
Chapter 2
Basics of Laser-Plasma Interaction:
A Selection of Topics

Andrea Macchi

Abstract A short, tutorial introduction to some basic concepts of laser-plasma in-
teractions at ultra-high intensities is given. The selected topics include (a) elements
of the relativistic dynamics of an electron in electromagnetic fields, including the
ponderomotives force and classical radiation friction; (b) the “relativistic” nonlinear
optical transparency and self-focusing; (c) the moving mirror concept and its appli-
cation to light sail acceleration and high harmonic generation, with a note on related
instabilities; (d) some specific phenomena related to the absorption of energy, kinetic
momentum and angular momentum from the laser light.

2.1 Introduction

Present-day short pulse, high power laser systems have reached the petawatt (1015 W)
level.When suchpower is tightly focused in a spotwith a diameter of fewwavelengths
λ (�1 µm for sub-picosecond systems), intensities exceeding 1021 W cm−2 may be
achieved. The corresponding strength of the EM fields is such that any sample of
matter exposed to such fields becomes instantaneously highly ionized, i.e. turned
into a plasma, and the freed electrons oscillate with momenta largely exceeding
mec (where me is the electron mass and c is the speed of light). The nonlinear
dynamics of such relativistic plasma in a superstrongEMfield is the basis of advanced
schemes of laser-plasma sources of high energy electrons, ions and photons which
are characterized by high brilliance and ultrashort duration.

A few years agowe tried to present the basic concepts of the theory of superintense
laser-plasma interactions in a primer of about one hundred of pages [1], and it is hard
to further condensate such material. Thus, the present paper is mostly an ultrashort
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introduction to the field at a “sub-primer” level, focused on an arbitrary selection of
contents. We do not enter into mathematical details which can be found in the primer
or in the other (few) references we cite.

Our rough selection criterion is to include here preferentially topics on which ei-
ther we witnessed frequent misunderstanding or we may add something with respect
to our primer. Beyond the latter, more complete and advanced introductions may be
found in textbooks [2, 3] or review papers [4, 5]. We also address the reader to other
reviews for the important topics of laser-plasma accelerators of both electrons [6]
and ions [7], on which additional references may be found in other contributions to
this book. On topics where controversies are present, we have only room to give our
personal point of view.

2.2 Single Electron Dynamics and Radiation Friction

A look at the dynamics of a single electron in an EM field of arbitrary amplitude is a
good warm-up before discussing a many-particle system with collective effects, i.e.
a plasma. In non-covariant notation, the relativistic motion of an electron in a given
EM field is described by the equations

dp
dt

= −e
(
E + v

c
× B

)
,

dr
dt

= v ,
d(meγc2)

dt
= −ev · E , (2.1)

where p = p(t), r = r(t), v = v(t) = p/meγ, γ = (1 + p2/m2
ec

2)1/2 = (1 − v2/

c2)−1/2, and the fields are evaluated at the electron position, i.e. E = E(r(t), t)
and B = B(r(t), t). By given fields we mean that we neglect their self-consistent
modification by the motion of the electron (see Sect. 2.2.3).

2.2.1 Motion in Plane Wave Fields

Exact relations and solutions can be found for plane wave fields, conveniently de-
scribed by the vector potentialA = A(x − ct)whichwe take to be propagating along
x̂. The EM fields are given by E = −∂tA/c and B = ∇ × A = x̂ × ∂xA. By sepa-
rating the electron momentum in longitudinal (px ) and transverse (p⊥) components,
it is possible to find two constants of motion:

d

dt

(
p⊥ − e

c
A

)
= 0 ,

d

dt
(px − meγc) = 0 . (2.2)

Thefirst relation is the conservation of canonicalmomentum related to the traslational
invariance in the transverse plane (yz). The second arises from the properties of the
EM field: if a net amount of energy E is absorbed from the field, a proportional
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amount of momentum E/c must be absorbed as well.1 If an electron is initially at
rest before it is reached by the wave, then p⊥ = eA/c and px = mc(γ − 1) at any
time. These relations also yield px = e2A2/2mec3 and imply that, as the field is over
(A = 0), an electron initially at rest will be at rest again, i.e. no net acceleration is
possible in a plane EM wave.

Now consider the case of a monochromatic wave of frequency ω,

A = A0
[
ŷ cos θ cos(kx − ωt) + ẑ sin θ sin(kx − ωt)

]
, B = x̂ × E, (2.3)

where k = ω/c and−π/2 < θ < π/2 determines the wave polarization: for instance
θ = 0 and θ = ±π/2 correspond to linear polarization (LP), while θ = ±π/4 cor-
responds to circular polarization (CP). This wave has infinite duration, but one
may still assume the same initial conditions as above if the wave is “turned on”
over an arbitrarily long rising time. One thus obtains an average drift momentum
〈px 〉 = 〈

e2A2/2mec3
〉
(the brackets denote an average over a laser period). The tra-

jectories (Fig. 2.1a–b) have a self-similar form, i.e. they can be written as function of
the scaled coordinates x/a20 , y/a0 and z/a0 where a0 is a dimensionless amplitude
of the EM wave,

a0 = eA0

mec2
. (2.4)

The drift velocity is vD = ca20/(a
2
0 + 4). By transforming to a frame moving with

such velocity along x̂, the trajectories become closed. For LP the electron performs
a “figure of eight” in the plane containing x̂ and the polarization direction (Fig. 2.1).
For CP, the electron moves on a circle in the yz plane. Notice that in this latter case
the γ-factor is a constant and the motion does not contain high harmonics of ω.

Fig. 2.1 a, b self-similar “drifting” trajectories of an electron in a monochromatic plane wave
for linear (a) and circular (b) polarization. c the figure-of-eight trajectory (red line) obtained by
subtracting the drift from case (a), and the trajectory with same initial conditions, but adding the
radiation friction force (black line)

1In fact, in classical electrodynamics the ratio between the amount of energy and of momentum
modulus in a wavepacket is c, thus this relation must be conserved if the wavepacket is totally
absorbed by a medium. In a quantum picture, one may think of the absorption of a given number
of photons, each having energy E = �ω and momentum modulus E/c.
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The parameter a0 introduced in (2.4) is a convenient indicator of the onset of
the relativistic dynamics regime. In the “no drift” frame, the typical value of the
gamma factor (temporally averaged for LP) is γ = (1 + a20/2)

1/2, thus the dynamics
is strongly relativistic when a0 � 1. The parameter is related to the wave intensity
I and wavelength λ by a0 = 0.85 (Iλ2/1018 Wcm−2µm2)1/2.

2.2.2 Ponderomotive Force

The motion in a plane wave is an useful reference case, but in most cases we have to
dealwithmore complexfield distributions, such as a laser pulsewith a finite extension
in space and time. At least we may assume the field to be quasi-monochromatic, i.e.

to be described by A(r, t) = Re
[
Ã(r, t)e−iωt

]
with 〈A(r, t)〉 � 0 and

〈
Ã(r, t)

〉
�

Ã(r, t), i.e. the envelope function Ã(r, t) describes the temporal variation of the
field on a scale slower than the oscillation at frequency ω. The idea is to separate
these different scales bywriting for the position r(t) ≡ rs(t) + ro(t)where 〈rs(t)〉 �
rs(t) and 〈ro(t)〉 � 0, i.e. ro(t) describes the fast oscillation around the slowly-
moving center rs(t). In the non-relativistic case, one obtains equations for the “slow”
motion as

me
dvs
dt

= − e2

2meω2
∇ 〈

E2(rs(t), t)
〉 ≡ Fp ,

drs
dt

= vs , (2.5)

where Fp is named the ponderomotive force (PF).2 Equation (2.5) is based on a
perturbative approach where magnetic effects are taken into account up to first order
in v/c, and the spatial variation of the fields over awavelength is small (|λ∇E | � E).

According to (2.5) the electrons are pushed out of the regions where the field is
higher. Thus, if a laser pulse propagates through a tenuous plasma (Fig. 2.2), electrons
will be pushed in the forward (propagation) direction on the leading edge of the pulse,
and in the backward direction on the trailing edge: in proper conditions, this effect
generates wake waves in the plasma [6]. The PF associated to the intensity gradient
in the radial direction tends to pile electrons at the edge of the laser beam and create
a low-density channel along the propagation path, which can cause a self-guiding
effect (see Sect. 2.4.2).

An extension of the PF to the relativistic regime is not straightforward. For a quasi-
transverse, quasi-plane wave field onemay follow the hint that the non-relativistic PF
(2.5) is the gradient of the average oscillation energy (“ponderomotive potential”).
Assuming p⊥ � eA/c and γ � (1 + p2⊥/m2

ec
2)1/2, one can write the oscillation en-

ergy in the relativistic case asmec2(γ − 1) and replace the potential in (2.5).However,

2We stress that we define the PF as a cycle-averaged approximation of the Lorentz force. However, in
the literature sometimes the term “oscillating PF” has been used [8] to refer to oscillating nonlinear
terms in the Lorentz force (such as the v × B term which has a 2ω component). This definition is
inconsistent with the whole idea of separating the “slow” and “fast” scales in the motion.
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Fig. 2.2 Ponderomotive
scattering of electrons by the
ponderomotive force (2.5) of
a laser pulse having finite
length and width
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one has also to take into account that the oscillatory motion yields relativistic inertia.
One may thus write

d

dt
(meffvs) � −∇(meffc

2) , meff ≡ me(1 + 〈
a2

〉
(rs, t))1/2 , (2.6)

(where a = eA/mec2) withmeff acting as an effective, position- and time-dependent
mass. We remark that this expression is limited to a “semi-relativistic case”, in
which the average velocity |vs | � c, and for smooth field profiles where transverse
components are much larger than longitudinal ones (e.g. a loosely focused laser
beam).

2.2.3 Radiation Friction (Reaction)

While an electron is accelerated by an EM field, it also radiates EM waves when
accelerated. But the “standard” equations of motion (2.1) do not account for the
energy and momentum carried away by the radiation. For example, according to
(2.1) an electron in an uniform and constant magnetic field performs a circular orbit
at constant energy; but since the electron experiences a centripetal acceleration, it
will radiate and lose energy, so that we expect the trajectory to become a spiral as
if the electron was experiencing a friction force. To describe such radiation friction
(RF) effects, additional terms must be added to the Lorentz force in order that the
motion is self-consistent with the radiation emission. The phenomenon can also be
described as the back-action of the fields generated by the electron on itself, so it is
also named radiation reaction (RR).

RR (or RF) is a longstanding and classic problem of classical electrodynamics.
In ordinary conditions the effect is either negligible or at least it can be treated
perturbatively and phenomenologically, e.g. inserting a simple friction force. The
dynamics of the electron becomes strongly affected by the radiation emission when
the energy of the emitted radiation is comparable to the work done on the electron by
the accelerating fields ([9], Sect. 16.1), which implies field strengths at the frontier of
those produced by present-day laser technology. This circumstance has revitalized
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the debate (and associated controversy) onRR in recent years. However, it is apparent
that as long as a classical description is adequate, one can safely use the RR force
given in the textbook by Landau and Lifshitz (LL) [10]:

FRR � −2r2c
3

(
γ2

(
L2 −

(v
c

· E
)2

)
v
c

− L × B −
(v
c

· E
)

· E
)

, (2.7)

where L ≡ E + v × B/c , rc = e2/mec2 is the classical electron radius, and small
terms containing the temporal derivatives of the fields have been dropped down [11].
It may be interesting to notice that for an electron which is instantaneously at rest
(v = 0) the force reduces to

FRR � 2r2c
3

E × B = σT
S
c

, (2.8)

where σT = 8πr2c /3 is the Thomson cross section for the scattering of an EM wave,
and S = cE × B/4π is the Poynting vector giving the energy flux of the wave (the
intensity I = |S|): thus, in this limit the RR force is a drag force which describes
the absorption of an amount of EM momentum proportional to the amount of EM
energy subtracted from the wave and then radiated away.

An exact solution for the motion in a plane EM wave exists also when the RR
force (2.7) is included [12]. The modification of the trajectory is shown in Fig. 2.1,
for the same initial conditions yielding the closed “figure of eight” when neglecting
RR: if the latter is included, the trajectory opens up with the electron gaining energy
and accelerating along the propagation direction. Of course a friction force sounds
as unable to accelerate anything, but actually the effect of friction is to change the
relative phase between the fields and the electron velocity. This yields 〈v · E〉 	= 0,
so that the electron gains energy from the wave, and 〈v × B〉 	= 0, so that the electron
is accelerated along x̂.

The classical theory predicts that the spectrum of the radiation scattered from a
relativistic electron peaks at frequenciesωrad � γ3ωi ([9], Sect. 14.4), whereωi is the
frequency of the incident radiation (ωrad = ωi in the linear non-relativistic regime).
Thus, with increasing γ eventually the energy of a single photon �ωrad � mec2γ, the
electron energy, so that the recoil from the photon emission is not negligible and
a quantum electrodynamics (QED) description becomes necessary. This is reminis-
cent of the well-known Compton scattering, but here the relevant regime involves
the sequential absorption of very many low-frequency photons and the emission of
several high-frequency photons. A QED theory of RR is still an open issue and is
the subject of current research (see [13] for a discussion).

2.3 Kinetic and Fluid Equations

For a plasma of electrons and ions at high energy density, a classical approach is
adequate. The most complete description of the dynamics is based on the knowledge
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of the distribution function fa = fa(r,p, t) which gives the density of particles in
the phase space (r,p) for all species a (e.g. a = e, i for a single ion distribution).

A great simplification arises from the possibility of neglecting binary collisions,
since the cross section for Coulomb scattering quickly decreases with increasing
particle energy. For further simplicity we neglect any process which may create or
destroy particles (such as ionization, pair production,…), as well as radiation friction
(RF) whose inclusion will be discussed later. The total number of particles of each
species is thus conserved, and the distribution function satisfies a continuity equation
in the phase space (the Vlasov equation):

∂ fa
∂t

+ ∂

∂r
(ṙa fa) + ∂

∂p
(ṗa fa) = 0 , (2.9)

where

ṙa = v = pc
(p2 + m2

ac
2)1/2

, ṗa = qa
(
E + v

c
× B

)
. (2.10)

The coupling withMaxwell equations for the EMfieldsE = E(r, t) andB = B(r, t)
occurs via the charge and current densities obtained from fa :

ρ(r, t) =
∑
a

qa

∫
fad

3 p , J(r, t) =
∑
a

qa

∫
v fad3 p . (2.11)

The Vlasov-Maxwell system constitutes the basis for the kinetic description of laser-
plasma interactions, mostly via numerical simulations based on particle-in-cell (PIC)
codes [14]. The PIC method may be extended to include collisions, ionization, and
particle production (see e.g. [15, 16]). RF effects can be included straightforwardly
by adding the LL force 2.7 (Sect. 2.2.3) to the second of (2.10).3 The technical
implementation in PIC codes proposed in [11] has been successfully benchmarked
in [17]. Notice that in a simulation, because of the finite resolution of a spatial grid
over which the fields are represented, it is almost impossible to resolve the high-
energy radiation emitted by ultra-relativistic electrons at frequencies ωrad � γ3ω,
with ω the frequency of the driving lasers. However, radiation of such frequency
escapes even from a solid-density plasma with negligible interactions, and it is of
incoherent nature being of such small wavelength λrad = 2πc/ωrad that neλ3

rad � 1.
Thus, RF losses in a laser-plasma interaction are simply measured by the amount of
energy which “disappears” from the simulations.4

3Notice that in (2.9)–(2.10) ∂r(ṙa fa) = ṙa∂r fa and ∂p(ṗa fa) = ṗa∂p fa , as it is usual to write for
the Vlasov equation. However, if the LL force is added to the Lorentz force, ∂p(ṗa fa) 	= ṗa∂p fa .
This is not an issue for the standard PIC algorithms which provide a solution of the general kinetic
equation (2.9).
4In principle also low-frequency, coherent radiation which is resolved in the simulation contributes
to the RF effect, thus there is some double counting of such radiation in the force since it is included
both in the Lorentz and in the LL terms. However, for highly relativistic electrons with γ � 1 the
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While a kinetic approach is most of the times necessary for a comprehensive
study of laser-plasma interaction phenomena, the simplified description based on
moments of (2.9), i.e. on fluid equations, provides a suitable ground for basic models.
As the motion of electrons is dominated by the superintense EM fields, one may
neglect the “random” or thermal component of themotion and the associated pressure
term, and obtain a closed set of moment equations. This is named the “cold” fluid
approximation although the name might sound funny for such a high energy density
plasma. Introducing the electron density ne = ne(r, t) and fluid momentum pe =
pe(r, t),

ne(r, t) ≡
∫

fed
3 p , pe(r, t) ≡ n−1

e

∫
p fed

3 p , (2.12)

the cold fluid equations for electrons are

∂t ne + ∇ · (neue) = 0 ,
dp
dt

= (∂t + ue · ∇)pe = −e
(
E + ue

c
× B

)
, (2.13)

with ue = pe/(meγec) and γe = (p2e + m2
ec

2)1/2. Equations (2.13) are the theoretical
basis for the analytic description of the laser-plasma interaction phenomena described
in the following. However, in the present paper we do not enter into mathematical
details.

2.4 “Relativistic” Optics

2.4.1 Wave Propagation and “Relativistic” Nonlinearities

We consider a transverse EM wave (∇ · E = 0) propagating in an uniform plasma
with electron density ne. The wave equation for E is given by

(
∇2 − 1

c2
∂2
t

)
E = 4π

c2
∂tJ , (2.14)

with the current density J = −eneue (ions are assumed as an immobile, neutralizing
background). For electron velocities |ue| � c, we pose γe � 1 and neglect theue × B
term, so that ue is proportional to E. This is the basis for the linear optics of a plasma
(supposed to be non-magnetized), which can be described by the refractive index
n = n(ω) with

contribution of the low-frequency part is negligible with respect to that of the dominant frequencies
in the radiation spectrum.
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n2 = ε = 1 − ω2
p

ω2
= 1 − ne

nc
, (2.15)

where ε = ε(ω) is the dielectric function, ωp = (4πe2ne/me)
1/2 is the plasma fre-

quency and nc = meω
2/4πe2 is named the cut-off or “critical” density. Wave propa-

gation requires n to be a real number, which occurs when the wave frequencyω < ωp

or, equivalently, the plasmadensity ne < nc, that defines an underdense plasmawhich
is transparent for the frequency ω. If ne > nc the plasma is overdense and reflecting.
For λL = 1µm, nc � 1021 cm−3 which falls between the typical densities of gaseous
and solid media, respectively.

When the EM wave amplitude is such that a0 � 1, nonlinear optical effects arise
because of both the dependence of γe on the instantaneous field and the importance
of the ue × B term. Thus, the wave propagation depends on its amplitude and higher
harmonics of the main frequency are generated.

However, for CP there is a particular plane wave, a monochromatic solution for
which ue × B = 0 and γe = (1 + a20/2)

1/2 is constant in time (this solution is related
to the case of the single particle orbits for CP described in Sect. 2.2). In this particular
case, the electron equation of motion reduces to

dpe
dt

= meγe
due
dt

= −eE , (2.16)

which is identical to the non-relativistic, linearized equation of motion but for the
constant factor γe that multiplies me. Thus we immediately obtain that the wave
propagation can be described by the nonlinear refractive index nNL with

n2NL(ω) = 1 − ω2
p

γeω2
= 1 − ne

γenc
. (2.17)

It should be kept in mind that, in general, a nonlinear refractive index should be
used with care and that, in particular, (2.17) applies only to the idealized case of a
monochromatic CP wave in a homogeneous plasma: already the extension to LP is
not straightforward since γe is not constant anymore. In the present context, we use
(2.17) for a simple description of the phenomenon of “relativistic” self-focusing. We
also show, however, that applying (2.17) to the other characteristic phenomena of
“relativistic” transparency leads to incorrect predictions.

2.4.2 Relativistic Self-focusing

We consider a EM beam propagating in a plasma along x . We assume that the beam
has a standard bell-shaped profile (e.g., Gaussian), so that the intensitywill be highest
on the axis and decrease to zerowith increasing radial distance. r⊥. Thus, using (2.17)
as a function of the local amplitude a = a(x, r⊥, t), i.e. taking γe = (1 + 〈a〉2 /2)1/2,
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we obtain that nNL has its highest value on the axis (r⊥ = 0) and then decreases with
increasing radial distance r⊥, down to the linear value (2.15). This implies that the
refractive index, due to its nonlinear dependence, is modulated as in an optical fiber
or dielectric waveguide, leading to a self-focusing (SF) effect which counteracts
diffraction.

Figure2.3a describes a simple SF model based on a geometrical optics descrip-
tion. We assume a “flat top” radial profile so that the intensity is almost constant
in the central region. Thus, the refractive index has values na = nNL[a(r⊥ = 0)] for
r⊥ < D/2, where D is the beam diameter, and nb = nNL[a = 0] for r⊥ > D/2. Be-
cause of diffraction, light rays tend to diverge with a typical angle θi � arccos(λ/D).
At the r⊥ = D/2 boundary, due to Snell’s law the rays are bent to an angle
θr = arcsin ((na/nb) sin θi ), with total internal reflection occurring as θr = π/2. This
yields a threshold for the guiding of the beam inside the central region. In the limit
of weak nonlinear effects (|a| � 1) and small angles (λ/D � 1) the condition can
be written as

π

(
D

2

)2

|a(r⊥ = 0)|2 � πλ2 nc
ne

. (2.18)

Note that the first term is proportional to the beam power. Inserting numbers
and recalling that a = eA/mec2, one obtains the threshold power value as PT �
43 GW(nc/ne). Thus, this rough model predicts the same scaling with density and
order of magnitude as the reference value PT = 17.5 GW(nc/ne) which is obtained
from a more rigorous theory [18]. Notice, however, that also this latter estimate is
based on some assumptions, i.e. a CP beam which is several wavelengths wide and
long: it may not be applied to ultrashort, tightly focused pulses extending only over
a few wavelengths. Also notice that the evolution of a laser pulse undergoing SF
may be quite complex; at least, it involves the creation of a low-density channel as

nb

na

r⊥

θi

θr

x

D/2

r⊥

a(x)

ne

Ex

n0

xd

(a) (b)

Fig. 2.3 a “optical fiber” model of self-focusing. Since the laser beam has a radial intensity profile
a(r⊥) the nonlinear refractive index has higher values in the central region, causing a guiding effect.
b evanescence of the EM field a(x) in an overdense plasma (n0 > nc) that fills the x > 0 region.
The electron density (ne) profile is modified self-consistently by the action of the ponderomotive
force which is balanced by the space-charge field Ex
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the electrons are pushed away from the axis due to ponderomotive forces (see Sect.
2.2.2).

2.4.3 Relativistic Transparency

Equation (2.17) implies that nNL is real for ne > γenc, i.e. the cut-off density is
increased by a factor γe with respect to the linear, non-relativistic case. The usual
description is that a plasma may become transparent because of relativistic effects,
and one often reads of a “relativistically corrected” cut-off density γenc.

Indeed, there are two examples of “relativistic” transparencywhich are of practical
importance and where taking ne < γenc as a criterion for wave propagation leads to
erroneous predictions. Thefirst is the case ofwave incidence on a semi-infinite plasma
with a step boundary. In the linear regime, one may assume the profile of the electron
density to be unperturbed, so the problem is reduced to imposing boundary conditions
at the plasma-vacuum interface which leads to Fresnel formulas ([9], Sect. 7.3). For
strong fields, however, the density profile is modified by the wave action. Taking the
simplest case of normal incidence of a CPwave [19], the steady ponderomotive force
originating from the cycle-average of the ue × B term pushes the electrons inside the
target and pile themup causing a local increase of the density in the evanescence layer,
which counteracts the relativistic effect (Fig. 2.3b). As a consequence, the threshold
forwave penetration (forne � nc anda0 � 1) becomesa0 > (

√
3/2)3(ne/nc)2 [19],

which corresponds to much higher intensities than predicted by posing γe > ne/nc
i.e. a0 >

√
2ne/nc.

The second example is that of a thin foil of thickness � � λ = 2πc/ω, for which
the relevant parameter for transparency is the areal density ne�. The nonlinear trans-
mission and reflection coefficients can be calculated for a normally incident CPwave
by assuming a Dirac delta-like profile [20], showing the onset of transparency when

a0 > ζ ≡ π
ne
nc

�

λ
. (2.19)

Thus, for ultrathin targets such that � � λ it is possible to have the onset of trans-
parency even when ne > γenc.

It is worth noticing, however, that also these models are one-dimensional, i.e.
based on plane waves. Multi-dimensional effects play an important role for any
realistic laser pulse with a finite transverse profile. In particular, the ponderomotive
force may reduce the electron density on axis by pushing electrons away, enhancing
the penetration of the laser pulse.
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2.5 Interaction With a Step Boundary Plasma

We now focus on the interaction of a superintense laser pulse with a strongly over-
dense plasma (ne � nc) having a step-like density profile, e.g. ne � n0�(x) with
�(x) the Heaviside step function. This problem is relevant to experiments on the
interaction of ultrashort pulses with solid targets.

2.5.1 Energy Absorption: From Fresnel Formulas
to “Vacuum Heating”

In the linear regime, the solution for the problem of the interaction between a plane
EMwave and amedium having refractive index n and a steep interface is provided by
the matching relations for the wavevectors and by Fresnel formulas for the reflection
and absorption coefficients, which depend on the angle of incidence and the wave
polarization. Using (2.15) for n one finds that inside the medium (x > 0, for definite-
ness) the wave is evanescent as e−x/�s with �s = c(ω2

p − ω2)−1/2 and there is total
reflection of the incident energy since n is purely imaginary, which corresponds to
neglecting any dissipative process. Dissipation may be provided by resistivity due to
Coulomb collisions between electron and ions (Drude model), so that (2.15) is mod-
ified by replacing ω2 → ω(ω + iνei) where νei is the collision frequency. However,
νei quickly decreases with increasing electron energy (“runaway effect”) making
collisional absorption inefficient at high intensities.

Actually, there are collisionlessmechanisms taking place in the surface region of
evanescent field (the “skin layer”) which may produce a sizable absorption (see e.g.
[21] and references therein). The essence of such mechanisms is that in crossing the
skin layer an electron sees the evanescent field to change in a time shorter than the os-
cillation period 2π/ω, so that 〈v(t) · E(x = x(t), t)〉 	= 0 over the electron trajectory
x(t). Calculating the total absorption requires a kinetic approach. However, to some
extent, collisionless skin layer absorption might be included phenomenologically in
the Fresnel modeling by replacing νei with an effective collision frequency.

Indeed, at very high intensities absorption may be due to the generation of ener-
getic electrons through a mechanism which violates a basic underlying assumption
of the Fresnel modeling, i.e. that all electrons remain into the x > 0 region initially
occupied by the plasma. Depending on the EM wave polarization, there can be an
oscillating Lorentz force component perpendicular to the surface, so that for strong
enough fields an electron can be driven from the plasma surface into the vacuum
region (Fig. 2.4). After half a period of the driving force, the electron re-enters into
the plasma region with a finite velocity and may cross the evanescence layer, thus
escaping from the accelerating field region and being “absorbed” in the plasma. Dur-
ing the half-oscillation on the vacuum side, the electron acquires an energy of the
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Fig. 2.4 Oscillatory and steady forces on an overdense plasma with steep boundary, for different
polarizations. For linear polarization (LP) with E in the plane of incidence (P-polarization), both
the E and v × B terms in the Lorentz force can drive electron “half-oscillations” across the plasma-
vacuum interface at a rate ω and 2ω, respectively. For E perpendicular to the plane of incidence
(S-polarization) only the v × B term drives the half-oscillations. For circular polarization (CP) and
normal incidence, all the oscillating force components perpendicular to the surface are suppressed.
In all cases, there is a steady (“0ω”) force pushing the electrons and giving rise to radiation pressure
action on the plasma

order of the oscillation energy in the wave field,5 i.e. Ee � mec2
(
(1 + 〈

a2
〉
)1/2 − 1

)
.

This is the essential description of the mechanism originally proposed by Brunel [22]
and widely referred to as “vacuum heating” (VH). Brunel originally considered the
electric field component for P-polarization as the driver for electron half-oscillations
across the surface, so that energetic electron bunches are generated once per laser
cycle. A simple model [2] yields for the reflectivity R the following implicit relation

R � 1 − 1 + √
R

πa0

((
1 + (1 + √

R)2a20 sin
2 θi

)1/2 − 1

)
sin θi

cos θi
, (2.20)

withθi the incidence angle. In the a0 sin θi � 1 limit, R � 1 − (4/π)a0 sin3 θi/ cos θi .
The magnetic component of the Lorentz force can also act as driver, so that VH

may take place also for S-polarization and normal incidence generating electron
bunches twice per laser cycle (since the magnetic force term has frequency 2ω).
This is also referred to as “J × B” heating, although the name comes from an earlier
suggestion about the contribution of the magnetic force to absorption [23]. Instead,
for circular polarization and normal incidence there is no oscillating component
normal to the surface6 so that electron heating may be suppressed [24].

2.5.2 Momentum Absorption and Radiation Pressure

In addition to energy, EM field contain traslational momentum, its density being g =
E × B/4πc. Thus, an idealized quasi-plane-wave “square” pulse of duration τ and

5This estimate for the electron energy is commonly referred to as “ponderomotive scaling”; probably,
the name originates from the questionable definition of nonlinear oscillating forces as “pondero-
motive” (Sect. 2.2.2).
6This is analogous to the absence of high-frequency longitudinal motion in a CP wave, Sect. 2.2.1.
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Fig. 2.5 Simple kinematic model to calculate the EM momentum transfer through a reflecting
surface and the resulting radiation pressure. A “box-shaped”, quasi-plane wave pulse of intensity
I , duration τ and transverse section � impinges at an angle θi on the surface. If the latter is at rest,
the reflected pulse is in the specular direction, has the same duration and section as the incident
pulse, and an intensity RI where R is the reflectivity of the surface

transverse area� (Fig. 2.5) contains a total momentum pi = g�cτ = (I/c2)(�cτ )n̂
where I = (c/4π)|E × B| is the intensity and n̂ the direction of propagation. Under
reflection from the surface of a mediumwith reflectivity R, momentum is transferred
to the medium giving rise to a net force perpendicular to the surface, i.e. to radiation
pressure. By simple kinematic relations, the pressure on the surface can be obtained
as

P⊥ = (1 + R)
I

c
cos2 θi , (2.21)

where we took n̂ = (cos θi , sin θi ) and the surface at x = 0. The maximum pressure
of 2I/c is obtained for a perfect mirror (R = 1) at normal incidence (θi = 0). The
above relations are of classical nature, however one may also obtain the radiation
pressure kinematically by describing the incident pulse as a bunch of N photons each
of energy �ω and momentum (�ω/c)n̂ of which a fraction R is elastically reflected at
the surface. The classical expression is recovered by the equation for the pulse/bunch
energy I�cτ = N�ω.

Going back to the classical description, one can also obtain the total pressure from
the knowledge of the EM fields by integrating the total force per unit volume over
the whole plasma,

P⊥ =
∫ +∞

0

(
ρE + J

c
× B

)
· x̂dx , (2.22)

where ρ is the charge density. To test a simple case, wemay assume normal incidence
(θi = 0) so thatE · x̂ = 0, and calculate the fields inside the plasma in the linear limit
by using Fresnel formulas with n given by (2.15) so that R = 1. In this case, besides
recovering easily the result P⊥ = 2I/c one observes that the integrand of (2.22) is
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the non-relativistic ponderomotive force (2.5) multiplied by ne. In practice the local
ponderomotive force is on the electrons only (the v × B term on ions is smaller
by a factor ∼ me/mi ∼ 10−3), but as soon as the force pushes the electrons in the
region of evanescent fields, a charge depletion layer is created at the surface with
an electrostatic field which back-holds electrons and exerts a force on ions in the
inward direction. This situation is evidenced in Fig. 2.3b which shows the charge
separation layer (0 < x < d) and the corresponding electrostatic field Ex . If the
electrons are in equilibrium, the ponderomotive force is exactly balanced locally by
the electrostatic one, so in turn the ions feel an electrostatic pressure which equals
the radiation pressure value. In the absence of counteracting forces, the electrostatic
field will accelerate ions, so that ultimately the EM momentum is transferred to the
whole medium. Radiation pressure of superintense lasers is currently investigated as
a driving mechanism for laser-plasma accelerators of ions [7]: related concepts are
investigated in Sect. 2.6.

2.5.3 Absorption of Tangential Momentum

By applying the same kinematics leading to (2.22), we also obtain that for a medium
with partial reflectivity (R < 1) there is absorption of EM momentum also in the
parallel direction, i.e. along the surface, yielding a tangential pressure.

P‖ = (1 − R)
I

c
sin θi cos θi . (2.23)

We thus expect that (referring to the two-dimensional, plane wave geometry of
Fig. 2.5) the ponderomotive force has a tangential (y) component Fpy , which can
drive a surface current jy of electrons. Such surface current has been often observed
in simulations since early studies of absorption at oblique incidence [25] but, to our
knowledge, no simplemodel was presented until recently; belowwe resume the basic
findings of our model [26] which were partly anticipated in [27].

If the plasma is homogeneous along y, the current jy produces no charge separation
and thus no electrostatic field. Indeed, jy generates a magnetic field Bz which, while
growing in time, induces an electric field Ey which counteracts the ponderomotive
action. However, the evanescence lengths of Fpy and Ey are different, so that the
ponderomotive and electric forces cannot balance locally and adouble layer of current
is generated, which leads to a Bz localized in the skin layer. For an incident EMwave
with flat-top profile, i.e. having constant intensity I = I0 for 0 ≤ t < τL , both jy and
Bz are found to grow linearly in time until t = τL with the maximum value of Bz at
the time t being

B(max)
z � π

6

t

τL
(1 − R) sin(2θi )a0BL , (2.24)
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where a0 = I0/mencc3 and BL are the dimensionless and magnetic field ampli-
tudes, respectively, of the incident wave. Intense laser pulses (a0 � 1) can yield
high absorption and low reflectivities down to R � 0.5, so that the amplitude of the
slowly-varying field Bz may approach that of the laser field BL , i.e. � 109 Gauss for
a0 ∼ 10.

2.6 Moving Mirrors

The picture of “vacuum heating” presented in Sect. 2.5.1, in which electrons are
periodically dragged out of and back into the plasma, is oversimplified. In reality
the oscillating components of the Lorentz force drive a collective oscillation of the
electron density profile (with the high energy electron bunches being related to the
partial “breaking” of such oscillations).Wemay thus assume that the ne = nc surface
oscillates back and forth under the action of the Lorentz force. Thus, the incident
laser pulse is reflected from a surface whose position oscillates either at the same
frequency of the laser, or twice that value depending on the incidence angle and
polarization. If we consider instead the action of the time-averaged force, i.e. of
radiation pressure, the ne = nc surface is pushed inwards, so we have reflection from
a surface moving along the propagation direction. The relativistic moving mirror
model is able to explain (at least qualitatively) basic features of both the above
mentioned scenarios, which are relevant to important applications of superintense
interaction with overdense plasmas (e.g. solid targets). It is thus worth to review here
some basic relations of reflection from a moving mirror.

2.6.1 Reflection from a Moving Mirror

For brevity and simplicity we consider normal incidence only and we assume a
“perfect” mirror whose reflectivity R = 1 in its rest frame. Let the mirror move with
velocity V = V x̂ and an EM plane wave of frequency ω, field amplitude Ei and
intensity I = (c/4π)E2

i be incident from the x < Xm side, where Xm is the mirror
position (Fig. 2.6). For the moment we assume V to be constant, hence Xm = V t .

The laws of reflection are known in the rest frame of the mirror (L ′): the EM
wave is reflected with inversion of both the wavevector and the electric field and no
change of frequency. Thus we can obtain the frequency ωr and the amplitude Er

of the reflected wave in the lab frame (L) by a first Lorentz transformation of the
incident wave from L to L ′, and then by a second transformation of the reflected
wave from L ′ to L . The result is

ωr

ω
= − Er

Ei
= 1 − β

1 + β
, (2.25)
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where β = V/c. Thus, if V > 0, i.e. if the EMwave propagates in the same direction
as the mirror velocity, the frequency is “red-shifted” towards lower values and the
amplitude is also lower than for the incident pulse. If V < 0, i.e. if the wave is
counterpropagating with respect to the mirror, “blue-shift” and amplitude increase
occur. In the highly relativistic limit (β → 1) notice that (1 − β)/(1 + β) � (2γ)−2.

The above relations might also be found by noticing that, for normal incidence
(and thus the electric field parallel to the mirror surface) the boundary condition
E′(x ′ = X ′

m) for a perfect mirror at rest in L ′ corresponds to A(x = Xm) = 0 in
L for arbitrary motion Xm = Xm(t), as can be easily demonstrated via a Lorentz
transformation and the relations between A, E and B. Thus, by posing

[
Aie

ikx−iωt + Are
−ikr x−iωr t

]
x=V t = 0 , (2.26)

where k = ω/c and kr = ωr/c, (2.25) are obtained again.
If we consider an incident pulse of long but finite duration τ , such as the “square”

packet in Fig. 2.6, the number of oscillations inside the pulse is a Lorentz in-
variant. Thus, the duration of the reflected pulse is τr = τ (1 + β)/(1 − β), i.e.
τr > τ if V > 0 and τr < τ if V < 0. Since the intensity of the reflected field is
Ir = I (1 − β)2/(1 + β)2, we find that Irτr < Iτ for V > 0, i.e. the incident pulse
loses energy to the mirror, while the opposite occurs for V < 0. A counterpropagat-
ing mirror may thus be used to both compress in time and amplify an incident pulse:
an intriguing laser-plasma based scheme of such kind has been proposed as a way
to reach unprecedentedly high intensities [28].

2.6.2 High Harmonics from an Oscillating Mirror

Now suppose the perfect mirror performs an oscillatory motion, Xm = X0 sin�t . To
find the reflected field we can use again the condition A(x = Xm, t) = 0 and thus

V = βc

Ir , ωr

I , ω

Fig. 2.6 EM wave of intensity I and frequency ω impinging on a moving mirror. When the mirror
velocity V is in the propagation direction as in the picture, the wave frequency is red-shifted and a
reflected pulse has longer duration and lower energy than the incident pulse. Conversely, blue-shift
and energy increase occur for a counter-propagating mirror
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write, e.g.,

0 = [Ai (x, t) + Ar (x, t)]x=X0 sin�t = [Ai cos(kx − ωt) + Ar (x, t)]x=X0 sin�t ,

(2.27)
fromwhichweobtain, using somemath, that the temporal dependence of the reflected
pulse is

Ar (t) ∼ sin

(
ωt + 2ω

c
X0 sin�t

)
∼

∞∑
n=0

Jn

(
2ωX0

c

)
sin(ω + n�)t , (2.28)

where the Jn’s are Bessel functions. Thus, the reflected wave contains a mixing of ω,
the frequency of the incident wave, with integer harmonics of the mirror frequency,
�.

An intense laser pulse of frequency ω drives oscillations of the surface of an
overdense plasma at frequency ω or 2ω depending on the angle of incidence and the
polarization (Fig. 2.7b). The moving mirror model thus predicts that a P-polarized
pulse will generate P-polarized harmonics at all integer frequencies of the driving
pulse (ω, 2ω, 3ω, . . .) while a S-polarized pulse will generate only odd frequencies
(2n + 1)ω. Of course, since themirror is driven by the same laser pulse it reflects, any

ω

ω + nΩ

Xm(t) = X0 sin Ωt

Xm(t)

ω , I = I(x − ct) ωp
ω, 3ω, 5ω, . . . , (2n + 1)ω

E Ω = ω

Ω = 2ω

ω

ω

S

P

E

E

v × B

ω, 2ω, 3ω, . . . , nω

n

I
(ω

n
)/

I
(ω

)

(a) (b)

(c)

Fig. 2.7 Oscillating mirrors and harmonic generation. a frequency mixing in the reflected wave.
b driving of a plasma surface at different frequencies depending on the polarization and incidence
angle, leading to the generation of different order of harmonics. c a toy model for a laser-driven
oscillating mirror. The inset shows a spectrum of the reflected pulse obtained with such a model (n
is the harmonic order)
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estimate of the intensity of such harmonics must be based on some self-consistent
modeling for dynamics of the moving mirror. A toy model might be formulated by
assuming that the mirror is bound by a spring of frequency ωp (Fig. 2.7c), which
roughly accounts for the resonant plasma response, and by inserting a friction term
to phenomenologically account for finite absorption. For amirror driven by a linearly
polarized, “flat-top” (constant intensity I ) pulse at normal incidence, the equation of
motion is

d

dt
(γmβm) = 2I

σc2
(1 + 2 cos(2ωtr ))

1 − βm

1 + βm
− ω2

p Xm − νmβmc , (2.29)

where dXm/dt = βmc and tr = t − Xm/c. In (2.29) σ is the mass per unit area of
the mirror, so that when referring to an oscillating plasma surface we might roughly
estimate σ � mene�s with �s the evanescence length (ions are assumed to be at rest).
Equation (2.29) may be easily solved numerically to obtain the maximum velocity
of the mirror βmaxc, which according to (2.25) should be related to the spectral cut-
off frequency ωco � 4ωγ2

max when βmax → 1. Thus, if γ ∼ (1 + a20)
1/2 one expects

to generate harmonics up to orders ∼102 with state-of-the-art lasers. One can also
obtain, via (2.26), the temporal profile of the reflected pulse. The latter usually
appears as a train of ultrashort spikes, which can be qualitatively understood as a
coherent modulation of the incident pulse waveform by the moving mirror: each
semicycle is alternatively stretched or compressed depending on the sign of βm(t). A
quantitative description of high harmonic generation needs a more realistic modeling
and simulations of the laser-plasma dynamics, of course (see [29, 30] for reviews).

2.6.3 Light Sail Acceleration

Now assume a thin plane mirror of mass density ρm and thickness �, and a plane
wave pulse I = I (t) at normal incidence and with circular polarization so that there
are no oscillating components. The mirror is thus accelerated by radiation pressure
according to the equation of motion

d

dt
(γmβm) = 2I (tr )

ρ�c2
R(ω′)

1 − βm

1 + βm
, (2.30)

which we name the light sail (LS) equation. As we consider the acceleration of the
foil as a whole,7 with respect to (2.29) there are no elastic and friction terms. Instead,
we include a finite reflectivity R < 1 to account for partial transmission through
the foil. Notice that in general R depends on the incident pulse frequency and it
is defined for a mirror at rest, thus it is a function of the frequency in the moving
frame ω′ = ω(1 − βm)1/2(1 + βm)−1/2 and, for a thin (� � λ) plasma mirror it is

7Note that ρm� in (2.30) is formally equivalent to σ in (2.29), but here in (2.30) ρm� refers to the
total mass of the mirror, i.e. including the ions.
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proportional to ρ�. At intensities high enough for relativistic transparency effects to
be important, R quickly drops from unity as the threshold in (2.19) is exceeded, so
that a0 � ζ is an optimal compromise between reducing the arealmass and increasing
reflectivity at fixed thrust in order to maximize the sail acceleration. In the following
we assume for simplicity R = 1 although an analytic solution of (2.30) may be found
also for a partially transparent “delta-like” foil [31].

From (2.30) the final γ-factor is obtained as

γm(t = ∞) − 1 = F2

(2(F + 1))
, F = 2

ρ�

∫ ∞

0
I (t ′)dt ′ , (2.31)

where F can be estimated as a function of the average intensity I and pulse
duration τ ,

F = 2Iτ

ρ�
= Z

A

me

mp

a20
ζ

ωτ . (2.32)

We thus see that present-day femtosecond lasers having τ ∼ 10(2π/ω) and a0 ∼
10 are in principle able to accelerate ultrathin targets up to γm − 1 � 0.1, which
corresponds to an energyper nucleon exceeding100MeV,while future lasers yielding
a0 ∼ 102 could drive relativistic GeV nuclei. In addition, LS acceleration becomes
more efficient with increasing speed, the mechanical efficiency ηmec (ratio of sail
energy ELS over driver pulse energy Iτ , all defined per unit surface) being

ηmec ≡ ELS
Iτ

= 2βm

1 + βm
. (2.33)

This relation can be obtained from (2.30), but also from a simple quantum picture
taking the pulse as a bunch ofN photons (per unit surface) whose energy drops from
�ω to �ωr due to reflection from the sail. Thus, since N = Iτ/�ω,

ELS = N�(ω − ωr ) = N�ω
2βm

1 + βm
= ηmec Iτ . (2.34)

The efficiency of LS acceleration iswhatmakes it attractive for interstellar propulsion
of probes from Earth [32] as well for laser-driven ion accelerators [7]. For this latter
application, additional features as monoenergetic spectrum and ultrashort duration
(since ideally all ions in the sail propagate at the same velocity) make the LS appear
as a “dream bunch” of energetic ions. Issues include the slow energy gain, since
(2.30) shows that the force on the sail decreases with increasing βm so that reaching
the highest possible energy requires stability over long distances. The modeling in a
realistic geometry brings both good news (LS might be faster and more efficient in
3D than in 1D [33, 34], which is uncommon) and bad news (the sail might be prone
to Rayleigh-Taylor-type instabilities [35, 36], see Sect. 2.7).
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2.7 Instabilities

Instability is maybe the word which is more frequently associated to plasma, the
obvious reason being that the main obstacle to achieving controlled fusion is that
a plasma tends to become unstable in several ways, quickly destroying the desired
configuration. The basic laser-plasma interaction processes we reviewed so far (as
well as other we did not include) may also lead to, or be affected by instabilities.
For example, a laser pulse greatly exceeding the power threshold for relativistic self-
focusing may break up in multiple filaments, especially if its intensity distribution is
not smooth. As another example, the high-energy electrons produced by laser-plasma
interactions typically lead to an anisotropical distribution function which is unstable
against electromagnetic perturbations (Weibel instability): the growth of the latter
act to deviate particle trajectories in order to create a more isotropic distribution.
In the context of laser-plasma interactions one also encounters nonlinear processes
where a strong “pump” mode having frequency ω0 and wavevector k0, such as e.g.
an intense laser pulse propagating in the plasma or an high amplitude plasma wave,
excites two (or more) “daughter” plasma modes whose frequencies and wavevectors
are related by the phase matching relations ω0 = ω1 + ω2 and k0 = k1 + k2. These
processes are referred to as parametric instabilities since the daughter modes may
also grow at high amplitude at a rate typically proportional to the amplitude of the
pump mode. An example is Raman backscattering with corresponds to a laser wave
exciting a plasma wave and an EM wave in the backward direction, which can lead
to strong reflection from a low density plasma.

Covering all the possible instabilities in the laser-plasma scenario is much beyond
the limits and scope of the present paper, thus we just give some further detail
on instabilities affecting the dynamics of the moving mirror dynamics outlined in
Sect. 2.6. The plasma surface oscillating under the action of the Lorentz force has
been found in simulations to develop ripples which also oscillate at half the driving
frequency [37]. This is due to a parametric instability in which the driven surface
oscillation decays into two surface waves, similarly to the phenomenon of Faraday
ripples (or waves)8 originating on the surface of a fluid subject to vertical vibrations.
In the context of laser-plasma interaction the effect was studied in relation to the
onset of surface rippling in experiments on high harmonic generation, where the
harmonic emission was observed to turn from collimated to diffuse over a certain
intensity threshold.

When the plasma surface is steadily accelerated by radiation pressure as in the
light sail concept (Sect. 2.6.3), rippling may occur because of an instability of the
Rayleigh-Taylor (RT) type. The simplest example of RT instability (RTI) is that of
an heavy fluid of density ρ2 placed above a lighter one of density ρ1 < ρ2 in a gravity
field g (Fig. 2.8): a small perturbation at the surface lowers the energy of the system
and thus grows up exponentially (∼eγRTt ) in a first stage, favoring the mixing of the
two fluids. The equivalence principle tells us that the same effect is produced in the
presence of an acceleration field a directed from the light fluid to the heavier one:

8https://en.wikipedia.org/wiki/Faraday_wave.

https://en.wikipedia.org/wiki/Faraday_wave
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Fig. 2.8 Rayleigh-Taylor instability: an interface between two fluids of different mass density
becomes corrugated in the presence of a gravity field anti-parallel to the density gradient or, equiv-
alently, an acceleration parallel to the density gradient

this is the instability form which strongly affects the compression of fuel pellet in
Inertial Confinement Fusion [38].

For a sinusoidal perturbation of wavevector kRT, the RTI growth rate is given by
(see e.g. [39])

γRT =
(
akRT

ρ2 − ρ1

ρ2 + ρ1

)1/2

, (2.35)

where a = |g| in the case of the gravitational RTI. The case of a plasma surface
accelerated by radiation pressure can be viewed as amassless fluid of photons pushing
a heavy material fluid, and it is thus unstable with a rate γRT = (akRT)1/2. RTI also
occurs for a thin interface layer separating two fluids of different pressures, which
matches closely the LS scenario where the target is placed between the photon fluid
and vacuum. The growth rate of such RTI, for non-relativistic dynamics, has the same
formas the preceding formulawitha = (2I/ρ�c) [40].Analyticalmodels accounting
for relativistic motion and other effects can be found, e.g., in [41, 42]. These works
left open the question why the surface rippling often observed in simulations occurs
predominantly for a wavevector kRT � 2π/λ, i.e. with a periodicity close to the
laser wavelength. In [35, 36] it has been suggested that the rippling of the surface
self-modulates the radiation pressure, so that depending on the laser polarization
the accelerating force may become stronger in the valleys of the ripples and boost
their growth. The effect is strongest for a sinusoidal rippling at the laser wavelength
because of a resonant coupling with surface plasma waves.

2.8 Angular Momentum Absorption and Magnetic Field
Generation

The fact that an EMwave carries energy and momentum becomes very eye-catching
for superintense laser pulses which, as we saw in the preceding section, can heat
matter to extremely high temperatures and accelerate a quite macroscopic object to
velocities approaching the speed of light. An EM wave with CP also carries angular
momentum which, when absorbed by a sample of matter, may cause its rotation. For
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a CP laser beam of frequency ω, propagating along x and having a radial intensity
profile I (r), the density of angular momentum along the x-direction is

Lx = (r × g)x = − r

2cω
∂r I (r) , (2.36)

where g is the density of traslational momentum (Sect. 2.5.2). Notice that for a
standard bell-shaped profile Lx peaks at the edge of the beam. The total angular
momentum Lx is proportional to the power P of the beam,

Lx =
∫ ∞

0
Lx (r)2πrdr = 1

cω

∫ ∞

0
I (r)2πrdr = P

cω
. (2.37)

We have seen in Sect. 2.6 than in the reflection from a perfect mirror an EM wave
delivers twice of its traslationalmomentum, and that if themirrormoves at relativistic
velocities most of the EM wave energy is converted into mechanical energy of the
mirror. However, it can be shown that no angular momentum is transferred to the
mirror. The reasoning is very simple by taking a quantum point of view: the value of
the “spin” angular momentum of a photon is �, independently of the frequency, and
in the reflection the spin is not reversed while the number of photons is conserved
for a perfect mirror, so there is no net absorption of angular momentum.

In general, absorption of EM angular momentum requires a dissipative mech-
anism which “destroys” part of the incident photons. At moderate intensities such
mechanism is provided by collisions [43]. At extremely high intensities, strong losses
by incoherent emission of radiation imply the absorption of many laser photons for
each high frequency photon emitted, hence the transfer of angular momentum might
become very efficient in a regime dominated by radiation friction effects [44].

The angular momentum of a laser beam is directly absorbed by the electrons,
and the associated torque drives an azimuthal electron current. In turn, this current
generates an axial magnetic field: this is known as the inverse Faraday effect (IFE)
even if this is somewhat a misnomer. Even with a steady absorption, the axial field
cannot grow indefinitely since it is accompanied by the induction of a solenoidal
electric field that counteracts the electron rotation and exerts a torque on ions, which
ultimately absorb most of the angular momentum. The mechanism is thus similar to
that leading to the absorption of transverse momentum (Sect. 2.5.3). The scaling of
the peak magnetic field on axis Bax with laser and plasma parameters is found to be
[43, 44]

Bax ∼ η
nc
ne

cτλ2

D2L
B0a

2
0 , (2.38)

where η is the absorbed fraction of the laser energy, L is the length over which
absorption occurs, B0 = mecω/e and other parameters are as previously defined.
Notice that B0a0 = BL , the magnetic field amplitude of the laser pulse. Simulations
with radiation friction included [44] of the interaction of superintense pulses with
overdense plasmas have shown strong radiation losses with η up to 25% and a scaling
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η ∼ a30 , so that Bax ∼ a40 . In the simulated conditions, whichmight be accessiblewith
next-generation lasers, the generation via IFE of magnetic fields of several 109 Gauss
is observed, providing in the meantime a demonstration of a macroscopic effect of
radiation friction.
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