l‘)

Check for
updates

Designing Multi-Agent Systems
from Ontology Models

Artur Freitas®™) Rafael H. Bordini, and Renata Vieira

PUCRS, Porto Alegre, Brazil
artur.freitas@acad.pucrs.br, {rafael.bordini,renata.vieira}@pucrs.br
http://smart-pucrs.github.io/

Abstract. This chapter presents our proposal for the development of
multi-agent systems designed as ontology models supporting code gen-
eration and reasoning. The foundation of such work takes into consid-
eration ontologies for agent-oriented software engineering aligned with
the JaCaMo framework. These techniques are implemented in a tool
that supports multi-agent systems core code generation for JaCaMo. The
underlying ontology also allows for reasoning about the multi-agent sys-
tems models under development. Such comprehensive approach, there-
fore, spans through the modelling, programming, and verification of
agent-oriented software.

Keywords: Ontologies for agents -
Reasoning in agent-based systems -
Development techniques, methodologies, tools and platforms

1 Introduction

The design of complex systems, such as Multi-Agent Systems (MAS), should
consider models that are clear to communicate, provide support during pro-
gramming, and allow reuse and reasoning over the specification [6]. The use
of modelling methodologies help us to understand complex problems and their
potential solutions through abstractions. Thus, in this context, research investi-
gating ontologies to support the modelling of MAS has been carried out [6,11,16].
Well-known MAS development frameworks, such as JaCaMo [1], integrate dif-
ferent technologies and languages for the design of MAS. In this chapter, we
propose an ontology-based MAS development approach where a common basic
language is used to present and specify a MAS, resulting in the integration of
their different aspects and also serving for core code generation in JaCaMo [1].

It should be noted from the start that, although the general approach can
be applied to any agent-oriented platform, the fact that there is not overall
agreement on concepts and terms used in Agent-Oriented Software Engineering
(AOSE), we need specific ontologies for each platform. While we here concentrate
on the well-known JaCaMo framework [1], work on alignment with upper ontolo-
gies might in the future facilitate also the integration of different approaches to
agent-oriented development.

© Springer Nature Switzerland AG 2019
D. Weyns et al. (Eds.): EMAS 2018 Workshops, LNAI 11375, pp. 76-95, 2019.
https://doi.org/10.1007/978-3-030-25693-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25693-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-25693-7_5

Designing Multi-Agent Systems from Ontology Models 7

An important contribution of agent-oriented programming as a new paradigm
was to provide ways to help programmers in developing autonomous systems. For
example, agent programming languages typically have high-level programming
constructs which facilitate (compared to traditional programming languages) the
development of systems that are continuously running and reacting to changes in
the dynamic environments where such autonomous systems usually operate [1].
Agent-oriented paradigms are normally used to develop very complex systems,
where not only are many autonomous entities present in a shared environment
but also they need to interact in complex ways and need to have social structures
and norms to regulate the overall social behaviour that is expected of them.

This chapter is organised as follows. Section 2 focuses on alternative mod-
elling approaches for engineering MAS. Section 3 introduces the topic of pro-
gramming such systems using JaCaMo. Section 4 presents our model-based tech-
niques to support code generation for JaCaMo. Section 5 explores the issue of
reasoning with ontology models. In Sect. 6 we discuss the results of an experiment
that was conducted to evaluate the proposed framework. Section 7 concludes this
chapter and highlights some research directions for future work.

2 Multi-Agent Systems Modelling Approaches

Current AOSE methodologies (such as Prometheus [12]) are usually deficient
in at least one area of MAS development [15], such as agent internal design,
interaction design, or organisation modelling. Also, currently we have separate
approaches to address the modelling and programming of MAS, resulting in gaps
and conceptual divergences in AOSE [6,7]. While JaCaMo [1] is a programming
platform that uses three different formalisms for coding, Prometheus [12] is an
agent modelling approach that does not apply or explore any formal (logic-
based) representation as part of its technique. This work addresses issues stem-
ming from those facts investigating an ontology-based model-driven engineering
approach as an integrated global model of MAS characteristics, where ontology
models support MAS verification and programming. Although the advantages of
ontologies for agents are clear, few MAS platforms currently integrate ontology
techniques [6,15]. Limited ontological support is provided by a number of exist-
ing AOSE methodologies since they do not incorporate ontologies throughout
the entire development lifecycle nor consider ways in which ontologies can be
used to account for interoperability and verification during design [15].

Several models and methodologies can be found in literature to formalise
and define the processes of MAS design and implementation. For example,
Prometheus [12] is one of the best-known MAS modelling methodology for
developing intelligent agent systems. It defines a development process with
associated deliverables for assisting developers to design, document, and build
agent systems based on concepts such as goals, beliefs, plans, and events. The
Prometheus [12] methodology encompasses three phases: system specification,
architectural design, and detailed design. Among future work for Prometheus [12]
there is the introduction of social concepts to improve its current models, how-
ever these improvements are not available yet in the latest official version of

78 A. Freitas et al.

the Prometheus Design Tool (PDT). Therefore, some aspects of MAS are not
covered by the models of Prometheus, which also does not explore the use of for-
mal or explicit ontologies as part of its approach. Ontologies for MAS are being
proposed and investigated to support programming and reasoning over specifica-
tions, and they can also offer code generation features and help in organising the
many concepts involved in the modelling, development, and verification of MAS.
In this direction, ontologies have been considered in several different approaches
in AOSE [6,11,16]. Ontologies are defined as knowledge representation structures
composed of concepts, properties, individuals, relationships, and axioms.

It is possible to find in literature ontologies for the environments of MAS [11].
Environments play an essential role in MAS, and their semantic representation
improves the way agents reason about the objects with which they interact
and the overall environment where they are situated. This is important because
most agent-oriented programming languages are weak in allowing the developer
to model the environment within which the agents will execute [2]. The use
of an environment ontology adds three important features to existing multi-
agent approaches [11]: (i) ontologies provide a common vocabulary to enable
environment specification by agent developers (since it explicitly represents the
environment and agent essential properties, defining environments in ontologies
facilitates and improves the development of multi-agent simulations); (i7) an
environment ontology is useful for agents acting in the environment because it
provides a common vocabulary for communication within and about the environ-
ment (it allows interoperability of heterogeneous systems); and (%ii) environment
ontologies can be defined in ontology editors with graphical user interfaces, mak-
ing easier for those unfamiliar with programming to understand and design such
ontologies.

Research on ontologies for MAS environments [11] had already foreseen the
relationship between the environment and other MAS dimensions, since they
mention the intention of looking at higher-level aspects of environments, i.e.,
social environment aspects of agents, such as the specification of social norms
and organisations in agent societies. In fact, on the MAS organisation dimension,
there is a semantic description of MAS organisations [16] to specify an ontol-
ogy for organisational characteristics of the Moise meta-model. This approach
helps agents in becoming aware, querying, and reasoning about their social and
organisational context in a uniform way, making possible to convert between
ontology and Moise specifications, thus providing more flexibility for modelling
and developing in this domain. This semantic description of Moise [16] provides
other benefits such as increased modularisation, knowledge enriching with meta-
data, reuse of specifications, and easier integration. With the semantic web effort
aiming to represent the information in semantic formats, the MAS community
can take advantage of these new technologies in AOSE development tasks such
as to integrate organisational models, to monitor organisations, and to analyse
agent societies [16].

Next section introduces the JaCaMo as a unified programming framework
for these MAS characteristics recently discussed.

Designing Multi-Agent Systems from Ontology Models 79

3 Programming in JaCaMo

MAS programming in JaCaMo [1] requires the development of code in Jason [3],
CArtAgO [14], and Moise [9]. Jason [3] is an AgentSpeak language implementa-
tion that focuses on agent actions and mental concepts and provide to program-
mers features such as speech-act based agent communication, plan annotation,
architecture customisation, distributed execution, extensibility through internal
actions, among other functionalities. On the environment side of agent systems,
CArtAgO [14] is a platform to support the artifact notion in MAS. Artifacts are
function-oriented computational devices which provide services that agents can
exploit to support their individual and social activities [14]. Lastly, the specifi-
cation of agents at the organisation level can be achieved using an organisation
modelling language, such as Moise [9]. Moise explicitly decomposes the specifica-
tion of an organisation into its structural, functional, and normative dimensions.

JaCaMo resulted from one of the earliest approaches aimed at explicitly
investigating the integration of all the dimensions of MAS from a design and
programming point of view. Most previously existing approaches had consid-
ered either only the agent-organisation dimensions, or the agent-environment
dimensions [1]. The combination of these dimensions of MAS into a single pro-
gramming paradigm with a concrete working platform has a major impact on the
ability to program complex distributed systems. The authors of JaCaMo pointed
out, as future work, the desire for an Integrated Development Environment
(IDE) to facilitate the process of design, development, and execution of JaCaMo
applications, potentially reusing and integrating existing Jason, CArtAgO, and
Moise tools and technologies [1]. Thus, recognising the importance achieved by
JaCaMo, this research direction is one of the motivations in this chapter.

JaCaMo is one of the few fully operational platforms combining all three
dimensions of MAS, to the best of our knowledge, and arguably one of the best-
known (e.g., given it is highly cited). Thus, our proposed techniques for modelling
and code generation address the design of MAS with an eye on implementa-
tions using JaCaMo as the target programming platform specifically. However,
as noted earlier, the overall approach could also be recreated for other agent
development platforms as well. Other frameworks for MAS development provide
some support for environments, or some organisational notions such as roles,
but without including a fully-fledged organisational model and first-class envi-
ronment abstractions that are provided by JaCaMo.

4 Code Generation Techniques for Multi-Agent Systems
Designed as Ontology Models

In our work we present two different techniques for code generation based on
models specified using an ontology of MAS obtained from the literature [5,6].
One technique is the iterative drag-and-drop of elements from ontology to trans-
form them into the different parts of code that compose a JaCaMo project: Jason,
CArtAgO, Moise, or the jcm file. The other technique is the automatic generation

80 A. Freitas et al.

of the initial files and code of JaCaMo projects that match the ontology-specified
content. Both techniques are implemented in our tool called Onto2JaCaMo. Our
work employs the ontology of MAS obtained from [5,6] as the basis for the code
generation techniques, and we refer to it as OntoMAS. For details about the
ontology, we refer to its references, so that we can focus here on its applica-
tions. When using an ontology for modelling MAS, the underlying idea is that
the MAS project conception should start by its modelling as an ontology. This
is done by extending the ontology top-level concepts, and adding new classes,
instances and relationships in order to specify the corresponding desired project
to be implemented in terms of agent-oriented concepts [6].

In OntoMAS, a particular MAS begins to be modelled by extending the ontol-
ogy, which is done by creating new subclasses to its top-level concepts. Then,
individuals are created in the process of instantiating the extended ontology.
From an instantiated model, it is possible to perform reasoning and obtain an
inferred specification, which can be explored for verification purposes such as, for
example, in model checking approaches. Then, a model specified using OntoMAS
can be used in our techniques for supporting MAS programming, which are incor-
porated into the Onto2JaCaMo tool. Such an approach also allows designers to
gradually refine from high-level abstract views to elements directly available in
concrete features of MAS programming platforms. The designers may apply the
desired level of completeness in their models, which will later result in a code with
a corresponding detailing. Figure 1 illustrates how OntoMAS and Onto2JaCaMo
fit in the phases of AOSE in the proposed methodology. Currently, an ontology
editor tool, such as Protégé [10], should be used to interact with OntoMAS
during the MAS modelling. OntoMAS is currently formalised in OWL (Web
Ontology Language), which is a computational logic-based Semantic Web lan-
guage designed to represent rich and complex knowledge about things, groups
of things, and relations between things. Future research, besides, could consider
new languages to be used for OntoMAS if they offer some sort of advantages in
terms of knowledge representation and reasoning.

Requirements Modelling Development
OntoMAS Inferred 1 13l onto2JacaMo
OntoMAS
iextending reasoningT prograb‘xming
e fi(r);nr:ents N Extended |Instantiating | |qtantiated JaCaMo
auirer OntoMAS OntoMAS Code
technique

Fig. 1. Methodology using OntoMAS and Onto2JaCaMo.

Designing Multi-Agent Systems from Ontology Models 81

4.1 Mapping Elements from the MAS Ontology to JaCaMo Code

Initially, lets make a mapping of where elements from OntoMAS [5,6] are usually
found in a JaCaMo project. There are concepts to deal with the Agent Dimension
with a clear relation to Jason (such as Agent, Plan, and Belief), concepts to deal
with the Environment Dimension to establish a relation with CArtAgO (such
as Artifact, Space, and Operation), and concepts to deal with the Organisation
Dimension to address Moise specifications (such as Group, Role, and Norm).

From the agent dimension, we are not interested in defining any possible and
generic characteristics of any kind of agent, such as physical agents. Instead, we
are interested in specifying only the concepts of virtual agents that make sense
in the context of programming for this dimension. Thus, the OntoMAS ontology
contains the following 6 top-level concepts to represent the agent dimension:
Agent, Plan, Action, AgentGoal, Belief, and Message. Figure 2 summarises the
main concepts, subclasses and properties in the agent dimension of OntoMAS.

As already mentioned, the use of OntoMAS ontology sometimes requires to
create subclasses that specialise the given top-level domain concepts. A subclass
of Agent represents a type of agent, such as for example, Player. When defining
a given concept as a subclass of Agent, this concept represents all individual
agents of that kind. Subclasses of Agent are usually found in JaCaMo as the
.asl files. An instance of a subclass of Agent represents an individual agent of
that corresponding type, such as for example playerJohn. Instances, such as
playerJohn, are usually found in JaCaMo as individual agents defined by an
agentID in the . jcm file.

A Plan is a procedure composed of actions and it is triggered inside agents.
The definition of each plan should be represented as an instance of the Plan
concept. Thus, instances of plans represent the specification of a plan, such as
for example chooseMovement. The specification of a plan is found in JaCaMo
inside the .asl code of the type of agent that contains such plan. From this
modelling perspective adopted in OntoMAS, the designer does not need to cre-
ate subclasses of Plan, but this possibility is allowed. There are classes in this
dimension that can be applied just by creating instances, which we argue that
is the most simple way. However, the modeller is allowed to create subclasses to
achieve an additional layer of expressiveness.

There are two kinds of Actions represented in OntoMAS: EzternalAction
and InternalAction. An ExternalAction is what the agent does that affects the
environment, such as the act of opening a door. An InternalAction is how an
agent act to manipulate its mental state, for example, forgetting some belief.
While internal actions may be defined by local actions in the agent’s state,
external actions may refer to performing operations of artifacts that are situated
in an environment. The definition of an action is represented by creating an
instance of Action, such as for example openDoor. Actions are usually found in
JaCaMo in the body of agents’ plans. Similarly with plans, the designer does not
need to create further subclasses of Action, but this possibility is allowed. For
example, the subclass openDoor could have two different instances according to
different door handles, openDoor-barhandle and openDoor-knobshandle.

82 A. Freitas et al.

PerceptBelief SelfBelief AgentBelief

Y
Y\subcllasses/'

N : elief o
> Belief Eoal
e is-triggéred-by Achievement
Goal
has-plan /
Agent » Plan AgentGoal | subclasses
/ TestGoal
has-receiver has-goal
External
] Action
Message g:lr;tno Action subclasses
sends-messag has-action \ Internal
Action
subclasses
Tell Unachieve UntellHow Untell TellHow
4 Y Y Y
Achieve AskAll AskHow Asklf

Fig. 2. Concepts, subclasses and properties in the agent dimension of OntoMAS.

An AgentGoal represents some agent individual desire to be achieved. Goals
can be in one of the two following types. An AchievementGoal represents a state
of the world (objective) that an agent can have intention to attain, such as
having the door opened. A TestGoal is a check on the agent’s beliefs in order
to verify if a given belief holds, for example, querying the belief about the door
being closed. Both achievement and test goals may fail, but for any plan that is
using them in order to continue its execution and finish with success, its goals
must be completed. The definition of a type of goal that agents may pursue is
represented by creating an instance of AgentGoal, such as for example to achieve
doorOpened. Goals are usually found in JaCaMo inside agent code (.asl files).

The Belief encodes the knowledge of agents, which can be one of the three
types, as follows. PerceptBeliefs are obtained from environment perception, for
example, the belief stovelLit to represent the state perceived from a device.
AgentBeliefs are beliefs obtained from some other agent, for example, when an
agent is told by other about something. SelfBeliefs are obtained by internal agent
reasoning, for example, when an agent believes in something but not because it
was perceived from the environment nor it was told by other agent. The definition

Designing Multi-Agent Systems from Ontology Models 83

of a type of belief is specified by creating an instance of Belief, such as for example
preferredMove, which can be a SelfBelief. Beliefs are usually found in JaCaMo
inside the code of agents (.asl files).

A Message is a communication that goes from one agent to another. The def-
inition of a type of message is represented by creating an instance of Message,
such as for example in formLocation. Sending a Message may be a part of a
plan in agents. The message types correspond to which performative is part of
the sender agent’s intention, for example, if it is delegating a goal (Achieve Mes-
sage), informing a belief (TellMessage), requesting a plan (AskHowMessage),
etc. There are 9 different types that a message can assume, each representing its
illocutionary force, all of them depicted in Fig. 2 as subclasses of Message.

After explaining the concepts illustrated in Fig. 2, we can now discuss other
topic depicted there, namely the properties that take place in relationships
among concepts of the agent dimension. Plans may contain actions, which means
that when a given plan is being executed, its corresponding actions may be per-
formed. This is represented by connecting instances of these concepts using the
has-action property, for example, choose M ovement has-action openDoor. The
same is true for plans that may start the pursue of goals, defined through the
property has-goal, as exemplified by chooseMovement has-goal doorOpened.
Also about plans, they may be triggered by an event involving a belief or a goal,
which is given by the property named is-triggered-by. To indicate that a given
plan sends a specific message, the sends-message property may be used. There
is no need to specify for agents the has-action and sends-message properties if
they were all specified for plans, a general rule can make inferences to check if
an agent contains plans that have actions and send messages, in such case the
agent will also present these properties too. We refer to Sect. 5 for more details
about rules and reasoning over OntoMAS models.

Some properties work with the concept of Agent as its domain or range. We
have explained that the Agent concept may have both subclasses (e.g., Player)
and instances (e.g., playerJohn). When it is desired to use a property to con-
nect between instances, the semantic is the same as explained in the previous
paragraph. For example, agents may have beliefs, as expressed by the has-belie f
property. If playerJohn has some belief, lets call preferredMove, then these
instances have to be connected using the mentioned has-belief property. How-
ever, if all agents of that type (Player) have such belief, then a “subclass of”
restriction should be used in that concept. This is represented as: Player is a
subclass of has-belief value preferredMove. The same principles are applied
to: the has-goal property, which indicates the goals of agents; the has-plan for
indicating the plans of agents; and the sends-message property, which indi-
cates which messages the agent sends. To connect an instance of message with
an instance of agent that should receive it, the property has-receiver can be
applied (e.g., informLocation has-receiver playerJohn).

We point out to reference [5] for further details on the ontology meta-model
that are not tackled here in this chapter. However, we next briefly explain the
dimensions of environment and organisation, but not with the same level of detail
employed above to show the concepts and properties of the agent dimension.

84 A. Freitas et al.

Each subclass of Artifact is found in CArtAgO as a Java class, and instances
of Artifact subclasses represents an object/tool/resource of that type, which
may be found in JaCaMo in the . jcm file that describes the initial artifacts of a
system; however, other artifacts instances may be created after the initialisation
of the MAS. Spaces are initialised in the JaCaMo project file, but agents may
make reference to spaces in their code too. Operations are found in CArtAgO as
methods of the artifact that implements such procedures. Instances of Percept
(ObservableProperty or ObservableEvent) are found in the Java code of artifacts
through methods provided by the CArtAgO API to manipulate them (such as
defineObsProperty, getObsProperty, updateObsProperty, and signal).

Subclasses of Group can be found in the XML that specifies an organisation
in Moise, and their instances take place in the JaCaMo project file, as well
as in the code of agents in Jason that can make references to groups (e.g.,
join_group). Instances of Role are found in the Moise XML file, and the code of
Jason agents can make reference to such roles too (e.g., adopt_role). Instances
of OrganisationGoal are also found in the Moise file, and the code of agents in
Jason can make references to those goals (for example, agents may have plans
to act when a goal is assigned to them by the organisation). Lastly, instances of
Missions and Norms are defined in the Moise XML file of a JaCaMo system.

The classes and properties in OntoMAS are modelled in three sub-ontologies,
one for each dimension: agent, environment, and social organisation. The integra-
tion and connections among concepts in the dimensions of OntoMAS are encoded
by means of concepts, object properties, and rules which determine how elements
are allowed to relate among each other. To illustrate, in order to specify the loca-
tion of agents’ instances in spaces from the environment dimension, the property
is-in may be used, such as, for example playerJohn is-in classRoom (consider-
ing classRoom an instance of Space). The property is- focused connects an agent
with an instance of artifact in which that agent is focused, such as player John is-
focused homeComputer (considering homeComputer an instance of Artifact).
Then, some properties may be obtained by inference over elements from differ-
ent dimensions. If an agent (?a) is in a space (?s), and this space provides some
percept (?p), then this agent can have such percept (?a can-perceive ?p). This
is specified through the following rule:

1s-in(?a, 7s), provides-percept(?s, 7p) —> can-perceive(?a, 7p).
(Pa, ?s), p percept(?s, p p , ’p

As another example to illustrate important things to represent in the ontol-
ogy, when relating concepts from the dimensions of agent and organisation, we
may desire to specify that a given agent is adopting a role. This may be done
with the property adopts-role. If a characteristic affects only some individuals
of a group, then it should be defined as an object property in those affected
instances. In this case, for example, supposing redSoccerTeam as an instance of
the Group concept, if the redSoccerTeam contains the player John agent, then
these instances should be related using the object property contains-agent.

Designing Multi-Agent Systems from Ontology Models 85

4.2 Drag-and-Drop Transformation Technique
from the Multi-Agent Systems Ontology to JaCaMo

The idea of using an ontology for providing drag-and-drop operations from mod-
els to code in JaCaMo has been already mentioned in literature [5,6]. In this
chapter we explain how the elements of an ontology model can be dragged to
generate code for the different parts of JaCaMo, such as Jason, CArtAgO, Moise,
or the JaCaMo project file that defines the specification that initialises the cor-
responding system. Each element from an ontology model can be transformed
in MAS code in several different ways.

To exemplify the drag-and-drop conversions, let us take a look at how
instances of the ObservableProperty concept may be employed in the code of
each of the different parts of JaCaMo. Suppose there is an instance of Observ-
ableProperty called temperature, defined at the Environment Dimension. If a
programmer makes a drag-and-drop of temperature in this dimension, a code
automatically created as suggestion may be to update the value of such observ-
able property. Thus, the following code can be created:

getObsProperty(temperature) .updateValue (newValue) ;

In Jason, making a drag-and-drop using this same instance of Observ-
ableProperty may give origin to a plan triggered by the observation of such

property:

+temperature : true <- planBody.

However, if dropped in the middle of a plan, then just the corresponding
belief identified by temperature is generated. When a JaCaMo system is running,
the observable properties provided by environmental artifacts become beliefs to
agents that are focusing on those artifacts, and when they become beliefs, some
plans may be triggered by the belief addition event. Instances of observable
properties are not applicable for drag-and-drop code transformations in the case
of Moise or JaCaMo project file. We have summarised the information about
the drag-and-drop operations provided by Onto2JaCaMo for transforming from
the ontology to JaCaMo code in Table 1. This table shows the generation when
the desired outcome is the Agent Dimension of JaCaMo (i.e., Jason). Similarly,
there are strategies to convert the ontology to the Environment Dimension of
JaCaMo (CArtAgO), to the Organisation Dimension (Moise), and also to the
initialisation setup of JaCaMo (the .jcm file). However, the tables illustrating
these other mappings were not included in this chapter for the sake of space (see
reference [5] for further details).

4.3 Core Code Generation Technique from OntoMAS to JaCaMo

The technique proposed in this subsection is related to the idea of using an
ontology for the automatic generation of skeleton code for each of the JaCaMo
languages. Elements from an ontology of MAS should have their resulting code
counterparts in Jason, CArtAgO, and Moise. Therefore, it would be possible

86 A. Freitas et al.

to directly transform an ontology-based MAS specification into initial code for
JaCaMo. While when using drag-and-drop programmers are iteratively trans-
forming elements from their ontology model into code, this code generation
technique uses another perspective, which is to generate an initial structure of
a corresponding project in JaCaMo to what is specified in the ontology model.

The generation of initial agent files and code for Jason considers mainly the
subclasses and instances of the Agent Dimension of the employed ontology. For
example, each subclass of Agent becomes an .asl file with its corresponding
plans, actions, goals, beliefs, and messages. However, characteristics defined at
other dimensions, such as the environment, although not directly applicable
to generate the initial code at the agent level, may be considered to suggest
implementation alternatives for programmers (at least for them to be aware of).
For example, for an agent that is expected to receive a given percept, a plan
triggered by the addition event of that percept may be suggested as a situation
that programmers are likely to have to handle.

Similarly, the initial files of the CArtAgO part of a JaCaMo project derive
mainly from the Environment Dimension of the ontology in use, and the Moise
initial code is generated based on the Organisation Dimension. Subclasses of
Artifact become the Java files with their corresponding operations as methods,
and observable properties are initialised. All the organisation elements (sub-
classes, instances, and relationships) are considered in the generation of the
initial XML file of a Moise organisation. Lastly, the JaCaMo project file con-
siders characteristics from all the three dimensions, and relationships from their
integration.

To exemplify the initial project generation, consider the ObservableProperty
instance used in previous examples, temperature. If it is said that an artifact
type (e.g., computer) has this property, then such observable property definition
must compose the init() method of the computer artifact class in the format:

defineObsProperty("temperature", initialValue);

Considering Jason, Moise, or . jcm files, instances of observable properties are
not directly applicable for the automatic code generation in this case. However,
a plan triggered by the addition event of the related observable property could
be suggested to the agents’ programmers as a situation worth to be handled.

How each element from OntoMAS models can be transformed into the initial
structure of files and code for Jason is shown in Table2. This same principle
is applied to CArtAgO, Moise, and the project file, albeit, it is not possible to
illustrate all those tables in this chapter. However, we have complete definitions
for OntoMAS models as starting point to generate skeleton code for each part
of JaCaMo programming (Jason, CArtAgO, Moise, and the . jcm project file).

The so-called core code generation technique presented in this subsection
creates the first skeleton code for a JaCaMo project that was modelled using the
OntoMAS ontology. The drag-and-drop technique is a way to complement and
iteratively evolve the programming of such systems. Compared to a fully hand-
written code, developers would lack tools that could provide means to integrate
the modelling and programming of their MAS.

87

Designing Multi-Agent Systems from Ontology Models

uorjeue[dxy

apo) doig-pue-3ei(

‘Te08 payads oY) JO JueAs UOTIIppe oY) Aq pa1egdir) ueld ® ‘fpoguetd -> enxy : eweNTeOSj+ [eonuorjesuediQ
‘urIou uaAI3 o) Jo uorydediad oty Aq pera33iry uerd e ‘fpogueTd -> oniy :oweNULIOU+ WLION]
"OUWIAYDS USALS S1[} UT UOISSTU JO “ ¢ (PToWRYDS . —
90UR)SUI S} [IM WO 0} UOTIOE Ue SWENUOTSSTW) UOTSSTW 3 TUWOD
*dno13 poyads o) ur o[o1 usAI3 oY) jdope 03 uorjoe oY) ¢ (ourejdnox3 ¢ surejoTox) 9 Tox 3dope ajoy
‘dnoi8 ueard o1y ur Surutol jo uorjoe ue ¢ (eureNdnoa8)dnox8~utol dnoin
uolsuswi(] uoljesiue3iQ
"JULAd UTPUOdSaIIOD 81} JO UOIIRAISSCO dY) Aq paI1eddiny ueld ®| -Apoguerd -> eniy : sweNIUSAS+ JUBAHO[qRAIISq O
‘Ayrodoad Surpuodseriod a1y Jo worpeAIasqo o) Aq parog3iiy ueld e| - fpoguerd -> eniy : suweyLiiedoxd+|AyredorgeiqesrasqQO
‘juag8e ue Aq uorperado jeI) JO UOIINIAXa oY) Juljuesardal ue(d ¢ (yoweuoTseIedo woryeredQ
® Jo Apoq oy} ur uoljeiedo JUTPuOdsalIIod o1} JO UOIFRIOAUL S}
*10RJT1IR JO 9OUR)SUI YR} UO JUISNOO] JO UOTIJOR dY} ¢ (eureN3o®FTAIR)SNOOF ORIy
-oordsyrom Jurpuodser1od o1} utol 03 juaSe Jey) I0] UOIPOR UR ¢ (,oureNooedsyion,)esedsyiopmutol soedg
UOISUSWI(] JUSTUUOIIAUY
's[eo8 pue suorjor jo (Aurewr) pesoduiod £poq e pue ‘(eniy st *sTeo8 ¢suotrioe werg
Jejep Aq 9etr)) 1X0juod ‘uolypuod SureSsiry si1 Yim ueld e -> oaniy : £q pexe88Ti3 ST
a8essowl JO 9ouR)SUTl SUIPUOASOLIOD O} JUIPUSS JO J0v Y} (aue3uopreuotatrsodord o3essoAl
o : ‘9010 4AIRUOTINOOTTT ISATSDSI) PUSS
‘ue[d e JO UOINOoXo oY) SULIND Pajsa) o 03 sey jey) [ROS © {ourRNTRONISOY, [eonHsag,
‘wre[d ® UOIINDSXS 91} SULINP PAASIYDR 9q 0} SBY RN TRON 1 LOIOASTTSR | O IO TIOABITD
1e1[) [ROS ® 10 {Juede jey[) I0] [R03 [RIIUI UR NTEeD3 PR 209 v
“Juede 1oj0 10 ‘ydeored ‘Jos :odAjqus s Joreq oY) ¢ [(onTeA)852M08] SURNIOTTO0H o108
Aq pauTep anfeA S,90IN0S [HM JUOAD UOTYIPPE JoI[aq © :
'syse) Io1[}0 awos uLIojad 10 ‘sodesseul puos oweyauee Juesy
09 IopIo Ul Juade [eNpPIAIPUI d1[} JO UOIYROYIIUSPI 1)
“A[rejuowt surrojrod juoSe uer jey) UONOR UR Juljuosardor .
¢ ()oureNuoTyOR" uorOyreutajuy
Apoq s,ue[d e SpISUI UOTYEIOAUT UOT}OE [RUISIUT UR
“JUOWUOIIAUD oY} Ul Surjoe juafe ue Surjuosordos .
¢ ()eureNuOTIO® UoI)Oy[euIa)xXy
Apoq s,ue[d e opISUl UOI}RIOAUI UOI}OR [RUIDIXS UR
uorsuswi(q Juesy
uosefp I0J juswe[y ASo[ojuQ

oy} Jo aouejsuy

‘squowo]e A30[0uo woyy (uosuawy[Juabys) uoser 10J uorjeiousd opod doip-pue-3ei *T a[qe],

A. Freitas et al.

88

‘uose[I0j UOIyelausd opood drpewojne 10y a[qedrdde A[30911p jou

reonuorjesiuesSiQ
‘WION] ‘UOISSIIA ‘o[oy
‘(sseroqns pue aduejsul) dno.axr)

uolsuswi(] uorjesiuediQ

"UOSE[I0] UOIIRISUSS 900 dIpewojne 10§ o[qestdde Ajoe1rp jou

uoryeradQ ‘(ssefoqns
pue soue)sUI) ORIy ‘odedg

: A s d
uoAS UTPUOdsarIod oY) woﬁ UOTJRAIDSCO 9} AQ POIoI3LIY pogueT JUSAROIqRAISSG ()
ued e (£10)epURU J0U ST)T ‘ToAOMOT]) Pa)seS8ns oq Lewr 1 -> ONI3 : SWENIUSAD+
"Pa[pPURY 9q 0} PSSP AN ST JeY) UOIenyIs
® se PaIsedsns oq Aewr Arredord s[qeAIesqo Wﬁﬁwp : fpoguetd £300d01gO[qEAIOSAO
a7} JO jueAL UONIppPe 9y} A pola83Lr) ue[d € ‘IoASMOF -> oniy : osureydoxd+

‘uoreIouas 9pod dryewojne 10y a[qedridde A[3091Ip jou ST)1

UOISUSWI(] JUSUIUOIIAUG

"uose[I0J UOIyelausd apood drpewojne 10y a[qedridde A[30911p jou

Jady ‘[eox))say,
‘UOI)OY[RUIDU] ‘UOI}OY [CUIDIXH

91 ser] ey odA) juoBe oyl JO o[TSe" o) Ul POIIosUl SI

‘sTeo8 ‘suotrjoe

:Eﬁw oY, .mEOM pue suorjoe jo (Aurewr) pesodurod £poq > enxy : Aq-persSSTIa-ST4 ueldq
® pUR ‘)X0JUOD B ‘UOITPUOD SULIDISLIY © SBY] 31 Yorym ur uefd e
"9210,JATRUOTINOO[[I pue jusduo))euoijisodord usAls oY) ¢ (qausquopTeuoTaTsodoad
UOTHTPUOD SULIOFSLI) S SUISN PaJRaID 9 ARUI JUFR IOATODDI | ®2I0J00TTT ‘IS9ATSI8I)pUsSS” a3essoIN
oy 103 ueld y -odessowr Surpuodserrod o) pues 0} ue[d v -> oweN3SKpUes |
o[[se* SUIpuodsolrIod 97} Ul [R0S JUOWISAIIYDR [RIJTUI UR * TROHIULWEASTYDR [0 JUSWDASIYDY
“(yua8e 10130 10 ‘9dediad ‘Jros) odAy s Jor[aq
oY) Aq PouUYop on[eA S,00IN0S Y} YIIM [(enTeA)®DINOS] SURNFOTTOQ Joreg

o[y [se’ SurpuodsorIod o1 Ul JoI[oq [RIIUL Ue

‘sjor[aq pur ‘s[eod ‘sue[d se yons
SO PIJRIAI [[€ SUIRIU0D ey} juode jo odA) v

o[l Tse-sseToqngiuse

(sseloqns) Jualy

uoIsuawWI(] U8y

uorjeue[dxyq

uose[J10j
apo) aseg

jyuawe[y A3o[0u(
oY} Jo 9ouejsuy

‘syuewele A30[0juo wolj (uorsuawiyq juabyy) uoser I0J uorjeIaUad opod 2100 oje[duwra], *g O[qe],

Designing Multi-Agent Systems from Ontology Models 89

4.4 The Onto2JaCaMo Tool for Multi-Agent Systems Development

For effective and efficient software development, preferably all tasks and activ-
ities during the development process should be adequately supported by
tools [13]. The quality of any software tool support can be assessed by con-
sidering the degree of support for the different phases and tasks [13], e.g., design
tools, which besides the creation and editing of design models also often support
consistency checking and/or code generation.

We have implemented the techniques previously explained in Subsects. 4.2
and 4.3 in a software tool to support MAS development, which we refer to as
Onto2JaCaMo. It consists of a plug-in for Eclipse that loads instantiated models
based on the ontology of MAS obtained from [5,6] to provide code generation
for JaCaMo. Eclipse [4] is an open source software development project that
provides an IDE in which a basic unit of function, or a component, is called a
plug-in. Eclipse is already the standard IDE for JaCaMo development, and it
was indeed an interesting choice since Eclipse is recognised as a mature IDE,
and one of the most widely used by programmers [13].

Onto2JaCaMo is easily installed by adding its . jar file in the Eclipse plug-ins
folder. It can be activated to appear visually in the graphical interface of Eclipse
by following this sequence: Window — Show View — Other... — JaCaMo
Ontology — Ok. When it is enabled, Onto2JaCaMo requests to be informed
about the OWL file corresponding to an instantiated ontology so that it can be
loaded. The plug-in was designed to be used in the “JaCaMo Perspective” of
Eclipse (or related perspectives, such as Jason). The tool loads OWL ontolo-
gies and provides three model-based programming features to generate MAS
code: drag-and-drop, conversion from ontology to code, and auto-complete from
instantiated ontologies.

In the drag-and-drop functionality, the developer can visualise and navigate
through the ontology concepts, instances, and properties. These elements from
the model can be dragged to the code in files being edited in Eclipse. For exam-
ple, the programmer may perform a dragging and dropping operation using the
action pass_ball to be inserted in a plan of agents of type “player”. Similarly,
it is possible to provide developers the auto-complete feature from ontology to
agent code, which is activated when the developer is typing MAS code (or press
the auto-complete shortcut: “ctrl + space”). Then, the available options based on
the ontology are presented to programmers as suggestions. One example is when
coding the plan’s context, which may be composed of ontology-based queries
(e.g., verifying if an individual belongs to a concept).

The Onto2JaCaMo tool is able to generate code fragments based on design
information, which is known as forward engineering [13]. This is in the oppo-
site direction of extracting design information out of existing application code,
the so called reverse engineering. A drawback of forward or reverse engineering
techniques is that after a generated artifact has been changed manually, for-
ward or reverse engineering cannot be reapplied without losing the changes, as
stated in the called “post editing problem”. The combined support of forward
and reverse engineering, such that changes in one artifact can always be merged

90 A. Freitas et al.

into the other without compromising consistency or losing changes, is referred
to as round-trip engineering [13]. The Onto2JaCaMo tool presented in this work
does not address such advanced and complex concepts of synchronisation as yet;
these are, however, interesting topics for future work.

5 Ontology-Based Reasoning Support for Agent Systems

Model verification refers to the processes and techniques that the model devel-
oper uses to ensure that their model is correct and matches any agreed-upon
specifications and assumptions. OntoMAS can be explored with its available
reasoning mechanisms to implement model verification in the context of MAS.
The literature reports that most practical approaches for verification of MAS
are done on code, and most of the work done on model checking within the
MAS research area is quite theoretical [2]. However, there are approaches that
use model checkers typically to verify properties of particular aspects of a given
MAS. While this has the advantage of proving properties of systems that will
be deployed, it is also often useful to check properties during systems’ design.

Considering this context, semantic reasoners may provide, for example, con-
sistency checking and inferences about the MAS specified as an ontology. Ontolo-
gies empower the execution of semantic reasoners that provide functionalities
such as consistency checking, concept satisfiability, classification, and realisa-
tion. In other words, reasoners are able to automatically infer logical conse-
quences from a set of axioms. The possibility to reason about the model can
provide support for various consistency checks during the MAS project design
and implementation. For example, when considering only MAS organisations,
it is possible to check for conflicts considering the existing norms, roles, and
missions. When an instantiation of MAS organisation is combined with instanti-
ated agents, it is possible to check for other kinds of inconsistencies integrating
information from more than one dimension, such as whether the agents contain
the required capabilities to achieve the existing organisation goals. Organisation
goals are assigned to agents playing the organisation roles, and an agent play-
ing a specific role may not have the required plans to achieve the goals that
the organisation will assign to it. Reasoning can be applied also to verify consis-
tency among the norms in the organisation. The combination of some norms can
result in contradictions, for example, when a prohibition occurs together with
an obligation or permission. These contradictions can appear when considering
the missions of just one isolated role, or when combining the missions of two or
more roles.

When analysing the knowledge about the environment, it can be checked
whether agent actions are valid in a given environment configuration. If there is
an agent action that does not exist in the environment, the invocation of such an
action in run-time will result in failure. Thus, the verification of characteristics
over an instantiated model at design time may prevent future errors to happen
during the execution time of the corresponding JaCaMo specified project.

The use of ontology enables the creation of rules, which can be coded in the
Semantic Web Rule Language (SWRL). Such rules can be inherited from the base

Designing Multi-Agent Systems from Ontology Models 91

OntoMAS ontology, and new ones can be added specifically for an extension and
instantiation of OntoMAS, when defining a desired MAS scenario. All elements in
the ontology are taken into consideration when semantic reasoners are executed
for making inferences. For example, one general rule is that if an agent a is in a
space s, and this space s can provide an observable property p, then it can be
inferred that the agent a is able to perceive p if it chooses to do so. This rule is
coded as follows:

is-in(7a,?s), provides-percept(?s,?p) -> can-perceive(?7a,?p).

In such reasoning mechanism it is possible to relate elements from any dimen-
sion (e.g., agent) with elements from other dimensions (e.g., environment). Lets
suppose now a more complex example for inferences about a modelled MAS.
We already commented that agents join organisations by playing organisation-
defined roles, and it is expected that such agents have in their codes the required
plans to handle the goals that the organisation may assign to them. Organisa-
tion goals are assigned to agents, for example, if there is an obligation norm
on that role, and an agent that adopts such role should have a plan for achiev-
ing that goal. Lets represent this with a new property to specify that Agents
should-have-plan-for Goals. This can be inferred, for example, if there is an
obligation norm n that targets a role r, and there is an agent a that adopts the
role r, then, the conclusion is that the agent a should have a plan for the goal
g, where g is a goal from mission m, which is the mission for the obligation norm
n. The following rule exemplifies how to make this inference:

ObligationNorm(?n), targets-role(?n,?r), adopts-role(?a,?r),
targets-mission(?n,?m), has-goal(?m,7g) ->
should-have-plan-for(?a,?g) .

As we have exemplified using some rules in this subsection, more complex
information can be incrementally inferred from the basic conceptualisation pro-
posed by OntoMAS. Also, it allows extensions to be made on top of it, by
including for example new concepts, properties, and so on.

As another example, it can be inferred which operations and percepts can be
obtained from each space based on which artifacts are situated in it (the concept
of Space from the ontology refers to the called Workspaces of CArtAgO). A rule
may be used as follows:

contains-artifact(?s,?a), provides-percept(?a,?p) ->
provides-percept(?s,7p).

This rule can be read as: if the space s contains an artifact a, and a provides a
percept p, then s provides p. The same reasoning principle applies to operations
from artifacts that are located in some space. Moreover, another general rule
about environments is that the percepts and operations of sub-spaces are also
provided by the spaces that contain them.

92 A. Freitas et al.

6 Evaluating Onto2JaCaMo

Our initial evaluation of Onto2JaCaMo indicates that it facilitates coding in
JaCaMo, mainly for beginners or for those who are not fully aware about how
to implement some agent concepts. Users have reported that it improves the
understanding about the operation of JaCaMo and how to program particular
behaviours. Also, Onto2JaCaMo helps avoid syntactical errors as it provides code
templates, which is important because the auto-complete shortcut from Eclipse
(“ctrl 4+ space”) does not work in all JaCaMo extensions. Thus, more agility
can be obtained in JaCaMo code generation. Lastly, during development, it is
interesting to visualise the system’s ontology, so that the idea defined in models
may be followed easier when programming. Most importantly, it avoids some of
the most common types of bugs made by programmers such as mistyping names
since now the ontology provides the vocabulary to be used in the code.

Before starting our experiments regarding the evaluation of the programming
techniques implemented in Onto2JaCaMo, the participants received the required
prior instructions on these topics in order to perform the tasks with the minimum
required knowledge, such as, for example, how to load and how to use ontology
models in Onto2JaCaMo. The participants received the Onto2JaCaMo plug-
in, where they had to load their previously instantiated ontology models and
use the tool to support the model-based development of their agent code. Each
participant had previously defined their own application scenario to work with.
After finishing the programming of their MAS using the drag-and-drop provided
by Onto2JaCaMo, the participants were surveyed by means of questionnaires to
extract their perceptions and opinions about the techniques and tool according
with statements that followed a 5-point Likert scale. Some criteria have received
only positive evaluations from all participants, such as that Onto2JaCaMo is easy
to understand, provides coding support, offers advantages for programming, and
enables a better understanding of JaCaMo.

Thus, we observe that the proposed plug-in helps in code consistency (e.g., it
facilitates coding using the same terms), and it prevents developers from using
terms outside the ontology-based model. In summary, such approach provides an
overview about agent systems to be visualised within the programming context,
combined with features of dragging content from models to MAS code. As lessons
learned from our practical experiences, we have observed that more MAS code
could be generated from the proposed modelling approach, and that the ontology
could be used in a technique to constrain the MAS coding (i.e., to indicate
errors or mismatches between model and code). Also as future work, we have
noticed that Onto2JaCaMo could provide model editing features (for example,
to include new instances), which would discard the need of an ontology editing
tool to update the ontology model. Another point for improvement that was
highlighted by our practices, although a very complex one, is the automatic
update of the ontology when the MAS code changes [6], in the direction of
synchronising model and code. This might be solved by implementing features
to highlight mismatches between MAS code and its corresponding model in order
to keep both aligned.

Designing Multi-Agent Systems from Ontology Models 93

In a last part of our experiments, the participants created theirs models and
later programmed manually their code, which means without using the core
code generation mechanism. That allowed us to compare the code that our tech-
nique creates automatically from the ontology models with the code actually
programmed by the participants. Through these comparisons, we have observed
the correspondences and similarities between elements in the code that was auto-
matically generated from the specification in contrast with the code that was
manually programmed. These similarities between these two sources of code are
indicative of the correctness of the proposed model-based code generation tech-
nique. We have analysed that some key elements in the ontology models created
by the participants, the corresponding code that was automatically generated
from these elements by using the proposed techniques, and the code actually
programmed by them. We were able to confirm that the model-based technique
for generating code is indeed offering a program reasonably similar to the code
structured created by the programmer!, given the analysed aspects. We argue
that if the starting codes were created based on converting their correspond-
ing models, then it would be easier for programmers to align their initial code
with the design and continue their programming based on that. The similarities
between what can be automatically generated with what was manually created
indicate that the code generation is in the correct direction and it provides more
agility for developers that have their systems modelled before they start coding.
We point out to our reference [5] for further details on our evaluations that would
not be possible to tackle here in this chapter.

7 Final Remarks

In this chapter, we have proposed development techniques focusing on the
JaCaMo platform, on the basis of ontologies that support the modelling and pro-
gramming of MAS. Our proposal considers MAS designed as ontology models as
the foundation for a MAS engineering process that allows core code generation.
We have explored the research direction of reasoning with these ontology models,
which allows the implementation of inference mechanisms in agent-based systems
such as, for example, to reason about action, plans, knowledge, beliefs, goals, and
norms in MAS. Producing software code for complex and highly detailed systems
directly in programming environments by first using a specification, modelling,
or design mechanism may avoid many problems. Without a proper modelling,
it may be difficult to find potential bugs when they eventually appear in the
implementation. Features derived from our approach are techniques for: (i) inte-
grating design and code; (ii) supporting MAS programming with automatic code
generation through model-based development; and (%) performing verification
with focus on the use of semantic reasoning and model checking.

! The model is at a higher abstraction level than the code, so sometimes only a struc-
ture or code skeleton can be created and programmers have to complete it in order
to obtain a fully executable and running system.

94 A. Freitas et al.

Ontologies that serve as the basis of agent models could also inform agents
in reasoning about their own system or even other systems or projects. These
would allow agents to be able to share their implementation with others, or to
execute inferences about its own implementation. In this context, an approach
that provides for MAS the ability to interact with ontologies may be applied [8].
As future experiments, it would be interesting to consider more complex and dis-
tributed scenarios of software development, for example where teams of software
engineers need to work together to develop a single MAS. These teams would
be composed of persons playing different roles such as requirement engineer,
designer, programmer, etc. In this context, it should be investigated how much a
modelling and programming approach that is based on an ontology would help
the team to communicate, synchronise, and coordinate the development of the
desired MAS. Moreover, a viewpoint that should also be considered in future
work is the comparison between using and not using the approach proposed in
this chapter (similar to what is done with experiments conducted on the basis of
a control group). Moreover, as we have highlighted in this chapter, new features
may be added to Onto2JaCaMo, such as refactoring mechanisms for model and
code synchronisation. Another related point would be to automatically identify
mismatches between current MAS code and its corresponding model. That would
contribute towards implementing round-trip engineering features in the context
of MAS development (combined use of forward and reverse engineering).

For the sake of better explaining our approaches through examples, Sect. 4
discussed mostly the possibility of extending the OntoMAS ontology by creating
new subclasses. We claim that the approach is more extensible than shown here,
for example, one may decide to add new classes, properties or even rules, but in
these cases, the consistency of the obtained ontology may be a major problem to
deal with, especially in terms of future research directions. However, it is not an
easy task to extend an ontology if the users do not have any solid prior knowledge
about it. For example, Sect. 5 depicted general rules of agent systems which can
be refined and extended for specific domains, which means that OntoMAS is
extensible not only by adding new subclasses but in every part of its components.
Literature often claims that it is worth considering what someone else has done
and checking if existing sources can be refined and extended for the required
particular domain and task. Reusing existing ontologies may be a requirement if a
system needs to interact with other applications that have already committed to
particular ontologies or controlled vocabularies. Lastly, the OntoMAS ontology?
and the Onto2JaCaMo plug-in? can be found in the addresses given as footnotes.

Acknowledgements. This study was financed in part by the Coordenagao de
Aperfeicoamento de Pessoal de Nivel Superior — Brasil (CAPES) — Finance Code 001.

2 OntoMAS ontology: http://www.inf.pucrs.br/linatural /wordpress /index.php/recur
sos-e-ferramentas/ontomas/.

3 Onto2JaCaMo plug-in: http://www.inf.pucrs.br/linatural /wordpress/index.php/re
cursos-e-ferramentas/onto2jacamo/.

http://www.inf.pucrs.br/linatural/wordpress/index.php/recursos-e-ferramentas/ontomas/
http://www.inf.pucrs.br/linatural/wordpress/index.php/recursos-e-ferramentas/ontomas/
http://www.inf.pucrs.br/linatural/wordpress/index.php/recursos-e-ferramentas/onto2jacamo/
http://www.inf.pucrs.br/linatural/wordpress/index.php/recursos-e-ferramentas/onto2jacamo/

Designing Multi-Agent Systems from Ontology Models 95

References

10.

11.

12.

13.

14.

15.

16.

. Boissier, O., Bordini, R.H., Hiibner, J., Ricci, A., Santi, A.: Multi-agent oriented

programming with JaCaMo. Sci. Comput. Program. 78(6), 747-761 (2013)
Bordini, R.H., Dastani, M., Winikoff, M.: Current issues in multi-agent systems
development. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.)
ESAW 2006. LNCS (LNAI), vol. 4457, pp. 38-61. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75524-1_3

Bordini, R.H., Hiibner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. Wiley, Chichester (2007)

Budinsky, F.: Eclipse Modeling Framework: A Developers Guide. The Eclipse
Series. Addison-Wesley, Boston (2004)

Freitas, A.: Model-driven engineering of multi-agent systems based on ontology.
Ph.D. thesis, Pontificia Universidade Catdlica do Rio Grande do Sul, Porto Alegre,
RS, Brazil (2017). http://tede2.pucrs.br/tede2/handle/tede/7930

Freitas, A., Bordini, R.H., Vieira, R.: Model-driven engineering of multi-agent sys-
tems based on ontologies. Appl. Ontol. J. 12, 157-188 (2017)

Freitas, A., Cardoso, R.C., Vieira, R., Bordini, R.H.: Limitations and divergences
in approaches for agent-oriented modelling and programming. In: Baldoni, M.,
Miiller, J.P., Nunes, 1., Zalila-Wenkstern, R. (eds.) International Workshop on
Engineering Multi-Agent Systems, pp. 88-103 (2016)

Freitas, A., Panisson, A.R., Hilgert, L., Meneguzzi, F., Vieira, R., Bordini, R.H.:
Applying ontologies to the development and execution of multi-agent systems. Web
Intell. J. 15(4), 291-302 (2017)

Hiibner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organi-
sations with organisational artifacts and agents. Auton. Agents Multi-Agent Syst.
20(3), 369-400 (2010)

Musen, M.A.: The Protégé project: a look back and a look forward. Al Matters
1(4), 4-12 (2015)

Okuyama, F.Y., Vieira, R., Bordini, R.H., da Rocha Costa, A.C.: An ontology for
defining environments within multi-agent simulations. In: Workshop on Ontologies
and Metamodeling in Software and Data Engineering (2006)

Padgham, L., Winikoff, M.: Prometheus: a methodology for developing intelligent
agents. In: Giunchiglia, F., Odell, J., Wei}, G. (eds.) AOSE 2002. LNCS, vol. 2585,
pp. 174-185. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36540-
0-14

Pokahr, A., Braubach, L.: A survey of agent-oriented development tools. In:
Fallah-Seghrouchni, A.E., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent
Programming, Languages, Tools and Applications, pp. 289-329. Springer, Boston
(2009). https://doi.org/10.1007/978-0-387-89299-3.9

Ricci, A., Viroli, M., Omicini, A.: CArtAgO: an infrastructure for engineering
computational environments in MAS. In: Weyns, D., Parunak, H.V.D., Michel, F.
(eds.) International Workshop Environments for Multi-Agent Systems, pp. 102-119
(2006)

Tran, Q.N.N., Low, G.: MOBMAS: a methodology for ontology-based multi-agent
systems development. Inf. Softw. Technol. J. 50(7-8), 697722 (2008)

Zarafin, A.M.: Semantic description of multi-agent organizations. Master’s thesis,
Automatic Control and Computers Faculty, Computer Science and Engineering
Department - Politehnica University of Bucharest (2012)

https://doi.org/10.1007/978-3-540-75524-1_3
http://tede2.pucrs.br/tede2/handle/tede/7930
https://doi.org/10.1007/3-540-36540-0_14
https://doi.org/10.1007/3-540-36540-0_14
https://doi.org/10.1007/978-0-387-89299-3_9

	Designing Multi-Agent Systems from Ontology Models
	1 Introduction
	2 Multi-Agent Systems Modelling Approaches
	3 Programming in JaCaMo
	4 Code Generation Techniques for Multi-Agent Systems Designed as Ontology Models
	4.1 Mapping Elements from the MAS Ontology to JaCaMo Code
	4.2 Drag-and-Drop Transformation Technique from the Multi-Agent Systems Ontology to JaCaMo
	4.3 Core Code Generation Technique from OntoMAS to JaCaMo
	4.4 The Onto2JaCaMo Tool for Multi-Agent Systems Development

	5 Ontology-Based Reasoning Support for Agent Systems
	6 Evaluating Onto2JaCaMo
	7 Final Remarks
	References

