ω − α′

4
(TrRm ∧ Rm− Tr F ∧ F),

d(‖Ω‖ω(0)ω(0)2) = 0.
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Stationary points solve the Hull–Strominger system. The Anomaly flow, when
restricted to certain ansatzes, provides new nonlinear equations arising naturally
from geometry and physics [PPZ217, PPZ317]. We will describe some of these new
equations in the following sections.

2.4.2 Evolution of the Metric

We now derive the evolution of the metric tensor ω = igk̄j dz
j ∧ dz̄k under the

Anomaly flow (2.63). The argument given here is similar to the one from Sect. 2.3.1.
We write

d

dt
(‖Ω‖ωω2) = Ψ,

with

Ψ =
[
i∂∂̄ω − α′

4
(TrRm ∧ Rm− Φ)

]
.

By Lemma 2.6, we already know that the trace of the evolution of the metric is
given by

Tr ω̇ = 6

‖Ω‖ω
Ψ ∧ ω

ω3 ,

which combined with identity (2.29) is

Tr ω̇ = 1

2‖Ω‖ω TrΨ. (2.67)

As in (2.43), we expand the flow to the following expression

− 1

2
(Tr ω̇)ω2 + 2ω̇ ∧ ω − 1

‖Ω‖ω Ψ = 0. (2.68)

We apply the Hodge star operator � with respect to ω to both sides of the equation.
By identities (2.44), (2.48), and �ω2 = 2ω, the components of the resulting (1, 1)
form are given by

0 = �

[
− 1

2
(Tr ω̇)ω2 + 2ω̇ ∧ ω − 1

‖Ω‖ω Ψ

]

k̄j

= −2i∂tgk̄j + i(Tr ω̇)gk̄j −
1

‖Ω‖ω
[
−igsr̄Ψr̄k̄sj +

i

2
(Tr Ψ )gk̄j

]
. (2.69)
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Substituting the expression for Tr ω̇ (2.67) into (2.69), we see that the TrΨ terms
cancel and the evolution of the metric is

d

dt
gk̄j = 1

2‖Ω‖ω gsr̄Ψr̄k̄sj .

From here, we can derive an explicit expression for the evolution of the metric.

Theorem 2.9 ([PPZ318]) Suppose ω(t) solves the Anomaly flow (2.63). Then the
metric evolves by

d

dt
gk̄j = 1

2‖Ω‖ω
[
− R̃k̄j + gsr̄gnm̄Tm̄sj T̄nr̄ k̄ −

α′

4
gsr̄ (R[k̄s

α
βRr̄j ]βα −Φr̄k̄sj )

]
,

(2.70)

where [, ] denotes antisymmetrization in both barred and unbarred indices.

Proof We have already established

d

dt
gk̄j = 1

2‖Ω‖ω
[
− gsr̄ (i∂∂̄ω)r̄sk̄j −

α′

4
gsr̄ (TrRm ∧ Rm−Φ)r̄k̄sj

]
.

By (2.51), we have an expression for gsr̄ (i∂∂̄ω)r̄k̄sj in terms of Ricci curvature and
torsion. This gives the desired expression. ��

We note that (2.70) is a fully nonlinear system, as it is quadratic in the
curvature. For other geometric flows which are quadratic in the curvature, see e.g.
[FR85, GGI13, OL09]. Since the flow is fully nonlinear, we cannot expect short-time
existence for arbitrary initial data. However, from (2.70), we see that the right-hand
side is parabolic if the α′ correction terms are small. The full details are provided in
[PPZ218].

Theorem 2.10 ([PPZ218]) Let ω0 be a conformally balanced Hermitian metric on
X satisfying |α′Rm| < 1

2 . Then there exists T > 0 such that the Anomaly flow (2.63)
admits a unique solution ω(t) on [0, T ) with ω(0) = ω0.

Given any metric gk̄j , we can find λ $ 1 so that λgk̄j satisfies |α′Rm| % 1.
This is simply because Rm(λg) = Rm(g) (with Rm defined as in (2.14)). Thus
to guarantee short-time existence starting from a given metric, we can rescale the
size of the manifold, or choose a small value for α′. For several examples [FHP17,
PPZ418], the condition |α′Rm| % 1 is preserved along the flow, which suggests
that it is a natural condition.
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2.4.3 Anomaly Flow with Fu–Yau Ansatz

2.4.3.1 Scalar Reduction

In this section, we return to the construction of Goldstein–Prokushkin described in
Sect. 2.2.3.4. We first recall the setup.

The base of the fibration (S, ω̂,ΩS) is a Calabi–Yau surface with Kähler
Ricci-flat metric ω̂ and nowhere vanishing holomorphic (2, 0) form ΩS . Let
ω1, ω2 ∈ 2πH 2(S,Z) be anti-self-dual (1, 1) forms. Using this data, Goldstein
and Prokushkin [GO04] constructed a T 2 fibration π : X → S which is non-Kähler
but admits conformally balanced metrics. Their construction builds on earlier ideas
of Calabi and Eckmann [CE53], which we discussed in detail in Sect. 2.1.4.2.

We recall that the connections of the U(1) principal bundles forming the S1 fibers
of X define θ ∈ Ω1,0(X) satisfying

∂θ = 0, ∂̄θ = ω1 + iω2.

Furthermore,

Ω = ΩS ∧ θ

is a nowhere vanishing holomorphic (3, 0) form on X, and the family of metrics

ωu = euω̂ + iθ ∧ θ̄ , (2.71)

is conformally balanced for any u : S → R. These metrics were used by Fu and
Yau [FY08, FY07] to solve the Hull–Strominger system on the threefold X.

In this section, we will start the Anomaly flow with a metric of this form, and
check whether the ansatz is preserved. For this, we compute (see (2.39))

‖Ω‖ωu = e−u, ‖Ω‖ωuω
2
u = euω̂2 + 2ω̂ ∧ iθ ∧ θ̄ , (2.72)

and

i∂∂̄ωu = i∂∂̄eu ∧ ω̂ − ∂̄θ ∧ ∂θ̄ = i∂∂̄eu ∧ ω̂ − (ω2
1 + ω2

2). (2.73)

Next, we must compute the curvature terms. This calculation was done by Fu and
Yau in [FY08].

Theorem 2.11 ([FY08]) The curvature of the Chern connection of ωu satisfies

TrRm(ωu) ∧ Rm(ωu) = Tr Rm(ω̂) ∧ Rm(ω̂)+ 2∂∂̄u ∧ ∂∂̄u+ 4i∂∂̄(e−uρ),
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where ρ ∈ Ω1,1(S,R) is given by ρ = ρk̄j dzj ∧ dz̄k with

ρk̄j = i

2
ĝpq̄ (ω1 − iω2)q̄j (ω1 + iω2)k̄p. (2.74)

Proof We work in a local coordinate chart. Since ∂̄(ω1 + iω2) = 0, there are local
functions ϕ1, ϕ2 such that

∂̄(ϕidz
i) = ω1 + iω2, (2.75)

where z1, z2 are local holomorphic coordinates on the base S . Define

θ0 = θ − ϕ1dz
1 − ϕ2dz

2.

Then {dz1, dz2, θ0} is a local holomorphic frame of Ω1,0(X). The metric can be
written as

ωu = (euĝk̄j + ϕkϕj )idz
j ∧ dz̄k

+ϕk iθ0 ∧ dz̄k + ϕk idz
k ∧ θ0 + iθ0 ∧ θ0.

Let B = (ϕ1, ϕ2). Then the metric in this local frame is given by

g =
[
(euĝ + B∗B) B∗

B 1

]
.

Its inverse is

g−1 =
[

e−uĝ−1 −e−uĝ−1B∗
−e−uBĝ−1 1 + e−uBĝ−1B∗

]
.

The curvature in this frame is Rm = ∂̄g−1∂g. Computing at a point p ∈ X, we may
assume that p = 0 and B(0) = 0. The curvature at p is then

Rm =
[
R1̄1 R1̄2
R2̄1 R2̄2

]
,

with

R1̄1 = ∂̄∂u · I + R̂m− e−uĝ−1∂B∗ ∧ ∂̄B

R2̄1 = −∂̄B ∧ ∂u− ∂̄Bĝ−1∂ĝ + ∂̄∂B

R1̄2 = ∂̄(e−uĝ−1∂B∗)

R2̄2 = −e−u∂̄Bĝ−1∂B∗.
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We must compute

Tr Rm ∧ Rm = Tr R1̄1R1̄1 + Tr R1̄2R2̄1 + TrR2̄1R1̄2 + TrR2̄2R2̄2.

Expanding this out, we obtain the following expression.

TrRm ∧ Rm

= 2(∂̄∂u)2 + Tr R̂m
2 + e−2uTr (ĝ−1∂B∗∂̄Bĝ−1∂B∗∂̄B)

+ 2∂∂̄uTr R̂m− 2e−u∂̄∂uTr ĝ−1∂B∗∂̄B − 2e−uTr(R̂mĝ−1∂B∗∂̄B)

− 2Tr(∂̄(e−uĝ−1∂B∗)∂̄B∂u)− 2Tr(∂̄(e−uĝ−1∂B∗)∂̄Bĝ−1∂ĝ)

+ 2Tr(∂̄(e−uĝ−1∂B∗)∂̄∂B)+ e−2u∂̄Bĝ−1∂B∗∂̄Bg−1∂B∗.

Using the identities

−2Tr ∂̄(e−uĝ−1∂B∗)∂̄Bĝ−1∂ĝ = −2∂̄Tr(e−uĝ−1∂B∗∂̄Bĝ−1∂ĝ)

+2Tr(e−uĝ−1∂B∗∂̄B R̂m),

and

−2e−u∂̄∂uTr(ĝ−1∂B∗∂̄B) = −2∂̄Tr(e−uĝ−1∂B∗∂̄B∂u)

+2Tr ∂̄(e−uĝ−1∂B∗)(∂̄B∂u),

as well as Tr R̂m = 0, we cancel a few terms and are left with

TrRm ∧ Rm = 2(∂̄∂u)2 + TrR̂m
2 − 2∂̄Tr(e−uĝ−1∂B∗∂̄Bĝ−1∂ĝ)

−2∂̄Tr(e−uĝ−1∂B∗∂̄B∂u)+ 2∂̄Tr(e−uĝ−1∂B∗∂̄∂B).

Using ∂ĝ−1 = −ĝ−1 ∂ĝ ĝ−1, this expression simplifies to

TrRm ∧ Rm = 2(∂̄∂u)2 + Tr R̂m ∧ ˆRm+ 2∂̄∂Tr(e−uĝ−1∂B∗ ∧ ∂̄B).

We have by definition

∂B∗ ∧ ∂̄B =
(
∂iϕ1∂k̄ϕ1 ∂iϕ1∂k̄ϕ2

∂iϕ2∂k̄ϕ1 ∂iϕ2∂k̄ϕ1

)
dzi ∧ dz̄k.

Using (2.75), we obtain (2.74). ��
We now add a gauge bundle to the system. Let ES be a stable vector bundle of

degree zero over the base Kähler surface (S, ω̂). By the Donaldson-Uhlenbeck-Yau
theorem [DO85, UY85], we may equip ES with a metric HS satisfying

F(HS) ∧ ω̂ = 0.
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On the threefold, we consider the bundle E = π∗ES → X with metric H = π∗HS .
This metric is Hermitian–Yang–Mills with respect to the Fu–Yau ansatz ωu, since

F(H)∧ ω2
u = 0

for any u ∈ C∞(S,R).
Putting together everything computed so far, we have

i∂∂̄ωu − α′

4
(TrRm(ωu) ∧ Rm(ωu)− TrF(H) ∧ F(H))

= i∂∂̄(euω̂ − α′e−uρ)− α′

2
(∂∂̄u) ∧ (∂∂̄u)+ μ, (2.76)

where μ ∈ Ω2,2(S,R) is given by

μ = α′

4
(TrF(HS) ∧ F(HS)− TrRm(ω̂) ∧ Rm(ω̂))− (ω2

1 + ω2
2).

Combining (2.72) and (2.76), we see that the Anomaly flow reduces to the following
scalar fully nonlinear PDE on the base manifold S.

d

dt
eu ω̂2 = i∂∂̄(euω̂ − α′e−uρ)+ α′

2
(i∂∂̄u)2 + μ. (2.77)

This evolution equation can also be written as

d

dt
eu = 1

2

[
Δω̂e

u − α′ i∂∂̄(e−uρ)

ω̂2/2! + α′σ̂2(i∂∂̄u)+ μ

ω̂2/2!
]
.

Here σ̂2(i∂∂̄u) = (i∂∂̄u)2ω̂−2 is the determinant of the complex Hessian of u with
respect to ω̂.

By standard parabolic theory, this equation admits a short-time solution as long as

ω′ = euω̂ + α′e−uρ + α′

2
i∂∂̄u > 0.

2.4.3.2 Stationary Points

For stationary points of (2.77) to exist, integrating both sides shows that we require

∫

S

μ = 0,
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which is the cohomological constraint

α′

4

∫

S

[
TrRm(ω̂) ∧ Rm(ω̂)− TrF(HS) ∧ F(HS)

] =
∫

S

[|ω1|2 + |ω2|2] ω̂
2

2! .

It is possible to construct data (S,ES, ω1, ω2, α
′) satisfying this condition. Indeed,

since we assume c1(S) = c1(ES) = 0, the constraint is

α′

4
[c2(S)− c2(ES)] =

∫

S

[∣∣∣
ω1

2π

∣∣∣
2

ω̂
+

∣∣∣
ω2

2π

∣∣∣
2

ω̂

]
ω̂2

2
.

Note that when seeking solutions to the Hull–Strominger system, after rescaling
ωu  → λωu in (2.65) we can assume that α′

4 ∈ Z. Explicit examples are exhibited in
[FY08, FY07]; when α′ > 0, we may take S to be a K3 surface and use the theory
of stable bundles over K3 surfaces to construct ES , and when α′ < 0 we may take
S to be either a torus T 4 or a K3 surface.

The main theorem of Fu–Yau guarantees the existence of smooth solutions to the
Hull–Strominger system when the cohomological condition

∫
S μ = 0 is satisfied.

Theorem 2.12 ([FY08, FY07]) Let (S, ω̂) be a Kähler surface, α′ ∈ R, ρ ∈
Ω1,1(S,R), and μ ∈ Ω2,2(S,R). Suppose μ satisfies the condition

∫
S
μ = 0. Then

there exists a smooth function u : S → R solving

0 = i∂∂̄(euω̂ − α′e−uρ)+ α′

2
(i∂∂̄u)2 + μ,

such that ω′ = euω̂ + α′e−uρ + α′
2 i∂∂̄u > 0.

For further work relating to the Fu-Yau solutions, we refer to [CHZ118, CHZ218,
GA40, LE11, PPZ117, PPZ116, PPZ216, PPZ118].

2.4.3.3 Long-Time Existence

The first observation in the Anomaly flow with Fu-Yau ansatz is the following
conserved quantity.

Lemma 2.9 Let ω(t) = eu(t)ω̂+ iθ ∧ θ̄ be a solution to the Anomaly flow with the
cohomology condition

∫
S μ = 0 satisfied. Then the conservation law

d

dt

∫

X

‖Ω‖ωω3 = 0,

holds along the flow.
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Proof In the case of the Fu-Yau ansatz ω = euω̂ + iθ ∧ θ̄ , by (2.72) we have

∫

X

‖Ω‖ωω3 =
∫

X

3euω̂2 ∧ iθ ∧ θ̄ .

Using
∫
S
μ = 0, from (2.77) we see that

d

dt

∫

S

eu ω̂2 = 0

is a conserved quantity. ��
Together with D.H. Phong and X.-W. Zhang, we prove the following result.

Theorem 2.13 ([PPZ418]) There exists L0 $ 1 depending only on (S, ω̂), μ, ρ,
α′ with the following property. Suppose

∫
S μ = 0. Start the Anomaly flow on the

fibration π : X → S with initial data

ω(0) = Lω̂ + iθ ∧ θ̄ ,

for any constant L ≥ L0. Then the flow exists for all time, and converges to a
solution to the Hull–Strominger system.

For initial data with small L, we suspect that the flow will develop singularities.
We will discuss in Sect. 2.4.4.1 an example of the Anomaly flow over Riemann
surfaces where this behavior is observed.

Different choices of L correspond to different balanced classes of the stationary
point. We know that the balanced class [‖Ω‖ωω2] ∈ H 4(X,R) is preserved by the
Anomaly flow, and in this case

[‖Ω‖ωω2] = [euω̂2] + 2[ω̂ ∧ iθ ∧ θ̄ ].

The class [euω̂2] ∈ H 4(S,R) is a top cohomology class on the Kähler surface S,
and is therefore parametrized by the integrals

∫

S

euω̂2 ∈ R.

Therefore the choice of
∫
S
euω̂2 in the initial data is related to the choice of balanced

class of the evolving metric.
As an aside, we note that in general, the conservation of the balanced class

[‖Ω‖ωω2] ∈ H
2,2
BC(X) along the Anomaly flow should lead to conserved quantities,

which may also be useful when studying the flow beyond the Fu–Yau ansatz.
The Bott–Chern cohomology of complex manifolds differs in general from the de
Rham cohomology, and we refer to [AT13, AN13, ADT16] for recent progress on
computing Bott–Chern cohomology.
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2.4.4 Nonlinear Blow-Up

In this section, we briefly describe a few more examples and illustrate some of the
nonlinear phenomena which can occur.

2.4.4.1 Fibrations over Riemann Surfaces

We return to the construction of fibrations p : X → Σ over a Riemann surface
(Σ, ω̂) of genus g ≥ 3 described in Sect. 2.2.3.5. We recall that these were non-
Kähler threefolds, and the Fei ansatz metrics

ωf = e2f ω̂ + ef ω′,

are conformally balanced for any smooth function f : Σ → R.
It is not immediately clear that this family of metrics will be preserved by

the Anomaly flow. It turns out that this is indeed the case, and the flow reduces
to a single scalar parabolic PDE for f on the base Σ of the fibration. The key
computation in [FE15, FHP17] gives the identity

i∂∂̄ωf − α′

4
TrRm(ωf ) ∧ Rm(ωf ) = (i∂∂̄u− κuω̂) ∧ ω′,

where

u = ef + α′

2
κe−f .

and κ ≤ 0 is the Gauss curvature of the background metric ω̂. Since

‖Ω‖ωf ω
2
f = 2volT 4 + 2ef ω̂ ∧ ω′,

we can factor out ω′ in the formulation of the Anomaly flow as (2, 2) forms, and the
flow reduces to

∂t e
f = 1

2

[
ĝzz̄∂z∂z̄

(
ef + α′

2
κe−f

)
− κ

(
ef + α′

2
κe−f

)]
, (2.78)

on the Riemann surface (Σ, ω̂). The flow admits a short-time solution as long as

ef − α′

2
κe−f > 0,

which is automatic if α′ > 0. In [FHP17], together with T. Fei and Z. Huang, we
study the asymptotics of the flow.
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Theorem 2.14 ([FHP17]) There exists L0 $ 1 depending on (Σ, ω̂) and α′ with
the following property. Start Anomaly flow with initial data

ω(0) = L2ω̂ + Lω′,

for any constant L ≥ L0. Then the flow exists for all time and

ωf

1
3!

∫
X
‖Ω‖ωf ω

3
f

→ p∗ωΣ,

where ωΣ = q2
1 ω̂ is a smooth metric on Σ , and q1 > 0 is the first eigenfunction of

the operator −Δω̂ + 2κ .

In the above theorem, we have long-time existence, but unlike Theorem 2.13,
‖Ω‖ωf → 0 as t → ∞. This can be understood by the fact that there are no
stationary points in the large radius regime ef $ 1. We note that the result in
[FHP17] is more general than the one stated above; the asymptotic behavior holds
if the initial data satisfies u(x, 0) ≥ 0.

For initial data with small L, finite-time blow-up can occur. Indeed, following
[FHP17], we consider the case when α′ > 0. If

L2 <
8α′π2(g − 1)2

‖κ‖L∞(Σ)Vol(Σ, ω̂)2 , (2.79)

then the flow encounters a singularity in finite time. To see this, we compute using
the evolution equation (2.78), and use that κ ≤ 0 and that the Laplacian integrates
to zero.

d

dt

∫

Σ

ef ω̂ = 1

2

∫

Σ

|κ |ef ω̂ − α′

4

∫

Σ

κ2e−f ω̂.

By the Cauchy–Schwarz inequality and the Gauss–Bonnet theorem,

(4π(g − 1))2 =
(∫

Σ

|κ |ω̂
)2

≤
(∫

Σ

ef ω̂

)(∫

Σ

κ2e−f ω̂

)
.

Therefore

d

dt

[ ∫

Σ

ef ω̂

]
≤ ‖κ‖L∞(Σ)

2

[ ∫

Σ

ef ω̂

]
− α′

4
(4π(g − 1))2

[ ∫

Σ

ef ω̂

]−1

.

The ODE for A(t) = ∫
ef is then

d

dt
A2 ≤ ‖κ‖L∞A2 − 8α′π2(g − 1)2,
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which can be rearranged as

d

dt

(
(‖κ‖L∞ A2 − 8α′π2(g − 1)2)e−‖κ‖∞ t

)
≤ 0.

Therefore

|κ‖L∞A(t)2

≤ 8α′π2(g − 1)2 −
[

8α′π2(g − 1)2 − ‖κ‖L∞Vol(Σ)2L2
]

exp(‖κ‖L∞ t),

and we see that the flow must terminate in finite time if (2.79) holds. In fact,
‖Ω‖ωf → ∞ in finite time.

2.4.4.2 Lie Groups

For our final example, we will study the Anomaly flow using unitary connections
beyond the Chern connection. Let X be a complex Lie group of dimension n = 3,
and let {e1, e2, e3} be a frame of holomorphic vector fields. Let {e1, e2, e3} be the
dual frame of holomorphic (1, 0) forms. Denote the structure constants by

[ea, eb] = cdabed .

Consider the Hermitian metric

ω̂ = i
∑

a

ea ∧ ēa.

A section of T 1,0X can be expressed as V = V aea . By definition (2.8), Strominger–
Bismut connection ∇+ of ω̂ acts in the frame {ea} by

∇+
b V a = ∇C

b V a − T a
bcV

c, ∇+
b̄
V a = ∇C

b̄
V a + T̄cb̄āV

c,

where we now denote the Chern connection by ∇C for clarity. Since gāb = δab in
this frame, ∇C = d . Furthermore,

T = i∂ω = −1

2
cabde

d ∧ eb ∧ ēa.

Therefore

∇+
b V a = ∂bV

a + cabdV
d, ∇+

b̄
V a = ∂b̄V

a − cdbaV
d.
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Along the Gauduchon line ∇(κ) = (1 − κ)∇C + κ∇+, we have

∇(κ)
b V a = ∂bV

a + A(κ)
b
a
cV

c, ∇(κ)

b̄
V a = ∂b̄V

a + A(κ)
b̄
a
cV

c,

with

A(κ)
b
a
d = κ cabd, A(κ)

b̄
a
d = −κ cdba.

The curvature form is defined by Rm = dA+ A ∧ A. More specifically,

Rm = 1

2
Rkj

a
b e

j ∧ ek + 1

2
Rk̄j̄

a
b ē

j ∧ ēk + Rk̄j
a
b e

j ∧ ēk,

where the components are

Rkj
a
b = ∂ej Ak

a
b − ∂ekAj

a
b − crjkAr

a
b + Aj

a
cAk

c
b − Ak

a
cAj

c
b,

Rk̄j̄
a
b = ∂ēj Ak̄

a
b − ∂ēkAj̄

a
b − cr jkAr̄

a
b + Aj̄

a
cAk̄

c
b − Ak̄

a
cAj̄

c
b,

Rk̄j
a
b = ∂ej Ak̄

a
b − ∂ēkAj

a
b + Aj

a
cAk̄

c
b − Ak̄

a
cAj

c
b.

Using the expression for the connection A(κ) on the Gauduchon line, the compo-
nents are explicitly

Rkj
p
q = −κcrjkc

p
rq + κ2cpjrc

r
kq − κ2cpkrc

r
jq,

Rk̄j̄
p
q = κcrjkcqrp + κ2crjpcqkr − κ2crkpcqjr ,

Rk̄j
p
q = κ2(−cpjrcqkr + cr kpc

r
jq).

The surprising computation of Fei–Yau [FY15] shows that TrRm ∧ Rm is actually
a (2, 2) form, and its (2, 2) part is given by

(TrRm ∧ Rm)k̄�̄ij = 2κ2(2κ − 1)crk�csrpcqij csqp.

We refer to [FY15] for the full calculation.
We now specialize to the Lie group SL(2,C) with structure constants cijk = εijk

the Levi-Civita symbol. Let Ω = e1 ∧ e2 ∧ e3. We also fix κ = 1 for simplicity, so
that we only consider the Strominger–Bismut connection ∇+. In this case, by two
applications of the contracted epsilon identity (2.35), we derive

(Tr Rm+ ∧ Rm+)k̄�̄ij = 2crk�c
q
ij [ csrpcsqp ]

= 2crk�cq ij [2δrq]
= 4(δkiδ�j − δkj δ�i).
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Since ω̂ = iδike
k ∧ ēi , we have

(TrRm+ ∧ Rm+)k̄�̄ij = 2(ω̂2)k̄�̄ij .

By (2.36), we know i∂∂̄ω̂ is also proportional to ω̂2.

i∂∂̄ω̂ = 1

2
ω̂2.

By scaling the metric ω̂, we see that the diagonal ansatz

ω(t) = λ2(t)ω̂,

is preserved by the Anomaly flow

d

dt
(‖Ω‖ωω2) = i∂∂̄ω − α′

4
TrRm+ ∧ Rm+,

and becomes the ODE

d

dt
λ = 1

2
(λ2 − α′).

In the large radius regime, if we start with

ω(0) = Lω̂

where L $ 1, then ‖Ω‖ω(t) → 0 in finite-time. Outside of this region, the behavior
is sensitive to initial data and sign of α′. For example, if α′ > 0, then for small initial
λ, we may have that ‖Ω‖ω(t) → ∞ in finite-time.
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cated to the classification of non-Kählerian surfaces. In the first three sections we
present the classical theory:

• The Enriques Kodaira classification for surfaces and the classes of non-Kählerian
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• Kato surfaces: construction, classification and moduli.
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3.1 The Enriques-Kodaira Classification: Classes
of Non-Kählerian Surfaces

3.1.1 The Kodaira Dimension and the Algebraic Dimension

Recall that the Kodaira dimension of a connected, compact complex manifold X

can be defined as follows:

kod(X) :=
⎧
⎨

⎩

−∞ if ∀n ∈ N∗ h0(K⊗n) = 0,

min

{
k ∈ N|

(
h0(K⊗n)

nk

)

n
is bounded

}
if ∃n ∈ N∗ h0(K⊗n) > 0

.

Therefore the Kodaira dimension measures the growth of the plurigenera

Pn(X) := h0(K⊗n
X )

of X as n → ∞. Note that kod(X) = 0 if and only if 0 � Pn(X) � 1 for any
n, and there exists n such that Pn(X) = 1. For d > 0 one has kod(X) = d if and
only if the sequence (Pn(X))n has polynomial growth of degree d for n → ∞.
Recall also that the algebraic dimension a(X) of a compact complex manifold X is
the transcendence degree of its field of meromorphic functions M(X). One has the
following general inequality which compares the three dimensions associated with
complex manifolds:

kod(X) � a(X) � dim(X).

The equality a(X) = dim(X) holds if and only if X is Moishezon, i.e. it has a
modification which is a projective algebraic manifold. The plurigenera, the Kodaira
dimension and the algebraic dimension are bimeromorphic invariants of complex
manifolds.

A compact complex manifold is called Kählerian if it admits a Kähler metric.
Kählerianity implies strong topological properties. For instance, using Hodge
theory, it follows that the Betti numbers of any of any Kählerian compact complex
n-dimensional manifold X satisfy the conditions: b2k(X) > 0 for 0 � k � n, and
b2k+1(X) ∈ 2N for any k.

Throughout this article by a complex surface we mean a compact, connected
2-dimensional complex manifold. For surfaces we have a simple Kählerianity
criterion:

Theorem 3.1.1 A complex surface is Kählerian (it admits a Kähler metric) if and
only if b1(X) is even.

Theorem 3.1.1 has been first proved indirectly, using the Enriques-Kodaira clas-
sification of complex surfaces, classical Kählerianity criteria for elliptic surfaces,
and Siu’s theorem stating that any K3 surface is Kählerian [Siu]. A different proof,
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which gives directly and uniformly the existence of a Kähler metric on any surface
with even first Betti number, is due to Buchdahl [Bu2], [Bu3].

For surfaces we also have a simple algebraicity condition: a complex surface is
projective algebraic if only if a(X) = 2.

3.1.2 Elliptic Surfaces

A surface X is called elliptic if it admits a surjective map f : X → Y to a Riemann
surface Y whose generic fibre is an elliptic curve. Such a map is called an elliptic
fibration.

Definition 3.1.2 (See [BHPV, section V.5], [Pl]) An elliptic fibration f : X → Y

is called

(1) relatively minimal, if X contains no vertical (−1)-curve.
(2) elliptic bundle, if it is a locally trivial fibre bundle on Y with an elliptic curve as

standard fibre.
(3) principal elliptic bundle, if it is an elliptic bundle satisfying one of the following

two equivalent conditions:

(a) the structure group of the bundle reduces to the group of translations of the
standard fibre.

(b) R1f∗(OX) � OY .

(4) elliptic quasi-bundle, if one of the following equivalent two conditions is
satisfied:

(a) any fibre of f is smooth elliptic, or a multiple of a smooth elliptic curve.
(b) the holomorphic type of a general fibre of f is constant.

(5) principal elliptic quasi-bundle, if it is an elliptic quasi-bundle and

R1f∗(OX) � OY .

Principal elliptic quasi-bundles have a simple structure [Pl, Proposition 1.8]:

Proposition 3.1.3 Any principal elliptic quasi-bundle f : X → Y can be obtained
by applying a finite sequence of logarithmic transformations to a topologically
trivial principal elliptic bundle over Y .

This result can be used to describe effectively moduli spaces of surfaces which
are total spaces of principal elliptic quasi-bundles, so it can be regarded as a
classification theorem for this class of surfaces. On the other hand, by Plantiko [Pl,
Lemma 1.1], we know that any relatively minimal elliptic fibration with non-
Kählerian total space X is a principal elliptic quasi-bundle:
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Proposition 3.1.4 Let f : X → Y be a relatively minimal elliptic fibration with
non-Kählerian total space X. Then f is a principal elliptic quasi-bundle, so it
can be obtained by applying a finite sequence of logarithmic transformations to
a topologically trivial principal elliptic bundle over Y .

Therefore, by Proposition 3.1.4, the classification of non-Kählerian minimal
elliptic surfaces reduces to the classification of pairs (f0 : X0 → Y,&), where
f0 is a topologically trivial principal elliptic bundle, and & a finite sequence
of logarithmic transformations chosen such that the first Betti number of the
resulting surface is odd. This condition can be written down explicitly [Pl, Lemma
1.10]. Therefore, in conclusion, the classification of non-Kählerian minimal elliptic
surfaces is well understood.

3.1.3 The Enriques-Kodaira Classification

The Enriques-Kodaira list gives a coarse classification of minimal complex surfaces
taking into account their Kodaira dimension. We explain briefly this list pointing out
and describing the classes of non-Kählerian surfaces.

3.1.3.1 Surfaces with kod(X) = −∞

Any minimal surface X with kod(X) = −∞ belongs to one of the following
classes:

1. Minimal rational surfaces: surfaces biholomorphic to P2 or Hirzebruch surfaces.
2. Ruled surfaces of genus g � 1. A surface in this class is biholomorphic to P(E),

where E is a holomorphic rank 2-bundle on a Riemann surface of genus g � 1.
3. Minimal class VII surfaces. A class VII surface is a complex surface X with

b1(X) = 1 and kod(X) = −∞.

The surfaces in the first two classes are algebraic. Class VII surfaces are
non-Kählerian, and are not classified yet. This important gap makes the Enriques-
Kodaira classification incomplete. On the other hand the above list shows that, in the
Kählerian case, the condition kod(X) = −∞ is very restrictive: there are only few
families of Kählerian surfaces with this property, and these families can be described
explicitly. We will see that a similar result is expected in the non-Kählerian case: if
the standard conjecture on class VII surfaces is true, this class will be the union of
well understood subclasses, which can be described and classified explicitly. In other
words, the classification of class VII surfaces is a very challenging, longstanding,
still unsolved problem, but, if the expected conjecture is proved, we will have a clear
and explicit classification of these surfaces.
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3.1.3.2 Surfaces with kod(X) = 0

Any minimal surface X with kod(X) = 0 belongs to one of the following classes:

1. Bidimensional tori.
2. K3 surfaces.
3. Bielliptic surfaces.
4. Enriques surfaces.
5. Primary Kodaira surfaces.
6. Secondary Kodaira surfaces.

The surfaces in the first four classes are Kählerian. The set of possible algebraic
dimensions of bidimensional tori is {0, 1, 2}, so this class contains both algebraic
and non-algebraic surfaces. The same holds for K3 surfaces.

A bielliptic surface is the quotient of a product of elliptic curves by a finite group,
and is an elliptic quasi-bundle over an elliptic curve. An Enriques surface is the
quotient of an elliptic, algebraic K3 surface by an involution, and is an elliptic
fibration over a rational curve. Bielliptic surfaces and Enriques surfaces are all
projective algebraic.

Primary and secondary Kodaira surfaces are all non-Kählerian. Primary Kodaira
surfaces are topologically non-trivial elliptic principal bundles over elliptic curves.
A secondary Kodaira surface is the quotient of a primary Kodaira surface by a
finite group, and is a principal elliptic quasi-bundle over a rational curve. The
classification of Kodaira surfaces is well understood.

3.1.3.3 Surfaces with kod(X) = 1

Any surface X with kod(X) = 1 is elliptic. Note that there are many families of
elliptic surfaces X with kod(X) �= 1. For instance some tori, some K3 surfaces,
all bielliptic surfaces, all Enriques surfaces, all primary and secondary Kodaira
surfaces, and also some class VII surfaces are elliptic, but the Kodaira dimension
of all these surfaces is not 1. Surfaces with kod(X) = 1 are also called properly
elliptic surfaces.

3.1.3.4 Surfaces with kod(X) = 2

A surface X with kod(X) = 2 is called surface of general type. All these surfaces
are projective algebraic. The classification of these surfaces leads to two interesting
research topics which have been intensively studied with impressive success since
many decades [BHPV, chapter VII]:

• Problems related to the “geography” of the Chern numbers of minimal surfaces
of general type: which pairs (a, b) of positive integers can be realized as the
Chern numbers (c2

1(X), c2(X)) of a minimal surface X of general type?
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• Moduli problems: for a fixed pair (a, b) of positive integers describe the Gieseker
moduli space Mab of minimal surfaces X of general type with c2

1(X) = a,
c2(X) = b.

The moduli space Mab is quasi-projective. The proof is based on the fundamen-
tal properties of the pluricanonical maps of surfaces of general type. Recall that the
canonical model of a minimal surface of general type X is the (possibly singular)
normal surface Xcan obtained by blowing down the connected components of the
union of the (−2)-curves of X. The 5-canonical map

f5 : X → P(H 0(K⊗5
X )

∨
)

is everywhere defined, and induces an embedding

κ5 : Xcan ↪→ P(H 0(K⊗5
X )

∨
)

of the canonical model Xcan [BHPV, Theorem VII 5.1]. Therefore X can be
identified with the resolution of singularities of a normal projective subvariety X′

can
of a projective space PX, the pair (X′

can,PX) being canonically associated with X.
This shows that, although surfaces of general type are not fully classified, they are
explicit algebraic geometric objects, and are much better understood than class VII
surfaces.

The conclusion of this section is: taking into account the Kodaira dimension,
there are three classes of minimal, non-Kählerian surfaces:

1. minimal class VII surfaces; they have Kodaira dimension −∞.
2. primary and secondary Kodaira surfaces; they have Kodaira dimension 0.
3. non-Käherian properly elliptic surfaces; they have Kodaira dimension 1.

The surfaces in the second and third classes are all principal elliptic quasi-
bundles, and can be easily classified using Proposition 3.1.4. Class VII surfaces are
not classified yet, and this is a fundamental gap in the Enriques-Kodaira list. The
first properties of these surfaces and the standard conjectures on their classification,
will be presented in the next section.

3.2 Class VII Surfaces

3.2.1 Topological Properties

Let X be a class VII surface. The coefficients formula relating homology to
cohomology gives

H 1(X,Z) = Hom(H1(X,Z),Z) � Z, (3.1)
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so the cohomology group H 1(X,Z) is always an infinite cyclic group, although
H1(X,Z) might have torsion.

Using Corollary 12 proved in Appendix, we see that b1(X) = 1 implies q(X) =
1. Combining with pg(X) := h0(KX) = 0 we obtain

χ(OX) = 1 − q(X)+ pg(X) = 0.

The Noether formula [BHPV] gives now c2
1(X)+ c2(X) = 0. On the other hand we

have c2(X) = χ(X), and in our case the topological Euler-Poincaré characteristic
χ(X) of X coincides with b2(X). Therefore we obtain the following simple general
formula for the Chern numbers of a class VII surface:

− c2
1(X) = c2(X) = b2(X). (3.2)

In general, for a non-Kählerian surface X, we have b+(X) = 2pg(X) [BHPV],
so the vanishing of pg(X) gives b+(X) = 0, in other words the intersection form

IX : H 2(X,Z)/
Tors ×H 2(X,Z)/

Tors → Z

of the differentiable 4-manifold X is negative definite. By Donaldson first theorem
on the intersection forms of differentiable 4-manifolds, it follows that IX is standard
over Z, i.e., putting b := b2(X), there exists a basis (e1, . . . , eb) of the free
Z-module H 2(X,Z)/Tors such that IX(ei, ej ) = −δij . Decomposing the class
c̄1(KX) := c1(KX)+ Tors with respect to such a basis we obtain

c̄1(KX) =
b∑

i=1

kiei

with ki ∈ Z. On the other hand the class c1(KX) = −c1(X) is a lift of the Stiefel-
Whitney class w2(X), so it is a characteristic element for the intersection form IX ,
i.e. it satisfies the identity

c̄1(KX) · h ≡ h · h mod 2, ∀h ∈ H 2(X,Z)/Tors.

Replacing h with ei , we see that ki ∈ 2Z + 1 for 1 � i � b. On the other hand we
have

b = −c2
1(KX) =

b∑

i=1

k2
i ,
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so ki ∈ {±1} for any i. Therefore, replacing ei by −ei for some indices i if
necessary, we obtain a basis (e1, . . . , eb) of H 2(X,Z)/Tors satisfying

IX(ei, ej ) = −δij , c̄1(KX) =
b∑

i=1

ei. (3.3)

A basis satisfying these two conditions is unique up to order, and will be called a
standard basis of H 2(X,Z)/Tors.

Remark 3.2.1 Let X be a class VII surface with b2(X) = b. The set

BX := {e ∈ H 2(X,Z)/Tors| e2 = e · c1(KX) = −1}

has b elements. The following data are equivalent:

• a standard basis of H 2(X,Z)/Tors.
• a bijection {1, . . . , b} → BX .
• a total order on BX .

3.2.2 Analytic Properties: The Picard Group
and the Gauduchon Degree

Let X be a class VII surface. Since the Frölicher spectral sequence of a complex
surface degenerates at the first level [BHPV] we obtain

b1(X) = q(X)+ h0(�1
X),

so, since b1(X) = q(X) = 1, we have h0(�1
X) = 0. Consider the short exact

sequence of sheaves

0 → C ↪→ OX
d−→ �1

cl → 0

where �1
cl is the sheaf of closed holomorphic 1-forms. We obtain the cohomology

exact sequence

0 → H 0(�1
Xcl) → H 1(X,C) → H 1(OX). (3.4)

Using the sheaf inclusion �1
Xcl ↪→ �1

X and the vanishing of H 0(�1
X) we obtain

H 0(�1
Xcl) = 0, so (3.4) shows that the canonical map H 1(X,C) → H 1(OX) is

injective. Since both cohomology spaces are 1-dimensional we obtain

Remark 3.2.2 Let X be a class VII surface. The canonical linear map H 1(X,C) →
H 1(OX) is an isomorphism.
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The cohomology group H 1(X,C∗) has an interesting geometric interpretation:
it can be identified with the group of isomorphism classes of flat holomorphic
connections with structure group C

∗. Comparing the cohomology exact sequences
associated with the short exact sequences

0 → Z
2πi·−−−→ OX → O∗

X → 0 , 0 → Z
2πi·−−−→ C → C

∗
X → 0

of sheaves on X, and using the notations introduced in Appendix we obtain

Remark 3.2.3 Let X be a class VII surface. The canonical group morphism

H 1(X,C∗) → H 1(O∗
X) = Pic(X)

is a monomorphism which identifies H 1(X,C∗) with PicT (X). In other words,
any holomorphic line bundle with torsion Chern class on X admits a unique
flat holomorphic connection. The obtained isomorphism H 1(X,C∗) �−→ PicT (X)

induces an isomorphism

H 1(X,C)/
2πiH 1(X,Z)

�−→ Pic0(X)

between the connected components of the unit elements of the two Lie groups.

Using (3.1) and choosing an isomorphism ε : Z
�−→ H 1(X,Z), we obtain

induced isomorphisms

εR : R �−→ H 1(X,R), εC : C �−→ H 1(X,C), ε0 : C∗ �−→ Pic0(X).

By Corollary 12 proved in Appendix it follows that, for any Gauduchon metric g on
X, we have a formula the form

degg(ε0(ζ )) = C(ε, g) log |ζ | ∀ζ ∈ C
∗,

where C(ε, g) is a non-zero real constant which depends smoothly on g [LT].
Therefore the sign of C(ε, g) depends only on ε. We choose ε such that C(ε, g) > 0
for any Gauduchon metric g on X. In this way we obtain canonical isomorphisms

Z
�−→ H 1(X,Z), R

�−→ H 1(X,R), C
�−→ H 1(X,C), C

∗ �−→ Pic0(X),

and, denoting by [Lζ ] ∈ Pic0(X) the element which corresponds to ζ via the fourth
canonical isomorphism, we have the identity

degg(Lζ ) = Cg log |ζ | ∀ζ ∈ C
∗, (3.5)

where Cg is a positive constant depending smoothly on g.
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3.2.3 The Classification of Class VII Surfaces with b2 = 0

Class VII surfaces with b2 = 0 are classified. Before stating the result, recall
that a Hopf surface is a quotient of the form C

2 \ {0}/G, where G acts properly
discontinuously on C

2 \ {0}. Any such surface belongs to the class VII. A Hopf
surface X = C

2 \ {0}/G is called primary if G is infinite cyclic, i.e. if π1(X, x0) �
Z. A non-primary Hopf surface is called secondary.

An Inoue surface [In] is a quotient of the form C × H/G, where H is the half-
plane {z ∈ C| ((z) > 0}, and G is a solvable group of affine transformations of the
complex plane leaving invariant and acting properly discontinuously on C×H . The
classification theorem for class VII surfaces with b2 = 0 [Te1] states:

Theorem 3.2.4 Any class VII surface with b2 = 0 is biholomorphic to either a
Hopf or an Inoue surface.

Note that Hopf surfaces and Inoue surfaces are fully classified, so this result
solves the classification problem for b2 = 0.

3.3 Kato Surfaces

3.3.1 Definition and Construction of Kato Surfaces

A spherical shell in a complex surface X is an open subset U ⊂ X which is
biholomorphic to a standard neighbourhood of S3 in C2. A spherical shell U ⊂ X

is called global if X \ U is connected.

Definition 3.3.1 A Kato surface is a minimal class VII surface with b2 > 0 which
contains a global spherical shell.

Kato surfaces are well understood: they can be all obtained using a simple two-
step construction procedure: iterated blow up of the standard ball B ⊂ C2 at
the origin, followed by a holomorphic surgery. More precisely, let b be a positive
integer, and π : � → B be an iterated blow up of order b of B ⊂ C2 at 0 obtained
in the following way:

• We start by blowing up B at 0.
• If b > 1 we continue with b − 1 successive blow ups respecting the following

rule: at every stage we blow up a point taken on the last exceptional divisor.

Let σ : B → U be a biholomorphism onto a neighbourhood of a point x ∈ �

chosen on the last exceptional divisor, such that the following two conditions are
fulfilled:

• σ(0) = x.
• σ extends to a biholomorphism between neighbourhoods of the compact closures

B̄ ⊂ C2, Ū ⊂ �.
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Fig. 3.1 The construction of
a Kato surface

: B U

(0) = x

x
U

B
0

The surface X(π, x, σ ) obtained by identifying the two components of the boundary

∂(� \ U) = π−1(∂B̄) ∪ ∂(Ū)

via the obvious extension of σ ◦ π (see Fig. 3.1) is a Kato surface with b2 = b. By
results of Kato [Ka1, Ka2, Ka3] and Dloussky [Dl1, Dl2] any Kato surface can be
obtained in this way.

The isomorphism type of X(π, x, σ ) depends only of the conjugacy class of the
germ (π ◦ σ)0 (Dloussky). This germ is a contracting germ. The conjugacy classes
of contracting germs of this special type have been classified by Dloussky [Dl2]
and Favre [Fa], who gave normal forms for these germs. These results show that the
conjugacy classes of contracting germs of this type depend on a finite number of
parameters, so the moduli space of Kato surfaces with a fixed second Betti number
is finite dimensional. This correspondence between Kato surfaces and conjugacy
classes of contracting germs allowed Oeljeklaus-Toma to construct moduli spaces
of Kato surfaces with a fixed configuration of curves [OT]. In Sect. 3.3.4 we will
describe the moduli spaces of Kato surfaces with b2 = 1 and b2 = 2.

Remark 3.3.2 Let (π, x, σ ) be a triple defining a Kato surface with b2 = b > 0.
The maps

� ←↩ � \ U → X(π, x, σ )

induce isomorphisms in 2-homology, so H2(X(π, x, σ ),Z) comes with a canonical
basis induced by the obvious basis of H2(�,Z) formed by the homology classes
created by blow ups, ordered by the “order of creation” [Dl1]. This shows that,
using the notation introduced in Remark 3.2.1, the set

BX(π,x,σ ) := {e ∈ H 2(X,Z)| e2 = e · c1(KX) = −1} ⊂ H 2(X(π, x, σ ),Z)
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comes with a canonical total order. This order depends effectively on the triple
(π, x, σ ), but the associated cyclic permutation of BX is a biholomorphic invariant.
Therefore, for any Kato surface X, the set BX is endowed with a well defined
cyclic permutation cX : BX → BX , which is independent of the choices of a triple
(π, x, σ ) and a biholomorphism X � X(π, x, σ ). This invariance property can be
proved using [DlTe1] as follows: Let BX := DX(BX) ⊂ H2(X,Z) be image of BX

under Poincaré duality, and π : X̃ → X be the universal cover of X. The set

B̃X := {h ∈ H2(X̃,Z)| π∗(h) ∈ BX} ⊂ H2(X̃,Z)

is naturally endowed with

• a free action of the group AutX(X̃) � Z,
• a canonical total order defined by

h1 � h2 if Ẽh1 ⊃ Ẽh2,

where, for a class h ∈ B̃X , Ẽh stands for the canonical effective divisor
representing the class h in Borel-Moore homology [DlTe1, Theorem 1].

The canonical cyclic permutation of cX : BX → BX is induced by the successor
map B̃X → B̃X with respect to this total order, taking into account the obvious
bijections B̃X/Z

�−→ BX �−→ BX .
This remark shows that, for a Kato surface X, fixing a class e ∈ BX gives a well

defined standard basis of H 2(X,Z) obtained by applying to e the powers of cX.

3.3.2 Subclasses of Kato Surfaces

Taking into account the structure of curves, Kato surfaces are divided in five classes:

3.3.2.1 Enoki Surfaces

A surface X ∈ VIImin
b2>0 is called Enoki surface, if it contains a non-empty,

homologically trivial, effective divisor. Such a surface contains a homologically
trivial cycle C of b2(X) rational curves. If b2 = 1, C consists of a single
homologically trivial rational curve with a simple singularity. For b2 � 2 the
irreducible components of C are smooth rational curves of self-intersection −2.
By the main result of [En] such a surface is biholomorphic to a compactification of
a holomorphic affine line bundle over an elliptic curve.

An Enoki surface is called generic if C is its maximal reduced effective divisor.
Equivalently, X is a generic Enoki if it is biholomorphic to a compactification of a
non-linear holomorphic affine line bundle over an elliptic curve. Figure 3.2 shows
the configuration of curves on a generic Enoki surface. In this picture, and in the
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b2 = 1 b2 = 2 b2 ≥ 3

e2 − e1

0

e1 − e2

0 2

2

2

2
2

2

ei ei+1

ei 1 ei

Fig. 3.2 Curves on generic Enoki surfaces

following pictures showing configuration of curves on Kato surfaces, next to each
curve C we indicated its self-intersection number C2 and the decomposition of the
dual class [C] ∈ H 2(X,Z) with respect to a suitable standard basis (e1, . . . , eb)

(see Sect. 3.2.1).

3.3.2.2 Parabolic Inoue (Special Enoki) Surfaces

A surface X ∈ VIImin
b2>0 is called a parabolic Inoue, or a special Enoki surface, if

it is an Enoki surface which also contains an elliptic curve E. Figure 3.3 shows
the possible configurations of curves on parabolic Inoue surfaces with b2 � 3. For
such a surface one has E2 = −b2(X), [E] = −∑b

i=1 ei , and X is biholomorphic
to a compactification of a holomorphic linear line bundle over E, such that E

corresponds to the zero-section of this line bundle. One has KX = O(−C − E),
so C + E is an anti-canonical (AC) divisor on X. Such a surface also admits a
non-trivial holomorphic vector field.

b2 = 1 b2 = 2 b2 ≥ 3

e2 − e1
e1 − e2

0

−e1 −e1 − e2 −
i

ei

2

2

2

2

2
2

2

1

0

b

ei 1 ei

ei ei+1

Fig. 3.3 Curves on parabolic Inoue surfaces with b2 � 3
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b2 = 1 b2 = 2

b2 = 3

−e1

e1 − e2 − e3

e2 − e3 − e1

e3 − e1 − e2

e3 − e1

e2 − e3

−2e2 − e3

b2 = 3

1

2

4

2
2
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3

3

−2e2

e2 − e1

Fig. 3.4 Curves on half Inoue surfaces with b2 � 3

3.3.2.3 Half Inoue Surfaces

A surface X ∈ VIImin
b2>0 is called half Inoue surface, if it contains a cycle of b2(X)

rational curves C with C2 = −b2(X). The maximal reduced divisor of a half Inoue
surface is C, and the associated class [C] ∈ H 2(X,Z) decomposes with respect
to a standard basis as [C] = −∑b

i=1 ei . One has K⊗2
X � O(−2C), but KX ��

O(−C). The image of H1(C,Z) in H1(X,Z) has index 2. In all other cases, if C is
a cycle on a Kato surface X, the canonical morphism H1(C,Z) → H1(X,Z) is an
isomorphism. Figure 3.4 shows the possible configurations of curves on half Inoue
surfaces with b2 � 3.

3.3.2.4 Inoue-Hirzebruch Surfaces

A surface X ∈ VIImin
b2>0 is called Inoue-Hirzebruch surface, if it contains two cycles

C1, C2 of rational curves. If this is the case, these two cycles are disjoint, their sum is
the maximal reduced effective divisor of X, and contains b2(X) curves. With respect
to a standard basis the corresponding cohomology classes decompose as

[C1] = −eI , [C2] = −eJ ,

where (I, J ) is a partition of {1, . . . , b}. One has KX � O(−C1 − C2), so C1 + C2
is an anti-canonical (AC) divisor on X. Figure 3.5 shows the possible configurations
of curves on Inoue-Hirzebruch surfaces with b2 � 3.
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−e1 −e2 −e2 − e3
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Fig. 3.5 Curves on Inoue-Hirzebruch with b2 � 3
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Fig. 3.6 Curves on intermediate surfaces with b2 � 3

3.3.2.5 Intermediate Surfaces

A surface X ∈ VIImin
b2>0 is called an intermediate surface, if it contains a single cycle

C of rational curves, and also trees (at least one tree) of rational curves intersecting
the cycle. The maximal reduced divisor of an intermediate surface is connected, and
has b2(X) irreducible components. Figure 3.6 shows the possible configurations of
curves on intermediate surfaces with b2 � 3.

3.3.3 General Properties of Kato Surfaces

The Kato surfaces have the following remarkable properties:

1. Any Kato surface X has exactly b2(X) rational curves.
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2. A Kato surface has either one or two cycles of rational curves.
3. Any Kato surface is a deformation in large (a degeneration) of a family of

blown up primary Hopf surfaces. In particular any Kato surface with b2 = b

is diffeomorphic to (S1 × S3)#bP̄2
C

.
4. Any small deformation of a Kato surface is either

• a Kato surface, or
• a blown up Kato surface, or
• a blown up primary Hopf surface.

5. Any Kato surface has a holomorphic foliation.

Remark 3.3.3 All Kato surfaces with fixed b2 are deformation equivalent. However
the intersection numbers of the holomorphic curves and the homology classes
represented by analytic cycles are different, depending on the considered subclass.
This phenomenon is not consistent with the intuition we have from algebraic
and Kählerian geometry, and illustrates a well-known difficulty occurring in non-
Kählerian complex geometry: the “explosion of volume” of analytic cycles in
holomorphic families [Ba], [DlTe1].

Example 3.3.1 Let X0 ↪→ X → B be the versal deformation of a half Inoue surface
X0 with b2 = 1. B can be identified with the ball B ⊂ C2 such that X0 is the fibre
over 0. There exists a curve Z , 0 in B such that for any z ∈ B \ Z the fibre Xz is
a blown up primary Hopf surface, and for any z ∈ Z \ {0} the fibre Xz is a generic
Enoki surface. As a moving point z ∈ B \ Z approaches a point ζ ∈ Z \ {0}, the
area of the exceptional curve Ez ⊂ Xz tends to ∞, and the limit fibre Xζ does
not contain any 1-dimensional analytic cycle representing the class e1 = [Ez]. The
only curve of Xζ is a homologically trivial singular rational curve Cζ . Similarly,
as a moving point ζ ∈ Z approaches 0, the area of Cζ ⊂ Xζ tends to ∞, and the
limit fibre X0 does not contain any non-empty 1-dimensional analytic cycle which is
homologically trivial. The only curve of X0 is a singular rational curve representing
the class −e1 (see Fig. 3.7).

Fig. 3.7 A family of class
VII surfaces with b2 = 1. It
contains blown up Hopf
surfaces, Enoki surfaces and a
half Inoue surface

1 0
1

1
1 0

blown up Hopf generic Enoki half Inoue

e
e
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3.3.4 The Moduli Spaces of Framed Kato Surfaces with b2 = 1
and b2 = 2

In this section we describe the moduli spaces of Kato surfaces with b2 = 1 and
b2 = 2. These examples show that, in principle, Kato surfaces can be classified
explicitly, and should be regarded as the known surfaces in the class VIImin

b2>0 of
minimal class VII surfaces with positive b2.

An important tool in the classification of Kato surfaces is the trace invariant
introduced by Dloussky [Dl1], [DlKo], which can be defined as follows. First, for a
blown up Hopf surface X we denote by tr(X) the trace of the differential at 0 of the
holomorphic contraction c : C2 → C2 defining the minimal model of X.

Let now X0 be a Kato surface, and let

X0 ↪→ X → B

be a deformation of X0 containing blown up primary Hopf surfaces, where B ⊂ C
n

is the standard ball (see Sect. 3.3.3). The condition “Xz is blown up Hopf surface”
defines a Zariski open set analytic BH ⊂ S. The map BH , z → tr(Xz)

has a holomorphic extension at 0, and tr(X0) coincides with the value of this
extension at 0. Denoting by VIIK ⊂ VIImin

b2>0 the class of Kato surfaces, we obtain a
biholomorphic invariant

tr : VIIK → D,

where D ⊂ C is the standard disc.

3.3.4.1 Moduli Spaces of Framed Class VII Surfaces

A (cohomologically) framed class VII surface is a pair (X, e), where X is a class
VII surface, and e ∈ BX (see Remark 3.2.1). Framing class VII surfaces in this way
is motivated by Remark 3.3.2, which shows that, for a Kato surface, fixing a class
e ∈ BX determines a standard basis of H 2(X,Z); this basis obtained by applying to
e the powers of the canonical cyclic permutation cX (see Remark 3.3.2).

Let b be a fixed positive integer. We denote by MK(b) the moduli space
(regarded as topological spaces) of framed Kato surfaces with b2 = b. This space
can be defined either as the underlying topological space of the analytic stack of
framed Kato surfaces, or as the quotient of the space of Kato complex structures on
the differentiable 4-manifold (S1 × S3)#bP̄2

C
by a suitable diffeomorphism group.

We do not discuss here these technical definitions, but we note that one can also
construct this moduli space using the correspondence between Kato surfaces and
contracting germs explained in Sect. 3.3.1. The trace invariant defines a continuous
map

tr : MK(b) → D.
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An important remark of Dloussky-Kohler states that any Kato surface with non-
vanishing trace is an Enoki surface [DlKo, Remark p. 54]. In other words, putting
D• := D \ {0}, we have

Proposition 3.3.4 Let b > 0. The open subspace tr−1(D•) ⊂ MK(b) coincides
with the moduli space of framed (generic and special) Enoki surfaces with b2 = b.

This moduli space has been studied by Dloussky-Kohler [DlKo]. Theorem
[DlKo, Theorem 1.23] can be reformulated as follows:

Theorem 3.3.5 The space tr−1(D•) ⊂ MK(b) can be identified with the quotient

D• ×C
b/
C
∗ × μb

,

where C∗ × μb acts on Cb by

(ζ, r) · (τ, (zj )0�j�b−1
) := (

τ, (rj ζ zj )0�j�b−1
)
.

Via this identification, the trace map is given by (τ, (zj )0�j�b−1
)  → τ .

For z ∈ D• the fibre

+b
z := tr−1(z) ⊂ MK(b)

is the moduli space of framed Enoki surfaces with b2 = b and fixed trace z; it can
be identified with the non-Hausdorff quotient

Pb−1 := C
b/
C
∗ × μb

,

which decomposes as the unionPb−1 = (Pb−1/μb)∪{∗}, where Pb−1 := Pb−1/μb

is a projective variety and is open in Pb−1. Any neighbourhood of ∗ coincided with
the whole Pb−1. Note that one has P 0 = {∗}, P 1 � P1, but Pk is singular for k � 2.
In our pictures we will use the following symbols for the quotients P0, P1:

3.3.4.2 The Moduli Space of Kato Surfaces with b2 = 1

The moduli space MK(1) can be identified with the quotient

(D × C) \ {(0, 0)}/
C
∗,
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where C∗ acts on (D × C) \ {(0, 0)} by ζ · (τ, z) := (τ, ζ z). This quotient can be
further identified with the union

(D• × {0}) ∪ (D × {1})

endowed with the topology determined by the following conditions:

• a basis of open neighbourhoods of a point (τ, 1) ∈ D × {1} is

{V × {1}| V open neighbourhood of τ in D}.

• a basis of open neighbourhoods of a point (τ, 0) ∈ D• × {0} is

{V × {0, 1}| V open neighbourhood of τ in D•}.

Via this identification, the trace map is given by (τ, t)  → τ ; its fibre over a point
τ ∈ D• is the non-Hausdorff quotientP0. The points of the form (τ, 1) (respectively
(τ, 0)) with τ ∈ D• correspond to generic (special) Enoki surfaces, and the point
(0, 1) corresponds to the (up to isomorphism) unique half Inoue surface with b2 = 1.
As Fig. 3.8 suggests, any small deformation of the half Inoue surface is a generic
Enoki surface. This can be proved directly, without using our description of the
moduli space MK(1), taking into account that

• any special Enoki surface has an AC effective divisor.
• the existence of an AC effective divisor is a closed condition in holomorphic

families.
• A half Inoue surface does have an AC effective divisor, so it cannot be the limit

of a family of special Enoki surfaces.

generic Enoki

half Inoue

parabolic Inoue

tr tr

D

the generic bre of tr: the quotient 0

Fig. 3.8 The moduli space MK(1) of framed Kato surfaces with b2 = 1
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3.3.4.3 The Moduli Space of Kato Surfaces with b2 = 2

Let D ⊂ C be the standard disc.

Definition 3.3.6 The disc with a line of origins is the quotient

D := D × C
/
C,

where C acts on D ×C by

ζ · (z, u) = (z, u+ ζ z).

This C-action on D × C is fibrewise transitive over D• and trivial over 0. The
obvious map D → D is surjective; its fibre over a point z ∈ D• is a singleton,
whereas its fibre over 0 ∈ D is the line {[0, u]| u ∈ C}. Therefore D can be
intuitively thought of as a disc with a 1-parameter family of mutually non-separable
“origins” 0u := [0, u]. For a disc with a line of origins we will use the symbol
illustrated in Fig. 3.9.

The open subspace tr−1(D•) ⊂ MK(2) is described by Theorem 3.3.5, and the
result is simple: this open subspace of MK(2) is a trivial fibre bundle over D• with
the non-Hausdorff quotient P1 as fibre (Fig. 3.10):

The closed subspace tr−1(0) ⊂ MK(2) is more interesting; using the results
of [Fa] and [OT] one can see that this subspace is homeomorphic to the space Y
obtained as follows:

• Consider the degenerate conic Y ⊂ P
2 defined be the equation X1X2 = 0. The

involution ι : Y → Y given by [X0,X1,X2] → [X0,X2,X1] interchanges the
irreducible components Y± of Y and leaves its singularity c = [1, 0, 0] fixed.

Fig. 3.9 A disc with a line of
origins

Fig. 3.10 The open subspace
tr−1(D•) ⊂ MK(2)

tr

z

the bre over a point z D :
the non-Hausdor quotient 1

D
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• Choose ι-conjugate points y± ∈ Y± \ {c}, copies D± of the standard disc, and
biholomorphic maps f± : D± → U± on open neighbourhoods U± of y±.

• Define

Y := (D−
∐
D+)

∐
(D•−

∐
D+)(Y \ {y−, y+}),

where the expression on the right denotes the push-out associated with the
inclusion D•−

∐
D•+ ↪→ D−

∐
D+ and the homeomorphism

D•−
∐

D•+ → (U− \ {y−})∐(U+ \ {y+})

induced by f±. In other words Y is obtained from Y by replacing U± with a disc
with a line origins D±, and y± with the corresponding line of origins of D±.

The singularity c of Y corresponds to the (up to isomorphism) unique framed
Inoue-Hirzebruch surface with b2 = 2. There are two isomorphism classes of
framed half Inoue surfaces with b2 = 2, and they correspond to ι-conjugate points
v± ∈ Y± \ {y±, c}. The complement Y \ {c, v−, v+} corresponds to the moduli
space of framed intermediate surfaces with b2 = 2, and the union of the two lines
of origins corresponds to the subspace of intermediate surfaces admitting a non-
trivial vector field.Y contains two remarkable points, which are also ι-conjugate and
correspond to intermediate surfaces admitting an AC effective divisor (Fig. 3.11).

Fig. 3.11 The closed
subspace tr−1(0) ⊂ MK(2)

*

* half Inoue

intermediate

intermediate with AC divisor

Inoue-Hirzebruch

intermediate with vector eld

*
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Note any small deformation with non-trivial trace of a point y ∈ Y is a generic
Enoki surface. This can be proved directly, using a semicontinuity argument, as in
the case b2 = 1, by taking into account that there is no Kato surface with b2 = 2 and
vanishing trace that has both a non-trivial vector field and an AC effective divisor.

3.3.5 Standard Conjectures on Class VII Surfaces

Two important results show that existence of curves plays an important role in the
classification of class VII surfaces:

The first theorem is due to Dloussky-Oeljeklaus-Toma [DOT], and gives a
positive answer to a conjecture stated by Kato:

Theorem 3.3.7 Any surface X ∈ VIImin
b2>0 with b2(X) rational curves is a Kato

surface.

The second is an older result of Nakamura [Na3]:

Theorem 3.3.8 Any surface X ∈ VIImin
b2>0 with a cycle of rational curves is a

degeneration of a 1-parameter family of blown up primary Hopf surfaces.

These results suggest the conjectures:

Conjecture 1 Any surface X ∈ VIImin
b2>0 has b2(X) rational curves.

Conjecture 2 Any surface X ∈ VIImin
b2>0 has a cycle of rational curves.

By Theorem 3.3.7, Conjecture 1 will solve the classification problem up to
biholomorphism (equivalent to the GSS conjecture).

By Theorem 3.3.8, Conjecture 2 will solve the classification problem up to
deformation equivalence.

Nakamura’s Theorem 3.3.8 states that any surface X ∈ VIImin
b2>0 with a cycle of

curves belongs to the known component of the moduli space of class VII surfaces;
this moduli space contains both Kato surfaces and blown up primary Hopf surfaces,
the latter being generic. In the next section we will see that, using a combination
of complex geometric and gauge theoretical techniques, one can prove [Te2], [Te3],
[Te8], [Te9]:

Theorem 3.3.9 Any minimal class VII surface X with 1 � b2(X) � 3 contains a
cycle of curves.

Therefore any minimal class VII surface X with 1 � b2(X) � 3 belongs to the
known component of the moduli space of class VII surfaces.
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3.4 Gauge Theoretical Methods in the Classification of Class
VII Surfaces

3.4.1 Instantons and Holomorphic Bundles on Complex
Surfaces

Let (X, g) be a complex surface endowed with a Gauduchon metric (see [Gau] and
Appendix in this article). A holomorphic rank 2 bundle E on X is called

• stable, if for every line bundle L and any sheaf monomorphism 0 → L → E one
has

deg(L) <
1

2
degg(det(E)).

• polystable, if it is either stable, or isomorphic to a direct sum L ⊕ M of line
bundles with degg(L) = degg(M).

We will consider moduli spaces of (poly)stable bundles with fixed determinant line
bundle. Let (E, h) be a differentiable Hermitian rank 2-bundle on X, and D be a
fixed holomorphic structure on the line bundle D := det(E). Denote by

Mst
D(E), Mpst

D (E)

the moduli sets of stable, respectively polystable holomorphic structures E on
E inducing the fixed holomorphic structure D on det(E), modulo the complex
gauge group GC := 0(X,SL(E)). Mst

D(E) has a natural complex space structure

obtained using classical deformation theory.Mpst
D (E) can be endowed with a natural

topology induced by the Kobayashi-Hitchin correspondence we explain briefly
below (see [Bu1], [LT]).

Let a be the Chern connection of the pair (D, det(h)), and G := 0(X,SU(E)) be
the gauge group of special unitary automorphisms of the Hermitian bundle (E, h).
Denote by A(E) the space of unitary connections on (E, h) and by

MASD
a (E) := {A ∈ A(E)| det(A) = a, (F 0

A)
+ = 0}/G

the moduli space of projectively ASD unitary connections on (E, h) which induce
a on D. We will also need the open subspace MASD

a (E)∗ ⊂ MASD
a (E) defined by

the condition “A is irreducible”; it has the structure of a real analytic space.
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The Kobayashi-Hitchin correspondence states that the map

A  → the holomorphic structure on E defined by ∂̄A

induces a bijection KH : MASD
a (E) → Mpst

D (E). More precisely we have a
commutative diagram

MASD
a (E) MASD

a (E)

KH ∗ KH

st (E)
pst

(E)

where KH is a bijection and KH ∗ a real analytic isomorphism. We endowMpst
D (E)

with the topology induced by KH . In general Mpst
D (E) is not a complex space

around the reduction locus R := Mpst
D (E) \ Mst

D(E). R can be identified with
the subspace of reducible instantons in MASD

a (E). If c1(D) �∈ 2H 2(X,Z) this
subspace is a union of tori of real dimension b1(X). The local structure of Mpst

D (E)

around R can be described explicitly using the Kobayashi-Hitchin correspondence
and Donaldson theory.

The Kobayashi-Hitchin correspondence has been first used by Donaldson as a
tool to describe moduli spaces of instantons on algebraic surfaces. The “unknown”
(the object to describe) was MASD

a (E) and the computable object was Mpst
D (E). In

our case the moduli space Mpst
D (E) cannot be regarded as a computable object. The

problem is that, on non-algebraic surfaces, the appearance of non-filtrable bundles
complicates the description of such a moduli space. We explain briefly this difficulty.
Recall that a rank 2 holomorphic bundle E on X is called filtrable if there exists a
sheaf epimorphism

E → F → 0

onto a torsion free coherent sheaf F of rank 1. A filtrable bundle E fits in a short
exact sequence

0 → M → E → N ⊗ IZ → 0,

for line bundles M, N and a 0-dimensional locally complete intersection Z ⊂ X.
Therefore, filtrable rank 2 bundles are, in principle, classifiable. A non-filtrable
bundle is stable with respect to any Gauduchon metric. There exists no classifi-
cation method for non-filtrable bundles. Usually their presence is detected using
deformation theory.
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3.4.2 A Moduli Space of Instantons on Class VII Surfaces

Let now (X, g) be a class VII surface endowed with a Gauduchon metric, and (E, h)

be a differentiable rank 2-bundle on X with c2(E) = 0 and det(E) = KX , where
KX stands for the underlying C∞ bundle of the canonical line bundle KX. Let a be
the Chern connection of (KX, det(h)). The fundamental objects used in our program
to prove existence of curves on class VII surfaces are the moduli space

M := Mpst
K (E) � MASD

a (E).

and its open subspace Mst := Mst
K(E) � MASD

a (E)∗ of stable bundles, which
is a complex space of dimension b := b2(X). The rough idea of our strategy to
use moduli spaces of holomorphic bundles is simple: prove that the same filtrable
bundle can be written as an extension in two different ways. This will yield a non-
trivial, non-isomorphic morphism of line bundles, whose vanishing locus will be a
curve.

The first crucial property of the moduli space M is compactness, which holds in
full generality [Te3]:

Theorem 3.4.1 (X, g) be a class VII surface endowed with a Gauduchon metric,
and (E, h) be a differentiable rank 2-bundle on X with c2(E) = 0 and det(E) =
KX. Then Mpst

K (E) is compact.

The proof is due to N. Buchdahl and the author, and makes use of a combination
of gauge theoretical and complex geometric arguments.

Suppose that X ∈ VIImin
b2>0 is not an Enoki surface, and that g has been

chosen such that degg(KX) < 0 (this is also always possible, see [Te3]). Then
Mst is a smooth b-dimensional complex manifold. Moreover, the reduction locus
R is a finite disjoint union of circles, and every circle C ⊂ R has a compact
neighbourhood which is homeomorphic to the trivial bundle over C with fibre a
cone (in the topological sense) over Pb−1

C
, where b := b2(X).

From now on we will suppose for simplicity that H1(X,Z) � Z. This simplifying
assumption allows us to parameterize the set of connected components of R in
a simple way: R is a disjoint union of 2b−1 circles C{I,Ī } indexed by unordered

partitions {I, Ī } of the index set I := {1, . . . , b}.
Note also that he moduli space M comes with a natural involution given by ⊗L0,

where [L0] ∈ Pic0(X) is the non-trivial square root of [OX]. The fixed points of this
involution are called twisted reductions. The fixed point set is always finite and is
contained in Mst; if π1(X, x0) � Z this set has 2b−1 elements. The filtrable bundles
in our moduli space can be classified as follows: Let (e1, . . . , eb) be a standard basis
of H 2(X,Z). Let E be rank 2 bundle on X with det(E) = KX, c2(E) = 0, and let
E → L be an epimorphism onto a rank 1 torsion-free sheaf. One can prove [Te3]
that L is locally free, and there exists a subset I ⊂ I such that

c1(L) = eI :=
∑

i∈I
ei .
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Therefore any filtrable bundle E in our moduli space fits in a short exact sequence

0 → KX ⊗ L∨ → E → L → 0, (3.6)

where c1(L) = eI for an index set I ⊂ I. We will denote by Mst
I ⊂ Mst the subset

of isomorphism classes of stable bundles which are extensions of type (3.6) with
fixed c1(L) = eI . One has

Mst
∅ = {[A], [A′]}

where A is the canonical extension of X, defined as the essentially unique non-
trivial extension of the form

0 → KX → A → OX → 0

(note that h1(KX) = 1 by Serre duality) and A′ := A⊗ L0.
If I �= ∅ the closure Mst

I of Mst
I in M contains the circle CI,Ī ; moreover, if

X has no curves in certain homology classes, the subset Mst
I ⊂ Mst is a P

|I |−1
C

-
fibration over a punctured disc, and these fibrations are pairwise disjoint.

3.4.3 Existence of a Cycle on Class VII Surfaces with Small b2

We present the main ideas of the proof of Theorem 3.3.9 for b2 = 1, and we explain
the general strategy for larger b2. If the method generalizes for arbitrary b2, we will
have a proof of Conjecture 2, which would complete the classification of class VII
surfaces up to deformation equivalence.

Let X be class VII surface. A cycle in X is an effective divisor which is either
en elliptic curve, or a cycle of rational curves. Note that minimal class VII surfaces
X ∈ VIImin

b2>0 containing an elliptic curve have been classified [Na1, Na2, Na3], and
we know that any such surface is a parabolic Inoue surface, so it also has a cycle of
rational curves.

Proposition 3.4.2 If the canonical extension A can be written as a line bundle
extension in a different way (with a different kernel), then X has a cycle.

In particular, if A belongs toMst
I for I �= ∅ or coincides with a twisted reduction,

then X has a cycle.

Proof Suppose that A can be written as a line bundle extension in a different way,

i.e. there exists an invertible subsheaf L
j
↪→ A such that

(i) L �= KX.
(ii) j is a bundle embedding, i.e. the linear map L(x) → A(x) induced by j is

injective for any x ∈ X.
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Since L �= KX the composition p ◦ j is non-zero, because, if it were 0, we would
have L � KX, so L = KX(−D) for an effective divisor D which is nonempty by
(i). But this contradicts (ii) taking x ∈ D.

0 KX A OX 0

L

p

j
p◦j

The composition p ◦ j cannot be an isomorphism either, because the canonical
extension is non-split by definition. Therefore im(p ◦ j) = OX(−D) where D > 0
is the vanishing divisor of p ◦ j .

Restricting the diagram to D and taking into account (ii) we obtain LD � KD .
But L � O(−D). Therefore ωD := KX(D)D is trivial. This implies that D is either
a cycle (when it is reduced) or it contains a cycle [Te3]. �

Proposition 3.4.2 shows that, in order to prove the existence of a cycle on X, it
“suffices” to prove the following “remarkable incidence”:

[A] ∈ {twisted reductions} ∪ (
⋃

I �=∅
Mst

I ). (RI)

3.4.3.1 The Existence of a Cycle for b2 = 1

In the case b2 = 1 one can prove that the connected component M0 of the circle
C∅;I in the moduli space M is a compact disc. The boundary of this disc is the circle
C∅;I, its center b is a twisted reduction, and the punctured open disc M \ (C ∪ {b})
coincides with Mst

I. Therefore we have the following dichotomy: either [A] ∈ M0,
so the remarkable incidence (RI) holds, and the theorem is proved, or the connected
component of A in M is a closed Riemann surface Y ⊂ Mst which has at most
two filtrable points. The latter possibility is ruled out by the following proposition
[Te2]:
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Proposition 3.4.3 Suppose that X is a complex surface with a(X) = 0, E is a
differentiable rank 2 bundle over X, Y is a closed Riemann surface and

f : Y → Msimple(E) , y  → [Ey]

is a holomorphic map to the moduli space of simple structures on E [LT]. Then all
the bundles Ey contain a constant (independent of y) subsheaf T of rank 1 or 2. In
particular the bundles Ey are either all filtrable or all non-filtrable.

The idea of the proof is to show that f has a classifying bundle E on Y × X,
and to regard E as a family of bundles on Y parameterized by X. If this family is
generically stable, one obtains a meromorphic map X ��� Msst(Y ) to a moduli
space of semistable bundles on Y . Since Y is a Riemann surface, this moduli space
is a projective variety.

Therefore, Proposition 3.4.3 shows that the appearance of an “unexpected”
component in the moduli spaces leads to a contradiction, hence the remarkable
incidence holds, which proves that X has a cycle.

3.4.3.2 The Strategy for Larger b2

For larger b2 the idea is to prove the following dichotomy (similar to the dichotomy
used for b2 = 1):

D: Either the remarkable incidence holds (and then X has a cycle) or Mst contains
an irreducible compact subspace Y ⊂ Mst of positive dimension with an open
subspace Y0 , [A] such that the points of Y0 \ {[A]} correspond to non-filtrable
bundles.

The proof of this dichotomy for b2 � 3 is explained in [Te3], [Te8], [Te9] and
makes use of [Te5], [Te6]. On the other hand the following proposition shows that
the existence of such a compact subspace Y ⊂ Mst leads to a contradiction:

Proposition 3.4.4 Let X be minimal class VII surface with b2 > 0 arbitrary. There
does not exist any irreducible compact subspace Y ⊂ Mst of positive dimension
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with the following property: [A] ∈ Y and there exists an open neighbourhood of Y0
of [A] in Y such that the points of Y0 \ {[A]} correspond to non-filtrable bundles.

The proof of Proposition 3.4.4 uses of a variation formula for determinant line
bundles in non-Kählerian geometry [Te7].

3.5 Algebraic Deformations of Singular Contractions
of Class VII Surfaces

3.5.1 From Local to Global Smoothability

Recall that, by the theorem Dloussky-Oeljeklaus-Toma [DOT] (Theorem 3.3.7 in
this article), Conjecture 1 will solve the classification problem up to biholomor-
phism, and by the theorem of Nakamura [Na2] (Theorem 3.3.8 in this article),
Conjecture 2 will solve the classification problem up to deformation equivalence.
More precisely, if X has a cycle of curves, then X belongs to the known component
of the moduli space of class VII surfaces, and this known component contains both
Kato surfaces and blown up primary Hopf surfaces, the latter being generic. We
have seen that, using Donaldson theory, one can prove Conjecture 2 at least for
small b2. Therefore an important question is: can one pass from “X has a cycle” to
the stronger property “X is a Kato surface”? We know that the existence of curves
cannot be obtained by “passing to the limit” because of the “explosion of area”
phenomenon (see Remark 3.3.3).

A new approach have been suggested by G. Dloussky and the author in [DlTe2]:
for a minimal class VII surface with a cycle of rational curves, use algebraic
deformations of the singular surface obtained by contracting the cycle.

Let X ∈ VIImin
b2>0 with a cycle C = C0 + · · ·+Cr−1 of r � 1 rational curves. We

know 1 � r � b2(X). If C2 = 0, then X is an Enoki surface, hence a Kato surface.
Suppose C2 < 0. Contracting C one obtains a singular surface Y with an isolated

singularity c. The germ (Y, c) is a cusp, in particular it is an elliptic, Gorenstein
singularity.

Theorem 3.5.1 ([DlTe2]) If the germ of singularity (Y, c) is smoothable, then the
singular surface Y is globally smoothable. Moreover

(1) If r < b2(X), then any smooth deformation Y ′ of Y is a rational surface Y ′ with
b2(Y

′) = 10 + b2(X)+ C2.
(2) If r = b2(X), then any smooth deformation Y ′ of Y is an Enriques surface.

The main ingredients used in the proof are:

1. Let π : X → Y be the contraction map. One has

ωY = π∗(KX(C)), �∨∨
Y = π∗(�X).
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2. Using Serre duality on Cohen-Macauley spaces and ideas coming from Naka-
mura, we proved the following vanishing theorem:

Theorem 3.5.2 With the notations above one has: H 2(Y,1Y ) = 0.

3. A lemma due to Manetti [Ma]:

Proposition 3.5.3 Let Y be a complex surface with finitely many isolated
singularities {y1, . . . , ys}. If H 2(Y,1Y ) = 0 then the natural germ morphism
Def(Y ) → ×s

i=1Def(Y, yi) is smooth, in particular surjective.

Here we denoted by Def(Y ) the base of a versal deformation of Y , and by
Def(Y, yi) the base of a versal deformation of the singularity (Y, yi).

3.5.2 Local Smoothability: Looijenga’s Conjecture

Our result shows that Y is globally smoothable if the cusp (Y, c) is smoothable.
Having this implication the natural question is: which cusps (Y, c) are smoothable?
The answer is given by Looijenga’s conjecture, which has recently become a
theorem. In order to state this result we need a preparation.

Definition 3.5.4 Let C = ∑
i∈Zr

Ci be an oriented cycle of r rational curves
[DlTe2]. The type of C is given by

[c0, . . . , cr−1] =
{ [−C2

0 , . . . ,−C2
r−1] if r ≥ 2

[2 − C2
0 ] if r = 1

.

The type of a cycle should be regarded as an element of ZZr /Zr . In other words
one has

[c0, c1, . . . , cr−1] = [c1, . . . , cr−1, c0] = · · · = [cr−1, c0, . . . , cr−2]

(see [DlTe2] for details). Note that for any cycle C one has

−C2 =
r−1∑

i=0

(ci − 2),

and for any cycle C ⊂ X ∈ VIImin
b2>0 with C2 < 0 it holds

∀i ∈ {0, . . . , r − 1}, ci � 2, ∃j ∈ {0, . . . , r − 1}, cj � 3. (3.7)

There exists an important involution on the set of “types” verifying conditions (3.7).
Put s := ∑r−1

j=0(cj − 2) = −C2. The Hirzebruch-Zagier dual type [d0, . . . , ds−1]
is constructed by replacing any element cj � 3 in the original type by the (possibly
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empty) sequence

2, . . . , 2︸ ︷︷ ︸
cj−3

,

and any maximal (possibly empty) sequence of the form

2, . . . , 2︸ ︷︷ ︸
l

in the original type by the single element l + 3.

Example 3.5.1 The dual of the type [3, 2, . . . , 2] (of length r) is [r + 2]. If r = 1
we obtain a selfdual type: [3].

The following conjecture of Looijenga [Loo] became a theorem (see [GHK],
[Eng]):

Theorem 3.5.5 The cusp (Y, c) is smoothable if and only if there exists a smooth
rational surface with an anti-canonical cycle D whose type [d0, . . . , ds−1] is the
Hirzebruch-Zagier dual of [c0, . . . , cr−1].

Note that the condition “[d0, . . . , ds−1] is the type of an anti-canonical cycle in
a rational surface” is equivalent to the condition “[d0, . . . , ds−1] is the type of an
anti-canonical cycle in a blown up P

2
C

”, and can be checked algorithmically.

Example 3.5.2 Suppose that the type of C is [3] (the type of a nodal curve with
self-intersection −1). The dual type is [3]. A singular rational cubic 0 ⊂ P2

C is anti-

canonical, but has 02 = 9. The proper transform 0̃ of 0 in the blown up P̂
2
C of P2

C

at 10 smooth points of 0 is an anti-canonical nodal curve of P̂2
C , and its type is [3].

Therefore the smoothability condition given by Looijenga’s conjecture is fulfilled,
so (Y, c) is smoothable.

In a similar way one can prove [DlTe2, Theorem 5.7]:

Corollary 3.5.6 The cusp (Y, c) is always smoothable if
∑r−1

i=0 (ci − 2) � 10.

Therefore

Theorem 3.5.7 ([DlTe2]) Let X be a minimal class VII surface, C ⊂ X be a cycle
of r rational curves with C2 < 0, [c0, . . . , cr−1] be its type, and (Y, c) be the
singular contraction of (X,C). Then r � b2(X) and

(1) Y is smoothable if and only if the dual type [d0, . . . , ds−1] of [c0, . . . , cr−1] is
the type of an anti-canonical cycle in a smooth rational surface which admits P2

as minimal model. This condition is always satisfied when
∑r−1

i=0 (ci − 2) � 10.
(2) If r < b2(X), then any smooth deformation Y ′ of Y is a rational surface with

b2(Y
′) = 10 + b2(X)+ C2 = 10 + r.
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Fig. 3.12 Smooth
deformations of the singular
surface Y obtained by
contracting a cycle in a
minimal class VII surface

X

C

D

c

(3) If r = b2(X), then X is a half-Inoue surface, and any smooth deformation Y ′
of Y is an Enriques surface.

The condition
∑r−1

i=0 (ci − 2) � 10 is automatically satisfied when r < b2(X) �
11 so, in this range, the singular surface Y obtained starting with a pair (X,C)

as above, is always smoothable by rational surfaces. Therefore any minimal class
VII with a cycle C satisfying the conditions C2 < 0, r < b2(X) � 11 can be
“connected” to a smooth rational surface using a two-step “geometric transition”:
contract, then deform (Fig. 3.12).

This reminds us of the “Web Conjecture” in the theory of Calabi-Yau 3-folds:
Any two deformation classes of CY 3-folds can be connected by a sequence of
“geometric transitions” consisting of

• birational contraction to a normal variety,
• deformation of the contraction.

Theorem 3.5.7 suggests a possible strategy for proving Conjecture 1 for minimal
class VII surfaces with a cycle of rational curves and b2 � 11: classify all families
of smooth rational surfaces parameterized by D•, degenerating to a surface with a
single singularity which is a cusp; prove than only contractions of the Kato surfaces
may occur as limits.
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Appendix

The Picard Group and the Gauduchon Degree

Let X be a connected, compact n-dimensional complex manifold. Recall that the
Picard group Pic(X) of X is the group of isomorphism classes of holomorphic line
bundles on X, and can be identified with H 1(X,O∗

X). The exponential short exact
sequence gives the cohomology exact sequence

0 → H 1(X,Z)
2πi·−−−→ H 1(X,OX) → H 1(X,O∗

X) = Pic(X)
c1−→ NS(X) → 0,

where the Neron-Severi group NS(X) is defined by

NS(X) := ker(H 2(X,Z) → H 2(X,OX)).

A class c ∈ H 2(X,Z) belongs to NS(X) if and only if it can be represented by a
closed real 2-form of type (1,1). Denoting by Pic0(X) the kernel of the Chern class
morphism Pic(X)

c1−→ NS(X), we obtain a short exact sequence

{1} → Pic0(X) → Pic(X)
c1−→ NS(X) → 0 (3.8)

and an identification

Pic0(X) = H 1(X,OX)/
2πiH 1(X,Z)

. (3.9)

Remark 1 The image of 2πiH 1(X,Z) in H 1(X,OX) is closed, in particular the
quotient H 1(X,OX)/2πiH 1(X,Z) has the structure of an Abelian connected
complex Lie group.

Proof The obvious embedding 2πiH 1(X,Z) ↪→ H 1(X,OX) factorizes as

2πiH 1(X,Z) ↪→ H 1(X, iR) → H 1(X,OX).

The coefficients formula shows that 2πiH 1(X,Z) is a lattice in H 1(X, iR), in
particular it is closed in this real vector space. On the other hand, using de Rham and
Dolbeault theorems, it is easy to prove that the R-linear morphism H 1(X, iR) →
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H 1(X,OX) is injective. Therefore 2πiH 1(X,Z) is closed in an R-linear subspace
of H 1(X,OX), so it is closed in H 1(X,OX). �

Using (3.8) it follows that

Remark 2 Pic(X) has a natural structure of an Abelian complex Lie group, and
Pic0(X) is the connected component of its unit element.

For a class c ∈ NS(X) we put Picc(X) := {[L] ∈ Pic(X)| c1(L) = c}, and

PicT (X) := {[L] ∈ Pic(X)| c1(L) ∈ Tors}.

Recall that a Gauduchon metric on X is a Hermitian metric g on X whose Kähler
form ωg satisfies ddcωn−1

g = 0. An important theorem of Gauduchon states that any
conformal class of Hermitian metrics on X contains a Gauduchon metric (which is
unique up to constant factor if n � 2), so there is no obstruction to the existence of
Gauduchon metrics.

The degree map associated with a Gauduchon metric g on X is the group
morphism

degg : Pic(X) → R

defined by

degg(L) :=
∫

X

i

2π
FAh ∧ ωn−1

g , (3.10)

where h is a Hermitian metric on L, and FAh ∈ iA1,1(X) is the curvature of the
Chern connection Ah associated with the pair (L, h). Changing h will modify the
Chern form c1(L, h) := i

2π FAh by a ddc-exact form. Since g is Gauduchon, the
right hand term of (3.10) is independent of h, so degg is well defined.

The Kobayashi-Hitchin Correspondence for Line Bundles

Let (X, g) be a connected, compact complex manifold endowed with a Gauduchon
metric. We denote by 2

p,q
X the bundle of (p, q)-forms on X, and by 2g : 2p,q

X →
2

p−1,q−1
X the adjoint of the wedge product operatorωg∧· : 2p−1,q−1

X → 2
p,q
X . The

same symbol 2g will be used for the induced operator Ap,q(X) → Ap−1,q−1(X)

between spaces of global forms. Denoting by volg = 1
n!ω

n
g the volume form on X,

and using the identity 2gωg = n, we obtain easily the identity

α ∧ ωn−1
g = (n− 1)!(2gα)volg ∀α ∈ A2(X,C). (3.11)
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Definition 3 Let L be a holomorphic line bundle on X. A Hermitian metric h on
L is called Hermitian-Einstein if the real function i2gFAh is constant. If this is the
case, this constant is called the Einstein constant of h and is denoted ch.

Applying (3.11) to iFAh = 2πc1(L, h) we obtain the following formula

ch = 2π

(n− 1)!Volg(X)
degg(L) (3.12)

for the Einstein constant of a Hermitian-Einstein connection on L. Therefore a
Hermitian metric h on L is Hermitian-Einstein if and only if

i2gFAh = 2π

(n− 1)!Volg(X)
degg(L).

Proposition 4 Let L be a holomorphic line bundle on X. Then L admits a
Hermitian-Einstein metric h, which is unique up to constant factor.

Proof Let h0 be an arbitrary Hermitian metric on L, and let u ∈ C∞(X,R). The
metric h = euh0 is Hermite-Einstein if and only if

2g(i∂̄∂u+ iFAh0
) = 2π

(n− 1)!Volg(X)
degg(L),

i.e. if and only if u is a solution of the elliptic equation

i2g∂̄∂u = 2π

(n− 1)!Volg(X)
degg(L)− i2gFAh0

.

The definition of degg(L) gives

∫

X

(
2π

(n− 1)!Volg(X)
degg(L)− i2gFAh0

)
volg = 0,

so the result follows from Lemma 5 below (see [LT, Corollary 1.2.9]). �
Lemma 5 Let (X, g) be a connected, compact complex manifold endowed with
a Gauduchon metric. Denote by R the line of constant real functions on X. The
operator P = i2g∂̄∂ : A0(X,R) → A0(X,R) has the following properties:

(1) ker(P ) = R.
(2) im(P ) = R

⊥, where the symbol ⊥ stands for the orthogonal complement with
respect to the L2-inner product.

Proof

(1) Note first that P is a second order elliptic operator which vanishes on
locally defined constant functions (has no 0-order terms in local coordinates).
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The maximum principle applies and shows that a function u ∈ ker(P ) is
constant around any local maximum. Therefore the non-empty closed subset
u−1(umax) ⊂ X where u attains its global maximum umax is open in X. Since
X is connected, it follows u−1(umax) = X, so u is constant.

(2) Since g is Gauduchon it follows easily that R ⊂ im(P )⊥. On the other hand, the
symbol of P is self-adjoint, so the index of P vanishes. Taking into account (1)
it follows that dim(im(P )⊥) = 1, so the inclusion R ⊂ im(P )⊥ is an equality.

�
Proposition 4 has an important interpretation in terms of moduli spaces. In order

to explain this interpretation, we will change the point of view and we will consider
variable unitary connections on a fixed differentiable Hermitian line bundle. Let
(L, h) be a differentiable Hermitian line bundle on X, and let A(L, h) be the set
of unitary connection on (L, h). This set is an affine space over the linear space
A1(X, iR) of iR-valued 1-forms on X, so it has a natural Fréchet topology. The
gauge real group C∞(X,S1) acts on A(L, h) in the obvious way: denoting by

dA : A0(L) → A1(L)

the linear connection associated with A, the gauge action on A(L, h) satisfies the
identity:

df ·A = f ◦ dA ◦ f−1 = dA − dff−1.

The quotient M(L, h) := A(L, h)/C∞(X,S1), endowed with the quotient topol-
ogy, is called the moduli space of unitary connections on (L, h). It is an infinite
dimensional Hausdorff space [Te4].

Definition 6 Let (L, h) be a differentiable Hermitian line bundle on X with
c1(L) ∈ NS(X). A unitary connection A on (L, h) is called Hermitian-Einstein
if the curvature form FAh has type (1,1) and i2gFA is constant.

The Hermite-Einstein condition is gauge invariant so, denoting by AHE(L, h) ⊂
A(L, h) the subspace of Hermitian-Einstein on (L, h), we obtain a closed subspace

MHE(L, h) → M(L, h)

called the moduli space of Hermitian-Einstein on (L, h).
Let ∂̄A : A0(L) → A0,1(L) be the second component of the first order

differential operator dA : A0(L) → A1(L) = A1,0(L)⊕A0,1(L). The first condition
in Definition 6 means that ∂̄2

A = 0, so ∂̄A defines a holomorphic structure LA on L;
the corresponding sheaf of holomorphic sections is given by

LA(U) = {s ∈ 0(U,L)| ∂̄As = 0}
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for open sets U ⊂ X. The assignment A  → LA induces a well defined map

KHg,L,h : MHE(L, h) → Picc1(L)(X)

called the Kobayashi-Hitchin correspondence associated with (L, h). Proposition 4
can be reformulated as follows:

Corollary 7 Let (L, h) be a differentiable Hermitian line bundle on X with c1(L) ∈
NS(X). The Kobayashi-Hitchin correspondence

KHg,L,h : MHE(L, h) → Picc1(L)(X)

is a homeomorphism.

For a class c ∈ NS(X) let (Lc, hc) be a differentiable Hermitian line bundle of
Chern class c. The classification theorem for differentiable S1-bundles shows that
(Lc, hc) is well-defined up to unitary isomorphism.

Remark 8 Corollary 7 gives a homeomorphism

KHg : MHE :=
∐

c∈NS(X)

MHE(Lc, hc) → Pic(X).

The moduli space MHE has a natural group structure defined by tensor product
of Hermite-Einstein connections and, with respect to this structure, KHg is an
isomorphism of real Lie groups.

Moduli Spaces of Flat S1-Connections

Recall that a Hermitian line bundle (L, h) on a compact differentiable manifold X

admits a unitary flat connection if and only if c1(L) ∈ Tors. This follows easily
using the cohomology exact sequence associated with the short exact sequence of
constant sheaves on X

{1} → Z
2πi·−−−→ iR

exp−−→ S1 → {1}.

Therefore the moduli space Mfl of flat S1-connections on X decomposes as

Mfl =
∐

c∈Tors

Mfl(Lc, hc),

where (Lc, hc) is a Hermitian line bundle of Chern class c, and Mfl(Lc, hc) denotes
the moduli space of flat unitary connections on (Lc, hc). The classical classification
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theorem for flat connections gives an identification

Mfl
�−−−→

hol
Hom(π1(X,Z), S1) = Hom(H1(X,Z), S1)

given by the map hol which assigns to any flat connection its holonomy represen-
tation. Note that Mfl has a natural Lie group structure, and fits in the short exact
sequence

{1} → M0
fl ↪→ Mfl

c1−→ Tors → 0,

where M0
fl is the moduli space of flat unitary connections on the trivial Hermitian

line bundle.

Remark 9 Let X be a compact differentiable manifold. The moduli space M0
fl is

canonically isomorphic to the quotient H 1(X, iR)/H 1(X, 2πiZ)-torsor, so it is a
real torus of dimension b1(X). In particular Mfl is compact, and the connected
component of its unit element is the torus M0

fl.

Let now X be a compact complex manifold, and g be a Gauduchon metric on X.
Any flat connection on a Hermitian line bundle on X is obviously Hermite-Einstein,
so we get an obvious inclusion Mfl ↪→ MHE which identifies Mfl with a subgroup
of MHE.

Remark 10 The images

Picufl(X) := KHg(Mfl), Pic0
ufl(X) := KHg(M0

fl)

of Mfl (M0
fl) in Pic(X) (respectively Pic0(X)) are independent of g; the first

(respectively second) image coincides with the subgroup of isomorphism classes
of (topologically trivial) holomorphic line bundles L on X admitting a Hermitian
metric h with Ah flat.

Corollary 11 Let X be a complex surface, and g be a Gauduchon metric on X.
One has

Picufl(X) = ker
(
degg PicT (X) : PicT (X) → R

)
.

In particular, the kernel ker
(
degg PicT (X) : PicT (X) → R

)
is independent of the

Gauduchon metric g, and is a compact Lie group of real dimension b1(X).

Proof The inclusion Picufl(X) ⊂ ker
(
degg PicT (X) : PicT (X) → R

)
is obvious

and holds for manifolds of arbitrary dimension. Conversely, let [L] ∈ PicT (X) with
degg(L) = 0. Remark 8 shows that L � LA for a Hermite-Einstein connection
A ∈ AHE(Lc), where c := c1(L) ∈ Tors. Since degg(L) = 0, formula (3.12) gives

i2gFA = 0. Taking into account that iFA is a (1,1)-form, it follows that i
2π FA

is an anti-selfdual 2-form on the compact, oriented Riemannian 4-manifold (X, g).
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Since this form is also closed, it follows that it is harmonic, so it coincides with the
harmonic representative of the Chern class cDR

1 (L) in de Rham cohomology. But
this de Rham class vanishes, because c1(L) ∈ Tors. Therefore i

2π FA = 0, which
shows that A is flat, so [A] ∈ Mfl, and [L] ∈ KHg(Mfl) = Picufl(X) as claimed.
The other claims follow from Remarks 9 and 10. �

The real dimension of Pic0(X) is 2q(X), where q(X) := dim(H 1(X,OX)) is
the irregularity of X. By Remark 9 the real dimension of Pic0

ufl(X) is b1(X). Taking
into account Corollary 11 we obtain:

Corollary 12 Let X be a complex surface, and let q(X) be its irregularity.

(1) One has 2q(X)− 1 � b1(X) � 2q(X).
(2) If b1(X) is even, then b1(X) = 2q(X), Picufl(X) = PicT (X) and the degree

map associated with any Gauduchon metric on X is a topological invariant.
(3) If b1(X) is odd, then b1(X) = 2q(X) − 1, Picufl(X) has real codimension 1

in PicT (X) and the degree map associated with any Gauduchon metric on X

induces an isomorphism

Pic0(X)/
Pic0

ufl(X)
= PicT (X)/

Picufl(X)
�−→ R.

The identity

b1(X) =
{

2q(X) if b1(X) is even,
2q(X)− 1 if b1(X) is odd,

is well known [BHPV]. Our proof uses gauge theoretical methods, and gives a
geometric interpretation of this identity.
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Chapter 4
Intersection of Quadrics in Cn,
Moment-Angle Manifolds, Complex
Manifolds and Convex Polytopes

Alberto Verjovsky

Abstract These are notes for the CIME school on Complex non-Kähler geometry
from July 9th to July 13th of 2018 in Cetraro, Italy. It is an overview of different
properties of a class of non-Kähler compact complex manifolds called LVMB
manifolds, obtained as the Hausdorff space of leaves of systems of commuting
complex linear equations in an open set in complex projective space P

n−1
C

.

4.1 Introduction

The origin of the so-called LVM manifolds is the paper [DV97] by Santiago López
de Medrano and the author of these notes. There they define and study a new
infinite family of compact complex manifolds (a finite number of diffeomorphism
classes for each dimension) which, except for a series of cases corresponding
to complex tori, are not symplectic. The construction is based on the following
principle discovered by André Heafliger:

If F is a holomorphic foliation of complex codimension m on a complex manifold M with
m � n = dimC M and & is a C∞ manifold of real dimension 2m which is transversal to
F then & is a complex manifold. Indeed it suffices to provide & with a holomorphic atlas
from transversals to the plaques of a foliation atlas of F .

The essential point is that one can obtain non-algebraic complex manifolds as
the space of leaves of holomorphic foliations of complex algebraic manifolds, as
long as the space of leaves is Hausdorff. In particular the foliation could be given
by a holomorphic action of a complex Lie group. In fact the construction in [DV97]
uses an explicit linear action of C in Cn (n � 3) which descends to a projective
linear action on complex projective space P

n−1
C

and there is an open set V ⊂ P
n−1
C

which is invariant under the action and such that every leaf (orbit) of the action
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is an immersed copy of C or C∗; furthermore, the space of leaves of the foliation
by orbits of V is compact and Hausdorff and therefore it is a compact complex
manifold. In some sense the set V is the union of “semi-stable orbits” (or Siegel
leaves) of the action in the sense of Geometric Invariant Theory (GIT) and is the
complement of a union of projective subspaces of different dimensions. In fact V is
the image under the canonical projection Cn → P

n−1
C

of the set of orbits in Cn that
do not accumulate to the origin (a sort of Kempf-Ness condition). In a very pretty
paper [CZ07] Stéphanie Cupit-Foutou and Dan Zaffran describe how to construct
the generalized family of LVMB manifolds from certain Geometric Invariant Theory
(GIT) quotients.

They show that Bosio’s generalization parallels exactly the extension obtained
by Mumford’s GIT to the more general GIT developed by Białynicki-Birula and
Świecicka.

The article [DV97] is a continuation of the foundational papers by Girbau et al.
[GHS83] about the deformations of foliations which are transversally holomorphic.
In fact, André Haefliger used these results to study in [HA85] the deformations of
Hopf manifolds which are realized as the space of leaves of a foliation.

Another continuation of that work was obtained by Jean-Jacques Loeb and
Marcel Nicolau which uses the foliation in order to describe the deformations of
the Calabi–Eckmann manifolds [LN96].

The initial construction in [DV97] can be extended to the case of projective
linear actions of Cm for any positive integer m on P

n
C

as long as n > 2m. Then,
under two assumptions related to the n × m complex matrix � of eigenvalues of
the linear flows which determine the action one obtains new compact manifolds.
These assumptions are that � be admissible i.e., it satisfies the weak hyperbolicity
and Siegel conditions. This was achieved by Laurent Meersseman who studies in
detail several aspects of the compact manifolds in [ME00]. These compact complex
manifolds N� are now known as LVM manifolds. A very interesting property of
these manifolds when m > 1 is their very rich topology. For instance, any finite
abelian group is a summand of the homology group of one of these manifolds.
In particular some of the manifolds have arbitrarily large torsion in its homology
groups. In [BO01], Frédéric Bosio gives a generalization of the construction of
LVM manifolds. The idea is to relax the weak hyperbolicity and Siegel conditions
� and to look for all the subsets S of Cn such that action (4.1) in Sect. 4.2 is free
and proper. The manifolds that are either LVM manifolds or the generalization by
Frédéric Bosio are now known as LVMB manifolds. The manifolds N� are obtained
as the orbit space of a free action of the circle on an odd-dimensional manifold
M1(�) contained in the sphere S2n−1 which is the intersection of homogeneous
quadratic equations and called moment-angle manifold. Santiago López de Medrano
has studied deeply these intersection of quadrics in several papers by himself and
some collaborators [GL13, GL05, GL14, DM88, DM89, DM14, DM17] in particular
the paper [GL13] by Samuel Gitler and Santiago López de Medrano has been a great
advance to understand the topology of moment-angle manifolds.

The LVM manifolds are not symplectic (except when 2m + 1 = n when
the manifolds are compact complex tori) however under an arbitrarily small
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deformation of � the manifolds N� fiber à la Seifert-Orlik over a toric manifold
(or orbifold) with fiber a compact complex torus. This is due to the following fact:

The complex manifolds N� of complex dimension n − m − 1 admit a locally-
free holomorphic action of Cm (recall that n > 2m); although N� is not Kähler, the
foliation G� on N� by the leaves of the action is transversally Kähler, in particular
G� is a Riemannian foliation and thus admits a transverse invariant volume form. In
particular either has a Zariski open set of noncompact leaves or else all are compact
complex tori.

If � satisfies a rationality condition called condition K in Definition 4.12 then all
the leaves of G� are compact, in fact they are complex tori Cm/0 (0 ∼= Z2m) and
the quotient is Hausdorff. Hence it is a compact complex manifold (or an orbifold).

Furthermore, the rationality conditions K in Definition 4.12 imply that the
transversal Kähler form is “integral” (a sort of transversal Kodaira embedding
condition) which makes this quotient an algebraic manifold or variety with quotient
singularities of dimension n − 2m − 1. In fact this quotient admits an action of
(C∗)n−2m−1 with a principal dense orbit so it is a toric manifold X(�) where
� = �� is the corresponding fan which depends on �.

The reciprocal is true as shown by the author and Meersseman [MV04]: If
X(�) is a toric variety with at most singularities which are quotients then there
exists an admissible configuration � which satisfies conditions K in Definition 4.12
and therefore any toric variety with at most quotient singularities is obtained
by the quotient of a LVM manifold by a holomorphic locally-free action of a
compact complex torus. In this paper one uses Delzant construction over a rational
simple convex polytope which is naturally associated to the convex hull H(�)

of the configuration. When the leaves of G� are not compact the leaf space is
not Hausdorff and one has a “noncommutative” complex manifold in the sense
of Alain Connes [CO85, CO94]. This happens when the convex polytope H� is
not rational and a convex polytope associated to the foliation G� is non-rational.
There are important reasons to consider nonrational polytopes. For instance, toric
varieties corresponding to simple rational polytopes are rigid (i.e., they cannot be
deformed) whereas simple rational polytopes can be perturbed simply by moving
the vertices to non-rational simple polytopes. The problem of associating to a non-
rational polytope a geometric space of some kind is an old one and emerges in
different subjects, including symplectic geometry, via the convexity theorem and the
Delzant construction. In fact it also is connected with the combinatorics of convex
polytopes see for instance Stanley [ST83] where a link between rational simplicial
polytopes and the geometry and topology of toric varieties is explained following
earlier work of McMullen [MA93] and Stanley [ST96]. There are important reasons
to consider nonrational simple polytopes and its and give them an interpretation
in relation to toric geometry. In this respect the article by Prato [PR01] is the
first work that addresses this problem via symplectic geometry and she defines
the notion of quasifolds, which is a generalization of the notion of orbifolds and
associates to a non-rational simple polytope a quasifold. In a joint paper [BP01]
Elisa Prato and Fiammetta Battaglia generalize the notion of toric variety and
associate to each non-rational simplicial polytope a Kähler quasifold and compute
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the Betti numbers (see also [BP01]). The paper by Battaglia and Zaffran [BZ15]
uses also the leaf space of the foliation G� of the manifolds N� to have either toric
orbifolds in the rational case or quasifolds in the non-rational case. Thus the papers
[BZ15, BP01, BA01, BP01, PR01] are foundational papers in the theory of non-
rational polytopes.

In [KLMV14] a different interpretation as non-commutative toric varieties is
given of the pair (N�,G�) in the case � does not satisfy the rational condition (K).
Non-commutative toric varieties are to toric varieties what non-commutative tori are
to tori and, as such, they can be interpreted in multiple ways: As (noncommutative)
topological spaces, they are C∗-algebras associated to dense foliations, that is to
say, deformations of the commutative C∗-algebras associated to tori in the spirit of
Alain Connes.

However, while non-commutative tori correspond to linear foliations (defor-
mations) on classical tori, non-commutative toric varieties correspond to the
holomorphic foliation G�) on N�.

The manifolds N� are certain intersections of real quadrics in complex projective
spaces of a very explicit nature. The homotopy type of LVM-manifolds is described
by moment angle complexes.

The paper of Bosio and Meersseman [BM06] is a beautiful paper with many
ideas and interconnection of several branches of mathematics. In fact the title and
subject of the present notes is very much inspired on this paper.

They do a deep study of the properties of LVM manifolds and also made signif-
icant advances in the study of the topology of the intersection of k homogeneous
quadrics.

In particular, the question of whether they are always connected sums of sphere
products was considered: they produced new examples for any k which are so, but
also showed how to construct many more cases where they are not.

Independently in [DJ91] Michael W. Davis and Janusz Januszkiewicz had
introduced new constructions, part of which essentially coincide with those above,
where the main objective was the study of some important quotients of them
(different from the ones mentioned above) which they called toric manifolds (in
contrast with toric varieties that are algebraic). These toric manifolds are topological
analogues of toric varieties in algebraic geometry. They are even dimensional
manifolds with an effective action of an n-dimensional compact torus (S1)

n
, there is

a kind of “moment map” and the orbit space is a simple convex polytope. One can do
combinatorics on the quotient polytope to obtain information on the manifold above.
For example one can compute the Euler characteristic and describe the cohomology
ring of the manifold in terms of the polytope. The paper by Davis and Januszkiewicz
originated an important development through the work of many authors, for which
we refer the reader to the book of Buchstaber and Panov [BP02]. A line of research
derived from [DJ91] is the paper [BBCG10] where a far-reaching generalization is
made and a general splitting formula is derived that provides a very good geometric
tool for understanding the relations among the homology groups of different spaces.

There is a principal circle bundle p : M1(�) → N� over each manifold N�. The
manifold M1(�) is a smooth manifold of real odd dimension 2n − 2m − 1 called
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moment-angle manifold. The manifold M1(�) admits an action of the torus (S1)n.
The orbit space of this action is a convex polytope of dimension 3n− 2m− 1 thus
there is a “moment map”. In addition M1(�) has in a contact structure and in many
cases is an open book with a very interesting structure [BLV17].

In the present notes we present various results and properties of LVMB
manifolds:

1. Complex analytic proprieties
2. The relation between these manifolds and toric manifolds and orbifolds with

quotient singularities.
3. Their topology and geometric structures

The main body of the results presented in these notes are in part contained in the
papers [BLV17, BM06, DV97, ME00, MV04, MV08].

4.2 Singular Holomorphic Foliations of Cn and P
n−1
C

Given
by Linear Holomorphic Actions of Cm on C

n (n > 2m)

Let M be a complex manifold of complex dimension n and 0 � p � n.

Definition 4.1 A holomorphic foliation F of complex dimension p (or complex
codimension n − p) is given by a foliated atlas (Uα,+α)α∈I where Uα are open in
M , {Ui}i∈I is an open covering of M and +i : Ui → Vi ⊂ Cn−p × Cp = Cn

are homeomorphisms such that for overlapping pairs Ui , Uj the transition functions
+ij = +j+i

−1 : +i(Ui ∩ Uj) → +j (Ui ∩ Uj) are of the form:

+ij (x, y) = (+1
ij (x),+

2
ij (x, y)) x ∈ C

n−p, y ∈ C
p (A)

where +1
ij and +2

ij are holomorphic and +1
ij is a local biholomorphism between

open sets of Cn−p and +2
ij is a local holomorphic submersion from an open set in

C
n onto an open set of Cp.

Definition 4.2 The atlas (Uα,+α)α∈I is called a holomorphic foliation atlas and
the maps +α are called holomorphic flow boxes or holomorphic foliation charts.
The sets of the form +−1

α ({x} × Cp), x ∈ Cn−p, i.e., the set of points whose
coordinates (X, Y ) with X = (x1, · · · , xn−p) ∈ Cn−p, Y = (y1, · · · , yp) ∈ Cp

satisfy X = C for some constant vector C ∈ Cn−p are called plaques. Condition
(A) says that the plaques glue together to form complex submanifolds called leaves,
which are immersed in M (not necessarily properly immersed). If (Uα, ϕα)α∈I
is a complex atlas as in Definition 4.1 the leaves are immersed p-dimensional
holomorphic submanifolds of W .
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The family of biholomorphisms {+1
ij }i∈I defines a groupoid called the transverse

holonomy groupoid. It can be used to define noncommutative toric varieties [BZ15,
KLMV14].

Let m and n be two positive natural numbers such that n > 2m. Let � :=
(21, · · · ,2n) be an n-tuple of vectors in Cm where 2i = (λ1

i , · · · , λm
i ) for i =

1, · · · , n.
To the configuration (21, · · · ,2n) we can associate the linear (singular) folia-

tion of Cn generated by the m holomorphic linear commuting vector fields (1 �
j � m)

C
n , (z1, · · · , zn)  −→

n∑

i=1

λ
j
i zi

∂

∂zi

dZ
dT

=

⎡
⎢⎢⎢⎣

λ
j
1 0 0 . . . 0

0 λ
j

2 0 . . . 0
. . . . . .

0 0 . . . λ
j
n

⎤
⎥⎥⎥⎦ Z, (System of linear equations)

Z =
⎡

⎢⎣
z1
...

zn

⎤

⎥⎦ , j = 1, · · · ,m, T ∈ C

Let us start with the construction of an infinite family of compact complex
manifolds. Let m be a positive integer and n and integer such that n > 2m.

Definition 4.3 Let � = (21, . . . ,2n) be a configuration of n vectors in Cm. Let
H(21, · · · ,2n) be the convex hull of (21, · · · ,2n).
We say that � is admissible if:

(1) (SC) The Siegel condition: 0 belongs to the convex hull H(�) :=
H(21, . . . ,2n) of (21, . . . ,2n) in Cm � R2m.

(2) (WH) The weak hyperbolicity condition: for every 2m-tuple of integers
i1, · · · , i2m such that 1 � i1 < · · · < i2m � n we have 0 /∈ H(2i1, · · · ,2i2m)

This definition can be reformulated geometrically in the following way: the
convex polytope H(21, · · · ,2n) contains 0, but neither external nor internal facet
of this polytope (that is to say hyperplane passing through 2m vertices) contains 0.
An admissible configuration satisfies the following regularity property (Fig. 4.1).

Lemma 4.1 Let 2′
i = (2i, 1) ∈ Cm+1, for i ∈ {1, · · · , n}. For all set of integers

J ⊂ {1, · · · , n} such that 0 ∈ H((2′
j )j∈J ) the complex rank of the matrix whose

columns are the vectors (2′
j )j∈J is equal to m+ 1, therefore it is of maximal rank.
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Fig. 4.1 Quadrilateral in C

corresponding to m = 1 and
n = 4 given by the single
equation in C

4 given by the
diagonal matrix 21 =
diagonal(λ1, λ2, λ3, λ4)

λ2 λ1

λ4
λ3

One considers the holomorphic (singular) foliation F in projective space P
n−1
C

given by the orbits of the linear action of Cm on Cn induced by the linear vector
fields (4.1).

(T , [z]) ∈ C
m×P

n−1
C

 −→ [z1 · exp〈21, T 〉, . . . , zn · exp〈2n, T 〉] ∈ P
n−1
C

(4.1)

where T = (t1, · · · , tm) ∈ Cm, [z1, · · · , zn] are projective coordinates and 〈−,−〉
is inner product 〈Z,W 〉 =

n∑
i=1

ziwi .

One can lift this foliation to a foliation F̃ in Cn given by the linear action

(T , z) ∈ C
m × C

n  −→ (z1 · exp〈21, T 〉, . . . , zn · exp〈2n, T 〉) ∈ C
n. (B)

The so-defined foliation is singular, in particular 0 is a singular point. The behavior
in the neighborhood of 0 determines two different sorts of leaves.

Definition 4.4 (Poincaré and Siegel Leaves) Let L be a leaf of the previous
foliation. If 0 belongs to the closure of L, we say that L is a Poincaré leaf. In the
opposite case, we talk of a Siegel leaf.

If L is a Siegel leaf then the distance from that leaf to the origin is positive and one
can show that there exists a unique point z = (z1, · · · , zn) ∈ L which minimizes
the distance to the origin and this point satisfies

n∑

i=1

2i |zi |2 = 0 (4.2)

This is because the leaf LW through the point W = (w1, · · · , wn) in the Siegel
domain is the Riemann surface

LW = {
(w1 · exp〈21, T 〉, . . . , wn · exp〈2n, T 〉) ∈ C

n | T ∈ C
m
}
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Fig. 4.2 Siegel and Poincaré leaves

and to minimize the (square of the) distance to the origin we see that Lagrange
multipliers imply that the complex line from the origin to a point that minimizes the
square of the distance must be orthogonal to the orbit at the point (Fig. 4.2).

One has the following dichotomy:

1. If 0 /∈ H(21, . . . ,2n) then every leaf is of Poincaré type.
2. The set of Siegel leaves is nonempty if and only if 0 ∈ H(21, . . . ,2n)

For z = (z1, · · · , zn) ∈ Cn let Iz ⊂ {1, · · · , n} defined as follows Iz = {j :
zj �= 0} and let 2Iz = {2j : j ∈ Iz}. One defines:

S = S�

= {z ∈ C
n | 0 ∈ H(2Iz)}, S as the complement of subspaces in C

n

(4.3)

Definition 4.5 We define V = V(�) ⊂ Pn−1 to be the image of S in Pn−1 under
the canonical projection π : Cn − {0} → Pn−1.

Let

T = T (�) = {z ∈ C
n | z �= 0,

n∑

i=1

2i |zi |2 = 0 } (C)

then T is the set of points that realize the minimum distance in each Siegel
leaf. Then T meets ever Siegel leaf in exactly one point and it meets each leaf
transversally. We have that T = T ∪ {0} is a singular manifold with an isolated
singularity at the origin.
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Let

N = N� = {[z] ∈ P
n−1 |

n∑

i=1

2i |zi |2 = 0} Equations of LVM manifolds (D)

One can verify that S is the union of the Siegel leaves and that S is an open set
of the form S = Cn − E where E is an analytic set, whose different components
correspond to subspaces of Cn where some coordinates vanish.

The leaf space of the foliation restricted to S, that we call M , or M� if we want
to emphasize �, is identified with T .

Since S contains (C∗)n we see that S is dense in Cn.
The weak hyperbolicity condition implies that the system of quadrics given by

the preceding equations which define T and N have maximal rank in every point
thanks to Lemma 4.1.

The Siegel condition implies that T and N are nonempty. One can show also that
F̃ is regular in S and that T is a smooth manifold transverse to the restriction of F̃
to S. In other words the quotient space of F̃ restricted to S can be identified with
T .

As mentioned before, the open set S is a deleted complex cone in Cn: i.e. if
Z ∈ S then λZ ∈ S for all λ ∈ C∗. Therefore V = π(S) (Definition 4.5) is an open
set of Pn−1

C
. Then π(T ) is a smooth manifold of dimension equal to the codimension

of F and transversal to the leaves.
By the following Lemma by André Haefliger π(T ) is a complex manifold:

Lemma 4.2 (A. Haefliger) Let M be a complex manifold of complex dimension
n � 2 and F a holomorphic foliation of M of codimension m � 1 with n �
m. Let N ⊂ M be a smooth manifold of real dimension 2m which is transversal
to the leaves of F . Then N is in a natural way a complex manifold of complex
dimension m.

Proof In fact if V ⊂ M is an open subset of N which is contained the domain
Uα of the foliation chart +α : Uα → Cm × Cm−n of F then if +̂α = +α�V is
the restriction of +α to V and π1 : Cm × Cn−m is projection onto the first factor
then 3α = π1 ◦ +̂α is a holomorphic coordinate chart of M. Condition (A) in
Definition 4.1 implies that the coordinate changes are holomorphic. ��
Remark 4.1 Bogomolov has conjectured that every compact complex manifold W

can be obtained by this process for a singular holomorphic foliation of projective
space and W transversal to the foliation outside of the singularities. More precisely
he asks: can one embed every compact complex manifold as a C∞ smooth
subvariety that is transverse to an algebraic foliation on a complex projective
algebraic variety?

In this respect, Demailly and Gaussier [DG17] have shown an embedding
theorem for compact almost complex manifolds into complex algebraic varieties.
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They show that every almost complex structure can be realized by the transverse
structure to an algebraic distribution on an affine algebraic variety, namely an
algebraic subbundle of the tangent bundle.

By Haefliger’s Lemma 4.2 above, T defined in (C) has the structure of a (non-
compact) complex manifold which we call M .

Also N can be identified with the quotient space of F restricted to V (Defini-
tion 4.5) and therefore it inherits a complex structure. Let us denote this complex
manifold by N . The complex dimension of M is n−m and of N is n−m− 1.

The natural projection M → N , induced by the projection π : Cn \ {0} → P
n−1
C

,
is in fact a principal C∗ fibration. Let M1 denote the total space of the associated
circle fibration It has the same homotopy type as M but it has the advantage of being
compact.

Let us observe that M1 can be identified with the transverse intersection of the
cone T (with the vertex at the origin delated) and the unit sphere S2n−1 in Cn. For
this reason we make the following definition

Definition 4.6 Let

M1 = M1(�) = {z = (z1, · · · , zn) ∈ C
n |

n∑

i=1

2i |zi |2 = 0,
n∑

i=1

|zi |2 = 1}.
(4.4)

Then M1(�) is called the moment-angle manifold corresponding to �.

Remark 4.2 Let � be an admissible configuration. Then N� and N(A�+B) (with
A ∈ GLm(C) and B ∈ C

m) are biholomorphic (provided that (A� + B) is
admissible and provided that the corresponding sets S are the same).

Remark 4.3 The manifold N is naturally equipped with the principal C∗-bundle
T → N .

Remark 4.4 The natural projection M1 → N is a S1-principal bundle. It is in fact
the unit bundle associated to the bundle T → N .

Then, the differentiable embedding of N into the projective space described yields
an embedding of fibre bundles

M1 S
2n−1

N CPn−1

Let us denote by ω the pull-back of the Fubini-Study Kählerian form by this
embedding. The form ω is thus a closed real two-form on N which represents the
Euler class of the bundle M1 → N .

Definition 4.7 We call ω the canonical Euler form of the bundle M1 → N .
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Definition 4.8 Let 1 � i � n. We say that 2i (or more briefly i) is indispensable
if (2j )j∈{i}c is not admissible. Let I ⊂ {1, . . . , n}. We say that (2i)i∈I (or more
briefly I ) is removable if (2j )j∈I c is still admissible.

Remark 4.5 Let I ⊂ {1, . . . , n} of cardinal p. If I is removable, then the configu-
ration (2i)i∈I c gives rise to a holomorphic LVM submanifold of N(21, . . . ,2n) of
codimension p.

Remark 4.6 We write S�, N�, M1(�) etc., if we want to emphasize the configura-
tion �. However many times we omit � if it is clearly understood and no confusion
is possible.

Another characterization of S is the following:

S = {z ∈ C
n | 0 is not in the closure of the leaf of F̃ through z} (4.5)

in other words S is the union of the Siegel Leaves and it open and invariant under
the action of Cm.

Remark 4.7 The space of Siegel leaves S has the same homotopy type as M and
therefore also as M1. This is because S is a deleted complex cone over the origen.
It is a union of disjoint copies of C − {0} = C

∗ corresponding to complex lines
through the origin. Therefore it retracts to M1 which is the union of unit circles in
each line.

Remark 4.8 The linear holomorphic action of (C∗)m commutes with the diagonal
action (by diagonal matrices) hence (C∗)n acts on M .

Definition 4.9 (LVM Manifolds) If � is an admissible configuration the manifold
N = N� given by formula (D) above is called a LVM manifold corresponding to
�. It is a compact complex manifold and dimC N� = n−m− 1.

4.3 Examples

4.3.1 Elliptic Curves

We consider m = 1, n = 3 i.e., one linear equation in C3. In C consider a non-
degenerate triangle with vertices λ1, λ2 and λ3. Let 2 = (λ1, λ2, λ3). Suppose
that the origin is in the interior of this triangle. Then the open set of Siegel leaves
S2 ⊂ C3 is the complement of the three coordinate hyperplanes z1 = 0, z2 = 0 and
z3 = 0.

The set in T ⊂ C3 − {0} given by the equation:

λ1|z1|2 + λ2|z2|2 + λ3|z3|2 = 0 (4.6)
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is the transversal as in formula (C) above and it meets every leaf in S2 in exactly
one point. So that the space of leaves in S2 can be identified with the set given by
Eq. (4.6).

The set T is a complex cone with the origin deleted so that if Z ∈ T also cZ ∈ T
for all c ∈ C∗.

We see that N2 := N(λ1,λs,λ3) is the projectivization of T and therefore N2 can
be identified as the quotient set of points satisfying the following two equations:

⎧
⎨

⎩

λ1|z1|2 + λ2|z2|2 + λ3|z3|2 = 0

|z1|2 + |z2|2 + |z3|2 = 1

modulo the natural action of the circle given by

(z1, z2, z3)  → (μz1, μz2, μz3), |μ| = 1, (z1, z2, z3) ∈ N.

The set of points satisfying the two equations is T3 = S1 × S1 × S1.
Hence one has a free action ofC∗ and the quotientN2 := M/C∗, then a complex,

compact manifold of dimension one. In fact N2 is an elliptic curve. To identify the
corresponding complex structure, observe that in this case S = (C∗)3. The mapping
exp : C3 → S = (C∗)3 given by exp(ζ1, ζ2, ζ3) = (eζ1, eζ2, eζ3) can be used to
identify N(λ1,λ2,λ3) with the quotient of C by the lattice generated by λ3 − λ2 and
λ1 − λ2. So we have that

N(λ1,λ2,λ3) is biholomorphically equivalent to the elliptic curve with modulus λ3−λ2
λ1−λ2

.

Observe that in this case we obtain all complex structures on the torus. By
choosing adequately the order of the λi we obtain a mapping from the Siegel domain
to the Siegel upper half-plane in C. Therefore Any elliptic curve is obtained this way.

4.3.2 Compact Complex Tori

(i) If n = 2m+ 1, the convex hull {2i}i∈{1,··· ,2m+1} is a simplex in Cm � R2m.

In fact if one removes one the 2’s then 0 is not in the complex hull of the
remaining. In other words S is equal to (C∗)n and one can show that N is a complex
torus.

Remark 4.9 Every compact complex torus is obtained by this process. In particular,
if n = 3 and m = 1 we obtain every elliptic curve.
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4.3.3 Hopf Manifolds

(ii) If m = 1 let us define for n � 4

21 = 1 22 = i 23 = . . . = 2n = −1 − i .

It is easy to verify that under these conditions S is equal to (C∗)2 × Cn−2 \ {0}.
Consider the two real equations that are used to define T :

⎧
⎨

⎩

|z1|2 = |z3|2 + . . .+ |zn|2

|z2|2 = |z3|2 + . . .+ |zn|2.

If we fix the modules of z1 and z2 (by the definition of S they cannot be 0) the
above equations imply that these modules are equal and that (z3, . . . , zn) belong to
a sphere S2n−5. Therefore these equations define a manifold which is diffeomorphic
to S2n−5 × S1 × S1 × R+∗ . The manifold M1 obtained as the intersection of T and
the unit sphere of Cn is diffeomorphic to S2n−5 × S1 × S1 and N is diffeomorphic
to S1 × S2n−5. In particular for n = 4, on has all the linear Hopf surfaces.

4.3.4 Calabi–Eckmann Manifolds

(iii) Let m = 1, n = 5 and

21 = 1 22 = 23 = i 24 = 25 = −1 − i .

An argument similar to the previous one shows that N is diffeomorphic to S3 ×
S3. One obtains an example of a Calabi–Eckmann manifold that is not a Kähler
manifold.

Remark 4.10 In general one obtains complex structures in products of odd dimen-
sional spheres S2r+1 × S2l+1 like in the classical Calabi–Eckmann manifolds. In
fact: Every Calabi–Eckmann manifold is obtained by this process.

4.3.5 Connected Sums

(iv) S. López de Medrano has shown that for the pentagon in the picture below M1
is diffeomorphic to the connected sum of five copies of S3 × S4. The complex
manifold N is the quotient of this connected sum under a non-trivial action of
S1 (Fig. 4.3).



176 A. Verjovsky

Fig. 4.3 Pentagon in C. The
number ni is the multiplicity
of λi

Fig. 4.4 Polygon, the
number ni is the multiplicity
of λi
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When m = 1 it can be assumed � is one of the following normal forms: Take n =
n1+· · ·+n2�+1 a partition of n into an odd number of positive integers. Consider the
configuration consisting of the vertices of a regular polygon with (2�+ 1) vertices,
where the i-th vertex in the cyclic order appears with multiplicity ni .

The topology of M1 and N can be completely described in terms of the numbers
di = ni + · · · + ni+�−1, i.e., the sums of � consecutive ni in the cyclic order of the
partition:

For � = 1: M1 = S2n1−1 × S2n2−1 × S2n3−1. For � > 1: M1 =
#2�+1
j=1

(
S2di−1 × S2n−2di−2

)
. See Theorem 4.1 below (Fig. 4.4).

To describe the topology of N we will use the following known facts about the
topology of M1: First observe that the smooth topological type of M1 (as well as that
of N) does not change if we vary continuously the parameters � as long as we do
not violate condition (WH) in Definition 4.3 in the process. It is shown in [DM89]
that the parameters � can always be so deformed until they occupy the vertices of
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a regular k-gon in the unit circle, where k = 2l + 1 is an odd integer, every vertex
being occupied by one or more of the λi .

Therefore the topology of M1 (and that of N also) is totally described by this
final configuration, which can be specified by the multiplicities of those vertices,
that is, by the partition

n = n1 + · · · + nk.

Observe that different partitions give different open sets S and therefore also
different reduced deformation spaces. It is clear that if we permute cyclically the
numbers ni we obtain again the same manifolds and deformation spaces, but it
follows from the next result that the cyclic order is relevant for their description.
It is shown in [DM89] that the topology of M1 is given as follows:

Let di = ni + ni+1 + · · · + ni+l−1, for i = 1, . . . , k (the subscripts being taken
modulo k). Let also d = min{d1, . . . , dk}.

These numbers determine the topology of M1:

Theorem 4.1

(1) If k = 1 then M1 = ∅.
(2) If k = 3 then M1 = S2n1−1 × S2n2−1 × S2n3−1.

(3) If k = 2l + 1 > 3 then � > 1 and M1 is diffeomorphic to the connected
sum of the manifolds S2di−1 × S2n−2di−2 (i = 1, . . . , k ) i.e., M1 =
#2�+1
j=1

(
S2di−1 × S2n−2di−2

)
.

The proof of parts (1) and (2) is quite direct, while the proof of part (3) is long
and complicated [DM89]. In what follows we shall only use the fact that the integral
homology groups of M1 coincide with those of the above described connected sum
and the fact that M1 is (2d − 2)-connected. The homology calculations (and part
(2) of Theorem 4.1) were first obtained by Wall [WA80]. Thus our results will be
independent of [DM89] and will provide a simplified proof of some of the cases of
Theorem 4.1.

4.3.6 Some Examples of LVM

In the cases where M1 is not simply connected (i.e., when k = 3 and d = n1 = 1),
the complex structure on N can be described in terms of the defining parameters
by identifying it with previous descriptions of these known manifolds, for instance
when n = k = 3 the manifold N2 is diffeomorphic to the torus S1×S1. When M1 is
simply connected we obtain new complex structures on manifolds. An intermediate
situation is given by the cases k = 3, with n1 = 2, n2 and n3 even, where one can
show, using the fact that each Cni can be considered as a quaternionic vector space,
that M1 is diffeomorphic S3 × S2n2−1 × S2n3−1 and the action of the circle acts on
the first factor so N is diffeomorphic to P1

C
×S2n2−1×S2n3−1. It is easy to see that in
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some cases N can be identified with the product of P1
C

with one of the Loeb-Nicolau
complex structures on S2n2−1 × S2n3−1. But in other cases there is no simple way
to establish such an identification, and it is plausible that these give new complex
structures.

When k = 3, n1 = d > 2 we definitely get a manifold which is not a product,
but a twisted fibration over Pn1−1

C
. In fact, N clearly fibers over Pn1−1

C
with fiber

S2n2−1 ×S2n3−1. This fibration does have a section (recall that we are assuming that
n1 = d is not bigger than the other ni ) which is homotopic to the map P

n1−1
C

→ N

constructed in Lemma 4.3 in Sect. 4.4 below. But, by Remark 4.12 at the end of
the same Sect. 4.4 below, the normal bundle of Pn1−1

C
in N is stably equivalent to

the normal bundle of Pn1−1
C

in P
n−1
C

. By computing the Pontryagin classes of this
bundle one shows that it is not trivial. We therefore have:

Theorem 4.2 When 3 ≤ n1 ≤ n2 ≤ n3 there is a non-trivial (S2n2−1 × S2n3−1)-
fibration over Pn1−1

C
with an (n− 2)-dimensional space of complex structures.

When k > 3 we get new complex structures on manifolds. We will give the
complete description of the underlying real smooth manifold only in the case where
all ni = 1 (so n = k = 2l + 1), where the computations and arguments are simpler.
To do this we can assume as before that the λi are the n-th roots of unity: λi = ρi ,
ρ a primitive root.

One has that � > 1 and M1 is a parallelizable (2n− 3)-manifold with nontrivial
homology only in the two middle dimensions n− 2 and n− 1 only, where it is free
of rank n:

Hn−2(M1) = Hn−1(M1) = Z
n

It follows from the Gysin sequence of the fibration M1 → N (and from the order
of its Euler class in Remark 4.11 found in Sect. 4.4 below) that N has homology
only in dimensions 2i, i = 1, . . . , n− 2 where it is free of rank 1, and in dimension
2l − 1 where it is free of rank 2l.

On the other hand, M1 is the boundary of a manifold Q constructed as follows:
Let

Z = {z ∈ C
n = C

2l+1 | &/(λi) zi z̄i = 0, &zi z̄i = 1}.

Z is diffeomorphic to the 4l manifold S2l−1 × S2l+1 (since the defining quadratic
form has index 2l) and is the union of two manifolds with boundary

Q± = {z ∈ C
n | &/(λi)zi z̄i = 0, ±& ((λi)zi z̄i ≥ 0, &zi z̄i = 1}

whose intersection is M1.
The involution of Cn which interchanges the coordinates zi and zn−i preserves

Z and M1, and interchanges Q+ with Q−. Therefore these two are diffeomorphic
and M1 is an equator of Z.



4 LVM Manifolds 179

Let Q = Q+. It follows now easily from the Mayer-Vietoris sequence of the
triple (S2l−1 × S2l+1,Q,Q−) that Hi(Q) = 0 for i �= 2l − 1, 2l, in which
case it is free of rank l + 1 and l, respectively, and that Hi(M1) → Hi(Q) is
always surjective. Q is also simply connected by Van Kampen’s Theorem. The
Hurewicz and Whitehead Theorems now show that all homology classes in Q

can be represented by spheres which for dimensional reasons can be assumed to
be embedded in M by Whitney’s Imbedding Theorem. (This is enough to show,
using the h-Cobordism Theorem, that M1 is a connected sum, as described in
Theorem 4.1. It is shown in [DM89] that these facts are true in general, by a detailed
description of all homology classes in M1).

The S1 scalar action leaves Q invariant, so the quotient R = Q/S1 is a compact
manifold with boundary ∂R = N . Now the fibration Q → R again embeds in a
diagram

S2d−1 → M1 → S2d−1 → S2n−1

⏐⏐.
⏐⏐.

⏐⏐.
⏐⏐.

P
d−1
C

→ N → P
d−1
C

→ P
n−1
C

See Lemma 4.3 in Sect. 4.4 below.
It follows now from the cohomology Gysin sequence of the fibration Q → R

that H2i (R) = Z, i = 0, . . . , l − 1 and H2l−1(R) = Zl , all other homology groups
being trivial.

Now we can embed, by Lemma 4.3 in Sect. 4.4 below, Pl−1
C

in R representing
all even dimensional homology classes, and l disjoint (2l − 1)-spheres with trivial
normal bundle representing the generators of the corresponding homology group of
R (since all these classes come from Q and are therefore spherical, and their normal
bundles are again stably equivalent to the trivial normal bundle of S2l−1 in P

n−1
C

).
Taking a tubular neighborhood of these manifolds and joining them by tubes we
get a manifold with boundary R′ whose inclusion in R induces isomorphisms in
homology groups. It follows from the h-Cobordism Theorem [MI65] that N = ∂R

is diffeomorphic to ∂R′ which is a connected sum of simple manifolds. These are
l copies of S2l−1 × S2l−1 and the boundary of the tubular neighborhood of Pl−1

C

in R. By the remark at the end of Lemma we know that the normal bundle of this
inclusion is stably equivalent to the normal bundle of Pl−1

C
in P

2l
C

. We have therefore
proved the following

Theorem 4.3 For every l > 1 there is a (2l − 1)-dimensional space of complex
structures on the connected sum of Pl−1

C
×̄S2l and l copies of S2l−1 × S2l−1, where

P
l−1
C

×̄S
2l denotes the total space of the S2l-bundle over P

l−1
C

stably equivalent to
the spherical normal bundle of Pl−1

C
in P

2l
C

.

Observe that for l = 2 we get a manifold which is similar, but not equal, to the
one constructed by Kato and Yamada [KA86], where the first summand is a product
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instead of a nontrivial bundle. Both manifolds had been considered before, from the
point of view of group actions, by Goldstein and Lininger (see [GL71]).

In general, these complex structures are very symmetric, in the sense that we can
still find holomorphic actions of large groups on them (see [DM88]). In particular,
there is an action of the complex, noncompact, (n− 2)-torus (C∗)n−2 on them with
a dense orbit. In this sense, our manifolds behave as toric varieties.

4.4 For m = 1 and n > 3 the Manifolds N Are Not
Symplectic

Theorem 4.4 For n > 3, the manifold N = N� is a compact, complex manifold
that does not admit a symplectic structure.

Proof In fact it follows from the classification given by Theorem 4.1 that the
manifold depends on the polygon of k vertices and for k = 1 the manifold M1
is empty and M1 is a nontrivial circle bundle over N . In general we have that M1
lies in the sphere S2n−1 and that N sits inside the complex projective space P

n−1
C

(but not as a holomorphic submanifold), so we have an inclusion of S1-bundles:

M1 S
2n−1

N P
n−1
C

π1 π2

where π1 and π2 are the restrictions of the canonical map π : Cn \ {0} → Pn−1 to
M1 and S2n−1 respectively.

We will prove first that the inclusion of N can be deformed down in P
n−1
C

into a
projective subspace of low dimension d − 1, but not lower. We will prove first the
following:

Lemma 4.3 The above inclusion of S1-bundles embeds homotopically in the
following sequence of bundle maps:

S2d−1 → M1 → S2d−1 → S2n−1
⏐.

⏐⏐.
⏐⏐.

⏐⏐.

P
d−1
C

→ N → P
d−1
C

→ P
n−1
C

(Diagram)

where the composition of the bottom arrows is homotopic to the natural inclusion.

Proof of Theorem 4.3 If we put d coordinates zi = 0 we obtain a new manifold
M1(�

′) where �′ is a configuration of eigenvalues that is concentrated in l + 1
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consecutive vertices of the regular (2l + 1)-gon. This configuration being in the
Poincaré domain, it follows that the above manifold is empty. ��

This means that the original M1(�) does not intersect a linear subspace of Cn of
codimension d and that correspondingly N does not intersect an d-codimensional
projective subspace of Pn−1

C
. Then the inclusion of N in P

n−1
C

can be deformed into
a complementary projective subspace of dimension d − 1, which gives the middle
bundle map.

Now, M1 being (2d − 2)-connected (by Theorem 4.1), it follows that M1 → N

is a universal S1-bundle for spaces of dimension less than 2d−1 (see [ST51, p. 19])
and therefore the Hopf bundle over Pd−1

C
admits a classifying map into it, which

gives the first map in the bottom row. The composition of the bottom maps also
classifies this Hopf bundle and is therefore homotopic to the natural inclusion, so
the Lemma is proved. From the description of M1 it follows that M1 is simply
connected, except for the cases k = 3, d = n1 = 1. In these cases the S1-action on
M1 = S1 ×S2n2−1 ×S2n3−1 can be concentrated on the first factor, and therefore N

is diffeomorphic to S2n2−1 × S2n3−1. Unless n2 = n3 = 1 we have that H 2(N) = 0
and N is not symplectic.

In all the other cases we have that d > 1 and M1 is 2-connected. From the
cohomology Gysin sequence of the fibration M1 → N it follows that H 2(N) = Z

generated by the Euler class e. However, it follows from the Lemma the following:

Remark 4.11

ed−1 �= 0, ed = 0

so this class does not go up to the top cohomology group H 2n−4(N,Z), and it
follows again that N is not symplectic, and Theorem 4.4 is proved. ��

Nevertheless, observe that N is a real algebraic submanifold of Pn−1
C

since it is
the regular zero set of the (non holomorphic) function g : Pn−1

C
→ R

2 defined by

g([z1, . . . , zn]) = &λizi z̄i

&zi z̄i

Remark 4.12 This implies that the normal bundle of N in P
n−1
C

is trivial. Observe
also that the map P

d−1
C

→ N in the Lemma is homotopic to an embedding, whose
normal bundle is then stably equivalent to the normal bundle of Pd−1

C
in P

n−1
C

.
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4.4.1 Compact Complex Tori Are the Only Kähler LVM
Manifolds

Let k denote the number of indispensable points (remember Definition 4.8 above).
By Carathéodory’s Theorem k � 2m + 1 and the maximum is attained only when
n = 2m+ 1. One has:

Lemma 4.4

(1) S = (C∗)k × (Cn−k \ A) with A an analytic set of codimension at least two in
every point.

(2) This decomposition descends to a decomposition M1 = (S1)k × M0 where M0
is a real compact manifold which is 2-connected.

Sketch of the Proof Let S = C
n \ E, where E is a union of subspaces (see (4.3))

E = {z ∈ C
n | 0 /∈ H(2Iz)}.

The components of codimension one are given by indices corresponding to indis-
pensable points in the configuration. This proves the first part. Since A is of complex
codimension at least 2 in every point (Cn−k \ A) is 2-connected, hence M0 is 2-
connected, since they have the same homotopy type. ��

In examples 4.3.3, 4.3.4 and 4.3.5 above one obtains compact complex manifolds
which are not symplectic because the second de Rham cohomology group is trivial.
This is in fact a general property of the manifolds we obtain:

Theorem 4.5 Let � be an admissible configuration as in Definition 4.3 and N� the
corresponding compact complex manifold. The the following are equivalent:

(1) H(�) is a simplex
(2) N� is symplectic.
(3) N� is Kähler.
(4) N� is a complex torus.
(5) n = 2m+ 1.

Sketch of the Proof It is easy to prove the equivalence of (3) and (4): If N is a
complex torus, one must have S = (C∗)n hence all the 2i must be indispensable
and in this case the convex hull must be a simplex and n = 2m + 1. If the convex
hull is a simplex then, as in Example 4.3.2, N is a compact complex torus.

The most difficult part is that (1) implies (4). One proves that by contradiction.
Suppose n > 2m+ 1. As in the examples one must study the de Rham cohomology
of N and to prove that it is incompatible with the existence of a symplectic form.

We consider two cases:

First Case There exists indispensable points. From here one can deduce that the
fibration M → N is trivial. Hence the decomposition M1 = (S1)k × M0 of the
previous Lemma gives a decomposition N = (S1)k−1 ×M0.
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In other words if N has a symplectic structure it must be supported by (S1)k−1.
The maximal power of this symplectic form must be a volume form in N but that is
only possible only if k − 1 is equal 2n− 2m− 2 which is the real dimension of N .

Second Case If there are not indispensable points then M is 2-connected and
the fibration M → N is not topologically trivial. Therefore the second de Rham
cohomology group of N is generated by the Euler class of that fibration. Analyzing
carefully this fibration one shows that the Euler class is trivial. Therefore this class
is not symplectic, the proof is similar to that of Theorem 4.4. ��

4.5 Meromorphic Functions on the Manifold N�

Many analytic properties of LVM manifolds are related to the arithmetic properties
of the configuration �. One nice example of this fact is given by the following

Theorem 4.6 ([ME00, Theorem 4]) Let N be a LVM manifold without indispens-
able points. Then the algebraic dimension of N� is equal to the dimension over Q
of the Q-vector space of rational solutions of the system (S):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑
i=1

si2i = 0

n∑
i=1

si = 0

(S)

The idea of the proof is very simple. If f is a meromorphic function on N ,
then it can be lifted to a meromorphic function f̃ of S which is constant along
the leaves of F̃ . Since we have assumed that there is not an indispensable point
Lemma 4.4 implies that S is obtained from Cn by removing an analytic subspace of
codimension at least two at every point. Therefore f̃ can be extended to all Cn by
Levi’s Extension Theorem (see [BHPV04, p. 26]). Furthermore f̃ must be invariant
by the action given by (4.1) in Sect. 4.2. In particular f̃ must be invariant by the
standard action of C∗ on Cn \ {0}, and descends to P

n−1
C

. Therefore f̃ is a rational
function. We can show that the fact that f̃ is constant along the leaves of F implies
that an algebraic basis of these rational functions is given by the monomials

z
s1
1 · . . . · zsnn ,

where (s1, . . . , sn) is a rational basis of the vector space of solutions of system (S).

Example 4.1 Let n = 5 et m = 1, and:

21 = 1 22 = i 23 = −1 − i 24 = 3

2
i + 1 25 = −i − 1

2



184 A. Verjovsky

One verifies immediately that there are not indispensable points. The complex
dimension of N is 3 and its algebraic dimension is according to the preceding
Theorem 4.6. Indeed

f (z) = z5
1z

5
2z

2
3

z6
4z

6
5

, g(z) = z1z
2
2

z3z
2
4

are meromorphic functions which are algebraically independent on N and in
addition every meromorphic function on N depends algebraically on f and g.

Recall that a connected Moishezon manifold M is a compact complex manifold
such that the field of meromorphic functions has transcendence degree equal the
complex dimension of the manifold.

It is shown in [ME00] that when Theorem 4.6 applies the algebraic dimension of
N is at most n− 2m− 1 therefore the dimension is strictly inferior to its dimension
n−m−1. In other words: if there are not indispensable points N is not Moishezon.
This happens if and only if � is a simplex. Hence we have the following:

Theorem 4.7 ([ME00, Theorem 3]) The following are equivalent:

(i) N is Moishezon.
(ii) N is projective.

(iii) N is a complex projective torus.

Sketch of the Proof We follow the proof given by Frédéric Bosio in [BO01, pp.
1276–1277]. If I is a subset of {1, . . . , n} such that 0 is in the convex envelope of
(2i)i∈I , then the restriction of action (4.2) to the complex vector subspace of Cn

given by the equations

zj = 0 pour j �∈ I

defines also a LVM manifold that we denote NI . Then this is a complex submanifold
of N . One can verify that if n > 2m+1, i.e., there are points that can be eliminated,
one can find always submanifolds which have indispensable and in fact we can fine
such a submanifold with odd first Betti number. But if N is Moishezon then all of its
complex subvarieties are also Moishezon and therefore must have first Betti number
even. ��
Remark 4.13 Exactly this last argument implies that N is not Kähler if n > 2m+1.
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4.6 Deformation Theory

4.6.1 Small Deformations

We will state without a proof a theorem of stability of LVM manifolds under small
deformations. Let � be an admissible configuration and N the associated LVM
manifold. For ε > 0, let (�t )−ε<t<ε be a small smooth perturbation of � (i.e.,
a smooth function from (−ε, ε) to (Cm)n such that �0 = � = (21, . . . ,2n)).

Since the Siegel and weak hyperbolicity conditions are open in (Cm)n, if ε is
sufficiently small all the configurations (�t ) are admissible. The manifold (ε, ε),⋃
t∈(ε,ε)

Nt ⊂ P
n−1
C

× R admits an obvious submersion over (−ε, ε) with compact

fibers. Ehresmann’ Lemma implies that all the Nt are diffeomorphic, however
they are not necessarily biholomorphic it is enough, for instance, to start with a
configuration � which verifies la condition (K) in Definition 4.12, and to perturb it
in (Cm)n)in order to obtain (�)t which verify (H) in 4.12. This way one obtains a
non-trivial family of de LVM manifold N� parametrized by the interval (−ε, ε).

On the other hand, if � et �′ are two admissible configurations such that �′
is obtained from �′ by a complex affine transformation of Cm, i.e., there exists
a complex affine transformation A of Cm such that 2′

i = A(2i) for all i, one
sees immediately since A(S�) = S ′ and A sends a Siegel leaf of the system
corresponding to � to a leaf corresponding to �′.

Definition 4.10 Let � be an admissible configuration and N� the corresponding
LVM manifold. One calls space of parameters of N� the set of equivalence classes
on an open connected neighborhood of � in (Cm)n consisting of equivalence classes
of admissible configurations under the equivalence ∼= given by � ∼= �′ if and only
if there exists a complex affine transformation A such that A(�) = A(�′).

The weak hyperbolicity condition implies that � affinely generates the space
Cm [MV04, Lemma 1.1]. Up to renumbering the vectors on can assume that
(21, . . . ,2m+1) are affinely independent. Given a sufficiently small open con-
nected set of configurations in (Cm)n containing �, one sees that every element
in that open set can be transformed in a unique way to a configuration where the
first m+ 1 vectors coincide with those of �. Therefore:

Lemma 4.5 Let D be an space of parameters for N�. Then D can be identified
with an open connected subset of (Cm)n−m−1.

Under these conditions on can construct a holomorphic family D of deformations
of N� parametrized by D. It is enough to consider the quotient of S ×D under the
action in formula (4.1) with parameters in D.
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Theorem 4.8 ([ME00, Theorem 11]) Let D be an space of parameters of the LVM
manifold N� corresponding to the configuration �. Let D → D be the associated
family of deformation. Then

(i) If S is at least 3-connected, the family D is a versal family of deformations of
N�.

(ii) If S is at least 4-connected and 2i �= 2j if i �= j , the family D is universal

Hence under rather restrictive conditions we have that all the small deformations
of N� are obtained by just perturbing the configuration �. However this is not the
general case: the Hopf surfaces don’t admit a universal family.

4.6.2 Rigidity and Versality for m = 1

We consider the configuration corresponding to the regular polygon with n = 2l+1
vertices (see Sect. 4.3.5). Let n = n1 + · · · + nk be an ordered partition of n with
d ≥ 4. Let � = (λ1, . . . , λk), λi ∈ C be the admissible configuration where the
multiplicity of λi is ni .

Recall that the complex structure on N(�) does not vary within the affine
equivalence class of �. We show now that the converse is true in most of the cases.
These include in particular all cases with k > 5. It is plausible that the result is true
in general.

Theorem 4.9 Let n = n1 + · · · + nk be an ordered partition of n with d �=
2. Then any two collections of eigenvalues corresponding to this partition give
holomorphically equivalent manifolds N if, and only if, they are affinely equivalent.

Proof The sufficiency of the condition was observed above. For the necessity, if
d = 1 we are in the Calabi–Eckmann case, and this was shown by Loeb and Nicolau
[LN96, Proposition 12]. For d > 2 we follow their argument:

Let V = S/C∗ which is an open subset of Pn−1
C

. Then the complement of V in
P
n−1
C

is a union of projective subspaces whose smallest codimension is d . By the
results of Scheja [SC61] we have that

Hi(V,O) = Hi(Pn−1
C

,O) f or i ≤ d − 2

where OX denotes the sheaf of holomorphic functions on a manifold. The second
cohomology groups were computed by Serre and are C in dimension 0 and trivial
otherwise (see e.g. [GH78, p. 118]).

Now, let Oinv be the kernel of the map O → O given by the Lie derivative along
the vector field ξ which generates the C action on V , so we have an exact sequence
of sheaves:

0 −→ Oinv → O
Lξ−→ O −→ 0
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The associated cohomology exact sequence shows that, for d ≥ 3,
H 1(V ,Oinv) = C, but this group can be identified with H 1(N,O). Therefore
this group is also C and since it classifies the principal C-bundles over N , any two
non-trivial principal C-bundles over N differ by a scalar factor.

Let N1, N2 be two such manifolds which are holomorphically equivalent and
consider a biholomorphism φ : N1 → N2. Over each Ni there is a principal C-
bundle Vi → Ni , where the total space Vi is in both cases V , but is foliated in two
different ways by the projectivized leaves of each system. We have to lift φ to an
equivalence of the principal C-bundles Vi , which amounts to finding an equivalence
between V1 and φ∗V2. Now V1 and φ∗V2 are non-trivial C-bundles (otherwise
they would have sections, Ni would embed holomorphically in P

n−1
C

and would
be a Kähler manifold, recall [WE73, p. 182]). By the previous computation these
differ by a scalar factor and there is an equivalence between V1 and V2 preserving
the leaves of the foliations. By Hartog’s Theorem this equivalence extends to
one of P

n−1
C

into itself which must then necessarily be linear since the group of
biholomorphisms of Pn−1

C
is the corresponding projective linear group. But then it

follows easily that the corresponding eigenvalues must be affinely equivalent, and
Theorem 4.9 is proved. ��

Theorem 4.9 says that when d �= 2 the reduced deformation space of N injects
into its universal deformation space. For d = 1 the question of whether the reduced
deformation space is universal or not depends on the existence of resonances among
the λi (see [HA85, LN96]). For d ≥ 4 the situation is simpler and only depends on
the condition that all the λi be different:

Theorem 4.10 Let n = n1 + · · · + nk be an ordered partition of n with d ≥ 4.
Let 2 be a collection of eigenvalues corresponding to this partition and assume that
all λi are different. Then the corresponding reduced deformation space of N(2) is
universal.

Proof Following again [LN96] we consider the exact sequences of sheaves over V :

0 → 1inv → 1
Lξ−→ 1 → 0

0 → Oinvξ → 1inv → 1b → 0

where 1 denotes the sheaf of holomorphic vector fields on a manifold and 1inv and
1b are defined by these sequences. Now again by Scheja [SC61] we have

Hi(V,1) = Hi(Pn−1
C

,1) f or i ≤ d − 2

H 0(Pn−1
C

,1) is the space of holomorphic global vector fields on P
n−1
C

(all of
which are linear) and can be identified with the space of n× n matrices modulo the
scalar ones. For i > 0, Hi(Pn−1

C
,1) = 0. ��
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The first sequence above gives a cohomology exact sequence for d � 4:

0 → H 0(1inv) → H 0(1)
Lξ−→ H 0(1) → H 1(1inv) → 0.

Since ξ corresponds to the diagonal matrix with entries λi and these are different,
the kernel and cokernel of Lξ can be identified with the space of diagonal matrices
modulo the scalar ones, so H 1(1inv) is a space of dimension n − 1. The class of ξ
in this vector space is non-zero.

From the exact sequences of sheaves we have the diagram:

H 0(1b) → H 1(Oinv) → H 1(1inv) → H 1(1b) → 0
↑ ∼= ↑

H 0(O) → H 0(1)

where the two middle horizontal maps are induced by multiplication by ξ . Since the
lower one is injective by the above remark, it follows that so is the upper one and
that H 1(1b) is of dimension n− 2.

Now it is easy to see that Hi(1b) is isomorphic to Hi(N,1). It follows that
H 1(N,1) is of dimension n−2 and is the tangent space to the universal deformation
space of N . Since we have shown that the reduced deformation space is smooth, has
dimension n − 2 and injects into this universal space, it follows that it is itself a
universal deformation space and Theorem 4.10 is proved. ��

Observe that in Theorem 4.10 if n = 2l + 1 then for l ≥ 4 the space of complex
structures is the universal deformation space for any of its members.

4.6.3 Global Deformation Theory of LVM Manifolds

Here the deformation theory of equivariant LVM manifolds is explained and then
together with the reconstruction theorem we conclude that this implies the existence
of the moduli stack of torics.

Let 2 be an admissible configuration. We want to describe the set M2 of G-
biholomorphism classes of LVM manifolds N2′ such that S2′ is equal to S2 up to
a permutation of coordinates in C

n.
We assume that 2 satisfies (4.21) and

2i is indispensable ⇐⇒ i � k (4.7)

that is, the k indispensable points are the first k vectors of the configuration. In
the same way, every class [N2′ ] of M2 can be represented by a configuration 2′
satisfying (4.21), (4.7) and

S := S2 = S2′ . (4.8)
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Remark 4.14 Condition (4.8) is equivalent to K2 being combinatorially equivalent
to K2′ with same numbering (4.31). Observe that because of our convention (4.7),
having the same numbering implies having the same number of indispensable
points.

Now, observe that, because of (4.21), there exists an affine transformation T of
Cm sending 2 onto a configuration (which we still denote by 2) whose first m+ 1
vectors satisfies

21 = ie1, 22 −21 = e1, . . . , 2m+1 −21 = em,

where (e1, . . . , em) is the canonical basis of Cm. (4.9)

It is straightforward to check that this does not change N2 up to G-biholomor-
phism. In the same way, each class of M2 can be represented by an element 2′
satisfying (4.21), (4.7), (4.8) and (4.9). We call S-normalized configuration such a
configuration.

Let T2 be the set of S-normalized configurations. This is an open and connected
set in (Cm)n−m−1.

Assume now that N2′ is G-biholomorphic to N2. Then, G2 and G2′ as
subgroups of Aut(N2), respectively Aut(N2′) are isomorphic Lie groups. Hence,
their universal cover are isomorphic as Lie groups, that is, using the presentation
given in Proposition 4.6, there exists a matrix M in GLn−m−1(C) which sends the
lattice of G2 bijectively onto that of G2′ . Using notations (4.22) and (4.23), this
means that there exists a matrix P in SLn−1(Z) such that

M(Id,B2A−1
2 ) = (Id, B2′A−1

2′ )P. (4.10)

Decomposing P as

P =
(
P1 P2

Q1 Q2

)
(4.11)

with P1 a square matrix of size n − m − 1 and Q2 a square matrix of size m, we
obtain

MB2A−1
2 = (P1 + B2′A−1

2′ Q1)B2A−1
2 = P2 + B2′A−1

2′ Q2. (4.12)

Because of (4.9), this means that

tB2 = ( tP2 + tQ2
tB2′ )( tP1 + tQ1

tB2′ )−1 (4.13)

that is

Proposition 4.1 Let 2 and 2′ be two S-normalized configurations. Then N2 and
N2′ are G-biholomorphic if and only if 2 and 2′ satisfies (4.13).
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Thus, M2 is the quotient of T2 by the action of SLn−1(Z) described in (4.13).
We claim

Proposition 4.2 If the number k of indispensable points is less than m+1, then the
moduli space M(X) is an orbifold.

Proof From the previous description, it is enough to prove that the stabilizers of
action (4.13) are finite. Let f be a G-biholomorphism of N2. Set

S1 = {w ∈ C
n−m−1 | (1, . . . , 1, w) ∈ S}. (4.14)

��
Observe that (4.14) is a covering of the quotient N1 of S ∩ {z1 · · · zm+1 �= 0} by the
action (4.1). Indeed, we have a commutative diagram

(C∗)n−m−1 −−−−→ S1 −−−−→ S
⏐⏐.

⏐⏐.
⏐⏐.

G2 −−−−→ N1 −−−−→ N2

(4.15)

where the horizontal maps are inclusions and the first two vertical ones are
coverings.

Then, up to composing with a permutation of Cn, we may assume that f sends
N1 onto itself. Because of assumption (4.7), the set (4.14) is a 2-connected open
subset of Cn−m−1, hence the restriction of f to N1, say f1, lifts to a biholomorphic
map F1 of (4.14). More precisely, S1 is equal to Cn−m−1 minus a finite union of
codimension 2 vector subspaces, hence by Hartogs, F1 extends as a biholomorphism
of Cn−m−1.

On the other hand, the restriction of f to G2 preserves G2 and lifts as a
biholomorphism F̃ of its universal covering Cn−m−1. And we have a commutative
diagram

Cn−m−1 exp(2iπ−)−−−−−−→ (C∗)n−m−1

F̃

⏐⏐.
⏐⏐.F1

Cn−m−1 exp(2iπ−)−−−−−−→ (C∗)n−m−1

(4.16)

But, since the linear map F̃ = M must preserve the abelian subgroup of
Proposition 4.6, using (4.9) and (4.10), we have

F̃ (z+ ei) = F̃ (z)+ P1ei := F̃ (z)+
n−m−1∑

j=1

aij ej (4.17)
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that is Q1 is equal to 0. But through (4.16), this implies that

F1(w) =
(
w

a1j
1 · · ·wan−m−1j

n−m−1

)n−m−1

j=1
(4.18)

Now, recall that F1 is a biholomorphism of the whole Cn−m−1, so must send a
coordinate hyperplane onto another one without ramifying. This shows that P1 =
(aij ) is a matrix of permutation. Hence every stabilizer is a subgroup of the group
of permutations with n−m− 1 elements, so is finite.

Example 4.2 (Tori) Let n = 2m + 1, then there are 2m + 1 indispensable points,
S is (C∗)n and N is a compact complex torus of dimension m [ME00, Theorem 1].
The associate polytope K is reduced to a point and N = G. The moduli space M
is equal to the moduli space of compact complex tori of dimension m, which is not
an orbifold for m > 1.

Example Hopf Surfaces Let n = 4 and m = 1, then there are two indispensable
points and S is (C∗)2 × C2 \ {(0, 0)}. A S-admissible configuration is given by a
couple complex numbers (λ3, λ4) belonging to

{z ∈ C | /z < 0 and /z < (z}. (4.19)

The manifold N2 is equal to the diagonal Hopf surface obtained by taking the
quotient of C2 \ {(0, 0)} by the group generated by

(z,w)  −→ (exp 2iπ(λ3 − λ1) · z, (exp 2iπ(λ4 − λ1) · w) (4.20)

Two points (λ3, λ4) and (λ′3, λ′4) with coordinates in (4.19) are equivalent if and
only if their difference is in the lattice Z ⊕ Z or if the difference of (λ3, λ4) by
the switched (λ′4, λ′3) is in this lattice. The isotropy group of a point is Z2 for the
diagonal λ3 = λ4 and is zero elsewhere. The moduli space is an orbifold.

Observe that not all Hopf surfaces are obtained as LVM-manifolds, but only
the linear diagonal ones. Now, they coincide with the set of Hopf surfaces that are
equivariant compactifications of (C∗)2.

(a) Generalized Hopf Manifolds

When n1 = n2 = 1 the manifold N is diffeomorphic to S1 × S2n3−1. Here the
mapping exp : C2 × (Cn3\0) → S = (C∗)2 × (Cn3\0) given by exp(ζ1, ζ2, ζ ) =
(eζ1, eζ2, ζ ) can be used to identify N with the quotient of Cn3\0 by the action of Z
defined by the multipliers

αi = exp

(
2πi

λ2+i − λ2

λ1 − λ2

)
, i = 1, . . . , n3.
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In this case we obtain all complex structures on S
1 × S

2n3−1 having C
n\0 as

universal cover when there is no resonance among the αi . But in the resonant case
we do not obtain all such complex structures since we do not obtain the non-linear
resonant cases of Haefliger (see [HA85] for the notion of resonance).

(b) Generalized Calabi–Eckmann Manifolds

When n1 = 1 and n2, n3 are both greater than 1 we have seen that the manifold
N is diffeomorphic to S2n2−1 × S2n3−1. Here the mapping exp : C × (Cn2\0) ×
(Cn3\0) → S = C∗ × (Cn2\0) × (Cn3\0) given by exp(ζ, ζ1, ζ2) = (eζ , ζ1, ζ2)

can be used to identify N with the quotient of (Cn2\0)× (Cn3\0) by the action of C
defined by the linear differential equation with eigenvalues λ′i = 2πi(λi − λ1), i =
2, . . . , n. This is exactly the construction of the Loeb-Nicolau complex structure
corresponding to a linear system of equations of Poincaré type [LN96].

Observe that in their construction only the quotients of the eigenvalues of the
system are relevant for the definition of the complex structure on N , so once again
only the quotients λi−λk

λj−λk
of our original eigenvalues count.

Again we obtain all their examples of complex structures on S2n2−1S2n3−1 when
there is no resonance among the λ′i . But, once more, in the resonant case we do not
obtain all their complex structures since we do not obtain the non-linear resonant
examples (see [HA85]).

Observe that in all the cases considered in this section only the quotients λi−λk

λj−λk

are relevant in the description of the complex structure of N (in accordance with
Theorem 4.9 that affinely equivalent configurations of eigenvalues with the same S
give the same complex structure) and that they are actually moduli of that complex
structure.

4.7 LVM Manifolds as Equivariant Compactifications

Theorem 4.6 has a deeper explanation related to the structure of N� and the
arithmetic properties of �. In fact S contains always (C∗)n as an open and dense
subset invariant under the foliation F̃ . If we pass to the quotient under the action
of (4.1) one obtains that N� has as an open subset G�, which is the quotient of
(C∗)n by F̃ . Since F̃ is defined by the action (4.1) and this action commutes with
the group structure of the multiplicative group de (C∗)n, it follows that G� itself is
a connected commutative complex Lie group. In other words:

Theorem 4.11 ([LM02]) N� is the equivariant compactification of a complex
commutative Lie group G�.

Remark 4.15 In some sense, this theorem is the principal reason of the interconnec-
tion between LVMB manifolds, toric varieties, convex polytopes and moment-angle
manifolds.
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Definition 4.11 A connected complex Lie group G is called Cousin group (or
toroidal group in [KO64]) if any holomorphic function on it is constant [AK01].

Proposition 4.3 Cousin groups are commutative. Moreover, they are quotients of a
complex vector space V by a discrete additive subgroup of V [AK01].

Proposition 4.4 Any commutative connected complex Lie group G can be written
in a unique way as a product G = C × C

l × (C∗)r where C is a Cousin group
(l, r � 0).

Proposition 4.5 A commutative complex Lie group is Cousin if and only if it does
not have nontrivial characters.

Observe that (C∗)n acts by multiplication on the space of Siegel leaves S� with
an open and dense orbit, making it a toric variety. This action commutes with
projectivization and with (4.1), making of N2 an equivariant compactification of
an abelian Lie group, say G�. A straightforward computation shows the following
[ME98, p.27]

Proposition 4.6 Assume that

rankC

(
21 . . . 2m+1

1 . . . 1

)
= m+ 1. (4.21)

Then G� is isomorphic to the quotient of Cn−m−1 by the Zn−1 abelian subgroup
generated by (Id, B2A−1

2 ) where

A2 =t(22 −21, . . . ,2m+1 −21) (4.22)

and

B2 =t(2m+2 −21, . . . ,2n−1 −21). (4.23)

Remark 4.16 It is easy to prove that

rankC

(
21 . . . 2n

1 . . . 1

)
= m+ 1.

(cf. [MV04, Lemma 1.1] in the LVM case). Hence, up to a permutation, condition
(4.21) is always fulfilled.

We say that N2 and N2′ are G-biholomorphic if they are (G2,G2′)-equivariantly
biholomorphic.

Remark 4.17 When S is (C∗)n, one has N = G is a compact complex Lie group
and therefore a compact complex torus. This is a direct proof of the example
presented in 4.2.
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The structure of groups like G� is well-known [60]. Since we know that the
dimension of G� is equal to that of N we obtain that G� is the quotient of
(C∗)n−m−1 by a discrete multiplicative subgroup 0. The group G� is sometimes
called a semi torus i.e., there exists a short equivariant exact sequence

0 −→ (C∗)n−m−1 −→ G� −→ T −→ 0

where T is an appropriate compact complex torus of dimension n−m− 1.
Furthermore, the group G� is isomorphic to (C∗)a × C, where a � 0 and C

is a Cousin group. Compact Cousin groups are just complex tori. However there
are non-compact Cousin group, for instance If C = (C∗)n−m−a−1/00, and 00 is
a “sufficiently generic” discrete subgroup in order to have that any holomorphic
function on (C∗)n−m−a−1 which is invariant under 00 must be constant then any
holomorphic function on the quotient is constant.

In our case, any holomorphic function on G extends to a meromorphic function
on N�. Then Theorem 4.6 shows is the following:

Proposition 4.7 If N� does not have an indispensable point, then the algebraic
dimension of N� is equal to the dimension a of the factor C∗ in the associated
decomposition G = (C∗)a × C.

Hence we obtain the following.

Corollary 4.1 ([ME00, Proposition IV.1]) Let N� be an LVM manifold which is
the equivariant compactification of the connected complex abelian Lie group G�.
Suppose N� is without indispensable points. Then one has an equivalence:

(i) N� does not have non-constant meromorphic functions
(ii) G� is a Cousin group, i.e., every holomorphic function on G� is constant

(iii) System (S) has no solution in the rationals.

4.8 Toric Varieties and Generalized Calabi–Eckmann
Fibrations

Let � = (21, · · · ,2n) be a configuration which is admissible i.e., it satisfies both
the Siegel and weak hyperbolicity conditions as before.

Recall again the system of equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑
i=1

si2i = 0

n∑
i=1

si = 0

(S)
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Definition 4.12 We say that the configuration � satisfies condition (K) if the
dimension over Q of the vector space of rational solutions of the system (S) above
is maximal, in other words is of dimension n− 2m− 1.

Observe that any linear diagonal holomorphic vector field

ξ =
n∑

i=1

αizi
∂

∂zi

on Cn projects onto a holomorphic vector field on N . In particular, let

2i = (λ1
i , . . . , λ

m
i ) 1 � i � n

and define the m commuting vector fields on S

ηi(z) =
〈

Re 2i

n∑

j=1

zj
∂

∂zj

〉
=

n∑

j=1

/(λi
j )zj

∂

∂zj
1 � i � m (VF)

for i between 1 and m. The composition of the (holomorphic) flows of these vector
fields gives an action of Cm on N . The following theorem is proven in [ME00], as a
generalization of a result of Loeb and Nicolau [LN99].

Theorem 4.12 ([ME00, Theorem 7]) The projection onto N of the vector fields
(η1, . . . , ηm) gives on N a regular holomorphic foliation G of dimension m.
Moreover, the foliation G is transversely Kählerian with respect to ω, the canonical
Euler form of the bundle M1 → N (see Definition 4.7).

Recall that transversely Kählerian means that

1. G is the kernel of ω.
2. ω is closed and real.
3. The quadratic form h(−,−) = ω(J−,−) + iω(−,−) (where J denotes the

almost complex structure of N) defines a hermitian metric on the normal bundle
to the foliation.

Remark 4.18 We note that this theorem gives non-trivial examples of transversely
Kählerian foliations on compact complex manifolds.

4.8.1 Canonical Transversally Kähler Foliations

The aim of this subsection is to study the quotient space of N by G. Observe that it
can be obtained as the quotient space of S by the action induced by the action (B).

Going back to the abelian group G� of Theorem 4.11, we see that its Lie algebra
is generated by the linear vector fields zi∂/∂zi for i = 1, . . . , n. Due to the quotient
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by (B), they only generate a vector space of dimension n−m−1 as needed. Amongst
these n − m − 1 linearly independent vector fields, we can find m of them which
extend to S� without zeros and which generates a locally free action of Cm onto
S�. For example, we can take the commuting vector fields in formula (VF) above.

Definition 4.13 (Canonical Foliation) We denote by G = G� the foliation induced
by this action. This is the canonical foliation of N�.

It is easy to check that G is independent of the choice of vector fields. Indeed,
changing the vector fields just means changing the parametrization of G, that is
changing the Cm-action by taking a different basis of Cm.

Pull back the Fubini-Study form of Pn−1 to the embedding (4.27). This is the
canonical Euler form ω of 2, as defined in Definition 4.7. It is a representative
of the Euler class of a particular S

1-bundle associated to N�, hence the name.
Then G is transversely Kähler with transverse Kähler form ω. For our purposes,
we will not focus on ω but on the ray R

>0ω it generates Recall that � fulfills
condition (K) if (4.39) admits a basis of solutions with integer coordinates; and that
� fulfills condition (H) if (S) does not admit any solution with integer coordinates. If
condition K in Definition 4.12 is fulfilled, then G is a foliation by compact complex
tori and the quotient space is a projective toric orbifold, see [MV04] which contains
a thorough study of this case.

We just note here that, even if condition (K) in Definition 4.12 is not satisfied,
the foliation G has some compact orbits. Indeed, let I be a vertex of K2. Then, by
(4.30), 0 belongs to H(�I c ), so by [MV04, Lemma 1.1],

rankC

(
2ic1

. . . 2ic2m+1

1 . . . 1

)
= m+ 1. (4.24)

Hence, up to performing a permutation, we may assume at the same time (4.21) and

I ∩ {1, . . . ,m+ 1} = ∅. (4.25)

Definition 4.14 An n-dimensional toric variety W (possibly singular) is an alge-
braic variety with an open and dense subset biholomorphic to (C∗)n such that the
natural action of (C∗)n extends to a holomorphic action on all of W . In other words:
a toric variety of complex dimension n is an algebraic variety which is an equivariant
compactification of the abelian algebraic torus (C∗)n.

We have

Proposition 4.8 For each vertex I of K�, the corresponding submanifold NI is a
compact complex torus of dimension m and is a leaf of F . Moreover, assume that 2
satisfies (4.21) and (4.25). Then, letting BI denote the matrix obtained from (4.23)
by erasing the rows 2i − 21 for i ∈ I , the torus NI is isomorphic to the torus of
lattice (Id, BIA

−1
� ).
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The following theorem is the fundamental connection between toric varieties
with at most quotient singularities (i.e., quasi-regular varieties) and LVM manifolds.

Theorem 4.13 ([MV04, Theorem A]) Let N be one of our manifolds correspond-
ing to a configuration which satisfies condition (K) in Definition 4.12. Then N

is a Seifert-Orlik fibration in complex tori of dimension m over a quasi-regular,
projective, toric variety of dimension n − 2m − 1. More precisely: Let � be an
admissible configuration satisfying condition (K) Then

(1) The leaves of the foliation G of N� are compact complex tori of dimension m.
(2) The quotient space of N� by G is a projective toric variety of dimension n −

2m− 1. We denote it by X(�), where � is the corresponding fan.
(3) The toric variety X(�) comes equipped with an equivariant orbifold structure.
(4) The natural projection π : N → X(�) is a holomorphic principal Seifert

bundle, with compact complex tori of dimension m as fibers.
(5) The transversely Kählerian form ω of N projects onto a Kählerian (singular at

the singular locus of X(�) as a variety) form ω̃ of X(�).

Moreover, condition (K) is optimal with respect to these properties in the sense that
the foliation G of a configuration which does not satisfy it has non-compact leaves,
so item 1 is not verified.

4.9 Idea of the Proof of Theorem 4.13

4.9.1 Toy Example

We start with an example that shows the close relationship between LVM manifolds
and Calabi–Eckmann manifolds.

Example 4.3 Consider the admissible configuration given by

21 = 22 = 1 23 = i 24 = −1 − i.

We have seen in Sect. 4.3.3 that the manifold corresponding N is diffeomorphic
to S

1 × S
3, i.e., N is a primary Hopf surface. One knows [BHPV04, Chapter V,

Proposition 8.18] that such a surface contains either exactly two elliptic curves or
else it is an elliptic fibration over P1

C
. In addition these two cases are distinguished

by their algebraic dimensions: in the first case the algebraic dimension is 0 and in
the second it is 1.

Although Theorem 4.6 does not apply directly here since the configuration has
two indispensable points one still has that the algebraic dimension of N is greater
or equal to a, the number of rational solutions which are Q-linearly independent of
system (S). Here a = 1, the solutions of system (S) are generated by

s1 = 1 s2 = −1 s3 = 0 s4 = 0
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It follows that the algebraic dimension of N is equal to one and that N fibers over
P

1
C

with fiber an elliptic curve.
Let us now consider 2j = aj + ibj and the following action of C2 in P

3
C

:

((t1, t2), [z]) ∈ (C∗)2 × P
3
C
 −→ [zi · tai1 · tbi2 ]i=4

i=1 = [z1t1, z2t1, z3t2, z4/(t1t2)] ∈ P
3
C

(E)

Let us restrict this action to V (the projection to P
3
C

of the open set of Siegel leaves
of the system Definition 4.5 )

V = {[z] ∈ P
3
C

| (z1, . . . , z4) ∈ (C2 \ {(0, 0)})× (C∗)2}

The projection

[z1, . . . , z4] ∈ V  −→ [z1, z2] ∈ P
1
C

is invariant under the action (E), hence the quotient of V under the action can be
identified with P1

C
.

Consider now the action (4.1) of C on V (Definition 4.5). This action commutes
with the action of of (C∗)2, hence it respects the projection. In fact, the inclusion

T ∈ C  −→ (t1 = exp T , t2 = exp iT ) ∈ (C∗)2

intertwines the two actions: N is given by the action (E) of (C∗)2 restricted to
couples (t1, t2) on its image. So one has the commutative diagram:

V Id−→ V⏐⏐.
⏐⏐.

N
p−→ P

n−1
C

On the other hand the fibers of the projection in the righthand side are
biholomorphic to (C∗)2, and the fibers in the lefthand side are biholomorphic to
C. The the fibers of p are given by the quotient of (C∗)2 C where C acts on (C∗)2

by the inclusion defined above. A direct calculation shows that the fibers are elliptic
curves isomorphic to the quotient of C∗ by the group generated by the homothety
z → exp 2π · z. In this way we obtain the elliptic fibration of N over P1

C
.

Everything in the preceding example can be generalized to the case of any
manifold N = N� where � verifies condition (K) in Definition 4.12. Let

2j = aj + ibj 1 � j � n
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and consider the action of C2m on P
n−1
C

given by the formula:

(R, S, [z]) ∈ C
m × C

m × P
n−1
C

 −→ [zj · exp 〈aj , R〉 · exp 〈bj , S〉]nj=1 ∈ P
n−1
C

Since N verifies condition (K) in Definition 4.12, up to replacing the configuration.
� by A(�) where A is an appropriate real affine transformation of R2m � Cm

one can assume that the real and imaginary parts of each 2j are vectors belonging
to the lattice Zm [MV04, Lemma 2.4]:

This means that the preceding action of C2m on P
n−1
C

is equivalent to an algebraic
action of (C∗)2m on P

n−1
C

(t, s, [z]) ∈ (C∗)m × (C∗)m × P
n−1
C

 −→ [z1 · ta1 · sb1, . . . , zn · tan · sbn ] ∈ P
n−1
C

(4.26)

where aj and bj belong to Zm. Here taj (respectively sbj ) means t
a1
j

1 · . . . · ta
m
j

m

(respectively s
b1
j

1 · . . . · sb
m
j

m ).
When one restricts the action (4.26) to V (see Definition 4.5), one can show

that one obtains as quotient a projective toric variety X. In fact this procedure is
precisely the construction of toric varieties as GIT (Geometric Invariant Theory)
quotients by de David Cox in [CO95]. One simply verifies that the open set V ⊂
P
n−1
C

corresponds to the semi-stable points for the natural linearization of Cn →
P
n−1
C

[MV04, Lemma 2.12]. Since in our case the quotient is a geometric quotient
(the orbit space which is Hausdorff) and not a quotient where one identifies instead
the closure of the orbits, one deduces that the semi-stable points are in fact stable
and, via [CO95], that the quotient is a projective quasi-regular toric variety i.e., it
possesses at worst quotient singularities,

Let i be the inclusion: T ∈ Cm i −→ (exp T , exp iT ) ∈ (C∗)m × (C∗)m.
Like in the toy example one can restrict the action (4.26) to the pairs in (C∗)m ×

(C∗)m that are in the image of i. This way one obtains an algebraic action of Cm on
V . This action is precisely the action of formula (4.2). One obtains the same type of
commutative diagram as in the toy example:

V V

N X

Id

p

(CE)

A calculation shows that the fibers of p : N� → X are compact complex tori
of complex dimension m. This is equivalent to showing that every isotropy group
under the action is a lattice isomorphic to Z

2m. In fact this lattice can be explicitly
calculated here is where one uses the rationality condition (K) in Definition 4.12.
The lattice is constant in an open an dense set (in the Hausdorff or Zariski topology)
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but it could have special fibers that are finite quotients of the typical fibre (all the
fibers are isogenous). In other words: the projection p corresponds to the quotient
(i.e., the orbit space) of N by the holomorphic action of a compact complex torus of
complex dimension m acting with finite isotropy groups. This implies that X has the
structure structure of an orbifold such that p : N → X is a Seifert-Orlik fibration
[OR72].

Remark 4.19 The pre-image under p : N → X of a singular point of X is
necessarily a special fiber. However there could be above regular points special
fibers. In fact, the locus on the base X having special fibers could be of codimension
one but the singular locus of X as a normal projective toric manifold must have
codimension at least two. The reason of this difference is that X is an orbifold
in addition to being toric and this structure could have “fake” codimension one
singularities. For instance in the examples 4.3.3 of if one replaces 22 = 1 by
22 = p, one constructs a Hopf surface with an elliptic fibration over P1

C
having

two singular points of orbifold type and one or two special fibers.

Theorem 4.13 has the following corollary:

Corollary 4.2 Let N satisfy the conditions of Theorem 4.13. Then the algebraic
reduction of N is a quasi-regular, projective, toric variety of dimension n− 2m− 1.

As a particular case of the previous theorem one recovers the elliptic fibrations
used by E. Calabi and B. Eckmann to provide the product of spheres S2p−1 ×S2q−1

(for p > 1 et q > 1) with a complex structure. This generalization is given by the
following

Definition 4.15 A generalized Calabi–Eckmann fibration is the fibration obtained
by the previous theorem.

Since we know, fixing m and n, that the set of configurations satisfying condition
(K) in Definition 4.12 is dense in the space of admissible configurations on obtains:

Corollary 4.3 Every manifold N corresponding to an admissible configuration is
a small deformation of a generalized Calabi–Eckmann fibration

Remark 4.20 All the fibers are isogenous complex tori.

In the case where X(�) = P
p

C
×P

q

C
with its manifold structure, then the fibration

is the one in elliptic curves

S
2p+1 × S

2q+1 → CPp × CPq

where S
2p+1 × S

2q+1 is endowed with a Calabi–Eckmann complex structure (see
[CE53]). This explains the following definition.

Definition 4.16 We call such a Seifert bundle N → X(�) a generalized Calabi–
Eckmann fibration over X(�).
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Corollary 4.4 Let � be an admissible configuration satisfying condition (K). Let
z ∈ S and let

Jz = {i1, . . . , ip} = {1 � i � n | zi �= 0}

Then,

(1) The lattice in Cm of the orbit through z is 2πL∗
(Jz)

c .
(2) The orbit through z is an exceptional orbit if and only if L0 � L(Jz)

c . In this
case, it is a finite unramified quotient of the generic orbit of degree the index of
L0 in L(Jz)

c .

The construction in the preceding section is completely reversible. Let X be a
quasi-regular toric projective variety (i.e., if it has singularities they are quotient
singularities) then the construction by David Cox in [CO95] permits to realize X as
the quotient of an open set Xss by a linear algebraic action of (C∗)p like the one
given in formula (4.26) above. One can arrange this action in order to have p even
and set m = p/2. Then one defines the configuration by the formulae:

� = {2j = aj + ibj | 1 � j � n} (Realization of �) (F)

where the natural numbers aj bj are the weights (like in formula (4.26)) of the
algebraic action of (C∗)2m = (C∗)m × (C∗)m and one induces an action of Cm on
Xss via the inclusion i defined above. To achieve one uses the following technical
Lemma found in [MV04, Lemmas 2.12 et 4.9.]:

Lemma 4.6 ([MV04, Lemmas 2.12 et 4.9]) With the previous definition the
configuration � is admissible and satisfies condition (K) in Definition 4.12. In
addition the open set V(�) (see Definition 4.5) is equal to Xss .

One can show without difficulty that the variety X obtained by Cox construction
is the generalized Calabi–Eckmann fibration associated to N� via the commutative
diagram (CE).

Therefore one the following theorem which is the reciprocal of Theorem 4.13:

Theorem 4.14 Let X be a projective, quasi-regular, toric variety. Then there exists
m > 0 and a manifold N corresponding to an admissible configuration which
admits a generalized Calabi–Eckmann over X and whose fibres are complex torii of
complex dimension m.

Furthermore, if X is nonsingular (smooth), one can choose m and N such that
the fibration is a holomorphic principal fibration.

Remark 4.21 The previous theorem motivated a possible definition of non-
commutative toric varieties and its deformations (usual toric varieties are rigid).
See [BZ15, KLMV14].
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Example 4.4 ([MV04, Proposition I]; Hirzebruch Surfaces) Let a ∈ N. Then the
manifold N� associated to the admissible configuration � = {21,22,23,24,25}
with

21 = 24 = 1 22 = i 23 = (2a2+3a)+i(2a+1) 25 = −2(a+1)−2i

is diffeomorphic to S3 × S3 and it is a principal fibration in elliptic curves over the
Hirzebruch surface Fa .

The existence of such manifold was noticed by H. Maeda in [MA74].

4.9.2 Examples

In this subsection, we shall use the following facts (which are proven in [DV97]).
Let � = (λ1, . . . , λ5) be an admissible configuration with m = 1 and n = 5. Then,
the classification of N� up to diffeomorphism is completely determined by k, the
number of indispensable points. We have

k = 0 ⇐⇒ N is the quotient of #(5)(S3 × S
4) by a non-trivial action of S1

k = 1 ⇐⇒ N is diffeomorphic to S
3 × S

3

k = 2 ⇐⇒ N is diffeomorphic to (S5 × S
1)

where #(5)S3 ×S4 denotes the connected sum of five copies of S3 ×S4. In all of the
following examples, we shall give the fans in R2 with canonical basis (e1, e2) and
lattice Z2, or in R with canonical basis e1 and lattice Z.

Remark 4.22 In the examples that follow we also use the very technical fact, proven
in [MV04], that given the fan � of a toric variety with quotient singularities one can
recover the configuration � satisfying condition (K) of Definition 4.12. In particular
one can recover from the fan the number of equations m and the dimension n to have
an admissible action of Cm on Cn.

Example 4.5 Consider the complete fan � generated by

w1 = e1 w2 = e2 w3 = −e1 − e2

of the complex projective space CP 2. There is a unique class of Kähler classes (in
the sense of Theorem G in [MV04]), which is that of the (Chern class) of the anti-
canonical divisor. Up to scaling and up to translation, the polytope Q is defined
as

Q = {u ∈ R
2 | 〈w1, u〉 � −1, 〈w2, u〉 � −1, 〈w3, u〉 � −1} .
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By the methods of [MV04] (F) we can recover the configuration:

λ1 = λ2 = λ3 = 1 λ4 = −3 + i λ5 = −i .

It is easy to check that this configuration has two indispensable points (λ4 and λ5)
and thus the manifold N is diffeomorphic to S5 × S1. We obtain finally the well-
known (holomorphic) fibration S5 × S1 → P2

C
and the pre-symplectic form of N

scaled by 5 projects onto the (Chern class) of the anti-canonical divisor.
Notice that we may easily compute the modulus of the fiber in this case. From

Corollary B in [MV04], we obtain the lattice and we obtain:

L∗
0 = 1

5
VectZ(−4 + i, 1 + i)

and this modulus is equal to

−4 + i

1 + i
= −3

2
+ 5

2
i .

It is known [CE53] (see also [LN96]) that, for any choice of a modulus τ , there
exists a complex structure on S5 ×S1 such that it fibers in elliptic curves of modulus
τ over the complex projective space.

Fix τ = α + iβ with β > 0. A straightforward computation shows that the
admissible configuration

⎛

⎝
/λ′i

(λ′i

⎞

⎠ =
( −β β

1 + α 4 − α

)
.

(/λi

(λi

)
1 � i � 5

determines a complex threefold diffeomorphic to S5 ×S1 which fibers over P2
C

with
fiber an elliptic curve of modulus τ .

Example 4.6 Consider the complete fan � generated by

w1 = e1 w2 = e2 w3 = −e1 w4 = −e2

of CP 1 ×CP 1. The Kähler classes are

Dα,β = α(D1 +D3)+ β(D2 +D4) α > 0, β > 0

corresponding to the rectangles

Qα,β = {(u1, u2) ∈ R
2 | − α � u1 � α, −β � u2 � β} .
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We get the corresponding configuration:

λ1 = λ3 = 1 λ2 = λ4 = i λ5 = −2α − 2iβ.

The corresponding manifold Nα,β is diffeomorphic to S3 × S3 and we find the
Calabi–Eckmann fibration S3 × S3 → P1

C
× P1

C
. The pre-symplectic form of Nα,β

projects onto a representative of the class of Dα,β (up to scaling).
Fix α and β. As in Example 4.5, for every choice of τ ∈ C with Im τ > 0, there

exists a matrix A of GL2(R) such that the product of the previous configuration
by A determines a LVM manifold diffeomorphic to S3 × S3 which fibers over the
product of projective lines with an elliptic curve of modulus τ as fiber (compare
with [CE53]).

Alternatively, we may start from

λ1 = λ3 = 1 λ2 = λ4 = i λ5 = −1 − i.

which is an admissible configuration such that the class of ω̃ is D1,1 (up to scaling)
and perform a translation on (λ1, . . . , λ5) to have another Kähler ray associated to
ω̃ (see Remarks 4.11 and 4.12 in [MV04]).

More precisely, assume that α < 1 and β < 1 and let

b = 1 − 2α

2α + 2β + 1
+ i

1 − 2β

2α + 2β + 1

then the class of ω̃ of N((λ1, . . . , λ5)+ b) is Dα,β .

Example 4.7 Consider the fan of P1
C

:

w1 = e1 w2 = −e1

There is a unique Kähler ray, that of D = D1 + D2. We choose p1 = p and
p2 = q for p and q strictly positive integers, that is we want to recover all possible
codimension one equivariant orbifold singularities on P1

C
. We take n = 4 and m = 1

and choose
One can show that that configuration is:

λ1 = −3

2p
+ i

1 − 2q

2p
λ2 = −1

2q
− i

2p + 1

2q
λ3 = 1 λ4 = i .

It is easy to check that the corresponding manifold Np,q is diffeomorphic to
S3 × S1. It is the total space of a generalized Calabi–Eckmann fibration over P1

C

with at most two singular points of order p and q .
Notice that if p and q are not coprime, then the orbifold structure cannot be

obtained as a weighted projective space, i.e. cannot be obtained as quotient of C2 \
{(0, 0)} by an algebraic action of C∗.
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Example 4.8 Consider the complete fan � generated by

w1 = e1, w2 = e2, w3 = −e1, w4 = −e1 − e2, w5 = −e2

of the toric del Pezzo surface X obtained as the equivariant blowing-up of P2
C

in
two points. Define Q as the pentagon associated to the anti-canonical divisor of X

(which is ample for X is del Pezzo)

Q = {u ∈ R
2 | 〈w1, u〉 � −1, . . . , 〈w5, u〉 � −1} .

We want to construct a generalized Calabi–Eckmann fibration with elliptic curves
as fibers. This implies that we must take m = 1 and n = 5, so we cannot add
any indispensable point. As the sum of the wi is not zero, we cannot take at the
same time p1 = . . . = p5 = 1. In other words, there does not exist any non
singular generalized Calabi–Eckmann fibration over X with elliptic curves as fibers.
However, if we allow exceptional fibers, the construction is possible keeping m = 1.
For example, take

p1 = 2 p2 = 2 p3 = 1 p4 = 1 p5 = 1 .

This gives

v1 = 2e1, v2 = 2e2, v3 = −e1, v4 = −e1 − e2, v5 = −e2,

ε1 = ε2 = 2

7
, ε3 = ε4 = ε5 = 1

7

Notice that L is Z2. Taking a linear Gale transform of this, we obtain

λ1 = 1, λ2 = i, λ3 = −2 − 4i, λ4 = 4 + 4i λ5 = −4 − 2i .

This gives a fibration in elliptic curves N → X where N is the quotient of
the differentiable manifold #(5)S3 × S4 by a non trivial action of S1. The orbifold
structure on X has two codimension one singular sets of index 2 and the form 7ω
projects onto a representant of the Chern class of D.

Example 4.9 We consider the same toric variety X and the same polytope Q as in
Example 4.8, but this time we want p1 = . . . = p5 = 1, i.e. we want a non singular
fibration. We are thus forced to increase m by one and take m = 2 and n = 7, which
gives us two additional indispensable points. We take

v1 = e1, v2 = e2, v3 = −e1, v4 = −e1 − e2,

v5 = −e2, v6 = −v1 − v2 − v3 − v4 − v5 = e1 + e2, v7 = 0
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and

ε1 = . . . = ε5 = ε7 = 1

9
, ε6 = 1

3

Notice that ε6 is chosen so that v6/ε6 lies in the interior of H(v1/ε1, . . . , v5/ε5).
Making all the computations, we find that

(21, . . . ,27) =
(

1 i 0 0 −1 + i −1 3 − 2i
0 0 1 i 1 1 + i −5 − 4i

)

defines a LVM manifold diffeomorphic to (#(5)S3 × S4) × S1 (by application
of Theorem 12 of [ME00]) which is the total space of a non singular principal
holomorphic fibration over X with complex tori of dimension 2 as fibers. The form
9ω projects onto the anti-canonical divisor of X.

Example 4.10 Let a ∈ N and consider the complete fan � generated by

w1 = e1 w2 = e2 w3 = −e2 w4 = −e1 + ae2

of the Hirzebruch surface Fa .
Let D = D1+D2 +D3 +(a+1)D4. The divisor D is ample (see [FU93, p. 70]).

We take vi = wi for 1 � i � 4 and add the vertex v5 = −v1 − . . .− v4 = −ae2.
We have m = 1 and n = 5. We choose

ε1 = 1

2a + 5
ε2 = 1

2a + 5
ε3 = 1

2a + 5
ε4 = a + 1

2a + 5
ε5 = a + 1

2a + 5

Taking a linear Gale transform of this, we obtain

λ1 = λ4 = 1 λ2 = i λ3 = (2a2+3a)+ i(2a+1) λ5 = −2(a+1)−2i

with only one indispensable point λ5. We thus have the following proposition.

Proposition 4.9 Let a ∈ N. Consider the admissible configuration

λ1 = λ4 = 1 λ2 = i λ3 = (2a2+3a)+ i(2a+1) λ5 = −2(a+1)−2i

Then, the corresponding LVM manifold Na is diffeomorphic to S3 × S3 and is a
principal fiber bundle in elliptic curves over the Hirzebruch surface Fa (where F0
is CP 1 × P1

C
). The scaling of the canonical Euler form of the bundle M1 → Na

by 2a + 5 projects onto a representant of the Chern class of the ample divisor
D = D1 +D2 +D3 + (a + 1)D4 on Fa .

Remark 4.23 The preceding example shows that, for special complex structures of
Calabi–Eckmann type on S3 × S3, there exists holomorphic principal actions of an
elliptic curve whose quotient may be topologically different (since the Hirzebruch
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surfaces F2n are all diffeomorphic to S
2×S

2 whereas the Hirzebruch surfaces F2n+1
are all diffeomorphic to the non-trivial S2-bundle over S2, and these two manifolds
have different intersection form).

4.10 From Polytopes to Quadrics

This section and the following rely on the paper by Panov [PA10] and we also
recommend [BP02] for this section. Let Rn be given the standard inner product
〈·, ·〉 and consider convex polyhedrons P defined as intersections of m closed half-
spaces:

�(ai,bi) = {x ∈ R
n | 〈ai, x〉 + bi � 0}, f or i = 1, . . . ,m

with ai ∈ Rn, bi ∈ R. Assume that the hyperplanes defined by the equations
〈ai, x〉+bi = 0 are in general position, i. e. at least n of them meet at a single point.
Assume further that dimP = n and P is bounded (which implies that m > n).
Then P is an n-dimensional compact simple polytope. Set

Fi = {x ∈ P : 〈ai, x〉 + bi = 0} (F for facet).

Since the hyperplanes are in general position Fi is either empty or a facet of P . If
it is empty the linear equation is redundant and we can remove the corresponding
inequality without changing P .

Let AP be the m × n matrix of row vectors ai , and bP be the column m-vector
of scalars bi ∈ R (i ∈ {1, · · · ,m}). Then we can write:

P = {x ∈ R
n : APx + bP � 0}

and consider the affine map

iP : Rn → R
m,

iP (x) = APx + bP .

It embeds P into the first orthant

R
m
�0 = {(y1, · · · , ym) ∈ R

m | yi > 0, i ∈ {1, . . . ,m}}.

We identify Cm (as a real vector space) with R2m as usual using the map
z = (z1, . . . , zm)  → (x1, y1, . . . , xm, ym), where zk = xk + iyk for k =

1, . . . ,m.
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Consider the following commutative diagram whereZP its obtained by pull-back
and

μ : Cm → R
m
�0 is given by μ(z1, . . . , zm) = (|z1|, . . . , |zm|):

ZP Cm

P R
m
0

i∗P

π μ

iP

The map μ may be thought of as the quotient map for the coordinatewise action
of the standard torus

T
m = {(z1, . . . , zm) ∈ C

m : |zi | = 1 f or 1 � i � m}

on Cm.
Therefore, Tm acts on ZP with quotient P , and i∗P is a Tm-equivariant embed-

ding.
The image of Rn under iP is an n-dimensional affine plane in Rm, which can be

written as

iP (Rn) = {y ∈ R
m : y = AP (x)+ bP f or some x ∈ R

n}
= {y ∈ R

m : 0y = 0bP },

where 0 = ((γjk)) is an (m − n) × m matrix whose rows form a basis of linear
relations between the vectors ai . That is, 0 is of full rank and satisfies the identity
0AP = 0.

Then we obtain that ZP embeds into Cm as the set of common zeros of m − n

real quadratic equations:

i∗P (ZP ) =
{
z ∈ C

m |
m∑

k=1

γjk |zk |2 =
m∑

k=1

γjkbk, f or 1 � j � m− n

}
(Quadratic �)

(G)

The following properties of ZP easily follow from its construction.

1. Given a point z ∈ ZP , the ith coordinate of i∗P (z) ∈ Cm vanishes if and only if z
projects onto a point x ∈ P such that x ∈ Fi for some facet Fi .

2. Adding a redundant inequality to results in multiplying ZP by a circle.
3. ZP is a smooth manifold of dimension m + n. The embedding i∗P : ZP → Cm

has Tm-equivariantly trivial normal bundle.
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4.11 From Quadrics to Polytopes (Associated Polytope
of LVM Manifolds)

Let N and

M1 = {z ∈ C
n |

n∑

i=1

2i |zi |2 = 0,
n∑

i=1

|zi |2 = 1}

be as before in Definition 4.6.
Let us remark that the standard action of the torus (S1)n on Cn

((exp iθ1, · · · , exp iθn), z)  −→ (exp iθ1 · z1, . . . , exp iθn · zn) (H)

leaves M1 invariant. The quotient of M1 by this action can be identified, via the
diffeomorphism r ∈ R

+
>0 → r2 ∈ R

+
>0, to

K = {r ∈ (R+)n |
n∑

i=1

ri2i = 0,
n∑

i=1

ri = 1} (I)

Lemma 4.7 The quotient K is a convex polytope of dimension n − 2m − 1 with
n− k facets.

Proof By definition K is the intersection of the space A of solutions of an affine
system with the closed sets ri � 0. Each one of these closed sets defines an affine
half-space A∩{ri � 0} in the affine space A. In other words, K is the intersection of
a finite number of affine half-spaces. Since this intersection is bounded (since M1 is
compact), one obtains indeed a convex polytope. The weak hyperbolicity condition
implies that the affine system that defines K is of maximal rank. Hence, K is of
dimension n− 2m− 1.

Let us consider in more detail the definition of K . The points r ∈ K verifying
ri > 0 for all i are the points which belong to the interior of the convex polytope.
They correspond to the points z de M1 which also belong to (C∗)n, i.e. to the
points of M1 such that the orbit under the action (H) is isomorphic to (S1)n. The
points which belong to a hyperface are exactly the points r of K having all of
its coordinates except one equal to zero. They correspond to the points z de M1
which have a unique coordinate equal to zero, i.e. such that its orbit under the action
(H) is isomorphic to (S1)n−1. One obtains from the definition of K that there exist
points of K having all coordinates different from zero except the ith coordinate if
and only 0 belongs to the convex envelope of the configuration formed by the 2j

with j different from i; hence if and only if 2i is a point which can be eliminated
keeping the conditions of Siegel and weak hyperbolicity. therefore one has n − k

hyperfaces. ��
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Definition 4.17 One calls the convex polytope K = K� corresponding to the
admissible configuration � the associated polytope. The polytopes H(�) and K�

are related by the Gale transform.

One central idea is that the topology of the manifolds M1, and therefore of the
manifolds N , is codified by the combinatorial type of the polytope K . To make this
idea more precise, it is interesting to push to the end the reasoning involved in the
proof of the preceding Lemma. One had seen that

Ki = K ∩ {ri = 0, rj > 0 for j �= i}

is nonempty, and therefore is a hyperface de K , if and only if

0 ∈ H((2j )j �=i ).

Analogously, given I a subset of {1, . . . , n}, the set

KI = K ∩ {ri = 0 for i ∈ I, rj > 0 for j �∈ I }

is nonempty, and therefore it is a facet of K of codimension equal the cardinality of
I , if and only if

0 ∈ H((2j )j �∈I )

One has therefore established a very important correspondence between two
convex polytopes: the polytope K on one hand and the convex hull of the 2i’s
on the other hand.

This correspondence allows us to to prove the following result:

Remark 4.24 It follows from [MV04, Lemma 1.1] that

rankC

(
21 . . . 2n

1 . . . 1

)
= m+ 1.

Hence, up to a permutation, condition (4.21) is always fulfilled.

Definition 4.18 We say that N� and N�′ are G-biholomorphic if they are
(G(�),G(�′)-equivariantly biholomorphic.

Recall that by definition (D) the manifold N� embeds in Pn−1 as the C∞
submanifold

N = {[z] ∈ P
n−1 |

n∑

i=1

�|zi |2 = 0}. (4.27)
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It is crucial to notice that this embedding is not arbitrary but has a clear geometric
meaning. Indeed, it is proven in that action (4.1) induces a foliation of S�; that every
leaf admits a unique point closest to the origin (for the Euclidean metric); and finally
that N is the projectivization of the set of all these minima. This is a sort of non-
algebraic Kempf-Ness Theorem. So we may say that this embedding is canonical.

The maximal compact subgroup (S1)n ⊂ (C∗)n acts on S�, and thus on N�.
This action is clear on the smooth model (4.27). Notice that it reduces to a (S1)n−1

since we projectivized everything.
The quotient of N� by this action is easily seen to be a simple convex polytope

of dimension n− 2m− 1, cf. Up to scaling, it is canonically identified to

K� := {r ∈ (R+)n |
n∑

i=1

2ri = 0,
n∑

i=1

ri = 1}. (4.28)

It is important to have a description of K� as a convex polytope in Rn−2m−1. This
can be done as follows. Take a Gale diagram of �, that is a basis of solutions
(v1, . . . , vn) over R of the system (S):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n∑

i=1

2ixi = 0

n∑

i=1

xi = 0

(S)

Take also a point ε in K�. This gives a presentation of K� as

{x ∈ R
n−2m−1 | 〈x, vi 〉 � −εi for i = 1, . . . , n} (4.29)

This presentation is not unique. Indeed, taking into account that K� is unique only
up to scaling, we have

Lemma 4.8 The projection (4.29) is unique up to action of the affine group of
Rn−2m−1.

On the combinatorial side, K� has the following property. A point r ∈ K� is a
vertex if and only if the set I of indices i for which ri is zero is maximal, that is has
n− 2m− 1 elements. Moreover, we have

r is a vertex ⇐⇒ S� ∩ {zi = 0 for i ∈ I } �= ∅ ⇐⇒ 0 ∈ H(�I c ) (4.30)

for I c the complementary subset to I in {1, . . . , n}. This gives a numbering of the
faces of K� by the corresponding set of indices of zero coordinates.
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More precisely, we have

J ⊂ {1, . . . , n} is a face of codimension Card J

⇐⇒ S� ∩ {zi = 0 for i ∈ J } �= ∅ ⇐⇒ 0 ∈ H(�J c )
(4.31)

In particular, K� has n− k facets. Observe moreover that the action (4.1) fixes
S� ∩ {zi = 0 for i ∈ J }, hence its quotient defines a submanifold NJ of N� of

codimension Card J.

4.12 Moment-Angle Manifolds

We will explain the link between the moment-angle manifolds in Definition 4.6
and the manifolds studied by Buchstaber and Panov in [BP02]. Let P be a simple
convex polytope with the set F = {F1, . . . , Fn} of hyperfaces (i.e., codimension
one faces). Let Ti � S1 for 1 � i � n and let TF = T1 × · · · × Tn � (S1)n = Tn

be the n torus with its standard group structure. For each hyperface Fi associate Ti ,
the circle corresponding to the i th coordinate of Tn.

If G is a face of the polytope P let

TG =
∏

Fi⊃G

Ti ⊂ TF

For each point q ∈ P , let G(q) be the unique face of P which contains q in its
relative interior

Definition 4.19 The moment-angle complex ZP associated to P is defined as

ZP = (TF × P)/ ∼

where the equivalence relation is: (t1, p) ∼ (t2, q) if and only if p = q and t1t
−1
2 ∈

TG(q).

The moment-angle complex ZP depends only upon the combinatorial type of P

and it admits a natural continuous action of the n-torus TF having as quotient P .
The fact that P is simple implies that ZP is a topological manifold (see [BP02,
Lemma 6.2]).

Consider now the moment-angle manifolds M1(�) defined by formula (4.6) and
let K� the associated polytope (4.17). One has the natural projection � : M1(�) →
K� The faces of codimension q of K(�) correspond to the orbits of the of the points
of V which have some precise q coordinates fixed. In other words the orbits above
the relative interior of a codimension q face are isomorphic to (S1)n−q . En poussant
un peu plus loin cette description, on montre le lemme suivant.
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Lemma 4.9 ([BM06, Lemma 0.15]) Let N� be an LVM manifold without indis-
pensable points. Let K� be its associated polytope. Then there exists an equivariant
homeomorphism between M1(�) and the moment-angle variety ZK�

.

Equivariant homeomorphism means that the homeomorphism conjugates the
action (H) of on M1(�) to the action of TF on ZP .

Hence:

Corollary 4.5 Let N� et N�′ two LVM manifolds without indispensable points.
Then there exists an equivariant homeomorphism of the associated moment-angle
varieties M1(�) and M1(�

′) if and only if the associated polytopes K� et K�′ are
combinatorially equivalent. More generally, there exists an equivariant homeomor-
phism between M1(�) and M1(�

′) if and only K� and K�′ are combinatorially
equivalent the number of indispensable points k and k′, respectively, are equal.

Proof The combinatorial equivalence between K� and K�′ implies the existence of
an equivariant homeomorphism between ZK�

and ZK�′ , and hence by Lemma 4.9
between entre M1(�) and M1(�

′). The proof for any number of indispensable
points follows from the first result and Lemma 4.9. ��

It is more delicate to have the same result up to equivariant diffeomorphism,
however one has the following theorem:

Theorem 4.15 ([BM06, Theorem 4.1]) There is an equivalence between the
following assertions:

(i) The manifolds M1(�) and M1(�
′) are equivariantly diffeomorphic

(ii) The corresponding associated polytopes K� and K�′ are combinatorially
equivalent and the number of indispensable points k and k′ are equal.

4.13 Flips of Simple Polytopes and Elementary Surgeries
on LVM Manifolds

The motivation of this section is to generalize the following result of Mac Gavran
[MC79] adapted to our case.

Theorem 4.16 (Mac Gavran [MC79]) Let � be an admissible configuration.
Suppose that the associated polytope K� is a polygon with p vertices. Then the
moment-angle manifoldM1(�) is diffeomorphic via an equivariant diffeomorphism
to the connected sum of products of spheres;

(#p−3
j=1 (jC

j+1
p−2)S

2+j × S
p−j )× (S1)k
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There are many cases of configurations for higher-dimensional polytopes where
the manifolds M1(�) are similar to those of Mac Gavran i.e., the manifolds are
products of manifolds of the type:

1. Odd dimensional spheres
2. Connected sums of products of spheres

Bosio and Meersseman [BM06] showed that some, but not all, moment-angle
manifolds M� are connected sums of products of spheres, and they conjectured that
if the dual to the polytope is neighborly, then the manifold is such a connected sum.
This conjecture was proven by Samuel Gitler and Santiago López de Medrano in
[GL13].

Let us remember once more the results by de Medrano [DM88, DM89] on the
classification of manifolds M1(�) when m = 1 given above in Sect. 4.3.5 given by
Theorem 4.1.

When m = 1 the vectors are vectors 2i in C � R
2 and S. López de Medrano

shows that one can modify the configuration � ∈ C through a smooth homotopy
�t (just moving the vectors) that satisfies the admissibility conditions of Siegel
and weak hyperbolicity for all t ∈ [0, 1] such that �0 = � and �1 is a regular
polygon with an odd number of vertices 2l+1 and with multiplicities n1, . . . , n2l+1.
Thus, for instance, in Fig. 4.5, one can move from the pentagon at the left to the
pentagon at the right to configurations with different multiplicities, for instance
configurations with 4 vectors with multiplicities n1 = n2 = 1 and n3 = 3, then
3 vectors of multiplicities n1 = 1, n2 = n3 = 2, and finally 5 vectors of multiplicity
1. Ehresmann Lemma implies, that all manifolds belonging to the homotopy are
diffeomorphic.

With these notations we recall Theorem 4.1 which was seen before:

Theorem 4.17 ([DM88, DM89]) Let N be an LVM manifold m = 1 then M1 is
diffeomorphic to

(i) The product of spheres S2n1−1 × S2n2−1 × S2n3−1 if l = 1.
(ii) The connected sum

#2l+1
i=1 S

2di−1 × S
2n−2di−2

if l > 1. Where di = n[i] + . . .+n[i+l−1] and [a] is the residue of the Euclidean
division of a by 2l + 1.

0

0

0

Fig. 4.5 Chambers of a pentagon in C (the small cross is the origin in C)
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If m > 1 one has a higher dimensional polytope of n elements in Cm (n > 2m)
and there is not a way to have a canonical model. One could consider a homotopy
that takes the configuration to one with minimal number of vertices, but that is
not enough to determine the polytope which is the convex hull of the points in
the configuration. For this reason it is better to adapt the approach used by Mac
Gavran in [MC79]. He considers simply connected manifolds of dimension p + 2
which admit a smooth action of a torus (S1)p which satisfies certain conditions, in
particular one requires that the quotient under the action can be identified with a
2-dimensional convex polygon K with p vertices. If we write M1 � (S1)k × M0,
where � means “up to an equivariant diffeomorphism”, then as in Lemma 4.4 one
shows that the factor M0 verifies the hypotheses of Mac Gavran. The proof of Mac
Gavran Theorem is done by induction on the number p of vertices of K . If p = 3
one has a triangle and we know that M1 is S5 × (S1)k, where M0 is the sphere S5.
To go from a polygon with p vertices to a polygon with p + 1 vertices one can
do the following “surgery”: remove an open neighborhood of a vertex and glue an
interval. The reciprocal operation consists in collapsing to a point an edge. Now we
recall that the faces of the associated polytope corresponding to the admissible sub-
configurations of � (i.e., subsets of �) determine equivariant subvarieties of M1 or
M0 where the quotient space identifies in a natural way with the given face. In other
words to remove a neighborhood of a face means to remove an invariant (under the
action of the torus) tubular neighborhood of the subvariety associated to the face
in question in M0. The invariant subvarieties have trivial tubular neighborhoods (by
the Slice Theorem). Since we know that the subvarieties associated to a vertex is
a torus and the subvarieties associated to an edge are the product of a torus with
S3, one sees that if Mp denotes the manifold corresponding to a polygon K with p

vertices, then to pass from Mp a Mp+1 consists of applying an equivariant surgery

Mp+1 = (Mp × S
1) \ ((S1)p−2 ×D

4 × S
1) ∪ ((S1)p−2 × S

3 ×D
2)

Where Ds denotes the closed disk of dimension s. The work of Mac Gavran consists
of understanding the meaning of these surgeries up to equivariant diffeomorphisms.
To generalize this approach to higher dimensional polytopes K we need to
generalize the notion of “surgery”. and understand what is the construction one
has to perform on the moment angle manifold M1 associated to K . This is done
using the following notion of cobordism between polytopes inspired by MacMullen
[MA93] and Timorin [TI99].

Definition 4.20 Let P and Q be two simple convex polytopes of the same
dimension p. One says that P and Q are obtained from each other by an elementary
cobordism if there exists a simple convex polytope W of dimension p + 1 such
that:

(i) P and Q are disjoint hyperfaces of W .
(ii) There exists a unique vertex v of W that does not belong neither to P or Q.
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Fig. 4.6 Elementary cobordism between a square and a pentagon

Fig. 4.7 Flip de type (2, 2)

Let us recall that everything related to polytopes is up to combinatorial equiva-
lence for instance Fig. 4.6 illustrates an elementary cobordism between a square and
a pentagon.

Given a vertex v, since W is simple, there are exactly q + 1 edges that have v

as an end point. Then, hypothesis (ii) these edges have the second end point either
in P or in Q, then the type of the elementary cobordism is the pair (a, b) where a

(respectively b) is the number of edges joining v to P (respectively Q). Of course
a + b = q + 1,

Definition 4.21 One says that Q is obtained from P by a flip of type (a, b) if there
exists an elementary cobordism of type (a, b) between P and Q.

Figure 4.7 shows an example of type (2, 2).
Let us consider the elementary cobordism W of dimension 4 between the 3-

dimensional polyhedraP and Q and let us “cut” W with 3-dimensional hyperplanes
parallel to P . Starting from P one sees that the edge [AB] is contracted as one
moves the cuts up to the point when the edge collapses to the vertex v = A when
the cut meets the vertex A. On the other hand if one makes cuts by hyperplanes
parallel to Q the edge [AB] is contracted to v = A. In some sense W is the trace of
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the cobordism. In other words Q is obtained P by removing a neighborhood of the
edge [AB] and gluing the “transverse” edge [AB ′].

This description can be generalized for higher dimensional polytopes. A flip of
type (a, b) is obtained by removing a simplicial face of dimension a and gluing
the neighborhood of a simplicial face of “complementary” dimension b. Since the
simplicial faces of dimension a correspond to products of a sphere of dimension
2a−1 by a torus [BM06, Proposition 3.6] an argument similar to that of Mac Gavran
shows that if K ′ is obtained from K (of dimension q) by a flip of type (a, b), then
the manifold (M0)

′ is obtained from M0 (de dimension p) by an elementary surgery
of type (a, b) then:

(M0)
′ = (M0 × S

1) \ ((S1)p−2b ×D
2b × S

1) ∪ ((S1)p−2b × S
2b−1 ×D

2)

if a = 1 and

(M0)
′ = M0 \ ((S1)p−2b−2a+1 × D

2b × S
2a−1) ∪ ((S1)p−2b−2a+1 × S

2b−1 × D
2a)

if a > 1.
The proof of this fact is very delicate and technical since we must prove the

equivariance of the constructions. All the details can be found in [BM06].
The essential difference with the case of polygons of Mac Gavran is that starting

with an odd-dimensional sphere as M0 after a finite number of elementary surgeries
one does not end up with a manifold of the type connected sum of products of
spheres or product of spheres. In fact in the next section one will describe the
homology. However the previous considerations prove again that if two moment-
angle manifolds of type M1 of dimension p are combinatorially equivalent they are
obtained from the sphere S

2p−1 by the same sequence of elementary surgeries and
therefore they are equivariantly diffeomorphic.

4.14 The Homology of LVM Manifolds

Recall that from Lemma we have that for a configuration � the associated moment
angle manifold M1(�) factorizes as M1(�) =� (S1)k × M0(�) where k is the
number of indispensable points and M0(�) is 2-connected. Since M0 is a moment-
angle manifold one can use the results of Buchstaber and Panov [BP02] to compute
the homology and cohomology of these manifolds.

Theorem 4.18 ([BM06, Theorem 10.1]) Let N� be an LVM manifold and M0(�)

the 2-connected factor as in Lemma 4.4. Let K be the associated polytope (quotient
under the action of the torus). Let K∗ be its dual which is therefore a convex
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Fig. 4.8 K∗ is the octahedral
which is the dual of the cube
K , the subcomplex which
corresponds to the vertices
{1, 2, 3, 4} is indicated in
boldface

simplicial polytope. Let F be its set of vertices. Then the homology of M0(�) with
coefficients in Z is given by the formula:

Hi(M0(�),Z) =
⊕

I⊂F

H̃i−|I|−1(K
∗
I,Z)

where H̃i denotes the reduced homology, |I| is the cardinality of I and K∗
I

is the maximal simplicial subcomplex of K∗ with vertices I. (We remark that
Hi(M0(�),Z) = 0 if i < 0).

Let us explain the meaning of maximal simplicial subcomplex of K∗ with vertices
I. Given a q-tuple (i1, . . . , iq) in I it is a face of the simplicial subcomplex K∗

I if
and only if a q-face of the simplicial complex K∗. For instance in Fig. 4.8 (K∗ is
the octahedral which the dual of the cube K) the subcomplex which corresponds to
the vertices {1, 2, 3, 4} is indicated in boldface.

Let us consider now the question of the level of complexity of the homology of
the manifolds M0(�). By Theorem 4.18 the dual polytope K∗ can be an arbitrary
simplicial complex and the question of complexity becomes to ask which simplicial
complexes can be maximal subcomplexes of a simplical convex polytope. We
claim that any finite simplicial complex can be a maximal sub-complexes of a
simplical convex polytope. In effect, let K0 be any finite simplicial complex, we
can always embed K0 in a simplex Sd of dimension d equal to the number of
vertices of K0 minus one. In general is not embedded in a maximal subcomplex
For instance in Fig. 4.8, K0 is the one-dimensional complex with is a circuit
of four edges with vertices in boldface. It can be embedded in a tetrahedron
S3 as a circuit with 4 vertices but the maximal associated subcomplex is the
tetrahedron itself so this embedded copy is not maximal but we can fix this by
choosing a barycentric subdivision of the tetrahedron. In general it is enough to
make barycentric subdivision of all the faces that belong to the maximal simplicial
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complex generated by K0 to obtain an embedding which is maximal. This is always
possible (see [BM06]).

Therefore one has:

Theorem 4.19 ([BM06, Théorèm 14.1]) Let K0 be any finite simplicial complex.
Then there exists a 2-connected LVM manifold N such that its homology verifies:

Hi+q+1(N,Z) = H̃i(K0,Z) ⊕ . . .

for all i between 0 and the dimension of K0.

Hence there exist an LVM manifold such that its homology has as a direct
summand the homology of a given simplicial complex, in particular its homology
can be as complex as one wishes. For instance, given a finite abelian group G there
exists a configuration � such that N� has as subgroup G in its group of torsion.

Remark 4.25 In [BM06, Theorem 10.1] one finds a formula describing the ring
structure via the cup product of the cohomology of these manifolds.

Remark 4.26 More details and results about the homology of moment-angle man-
ifolds using the fact that they have in many cases an open-book structure will be
found in Sects. 4.17 and 4.17

4.15 Wall-Crossing

Let us consider again Fig. 4.5 before now considered as Fig. 4.9 with the purpose of
illustrating the process of wall-crossing.

Consider in Fig. 4.9 different positions of the origin (marked as a cross) with
respect to a configuration which is a regular pentagon and in the three positions the
pentagon has been translated so that the origin is in different “chambers” bounded
by the diagonals of the pentagon. We see that if the point marked with a cross moves
from the figure on the left to the figure on the right then the figure in the left has two
indispensable points, in the second there is one indispensable point and in the figure
at right there are not indispensable points. The the manifolds from left to right are,
respectively, S5 × S1 × S1, then S3 × S3 × S1 and finally #5(S3 × S4).

0

0

0

Fig. 4.9 Wall-crossing from one chamber to another
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As we mentioned before, these configurations are similar: one passes from one to
the other translating � by a family �t or if one wishes translating the origin. If we
take the latter perspective and if we regard the translation of the origin as a homotopy
along which 0 moves, we see that there is a moment in which 0 crosses at certain
moment a “wall” [2i2j ] (in fact one crosses first a wall to go from left to the middle
and the another to go from the middle to the right). The topology changes exactly
after crossing the wall. In effect, if 0 does not encounters the wall the configuration
is admissible and M1(�) does not change differentiably (again using Ehresmann
Lemma). After crossing the wall the topology of M1 changes drastically and after
crossing the wall, by the same argument using Ehresmann Lemma, nothing happens
for the rest of the homotopy.

This situation generalizes to every dimension.

Question How does the topology of M1 changes when we cross a wall?

Let us see what happens in our example in Fig. 4.9 at the level of the associated
polygons. At the left one has a triangle, in the middle a square and finally at right
a pentagon. In other words one passes from the configuration at the left to the
configuration in the middle by a surgery of type (1, 2), then from the configuration
in the middle to that in the right to a second surgery of type (1, 2). This solves
completely this particular case.

Some simple arguments of convex geometry allows us to see that everything
is analogous in the general case. When one crosses a wall in a configuration
(21, . . . ,2n), the wall is supported by 2m vectors 2i . This wall separates the
convex envelope of � in two connected components one contains 0 before the other
contains 0 after. The 2j ’s which do not belong to the wall divide in two parts: a
belong to the part that contains 0 before crossing the wall and b to the part that
contains 0 after crossing the wall. One of course has a+ b = n− 2m, namely a+ b

is equal to the dimension of the associated polytope plus one. We say that it is a
wall-crossing of type (a, b).

With this notation we have:

Theorem 4.20 ([BM06, Theorem 5.4]) Let � et �′ be two admissible configura-
tions. Suppose that �′ is obtained from � through a wall crossing of type (a, b).
Then

(i) The polytope associated to K ′ is obtained from K by a flip of type (a, b).
(ii) The manifold M1(�

′) is obtained from M1(�) by an elementary surgery of type
(a, b).

One can be more precise and characterize the face of the polytope where
the “flip” happens (or equivalently the subvariety along which we perform an
equivariant surgery in function of the wall).
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4.16 LVMB Manifolds

Recall that

S := {z ∈ C
n | 0 ∈ H(2Iz)} (4.32)

where

i ∈ Iz ⇐⇒ zi �= 0. (4.33)

Then N� is the quotient of the projectivization P(S) by the holomorphic action

(T , [z]) ∈ C
m × P(S)  −→ [

zi exp〈2i, T 〉]
i=1,...,n (4.34)

where 〈−,−〉 denotes the inner product of Cm, and not the hermitian one. It is a
compact complex manifold of dimension n−m−1, which is either a m-dimensional
compact complex torus (for n = 2m+1) or a non kähler manifold (for n > 2m+1).

4.16.1 Bosio Manifolds

In [BO01], Frédéric Bosio gave a generalization of the previous construction. His
idea was to relax the weak hyperbolicity and Siegel conditions for � and to look for
all the subsets S of Cn such that action (4.1) is free and proper.

To be more precise, let n � 2m+1 and let � = (21, . . . ,2n) be a configuration
of n vectors in Cm. Let also E be a non-empty set of subsets of {1, . . . , n} of cardinal
2m+ 1 and set

S = {z ∈ C
n | Iz ⊃ E for some E ∈ E} (4.35)

Assume that

(i) For all E ∈ E , the affine hull of (2i)i∈E is the whole Cm.
(ii) For all couples (E,E′) ∈ E×E , the convex hulls H((2i)i∈E) and H((2i)i∈E′ )

have non-empty interior.
(iii) For all E ∈ E and for every k ∈ {1, . . . , n}, there exists some k′ ∈ E such that

E \ {k′} ∪ {k′} belongs to E .

Then, action (4.1) is free and proper [BO01, Théorème 1.4]. We still denote it by
N2 although it also depends on the choice of S. As in the LVM case, it is a compact
complex manifold of dimension n−m−1, which is either a m-dimensional compact
complex torus (for n = 2m+ 1) or a non Kähler manifold (for n > 2m+ 1).

Assume now that (21, . . . ,2n) is an admissible configuration. Let

E = {I ⊂ {1, . . . , n} | 0 ∈ H((2i)i∈I } (4.36)
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Then (4.35) and (4.32) are equal, the previous three properties are satisfied and the
LVMB manifold is exactly the corresponding LVM.

We say that 2i , or simply i, is an indispensable point if every point z of S satisfies
zi �= 0. We denote by k the number of indispensable points.

4.16.1.1 The Associated Polytope of a LVM Manifold

In this section, N2 is a LVM manifold. Recall that the manifold N2 embeds in Pn−1

as the C∞ submanifold

N = {[z] ∈ P
n−1 |

n∑

i=1

2|zi |2 = 0}. (4.37)

It is crucial to notice that this embedding is not arbitrary but has a clear geometric
meaning. Indeed, it is proven in [ME98] that action (4.1) induces a foliation of S;
that every leaf admits a unique point closest to the origin (for the Euclidean metric);
and finally that (4.27) is the projectivization of the set of all these minima.1 So we
may say that this embedding is canonical.

The maximal compact subgroup (S1)n ⊂ (C∗)n acts on S, and thus on N2. This
action is clear on the smooth model (4.27). Notice that it reduces to a (S1)n−1 since
we projectivized everything.

The quotient of N2 by this action is easily seen to be a simple convex polytope
of dimension n − 2m− 1, cf. [ME98] and [MV04]. Up to scaling, it is canonically
identified to

K� := {r ∈ (R+)n |
n∑

i=1

2ri = 0,
n∑

i=1

ri = 1}. (4.38)

It is important to have a description of K� as a convex polytope in Rn−2m−1. This
can be done as follows. Take a Gale diagram of �, that is a basis of solutions
(v1, . . . , vn) over R of the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n∑

i=1

2ixi = 0

n∑

i=1

xi = 0

(4.39)

Take also a point ε in K�. This gives a presentation of K2 as

{x ∈ R
n−2m−1 | 〈x, vi 〉 � −εi for i = 1, . . . , n} (4.40)

1This is a sort of non-algebraic Kempf-Ness Theorem.
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This presentation is not unique. Indeed, taking into account that K2 is unique only
up to scaling, we have

Lemma 4.10 The projection (4.29) is unique up to action of the affine group of
Rn−2m−1.

On the combinatorial side, K2 has the following property. A point r ∈ K2 is a
vertex if and only if the set I of indices i for which ri is zero is maximal, that is has
n− 2m− 1 elements. Moreover, we have

r is a vertex ⇐⇒ S ∩ {zi = 0 for i ∈ I } �= ∅ ⇐⇒ 0 ∈ H(2Ic) (4.41)

for I c the complementary subset to I in {1, . . . , n}. This gives a numbering of the
faces of K2 by the corresponding set of indices of zero coordinates. To be more
precise, we have

J ⊂ {1, . . . , n} is a face of codimension Card J

⇐⇒ S ∩ {zi = 0 for i ∈ J } �= ∅ ⇐⇒ 0 ∈ H(2Jc)
(4.42)

In particular, K2 has n − k facets. Observe moreover that the action (4.1) fixes
S ∩ {zi = 0 for i ∈ J }, hence its quotient defines a submanifold NJ of N2 of
codimension Card J.

Also, (4.31) implies that

S = {z ∈ C
n | I c

z is a face of K2} (4.43)

Remark 4.27 Other results related to LVMB manifolds were obtained by Battisti
[BA13], Ishida [IS17, IS0] and Tambour [TA12].

4.17 Moment-Angle Manifolds and Intersection of Quadrics

Remark 4.28 This section is based on the papers [BLV17, BLV, GL13] and it
borrows freely a lot from them. In order to be compatible with the notation in
these papers, we use in this section sometimes different notations that the ones
used in the previous sections, for instance the moment-angle manifolds M1(�) are
called here Z

C

(�) and the corresponding LVM manifolds N� are denoted here
N (�) = Z

C

(�)/S
1

The topology of generic intersections of quadrics in Rn of the form:

n∑

i=1

λix
2
i = 0,

n∑

i=1

x2
i = 1, where λi ∈ R

k, i = 1, . . . , n
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appears naturally in many instances and has been studied for many years. If k = 2
they are diffeomorphic to a triple product of spheres or to the connected sum of
sphere products [GL05, DM89]; for k > 2 this is no longer the case [BBCG10,
BM06]) but there are large families of them which are again connected sums of
spheres products [GL13].

The generic condition, known as weak hyperbolicity and equivalent to regularity
of the manifold, is the following:

If J ⊂ 1, . . . ,m has k or fewer elements then the origin is not in the

convex hull of the λi with i ∈ J.

A crucial feature of these manifolds is that they admit natural group actions: all of
them admit Z

n

2 actions by changing the signs of the coordinates.
Their complex versions in Cn, which we denote by ZC or ZC(�) (denoted by

M1(�) in the previous sections),

n∑

i=1

λi |zi |2 = 0,
n∑

i=1

|zi |2 = 1, where λi ∈ C
k, i = 1, . . . , n

(now known as moment-angle manifolds) admit natural actions of the n-torus Tn

((ui, . . . , un), (zi , . . . , zn))  → (u1z1, . . . .unzn)

The quotient can be identified in both cases with the polytope P given by

n∑

i=1

λi ri = 0,
n∑

i=1

ri = 1, ri � 0.

that determines completely the varieties (so we can use the notations Z(P) and
Z

C

(P) for them) as well as the actions. The weak hyperbolicity condition implies
that P is a simple polytope and any simple polytope can be realized as such a
quotient.

The facets of P are its non-empty intersections with the coordinate hyperplanes.
If all such intersections are non-empty Z and Z

C

fall under the general concept of
generalized moment-angle complexes [BBCG10].

If we take the quotient of Z
C

(�) by the scalar action of S
1
:

N (�) = Z
C

(�)/S
1
,

we obtain a compact, smooth LVM manifold N (�) ⊂ P
n−1

C
.
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When k is even, N (�) and Z
C

(�) × S
1

have natural complex structures and
so does Z

C

(�) itself when k is odd, but admit symplectic structures only in a few
well-known cases [DV97, ME00].

An open book construction was used to describe the topology of Z for k = 2
in some cases not covered by Theorem 2 in [DM89]. In [GL13] it is a principal
technique for studying the case k > 2. In Sect. I-1 we recall this construction,
underlining the case of moment-angle manifolds:

If P is a simple convex polytope and F one of its facets, ZC(P) admits an open

book decomposition with bindingZ
C

(F ) and trivial monodromy.

When k = 2, the varieties Z and Z
C

(�) can be put in a normal form given by
an odd cyclic partition (see Sect. I-1) and they are diffeomorphic to a triple product
of spheres or to the connected sum of sphere products (see [DM89, GL13]). Using
the same normal form, we give a topological description of the leaves of their open
book decompositions which is complete in the case of moment-angle manifolds:

The leaf of the open book decomposition of Z
C

(�) is the interior of:

(a) a product S2n2−1 × S2n3−1 × D2n1−2,
(b) a connected sum along the boundary of products of the form Sp × D2n−p−4,
(c) in some cases, there may appear summands of the form:

a punctured product of spheres S2p−1 × S2n−2p−3\D2n−4 or
the exterior of an embedding S2q−1 × S2r−1 ⊂ S2n−4.

The precise result (Theorem 4.22 in Sect. I-1) follows from Theorem 4.23 in Sect. I-
4, a general theorem that gives the topological description of the half real varieties
Z+ = Z ∩ {x1 � 0}, and requires additional dimensional and connectivity
hypotheses that should be avoidable using the methods of [GL05]. Some of the
proofs follow directly from the result in [DM89], while other ones require the use
of some parts of its proof. All these manifolds with boundary are also generalized
moment-angle complexes. In Part II, using a recent deep result about contact forms
due to Borman et al. [BEM15], we show that every odd dimensional moment-
angle manifold admits a contact structure. This is surprising since even dimensional
moment-angle manifolds admit symplectic structures only in a few well-known
cases. We also show this for large families of more general odd-dimensional
intersections of quadrics by a different argument.
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Part I: Open Book Structures

I-1 Construction of the Open Books

Let �′ be obtained from � by adding an extra λ1 which we interpret as the
coefficient of a new extra variable x0, so we get the variety Z′:

λ1

(
x2

0 + x2
1

)
+

∑

i>1

λix
2
i = 0, (x2

0 + x2
1)+

∑

i>1

x2
i = 1.

Let Z+ be the intersection of Z with the half space x1 � 0. Z+ admits an action
of Z

n−1

2 with quotient the same P : Z+ can be obtained by reflecting P on all the
coordinate hyperplanes except x1 = 0. Z+ is a manifold with boundary Z0 which is
the intersection of Z with the subspace x1 = 0.

Consider the action of S1 on Z′ by rotation of the coordinates (x0, x1). This
action fixes the points of Z0 and all its other orbits cut Z+ transversely in exactly
one point. So Z′ is the open book with binding Z0, page Z+ and trivial monodromy:

Theorem 4.21

(i) Every manifold Z′ is an open book with trivial monodromy, binding Z0 and
page Z+.

(ii) If P is a simple convex polytope and F is one of its facets, there is an open book
decomposition of Z

C

(P) with binding Z
C

(F ) and trivial monodromy.

(ii) follows because if we write the equations of Z
C

(P) in real coordinates, we
get terms λi(x

2
i +y2

i ) so each λi appears twice as a coefficient and Z
C

(P) is a variety
of the type Z′ in several ways. It is then an open book with binding the manifold
Z

C

0 (P) obtained by taking zi = 0.
When k = 2 it can be assumed � is one of the following normal forms (see

[DM89]): Take n = n1 + · · · + n2�+1 a partition of n into an odd number of
positive integers. Consider the configuration � consisting of the vertices of a regular
polygon with (2�+1) vertices, where the i-th vertex in the cyclic order appears with
multiplicity ni .

n
n

n

n
n

n

n

1

2
3

4

5

6
7
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The topology of Z and Z
C

(�) can be completely described in terms of the
numbers di = ni + · · · + ni+�−1, i.e., the sums of � consecutive ni in the cyclic
order of the partition (see [DM89, GL05] and Sect. I-1):

For � = 1: Z = Sn1−1 × Sn2−1 × Sn3−1, ZC = S2n1−1 × S2n2−1 × S2n3−1.

For � > 1: Z = 2�+1
#

j=1

(
Sdi−1 × Sn−di−2

)
, ZC = 2�+1

#
j=1

(
S2di−1 × S2n−2di−2

)
.

Now we have a similar description of the topology of the leaves in all moment-
angle manifolds, where

∐
denotes connected sum along the boundary and

Ẽ2n−4
2n2−1,2n4−1 is the exterior of S2n2−1 × S2n5−1 in S2n−4 (see Sect. I-3):

Theorem 4.22 Let k = 2, and consider the manifold Z
C

corresponding to the
cyclic partition n = n1 +· · ·+n2�+1. Consider the open book decomposition of Z

C

corresponding to the binding at z1 = 0, as given by Theorem 4.21. Then the leaf of
this decomposition is diffeomorphic to the interior of:

(a) If � = 1, the product

S
2n2−1 × S

2n3−1 × D
2n1−2.

(b) If � > 1 and n1 > 1, the connected sum along the boundary of 2�+1 manifolds:

�+2∐

i=2

(
S

2di−1 × D
2n−2di−3

)∐ 1∐

i=�+3

(
D

2di−2 × S
2n−2di−2

)
.

(c) If n1 = 1 and � > 2, the connected sum along the boundary of 2� manifolds:

�+1∐

i=3

(
S

2di−1 ×D
2n−2di−3

)∐ 1∐

i=�+3

(
D

2di−2 × S
2n−2di−2

)

∐(
S

2d2−1 × S
2d�+2−1\D2n−4

)
.
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(d) If n1 = 1 and � = 2, the connected sum along the boundary of two manifolds:

(
S

2d2−1 × S
2d4−1\D2n−4

)∐
Ẽ2n−4

2n2−1,2n5−1.

Theorem 4.22 will follow from its real version (see Theorem 4.23). It follows also
that in cases (c) and (d) the product of the leaf with an open interval is diffeomorphic
to the interior of a connected sum along the boundary of the type of case (b).

For k > 2, the topology of moment-angle manifolds and their leaves is much
more complicated and it seems hopeless to give a complete description of them: they
may have non-trivial triple Massey products [BA03], any amount of torsion in their
homology [BM06] or may be a different kind of open books [GL13]. Nevertheless,
it is plausible that a description of their leaves as above may be possible for large
families of them in the spirit of [GL13].

The manifold N (�), defined in the introduction, also admits an open book
decomposition, since the S1 action on the first coordinate commutes with the
diagonal one.

Let

π2 : ZC

(�) → N (�),

denote the canonical projection.
Consider now the open book decomposition of Z

C

described above, correspon-
ding to the variable z1 . If �0 is obtained from � by removing λ1 it is clear that

the diagonal S
1
-action on Z

C

has the property that each orbit intersects each page
in a unique point and at all of its points this page is intersected tranversally by the
orbits. This implies that the restriction of the canonical projection π2 to each page
is a diffeomorphism onto its image N (�)−N (�0).

For k even we therefore obtain, since N (�)−N (�0) has a complex structure:

For k even, the page of the open book decomposition of Z
C

(�) in Theorem 4.22
with binding Z

C

0
(�0) admits a natural complex structure which makes it biholomor-

phic to N (�)−N (�0).
For k odd, both the whole manifold and the binding admit natural complex

structures.
So we have a very nice open book decomposition of every moment-angle ma-

nifold. Unfortunately, it does not have the right properties to help in the construction
of contact structures on them.

The topology of these manifolds and of the leaves of their foliations is more
complicated, even for k = 2, and only some cases have been described (see [DV97]
for the simpler ones).
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I-2. Homology of Intersections of Quadrics and Their Halves

We recall here the results of [DM89], whose proofs are equally valid for any
intersection of quadrics and not only for k = 2.

Let Z = Z(�) ⊂ Rn as before, P its associated polytope and F1, . . . , Fn the
intersections of P with the coordinate hyperplanes xi = 0 (some of which might be
empty).

Let gi be the reflection on the i-th coordinate hyperplane and for J ⊂ {1, . . . , n}
let gJ be the composition of the gi with i ∈ J . Let also FJ be the intersection of the
Fi for i ∈ J .

The polytope P , all its faces (the non-empty FJ ) and all their combined
reflections on the coordinate hyperplanes form a cell decomposition of Z. Then
the elements gJ (FL) with non-empty FL generate the chain groups C∗(Z), where
to avoid repetitions one has to ask J ∩ L = ∅ (since gi acts trivially on Fi ).

A more useful basis is given as follows: let hi = 1− gi and hJ be the product of
the hi with i ∈ J . The elements hJ (FL) with J ∩ L = ∅ are also a basis, with the
advantage that hJC∗(Z) is a chain subcomplex of C∗(Z) for every J and, since hi

annihilates Fi and all its subfaces, this subcomplex can be identified with the chain
complex C∗(P,PJ ), where PJ is the union of all the Fi with i ∈ J . It follows that

H∗(Z) ≈ ⊕JH∗(P,PJ ).

For the manifold Z+ we start also with the faces of P , but we cannot reflect them
in the subspace x1 = 0. This means we miss the classes hJ (FL) where 1 ∈ J and
we get2

H∗(Z+) ≈ ⊕1/∈JH∗(P,PJ ).

To compute the homology of Z
C

(�) one can just take that of its real version (with
each λi duplicated) or directly using instead of the basis hJ (FL) with J ∩ L = ∅
the basis of (singular) cells FL × TJ (with J ∩ L = ∅) where TJ is the subtorus of
T n which is the product of its i−th factors with i ∈ J . This gives the splitting

Hi(Z
C

(�)) ≈ ⊕JHi−|J |(P,PJ ).

(See [BM06]).
These splittings have the same summands as the ones in [BBCG10] derived from

the homotopy splitting of &Z. Even if it is not clear that they are the same splitting,
having two such with different geometric interpretations is most valuable.

2The retraction Z → Z+ induces an epimorphism in homology and fundamental group.
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I-3. The Space Ẽm
p,q

Consider the standard embedding of Sp × Sq in Sm, m > p + q given by

S
p × S

q ⊂ R
p+1 ×R

q+1 = R
p+q+2 ⊂ R

m+1.

whose image lies in the m-sphere of radius
√

2.
We will denote by Ẽm

p,q the exterior of this embedding, i.e., the complement in
Sm of the open tubular neighborhood U = int (Sp ×Sq ×Dm−p−q ) ⊂ Sm. Observe
that the boundary of Ẽm

p,q is Sp × Sq × Sm−p−q−1 and that the classes [Sm−p−q−1],
[Sp × Sm−p−q−1] and [Sq × Sm−p−q−1] are the ones bellow the top dimension that
go to zero in the homology of U . By Alexander duality, the images of these classes
freely generate the homology of Ẽm

p,q .
Theorem A2.2 of [GL13] tells that, under adequate hypotheses (and probably

always) Ẽm
p,q × D1 is diffeomorphic to a connected sum along the boundary of

products of the type Sa × D
m+1−a .

Under some conditions (and probably always), Ẽm
p,q is characterized by its

boundary and its homology properties: Let X be a smooth compact manifold with
boundary S

p × S
q × S

m−p−q−1 and ι the inclusion ∂X ⊂ X.

Lemma Assume that

(i) X and ∂X are simply connected.
(ii) the classes ι∗[Sm−p−q−1], ι∗[Sp × Sm−p−q−1] and ι∗[Sq × Sm−p−q−1] freely

generate the homology of X.

Then X is diffeomorphic to Ẽm
p,q .

Proof Observe that condition (i) implies that p, q,m−p−q−1 ≥ 2 so dim(X) =
m ≥ 7. Consider the following subset of ∂X:

K = S
p × ∗× S

m−p−q−1 ∪ ∗ × S
q × S

m−p−q−1

and embed K into the interior of X as K × {1/2} with respect to a collar
neighborhood ∂X × [0, 1) of ∂X. Finally, let V be a smooth regular neighborhood
[HI62] of K × {1/2} in ∂X × [0, 1).

Now, the inclusion V ⊂ X induces an isomorphism in homology. Since the
codimension of K in X is equal to 1 + min(p, q) ≥ 3, X \ int (V ) is simply
connected and therefore an h-cobordism, so X is diffeomorphic to V .

Since Ẽm
p,q verifies the same properties as X, the above construction with the

same V shows that Ẽm
p,q is also diffeomorphic to V and the Lemma is proved. ��
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I-4. Topology of Z and Z+ When k = 2

For k = 2 and � = 1 a simple computation shows that

Z+ = D
n1−1 × S

n2−1 × S
n3−1.

For the case � > 1 we recall here the main steps in the proof of the result about
the topology of Z in [DM89], underlining those that are needed to determine the
topology of Z+. For the cyclic partition n = n1 + · · · + n2�+1 we will denote by Ji

the set of indices corresponding to the ni copies of the i-th vertex of the polygon in
the normal form. Let also Di = Ji ∪ · · · ∪ Ji+�−1 and D̃i its complement.

It is shown in [DM89] that for k = 2, the pairs (P,PJ ) with non-trivial
homology are those where J consists of � or � + 1 consecutive classes, that is,
those where J is some Di or D̃i . In those cases there is just one dimension where
the homology is non-trivial and it is infinite cyclic.

In the case of Di that homology group is in dimension di − 1 where di = ni +
· · · + ni+�−1 is the length of Di . A generator is given by the face FLi where

Li = D̃i\ ({ji−1} ∪ {ji+�})

and ji−1 ∈ Ji−1, ji+� ∈ Ji+� are any two indices in the extreme classes of D̃i (in
other words, those contiguous to Di ).

n
n

n

n
n

n

n

1

2
3

4

5
7

6

D 1

D 1

FLi is non empty of dimension di − 1. It is not in PDi , but its boundary
is. Therefore it represents a homology class in Hdi−1(P,PDi ), which defines a
generator hDiFLi of Hdi−1(Z). Since FLi has exactly di facets it is a (di − 1)-
simplex so when reflected in all the coordinate subspaces containing those facets
we obtain a sphere, which clearly represents hDi FLi ∈ Hdi−1(Z).

The class corresponding to D̃i is in dimension n − di − 2 and is represented by
the face FL̃i

, where L̃i = Di\{j } and j is any index in one of the extreme classes of
Di . It represents a generator of Hn−di−2(Z), but now it is a product of spheres. For
� = 1 this cannot be avoided, but for � > 1, with a good choice of j and a surgery,
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it can be represented by a sphere (this also follows from [GL13]). We will not make
use of this class in what follows.

The final result is that, if � > 1, all the homology of Z below the top dimension
can be represented by embedded spheres with trivial normal bundle.

Let Z′+ be the manifold with boundary obtained by setting x0 ≥ 0 in Z′ (as
defined in Sect. I-1). Then Z′+ can be deformed down to Z+ by folding gradually
the half-plane x0 ≥ 0, x1 onto the ray x1 ≥ 0. This shows that the inclusion Z ⊂ Z′+
induces an epimorphism in homology so one can represent all the classes in a basis
of H∗(Z′

+) by embedded spheres with trivial normal bundle. Those spheres can be
assumed to be disjoint since they all come from the boundary Z and can be placed
at different levels of a collar neighborhood. Finally, one forms a manifold Q with
boundary by joining disjoint tubular neighborhoods of those spheres by a minimal
set of tubes and then the inclusion Q ⊂ Z′+ induces an isomorphism in homology.
If Z is simply connected and of dimension at least 5, then Z′+ minus the interior
of Q is an h-cobordism and therefore Z is diffeomorphic to the boundary of Q

which is a connected sum of spheres products. Knowing its homology we can tell
the dimensions of those spheres:

If � > 1 and Z is simply connected of dimension at least 5, then:

Z = 2�+1
#

j=1

(
S
dj−1 × S

n−dj−2
)
.

For the moment-angle manifold ZC this formula gives, without any restrictions

ZC = 2�+1
#

j=1

(
S

2dj−1 × S
2n−2dj−2

)
.

(In [GL71] this has recently been proved without any restrictions also on Z).
The topology of Z′+ is implicit in the above proof: Z′+ is diffeomorphic to Q

and therefore it is a connected sum along the boundary of manifolds of the form
Sp × Dn−3−p. Since any Z with n1 > 1 is such a Z′ we have:

If Z0 is simply connected of dimension at least 5, and � > 1, n1 > 1 then:

Z+ =
�+2∐

i=2

(
S
di−1 × D

n−di−2
)∐ 1∐

i=�+3

(
D

di−1 × S
n−di−2

)
.

The classes Di and D̃i that now give no homology are the ones that contain n1.
The case n1 = 1 is different. When n1 > 1 the inclusion Z0 ⊂ Z+ induces an

epimorphism in homology (since it is of the type Z ⊂ Z′+). This is not the case for
n1 = 1: for the partition 5 = 1 + 1 + 1 + 1 + 1, the polytope P is a pentagon
and an Euler characteristic computation (from a cell decomposition formed by P
and its reflections) shows that Z is the surface of genus 5. Now Z0 has partition
4 = 1 + 2 + 1 and consists of four copies of S1. From this, Z+ must be a torus
minus four disks that can be seen as the connected sum of a sphere minus four
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disks (all whose homology comes from the boundary) and a torus that carries the
homology not coming from the boundary.

In general, when n1 = 1 Z0 is given by a normal form with 2� − 1 classes, has
4�− 2 homology generators below the top dimension, only half of which survive in
Z+. But Z+ has 2�+ 1 homology generators, so two of them do not come from its
boundary and actually form a handle.

To be more precise, the removal of the element 1 ∈ J1 allows the opposite
classes J�+1 and J�+2 to be joined into one without breaking the weak hyperbolicity
condition.

n
n

n
n

n

n

2
3

4

5
7

+

6

Therefore Z0 has fewer such classes and D2 = J2 ∪ · · · ∪ J�+1, which gives
a generator of H∗(Z+), does not give anything in H∗(Z0) because there it is not a
union of classes (it lacks the elements of J�+2 to be so).

The two classes in H∗(Z+) missing in H∗(Z0) are thus those corresponding to
J = D2 and J = D�+2; all the others contain both J�+1 and J�+2 and thus live in
H∗(Z0).

As shown above, these two classes are represented by embedded spheres in Z+
with trivial normal bundle built from the cells FL2 and FL�+2 by reflection. Now
FL2 ∩ FL�+2 is a single vertex v, all coordinates except x1, xj�+1 , xj�+2 being 0.

0
0

0
0

j

j

1

4

5

The corresponding spheres are obtained by reflecting in the hyperplanes corres-
ponding to elements in D2 and D�+2, respectively. Since these sets are disjoint, the
only point of intersection is the point v.

Now, a neighborhood of the vertex v in P looks like the first orthant of Rn−3

where the faces FL2 and FL�+2 correspond to complementary subspaces. When
reflected in all the coordinates hyperplanes ofRn−3, one obtains a neighborhood of v
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in Z+ where those subspaces produce neighborhoods of the two spheres. Therefore
the spheres intersect transversely in that point.

A regular neighborhood of the union of those spheres is diffeomorphic to their
product minus a disk:

S
d2−1 × S

d�+2−1\Dn−3.

Joining its boundary with the boundary of Z+ we see that Z+ is the connected
sum along the boundary of two manifolds:

Z+ = S
d2−1 × S

d�+2−1\Dn−3
∐

X

where ∂X = Z0 and X is simply connected.
Now, all the homology of X comes from its boundary which again is Z0, since

all those classes actually live in the homology of Z and are the ones corresponding
to the classes Di and D̃i that do not contain n1. Those classes also exist in the
homology of Z0 and are given by the same generators, so this part of the homology
of Z0 embeds isomorphically onto the homology of X.

If � > 2, Z0 is a connected sum of sphere products, so the homology classes of X
can be represented again by disjoint products Sp ×Dn−p−3 and finally we construct
the analog of the manifold with boundary Q and the h-Cobordism Theorem gives:

If Z is simply connected of dimension at least 6, and n1 = 1, � > 2 then

Z+ =
�+1∐

i=3

(
S
di−1 ×D

n−di−2
)∐ 1∐

i=�+3

(
D

di−1 × S
n−di−2

)

∐(
S
d2−1 × S

d�+2−1\Dn−3
)
.

The homology classes of Z+ are those corresponding to D2, D4 (not coming
from the boundary) and to D3, D̃1, D̃5. Clearly the last ones come from the classes
[Sn3+n4−1], [Sn2−1×Sn3+n4−1] and [Sn5−1×Sn3+n4−1] in the boundary. This means
that X satisfies the hypotheses of the lemma in Sect. I-3 with p = n2−1, q = n5−1
and m = n− 3, so we can conclude that X is diffeomorphic to Ẽn−3

n2−1,n5−1. We have
proved all the cases of the

Theorem 4.23 Let k = 2, and consider the manifold Z corresponding to the cyclic
decomposition n = n1 + · · · + n2�+1 and the half manifold Z+ = Z ∩ {x1 � 0}.
When � > 1 assume Z and Z0 = Z ∩ {x1 = 0} are simply connected and the
dimension of Z is at least 6. Then Z+ diffeomorphic to:

(a) If � = 1, the product

S
n2−1 × S

n3−1 × D
n1−1.
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(b) If � > 1 and n1 > 1, the connected sum along the boundary of 2�+1 manifolds:

�+2∐

i=2

(
S
di−1 ×D

n−di−2
)∐ 1∐

i=�+3

(
D

di−1 × S
n−di−2

)
.

(c) If n1 = 1 and � > 2, the connected sum along the boundary of 2� manifolds:

�+1∐

i=3

(
S
di−1 ×D

n−di−2
)∐ 1∐

i=�+3

(
D

di−1 × S
n−di−2

)

∐(
S
d2−1 × S

d�+2−1\Dn−3
)
.

(d) If n1 = 1 and � = 2, the connected sum along the boundary of two manifolds:

(
S
d2−1 × S

d4−1\Dn−3
)∐

Ẽn−3
n2−1,n5−1.

When n1 = 1 and � = 2 we have the additional complication that restricting
to x1 = 0 takes us from the pentagonal Z+ to the triangular Z0, which is not a
connected sum but a product of three spheres and not all of its homology below the
middle dimension is spherical.

n5

1

n2
n
3

n4

Theorem 4.23 immediately describes, under the same hypotheses, the topology
of the page of the open book decomposition of Z′ given by Theorem 4.21, since this
page is precisely the interior of Z+.

Theorem 4.22 about the page of the open book decomposition of the moment-
angle manifold ZC follows also, since this page is Z+ for Z the (real) intersection of
quadrics corresponding to the partition 2n−1 = (2n1−1)+(2n2)+· · ·+(2n2�+1).
In this case all the extra hypotheses of Theorem 4.23 hold automatically.

Theorem 4.23 applies also to the topological description of some smoothings
of the cones on our intersections of quadrics. In this case the normal form is not
sufficient to describe all possibilities as it was in [DM88] where actually only
the sums di were needed to describe the topology or in the present work where
additional information about n1 only is required.
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Part II: Some Contact Structures on Moment-Angle Manifolds

The even dimensional moment-angle manifolds and the LVM-manifolds have the
characteristic that, except for a few, well-determined cases, do not admit symplectic
structures. We will show that the odd-dimensional moment-angle manifolds (and
large families of intersections of quadrics) admit contact structures.

Theorem 4.24 If k is even, Z
C

(�) is a contact manifold.

First we show that Z
C

(�) is an almost-contact manifold. Recall that a (2n+ 1)-
dimensional manifold M is called almost contact if its tangent bundle admits a
reduction to U(n)×R. This is seen as follows: consider the fibration π : ZC

(�) →
N (�) with fibre the circle, given by taking the quotient by the diagonal action. Since
N (�) is a complex manifold, the foliation defined by the diagonal circle action is
transversally holomorphic. Therefore, Z

C

(�) has an atlas modeled on Cn−2 × R

with changes of coordinates of the charts of the form

((z1, · · · , zn−2) , t)  → (h (z1, · · · , zn−2, t) , g (z1, · · · , zn−2, t)) ,

where h : U → Cn−2 and g : U → R where U is an open set in Cn−2 ×R and, for
each fixed t the function (z1, · · · , zn−2)  → h (z1, · · · , zn−2, t) is a biholomorphism
onto an open set of Cn−2 × {t}. This means that the differential, in the given
coordinates, is represented by a matrix of the form

⎡
⎢⎢⎣

A ∗

0 . . . 0 r

⎤
⎥⎥⎦

where ∗ denotes a column (n − 2)-real vector and A ∈ GL(n− 2,C). The set of
matrices of the above type form a subgroup of GL(2n − 3,R). By Gram-Schmidt
this group retracts onto U(n− 2)× R.

Now it follows from [BEM15] that Z
C

(�) is a contact manifold and the Theorem
is proved.

In [BV14] it is given a different construction, in some sense more explicit, of
contact structures, not on moment-angle manifolds but on certain non-diagonal
generalizations of moment-angle manifolds of the type that has been studied by
Gómez Gutiérrez and Santiago López de Medrano in [GL71]. It consists in the
construction of a positive confoliation which is constructive and uses the heat flow
method described in [AW00].
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The argument used there applies however for many other intersections of
quadrics that are not moment angle manifolds, for which the proof of the previous
Theorem need not apply:

Theorem 4.25 There are infinitely many infinite families of odd-dimensional
generic intersections of quadrics that admit contact structures.

First consider the odd-dimensional intersections of quadrics that are connected
sums of spheres products:

An odd dimensional product Sm × S
n of two spheres admits a contact structure

by the following argument: let n even and m odd, and n,m > 2. Without loss of
generality, we suppose that m > n (the other case is analogous) then S

m is an open
book with binding S

m−2 and page R
m−1. Hence S

n × S
m is an open book with

binding S
m−2 × S

n and page R
m−1 × S

n. This page is parallelizable since R × S
n

already is so. Then, since m+n−1 is even the page has an almost complex structure.
Furthermore, by hypothesis, 2n � n+m hence by a theorem of Eliashberg [EL90]
the page is Stein and is the interior of an compact manifold with contact boundary
S
m−2 × S

n. Hence by a theorem of Giroux [GI] Sn × S
m is a contact manifold.

Now, it was shown by Meckert [ME82] and more generally by Weinstein
[WE91] (see also [EL90]) that the connected sum of contact manifolds of the same
dimension is a contact manifold. Therefore all odd dimensional connected sums of
sphere products admit contact structures.

Additionally, it was proved by Bourgeois in [BO02] (see also Theorem 10 in
[GI]) that if a closed manifold M admits a contact structure, then so does M× T.
Therefore, all moment-angle manifolds of the form Z×T

2m, where Z is a connected
sum of sphere products, admit contact structures. For every case where Z is a
connected sum of sphere products we have an infinite family obtained by applying
construction Z  → Z′ an infinite number of times and in the different coordinates (as
well as other operations). The basic cases from which to start these infinite families
constitute also a large set and the estimates on their number in each dimension keep
growing. Adding to those varieties their products with tori we obtain an even larger
set of cases where an odd-dimensional Z admits a contact structure.

Another interesting fact is that most of them (including moment-angle manifolds)
also have an open book decomposition. However, for these open book decompo-
sitions there does not exist a contact form which is supported in the open book
decomposition like in Giroux’s Theorem because the pages are not Weinstein
manifolds (i.e manifolds of dimension 2n with a Morse function with indices of
critical points lesser or equal to n). It is possible however that the pages of the
book decomposition admit Liouville structures in which case one could apply the
techniques of McDuff [MC91] and Seidel [SE11] to obtain contact structures.

Acknowledgements I would like to thank Yadira Barreto, Santiago López de Medrano, Ernesto
Lupercio and Laurent Meersseman for their suggestions, lecture notes, and sharing their thoughts
about the different aspects of the subject of these notes with me during several years. I would like
to thank also the referee for pointing several typos and important mathematical details.



238 A. Verjovsky

This work was partially supported by project IN106817, PAPIIT, DGAPA, Universidad
Nacional Autónoma de México.

References

[AK01] Yu. Abe, K. Kopfermann, Toroidal Groups: Line Bundles, Cohomology and Quasi-
Abelian Varieties. Lecture Notes in Mathematics, vol. 1759 (Springer, Berlin, 2001),
viii+133pp.

[AW00] S.J. Altschuler, L.F. Wu, On deforming confoliations. J. Differ. Geom. 54, 75–97
(2000)

[BBCG10] A. Bahri, M. Bendersky, F.R. Cohen, S. Gitler, The polyhedral product functor: a
method of decomposition for moment-angle complexes, arrangements and related
spaces. Adv. Math. 225(3), 1634–1668 (2010)

[BV14] Y. Barreto, A. Verjovsky, Moment-angle manifolds, intersection of quadrics and
higher dimensional contact manifolds. Moscow Math. J. 14(4), 669–696 (2014)

[BLV] Y. Barreto, S. López de Medrano, A. Verjovsky, Open book structures on moment-
angle manifolds ZC(2) and higher dimensional contact manifolds. arXiv:1303.2671

[BLV17] Y. Barreto, S. López de Medrano, A. Verjovsky, Some open book and contact
structures on moment-angle manifolds. Bol. Soc. Mat. Mex. 23(1), 423–437 (2017)

[BHPV04] W. Barth, K. Hulek, C. Peters, A. Van de Ven, Compact Complex Surfaces (Springer,
Berlin, 2004)

[BA03] I.V. Baskakov, Massey triple products in the cohomology of moment-angle com-
plexes. Russ. Math. Surv. 58, 1039–1041 (2003)

[BP01] F. Battaglia, E. Prato, Generalized toric varieties for simple nonrational convex
polytopes. Int. Math. Res. Not. 24, 1315–1337 (2001)

[BA01] F. Battaglia, E. Prato, Simple nonrational convex polytopes via symplectic geometry.
Topology 40, 961–975 (2001)

[BP01] F. Battaglia, E. Prato Generalized toric varieties for simple nonrational convex
polytopes. Int. Math. Res. Not. 24, 1315–1337 (2001)

[BZ15] F. Battaglia, D. Zaffran, Foliations modeling nonrational simplicial toric varieties. Int.
Math. Res. Not. IMRN 2015(22), 11785–11815 (2015)

[BA13] L. Battisti, LVMB manifolds and quotients of toric varieties. Math. Z. 275(1–2), 549–
568 (2013)

[BEM15] M.S. Borman, Y. Eliashberg, E. Murphy, Existence and classification of overtwisted
contact structures in all dimensions. Acta Math. 215, 281–361 (2015)

[BO01] F. Bosio, Variétés complexes compactes: une généralisation de la construction de
Meersseman et López de Medrano-Verjovsky. Ann. Inst. Fourier 51(5), 1259–1297
(2001)

[BM06] F. Bosio, L. Meersseman, Real quadrics in Cn, complex manifolds and convex
polytopes. Acta Math. 197, 53–127 (2006)

[BO02] F. Bourgeois, Odd dimensional tori are contact manifolds. Int. Math. Res. Not. 30,
1571–1574 (2002)

[BP02] V.M. Buchstaber, T.E. Panov, Torus Actions and Their Applications in Topology and
Combinatorics (AMS, Providence, 2002)

[CE53] E. Calabi, B. Eckmann, A class of compact, complex manifolds which are not
algebraic. Ann. Math. 58, 494–500 (1953)

[CO85] A. Connes, Non-commutative differential geometry. Publ. Math. l’IHES 62(1), 41–
144 (1985)

[CO94] A. Connes, Noncommutative Geometry (Academic Press, San Diego, 1994)
xiv+661pp.



4 LVM Manifolds 239

[CO95] D. Cox, The homogeneous coordinate ring of a toric variety. J. Algebraic Geom. 4,
17–50 (1995)

[CZ07] S. Cupit-Foutu, D. Zaffran, Non-Kähler manifolds and GIT quotients. Math. Z. 257,
783–797 (2007)

[DJ91] M. Davis, T. Januszkiewicz Convex polytopes, coxeter orbifolds and torus actions.
Duke Math. J. 62(2), 417–451 (1991)

[DG17] J.P. Demailly, H. Gaussier, Algebraic embeddings of smooth almost complex struc-
tures. J. Eur. Math. Soc. 19(11), 3391–3419 (2017)

[DM88] S.L. de Medrano, The Space of Siegel Leaves of a Holomorphic Vector Field. Lecture
Notes in Mathematics, vol. 1345 (Springer, Berlin, 1988), pp. 233–245

[DM89] S.L. de Medrano, The Topology of the Intersection of Quadrics in Rn. Lecture Notes
in Mathematics, vol. 1370 (Springer, Berlin, 1989), pp. 280–292

[DM14] S.L. de Medrano, Singularities of homogeneous quadratic mappings. Rev. R. Acad.
Cienc. Exactas Fís. Nat. Ser. A Math. 108(1), 95–112 (2014)

[DM17] S.L. de Medrano, Samuel Gitler and the topology of intersections of quadrics. Bol.
Soc. Mat. Mex. 23(1), 5–21 (2017)

[DV97] S.L. de Medrano, A. Verjovsky, A new family of complex, compact, non-symplectic
manifolds. Bull. Braz. Math. Soc. 28(2), 253–269 (1997)

[EL90] Y. Eliashberg, Topological characterization of Stein manifolds of dimension > 2. Int.
J. Math. 1(1), 29–46 (1990)

[FU93] W. Fulton, Introduction to Toric Varieties (Princeton University Press, Princeton,
1993)

[GHS83] J. Girbau, A. Haefliger, D. Sundararaman, On deformations of transversely holomor-
phic foliations. J. Reine Angew. Math. 345, 122–147 (1983)

[GI] E. Giroux, Geometrie de contact: de la dimension trois vers les dimensions
superieures. Proc. Int. Congress Math. II, 405–414 (2002)

[GL13] S. Gitler, S. López de Medrano, Intersections of quadrics, moment-angle manifolds
and connected sums. Geom. Topol. 17(3), 1497–1534 (2013)

[GL71] R. Goldstein, L. Lininger, A Classification of 6-Manifolds with FreeS1-Action. Lecture
Notes in Mathematics, vol. 298 (Springer, Berlin, 1971), pp. 316–323

[GL05] V. Gómez Gutiérrez, S. Lépez de Medrano, Stably Parallelizable Compact Manifolds
are Complete Intersections of Quadrics. Publicaciones Preliminares del Instituto de
Matemáticas (UNAM, México, 2004)

[GL14] G.V. Gómez, S. López de Medrano, Topology of the intersections of quadrics II. Bol.
Soc. Mat. Mex. 20(2), 237–255 (2014)

[GH78] P. Griffiths, J. Harris, Principles of Algebraic Geometry. Pure and Applied Mathemat-
ics (Wiley, New York, 1978), xii+813pp.

[HA85] A. Haefliger, Deformations of transversely holomorphic flows on spheres and defor-
mations of Hopf manifolds. Compos. Math. 55, 241–251 (1985)

[HI62] M.W. Hirsch, Smooth regular neighborhoods. Ann. Math. 76(3), 524–530 (1962)
[IS0] H. Ishida, Towards transverse toric geometry. arXiv:1807.10449

[IS17] H. Ishida, Torus invariant transverse Kähler foliations. Trans. Am. Math. Soc. 369(7),
5137–5155 (2017)

[KA86] M. Kato, A. Yamada, Examples of simply connected compact complex 3-folds II.
Tokyo J. Math. 9, 1–28 (1986)

[KLMV14] L. Katzarkov, E. Lupercio, L. Meersseman, A. Verjovsky, The definition of a non-
commutative toric variety, in Algebraic Topology: Applications and New Directions.
Contemporary Mathematics, vol. 620 (American Mathematical Society, Providence,
2014), pp. 223–250

[KO64] K. Kopfermann, Maximale Untergruppen Abelscher komplexer Liescher Gruppen.
Schr. Math. Inst. Univ. Münster 29, iii+72pp. (1964)

[LM02] F. Lescure, L. Meersseman, Compactifications équivariantes non kählériennes d’un
groupe algébrique multiplicatif. Ann. Inst. Fourier 52, 255–273 (2002)



240 A. Verjovsky

[LN96] J.J. Loeb, M. Nicolau, Holomorphic flows and complex structures on products of odd-
dimensional spheres. Math. Ann. 306, 781–817 (1996)

[LN99] J.J. Loeb, M. Nicolau, On the complex geometry of a class of non-Kählerian
manifolds. Israel J. Math. 110, 371–379 (1999)

[MA93] P. MacMullen, On simple polytopes. Invent. Math. 113, 419–444 (1993)
[MA74] H. Maeda, Some complex structures on the product of spheres. J. Fac. Sci. Univ. Tokyo

21, 161–165 (1974)
[MC91] D. McDuff, Symplectic manifolds with contact type boundaries. Invent. Math. 103(3),

651–671 (1991)
[MC79] D. McGavran, Adjacent connected sums and torus actions. Trans. Am. Math. Soc.

251, 235–254 (1979)
[ME82] C. Meckert, Forme de contact sur la somme connexe de deux variétés de contact de

dimension impare. Ann. L’Institut Fourier 32(3), 251–260 (1982)
[ME98] L. Meersseman, Un nouveau procédé de construction géométrique de variétés com-

pactes, complexes, non algébriques, en dimension quelconque. Ph.D. Thesis, Lille
(1998)

[ME00] L. Meersseman, A new geometric construction of compact complex manifolds in any
dimension. Math. Ann. 317, 79–115 (2000)

[MV04] L. Meersseman, A. Verjovsky, Holomorphic principal bundles over projective toric
varieties. J. für die Reine und Angewandte Math. 572, 57–96 (2004)

[MV08] L. Meersseman, A. Verjovsky, Sur les variétés LV-M (French). [On LV-M manifolds]
Singularities II. Contemporary Mathematics, vol. 475 (American Mathematical Soci-
ety, Providence, 2008), pp. 111–134

[MI65] J. Milnor, Lectures on the H-Cobordism Theorem (Princeton University Press, Prince-
ton, 1965)

[60] [MO66] A. Morimoto, On the classification of non compact complex abelian Lie
groups. Trans. Am. Math. Soc. 123, 200–228 (1966)

[OR72] P. Orlik, Seifert Manifolds. Lecture Notes in Mathematics, vol. 291 (Springer, Berlin,
1972)

[PA10] T. Panov, Moment-Angle Manifolds and Complexes. Lecture notes KAIST’2010. Taras
Panov. Trends in Mathematics - New Series. ICMS, KAIST, vol. 12, no. 1 (2010), pp.
43–69

[PR01] E. Prato, Simple non-rational convex polytopes via symplectic geometry. Topology
40(5), 961–975 (2001)

[SC61] G. Scheja, Riemannsche Hebbarkeitssätze für Cohomologieklassen. Math. Ann. 144,
345–360 (1961)

[SE11] P. Seidel, Simple examples of distinct Liouville type symplectic structures. J. Topol.
Anal. 3(1), 1–5 (2011)

[ST96] P.R. Stanley, Combinatorics and Commutative Algebra. Progress in Mathematics, 2nd
edn., vol. 41 (Birkhäuser, Boston, 1996)

[ST51] N. Steenrod, The Topology of Fibre Bundles (Princeton University Press, Princeton,
1951)

[ST83] S. Sternberg, Lectures on Differential Geometry, 2nd edn. With an appendix by
Sternberg and Victor W. Guillemin (Chelsea Publishing, New York, 1983)

[TA12] J. Tambour, LVMB manifolds and simplicial spheres. Ann. Inst. Fourier 62(4), 1289–
1317 (2012)

[TI99] V.A. Timorin, An analogue of the Hodge-Riemann relations for simple convex
polytopes. Russ. Math. Surv. 54, 381–426 (1999)

[WA80] C.T.C. Wall, Stability, pencils and polytopes. Bull. Lond. Math. Soc. 12, 401–421
(1980)

[WE91] A. Weinstein, Contact surgery and symplectic handlebodies. Hokkaido Math. J.
620(2), 241–251 (1991)

[WE73] R.O. Wells Jr., Differential Analysis on Complex Manifolds (Upper Saddle River,
Prentice Hall, 1973)



LECTURE NOTES IN MATHEMATICS 123
Editors in Chief: J.-M. Morel, B. Teissier;

Editorial Policy

1. Lecture Notes aim to report new developments in all areas of mathematics and their
applications – quickly, informally and at a high level. Mathematical texts analysing new
developments in modelling and numerical simulation are welcome.

Manuscripts should be reasonably self-contained and rounded off. Thus they may, and
often will, present not only results of the author but also related work by other people. They
may be based on specialised lecture courses. Furthermore, the manuscripts should provide
sufficient motivation, examples and applications. This clearly distinguishes Lecture Notes
from journal articles or technical reports which normally are very concise. Articles
intended for a journal but too long to be accepted by most journals, usually do not have
this “lecture notes” character. For similar reasons it is unusual for doctoral theses to be
accepted for the Lecture Notes series, though habilitation theses may be appropriate.

2. Besides monographs, multi-author manuscripts resulting from SUMMER SCHOOLS or
similar INTENSIVE COURSES are welcome, provided their objective was held to present
an active mathematical topic to an audience at the beginning or intermediate graduate level
(a list of participants should be provided).

The resulting manuscript should not be just a collection of course notes, but should require
advance planning and coordination among the main lecturers. The subject matter should
dictate the structure of the book. This structure should be motivated and explained in
a scientific introduction, and the notation, references, index and formulation of results
should be, if possible, unified by the editors. Each contribution should have an abstract
and an introduction referring to the other contributions. In other words, more preparatory
work must go into a multi-authored volume than simply assembling a disparate collection
of papers, communicated at the event.

3. Manuscripts should be submitted either online at www.editorialmanager.com/lnm to
Springer’s mathematics editorial in Heidelberg, or electronically to one of the series edi-
tors. Authors should be aware that incomplete or insufficiently close-to-final manuscripts
almost always result in longer refereeing times and nevertheless unclear referees’ rec-
ommendations, making further refereeing of a final draft necessary. The strict minimum
amount of material that will be considered should include a detailed outline describing
the planned contents of each chapter, a bibliography and several sample chapters. Parallel
submission of a manuscript to another publisher while under consideration for LNM is not
acceptable and can lead to rejection.

4. In general, monographs will be sent out to at least 2 external referees for evaluation.

A final decision to publish can be made only on the basis of the complete manuscript,
however a refereeing process leading to a preliminary decision can be based on a pre-final
or incomplete manuscript.

Volume Editors of multi-author works are expected to arrange for the refereeing, to the
usual scientific standards, of the individual contributions. If the resulting reports can be

www.editorialmanager.com/lnm


forwarded to the LNM Editorial Board, this is very helpful. If no reports are forwarded
or if other questions remain unclear in respect of homogeneity etc, the series editors may
wish to consult external referees for an overall evaluation of the volume.

5. Manuscripts should in general be submitted in English. Final manuscripts should contain
at least 100 pages of mathematical text and should always include

– a table of contents;
– an informative introduction, with adequate motivation and perhaps some historical

remarks: it should be accessible to a reader not intimately familiar with the topic
treated;

– a subject index: as a rule this is genuinely helpful for the reader.
– For evaluation purposes, manuscripts should be submitted as pdf files.

6. Careful preparation of the manuscripts will help keep production time short besides
ensuring satisfactory appearance of the finished book in print and online. After accep-
tance of the manuscript authors will be asked to prepare the final LaTeX source files
(see LaTeX templates online: https://www.springer.com/gb/authors-editors/book-authors-
editors/manuscriptpreparation/5636) plus the corresponding pdf- or zipped ps-file. The
LaTeX source files are essential for producing the full-text online version of the book,
see http://link.springer.com/bookseries/304 for the existing online volumes of LNM). The
technical production of a Lecture Notes volume takes approximately 12 weeks. Additional
instructions, if necessary, are available on request from lnm@springer.com.

7. Authors receive a total of 30 free copies of their volume and free access to their book on
SpringerLink, but no royalties. They are entitled to a discount of 33.3 % on the price of
Springer books purchased for their personal use, if ordering directly from Springer.

8. Commitment to publish is made by a Publishing Agreement; contributing authors of
multiauthor books are requested to sign a Consent to Publish form. Springer-Verlag
registers the copyright for each volume. Authors are free to reuse material contained in
their LNM volumes in later publications: a brief written (or e-mail) request for formal
permission is sufficient.

Addresses:
Professor Jean-Michel Morel, CMLA, École Normale Supérieure de Cachan, France
E-mail: moreljeanmichel@gmail.com

Professor Bernard Teissier, Equipe Géométrie et Dynamique,
Institut de Mathématiques de Jussieu – Paris Rive Gauche, Paris, France
E-mail: bernard.teissier@imj-prg.fr

Springer: Ute McCrory, Mathematics, Heidelberg, Germany,
E-mail: lnm@springer.com

https://www.springer.com/gb/authors-editors/book-authors-editors/manuscriptpreparation/ 5636
https://www.springer.com/gb/authors-editors/book-authors-editors/manuscriptpreparation/ 5636
http://link.springer. com/bookseries/304
mailto:lnm@springer.com
mailto:moreljeanmichel@gmail.com
mailto:bernard.teissier@imj-prg.fr
mailto:lnm@springer.com

	Preface
	References

	Contents
	List of Participants
	1 Lectures on Pluripotential Theory on Compact Hermitian Manifolds
	1.1 Introduction
	1.2 Notation
	1.3 Why Pluripotential Theory?
	1.4 A Couple of Inspiring Examples
	1.4.1 Local Theory
	1.4.2 Kähler Versus Hermitian

	1.5 Kähler Type Conditions
	1.6 Explicit Examples of Non-Kähler Hermitian Manifolds
	1.7 Canonical Coordinates
	1.8 Basic Notions of Pluripotential Theory: Currents and Capacities
	1.8.1 Some Linear Algebra
	1.8.2 Currents
	1.8.3 Plurisubharmonic Functions
	1.8.4 The Monge-Ampère Measure
	1.8.5 Bedford-Taylor Capacities

	1.9 Comparison Principle in Hermitian Setting
	1.10 The Complex Monge-Ampère Equation on Compact Hermitian Manifolds
	1.10.1 Uniqueness
	1.10.2 Continuity Method: Openness
	1.10.3 Continuity Method: Closedness—Higher Order Estimates
	1.10.4 Continuity Method: Closedness—Second Order Estimate
	1.10.5 Continuity Method: Closedness—Uniform Estimate

	1.11 Weak Solutions for Degenerate Right Hand Side
	References

	2 Calabi–Yau Manifolds with Torsion and Geometric Flows
	2.1 Review of Hermitian Geometry
	2.1.1 Hermitian Metrics
	2.1.2 Connections
	2.1.3 Curvature
	2.1.4 U(1) Principal Bundles
	2.1.4.1 Definitions
	2.1.4.2 Non-Kähler Manifolds Constructed from Principal Bundles


	2.2 Calabi–Yau Manifolds with Torsion
	2.2.1 Curvature and Holonomy
	2.2.1.1 Holonomy
	2.2.1.2 Curvature

	2.2.2 Rigidity Theorems
	2.2.3 Examples
	2.2.3.1 Kähler Calabi–Yau
	2.2.3.2 Complex Lie Groups
	2.2.3.3 Iwasawa Manifold
	2.2.3.4 Goldstein–Prokushkin Fibrations
	2.2.3.5 Fei Twistor Space
	2.2.3.6 Other Examples


	2.3 Anomaly Flow with Zero Slope
	2.3.1 Evolution of the Metric
	2.3.2 Non-Kähler Examples
	2.3.2.1 Iwasawa Manifold
	2.3.2.2 Compact Quotients of SL(2,C)

	2.3.3 Kähler Manifolds

	2.4 Anomaly Flow with α' Corrections
	2.4.1 Hull–Strominger System
	2.4.2 Evolution of the Metric
	2.4.3 Anomaly Flow with Fu–Yau Ansatz
	2.4.3.1 Scalar Reduction
	2.4.3.2 Stationary Points
	2.4.3.3 Long-Time Existence

	2.4.4 Nonlinear Blow-Up
	2.4.4.1 Fibrations over Riemann Surfaces
	2.4.4.2 Lie Groups


	References

	3 Non-Kählerian Compact Complex Surfaces
	3.1 The Enriques-Kodaira Classification: Classes of Non-Kählerian Surfaces
	3.1.1 The Kodaira Dimension and the Algebraic Dimension
	3.1.2 Elliptic Surfaces
	3.1.3 The Enriques-Kodaira Classification
	3.1.3.1 Surfaces with kod(X)=-∞
	3.1.3.2 Surfaces with kod(X)=0
	3.1.3.3 Surfaces with kod(X)=1
	3.1.3.4 Surfaces with kod(X)=2


	3.2 Class VII Surfaces
	3.2.1 Topological Properties
	3.2.2 Analytic Properties: The Picard Group and the Gauduchon Degree
	3.2.3 The Classification of Class VII Surfaces with b2=0

	3.3 Kato Surfaces
	3.3.1 Definition and Construction of Kato Surfaces
	3.3.2 Subclasses of Kato Surfaces
	3.3.2.1 Enoki Surfaces
	3.3.2.2 Parabolic Inoue (Special Enoki) Surfaces
	3.3.2.3 Half Inoue Surfaces
	3.3.2.4 Inoue-Hirzebruch Surfaces
	3.3.2.5 Intermediate Surfaces

	3.3.3 General Properties of Kato Surfaces
	3.3.4 The Moduli Spaces of Framed Kato Surfaces with b2=1 and b2=2
	3.3.4.1 Moduli Spaces of Framed Class VII Surfaces
	3.3.4.2 The Moduli Space of Kato Surfaces with b2=1
	3.3.4.3 The Moduli Space of Kato Surfaces with b2=2

	3.3.5 Standard Conjectures on Class VII Surfaces

	3.4 Gauge Theoretical Methods in the Classification of Class VII Surfaces
	3.4.1 Instantons and Holomorphic Bundles on Complex Surfaces
	3.4.2 A Moduli Space of Instantons on Class VII Surfaces
	3.4.3 Existence of a Cycle on Class VII Surfaces with Small b2
	3.4.3.1 The Existence of a Cycle for b2=1
	3.4.3.2 The Strategy for Larger b2


	3.5 Algebraic Deformations of Singular Contractions of Class VII Surfaces
	3.5.1 From Local to Global Smoothability
	3.5.2 Local Smoothability: Looijenga's Conjecture

	Appendix
	The Picard Group and the Gauduchon Degree
	The Kobayashi-Hitchin Correspondence for Line Bundles
	Moduli Spaces of Flat S1-Connections

	References

	4 Intersection of Quadrics in Cn, Moment-Angle Manifolds, Complex Manifolds and Convex Polytopes
	4.1 Introduction
	4.2 Singular Holomorphic Foliations of Cn and PCn-1 Given by Linear Holomorphic Actions of Cm on Cn (n>2m)
	4.3 Examples
	4.3.1 Elliptic Curves
	4.3.2 Compact Complex Tori
	4.3.3 Hopf Manifolds
	4.3.4 Calabi–Eckmann Manifolds
	4.3.5 Connected Sums
	4.3.6 Some Examples of LVM

	4.4 For m=1 and n>3 the Manifolds N Are Not Symplectic
	4.4.1 Compact Complex Tori Are the Only Kähler LVM Manifolds

	4.5 Meromorphic Functions on the Manifold N
	4.6 Deformation Theory
	4.6.1 Small Deformations
	4.6.2 Rigidity and Versality for m=1
	4.6.3 Global Deformation Theory of LVM Manifolds

	4.7 LVM Manifolds as Equivariant Compactifications
	4.8 Toric Varieties and Generalized Calabi–Eckmann Fibrations
	4.8.1 Canonical Transversally Kähler Foliations

	4.9 Idea of the Proof of Theorem 4.13
	4.9.1 Toy Example
	4.9.2 Examples

	4.10 From Polytopes to Quadrics
	4.11 From Quadrics to Polytopes (Associated Polytope of LVM Manifolds)
	4.12 Moment-Angle Manifolds
	4.13 Flips of Simple Polytopes and Elementary Surgeries on LVM Manifolds
	4.14 The Homology of LVM Manifolds
	4.15 Wall-Crossing
	4.16 LVMB Manifolds
	4.16.1 Bosio Manifolds
	4.16.1.1 The Associated Polytope of a LVM Manifold


	4.17 Moment-Angle Manifolds and Intersection of Quadrics
	Part I: Open Book Structures
	I-1  Construction of the Open Books
	I-2. Homology of Intersections of Quadrics and Their Halves
	I-3. The Space Ẽp,qm
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