
Danny Weyns
Viviana Mascardi
Alessandro Ricci (Eds.)

 123

LN
AI

 1
13

75

6th International Workshop, EMAS 2018
Stockholm, Sweden, July 14–15, 2018
Revised Selected Papers

Engineering 
Multi-Agent Systems



Lecture Notes in Artificial Intelligence 11375

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244


Danny Weyns • Viviana Mascardi •

Alessandro Ricci (Eds.)

Engineering
Multi-Agent Systems
6th International Workshop, EMAS 2018
Stockholm, Sweden, July 14–15, 2018
Revised Selected Papers

123



Editors
Danny Weyns
Department of Computer Science
KU Leuven
Leuven, Belgium

Viviana Mascardi
Department of Computer Science,
Bioengineering, Robotics and Systems
Engineering
Università degli Studi di Genova
Genoa, ItalyAlessandro Ricci

Department of Computer Science
and Engineering
University of Bologna
Cesena, Forli/Cesana, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-25692-0 ISBN 978-3-030-25693-7 (eBook)
https://doi.org/10.1007/978-3-030-25693-7

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-1162-0817
https://orcid.org/0000-0002-2261-9926
https://orcid.org/0000-0002-9222-5092
https://doi.org/10.1007/978-3-030-25693-7


Preface

The workshop on Engineering Multi-Agent Systems (EMAS) has a threefold goal:
(i) To enhance our knowledge and expertise in MAS engineering to move forward the
state-of-the-art; (ii) define new directions for MAS engineering, relying on results and
recommendations stemming from a diverse range of research areas; and (iii) investigate
how practitioners can use or adapt established processes and methodologies for the
engineering of large-scale and open MAS.

The EMAS workshop has been held as part of AAMAS since 2013, and was
previously affiliated with AAMAS through the AOSE, ProMAS and DALT workshops
since their inception. This 6th edition of the EMAS workshop, which was co-located
for the first time with IJCAI/ECAI and ICML alongside AAMAS, took place in
Stockholm, Sweden, during July 14–15, 2018. On average, around 40 people attended
the different sessions of the workshop.

EMAS 2018 received 32 submissions by authors from all over the world. After a
thorough review process, 21 papers were accepted for presentation at the work-
shop. After the workshop, authors of selected papers were invited to submit revised and
extended versions of their workshop paper. This resulted in 17 chapters that are
clustered around the following themes: Programming Agents and MAS,
Agent-Oriented Software Engineering, Formal Analysis Techniques, Rational Agents,
Modeling and Simulation, and Frameworks and Application Domains. In addition, this
volume includes a state-of-the-art chapter that reflects on the role and potential of MAS
engineering in a number of key facets that characterize modern software engineering
practice. We have provided a brief overview of the sections:

State of the Art

Chapter 1: “Engineering Multi-Agent Systems Anno 2025” by Viviana Mascardi and
Danny Weyns opens the volume by reflecting on the role and potential of MAS
engineering on a number of key facets that characterize modern soft-ware engineering
practice. In particular, the chapter looks at agile development, Cloud and edge com-
puting, distributed ledgers and blockchain, Cyber-Physical Systems and Internet of
Things, and green computing, highlighting opportunities for EMAS engineering, but
also the challenges these facets raise.

Programming Agents and MAS

Chapter 2: “Pitfalls of Jason Concurrency” by Álvaro Fernández Díaz, Clara Benac
Earle and Lars-Åke Fredlund examines to what extent the Jason programming language
helps programmers in coping with difficulties caused by intra-agent concurrency, e.g.,
race conditions due to multiple agent intentions. The chapter analyzes a number of



strategies to mitigate concurrency problems present either in the original Jason lan-
guage, or in later language extensions.

Chapter 3: Alessandro Ricci, Rafael H. Bordini, Jomi F. Hübner and Rem Collier
present “AgentSpeak(ER): Enhanced Encapsulation in Agent Plans.” AgentSpeak(ER)
extends the AgentSpeak(L) language to support encapsulation and allow for improving
Belief-Desire-Intentions (BDI) agent programming, in addition to other relevant
aspects, such as program modularity, readability, failure handling, reactivity and
goal-based reasoning.

Agent-Oriented Software Engineering

Chapter 4: In their chapter “Improving the Usability of a MAS DSML,” which
received the EMAS 2018 best paper award, Tomás Miranda, Moharram Challenger,
Baris Tekin Tezel, Omer Faruk Alaca, Ankica Barišić, Vasco Amaral, Miguel Goulão
and Geylani Kardas point out the need for evaluating the usability of domain-specific
modeling languages (DSMLs) for MAS to leverage their adoption in practice. The
authors evaluate a concrete MAS DSML, and based on the insights obtained, devel-
oped a new improved version of the language.

Chapter 5: Artur Freitas, Rafael H. Bordini and Renata Vieira present their proposal
for “Designing Multi-Agent Systems from Ontology Models.” This work aims at
facilitating MAS engineering through ontology models that support code generation.
The approach is aligned with the JaCaMo framework, and supported by a tool that
generates the core code of a MAS application; the underlying ontology allows for
reasoning about the MAS models under development.

Chapter 6: Massimo Cossentino, Luca Sabatucci and Valeria Seidita discuss the
“Engineering Self-adaptive Systems: From Experiences with MUSA to a General
Design Process,” and deal with complex-self adaptive systems operating in changing
and uncertain environments. Through a retrospective analysis on the use of the MUSA
middleware (Middleware for User-Driven Service Adaptation), the authors identify the
characteristics of a design approach for these kinds of systems.

Chapter 7: The paper “Stellar: A Programming Model for Developing
Protocol-Compliant Agents” by Akın Günay and Amit Chopra presents the Stellar
programming model that aims at simplifying the development of protocol compliant
agents. A major benefit of Stellar is its independence from imperative control flow
structures, which gives substantial flexibility to developers when implementing agents,
compared to approaches that rely on this structure for compliance.

Formal Analysis and Techniques

Chapter 8: The paper “Slicing Agent Programs for More Efficient Verification” by
Michael Winikoff, Louise A. Dennis and Michael Fisher focuses on efficient model
checking of agent programs using an improved method of program slicing. The
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proposed approach analyzes a program prior to verifying it to simplify the program by
removing parts that are invariant to the verification results.

Chapter 9: Łukasz Białek, Barbara Dunin-Kęplicz and Andrzej Szałas introduce
“Belief Shadowing,” a lightweight and tractable approach for belief interference, that
aims at adapting beliefs to new circumstances, such as belief change or revision. The
idea is to perform a transient swap of beliefs, when part of one belief base is to be
shadowed by another belief base representing new observations and/or beliefs of
superior agents/teams. In this case no changes to belief bases are needed, substantially
improving system performance.

Chapter 10: Timotheus Kampik, Juan Carlos Nieves and Helena Lindgren move a step
towards “Empathic Autonomous Agents.” The authors explore the notion of an
empathic autonomous agent that proactively searches for conflicts with other agents,
combining a utility- and rule-based approach for resolving conflicts. The authors
propose an initial theoretical outline with an architecture for emphatic agents. Several
challenges remain open, e.g., handling complex environments.

Chapter 11: The chapter “Dynamic Global Behaviour of Online Routing Games” by
László Zsolt Varga focuses on how to measure and ensure global behavior of
large-scale, open decentralized MAS. The paper shows how the inter-temporal
expectations of selfish planning agents influence the quality of the global behavior
of the MAS in a realistic urban traffic scenario. A critical challenge is to design the
environment to drive agents toward an optimum or equilibrium.

Modeling and Simulations

Chapter 12: Igor Conrado Alves de Lima, Luis Gustavo Nardin and Jaime Simão
Sichman present “Gavel: A Sanctioning Enforcement Framework.” Gavel enables
agents to decide the most suitable sanctioning method, with the aim of improving
agency governance. The framework is evaluated through a simulation of the Public
Goods Game Model with the CArtAgO simulation framework.

Chapter 13: In the chapter “Adding Organizational Reasoning to Agent-Based Sim-
ulations in GAMA,” John Bruntse Larsen introduces organizational reasoning in agent
simulation platforms (e.g., GAMA) to model complex social systems. The approach
combines bottom-up design of BDI models with top-down organizational reasoning.
The author formalizes the operational semantics of organizational reasoning and
illustrates its application with a healthcare example.

Chapter 14: Tasio Méndez, J. Fernando Sánchez-Rada, Carlos A. Iglesias and Paul
Cummings propose an agent-based model for “Analyzing Radicalism Spread Using
Agent-Based Social Simulation.” The model, that consists of a Network Model and an
Agent Model, aims at improving the understanding of the influence of social links on
the spread of radicalism. The Network Model updates the agent relationships based on
proximity and homophily; it simulates information diffusion and updates the agents’
beliefs. The model is implemented in Python.

Preface vii



Frameworks and Application Domains

Chapter 15: In the chapter “Engineering World-Wide Multi-Agent Systems with
Hypermedia,” Andrei Ciortea, Olivier Boissier and Alessandro Ricci propose an
approach to engineer large-scale, evolvable MAS using hypermedia. In line with the
notion of agent environments, agents are situated in a distributed hypermedia envi-
ronment. Agents use hypermedia to discover and interact with other entities in the
MAS. This allows the MAS to evolve at runtime and to be seamlessly distributed
across the Web. A demonstrator is used to evaluate the approach.

Chapter 16: “Designing a Cognitive Agent Connector for Complex Environments:
A Case Study with StarCraft” by Vincent Koeman, Harm Griffioen, Danny Plenge and
Koen Hindriks describes the design of a connector that supports interfacing cognitive
agents in rich environments. The approach is applied to the real-time strategy game
StarCraft with the aim of establishing a design method for developing connectors for
these kinds of environments. StarCraft is particularly suitable as a testbed as it requires
sophisticated strategies for coordinating hundreds of units that need to handle
short-term as well as long-term goals.

Chapter 17: In the chapter “Decision Process in Human-Agent Interaction: Extending
Jason Reasoning Cycle,” Antonio Chella, Francesco Lanza and Valeria Seidita discuss
how to support agents’ decision making processes using their internal state. The
authors propose an extension of the Jason reasoning cycle to deal with the imple-
mentation level of the decision process and to include elements derived from the
internal state. This work is intended to contribute to the challenges of knowledge
representation and creation of plans at runtime.

Chapter 18: Arthur Casals, Amal El Fallah-Seghrouchni, Orso Negroni and Anthoni
Othmani present how “Exposing Agents as Web Services in JADE.” The chapter
shows how intelligent agents using a BDI architecture can be exposed as web services
and integrated with existing Cloud services. The approach is studied in the context of
an agent-based personal assistant. The aim is to better understand: (i) What is the
current state of production-ready MAS, and (ii) how hard it is for a software developer
to understand and implement MAS-based solutions.

We would like to thank all authors for their contributions, the members of the
Program Committee and the additional reviewers for their excellent review work,
the members of the Steering Committee for the valuable suggestions and support, the
IJCAI/ECAI and AAMAS organizers for hosting and supporting EMAS 2019, and last
but not least Springer, in particular Alfred Hofmann and Anna Kramer, for providing us
with the opportunity to publish this volume.

April 2019 Danny Weyns
Viviana Mascardi
Alessandro Ricci
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Engineering Multi-agent Systems
Anno 2025

Viviana Mascardi1(B) and Danny Weyns2,3

1 University of Genova, Genova, Italy
viviana.mascardi@unige.it

2 KU Leuven, Kulak, Kortrijk, Belgium
danny.weyns@kuleuven.be

3 Linnaeus University, Växjö, Sweden

Abstract. Modern software-intensive systems are increasingly blending
cyber, physical, and social elements, demanding higher degrees of auton-
omy and adaptability than ever before. In combination with the ever
growing integration and scale of systems, and the inherent uncertainties
modern systems face, the principles from MAS engineering remain par-
ticularly attractive for engineering systems in a wide variety of domains
today. In this chapter, we reflect on the role and potential of MAS engi-
neering on a selection of key facets that characterize modern software
engineering practice. We focus at facets that we believe are important in
relation to MAS engineering. Concretely, we look at agile development,
Cloud and edge computing, distributed ledgers and blockchain, Cyber-
Physical Systems and Internet-of-Things, and finally green computing.
For each of these facets we highlight opportunities to EMAS engineering,
but also the challenges these facets raise. We conclude with highlighting a
number of ethical issues that the engineers of modern software-intensive
systems and thus also MAS will face in the years to come.

Keywords: Multi-agent systems · Software engineering

1 Introduction

The engineering of software agents and Multi-Agent Systems (MAS) took off in
the mid 1990s and raised the attention of many researchers from both Artificial
Intelligence (AI) and Software Engineering [35,58,62,76]. AI has been described
as the study of agents that receive percepts from the environment, perform
actions there, are able of reasoning about their environment, perceptions and
actions, of learning from interactions with the environment, and of interacting
and coordinating [53]. This metaphor makes agents appealing to a wide audience
interested in classical and distributed AI. On the other hand, the notion of
software agents as autonomous components that encapsulate their own behaviour
and jointly can solve complex problems has been a rich source of inspiration for
software engineers with an interest in decentralized systems.
c© Springer Nature Switzerland AG 2019
D. Weyns et al. (Eds.): EMAS 2018 Workshops, LNAI 11375, pp. 3–16, 2019.
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4 V. Mascardi and D. Weyns

In the early days of MAS research, agents were mainly treated as autonomous
software elements with particular architectures. MAS on the other hand were
composed of such agents that communicate with one another to realize com-
plex, distributed functions. The emphasis has been on key properties of agents
such as autonomy, social ability, reactivity, pro-activeness [77]. A later comple-
mentary approach considered a MAS as a system of agents that is embedded
in an agent environment, which provides a first-class abstraction for coordina-
tion [46,48,49,51,65,73,74]. Over time, the focus of research on the engineer-
ing of MAS went through a variety of stages, putting emphasis on different
aspects, such as communication, coordination and cooperation [40,59], engineer-
ing methodologies [34,79], design patterns [22,36,55] and software architecture
[56,68,69,72], declarative specifications [33], and programming languages [8,9].

With the advent of novel paradigms such as autonomic computing [26,38],
self-adaptation [24,50,70], pervasive computing [54], and context awareness [25],
software-intensive systems evolved towards a blend of cyber, physical, and social
elements [32,52], demanding higher degrees of autonomy and adaptability than
ever before [47,75]. Given the ever increasing integration and scale of systems,
and the inherent uncertainties modern systems face, the metaphor of agent and
MAS still matches these systems, hence principles from MAS engineering remain
particularly attractive for engineering systems in a wide variety of domains today.

In this chapter, we reflect on the role and the potential of MAS in a selec-
tion of key facets that characterize modern software engineering practice and
that we believe are important in relation to MAS engineering. Concretely, we
look at agile development, Cloud and edge computing, distributed ledgers and
blockchain, Cyber-Physical Systems (CPS) and Internet of Things (IoT), and
green computing. For each of these topics we highlight opportunities to the
EMAS community, but also the challenges they raise. Finally, we wrap-up and
highlight a number of ethical issues that software engineering in general and
MAS engineering in particular will increasingly face in the years to come.

2 Agile Software Development

The “Manifesto for Agile Software Development” [6] that was released in 2001,
stressed a set of principles that shift value in software engineering: (i) from pro-
cesses and tools to individuals and interactions, (ii) from comprehensive doc-
umentation to working software, (iii) from contract negotiation to customer
collaboration, and (iv) from following a plan to responding to change. These
principles provide the basis for the state of the practice in software engineering
today.

With the introduction of agile approaches in practice, a number of traditional
methodologies for engineering multi-agent systems have been “extended” to fit
with some of the principles of agility, see for example [17,30], while some new
methods were proposed as well, see for example [19,39]. However, little evidence
has been provided for the added value of these methods in practice, and over
time the interest in the topic gradually decreased.
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Nevertheless, the principles that underlie agile software development are
nowadays widely applied in practice. This raises the question of what agile soft-
ware development means for the engineering of MAS. As has been argued mul-
tiple times in the past, the most effective way for MAS engineering to add value
to software engineering practice is by integration rather than replacing existing
practice, see for example [45,71]. We provide two inspiring ideas in this direction.

One attractive idea would be to study and develop MAS-based tools for
supporting agile engineering; i.e., agents that support the implementation of
agile engineering methods of any kind of software applications, including MAS
themselves. In particular, agents can offer viable solutions for supporting flexible
interactions and collaboration among team members that go beyond rigid nego-
tiation protocols. Agents can help finding a suitable balance between reactivity
(the need of timely response to change) and rationality (the need of following
a plan). While many agile development tools exist, incorporating agents may
enhance these tools by (for example): facilitating flexible interactions among the
team members, see e.g., [63], suggesting optimized schedules for teams working
at different geographical locations, and balancing the development plan and sup-
porting the planning of deviations from it, providing support for what-if analysis
of the most critical scenarios to be tested, see e.g., [13]. Such additional features
may contribute to increased productivity of software developers.

Another interesting idea could be the realization of AaaS: “Agents as a
Service.” A recent communication published on Forbes1 points out that, after
the waves of Software, Platform, and Infrastructure as a Service, the next wave
is exploiting AI as a service. Big players such as Amazon, Google, Microsoft,
and IBM are already offering such services, and startups like Dataiku, BigML,
and others are entering the business. The current focus is mainly on “Machine
Learning as a service,” which is just an initial step in the full exploitation of AI.
With AaaS, we envision the provisioning of services to help specifying, design-
ing, implementing, verifying and validating software using agents and MAS,
which are not necessarily based on machine learning. Examples would be ser-
vices to engineer trust models, rule-based reasoning, sophisticated coordination
and cooperation strategies, and support for normative systems.

Realizing “MAS-based tools for supporting agile engineering” and “agents
as a service” opens a wide spectrum for future research. This includes studying
the concrete usage scenarios for such tools and services, understanding the basic
principles required to realize the tools and services, implementing them, and last
but not least, empirically validating them. Whatever path followed, such research
must go hand in hand with state of the practice in software engineering.

3 Cloud and Edge Computing

Cloud computing refers to infrastructure that provides on-demand computer
system resources, in particular computing power and data storage, without the
1 https://www.forbes.com/sites/janakirammsv/2018/02/22/the-rise-of-artificial-

intelligence-as-a-service-in-the-public-cloud.

https://www.forbes.com/sites/janakirammsv/2018/02/22/the-rise-of-artificial-intelligence-as-a-service-in-the-public-cloud
https://www.forbes.com/sites/janakirammsv/2018/02/22/the-rise-of-artificial-intelligence-as-a-service-in-the-public-cloud
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need for active management by users. Cloud computing aims at achieving coher-
ence and economies of scale. People often refer to Cloud as data centers that are
available to many users over the Internet. The term “cloud computing” was orig-
inally introduced by A. Regaldo at Compaq in the mid 1990s [20] and became
popular when Amazon released its Elastic Compute Cloud in 2006 [1].

Clouds can be privately owned by a single organization or public to many
organizations, or a combination of both (hybrid cloud). The main enabling tech-
nology for cloud computing is virtualization, which separates physical computing
resources into “virtual” resources, each of which can be easily used and managed
to perform computing tasks.

Conceptually, a Cloud is a centralized provider of resources, challenging the
very idea of using MAS, which assumes the need for decentralization. However,
while Cloud computing had clearly demonstrated its utility, its conceptual cen-
tralized architecture has been challenged by several trends. Among these are
growing difficulties in accessing information in large Cloud infrastructures that
deal with huge amounts of data, resulting in a lack of quality of the obtained
content [57]. Another development that challenges the Cloud as a conceptually
centralized resource is the raise of the Internet of Things, with potentially huge
numbers of devices that have only limited resources [7].

These trends have recently led to the notion of Edge (or Fog) computing [7].
Edge computing is based on an architecture of edge devices that carry out a sub-
stantial amount of computation and storage, while keeping the communication
locally and interacting with a backbone Cloud only if necessary. According to
Cisco [18], Internet traffic is moving towards the edge: “edge networking contin-
ues to gain more intelligence and capacity to support evolving network demands
and superior network experiences.” Edge computing realizes closer proximity to
end-users and wider geographical distribution. This evolution makes Edge com-
puting a natural fit with the paradigm of MAS. In particular, pushing intelligence
to the edge of the network at distributed devices that sense the environment,
produce huge amounts of data, autonomously decide which data are relevant and
which may be discarded, and coordinate based on some criterion (geographical
proximity, type of sensed events, format of produced data, etc.) are clearly char-
acteristics of agents and MAS. Nevertheless, little research has been devoted to
the adoption of MAS for edge computing (one example is [60]). However, there
are plenty of opportunities in this area.

One interesting idea could be to employ a hierarchical MAS architecture. At
the bottom level, software agents are associated with edge devices forming an
“edge MAS.” These simple “micro agents” equipped with sensors and actuators
may be capable of filtering out data based on some criteria, process the data they
manage based on instructions received from “coordinator agents” at a higher
level in the hierarchy, and perform local actions as needed. Coordinator agents
would coordinate a set of micro agents and guide them in their tasks to achieve
the required functional goals of the system as well as the quality goals such as:
minimize redundancy of data transmission, optimize the power consumption of
edge devices, and minimize the exposure of sensitive data to comply with privacy
policies. The set of micro agents managed by coordinator agents may be selected
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dynamically, as edge devices may be mobile or they may be switched on and off,
and so would be their associated micro agents. To that end, the coordinator
agents need to negotiate in order to coordinate the management tasks of the
micro agents. Furthermore, coordinator agents could be managed themselves by
“back-end agents” that are situated at the next level of the hierarchy. Back-end
agents are provided with high-level goals that they break down into tasks that
are allocated to coordinator agents. The back-end agents interact with users
through the Cloud to have their goals achieved and return results.

Realizing such MAS hierarchy will be a challenging endeavor. It requires an
architecture that combines vertical coordination (at each layer decomposing and
delegating complex tasks to the next layer of agents, taking into account the
resources available at each layer) as well as horizontal coordination (dynamic
coordination and distribution of responsibilities among agents at each layer).
Particular challenges here include the alignment of coordination within and
across layers, the management of potentially huge amounts of data, dealing with
strict resource constraints, and dynamics in the operating conditions that are dif-
ficult or impossible to predict before deployment and hence can only be resolved
during operation.

4 Distributed Ledgers and Blockchain

Distributed ledgers can be described as “asset databases that can be shared
across a network of multiple sites, geographies or institutions. All participants
within a network can have their own identical copy of the ledger. Any changes to
the ledger are reflected in all copies in orders of minutes, or in some cases even
seconds.”2 Distributed ledgers require several underlying technologies, which dif-
fer in the way transactions are validated and stored. A common technology is
a blockchain [61]. A blockchain is a growing list of records, called blocks. Each
block contains a cryptographic hash of the previous block, a timestamp, and
transaction data (generally represented as a Merkle tree). Distributed ledgers
may be permissioned or permissionless regarding if anyone or only approved
people can run a node to validate transactions. Ledgers also vary in the consen-
sus algorithm, e.g., using proof of work, proof of stake, and voting systems.

A core aspect of distributed ledgers is that there is no central administrator or
centralized data storage. Hence, distributed ledgers share the intrinsic property
of decentralization with MAS. Some of the potential key benefits of distributed
ledgers for MAS are support for: (i) automation of establishing agreement among
entities that in principle do not trust each other, and (ii) inherent support for
security, which is a critical but poorly studied concern in MAS engineering. A
recent review of 14 studies that consider blockchain technology in MAS highlight
application scenarios, motivations, assumptions, strengths and limitations, and
challenges for future research in this area [16].

2 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/
attachment data/file/492972/gs-16-1-distributed-ledger-technology.pdf.

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
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One particular interesting idea for integrating distributed ledger technology
with MAS is combining them with so called “smart contracts.” A smart contract
defines a protocol that allows to facilitate, verify, or enforce the negotiation of a
contract among stakeholders, in a digital way. These transactions are tractable
and irreversible without requiring involvement of third parties. Integrating dis-
tributed ledgers with smart contracts and MAS paves the way to new interesting
scenarios. An example is automating the governance of groups of geographically
distributed people that are represented by software agents acting on their behalf.
Such an approach could dramatically reduce the cost for reaching an agreement,
while formally enforcing relationships between people, institutions, and their
assets, using standardized transaction rules.

Exploiting the opportunities that distributed ledger technology and smart
contracts may offer for MAS requires several challenges to be resolved. Among
these are current limitations in the scalability of blockchain technology, the need
to ensure the correctness of smart contracts in particular with respect to security
requirements, and the need to ensure the required level of privacy and anonymity
of users. While these are challenges that go beyond the integration with MAS,
they are crucial for the adoption of the technology integrated with MAS.

5 Cyber-Physical Systems and Internet-of-Things

E. Lee described Cyber-physical systems (CPS) as “integrations of computation
and physical processes. Embedded computers and networks monitor and con-
trol the physical processes, usually with feedback loops where physical processes
affect computations and vice versa” [41]. Compared to traditional embedded sys-
tems, i.e. hardware-intensive systems with well-defined interfaces and boundaries
delivering specific services to their end-users under often stringent reliability and
safety requirements, CPS are more interconnected and more dependent on soft-
ware for their operation. Recently, the notion of “smart” CPS has been coined
[15], emphasizing that such CPS are enhanced with additional software that
enables these systems to make autonomously (or semi-autonomously) decisions
that traditionally have been made by humans. An example domain is road traf-
fic management that integrates interaction between roadside sensors, local con-
trollers, networked vehicles and in-car advisory systems to manage traffic. Other
examples are smart power grids in which software-rich metering and appliance
switching, and distribution management software, directly affect the physical
process of delivering electricity.

A closely related area is the Internet of Things (IoT) [3,4] that extends Inter-
net connectivity into physical devices and everyday objects. These devices and
objects can communicate locally with each other and with users via gateways
over the Internet to collect monitored data and perform control actions. An
example is building management for managing heating, ventilation, air condi-
tioning, access control, and lighting. Another example is smart products used in
agriculture where software-rich processes make decisions based on for example
grain processes and weather forecasts, while interacting with the controllers of
autonomous machines in the fields.
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Despite the natural fit between large-scale CPS and IoT on the one hand and
MAS on the other hand, only a few researchers have proposed agent-oriented
solutions for modelling, simulating, and analyzing CPS, examples are [42,64,66,
67,78]. However, there is a huge potential for the MAS community to contribute
to the engineering of CPS and IoT. The large body of work on agent interaction
protocols, coordination mechanisms, trust models, holonic models, and agent-
based modeling and simulation, can be exploited to help tackling the challenges
of engineering of CPS and IoT.

One concrete idea for the engineering of CPS and IoT is supporting the coop-
eration across entities within and across systems, which is needed to enable the
constituting elements of such systems to work together effectively (for example,
the cooperation between self-driving cars or unmanned aerial vehicles). Since
such cooperation is tied to the context and situation, the formation of coopera-
tive teams requires a dynamic solution that opportunistically reshapes the teams
during operation addressing the situations at hand. Such on-the-fly formation of
teams requires teams to become first-class citizens in the design and operation of
CPS and IoT. The body of work on team formation provides a starting point to
tackle these challenges but realizing an effective solution raises many issues. As
highlighted by the US National Science Foundation3 realizing practical solutions
to CPS and IoT poses the following challenges:

– Which architecture better suits the intertwining of physical and software com-
ponents, and their interaction?

– How to deal with distributed decision making and coordination?
– How to simulate, test and verify CPS?
– How to trust autonomous systems that learn from their experience?
– Which methodology can better cope with these issues?

Another prominent issue that has been raised is the privacy and security of users
related to the devices used in CPS and IoT and their intention of pervasive
presence. Any MAS solution that wants to be effective in practice will need to
deal with these issues.

6 Green Computing

Green computing aims at reducing environmental impact that results from oper-
ating the computing artefacts [12,21]. In particular, green computing aims at
maximizing energy efficiency throughout the lifetime of products and recycla-
bility of defunct products and factory waste. Green computing is important for
all classes of computing systems, ranging from hand-held systems and embed-
ded system to large-scale data centers. Since modern computing systems blend
people, software, and hardware, any green computing initiative must cover all
of these areas. However, a solution cannot ignore user satisfaction, return on
investment, and regulatory compliance.

3 https://www.nsf.gov/publications/pub summ.jsp?ods key=nsf19553.

https://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf19553
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Agents and MAS have a huge potential to contribute to green computing.
We highlight one particular area: optimized management and distribution of
electric power. The idea of exploiting agents and MAS for saving energy dates
back to 2000 [23], and the topic has been addressed over the years in connection
to several domains, including CPS [80], micro-grids [27], and smart grids [43].
A recent survey discusses how MAS have been applied in energy optimization
problems [31].

An interesting idea to enhance electric power distribution could be through
novel bio-inspired optimization techniques. Swarms of agents might look for
available sources of renewable energy and might leave traces leading to those
that still have power to sell. Alternatively, sources of energy may emit compu-
tational fields that inform interested parties of available energy. Some of the
sources of energy may be know in advance, others may appear or disappear at
will. However, in most cases the available sources of energy will vary over time.
Hence, the search for available energy needs to be carried out at run time, in a
highly dynamic environment. Such search may be guided by different criteria,
including neighborhood (e.g., environment-safe power plants first), and balance
between the “quality” of energy w.r.t. environmental footprint and the cost to
transport the energy from source to consumer.

Realizing such MAS enabled green energy provisioning platform comes with
numerous challenges; the results achieved by the MAS community in designing
swarm-based MAS platforms, supporting the ability to express policies and trust,
providing mechanisms to balance individual versus global goals, and mechanisms
to enforce global policies, may help in tackling them. Besides technical challenges,
regulatory issues must be also considered: the software solution needs to be
aligned with the underlying laws of electricity as well as the economics of supply
and demand.

7 Conclusions

In this chapter, we have reflected on the role and potential of MAS engineer-
ing in a number of key facets that characterize modern software engineering
practice. We have in particular focused on the facets that challenge the very
principles of MAS, such as Cloud computing and distributed ledgers that chal-
lenge the inherent decentralized nature of MAS. For each facet, we highlighted
the motivation and emerging developments, and we exemplified initial efforts in
the context of MAS engineering. Then we proposed novel ideas that could drive
research in MAS engineering for each of the facets, and we highlighted some of
the challenges.

We conclude this chapter with a final facet, that is orthogonal to all the
other facets we presented and will be crucial for the future of software engineer-
ing and thus also MAS engineering: ethics. The advance of systems becoming
increasingly intelligent (“smarter”) and taking decisions on behalf of humans
raises various ethical issues. Recent efforts such as [44] and [5] explored ethics
in different stages of the software engineering lifecycle. Ethics and intelligent
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machines has emerged as a main concern for both scientists, politicians, and
users in general. The Asilomar AI Principles4 put forward ethical guidelines,
both in the short and in the long term. These guidelines invite the MAS engi-
neers to rigorously deal with various ethical aspects. We highlight three princi-
ples. For example, the sixth principle states: “Safety: intelligent systems should
be safe and secure throughout their operational lifetime, and verifiably so where
applicable and feasible.” Aligning with this principle will require MAS engineers
to employ verification techniques (at development time and at runtime) suit-
able for autonomous, open, dynamic, distributed systems. While many efforts
have been done in this direction, see for example [2,10,11,14,28,29,37], verifying
MAS is still an open issue. The seventh principle states: “Failure Transparency:
If an intelligent system causes harm, it should be possible to ascertain why.”
Aligning with this principle requires the system to have well defined capabilities
and responsibilities that allow to inspect and explain their behavior to different
stakeholders. The tenth principle states “Value Alignment: Highly autonomous
intelligent systems should be designed so that their goals and behaviors can
be assured to align with human values throughout their operation.” Dealing
with this principle calls for an explicit representation of goals and behaviours of
autonomous systems. While some of these ethical principles are closer to com-
mon practice in MAS engineering, others are not and will require a cultural shift
in the way we perform research and build solutions for users in practice.

We hope that our reflections on key facets in the engineering of software-
incentive systems and the opportunities and challenges these facets raise for MAS
engineering will be a source of inspiration for researchers to further progress our
field in the coming years and transfer the output of our research to practice.
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45. Lützenberger, M., Küster, T., Masuch, N., Fähndrich, J.: Multi-agent system in
practice: When research meets reality. In: Proceedings of the 2016 International
Conference on Autonomous Agents & Multiagent Systems, AAMAS 2016, pp. 796–
805. International Foundation for Autonomous Agents and Multiagent Systems
(2016)

46. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applica-
tions: the TOTA approach. ACM Trans. Softw. Eng. Methodol. 18(4), 15:1–15:56
(2009)

47. Muccini, H., Sharaf, M., Weyns, D.: Self-adaptation for cyber-physical systems: a
systematic literature review. In: Proceedings of the 11th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2016,
pp. 75–81. ACM (2016)

48. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)

49. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordina-
tion artifacts: environment-based coordination for intelligent agents. In: AAMAS,
pp. 286–293. IEEE Computer Society (2004)

50. Oreizy, P., et al.: An architecture-based approach to self-adaptive software. IEEE
Intell. Syst. Appl. 14(3), 54–62 (1999)

51. Parunak, H.V.D., Weyns, D.: Guest editors’ introduction, special issue on envi-
ronments for multi-agent systems. Auton. Agent. Multi-Agent Syst. 14(1), 1–4
(2007)

52. Rajkumar, R., Lee, I., Sha, L., Stankovic, J.A.: Cyber-physical systems: the next
computing revolution. In: Sapatnekar, S.S. (ed.) Proceedings of the 47th Design
Automation Conference, DAC 2010, Anaheim, California, USA, 13–18 July 2010,
pp. 731–736. ACM (2010)

53. Russell, S.J., Norvig, P.: Artificial Intelligence – A Modern Approach, 3rd edn.
Pearson Education, London (2010)

54. Satyanarayanan, M.: Pervasive computing: vision and challenges. IEEE Pers. Com-
mun. 8(4), 10–17 (2001)

55. Schelfthout, K., Coninx, T., Helleboogh, A., Holvoet, T., Steegmans, E., Weyns,
D.: Agent implementation patterns. In: Workshop on Agent-Oriented Methodolo-
gies, 17th Annual ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA02) (2002)

56. Shehory, O., Sturm, A.: Multi-agent systems: a software architecture viewpoint. In:
Shehory, O., Sturm, A. (eds.) Agent-Oriented Software Engineering: Reflections on
Architectures. Methodologies, Languages, and Frameworks, pp. 57–78. Springer,
Berlin Heidelberg (2014). https://doi.org/10.1007/978-3-642-54432-3 4

57. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016)

58. Shoham, Y.: Agent-oriented programming. Artif. Intell. 60(1), 51–92 (1993)

https://doi.org/10.1007/978-3-642-54432-3_4


Engineering Multi-agent Systems Anno 2025 15

59. Singh, M.P.: Agent communication languages: rethinking the principles. Computer
31(12), 40–47 (1998)

60. Suganuma, T., Oide, T., Kitagami, S., Sugawara, K., Shiratori, N.: Multiagent-
based flexible edge computing architecture for IoT. IEEE Network 32(1), 16–23
(2018)

61. Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media Inc.,
Sebastopol (2015)

62. Sycara, K.P., Pannu, A., Williamson, M., Zeng, D., Decker, K.: Distributed intel-
ligent agents. IEEE Expert 11(6), 36–46 (1996)

63. Tambe, M.: Towards flexible teamwork. J. Artif. Intell. Res. 7, 83–124 (1997)
64. Ulieru, M.: Design for resilience of networked critical infrastructures. In: 2007 Inau-

gural IEEE-IES Digital EcoSystems and Technologies Conference, pp. 540–545.
IEEE (2007)

65. Van Dyke Parunak, H.: “Go to the ant”: engineering principles from natural multi-
agent systems. Ann. Oper. Res. 75, 69–101 (1997)

66. Wang, L., Haghighi, A.: Combined strength of holons, agents and function blocks in
cyber-physical systems. J. Manuf. Syst. 40, 25–34 (2016). SI: Challenges in Smart
Manufacturing

67. Wang, S., Wan, J., Zhang, D., Li, D., Zhang, C.: Towards smart factory for indus-
try 4.0: a self-organized multi-agent system with big data based feedback and
coordination. Comput. Netw. 101, 158–168 (2016)

68. Weyns, D.: An architecture-centric approach for software engineering with situated
multiagent systems. Ph.D., Katholieke Universiteit Leuven, Belgium (2006)

69. Weyns, D.: Architecture-Based Design of Multi-Agent Systems. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-01064-4

70. Weyns, D.: Software engineering of self-adaptive systems. Handbook of Software
Engineering, pp. 399–443. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-00262-6 11

71. Weyns, D., Helleboogh, A., Holvoet, T.: How to get multi-agent systems accepted
in industry? IJAOSE 3(4), 383–390 (2009)

72. Weyns, D., Holvoet, T.: Architectural design of a situated multiagent system for
controlling automatic guided vehicles. J. Agent-Oriented Softw. Eng. 2(1), 90–128
(2008)

73. Weyns, D., Michel, F.: Agent environments for multi-agent systems – a research
roadmap. In: Weyns, D., Michel, F. (eds.) E4MAS 2014. LNCS (LNAI), vol. 9068,
pp. 3–21. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23850-0 1

74. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. Auton. Agent. Multi-Agent Syst. 14(1), 5–30 (2007)

75. Weyns, D., Ramachandran, G.S., Singh, R.K.: Self-managing internet of things.
In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.)
SOFSEM 2018. LNCS, vol. 10706, pp. 67–84. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-73117-9 5

76. Wooldridge, M., Jennings, N.R.: Agent theories, architectures, and languages: a
survey. In: Wooldridge, M.J., Jennings, N.R. (eds.) ATAL 1994. LNCS, vol. 890,
pp. 1–39. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-58855-8 1

77. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl.
Eng. Rev. 10(2), 115–152 (1995)

78. Zalila-Wenkstern, R., Steel, T., Leask, G.: A self-organizing architecture for traffic
management. In: Weyns, D., Malek, S., de Lemos, R., Andersson, J. (eds.) SOAR
2009. LNCS, vol. 6090, pp. 230–250. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14412-7 11

https://doi.org/10.1007/978-3-642-01064-4
https://doi.org/10.1007/978-3-030-00262-6_11
https://doi.org/10.1007/978-3-030-00262-6_11
https://doi.org/10.1007/978-3-319-23850-0_1
https://doi.org/10.1007/978-3-319-73117-9_5
https://doi.org/10.1007/978-3-319-73117-9_5
https://doi.org/10.1007/3-540-58855-8_1
https://doi.org/10.1007/978-3-642-14412-7_11
https://doi.org/10.1007/978-3-642-14412-7_11


16 V. Mascardi and D. Weyns

79. Zambonelli, F., Jennings, N.R., Wooldridge, M.J.: Developing multiagent systems:
the Gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

80. Zhao, P., Simões, M.G., Suryanarayanan, S.: A conceptual scheme for cyber-
physical systems based energy management in building structures. In: 2010 9th
IEEE/IAS International Conference on Industry Applications - INDUSCON 2010,
pp. 1–6, November 2010



Programming Agents and MAS



Pitfalls of Jason Concurrency
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Abstract. Jason is a well-known programming language for multia-
gent systems where fine-grained concurrency primitives allow a highly-
concurrent efficient execution. However, typical concurrency errors such
as race conditions are hard to avoid. In this chapter, we analyze a number
of such potential pitfalls of the Jason concurrency model, and, describe
both how such risks can be mitigated in Jason itself, as well as discussing
the alternatives implemented in eJason, an experimental extension of
Jason with support for distribution and fault tolerance. In some cases,
we propose changes in the standard Jason semantics.

Keywords: Jason programming · Concurrency

1 Introduction

Jason [1] is a well-known programming language for multiagent systems (MASs)
with a well established formal semantics based on Agent Speak [6].

Programming multiagent systems is not an easy task, as it involves coordi-
nating the concurrent execution of a set of independent agents (akin to processes
in mainstream concurrent programming), each of which may also be composed of
a set of independently executing intentions (in mainstream programming often
named threads). In Jason agents communicate through message passing, afford-
ing a high-level of control, whereas intra-agent communication between inten-
tions is realised through asserting and retracting beliefs in the shared belief base.

In previous work we have introduced eJason [3,4], an extension to Jason
where new features have been added to cope with distribution and fault-tolerance
in MAS. As a first step to extend Jason with these features, we analyze in this
chapter to what respect the concurrency model of Jason enables programmers
to develop concurrent multiagent systems without running into the usual pitfalls
of concurrency, i.e., difficult to handle race conditions. Clearly the fine-grained
concurrency primitives present in Jason, where the belief database is shared
among all concurrent interactions, promise highly-concurrent efficient execution,
but at the same time the programmer should be provided with convenient high-
level language constructs for controlling the amount inter-agent concurrency.

Intra-agent concurrency has been an issue of study for some time, in partic-
ular regarding how to resolve conflicts among goals when agents pursue multiple
goals. In [7] conflicts are handled in the goal level by representing conflicting
c© Springer Nature Switzerland AG 2019
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goals. A difficulty with this approach is that all plans for a conflicting goal are
considered conflicting, i.e., non-conflicting alternative plans that can achieve the
same goal are not considered. This issue is addressed in [8] which examines differ-
ent strategies for resolving conflicts, such as dropping intentions, or modifying
intentions with regards to the selection of plans for solving goals. Automatic
detection of conflicts is the approach followed by [9], where means for reason-
ing about the goal interactions are incorporated into the commercial BDI agent
development platform JACK, and evaluated empirically.

In this chapter we take Jason as the programming platform of study and dis-
cuss its semantics and implementation with regards to some concurrency prob-
lems that may arise.

The rest of the chapter is structured as four sections, each describing a poten-
tial difficulty with a Jason concurrency mechanism, discuss how the difficulties
can be mitigated in Jason itself, and alternative solutions implemented in eJa-
son. In Sect. 2 we discuss mechanisms to control the amount of concurrency
among a set of interaction, whereas Sect. 3 examines the possibility that the
context of a plan may be false when the plan body starts executing. Next, in
Sects. 4 and 5 we consider the mechanisms for handling failing achievement and
test goals respectively, and alternatives to such early failures, i.e., goal suspen-
sion. Section 6 discusses how the changes implemented in eJason impacts the
reasoning cycle of agents, whereas Sect. 7 draws conclusions.

2 Mechanisms for Synchronizing Access to Shared Beliefs

A Jason agent can possess several foci of attention, corresponding to the differ-
ent intentions of the agent. These intentions compete for the attention of the
agent, and the decision on which intention to execute, in each iteration of the
reasoning cycle, is determined by the intention selection function of the agent.
The execution order of the different intentions is not always irrelevant. The plans
in the different intentions access and update the information stored in the belief
base. Therefore, the modification of the set of beliefs, derived from the execu-
tion of an intention, may affect the outcome (or even prevent the execution)
of other executable intentions. The programmer must then consider these data
dependencies between the different intentions, and, when necessary, control the
synchronisation of the execution of such intentions.

2.1 Nondeterministic Execution Implies Nondeterministic
Belief Bases

To illustrate the difficulties that may be caused by sharing beliefs among a set
of interactions, consider the Jason agent in Fig. 1, which counts the number of
files that were loaded.

Consider an agent with only this plan in its plan base and with initial goals
g1 = !load(file1) and g2 = !load(file2). The intentions corresponding to
these goals are composed by one instance of the plan above, i.e., I1 = [p1] for g1
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+!load(File) <-

load(File); // a

?files_loaded(Num); // b

-+files_loaded(Num+1). // c

Fig. 1. Jason plan for the file counter

and I2 = [p2] for g2 with plan bodies {a1; b1; c1} and {a2; b2; c2}, respectively,
where a1 represents the formula a applied to g1, and so on.

Tracing the execution of the agent code, using the standard intention selec-
tion function, may show that the counter is not always properly updated, as
sometimes it only records the loading of one file, while, in fact, two files have
been loaded. A simple exploration of all possible execution traces, represented
by the different possible interleavings of the actions in the plan bodies, exposes
the root causes of the problem. These interleavings are depicted in Fig. 2. This
figure shows a graph where each node, labelled I1I2Ctr, represents a different
configuration of the mental state of the agent such that Ii ∈ {ai, bi, ci}∪X
for i ∈ {1, 2} corresponds to the action to be executed if the intention Ii gets
selected by the intention selection function (the symbol X is used as a place-
holder if the corresponding intention has been fully executed) and Ctr is the
value of the counter (i.e., a belief file loaded(Ctr)). For instance, the node
b1X1 corresponds to a mental state such that the selection of the intention I1
implies the execution of the formula b1, the intention I2 has been fully executed
and the belief base contains a belief files loaded(1). Note then that the node
XX2 corresponds to the outcome desired (i.e., the counter is properly updated),
while the node XX1, shadowed in the graph, corresponds to an undesirable
one (i.e., when the counter only records the loading of a single file, instead of
two). The different edges in the graph represent the transition between mental
states, and their label corresponds to the formula executed during that transi-
tion. For instance, the outgoing edge a1 (resp. a2) from the node a1a20 to the
node b1a20 (resp. a1b20) represents the transition triggered by the execution
of the formula a1 = load(file1) (resp. a2 = load(file2)). The analysis of the
execution traces shows that the undesired outcome occurs when the actions b1
and b2 (i.e., the actions where the value of the counter is read) have been exe-
cuted without the execution of neither c1 nor c2 (i.e., the actions that update
the counter) in-between (i.e., all traces containing the state c1c20). The reason
is that, in these cases, one of the intentions is handling outdated information
regarding the counter and, therefore, the result is incorrect.

2.2 Jason Solutions

In a sense, the problem is a standard one in concurrent programming, i.e., how to
prohibit “bad” program executions where the concurrent execution of different
threads (or intentions in Jason) incorrectly interfere with each other due to
concurrent access to a shared program state (in Jason, the belief base). The
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Fig. 2. Possible interleavings for the counter update example.

Java programming language, for instance, has synchronized objects to prevent
concurrent access, and a number of more advanced mechanisms for controlling
concurrent access available in the java.util.concurrent library.

Atomic Plans. The Java implementation of Jason enables the labelling of plans
as a way of including meta-level information that alters the reasoning cycle of
the agent. The label atomic is one of such labels. A plan labelled as atomic, also
referred to as atomic plan, is such that, once this plan is selected for execution
during an iteration of the reasoning cycle, all subsequent iterations will also
select this intention until the atomic plan is fully executed. More informally, the
atomic label represents a way of temporarily disabling the multiplicity of foci of
attention, keeping the attention of the agent in the intention until the atomic
plan is executed.

In order to avoid the data dependency explained in the previous section, an
atomic plan can be used. For instance, by replacing the plan in Fig. 1 with the
two (semantically dependent) plans provided in Fig. 3.

The revised plans guarantee that the formulas b and c are always executed
consecutively, removing the execution traces that led to the wrong result. This
solution can be used not only for belief updates, but also more generally to
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+!load(File) <-

load(File); //a

!update_counter.

@up[atomic]

+!update_counter <-

?files_loaded(Num); //b

-+files_loaded(Num+1). //c

Fig. 3. File counter with an atomic plan

implement behaviours that require the agent to maintain its focus of attention
on the same intention for several iterations of the reasoning cycle.

Note that such a solution may require the introduction of additional plans
in order to delimit the scope for the atomic execution.

2.3 eJason Solution: Critical Sections

The eJason language proposed the definition of critical sections to reduce the
amount of concurrency among interactions. Syntactically a critical section is
enclosed within braces, i.e., “{{” and “}}”. When an agent executes a formula
within a critical section, there can be no concurrent change in the focus of
attention as long as the critical section has not been exited. Using critical sections
as the synchronisation mechanism, the counter agent may be written as shown
in Fig. 4.

+!load(File) <-

load(File);

{{?files_loaded(Num);

-+files_loaded(Num+1)}}.

Fig. 4. File counter with eJason critical sections

This plan provides the same functionality as the combination of the two plans
in Fig. 3, i.e., Jason atomic plans and eJason critical sections are equivalent. In
the case of atomic plans, the parametrisation (via labelling) of the intention
selection function requires the programmer to consider the different intentions
that may conflict, and establish a priority order for their execution. In contrast,
using critical sections, the programmer only identifies the program regions which
should be executed without interference from other intentions of the agent.

Labelling Conflicting Plans. Recently Jason has been extended with a new
interesting feature [10], where plans may be declared as conflicting with other
plans, with the intention that conflicting plans may not be concurrently executed,
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whereas non-conflicting plans can be. In the example above, we can specify that
the up plan conflicts with itself, by using the conflict identifier self. Then,
the [atomic] declaration can be removed. Thus, in a sense, the possibility to
explicitly label plans as conflicting refines the notion of atomic plans.

The ASTRA Approach. Another approach to controlling concurrency in
languages based on AgentSpeak is demonstrated by the ASTRA [2] language.
There critical sections are associated with an identifier (similar to the Java syn-
chronized blocks), such that for any identifier, at any time there is at most one
intention executing a critical section labelled by that identifier. Clearly, similarly
to the approach with labelling conflicting plans, this proposal also permits an
increased amount of concurrency (compared with using an universally shared
critical section) among a set of concurrent interactions.

2.4 What Is the Right Solution?

Providing programming languages with effective tools for managing finely
grained concurrency is currently a very active research area, largely driven by
the increased commercial availability of multi-core processors. However, there is,
in our opinion, no clear consensus on what the right programming model and the
right concurrency primitives are, and it is not surprising that the same situation
holds for programming languages related to AgentSpeak.

Considering the eJason solution, for instance, it, in our opinion, represents a
step forward in that it defines formally, in the eJason semantics, the behaviour
of the new construct. On the other hand, to program highly concurrent agents
by sharing a single critical section is likely to prove too inefficient in practise.

Borrowing inspiration from Java again, apart from the critical sections,
whether labelled to permit more concurrency or not, we find the locks and con-
ditions provided by the java.util.concurrent.locks library, which permits
the programming of more flexible locking policies compared with basic critical
sections. One interesting adaptation of that library is represented by the work
on shared resources [5], where concurrent executions are guarded by concurrency
preconditions, such that the execution of a resource blocks until its concurrency
precondition (which are general predicates on the resource state) becomes true.
As an item of future work, it would be interesting to implement this approach
in eJason, essentially labelling critical section with general predicates over the
agent state restricting access. Of course, in such an approach, care has to be
taken in order to ensure efficient execution.

3 Executing Selected Event Plans in Matching Contexts

Consider a simplified multi-agent system with a classical client-server architec-
ture. The client agents should write information into different files. In order to
avoid conflicts generated by simultaneous write attempts to the same file by dif-
ferent agents, the access to the file is managed by a server agent. A client agent
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+!write(FName, Text) : true <-
.send(server, achieve, lock(FName));
.wait("+granted(FName)");
write(Text, FName);
.send(server, achieve, unlock(FName)).

Fig. 5. Jason code for the client agents

sends a message to the server agent to request the exclusive rights to access a
file before it can write into the file. When the exclusive access to the file is no
longer necessary, the client agent sends a message to the server agent to unlock
the resource.

An implementation in Jason of the a client is depicted in Fig. 5. Before a client
agent writes some text, Text, into a file, FName, it must first send an achieve
message to the server requesting the lock over the file (i.e., delegating a goal of
the shape !lock(FName) to the server). Then, it waits for the notification about
the acquisition of exclusive access to the file. This notification is represented by
a belief update event +granted(FName). After the reception of this notification,
the client agent writes the text into the file and requests the server to unlock
the file (again, delegating this task as an achievement goal).

The Jason code for the server agent is shown in Fig. 6. The plan, referred
to as PSrv1, handling the achievement goal to lock some file, FName, delegated
from some client, Client, requires such a file to exist and not to be blocked
by another agent. If these conditions hold, the first plan can be applied, which
amounts to adding a mental note, +blocked(Client, FName), recording that
Client has exclusive access to the file FName. Then, it notifies the client by
sending a tell message with the belief granted(FName). The plan handling the
achievement goal to unlock a file, referred to as PSrv2, checks whether the file
exists and whether it is locked by the same agent that attempts to unlock it.
The recipe provided by this plan implies erasing the aforementioned mental note
that records the exclusive access granted to the agent Client over the file FName
and, finally, notifying this client agent about the successful unlocking of the file.

+!lock(FName)[source(Client)] : //PSrv1
file(FName) & not blocked(_,FName)<-

+blocked(Client,FName);
.print("Agent ",Client," locks ",FName);
.send(Client, tell, granted(FName)).

+!unlock(FName)[source(Client)] : //PSrv2
file(FName) & blocked(Client,FName) <-

-blocked(Client,FName);
.print("Agent ",Client," unlocks ",FName);
.send(Client, tell, unlocked(FName)).

Fig. 6. Jason code for the file server agent
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Unfortunately, according to the semantics of Jason, a possible execution of
the above server, in the presence of another unrelated intention (I), is the fol-
lowing:

1. Two clients (c1 and c2) attempt to lock the same file, and send lock requests
to the server.

2. The server receives both lock requests, and selects the event corresponding
to the request from (c1), selects the plan corresponding to the case where
the server is not blocked, and instantiates an intention corresponding to that
plan.

3. However, instead of executing the intention corresponding to the new event,
the unrelated intention I is chosen instead.

4. Next, the event corresponding to the lock event by c2 is chosen, and the
corresponding new intention is executed, thus locking the resource.

5. Finally, the intention corresponding to the lock request by c1 is executed,
but in a state where the plan context is no longer valid, as the server is now
blocked (by beginning serving request c2).

The problem here stems from the fact that the evaluation of a plan context
and the execution of its plan body are decoupled. The Jason semantics allow
several iterations to take place between the one in which the plan context is
evaluated and deemed applicable; and the iteration in which the plan is chosen
for execution.

In our opinion this is a severe problem, making it quite hard to write reliable
event handling code.

3.1 Jason Implementation Solution: Always Select Event Intentions

In the current Jason implementation this problem is addressed in the default
intention selection function, by always placing the intention updated in the rea-
soning cycle first in the “intention queue”, and using a round-robin intention
scheduling strategy [1]. Note that a programmer can still replace this default
intention selection function with another one which, albeit faithful to the seman-
tics, suffers from the above problem.

3.2 eJason Solution: Consecutive Evaluation and Execution
of a Plan

The original solution implemented in eJason was to examine the agent plan
chosen to handle a particular event, and with a satisfied context. If this plan
begins with a critical section, the corresponding intention is always executed
first. Otherwise the evaluation of the context and the execution of the intention
is, potentially, decoupled.
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3.3 A Better Solution: Modifying the Jason Semantics

In retrospect the eJason implementation is not particularly satisfying. Having
to specify a critical section for potentially every agent plan is a classical instance
of unwanted boilerplate code. On the other hand the current Jason implemen-
tation solution is far from perfect too, as it, as far as we can understand, always
gives priority to event handling over executing other intentions. Instead, in our
opinion, it would be beneficial to modify the Jason semantics to remove the
doubt whether a Jason implementation may ever decouple the execution of the
plan context from beginning to execute the plan body. Permitting an interleaved
execution of these basic plan steps complicates the task of a Jason programmer,
with little gain.

Thus we argue for a Jason semantics change which: (i) strongly couples the
execution of the plan context with the evaluation of the first part of the plan
body, and (ii) does not give priority to handling events compared to executing
intentions. We plan to publish the resulting semantics in a forthcoming publica-
tion.

4 Ensuring that Achievement Goals Are Not Dropped

In the example in Fig. 6, whenever a server agent gets the lock over a file, the
requests from different client agents to lock the same file are disregarded, i.e.,
simply dropped, by the server agent, since the context of the relevant plan PSrv1
cannot be satisfied.

This is another illustration of the difficulties posed by concurrent, or nonde-
terministic execution. That is, if we cannot precisely control the order and timing
in which beliefs are asserted, or retracted, we may fail to predict situations (sys-
tem states) where a goal may incorrectly be dropped because its context is not
satisfiable. In other words, we risk creating fragile programs which normally work
well but, in rarely encountered scenarios, fail. For programming such concurrent
systems we believe it would be advantageous to have goal matching mechanisms
that are less sensitive to the way the belief base changes over time.

As a second example, illustrating the difficulties in programming plans that
are robust to all different situations where they may be tried, consider the agent
below:

at(office). // Initial belief

!go(home). // Initial goals
!read(book).

+!read(Item): at(home) <-
read(Item).

+!go(home): at(office) <-
drive(home).
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This agent is initially at the office and possesses, simultaneously, the desires
of going home and reading a book. There are two possible outcomes for the
execution of this agent. In both of them, the agent goes home (as the plan to
accomplish such desire is always applicable in the initial state). However, the
agent does not always satisfy its desire of reading a book, since the plan for
doing so may be evaluated too soon (in the office), and thus dropped.

A programmer intending the agent to achieve both goals has to ensure that
the goals are selected in the desired order. This requires considering all the pos-
sible interleavings and implementing some suitable synchronisation mechanism.
The complexity of this synchronisation increases exponentially with respect to
the number of goals to synchronise.

4.1 Jason Solution: Explicitly Requeue Achievement Goals

The simplest solution to avoid dropping all the achievement goals that cannot be
immediately handled due to the lack of applicable plans implies recording them
within the mental state in order to pursue them in the future. This solution can
be achieved, e.g., adding a new plan, PSrv3, whose context matches whenever
the file is already blocked by a different client agent. Following this plan, the
server agent records the requests that cannot be immediately served by, e.g.,
returning the achievement goal addition event to the set of events:

+!lock(FName)[source(Client)] : //PSrv3
file(FName) & blocked(_,FName)<-
!lock(FName)[source(Client)]. // requeue

This solution, and similar ones, require the programmer to introduce a num-
ber of “fail-back” plans whose context is satisfied whenever the contexts of other
(preferred) plans are not. This can obscure the code, and moreover, is danger-
ously fragile as it is easy to overlook situations where plans may fail due to
non-satisfied contexts.

Besides, note that by just enqueueing again the selected achievement goal
addition event, the mental state of the agent is reinstated after a complete iter-
ation of the reasoning cycle, hence consuming computational resources without
changing the aforementioned mental state. Moreover, given the non-determinism
of the selection functions, this event may be selected in consecutive iterations of
the reasoning cycle, possibly enqueueing it in all such iterations (this behaviour
is guaranteed if the belief base of the agent has not been updated, e.g., by other
intentions, in-between), degrading the performance of the agent.

4.2 eJason Solution: Requeuing Not Applicable Achievement Goals

The alternative approach proposed in this chapter implies not generating a fail-
ure event for achievement goal addition events (i.e., events of the shape {+!g, ι}).
Instead, when one of these events is selected and there are no relevant or appli-
cable plans for it, the event is returned to the set of events of the agent (i.e.,
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requeued). This way, the programmer does not need to be concerned about the
timing of the selection of these events as they can be selected again later. For
instance, the agent in the simple example above would always go home and
read a book (i.e., avoiding possible race conditions), hence resulting in a single
possible outcome for the agent program.

Note that it could be the case that the intention of the programmer were to
provide a means for the agent to abandon its desire of reading a book when not
at home. In our opinion, such behaviour should not rely on the randomness of
the intention selection function. Instead, the constructs already provided by the
language, like the internal action .drop intention, should be used. The following
example shows how this construct can be used in this case:

at(office). // Initial belief

!go(home). // Initial goals
!read(book).

+!read(Item): at(home) <-
read(Item).

+!read(Item): not at(home)<-
.drop_intention(read(Item)).

+!go(home): at(office) <-
drive(home).

Note that this alternative semantics is also available in the Jason imple-
mentation, by enabling a special configuration parameter, requeue, at startup.
However, our proposal is to declare this alternative semantics the standard Jason
semantics, as is the case in eJason.

5 Suspending Test Goals

Similar to the situation with achievement goals, whenever a programmer intro-
duces a test goal, ?g, into the body of a plan, p, the programmer must consider
the possibility that such a test goal may fail (along with the whole plan). This
failure occurs if the test, g, cannot be satisfied when the corresponding test goal
addition event, {+?g, ι}, is selected by the event selection function of the agent.
Many Jason programs, we believe, could be written more clearly if test goals
which cannot be satisfied are “suspended” until they become valid.

5.1 eJason Solution: Providing a New Suspending Test Operator

In eJason we have introduced a new operator “??” for expressing that we want
a test goal to suspend until it is satisfiable. The semantics of a goal ??g is
similar to the semantics of a ?g test goal. The difference lies in the treatment
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that the corresponding goal addition event, respectively {+??g, ι} and {+?g, ι},
receives from the eJason interpreter. When the test g cannot be satisfied using
the information in the belief base of the agent, for some test goal {+??g, ι}, this
event is returned to the set of events of the agent (note the similarity to the
proposed semantics for achievement goal addition events). Therefore, this event
will be selected again at a later iteration of the reasoning cycle.

To illustrate the behaviour of the operator let us code an agent that delegates
some tasks t1 and t2 to other agents alice and bob, respectively, and then gathers
the result of executing the tasks:

gather_results(Res1,Res2) :-
result(t1, Res1) & result(t2, Res2).

+!task3(Result) <-
.send(alice, achieve, t1);
.send(bob, achieve, t2);
??gather_results(Res1,Res2);
operation(Res1,Res2,Result).

Note that the new operator “??” is used to introduce a mechanism to suspend
the execution of an intention until some conditions are met. This mechanism
provides a functionality similar to that of the internal action .wait(Event).
However, while .wait relies on the occurrence of a single event or a logical
expression (e.g., querying the belief base), as condition for the reactivation of an
intention, the operator “??” establishes a goal g that must be matched in order
to reactivate the intention.

The new operator can help simplify code, as shown in Fig. 7, where the
behaviour of the client agent introduced in Fig. 5 no longer requires the inclusion
of two separate, though semantically dependent, plans.

+!write(FName, Text) :true <-
.send(server, achieve, lock(FName));

??granted(FName);
write(Text, FName);
.send(server, achieve, unlock(FName)).

Fig. 7. Modified client agents, using the “??” operator

6 The Reasoning Cycle of eJason Agents

The introduction of the new language constructs and semantics described above
alters the interpreter of the agent, i.e., the number of state transitions in the
Jason reasoning cycle have increased. In Fig. 8 the new transitions are depicted
as dashed lines. The different steps that compose the reasoning cycle of a Jason
agent are the following:
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– ProcMsg: during this initial step, the agent obtains information from its
environment (perception) and from the messages received from other agents.
This information may update the belief base and provide new goals, generat-
ing the corresponding events in each case.

– SelEv: one of the unprocessed events is chosen to be processed during the
current iteration. Such event is selected using an agent-specific event selection
function.

– RelPl: the set of relevant plans for the event selected in the previous step
is computed. If there is no relevant plan either the event is discarded (in the
case of belief additions/deletions) or a failure event is generated (in the case
of goal additions).

– ApplPl: the set of applicable plans is computed from the set of relevant plans.
If the set of applicable plans is empty, either the selected event is discarded
or a failure event is generated (for the same cases as before).

– SelAppl: one, and only one, of the applicable plans is selected using the
agent-specific option selection function.

– AddIM: if the selected event possesses a related intention (i.e., it is a subgoal
added during the execution of an instruction in the body of another plan),
the selected applicable plan is put on top of such intention (recall that an
intention is a stack of plans). Otherwise, a new intention, only containing the
selected applicable plan, is added to the set of intentions.

– SelInt: if the set of intentions is empty, then a transition to the initial step
is taken. Otherwise, an agent-specific intention selection function selects one
intention from the set of intentions of the agent. Note that each intention
represents a different focus of attention of the agent.

– ExecInt: the first formula in the body of the plan on top of the intention
stack is executed, triggering some modification of the mental state or its
environment (e.g., adding a new belief or sending a message), along with
the generation of the corresponding event. If the formula executed is not a
goal addition of type !g or ?g, such formula is removed from the body of
the plan. Otherwise, the execution of the intention is suspended until the
subgoal introduced is fully executed (the suspended intention appears as a
related intention to the corresponding goal addition event). Note that only
one formula is executed in each iteration of the cycle.

– ClearInt: if the body of the plan on top of the intention is not empty (i.e.,
the plan has not been fully executed) the intention is returned to the set of
intentions and a new iteration starts. Otherwise, such plan is removed from
the top of the intention stack. If there are more plans left in the intention, a
transition to the initial step is taken. If the intention is empty, it is completely
removed and a new iteration starts.

The new transitions, depicted in Fig. 8 as dashed transitions, are the following:

– When there are no relevant plans for either an achievement goal or a test goal
introduced using the operator “??”, the transition k is taken.

– During the execution of a critical section no new events are selected. After
executing an action within a critical section, the transition l is taken.
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– During the execution of a critical section, the focus of attention does not
change. After the addition of the intended means for a goal within a critical
section, the transition m is taken.

– During the execution of critical sections, the presence of failures introduces
new transitions. The absence of relevant plans for an event causes transition
n. The emptiness of the set of applicable plans causes transition o.

ProcMsgSelEv

RelPl

ApplPl

SelAppl

SelInt

AddIM

ExecInt

ClrInt

k

n

o

m

l

Fig. 8. Possible state transitions within a reasoning cycle in eJason.

7 Conclusions

In this chapter we have analysed a number of Jason mechanisms for control-
ling intra-agent concurrency and communication, and have identified a number
of potential pitfalls these mechanisms can cause an inexpert Jason program-
mer. Moreover, we have suggested alternatives to these mechanism, which, in
our opinion, may make the task of controlling and coordinating the concurrent
activities of Jason (intra-agent) intentions easier.

For two of these mechanisms we advocate changing the standard Jason
semantics. An alternative to doing so is to configure a standard Jason imple-
mentation by replacing e.g., the standard intention selection function with a
custom one. However, we argue that there are dangers in such customizations
too, as a (concurrent) Jason program cannot then be judged correct by itself, but
must be judged in conjunction with the particular configuration it is designed
to be run under.
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In future work we aim to revise the Jason semantics to account for these new
mechanisms, without relying on external customization functions.
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Abstract. In this chapter, we introduce AgentSpeak(ER), an extension of the
AgentSpeak(L) language tailored to support encapsulation. The AgentSpeak(ER)
extension allows for significantly improving the style of BDI agent programming
along relevant aspects, including program modularity and readability, failure han-
dling, and reactive as well as goal-based reasoning. The chapter introduces the
novel language based on AgentSpeak, illustrates the features of the language
through examples, and discuss results of a case study based on the implemen-
tation of the proposed language.

1 Introduction

AgentSpeak(L) has been introduced in [28] with the purpose of defining an expres-
sive, abstract language capturing the main aspects of the Belief-Desire-Intention archi-
tecture [7,19], featuring a formally defined semantics and an abstract interpreter. The
starting point to define the language were real-world implemented systems, namely the
Procedural Reasoning System (PRS) [22] and the Distributed Multi-Agent Reasoning
System (dMARS).

AgentSpeak(L) and PRS have become a main reference for implementing con-
crete Agent Programming Languages based on the BDI model: main examples are
Jason [2,6] and ASTRA [14]. Besides Agent Programming Languages, the AgentS-
peak(L) model has been adopted as the main reference to development several BDI
agent-based frameworks and technologies [3,4] as well as serving as inspiration for
theoretical work aiming to formalise aspects of BDI agents and agent programming
languages [5,17,33].

Existing Agent Programming Languages extended the language with constructs and
mechanisms making it practical from a programming point of view [2]. Besides, pro-
posals in literature extended the model in order to make it effective for specific kinds of
systems—e.g. real-time systems [32] – or to improve the structure of programs, e.g. in
terms of modularity [23,26].
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Along this line, in this chapter we describe a novel extension of the AgentSpeak(L)
language—called AgentSpeak(ER)1—featuring plan encapsulation, i.e. the possibil-
ity to define plans that fully encapsulate the strategy to achieve the corresponding
goals, integrating both the pro-active and the reactive behaviour. The motivation for
this extension comes from authors’ experience in applying such agent-oriented pro-
gramming platforms in both academic and real-world projects (examples are described
in [10,14,15]).

The extension is aimed at bringing a number of important benefits to agent pro-
gramming based on the BDI model, namely:

– improving the overall readability of the agent source code, reducing fragmentation
and increasing modularity;

– promoting a more goal-oriented programming style, enforcing yet preserving the
possibility to specify purely reactive behaviour, properly encapsulated into plans for
goals;

– improving intention management, enforcing a one-to-one relation between inten-
tions and goals—so every intention is related to a (top-level) goal;

– improving failure handling, in particular simplifying the management of failures
related to plans that react to environment events.

A first prototype implementation of the new language has been developed on top of
Jason and ASTRA.

The remainder of the chapter is organised as follows: first we describe in details the
motivations that lead to the proposal of a new AgentSpeak extension (Sect. 2). We then
introduce AgentSpeak(ER), defining the main concepts, syntax and informal semantics
(Sect. 3). A case study about the implementation of the Minority Game is then used to
discuss the approach (Sect. 4). Finally we conclude the chapter discussing related work
(Sect. 5) and sketching future work (Sect. 6).

2 Motivation

The main motivation behind AgentSpeak(ER) comes from the experience using agent
programming languages based on the AgentSpeak(L) model, Jason and ASTRA in
particular. Yet, these issues are relevant for any language based on the BDI architecture.

In the BDI model, plans are meant to specify some means by which an agent can
satisfy an end [28]. In AgentSpeak(L), a plan consists of a rule of the kind e : c <- b.
The head of a plan consists of a triggering event e and a context c. The triggering event
specifies why the plan was triggered, i.e., the addition or deletion of a belief or goal. In
the following, we refer to plans triggered by event goals as g-plans, and plans triggered
by belief change (including percepts) as e-plans. The context specifies those beliefs that
should hold given the agent’s current belief base if the plan is to be triggered. The body
of a plan is a sequence of actions or (sub-)goals.

In this approach—as well as in planning, in general—the means to achieve a goal
(i.e., the plan body) is meant to be fully specified in terms of the actions the agent

1 The ER suffix stands for “Encapsulated Reactivity”.
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should execute and the (sub-)goals the agent should achieve or test. In practice, when
programming such systems, it is often the case that the strategy (the means) adopted
to achieve some goal (the end) naturally includes reactions—i.e., reacting to events
asynchronously perceived from the environment, including changes in the beliefs. This
reflects more than just the ability of an agent to change/adapt its course of actions; it
allows the integration of reactivity as a core ingredient of the strategy to achieve some
goal. This revised notion of a plan is not just a programming feature; it also occurs
naturally in human activity. For example, a fisherman with the goal of catching fish
waits for the event of a tug on their line indicating a fish is on the hook. Reactivity is a
key ingredient of many activities that we perform to achieve specific goals, not only to
handle events that represents errors or unexpected situations (for the current courses of
actions). It follows naturally that this is also an opportunity to extend the plan model so
as to fully encapsulate reactions that are part of the strategy to achieve the goal, as well
as the subgoals that are specific to that particular goal.

The use of e-plans to achieve goals is actually an important conceptual brick of the
AgentSpeak(L) model. Let us consider the robot cleaning example used to describe
plans in [28]. One of the plans is:

+location(waste,X) : location(robot,X) & location(bin,Y)
<- pick(waste); !location(robot,Y); drop(waste).

That is, as soon as the robot perceives that there is waste at its location, then it can pick
it up and bring it to the bin. This e-plan is an essential brick of the overall strategy to
achieve the goal of cleaning the environment. The problem here is that it is an implicit
rather than explicit goal of the agent (since it is an e-plan, it is executed regardless of the
agent currently having the goal of keeping the environment clean). In practice, we adopt
a maintenance goal [18] to clean the environment, which includes reacting to cleaning
up waste when we see it. In the above program, this notion cannot be represented and
remains in the mind of the programmer/designer; as there is no g-plan for it, there is no
explicit trace in the agent mental structures about this goal.

This problem can also be illustrated with the following scenario. Consider an agent
that includes a set of plans (a module written by a third party) to handle social obliga-
tions. The module has several e-plans for different types of obligations:

+obligation(Ag,committed(Goal)) : .my_name(Ag) <- ...
+obligation(Ag,achieve(Goal)) : .my_name(Ag) <- ...
-obligation(Ag,Goal) : .my_name(Ag) & .intend(Goal) <- ...

If for some reason during its execution an agent decides not to follow these plans any-
more (e.g. it chooses to become disobedient), it is difficult to “disable” the behaviour
of the above plans. Either these plans have to be changed to consider a particular state
of the agent or the agent removes all these plans from its plan library. Neither option
is simple to program. Although we can solve the problem, the lack of an explicit goal
stating that the agent intends to be obedient is the cause of this problem.

Besides maintenance goal, also for achievement goals we see benefits in encapsu-
lating the reactive behaviour in the corresponding plans. Let’s consider, as a very simple
example, yet capturing the point, the goal of printing down all the numbers between N
and 1, stopping if/when a ‘stop’ percept is perceived. In AgentSpeak(L) this task can
be effectively tackled using only g-plans:



AgentSpeak(ER): Enhanced Encapsulation in Agent Plans 37

+!print_nums(0).
+!print_nums(_) : stop.
+!print_nums(N) : not stop <- println(N); !print_nums(N-1).

The action println is meant to print the number on standard output. Here we exploit
the fact that the BDI reasoning cycle automatically updates beliefs from percepts, and
this allows us to write down structured plans with courses of actions that change accord-
ing to the environment, by exploiting goals/subgoals and contexts. More generally, in
AgentSpeak(L) the suggested approach to realise structured activities whose flow can
be environment dependent is by means of (sub-)goals and corresponding plans with a
proper context. In some cases however this approach is not fully effective, and e-plans
are needed, in particular every time we need to react while executing the body of a plan.
A typical case occurs when we have actions (or subgoals) in a plan that could take a
long time to complete. For instance, suppose that instead of simply printing we have a
long-term elab goal (it could be even an action):

+!print_nums(0).
+!print_nums(N) : stop.
+!print_nums(N) : not stop <- !elab(N); !print_nums(N-1).

Suppose that, realistically, we cannot spread/pollute plans about the goal !elab with
a stop-dependent behaviour. To solve this problem, using AgentSpeak(L) and in BDI
architectures an e-plan can be introduced, using e.g. internal actions to act on the current
ongoing intention:

+!print_nums(0).
+!print_nums(N) <- !elab(N); !print_nums(N-1).
+stop <- .drop_intention(print_nums(_)).

The problem here is that the e-plan +stop <- ... is part of the strategy to achieve the
goal !print_nums, however it is encoded as a separate unrelated plan.

Finally, the encapsulation of also impacts plan failures handling, which is a very
important aspect of agent programming. In the Jason dialect of AgentSpeak(L), we can
define plans that handle the failure of the execution of g-plans (generating the event
-!g), but not of e-plans. For example, if there is a problem in the println action in:

+stop <- println("stopped").

the plan execution fails, without any possibility to react and handle the failure. In order
to handle this, a programmer is forced to structure every e-plan with failure handling
using a subgoal:

+stop <- !manage_stop.
+!manage_stop <- println("stopped").
-!manage_stop <- println("failure").

This contributes to making the program longer and verbose, besides increasing the num-
ber of plans to be managed by the interpreter.

To summarise, this is the set of key issues identified for the basic plan model in the
practice of agent programming:
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Lack of encapsulation: The strategy to achieve a goal is fragmented among multiple
plans, not explicitly related to each other.

Implicit vs. Explicit goals: Some parts of an agent program may have plans for which
the goal is implicit.

Difficult failure handling: Failures/errors generated in the body of e-plan cannot be
directly captured.

Besides the pure programming perspective, it is worth noting that these issues can affect
the software engineering process for agent development. In particular, at the design
perspective, it is natural to specify coarse-grained plans fully encapsulating the strategy
to achieve or maintain goals. It would be important then to keep as much as possible the
same level of abstraction when going from the design to programming, and at runtime
too, to support agent reasoning.

3 The AgentSpeak(ER) Proposal

To overcome the problems discussed above, we consider two key changes in the plan
model. The first one is to extend the plans beyond the simple sequence of actions and
goals, so as to include also the possibility to specify reactive behaviour encapsulated
within the plan. Coherently, with the AgentSpeak(L) model, such a behaviour can be
expressed in terms of e-plans. Accordingly, a plan becomes the scope of (i) a sequence
of actions (referred as body actions), (ii) a set of e-plans, specifying a reactive behaviour
which is active at runtime only when the plan is in execution, and (iii) a set of g-plans,
specifying plans to achieve subgoals that are relevant only in the scope of this plan.
The e-plans and g-plans are referred to as sub-plans. The sub-plans may include also
reactions to failures occurring when the plan is executed.

The second change is enforcing that e-plans—as pieces of reactive behaviours—
must always be defined in the context of a g-plan. We are thus enforcing the princi-
ple that an agent does (and reacts) always because of a goal to achieve or maintain.
This ensures that programmers explicitly specify what is the goal to achieve even when
defining a purely reactive behaviour. In so doing, at runtime every intention2 has an
associated goal being pursued.

In the remainder of the section, we first describe in detail the syntax and informal
semantics of the new plan model, including simple examples, and then we discuss the
key benefits.

3.1 Informal Syntax and Semantics

At the top level, an AgentSpeak(ER) program is a collection of g-plans, whose syntax
is exemplified below:

2 As in AgentSpeak(L), an intention is the result of the deliberation to commit to some desire.
Briefly, if the agent has an applicable plan for a goal event (i.e. a desire), it commits to it by
creating an intention based on that plan and starts executing it.
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/* g-plans to achieve goal g in context c */

+!g : c <: gc {

<- a; b; ?g1; !g1; !!g2. // plan body (optional).

/* e-plans */

+e1 : c1 <- b1.
+e2 : c2 <- b2.

/* e-plans catching failures */

-!g[error(ia_failed)] : ...
<- ... catches from failures

/* further g-plans */

+!g1 : c1 <: gc1 { ... }

+!k : true <: b(10) {
<- a,b,c.
+e3 : c3 <- b3. // possible old-style plans

}
}

Like in AgentSpeak(L), a g-plan is defined with a head and a body. Besides the
triggering event and the context, in AgentSpeak(ER) the head has a third new element:
a goal condition, optionally written after <:, with the same syntax as the context. While
the context is a pre-condition to select a plan as applicable for an event, the goal con-
dition is a post-condition that defines when the goal can be considered as achieved3.
Any goal created based on this g-plan is considered achieved if and only if this con-
dition holds. If no goal condition is specified, the goal is considered achieved as soon
as the body execution completes, as usual in AgentSpeak(L). If the case that no plan
body is specified as well, then the goal condition is considered false—it is the case
of never-ending maintenance goal. However, if a goal condition is defined, having fin-
ished the body execution is not sufficient to deactivate the goal. Notice that if the goal
condition becomes true while the body actions are being executed, the execution ceases
immediately, since the goal being achieved means no further action would be necessary.

In AgentSpeak(ER) the body defines the g-plan scope enclosed by ‘{’ and ‘}’ and
is composed of the body actions (after ‘<-’ and before ‘.’) as well as sub-plans. Like
in AgentSpeak(L), as soon as a g-plan is instantiated, the body actions start to exe-
cute. The body actions can be empty—this is the case of g-plans expressing a purely

3 Or considered impossible to achieve, or the motivation for the goal no longer holds, etc.
Programmers can use this for any condition that implies the goal should no longer be pur-
sued. Note that, when programming declaratively, this condition is likely to include the goal
in the triggering event itself (as believed to be true).
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reactive behaviour. The sub-plans of the g-plan are considered as relevant only for
events produced by the g-plan execution, since they are in the scope of the g-plan.

While a g-plan is executing, it can be interrupted by events relevant for its e-plans.
When the agent perceives an event and an e-plan from g-plan is applicable according to
its specified context, then the execution of the g-plan body is suspended until the body
of the e-plan finishes its execution. In AgentSpeak(L), other plans do also interrupt
the execution of a plan in the case of subgoals. For example, in the body “a1; a2;
!g1; a3”, g1 is a sub-goal and thus the action a3 is executed after g1 is achieved. The
plan body execution in interrupted synchronously. In AgentSpeak(ER) this uniformly
occurs also with any kind of events, not only sub-goal events; that is, the body actions
can be interrupted to react to events coming from the environment. However, in this
case the interruption is asynchronous – the point where the body actions is interrupted
is unknown, and depends on the environment, at runtime.

3.2 Examples

To give a more concrete taste of the language, we consider again the examples seen in
Sect. 2, now rewritten in AgentSpeak(ER). The robot cleaning example becomes:

+!clean_env {
+location(waste,X) : location(robot,X) & location(bin,Y)

<- pick(waste); !location(robot,Y); drop(waste).
}

We can give an explicit reason for the reactive behaviour by encapsulating the e-plan
inside a g-plan, with an explicit goal clean_env. Setting the goal condition to false
means that the plan execution is going to last forever. It is a way of implementing some
form of maintenance goal. This is also a particular case where the body of the g-plan
does not have any actions.

The print_nums example seen before can be rewritten to fully encapsulate the
strategy in the same g-plan:

+!print_nums(0) :- +done.
+!print_nums(N) <: stop | done {

<- !elab(N); !print_nums(N-1).
+!elab(M) <- ...

}

The goal print_nums is achieved either by the perception of stop or done by the
execution of its body actions. In case we want to take some action to react to stop, we
can introduce an e-plan as follows:

+!print_nums(0).
+!print_nums(N) <: done {

<- !elab(N); !print_nums(N-1).
+!elab(N) <- ...
+stop <- println("stopped"); +done.

}
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For the example of plans to handle social obligations, we can define an explicit goal
by encapsulating the e-plans in a g-plan as follows:

+!be_obedient {
+obligation(Ag,committed(Goal)) : .my_name(Ag) <- ...
+obligation(Ag,achieve(Goal)) : .my_name(Ag) <- ...
-obligation(Ag,Goal) : .my_name(Ag) & .intend(Goal) <- ...

}

Now the agent can disable these plans by simply performing . drop_
intention(be_obedient), and resuming its obedient behaviour by adopting the
goal !be_obedient, and it can also check whether it is being obedient by testing
.intend(be_obedient).

With the new language, we can program different kinds of commitments to
goals [13,34] by exploiting the goal condition. For instance, the Single Minded Com-
mitment for goal g can be programmed as:

+!g <: g | f {
...

}

where f states when the goal becomes impossible. The agent commits to achieve g until
g is believed either true or impossible to achieve. To program this kind of commitment
in AgentSpeak(L), we have to follow some programming patterns requiring extra plans
(three extra plans as shown in [21]).

3.3 Failure Management

Failures generated by the execution of actions of sub-plans for a goal g can be handled
and managed by:

– subplans of type -!g listed in the body of the g-plan;
– plans at the same level of +!g, if the event is not managed within the body.

In terms of the new language style, we can keep the failure plans within the scope of
the g-plan. However, it is also reasonable that if we define a plan for +!g at a certain
level of a g-plan tree4, it might make sense for the programmer if the plans for -!g are
all placed at the same level (specially if the programmer is influenced by the style of
the Jason variant of AgentSpeak).

3.4 Key Points

We conclude this section by summarising the key points brought out by AgentS-
peak(ER):

Encapsulation – The strategy to achieve a goal is encapsulated in one or multiple
g-plans, each embedding also the reactive behaviour which is part of the strategy.
The effect is to reduce code fragmentation, improving its understanding.

4 Note that g-plans within g-plans now implicitly form a plan tree for a top-level goal, and the
plan library is thus a forest of such trees.
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Explicit goals – Every behaviour of the agent is now explicitly related to some goal to
achieve. This promotes a more goal-oriented programming style, yet preserving the
possibility to easily define g-plans based on purely reactive strategies; this allows
the agent to better manage its intentions. For instance, a programmer can now do a
simple .drop_intention(g) to disable the behavior of e-plans embedded in the
corresponding g-plans. In AgentSpeak(L), the relation goal-intention is not one-
to-one. AgentSpeak(L) can have intentions from e-plans and so intentions with-
out a explicitly represented goal. In AgentSpeak(ER) there is a one-to-one relation
between goals and intentions. All intentions come from goals (only explicit goals
are allowed). Primitives to handle goals can thus handle all intentions. In AgentS-
peak(L), primitives to handle goals can manage a limited set of the intentions (those
created from goal addition plans).

Failure handling – Thanks to explicit goals, failures generated in the body of an
e-plan can now be directly captured and managed by failure recovery plans defined
for g-plan, without the need for auxiliary goals and plans to be introduced.

Coarse-grained intentions – In AgentSpeak(L), each e-plan in execution has its own
intention/stack, which runs concurrently to the other intentions. Conceptually, this
follows the idea that the management of environment events are not part of an exist-
ing overall plan to achieve some goal. In the new model instead, an e-plan inside
a g-plan is meant to specify a behaviour that is useful for achieving the goal of the
g-plan, so part of the same intention. For this reason, if an e-plan (sub-plan) inside
a g-plan in execution is triggered, no new intentions are generated and the body of
the sub-plan is placed on the top of the stack of the same intention. The new model
leads then to more coarse-grained intentions.

As a final remark, the choice of constraining the definition of e-plans to be inside g-plans
deserves some further clarification. Apparently, it may seems a limitation, making the
approach not capable of capturing purely reactive behaviour, enforcing a designer to
define artificial goals. However, in software development a designer has always a goal
in mind when writing down the behaviour of an agent: this is true also for purely reac-
tive agents. This is not true if we consider e.g., agent-based modelling and simulation,
where the definition of the behaviour of an agent could be driven by the description of a
real-world phenomena, a local behaviour. The extension presented in this chapter is
explicitly targeted to the design and programming of agents as software components
responsible of autonomously performing some tasks. The extension then allows to
enforce a better discipline, enforcing the designer to give always an explicit representa-
tion (at the programming level) about the tasks (goals) she/he has in mind.

4 First Implementation and Discussion

In order to play with the new language and do a first evaluation, a first prototype imple-
mentation has been developed on top of both Jason [2] and ASTRA [14]5. The Jason
extension has been used to implement the examples used in this chapter. The ASTRA
extension is syntactically different to the examples provided in Sect. 3, being it adapted
to the syntactic style adopted in ASTRA. An example follows:

5 The Jason extension is available here: https://github.com/agentspeakers/jason-er.

https://github.com/agentspeakers/jason-er
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g-plan +!g() : c <: gc {
body {

// main plan body goes here...
a; b; !g1(); !!g2();

}

/* e-plans */
rule +e1 : c1 { b1; }
rule +e2 : c2 { b2; }

}

The different syntax however does not impact the associated semantics. In the remain-
der of this section we show the benefits of AgentSpeak(ER) by considering an exist-
ing program, rewritten with the new language. ASTRA is adopted as implementation
language—however the same discussion would apply by considering Jason as imple-
mentation language.

4.1 Minority Game

We have adapted a simulation of the Minority Game (MG), a well-known model for
evaluating collective behaviour of agents competing for finite resources [24]. The game
involves an odd number of agents competing for a resource over a series of rounds. For
a round, each agent makes a binary decision (yes/no). At the end of the round, the bids
are counted, and the agents that are in the minority win. The game has been applied
mainly in the areas such as modelling financial markets [11] and traffic simulation [12].

The existing implementation (see Fig. 1) consists of 3 types of agent: the compere
agent, who is responsible for managing the game (starting rounds, evaluating bids, ...);
the player agents, who implement a set of MG strategies; and the main agent, which is
responsible for configuring the game (creating and configuring the compere and player
agents). Interaction between the compere and the players is through a shared game-
board artifact implemented using CArtAgO [29].

The existing implementation currently consists of 2 types of plan: configuration
plans, one of which is called when the agent is created; and strategy plans which imple-
ment the various potential strategies that the agent can use. A subset of the ASTRA
implementation of the player agent is given below:

rule +!main(["bestplay", [int t, int h]]) {
-+strategy("bestplay"); !setup_tactic(t, h); !setup();

}
rule +!main([string strategy, []]) {

-+strategy(strategy); !setup();
}
rule +!setup_tactic(0,int h) {}
rule +!setup_tactic(int t2, int h) {

list hist = [];
int i=0;
while (i<h) {

hist = hist + [M.randomInt()
i++;
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Fig. 1. Minority game agent architecture

}
+strategy(t2, hist, M.randomInt()
+score(t2, 0);
!setup_tactic(t2-1, h);

}

rule $cartago.signal(string id, play()) : strategy("bestplay") {
cartago.results(java.util.ArrayList history);

int max_len = -1; int max_choice = -1; int max_score = -1;
foreach (strategy(int s, list hist, int c) & score(s, int sc)) {

cartago.match(history, P.fromASTRAList(hist), int len);
if ((len > max_len) | ((len == max_len) & (max_score < sc))) {

max_choice = c; max_score = sc; max_len = len;
}

}
cartago.bid(S.name(), max_choice);

}

rule $cartago.signal(string id, winner(int bid)) : strategy("bestplay") {
foreach (strategy(int s, list hist, bid) & score(s, int sc)) {

-score(s, sc); +score(s, sc+1);
}

}

In the above code, the !main(...) plans are the configuration plans. The
!setup_tactic(...) plans are part of the bestplay strategy but are also used for
configuration. This is because, unlike simpler strategies such as Random Bid and
Tit-for-Tat, the best play strategy requires that a set of random strategies be created as
part of its configuration. In best play, a random strategy is a randomly generated set of
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h outcomes combined with a recommended next move. Each strategy has an associated
score which is used to help determine how successful each strategy is.

The strategy plans are the $cartago.signal(...) plans, which handle the
play() and winner(...) signals respectively. These signals are generated by the
game board when the compere agent performs operations on it (e.g. when a round
starts/ends). For bestplay, the play() signal triggers a behaviour where the agent
compares the game outcome history against its strategies and picks the strategy that
best fits the history (longest matching subsequence). The corresponding next move is
played (via the bid() artifact operation). Conversely, the winner(...) signal triggers
a behaviour where the agent updating the score for all strategies that lead to bid being
selected.

Some of the key points to note when reviewing the above code are: (i) a custom
plan is needed to handle the !main(...) goal in the case of the bestplay strategy
because it requires some custom initialisation; (ii) a strategy belief is required to enable
the identification of the plans that are relevant to the selected strategy; and (iii) there
is no guarantee that these plans will be grouped together in the implemented agent.
They could be spread throughout the agents codebase making it difficult to read and
understand the overall behaviour.

In the AgentSpeak(ER) implementation, we still maintain the two types of plan,
however instead on needing multiple plans to capture a strategy, the entire strategy is
now encapsulated within a single g-plan (of course the other plans still exist as subplans
of the g-plan). The snippet of code below contains the AgentSpeak(ER) code to the
ASTRA example given above:

rule +!main([string strategy, list config]) {
!win(strategy, config);

}

g-rule +!win("bestplay", [int t, int h]) {
body {

!setup_tactic(t);
}

rule +!setup_tactic(0) {}
rule +!setup_tactic(int t2) {

list hist = [];
int i=0;
while (i<h) {

hist = hist + [M.randomInt()
i++;

}
+strategy(t2, hist, M.randomInt()
+score(t2, 0);
!setup_tactic(t2-1);

}

rule $cartago.signal(string id, play()) {
cartago.results(java.util.ArrayList history);
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int max_len = -1; int max_choice = -1; int max_score = -1;
foreach (strategy(int s, list hist, int c) & score(s, int sc)) {

cartago.match(history, P.fromASTRAList(hist), int len);
if ((len > max_len) | ((len == max_len) & (max_score < sc))) {

max_choice = c; max_score = sc; max_len = len;
}

}
cartago.bid(S.name(), max_choice);

}

rule $cartago.signal(string id, winner(int bid)) {
foreach (strategy(int s, list hist, bid) & score(s, int sc)) {

-score(s, sc); +score(s, sc+1);
}

}
}

As can be seen from the above snippet of code. The implementation of the two types
of agent is quite similar. In fact many of the rule implementations have not changed
significantly. However, there are a few interesting observations regarding the revised
implementation: (i) the complexity of the plan contexts were simplified when using
g-plans because the g-plan itself provided some of the context; (ii) the number of argu-
ments passed as parameters was reduced, again because the scope of the parameters of
the g-plan was the plan body and all of its sub-plans; (iii) the total number of rules under
consideration on each iteration was significantly less because only the rules within an
active g-plan were considered by the agent. This means that, when an agent has multi-
ple strategies, only the rules relating to the active strategy will be considered, whereas
in ASTRA, all rules are always considered.

4.2 A Note on Performance

After reviewing our new language, it became apparent that (i) it was reducing the num-
ber of plans that need to be evaluated on each iteration; but (ii) the introduction of a
goal condition introduces a significant new overhead because it must be evaluated on
each iteration. As a result, it was decided that a comparison of the new and old lan-
guages be carried out. Initially, we compared interpreter cycle execution time and the
number of iterations based on a single configuration of the MG with 29 players and
1000 rounds. For our results, we averaged the values across all 29 players and repeated
the experiment 5 times.

Results of our initial comparison can be found in Table 1. The difference in the
number of cycles is due primarily to the scheduling algorithm used by ASTRA, which
suspends agents that have no sensors (perceptors) and whose event and intention queues
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Table 1. Comparing ASTRA and AgentSpeak(ER)

ASER ASTRA

Cycle time (ms) 0.0017 0.0036

Cycles 293,772 62,880

Elapsed execution time (ms) 495.22 229.29

Unix (timed) 16 s 15 s

are empty. The impact of this is that ASTRA is generally more efficient than AgentS-
peak(ER). Due to the small but consistent difference in performance between the unix
timing of the two experiments, we then explored how increasing the number of rounds
affected performance. Results for this are shown in Table 2.

Table 2. ASTRA vs AgentSpeak(ER) performance

1000 2000 3000 4000 10000

ASER (s) 15.514 30.251 44.202 57.736 140.059

ASTRA (s) 14.893 28.232 42.168 56.453 137.379

Diff. (%) 4.2% 6.8% 4.8% 2.3% 2.0%

This second table shows that the introduction of g-rules in AgentSpeak(ER) has
only a small impact on performance. Here, it is almost linear. Further, ASTRA shows a
marginal performance improvement of between 2–6%.

While this is not intended to be a thorough evaluation of AgentSpeak(ER), it is
useful because it hints that the use of goal conditions does not significantly impact the
performance of the language. It must also be noted that the prototype implementation is
not as mature as the ASTRA implementation—interpreter optimisations could further
reduce the difference in performance.

5 Related Work

AgentSpeak(ER) is primarily related to work in literature focusing on improving cog-
nitive BDI agent programming [3,4]. A main aspect widely discussed and developed
in the literature is modularity [8,9,16,20,23,25–27,30]. Modules are typically used
as a mechanism to structure agent programs in separate parts (modules), each encap-
sulating cognitive components such as beliefs, goals, and plans that together model a
specific functionality and can be used to handle specific situations or tasks [16]. From
a software engineering point of view, modules allow a programmer to focus on those
skills that are required to handle a situation [20]. In this perspective, AgentSpeak(ER)
improves modularity in BDI-based agent programming languages based on the PRS and
AgentSpeak(L)model by devising coarse-grained plans encapsulating goal-oriented and
reactive behaviour. This approach can be integrated with existing more comprehensive
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proposal about modularity in AgentSpeak(L) such as [23], where a module is meant to
be a composable subset of the functionality of an agent, represented by a functional unit
encapsulating goals, beliefs and plans.

Besides research works on modularity, AgentSpeak(ER) is related to existing BDI
agent programming languages extending the basic plan model as found in the origi-
nal proposal of AgentSpeak(L). In this context, a main reference is CANPlan [31], a
BDI-style agent-oriented programming language enhancing usual BDI programming
style with declarative goals, look-ahead planning, and failure handling. It allows pro-
grammers to mix both procedural and declarative aspects of goals, enabling reasoning
about properties of goals and decoupling plans from what these plans are meant to
achieve. The lookahead planning makes it possible to guarantee goal achievability and
avoid undesirable situations. The plan model adopted in CANPlan is analogous to the
AgentSpeak(L) one. Each plan is characterised by a plan rule e(t) : ψ (xt, y) ← P(xt,
y, z)., where P is a “reasonable strategy” to follow when ψ is believed true in order
to resolve/achieve the event. P can be a rich composition of actions but not reactions.
Reactive behaviours can be expressed instead—like in AgentSpeak(L) and in the basic
BDI—as separate plans handling belief updates corresponding to environment events.

6 Conclusion

In this chapter, we introduced AgentSpeak(ER), a novel extension of the classical
AgentSpeak(L) language. The language provides encapsulation for agent goals, which
clearly improves legibility and reusability of AgentSpeak code. Furthermore, the new
language improves some of the shortcomings of AgentSpeak in regards to goal orien-
tation and declarative goals by ensuring that all reactive plans are also associated with
general goals, providing a “goal condition” which means goals can be still active even
though presently there is no action for the agent to take towards that goal, and allow-
ing external events (i.e. reactions to changes in beliefs) to trigger various plans, for all
the goals it might be relevant. The proposal was implemented and on top of both the
ASTRA and the Jason platforms.

As with any new programming language, there is much future work, some in fact
ongoing.We are currently refining both the ASTRA and Jason implementation, trying to
make a few optimisations to improve the evaluation results we reported in this chapter.
A comparison of the performances of the two implementations might lead to insights
that might improve the implementation of the platforms themselves.

More generally, full understanding and evaluation of a programming language takes
many years. We expect in the long term to use AgentSpeak(ER) in the practical devel-
opment of multi-agent systems, both for real-world systems and also academic ones
(e.g., for the multi-agent programming contest [1]). However, besides the actual pro-
gramming practice, we expect AgentSpeak(ER) to contribute to formal work as well.
Assessing how formal verification of AgentSpeak(ER) systems compares to the origi-
nal language is also planned as future work.
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Abstract. Context: A significant effort has been devoted to the
design and implementation of various domain-specific modeling lan-
guages (DSMLs) for the software agents domain.

Problem: Language usability is often tackled in an ad-hoc way, with
the collection of anecdotal evidence supporting the process. However,
usability plays an important role in the productivity, learnability and,
ultimately, in the adoption of a MAS DSML by agent developers.

Method: In this chapter, we discuss how the principles of The “Physics”
of Notations (PoN) can be applied to improve the visual notation of
a MAS DSML, called SEA ML and evaluate the result in terms of
usability.

Results: The evolved version of the language, SEA ML++, was per-
ceived as significantly improved in terms of icons comprehensibility, ade-
quacy and usability, as a direct result of employing the principles of PoN.
However, users were not significantly more efficient and effective with
SEA ML++, suggesting these 2 properties were not chiefly constrained
by the identified shortcomings of the SEA ML concrete syntax.

Keywords: Usability · Multi-agent systems ·
Domain specific modeling language · Physics of Notations · SEA ML

1 Introduction

Software agents with the capability of both being autonomous and performing
reactive/proactive behaviors, interact with each other in a Multi-agent system
(MAS) to solve problems in a competitive or collaborative manner within an
environment. To eliminate the complexity and the difficulty of MAS develop-
ment, the researchers in agent-oriented software engineering (AOSE) field have
significant efforts on design and implementation of various domain-specific mod-
eling languages (DSMLs) such as DSML4MAS [19], FAML [4], SEA ML [7],
c© Springer Nature Switzerland AG 2019
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MAS-ML [10], and JADEL [3]. Those DSMLs are specific to the agent domain
and provide appropriate integrated development environments (IDEs) in which
both modelling and code generation for system-to-be-developed can be per-
formed properly [25].

To be effective, the proposed agent DSMLs need to meet the various stake-
holder concerns and the related quality criteria for the corresponding MASs.
Unfortunately, very often the evaluation of the DSML, especially covering the
language components and the use of the DSML during design and implemen-
tation of agent-based systems, is completely missing or has been carried out
with an idiosyncratic approach [8]. Specifically, the usability, which plays an
important role on the adoption of a MAS DSML by agent developers, needs to
be taken into consideration preferably during language design and improved to
better align the DSML with developer expectations. Hence, in this chapter, we
focus on the usability of DSMLs for MAS and propose an approach for promot-
ing the usability of such languages by applying the principles of The “Physics”
of Notations (PoN) [30]. For this purpose, the visual notation of a MAS DSML,
called SEA ML [7], is evaluated and its usability is improved by employing each
principle of PoN. Hence, it is possible to enrich SEA ML’s visual notation and its
correlation to the linked semantic constructs. A comparative assessment of the
improved language is also performed with 2 different experiments using end-users
that are defined by the domain experts. SEA ML is an open source language and
it is easy to achieve both abstract and concrete syntax specifications. Moreover,
reflecting the changes according to the conducted PoN experiments and gener-
ating the new version of the language become much easier since the required
source code is available online. These are the main reasons of selecting SEA ML
as the application language in our work.

The rest of the chapter is organized as follows: Sects. 2 and 3 discuss SEA ML
and the principles of PoN respectively. The analysis of SEA ML and improving
its visual notation by using PoN principles are given in Sect. 4. Comparative
evaluation of the new language is discussed in Sect. 5. Related work is given in
Sect. 6 and Sect. 7 concludes the chapter.

2 SEA ML

SEA ML [7] is a MAS modeling language which enables the developers to model
agent systems in a platform independent level and then automatically gener-
ate codes and related documents required for the execution of the modeled
MAS on target MAS implementation platforms. In addition to these capa-
bilities, SEA ML also supports the model-driven design and implementation
of autonomous agents who can evaluate semantic data and collaborate with
semantically-defined entities of the Semantic Web [35], like Semantic Web Ser-
vices (SWSs). Within this context, it includes new viewpoints which specifically
pave the way for the development of software agents working on the Semantic
Web environment. Modeling agents, agent knowledge-bases, platform ontologies,
SWS and interactions between agents and SWS are all possible in SEA ML.
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To support MAS experts when programming their systems, and to be able
to fine-tune them visually, SEA ML covers all aspects of an agent system from
the internal view of a single agent to the complex MAS organization.

To this end, SEA ML’s metamodel is divided into 8 viewpoints, each of which
represents a different aspect for developing Semantic Web enabled MASs.

– Agent’s Internal Viewpoint is related to the internal structures of semantic
web agents (SWAs) and defines entities and their relations required for the
construction of agents.

– Interaction Viewpoint expresses the interactions and the communications in
a MAS by taking messages and message sequences into account.

– MAS Viewpoint solely deals with the construction of a MAS as a whole. It
includes the main blocks which compose the complex system as an organiza-
tion.

– Role Viewpoint delves into the complex controlling structure of the agents
and addresses role types.

– Environmental Viewpoint describes the use of resources and interaction
between agents with their surroundings.

– Plan Viewpoint deals with an agent Plan’s internal structure, which is com-
posed of Tasks and atomic elements such as Actions.

– Ontology Viewpoint addresses the ontological concepts which constitute
agent’s knowledge-base (such as belief and fact).

– Agent-SWS Interaction Viewpoint defines the interaction of agents with
SWS including the definition of entities and relations for service discovery,
agreement and execution. A SWA executes the semantic service finder Plan
(SS FinderPlan) to discover the appropriate services with the help of a spe-
cial type of agent called SSMatchMakerAgent who executes the service reg-
istration plan (SS RegisterPlan) for registering the new SWS for the agents.
After finding the necessary service, one SWA executes an agreement plan
(SS AgreementPlan) to negotiate with the service. After negotiation, a plan
for service execution (SS ExecutorPlan) is applied for invoking the service.

Appendix A lists the important SEA ML concepts (meta-entities) and their
brief descriptions for the comprehension of the corresponding visual notations
used in the diagrams throughout this chapter.

SEA ML instances are given as inputs to a series of modelto-model and
model-to-text transformations to achieve executable artifacts of the system-to-
be-built for JADEX [33] agent platform and semantic web service description
documents conforming to Web Ontology Language for Services (OWL-S) ontol-
ogy [28].

To demonstrate the modeling and implementation environment provided by
SEA ML, let us consider the development of a MAS for stock exchange software
in which Investor (Buyer and/or Seller), Broker and Stock Trade Manager agents
take role in a computerized stock trading system. All of the user agents including
investors and brokers cooperate with stock trade manager agent to access the
stock market. Also, the user agents interact with each other, for instance, investor
A and investor B can cooperate with a broker in order to exchange the stock
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for which the broker is an expert. Figure 1 is a screenshot taken from SEA ML
modeling environment which shows the modeling of such a stock exchange MAS
which is composed of 6 semantic web agent instances, 1 trade manager, 2 bro-
kers, and 3 investors. The given model only considers the overview of the system
from SEA ML MAS viewpoint. However, it is also possible to model all specifi-
cations and components of the system considering the other SEA ML viewpoints
again inside the same IDE. Interested readers may refer to [7] for an extensive
discussion on SEA ML and [24] for complete design and implementation of this
agent-based stock exchange system with SEA ML.

Fig. 1. MAS and organization diagram for stock exchange system in SEA ML

3 Physics of Notations

The Physics of Notations (PoN) [30] is a design theory which focuses on the
perceptual (physical) properties of notations rather than their semantic (logical)
properties. It is based on a set of 9 principles which form a prescriptive theory for
designing cognitively effective visual notations, defined (and measured) as the
speed, ease, and accuracy with which a given representation can be processed by
the human mind. This principles can be used to evaluate, compare and ultimately
enhance the communication properties of a given language when designing its
visual concrete syntax.
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Table 1. PoN principles

Principle Comment

Semiotic Clarity There should be a 1:1 correspondence between
semantic constructs and graphical symbols

Perceptual Discriminability Different symbols should be clearly distinguishable
from each other

Semantic Transparency The appearance of visual representations should
suggest their meaning

Complexity Management Explicit mechanisms for dealing with complexity
should be included

Cognitive Integration There should be explicit mechanisms to support the
integration of information from different diagrams

Visual Expressiveness The full range of capacities and visual variables
should be used

Dual Coding Text should be used to complement graphics

Graphic Economy The number of symbols presented in the notation
may affect the handling of the tool

Cognitive Fit Different dialects should be used for different tasks
and audiences

The principles were synthesized from theory and empirical evidence about
cognitive effectiveness of visual representations. Each principle was defined by
its Name (named in a positive sense) and Semantic (theoretical) definition (A
imperative statement of what it means), listed in Table 1. Further, each principle
contains Operational (empirical) definition, which gives evaluation procedures
and/or metrics; Design strategies, Exemplars and Counter exemplars.

4 Applying Physics of Notations Principles to SEA ML

We proposed notation improvements for all 8 viewpoints of SEA ML by follow-
ing 9 PoN principles given in Table 1. These improvements are employed in the
development of the new version of SEA ML, called SEA ML++. Table 2 synthe-
sizes the conclusions derived from review of PoN principles which is detailed in
[29]. Plus (+) refers that SEA ML currently conforms to the presented principle,
while a minus (−) refers that SEA ML has room for improvement under that
principle.

SEA ML notation conforms to Semiotic Clarity as for each SEA ML view-
point, different symbols are presented, representing a different semantic con-
struct. There is no such case where two symbols represent the same semantic
construct, or when they are not connected to a semantic construct.
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Table 2. Review of SEA ML visual notation according to each principle of PoN

Principle Room for improvement

Semiotic Clarity +

Perceptual Discriminability -

Semantic Transparency -

Complexity Management +/-

Cognitive Integration +

Visual Expressiveness -

Dual Coding -

Graphic Economy +

Cognitive Fit -

+ OK — - can be improved

Based on Perceptual Discriminability principle, SEA ML can be improved, as
some symbols only differ by a label, which is proven to be cognitively ineffective.
The distance between visual symbols is too short, as predefined by the language
editor when generating the tool.

Regarding Semantic Transparency principle we identify 19 visual notations
of SEA ML that could represent better intended meaning and provided improve-
ment suggestions for each symbol (see [29]).

Complexity Management is not applicable, as SEA ML does not have any
direct mechanism for dealing with the complexity of the viewpoints.

SEA ML conforms to Cognitive Integration principle, as it requires a name for
every diagram and label used during the modelling. Every procedure is verified
to be connected to some entity.

SEA ML presents similar colours and symbols to similar semantic constructs.
Some semantic figures are only differentiated by a letter, which is not conforming
to Visual Expressiveness principle since the icons should be presented using
different visual variables to automatically distinguish each semantic construct
only looking to visual notation.

Based on the Dual Coding principle, SEA ML has eleven visual notations that
are only differentiated through letters or textual differences that are difficult to
see, which are impossible to differentiate without it.

The user is presented with a palette of icons which are allowed to be used on
each viewpoint, therefore conforming to the Graphic Economy principle.

Regarding Cognitive Fit, some of the proposed visual notation can be
improved in order to have a better relation with other similar symbols presented
on the SEA ML language, which may turn the language easier to understand
and to be worked for novice users.
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Fig. 2. SEA ML vs SEA ML++ notations

Some SEA ML visual notations were not modified as these notations reflect
correctly its semantic constructs and they conform to PoN principles. Of the
43 symbols (44 including the symbol for arrows that relate each entity), 32
symbols were modified (see Fig. 2 for the current (SEA ML) and new (SEA ML)
notations). With respect to the proposed SEA ML++ notation, the justification
for each new symbol is defined below:

1. Goal - The new notation adds color to the target, making it more appropri-
ate to be selected when using viewpoints that use this semantic construct;

2. Capability - The current visual notation may induce users wrong. The new
notation reflects that users have a set of capabilities in order to solve their
problems;

3. Fact - The current notation is similar to other notations present in SEA ML.
The new notation (check mark) reflects something that is correct and
concrete;

4. Plan - The notation addresses a plan to reach a goal from X to Y;
5. Semantic Service Register Plan (SSRP) - The current notation has 4

similar symbols, being distinguished through different letters. The new nota-
tion adds the SWS notation and a person registering to a customer’s list;

6. Semantic Service Finder Plan (SSFP) - The current notation has 4
similar symbols, being distinguished through different letters. The new nota-
tion adds the “Semantic Web Services” notation and a magnifying glass;



62 T. Miranda et al.

7. Semantic Service Agreement Plan (SSAP) - The current notation
has 4 similar symbols, being distinguished through different letters. The
new notation adds the “Semantic Web Services” notation and a handshake
between 2 people;

8. Semantic Service Executor Plan (SSEP) - The current notation has
4 similar symbols, being distinguished through different letters. The new
notation adds the “Semantic Web Services” notation and a “Play” icon;

9. Send - It is not clear what the current notation is addressing. The new
notation states clearly that the message is going to be sent elsewhere;

10. Receive - It is not clear what the current notation is addressing. The new
notation states clearly that the message is going to be received;

11. Action - Removed the round border. The clapperboard is enough to under-
stand the semantic construct;

12. Message - The new notation attempts to be similar to the new notations
adopted in “Message Sequence”, “Send” and “Receive”;

13. Message Sequence - Similar to the notations presented in “Send” and
“Receive”, the new notation hints a sequence of message being transmitted
by those parties;

14. ODMOWLClass - The new notation is similar to the previous “Plan”
symbol. It tries to remove two similar element from the visual notation (as
the “Plan” symbol is totally different from the original one);

15. DomainRole - The current visual notation does not have any relation with
a domain. The metaphor tried on the new notation aims at reflecting the
web domains, inserting its roles on a web browser window;

16. Agent State - The current visual notation does not have any relation with
an Agent State. The new notation attempts to add a “Secret Agent” to a
typical rounded “State Icon” that appears on some loading screens;

17. Resource - The new notation reflects a box full of resources, which reflects
more what the semantic construct is;

18. Web Service - The new notation adds a gear to an icon that relates to
the web;

19. Grounding - Proposed by the MAS developers having experience on MAS
and SWS;

20. Process - Proposed by the MAS developers having experience on MAS and
SWS;

21. Interface - Proposed by the MAS developers having experience on MAS
and SWS;

22. Precondition - Proposed by the MAS developers having experience on
MAS and SWS;

23. Effect - The current visual notation does not have any direct relation with
Effect. The new notation tries to adapt the “Magic” metaphor for an effect
cause;

24. Architecture Role - The current visual notation does not have any direct
relation with an “ArchitectureRole”. The new icon adds the “Role” symbol
to a common architecture plan;
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25. Ontology Mediator Role - Proposed by the MAS developers having agent
programming experience;

26. Semantic Web Organization (SWO) - The current visual notation does
not have any direct relation with a SWO. The new symbol adds that relation;

27. Role Ontology - The new visual notation adapts to the new ODMOWL-
Class proposed above;

28. Organization Ontology - The new visual notation adapts to the new
ODMOWLClass and “Semantic Web Services” proposed above;

29. Service Ontology - The new notation adapts to the new ODMOWLClass
proposed above;

30. Interaction - Although it is perceptible what the current visual notation
proposes, there is room for improvement by adding a clearer symbol;

31. Behavior - The current visual notation does not have any relation with the
“Behavior” semantic construct. The new symbol tries to apply a metaphor
related to the human behavior;

32. Agent Type - Proposed by the MAS developers having agent programming
experience.

5 Evaluation

5.1 Experiment Planning

Goals. Broadly, we aim to compare the impact of using the evolved version
of the MAS DSML (SEA ML++) when contrasted with the previous version
(SEA ML), focusing, one at a time, in different quality criteria for the language
assessment. We present our evaluation goals following the GQM research goals
template [2], which is shared among all our goals, with the exception of the term
concrete quality criterion , which varies from one goal to the next.

In general, our goal is to analyse the effect of evolving from SEA ML to
SEA ML++, for the purpose of evaluation, with respect to the semantics
transparency of the symbols used in the concrete syntax, from the viewpoint
of researchers, in the context of an experiment conducted with participants
with limited or no experience with MAS at Universidade Nova de Lisboa (UNL)
in Portugal and EGE University in Turkey.

More specifically, our first goal is concerned about the comprehensibility
of the symbols used on the concrete syntax, leading to the following formu-
lation: Our first goal (G1) is to analyse the effect of evolving from SEA ML
to SEA ML++, for the purpose of evaluation, with respect to the compre-
hensibility of the symbols used in the concrete syntax, from the viewpoint of
researchers, in the context of an experiment conducted with participants with
limited or no experience with MAS at UNL and EGE University. Our second goal
(G2) is concerned about the perceived usability of the concrete syntax. Our
third goal (G3) is concerned about the effectiveness of the concrete syntax.
Finally, our fourth goal (G4) is concerned about the efficiency .
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Table 3. Experimental design. Key: MT = Music Trading; EF = Expert Finder

Sequence Task 1 Task 2 Task 3 Task 4

Group 1 MT/SEA ML++ MT/SEA ML++ EF/SEA ML EF/SEA ML

Group 2 EF/SEA ML EF/SEA ML MT/SEA ML++ MT/SEA ML++

Group 3 MT/SEA ML MT/SEA ML EF/SEA ML++ EF/SEA ML++

Group 4 EF/SEA ML++ EF/SEA ML++ MT/SEA ML MT/SEA ML

All materials for the conducted evaluation, including experiment setup, result
sets and statistics are also available in this chapter’s online repository1.

Tasks. To achieve (G1), (1) each participant read and signed a consent let-
ter regarding the data collected in the experiment. This letter was only used
for the purpose of this study. All participants remained anonymous. Then
(2) each participant selected the symbol (s)he found more suitable for each of the
33 SEA ML++ concepts identified in the PoN assessment reported in Sect. 4.
Finally, (3) participants filled in a background questionnaire.

We recruited a different, non-intersecting, group of participants for the
remaining tasks. Again, (1) each participant read and signed a consent letter
regarding the data collected, similar to the letter used in the other experiment.
Then (2) each participant completed 4 exercises, 2 covering SEA ML and 2 cov-
ering SEA ML++. Each exercise ended with the user filling in a questionnaire
about it. We had a crossover design with 4 possible sequences, as represented
in Table 3. The goal was to mitigate any potential learning effects and balance
the number of participants working with each example in each of the possible
sequence positions. Finally, (3) participants filled in a background questionnaire.

Experimental Material. We provided each participant with a consent letter
and a background questionnaire, which were the same for both experiments.
In the symbol selection experiment, the participant also received a question-
naire where (s)he was asked to match each concept definition with the symbol
that would best represent its concrete syntax. For the second experiment, the
participants received 4 different scenarios with a corresponding challenge, each
followed by a questionnaire about the notation they had just used. 2 of those
scenarios were related with music trading among software agents, while the other
2 involved an agent-based expert finding system. Each of these scenarios had 2
versions, one with SEA ML and the other with SEA ML++. Each participant
received 2 different scenarios for each concrete syntax.

1 https://doi.org/10.5281/zenodo.1288390

https://doi.org/10.5281/zenodo.1288390
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Participants. Johnson [23] suggests that six individuals per subset of the pop-
ulation are the minimum required for a controlled experiment. It is sensible to
take a larger number, but the costs should be kept to a minimum. Regarding the
usability study, Nielsen [32] claims that testing with 5 people lets us find almost
as many usability problems as by using many more test participants. However,
when performing the quantitative studies, Nielsen suggests testing at least 20
users to get statistically significant numbers.

All the participants in our studies have formal University training in Infor-
matics. For the symbol selection experiment, 25 participants (all undergraduate
students) were involved. All of these participants are current or former students
at Universidade Nova de Lisboa (UNL). 11 of those had some basic knowledge
of MAS (in the context of a course), but not of SEA ML++. For the evaluation
experiment, a total of 36 participants were included. That experiment was run
in 2 replicas: The first one was conducted at UNL with 24 participants, including
12 with some basic knowledge of MAS. The second one was conducted at EGE
University with 12 participants, all graduate students with some basic knowledge
of MAS. All participants were selected through convenience sampling.

It is worth noting that the domain of agents interacting with SWSs is not an
established professional occupation field and we could have limited number of
researchers in the evaluation. Such professional evaluators are familiar with the
concepts and their relations which makes the development and subsequently the
evaluation more real. Because of this shortcoming, we have a small size society
for the evaluation.

Table 4. Hypotheses

H0G1 The concrete syntax of SEA ML++ is as
comprehensible as the one of SEA ML

H1G1 The concrete syntax of SEA ML++ is more
comprehensible than the one of SEA ML

H0G2 The concrete syntax of SEA ML++ is perceived as
usable as the one of SEA ML

H1G2 The concrete syntax of SEA ML++ is perceived as
more usable than the one of SEA ML

H0G3 The concrete syntax of SEA ML++ is as effective as the
one of SEA ML

H1G3 The concrete syntax of SEA ML++ is more effective
than the one of SEA ML

H0G4 The concrete syntax of SEA ML++ is as efficient as the
one of SEA ML

H1G4 The concrete syntax of SEA ML++ is more efficient
than the one of SEA ML
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Hypotheses, Parameters and Variables. Overall, we hypothesize that the
proposed SEA ML++ has a better concrete syntax than SEA ML. In order to
make this more concrete, we anchor our formalized hypotheses on the research
goals defined in Sect. 5.1, as presented in Table 4. For each of the high-level goals,
we define the null (H0Gi) and alternative (H1Gi) hypotheses (where i denotes
the specific goal).

For all hypotheses, the independent variable is the concrete syntax, which
can be SEA ML++ or SEA ML. The dependent variables are different for each
of the tested hypothesis.

Comprehensibility. Graphical symbols’ comprehensibility can be assessed by
measuring hit rates, i.e., the percentage of correct responses [21,22]. In this case,
we measure the hit rate (percentage of answers where the correct symbol was
chosen) for each concept in each of the concrete syntaxes.

Perceived Usability. In order to assess the perceived usability we asked our par-
ticipants to fill in a System Usability Scale [5] questionnaire. This questionnaire
consists of 10 questions, each with 5 response options, ranging from “Strongly
Disagree” to “Strongly Agree”. The scores are then converted to a scale of 0-100.
The threshold of 68 points is considered as the “average usability” [5]. Lower
scores indicate below average usability, while higher scores are considered above
average. In addition, we asked our participants to classify the following 3 state-
ments:

– S1: The symbols on the user interface (UI) were easy to understand.
– S2: The symbols on the UI are adequate to the MAS constructions they

are linked to.
– S3: The symbols on the UI helped me solve the exercise in less time.

We deliberately used the term “symbols on the UI” (User Interface) rather
than “concrete syntax”, as a simplification for our participants, who were not
necessarily familiar with the notion of “concrete syntax”. For each of these sen-
tences, the participants had to select from a five-point ordinal scale, ranging
from 1 “Strongly Disagree” to 5 “Strongly Agree”.

Effectiveness. We use the correctness of the answers of our participants to
measure how effectively they were able to solve the exercises.

Efficiency. We recorded the duration of the working sessions to measure how
fast our participants were able to complete their assigned tasks.

5.2 Analysis

Descriptive Statistics. In this section, we present descriptive statistics for
the metrics collected to answer our research questions (Table 5). For each data
row, we identify the corresponding goal (ranging from G1 to G4 ), the depen-
dent variable (the quality focus for a particular goal), the independent variable,
i.e. the concrete syntax followed by the descriptive statistics: the mean, stan-
dard deviation (SD), skewness (Skew), kurtosis (Kurt) and the p-value for the
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Table 5. Selection rate descriptive statistics

Goal Dependent Independent Mdn. Mean S.Dev. Skew. Kurt. S-W

G1 Preference SEA ML++ .44 .45 .14 −.10 .07 .457

SEA ML .16 .19 .14 .20 −1.18 .018

G2 SUS SEA ML++ 61.25 59.38 19.97 −.20 −.24 .409

SEA ML 57.50 54.17 20.62 −.20 .19 .268

Understandability SEA ML++ 4 3.96 1.09 −1.15 .83 .000

SEA ML 3 2.92 1.25 −.04 −.98 .001

Adequacy SEA ML++ 4 3.65 1.02 −.10 −1.10 .000

SEA ML 3 2.96 1.03 −.16 −.11 .001

Speed SEA ML++ 4 3.83 1.10 −.86 .23 .000

SEA ML 3 2.85 1.29 −.09 −.95 .000

G3 Correctness SEA ML++ 1.00 .84 .32 −1.763 1.724 .000

SEA ML 1.00 .80 .32 −1.509 1.096 .000

G4 Duration SEA ML++ 11:51 13:20 06:12 1.520 2.434 .000

SEA ML 12:24 14:48 09:32 2.784 8.463 .000

Shapiro-Wilk normality test (S-W ). In most of these variables, the assumption
of normality is not reasonable (p − value < 0.05), as confirmed by the visual
inspection of boxplots in Fig. 3, Q-Q plots and kernel density plots, omitted for
the sake of brevity.

Hypotheses Testing. We now present the results of our hypotheses tests.
G1: RQ1: Are participants more likely to select the correct elements from the

PoN-based concrete syntax of SEA ML++ or the baseline SEA ML concrete syn-
tax elements? A Wilcoxon Signed-Ranks test was run and the output indicated
that SEA ML++ scores (Mdn = .44) were statistically significantly higher than
SEA ML scores (Mdn = .16), Z = 4.573, p < .001, r = .83. This supports our
hypothesis that participants were more likely to select the SEA ML++ elements.

G2: RQ2: Do participants using SEA ML++ perceive it as more usable than
SEA ML? In order to answer this question, we look at this from 2 different
perspectives. We use a standard usability test – the System Usability Scale
(SUS) – and a set of 3 questions to gather more detailed feedback (Fig. 3).

SUS: Is SEA ML++perceived asmore usable than SEA ML? The usability did
not differ significantly, according to Welch’s t test, t(141.854) = 1.539, p = .126
from SEA ML++ (M = 59.38, SD = 19.97) to the usability of SEA ML (M =
54.17, SD = .20.62) (Fig. 3a).
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Fig. 3. Perceived usability of SEA ML vs SEA ML++

Understandability: The symbols on the user interface (UI) were easy to under-
stand. Because the data was skewed for both variables, a Wilcoxon Signed-Ranks
Test was run and the output indicated that SEA ML++ scores (Mdn = 4), were
statistically significantly higher than SEA ML scores (Mdn = 3), Z = 3.683,
p < .001, r = .53 (Fig. 3b).

Adequacy: The symbols on the UI are adequate to the constructs they are linked
to.Because the data was skewed for both variables, a Wilcoxon Signed-Ranks Test
was run and the output indicated that SEA ML++ scores (Mdn = 4) were statis-
tically significantly higher than SEA ML scores (Mdn = 3), Z = 2.939, p < .003,
r = .42. These results suggest that participants found SEA ML++ more adequate
than SEA ML to the constructs they were linked to (Fig. 3c).

Speed: The symbols on the UI helped me solve the exercise in less time.
Because the data was skewed for both variables, a Wilcoxon Signed-Ranks Test
was run and the output indicated that SEA ML++ scores (Mdn = 4) were
statistically significantly higher than SEA ML scores (Mdn = 3), Z = 3.324,
p < .001, r = .48 (Fig. 3d). These results suggest that participants perceived
using SEA ML++ had helped them solving the exercise faster than using
SEA ML.
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G3: We applied the Welch t-test, which is robust to deviations from nor-
mality within groups and when variance homogeneity among groups may not
be assumed. The correctness does not differ significantly, according to Welch’s
t-test, t(141.968) = .417, p = .519 from the SEA ML (M = .80, SD = .32) to the
SEA ML++ (M = .84, SD = .32) concrete syntax. These results suggest that
there was no difference between the 2 concrete syntaxes, in terms of complexity.

G4: As in G3, we applied the Welch t-test. The duration does not differ
significantly, t(122.030) = 1.180, p = .280 from the SEA ML (M = 14 : 48, SD =
09 : 32) to SEA ML++ (M = 13 : 20, SD = 06 : 12) concrete syntax. These
results suggest that there was no difference between the 2 concrete syntaxes, in
terms of duration.

5.3 Discussion

Evaluation of the Results and Implications. By using the PoN to guide a
redesign of the concrete syntax of SEA ML, we proposed SEA ML++. We found
that (RQ1) the participants in our study were better at correctly identifying the
symbols with SEA ML++. They found the SEA ML++ syntax (RQ2) easier
to understand, more adequate to the MAS constructs it represents and help-
ful for performing faster, when compared to the SEA ML syntax. However, in
practice, (RQ3) participants were neither significantly able to use the language
more correctly, (RQ4) nor significantly faster using it. So, overall, although the
perception of language usage has improved with the new concrete syntax (and,
with it, the developer experience), its implications for the actual usage of the
language in agent development did not translate into improved effectiveness or
efficiency (the small improvements observed were not significant). While it was
certainly the case that there was room for improvement of the concrete syntax,
the PoN-based improvements only took us as far as improving the perceived
developer experience. Other alternative techniques, such as the sign production
technique used successfully with other languages, such as i* [6], could potentially
further improve the developer experience. That said, it seems more likely that the
effectiveness and efficiency in using SEA ML++ are mostly constrained by the
semantics of the language. Further research is ongoing to explore this hypothesis.

Threats to Validity. The selection of participants is a potential threat. They
are mostly representative of practitioners who are relatively inexperienced with
MAS and, therefore, a good match for the main target population of this study.
Most of the participants have less than 1 year experience on software agent
development and only 5 participants in EGE University can be said experienced
with having more than 3 years of MAS knowledge and implementation. As with
many other languages, experts will cope better with the peculiarities of a given
concrete syntax than newbies. The results obtained in the 2 replications were
very similar, which increases our confidence on their external validity for other
inexperienced MAS developers.
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A second validity threat concerns the representativeness of the models used
for this evaluation. While these models are good representatives of the com-
plexity one would discuss with inexperienced MAS developers in the course of
a training activity, further empirical evaluations with models of different com-
plexities will increase the representativeness of this evaluation.

6 Related Work

In the last decade, several MAS modeling languages and DSMLs [4,9,11,14,17]
were proposed to support development of MASs. For example, DSML4MAS [19]
introduces a general MAS metamodel with various viewpoints that enable the
development of MAS for many application domains. As another example study,
in [20], the authors develop a DSML and its supporting tool, called ERE ML,
for MAS working in emergency response environments. However, most of these
DS(M)Ls proposed for MASs have been evaluated by just providing a case study
demonstrating how the related language can be used for design and implemen-
tation of MAS. A quantitative analysis and/or qualitative evaluation consider-
ing e.g. the development time performance, generation performance, and/or the
usability of the language are not considered in these studies.

In [8], an evaluation framework is proposed which provides the systematic
assessment of both the language constructs and the use of agent DSMLs accord-
ing to various dimensions and criteria. The study also provides an assessment of
SEA ML [7], however, it does not take into account the usability of the language,
i.e. usefulness regarding the needs of language users. This evaluation framework
is adopted in [26], [24] and [12] for the assessment of the proposed MAS DSMLs.
Another MAS DSML evaluation feature exists in [3] for a textual DSL, JADEL,
providing 4 abstractions, namely agents, behaviours, communication ontologies,
and interaction protocols to JADE agent development framework. However, the
study only evaluates JADEL’s code generation performance.

The mentioned studies evaluate their MAS DS(M)Ls to some extent with
or without using a structured evaluation framework. However, none of them
addresses the usability of the MAS DS(M)Ls considering both the end-user per-
spective and the improvement of the visual language notation which, we argue
that, is critical for the adoption of such languages in AOSE. In this sense, this
study contribute to the literature by assessing the usability of an available MAS
DSML, namely SEA ML, and improving its new version.

In general, despite the fact that it is usually claimed that DSLs are more
usable and leading to productivity gains, in [13] it has been identified a gen-
eralized lack of practice of reporting their usability assessment. The Software
Language Engineering community has been seeking for adequate and systematic
approaches to evaluating the usability of DSLs [1]. Work was reported [31] on
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how i* concrete syntax was evaluated using PoN and a new symbol set was
proposed for it. In the sequence of this, in [6], it is compared the proposed con-
crete syntax with alternatives produced by novices (a stereotype and a prototype
concrete syntaxes) and the standard i* concrete syntax.

Several modelling languages, for example, BPMN 2.0 [16], Use Case Maps
[15], WebML [18], and misuse cases [34], use PoN to evaluate and identify
improvement opportunities. It is possible to observe consistently similar con-
clusions concerning the challenges in most visual notations from a PoN perspec-
tive [30]. Other studies assess the i* and KAOS modelling languages [27], using
interviews, creation of models, and evaluation of those models and the mod-
elling language and found clarity problems in the semantics definition of those
languages.

7 Conclusion and Future Work

There are many modeling languages and DSMLs for MAS. Although there are
a few studies addressing the evaluation of MAS DSMLs and their performances,
the usability of these DSMLs is not investigated in a systematic way. In this
study, the principles of The “Physics” of Notations are applied on a MAS DSML,
called SEA ML. By applying 9 principles, 43 notations of SEA ML are evalu-
ated and 32 of them are modified which are used in the development of the new
version of SEA ML called, SEA ML++. In this way the notations in the graph-
ical concrete syntax of the DSML are improved leading to the improvement
of SEA ML++. This hypothesis is examined under 4 research goals covering
comprehensiveness, usability, effectiveness, and efficiency. The experiment con-
ducted by the participants shows that the participants were more likely to select
the SEA ML elements and the symbols were easy to understand. However, the
results show that there was no significant difference between the 2 concrete syn-
tax, in terms of complexity and duration. Finally, it is worth indicating that this
study mainly focuses on evaluating the use of notations/symbols in the DSML
and does not cover the other issues (e.g. diagram complexity, scalability) which
PoN can be utilized. These can be addressed in the future work.
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Appendix A. Descriptions of the Selected SEA ML
Concepts

Icon. Concept Description

Semantic Web Agent
(SWA)

Semantic web agent in the SEA_ML stands for each agent which is a 
member of semantic web-enabled MAS. It is an autonomous entity 
which can interact with both the other agents and the semantic web 
services, within the environment.

Semantic service 
matchmaker agent
(SSMatchmakerAgent)

It is a SWA extension. This meta-element represents matchmaker 
agents which store the SWS’ capabilities list in a MAS and compare it 
with the service capabilities required by the other agents, in order to 
match them.

Belief Beliefs represent the informational state of the agent, in other words 
its knowledge about the world (including itself and other agents).

Goal
A goal is a desire that has been adopted for active pursuit by the 
agent.

Role An agent plays different roles to realize different behaviors in various 
situations, such as organizations, or domains.

Capability
Taking BDI agents into consideration, there is an entity called 
Capability which includes each agent’s Goals, Plans and Beliefs about 
the surroundings.

Fact The statement about the agent’s environment which can be true. 
Agents can decide based on these facts.

Plan
Plans are sequences of actions that an agent can perform to achieve 
one or more of its intentions.

Semantic service register 
plan
(SS_RegisterPlan)

The Semantic Service Register Plan (SS_RegisterPlan) is the plan used 
to register a new SWS by SSMatchmakerAgent.

Semantic service finder 
plan
(SS_FinderPlan)

Semantic Service Finder Plan (SS_FinderPlan) is a Plan in which 
automatic discovery of the candidate semantic web services take place 
with the help of the SSMatchmakerAgent.

Semantic service 
agreement plan
(SS_AgreementPlan)

Semantic Service Agreement Plan (SS_AgreementPlan) is a concept 
that deals with negotiations on quality of service (QoS) metrics (e.g., 
service execution cost, duration and position) and contract 
negotiation.

Semantic service 
executor plan
(SS_ExecutorPlan)

After service discovery and negotiation, the agent applies the 
Semantic Service Executor Plan (SS_ExecutorPlan) to invoke 
appropriate semantic web services.

Send An action to transmit a message from an agent to another. This can be
based on some standard such as FIPA_Contract_Net

Receive
An action to collect a message from an agent. This can be based on
some standard such as FIPA_Contract_Net

Task Tasks are groups of actions which are constructing a plan in an agent.

Action An action is an atomic instruction which constitutes a task.

Message

A package of information to be send from an agent to another; 
possibly to deliver some information or instructions. Two special 
types of actions, namely Send and Receive, are used to handle these 
messages. 

Agent state

This concept refers to certain conditions in which agents are present at 
certain times. An agent can only have one state (Agent State) at a time, 
e.g., waiting state in which the agent is passive and waiting for 
another agent or resource.
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Resource
It refers to the system resources that the MAS is interacting with. For 
example, the database.

Service Any computer-based service presented to the users.

Web
Service Type of service which is presented via web.

Semantic Web Service
Semantically defined web services which can be interpreted by 
machines. 

Process
It describes how the SWS is used by defining a process model. 
Instances of the SWS use the process via described_by to refer to the 
service’s ServiceModel.

Interface

This document describes what the service provides for prospective 
clients. This is used to advertise the service, and to capture this 
perspective, each instance of the class Service presents a Service 
Interface.

Grounding

In this document, it is described how an agent interact with the SWS. 
A grounding provides the needed details about transport protocols. 
Instances of the class Service have a supports property referring to a 
Service Grounding.

Input Defines the inputs for processes and interfaces of a SWS.

Output Defines the output for processes and interfaces of a SWS.

Precondition Defines the pre-conditions for processes and interfaces of a SWS.

Effect
Defines the post-conditions or effects for processes and interfaces of a 
SWS.

Semantic web 
organization

Refers to an organized group of semantic web agents (SWAs).

Interaction
For communication and collaboration of agents, they can use series of 
messages via a message sequence which results to an agent 
interaction.

Environment The agent’s surroundings including digitized resources, fact, and 
services.

Registration Role
A specialized type of architectural role which is used to register SWSs 
in the multi agent systems. 

Behavior In re-active agents, a behavior is a re-action of an agent towards an 
external or internal stimulus.

Agent type
The agents in a multi-agent system can have different types taking 
various responsivities and representing various stakeholders.
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Abstract. This chapter presents our proposal for the development of
multi-agent systems designed as ontology models supporting code gen-
eration and reasoning. The foundation of such work takes into consid-
eration ontologies for agent-oriented software engineering aligned with
the JaCaMo framework. These techniques are implemented in a tool
that supports multi-agent systems core code generation for JaCaMo. The
underlying ontology also allows for reasoning about the multi-agent sys-
tems models under development. Such comprehensive approach, there-
fore, spans through the modelling, programming, and verification of
agent-oriented software.

Keywords: Ontologies for agents ·
Reasoning in agent-based systems ·
Development techniques, methodologies, tools and platforms

1 Introduction

The design of complex systems, such as Multi-Agent Systems (MAS), should
consider models that are clear to communicate, provide support during pro-
gramming, and allow reuse and reasoning over the specification [6]. The use
of modelling methodologies help us to understand complex problems and their
potential solutions through abstractions. Thus, in this context, research investi-
gating ontologies to support the modelling of MAS has been carried out [6,11,16].
Well-known MAS development frameworks, such as JaCaMo [1], integrate dif-
ferent technologies and languages for the design of MAS. In this chapter, we
propose an ontology-based MAS development approach where a common basic
language is used to present and specify a MAS, resulting in the integration of
their different aspects and also serving for core code generation in JaCaMo [1].

It should be noted from the start that, although the general approach can
be applied to any agent-oriented platform, the fact that there is not overall
agreement on concepts and terms used in Agent-Oriented Software Engineering
(AOSE), we need specific ontologies for each platform. While we here concentrate
on the well-known JaCaMo framework [1], work on alignment with upper ontolo-
gies might in the future facilitate also the integration of different approaches to
agent-oriented development.
c© Springer Nature Switzerland AG 2019
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An important contribution of agent-oriented programming as a new paradigm
was to provide ways to help programmers in developing autonomous systems. For
example, agent programming languages typically have high-level programming
constructs which facilitate (compared to traditional programming languages) the
development of systems that are continuously running and reacting to changes in
the dynamic environments where such autonomous systems usually operate [1].
Agent-oriented paradigms are normally used to develop very complex systems,
where not only are many autonomous entities present in a shared environment
but also they need to interact in complex ways and need to have social structures
and norms to regulate the overall social behaviour that is expected of them.

This chapter is organised as follows. Section 2 focuses on alternative mod-
elling approaches for engineering MAS. Section 3 introduces the topic of pro-
gramming such systems using JaCaMo. Section 4 presents our model-based tech-
niques to support code generation for JaCaMo. Section 5 explores the issue of
reasoning with ontology models. In Sect. 6 we discuss the results of an experiment
that was conducted to evaluate the proposed framework. Section 7 concludes this
chapter and highlights some research directions for future work.

2 Multi-Agent Systems Modelling Approaches

Current AOSE methodologies (such as Prometheus [12]) are usually deficient
in at least one area of MAS development [15], such as agent internal design,
interaction design, or organisation modelling. Also, currently we have separate
approaches to address the modelling and programming of MAS, resulting in gaps
and conceptual divergences in AOSE [6,7]. While JaCaMo [1] is a programming
platform that uses three different formalisms for coding, Prometheus [12] is an
agent modelling approach that does not apply or explore any formal (logic-
based) representation as part of its technique. This work addresses issues stem-
ming from those facts investigating an ontology-based model-driven engineering
approach as an integrated global model of MAS characteristics, where ontology
models support MAS verification and programming. Although the advantages of
ontologies for agents are clear, few MAS platforms currently integrate ontology
techniques [6,15]. Limited ontological support is provided by a number of exist-
ing AOSE methodologies since they do not incorporate ontologies throughout
the entire development lifecycle nor consider ways in which ontologies can be
used to account for interoperability and verification during design [15].

Several models and methodologies can be found in literature to formalise
and define the processes of MAS design and implementation. For example,
Prometheus [12] is one of the best-known MAS modelling methodology for
developing intelligent agent systems. It defines a development process with
associated deliverables for assisting developers to design, document, and build
agent systems based on concepts such as goals, beliefs, plans, and events. The
Prometheus [12] methodology encompasses three phases: system specification,
architectural design, and detailed design. Among future work for Prometheus [12]
there is the introduction of social concepts to improve its current models, how-
ever these improvements are not available yet in the latest official version of
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the Prometheus Design Tool (PDT). Therefore, some aspects of MAS are not
covered by the models of Prometheus, which also does not explore the use of for-
mal or explicit ontologies as part of its approach. Ontologies for MAS are being
proposed and investigated to support programming and reasoning over specifica-
tions, and they can also offer code generation features and help in organising the
many concepts involved in the modelling, development, and verification of MAS.
In this direction, ontologies have been considered in several different approaches
in AOSE [6,11,16]. Ontologies are defined as knowledge representation structures
composed of concepts, properties, individuals, relationships, and axioms.

It is possible to find in literature ontologies for the environments of MAS [11].
Environments play an essential role in MAS, and their semantic representation
improves the way agents reason about the objects with which they interact
and the overall environment where they are situated. This is important because
most agent-oriented programming languages are weak in allowing the developer
to model the environment within which the agents will execute [2]. The use
of an environment ontology adds three important features to existing multi-
agent approaches [11]: (i) ontologies provide a common vocabulary to enable
environment specification by agent developers (since it explicitly represents the
environment and agent essential properties, defining environments in ontologies
facilitates and improves the development of multi-agent simulations); (ii) an
environment ontology is useful for agents acting in the environment because it
provides a common vocabulary for communication within and about the environ-
ment (it allows interoperability of heterogeneous systems); and (iii) environment
ontologies can be defined in ontology editors with graphical user interfaces, mak-
ing easier for those unfamiliar with programming to understand and design such
ontologies.

Research on ontologies for MAS environments [11] had already foreseen the
relationship between the environment and other MAS dimensions, since they
mention the intention of looking at higher-level aspects of environments, i.e.,
social environment aspects of agents, such as the specification of social norms
and organisations in agent societies. In fact, on the MAS organisation dimension,
there is a semantic description of MAS organisations [16] to specify an ontol-
ogy for organisational characteristics of the Moise meta-model. This approach
helps agents in becoming aware, querying, and reasoning about their social and
organisational context in a uniform way, making possible to convert between
ontology and Moise specifications, thus providing more flexibility for modelling
and developing in this domain. This semantic description of Moise [16] provides
other benefits such as increased modularisation, knowledge enriching with meta-
data, reuse of specifications, and easier integration. With the semantic web effort
aiming to represent the information in semantic formats, the MAS community
can take advantage of these new technologies in AOSE development tasks such
as to integrate organisational models, to monitor organisations, and to analyse
agent societies [16].

Next section introduces the JaCaMo as a unified programming framework
for these MAS characteristics recently discussed.
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3 Programming in JaCaMo

MAS programming in JaCaMo [1] requires the development of code in Jason [3],
CArtAgO [14], and Moise [9]. Jason [3] is an AgentSpeak language implementa-
tion that focuses on agent actions and mental concepts and provide to program-
mers features such as speech-act based agent communication, plan annotation,
architecture customisation, distributed execution, extensibility through internal
actions, among other functionalities. On the environment side of agent systems,
CArtAgO [14] is a platform to support the artifact notion in MAS. Artifacts are
function-oriented computational devices which provide services that agents can
exploit to support their individual and social activities [14]. Lastly, the specifi-
cation of agents at the organisation level can be achieved using an organisation
modelling language, such as Moise [9]. Moise explicitly decomposes the specifica-
tion of an organisation into its structural, functional, and normative dimensions.

JaCaMo resulted from one of the earliest approaches aimed at explicitly
investigating the integration of all the dimensions of MAS from a design and
programming point of view. Most previously existing approaches had consid-
ered either only the agent-organisation dimensions, or the agent-environment
dimensions [1]. The combination of these dimensions of MAS into a single pro-
gramming paradigm with a concrete working platform has a major impact on the
ability to program complex distributed systems. The authors of JaCaMo pointed
out, as future work, the desire for an Integrated Development Environment
(IDE) to facilitate the process of design, development, and execution of JaCaMo
applications, potentially reusing and integrating existing Jason, CArtAgO, and
Moise tools and technologies [1]. Thus, recognising the importance achieved by
JaCaMo, this research direction is one of the motivations in this chapter.

JaCaMo is one of the few fully operational platforms combining all three
dimensions of MAS, to the best of our knowledge, and arguably one of the best-
known (e.g., given it is highly cited). Thus, our proposed techniques for modelling
and code generation address the design of MAS with an eye on implementa-
tions using JaCaMo as the target programming platform specifically. However,
as noted earlier, the overall approach could also be recreated for other agent
development platforms as well. Other frameworks for MAS development provide
some support for environments, or some organisational notions such as roles,
but without including a fully-fledged organisational model and first-class envi-
ronment abstractions that are provided by JaCaMo.

4 Code Generation Techniques for Multi-Agent Systems
Designed as Ontology Models

In our work we present two different techniques for code generation based on
models specified using an ontology of MAS obtained from the literature [5,6].
One technique is the iterative drag-and-drop of elements from ontology to trans-
form them into the different parts of code that compose a JaCaMo project: Jason,
CArtAgO, Moise, or the jcm file. The other technique is the automatic generation
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of the initial files and code of JaCaMo projects that match the ontology-specified
content. Both techniques are implemented in our tool called Onto2JaCaMo. Our
work employs the ontology of MAS obtained from [5,6] as the basis for the code
generation techniques, and we refer to it as OntoMAS. For details about the
ontology, we refer to its references, so that we can focus here on its applica-
tions. When using an ontology for modelling MAS, the underlying idea is that
the MAS project conception should start by its modelling as an ontology. This
is done by extending the ontology top-level concepts, and adding new classes,
instances and relationships in order to specify the corresponding desired project
to be implemented in terms of agent-oriented concepts [6].

In OntoMAS, a particular MAS begins to be modelled by extending the ontol-
ogy, which is done by creating new subclasses to its top-level concepts. Then,
individuals are created in the process of instantiating the extended ontology.
From an instantiated model, it is possible to perform reasoning and obtain an
inferred specification, which can be explored for verification purposes such as, for
example, in model checking approaches. Then, a model specified using OntoMAS
can be used in our techniques for supporting MAS programming, which are incor-
porated into the Onto2JaCaMo tool. Such an approach also allows designers to
gradually refine from high-level abstract views to elements directly available in
concrete features of MAS programming platforms. The designers may apply the
desired level of completeness in their models, which will later result in a code with
a corresponding detailing. Figure 1 illustrates how OntoMAS and Onto2JaCaMo
fit in the phases of AOSE in the proposed methodology. Currently, an ontology
editor tool, such as Protégé [10], should be used to interact with OntoMAS
during the MAS modelling. OntoMAS is currently formalised in OWL (Web
Ontology Language), which is a computational logic-based Semantic Web lan-
guage designed to represent rich and complex knowledge about things, groups
of things, and relations between things. Future research, besides, could consider
new languages to be used for OntoMAS if they offer some sort of advantages in
terms of knowledge representation and reasoning.

Fig. 1. Methodology using OntoMAS and Onto2JaCaMo.
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4.1 Mapping Elements from the MAS Ontology to JaCaMo Code

Initially, lets make a mapping of where elements from OntoMAS [5,6] are usually
found in a JaCaMo project. There are concepts to deal with the Agent Dimension
with a clear relation to Jason (such as Agent, Plan, and Belief ), concepts to deal
with the Environment Dimension to establish a relation with CArtAgO (such
as Artifact, Space, and Operation), and concepts to deal with the Organisation
Dimension to address Moise specifications (such as Group, Role, and Norm).

From the agent dimension, we are not interested in defining any possible and
generic characteristics of any kind of agent, such as physical agents. Instead, we
are interested in specifying only the concepts of virtual agents that make sense
in the context of programming for this dimension. Thus, the OntoMAS ontology
contains the following 6 top-level concepts to represent the agent dimension:
Agent, Plan, Action, AgentGoal, Belief, and Message. Figure 2 summarises the
main concepts, subclasses and properties in the agent dimension of OntoMAS.

As already mentioned, the use of OntoMAS ontology sometimes requires to
create subclasses that specialise the given top-level domain concepts. A subclass
of Agent represents a type of agent, such as for example, Player. When defining
a given concept as a subclass of Agent, this concept represents all individual
agents of that kind. Subclasses of Agent are usually found in JaCaMo as the
.asl files. An instance of a subclass of Agent represents an individual agent of
that corresponding type, such as for example playerJohn. Instances, such as
playerJohn, are usually found in JaCaMo as individual agents defined by an
agentID in the .jcm file.

A Plan is a procedure composed of actions and it is triggered inside agents.
The definition of each plan should be represented as an instance of the Plan
concept. Thus, instances of plans represent the specification of a plan, such as
for example chooseMovement. The specification of a plan is found in JaCaMo
inside the .asl code of the type of agent that contains such plan. From this
modelling perspective adopted in OntoMAS, the designer does not need to cre-
ate subclasses of Plan, but this possibility is allowed. There are classes in this
dimension that can be applied just by creating instances, which we argue that
is the most simple way. However, the modeller is allowed to create subclasses to
achieve an additional layer of expressiveness.

There are two kinds of Actions represented in OntoMAS: ExternalAction
and InternalAction. An ExternalAction is what the agent does that affects the
environment, such as the act of opening a door. An InternalAction is how an
agent act to manipulate its mental state, for example, forgetting some belief.
While internal actions may be defined by local actions in the agent’s state,
external actions may refer to performing operations of artifacts that are situated
in an environment. The definition of an action is represented by creating an
instance of Action, such as for example openDoor. Actions are usually found in
JaCaMo in the body of agents’ plans. Similarly with plans, the designer does not
need to create further subclasses of Action, but this possibility is allowed. For
example, the subclass openDoor could have two different instances according to
different door handles, openDoor-barhandle and openDoor-knobshandle.
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Fig. 2. Concepts, subclasses and properties in the agent dimension of OntoMAS.

An AgentGoal represents some agent individual desire to be achieved. Goals
can be in one of the two following types. An AchievementGoal represents a state
of the world (objective) that an agent can have intention to attain, such as
having the door opened. A TestGoal is a check on the agent’s beliefs in order
to verify if a given belief holds, for example, querying the belief about the door
being closed. Both achievement and test goals may fail, but for any plan that is
using them in order to continue its execution and finish with success, its goals
must be completed. The definition of a type of goal that agents may pursue is
represented by creating an instance of AgentGoal, such as for example to achieve
doorOpened. Goals are usually found in JaCaMo inside agent code (.asl files).

The Belief encodes the knowledge of agents, which can be one of the three
types, as follows. PerceptBeliefs are obtained from environment perception, for
example, the belief stoveLit to represent the state perceived from a device.
AgentBeliefs are beliefs obtained from some other agent, for example, when an
agent is told by other about something. SelfBeliefs are obtained by internal agent
reasoning, for example, when an agent believes in something but not because it
was perceived from the environment nor it was told by other agent. The definition
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of a type of belief is specified by creating an instance of Belief, such as for example
preferredMove, which can be a SelfBelief. Beliefs are usually found in JaCaMo
inside the code of agents (.asl files).

A Message is a communication that goes from one agent to another. The def-
inition of a type of message is represented by creating an instance of Message,
such as for example informLocation. Sending a Message may be a part of a
plan in agents. The message types correspond to which performative is part of
the sender agent’s intention, for example, if it is delegating a goal (AchieveMes-
sage), informing a belief (TellMessage), requesting a plan (AskHowMessage),
etc. There are 9 different types that a message can assume, each representing its
illocutionary force, all of them depicted in Fig. 2 as subclasses of Message.

After explaining the concepts illustrated in Fig. 2, we can now discuss other
topic depicted there, namely the properties that take place in relationships
among concepts of the agent dimension. Plans may contain actions, which means
that when a given plan is being executed, its corresponding actions may be per-
formed. This is represented by connecting instances of these concepts using the
has-action property, for example, chooseMovement has-action openDoor. The
same is true for plans that may start the pursue of goals, defined through the
property has-goal, as exemplified by chooseMovement has-goal doorOpened.
Also about plans, they may be triggered by an event involving a belief or a goal,
which is given by the property named is-triggered-by. To indicate that a given
plan sends a specific message, the sends-message property may be used. There
is no need to specify for agents the has-action and sends-message properties if
they were all specified for plans, a general rule can make inferences to check if
an agent contains plans that have actions and send messages, in such case the
agent will also present these properties too. We refer to Sect. 5 for more details
about rules and reasoning over OntoMAS models.

Some properties work with the concept of Agent as its domain or range. We
have explained that the Agent concept may have both subclasses (e.g., Player)
and instances (e.g., playerJohn). When it is desired to use a property to con-
nect between instances, the semantic is the same as explained in the previous
paragraph. For example, agents may have beliefs, as expressed by the has-belief
property. If playerJohn has some belief, lets call preferredMove, then these
instances have to be connected using the mentioned has-belief property. How-
ever, if all agents of that type (Player) have such belief, then a “subclass of”
restriction should be used in that concept. This is represented as: Player is a
subclass of has-belief value preferredMove. The same principles are applied
to: the has-goal property, which indicates the goals of agents; the has-plan for
indicating the plans of agents; and the sends-message property, which indi-
cates which messages the agent sends. To connect an instance of message with
an instance of agent that should receive it, the property has-receiver can be
applied (e.g., informLocation has-receiver playerJohn).

We point out to reference [5] for further details on the ontology meta-model
that are not tackled here in this chapter. However, we next briefly explain the
dimensions of environment and organisation, but not with the same level of detail
employed above to show the concepts and properties of the agent dimension.
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Each subclass of Artifact is found in CArtAgO as a Java class, and instances
of Artifact subclasses represents an object/tool/resource of that type, which
may be found in JaCaMo in the .jcm file that describes the initial artifacts of a
system; however, other artifacts instances may be created after the initialisation
of the MAS. Spaces are initialised in the JaCaMo project file, but agents may
make reference to spaces in their code too. Operations are found in CArtAgO as
methods of the artifact that implements such procedures. Instances of Percept
(ObservableProperty or ObservableEvent) are found in the Java code of artifacts
through methods provided by the CArtAgO API to manipulate them (such as
defineObsProperty, getObsProperty, updateObsProperty, and signal).

Subclasses of Group can be found in the XML that specifies an organisation
in Moise, and their instances take place in the JaCaMo project file, as well
as in the code of agents in Jason that can make references to groups (e.g.,
join group). Instances of Role are found in the Moise XML file, and the code of
Jason agents can make reference to such roles too (e.g., adopt role). Instances
of OrganisationGoal are also found in the Moise file, and the code of agents in
Jason can make references to those goals (for example, agents may have plans
to act when a goal is assigned to them by the organisation). Lastly, instances of
Missions and Norms are defined in the Moise XML file of a JaCaMo system.

The classes and properties in OntoMAS are modelled in three sub-ontologies,
one for each dimension: agent, environment, and social organisation. The integra-
tion and connections among concepts in the dimensions of OntoMAS are encoded
by means of concepts, object properties, and rules which determine how elements
are allowed to relate among each other. To illustrate, in order to specify the loca-
tion of agents’ instances in spaces from the environment dimension, the property
is-in may be used, such as, for example playerJohn is-in classRoom (consider-
ing classRoom an instance of Space). The property is-focused connects an agent
with an instance of artifact in which that agent is focused, such as playerJohn is-
focused homeComputer (considering homeComputer an instance of Artifact).
Then, some properties may be obtained by inference over elements from differ-
ent dimensions. If an agent (?a) is in a space (?s), and this space provides some
percept (?p), then this agent can have such percept (?a can-perceive ?p). This
is specified through the following rule:

is-in(?a, ?s), provides-percept(?s, ?p) –> can-perceive(?a, ?p).

As another example to illustrate important things to represent in the ontol-
ogy, when relating concepts from the dimensions of agent and organisation, we
may desire to specify that a given agent is adopting a role. This may be done
with the property adopts-role. If a characteristic affects only some individuals
of a group, then it should be defined as an object property in those affected
instances. In this case, for example, supposing redSoccerTeam as an instance of
the Group concept, if the redSoccerTeam contains the playerJohn agent, then
these instances should be related using the object property contains-agent.
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4.2 Drag-and-Drop Transformation Technique
from the Multi-Agent Systems Ontology to JaCaMo

The idea of using an ontology for providing drag-and-drop operations from mod-
els to code in JaCaMo has been already mentioned in literature [5,6]. In this
chapter we explain how the elements of an ontology model can be dragged to
generate code for the different parts of JaCaMo, such as Jason, CArtAgO, Moise,
or the JaCaMo project file that defines the specification that initialises the cor-
responding system. Each element from an ontology model can be transformed
in MAS code in several different ways.

To exemplify the drag-and-drop conversions, let us take a look at how
instances of the ObservableProperty concept may be employed in the code of
each of the different parts of JaCaMo. Suppose there is an instance of Observ-
ableProperty called temperature, defined at the Environment Dimension. If a
programmer makes a drag-and-drop of temperature in this dimension, a code
automatically created as suggestion may be to update the value of such observ-
able property. Thus, the following code can be created:

getObsProperty(temperature).updateValue(newValue);

In Jason, making a drag-and-drop using this same instance of Observ-
ableProperty may give origin to a plan triggered by the observation of such
property:

+temperature : true <- planBody.

However, if dropped in the middle of a plan, then just the corresponding
belief identified by temperature is generated. When a JaCaMo system is running,
the observable properties provided by environmental artifacts become beliefs to
agents that are focusing on those artifacts, and when they become beliefs, some
plans may be triggered by the belief addition event. Instances of observable
properties are not applicable for drag-and-drop code transformations in the case
of Moise or JaCaMo project file. We have summarised the information about
the drag-and-drop operations provided by Onto2JaCaMo for transforming from
the ontology to JaCaMo code in Table 1. This table shows the generation when
the desired outcome is the Agent Dimension of JaCaMo (i.e., Jason). Similarly,
there are strategies to convert the ontology to the Environment Dimension of
JaCaMo (CArtAgO), to the Organisation Dimension (Moise), and also to the
initialisation setup of JaCaMo (the .jcm file). However, the tables illustrating
these other mappings were not included in this chapter for the sake of space (see
reference [5] for further details).

4.3 Core Code Generation Technique from OntoMAS to JaCaMo

The technique proposed in this subsection is related to the idea of using an
ontology for the automatic generation of skeleton code for each of the JaCaMo
languages. Elements from an ontology of MAS should have their resulting code
counterparts in Jason, CArtAgO, and Moise. Therefore, it would be possible
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to directly transform an ontology-based MAS specification into initial code for
JaCaMo. While when using drag-and-drop programmers are iteratively trans-
forming elements from their ontology model into code, this code generation
technique uses another perspective, which is to generate an initial structure of
a corresponding project in JaCaMo to what is specified in the ontology model.

The generation of initial agent files and code for Jason considers mainly the
subclasses and instances of the Agent Dimension of the employed ontology. For
example, each subclass of Agent becomes an .asl file with its corresponding
plans, actions, goals, beliefs, and messages. However, characteristics defined at
other dimensions, such as the environment, although not directly applicable
to generate the initial code at the agent level, may be considered to suggest
implementation alternatives for programmers (at least for them to be aware of).
For example, for an agent that is expected to receive a given percept, a plan
triggered by the addition event of that percept may be suggested as a situation
that programmers are likely to have to handle.

Similarly, the initial files of the CArtAgO part of a JaCaMo project derive
mainly from the Environment Dimension of the ontology in use, and the Moise
initial code is generated based on the Organisation Dimension. Subclasses of
Artifact become the Java files with their corresponding operations as methods,
and observable properties are initialised. All the organisation elements (sub-
classes, instances, and relationships) are considered in the generation of the
initial XML file of a Moise organisation. Lastly, the JaCaMo project file con-
siders characteristics from all the three dimensions, and relationships from their
integration.

To exemplify the initial project generation, consider the ObservableProperty
instance used in previous examples, temperature. If it is said that an artifact
type (e.g., computer) has this property, then such observable property definition
must compose the init() method of the computer artifact class in the format:

defineObsProperty("temperature", initialValue);

Considering Jason, Moise, or .jcm files, instances of observable properties are
not directly applicable for the automatic code generation in this case. However,
a plan triggered by the addition event of the related observable property could
be suggested to the agents’ programmers as a situation worth to be handled.

How each element from OntoMAS models can be transformed into the initial
structure of files and code for Jason is shown in Table 2. This same principle
is applied to CArtAgO, Moise, and the project file, albeit, it is not possible to
illustrate all those tables in this chapter. However, we have complete definitions
for OntoMAS models as starting point to generate skeleton code for each part
of JaCaMo programming (Jason, CArtAgO, Moise, and the .jcm project file).

The so-called core code generation technique presented in this subsection
creates the first skeleton code for a JaCaMo project that was modelled using the
OntoMAS ontology. The drag-and-drop technique is a way to complement and
iteratively evolve the programming of such systems. Compared to a fully hand-
written code, developers would lack tools that could provide means to integrate
the modelling and programming of their MAS.
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4.4 The Onto2JaCaMo Tool for Multi-Agent Systems Development

For effective and efficient software development, preferably all tasks and activ-
ities during the development process should be adequately supported by
tools [13]. The quality of any software tool support can be assessed by con-
sidering the degree of support for the different phases and tasks [13], e.g., design
tools, which besides the creation and editing of design models also often support
consistency checking and/or code generation.

We have implemented the techniques previously explained in Subsects. 4.2
and 4.3 in a software tool to support MAS development, which we refer to as
Onto2JaCaMo. It consists of a plug-in for Eclipse that loads instantiated models
based on the ontology of MAS obtained from [5,6] to provide code generation
for JaCaMo. Eclipse [4] is an open source software development project that
provides an IDE in which a basic unit of function, or a component, is called a
plug-in. Eclipse is already the standard IDE for JaCaMo development, and it
was indeed an interesting choice since Eclipse is recognised as a mature IDE,
and one of the most widely used by programmers [13].

Onto2JaCaMo is easily installed by adding its .jar file in the Eclipse plug-ins
folder. It can be activated to appear visually in the graphical interface of Eclipse
by following this sequence: Window → Show V iew → Other... → JaCaMo
Ontology → Ok. When it is enabled, Onto2JaCaMo requests to be informed
about the OWL file corresponding to an instantiated ontology so that it can be
loaded. The plug-in was designed to be used in the “JaCaMo Perspective” of
Eclipse (or related perspectives, such as Jason). The tool loads OWL ontolo-
gies and provides three model-based programming features to generate MAS
code: drag-and-drop, conversion from ontology to code, and auto-complete from
instantiated ontologies.

In the drag-and-drop functionality, the developer can visualise and navigate
through the ontology concepts, instances, and properties. These elements from
the model can be dragged to the code in files being edited in Eclipse. For exam-
ple, the programmer may perform a dragging and dropping operation using the
action pass ball to be inserted in a plan of agents of type “player”. Similarly,
it is possible to provide developers the auto-complete feature from ontology to
agent code, which is activated when the developer is typing MAS code (or press
the auto-complete shortcut: “ctrl + space”). Then, the available options based on
the ontology are presented to programmers as suggestions. One example is when
coding the plan’s context, which may be composed of ontology-based queries
(e.g., verifying if an individual belongs to a concept).

The Onto2JaCaMo tool is able to generate code fragments based on design
information, which is known as forward engineering [13]. This is in the oppo-
site direction of extracting design information out of existing application code,
the so called reverse engineering. A drawback of forward or reverse engineering
techniques is that after a generated artifact has been changed manually, for-
ward or reverse engineering cannot be reapplied without losing the changes, as
stated in the called “post editing problem”. The combined support of forward
and reverse engineering, such that changes in one artifact can always be merged
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into the other without compromising consistency or losing changes, is referred
to as round-trip engineering [13]. The Onto2JaCaMo tool presented in this work
does not address such advanced and complex concepts of synchronisation as yet;
these are, however, interesting topics for future work.

5 Ontology-Based Reasoning Support for Agent Systems

Model verification refers to the processes and techniques that the model devel-
oper uses to ensure that their model is correct and matches any agreed-upon
specifications and assumptions. OntoMAS can be explored with its available
reasoning mechanisms to implement model verification in the context of MAS.
The literature reports that most practical approaches for verification of MAS
are done on code, and most of the work done on model checking within the
MAS research area is quite theoretical [2]. However, there are approaches that
use model checkers typically to verify properties of particular aspects of a given
MAS. While this has the advantage of proving properties of systems that will
be deployed, it is also often useful to check properties during systems’ design.

Considering this context, semantic reasoners may provide, for example, con-
sistency checking and inferences about the MAS specified as an ontology. Ontolo-
gies empower the execution of semantic reasoners that provide functionalities
such as consistency checking, concept satisfiability, classification, and realisa-
tion. In other words, reasoners are able to automatically infer logical conse-
quences from a set of axioms. The possibility to reason about the model can
provide support for various consistency checks during the MAS project design
and implementation. For example, when considering only MAS organisations,
it is possible to check for conflicts considering the existing norms, roles, and
missions. When an instantiation of MAS organisation is combined with instanti-
ated agents, it is possible to check for other kinds of inconsistencies integrating
information from more than one dimension, such as whether the agents contain
the required capabilities to achieve the existing organisation goals. Organisation
goals are assigned to agents playing the organisation roles, and an agent play-
ing a specific role may not have the required plans to achieve the goals that
the organisation will assign to it. Reasoning can be applied also to verify consis-
tency among the norms in the organisation. The combination of some norms can
result in contradictions, for example, when a prohibition occurs together with
an obligation or permission. These contradictions can appear when considering
the missions of just one isolated role, or when combining the missions of two or
more roles.

When analysing the knowledge about the environment, it can be checked
whether agent actions are valid in a given environment configuration. If there is
an agent action that does not exist in the environment, the invocation of such an
action in run-time will result in failure. Thus, the verification of characteristics
over an instantiated model at design time may prevent future errors to happen
during the execution time of the corresponding JaCaMo specified project.

The use of ontology enables the creation of rules, which can be coded in the
Semantic Web Rule Language (SWRL). Such rules can be inherited from the base
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OntoMAS ontology, and new ones can be added specifically for an extension and
instantiation of OntoMAS, when defining a desired MAS scenario. All elements in
the ontology are taken into consideration when semantic reasoners are executed
for making inferences. For example, one general rule is that if an agent a is in a
space s, and this space s can provide an observable property p, then it can be
inferred that the agent a is able to perceive p if it chooses to do so. This rule is
coded as follows:

is-in(?a,?s), provides-percept(?s,?p) -> can-perceive(?a,?p).

In such reasoning mechanism it is possible to relate elements from any dimen-
sion (e.g., agent) with elements from other dimensions (e.g., environment). Lets
suppose now a more complex example for inferences about a modelled MAS.
We already commented that agents join organisations by playing organisation-
defined roles, and it is expected that such agents have in their codes the required
plans to handle the goals that the organisation may assign to them. Organisa-
tion goals are assigned to agents, for example, if there is an obligation norm
on that role, and an agent that adopts such role should have a plan for achiev-
ing that goal. Lets represent this with a new property to specify that Agents
should-have-plan-for Goals. This can be inferred, for example, if there is an
obligation norm n that targets a role r, and there is an agent a that adopts the
role r, then, the conclusion is that the agent a should have a plan for the goal
g, where g is a goal from mission m, which is the mission for the obligation norm
n. The following rule exemplifies how to make this inference:

ObligationNorm(?n), targets-role(?n,?r), adopts-role(?a,?r),
targets-mission(?n,?m), has-goal(?m,?g) ->

should-have-plan-for(?a,?g).

As we have exemplified using some rules in this subsection, more complex
information can be incrementally inferred from the basic conceptualisation pro-
posed by OntoMAS. Also, it allows extensions to be made on top of it, by
including for example new concepts, properties, and so on.

As another example, it can be inferred which operations and percepts can be
obtained from each space based on which artifacts are situated in it (the concept
of Space from the ontology refers to the called Workspaces of CArtAgO). A rule
may be used as follows:

contains-artifact(?s,?a), provides-percept(?a,?p) ->
provides-percept(?s,?p).

This rule can be read as: if the space s contains an artifact a, and a provides a
percept p, then s provides p. The same reasoning principle applies to operations
from artifacts that are located in some space. Moreover, another general rule
about environments is that the percepts and operations of sub-spaces are also
provided by the spaces that contain them.
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6 Evaluating Onto2JaCaMo

Our initial evaluation of Onto2JaCaMo indicates that it facilitates coding in
JaCaMo, mainly for beginners or for those who are not fully aware about how
to implement some agent concepts. Users have reported that it improves the
understanding about the operation of JaCaMo and how to program particular
behaviours. Also, Onto2JaCaMo helps avoid syntactical errors as it provides code
templates, which is important because the auto-complete shortcut from Eclipse
(“ctrl + space”) does not work in all JaCaMo extensions. Thus, more agility
can be obtained in JaCaMo code generation. Lastly, during development, it is
interesting to visualise the system’s ontology, so that the idea defined in models
may be followed easier when programming. Most importantly, it avoids some of
the most common types of bugs made by programmers such as mistyping names
since now the ontology provides the vocabulary to be used in the code.

Before starting our experiments regarding the evaluation of the programming
techniques implemented in Onto2JaCaMo, the participants received the required
prior instructions on these topics in order to perform the tasks with the minimum
required knowledge, such as, for example, how to load and how to use ontology
models in Onto2JaCaMo. The participants received the Onto2JaCaMo plug-
in, where they had to load their previously instantiated ontology models and
use the tool to support the model-based development of their agent code. Each
participant had previously defined their own application scenario to work with.
After finishing the programming of their MAS using the drag-and-drop provided
by Onto2JaCaMo, the participants were surveyed by means of questionnaires to
extract their perceptions and opinions about the techniques and tool according
with statements that followed a 5-point Likert scale. Some criteria have received
only positive evaluations from all participants, such as that Onto2JaCaMo is easy
to understand, provides coding support, offers advantages for programming, and
enables a better understanding of JaCaMo.

Thus, we observe that the proposed plug-in helps in code consistency (e.g., it
facilitates coding using the same terms), and it prevents developers from using
terms outside the ontology-based model. In summary, such approach provides an
overview about agent systems to be visualised within the programming context,
combined with features of dragging content from models to MAS code. As lessons
learned from our practical experiences, we have observed that more MAS code
could be generated from the proposed modelling approach, and that the ontology
could be used in a technique to constrain the MAS coding (i.e., to indicate
errors or mismatches between model and code). Also as future work, we have
noticed that Onto2JaCaMo could provide model editing features (for example,
to include new instances), which would discard the need of an ontology editing
tool to update the ontology model. Another point for improvement that was
highlighted by our practices, although a very complex one, is the automatic
update of the ontology when the MAS code changes [6], in the direction of
synchronising model and code. This might be solved by implementing features
to highlight mismatches between MAS code and its corresponding model in order
to keep both aligned.
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In a last part of our experiments, the participants created theirs models and
later programmed manually their code, which means without using the core
code generation mechanism. That allowed us to compare the code that our tech-
nique creates automatically from the ontology models with the code actually
programmed by the participants. Through these comparisons, we have observed
the correspondences and similarities between elements in the code that was auto-
matically generated from the specification in contrast with the code that was
manually programmed. These similarities between these two sources of code are
indicative of the correctness of the proposed model-based code generation tech-
nique. We have analysed that some key elements in the ontology models created
by the participants, the corresponding code that was automatically generated
from these elements by using the proposed techniques, and the code actually
programmed by them. We were able to confirm that the model-based technique
for generating code is indeed offering a program reasonably similar to the code
structured created by the programmer1, given the analysed aspects. We argue
that if the starting codes were created based on converting their correspond-
ing models, then it would be easier for programmers to align their initial code
with the design and continue their programming based on that. The similarities
between what can be automatically generated with what was manually created
indicate that the code generation is in the correct direction and it provides more
agility for developers that have their systems modelled before they start coding.
We point out to our reference [5] for further details on our evaluations that would
not be possible to tackle here in this chapter.

7 Final Remarks

In this chapter, we have proposed development techniques focusing on the
JaCaMo platform, on the basis of ontologies that support the modelling and pro-
gramming of MAS. Our proposal considers MAS designed as ontology models as
the foundation for a MAS engineering process that allows core code generation.
We have explored the research direction of reasoning with these ontology models,
which allows the implementation of inference mechanisms in agent-based systems
such as, for example, to reason about action, plans, knowledge, beliefs, goals, and
norms in MAS. Producing software code for complex and highly detailed systems
directly in programming environments by first using a specification, modelling,
or design mechanism may avoid many problems. Without a proper modelling,
it may be difficult to find potential bugs when they eventually appear in the
implementation. Features derived from our approach are techniques for: (i) inte-
grating design and code; (ii) supporting MAS programming with automatic code
generation through model-based development; and (iii) performing verification
with focus on the use of semantic reasoning and model checking.

1 The model is at a higher abstraction level than the code, so sometimes only a struc-
ture or code skeleton can be created and programmers have to complete it in order
to obtain a fully executable and running system.
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Ontologies that serve as the basis of agent models could also inform agents
in reasoning about their own system or even other systems or projects. These
would allow agents to be able to share their implementation with others, or to
execute inferences about its own implementation. In this context, an approach
that provides for MAS the ability to interact with ontologies may be applied [8].
As future experiments, it would be interesting to consider more complex and dis-
tributed scenarios of software development, for example where teams of software
engineers need to work together to develop a single MAS. These teams would
be composed of persons playing different roles such as requirement engineer,
designer, programmer, etc. In this context, it should be investigated how much a
modelling and programming approach that is based on an ontology would help
the team to communicate, synchronise, and coordinate the development of the
desired MAS. Moreover, a viewpoint that should also be considered in future
work is the comparison between using and not using the approach proposed in
this chapter (similar to what is done with experiments conducted on the basis of
a control group). Moreover, as we have highlighted in this chapter, new features
may be added to Onto2JaCaMo, such as refactoring mechanisms for model and
code synchronisation. Another related point would be to automatically identify
mismatches between current MAS code and its corresponding model. That would
contribute towards implementing round-trip engineering features in the context
of MAS development (combined use of forward and reverse engineering).

For the sake of better explaining our approaches through examples, Sect. 4
discussed mostly the possibility of extending the OntoMAS ontology by creating
new subclasses. We claim that the approach is more extensible than shown here,
for example, one may decide to add new classes, properties or even rules, but in
these cases, the consistency of the obtained ontology may be a major problem to
deal with, especially in terms of future research directions. However, it is not an
easy task to extend an ontology if the users do not have any solid prior knowledge
about it. For example, Sect. 5 depicted general rules of agent systems which can
be refined and extended for specific domains, which means that OntoMAS is
extensible not only by adding new subclasses but in every part of its components.
Literature often claims that it is worth considering what someone else has done
and checking if existing sources can be refined and extended for the required
particular domain and task. Reusing existing ontologies may be a requirement if a
system needs to interact with other applications that have already committed to
particular ontologies or controlled vocabularies. Lastly, the OntoMAS ontology2

and the Onto2JaCaMo plug-in3 can be found in the addresses given as footnotes.
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3 Onto2JaCaMo plug-in: http://www.inf.pucrs.br/linatural/wordpress/index.php/re
cursos-e-ferramentas/onto2jacamo/.
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Palermo, Italy
valeria.seidita@unipa.it

Abstract. Designing and developing complex self-adaptive systems
require design processes having specific features fitting and representing
the complexity of these systems. Changing requirements, users’ needs
and dynamic environment have to be taken in consideration, also con-
sidering that, due of the self-adaptive nature of the system, the solution
is not fixed at design time but it is a run-time outcome. Traditional
design approach and life cycles are not suitable to design software sys-
tems where requirements continuously change at runtime.

A new design process paradigm is needed to design such systems. In
this Chapter, we present a retrospective analysis based on three projects
developed in the last five years with the middleware MUSA in order to
identify specific features of the design process for supporting continuous
change and self-adaptation. The result is a general approach allowing to
reduce the gap between design time and run-time.

Keywords: Adaptive management · Continuous change ·
Design process

1 Introduction

Today, there are several trends that are forcing application architectures to
evolve. Users expect a rich, interactive and dynamic user experience on a wide
variety of clients including mobile devices. Customers expect frequent rollouts,
even multiple times a day, to keep pace with their informational and service
requirements. Moreover, customers want to significantly reduce technology costs
and are unwilling to fund technology changes that do not result in direct cus-
tomer benefits.

In traditional software life-cycles, a single change can affect multiple com-
ponents, creating a complicated testing effort, requiring testers to understand
various code interdependencies or test the entire application for each change. IT
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organizations demand a paradigm shift: from monolithic applications (that puts
all user interfaces, business logic and data in a single process) toward applications
that enable architectural extensibility.

The level of adaptability to changing requirements is managed at design
time using ad-hoc life cycle or process models. Developing self-adaptive systems
using a systematic approach requires to consider several factors that may be
summarized in: changing operational context and changing environment.

Even though different kinds of approaches for engineering self-adaptive sys-
tems exist - they span from control theory to service-oriented and from agent-based
approaches to nature-inspired ones - today some possible good approaches seem to
be those exploiting models-at-run-time and reflection. Nevertheless, a disciplined
and systematic design process for developing self-adaptive systems, able to con-
sider changing operational context and changing environment, still lacks.

A need for new design paradigms arises. Design paradigms where continuous
changes are managed through continuous delivery or adaptation of new portions
of the system during its operations.

The aim of this Chapter is to identify a general design process for self-
adaptive systems. For pursuing this objective, we started from our experience
with MUSA (Middleware for User-Driven Service Adaptation), the middleware
we created for developing self-adaptive systems. We explored the way in which
MUSA works, to identify and to analyze which are the elements of the process
involved in that. We considered a five years experience in employing MUSA on
three projects. The analysis has been conducted focusing on the design activities
and three different measures to gain insights on the effort spent in the design
and the aptitude of the system to autonomously find solutions. The results have,
then, been used for generalizing a design approach.

The rest of the Chapter is organized as follows: Section 2 discusses the need
for a new design paradigm, Sect. 3 illustrates some existing middleware for self-
adaptive systems, Sect. 4 discusses the retrospective analysis on MUSA; in Sect. 5
the obtained results are discussed and in Sect. 6 we discuss them and we propose
a general design approach; finally in Sect. 7 some conclusions are drawn.

2 Continuous Changes and Self-adaptation

A self-adaptive system is a system able to modify its behavior and/or its struc-
ture in order to respond to changes perceived from the environment it is working
on or from inside the system itself. Changes are considered to occur while the
system is working. System requirements and also system ability to adapt depend
by all the actors that interact with the system, the environment whose changes
are affected by and affect the system. The system behavior itself is a source of
changes and adaptation. Adaptive behavior is prone to three types of depen-
dency: actor-dependency, system-dependency, and environment-dependency.

Designing and developing self-adaptive systems have to consider the following
factors: requirements are identified at runtime, environment conditions contin-
uously change, users heavily and continuously interact with the system and the
global behavior of the system emerges at runtime.
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Traditional software engineering approaches cannot be used for developing
self-adaptive systems. They prescribe a very disciplined process that follows a
well-specific life-cycle; the main aim is to make the software development as more
predictable as possible. All the requirements have to be identified and analyzed
in the very early activities of the design process and then transformed into code.

A software system is a solution to a problem, regardless the level of com-
plexity of the problem and the software, and the level of adaptivity to changing
requirements is managed at design time using ad-hoc life cycles or process mod-
els. Several process models may be used: waterfall, iterative and incremental and
so on. This way of working has been well established since years for all those
systems that do not require particular changes and do not work in changing
conditions.

Different kinds of approaches for engineering self-adaptive systems exist
[14,22,41], they span from control theory [10] to service-oriented [29] and from
agent-based approaches [19,40] to nature-inspired ones [43]. They all map to the
so-called MAPE cycle [38]: monitoring, analyzing, planning and executing. In
[42], for instance, authors propose five patterns of interacting MAPE loops to
be used for implementing decentralized control.

A promising approach to manage complexity in runtime environments is to
develop adaptation mechanisms that involve software models. This is referred to
as models@run.time. The idea is to extend the model produced using MDE
approaches to the run-time environment. The authors of models@run.time
emphasize the importance that software models (artifacts) may play at run-
time stating that if a system changes the representation of the system should
change and vice versa. Another approach aims at managing complexity in run-
time environments and at implementing MAPE cycle by developing adaptation
mechanisms that involve software models (artifacts). Blair et al. [6] emphasize
the importance that software models may play at runtime. They use the mech-
anism of reflection inducing that the necessary adaptation is performed at the
model level rather than at the system level.

This vision is opposite to the traditional design approaches that prescribe
the system be stopped each time a new requirement or a new goal occurs or
the environmental conditions change. Conventional processes also prescribe that
changes have to be inserted in the system while it is not working; there are several
methods in literature for facing changes, from simple software maintenance to
software evolution [39]. In any case, a new design activity is necessary during
which the system cannot work; someone says that in this case, the system is
offline.

In our work, we consider that designing and developing self-adaptive systems
require continuous delivery and designing while the system is working; we accept
the idea the system has to be always online.

Baresi et al. [3] introduce the need of bringing near the design time to the run-
time: “The clear separation between development-time and run-time is blurring
and may disappear in the future for relevant classes of applications”. This allows
some changing activities to be shifted from design and development to runtime



Engineering Self-adaptive Systems 99

and some changing responsibilities to be assigned to the system itself instead of
to the analysts or designers. Thus, realizing and implementing adaptation [1,9].

Several scientists agree [2,13] self-adaptation is closely related to the ability
of reasoning about the inner world beyond than the outer. In other words, self-
awareness is the key for self-adaptation. In previous work, we adopted agent’s
knowledge to implement run-time artifacts for modeling user’s requirements and
norms [32].

We claim that the maintenance of complex distributed software is a mix of
continuous delivery and continuous integration. Automation is indeed one way
to enable constant changes. In particular, we are interested in exploring the
automation that supports continuous changes. Hence, continuous changes may
be handled at runtime with the aid of an automatic tool.

Our intuition is that the life cycle of a self-adaptive system, or of one of
its components, starts with its design and does not terminate with its deploy-
ment [25] and testing. The life-cycle continues with some monitoring phases
aiming at identifying and handling new or emergent requirements and/or needs
from users. This implies that self-adaptation allows making run-time changing
and the self-adaptive system itself supports the further development phase aid-
ing, or better substituting, designers. In so doing, we overcome the limits of
traditional design methodologies: they are not adequate for a self-adaptive sys-
tem because they do not consider the run-time.

In the following sections, we identify the characteristics of a design process
for supporting self-adaptive middleware. To investigate this topic we exploit
the experience gained with MUSA, a self-adaptive middleware, and then we
generalize some of the obtained results.

3 MUSA: A Middleware for Self-adaptation

MUSA (Middleware for User-driven Service Adaptation) [34] is a middleware for
orchestrating distributed services according to unanticipated and dynamic user
needs. It has been conceived for managing evolution and adaptivity of dynamic
workflows [33]. MUSA provides basic concepts to model a software system able
to detect and react to exceptional events, failures and resources unavailability.

Key enablers of MUSA are: (a) representing what the system will do and
how the system can do as a couple of first-class entities (respectively Goals and
Capabilities) [36]; (b) providing goals and capabilities and run-time artifacts the
system can reason on by representing them through a common formalism, based
on a grounding semantic [17]; (c) providing a flexible and configurable planning
system [31] for dynamically generating workflows of capabilities to address the
specified goals.

In the following, we compared MUSA with some of the middleware for self-
adaptation in the literature. The remaining sub-section will discuss which steps
are necessary for engineering a system with MUSA.
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3.1 Middlewares for Self-adaptation

Literature provides an increasing number of middlewares for developing and
managing the self-adaptive characteristics of a system under development. These
approaches are highly heterogeneous, yet one can usually classify them as com-
ponent or service-based [4,29], agent-based [14,31], or bio-inspired [20,43].

The benefits of these middlewares are that they provide basic functionalities
for rapid prototyping of many self-adaptation features such as monitors and
actuators. The common factor of almost all these different infrastructures is the
idea of exploiting the mechanism of reflection to take run-time strategic decisions.
They support some run-time entities and models, i.e., high-level abstractions of
the software system. By maintaining these abstractions at run-time, the software
system could be able to perform reflection, and it may predict/control certain
aspects of its behavior for the future.

Kramer and Magee [8,24] propose MORPH, a reference architecture for self-
adaptation, inspired to robotics, that includes (i) a control layer, a reactive
component consisting of sensors, actuators and control loops, (ii) a sequencing
layer which reacts to changes from the lower levels by modifying plans to handle
the new situation and (iii) a deliberation layer that consists in time consum-
ing planning which attempts to produce a plan to achieve a goal. The main
difference with our architecture is that we introduce a layer for handling goals
evolution. The architecture is suitable for implementing a self-adaptive system
able to deal with anticipated changes by selecting among pre-computed adapta-
tion strategies.

SeSaMe (SEmantic and Self-Adaptive MiddlewarE) [5] is a self-organizing
distributed middleware that uses semantic technologies to harmonize the inter-
action of heterogeneous components. In SeSaMe, components self-connect at run-
time, without any prior knowledge of the topology. The dynamic architecture
grants system’s reliability even when multiple components leave or fail unexpect-
edly, and dynamically alters the system’s topology to cope with message conges-
tion. The main difference is that SeSaMe focuses on structural/component-based
abstractions (groups, roles, components) whereas MUSA concentrates more on
functional requirements. In SeSaMe, adaptation consists in modifying the topol-
ogy of connections among the components, whereas in MUSA it consists in
changing the workflow by removing/replacing infeasible tasks.

SAPERE (Self-aware Pervasive Service Ecosystems) [43] is inspired to natu-
ral ecosystems to model dynamism and decentralization in pervasive networks. In
SAPERE various agents coordinate through spatially-situated and environment-
mediated interactions, to serve their own needs as well as the sustainability of
the overall ecology. The environment is modeled as a spatial substrate where
agents’ interactions are managed as virtual chemical reactions. The main differ-
ence is that SAPERE is focused more on emergence and evolution rather than
on control. The collaboration between agents is incidentally due to the current
context and to underlying eco-laws. Emergence is programmed via eco-laws, i.e.
natural metaphors that specify how agents will interact.
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As a final remark, independently from the kind of middleware chosen for a
specific purpose, all of them imply a methodological shift in which some design
models move from the design-time towards run-time artifacts.

3.2 Using MUSA for Engineering a Self-adaptive System

The use of MUSA for building a self-adaptation system consists basically in pro-
viding a model of goals and a model of capabilities to the MUSA instance, thus
enabling its proactive means-end reasoning. However, there exist a preliminary
activity to be done: the analysis of the domain for building a common ontological
background for goals and capabilities.

The Problem Ontology Description (POD) is a design fragment [28] that
allows describing the problem domain elements and their relationships in a
formal way. This activity grounds on an ontology used as an analysis (i.e.
descriptive) model for representing the reality of problem domains typically
addressed by agent-oriented technologies. This ontology is described by the Prob-
lem Ontology metamodel. The Problem Ontology metamodel, we employ, has
been inspired by the FIPA (Foundation for Intelligent Physical Agents)1 stan-
dard and ASPECS [16] ontology. Thus, similarly, our meta-ontology describes
what are the elements of interest in a domain (Concept) with their properties
(Predicate) and how they act in the domain (Action) and it introduces some
new elements in order to explicitly model intentional behaviors.

Requirement Analysis and Goals. Traditionally, when specifying system require-
ments, analysts crop the solution space in order to define the expected sys-
tem behavior in a deterministic way. However, the characteristics of being
autonomous and proactive make the agents able to explore a wider solution
space, even when this space dynamically changes or contains uncertainty [40].
The novelty of our approach consists in making some constraints of the solution
less rigid, thus allowing more degrees of freedom to the system.

Several methods exist in literature to conduct a goal-oriented requirement
analysis. We do not suggest to use a specific one, providing the output is rendered
via the GoalSPEC language [37]. It has been specifically conceived to support
MUSA with a run-time artifact for dealing with user’s requirements, some of its
most interesting features will be presented in the following.

GoalSPEC Supports Adaptivity . GoalSPEC provides some domain-independent
keywords but it offers a powerful plug-in mechanism for providing different ontol-
ogy groundings. It is fully compatible with the Problem Ontology Description
fragment, thus goals can be expressed as desired states of the world, defined in
the POD as concepts and predicates.

GoalSPEC Supports Evolution. GoalSPEC allows MUSA agents to reason and
commits to the specified goals. Goals are run-time artifacts, therefore agents
perceive them as part of the environment. This run-time nature of goals allows
they can change during system lifecycle, thus supporting a global evolution of
the system.
1 Available at: http://www.fipa.org/specs/fipa00086.

http://www.fipa.org/specs/fipa00086
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Services and Capabilities. The concept of capability comes from AI (planning
actions [21]), software engineering (contracts [18]) and service-oriented architec-
ture (micro-services [26]). Indeed, this composite nature is well represented by
the separation we adopt between abstract capability – a description of the effect
of an action that can be performed – and concrete capability – a small, indepen-
dent, composable unit of computation that produces some concrete service.

Implementing system functionalities as capabilities provides some benefits:

– each capability is relatively small, and therefore easier for a developer to
implement,

– it can be deployed independently from other capabilities,
– it is easier to organize the overall development effort around multiple teams,
– it supports self-adaptation because of improved fault isolation.

An example of description of capabilities is provided in [34] where the smart
travel domain is considered. In this context, each capability encapsulates a web
service for reserving some kind of travel service (hotel, flight, local events).

Moreover, we focused on the idea that capabilities make it easier to deploy
new versions of the software frequently. Providing capabilities (as well as goals) as
run-time entities contributes to enable continuous changes and self-adaptation.
Supporting this claim is one of the objectives of this Chapter. In the remaining
section, we used data about the implementation of three different applications
for getting some findings of the easiness of continuously evolving a system.

4 A Retrospective Analysis of MUSA

This section presents a retrospective analysis of the design activities with MUSA
and discusses some emerging results.

Empirical Study Design. We selected MUSA [34] because we gained a prac-
tical experience of use, due to its adoption in several applications.

In the last years, MUSA has been employed in research projects and case
studies with very different application domains. Table 1 gives an overview of the
sources from where data have been collected.

The empirical study mainly focuses on the design activities for producing
ontology, capabilities and goals for the selected projects of Table 1. The design
process we followed in all the projects follows three main activities:

– As it happens in traditional requirement analysis, we suggest every MUSA
project started with a good understanding of the domain. We adopt an ontol-
ogy to record and represent this knowledge. For this reason measuring the
evolution of the ontology model may be interesting for this study.
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Table 1. Summary of research projects and case studies where the MUSA middleware
has been employed between 2013 and 2016.

Acronym Type App. Name Description

IDS Research

Project

Innovative

Document Sharing

The aim has been to realize a prototype of a new

generation of a digital document solution that

overcomes current operating limits of the common

market solutions. MUSA has been adopted for

managing and balancing human operations for enacting

a digital document solution in a SME

OCCP Research

Project

Open Cloud

Computing

Platform

The aim was the study, design, construction and testing

of a prototype of cloud infrastructure for delivering

services on public and private cloud. MUSA has been

employed, in the demonstrator, in order to implement

an adaptive B2B back-end service for a fashion

company

Smart Travel Case Study Travel Agency

System

MUSA provides the planning engine that creates a

travel-pack as the composition of several heterogeneous

travel services. The planning activity is driven by

traveler’s goals

– The second step is understanding and representing customer’s requirements.
In MUSA, they must be translated into significant states of the system to be
addressed. In some circumstances, this activity may require a revision of the
ontology to adjust some of the concepts. For this reason, the study includes
an evaluation of the evolution of the goal model.

– A third step concerns the development of the services the system may employ
in the emerging solution. In MUSA, capabilities are run-time artifacts that
describe how to employ available services to compose a solution. As well as
goal modeling, defining the capabilities may require a revision of the ontology.
Therefore, we decided to include the analysis of the available capabilities.

For comparison reasons, for each project, we identified three main iterations,
in which the application received substantial changes. In different projects, itera-
tions have been deduced by considering the delivery of functionalities, therefore
they may have a variable duration between 1 to 2 months. In each iteration,
we have considered either which artifacts have been produced or how they have
been modified with respect to the previous iteration (versioning history).

For each artifact, we planned a set of measurements.

– The first measurement is the size of the model. It is calculated by employ-
ing the system metamodel as illustrated in [7]. The metamodel provides the
language for describing models of the system. It contains elements and rela-
tionships underpinning and guiding the design process activities used for
developing a specific system. During the design activities, designers use the
metamodel as a trace for instantiating elements in the models. The size of
the model is a measure of the effort spent on instantiating models from the
metamodel. It refers to introducing new elements, relationships, attributes
and so on.

– The second measurement is the effort (in man-hours) spent in the model.
This measure is calculated by considering the number of commits done for
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the specific artifact. To be more precise, we asked the involved developers to
confirm or adjust the values. In any case we considered a possible error in this
measure, thus we considered significant the differences of effort rather than
their absolute values.

– The last measurement is done on the running system. After injecting the new
set of goals and capabilities (by replacing the previous ones), MUSA calculates
a new space of configurations and extracts a number of solutions to be used to
provide the requested functionality. The measurement is done on the space of
configuration as a value of the degree of freedom of the adaptation mechanism.
It provides two values: the number of different solutions computed by the
system for solving the problem.

5 Interpretation of Results

Table 2 reports the empirical data extracted from the three projects during their
initial three iterations. Data is also summarized in three charts, as shown in
Fig. 1.

The use of MUSA implies, at the very beginning, to perform some classical
design activities. After the first injection, the self-adaptive application is online
and every required change may be handled while it is running. We use the
empirical data for identifying duration/effort of the various release phases of the
process necessary for delivery a self-adaptive application with MUSA.

Before examining data, it is useful to provide some additional details about
how MUSA works. MUSA is based on the paradigm of collaborating agents
and artifacts [27]. Figure 2 depicts the main stakeholders, agents and artifacts
involved in this process. According to the classic vision, an agent can perceive
the environment and act in order to change it. In addition, MUSA agents are
self-aware of which capabilities they own and how to use them for producing a
result. MUSA agents share a main goal: ‘to address users’ run-time goals’ (i.e.
requirements). Therefore they continuously monitor either goal injection or goal
changes.

When the designer specifies a set of goals to be addressed (or update them),
then the agent groups called solution explorer is ready to collaborate to find
one or more abstract solutions (as workflow of abstract capabilities). These form
a run-time model called Solutions artifact (Fig. 4). The algorithm is described
in [31,35].

Now, we use data from Table 2 to specify how these participants (humans
and agents) collaborate during design-time and run-time (Fig. 4). It is worth
noting that we should address two different system layers in studying MUSA
applications: the MUSA middleware and the MUSA application:

1. The MUSA middleware provides runtime facilities for goal-models and capa-
bilities, and enables agents for solution-discovery and adaptive-orchestration.

2. The MUSA (self-adaptive) application is the result of employing the MUSA
middleware in building a set of user’s requested functionalities. It is able to
adapt to a changing domain.
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Table 2. Summary of the empirical data by retrospective analysis of research projects
in which the MUSA middleware has been adopted for engineering a self-adaptive system

Project iteration 1 iteration 2 iteration 3

IDS first injection bugfix+evolution evolution

size (number of model elements)

ontology 6 9 10

capability 4 6 7

goal 4 6 7

effort (man hours)

ontology 10 7 3

capability 30 23 7

goal 14 7 1

design total effort 54 35 21

space of configuration (number of solutions)

1 6 6

OCCP first injection evolution bugfix+evolution

size (number of model elements)

ontology 10 10 10

capability 5 8 12

goal 8 8 9

effort (man hours)

ontology 30 10 7

capability 70 40 50

goal 7 7 4

design total effort 107 57 61

space of configuration (number of solutions)

1 9 18

Smart Travel first injection bugfix+evolution bugfix+evolution

size (number of model elements)

ontology 12 12 14

capability 3 5 8

goal 5 7 7

effort (man hours)

ontology 7 7 14

capability 40 25 20

goal 100 14 1

design total effort 147 46 35

space of configuration (number of solutions)

5 5 5
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Fig. 1. Charts reporting average data, along three iterations, as extracted for the three
projects. Top-left diagram shows the average increase of the complexity of the ontology,
the capability model and the goal model. Top-right diagram shows the corresponding
effort (in man hours) required to complete the iteration. Finally, bottom diagram high-
lights the growth of the space of solutions.

Design-time and run-time phases are represented in Fig. 3 in which we high-
light the MUSA middleware and the MUSA (self-adaptive) application areas.

Design-time, generally speaking, is the moment in which taking design choices
concerning the characteristics of the application. The design-time of the MUSA
Middleware is out the scope of this Chapter. We work under the hypotesys that
MUSA is complete and always running.

Therefore, Fig. 3 focuses on MUSA Middleware run-time phase (right-side of
the box on the bottom). The box on the top represents the two phases of the
MUSA application: design-time and run-time.

The design-time for MUSA applications concerns the definition of an ontol-
ogy and, subsequently, of a couple of artifacts: goals and capabilities. As shown
in Fig. 3, this design-time of the MUSA application occurs during MUSA middle-
ware run-time, indeed the designer may exploit some simulation facilities offered
by the middleware for evaluating the degree of adaptation of the application as
a consequence of the new specifications.

The run-time of the MUSA application is shown in the top-right box of
Fig. 3. It includes two possible states: online and offline. Offline is when the
application is executing background operations but it not provides a working
response to user expectations; on the other side, online means the application
is providing the expected functionalities. The application is offline before the
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<<agent>>
solution
explorer

<<agent>>
solution
manager

<<agent>>
service
manager

models@runtime

DOMAIN
ONTOLOGY

GOALS

SERVICE

SOLUTIONSCAPABILITY

designer

user

developer

Fig. 2. The Human-Agent collaboration for the development of a MUSA self-adaptive
application.

first injection (of goals and capabilities) and after any future injections for bug-
fixing or functionality evolution: during this phase the middleware layer provides
functionalities for solution-discovery. When the application layer is online, the
middleware operates with an adaptive orchestration.

It is worth noting that, in the fashion of a continuous software delivery, the
red line of Fig. 3, i.e. the boundary between MUSA application design-time and
run-time, is less clear than the blue one. Indeed, after the first injection, designing
the MUSA application may be an activity performed during application is online.
Clearly, when changing the specifications at runtime, a short interruption of
service occurs due to the adaptation activity.

Run-TimeDesign-Time

Design-Time Run-Time

SIMULATION
SOLUTION

DISCOVERY
ADAPTIVE

ORCHESTRATION

ONTOLOGY OFFLINE ONLINEGOALS CAPABILITIES

MUSA Middleware

MUSA Application

Fig. 3. States of MUSA run-time execution. (Color figure online)

In Fig. 4, the alignment represents the design activities corresponding to a
particular artifact (ontology, goals, capabilities and architecture). Indeed, MUSA
agents support designer and developer, respectively, (1) by evaluating the degree
of freedom of the set of goals and capabilities that are going to be built, and,
(2) by verifying the compliance of the service under development with the cor-
responding capability. Figure 4 highlights this collaboration by coupling humans
and agents in a design activity (designer with solution explorer and developer
with service manager).
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Fig. 4. Outcome of the retrospective analysis.

According to previously reported data, we identified three iterations (or
release cycles) that begin and terminate with an injection. In Fig. 4, the ampli-
tude of lines are proportional to the effort required for refining the correspondent
artefact.

Results of the retrospective analysis are summarized in Fig. 4 and resumed
in the following findings.

Injections. The boundary between the offline and online design is marked by the
first injection, that is the moment in which the self-adaptive application begins.
Time before the first modification point, the left part of the figure, represents
when analyst, developer and customer designed the first version of the system
for solving a specific problem with the aid of some agents working in MUSA.
The short time interval soon after an injection is used by MUSA for acquiring
occurring changes in the operating condition and for releasing new configurations
of the system.

Boundary between MUSA Application Design-Time and Run-Time.
The developer designs a first set of capabilities the system has to own and the
designer designs a first set of goals the system has to pursue by using the right
capabilities. These two design-time activities are performed respectively, with the
aid of the service manager agent and the solution explorer agent. In particular,
the solution explorer aids the designer in evaluating if available capabilities are
enough for addressing the set of goals, also indicating the degree of freedom for
future adaptations. The classical boundary between design-time and run-time is
going to disappear.

Solution as a Model at Run-Time. Once the self-adaptive application is
online, agents collaborate in order to achieve the goals and to monitor the envi-
ronment. They exploit the available capabilities of the selected solution. The
solution is a run-time artifact that only agents are responsible for (no human
role is involved). They may change it for adaptation purpose.



Engineering Self-adaptive Systems 109

Convergence. After each modification point, each design iteration takes a short
time and less effort to be completed; on the other hand, the space of solutions
increases. We observed that the self-adaptation property contributes in reducing
the design effort. This because, iteration after iteration, the ontology domain
description becomes stable and the repository of capability increases. As a con-
sequence, the self-adaptive application is able to endorse a higher number of
deviations from standard situations. Every time a modification occurs in the
running/operating conditions (for instance, a new goal, a change in the environ-
ment or a change in the way the user uses the system), it is less frequent designers
start a new design iteration. However, when a manual change is required, the
ontology allows to quickly refine goals and to specify new capabilities. In prac-
tice, in the long run, designers and agents will interact less and for short time.

6 Discussion

In this section, starting from the results of the retrospective analysis, we propose
a skeleton of a design process for engineering self-adaptive systems. We will
achieve this objective by extracting a schematic design process from our previous
experience with MUSA and then trying to generalize it.

6.1 The Design Process Adopted in MUSA Applications

It is a matter of fact that exploring the new world of adaptive system has brought
many research groups to move in a new context where old methodologies have
soon proved to be not applicable. Similarly, when starting our experiences with
MUSA we tried to employ design activities and related artifacts coming from our
agent-oriented software engineering background. Notably we considered influ-
ences coming from PASSI [15], Agile PASSI [12], and ASPECS [16]. Some of
them influenced not only our way to use MUSA but, as it was expectable, the
development of MUSA itself. For this reason, we will find some of them in the pro-
cess we are trying to sketch as a suggested approach to the design of self-adaptive
systems. Another relevant issue to be considered when looking at the way we
designed our MUSA-based solutions is that MUSA itself was quickly and dras-
tically evolving. Mostly in the first part of this 5-years long observation period.
The fundamental concepts MUSA is based on (goals, capabilities, agents’ hier-
archical organization and so on) remained unchanged but their contribution to
the middleware implementation significantly evolved over time. Looking at how
we effectively developed the solutions required in the different projects where
we employed MUSA, we can see the constant presence of the following design
activities:

– Ontology definition
– Goals definition (and injection)
– Capability definition (and injection)
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– Problem Solution
– Adaptation loop

These activities will be detailed in what follows.

Ontology Definition. One of the key ideas at the basis of MUSA is to let
different modules contribute to find a solution to a problem even if they have
not been conceived for that. In order to do that all the system parts (at least
those involved in the solution of a specific problem, others may exist that are not
involved on this but will contribute to another) need a common semantics for
sharing information. Following the influences coming from our past experiences
in software design we decided to provide that by using a methodology. Such
methodology not only describes the concepts in the solution domain (and their
status by using predicates) but also actions allowed in the domain itself.

Goals Definition (and Injection). In order to employ MUSA for solving a
problem the designer has to communicate the problem requirements to MUSA.
This is done by using goals and more specifically by injecting them in the
(already) running middleware. Such goals will be received by a Solution Explorer
agent who will be in charge of pursuing them as already depicted in Figs. 2 and
4. Goals will be expressed by referring to the problem ontology produced by the
previous activity.

Capability Definition (and Injection). In our projects, capabilities often
come from the real world. For instance, existing web or cloud services. A great
part of the capabilities construction effort therefore consisted in wrapping them
in order to ensure a semantically effective interaction with MUSA.

Problem Solution. This is the moment when MUSA is asked to solve the
problem. MUSA uses its reasoning algorithms in order to find an abstract solu-
tion (employing abstract capabilities) and if feasible binds that to executables
modules/services (concrete capabilities).

Adaptation Loop. There are several reasons that may trigger this loop: the
execution of a concrete capability may not reach the expected result, the mod-
ule/service wrapped by the capability is no more working or the proactive means-
end reasoning module does not find a solution to the injected set of goals. MUSA
reacts to such situations in two different ways: firstly, it tries to overcome the
obstacle by replanning the solution (at the concrete or abstract level), finally, if
the other ways did not solve the issue, MUSA involves the user in the loop by
asking for its collaboration in terms of goals changing, constraints relaxing or
injection of new capabilities.

According to our experiences these activities are all crucial and constantly
applied in the design of our systems. Because of that we think these activities may
be the pillars for building a more general design process as it will be discussed
in the next subsection
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6.2 A Generalised Design Process

A crucial part for any design process is to define its application scope. We think
our experience is representative for the following category of systems and prob-
lems. First, the system is composed of two layers:

1. A middleware layer providing assembling/orchestrating/coordinating features
of existing pieces of functionalities (software) and providing adaptation fea-
tures to cope with unforeseeable changes.

2. An application layer running upon the middleware one. This layer directly
interacts with the user providing the required functionalities/solutions.

Elementary pieces of functionalities assembled in the solution may be
described in a semantically coherent way. The problem may be described in
terms of functional and non-functional requirements that may change during
system execution and that may be expressed in a machine understandable lan-
guage. The problem requires the system to adapt to unforeseeable changes in the
environment and in the system itself (requirements included) so that it can find
solutions that may employ different strategies/portions of software/parameter
settings.

For such a category of problems/systems we think the following process skele-
ton may be successfully applied.

1. Define problem and solution taxonomy or other semantic description. This
creates an operational abstraction where the problem may be consis-
tently described in terms of requirements and solution elements (composi-
tion/employment of existing pieces of software, data types, etc.).

2. Define problem model in a machine-readable language. Problem requirements
cannot be expressed in conventional design languages (for instance UML)
since the application-layer of the system has to be aware of them, both at the
functional and non-functional level of detail.

3. Collect and wrap existing functionalities. The result will be a repository of
semantically interoperable pieces of software that the adaptation middleware
may compose to obtain the solution.

4. Validate functionalities repository towards requirements satisfaction. To this
purpose, some relevant works on certification of self-adaptive systems may
be found in literature [11,30]. Another challenge for adaptive systems is to
ensure that enough pieces of functionality are available to face the demands
of change proposed by the environment, changing user needs, system failures
and so on. This check is a relevant issue and we think each middleware should
interact with the designers (for instance using simulation features) in order
to verify if the existing repository ensures a sufficient degree of adaptation.
The specific algorithms used by the middleware may deeply affect the results
of this validation.

5. Run the application layer. This may be roughly compared to the conventional
running phase of a traditional software. The application layer needs the mod-
els produced in the previous phase in order to learn and pursue the specified
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objectives. If the solution is not found or when it fails after succeeding for a
while, the next activity will follow.

6. Adaptation. According to different implementation philosophies (and prob-
lem constraints) this phase may involve the human or not. For instance, when
sensitive decisions have to be taken, a human supervision is usually required
before swerving from a straightforward solution. Adaptation may involve the
employment of alternative pieces of functionalities in pursuing the same plan,
a replanning of the solution strategy or other approaches (for instance evolu-
tionary ones) according to the specific middleware.

6.3 Limits of This Analysis

The data extracted could be a bit biased because in these three projects, engi-
neers developed both the MUSA middleware and the MUSA application for the
specific domain problem. In the reported retrospective analysis the most com-
plex part was separating the time required for fixing the middleware from the
time required to implement the application (ontology, goals and capabilities).

Moreover, we have restricted the retrospective analysis to the first three
iterations. However, some projects were developed in more iterations that were
not considered in this analysis. This choice was done in order to make them
comparable. In any case, Fig. 1 shows that the trend of the curves is quite regular.
So we can hypothesize the sample is quite respectful of the reality.

7 Conclusions

Due to the features of self-adaptive systems and the fact that, nowadays, sys-
tems are more interconnected and various than before, designers have not the
right means to anticipate and design interactions among different components,
interaction among users and the system. Indeed, (self-adaptive) software system
properties are effectively known when all the relationships among the software
components and between the software and the environment have been expressed
and have been made explicit. Such issues have to be dealt with at runtime; mod-
eling and monitoring users and the environment is the key for enabling software
to be adaptive [13,23].

Self-adaptation deals with requirements that vary at run-time. Therefore it
is crucial that requirements lend themselves to be dynamically observed, i.e.,
during execution. Middlewares for self-adaptation constitute the right tools for
easing complex systems development and for providing a form of model@runtime.
A methodological approach for developing self-adaptive systems supporting run-
time continuous change still lacks.

In this Chapter, we illustrated the results of a retrospective analysis con-
ducted on our middleware (MUSA) to identify the characteristics of a design
process for developing self-adaptive systems.

We started from the hypothesis that changes occurring at run-time have to
be handled by the system itself; like it were part of the team of designers. We
reached this objective in MUSA by employing a well-specific agent architecture.
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The analysis mainly highlighted that, using MUSA, supporting self-adaptive
solutions implies a design process where humans and agents collaborate. Goals
and capabilities are run-time entities that constitute the continuous data
exchange between human and agents. Human and agents collaborate until the
system (all the agents) possesses the useful knowledge for reaching the defined
objectives by its own. Moreover, the collaboration between humans and agents
and the fact that a run-time model exists until the system is running, guarantee
the required system behaviour modifications during subsequent releases.

Finally, we deeply analyzed the way in which a system is developed by using
MUSA and we identified some principal design activities a design approach for
engineering self-adaptive system has to contain. The analysis of the use of MUSA
covered five years. One of the most important insights we realized, also compar-
ing that with other self-adaptive middleware systems, is that activities devoted
to identifying the ontology of the system, the goals, and the capabilities are nec-
essary to build a tool providing the right automation for supporting continuous
changes.

The most relevant result of this analysis is the identification of the design
process we used in developing MUSA applications. This process supports contin-
uous change and strongly induce human and agents to collaborate in pursuing
the solution. From this process we generalised a wider scope process for the
design of self-adaptive applications based on the employment of a middleware
layer providing assembling/orchestrating/coordinating features of existing pieces
of functionalities (software) and providing the required adaptation features to
cope with unforeseeable changes.
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Abstract. An interaction protocol captures the rules of encounter in
a multiagent system. Development of agents that comply with proto-
cols is a central challenge of multiagent systems. Our contribution in
this chapter is a programming model, Stellar, that simplifies develop-
ment of agents compliant with information protocols specified in BSPL.
A significant distinction of Stellar from similar approaches is that it does
not rely upon extracting control flow structures from protocol specifica-
tions to ensure compliance. Instead, Stellar provides a set of fundamental
operations to programmers for producing viable messages according to
the correct flow of information between agents as specified by a pro-
tocol, enabling flexible design and implementation of protocol-compliant
agents. Our main contributions are: (1) identification of a set of program-
ming errors that commonly occur when developing agents for protocol-
based multiagent system, (2) definition of Stellar’s operations and a sim-
ple yet effective pattern to develop protocol-compliant agents that avoid
the identified errors, and (3) demonstration of Stellar’s effectiveness by
presenting concrete agents in e-commerce and insurance policy domains.

1 Introduction

Interaction protocols capture the rules of encounter in multiagent systems by
defining operational constraints on the occurrence and ordering of messages
between agents. Effective interaction of agents in a multiagent system depends on
their compliance with the system’s protocol. However, development of protocol-
compliant agents is challenging in practical settings where communication is
asynchronous.

There are several approaches to specify and implement interaction protocols,
such as HAPN [14], Scribble [5,15], BPMN in conjunction with BPEL [10], and
business artifacts [6,9]. These approaches mainly use procedural control flow
structures (e.g., sequencing, branching, etc.) to specify interactions of agents,
whose implementations reflect the protocol’s control flow to ensure compliance.
This is mostly achieved by developing agents on top of rigid code skeletons that
are extracted from the protocol specifications. As a result, protocol specifica-
tions and implementations of agents who enact them become tightly coupled.
c© Springer Nature Switzerland AG 2019
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An imminent drawback of this approach is the lack of flexibility in agent design,
which is a critical limitation particularly in open multiagent systems, where inde-
pendent parties implement their own agents according to their private business
requirements and logic. Another technical drawback of this approach is the need
for synchronization between agents to ensure correct ordering of messages, which
is hard to achieve in asynchronous decentralized environments.

Several information-based protocol languages [3,11,13] have been proposed in
the recent years to overcome limitations of the procedural protocol specification
approaches. These languages specify protocols in a declarative way with respect
to the correct flow of information between the agents, rather than specifying
rigid messages sequences. Hence, information-based languages do not impose a
control flow for implementing protocol-compliant agents. As a result, indepen-
dent parties can design their own agents as they see fit according to their own
requirements, as long as their agents emit messages complying with the pro-
tocol’s flow of information. Consequently, information-based languages do not
rely on synchronization and inherently support asynchronous and decentralized
communication.

In this chapter we focus particularly on BSPL [11] which constitutes the base
for all later information-based languages. Although BSPL provides a rich proto-
col specification language, it does not define a systematic methodology for devel-
oping protocol-compliant agents. Our contribution, namely Stellar, addresses
this issue with a simple yet effective programming model. To this end, Stellar
defines a set of fundamental operations and a software pattern over these oper-
ations that enables developers to build compliant agents. Hence, developers can
focus on the business logic of their agents without worrying about compliance
with protocols. Thanks to BSPL’s declarative approach, Stellar does not rely on
control flow structures (e.g., no code skeleton is created), which enables maxi-
mum flexibility when designing and implementing agents. Our main contribu-
tions are as follows. One, we identify common pitfalls of protocol-compliant agent
development in decentralized multiagent systems. Two, we develop Stellar’s pro-
gramming model, describe its programming pattern, and define its operations.
Three, we demonstrate Stellar’s effectiveness by developing agents in e-commerce
and insurance policy domains.

2 BSPL

In this section we provide an overview of BSPL to establish the necessary back-
ground. BSPL [11] is an information-based protocol specification language. The
main difference of BSPL from procedural protocol specification approaches is
its way of characterizing operational constraints with respect to causality and
flow of information between agents. We explain BSPL’s main features using an
example purchase protocol that we present in Listing 1.
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Listing 1. A BSPL protocol for purchase.

Purchase {

roles B, S // buyer , seller

parameters out pID key , out item , out price , out result

B �→ S: rfq [out pID , out item]

S �→ B: quote [in pID , in item , out price]

B �→ S: accept [in pID , in item , in price , out result]

B �→ S: reject [in pID , in item , in price , out result]

}

A BSPL protocol is composed of a name, a set of roles, a set of public parame-
ters, and a set of message schemas. BSPL is a declarative language and hence the
ordering of message schemas in a protocol specification is irrelevant. The name of
the protocol in Listing 1 is Purchase. It includes two roles, B and S correspond-
ing to a buyer and a seller, respectively. Purchase has four public parameters
pID, item, price, and result, which describe the protocol’s interface, intuitively
corresponding to the identifier of the protocol, an item to purchase, price of the
item, and the outcome of the interaction, respectively. A protocol’s enactment
is complete when all of its public parameters are bound. BSPL protocols can
be composed using their interfaces to build complex interactions. However, we
do not consider composite protocols in this chapter for brevity. Each message
schema in the form of s �→ r : m[P ] has a sender s and a receiver r role, a
message name m, and a set of parameters P .

For instance, the name of the first message schema in Listing 1 is rfq, corre-
sponding to a request for a quote, in which the sender is B, the receiver is S, and
the parameters are pID and item. Instances of message schemas are relational
tuples that represent the bindings of message parameters. For instance, Table 1
shows three instance of quote. In the rest of the chapter we use “message” to
refer to both a message schema and message instance when there is no ambiguity.

Table 1. Instances of quote message.

pID item price

1 book 5

2 bike 10

3 phone 20

An enactment of a protocol corresponds to the set of messages that are
exchanged between the agents with respect to a unique key. Each unique enact-
ment of a protocol is identified by one or more key parameters. In our example
the only key parameter is pID. Hence, each distinct enactment of Purchase must
have a unique binding for pID. The uniqueness constraints of typical relational
models apply to the bindings of keys in each message instance (i.e., no two
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instances of a message can have the same binding for a key), and each parame-
ter across the messages (i.e., a parameter has the same binding for the same key
in the instances of different messages).

Agents can enact multiple instances of a protocol concurrently. To this end,
each agent keeps its own local history, which is the set of sent and received mes-
sages by the agent in all enactments. Table 2 shows an example local history of
an agent who enacts the buyer role. In Table 2, there are four enactments of Pur-
chase (i.e., one for each distinct binding of pID). Note that only the enactments
in which pID is bound to 1 and 2 are complete. That is, all the public parameters
of Purchase are bound in these two enactments. The local history of an agent is
sufficient for the agent to carry out its interactions with other agents complying
with a protocol. In other words, an agent does not need any information about
the states of the other agents to interact with them. Hence, BSPL protocols can
be enacted by agents in a fully decentralized way without referring to any global
state.

Table 2. Local history of an agent enacting the buyer role.

(a) rfq

pID item

1 book
2 bike
3 phone
4 pen

(b) quote

pID item price

1 book 5
2 bike 10
3 phone 20

(c) accept

pID item price result

1 book 5 OK

(d) reject

pID item price result

2 bike 10 NOK

Given an agent’s local history, we say that a parameter’s binding is known
to the agent in an enactment of a protocol, if the agent’s local history includes
a message with a binding of the parameter for that particular enactment. Oth-
erwise, we say that the parameter’s binding is unknown to the agent in that
particular enactment. For instance, according to the local history of the buyer in
Table 2, binding of price is known (as 5) to the buyer for the enactment of Pur-
chase where pID is bound to 1. This is due to the quote message that is received
by the buyer for this enactment. However, the binding of price is unknown to
the buyer for the enactment where pID is bound to 4, since there is no message
in the buyer’s local history with a binding of price for that enactment.

As we have stated earlier, the key idea of BSPL is to specify operational
constraints of a protocol in terms of correct flow of information among agents,
instead of using procedural control structures. BSPL models the flow of infor-
mation in a protocol by adorning parameters with �in�, �out�, or �nil�.
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Parameters that are adorned �in� in a message correspond conceptually to
the inputs of the message, whose bindings must be known to the sender before
sending the message. For instance, the seller must know the bindings of pID
and item before sending a quote. Parameters that are adorned �out� correspond
conceptually to the outputs of a message, whose bindings are produced by the
sender when sending the message. For instance, the seller must produce the bind-
ing of price when sending a quote. Agents cannot violate integrity of information
when sending messages. That is, a sender cannot change the known binding of
a parameter when sending a message. As a consequence, if two or more message
share the same �out� adorned parameter, only one of these messages can be
sent in an enactment to ensure integrity, meaning that the messages that share
�out� adorned parameters are mutually exclusive (e.g., accept and reject due to
�out� adorned parameter outcome). Lastly, if a parameter is adorned �nil� in a
message, the sender must not know the binding of the parameter and also must
not produce a binding for the parameter when sending the message.

BSPL formalizes the correct flow of information in a protocol by defining
viability of messages in an enactment. A message is viable for a sender in an
enactment, if and only if (1) the sender knows the bindings of all the �in� adorned
parameters of the message, and (2) there is no earlier message in the sender’s
local history that already binds any of �out� or �nil� adorned parameters of the
message. Agents comply with a protocol, if they exchange only viable messages
in an enactment of the protocol. For instance, considering the local history of
the buyer in Table 2, the instance (3, phone, 20,OK) of accept is viable for the
buyer, since the bindings of all its �in� adorned parameters are known (due
to the earlier rfq and quote messages that are exchanged in the enactment)
and the binding of the �out� adorned result is unknown to the buyer for the
enactment where pID is 3. Hence, the buyer can send this message by producing
the binding of result, which is OK in our case. Similarly, the reject message
instance (3, phone, 10,NOK) is also viable.

On the other hand, there is no viable accept message for the enactment where
pID is bound to 2, since the �out� adorned result is already bound to NOK in
this enactment as a result of the prior reject message (i.e., the value of an �out�
adorned parameter is known). Similarly, there is no viable reject message for the
enactment where pID is bound to 1, since the �out� adorned result is already
bound to OK in this enactment because of the prior accept message. For the
enactment where pID is bound to 4, the buyer does not know the binding of
price, which is adorned �in� in accept and reject messages. Hence, there are no
viable accept or reject messages for this enactment.

3 Pitfalls of Developing Protocol-Compliant Agents

Development of a protocol-compliant agent for an information-based protocol
is a challenging task due to factors such as concurrent enactments of the pro-
tocol and asynchronous communication between agents. Without a well-defined
methodology, developers may easily fail to identify subtle details of a protocol
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and implement non-compliant agents. In this section we identify such potential
pitfalls of agent development for information-based protocols using our Purchase
example from the previous section. Although our example is specified in BSPL,
the issues that we discuss here are general and occur when developing agents for
protocols that are specified in any language.

Let us start by examining some interactions between a protocol-compliant
buyer and seller for our Purchase protocol. Figure 1 shows two such interactions.
In both cases, the buyer first sends an rfq in which pID and item are bound to
1 and book, respectively. Then, the seller replies with a quote that binds price
to 5. Finally, the buyer either sends an accept as in Fig. 1(a) or a reject as in
Fig. 1(b) in response to the received quote. Now we identify several issues that
induce non-compliant implementation of agents.

SB
rfq[1, book]

quote[1, book,
5]

accept[1, book, 5, OK]

(a) Accept Quote

SB
rfq[1, book]

quote[1, book,
5]

reject[1, book, 5, NOK]

(b) Reject Quote

Fig. 1. Compliant interactions between the buyer (B) and seller (S).

Information Integrity: Protocol-compliant agents must ensure integrity of the
exchanged information when interacting according to an information-based pro-
tocol. An agent may easily violate information integrity (maliciously or acciden-
tally) by either creating information that does not exist or by altering known
information. Figure 2(a) shows an interaction that corresponds to the former
case, where the buyer sends an accept message to the seller without receiving a
quote message by creating the binding of price as 3 even tough price is adorned
�in� for accept. Figure 2(b) shows an interaction that corresponds to the latter
case, where the buyer alters the binding of the item to bike when sending the
accept message, which should actually be book as in the prior rfq message that
she sent to the seller earlier.

In both cases, the integrity of the exchanged information is violated by the
buyer leading to a non-compliant enactment of the protocol. These kind of mis-
takes occur especially when an agent is implemented for concurrently enacting
multiple instances of a protocols. For instance, consider a buyer that interacts
concurrently with multiple sellers to purchase the cheapest copy of a book. This
normally can be achieved by executing multiple instances of the buyer agent
concurrently (e.g., in separate threads), each handling a separate enactment of
Purchase with a different seller. If each concurrent instance of the buyer code can
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be executed in complete isolation, the errors we identify cannot happen. How-
ever, in most realistic applications, instances of an agent cannot be fully isolated
since they must access to some shared data. In our example, the instances of
buyer agent must share the price information they receive from different buyers.
A developer may make a mistake when developing the buyer agent, which may
cause the price that is received in one enactment to be used in another enactment
as we demonstrate in Fig. 2.

SB

rfq[1, book]

accept[1, book, 3, OK]

(a) Value Fabrication

SB
rfq[1, book]

quote[1, book,
5]

accept[1, bike, 5, OK]

(b) Value Alteration

Fig. 2. Violation of information integrity.

Mutual Exclusion: Realistic information-based protocols usually involve
mutually exclusive messages. For instance, when the buyer receives a quote mes-
sage from the seller, she must either send an accept or reject message, but not
both. Figure 3(a) shows violation of the mutual exclusion by the buyer, who
sends first an accept message and then a reject message after receiving a quote
message. Note that, in this example mutual exclusion is local to the buyer. That
is, emission of the accept and reject messages are local choices of the buyer.
Hence, violation of mutual exclusion can be avoided by ensuring the buyer’s
compliance with the protocol.

However, mutual exclusion may also be non-local [7]. Suppose that in an
extended version of our purchase protocol the seller may cancel its quote by
sending a cancel message, which binds result, between the quote and accept mes-
sages. Therefore, if there is a cancel message, there should not be an accept
message and vice versa. However, these message are emitted by different agents
(i.e., mutual exclusion is non-local) and violation of mutual exclusion may occur
as Fig. 3(b) shows even though the agents are protocol-compliant. In general,
non-local mutual exclusion cannot be satisfied unless behaviors of agents are
synchronized, which is costly and hard to achieve (if not impossible) in realis-
tic systems. A protocol is called safe if it does have any enactments where two
agents may bind the same parameter, and in this chapter we only consider safe
protocols.

Concurrency: As we have discussed in information integrity issues, in many
practical multiagent systems, agents concurrently enact multiple instances of
protocols. For instance, in our purchase scenario, the buyer may concurrently
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SB
rfq[1, book]

quote[1, book
, 5]

accept[1, book, 5, OK]

reject[1, book, 5, NOK]

(a) Mutual Exclusion (Local)

SB
rfq[1, book]

quote[1, book, 5]

accept[1, book, 5, OK] cancel[
1, book

, 5, NO
K]

(b) Mutual Exclusion (Non-local)

Fig. 3. Violation of mutual exclusion.

send multiple quote requests to the seller for different items in different enact-
ments. Besides, the buyer (and also seller) can interact with multiple sellers
(buyers) concurrently in different enactments of the purchase protocol. In such
situations, in addition to the integrity issues that we have discussed, develop-
ers should also deal with interleaved asynchronous emission and reception of
messages in different enactments. To this end, developers normally use multi-
threading mechanisms (i.e., each concurrent protocol instance is executed in
a separate thread). However, this requires the use of complex synchronization
mechanisms between the threads to properly handle interleaving messages from
different enactments. For instance, the seller must check if there are sufficient
quantity of goods when making concurrent quotes. Achieving such synchroniza-
tion is an error-prone task and if not done correctly may easily cause agents to
act in a non-compliant manner or event stop operating due to deadlock issues.

4 Stellar

Stellar1 is a programming model to develop protocol-compliant agents for BSPL
protocols. Stellar eliminates the pitfalls of protocol-compliant agent development
that we have discussed in Sect. 3. To this end, Stellar provides a a set of well-
defined operations around a software pattern for developing agents to enact roles
in a protocol. If an agent’s interactions are implemented using the operations of
Stellar following its software pattern, the developed agent is guaranteed to be
protocol-compliant.

We implement Stellar as a Java framework. The implementation provides,
(1) a code generation tool, which, given a BSPL protocol, automatically gener-
ates a protocol-specific code library that includes classes to represent the roles,
messages, and parameters of the given protocol, and (2) a static core library
that provides the operations to apply Stellar’s software patterns.

The workflow for developing a protocol-compliant agent using Stellar is as
follows. First, a BSPL protocol for which an agent is intended to be developed is

1 Stellar is available on https://github.com/akingunay/stellar.

https://github.com/akingunay/stellar


Stellar: A Programming Model for Developing Protocol-Compliant Agents 125

specified. Second, the protocol is provided to Stellar’s code generation tool, which
automatically generates a library of classes corresponding to the roles, messages,
and parameters of the given protocol. Third, programmers develop their agents
using the static core library and the automatically generated protocol-specific
library and by following Stellar’s software pattern.

Before explaining Stellar’s details, we first highlight its key features for devel-
oping protocol-compliant agents using the following Java snippet, which shows
a possible implementation of the seller agent in Purchase protocol to handle the
reception of an rfq message and respond with the corresponding quote message.

Listing 2. Handling of a received rfq message by a seller.
1 public void handleRfq(Rfq rfq)
2 {
3 // create a query to define a criteria for message retrieval
4 Query query = new Query("pID", Query.EQ, rfq.get(Rfq.pID));
5
6 // use adapter to retrieve an enabled message according to the criteria
7 Quote quote = adapter.retrieveEnabled(Quote.class , query).getFirst ();
8
9 // seller 's business logic to determine the requested item 's price

10 String price = priceMap.get(quote.get(Quote.ITEM));
11
12 // send the enabled message by binding necessary parameters
13 quote.send(price);
14 }

Stellar follows BSPL’s declarative approach. Hence, it does not impose a
control flow for developing protocol-compliant agents. Instead, Stellar uses an
event-driven model, where viable messages are created and sent according to
the local history of an agent when certain events happen. In this regard, the
above code snippet shows an event handler for the reception of an rfq message.
A key class of Stellar is a role adapter, which provides operations to retrieve and
exchange viable messages during enactment of protocols. In our code snippet
the seller’s adapter is referred via the variable adapter, which is created during
the initialization of the seller agent as we will demonstrate later.

A fundamental feature of an adapter is to provide operations for retrieving
enabled messages from an agent’s local history. In an enabled message, all �in�
adorned parameters are bound according to the local history of the agent, and all
�out� and �nil� parameters are unbound. Hence, the programmer can easily cre-
ate a viable message from an enabled message, which is retrieved from its local
history using the role adapter, simply by producing bindings for all unbound
�out� parameters according to the business logic of the agent. In this way Stel-
lar ensures that agents send only viable messages and accordingly guarantees
compliance of an agent’s implementation with a protocol.

To exemplify, in Line 7 of Listing 2, adapter object’s retrieveEnabled method
retrieves an enabled quote object of Quote class, which corresponds to a quote
message of Purchase protocol, to create a viable response to the received rfq
message. The retrieval operation takes a query to determine which particular
enabled message(s) it should retrieve. In our example, a single object corre-
sponding to the enabled quote message is retrieved as a response to the received
rfq, using the identifier of the received message in the query that is provided
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to retrieveEnabled. Finally, in Line 13, the send method of the retrieved Quote
object is used to send the actual message to its recipient (i.e., the buyer who
sent the received rfq message), which is automatically set by the adapter when
retrieving the Quote object from the sender’s local history. Note that, in order to
make the corresponding message viable, the send method takes a price argument,
whose value is determined by the seller’s business logic.

agent’s
business
logic

Stellar

determine message
retrieval criteria

retrieve enabled
messages

determine out
parameter bindings

send viable messages
with bindings

criteria

enabled
messages

viable messages
with bindings

Fig. 4. Pattern to implement protocol-compliant agents using Stellar.

Figure 4 shows an abstract representation of Stellar’s software pattern that
we use in the above code snippet in Listing 2 to ensure compliance of the seller
agent. First, the agent’s business logic determines the criteria to retrieve a certain
type of enabled message(s) from its local history. Then, the agent uses Stellar to
retrieve the enabled message(s) that satisfy its criteria. Next, the agent’s business
logic determines the bindings of the �out� adorned parameters of the retrieved
enabled message(s), and provide them to Stellar. Finally, Stellar compiles viable
messages using the enabled messages and the provided bindings for the �out�
adorned parameters, and sends them to their recipients.

4.1 Developing Agents Using Stellar

In this section we present details of Stellar using an example in which we imple-
ment a buyer agent for the Purchase protocol in Listing 1.

Structure of an Agent: Listing 3 shows the overall structure of the Buyer class,
which we use to implement the buyer agent. The object adapter of class BAdapter
is the buyer’s role adapter which is generated by Stellar from the specification
of the Purchase protocol. Buyer class implements QuoteHandler interface, which
is also generated by Stellar, with a single method handleQuote, which is called
by adapter when the buyer receives a Quote message. Note that QuoteHandler
could also be implemented by a separate class to enhance modularity. Buyer class
may have other variables and methods as usual to represent the buyer’s business
logic. Also note that Buyer is a programmer defined class and it is not generated
by Stellar. That is, Stellar does not require developers to inherit a certain base
class or use a certain code skeleton when implementing their agents.
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Listing 3. Structure of the buyer’s agent.
1 public class Buyer implements QuoteHandler
2 {
3
4 private BAdapter adapter;
5
6 // class variables and methods to represent buyer 's business logic
7 ...
8
9 // object initialization

10 ...
11
12 public void handleQuote(Quote quote)
13 {
14 ...
15 }
16
17 }

Initialization of Agent: Listing 4 shows the constructor of Buyer class.
The object adapter of class BAdapter is initialized using the factory method
newAdapter according to a Configuration object, which includes information
about the buyer’s deployment such as its own and other agents network
addresses. We discuss these concepts in detail in Sect. 4.2. Next, the created
Buyer object registers itself as the handler for the received Quote messages.

Listing 4. Initialization of the buyer’s agent.
1 public Buyer(Configuration configuration)
2 {
3 adapter = BAdapter.newAdapter(configuration);
4 adapter.registerQuoteHandler(this);
5
6 // initialization of other class variables
7 ...
8 }

Initialization of Interaction: Listing 5 shows how the buyer agent initiates
its interaction with a seller agent. The code first retrieves an enabled rfq mes-
sage object calling the method retrieveEnabled of adapter. Remember that in the
Purchase protocol the rfq message does not have any �in� adorned parameters.
Hence, this message corresponds to an entry point for a new enactment of the
protocol. Therefore, the buyer can send this message at any time to initiate
a new enactment by setting its �out� adorned parameters. In other words, an
rfq message is always viable. When retrieveEnabled method is called for such a
message, Stellar automatically assigns values to the key parameter(s) of the mes-
sage to create a unique key for initiating a new enactment ensuring information
integrity. Hence, the only thing the buyer should do is to determine the item,
for which it intends to request a quote, and call the send method of the retrieved
rfq object.

Listing 5. Initialization of interaction by the buyer’s agent.
1 Rfq rfq = adapter.retrieveEnabled(Rfq.class);
2 String item = ... // set by buyer 's business logic
3 rfq.send(item);

This code snippet can be part of any programmer-defined method that captures
the buyer agent’s business logic. For instance, if the buyer agent is provided a
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list of items to buy, it can iterate over the list and execute the snippet for each
item in effect imitating a new (concurrent) enactment of the Purchase protocol.
Note that, although the buyer can enact multiple protocols concurrently, it is
executed as a single thread, avoiding pitfalls of concurrency. Agents that are
developed using Stellar process a single message at a time (similar to actors
model). Hence, an agent is always implemented as a single thread even if it
enacts multiple protocols concurrently.

Handling of Messages: The next two code snippets show handling of received
quotes. Listing 6 shows the interface that is generated by Stellar from the spec-
ification of Purchase and Listing 7 shows the implementation of the interface by
the buyer’s agent.

Listing 6. Specification of QuoteHandler interface.
1 public interface QuoteHandler
2 {
3 public void handleQuote(Quote quote);
4 }

For simplicity, suppose that the business logic of the buyer is to accept quotes
below 50 and reject others. The code in Listing 7 first creates a Query object to
represent the buyer’s acceptance criteria for the received quotes. The first part
of the query calls the get method to determine the identifier of the enactment for
which the quote is received (Line 3), and then defines the buyer’s criterion for the
acceptable value of the price (Line 4). Next, the code calls the retrieveEnabled
method to retrieve an enabled Accept message object that matches the given
query.

Listing 7. Implementation of QuoteHandler interface by buyer’s agent.
1 public void handleQuote(Quote quote)
2 {
3 Condition c1 = new Condition ("pID", Query.EQ, quote.get(Quote.pID));
4 Condition c2 = new Condition ("price", Query.LT, 50));
5 Query aQuery = new Query(new AndCondition(c1, c2));
6
7 Accept accept = adapter.retrieveEnabled(Accept.class ,

aQuery).getFirst ();
8
9 if (accept != null) {

10 accept.send("OK");
11 } else {
12 Query rQuery = new Query("pID", Query.EQ, quote.get(Quote.pID));
13 Reject reject = adapter.retrieveEnabled(Reject.class ,

rQuery).getFirst ();
14 reject.send("NOK");
15 }
16 }

Note that there can only be one enabled accept message for every enactment
with a particular binding of pID. However, retrieveEnabled returns a MessageSet
object, which implements the Set interface with additional convenience methods.
In Line 7, getFirst is one of these convenience methods that retrieves a single
message if the set is a singleton and null otherwise.

If there is an enabled accept message that matches the query (i.e., the quoted
price is below 50), the code sends the retrieved Accept message using its send
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method, providing ”OK” as the binding of result parameter (Lines 9–10). Other-
wise (i.e., the quoted price is above 50 and hence accept is null), the code sends
a Reject message, which is retrieved by calling the retrieveEnabled method with
the corresponding query (Lines 11–14).

Remember that the buyer should either send an accept or a reject message
for a received quote to comply with Purchase (i.e., accept or reject are mutually
exclusive). Let us explain how this is guaranteed by Stellar. Suppose that the
programmer of buyer agent made a mistake an wrote the following code to handle
received quote messages instead of the code in Listing 7.
1 public void handleQuote(Quote quote)
2 {
3 ...
4 Accept accept = adapter.retrieveEnabled(Accept.class ,

aQuery).getFirst ();
5 if (accept != null) {
6 accept.send("OK");
7 }
8 Query rQuery = new Query("pID", Query.EQ, quote.get(Quote.pID));
9 Reject reject = adapter.retrieveEnabled(Reject.class ,

rQuery).getFirst ();
10 if (reject != null) {
11 reject.send("NOK");
12 }
13 ...

This piece of code tries to send first an accept and then a reject message for
the same pID binding. However, when an accept message for a pID binding is
sent (Line 6), the parameter result is bound for the pID binding, which makes
the reject message for the same pID binding disabled, since result is adorned
�out� in reject. Accordingly, retrieveEnabled always returns null when it is called
to retrieve a Reject object for a binding of pID for which an accept message is
already sent (Line 9). Hence, the agent still complies with the Purchase protocol,
event though its business logic is not correctly implemented.

4.2 Implementation of Stellar

Management of Local Histories: Stellar stores local history of an agent in a
local relational database. Stellar hides the details of the particular database sys-
tem from programmers. In fact, the programmer should not access the local
history of the agent directly. Instead, the programmer should use only the
retrieve and send methods provided by Stellar. Our implementation currently
uses MySQL to store local histories of agents, however any relational database
system that supports fundamental relational operations can be easily adopted.

Emission and Reception of Viable Messages: Stellar uses asynchronous
message passing for agent communication, which we implemented using UDP.
The messages that are exchanged over the network are serialized into parameter-
value pairs and represented in JSON format. Emission of messages is enabled
only via the send methods of the generated message classes. The aim of these
methods is to ensure that agents send only viable messages by binding all of the
necessary parameters. Otherwise, these methods throw exception. Reception of
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messages and their insertion into an agent’s local history is handled by the
adapters of Stellar. Hence, Stellardoes not provide any method to programmers
for manual message reception. Instead, the programmers should implement han-
dlers of the messages that they want to react, which are automatically called by
the adapters of Stellar when a message is received. This simplifies programming
of agents in asynchronous settings.

Retrieval of Enabled Messages: Here we provide Stellar’s algorithm for the
retrieval of enabled messages from an agent’s local history. Below, we use, P for
a BSPL protocol, p for individual parameters, P,Q,K for lists (or sets if their
ordering is not important) of parameters. We use calligraphic capital letters for
relations in the local history of an agent, and apply standard relational algebra
operators Π for projection, σ for selection, �� for natural join, �� for full outer
join, and �� for left outer join. We also use the utility methods allParams,
keyParams, inParams, nilParams, and outParams with a relation and protocol
argument to access the set of all, key, �in�, �nil�, and �out� adorned parameters
of the relation, respectively.

Algorithm 1. retrieveEnabled(M, φ,P)
1 Pin ← inParams(M,P) // �in� adorned parameters of M
2 Pnil ← nilParams(M,P) // �nil� adorned parameters of M
3 Pout ← outParams(M,P) // �out� adorned parameters of M
4 K ← keyParams(M,P) // key parameters of M
5 WI ← ∅
6 if Pin is ∅ then
7 return {()}
8 WI ← ⋃

N∈P
ΠK(N )

9 foreach p ∈ Pin do
10 Q ← K ∪ {p}
11 Wp ← createRelation(Q)
12 foreach N ∈ P such that p ∈ allParams(N ,P) do
13 Wp ← ΠQ(N ) ∪ Wp

14 WI ← WI ��K Wp

15 WE ← ⋃
N∈P

ΠK(N )
16 foreach p ∈ Pout ∪ Pnil do
17 Q ← K ∪ {p}
18 Wp ← createRelation(Q)
19 foreach N ∈ P such that p ∈ allParams(N ,P) do
20 Wp ← ΠQ(N ) ∪ Wp

21 WE ← WE �� K Wp

22 W ← σPout=null∧Pnil=null(WI ��K WE)
23 return σφ(W)

Algorithm 1 defines retrieval of enabled messages, given the relation M that
corresponds to a message schema (e.g., a quote message schema), the user defined
query φ, and the protocol specification P. Note that the algorithm returns a
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relation (not actual message objects in Java), where each tuple of the relation
corresponds to the parameter bindings of an enabled instance of the message
schema M. A Stellar adapter uses this relation to create the corresponding
message objects and return them as the result of a retrieveEnabled method call
as we demonstrated in earlier examples.

Algorithm 1 can be divided into three phases. In the first phase (from lines 8
to 14), the algorithm builds the relation WI where all �in� adorned parameters
of M are bound. In the second phase (from lines 15 to 21), the algorithm builds
another relation WE where one or more �out� or �nil� adorned parameters of
M are bound. In the last phase (lines 22–23), the algorithm removes the tuples
from WI for which there is a matching tuple (i.e., identified by the same key)
in WE . Hence, each tuple of the resulting relation corresponds to an enabled
message (i.e., all �in� parameters are bound and all �out� and �nil� parameters
are unbound). Note that this operation removes the tuples that would cause
violation of mutual exclusion. If a message M′ that is mutually exclusive to M
is already emitted in an enactment, then there are tuples in WE with bindings of
the parameters that are adorned �out� in both M and M′, and accordingly the
corresponding tuples in WI are removed. Hence, the messages that can cause to
violation of mutual exclusion are not enabled. The algorithm applies the given
query φ to the resulting relation W to filter the tuples.

4.3 Revisiting Pitfalls

Stellar’s retrieval and emission operations ensure causality and information
integrity. Specifically, retrieval operations ensure integrity of �in� adorned
parameters by binding them permanently to the corresponding values according
to the agent’s local history. Hence, a programmer cannot fabricate or alter �in�
adorned parameters of a message. The send operations ensure integrity of �out�
and �nil� adorned parameters by enforcing the programmer to assign values to
only �out� adorned parameters when needed. Hence, the programmer cannot
omit assignment of mandatory parameters and thus break integrity. Further,
Stellar handles creation of bindings for key parameters ensuring their unique-
ness, which prevents key related integrity issues.

Stellar’s retrieval operations prevent emission of mutually exclusive messages.
That is, if two (or more) messages are mutually exclusive in a protocol and an
agent has already sent one of these messages in an enactment of the protocol,
the retrieval operation does not consider the other mutually exclusive message(s)
as enabled in the same enactment. Hence, the agent cannot retrieve and send
mutually exclusive messages. Stellar does not directly handle non-local mutual
exclusion. However, safety of a BSPL protocol, which means that the protocol is
free from non-local mutual exclusion, can be verified automatically [12] at design
time to avoid non-local mutual exclusion issues.

Communication in Stellar is fully asynchronous. Hence a single-threaded
agent can easily enact multiple protocols at the same time using Stellar. That
is, an agent’s execution is never blocked when sending or receiving messages.
Further, Stellar’s programming model handles one incoming message at a time.
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Hence, developers can implement their agents without any thread synchroniza-
tion that deals with interleaving reception of multiple messages in different enact-
ments. This feature of Stellar substantially simplifies design of an agent, as our
case study in Sect. 5 demonstrates. Note that UDP, which is used in our imple-
mentation, is an unreliable protocol (i.e., it does not guarantee delivery of emit-
ted messages), which may compromise liveness of an interaction. This issue can
be avoided using a reliable alternative, such as RUDP, TCP, or message queues.
However, these alternatives provide features (e.g., ordered message delivery),
which are not needed by Stellar. We chose UDP for our implementation to show
that lack of such features do not affect protocol-compliance of agents. We will
address liveness of interactions in our future work.

5 Case Study

To demonstrate the use of Stellar in a more comprehensive case, where an agent
should consider multiple messages for decision making, we use a claim handling
scenario from insurance domain. We list the protocol that represents this scenario
in Listing 8. In this scenario there is a policy subscriber and an insurer. The sub-
scriber can make multiple claims (claim message) by sending an incident’s details
and the claimed amount to the insurer. The insurer either approves (approve mes-
sage) or rejects a claim (reject message). In case of approval, the insurer pays the
claimed amount to the subscriber. The insurer can pay its balance immediately
for each claim or as lump sum for several claims (pay message). For brevity, we
omit some policy aspects such as premium payments.

Listing 8. An insurance policy claim protocol.
Insurance {
roles I, S //insurer , subscriber

parameters out sID key , out cID key , out pID key , out subscriber , out
period ,
out type , out date , out incident , out cAmount , out outcome , out pAmount

S �→ I: subscribe[out sID , out subscriber , out period , out type]
I �→ S: register[in sID , in subscriber , in period , in type , out date]
S �→ I: claim[in sID , out cID , out incident , out cAmount]
I �→ S: approve[in sID , in cID , in incident , in cAmount , out outcome]
I �→ S: reject[in sID , in cID , in incident , in cAmount , out outcome]
I �→ S: pay[in sID , out pID , out pAmount]

}

Listing 9 shows the implementation of ClaimHandler interface by the insurer
agent to handle claim messages when enacting Insurance. As we explained earlier,
ClaimHandler interface is generated by Stellar from the specification of Insurance
and consists of a single method handleClaim, which is used to define the insurer’s
business logic for handling claims. Suppose that the insurer handles a claim in
two steps. In the first step, the insurer decides whether the received claim is valid
or not. In the second step, if the claim is valid and the insurer’s policy balance
exceeds a minimum payable amount, the insurer pays its balance. Otherwise,
the insurer does not make any immediate payment.
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The method processClaim (Lines 8–21) captures the first step. The method
first decides whether the received claim is valid by calling isValidClaim (Line
12), which returns true for valid and false for invalid claims. We do not present
the details of isValidClaim since they are not relevant to our demonstration.
Depending on the validity of the claim, processClaim retrieves and sends either
the enabled Approve (Lines 13–15) or Reject (Lines 17–19) message. Finally,
processClaim returns true or false depending on the validity of the claim.

If the claim is approved (Line 3), handleClaim calls payBalance (Line 4), which
captures the second step (Lines 23–30). The method payBalance first computes
the insurer’s total balance for the policy using approvedClaimAmount and paid-
ClaimAmount methods (Line 24). We describe these methods later in Listing 10.
If the insurer’s balance is more that the minimum payable amount, processClaim
retrieves and sends the enabled Pay message to pay the insurer’s balance (Lines
25–29).

Listing 9. Implementation of ClaimHandler interface by the insurance agent.
1 public void handleClaim(Claim claim)
2 {
3 boolean isApproved = processClaim(claim);
4 if (isApproved) {
5 payBalance(claim.get(Claim.sID));
6 }
7 }
8
9 private void processClaim(Claim claim)

10 {
11 Condition c1 = new Condition ("sID", Query.EQ, claim.get(Claim.sID));
12 Condition c2 = new Condition ("cID", Query.EQ, quote.get(Claim.sID));
13 Query query = new Query(new AndCondition(c1, c2));
14
15 if (isValidClaim(claim)) {
16 Approve msg = adapter.retrieveEnabled(Accept.class , query).getFirst ();
17 msg.send(" APPROVED ");
18 return true;
19 } else {
20 Reject msg = adapter.retrieveEnabled(Reject.class , query).getFirst ();
21 msg.send(" REJECTED ");
22 return false;
23 }
24 }
25
26 private void payBalance(String sId)
27 {
28 int balance = payableClaimedAmount(sId) - totalPaidAmount(sId);
29
30 if(MIN_PAYABLE_AMOUNT <= balance) {
31 Query query = new Query("sID", Query.EQ, sId);
32 Pay msg = adapter.retrieveEnabled(Pay.class , query);
33 msg.send(balance);
34 }
35 }

Computation of the insurer’s balance for a policy requires consideration of
multiple messages. That is, we should first compute the total payable claimed
amount for the policy according to the approved claims. Then we should com-
pute the total paid amount for the policy according to the previous payments,
and subtract it from the total payable claimed amount. The method payable-
ClaimedAmount in Listing 10 (Lines 1–9) computes the total payable claimed
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amount. It first retrieves all the sent Approve messages for the policy, which
is identified by sId, from the insurer’s message history calling retrieveMessage
method (Line 3). Note that this is a different method than retrieveEnabled. Next,
the total payable amount is computed by iterating over all the retrieved Approve
messages and summing up the claimed amount of each message. The method
totalPaidAmount (Lines 11–19) repeats the same process to compute the total
paid amount for the policy using Pay messages (instead of Approve messages)
and corresponding paid amounts in those messages.

Listing 10. Computation of total claimed and paid amounts.
1 private int payableClaimedAmount(String sId)
2 {
3 Query query = new Query("sID", Query.EQ, sId);
4 MessageSet <Approve > msgs = adapter.retrieveMessage(Approve.class ,

query);
5
6 int sum = 0;
7 for (Approve msg : msgs) {
8 sum += (int) msg.get(Approve.cAmount);
9 }

10 return sum;
11 }
12
13 private int totalPaidAmount(String sId)
14 {
15 Query query = new Query("sID", Query.EQ, sId);
16 MessageSet <Pay > msgs = adapter.retrieveMessage(Pay.class , query);
17
18 int sum = 0;
19 for (Pay msg : msgs) {
20 sum += (int) msg.get(Pay.pAmount);
21 }
22 return sum;
23 }

6 Discussion

We summarize our contributions, relate them to the literature, and discuss direc-
tions for future work.

6.1 Summary

This chapter presented Stellar, a programming model for developing protocol-
compliant agents for BSPL. Stellar’s main idea is to ensure compliance of agents
by allowing exchange of only viable messages between them. To this end, Stellar
provides a simple yet effective software pattern for retrieving enabled messages
from an agent’s local history and for sending them ensuring their viability. Com-
munication in Stellar is fully asynchronous. Further, Stellar implicitly ensures
information integrity of interaction, prevents emission of locally mutually exclu-
sive messages, and enables concurrent enactment of protocols without relying on
multithreading mechanisms. Accordingly, Stellar simplifies agent development
in decentralized settings ensuring their compliance. Stellar is different from pro-
gramming models that ensure agent compliance using control flow structures
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(i.e., code skeletons), and more distantly related to distributed programming
models without interaction protocols.

6.2 Related Work

Scribble [15] enforces design-time adherence to protocols that specify typed mes-
sage signatures and messaging constraints with explicit control flow. Scribble [5]
extracts state machines from protocol specifications to generate APIs for end-
points. Sending or receiving a message returns a protocol state object and each
protocol state object provides message sending and receiving operations that
comply with correct subsequent state transitions. Stellar provides more flexibil-
ity to developers, since it does not impose a control flow for ensuring compliance
when implementing agents. Developers are free to design their agents as they
see fit, without being distracted about the state of their interactions. Stellar’s
retrieve and send pattern ensures exchange of only viable messages and accord-
ingly ensures compliance of agent, which is independent from a control flow.

Business-oriented approaches for web services propose the use of high-level
processes according to which correct interactions are enforced in code. Business
Process Modeling Notation (BPMN) has been used to specify processes that
are then translated into the Business Process Execution Language [10] (BPEL),
an executable language for externally invoking web services and their inter-
actions based on event occurrences. The BPMN-BPEL approach is inherently
process-oriented and depends on the correct realization of workflows. Stellar is
information-oriented and uses a declarative approach without imposing any work-
flow. Business artifacts [9] are high-level representations of both processes, inter-
action, and the relational data that they operate on. Artifact interoperation hubs
[6] enforce correct messaging with business processes by acting as central commu-
nication points between web services. Stellar only uses local information and does
not rely on any centralized communication artifacts to ensure compliance.

Programming models for distributed systems generally do not consider pro-
tocols, e.g., functional reactive programming [2], the Sunny Event-driven pro-
gramming model [8], and the Actor programming model [4] implemented in Akka
[1]. These programming models support interaction derived from internal sys-
tem or actor code, without a protocol specification against which correct imple-
mentations must comply. In Stellar, we focus on supporting independent agent
development against protocol specifications, where programmers are protected
from violating protocol compliance and integrity of information.

6.3 Future Work

Stellar is a first step toward declarative agent programming based on declarative
information-based protocols. A fuller exploration of agent programming would
need to consider abstractions for agent policies and how they fit with Stellar.
Another interesting direction would be to explore how normative abstractions
(e.g., commitments) may be used alongside Stellar, especially since norms rep-
resent the meaning of information communicated via protocols.
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Abstract. Agent programs are increasingly used as the core high-level
decision-making components within a range of autonomous systems and,
as the deployment of such systems in safety-critical scenarios develops,
the need for strong and trustworthy verification becomes acute. Formal
verification techniques such as model-checking provide this high level of
assurance yet they are typically both complex and slow to deploy. In this
chapter we introduce, develop and evaluate a program slicing technique
that significantly improves the efficiency of such verification, hence pro-
viding more effective routes to the assurance of safety, reliability, and
ethics in autonomous systems.

Keywords: Formal verification · Program analysis ·
Agent-oriented programming languages

1 Introduction

The study of agent programming languages is becoming increasingly impor-
tant not just from an academic viewpoint but because agent programs now
play a central role in many autonomous systems. The need for transparency
and explainability, in particular, is leading to the development of hybrid agent
architectures for autonomous systems whereby a rational agent [29] provides
the core high-level decision-making capabilities within the autonomous systems
architecture. This approach leads naturally to clarity, flexibility and verifiabil-
ity [12,15]. Specifically, a rational agent is not only able to take independent
decisions but has explicit notions of the motivations that lead it to select one
option over another. The predominant model of rational agency, and one that we
follow here, is the BDI model (‘Beliefs’, ‘Desires’, and ‘Intentions’) [7], in which
the agent’s assessments about the state of the world (and itself) are captured
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Fig. 1. High-level view of the process

as beliefs, the agent’s long-term motivations are captured as desires, while the
agent’s partially instantiated plans are captured as intentions [22].

There is a wide range of programming languages that use the idea of ratio-
nal agency, often the BDI approach, as their central model, for example PRS
[16,18], AgentSpeak [23], Jason [5], GOAL [17], JACK [27], Gwendolen [11],
and others [2,3]. As these become deployed in increasingly sophisticated and
complex scenarios, there is increased need for much greater assurance through
verification and validation. Although the most common approach to software
verification is through testing, [1], Winikoff et al. [25,28] show how assurance of
agent programs cannot feasibly be carried out using traditional software testing,
leading us to formal verification.

Formal verification is a mathematically well-founded process for proving that
a specification given in formal logic matches the system in question. For a specific
logical property, φ, there are many different approaches to this [6,9,14], ranging
from deductive verification against a logical description of the system ψS (i.e.,
� ψS ⇒ φ) to the algorithmic verification of the property against a model of the
system, MS (i.e., MS |= φ). The latter has been extremely successful in Com-
puter Science and Artificial Intelligence, primarily through the model checking
approach [8]. This takes a description of the system in question, capturing all
possible executions, and then checks the logical property against this description
(and, hence, against all possible executions).

If (rational) agents are to be used at the core of increasingly sophisticated
autonomous systems, it therefore seems natural to explore the model checking
of these agent programs. There have been several developments in this direc-
tion [19,21], with the most well-developed being that of AJPF/MCAPL [12,15].
This verification approach has been used throughout a range of work tackling
applications in autonomous aircraft, spacecraft and road vehicles [10,12,20,24],
where a (central) rational agent is verified using model-checking in order to assess
all high-level decision-making.
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While very useful, such formal verification can be extremely slow, even for
relatively small programs [12]. Around a decade ago, there was initial work
by Bordini et al. [4] aiming to improve the efficiency of agent program model
checking by using slicing. The basic idea (see Fig. 1) is that instead of model-
checking a property φ with respect to program π situated in environment E ,
we instead model-check a sliced program π′. The sliced program is a simplified
version of π where (some) parts of the program that do not affect the truth
of φ have been removed. This can result in a program π′ that is smaller and
substantially faster to model check. For example, Bordini et al. [4] found a 61%
reduction in run-time to check a particular property of a particular program.

This chapter advances the 2009 paper, updating the algorithm for a con-
temporary verification framework and proposing a new, and improved, slicing
method. We begin by briefly introducing required background material, includ-
ing reviewing the slicing algorithm of Bordini et al. We then present the new
slicing method, provide evaluation results, and conclude with a brief discussion
of future work (which includes a formal proof of corectness).

2 Background

We briefly review required background, including the specific BDI language
we use, Gwendolen [11] (Sect. 2.1), the mapping from a BDI program to a
graph structure (Sect. 2.2), and the slicing method proposed by Bordini et al. [4]
(Sect. 2.3).

2.1 BDI Programming Languages and GWENDOLEN

The common core of BDI languages is that an agent program is a collection of
plans. Each plan t : c ← s1; . . . ; sn comprises a trigger t (e.g. posting a sub-goal,
denoted +!g, or a change to the agent’s beliefs, denoted +b or −b), a context
condition c that indicates in which situation the plan is applicable, and a plan
body. The plan body is a sequence of steps si (or more generally a program).
Steps include belief updates (adding a belief +b or removing a belief −b), testing
conditions (?c), posting sub-goals !g (but +!g in Gwendolen), and actions a.

The core execution cycle is that when a trigger t′ is posted, all the relevant
plans (those whose triggers t unify with t′) are collected. A relevant plan is
applicable if its context condition currently holds. An applicable plan is selected,
and that plan’s body is executed. Execution is interleaved with processing of
other incoming percepts/events and with parallel execution of other plans, in
response to other triggers. Details vary between languages (e.g. see Winikoff [26]).
We assume the common practice of considering relevant plans in sequential order.

Many BDI languages incorporate a failure handling mechanism where if a
step fails (e.g. an action’s preconditions are not met), the plan body it is a part
of fails. Failure handling then considers the trigger for that plan, and seeks to
use alternative plans to handle it. This is done by re-posting the trigger.

In the remainder of this chapter we use the Gwendolen notation, where
a plan is written: “t : {c} ← s1, . . . , sn;”. Context conditions are logical
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Fig. 2. Gwendolen program for cruise control.

combinations (“,” denotes conjunction, and “˜” denotes negation) of beliefs
(“B”) and goals being pursued (“G”). The notation perf(a) denotes perform-
ing an action, and *c means “wait for condition c”. Figure 2 shows a simple
Gwendolen program implementing a cruise control, taken from the Gwen-
dolen distribution. Note that the annotation [achieve] indicates an achieve-
ment goal, which can be explained in terms of the following1 “meta-plan”:
+!achieve(G) : {B G}. +!achieve(G) : {˜ B G} ← +!G; +!achieve(G), i.e. keep
trying +!G until G is believed. The language is described by the following gram-
mar, where u is a term, and an agent program includes a sequence of plans
π1 . . . πm:

π ::= t : {c} ← s1; . . . ; sn
t ::= +!u | + u | − u

c ::= B t | G u | ˜c | c1 ∧ c2

s ::= + u | − u | +!u | ∗ c | perf(u)

It is important to note that although the presentation in this chapter uses the
Gwendolen notation, the language features are very similar to those of other

1 An empty plan body is indicated by eliding the “←”.
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BDI languages, and changing this chapter to apply to another BDI language
would require only two very minor changes2.

An agent exists in an environment, which needs to be modelled for veri-
fication purposes. Whereas Bordini et al. model the environment using a col-
lection of plans that connect each action to its post-conditions, we instead
follow Dennis et al. [12] and do not define a direct link between actions and
their post-conditions. Instead, we define a collection of possible exogenous belief
updates that can occur. This representation is more realistic, since often, in
real domains, there is a delay between an action being commenced, and the
effects of that action manifesting. Additionally, the effects of an action are
not usually guaranteed. For example, performing an accelerate action does
not necessarily result in being at the speed limit, instead, at some future
point the sensors may indicate that the car has reached the speed limit. We
define for a given MAS a set of exogenous belief updates, B. For instance,
for the cruise control example the set of relevant exogenous belief updates is
B = {at speed limit, safe, driver accelerates, driver brakes}. For each b ∈ B a per-
cept +b or −b can occur at any time.

For verification, we define a simple language based on the property specifi-
cation language used in MCAPL/AJPF:

ψ ::= Bel a p | Des a p | Int a p | Does a p (1)
ϕ :: ψ | ϕ ∧ ϕ | φ ∨ ϕ | ¬ϕ | ϕ → ϕ | �ϕ | 
ϕ (2)

The full semantics of this language is given by Dennis et al. [12]. It is based on
Propositional Linear Temporal Logic (PLTL) [13] defined over program traces
where the expressions in (2) are as standard in presentations of PLTL and Bel a p
means that p appears in the belief base of agent a, Des a p means that p appears
in the goal base of agent a, Int a p means that p appears in the goal base of
agent a and also that a plan has been selected to handle the goal, and Does a p
means that agent a has executed perf(p).

2.2 Mapping to a Graph Structure

We map each program clause of the form t : c ← s1, . . . , sn to a graph that has
a trigger node3 t, a context node c, and step nodes si (1 ≤ i ≤ n). We assume
that each node has a unique ID (which allows the occurrence of, for instance, a
step such as perf(accelerate) in multiple places in the program to be represented
by multiple nodes with unique identifiers, but the same name). We denote the
name of a node as ̂N where N is the node’s unique ID.

2 Specifically, there is a minor change to the graph construction, noted in a later
footnote, and the definition of a belief link would change very slightly (replacing “*”
with “?”).

3 There is one slight difference between our mapping and that used by Bordini et al.:
we do not have a trigger node for each plan, instead we use a single common trigger
node for plans that share the same trigger.
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Fig. 3. Simple program and the corresponding graph

We then represent the plan’s structure by defining basic edges (denoted A →
B) from c to s1 and from each si to si+1. We also define numbered edges (denoted
A

n→ B) from t to each plan’s context condition. The initial mapping is extended
with triggering edges (denoted A ��� B) from step si to trigger t where4 ŝi = ̂t).
Figure 3 shows the graph plan structure corresponding to a simple program5. In
the figure, the trigger node is a rectangle, step nodes are ovals, and context nodes
are hexagons. The dashed line indicates a triggering edge, and the numbers are
numbered edges (as explained above).

Finally, we rename each agent’s beliefs and plans so that when the plans are
combined, each agent’s plans, goals, and beliefs, are uniquely named.

2.3 Original Slicing Method

The approach of Bordini et al., which is inspired by a slicing algorithm for a
concurrent logic programming language [30], comprises three stages:

1. Create a literal dependence net (LDN);
2. Mark nodes relevant to checking the property of interest φ [4, Algorithm 1,

Page 1405]; and
3. Remove any plans that are not marked, yielding π′.

Building the LDN: The LDN takes, as a starting point, the basic mapping
described in the previous subsection. It modifies this by: (i) instead of linking
each step to the next step (si → si+1), it instead has a link from the context
condition directly to each step (c → si for each si, 1 ≤ i ≤ n); and (ii) it adds

4 For AgentSpeak we would need to adjust this slightly, since the trigger node for a
sub-goal is named +!g but the step is named !g.

5 This artificial program was constructed to illustrate features of the graph represen-
tation.
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Fig. 4. Simple graph showing original slicing method’s construction

belief links, representing dependencies via the belief base: there is a link from
each belief update to any context condition (or test) that depends on that belief6.
Figure 4 shows the graph constructed for the same simple example. As before,
a dashed line is a triggering edge. A dotted edge denotes a belief link. Observe
that information about the order of steps, e.g. in the second plan body, is not
preserved.

Marking Nodes: Nodes are marked to indicate whether they affect the property
φ being verified. The marking process considers every plan. Let te be the node
corresponding to the trigger of the plan7. Then the marking has four cases, one
for each case for ψ:

Bel ag p: If the property of interest φ contains Bel ag p, then the plan is marked
iff there is a node with name +p or −p that is reachable from te in the LDN.
This is because that is the step that affects the truth of Bel ag p.

Des ag g: If the property of interest contains Des ag g then the plan is marked
iff there is a step node with name +!g reachable from te. A reachable step
posting the goal in question is enough for the agent to have the goal, and
hence for Des ag g to be affected.

Int ag g: If the property of interest contains Int ag g then the plan is marked iff
a trigger node with name +!g is reachable from te. This is stronger than the
previous case, in that it requires not only that the goal be able to be posted,

6 Handling reasoning rules requires additional complexity.
7 We actually use the context condition, since we do not have a unique trigger node

for each plan.
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but that there exist a plan for handling it. Having a goal with an associated
plan corresponds to the agent having an intention. Note that the difference
between Des ag p and Int ag p is that the latter requires a path to a trigger
node, whereas the former only requires a path to a step node posting the
goal.

Does ag p : Finally, if the property of interest contains Does ag p then the plan
is marked iff a step node with name perf(p) is reachable from te. In other
words, a step that performs the action in question is reachable.

For instance, given8 φ = �(Does car accelerate → Bel car safe), in the con-
text of the example given in Fig. 2, the nodes of interest are those corresponding
to the action perf(accelerate) or to a belief update that affects safe (but since this
is updated exogenously, it does not appear in any plan). Therefore, the plans
that are marked are those that have a path from their context condition to a
perf(accelerate) node.

3 Improved Slicing Method

The slicing algorithm proposed by Bordini et al. [4] has a number of “missed
opportunities” where it does not take into account information that is available.
These include:

1. the ordering of execution, e.g. the sequence of steps, is not exploited, nor is
the order of the plans, or knowledge about failure handling;

2. the initial goals are ignored, which means that even if a node cannot be
reached in achieving these goals, it is still considered; and

3. the structure of φ is not considered: the algorithm for marking plans
[4, Algorithm 1, Page 1405] considers only the presence of sub-formulae of
the form Bel ag b, Des ag b, Int ag g and Does ag a (and atomic b). It does
not consider the logical structure of φ.

To illustrate where the original slicing algorithm misses out on useful distinc-
tions consider a program that includes one plan with body “?p; perf(a)”9 where
the action a is of interest (i.e. φ includes Does ag a), and a second plan with
body “−p”. Now, the second plan is clearly important: its execution may prevent
the first plan from progressing beyond its first step. However, it is possible that
the second plan will never be executed before the first plan. The original slicing
method does not take this into account.

Our proposed slicing process addresses the first two of these missed opportu-
nities. Firstly, it constructs a dependency graph based on the language’s seman-
tics, including modelling failure handling, and handling Gwendolen language
features. This allows sequencing information to be exploited in the slicing anal-
ysis. Secondly, we distinguish between parts of the agent program that are
8 The ‘�’ is the standard temporal operator meaning “at all points in the future”.
9 Where ?p tests whether p holds, failing if it does not. This differs from the
Gwendolen construct ∗p which suspends the plan until p becomes true.
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unreachable, and hence simply removed, and parts that are reachable, but can
be compressed and simplified without affecting the verification outcome. Our
analysis is therefore more fine-grained in that it allows parts of a plan to be
removed. This turns out to provide a substantial efficiency gain.

The slicing process comprises four steps: constructing the dependency graph
(Sect. 3.2), removing nodes that are not reachable (Sect. 3.3), marking nodes
that are incompressible (Sect. 3.4), and compressing nodes that are unmarked
(Sect. 3.5). However, before we begin the process, we need to deal with certain
language features, which we do by transforming them away.

3.1 Transforming the Program

A number of language features pose challenges, as the earlier slicing algorithm
is not clear how they should be dealt with. Specifically, the earlier paper does
not explain how the algorithm deals with these constructs, and how to deal with
them is not obvious. For instance, the example program used by Bordini et al.
included use of the .dropDesires built-in action, but it is not clear how this is
handled in the LDN.

First Feature: Achievement Goals. As noted earlier, an achievement goal in
Gwendolen can be explained in terms of a “meta plan”. For each achieve-
ment goal G we introduce meta-plans with trigger +!achieve(G), and replace
+!G[achieve] with +!achieve(G).

Second Feature: Context Conditions that Test Goals. In Gwendolen a con-
text condition can include not only tests of whether certain beliefs are held
(“B p”), but also tests of whether a goal is held by the agent (“G g”). This poses
a challenge, because the slicing analysis needs to know about the steps that can
affect the truth of a context condition, but whereas changes that affect belief
conditions are explicit, whether a goal is held by the agent is affected by the
goal being posted or achieved, and this is not always explicit.

We therefore need to transform the program to make goal status changes
explicit. We do this using beliefs of the form goal G, associated with each goal
G that appears in a test (e.g. a context condition), this mechanism requires us to
associate changes to this belief both with the explicit posting of new goals and
with the implicit removal of goals. This is achieved as follows. First, when a goal
is posted, we also update the corresponding belief, i.e. we replace all occurrences
of +!G with +goal G,+!G. Next, whenever a goal is dropped, we add an explicit
−goal G. A goal is dropped when any one of its plans concludes, so given a goal
that is tested for, we add to each of its plans a final step −goal G. Note that
a special case is when a plan for G ends with a recursive sub-goal +!G: in this
case the belief goal G is not modified. Another special case is achievement goals,
for which the goal is dropped only in the first meta-plan, and where we replace
+!G[achieve] with +goal G,+!achieve(G). Finally, we replace the condition G G
with B goal G. It can be easily seen that these transformations preserve the
semantics of the program.
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The code below shows the transformed program for the example (showing
only the parts that were changed). The changes are: (i) the achievement goal has
been realised by adding a meta-plan and removing “[achieve]” (not shown); and
(ii) the condition G at speed limit has been replaced with B goal at speed limit,
and that belief about a goal is updated in the first plan (where it is dropped) and
in the last plan (where the goal is adopted). An additional change (not shown) is
that the reasoning rule (line 2 of Fig. 2) is handled by unfolding it: this replaces
can accelerate with its definition of “safe, ˜ driver accelerates, ˜ driver brakes”.

1+! achieve at speed limit:{B at speed limit} ← −goal at speed limit.
2+! achieve at speed limit : {˜B at speed limit}
3← +! at speed limit, +!achieve at speed limit;
4−at speed limit : {˜B goal at speed limit, ˜B at speed limit}
5← +goal at speed limit, +! achieve at speed limit;

Third Feature: Explicitly Dropping Goals. Explicit goal dropping (“−!G”) is
not used in the example. We deal with this not by transforming the program,
but by having an additional case for generating belief links when constructing
the graph (see end of Sect. 3.2).

3.2 Constructing the Dependency Graph

We define the dependency graph as follows. We start with the initial mapping
of the program presented in Sect. 2.2. We then define a control link (denoted
A ⇒ B) as existing between two nodes under any of the conditions below10.
The definition of the dependency graph in essence follows the semantics of the
language. The basic principle is that there should be a control link from A to B
exactly when after doing A, the next thing to be done is B. And there should
be a failure link from A to B precisely when the next thing that happens when
A fails is B.

1. As previously, we have A ⇒ B from a step A to the relevant trigger node B
(formally: A ⇒ B if A ��� B).

2. Rather than linking a context condition to all steps in the plan body, we link
the steps of the plan body in sequence. Additionally, we correctly capture sub-
goals by not having a link from posting a sub-goal to the next step. Instead,
the link to the next step is from where the sub-goal is achieved (i.e. the last
step of each plan that achieves it).
Specifically, this means that we have A ⇒ B when there is a basic edge
A → B from a context node or from a step other than a sub-goal (formally:
A ⇒ B if A→B ∧ (context(A) ∨ (step(A) ∧ ¬subgoal(A)))).
In the case where A′→B and A′ is a sub-goal, then instead of having a
control link from A′ to B, we find the plans that are triggered by A′, and

10 We assume predicates context(N), step(N), subgoal(N), as well as last(N) (true iff
N is the last step in a plan), getContext(A,C ) (true iff C is the context condition
of the plan in which A appears), and canFail(A) (true iff the step A can fail).
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have links from the last step of each such plan to B. In other words, we
also have A ⇒ B if A is the last step of a plan that is triggered by +!G,
and B is the next step after the posting of the goal G. (formally: A ⇒
B if step(A)∧(¬subgoal(A))∧ last(A)∧getCaller(A,D)∧next(D,B), where
getCaller(A,D) is true when D is the identifier of a step that has the same
name as the trigger node of the plan containing A, and next(D,B) is true
when B is the next step after D, taking account of control-flow returning
from the end of a plan11)

3. We capture plan order by linking from the trigger goal to only the first plan’s
context condition. Specifically A ⇒ B when there is a basic edge numbered
1 from a trigger to the first context condition. (formally: A ⇒ B if A

1→ B).
4. We capture failures, including in plans other than the first, by having fail-

ure links. We link each context condition that can fail (i.e. excluding a plan
condition that is “true”) to the next plan’s context condition (if there is
one). We also link each step in a plan body to the next plan’s context
condition, unless the plan step is one that cannot fail. Formally: A ⇒
B if ∃C,G : ((context(A) ∧ ̂A = “true” ∧ G

n→ A) ∨ (step(A) ∧ canFail(A) ∧
getContext(A,C) ∧ G

n→ C)) ∧ G
n+1→ B

In addition to control links, we also define belief links (denoted A ⇒B B)
between A and B if A updates a belief that can affect the truth of a con-
text condition or test/wait B, where B contains the belief that A updates.
While this definition does not cater for reasoning rules, we have: A ⇒B

B if step(A) ∧ (context(B) ∨ (step(B) ∧ ̂B = ∗C)) ∧ contains( ̂B, getBelief( ̂A))
where getBelief (+b) = getBelief (−b) = b, and contains(φ, b) is true iff φ con-
tains b.

Finally, as mentioned earlier, we need to also add belief links that relate
to explicitly dropping a goal (“−!G”). Semantically, dropping a goal explicitly
is problematic. This is because it creates a situation where the execution of a
plan can be aborted at any point. Consider the simple program below. Suppose
that +!g1 is being pursued. At any point in the execution of the first, or the
second plan, a percept may update b, resulting in g1 being dropped, and its plan
aborted. This means that there is a dependency between −!g1 and every node
that follows on from the body of a plan to handle +!g1. We therefore define that
there is also a belief link from −!g to any node N such that +!g ⇒∗ N , where
N is a step, +!g is a trigger node, and ⇒∗ denotes the transitive closure of ⇒.

1+! g1 ← +! g2.
2+! g2 ← s1, s2.
3+b ← −!g1.

We exclude belief links if there is no possibility that A can influence B. In
other words, if B cannot occur after A, then we suppress the belief link from A
to B. This makes sense because, in this situation, even though A can change b,

11 Formally: next(A,B) ≡ ∃D : A→B ∨ (last(A) ∧ getCaller(A,D) ∧ next(D,B)) and

getCaller(A,D) ≡ getContext(A,C) ∧ G
n→ C ∧ step(D) ∧ ̂G = ̂D.
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which occurs in the condition of B, the change cannot occur before b is checked,
and therefore there is no dependency. The definition of when B cannot occur
after A is somewhat complex. In essence, B and A must have the same initial
goal or exogenous event (otherwise they occur in parallel), and there cannot be
a control edge path from A to B.

Figure 5 shows the graph for the same simple program. The numbers on edges
refer to the numbered items in Sect. 3.2, with 2′ denoting the second case of the
second numbered item.

Fig. 5. Simple graph showing new slicing method’s construction

3.3 Removing Unreachable Nodes

We analyse the graph to remove unreachable nodes. A node is reachable if there
is a control link path to it from either the initial goal, or from an exogenous
update. If neither of these is the case, then the node cannot be reached, and
will never play a role in execution. It can therefore safely be removed from the
graph. Note that since there is a control link path from each context condition
to each step in its plan, if a step node is unreachable, that means that the whole
plan is unreachable, and can be deleted, although a well-constructed program is
unlikely to have unreachable plans.

3.4 Marking the Graph

Next, we mark nodes that play an essential role in determining the outcome of
verification of the desired property φ. These are nodes that must be retained.
Other atomic step nodes that remain unmarked are reachable, but can be com-
pressed (i.e. replaced by a null-action “skip”). There are two ways in which a
node can play an essential role, and hence be incompressible.

Firstly, a node A can directly affect the truth of φ (denoted
directlyAffects(A,φ)). For example, if φ includes the atomic property Bel a b
then both +b and −b are marked as directly affecting φ. Similarly, following
Bordini et al., we define the same cases for desire, intention, and performing
actions (see Sect. 2.3).
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Secondly, a node can indirectly affect the truth of φ by changing a belief
that can affect the subsequent execution. In order for this change to matter, it
must occur before a subsequent node that directly affects φ. Changing a belief
that affects subsequent execution corresponds to the notion of belief link, defined
above, so this second case can be defined as indirectlyAffects(A,φ) ≡ ∃B,C :
A ⇒B B ∧ B ⇒∗ C ∧ directlyAffects(C, φ) where B ⇒ C ≡ B ⇒ C ∨ B ⇒B C
and ⇒∗ is the usual “path of length 0 or more” operator. Note that in this case
both A and B are marked: A can affect φ by changing a condition that affects
the execution of B, and B can affect φ by allowing execution to take more than
one possible path, depending on the condition modified by A.

We then propagate markings. The basic idea is that an unmarked step should
be marked if it triggers a plan that can lead to a marked node. Formally we mark
node A when step(A) ∧ trigger(B) ∧ ̂A = ̂B ∧ B ⇒∗ C ∧ marked(C).

3.5 Compressing the Graph

Having marked the nodes that can affect φ, directly or indirectly, we can now
simplify the program by “compressing” nodes that have not been marked. This is
done via the following transformations, which are justified on semantic grounds.
Note that since Gwendolen does not support disjunctions in context condi-
tions, or the test step ?c, the 3rd transformation cannot be done, and the 4th
can only be done when

∨

ci ≡ true, in which case no test is needed.

1. If a step is unmarked then replace it with the no-effect step “skip”. Justifica-
tion: If the step is unmarked, then its execution does not affect the verification
property φ, nor does it affect the future path of execution in a way that may
affect φ. It therefore can be safely replaced with a “do nothing” step.

2. Replace “S, skip” or “skip , S” with just “S”. This is a basic semantic equiv-
alence, as long as the environment is numerically ahistorical, i.e. the result of
performing an action does not depend on the number of actions performed.
For example, consider an environment that includes a counter that is incre-
mented each time an action a is performed. In this scenario, the result of
executing a; a is different to that of executing a. As long as the counter can
play a role in the eventual truth of φ, we cannot compress or remove instances
of a. Note that in verification one approach is to define an environment that at
each point simply returns a nondeterministic subset of possible percepts [12].
This environment satisfies the assumption.

3. Any two adjacent plans which have bodies that are simply a single “skip” can
be combined: +!g : c1 ← skip. +!g : c2 ← skip ⇒ +!g : c1 ∨ c2 ← skip. This
clearly preserves the execution semantics.

4. When a sub-goal has only relevant plans of the form “+!g : ci ← skip” then
the plans can be deleted, and the sub-goal +!g replaced with a simple test
?(

∨

ci) (if
∨

ci is just “true” then +!g can be replaced with “skip”). Again,
this clearly preserves the semantics.

5. A plan triggered by an exogenous update that has a plan body that is just
“skip” can be deleted, since, semantically, this has no effect: responding to
an event by doing nothing is equivalent to ignoring the event.
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Note that we only remove plans with empty (“skip”) plan bodies if there are no
other plans to handle that trigger. This differs from Bordini et al. The reason is
that when considering failure handling, the presence of these plans can make a
difference. For example, in Fig. 6, if the context condition (lines 7 and 16) fails,
then there is no alternative plan to attempt. In Gwendolen’s semantics the
failure to find any applicable plan forces the program into a tight loop in which
perception is no longer polled12. The plans in lines 18–20 prevent this tight loop
occurring.

Finally, note that while, for analysis purposes, we expand achievement goals
using a meta-plan, when generating the final Gwendolen program we remove
the meta-plans and go back to using achievement goals.

4 Evaluation

The previous section has presented the definitions of a new slicing analysis.
Although this chapter does not present a formal proof of correctness, we have
explained along the way why the slicing algorithm works. In other words, we have
given a sketch of correctness by construction. Further work includes a formal
statement of correctness, along with a proof.

We have written software that takes a representation of a transformed Gwen-
dolen program, and implements the slicing method described in the previous
section13. Specifically, the program transformation (Sect. 3.1) is done manually,
but the graph generation, reachability analysis, and marking are all automated.
The final compression step (Sect. 3.5) is performed manually. The software also
implements the original slicing analysis of Bordini et al., for comparison pur-
poses. It is important to appreciate that the parts of the process that have been
implemented are the complex parts of the analysis, whereas the manual parts
are simple local and compositional steps. It is also worth noting that the imple-
mentation was done by transliterating the formal definitions given earlier into
Prolog. This means that it is easy to see that the implementation correctly cap-
tures these definitions. However, the implementation is not efficient. Developing
an efficient implementation is future work.

We applied the slicing method to two programs from the Gwendolen dis-
tribution. Both programs have been verified. The first was selected initially since
it is simpler than other verified Gwendolen programs, so was a good starting
point. The second was selected as a representative larger, and more complex,
program. There are not many verified Gwendolen programs, and slicing and
timing more programs is future work.

Applying the slicing method to the cruise control example results in the sliced
program shown in the bottom part of Fig. 6. The middle part of the figure shows

12 This feature of the language is not common in BDI languages and it is possible that
Bordini et al. had not come across such behaviour when they were designing their
algorithm.

13 This program and logs of our evaluation runs are available from http://datacat.
liverpool.ac.uk/id/eprint/576.

http://datacat.liverpool.ac.uk/id/eprint/576
http://datacat.liverpool.ac.uk/id/eprint/576
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Fig. 6. Sliced Gwendolen program

the plans resulting from applying the old slicing method. Comparing the two
slicing methods, we observe: (1) That the original slicing method appears to be
overly eager to slice away plans that are essential to the execution (e.g. the first
meta-plan that terminates the recursion is sliced away [not shown in the Figure]);
and (2) That when the original slicing method retains a plan, it retains the whole
plan, whereas the improved method can simplify the plan (e.g. removing the wait
comparing lines 8–9 with line 17).

Property φ = �(Does car accelerate → Bel car safe) was verified using
AJPF14 against the original Gwendolen program, the program sliced using
the Bordini et al. method, and the program sliced using the new method. The
original program (which, as shown in Fig. 2, has 9 plans) took 12.388 s to verify
(user+sys time), whereas the sliced programs took respectively 5.116 and 5.26 s
to verify (see Fig. 7). As shown in Fig. 6, the original slicing method slices away
6 plans, keeping 3, whereas the new slicing method keeps 6 plans, but is able to
slice away parts of the plans’ bodies.

We also manually analysed a larger program which manages the physical
configuration of a collection of autonomous Low Earth Orbit (LEO) satellites

14 On a 3.2 GHz Intel Core i5 iMac with 16 GB RAM running OSX 10.10.3; each number
is the result of a single run.
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Fig. 7. Verification time (left: cruise control program in seconds, right: LEO program
in minutes)

[12, Section 4]. The LEO program, which has 35 plans, is in the Gwendolen
distribution, and the property that we verified is theorem 18, which states that
“if the planning process succeeds then either the agent eventually believes it is
maintaining the position or it believes it has a broken thruster”. For this program
and property, slicing using the old method (yielding a program with 24 plans)
makes no difference to model checking performance. However, the new method
(also yielding a program with 24 plans) is able to reduce the execution from
around 38 min (117554 states) to around 27 min (67670 states). The reason why
the new method does substantially better is that it is able to remove parts of
plans, which the old method is not able to do. For this program, this considerably
reduces the search space for the model checker.

5 Discussion

We have extended the work of Bordini et al. [4] by updating it for the
Gwendolen framework, defining a graph that reflects the execution seman-
tics of the language (including failure handling), and using a more precise slicing
method that is able to simplify plan bodies. We emphasise that this chapter
provides a full and precise formalisation of the method, and that we have imple-
mented the complex parts of the process. By contrast, Bordini et al. do not
actually define the precise construction of the LDN, instead they refer to Zhao
et al. Additionally, they did not implement the method, performing their slicing
entirely by hand.
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Future work includes:

1. Defining the belief link constraint “can influence”, and extending to properly
handle reasoning rules, which requires revising the definition of contains to
account for indirect effects via reasoning rules;

2. Exploiting the logical structure of φ, for instance, consider φ = �(Does
ag a → Bel ag b), i.e. whenever ag does a it must believe b. The original
slicing algorithm considers any step that modifies b to be relevant, but the
belief b is only relevant when action a is done. So for instance, in the (special
but not unusual) case where a only occurs as the first step of a plan whose
context condition checks b, then no other plan is relevant to model checking φ;

3. Further evaluation, including investigating what characteristics of particular
agent programs make them more or less likely to benefit from slicing, and
implementing the transformation and compression steps;

4. Implementing an efficient algorithm15, and analysing its complexity; and
5. Completing the proof of correctness.
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Abstract. Adapting beliefs to new circumstances, like belief change,
update, revision or merging, typically requires deep and/or complex
adjustments of belief bases even when adaptations happen to be tran-
sient. We present a novel, lightweight and tractable approach to a new
kind of beliefs’ interference which we call belief shadowing. Put simply, it
is a transient swap of beliefs when part of one belief base is to be shad-
owed by another belief base representing new observations and/or beliefs
of superior agents/teams. In this case no changes to belief bases are
needed. This substantially improves the performance of systems based
on doxastic reasoning. We ensure tractability of our formal framework,
what makes it suitable for real-world applications.

The presented approach is based on a carefully chosen four-valued
paraconsistent logic with truth values representing truth, falsity, incom-
pleteness and inconsistency. Moreover, potentially undesired or forbid-
den conclusions are prevented by integrity constrains together with their
shadowing machinery.

As an implementation environment we use 4QLBel, a recently devel-
oped four-valued query language based on the same underlying logic and
providing necessary reasoning tools. Importantly, the shadowing tech-
niques are general enough to be embedded in any reasoning environment
addressing related phenomena.

1 A New Perspective on Belief Change

When agents act in dynamic environments, belief change/revision/update/
merging is inevitable, creating a multitude of problems of theoretical and applied
nature [7,27,35]. In the case of group beliefs, like in teamwork, the situation
becomes even more complex [13]. In real-world applications, beliefs are contextual,
and affected socially, psychologically and emotionally. Some, like “do not harm”, are
hardly mutable but others, like “avoid slippery surfaces”, meant as an indication,
are flexible. In fact, known theories of belief update/change/revision/merging do
not distinguish between the rigid and transient beliefs. However, in everyday activ-
ities we temporarily adjust our beliefs to specific situations with no intention to
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change them radically. Such a shallow change, not requiring a deeper revision, has
not been addressed in the literature.

Our research is devoted to a new belief change method inspired by a discus-
sion in [11] where it is pointed out that:

“In contrast to many existing approaches, we do not assume that an agent
entering a group changes its beliefs. However, group beliefs prevail over
individual ones [. . .] When the group is dismissed, agents continue to act
according to their individual beliefs. These can be revised to reflect infor-
mation acquired during cooperation.”

When beliefs are flexible or do change frequently, it hardly makes sense to
adjust the entire belief base accordingly. A better choice is to suspend them for
the time being. The belief interference we address is a potentially transient swap
of beliefs, further called belief shadowing. For example, when two belief bases
participate in reasoning, one of them may turn out to be more important or up to
date. Then, the conflicting part of the “weaker” base may be shadowed by the
“stronger” one. With such phenomena we deal frequently during teamwork and
other forms of cooperation. Individuals joining a group are expected to accept
the group beliefs and suspend their conflicting ones. Therefore, a swap from
individual to group beliefs, and then perhaps back, is needed. Importantly, the
ability of shadowing rather than updating, revising or merging beliefs can result
in a substantial improvement of the performance of agent systems relying on
doxastic reasoning what is particularly important from the systems’ engineering
point of view.

As a lightweight form of belief change, shadowing may introduce inconsisten-
cies. In our approach inconsistencies are first class citizens, so much heavier belief
revision, often meant as a remedy for inconsistencies, is not required. Another
phenomenon of realistic environments, calling for an attention, is the unavoidable
information incompleteness. Therefore, both paraconsistent and paracomplete
reasoning is needed in the spirit of [22]:

“Inconsistency robustness is information system performance in the face of
continually pervasive inconsistencies – a shift from the previously dominant
paradigms of inconsistency denial and inconsistency elimination attempt-
ing to sweep them under the rug. Inconsistency robustness is a both an
observed phenomenon and a desired feature: [. . .] an observed phenomenon
because large information-systems are required to operate in an environ-
ment of pervasive inconsistency. [. . .] a desired feature because we need to
improve the performance of large information system.”

Belief bases represent snapshots of the environment and the agents’ mindsets,
both evolving over time. In AI systems this evolution should be supervised,
especially when rules are machine learned or data mined in a human-free manner.
We decided to achieve this by introducing integrity constraints. Though they are
well-known in database systems, their shadowing is novel, pertaining admissible
modes of behavior at desired abstraction levels, in a semantically meaningful
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manner. A coherent, tractable and comprehensive framework to belief shadowing
that we aim for, amounts to:

– introducing a lightweight belief shadowing framework;
– introducing integrity constraints and their shadowing;
– providing a tractable reasoning engine for pragmatic applications.

The belief shadowing framework is lightweight: (i) the shadowing operator
is efficient, (ii) does not require changes in the belief bases involved, and (iii)
does not assume agents’ familiarity with details of other agents’ belief bases.
The requirement (i) is crucial for systems’ performance and for efficient swap-
ping between contexts in which different shadowings apply. The requirements
(ii) and (iii) are vital in cooperation/teamwork of heterogeneous agents designed
by separate parties. To our best knowledge no other research realizes these goals:
the presented solution is original and general enough to be embedded in many
programming frameworks. As a computational engine for belief bases we adopt
and extend the 4QLBel four-valued rule language, recently developed in [6]. The
presented ideas are implemented in an open-source interpreter inter4QL 4.0,
available via http://4ql.org.

The rest of the chapter is structured as follows. Section 2 introduces a sce-
nario used to illustrate important and novel features of our approach. Next,
Sect. 3 presents belief bases and discusses their role. Then, Sect. 4 presents the
underlying logic and Sect. 5 briefly recapitulates the rule-based language 4QLBel.
In Sect. 6 we extend 4QLBel to 4QLBel+ by adding constraints. Section 7 intro-
duces the shadowing operator formally. In Sect. 8 we illustrate the introduced
language formalizing the scenario of Sect. 2. Section 9 presents properties of shad-
owing, in particular its complexity. In Sect. 10 we discuss related work. Finally,
Sect. 11 concludes the chapter.

2 An Emergency Room Scenario

To illustrate the approach, we shall consider a hospital ER (Emergency Room)
service which specializes in handling emergency situations. ER is usually oper-
ated by several emergency physicians delivering basic professional treatments.

As a common practice, emergency physicians consult a therapy with other
specialists. Simple cases are dealt with internally or after a single consultation.
More difficult ones may require gathering an MDM (Multidisciplinary Meeting).
While MDM participants may propose a variety of treatments, the chosen one
prevails and is applied. In terms of different beliefs this means that the physi-
cian’s beliefs may be defeated, though not necessarily revised. On the other
hand, patients naturally follow their individual beliefs, Specifically, they may
reject various treatments, like those violating their religious convictions. The
refusal of blood transfusion or organ transplants is a typical case. Also, according
to legal regulations valid in many countries, patients may refuse life-sustaining
treatments what, on the other hand, may be obligatory for medical staff.

http://4ql.org
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The main goal of an emergency physician on duty, Mark, is to apply necessary
treatments to patients brought to the ER. Mark can either decide on his own
or call an MDM. Finally, the selected treatment may be unacceptable to the
patient. We will show that belief shadowing is useful in modeling such situations
(see Sect. 8).

3 Belief Bases

A bottom concept underlying our approach to belief bases, initiated in [11,12],
is that of a world. Worlds are sets of ground literals (i.e., variable-free atomic
formulas) representing feasible states of affairs. For example, an accident witness
could report a victim’s shallow breathing and leg injury, not being sure how
serious the injury is: 3 or 4, in a given scale. In this case, the following two
worlds may represent patient’s conditions, where integers from 0 to 9 represent
the severity degree:

{symptom(victim, leg, injury, 3), symptom(victim, breathing, shallow, 6)}, (1)

{symptom(victim, leg, injury, 4), symptom(victim, breathing, shallow, 6)}. (2)

Gathering the worlds (1) and (2) together, we obtain a belief base
{
(1), (2)

}

representing the two alternatives. It can be augmented with information about
the heart failure and its severity:

{
(1), (2), {symptom(victim, heart, failure, 7)}}

. (3)

Note that worlds can represent alternatives and/or add new information, perhaps
originating from another source. However, belief base designers do not indicate
whether a world provides an alternative or augments other worlds. This implicitly
follows from the worlds’ contents.

In many papers, e.g., related to the AGM theory of belief revision (for survey
see [35]),1 a belief base consists of a set of formulas of the underlying logic, not
necessarily closed on consequences. Here we do not consider the consequence
relation. By restricting formulas to ground literals we are able to use query-
ing machinery assigning truth values to the results. This allows us to obtain a
tractable framework also when we allow rules, making the specification of belief
bases more uniform and concise.

As we use a paraconsistent and paracomplete four-valued logic, involving
truth values t (true), f (false), i (inconsistent) and u (unknown), a belief base
becomes a compact structure, capable of storing beliefs originating from nonde-
terministic environments. Belief bases are systems’ passive components reacting
on requests and queries via a suitable query processing engine. In order to for-
mally define belief bases, we extend the definition of [11,12] by assuming that

1 AGM is an acronym referring to names of originators of the theory: Alchourrón,
Gärdenfors and Makinson [2].
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constraints are their inherent parts. Let Const be a fixed finite set of constants,
Var be a fixed finite set of variables and Rel be a fixed finite set of relation sym-
bols. By a positive literal we understand an expression of the form r(ē), where
r ∈ Rel and ē is a vector consisting of variables and/or constants. A negative
literal is an expression of the form ¬�, where � is a positive literal. Literals with-
out variables are called ground. We always identify ¬¬� with �. In the rest of the
chapter we sometimes use 3i as an abbreviation for incomplete and/or inconsis-
tent information. In particular, by 3i-worlds we shall understand finite sets of
ground literals with all constants belonging to Const.

Definition 1. By a belief base over a set of constants Const we understand any
pair B = 〈Δ, C〉 consisting of:

– Δ = {M1, . . . ,Mk}, where k ≥ 1 and for i = 1, . . . , k, Mi is a 3i-world;
– C, called constraints of B, being a finite set of (universally closed) formulas of

the underlying logic, which are true in Δ (for formal definitions, see Sect. 4). �

Each Mi in a belief base represents a feasible or augmenting (perhaps still incom-
plete and/or inconsistent) view of the world. In the ER scenario Mark’s beliefs
can be represented by a belief base mark = 〈ΔM , CM 〉 with ΔM containing several
3i-worlds with initial observations, results of medical tests and measurements,
etc. These observations lead to alternative diagnoses which, in turn, may result
in alternative treatments. Therefore, ΔM includes modules, like:

– doctor, containing general medical knowledge;
– patient containing data coming from various sources, like Mark’s observa-

tions, measurement and test results, patients’ medical files (if accessible), etc.

and Mark’s constraints, CM , may contain statements like:

“if the patient’s life is not at risk and he/she is conscious, his/her permis-
sions regarding treatments are obeyed.”

As a result of an MDM, some of Mark’s beliefs and constraints may be shadowed
by beliefs and constraints of others. Moreover, Mark can disregard some beliefs
of his patients if they are hazardous to their health and lives.

Constructions presented in the sequel provide means for formal and exe-
cutable specifications of a vast variety of scenarios. Belief shadowing deliver
means for clear specifications and the detection of integrity constraints’ viola-
tions.

4 A Logic of Beliefs

In the syntax of the underlying logic we assume truth constants t, f, i and u,
propositional connectives ¬,∨,∧,→, quantifiers ∀,∃,2 operators A ∈ T,A = t,

2 In fact, in implementation we allow restricted quantifiers, where we have to specify
a domain the variable bound by the quantifier ranges over.
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where A is a formula, T ⊆ {t, f, i, u}, t ∈ {t, f, i, u} and belief operator BelB
(
A

)

where B is a belief base. To define semantics of the logic let us start with truth
ordering on truth values, denoted by ≤t, being the reflexive and transitive closure
of ordering: f < u < i < t.3 For t, t1, t2 ∈ {f, u, i, t}, the semantics of ¬,∧,∨ is
given by:

¬f def= t, ¬u def= u, ¬i def= i, ¬t def= f; (4)

t1 ∧ t2
def= min{t1, t2}; t1 ∨ t2

def= max{t1, t2}; t1 → t2
def= ¬t1 ∨ t2; (5)

BelB
(
t
) def= t, (6)

where min,max are the minimum and maximum wrt ≤t. The truth value of
a literal � wrt a 3i-world M and an assignment v :Var −→ Const , denoted by
�(M,v), is defined as follows, where v(�) denotes the ground literal obtained
from � by substituting all occurrences of every variable x in � by v(x):

�(M,v) def=

⎧
⎪⎪⎨

⎪⎪⎩

t if v(�) ∈ M and (¬v(�)) ∈ M ;
i if v(�) ∈ M and (¬v(�)) ∈ M ;
u if v(�) ∈ M and (¬v(�)) ∈ M ;
f if v(�) ∈ M and (¬v(�)) ∈ M.

Remark 1. Like other relations, in our approach domain membership is four-
valued. Though typically the membership a ∈ D is true or false, for some objects
it may be unknown or inconsistent whether a belongs to D. �

Table 1. Semantics of Bel
()

-free formulas.

3 For motivations behind ≤t see, e.g., [3,41].
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The definition of truth value of a literal is extended to all formulas in Table 1
where Lub is the least upper bound wrt information ordering defined as the
reflexive and transitive closure of the ordering shown in Fig. 1. Observe that C,
being a constraint, does not contain free variables, so v in C(Δ, v) is redundant.
In similar cases we will use C(Δ) rather than C(Δ, v), and C(B) rather than
C(B, v).

Fig. 1. Information ordering.

When the logic we consider is restricted to connectives ¬,∧,∨,→ and pro-
jected onto two- or three-valued calculi, it becomes one of well-known logic – see
Table 2. This is well justified by the fact that Kleene three-valued logic K3 is the
standard choice for interpreting the third truth vale as u. K3 is also a standard
choice for interpreting the third value as i. Indeed, assuming that the reality is
consistent, the value i can also be seen as an indicator of a lack of knowledge: we
have contradictory claims that a given property is both t and f but it is (perhaps
temporarily) unknown which claim is actually the right one.

Table 2. The relation of the Bel
()

–free part of the considered logic to other logics.

Truth values Logic

{t, f} Classical propositional logic
{t, u, f} Kleene three-valued K3

{t, i, f} K3 with Priest’s interpretation of the third truth value as i

5 A Rule-Based Language for Beliefs

The 4QLBel language [6], an extension of 4QL [30,31,41], is a four-valued rule
language designed for doxastic reasoning with paraconsistent and paracomplete
belief bases. A unique feature of the 4QL-based language family is the presence
of truth values t, f, i, u as well as the unrestricted use of negation in both
conclusions and premises of rules while retaining intuitive results and tractable
query evaluation. Though the full definition of 4QLBel is available in [6], for
clarity we recall the most important constructs of the language.
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1 module moduleName:
2 domains:. . .
3 relations:. . .
4 rules:. . .
5 facts:. . .
6 end.

Module 1: Syntax of 4QLBel modules.

Table 3 provides correspondences between logical syntax used in Sect. 4 and
the syntax used in inter4QL. We also apply the standard convention that vari-
ables start with capital letters.

The language inherits a fair amount of elements from 4QL, including basic
program syntax and semantics. The 4QLBel program consists of modules, struc-
tured as shown in Module 1. Sections domains and relations are used to specify
domains and signatures of relations used in rules. 4QLBel rules, specified in the
section rules have the following form, where 〈Formula〉 is an arbitrary formula
of the logic presented in Sect. 4:

〈Literal〉 : − 〈Formula〉 . (7)

Table 3. Correspondences between logical syntax and the inter4QL syntax.

Logical syntax Syntax of inter4QL

t f i u true false incons unknown
¬ ∧ ∨ → −, | −>

∀x: dom forall X: dom
∃x: dom exists X: dom
∈T in T
BelB

( )
Bel[B]( )

= ≤ ≥ math.eq math.leq math.geq
< > math.lt math.gt

Facts, specified in the facts section, are rules with the empty 〈Formula〉
part (being t). In such cases we simply write 〈Literal〉. A rule of the form (7)
is “fired” for its ground instantiations when the truth value of 〈Formula〉 is t or
i.4 As the effect:

− 〈Literal〉 is added to the set of conclusions when the truth value of
〈Formula〉 is t; (8)

4 That is, the value of 〈Formula〉 contains some truth.
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− 〈Literal〉 and ¬ 〈Literal〉 are added to the set of conclusions when the truth

value of 〈Formula〉 is i. (9)

Note that ‘:−’ is formalized in the 4QL-based languages by a generalization
of the Shepherdson’s implication [40] rather than by the → connective (see [41]).
The implication → is more suitable for evaluating formulas while the former
one reflects rule evaluation principles (8)–(9). To define the semantics of ‘:−’ we
use ordering ≤i which is reflexive and transitive closure of f = u < t < i. The
implication �, corresponding to ‘:−’, is defined by:

(A � B)(L, v) def= A(L, v) ≤i B(L, v). (10)

When the set of truth values is restricted to {t, f, u} or {t, f, i}, the implication
� is the three valued implication of [40]. The semantics of rules is given by:

(C :−B)(L, v) def= B(L, v) � C(L, v). (11)

What distinguishes 4QLBel from 4QL, is a support for doxastic reasoning due
to use the Bel

()
operator, enhancing advanced agents’ reasoning. It will further

be extended by providing means for belief and constraints shadowing.
Modules are primarily used for structuring belief bases. If m is a module

name, m.A expresses references to m. Semantically, one can view relation sym-
bols within a module m as (implicitly) extended by prefix ‘m.’. In order to
maintain a clear semantics and tractability, a certain form of acyclicity of ref-
erences is required, close in spirit to stratification in logic programming and
deductive databases [1] but concerning formulas with the operator ‘∈T ’ rather
than negation.

Definition 2. The reference graph of a set of modules Π consists of nodes
labeled by names of modules occurring in Π, assuming that there is an edge
between m and n iff premises of a rule in m contain an expression A ∈ T or
A= t, where A is a formula containing a reference of the form n.B. A 4QLBel

program is set of modules whose reference graph is acyclic. �
The semantics of 4QLBel modules is given by well-supported models in the

sense of [31]. A 3i-world is a model of a module M if all rules of M , understood as
implications (11), are true in the model. Intuitively, a model is well-supported
when it consists of ground literals (if any) assuming that all literals it con-
tains are conclusions of reasoning starting from facts. As shown in [6], for each
4QLBel program, its well-supported model exists, is uniquely determined, and
can be computed in deterministic polynomial time wrt the size of all domains
and number of modules.

Let us emphasize that well-supportedness requires the Open World Assump-
tion (OWA): all conclusions have to be explicitly inferred. This is an opposite to
the Closed World Assumption (CWA), where conclusions which are not inferred
are assumed to be false. In the 4QL family of languages, a literal is false when
its negation is a consequence of a rule. Otherwise it may be unknown. However,
one can easily (partially or totally) close the world, as shown in Sect. 8.



Belief Shadowing 167

Each 4QLBel module uniquely specifies its well-supported model, so it can
be identified with a 3i-world. That way:

QLBel modules have a very important role as a tool for concise
and uniform specification of 3i-worlds. (12)

Indeed, when facts of a module are updated, its well-supported model is changed
accordingly. Therefore, rather than list all facts constituting a 3i-world, one can
provide rules reflecting the way in which derived facts are obtained on the basis
of given facts. For example, facts in a module may indicate patient’s symptoms
while rules may provide diagnoses. Taking the principle (12) into account, in
the sequel modules can appear wherever 3i-worlds are allowed, in particular as
elements of Δ in a belief base 〈Δ, C〉. Whenever we specify the 4QLBel entities,
we use the syntax developed in the inter4QL interpreter. Since 4QLBel extends
4QL, all 4QL constructs can be used as listed in Module 1. Belief bases are
specified as in Belief Base 2.

1 beliefs beliefBaseName:
2 constraints:
3 // see Section 6 . . .
4 worlds:
5 // list of 4QLBelmodules specifying 3i-worlds
6 end.

Belief Base 2: Syntax of belief bases.

An important feature of belief bases is that domains of their worlds become
their domains, accessible in their constraints. If, in different worlds, a domain
‘dom’ appears – the corresponding belief base’s domain, ‘dom’, is the union of all

Fig. 2. High level agent’s belief bases architecture.
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domains ‘dom’ appearing in the belief base’s worlds (assuming the same types
of domain elements).

A high level agents’ belief bases architecture is summarized in Fig. 2, where,
for 1 ≤ l ≤ k, Bl are belief bases, Ml1, . . . ,Mlrl , Nl1, . . . , Nlsl are 4QLBel mod-
ules, wl1, . . . , wlrl are the 3i-worlds being respectively well-supported models of
modules Ml1, . . . Mlrl , solid lines represent queries among modules, dotted lines
represent correspondences between modules and 3i-worlds, and dashed lines rep-
resent agent’s queries. Note that agents may use multiple belief bases, some of
which may be private, some own by groups, and some may be available to all
agents. Query manager may be a 4QLBel interpreter or another database query-
ing engine.

6 Adding Integrity Constraints

Though belief bases, as introduced in Sect. 4, contain integrity constraints, their
use in our framework deserves further discussion. In particular, belief shadowing,
similarly to belief revision or update, may result in creating undesirable conclu-
sions. For example, some treatments can cause complications when applied to
patients of a specific characteristics. To avoid such risky cases one could con-
struct a specific rule. A better idea, however, is to formulate a general integrity
constraint preventing patients from risky complications.

The idea of constraints is not new in information systems (see, e.g.,
[8,23,26,36,38]), where a distinction between hard and soft constraints might
be desirable [33]. Hard constraints cannot be violated while soft ones are flex-
ible and often considered as preferences whose violation should be avoided as
long as possible. In our case a distinction between non-shadowable (“hard”) and
shadowable (“soft”) constraints also appears useful. To avoid terminological mis-
understandings we shall further call them rigid and flexible ones, respectively.
For example, a patient’s constraint concerning refusal of blood transfusion, when
rigid, could not be shadowed, making a transfusion unacceptable regardless the
circumstances. When being a flexible one, it can be shadowed, allowing for blood
transfusion.

In rule languages constraints are typically expressed by rules with empty
heads expressing what is disallowed. Dually, in our approach constraints express
what should always be true. The separation between constraints and rules gives
the former ones an axiom-like flavor. Constraints can be specified in modules and
in belief bases in two subsections, separating rigid and flexible ones, C = CR∪CF .
Constraints are specified as shown in Module 3. By 4QLBel plus we will denote
the rule language obtained from 4QLBel by allowing the constraints section.
1 module abc:
2 constraints:
3 rigid: . . .
4 flexible: . . .
5 end.

Module 3: Constraints specification.
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The distinction between rigid and flexible constraints does not affect the
semantics of CR and CF unless they appear in the context of the shadowing
operator (see Sect. 7). Importantly, we require constraints to be true (cf. the
last item of Table 1). This might seem restrictive in a four-valued framework.
However, formulas of the form ‘A ∈ T ’ can be used, so requirements like “A is
true or inconsistent” can easily be expressed by ‘A ∈ {t, i}’ being t when the
truth value of A is in the set {t, i}.

Though specified within modules, constraints may be local (limited to a sin-
gle module) and global (span over multiple modules). Local constraints refer
solely to relations in the same module. Accordingly, global constraints can con-
tain literals referring to multiple, perhaps all, modules as long as references do
not create cycles in the reference graph. Technically, to avoid cycles, additional
modules/belief bases can be created as containers for constraints. Such additional
structures can be viewed as being “above” modules referenced by non-local con-
straints. For an illustration of this approach see Sect. 8. We extend Definition 2
to deal with constraints as follows.

Definition 3. By the reference graph of a set Π of modules with constraints
we mean the reference graph for Π seen as a 4QLBel program (disregarding con-
straints), augmented with edges from m to n whenever constraints of m contain
a reference to n, i.e., a subexpression of the form ‘n.’. �

Definition 4. By a 4QLBel+ program we mean a set of 4QLBel modules with
constraints such that its reference graph (in the sense of Definition 3) is acyclic
and all constraints in modules are true. �

Note that for every 4QLBel+ program Π, well-supported models of Π’s mod-
ules do exist and, as in the case of 4QLBel programs, are uniquely determined.
For a 4QLBel+ module m, by wsm(m) we denote the well-supported model of m.
Using this correspondence between modules and well-supported models, being
themselves 3i-worlds, we can specify any belief base B = 〈Δ, C〉 by:

B = 〈m1, . . . ,mk〉 , (13)

where m1, . . . ,mk are 4QLBel+ modules. In such a case,

– Δ
def= {wsm(m1), . . . ,wsm(mk)};

– C consists of all rigid and flexible constraints collected from m1, . . . ,mk.

To simplify notation, we often identify single modules with belief bases, assuming
that:

module m represents the belief base 〈m〉 . (14)

Of course, specifications of belief bases of the form (13) inherit all advantages
of rule-based specifications. In particular, comparing to Definition 1, 4QLBel+-
based specifications are typically much more concise and easier to understand
and maintain.
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7 The Shadowing Operator

To avoid semantical complexity, we treat shadowing as a formal expression rather
than a belief base. However, to simplify presentation, syntactically we treat such
formal expressions as belief bases. Thus, slightly abusing notation, we allow them
to occur in the Bel

()
operator. Belief shadowing is defined by BelB1asB2

(
A

)
intu-

itively returning BelB2

(
A

)
when it is t, i or f, or BelB1

(
A

)
, when BelB2

(
A

)
is u.

However, suitable constraints have to be validated. If they are not, BelB1asB2

(
A

)

returns u for any query A.
Belief shadowing, denoted by ‘as’, is a left-associative operation. That is,

B1asB2asB3
def= (B1asB2)asB3.

To define belief shadowing we need an auxiliary operator � allowing one to
fuse beliefs. Let, in (15) and Definitions 5, 6, B1 =

〈
Δ1, C1

R ∪ C1
F

〉
and B2 =〈

Δ2, C2
R ∪ C2

F

〉
be belief bases. Then:

BelB1�B2

(
A

)def=
{
BelB2

(
A

)
when BelB2

(
A

)∈{t, f, i};
BelB1

(
A

)
when BelB2

(
A

)
= u.

(15)

We are now ready to define integrity constraints and belief shadowing,
B1asB2, the central concepts of our approach.

Definition 5. By integrity constraints of B1asB2 we understand the set C1
R ∪

C2
R ∪ C2

F with C1
R ∪ C2

R being rigid constraints and C2
F being flexible constraints of

B1as B2. �

Definition 6. The belief operator over belief base B1 shadowed by belief base
B2, BelB1asB2

( )
, is defined by:

BelB1as B2

(
A

)def=

⎧
⎨

⎩

BelB1�B2

(
A

)
when for any C ∈C1

R∪ C2
R∪ C2

F ,
C ′(B1) = t

u otherwise,

where C ′ is obtained from C by substituting references to B1 in subformulas of
the form Bel...B1...

(
. . .

)
by B1� B2. �

Though constraints of belief bases are always true, as required in Definition 4,
constraints of B1asB2 may be unsatisfied for some B1 and B2. When this occurs,
we assume that any query to B1asB2 returns the empty set of tuples with the
truth value u. Note that some queries may also return u when constraints are
satisfied but B1asB2 contains no facts supporting or denying such queries. These
cases can be distinguished without recalculating constraints, e.g., using the query
BelB1asB2

(
t
)

which returns t when constraints are satisfied and u otherwise.
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8 Formalizing the ER Scenario

Let us now illustrate the introduced ideas formalizing the ER scenario of Sect. 2.
For this purpose we shall assume that a woman, Pat, arrives to ER. We shall
specify the following 4QLBel+ modules and belief base:

– Module 4, gathering basic data about patients registered in the ER, in par-
ticular about their statuses, symptoms, refusals/acceptances of specific treat-
ments and treatments prescribed at ER;

– Module 5, containing medical data about Pat’s about symptoms diagnosed
and treatments prescribed before she has been admitted to ER;

– Module 6, gathering beliefs of the MDM meeting called by Mark for the Pat’s
case;

– Module 7, gathering belies common to the ER doctors;
– Belief Base 8, representing Mark’s beliefs.

Recall that 4QLBel+ is based on the OWA. Listing all
treatments accepted/refused by a patient in Module 4 would not be practical so
many refusals would remain unknown. To close this gap one needs a default, like:

“a treatment is allowed unless it is explicitly refused by the patient” (16)

One way to implement the default (16) is to close the world partially (affecting
only relations ‘accepts’ and ‘refuses’), as done by rules in Lines 19–21 of Mod-
ule 4, where we assume that a treatment is assumed to be accepted by Pat if
the belief as to its refusal is false, unknown or inconsistent, i.e., when:

– the patient explicitly accepted the treatment (making the refusal false);
– no information as to refusal is available (e.g., the patient is unconscious and

there is no one to ask);
– information as to refusal is inconsistent (e.g., the patient is unconscious and

authorized persons, like close relatives, provide contradictory claims).

Module 5 contains Pat’s medical data, as gathered before Pat’s arrival to ER.
Medical information about Pat is collected in patients on the basis of informa-
tion obtained from pat (Lines 26–27 of Module 4) and additional information
collected during the examination at ER. This information allocation reflects real-
ity where a patient has its medical history while diagnoses and basic treatments
are within ER’s responsibilities when an emergency case happens.

To simplify presentation and make it self-contained, MDM is represented
by Module 6, containing final decisions rather than by a belief base consisting
of modules representing MDM members equipped with a procedure of reaching
the conclusion. This would require argumentation modeling being itself a wide
research area.5 Sample general doctors’ beliefs are contained in Module 7. Mark’s
beliefs are formalized by Belief Base 8 aggregating beliefs and constraints from

5 The use of 4QL-like approach to argumentation is investigated, e.g., in [9,10].
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3i-worlds represented by modules patients and doctor. Due to OWA, in many
cases the implications occurring in Line 4 of Module 7 and Line 5 of Belief
Base 8 may be unknown. Therefore, these constraints are required to be true or
unknown, excluding false and inconsistent.

Table 4. Sample queries and results.

Query Results

(1) Bel[pat](accepts(pat,blood,T)) T: transplant = false
T: transfusion = false

(2) Bel[patients](accepts(pat,blood,T)) T: antibiotic = true
T: transfusion = false
T: transplant = false
T: diuretics = true
T: alpha-blocker = true

(3) Bel[mark](prescribed(pat,O,T)) O: blood, T: transfusion =
inconsistent
O: blood, T: diuretics = true
O: blood, T: alpha-blocker = true
O: heart, T: massage = true
O: heart, T: check = true
O: kidney, T: antibiotic = true

(4) Bel[mark as doctor](prescribed(pat,O,T)) O: blood, T: transfusion = false
O: heart, T: check = true

(5) Bel[mark as mdmMember](prescribed(pat,O,I)) O: blood, I: transfusion = true

To illustrate the use of 4QLBel+ and inter4QL, Table 4 contains sample
queries and their results, as provided by the interpreter, where the following
notation is used:

– ‘X:v’ indicates that the value of variable ‘X’ is ‘v’;
– ‘L = t’ indicates that the tuple specified by the list of variable assignments ‘L’

satisfies the query with truth value ‘t’∈{true,incons,false}.6

Queries (1) and (2) show how the default (16) closes the relation ‘accepts’: the
new facts are concluded since in the pat module they are unknown.

Belief base mark combines information from patients and doctor. The rule
in Line 18 of Module 4 makes ‘prescribed(pat,blood,transfusion)’ true. According
to doctor, the same conclusion is false. Therefore, mark’s the conclusion as to
blood transfusion in the answer to query (3) is inconsistent. Due to shadowing,
answers to queries (4) and (5) give preferences to doctor’s and mdmMember’s
beliefs, respectively.

6 Tuples for which the query is evaluated to u are not listed.



Belief Shadowing 173

1 module patients:
2 constraints:
3 rigid: forall N:name (status(N,alive)).
4 domains:
5 literal name. // patient’s name
6 literal statusId. // patient’s status
7 literal organ. // organ affected
8 literal issue. // symptom description
9 integer severity. // 0–9, 0 - lowest, 9 - highest

10 literal treatment. // treatment type
11 relations:
12 status(name,statusId). // patients status
13 symptom(name,organ,issue,severity). // symptoms observed
14 refuses(name,organ,treatment). // treatments refused
15 accepts(name,organ,treatment). // treatments accepted
16 prescribed(name,organ,treatment). // prescriptions
17 rules:
18 prescribed(N,O,T) :− Bel[mdmMember](prescribed(N,O,T)).
19 accepts(pat,O,T) :− pat.refuses(pat,O,T) in {false, unknown,

incons}.
20 -accepts(pat,O,T) :− pat.accepts(pat,O,T) = false.
21 refuses(pat,O,T) :− pat.refuses(pat,O,T) = true.
22 refuses(N,O,T) :− -accepts(N,O,T).
23 -refuses(N,O,T) :− accepts(N,O,T).
24 accepts(pat,O,transplant) :− symptom(pat,O,I,S), math.ge(S,8).
25 -accepts(pat,O,transplant) :− symptom(pat,O,I,S), math.le(S,7).
26 symptom(pat,O,I,S) :− pat.symptom(pat,O,I,S).
27 prescribed(pat,O,T) :− pat.prescribed(pat,O,T).
28 facts:
29 status(pat,alive).
30 status(pat,emergency).
31 symptom(pat,leg,injury,3).
32 symptom(pat,hand,injury,6).
33 symptom(pat,heart,failure,7).
34 prescribed(pat,heart,massage).
35 end.

Module 4: Module representing patients registered in the ER.

9 Properties of Shadowing

For any belief bases, B1, B2, the operator BelB1asB2

()
satisfies (KD45n) axioms.
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Proposition 1. For any belief bases, B1, B2 and formula A,

BelB1asB2

(
A

) → ¬BelB1asB2

(¬A
)
; (17)

BelB1asB2

(
A

) → BelB1asB2

(
BelB1asB2

(
A

))
; (18)

¬BelB1asB2

(
A

) → BelB1asB2

(¬BelB1asB2

(
A

))
. (19)

1 module pat:
2 constraints:
3 rigid: forall O:organ forall I:issue forall S:severity (
4 (symptom(pat,O,I,S),math.le(S,7)) ->

refuses(pat,O,transplant)).
5 flexible: refuses(pat,blood,transfusion).
6 domains:
7 literal name. // patient’s name
8 literal organ. // organ affected
9 literal issue. // symptom description

10 integer severity. // 0–9, 0 - lowest, 9 - highest
11 literal treatment. // treatment type
12 relations:
13 refuses(name,organ,treatment).
14 accepts(name,organ,treatment).
15 symptom(name,organ,issue,severity). // diagnosed before ER
16 prescribed(name,organ,treatment). // prescribed before ER
17 rules:
18 accepts(pat,O,transplant) :− symptom(pat,O,I,S), math.ge(S,8).
19 -accepts(pat,O,transplant) :− symptom(pat,O,I,S), math.le(S,7).
20 accepts(pat,O,T) :− -refuses(pat,O,T).
21 -accepts(pat,O,T) :− refuses(pat,O,T).
22 refuses(pat,O,T) :− -accepts(pat,O,T).
23 -refuses(pat,O,T) :− accepts(pat,O,T).
24 facts:
25 refuses(pat,blood,transfusion).
26 symptom(pat,blood,hypertension,6).
27 symptom(pat,kidney,pain,7).
28 prescribed(pat,blood,diuretics).
29 prescribed(pat,blood,alpha-blocker).
30 prescribed(pat,kidney,antibiotic).
31 end.

Module 5: Module representing Pat.

Note, however, that axioms (17)–(19) do not have the classical meaning. For
example, when the truth value of A is i, the implication (17) holds but it does
not mean that (an inconsistent) belief in A prevents (inconsistent) belief in ¬A.
Indeed, in this case, both BelB1asB2

(
i
)

and ¬BelB1asB2

(¬i) are i.
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Complexitywise, similarly to [6], we have the following propositions, where
for any 4QLBel+ program Π, #D denotes the sum of the sizes of all domains of
Π; #Π denotes the number of modules in Π.

Proposition 2. For every 4QLBel+ program Π, both:

– checking the existence of the well-supported models of modules of Π;
– computing well-supported models of modules of Π,

can be done in PTIME in max{#D,#Π}. �

1 module mdmMember:
2 domains:
3 literal name. // patient’s name
4 literal organ. // organ affected
5 literal treatment. // treatment type
6 relations: prescribed(name,organ,treatment).
7 facts: prescribed(pat,blood,transfusion).
8 end.
Module 6: A module representing members of the MDM called for the Pat’s
case.
1 module doctor:
2 constraints:
3 flexible: forall N:name forall O:organ forall T:treatment (
4 patients.refuses(N,O,T) -> -patient.prescribed(N,O,T)) in

{true,unknown}.
5 domains:
6 literal name. // patient’s name
7 literal organ. // organ affected
8 literal treatment. // treatment type
9 relations:

10 prescribed(name,treatment).
11 rules:
12 prescribed(N,blood,transfusion) :−

patients.symptom(N,O,injury,S), math.ge(S,7).
13 -prescribed(N,blood,transfusion) :−

patients.symptom(N,O,injury,S), math.le(S,5).
14 prescribed(N,heart,transplant) :−

patients.symptom(N,heart,failure,9).
15 prescribed(N,O,check) :− patients.symptom(N,O,I,S),

math.ge(S,7).
16 end.

Module 7: General doctors’ beliefs.

Proposition 3. Given belief bases B1,B2 expressed using modules of a 4QLBel+

program Π, the problem of computing queries involving expressions of the form
BelB1asB2

()
has deterministic polynomial time complexity in max{#D,#Π}. �
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Since shadowing is defined in terms of belief base queries, as a consequence
of the corresponding result of [6], we have the following proposition.

Proposition 4. Assuming that domains are linearly ordered, every polynomially
computable shadowing can be expressed in 4QLBel+. �

From the perspective of systems’ engineering, the above complexity results
are important. However, even tractability does not guarantee scalability over big
data. Belief shadowing can be made horizontally scalable when recursive queries
are not allowed, assuming that all 4QLBel modules are already computed and
belief bases consist of the resulting 3i-worlds. In this case, Bel

()
-free formulas are

equivalent to first-order (and non-recursive SQL) queries which can be evaluated
in a horizontally scalable manner. Queries involving belief operators can also be
easily horizontally distributed (with a separate thread evaluating a given query
in each 3i-world of a given belief base).

1 beliefs mark:
2 constraints:
3 flexible:
4 forall N:name forall O:organ forall I:issue (
5 patients.symptom(N,O,I,9) -> doctor.prescribed(N,O,check))

in {true,unknown}.
6 worlds:
7 patients. // see Module 4
8 doctor. // see Module 7
9 end.

Belief Base 8: Mark’s belief base.

10 Related Work

Beliefs and their modifications are intensively tackled in many contexts. A fun-
damental issue is the definition of different kinds of beliefs [13,14,17,24,34,45]
together with sophisticated structures like belief sets and belief bases [18,19,39].
Our approach builds on paraconsistent and paracomplete belief bases understood
as in [11,12]. Moreover, we equip them with constraints, creating a convenient
reasoning engine with built-in safety tools vital for maintaining belief bases. As
we have shown, constraints are naturally applicable in belief shadowing and can
be shadowed, too.

As agent systems act in dynamic environments, belief update and revision are
in the mainstream of the area. For representative approaches see [21,28,29,32,35]
and references there. Importantly, belief revision has been found one of the most
fundamental research topics [16,20] aiming at consistent and deterministic solu-
tions. Among others, the well known AGM [2] model was developed as a theo-
retical framework for adequate belief modification practices. It inspired a large
body of work over many years. For surveys see [15] and references there. A
significant amount of AGM extensions and improvements have been proposed,
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including paraconsistent ones [37,42,43]. Apart from undeniable profits, belief
modifications can be computationally expensive, and create some other issues,
like underdetermination (inability to determine rules to be defeated). Our belief
shadowing significantly differs from belief update or revision and provides a rem-
edy for these issues.

An alternative framework, belief merging, is addressed in many sources (for
an overview see [27]). The authors study merging several belief bases in the pres-
ence of integrity constraints. The presented solutions do not allow inconsistent
belief bases which forces the authors to look for consistency preserving belief
merging operators. Our framework is more general: both input belief bases and
the resulting beliefs can be inconsistent which offers flexibility of the specifica-
tions. Also, the complexity of belief merging is typically high (see [25]) while our
framework guarantees tractability.

Another aspect of beliefs’ dynamics is addressed in [11,12], where transfor-
mations of initial raw beliefs into more abstract, mature ones have been modeled.
Belief dynamics is approached there via epistemic profiles permitting to model
both beliefs related to states of the environment and deliberative processes of
agents. Belief shadowing can contribute to express epistemic profiles flexibly and
efficiently. Apart from the area of belief change, our approach is rooted in the field
of paraconsistent reasoning [4,5]. It is based on a logic derived from [6,11,31,44].

11 Conclusions

We have provided a novel, tractable and natural framework for modeling every-
day human-like belief shadowing. The framework focuses on belief changes in
dynamic environments. We have identified a broad niche where known belief
change techniques can be substantially improved by developing a lightweight
method of belief shadowing.

Besides providing efficient solution to the addressed phenomena, belief shad-
owing is also meant to complement belief revision/update/merging when these
methods are difficult or impossible to apply. Firstly, when an agent acts in an
unknown environment, frequent belief revisions might be needed. As such revi-
sions may be computationally demanding, the shadowing machinery can serve as
a “buffer” gathering new observations. Deeper revisions could then be postponed
till the proper moment. Secondly, belief revisions might be hardly applicable, for
example, when many rules contribute to a particular conclusion contradicting
the observed reality. Then, belief shadowing provides a more nuanced means
than just to live with inconsistency. Dynamic reasoning with beliefs and their
interferences calls for safety mechanism preventing from forbidden states. This
is well visible in machine learning, in particular data/rule mining. To ensure the
required properties of belief bases at various abstraction levels, we have defined
a constraint shadowing technique.

Last but not least, to illustrate how belief and constraint shadowing may be
embedded into an existing rule language, we have extended 4QLBel by adding
constraints and shadowing operator. The obtained 4QLBel+ language provides
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tractable querying machinery and is strong enough to express all shadowings
computable in deterministic polynomial time. The language is implemented
and its open-source interpreter inter4QL is available via 4ql.org. Interestingly,
4QLBel+ permits to combine paracomplete and paraconsistent reasoning with
lightweight versions of nonmonotonic and doxastic reasoning. As we indicated,
though this feature is not implemented in inter4QL, the language is horizontally
scalable wrt non-recursive queries.
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Abstract. Identifying and resolving conflicts of interests is a key chal-
lenge when designing autonomous agents. For example, such conflicts
often occur when complex information systems interact persuasively with
humans and are in the future likely to arise in non-human agent-to-
agent interaction. We introduce a theoretical framework for an empathic
autonomous agent that proactively identifies potential conflicts of inter-
ests in interactions with other agents (and humans) by considering their
utility functions and comparing them with its own preferences using a
system of shared values to find a solution all agents consider acceptable.
To illustrate how empathic autonomous agents work, we provide running
examples and a simple prototype implementation in a general-purpose
programing language. To give a high-level overview of our work, we pro-
pose a reasoning-loop architecture for our empathic agent.

Keywords: Multi-agent systems · Utility theory · Conflicts of interests

1 Background and Problem Description

In modern information technologies, conflicts of interests between users and
information systems that operate with a high degree of autonomy (autonomous
agents) are of increasing prevalence. For example, complex web applications
persuade end-users, possibly against the interests of the persuaded individ-
uals1. Given the prevalence of autonomous systems will increase, conflicts
between autonomous agents and humans (or between different autonomous agent
instances and types) can be expected to occur more frequently in the future, e.g.
in interactions with or among autonomous vehicles in scenarios that cannot be
completely solved by applying static traffic rules. Consequently, one can argue
for the need to develop empathic intelligent agents that consider the preferences
or utility functions of others, as well as ethics rules and social norms when inter-
acting with their environment to avoid severe conflicts of interests. As a simple
example, take two vehicles (A and B) that are about to enter a bottleneck.
Assume they cannot enter the bottleneck at the same time. A and B can either
wait or drive. Considering only its own utility function, A might determine that
driving is the best action to execute, given that B will likely stop and wait to
avoid a crash. However, A should ideally assess both its own and B’s utility

1 E.g., research provides evidence that contextual advertisement influences how users
process online news [25]; social network applications have effectively been employed
for political persuasion (see for an example: [4]).
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function and act accordingly. If B’s utility for driving is considered higher than
A’s, A can then come to the conclusion that waiting is the best action. As A
does not only consider its own goals, but also the ones of B, one can regard A as
empathic, following Coplan’s definition of empathy, as “a process through which
an observer simulates another’s situated psychological states, while maintain-
ing clear self–other differentiation” [12]. While existing literature covers conflict
resolution in multi-agent systems from a broad range of perspectives (see for a
partial overview: [2]), devising a theoretical framework for autonomous agents
that consider the utility functions (or preferences) of agents in their environ-
ment and use a combined utilitarian/rule-based approach to identify and resolve
conflicts of interests can be considered a novel idea. However, existing multi-
agent systems research can be leveraged to implement core components of such
a framework, as is discussed later.

In this chapter, we provide the following research contributions:

1. We create a theoretical framework for an empathic agent that uses a com-
bination of utility-based and rule-based concepts to compromise with other
agents in its environment when deciding upon how to act.

2. We provide a set of running examples that illustrate how the empathic agent
works and show how the examples can be implemented in a general-purpose
programing language.

3. We propose a reasoning-loop architecture for a generic empathic agent.

The rest of this chapter is organized as follows: in Sect. 2, we present a theoret-
ical framework for the problem in focus. Then, we illustrate the concepts with
the help of different running examples and describe the example implementa-
tion in a general-purpose programing language in Sect. 3. Next, we outline a
basic reasoning-loop architecture for the empathic agent in Sect. 4. In Sect. 5, we
analyze how the architecture aligns with the belief-desire-intention approach and
propose an implementation using the Jason multi-agent development framework.
Finally, we discuss how our empathic agent concepts relate to existing work, pro-
pose potential use cases, highlight a set of limitations, and outline future work
in Sect. 6, before we conclude the chapter in Sect. 7.

2 Empathic Agent Core Concepts

In this section, we describe the core concepts of the empathic agent. To allow
for a precise description, we assume the following scenario2:

– The scenario describes the interaction between a set of empathic agents
{A0, ..., An}.

– Each interaction scenario takes place at one specific point in time, at which
all agents execute their actions simultaneously.

2 As we will explain later, the scenario and the resulting specification can be gradually
extended to allow for better real-world applicability.
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– At this point in time, each agent Ai(0 ≤ i ≤ n) has a finite set of possible
actions Actsi := {Act0i , ..., Actmi }, resulting in an overall set of action sets
Acts := {Acts0, ..., Actsn}. Each agent can execute an action tuple that con-
tains one or multiple actions. In each interaction scenario, all agents execute
their actions simultaneously and receive their utility as a numeric reward
based on the actions that have been executed.

– The utility of an agent Ai is determined by a function ui of the actions of all
agents. The utility function returns a numerical value or null3:

ui := Acts0 × ... × Actsn → {null,−∞,R,∞}
The goal of the empathic agent is to maximize its own utility as long as no
conflicts with other agents arise. We define a conflict of interests between sev-
eral agents as any interaction scenario in which there is no tuple of possible
actions that maximizes the utility functions of all agents. I.e., we need to compare
arg maxuA0 , ..., arg maxuAn

4. Note that arg maxuAi
returns a set of tuples (that

contains all action tuples that yield the maximal utility for agent Ai). For this, we
create a boolean function c that the empathic agent uses to determine conflicts
between itself and other agents, based on the utility functions of all agents:

c(uA0 , ..., uAn
) :=

⎧
⎨

⎩

true, if :
arg maxuA0 ∩ ... ∩ arg maxuAn

�= {};
false, otherwise.

Considering the incomparability property of the von Neumann-Morgenstern util-
ity theorem [24], such a conflict can be solved only if a system of values exists that
is shared between the agents and used to determine comparable individual util-
ity values. Hence, we introduce such a shared value system. To provide a possible
structure for this system, we deconstruct the utility functions into two parts:

– An actions-to-consequences mapping (a function a2ci that takes the actions
the agents potentially decide to execute and returns a set of consequences
(propositional atoms) Consqs := {Consq0i , ..., Consqni }):

a2ci := Actsi × ... × Actsn → 2Consqs

– A consequences-to-utility mapping (utility quantification function uq). Note
that the actions-to-consequences mapping is agent-specific, while the utility
quantification function is generically provided by the shared value system5:

uq := 2Consqs → {null,−∞,R,∞}
3 We allow for utility functions to return a null value for action tuples that are consid-

ered impossible, e.g. in case some actions are mutually exclusive. While we concede
that the elegance of this approach is up for debate, we opted for it because of its
simplicity.

4 The arg max operator takes the function it precedes and returns all argument tuples
that maximize the function.

5 I.e., for the same actions, an agent should only receive a different utility outcome
than another agent if the impact on the two is distinguishable in its consequences.
We again allow for null values to be returned in case of impossible action tuples.
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Then, agents can agree on the utility value of a given tuple of actions, as long
as the quality of the consequence is observable to all agents in the same way.
In addition, the value system can introduce generally applicable rules, e.g. to
hard-code a prioritization of individual freedom into an agent. With help of the
value system, we create a pragmatic definition of a conflict of interests as any
situation, in which there is no tuple of actions that is regarded as acceptable
by all agents when considering the shared set of values, given each agent exe-
cutes the actions that maximize their individual utility function. To support the
notion of acceptability, we introduce a set of agent-specific acceptability functions
accs := {accA0 , ..., accAn

}. The acceptability functions are derived from the cor-
responding utility functions and the shared system of values and take a set of
actions as their inputs. Acceptability functions are domain-specific and there is
no generic logic to be described in this context:

accAi
:= ActsA0 × ... × ActsAn

→ {null, true, false}

The notion of acceptability rules adds a normative aspect to the otherwise con-
sequentialist empathic agent framework. Without this notion, our definition of
a conflict of interests would cover many scenarios that most human societies
regard as not conflict-worthy, e.g. when one agent would need to accept large
utility losses to optimize its own actions towards improving another agents’ util-
ity. Considering the acceptability functions, we can now determine whether a
conflict of interests in terms of the pragmatic definition approach exists for an
agent Ai by using the following function cp that takes the utility function ui

of agent Ai and the acceptability functions Accs := {accA0 , ..., accAn
} as input

arguments:

cp(ui, Accs) :=
⎧
⎨

⎩

true, if :
�acts ∈ arg maxui ∧ ∀acc∈Accs : acc(acts) = true

false, otherwise.

We define an empathic agent Ai as an agent that, when determining the actions
it executes, considers the utility functions of the agents it could potentially affect
and maximizes its own utility only if doing so does not violate the acceptability
function of any other agent; otherwise it acts to maximize the shared utility
of all agents (while also considering the acceptability functions)6. Algorithm 1
specifies an initial, naive approach towards the empathic agent core algorithm.
The empathic agent core algorithm of an agent Ai in its simplest form can be
defined as a function that takes the utility functions {u0, ..., un} of the different

6 As different aggregation approaches are possible (for example: sum, product) to deter-
mine the maximal shared utility, we introduce the not further specified aggregation
function aggregate(u0, ..., un). In our running examples (see Sect. 3), we use the
product of the individual utility function outcomes to introduce some notion of fair-
ness; inequality should not be in the interest of the empathic agent. However, the
design choice for this implementation detail can be discussed.
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agents, the set of all acceptability functions Accs := {acc0, ..., accl}, and all
possible actions Actsi of agent Ai and returns the tuple of actions Ai should
execute7.

Algorithm 1. Naive empathic agent algorithm: D A N (determine actions
naive)
1: procedure D A Ni({u0, ..., un}, Accs, Actsi) � Utility & acceptability functions

of all agents, actions of Ai(0 ≤ i ≤ n)
2: if ∃acts ∈ arg max ui ∧ ∀acc∈Accs : acc(acts) = true then
3: best acceptable acts ← ⋃

acts∈argmaxui

: ∀acc∈Accsacc(acts) = true

4: return Actsi ∩ first(actsk ∈ best acceptable acts)
5: else
6: return Actsi ∩ first(arg max(aggregate(u′

0, ..., u
′
n))

7: end if
8: end procedure

Note that in the context of the empathic agent algorithms, the function
first(set) turns the provided set of tuples into a sequence of tuples by sort-
ing the elements in decreasing alphanumerical order and then returns the first
element of the sequence. This enables a deterministic action tuple selection.
Moreover, we construct a set of new utility functions {u′

0, ..., u
′
n} that assign all

not acceptable action tuples a utility of null (Algorithm 2)8:

Algorithm 2. Helper function: new utility function based on ui; all not accept-
able action tuples yield utility of null.
1: procedure u′

i(ui, {acts0, ..., actsn}, accs)
2: is acceptable ← ∀ acc ∈ accs : acc(actsi) = true
3: if is acceptable then
4: return ui(actsi, ..., actsn)
5: else
6: return null
7: end if
8: end procedure

In Algorithm 1, we specify that the agent picks the first item in the sequence
of determined action tuples if it finds multiple optimal tuples of actions. Alterna-
tively, the agent could employ one of the following approaches to select between
the optimal action tuples:
7 To facilitate readability, we switch to a pseudo-code notation for the following

algorithms.
8 We already use null to denote impossible action tuples. This implies an acceptable

action tuple should always exists. To achieve a distinction, a value of −∞ could be
assigned.
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– Random. The agent picks a random action tuple from the list of the tuples
it determined as optimal. This would require empathic agents to use an addi-
tional protocol to agree on the action tuple that should be executed.

– Utilitarian. Among the action tuples that were determined as optimal, the
agent picks the one that provides maximal combined utility for all agents and
falls back to a random or first-in-sequence selection between action tuples if
several of such tuples exist.

Still, the algorithm is somewhat naive, as agents that implement it will decide
to execute suboptimal activities if the following conditions apply:

– Multiple agents find that the actions that optimize their individual utility are
inconsistent with the actions that are optimal for at least one of the other
agents.

– Multiple agents find that executing these conflicting actions is considered
acceptable.

– Executing these acceptable actions generates a lower utility for both agents
than optimizing the shared utility would.

Hence, we extend the algorithm so that the agent selects the tuple of actions
that maximizes its own utility, but falls back to maximize shared utility if the
utility-maximizing action tuple is either not acceptable, or would lead to a lower
utility outcome than maximizing the shared utility, considering the other agent
follows the same approach (Algorithm 3):

Algorithm 3. Lazy empathic agent algorithm: D A L (determine actions lazy)
1: procedure D A Li({u0, ..., un}, Accs) � Utility & acceptability functions of all

agents, actions of all agents {A0, ..., An}
2: {acts max0, ..., acts maxn} ← DETERMINE ACT MAX(ui, Accs)
3: {good acts max0, ..., good acts maxn} ← {
4: DETERMINE GOOD ACTS MAX(u0, Accs, acts max0),
5: ...,
6: DETERMINE GOOD ACTS MAX(un, Accs, acts maxn),
7: }
8: if good acts max0 ∩ ... ∩ good acts maxn 
= {} then
9: return Actsi ∩ first(good acts max)

10: else
11: return Actsi ∩ first(arg max(aggregate(u′

0, ..., u
′
n)))

12: end if
13: end procedure

Algorithm 3 calls two helper functions. Algorithm 4 determines acceptable action
tuples that maximize a provided utility function ui:
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Algorithm 4. Helper function: determine acceptable action tuples that
maximize utility function ui

1: procedure determine act max(ui, Accs)
2: return

⋃

acts∈argmaxui

: ∀acc∈Accsacc(acts) = true

3: end procedure

Algorithm 5 determines all action tuples that would maximize an agent’s (Ai’s)
utility if this agent could dictate the actions of all other agents, given the action
tuples provide a better utility for this agent than the action tuples that maximize
all agents’ combined utility, given all agents execute an action tuple that maxi-
mizes their own utility if they could dictate the other agents’ actions. Note that
Algorithm 5 makes use of the previously introduced algorithm (Algorithm 1):

Algorithm 5. Helper function: determines all maximizing action tuples that
would still yield a good utility result for agent Ai(0 ≤ i ≤ n), given all other
agents also pick an action tuple that would maximize their own utility, if all
other agents “played along”.
1: procedure Determine Good Acts Max(ui, Accs)
2: return

⋃

acts∈argmaxui

: ∀acc∈Accs : acc(acts) = true ∧

3: ui(
n⋃

k=0

D A Nk({u0, ..., un}, Accs, acts))

4: ≥ ui(acts max)
5: end procedure

However, this algorithm only considers two types of action tuples for execution:
action tuples that provide the maximal individual utility for the agent and action
tuples that provide the maximal combined utility for all agents. Action tuples
that do not maximize the agent’s individual utility, but are still preferable over
the action tuples that maximize the combined utility, remain unconsidered. Con-
sequently, we call an agent that implements such an algorithm a lazy empathic
agent. We extend the algorithm to also consider all action tuples that could pos-
sibly be relevant. I.e., if an action tuple is not considered acceptable, or if the
tuple is considered acceptable but the agent chooses to not execute it, the agent
falls back to the tuple of actions that provides the next best individual utility. We
construct a function ne that returns the Nash equilibria based on the updated
utility functions {u′

0, ..., u
′
n}, considering we have a strategic game 〈N, (Ai) �i〉,

with N := {A0, ...An}, Ai := ActsAi
, and acts �i acts

′ := u′
i(acts) ≥ u′

i(acts
′)9.

Then, we create the full empathic agent core algorithm D A Fi for an agent
Ai that takes the updated utility functions {u′

0, ..., u
′
n} and all agents’ possible

9 See the Nash equilibrium definition provided by Osborne and Rubinstein [19, p. 11
et sqq.].
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actions as inputs {Acts0, ..., Actsn}. The algorithm determines the (first of) the
Nash equilibria that provide the highest shared utility and, if no Nash equilib-
rium exists, chooses the first tuple of actions that maximizes shared utility:

Algorithm 6. Full empathic agent algorithm: D A F (determine actions full)
1: procedure D A Fi({u′

0, ..., u
′
n}, {Acts0, ..., Actsn})

2: equilibria ← ne({u′
0, ..., u

′
n}, {Acts0, ..., Actsn})

3: if equilibria 
= {} then
4: shared max equilibria ← acts∗ ∈ equilibria :
5: ∀acts ∈ equilibria :
6: (u′

0(acts∗) × ... × u′
n(acts∗)) ≥ (u′

0(acts) × ... × u′
n(acts))

7: return Actsi ∩ first(shared max equilibria)
8: else
9: return Actsi ∩ first(arg max(aggregate(u0, ..., un))

10:
11: end if
12: end procedure

Going back to the selection between several action tuples that might be
determined as optimal, it is now clear that a deterministic approach for selecting
a final action tuple is preferable for both lazy and full empathic agents, as it
avoids agents deciding upon executing action tuples that are not aligned with
one another and lead to an unnecessary low utility outcome. Hence, we propose
using a utilitarian approach with a first-in-sequence selection if the utilitarian
approach is inconclusive10.

The proposed agent can be considered a rational agent following the defini-
tion by Russel and Norvig in that it “acts so as to achieve the best outcome
or, when there is uncertainty, the best expected outcome” [22, pp. 4–5] and an
artificially socially intelligent agent as defined by Dautenhahn as it instantiates
“human-style social intelligence” in that it “manage[s] the individual’s [its own]
interests in relationship to the interests of the social system of the next higher
level” [13].

3 Running Examples

In this section, we present two simple running examples of empathic agents and
describe the implementation of the examples in a general-purpose programming
language (JavaScript).

10 As state above, we assume that the first function sorts the action tuples in a deter-
ministic order before returning the first element.
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3.1 Example 1: Vehicles

We provide a running example for the “vehicle/bottleneck” scenario introduced
above. Consequently, we have a two-agent scenario {A,B}. Each agent has a
utility function uA,B := ActsA × ActsB → {−∞,R,∞}. ActsA and ActsB are
the possible actions A and B, respectively, can execute. To fully specify the
utility functions, we follow the approach outlined above and first construct the
actions-to-consequences mappings a2cA and a2cB for both agents. The possi-
ble actions are ActsA = {driveA, waitA} and ActsB = {driveB , waitB}. I.e.,
Acts = {driveA, waitA, driveB , waitB}. To assess the consequences that include
waiting, we assume B is twice as fast as A (without waiting, A needs 20 time
units to pass the bottleneck while B needs 10)11:

a2cA(acts) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

crash, if : acts = (driveA, driveB);
wait 0, if : acts = (driveA, waitB);
wait ∞, if : acts = (waitA, waitB);
wait 10, if : acts = (waitA, driveB);
null, otherwise.

a2cB(acts) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

crash, if : acts = (driveA, driveB);
wait 20, if : acts = (driveA, waitB);
wait ∞, if : acts = (waitA, waitB);
wait 0, if : acts = (waitA, driveB);
null, otherwise.

We construct the following utility quantification functions and subtract an
amount proportional to the waiting time from the utility value 1 of wait 0:

u2cA(consqs) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∞, if : consqs = {crash};
0.9, if : consqs = {wait 20};
0 if : consqs = {wait ∞};
1, if : consqs = {wait 0},
null, otherwise.

u2cB(consqs) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∞, if : consqs = {crash};
0.8, if : consqs = {wait 20};
0, if : consqs = {wait ∞};
1, if : consqs = {wait 0};
null, otherwise.

11 driveA ∧waitA and driveB ∧waitB , respectively, are mutually exclusive ({driveA ⊕
waitA, driveB ⊕ waitB}, with A ⊕ B := (A ∨ B) ∧ ¬(A ∧ B)). I.e., the functions
return null if driveA ∧ waitA ∨ driveB ∧ waitB .
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Actions-to-consequences mappings and utility quantification functions can then
be combined to utility functions:

uA(acts) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if : acts = (driveA, waitB);
0.9, if : acts = (waitA, driveB);

0, if : acts = (waitA, waitB);
−∞, if : acts = (driveA, driveB);
null, otherwise.

uB(acts) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.8, if : acts = (driveA, waitB);
1, if : acts = (waitA, driveB);
0, if : acts = (waitA, waitB);

−∞, if : acts = (driveA, driveB);
null, otherwise.

We assume scenarios where both agents are driving or both agents are waiting
are not acceptable by either agents and introduce the corresponding acceptability
rules:

accA,B(acts) :=
⎧
⎨

⎩

false, if : acts = (driveA, driveB) ∨ (waitA ∧ waitB);
null, if : (driveA ∈ acts ∧ waitA ∈ acts) ∨ (driveB ∈ acts ∧ waitB ∈ acts);
true, otherwise.

Based on the utility functions (uA, uB), we create new utility functions (u′
A, u

′
B)

that consider the acceptability rules:

u′
A(acts) :=

⎧
⎨

⎩

1
2 , if : acts = (driveA, waitB);
1
3 , if : acts = (waitA, driveB);

null, otherwise.

u′
B(acts) :=

⎧
⎨

⎩

1, if : acts = (waitA, driveB);
1
3 , if : acts = (driveA, waitB);

null, otherwise.

Finally, we apply the empathic agent algorithms to our scenario. Using the naive
algorithm, the agents apply the acceptability rules, but do not consider the other
agent’s strategy. Hence, both agents decide to drive, (and consequently crash).

D A NA({u′
A, u

′
B , }, {accA, accB}, ActsA) = driveA

D A NB({u′
A, u

′
B , }, {accA, accB}, ActsB) = driveB

The resulting utility is −∞ for both agents. None of the two other algorithms
(lazy, full) allows any agent to decide to execute an action tuple that does not
optimize shared utility. I.e., both algorithms yield the same result:

D A LA({u′
A, u

′
B , }, {accA, accB}, ActsA) = waitA

D A LB({u′
A, u

′
B , }, {accA, accB}, ActsB) = driveB

D A FA({u′
A, u

′
B , }, {accA, accB}, ActsA) = waitA

D A FB({u′
A, u

′
B , }, {accA, accB}, ActsB) = driveB
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The resulting utility is 0.9 for agent A and 1 for agent B. As can be seen, the
difference between agent types is not always relevant. The following scenario will
provide a distinctive outcome for all three agent variants.

3.2 Example 2: Concert

As a second example, we introduce the following scenario12. Two empathic agents
{A,B} plan to attend a concert of music by either Bach, Stravinsky, or Mozart
(Acts := {BachA, StravinskyA,MozartA, BachB , StravinskyB ,MozartB}). A
considers the Bach and Mozart concerts of much greater pleasure when attended
in company of B (utility of 6, respectively 3) and not alone (either concert: 1).
In contrast, the Stravinsky concert yields good utility, even if A attends it alone
(4). Attending it in company of B merely gives a utility bonus of 1 (total: 5). B
prefers concerts in company of A as well (2 for Stravinsky and 4 for Mozart), but
gains little additional utility from attending a Bach concert with A (1.1 with A
versus 1 alone) because they dislike listening to A’s Bach appraisals. Attending
any concert alone yields a utility of 1 for B. As the utility is in this scenario
largely derived from the subjective musical taste and social preferences of the
agents and to keep the example concise, we skip the actions-to-consequences
mapping and construct the utility functions right away13:

uA(acts) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null, if : length(acts) �= 2 ∨
length(set(BachA, StravinskyA,MozartA) ∩ set(acts)) �= 1∨
length(set(BachB , StravinskyB ,MozartB) ∩ set(acts)) �= 1;

6, else if : acts = (BachA, BachB);
5, else if : acts = (StravinskyA, StravinskyB);
4, else if : StravinskyA ∈ acts ∧ StravinskyB /∈ acts;
3, else if : acts = (MozartA,MozartB);
1, otherwise.

uB(acts) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

null, if : length(acts) �= 2 ∨
length(set(BachA, StravinskyA,MozartA) ∩ set(acts)) �= 1∨
length(set(BachB , StravinskyB ,MozartB) ∩ set(acts)) �= 1;

1.1, else if : acts = (BachA, BachB);
2, else if : acts = (StravinskyA, StravinskyB);
4, else if : acts = (MozartA,MozartB);
1, otherwise.

We introduce the following acceptability function that applies to both agents
(although it is of primary importance for agent A). As agent A is banned from
the venue that hosts the Stravinsky concert, the action StravinskyA is not
acceptable:

accA,B(acts) :=
{
false, if : acts = StravinskyA ∈ acts;
true, otherwise.

12 The scenario is an adjusted and extended version of the “Bach or Stravinsky? (BoS)”
example presented by Osborne and Rubinstein [19, pp. 15–16].

13 Note that the if-condition that triggers the return of a null value simply defines
that BachA, StravinskyA, and MozartA are mutually exclusive, as are BachB ,
StravinskyB , and MozartB .
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Considering the acceptability function, we create the following updated utility
functions:

u′
A(acts) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null, if : length(acts) �= 2 ∨
length(set(BachA, StravinskyA,MozartA) ∩ set(acts)) �= 1∨
length(set(BachB , StravinskyB ,MozartB) ∩ set(acts)) �= 1∨
StravinskyB ∈ acts;

6, else if : acts = (BachA, BachB);
4, else if : StravinskyA ∈ acts;

3, else if : acts = (MozartA,MozartB);
1, otherwise.

u′
B(acts) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

null, if : length(acts) �= 2 ∨
length(set(BachA, StravinskyA,MozartA) ∩ set(acts)) �= 1∨
length(set(BachB , StravinskyB ,MozartB) ∩ set(acts)) �= 1∨
StravinskyB ∈ acts;

1.1, else if : acts = (BachA, BachB);
4, else if : acts = (MozartA,MozartB);
1, otherwise.

Now, we can run the empathic agent algorithms. The naive algorithm returns
Bach for agent A and Mozart for agent B:

D A NA({u′
A, u

′
B , }, {accA, accB}, ActsA) = BachA

D A NB({u′
A, u

′
B , }, {accA, accB}, ActsB) = MozartB

The resulting utility is 1 for both agents. The lazy algorithm returns Mozart
for both agents:

D A LA({u′
A, u

′
B , }, {accA, accB}, ActsA) = MozartA

D A LB({u′
A, u

′
B , }, {accA, accB}, ActsB) = MozartB

The resulting utility is 3 for agent A and 4 for agent B. The full algorithm
returns Bach for both agents:

D A FA({u′
A, u

′
B , }, {accA, accB}, ActsA) = BachA

D A FB({u′
A, u

′
B , }, {accA, accB}, ActsB) = BachB

The resulting utility is 6 for agent A and 1.1 for agent B.

3.3 JavaScript Implementation

We implemented the running examples in JavaScript14. As a basis for the
implementation, we created a simple framework that consists of the following
components:

– Web socket server: environment and communications manager. The
environment and communications interface is implemented by a web socket
server that consists of the following components:

14 The code, as well as documentation and tests, are available at http://s.cs.umu.se/
qxgbfi.

http://s.cs.umu.se/qxgbfi
http://s.cs.umu.se/qxgbfi
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• Environment and communications manager. The web server pro-
vides a generic environment and communications manager that relays
messages between agents and provides the shared value system of accept-
ability rules.

• Environment specification. The environment specification contains
scenario-specific information and enables the server to determine and
propagate the utility rewards to the agents.

– Web socket clients: empathic agents. The empathic agents are imple-
mented as web socket clients that interact via the server described above.
Each agent consists of the following two components:

• Generic empathic agent library. The generic empathic agent library
provides a function to create an empathic agent object with the proper-
ties ID, utilityMappings, acceptabilityRules, and type (naive, lazy, or full).
The empathic agent object is then equipped with an action determina-
tion function that implements the empathic agent algorithm as described
above.

• Agent specifications. The agent specification consists of the scenario-
specific information of all agents in the environment, as well as of the
current agents’ identifier and type (naive, lazy, or full) and is used to
instantiate a specific empathic agent. Note that in the implementation,
we construct the utility functions right away and do not use actions-to-
consequences mappings.

The implementation assumes that the specifications provided to both agents
agents and to the server is consistent. Figure 1 depicts the architecture of the
empathic agent JavaScript implementation for the vehicle scenario. We chose
JavaScript as the language for implementing the scenario to show how to imple-
ment basic empathic agents using a popular general-purpose programing lan-
guage, but concede that a more powerful implementation in the context of MAS
frameworks like Jason is of value.

Fig. 1. Empathic intelligent: architecture
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4 Reasoning-Loop Architecture

We create a reasoning-loop architecture for the empathic agent and again assume
a two-agent scenario to simplify the description. The architecture consists of the
following components:

– Empathic agent (EA). The empathic agent is the system’s top-level com-
ponent. It has three generic components (observer, negotiator, and interactor)
and five dynamically generated functions/objects (utility function and accept-
ability function of both agents, as well as a formalized model of the shared
system of values).

– Target agent (TA). In the simplest scenario, the empathic agent inter-
acts with exactly one other agent (the target agent), which is modeled as a
black box. Pre-existing knowledge about the target agent can be part of the
models the empathic agent has of the target agent’s utility and acceptability
functions.

– Shared system of values. The shared system of values allows comparing
the utility functions of the agents and creating their acceptability functions,
as well as their actions-to-consequences mappings and utility quantification
functions, from which the utility functions are derived.

– Utility function. Based on the actions-to-consequences mappings and util-
ity quantification functions, each empathic agent maintains its own utility
function, as well as models of the utility function of the agent it is interacting
with.

– Acceptability function. Based on the shared system of values, the agent
derives the acceptability functions (as described above) to then incorporate
them into updated utility functions, which it feeds into the empathic agent
algorithm to determine the best possible tuple of actions.

– Observer. The observer component scans the environment, registers other
agents, receives their utility functions, and also keeps the agent’s own func-
tions updated. To construct and update the utility and acceptability functions
without explicitly receiving them, the observer could make use of inverse rein-
forcement learning methods, as for example described by [10].

– Negotiator. The negotiator identifies and resolves conflicts of interests using
the acceptability function models and instructs the interactor to engage with
other agents if necessary, in particular, to propose a solution for a conflict
of interest, or to resolve the conflict immediately (depending on the level of
confidence that the solution is indeed acceptable). The negotiator could make
use of argument-based negotiation (see e.g.: [3]).

– Interactor. The interactor component interacts with the agent’s environ-
ment and in particular with the target agent to work towards the conflict
resolution. The means of communication is domain-specific and not covered
by the generic architecture.

Figure 2 presents a simple graphical model of the empathic agent’s reasoning
loop architecture.
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Fig. 2. Empathic intelligent: architecture

5 Alignment with BDI Architecture and Possible
Implementation with Jason

Our architecture reflects the common belief-desire-intention (BDI) model as
based on [7] to some extent:

– If a priori available to both agents in the forms of rules or norms, beliefs,
and belief sets are part of the shared value system. Otherwise, they qualify
the agents’ utility and acceptability functions directly. In contrast, desires
define the objective(s) towards which an agent’s utility function is optimized
and are–while depending on beliefs–not directly mutable through persuasive
argumentation between the agents.

– Intentions are the tuples of actions the agents choose to execute.
– As it strives for simplicity, our architecture does for now not distinguish

between desires and goals, and intentions and plans, respectively.

We expect to improve the alignment of our framework with the BDI architecture
to facilitate the integration with existing BDI-based theories and implementation
using BDI frameworks. The Jason platform for multi-agent system development
[6] can serve as the basis for implementing the empathic agent. While simplified
running examples of our architecture can be implemented with Jason, extending
the platform to provide an empathic agent-specific abstraction layer would better
support complex scenarios.
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6 Discussion

In this section, we place our empathic agent concepts into the context of existing
work, highlight potential applications, analyze limitations, and outline future
work.

6.1 Similar Conflict Resolution Approaches

Our empathic agent can be considered a generic and basic agent model that can
draw upon a large body of existing research on multi-agent learning and nego-
tiation techniques for possible extensions. A survey of research on agents that
model other agents is provided by Albrecht and Stone [1]. The idea of combining
a utility-based approach with acceptability rules to emulate empathic behavior
is to our knowledge novel. However, a somewhat similar concept is presented
by Black and Atkinson, who propose an argumentation-based approach for an
agent that can find agreement with one other agent on acceptable actions and can
develop a model of the other agent’s preferences over time [5]. While Black’s and
Atkinson’s approach is similar in that it reflects Coplan’s definition of empathy
(it maintains “a process through which [it] simulates another’s situated psycho-
logical states, while maintaining clear self–other differentiation” [12]) to some
extent we identify the following key differences:

– The approach is limited to a two-agent scenario.
– The agent model is preference-based and not utility-based. While this has the

advantage that it does not require reducing complex preferences to a simple
numeric value, it makes it harder to combine with existing learning concepts
(see below).

– The agent has the ability to learn another agent’s preferences over time. How-
ever, the learning concept is–according to Black and Atkinson–“not intended
to be complete” [5]. We suggest that while our empathic agent does not pro-
vide learning capabilities by default, it has the advantage that its utility-based
concept allows for integration with established inverse reinforcement learning
algorithms (see: Subsect. 6.4).

– The agent Black and Atkinson introduce is not empathic in that it tries
to compromise with the other agent, but rather uses its ability to model
the agent’s preferences to improve its persuasive capabilities by tailoring the
arguments it provides to this agent.

6.2 Potential Real-World Use Cases

In this chapter, we exemplified the empathic agent with two simple scenarios,
with the primary purpose of better explaining our agent’s core concepts. These
scenarios do not fully reflect real-world use cases. However, the core concepts of
the agent can form the basis of solutions for real-world applications. Below, we
provide a non-exhaustive list of use case types empathic agents could potentially
address:
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– Handling aspects of traffic navigation scenarios that cannot be
covered by static rules. Besides adjusting the assertiveness levels to the
preferences of their drivers, as suggested by Sikkenk and Terken [23], and
Yusof et al. [26], autonomous vehicles could consider the driving style of
other human- or agent-controlled vehicles to improve traffic flow, for example
by adjusting speed or lane-changing behavior according to the (perceived)
utility functions of all traffic participants or to resolve unexpected incidents
(in particular emergencies).

– Mitigating negative effects of large-scale web applications on their
users. Evidence exists that suggests the well-being of passive (mainly
content-consuming) users of social media is frequently negatively impacted by
technology, while the well-being of at least some users, who actively engage
with others through the technology, improves [20]. To facilitate social media
use that is positive for the users’ well-being, an empathic agent could serve
as a mediator between user needs (social inclusion) and the business goals of
the technology provider (often: maximization of advertisement revenue).

– Decreasing the negotiation overhead for agent-based manufacturing
systems. Autonomous agent-based manufacturing systems are an emerging
alternative to traditional, hierarchically managed control architectures [16].
While agent-based systems are considered to increase the agility of manufac-
turing processes, one disadvantage of agent-based manufacturing systems is
the need for negotiation between agents and the resulting overhead (see for
example: Bruccoleri et al. [8]). Employing empathic agents in agent-based
manufacturing scenarios can possibly help solve conflicts of interests effi-
ciently.

– Improving persuasive healthcare technology. Persuasive technology–
“computerized software or information system designed to reinforce, change
or shape attitudes or behaviours or both without using coercion or decep-
tion” [18]–is frequently applied in healthcare scenarios [11], in particular, to
facilitate behavior change. Persuasive functionality is typically implemented
using recommender systems [14], which in general struggle to compromise
between system provider and end-user needs [21]. This can be considered as
a severe limitation in healthcare scenarios, where trade-offs between serv-
ing public health needs (optimizing for a low burden on the healthcare sys-
tem) and empowering patients (allowing for a subjective assessment of health
impact, as well as for unhealthy choices to support individual freedom) need
to be made. Hence, employing the empathic agent concepts in this context
can be considered a promising endeavor.

6.3 Limitations

The purpose of this chapter is to introduce empathic agents as a general concept.
When working towards a practically applicable empathic agent, the following
limitations of our work need to be taken into account:

– The agent is designed to act in a fully observable world, which is an unrealistic
assumption for real-world use cases. For better applicability, the agent needs
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to support probabilistic models of the environment, the other agents, and the
shared value system.

– Our formal empathic agent description is logic-based. Integrating it with
Markov decision process-based inverse reinforcement learning approaches is
a non-trivial endeavor, although certainly possible.

– In the example scenarios we provided, all agents are identically implemented
empathic agents. An empathic agent that interacts with non-empathic agents
will need to take into account further game-theoretic considerations and to
have negotiation capabilities.

– The presented empathic agent concepts use a simple numeric value to repre-
sent the utility an agent receives as a consequence of the execution of an
action tuple. While this approach is commonly employed when designing
utility-based autonomous agents, it is an oversimplification that can poten-
tially limit the applicability of the agent.

– Software engineering and technological aspects of empathic agents need to be
further investigated. In particular, the implementation of an empathic agent
library using a higher-level framework for multi-agent system development,
as we discuss in Sect. 5 could provide a more powerful engineering framework
for empathic agents.

6.4 Future Work

We suggest the following research to address the limitations presented in
Subsect. 6.3:

– So far, we have chosen a logic-based approach to the problem in focus to allow
for a minimalistic problem description with low complexity. Alternatively, the
problem could be approached from a reinforcement learning perspective (see
for an overview of multi-agent reinforcement learning: [9]). Using (partially
observable) Markov decision processes, one can introduce a well-established
temporal and probabilistic perspective15. A key capability our empathic agent
needs to have is the ability to learn the utility function of other agents. A
comprehensive body of research on enabling this ability by applying inverse
reinforcement learning exists (for example: [10,17]). Hence, creating a Marko-
vian perspective on the empathic agent to enable the application of reinforce-
ment learning methods for the observational learning of the utility functions
of other agents can be considered relevant future work.

– To better assess the applicability of the empathic agent algorithms, it is
important to analyze its computational complexity in general, as well as
to evaluate it in the context of specific use cases that might allow for
performance-improving adjustments.

– To enable empathic agents to reach consensus in case of inconsistent beliefs
argumentation-based negotiation approaches can be applied that consider
uncertainty and subjectivity (e.g. [15]) for creating solvers for finding com-
promises between utility/acceptability functions. Similar approaches can be

15 However, the same can be achieved with temporal and probabilistic logic.
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used to enhance utility quantification capabilities by considering preferences
and probabilistic beliefs.

– The design intention of the architectural framework we present in Sect. 4 is
to form a high-level abstraction of an empathic agent that is to some extent
agnostic of the concepts the different components implement. We are confi-
dent that the framework can be applied in combination with existing tech-
nologies to create a real-world applicable empathic agent framework, at least
for use cases that allow making some assumptions regarding the interaction
context and protocol.

– The ultimate goal of this research is to apply the concept in a real-world sce-
nario and evaluate to what extent the application of empathic agents provides
practically relevant benefits.

7 Conclusion

In this chapter, we introduced the concept of an empathic agent that proac-
tively identifies potential conflicts of interests in interactions with other agents
and uses a mixed utility-based/rule-based approach to find a mutually acceptable
solution. The theoretical framework can serve as a general purpose model, from
which advanced implementations can be derived to develop socially intelligent
systems that consider other agents’ (and ultimately humans’) welfare when inter-
acting with their environment. The example implementation, the reasoning-loop
architecture we introduced for our empathic agent, and the discussion of how the
agent can be implemented with a belief-desire-intention approach provide first
insights into how a more generally capable empathic agent can be constructed.
As the most important future research steps to advance the empathic agent,
we regard the conceptualization and implementation of an empathic agent with
learning capabilities, as well as the development of a first simple empathic agent
that solves a particular real-world problem.
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Abstract. In order to ensure global behaviour of decentralized multi-
agent systems, we have to have a clear understanding of the issue of equi-
librium over time. Convergence to the static equilibrium is an important
question in the evolutionary dynamics of multi-agent systems. The evolu-
tionary dynamics is usually investigated in repeated games which capture
the evolutionary dynamics between games. The evolutionary dynamics
within a game is investigated in online routing games. It is not known
if online routing games converge to the static equilibrium or not. The
progress beyond the state-of-the-art is that we introduce the notion of
intertemporal equilibrium in the study of the evolutionary dynamics of
games, we define quantitative values to measure the intertemporal equi-
librium, we use these quantitative values to evaluate a realistic scenario,
and we give an insight into the influence of intertemporal expectations
of the agents on the intertemporal equilibrium. An interesting result is
that the prediction service, which is engineered into the environment of
the multi-agent system as a novel type of coordination artifact, greatly
influences the global behaviour of the multi-agent system. The main con-
tribution of our work is a better understanding of the engineering process
of the intertemporal behaviour of multi-agent systems.

Keywords: Agent-based and multi-agent systems ·
Agent theories and models · Coordination artifacts ·
Environment engineering

1 Introduction

Many information technology applications include several autonomous agents
which make decentralised decisions. In order to be able to define and measure
design criteria, designers need formal models. Currently the best model of multi-
agent decision making is based on game theory [15]. The designers prefer multi-
agent systems with an equilibrium, because none of the agents has an incentive to
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deviate from the equilibrium, therefore the equilibrium seems to be a stable and
predictable state of the system. If the equilibrium meets the design criteria, then
we can ensure global behaviour of the multi-agent system. Therefore ensuring
the equilibrium is an important part of the engineering process of the multi-agent
systems.

However the classic game theory models assume an idealistic situation: all
the agents know what the equilibrium is, all the agents know what other agents
do, and all the agents know what their role is in the equilibrium. In accordance
with the basic theory of multi-agent systems [29], the agent behaviour goes
in cycles: the agents perceive their environment (possibly communicating with
other agents), decide what action to perform, and then perform the action. Can
we be sure that multi-agent systems go to the equilibrium through these feedback
cycles and stay in the equilibrium?

The classic game theory models describe static situations, while agent
behaviour involves time. The time aspect is usually investigated in evolution-
ary game theory, where the (kind of static) game is repeated and the agents
base their decisions on their experiences in the previous games. However many
real world applications are continuously evolving games: agents join the game in
a sequence, they influence the game for a while, and then they quit the game.
In these games, the decisions of the agents are often intertemporal choices: the
current decision of the agent may affect the utility of the agents in the future.
The equilibrium of such evolving games is the intertemporal equilibrium. We
want to use the concept of intertemporal equilibrium to characterise the global
behaviour of decentralized, large-scale and open multi-agent systems.

Intertemporal equilibrium [9] has two interpretations in economic theory. One
interpretation is related to the intertemporal aspect of the choice, e.g. is it better
to spend now or is it better to save now and spend later. In this approach, the
critical point is the expectations of the agents. The other interpretation is related
to the temporal aspect of the equilibrium: at any given time, the economy is in
disequilibrium, and the equilibrium can be interpreted only in the long term. In
this chapter, we focus on the latter interpretation, and we take into account that
agents have intertemporal expectations.

In order to study this complex behaviour, we take the large-scale and open
multi-agent system of the road traffic application area, and in particular the
online routing problem. The online routing problem is a network with traffic
flows going from a source node to a destination node. The agents of the traffic
flows continuously enter the network at the sources, they choose a full route
to the destination of their trip, and quit the network at the destination. The
subsequent agents of the same traffic flow may choose different routes, depending
on the current status of the network. The traffic is routed in a congestion sensitive
manner.

We contribute to the state-of-the-art with the following results: we introduce
the notion of intertemporal equilibrium in online routing games, we define quanti-
tative values to measure the intertemporal equilibrium, we use these quantitative
values to investigate a realistic scenario, and we evaluate how the intertemporal
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expectations of the agents influence the intertemporal equilibrium. We point out
that these aspects are important parts of the engineering process of large-scale
multi-agent systems, namely they are part of the environment engineering pro-
cess [14]. The implementation of the prediction service of the intention-aware
online routing game model [18] can be a new type of coordination artifact that
predicts the expected future state of the environment.

In Sect. 2, we shortly overview related work on convergence of games to the
equilibrium. In Sect. 3, we shortly discuss the available multi-agent engineering
concepts to implement the support for convergence to the equilibrium. In Sect. 4,
we shortly describe two methods that can be built into the environment of the
multi-agent system to handle the expectations of the agents in online routing
games. In Sect. 5, we describe a realistic scenario for our investigations. In Sect. 6,
we define the measurement of intertemporal equilibrium. In Sect. 7, we evaluate
the realistic scenario. In Sect. 8, we present and analyse an artificial scenario to
highlight the advantages and disadvantages of the two prediction methods for
the global behaviour of the multi-agent system. Finally, we conclude the chapter
in Sect. 9.

2 Related Work on Convergence to the Equilibrium

The static equilibrium is an important concept of game theory. Algorithmic game
theory [13] investigated the routing problem where decentralised autonomous
decision making is applied by the traffic flows. This game theory model is in
line with the assumption of the traffic engineers, who assume that the traffic is
always assigned in accordance with the static equilibrium [1,25]. The potential
function is used to prove the existence of equilibria, and an upper limit on the
price of anarchy is also proved [16]. In the routing game, the decisions are on
the flow level, i.e. a flow is an agent.

The evolutionary dynamics of games is usually investigated in repeated games
where the agents receive feedback by observing their own and other agents’
actions and utility, and in the next game they change their own actions based
on these observations. The potential function method is extended to prove that
the repeated routing game, with the above mentioned feedback, converges to the
static equilibrium [8,17]. Another type of feedback is used in regret minimisation,
where agents compare their actually experienced utility with the best possible
utility in retrospect. It is proved that if the agents of the routing game select
actions to minimize their regret, then their behaviour converges to the static
equilibrium [2]. The acyclicity concept is also important for proving the con-
vergence to the static equilibrium in repeated finite games [7,12]. The repeated
game approach captures the evolutionary dynamic between routing games, but
not within the routing game.

The deterministic queuing model is an approximation to investigate how traf-
fic flows evolve over time. In the queuing model, each edge consists of a queue
followed by a link which has a constant delay and a maximum capacity. The cost
of the edge is the waiting time in the queue plus the constant delay. The speed
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of the growth of the queue of the edge is proportional to the difference between
the inflow to the edge and the maximum capacity of the edge. The Nash flows
over time in non-atomic queuing networks is characterised and several bounds
on the price of anarchy are proved in [11]. It is shown in [6] that single source
fluid queuing networks reach a steady state in finite time if the inflow does not
exceed the capacity of the network. It is shown in [10] that Nash equilibrium
is not guaranteed in atomic queuing networks with FIFO policies. The queuing
model does not have usage dependent cost of the edges if the queue is empty
and the inflow is below the maximum capacity, because in this flow range the
edge has a constant delay. The queuing model has a kind of usage dependent
cost of the edges only when the inflow exceeds the maximum capacity of the
edges. However, above the maximum-capacity flow, the queue grows to infinity
over time at constant inflow. Therefore the queuing model is not a complete
extension of the static routing game to the time dimension.

The appropriate extension of the static routing game to the time dimension
is the online routing game model. The online routing game model has both
the concept of the maximum capacity and the inflow dependent delays below
the maximum capacity. Therefore, the online routing game describes the usage
dependent cost of the edges in all flow ranges. The online routing game model
may comprise other important aspects as well: intention-awareness and intention
aware prediction. These are not investigated in the queuing model.

The evolutionary dynamic inside the routing game is captured by the online
routing game model [19], where the traffic flow is made up of individual agents
who follow each other, and the agents of the traffic flow decide individually
on their actions based on the real-time situation. The reader is referred to the
openly accessible article [18] for the formal description of the online routing game
model. In short, the online routing game model is the sextuple <t, T,G, c, r, k>,
where t = {1, 2, ...} is a sequence of time steps, T time steps give one time unit
(e.g. one minute), G is a directed multi-graph representing the road network, c
is the cost function of G with ce : R+ → R+ for each edge e of G, r is a vector of
flows, and k = (k1, k2, ...) is a sequence of decision vectors kt = (kt

1, k
t
2, ...) made

in time step t. Edges have FIFO property, and there is a minimum following
distance on the edges which corresponds to the maximum capacity.

In online routing games, the agents may have to make intertemporal deci-
sions, because they may have to take into account what the expected traffic
will be by the time they get to a given road. Selecting different routes involves
different future points of time. The future traffic might be completely different
from the currently observed real-time situation.

It is proved [19] that if the agents of the online routing game try to max-
imise their utility computed from the real-time situation (without taking into
account any expectation), then equilibrium is not guaranteed, although a static
equilibrium exists. “Single flow intensification” may also happen when agents
subsequently entering the online routing game select alternative faster routes,
and they catch up with the agents already on route, and this way they cause
congestion. All-in-all, sometimes the online routing game may produce strange



206 L. Z. Varga

behaviour [20], and sometimes the agents may be worse off by exploiting real-
time information than without exploiting real-time information.

In order to facilitate the agents to make predictions and include future con-
ditions in their decisions, intention-aware prediction methods were proposed. In
the intention-aware prediction methods, the agents communicate their intentions
to a service. The service aggregates the data about the agent collective, and it
sends a feedback to the agents [4]. The intention-aware [26] and the intention
propagation [5] approaches are based on this scheme. The coordination mech-
anism provided by these schemes can scale with the complexity of real-world
application domains.

The online routing game model was extended [18] to include intention-aware
prediction. When an agent has made a decision on its planned route, then it
sends its selected intention to the service. The service forecasts future traffic
conditions. The prediction is based on the current situation and the intentions
of the agents. The service provides the forecasts back to those agents who are still
planning their action, and these agents use this information to make decision,
and when they have made a decision, then they also communicate their intention
to the service.

The navigation applications like Google Maps (http://maps.google.com/),
Waze (http://waze.com), TomTom (http://www.tomtom.com), etc. know the
intentions of the agents they serve, and they could use this information to make
predictions. They could exactly tell what would happen in the near future if
the agents that receive the routing plan from these applications exactly followed
these plans.

It is proved [18] that there is no guarantee on the equilibrium, even if
intention-aware prediction is applied, and in some networks and in some cases
the agents may be worse off by exploiting real-time information and prediction
than without. However, it is proved [21] that in a small but complex enough
network of the Braess paradox [3], where there is only one source–destination
pair, the agents might just slightly be worse off in the worst case with real-time
data and prediction. It is also proved [23] that in the network of [21], the system
converges to the static equilibrium within a relatively small threshold. The con-
jecture in [22] says that the system converges to the static equilibrium in bigger
networks as well, if simultaneous decision making is prevented. This conjecture
neither has been proved nor refuted analytically.

3 Multi-agent System Engineering Aspects

As the overview in the previous section says, the classic models assume that all
the agents know of everything in the game, or at least they can observe every
action and utility in the game. This is not realistic for large-scale and open multi-
agent systems. In order to facilitate the coordination among many agents, the
intention-aware online routing game model introduces the notion of a prediction
service. We have to find the proper place in the multi-agent system engineering
landscape for the implementation of such service.

http://maps.google.com/
http://waze.com
http://www.tomtom.com


Dynamic Global Behaviour of Online Routing Games 207

The above models have in common that the goal of the agents is to max-
imise their expected utility according to the information available to them, so
the key is the information sharing among the agents. Researchers discovered
that the environment needs to be a first-order abstraction in the software engi-
neering process in order to be able to use it as a robust shared memory, and
as a medium for indirect coordination of agents [28]. The notion of artifact is
introduced as an abstract building block for modelling and engineering environ-
ments. The artifacts are classified into three categories: resource, coordination
and organisation artifacts. Coordination artifacts were used to control automatic
guided vehicles [27]: the agents coordinate by putting marks in the environment,
and by observing marks from other agents. The conclusion of [21] says that the
intention-aware prediction service of online routing games establishes a kind of
coordination among the agents, because the excessive swing of the system caused
by the utilisation of real-time information is reduced. However, we cannot clearly
say that the prediction service is a coordination artifact like the classical coor-
dination artifacts, such as mutual exclusion and synchronisation operations.

The environmental artifact concept is further developed into the notion of
environment programming of multi-agent systems [14] which means that the
environment is part of the software system to be designed. This way the environ-
ment is used to design and program that part of the system which is functional to
the agents’ work, and the agents may adapt the environmental artifacts to better
fit their needs. The main aspects of the model for environment programming are
the action model (how the agents can change the state of the environment), the
perception model (how the agents can perceive the environment), the environ-
ment computational model (how to program environment functionalities), the
environment data model (the data interface between the agents and the environ-
ment), and the environment distribution model (how to handle the distributed
structure of the environment).

The prediction service of online routing games is an extension of the per-
ception model into the time dimension: it enables the agents to “perceive” the
expected future state of the environment. The coordination is achieved through
this extended perception capability. The online routing game involves intertem-
poral decisions, and the prediction service helps the coordination of the agents by
computing the expected future state of the environment. Therefore the predic-
tion service is a novel kind of coordination artifact, and it achieves coordination
by enriching the perception model with intertemporal characteristics.

The work presented in this chapter focuses on environmental programming,
and it helps to better understand how intertemporal perception models can
influence the dynamic behaviour of multi-agent systems. We are not focusing on
the implementation language, rather we focus on two prediction methods and
their empirical evaluations.
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4 Intention-Aware Prediction Methods

The formal description of the algorithms of two intention-aware prediction meth-
ods were presented at [24]: the detailed prediction method and the simple pre-
diction method.

The detailed prediction method takes into account all the intentions already
submitted to the service, then it computes what will happen in the future if the
agents execute the plans assigned by these intentions, and then it computes for
each route in the network the predicted travel time by taking into account the
predicted future travel times for each road of the route. The prediction algorithm
used in [26] is close to this detailed prediction method, but the main difference is
that the prediction algorithm of [26] uses probabilistic values, while the detailed
prediction method is deterministic.

The simple prediction method also takes into account all the intentions
already submitted to the service, and then it computes what will happen in
the future if the agents execute the plans assigned by these intentions. However
when the simple prediction method computes for each route in the network the
predicted travel time, then it takes into account only that travel time prediction
for each road which was computed at the last intention submission. This way,
the simple prediction method needs a little bit less computation. The simple
prediction method is a kind of approximation and does not try to be an exact
prediction of the future. As time goes by, if no new prediction is generated for
a road, then the simple prediction method “evaporates” the last prediction for
that road, like the bio-inspired technique of [5].

5 Experimental Set-up

In order to investigate empirically the intertemporal equilibrium, a region of
Budapest (shown in Fig. 1) was modelled in the simulation software of [19]. The
figure shows the route choices towards the destination Rákóczi bridge (E in
the figure) as proposed by the navigation software. There are two sources: the
suburban area (A in the figure) and the intercity road (B in the figure). Both
trips (A−E and B−E) have basically the same two choices between points C
and D: the north (grey in the figure) and the south (blue in the figure) paths.

The road lengths are: (A,C) = 1.4 km, (B,C) = 1.0 km, (C,D)north =
4.0 km, (C,D)south = 6.8 km, and (D,E) = 1.2 km. Assuming that the cars
can travel at speed 40 km/h on an empty road, the minimum travel time in
minutes (fixed part of the cost function) for the roads is 1.5 times the distance.
Information on the traffic flow going on these roads can be obtained from the
web site1 of the Hungarian Public Road Non-profit PLC. The variable part of
the travel time is roadlength∗flow÷10, thus the cost functions of the roads are
shown in Eq. 1, where the cost is in minute and the traffic flow is in car÷minute.

1 http://internet.kozut.hu/Lapok/forgalomszamlalas.aspx.

http://internet.kozut.hu/Lapok/forgalomszamlalas.aspx
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c(A,C)(flow) = 2.1 + 1.4 ∗ flow ÷ 10
c(B,C)(flow) = 1.5 + 1.0 ∗ flow ÷ 10
c(C,D)north

(flow) = 6.0 + 4.0 ∗ flow ÷ 10
c(C,D)south

(flow) = 10.2 + 6.8 ∗ flow ÷ 10
c(D,E)(flow) = 1.8 + 1.2 ∗ flow ÷ 10

(1)

The experiment simulates a 90 min long rush hour period extended with
a 17 min initial period to populate the roads to some extent. Several experi-
ments were run at different incoming traffic flow values from 2.5 car÷minute to
30 car ÷ minute in steps of 2.5. The incoming traffic flow was constant dur-
ing each experiment. The incoming flow values were the same at points A and
B (in order to avoid too many combinations). Simultaneous decision making
was excluded, so when an agent at one of the sources made a decision, then it
submitted its intention, and the next agent made its decision only after that.

All the experiments were executed in three versions using three different
routing strategies: (1) no prediction routing strategy, (2) detailed prediction
routing strategy, and (3) simple prediction routing strategy. The no prediction
routing strategy is the simple naive (SN) online routing game of [19], where
the routing strategy selects the shortest travel time observable in the real-time
status of the network (and not the shortest predicted travel time). The latter
two strategies are intention-aware routing strategies where the routing strategy
selects the shortest predicted travel time using the corresponding prediction
method as described in Sect. 4.

The travel time of cars on trips A−E and B−E were measured during the
whole experiment. The maximum value and the average of the travel times were
computed.

Fig. 1. The Google Map extract showing the realistic scenario of the experiments
(Color figure online)
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6 Measure of Intertemporal Equilibrium

In order to explain how we quantify the intertemporal equilibrium, we measured
and show the travel times of the trip A−E with all three routing strategies in
Fig. 2 at flow value 20 car ÷ minute. The horizontal axis is the elapsed time in
the experiment in minutes. The vertical axis is the travel time of the agents
of the trip A−E when they arrive at point E. The vertical axis is in minutes
too. The time period of a bit more than 450 min was selected to show that the
travel times do not seem to converge to a steady value. Because an analytical
proof of convergence to a steady equilibrium value is not known, we do not
know if the convergence would eventually happen or not. We formulate this in
Requirement 1.

Fig. 2. Measured travel times of the trip A−E for the no prediction (top part), detailed
prediction (middle part), and simple prediction (bottom part) routing strategies in a
longer period, at incoming flow value 20 car ÷minute.

Requirement 1. The measure of intertemporal equilibrium should be defined
over a given period of time.

We can also see in Fig. 2 that the travel time seems to remain within a
limit from a kind of equilibrium value. Hopefully this limit is close to the value
computed from the static equilibrium. The closer the better.

Requirement 2. The measure of intertemporal equilibrium should contain the
worst case difference (WD) from the static equilibrium.
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The worst case difference might be big, but if the system fluctuates around a
kind of equilibrium, then we consider it as intertemporal equilibrium. Hopefully
the medium of the fluctuation is close to the value computed from the static
equilibrium. The closer the better.

Requirement 3. The measure of intertemporal equilibrium should contain the
average difference (AD) from the static equilibrium.

We can see in Fig. 2 that sometimes there are big differences in the travel
times of the agents that arrived at point E at almost the same elapsed time
of the experiment. This means that there was an agent which arrived through
a non congested route, and another agent arrived through a congested route
almost at the same time. These differences are the biggest in the diagram of
the no prediction strategy, because all the agents select the shortest reported
route until they notice that the route becomes congested, and then they switch
to the other route which becomes less congested by that time. When this switch
happens, some of the agents go on a slow congested route, and some of the
agents go on a fast uncongested route. The travel times are far from being
equal, but the system is continuously swinging between these disequilibrium
periods, so this is a kind of equilibrium which we call intertemporal equilibrium.
The differences between the consecutive reported travel times are smaller in the
diagrams of the detailed and the simple prediction strategies, which indicates
that there are no so strong disequilibrium periods in the system. The smaller
travel time differences seem to coincide with smaller swings in the system. The
smaller swings are probably because the agents have almost equal intertemporal
choices during the experiment, although the system is fluctuating all the time.
We call this phenomenon “quasi equilibrium within the disequilibrium”.

Requirement 4. The measure of intertemporal equilibrium should contain an
indicator of the scale of the quasi equilibrium within the disequilibrium
(QE).

Based on the above requirements, we define the quantitative measure of
intertemporal equilibrium the following way:

Definition 1. Let ORG = <t, T,G, c, r, k> be an online routing game over the
finite sequence of time steps t. Let cri

(τ) be the cost (i.e. total travel time) of the
agent of trip ri ∈ r when it exits the game at the destination of trip ri at time
step τ ∈ t. Let eri

be the static equilibrium travel time for trip ri.
The measure of intertemporal equilibrium of ORG is <WD,AD,QE>

where

– WD = max
ri∈r

(max
τ∈t

((cri
(τ) − eri

) ÷ eri
))

– AD = avgri∈r((avgτ∈t(cri
(τ) − eri

)) ÷ eri
)

– QE = avgri∈r(avgτ∈t(|cri
(τ) − cri

(τ + 1)| ÷ eri
)).

The intertemporal equilibrium of the multi-agent system is considered to be
good, if the components of the measure of the intertemporal equilibrium are close
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to 0. The ideal equilibrium is when the system stays continuously in the static
equilibrium, in which case the intertemporal equilibrium is WD = 0, AD = 0
and QE = 0. If QE = 0, then the system stays in a kind of equilibrium value,
and the WD and AD values indicate how worse this equilibrium is than the
static equilibrium.

Note that the QE is an important part of the intertemporal equilibrium, and
it includes much more information than usual statistical values like for example
the standard deviation of travel times. Two experiments may have the same
standard deviation, but they may have different QE values.

7 Evaluation of the Experiments

Before the experiments, our expectation was that we could confirm the following
hypotheses:

H1: The intention-aware routing strategies produce better intertemporal equi-
librium values than the non predictive routing strategy.

H2: The detailed prediction routing strategy produces better intertemporal
equilibrium values than the simple prediction routing strategy, because the
simple prediction method does not try to be precise.

In order to evaluate the experimental measurements, we have to compute the
static equilibrium values. We use the following notations for the flow rates on
the routes of the experiment:

f1 from point A to E through (C,D)north

f2 from point A to E through (C,D)south

f3 from point B to E through (C,D)north

f4 from point B to E through (C,D)south

In the static equilibrium, the costs of the north and the south routes must
be equal. The parameter of the experiments is a flow rate value flow which is
the incoming traffic flow rate value both at point A and point B. The flow rates
cannot be negative. In order to get the static equilibrium cost values, we have to
find a solution of Eq. 2 and compute the cost values of the routes (not detailed
here).

f1 + f2 = f3 + f4 = flow

c(C,D)north
(f1 + f3) = c(C,D)south

(f2 + f4)
f1 ≥ 0 ∧ f2 ≥ 0 ∧ f3 ≥ 0 ∧ f4 ≥ 0

(2)

The worst case difference values (WD) of the intertemporal equilibrium of
the experiments were computed, and they are shown in Fig. 3. The horizontal
axis is the traffic flow rate value flow of each experiment, in car ÷ minutes. As
we can see, the WD is zero at low traffic flows (e.g. 2.5). This is because at low
traffic flows, all the traffic can go on the shortest route, and this is the static
equilibrium as well. At higher traffic values, the WD increases, it even reaches
1 in the case of the no prediction routing strategy, which means that the travel



Dynamic Global Behaviour of Online Routing Games 213

time might be twice as much as the static equilibrium in the worst case. The WD
of the detailed prediction routing is better than the WD of the no prediction
routing in most of the experiments. The WD of the simple prediction routing is
better than the WD of the detailed prediction routing. The WD values confirm
hypothesis H1 in most of the experiments, but they refute hypothesis H2.

Fig. 3. The worst case difference values (WD) of the intertemporal equilibrium of the
experiments

The average difference values (AD) of the intertemporal equilibrium of the
experiments were computed, and they are shown in Fig. 4. As we can see, the AD
is zero at low traffic flows, like in the case of the WD. At higher traffic values, the
AD increases, but it is considerably less than the WD. The AD of the detailed
prediction routing is better than the AD of the no prediction routing in most
of the experiments. The AD of the simple prediction routing is better than the
AD of the detailed prediction routing. The AD values confirm hypothesis H1 in
most of the experiments, but they refute hypothesis H2.

Fig. 4. The average difference values (AD) of the intertemporal equilibrium of the
experiments
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The quasi equilibrium values (QE) of the intertemporal equilibrium of the
experiments were computed, and they are shown in Fig. 5. As we can see, the QE
is zero at low traffic flows, like in the case of the WD and the AD. At higher traffic
values, the QE increases, but they are much smaller for the detailed prediction
routing and the simple prediction routing than for the no prediction routing.
The QE of the simple prediction routing is better than the QE of the detailed
prediction routing. The QE of the simple prediction routing is very close to zero,
which means that the simple prediction brings about quasi equilibrium very well.
The QE values confirm hypothesis H1, but they refute hypothesis H2.

Fig. 5. The quasi equilibrium values (QE) of the intertemporal equilibrium of the
experiments

8 An Artificial Scenario

In order to highlight how the different intention-aware prediction capabilities of
the environment of the multi-agent system may influence the global behaviour
of the multi-agent system, we present an artificial scenario shown in Fig. 6. The
cost functions of the edges are shown in Eq. 3, where the cost is in minute and
the traffic flow is in car ÷ minute. There are two incoming traffic flows: r1 from
vertex v0 to vertex v4, and r2 from v1 to v4. The incoming traffic flow r2 has
no other choice, but to go through the path p1 = (e2, e5). The incoming traffic
flow r1 may choose between the paths p2 = (e1, e4) and p3 = (e1, e3, e5). If the
incoming traffic flow r1 chooses path p3, then the only congestion sensitive edge
e5 is shared with r2.

ce1(flow) = 2
ce2(flow) = 1
ce3(flow) = 8
ce4(flow) = 10
ce5(flow) = 1 + flow ÷ 20

(3)
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Fig. 6. The artificial scenario

If r1 + r2 ≤ 20, then the rational choice in the static equilibrium for the
agents of the incoming traffic flow r1 is the path p3, and their total travel time
is cp3 = 11 + (r1 + r2) ÷ 20. The total travel time for the agents of r2 is cp1 =
2 + (r1 + r2) ÷ 20.

If r1 + r2 > 20 and r2 < 20, then part of the agents of r1 (let us denote this
flow r1a) chooses the path p2 and another part of the agents of r1 (let us denote
this flow r1b) chooses the path p3, so that r1b + r2 = 20, and the total travel
time for the agents of r1a is cp2 = 12, for the agents of r1b is cp3 = 12, and for
the agents of r2 is cp1 = 3.

If r1 + r2 > 20 and r2 ≥ 20, then the rational choice for the agents of the
incoming traffic flow r1 is the path p2, and their total travel time is cp2 = 12.
The total travel time for the agents of r2 is cp1 = 2 + r2 ÷ 20.

8.1 Analysis

The scenario of Fig. 6 is invented to demonstrate an extreme case, where there
may be big time shifts between the predictions for the different incoming traffic
flows. If we take the case when r1 + r2 < 160, then we can be sure that the flow
on e5 is below 160, because the travel times on edges e1, e3 and e2 are constant.
An agent a2t of r2 that starts at time t reaches vertex v3 at time t + 1, and a2t

exits the edge e5 before time t + 10, because the flow on e5 is below 160. An
agent a1t of r1 that starts at time t does not reach vertex v3 before time t + 10,
therefore none of the agents of r2 that started at or before time t are on edge
e5 when a1t enters e5, i.e. agents starting at the same time do not interfere on
edge e5. However the agents of r2 that start later enough than t might interfere
with agents of r1 on edge e5.

When the detailed prediction method makes a prediction at time t, then it
simulates what happens if all the agents that entered the system up to time t
execute their plan in accordance with their submitted intention. If r1+r2 < 160,
then the agents of the incoming flow r1 believe that edge e5 will be empty by
the time they get to v3, so they select path p3. If 20 > r1, then after a while the
agents of the incoming flow r1 believe that their own flow r1 starts to congest
edge e5, and the agents believe that the cost of edge e5 reaches at least 2 by
the time they get to v3, so they select path p2. However the actual travel time
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on edge e5 reaches not only at least 2 but even at least 2 + r2 ÷ 20 because
r2 also goes on e5. There is a difference between the beliefs of the agents of r1
and the actually incurred travel time, because the detailed prediction simulates
what happens after a given time t, but it does not take into account the agents
entering the game after time t, because it does not yet know the intentions of
those agents. If the agents of the incoming flow r1 select path p2, then the traffic
on edge e5 decreases, and after a while the agents of r1 select path p3 again. So
the incoming flow r1 alternates between paths p2 and p3, and the total travel
time of r1 alternates between cp2 = 12 and cp3 > 12 + r2 ÷ 20. If, for example,
the incoming traffic flows are in the ranges 20 < r1 < 80 and 20 < r2 < 80, then
the total travel time of r1 does not converge to the optimal value, because the
incoming traffic flow r1 sometimes selects path p3 instead of the optimal p2.

When the simple prediction method makes a prediction at time t, then it also
simulates what happens if all the agents that entered the system up to time t
execute their plan in accordance with their submitted intention. The simulation
is updated at each intention submission, and the updated travel time becomes
the prediction. If r1+r2 < 160 and the incoming traffic flow r1 is divided between
paths p2 and p3 (r1a going on p2 and r1b going on p3), then after an agent of r1b
submits its intention, the prediction for edge e5 becomes 1 + r1b ÷ 20, because
the agents of the incoming flow r1 believe that edge e5 will be empty by the time
they get to v3. However, when an agent of the incoming traffic flow r2 submits
its intention, the prediction for edge e5 becomes 1 + (r1b′ + r2) ÷ 20, because
the simulation shows that the agent of r2 meets some agents of r1 on edge e5.
If 20 > r2, then the agents of r1 do not select path p3 anymore, because the
travel time prediction for e5 is more than 2. In this case the simple prediction
method performs better than the detailed prediction method. If r2 ≤ 20 and
1+(r1b′ +r2)÷20 might become more than 2, then the simple prediction method
warns the incoming flow r1 in advance not to select path p3, therefore the simple
prediction method performs better than the detailed prediction method in this
case as well.

If there is no prediction, and the decision of the agents is based on the real-
time situation, and the incoming traffic flow r2 is above 20, then after a while
the travel time on edge e5 becomes more than 2, and the agents of the incoming
traffic flow r1 select path p2, which is the optimal choice. Because the agents of
r1 realize with a delay that the travel time on edge e5 becomes more than 2,
they make suboptimal decision for a while. If r1 + r2 ≤ 20, then the travel time
on edge e5 never becomes more than 2, and the agents of the incoming traffic
flow r1 select path p3, which is the optimal choice.

The above analysis shows that there may be situations, where the detailed
prediction method is a bit misleading, and it produces worse results than the no
prediction method. However the simple prediction method might be better than
the detailed prediction method.
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8.2 Experiments

The above artificial scenario was simulated in an experiment with parameters
similar to the experiment of the realistic scenario of Sect. 5. A 90 min long period
was simulated extended with a 17 min initial period to populate the roads to
some extent. Several experiments were run at incoming traffic flow values from
2.5 car ÷ minute to 30 car ÷ minute in steps of 2.5. The incoming traffic flow
was constant during each experiment. The incoming flow values r1 and r2 were
equal. Simultaneous decision making was excluded, so when an agent at one of
the sources made a decision, then it submitted its intention, and the next agent
made its decision only after that.

Fig. 7. The worst case difference values (WD) of the intertemporal equilibrium of the
experiments with the artificial scenario

Fig. 8. The average difference values (AD) of the intertemporal equilibrium of the
experiments with the artificial scenario

All the experiments were executed in three versions of the routing strategies:
(1) no prediction routing strategy, (2) detailed prediction routing strategy, and
(3) simple prediction routing strategy. The travel time of cars on paths p1, p2
and p3 were measured during the whole experiment. The maximum value and
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the average of the travel times were computed. Figure 7 shows the WD values
and Fig. 8 shows the AD values of the experiments.

In this extreme artificial scenario, the WD and AD values are smaller than in
the realistic scenario, because in the artificial scenario the incoming traffic flow r2
has no choice, and the incoming traffic flow r1 may sometimes realise its optimal
choice. The WD values are about the same for all routing strategies, except that
the no prediction method performs worse than the others. This is in line with
hypothesis H1. The AD value is the worst for the detailed prediction method, and
the other two methods perform about equally. This is in line with the analysis in
the previous subsection, however it confirms hypothesis H1 only for the simple
prediction routing strategy, but not for the detailed routing strategy. In this
extreme scenario, the detailed prediction method performs the worst in the AD
values, but the WD values are more or less in line with the results of the realistic
scenario.

9 Discussion

We have investigated in the routing problem how the prediction capabilities
built into the environment of the multi-agent system can influence the global
behaviour of the multi-agent system. In an idealistic situation, the global
behaviour of the multi-agent system is characterised by a static equilibrium
state. However, we cannot be sure that dynamically evolving large-scale and
open multi-agent systems achieve a static equilibrium, and we may only hope
that they converge to the equilibrium over time.

Convergence to the static equilibrium is an important question for the global
behaviour of multi-agent systems. We have investigated the evolutionary dynam-
ics inside games, in particular in online routing games. There is a conjecture that
online routing games with specific properties converge to the static equilibrium.

In this chapter we took a different approach to the issue of convergence to
the equilibrium. Instead of proving the convergence, we studied the nature of
the kind of equilibrium that seems to appear in online routing games. Our major
contribution is that we introduce the notion of intertemporal equilibrium in the
study of the evolutionary dynamics of games, we define quantitative values to
measure the intertemporal equilibrium, we use these quantitative values to evalu-
ate a realistic scenario, and we give an insight into the influence of intertemporal
expectations of the agents on the intertemporal equilibrium. With this work we
contribute to the better understanding of the intertemporal behaviour of multi-
agent systems.

One of the results is that exact convergence to the static equilibrium is
unlikely in online routing games. The reason is that the static equilibrium does
not take into account the waiting times at the entrance of the roads. Notably, if
two agents arrive at the same road at the same time, then one of them has to
wait a little bit until it can enter the road after the other one. This introduces
delays, therefore the travel times in online routing games are often longer than
in the classic routing game models. The WD and the AD values show how good
the different routing strategies are in this respect.
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Another result is that if the agents of the online routing game of the realistic
scenario base their decisions only on the current situation, then the intertem-
poral equilibrium is worse than in the case when they have a prediction of the
future. This is in line with our hypothesis H1 for the realistic scenario. How-
ever, in extreme situations the detailed prediction method may perform worse
on average, than the no prediction method.

The third result is that making a more precise prediction of the future from
all information known at the time of decision making does not lead to a better
intertemporal equilibrium in the experiments. This is unexpected and it refutes
our hypothesis H2. In our view, this is an important new result, because it
demonstrates in a controllable experiment that the selfish adaptation of the
individual agents to the expected future, which is computable from the intentions
of the agents, may not lead to better global agent system behaviour in large scale
and open multi-agent systems. Better knowledge of the currently expected future
may not be better for the multi-agent system.

Finally, this work contributes to the engineering of multi-agent systems, and
in particular to environment engineering. The contribution is the investigation
of a novel type of coordination artifact to predict the future state of the envi-
ronment. We have given better insight into the influence of the prediction capa-
bilities of this kind of coordination artifact on the dynamic global behaviour
of multi-agent systems. The prediction service of online routing games is an
extension of the perception model of environment programming by allowing the
agents to “perceive” the expected future state of the environment. The presented
realistic experiments show that the better quasi equilibrium in the disequilib-
rium values correspond to better system behaviour. This result is a guidance
for better environment engineering of multi-agent systems. In order to achieve a
better global behaviour of a large-scale and open multi-agent system, it is recom-
mended to engineer into the environment of the multi-agent system a predictive
coordination atrifact, which can predict the expectable future equilibrium, and
not just the expectable future.

An assumption of the online routing game is that the agents do not change
their routes during their trips, which means that the agents apply blind commit-
ment strategy. Investigating the engineering of the different commitment strate-
gies and how the commitment strategies effect the convergence to the equilibrium
is a future work.
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Abstract. Sanctioning is one of the most adopted enforcement mech-
anisms in the governance of multiagent systems. Current enforcement
frameworks, however, restrict agents to reason about and make sanc-
tioning decisions. We developed the Gavel framework, an adaptive sanc-
tioning enforcement framework that enables agents to decide for the
most appropriate sanction to apply depending on various decision fac-
tors. The potential benefits and use of the framework are shown using a
Public Goods Game in which agents are endowed with different strategies
combining material and reputational sanctions.
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1 Introduction

Norm enforcement is one of the central puzzles in social order and social con-
trol theories. It refers to the process in which an entity monitors and encour-
ages others to comply with norms. Sanctioning is one of the most adopted and
largely recognised norm enforcement mechanisms used to promote appropriate
behavioural standards, in particular norm compliance [26]. Norm enforcement,
specially sanctioning, has been addressed in a broad range of perspectives and
disciplines, such as philosophy [3], law [16], economics [4], sociology [17] and
social psychology [9]. These disciplines recognise that different sanction types
(e.g., emotional, informational, reputational, and material [28]) are used by indi-
viduals and institutions to enforce and promote norms compliance.

In Normative Multiagent Systems (NMASs), norm enforcement enables reac-
tion to norms violation (i.e., punishment) or compliance (i.e., reward) henceforth
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identified as sanction. The degree to which a norm is enforced plays a crucial
role in NMAS dynamics and conveys a great deal of norm-relevant information
that affects other normative processes.

There are two traditional approaches to norm enforcement in NMAS1: reg-
imentation and regulation. The former assumes that agents can be controlled
and non-compliant actions prevented. The latter allows violations, yet sanctions
may be applied to the violator whenever a violation is detected.

Both approaches can be arranged in a centralised or distributed mode. The
regimentation approach operates mostly in a centralised mode through norma-
tive institution frameworks, such as Electronic Institutions [13,25] and Organi-
sation Models [12,14]. These frameworks provide a reference normative system
to which agents have to abide and infrastructure entities enforce the compliance
of agents’ actions and interactions with the norms. The regulation approach,
conversely, operates mostly in a distributed mode and requires that agents’
architectures, such as BOID [7], NoA [18], and EMIL-A [1], are endowed with
mechanisms that enable agents to enforce norms.

Cardoso and Oliveira [8] proposed a centralised norm enforcement mecha-
nism for contractual commitments. Their mechanism pre-define sanctions that
are applied by enforcer agents without taking into account any individual or
contextual information. Centeno et al. [10] extended this approach to adapt
sanctions based on contextual information. Modgil et al. [23] proposed a general
distributed architecture for norm-governed systems that relies on distributed
infrastructural agents to monitor and apply pre-defined sanctions. In line with
López and Luck [20], Criado et al. [11] relaxed some of the constraints imposed
on the infrastructural enforcer agents allowing them to punish or reward due
to, respectively, norms violation or compliance. In this mechanism, each norm
is associated with specific punishment or reward sanctions, thus limiting the
agents’ decision autonomy. To overcome this limitation, Villatoro et al. [30] pro-
posed a technique that allows enforcers to adapt the strength of the sanction
based on the number of defectors. Mahmoud et al. [21] proposed the use of the
violation characteristics to adapt the magnitude or frequency of the sanction.
Moreover, Mahmoud et al. [22] introduced the use of reputation as a means for
enforcers to adapt the strength of the sanctions.

Although Pasquier et al. [27] identified the importance and need to have
different sanction types and endow agents with sanction reasoning and deci-
sion capabilities, Nardin et al. [24] showed that the available norm enforcement
frameworks lack full support to four main requirements to render these features
possible:

R1 Support for multiple categories of sanctions (e.g., legal sanctions, ostracism,
reputation spreading);

R2 Potential association of multiple sanctions with a norm violation or com-
pliance (e.g., provide a set of sanction options instead of pre-establishing a
fixed set to a norm);

1 See [2] for an extended taxonomy of norm enforcement mechanisms.
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R3 Reasoning about the most adequate sanction to apply depending on different
factors (e.g., one might consider the sanctionee’s history to determine an
appropriate sanction to apply, if any); and

R4 Adaption of the sanction content depending on context (e.g., a norm viola-
tion of high magnitude might incur a more severe negative sanction).

Nardin et al. [24] propose a conceptual sanctioning process model that over-
comes these drawbacks. However, they have not designed or implemented an
adaptive sanctioning enforcement framework based on this conceptual model.
This is precisely what we present in this chapter: the development of the Gavel
framework, based on this previous conceptual model. Moreover, we show the
potential benefits and use of this framework through a Public Goods Game
(PGG) [19], in which agents are endowed with different strategies combining
material and reputational sanctions.

2 Gavel Framework

Gavel is an adaptive sanctioning enforcement framework based on the conceptual
sanctioning process model presented by Nardin et al. [24]. It enables agents to
decide for the most appropriate sanctions to apply, depending on their current
context assessed by a set of sanctioning decision factors.

The conceptual sanctioning process model specifies the features and compo-
nents of our sanctioning enforcement framework. Both norm violation and com-
pliance are considered in the process, respecting the general notion of sanction
as a negative or positive reaction to normative behaviours. The entire sanction-
ing process is realised by agents endowed with special capabilities (i.e., Detec-
tor, Evaluator, Executor, Controller, and Legislator) supported by specialised data
repositories (De Jure and De Facto). Next, we define the components of our
norm enforcement framework.

2.1 NMAS

Definition 1 (NMAS). A NMAS is a system composed of a set of autonomous
and heterogeneous agents situated in a shared environment, whose actions and
interactions are ruled by norms and sanctions. A NMAS, either open or closed,
is defined as

NMAS = 〈Env,Ag,R,Ac,N,S,L〉,
where

– Env is the environment that may assume any of a finite set of discrete states;
– Ag = {agi : i ≤ |Ag|} is the set of agents that can act on the environment

or interact among themselves;
– R = {ri : i ≤ |R|} is the set of roles that agents can play;
– Ac = {αi : i ≤ |Ac|} is the set of actions that agents can perform;
– N = {ni : i ≤ |N|} is the set of norms prescribing the agents’ behaviours;
– S = {si : i ≤ |S|} is the set of sanctions prescribing possible reactions to

norm violation or compliance;
– L = N × S is the set of links between norms and sanctions.
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2.2 Norms, Sanctions and Links

Definition 2 (Norm). A norm ni ∈ N is a guide of conduct prescribing how
agents ought to behave in a given situation. A norm is defined as

ni = 〈status, activation, issuer, target, deactivation, deadline, content〉,
where

– status ∈ {enabled, disabled} indicates whether ni is in force;
– activation is the set of contextual conditions that renders the norm applicable;
– issuer ∈ Ag identifies the entity that originally issued the norm;
– target ∈ Ag identifies the agent to which the norm is addressed;
– deactivation is the set of contextual conditions that renders the norm no

longer applicable once active;
– deadline is the set of contextual and temporal conditions which determine the

deadline to comply with the norm;
– content is the criteria prescribing the agents’ behaviours.

Definition 3 (Norm Instance). A norm instance ni
′ is the result of applying a

ground substitution to a norm ni. A norm instance is defined as

ni
′ = 〈status′, activation′, issuer′, target′,deactivation′,deadline′, content′〉,

where each term of ni
′ unifies with its corresponding in ni.

Definition 4 (Sanction). A sanction si ∈ S is a reaction to a norm compliance
or violation. A sanction is defined as

si = 〈status, activation, category, content〉,
where

– status ∈ {enabled, disabled} indicates whether si is in force;
– activation is the set of contextual conditions that renders the sanction appli-

cable;
– category is the sanction classification according to the sanction typology

detailed in [24], defined as

category = 〈purpose, issuer, locus,mode,polarity,discernability〉,
where

• purpose ∈ {Punishment, Reward, Enablement, Guidance, Incapacita-
tion},

• issuer ∈ {Formal, Informal},
• locus ∈ {Self-Directed, Other-Directed},
• mode ∈ {Direct, Indirect},
• polarity ∈ {Positive, Negative},
• discernability ∈ {Noticeable, Unnoticeable};

– content is the specification of the set of actions representing the sanction.
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Definition 5 (Sanction Instance). A sanction instance si′ is the result of apply-
ing a ground substitution to a sanction si. A sanction instance is defined as

si′ = 〈status′, activation′, category′, content′〉,
where each term of si′ unifies with its corresponding in si.

Definition 6 (Link). A link li ∈ L is an association between a norm and a
subset of sanctions. A link is defined as

li = 〈ni,SLni〉,
where

– ni ∈ N is the norm being linked;
– SLni

= {slj | slj = 〈status, sj〉} is the set of sanction links to ni, where
• status ∈ {enabled, disabled} indicates whether slj is in force and
• sj ∈ S is the sanction being linked.

An enabled link states that an agent may consider a sanction sj as a possible
reaction to the compliance or violation of the norm ni.

2.3 Repositories

We define two types of data repositories: De Jure and De Facto.

Definition 7 (De Jure). De Jure (DJ) is a repository which stores specifica-
tions of norms and sanctions and their associations. It is defined as

DJ = 〈NDJ,SDJ,LDJ〉,
where

– NDJ ⊆ N is the set of all norms stored in DJ;
– SDJ ⊆ S is the set of all sanctions stored in DJ;
– LDJ ⊆ L is the set of all links between norms and sanctions stored in DJ.

Definition 8 (De Facto). De Facto (DF) is a repository of historical informa-
tion about sanction decisions, applications, and outcomes. It is defined as

DF = 〈SDDF,SADF,SODF〉,
where

– SDDF (Sanction Decision Set) represents the set of sanction decisions made
by Evaluators and stored in DF. Each sanction decision sdi ∈ SDDF is
defined as

sdi = 〈timed,detector, evaluator, target,nj
′, sk′, cause〉,
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where
• timed indicates the global time at which the sanction was decided;
• detector ∈ Ag identifies the agent that reported the norm compliance or

violation;
• evaluator ∈ Ag identifies the agent that decided the sanction;
• target ∈ Ag identifies the agent to which the sanction is directed;
• nj

′ is the norm instance which was evaluated by the evaluator;
• sk′ is the sanction decided by evaluator for target in response to nj

′;
• cause ∈ {compliance, violation} indicates what led evaluator to decide for

the sanction sk′.
– SADF (Sanction Application Set) represents the set of sanction applications

executed by Executors. Each sanction application sai ∈ SADF is defined as

sai = 〈timea, decisionj, executor〉,

where
• timea indicates the global time at which the sanction was applied;
• decisionj ∈ SDDF is the sanction decision to which sai is related;
• executor ∈ Ag identifies the agent that applied the sanction.

– SODF (Sanction Outcome Set) represents the set of sanction outcomes
observed by a Controller. Each sanction outcome soi ∈ SODF is defined as

soi = 〈timeo, applicationj, controller, efficacy〉,

where
• timeo indicates the global time at which the efficacy of the sanction was

assessed;
• applicationj ∈ SADF is the observed sanction application;
• controller ∈ Ag identifies the agent that observed the outcome;
• efficacy indicates how effective the sanction was in promoting norm com-

pliance. It can use discrete (e.g., effective and ineffective) or continuous
(e.g., [−1, 1]) values.

2.4 Capabilities

The Gavel framework defines five capabilities: Detector, Evaluator, Executor, Con-
troller, and Legislator. Agents having these capabilities perform tasks in different
stages of the sanctioning process.

Definition 9 (Detector). The Detector perceives the environment and detects a
norm violation or compliance. It watches for normative events, creates norm
instances, and reports compliances and violations to an Evaluator. The watch
function is defined as

watch : e × KB × Nenabled → N′, (1)
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where

– e is the event to be analysed;
– KB is the Detector’s knowledge base;
– Nenabled = {ni | ni ∈ N ∧ ni.status = enabled} is the set of enabled norms

known by the agent;
– N′ = {ni

′ | ni ∈ Nenabled and e ∧ KB |= ni
′.activation} is the set of norm

instances whose activation condition holds given e and KB.

Each norm instance obtained from watch is assessed as complied, violated,
or deactivated. If complied or violated, then the Detector reports such fact to an
Evaluator.

Definition 10 (Evaluator). The Evaluator receives from the Detector the report
of a violation or compliance of a norm instance ni

′. It then obtains from the De
Jure repository all the applicable sanctions associated with ni

′ by enabled links
to decide for the sanctions it judges appropriate to apply, if any. This task is
performed by the evaluate function, which is defined as

evaluate : ni
′ × KB × SLni′,enabled → SDDF

ni′ , (2)

where

– ni
′ is the norm instance to be evaluated;

– KB is the knowledge base from which the agent extracted contextual factors
to be considered in the evaluation;

– SLni′,enabled is the set of enabled sanction links associated with ni
′;

– SDDF
ni′ is the set of sanction decisions for ni

′.

Definition 11 (Executor). The Executor agent agi receives from the Evaluator
a sanction decision sdj ∈ SD and decides whether or not to execute it. The
decision for not executing a sanction could result either from lack of resources
to operate or personal interests. In a real-world setting, for example, Evaluators
and Executors would be comparable to judges and police officers, respectively. The
execute function maps a sanction decision to actions in the environment:

execute : sdj → Ac. (3)

If the actions defined in sdj are successfully executed, then the Executor records
the sanction application sak = 〈timea, sdj, agi〉 in the SADF.

Definition 12 (Controller). The Controller agi monitors the outcomes of a sanc-
tion application sak to determine its efficacy and records its judgement as a
sanction outcome soj = 〈timeo, sak, agi, efficacy〉 in SODF.

Definition 13 (Legislator). The Legislator creates, removes, and updates norms,
sanctions, and their associations in De Jure based on the assessment of the De
Jure and De Facto repositories along with its knowledge base.

legislate : DJ × DF × KB → DJ (4)
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3 Implementation

The Gavel framework2 has been implemented in Java and is mainly divided into
three packages (see Fig. 1):

gavel.api provides interfaces for all the elements of the model;
gavel.base provides abstract classes which can be used as basis for customisa-

tion of some elements of the model;
gavel.impl contains generic concrete implementations of the model elements

(e.g., norms, sanctions, norm-sanction links, and data repositories) according
to contracts prescribed by interfaces defined in gavel.api and provides utility
classes with factory, parsing, and other supporting methods.

Fig. 1. Gavel ’s architecture.

The framework includes generic in-memory data storage implementations for
three data repositories:

– DeJure stores and provides operations to manage norms, sanctions, and norm-
sanction links. Initial norms, sanctions and norm-sanction links may be loaded
into DeJure by means of a regulative specification file. At runtime, these
elements can be created, retrieved, updated, or deleted;

– DeFacto stores sanction decisions, applications, and outcomes at runtime;
– CapabilityBoard stores capability assignment rules and the capabilities pos-

sessed by agents. If an agent has a certain capability and the repository is
informed, then such information will be available for the entire system. Also,
initial capability assignment rules may be loaded into CapabilityBoard via
a capability assignment specification file.

2 Source code available at https://github.com/gavelproject/gavel/.

https://github.com/gavelproject/gavel/
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It is often desirable to specify norms, sanctions, norm-sanction links, and
capability assignment rules before the system starts running. Thus, system
designers can provide two XML (eXtensible Markup Language) specification
files:

– Regulative specification defines norms, sanctions, and norm-sanction links
specifications that will be initially stored in DeJure;

– Capability assignment specification defines rules specifying which agents will
be allowed to possess which of the capabilities defined in the model.

Notice that Gavel does not provide execution plans for each capability as
these are dependent on the multiagent system platform.

In addition to the standard Java implementation, we have designed and
implemented Gavel for JaCaMo3, a reusable framework which integrates Gavel
with JaCaMo [5]. The benefit of such integration is twofold: (i) Gavel reposito-
ries are provided as CArtAgO [29] artefacts that may be used by agents; and
(ii) agents may acquire plans at runtime from CapabilityBoard to learn how
to perform tasks inherent to any of the sanctioning capabilities (Detector, Eval-
uator, Executor, Controller, Legislator), since Jason supports meta-programming
[6]. We have used this implementation in our case study, presented next.

4 Case Study

We have used the Gavel for JaCaMo framework to implement a version of the
Public Goods Game (PGG) partially inspired by Giardini et al. [15].

4.1 Public Goods Game Model

Broadly used in experimental economics, agents in the PGG have private tokens
and secretly choose whether to contribute to a public pool. The tokens in this
pool are multiplied by a benefit factor and evenly divided among players.

In our PGG model, agents are endowed with a number of tokens and play
the game for a number of rounds (see Algorithm 1) or until they are in deficit
of tokens. In each round, agents are randomly grouped (line 3) and they decide
whether to free-ride or contribute a fixed amount to the public pool (line 4).
The sum of the contributions in each group is multiplied by a benefit factor and
evenly divided among the group agents regardless of their contribution (line 5).
Next, the agents’ decisions are disclosed to all other agents in their group (line
6) and agents decide whether or not to apply sanctions to other agents in their
group (line 7). Once sanctions are applied (line 8), agents with less than zero
tokens are eliminated from the game (line 9–13).

Agents may have one of four types of contribution strategies:

– Cooperator (C) who always contributes to the pubic pool and does not sanc-
tion other agents;

3 Source code available at https://github.com/gavelproject/gavel-jacamo/.

https://github.com/gavelproject/gavel-jacamo/
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Algorithm 1. Public Goods Game main cycle
1: Initialise agents
2: for number of rounds do
3: Random group formation
4: Agents make their contribution decision
5: Gather and distribution of contributions in each group
6: Disclose contribution decisions in the group
7: Agents make their sanction decisions
8: Apply sanctions
9: for each agent do

10: if Agent’s tokens < 0 then
11: Agent is culled from the game
12: end if
13: end for
14: end for

– Free-Rider (FR) who never contributes to the public pool and does not sanc-
tion other agents;

– Nice (N) who always contributes to the public pool and may apply sanctions
if the percentage of detected free-riders in its group exceeds a threshold;

– Mean (M) who decides to free-ride and may apply sanctions if the percentage
of detected free-riders in its group exceeds a threshold; otherwise, it con-
tributes and does not sanction.

An agent agi identifies an agent agj as free-rider if the reputation that agi
has about agj is below a certain threshold. Agents keep an individual record of
all other agents in the game. Each agent agi calculates the reputation of agj by
taking the weighted average of its direct experience and the reputation received
from others about agj , which is defined as

Rij = W × ΔE + (1 − W ) × ΔI, (5)

where Rij ∈ [0, 1] is the reputation the agent agi has about the agent agj , where 0
means the worst and 1 means the best reputation. ΔE is the proportion of good
personal experiences agi had with agj , ΔI is the average reputation received
about agj by agi, and W is the weight given to the personal experiences.

Nice and Mean agents also use features of the Gavel model to guide their
sanction choice towards free-riders. The sanction strategies available are:

– Random (R): Agents decide randomly between gossiping about or punishing
free-riders;

– Threshold (T): Agents decide whether to gossip or punish by comparing the
reputation of the free-rider with a randomly picked number from a uniform
distribution between 0 and 1. If the free-rider’s reputation is less than the
random number, the agent punishes the free-rider, otherwise it gossips.

There are some constraints to apply either type of sanction. Each agent has
a limit on the number of reputation transmissions in each round. If this limit
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is reached, reputation transmission is not possible. The punishment inflicted on
free-riders has a cost to the agent inflicting it, thus an agent can only sanction if it
can afford. This cost, called enforcement cost, could be seen as the effort required
to apply a sanction. It is worth noticing that agents do not lie in this model,
thus only truthful information is transmitted and only defectors are punished.

4.2 Agents Interaction

Figure 2a depicts a fully norm-compliant round of the game. Once the manager
opens the round, players start contributing to the pool. When all contributions
are made, the manager applies the benefit factor, gathers the resulting amount,
distributes each agent’s portion, discloses contributions, and closes the round.

Fig. 2. Sequence diagrams of a norm-compliant and a non-norm-compliant round.

Figure 2b illustrates a round in which a sanctioning occurs. After the manager
discloses the contributions, the player p1 notices that p2 did not contribute.
Then, player p1 decides for a sanction and applies it to the player p2.

4.3 Implementation

For the simulation of our PGG4, we have implemented two types of agents:
game manager and player. The manager is responsible for (1) creating rounds;
(2) defining groups; (3) gathering contributions; (4) multiplying the total con-
tribution by a benefit factor; (5) dividing the result evenly among players; and

4 Source code available at https://github.com/gavelproject/pgg/.

https://github.com/gavelproject/pgg/
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(6) disclosing the contribution of each player. Conversely, players are limited
to (1) contributing to the pool; and (2) sanctioning other players based on the
content of DeJure. The pools to which players cooperate are controlled by the
manager and implemented as domain artefacts using CArtAgO.

All players are endowed with the Detector, Evaluator, Executor, and Controller
capabilities, but for the sake of simplicity, no Legislator was included.

Only one norm regulates the players’ behaviours in our PGG. As shown
below, this norm, identified as positive contribution, states that every player
is obliged to contribute with 1 token to every pool it participates. If an agent does
not comply with the norm before the pool finishes, then the norm is violated.

norm(
id(positive_contribution),
status(enabled),
activation(pool_member(Player)),
issuer(manager),
target(Player),
deactivation(false),
deadline(pool_status("FINISHED")),
content(obligation(contribution(Player,1)))

)

The following two links state that the positive contribution norm is linked
to two sanctions, punishment and gossip:

ns_link(
nid(positive_contribution),
sanction_links(sanction_link(status(enabled),sid(punishment)),

sanction_link(status(enabled),sid(gossip))
)

)

The punishment sanction is only applicable if the player evaluating the viola-
tion is not the target and can afford the sanction. As shown below, this negative
informal sanction counts as applied when the Executor directly punishes the
target inflicting a pre-established cost.

sanction(
id(punishment),
status(enabled),
activation(not .my_name(Target) & cost_to_punish(Cost) & tokens(Tokens) & Cost <= Tokens ),
category(purpose(punishment), issuer(informal), locus(other_directed), mode(direct),

polarity(negative), discernability(noticeable)),
content(punish(Target))

)

Conversely, the gossip sanction is only applicable if the player evaluating
the violation is not the target and has not reached the limit of reputation trans-
missions in that round, there is a player in another group, and the target is
considered a free-rider. As shown below, this is a negative informal sanction
that counts as applied when the Executor transmits reputation about the target
to another agent from another group.
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sanction(
id(gossip),
status(enabled),
activation(not .my_name(Target) & not transmissions_credit(0) &

not players_in_other_groups([]) &
reputation(Target,Reputation) &
min_reputation_cooperator(MinRepCoop) &
Reputation < MinRepCoop),

category(purpose(punishment), issuer(informal), locus(other_directed), mode(indirect),
polarity(negative), discernability(unnoticeable)),

content(gossip(Target,Reputation))
)

4.4 Evaluation Scenarios

We ran 2 evaluation scenarios to analyse how Gavel enables agents to reason
about sanctions. These scenarios vary by just one feature, the type of sanc-
tioning strategy (i.e., Random or Threshold) employed by all agents. For each
scenario the agents population was formed by 400 agents, 100 of each contribu-
tion strategy (i.e., Cooperators, Free-riders, Nice, and Mean). The contribution
to the public pool was set to 1 token, and the benefit factor was set to 3. Each
agent was endowed with an initial amount of 50 tokens to be used to contribute
to the public pool or to sanction others. Nice and Mean agents consider sanc-
tioning other agents if they detect more than 20% of free-riders in their group.
An agent is considered a free-rider if its reputation is below a threshold set to
0.6. A punishment involves a cost to the punisher (i.e., enforcement cost) and a
cost to the punished agent (i.e., punishment cost). A gossip does not have a cost,
although its use is limited by a maximum number of transmissions per round.

We ran the model for 100 rounds in each scenario, repeating 10 times with
different random seeds for each combination of parameter values from Table 1.

Table 1. Simulation parameters.

Parameter Values

Enforcement cost 0.2 1

Punishment cost 2 5

Group size 5

Number of transmissions 10

In our scenarios we aimed at showing the potential benefits and use of Gavel
to implement a simple (i.e., Random) and a more elaborated (i.e., Threshold)
sanctioning strategies. We evaluated these scenarios by checking the average
proportion of cooperation per group measured as the total number of agents
contributing to the pool divided by the total number of agents per round. Four
combinations of enforcement and punishment costs were identified: LcLp (low
cost, low punishment), LcHp (low cost, high punishment), HcLp (high cost, low
punishment), and HcHp (high cost, high punishment).
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Fig. 3. Cooperation rates when agents employ different sanction strategies.

We started by evaluating the scenario in which agents employ the Random
strategy. As shown in Fig. 3a, the agents were not able to achieve more than 70%
of cooperation when the punishment cost was low. Starting approximately from
the 70th round, however, both LcHp and HcHp allowed cooperation to reach
100% as a result from the death of free-riders.

Figure 3b shows that higher levels of cooperation were achieved when agents
employed the Threshold strategy. Due to an informed heuristic used in this app-
roach, agents were able to achieve 100% of cooperation for every combination of
parameters. For the LcHp and HcHp combinations, 100% could even be achieved
earlier when compared to Random.

Our results show that the sanction reasoning capability provided by Gavel
allows agents to adapt to their current context improving the effectiveness of
their actions and, specifically to PGG, it helps to improve the cooperation rate.

5 Conclusions and Future Work

In this chapter, we have designed and implemented an adaptive sanctioning
enforcement framework, called Gavel, based on the conceptual model proposed
by Nardin et al. [24]. We implemented Gavel for JaCaMo, an integration of Gavel
with JaCaMo, and used it to implement a version of the Public Goods Game
(PGG), in which agents can decide which type of sanction to apply at each stage
of the game. Our results show that the Threshold sanction strategy, a simple
sanctioning decision heuristic that uses reputation, improves the cooperation rate
in the game compared to the Random sanction strategy, a sanctioning strategy
that does not make any informed decision for sanctioning.

The main advantages for using Gavel are its flexibility and adaptability. Gavel
can be treated as a component which can be connected to or implemented within
any agent. By using it, agents are free to choose the sanctions and intensity they
deem the best to sanction a violator or compiler agent. They may also update
the legislation, or De Jure, to obtain higher levels of norm compliance. As these
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decisions are all dependent on the current context and historical facts, Gavel can,
therefore, assure high level of flexibility and adaptability for norm enforcement
in NMAS.

Conversely, Gavel’s main disadvantages are limited control and predictabil-
ity of final results. These are actually direct consequences of the flexibility it
provides. As the sanctioning mechanism depends on the system’s history and
evolution, this influences how agents will learn and apply sanctions.

Our next main step is to further explore the adaptability Gavel provides. We
intend to use reinforcement learning to allow Evaluators making better sanction
decisions and Legislators updating De Jure based on De Facto. Furthermore, we
plan to conduct experiments using different parameter values (e.g., group sizes)
and dissociating cooperation from sanctioning strategy.
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Abstract. The GAMA platform supports simulation with a bottom-up
design from an agent perspective using a BDI framework. This chapter
proposes a design for implementing the AORTA framework for organiza-
tional reasoning in the GAMA platform to support combining a bottom-
up BDI model with a top-down organizational model. In doing so also
we contribute towards maturing organizational reasoning for engineering
multi-agent systems. The contribution is twofold: an operational seman-
tics of the BDI framework in the GAMA platform, and an extension of
it with operational semantics of AORTA.

1 Introduction

Social systems are systems that involve human interaction and decision making.
Examples of social systems include private organizations, city regions and coun-
tries. Gaining insight into such systems is necessary for identifying workflows,
bottlenecks and other important properties, but it is difficult because of the non-
linearity of the systems. Agent-based simulation is an approach to gaining insight
based on analysis of multiple runs of virtual simulation with agents that repre-
sent the real world actors in a social system. The advantage of the approach is
that the designer of the simulation can focus on modeling the agents and have the
system emerge as a result of their interaction, rather than having to model the
system as an overall process. Agent-based simulation platforms, such as GAMA,
provide general purpose tools to create environments and agents for any domain.
In particular the BDI programming paradigm, which is also supported in GAMA,
is a simple tool for modeling human reasoning in the agents. As argued in [1]
however, the advances made in AI with frameworks and meta-models for agent
environments and social systems could be further leveraged in agent-based simu-
lation. In particular, the AORTA framework for adding organizational reasoning
to agents can be useful for studying environments where humans enact roles
and solve objectives of an organization. It enables BDI agents, modeled from
a bottom-up perspective, to include organizational knowledge, modeled from a
top-down perspective, in their reasoning and decision making. GAMA has useful
features for setting up a simulation environment with geodata and supports BDI
but does not support organizational reasoning. Contributing to the development
of support for organizational reasoning in agent-based simulation could thus
c© Springer Nature Switzerland AG 2019
D. Weyns et al. (Eds.): EMAS 2018 Workshops, LNAI 11375, pp. 242–262, 2019.
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benefit simulation of social systems. Doing so would also contribute towards
maturing the concepts of organizational reasoning for engineering multi-agent
systems. We contribute to the development in two parts: we provide an oper-
ational semantics of the GAMA BDI agents and extend it with concepts and
rules based on the operational semantics of the AORTA framework. We show
the design can be implemented with an example scenario and evaluate the exten-
sion by discussing the strengths and limitations of the implementation. We also
discuss our contribution to engineering multi-agent systems.

2 Background

First we present some background on the GAMA platform and AORTA. GAMA
is an agent-based simulation platform that is designed for simulation of spatial
agents. It has rich features for visualizing simulations and is developed to be used
by non-computer scientists. It uses a proprietary language call GAML which
is originally designed for programming reflexive agents but supports multiple
paradigms [2,3]. The style of GAML is a mixture of imperative statements and
declarative statements, making it suitable for a wide range of models. In this
chapter we focus on the parts of GAMA that are based on BDI, which is a
paradigm for implementing human-like reasoning in agents. For more details on
BDI as a paradigm for programming agents we refer to Shoham [4] and Woolridge
and Jennings [5].

2.1 BDI Agents in GAMA

A simulation in GAMA is composed of two parts, a part that defines how agents
behave and look like, and a part that defines how the simulation is shown and
what experiments to execute. An agent is not coded individually but rather
instantiated as a member of a larger class of agents referred to in GAMA as a
species and defined with the keyword species. The species defines what prop-
erties an agent of the species have, and what actions an agent of the species can
do. The typical way of coding a species is by defining reflex statements, which
are functions that, provided their guard condition is fulfilled, are executed in
every step of the simulation. Having a reference to some other agent, an agent
can perform an ask operation to make the referenced actions change its state.
A species can be annotated to use the simple-bdi module, which then extends
agents of that species with BDI-based behavior. The module is developed with
efficiency and easy-of-use for simulation creators in mind. Core concepts of BDI
agents in GAMA:

– Simulation environment - The agents are spatially situated in a simulation
environment that controls time and synchronizes agent execution.

– Belief base - A set of predicates that define the agent’s internal knowledge
about the world or its own state.

– Desires - A set of predicates that define the things that the agent wants.
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– Intentions - A set of predicates that define the things that the agent is actively
trying to achieve.

– Perception statements - Statements that the agent uses to observe changes
in the world and update its knowledge base accordingly.

– Rule statements - Statements that the agent uses to infer new knowledge.
– Plan statements - Statements that the agent uses to perform actions toward

achieving specific intentions.
– Agent properties - An agent has properties similar to that of an object in

OOP. An agent can update and check both its own properties and properties
of other agents.

In each step of the simulation, every agent (i) perceives the environment and
updates beliefs, (ii) continues its current plan if it is not finished, or (iii) selects
a new plan and possibly new intention and executes that plan. Figure 1 shows a
simplified diagram of the agent behavior, which is our outset for the operational
semantics we present in Sect. 3. We refer to [2] for the full diagram.

Fig. 1. Flowchart of agent behavior in GAMA.

2.2 AORTA

AORTA extends BDI agents with organizational reasoning capabilities according
to the OperA meta-model [6], which gives a way of including a top-down model
in a multi-agent system. The advantage of using AORTA is that it provides
a complete operational semantics that only depends on the agents using BDI.
The agents maintain organizational beliefs and options in knowledge bases sep-
arately from their internal beliefs and intentions. The organization defines what
roles agents can enact, what objectives that agents enacting those roles should
achieve, what sub-objectives should be achieved before achieving an objective,
what dependencies there are between roles, and if there are additional objec-
tives that should be achieved be others under certain conditions. We highlight
the parts of the operational semantics of AORTA that we extend GAMA agents
with and refer to [7] for the full definitions.
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Agent Configuration. The mental state of an agent is based on four knowl-
edge bases MSAORTA = 〈Σa, Γa, Σo, Γo〉 where Σa and Γa are its beliefs and
intentions, Σo is its organizational state and Γo are its organizational options.
The mental state thus ensures that an agent separates organizational and per-
sonal knowledge, and it is possible for agents to have different beliefs about an
organization.

An agent configuration is defined as A = 〈α,MSAORTA, AR, F,C, μ〉 where
α is the name of the agent, MSAORTA is its mental state, AR are its reasoning
rules, F is a set of transition functions, C are the capabilities of the agent, and
μ = 〈μin, μout〉 is its mailbox. Intuitively the agent configuration defines the
state of the agent.

Transition System. The semantics of AORTA is defined in terms of a tran-
sition system that transforms the agent configuration in a sequence of phases.
In the obligation check phase, the agent adds activated obligations or obligation
violations to Σo, and retracts satisfied obligations from Σo. The phase is defined
as the execution of the following rules, also giving rise to the name obligation
execution.

Obl-Activated :
rea(α,R) ∈ Σo MS |= org(cond(R, p, σ, c)) ∧ bel(c) ∧ ¬bel(p)

Σo → Σo ∪ {obl(α,R, p, δ)}
Obl-Satisfied :

obl(α,R, p, δ) ∈ Σo MS |= bel(p)
Σo → Σo \ {obl(α,R, p, δ)}

Obl-Violated :
obl(α,R, p, δ) ∈ Σo MS |= ¬bel(p) ∧ bel(δ)

Σo → Σo ∪ {viol(α,R, p)}
Obl ::= Obl-Activated∗; Obl-Violated∗; Obl-Satisfied∗

In the option generation phase, the agent generates organizational options and
adds them to Γo. It can enact or deact a role, perform an objective, delegate
objectives to other agents it depends on or inform others that depend on it about
an objective. The execution of rules for this phase is named option execution.

Enact :
role(R,Os) ∈ Σo rea(α,R) /∈ Σo cap(α) ∩ Os 	= ∅

Γo → Γo ∪ {role(R)}
Deact :

role(R,Os) ∈ Σo rea(α,R) ∈ Σo Os ⊆ Σa

Γo → Γo ∪ {¬role(R)}
Objective :

obl(α,R, p, δ) ∈ Σo obj(p, SubObj) ∈ Σo

Γo → Γo ∪ {obj(p)}
Delegate :

{dep(R1, R2, o), rea(α,R1)} ⊆ Σo obj(o) ∈ Γo

Γo → Γo ∪ {send(R2, achieve, o)}
Inform :

{dep(R1, R2, o), rea(α,R2)} ⊆ Σo MS |= o

Γo → Γo ∪ {send(R1, tell, o)}
Opt ::= Enact∗; Deact∗; Objective∗; Delegate∗; Inform∗
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In the action execution phase, the agent considers its options, decides on a
matching action reasoning rule to execute, and then executes the associated
action. The outcome of the action is determined by the action transition function
A , which updates Σo and Γo. We refer to [7] for the definition of A .

Act-Exec :
(o : ctx → a) ∈ RA o ∈ Γo MS |= ctx A (a,MS) = MS′

MS → MS′

Act-Send :
(o : ctx → send(rcp,msg)) ∈ RA o ∈ Γo MS |= ctx

μout → μout ∪ {msg(rcp,msg)}
Act ::= (Act-Exec|Act-Send|No-Op)

External changes are handled in the Ext rule, and incoming messages are handled
in the Check rule.

Ext :
MSAORTA → MS′

AORTA

Check :
msg(sender,msg) ∈ μin M (sender,msg,MSAORTA) = MS′

AORTA

μin → μin \ {msg(sender,msg)} MSAORTA → MS′
AORTA

Bringing it all together, the organizational cycle execution is defined as follows.

Org ::= Check∗; Ext;Obl;Opt;Act

3 Operational Semantics for AORTA Agents in GAMA

In order to extend GAMA BDI with AORTA we first design the extension as
an operational semantics. As there is no existing formal semantics for GAMA
BDI, we make one and then show how we extend that with AORTA semantics.
The extended operational semantics comprises a design for implementing the
extension.

3.1 GAMA BDI Operational Semantics

The operational semantics are based on the concepts for GAMA BDI agents
that we highlighted and the diagram in Fig. 1.

We define an agent as Agent = 〈P,MSGAMA, Q,R,Π〉 where P is a set of
properties, MSGAMA = 〈B,D, I〉 (with B, D and I being sets of predicates), Q
is a set of Perception statements, R is a set of Rule statements and Π is a
set of Plan statements of the form t : c → S, where t is a trigger intention, c is
a condition that must be true for the plan to be applicable, and S is a sequence
of action statements. In any of the statements in Q, R and Π an agent can read
meta-data from the simulation environment such as the step counter or time
between steps. For the purpose of extending with AORTA semantics however,
we simplify the simulation environment Env to be the set of all agents in the
simulation Env : Agent set.
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Given the above definition of an agent and the environment, we can define
the BDI reasoning in GAMA in terms of functions on its mental state, applying
statements relevant to that step. Perception and Rule application include the
simulation environment and agent properties as an agent can perceive not only
other agents in the environment but also its own properties.

Perception ::= Q,Env,MSGAMA, P → MS′
GAMA

Rule application ::= R,Env,MSGAMA, P → MS′
GAMA

Intention selection ::= MSGAMA, Icur → I ′
cur

Plan selection ::= Π, Icur,MSGAMA → Πsel

Having selected a plan to execute, the agent executes it which yields a new
environment (and hence updated agents).

Plan execution ::= Πsel, Env → Env′

Given the above definitions, the activity semantics of a GAMA agent can be
defined as the following sequence. If the selected plan is instantaneous, the agent
may execute multiple plans for multiple intentions within one step.

Act ::= Perception;Rule application;
(Intention selection; Plan selection; Plan execution)∗

3.2 Extending with AORTA Semantics

Having defined an operational semantics of GAMA BDI agents, we proceed
by defining the AORTA agent semantics in terms of the GAMA BDI seman-
tics. Doing so comprises a design for how the semantics can be implemented in
GAMA.

First we define the mental state and the agent configuration. We use a naming
scheme to separate organizational beliefs and goals from regular beliefs and
intentions.

(Σa) :
b ∈ B prefix(pred(b)) 	= O

b ∈ Σa
(Γa) :

i ∈ I prefix(pred(i)) 	= O
i ∈ Γa

(Σo) :
b ∈ B prefix(pred(b)) = O

b ∈ Σo
(Γo) :

i ∈ I prefix(pred(i)) = O
i ∈ Γa

Next we define the name of an agent as simply the name property of the agents.

α = name

The action reasoning rules AR are used in the Act phase to select an option,
among those found in the Opt phase, and execute the action associated with that
option. For example if the action is enact(ρ), the agent adds rea(α, ρ) to Σo, and
adds send(�, tell, rea(α, ρ)) to Γo. We define the reasoning rules in GAMA as
a subset of instantaneous Plan statements that add intentions to Γa matching
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the action reasoning rules. We also use instantaneous Plan statements to define
the set of transition functions of AORTA.

AR ⊆ Π F ⊆ Π

The capabilities of an agent are defined as the triggers of the plans in its plan
library Π. Note that this is only a subset of the beliefs that the agent can make
true, as carrying out a plan typically has side effects, but for simplicity we do
not include beliefs from side effects in Π.

(C) :
t : c → S ∈ Π

t ∈ C

As with the mental state, the mailbox is defined using a naming scheme that
separates mailbox beliefs from regular beliefs.

(μin) :
b ∈ B prefix(pred(b)) = muIn

b ∈ μin

(μout) :
b ∈ B prefix(pred(b)) = muOut

b ∈ μout

Next we extend with the AORTA transition system.

Obligation Execution. We integrate obligation execution in the rule application
step in GAMA, using the above definition of Σo and α. For simplicity, we only
make Rule statements with grounded predicates, meaning that we need a state-
ment for each grounded premises for both (Obl-Activated), (Obl-Satisfied) and
(Obl-violated).

Option Execution. We also integrate option execution in the rule application
step, with Rule statements that add new predicates to Γo.

Action Execution. We integrate action execution in the looping part of the activ-
ity semantics as instantaneous Plan statements. By making them instantaneous,
the agent can perform an organizational action, such as enacting a role, updating
its mental state and possibly sending a message to other agents, and still carry
out an action as usual.

Ext and Check. Same as in AORTA, with the mental state as defined above.
As a result we have defined AORTA semantics in terms of GAMA BDI opera-

tional semantics, which comprises a design for implementing AORTA in GAMA.

4 Implementation

Having an operational semantics for GAMA BDI agents extended with AORTA,
we make an implementation based on the operational semantics. In doing the
implementation we make details concrete that are left out of the more abstract
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operational semantics, and the purpose of doing the implementation is to both
discuss these details and the operational semantics. As GAMA is a platform in
development with ongoing changes, the implementation we show here may be
improved upon by using features that are introduced in later versions.

In the following, the listed code is part of GAMA BDI agent species named
aortaAgent. We describe the parts of the code that is general and domain inde-
pendent, and show an example of concrete version in a given domain in the next
section.

4.1 Agent Configuration

We define four functions to test if a predicate is in Σa, Σo, Γa or Γo. The
functions use the naming scheme we defined in the previous section, and can
be called with or without a list of arguments. The helper functions isPrefix,
believes and intends are not part of the standard library but functions we
define to make the code more comprehensible.

bool s igma a ( s t r i n g pred , map args <− n i l ){
i f ( i s P r e f i x ( pred , ”O ”) ) {

re turn f a l s e ;
}
re turn b e l i e v e s ( pred , args ) ;

}

bool s igma o ( s t r i n g pred , map args <− n i l ){
i f ( ! i s P r e f i x ( pred , ”O ”) ) {

re turn f a l s e ;
}
re turn b e l i e v e s ( pred , args ) ;

}

bool gamma a( s t r i n g pred , map args <− n i l ){
i f ( i s P r e f i x ( pred , ”O ”) ) {

re turn f a l s e ;
}
r e turn intends ( pred , args ) ;

}

bool gamma o( s t r i n g pred , map args <− n i l ){
i f ( ! i s P r e f i x ( pred , ”O ”) ) {

re turn f a l s e ;
}
r e turn intends ( pred , args ) ;

}
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4.2 AORTA Predicates

Next we define functions that produce the predicates that are used in the
AORTA reasoning rules. Since these predicates, apart from the mailbox mes-
sages, reside only in Σo and Γo they all have O in their prefix. Note that the
functions role pred and obj pred can produce either a predicate with one argu-
ment, which in the AORTA semantics corresponds to an option, or a predicate
with two arguments, which correspond to an organizational meta-model defini-
tion. While we could make different predicate names to distinguish between the
1- and 2-argument versions, we stick with the original formulation from AORTA.
The mailbox messages are similarly produced by the two functions muIn pred
and muOut pred.

p r ed i c a t e r o l e p r ed ( s t r i n g r , l i s t <pred i cate> ob j s ){
i f ( ob j s = n i l ) {

re turn new pred icate (” O ro le ” ,
[ ” r ” : : r ] ) ;

}
re turn new pred icate (” O ro le ” ,

[ ” r ” : : r , ” ob j s ” : : ob j s ] ) ;
}

pr ed i c a t e ob j pred ( p r ed i c a t e obj , l i s t <pred i cate> ob j s ){
i f ( ob j s = n i l ) {

re turn new pred icate (” O obj ” ,
[ ” obj ” : : obj ] ) ;

}
re turn new pred icate (” O obj ” ,

[ ” obj ” : : obj , ” ob j s ” : : ob j s ] ) ;
}

pr ed i c a t e dep pred ( s t r i n g r1 , s t r i n g r2 , p r ed i c a t e obj ){
re turn new pred icate (”O dep ” ,

[ ” r1 ” : : r1 , ” r2 ” : : r2 , ” obj ” : : obj ] ) ;
}

pr ed i c a t e cond pred ( s t r i n g r , p r ed i c a t e obj ,
p r ed i c a t e dl , p r ed i c a t e t r i g ){
re turn new pred icate (”O cond ” ,

[ ” r ” : : r , ” obj ” : : obj , ” d l ” : : dl , ” t r i g ” : : t r i g ] ) ;
}

pr ed i c a t e r ea pred ( s t r i n g r , s t r i n g ag ){
re turn new pred icate (” O rea ” ,

[ ” r ” : : r , ”ag” : : ag ] ) ;
}
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pr ed i c a t e ob l pred ( s t r i n g ag , s t r i n g r , p r ed i c a t e p ,
p r ed i c a t e de l t a ){
re turn new pred icate (” O obl ” ,

[ ” ag” : : ag , ” r ” : : r , ”p” : : p , ” de l t a ” : : d e l t a ] ) ;
}

pr ed i c a t e v i o l p r e d ( s t r i n g ag , s t r i n g r , p r ed i c a t e p) {
re turn new pred icate (” O vio l ” ,

[ ” ag” : : ag , ” r ” : : r , ”p” : : p ] ) ;
}

pr ed i c a t e send pred ( s t r i n g r , s t r i n g i l f , p r ed i c a t e phi ){
re turn new pred icate (” O send ” ,

[ ” r ” : : r , ” i l f ” : : i l f , ” phi ” : : phi ] ) ;
}

pr ed i c a t e muIn pred ( s t r i n g rcp , p r ed i c a t e msg){
re turn new pred icate (”muIn msg” ,

[ ” rcp ” : : rcp , ”msg ” : : msg ] ) ;
}

pr ed i c a t e muOut pred ( s t r i n g rcp , p r ed i c a t e msg){
re turn new pred icate (”muOut msg” ,

[ ” rcp ” : : rcp , ”msg ” : : msg ] ) ;
}

4.3 AORTA Rules

Having functions for checking the knowledge bases of the agent configuration and
functions that produce the AORTA predicates, we are now ready to implement
the rules that enable organizational reasoning in the agents using the AORTA
semantics. As specified in the extended operational semantics we defined in
the previous section, we implement obligation execution, option execution using
Rule statements and action execution using Plan statements.

For any of the Rule statements in obligation execution and option execution,
its definition consists of three parts, building on the semantics of a GAMA rule:

1. A trigger predicate.
2. A side-condition for the activation of the rule.
3. A predicate to be added or removed.

The rules in the operational semantics of AORTA have a similar structure, so
we make use of that in implementing them as Rule statements. As GAMA does
not implement unification the statements use ground predicates and instead
of entailment we define helper functions to look up ground predicates in the
knowledge bases. For example for the obligation execution we define the following
helper functions, which we use in the Rule statements.
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bool ob l a c t i v a t ed ( s t r i n g ag , s t r i n g r , p r ed i c a t e p){
re turn sigma o (” O rea ” , [ ” r ” : : r , ” ag ” : : ag ] ) and

! s igma o (p . name , p . va lue s ) ;
}

bool o b l v i o l ( s t r i n g ag , s t r i n g r , p r ed i c a t e p ,
p r ed i c a t e de l t a ) {
re turn i sOb l i g ed ( ag , r , p , d e l t a ) and

! s igma o (p . name , p . va lue s ) ;
}

bool i sOb l i g ed ( s t r i n g ag , s t r i n g r , p r ed i c a t e p ,
p r ed i c a t e de l t a ) {
re turn sigma o (” O obl ” , [ ” ag ” : : ag , ” r ” : : r , ”p ” : : p ,

” de l t a ” : : d e l t a ] ) ;
}

The implementation of the AORTA rules as Rule statements is not straight-
forward so we describe each of them in turn. We start with the rules of obligation
execution.

The obligation-activated rule in the AORTA semantics consists of three parts:
two conditions and a consequence. The first condition is that the agent is enacting
a certain role, and the second condition is that there is a conditional obligation
for this role for which the precondition has been fulfilled and the objective has not
been achieved. Expressed as a Rule statement, the precondition is the trigger
of the statement, the objective to achieve and the enactment of the role are
side-conditions, and the consequence of adding an obligation the predicate to be
added. Expressed as a Rule statement it looks like below where c, p and delta
are ground predicates and r is a constant string.

// ob l i g a t i on −s a t i s f i e d
ru l e b e l i e f : c when : ob l a c t i v a t ed (name , r , p )

n ew be l i e f : ob l p red (name , r , p , d e l t a ) ;

We implement the obligation-violated and obligation-satisfied rules follow-
ing a similar pattern. For obligation-violation, the achievement of the deadline
objective is the trigger of the statement, the presence of the obligation and
the unachieved objective are conditions and the consequence of adding a viola-
tion the predicate to be added. For obligation-satisfied, the achievement of the
objective is the trigger, the presence of the obligation the condition and the con-
sequence of removing the obligation the predicate to be removed. Expressed as
Rule statements they look like below where p and delta are ground predicates
and r is a constant string.

// ob l i g a t i on −v i o l a t ed
ru l e b e l i e f : d e l t a when : o b l v i o l (name , r , p , d e l t a )

n ew be l i e f : v i o l p r e d (name , r , p ) ;



Adding Organizational Reasoning to Agent-Based Simulations in GAMA 253

// ob l i g a t i on −s a t i s f i e d
ru l e b e l i e f : p when : i sOb l i g ed (name , r , p , d e l t a )

r emove be l i e f : ob l p red (name , r , p , d e l t a ) ;

Next we consider the rules of option execution. The enact rule has four parts:
three conditions and a consequence. The first condition is that the organizational
knowledge base contains a definition of the role, the second condition is that the
agent is not enacting the role and the third condition is that the capabilities of the
agent intersect with the objectives of the role. Expressed as a Rule statement,
the first condition is the trigger, the two other conditions the side-condition,
and the consequence the desire to be added. The deact rule similarly has three
conditions and a consequence but here we instead use the third condition as the
trigger, and the first and second conditions as side-conditions. Here objs is a
list of predicates and r is a constant string.

// enact opt ions
r u l e b e l i e f : r o l e p r ed ( r , ob j s ) when : canEnact (name , r , ob j s )

new des i r e : r o l e p r ed ( r , n i l ) ;

// deact opt ions
r u l e b e l i e f s : ob j s when : canDeact (name , r , ob j s )

new des i r e : r o l e p r ed ( r , n i l ) ;

The obligation rule has two conditions and a consequence. The first condition
is that the agent is obliged to achieve an objective before a deadline, and the
second condition is that the agent knows what subobjectives the objective might
have. The consequence is that the agent adds the objective to Γo. Expressed as
a Rule statement, the first condition is the trigger, the second condition the
side-condition and the consequence the desire to be added. Here subObj is a list
of predicates, delta and p are predicates and r is a constant string.

// ob j e c t i v e opt ions
r u l e b e l i e f : ob l p red (name , r , p , d e l t a )

when : hasObj (p , subObj ) new des i r e : ob j pred (p , n i l ) ;

The delegate and inform rules both have two conditions and a consequence.
For the delegate rule the first condition is that the agent enacts a role that
depends on another role for achieving an objective, and the second condition is
that objective is in Γo. Reversely for the inform rule, the first condition is that
the agent enacts a role that another role depends on for achieving an objective,
and the second condition is that the objective has been achieved. Expressed
as Rule statements, the second condition is the trigger, the first condition the
side-condition and the conclusion the desire to be added. Here r1 and r2 are
constant strings and o is a predicate.

// de l e ga t e opt ions
r u l e d e s i r e : ob j pred (o , n i l ) when : shouldDel (name , r1 , r2 , o )

new des i r e : send pred ( r2 , ” ach i eve ” , o ) ;
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// inform opt ions
r u l e b e l i e f : o when : shouldInform (name , r1 , r2 , o )

new des i r e : send pred ( r1 , ” t e l l ” , o ) ;

4.4 Transition Functions

It remains to define the action execution and check rules. As specified in the
previous section, we implement these using Plan statements. Before we do that
though we implement the action transition function and a message transition
function, which will be used in the Plan statements.

The action transition function alters the mental state accordingly to the
action performed, and adds a desire to inform other agents about the action. It
is defined for each of the four possible actions in AORTA: enact, deact, commit
and drop. We define it as four different GAMA functions that each perform the
updates as specified in the AORTA semantics.

a c t i on enact ( s t r i n g alpha , s t r i n g r , s t r i n g informRole ){
do add b e l i e f ( r ea pred ( r , alpha ) ) ;
do add de s i r e ( send pred ( informRole , ” t e l l ” ,

r ea pred ( r , alpha ) ) ) ;
}

ac t i on deact ( s t r i n g alpha , s t r i n g r , s t r i n g informRole ){
do r emove be l i e f ( r ea pred ( r , alpha ) ) ;
do add de s i r e ( send pred ( informRole , ” t e l l ” ,

r ea pred ( r , alpha ) ) ) ;
}

ac t i on commit ( p r ed i c a t e phi , s t r i n g informRole ){
do add de s i r e ( phi ) ;
do add de s i r e ( send pred ( informRole , ” t e l l ” ,

ob j pred ( phi , n i l ) ) ) ;
}

ac t i on drop ( p r ed i c a t e phi , s t r i n g informRole ){
do remove des i r e ( phi ) ;
do add de s i r e ( send pred ( informRole , ” t e l l ” ,

ob j pred ( phi , n i l ) ) ) ;
}
The message transition function alters the mental state accordingly to messages
in the inbox. Unlike the action transition function, the message transition func-
tion does not have a fixed definition but can be specified accordingly to how the
simulation creator wants agents to handle messages.
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4.5 Check and Action Execution

The check rule defines how to process inbox messages, applying the message
transition function and then removing the message. We implement this using a
combination of a Rule and a Plan statement. The first statement is for detecting
new messages in the inbox in need of processing, which then adds a desire to
process the inbox messages.

r u l e b e l i e f : new pred icate (”muIn msg”)
r emove be l i e f : new pred icate (”muIn empty ”)
new des i r e : new pred icate (”muIn empty ” ) ;

The second statement is for processing the messages in the inbox. It is a Plan
statement that is triggered by the aforementioned Rule. The plan body applies
the message transition function to each message. The plan is instantaneous since
it only involves changing the mental state of the agent.

plan check i n t en t i on : new pred icate (”muIn empty ”)
ins tantaneous : t rue {
l i s t <pred i cate> msgs <−

g e t b e l i e f s w i t h name (”muIn msg ” ) ;
loop msg over : msgs {

do M(msg . va lue s [ ” rcp ” ] , msg . va lue s [ ”msg ” ] ) ;
do r emove be l i e f (msg ) ;

}
do add b e l i e f ( new pred icate (”muIn empty ” ) ) ;

}
The action execution rule takes an applicable action reasoning rule and

applies it using the action transition function. We implement this using Plan
statements that are triggered by organizational options and have a plan body
that applies the action transition function. The statement thus encodes the
action execution rule for a given action reasoning rule. Below shows template
code for such a statement, where AR1 is the name of the action reasoning rule,
o is the trigger predicate, ctx is an optional condition for the statement to be
applicable, and a is call to the action transition function. Like message process-
ing, action execution only changes the mental state so the plan is instantaneous.
The agent can then subsequently apply a non-instantaneous plan according to
the updated Σo.

plan AR1 in t en t i on : o when : ctx
ins tantaneous : t rue {
do a ;
do add b e l i e f ( o ) ;

}
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5 Evaluation

We demonstrate the operational semantics and evaluate the implementation by
creating an example simulation with a concrete scenario. For the example we
use an organization meta-model based on the one in [8] (see Table 1), which
defines a simplified organizational meta-model for patient treatment in a hospital
emergency room. Patient treatment in hospital emergency rooms is a highly
dynamic process where the staff continuously try to predict what the outcome
of decisions are in order to ensure the safety for the patients. Simulation can
provide a forecast of what the outcome of the staff’s decisions is going to be
given an expected mix of incoming patients. Organizational agent models are
ideal for the scenario since the doctors and nurses have roles and objectives that
they are expected to do, but they can choose to break these if they think the
situation requires it. The simulation model we describe here only covers a small
part of the scenario but we discuss the work necessary to extend the model to
more of the scenario.

The simulation consists of two agents, a patient p and a nurse n who initially
have the following mental states:

– Σo (for both agents): as specified in Table 1, plus the following predicates:
“O rea(patient, p)” and “O rea(nurse, n)”. The condition in Σo states
that the nurse should perform triage before a patient is treated.

– Σa (for both agents): contains “patient(p)”.
– Γo, Γa (for both agents): empty.

We implement the agents as members of an agent species that contains all of the
statements we described in the previous section, with scenario specific versions
of constants and action execution rules. We explain what constants and rules we
need, and show what happens in the simulation.

Table 1. Initially Σo for all agents contains these predicates.

role(patient, {treatment(Patient)})
role(nurse, {triage(Patient)})
obj(triage(Patient), {})
dep(patient,nurse, triage(Patient))

cond(nurse, triage(Patient), treatment(Patient), patient(Patient))

In the agent species we define the following constants. We have constant
strings for the name of the patient, the name of the nurse, the patient role and
the nurse role. We use these to define grounded predicates that denote facts
about the patient. When we define the meta-model, we also need predicates for
the predicates with variables. Since GAMA does not allow us to define predicates
with open variables, we define these as constants that, at a model level, represent
meta-model variables.
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s t r i n g patient name <− ”p ” ;
s t r i n g nurse name <− ”n ” ;

s t r i n g p a t i e n t r o l e <− ” pa t i en t ” ;
s t r i n g nu r s e r o l e <− ” nurse ” ;

p r ed i c a t e pa t i en t p <− new pred icate (” pa t i en t ” ,
[ ” var1 ” : : pat ient name ] ) ;

p r ed i c a t e t r i a g e p <− new pred icate (” t r i a g e ” ,
[ ” var1 ” : : pat ient name ] ) ;

p r ed i c a t e treatment p <− new pred icate (” treatment ” ,
[ ” var1 ” : : pat ient name ] ) ;

p r ed i c a t e pa t i en t <− new pred icate (” pa t i en t ” ,
[ ” var1 ” : : ” Pat ient ” ] ) ;

p r ed i c a t e t r i a g e <− new pred icate (” t r i a g e ” ,
[ ” var1 ” : : ” Pat ient ” ] ) ;

p r ed i c a t e treatment <− new pred icate (” treatment ” ,
[ ” var1 ” : : ” Pat ient ” ] ) ;

We include the functions in Sects. 4.1 and 4.2 as they are shown. With these
in place we can define an organizational meta-model. We initialize Σo as specified
above using the following code.

i n i t {
do add b e l i e f ( r o l e p r e d ( p a t i e n t r o l e , [ treatment ] ) ) ;
do add b e l i e f ( r o l e p r ed ( nu r s e r o l e , [ treatment ] ) ) ;
do add b e l i e f ( ob j pred ( t r i ag e , [ ] ) ) ;
do add b e l i e f ( dep pred ( p a t i e n t r o l e ,

nu r s e r o l e , t r i a g e ) ) ;
do add b e l i e f ( cond pred ( nu r s e r o l e , t r i a g e ,

treatment , pa t i en t ) ) ;

do add b e l i e f ( r ea pred ( p a t i e n t r o l e , pat ient name ) ) ;
do add b e l i e f ( r ea pred ( nu r s e r o l e , nurse name ) ) ;

}
We also include Rule and Plan statements as described in Sect. 4.3. For

these statements we use the constants defined above. For example we make a
Rule statement for the obligation-satisfied rule matching the cond-predicate in
the meta-model.

r u l e b e l i e f : pa t i en t p
when : ob l a c t i v a t ed (name , nu r s e r o l e , t r i a g e p )
n ew be l i e f : ob l p red (name , nu r s e r o l e , t r i a g e p ,

treatment p ) ;

For action reasoning rules we include a Plan statement saying that if an agent
has the option to perform triage, then the agent should commit to it.



258 J. B. Larsen

plan commitTo i n t en t i on : ob j pred ( t r i ag e p , n i l )
in s tantaneous : t rue {
do commit ( t r i a g e p , p a t i e n t r o l e ) ;
do add b e l i e f ( ob j pred ( t r i ag e p , n i l ) ) ;

}
Finally we create two agents for the simulation named n and p, who are of

the aortaAgent species.

g l oba l {
i n i t {

c r e a t e s p e c i e s : aortaAgent number : 1 with : ( name : ” n ” ) ;
c r e a t e s p e c i e s : aortaAgent number : 1 with : ( name : ” p ” ) ;

}
}
In the following we describe what happens in the first loop of the simulation,
focusing on the changes to the mental state in agent n.

Perception. None of the agents perform any Perception statements.

Rule Application. Both obligation execution and option execution takes place
in this step. The Rule statements concerning obligation execution adds the
predicate “O obl(n, nurse, triage(p), treatment(p))” to Σo. The Rule
statements concerning option execution then adds “O obj(triage(p))” to Γo.

Intention Selection. Having “O obj(triage(p))” in Γo, and thus in I, it is
selected as the current intention.

Plan Selection and Execution. Having a Plan statement with the trigger inten-
tion “O obj(triage(p))”, agent n then commits to triage(p), adding it to Γa.
As the plans for the action reasoning rules and the action transition function
are instantaneous, agent n can then select a plan with “triage(p)” as trigger
intention and begin execution of that plan.

6 Discussion

In this section we first discuss the advantages and limitations of the implemen-
tation with respect to social simulation in GAMA, and then we discuss the
contribution of our work to engineering multi-agent systems.

6.1 AORTA in GAMA

The example shows how a nurse agent can use a clearly defined organizational
meta-model made from a top-down perspective to decide its course of action in
patient treatment. To get similar behavior using only the existing BDI framework
in GAMA, it would be necessary to design agents with a bottom-up method,
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which would make the organization less clear. By adjusting the action reasoning
rules, we can also adjust how a nurse agent handles organizational obligations
separately from how it handles its own intentions.

However the implementation have some limitations. The biggest limitation
is not being able to use variables in Rule and Plan statements. In the example
we have shown, we only created one of each of the obligation execution and
action execution rules, but in a simulation with more roles and objectives, we
would have to define the rules for each rule and objective. A possible solution
to this limitation is to extend GAMA with unification so that open variables
in a predicate are instantiated with values according to the beliefs, desires and
intentions of the agent. Another significant limitation of the implementation is
that the AORTA extension takes up a big part of the agent species code. The
functions and operational semantics should be defined separately so that the
agent species only defines action execution rules. Finally the implementation
also shows that negated predicates are not handled properly. The Deact rule for
example states that ¬role(R) should be added to Γo but this is not reflected
in the implementation. GAMA supports a primitive way of handling negated
predicates which has not been accounted for in the design.

6.2 Engineering Multi-Agent Systems

While GAMA is dedicated to agent-based simulation and uses a proprietary
agent programming language, we can also discuss our work in relation to use
of AORTA and organizational reasoning for engineering multi-agent systems.
While multi-agent programming platforms such as Jason to an increasing extent
support generalized organization frameworks, there is a need in the community
to find some consensus about which frameworks to use [9]. With AORTA we can
extend existing BDI-based multi-agent systems with organizational reasoning.
As we discussed above though, there are more important points to consider:

Open variables. The obligation and action execution rules involves checking
if the beliefs in the knowledge bases satisfy certain side-conditions. However
doing so is not trivial when the agent programming platform does not offer
entailment with open variables that can bound by unification. For such plat-
forms it is necessary to introduce elaborate code that circumvents this lack,
possibly by implementing many versions of each rule for different combina-
tions of rules and objectives.

Reuse of code. One of the strengths of AORTA is that it provides an oper-
ational semantics that can be implemented as an extension of a BDI-based
agent framework. We have shown a collection of helper functions in order to
make the implementation of the operational semantics comprehensible. How-
ever if we want multiple kinds of agents we would have to copy the code for
each kind of agent. When engineering a multi-agent system, it is often conve-
nient to create multiple kinds of agents with different specific sub-functions
and action execution rules. In this case it would be better to have the opera-
tional semantics code in a module that all agents can access.
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7 Related Work

We compare this work with other models and frameworks for social simula-
tion. Network-oriented modeling has been applied for social system simulation
to study the effects of various social parameters for the agent behavior on the
outcome of the system [10–12]. The advantage of the network model is that one
can tune the input parameters in the model to model different kind of behaviors
in the agent and see the result. For example in an evacuation scenario, a param-
eter that controls how likely an agent is to mimic their peers can be increased
to see if this behavior changes how quickly the agents evacuate a building. In
comparison, AORTA is based on the BDI paradigm and logic. The behavior of
our agents is determined by logical reasoning rather than tuning of parameters.
To create a mimicking behavior the agents must be able to reason that it lets
them solve their goals. MOISE+ is an organization meta-model which has been
implemented in the Jason agent programming platform [13,14]. In contrast we
use AORTA, which has also been implemented in Jason [15], and GAMA, which
is an agent-based simulation platform. The advantage of using GAMA is that it
is a simulation platform intended to also be used by people who are not computer
scientists. The topic of AORTA vs MOISE is interesting as there is still a lack of
consensus on a simple set of concepts for social aspects [9]. There are also other
methods to include normative reasoning in agents which do not incorporate an
organization meta-model [16–18]. Social practice theory in particular provides a
model for social simulation which takes the view of activities that agents know
of rather than the agents themselves. An activity is known by agents and some
agents act out an activity as a habit given that they have the competences for
it and the affordances for the activity are present. Through mimicking behavior,
agents learn new activities and successful habits. In earlier work we have applied
social practice theory to the emergency health care scenario but it was not
used for simulation [19]. With version 1.8, GAMA also features a framework for
normative reasoning which shows the growing interest in frameworks for social
simulation. Finally there are also social simulation systems that are not based
on agents. Business process models have been used to make flow-prediction in
systems where it is clear what model the system follows. As it was discussed at
the Operational Research Society’s Simulation Workshop 2010 [20] and in the
work of Liu et al. [21] however such models tend to grow unwieldy, especially in
complex systems with humans decision making where goals can conflict. For this
reason agent-based approaches seem promising as a way to break down complex
systems in smaller comprehensible parts.

8 Conclusion

We have given an operational semantics for BDI agents in the GAMA platform
for agent-based simulation, and extended them with concepts and rules that
add organizational reasoning according to the AORTA framework. The extended
semantics comprises a design for implementing AORTA in the GAMA platform.
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We have also shown how the design can be implemented with a small example. It
shows that we can add organizational reasoning to BDI-based simulation agents,
thus providing generalized support for social simulation of organizations. We
have also identified points we found important to consider when using AORTA
and thus contributed to implementing organizational reasoning for multi-agent
systems. If a multi-agent system is based on BDI, we can extend it with the oper-
ational semantics of AORTA to add organizational reasoning to the agents. We
can do so even if the programming language does not offer unification with open
variables although it then requires us to introduce elaborate code to circumvent
the lack of it. In addition, the operational semantics should be implemented in
a way so that multiple kinds of agents can use it without having to each have
their own copy of the code. Future work includes more details in the semantics
and improving upon the limitations of the implementation in order to use it for
more complex social simulations.
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Abstract. This work presents an agent-based model of radicalization
growth based on social theories. The model aims at improving the under-
standing of the influence of social links on radicalism spread. The model
consists of two main entities, a Network Model and an Agent Model. The
Network Model updates the agent relationships based on proximity and
homophily; it simulates information diffusion and updates the agents’
beliefs. The model has been evaluated and implemented in Python with
the agent-based social simulator Soil. In addition, it has been evaluated
through sensitivity analysis.

Keywords: Radicalization · Terrorism ·
Agent-based social simulation

1 Introduction

Research works on political terrorism began in the early 1970s. These works were
focused on collecting empirical data and analyzing it for public policy purposes.
Terrorist activity was usually attributed to personality disorders or “irrational”
thinking [4]. However, further research paints a richer picture and suggest that
many additional factors need to be considered.

Many scholars, government analysts, and politicians point out that since
the mid-1990s terrorism has changed. This “new” form of terrorism is often
motivated by religious beliefs, and it is more fanatical, deadly, and pervasive.
It also differs in terms of goals, methods, and organization [4,31]. However,
the drivers of modern terrorism involve not only political or religious interests
but also include fanaticism. Consequently, terrorism is the result of a complex
process of radicalization. i.e., a progressive adoption of extreme political, social
or religious ideals.

Nevertheless, this process does not always lead to violent acts such as terror-
ism [13]. It is of vital importance to understand the properties of radicalization
in order to anticipate said violence. The primary challenge of understanding how
c© Springer Nature Switzerland AG 2019
D. Weyns et al. (Eds.): EMAS 2018 Workshops, LNAI 11375, pp. 263–282, 2019.
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these organizations work is that information is not always available and, when
it is available, it is often incomplete or inaccurate.

One common approach to face terrorism is trying to understand its roots,
motivation, and practices. In particular, it is of vital importance nowadays to
understand how terrorist organizations recruit new members and isolate them.
Moreover, terrorist organizations have effectively used social media and social
networks to expand their networks through real-time information exchange.

As society and new forms of communications evolve, terrorists are developing
new forms of organization for their purposes. Organizations can thus flatten out
their pyramid of authority and control. The resulting structure can take different
forms, from a dense network to a group of more or less autonomous, dispersed
entities, linked by communications and perhaps nothing more than a common
purpose [32]. Thus, terrorist organizations can be modeled as Social Networks
(SNs) where vertices represent members of the organization and links represent
communication between members.

Regardless of their structure, terrorist organizations are by definition SNs and
can be modeled as such. Hence, research based on Agent-based Social Simulation
(ABSS) could be a good starting point for understanding the information flow
within the network.

This chapter proposes an agent-based model of a terrorist organization
growth which has been implemented in Soil [29], an agent-based social simu-
lator designed for modeling social networks.

This remainder of the chapter is structured as follows. Section 2 introduces
the ABSS Soil1, paying particular attention to its modeling approach as well as
specific features developed for modeling problems with a geographical compo-
nent, as it happens in the radicalization process. Section 3 introduces the agent-
based model of radicalization2. Section 4 describes the implementation of the
model using Soil and provides an overview of the simulation results, including
a sensitivity analysis of the simulation results to evaluate the developed model.
Finally, some conclusions and insights are presented in Sect. 5.

2 Agent-Based Social Simulator Soil

Soil [29] is a modern ABSS for modeling and simulation of SNs. It has been
applied to many scenarios, ranging from rumor propagation to emotion prop-
agation and information diffusion. Each simulation consists of a set of agents,
which typically represent humans, and a network that represents social links
between agents.

Agents are characterized by their state and the behaviors they can carry
out in every simulation step, usually depending on user state. Each behavior
defines the actions carried out and how agent state evolves, depending on exter-
nal factors or social factors. Those external or social factors are controlled by
environment agents, which are not assigned to any network node.
1 https://github.com/gsi-upm/soil.
2 https://github.com/gsi-upm/soil/tree/master/examples/terrorism.

https://github.com/gsi-upm/soil
https://github.com/gsi-upm/soil/tree/master/examples/terrorism
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The main reason for using this simulator is that it is one of the few ABSS
platforms that support social network analysis [29]. Two other alternatives were
considered: Hashkat and Krowdix. Table 1 summarizes these platforms and the
reviewed aspects.

Table 1. Review of ABSS platforms [29]

Name Domain Language SNs SNA OS

HashKat Social networks C++ ✓ ✓ ✓

Krowdix Social networks Java ✓ ✓ ✗

Soil Social networks Python ✓ ✓ ✓

HashKat [27] is a C++ ABSS platform specifically designed for the study
and simulation of social networks. It includes facilities for network growth and
information diffusion, based on a kinetic Monte Carlo model. It exports infor-
mation to be processed by machine learning libraries such as NetworkX [14] or
R’s iGraph [5] and network visualization with Gephi [1]. The simulator is highly
performant but has two significant drawbacks. Firstly, simulations are expressed
in a descriptive language. Agents are created by specifying a set of highly config-
urable parameters. As a result, adding behaviors beyond those already included
in the platform involves adding new capabilities to the framework. Secondly, and
most importantly, modifications to these behaviors are very tied to the archi-
tecture of the platform, rather than being isolated for every type of agent. This
modifications make customization costly, especially for someone without a C++
background.

On the other hand, Krowdix [2] is built on Java ABSS. It uses JUNG [23] for
network functions and JFreeChart [12] for visualization. The simulation model
considers users, their relationships, user groups, and interchanged contents. How-
ever, its main drawback is that it is not open source.

Conversely, Soil is open source and built using Python and benefits from
all the Python ecosystem. Regarding the alternatives, Krowdix project is no
longer active, while Hashkat provides many facilities for modifying the settings
of the provided agent models, but makes hard the integration of new models.
In contrast, Soil has been conceived for experimenting and developing easily
new simulation models in Python. This practice has the advantage of Python’s
increased popularity, its very gradual learning curve, readability, clear syntax and
availability of libraries for network processing and machine learning. The network
features of Soil are based on NetworkX, which is the defacto standard library for
Social Network Analysis (SNA) of small to medium networks. NetworkX provides
functionalities for manipulating and representing graph models, generators of
classical and popular graph models, including generators for geometric graphs,
and graph algorithms for analyzing graph properties. Likewise, NetworkX is
interoperable with a high number of graph formats, including GEXF, GML,
GraphML and JSON among others.
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The main benefit of using Soil is its capability to model agent relationships as
graphs. This approach is different from other environments (i.e., MESA, NetLogo
Repast or Mason) which do not provide yet this. Thus, Soil can be used for
any problem that can benefit from a graph representation. Up to now, Soil has
been mainly used for modeling social network related problems, such as viral
marketing, emotion propagation in social networks and online radicalization.
Some other areas that could benefit from Soil are transportation problems since
they are frequently modeled with both agents and network models.

Soil provides several levels of reusability. First, we propose a methodological
approach for modeling agent systems at macro and micro levels. This workflow
can be used in other agent-based simulation tools for modeling systems where it is
needed to update both macro and micro levels during the simulation. The second
level is the framework Soil that can be used for developing different models,
running simulations and analyzing the simulation results. The integration of
Soil with the Python ecosystem enables using standard tools for data analysis
and visualization (e.g., pandas [19]) as well as machine learning algorithms (e.g.,
scikitlearn [24]). Finally, models can be extended through inheritance and agents
from one model can be reused for other models in the same domain.

2.1 Architecture

As previously stated, simulations in Soil consist of agents and a network that
represents social links between agents. Agents are characterized by their state
(e.g., infected) and the behaviors they can carry out in every simulation step,
which usually depend on the user state. Each behavior defines the actions carried
out (e.g., tweeting or following a user) and how the agent state evolves depending
on external factors (e.g., news about a topic) or social factors (e.g., opinion of
their friends). The likelihood or frequency of each action is typically configurable
by either globally or agent-level variables.

This simulation model has been implemented in the architecture shown in
Fig. 1 and consists of four main components.

The NetworkSimulation class is in charge of the network simulator engine.
It provides a forward-time simulation of events in a network based on nxsim3

and Simpy [18]. Based on configuration parameters, a graph is generated with
NetworkX, and an agent class is populated to each network node. The main
parameters are the network type, number of nodes, the maximum simulation
time, number of simulations and timeout between each simulation step.

The BaseAgentBehaviour class is the essential agent behavior that should be
extended for each social network simulation model. It provides basic functionality
for generation of a JSON file with the status of the agents for its analysis with
machine libraries such as Scikit-Learn [24].

The SoilSimulator class is in charge of running the simulation pipeline defined
in Sect. 2.2, which consists of running the simulation and generating a visualiza-

3 https://pypi.python.org/pypi/nxsim.

https://pypi.python.org/pypi/nxsim
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nxsim.NetworkSimulation

+ topology: networkx.Graph

+ states:

+ agent_type: BaseAgentBehaviour

+ max_time: int

+ num_trials: int

+ logging_intervals: int

+ run_simulation()

SoilSimulator

+ field: type

+ run_simulation()
+ visualize:(): gexf file

<<uses>>

settings
<<uses>>

BaseAgentBehaviour

+ attrs(self)

+ __init(self, environment, agentID, state)
+ step(self, now)
+ run(self)
+ to_json(self)

<<uses>>

Fig. 1. Simulation components

tion file in Graph Exchange XML Format (GEXF) which can be visualized with
Gephi. Besides, interactive analysis can be done with IPython web interface.

Settings groups the general settings for simulations and the settings of the
different models available in Soil’s simulation model library.

2.2 Simulation Workflow

An overview of the system’s flow is shown in Fig. 2. The simulation workflow
consists of three steps: configuration, simulation, and visualization.

Simulation
Settings 

Topology, and
Simulation
initialisation

Agent Simulation
based on spread

models 

Simulation export
for analysis and

visualization 

Data Analysis
(JSON) 

Network
Visualization

(GEXF) 

Agent Models

Network spread
models 

Fig. 2. Social simulator’s workflow

In the first step, the main parameters of the simulation are configured in
the JSON or YAML settings file. The main parameters are network graph type,
number of agents, agent types and weights, maximum time of simulation and
time step length. In addition, the parameters of the behavior model should be
configured (e.g., initial states or probability of an agent action). Agent behav-
iors should be selected from the provided library or developed extending the
BaseAgentBehaviour class.
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Once the simulation is configured, the next step is the simulation, that can
be done step by step or many steps. The class BaseAgentBehaviour stores the
status of every agent in every simulation step into a JSON file to be exported
once the simulation is finished. This feature allows us to automatize the process
of generating the .gexf file. Finally, users can carry out a further analysis with the
JSON file as well as visualize the evolution of the simulation with the generated
.gexf.

2.3 Good Practices

Soil has been used both by developers and researchers. Based on this experience
of developing models with Soil, some good practices can be recommended. Hope-
fully, this should help other researchers to implement their models. The first one
relates to the use of the two types of agents within Soil: Network Agents and
Environment Agents. Using these types correctly results in simpler models that
are easier to understand, debug and extend.

Network agents are always attached to a node of the network and have con-
nections with other network agents (i.e., friend of, follow to or influenced by).
Hence, network agents should encapsulate individual behavior at the micro level.
Conversely, environment agents are not assigned to a node in the network and
should be used to model behavior at the macro level.

As of this writing, the type of the network agent is static through the simu-
lation. Hence, behavior that does not change (e.g., content consumer vs. content
producer) are better encoded as different subclasses of a base agent, whereas
changes in behavior based on thresholds are better encoded as states within the
same agent type.

For example, let us consider a model for radicalization in a nation, which
takes into account inter-personal relations and the effect of social media. In this
scenario, each citizen would be modeled as a network agent.

Each network agent would have a state, which encapsulates information such
as the member’s radicalization level, and it would be connected to other citizens
in the social graph. Network agents also have behavior, which depends on agent
state and social relations. In every step of the simulation, network agents will
execute their behavior and update their radicalization level.

An environment agent could be in charge of updating the radicalization level
of each citizen, based on the latest content in the media.

2.4 Load Test

Soil was subjected to a load test in which 200 simulations were executed with
the same parameters but varying the number of agents in each one as shown in
Fig. 3. The model used to accomplish this is the Counter Model which counts
the number of nodes in the network and neighbors in each step and adds it to
its state.
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Fig. 3. Results of the load test

Two different algorithms were used for generating random scale-free net-
works. The first one is the Complete Graph Generator which returns the com-
plete graph on n nodes. The other one used, is the Barabási-Albert Graph which
returns a random graph according to the Barabási-Albert preferential attach-
ment model. For this second algorithm, in addition to the totality of nodes, the
number of edges to join of a new node to the existing nodes has been indicated,
being this half of the number of nodes of the network.

3 Radical Simulation Model

3.1 Problem

As previously discussed, in the last years, the way people communicate has
changed, becoming more relevant social networks, where everyone can exchange
messages, images, and videos. Terrorist organizations have also moved forward
by setting up radio stations, TV channels or Internet websites. These activities
allow them to increase their strength, their funds, and better recruit new people.

Since terrorist organizations can be modeled as social networks, we can study
how information is shared and how people become members of groups or even
new relationships. Within the proposed model (Sect. 3.2), terrorist groups will
be represented as graphs where vertices represent members and edges represent
communication between those members.

However, radicalism is not only sustained by flow information. Multiple
causes, rather than a single cause should be considered, including social and
spatial relations which evolve over time. Estimating their evolution is essential
for management, command and control structures, as well as for intelligence
analysis research purposes. By knowing future social and spatial distributions,
analysts can identify emergent leaders, hot spots, and organizational vulnerabil-
ities [21].
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In order to approach to the radicalism spread, spatial distribution is used
based on Geometric Graph Generators [25], which provides geographical posi-
tions to agents, being able to manage real environments.

The physical space aims to produce more insightful results when considering
the spread of terrorism [7]. Properties of space and place are vital components
of terrorist training, planning, and activities.

Besides, based on the principle of homophily, as a contact between similar
people occurs at a higher rate than among dissimilar people, it is more likely to
have contact with those who are closer to us in geographic location than those
who are distant [20]. It is theorized that, in general, proximity in geographic
space strongly influences closeness in social space [7].

As it was discussed above, the proposed model will try to approach to the
fact of the rise of radicalism within a specified geographic area considering real
geographical connections between members.

3.2 Model Development

Three levels of analysis are widely accepted for the radicalization process [8]:
micro-level (i.e. the individual level involving feelings of grievance, marginaliza-
tion, etc.), meso-level (i.e. the social environment surrounding radicals and the
population and lead to the formation of radical groups), and macro-level (i.e.
impact of government policies, religion, media, including radicalization of the
public opinion and political parties).

The model here proposed is focused on analyzing the macro-level and meso-
level, including several aspects of the micro-level (such as the vulnerability level).

Several aspects have been considered for modeling the radicalism growth at
the meso-level. First, the model considers the impact of havens [17] and training
areas [9]. Havens, also known as sanctuaries, provide radical groups the possi-
bility to obtain long term funding and serve the purposed of solidifying group
cohesion. Terrorist training camps aim at providing indoctrination and teaching
for terrorism and are distributed around the world. They foster group identity
formation and group cohesion, and require geographical isolation and easy access
to weapons.

The modeling of the radicalism spread involves population and places as it
was discussed above. People can play two roles: (1) population as the people
that can be radicalized and (2) terrorist that spread their message to locals and
try to recruit civilians to join the terrorist network.

Based on a previous model proposed by Cummings [7], terrorists have little
opportunities for effective training, planning, and other logistic necessities. Those
areas are modeled by (1) training environments, which increase the influence on
the nodes that are attached to them, and (2) havens where people are safe.
The nodes that are joined to havens get less influenced if the havens are not
radicalized, but it could get radicalized, and its behavior will change.

For implementing the environment described, we will use four different mod-
els that interact with each other.
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– Spread model in charge of the information flow which determines the state
of the population. Each node contains a threshold where once reached, the
node is marked as informed, and it will pass from a civilian state to a radical
state.

– Network model in charge of controlling spatial and social relations between
population.

– Havens model which will modify nodes vulnerability depending on haven
state, as explained below.

– Training areas model which will decrease neighboring nodes vulnerability.

The network consists of N nodes that have two coordinates, as since Geo-
metric Graph Generators [25] are used, that position each node on a map. The
edge between two nodes indicates direct bidirectional communication between
both of them.

All agents are assumed to have similar parameters but are heterogeneous in
their representation. Within the spread model, each node develops its own belief
about whether the information is valid by calculating weighted mean belief Bi

from its neighbors and combining that with its initial belief B0, which is nor-
malized between 0 and 1 [6]. In addition, in every step, two agents will exchange
information given a probability of interaction.

The mean belief is calculated given its vulnerability and the neighbors’ influ-
ence as well as the information spread intensity (α) which is also normalized and
consider how much information is exchanged in every step of the simulation.

Be =
n∑

i=0

Bi Di∑n
j=0 Dj

(1)

The node influence Di parameter has been included in Eq. 1 – where n is the
number of neighbors of the node – as the change in behavior that one person
causes in another as a result of an interaction [26] measured as degree centrality
that is defined as the number of adjacencies upon a node, which is the sum of
each row in the adjacency matrix representing the network. It can be interpreted
within social networks as a measure of immediate influence – the ability to infect
others directly or in one period [3]. This SNA function returns values that are
normalized by dividing by the maximum possible degree in a simple graph N −1
where N is the number of nodes in G.

Bn = Be α + B0 (1 − α); 0 ≤ α ≤ 1 (2)

As it was explained above, in Eq. 2 the parameter to indicate the information
spread intensity is included. When its value is 0%, no information is exchanged,
and when it increases, the knowledge diffusion grows.

Bi = Bn Nv + B0 (1 − Nv); 0 ≤ Nv ≤ 1 (3)

The node vulnerability (Nv) parameter is included in Eq. 3 as the extent to
which individuals conform or adopt variable attributes such as opinions from
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their attached nodes. In other words, if Nv = 1, the node will be entirely influ-
enced by their connected nodes, where a value of Nv = 0, would mean it would
not be influenced, so no change in the network is expected. Thus, individuals
who are merely sympathetic may be influenced by more extreme opinions from
their friends after they join the terrorist network.

Once the mean belief developed by the agent reaches the threshold, it is
marked as informed, and it will change its state from civilian to radical. Every
agent in the radical state will be only influenced by radical agents since the
radical experience no restraining influence from non-radicals [10]. Furthermore,
once an agent is in the radical state, the information spread intensity will begin
to value 100%, as once an individual is radical the most information it gets from
other radical agents.

With the purpose of determining the most relevant nodes within the terrorist
network, they are marked as leaders based on the SNA function: betweenness
centrality [6], that is defined of a node υ as the sum of the fraction of all-pairs
shortest paths that pass through υ.

As (Nv) was explained above, training areas and havens will modify this
attribute depending on their status. Training areas will decrease the parameter
from its neighbors, where a value of 1 for training area influence will make all
its neighbors entirely vulnerable. However, a value of 1 for haven influence will
make invulnerable all its neighbors when the state of the haven is not radical.
Nevertheless, once the haven is marked as radical, its behavior will be similar to
training areas.

Finally, the network model in charge of controlling spatial and social relations
takes into account that agents have the opportunity to interact with other agents.
They select an agent to interact with according to a probability of interaction
– different from the one mentioned above – based on two parameters: (1) social
distance and (2) spatial proximity.

On one side, (SD) take into account the fact that if two agents must cross
many social links, then the probability should be low and vice versa. It computes
it by finding the shortest path between to agents and then dividing one by the
number of links in that path.

SDi,j =
1

|A Ai,j | (4)

where |A Ai,j | is the shortest path from i to j. When computing the social
distance, each agent can only reach all those nodes that are within its sphere
of influence parameter. An agent can recognize and distinguish the closeness
of other agents within the sphere of influence, but it cannot differentiate the
closeness when the interacting agent is outside the perimeter.

On the other side, (SP) takes into account that two agents at the same loca-
tion are more likely to talk than being in different locations. Some might argue
that SP is not significant in the Internet age. However, in the terrorism domain,
attending the same training area or the same location is a critical interaction
indicator [21].
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Table 2. Simulation input parameters

Model Name Implication

Terrorist spread information spread intensity The amount of information
exchanged in every step of the
simulation

terrorist additional influence Additional influence added to
agents whom status is radical

min vulnerability The minimum vulnerability that
an agent could have (default 0 )

max vulnerability The maximum vulnerability
that an agent could have. The
allocation of this parameter
follows a continuous uniform
distribution. The maximum
value that this parameter can
take is the unit

prob interaction The probability of two agents
exchanging information in one
step

Training area training influence The influence of a training area
over its neighbors

Haven haven influence The influence of a haven over its
neighbors

Terrorist network sphere influence The maximum number of social
links that an agent can cross for
a new interaction

vision range The range on the spatial-route
network specifying the
maximum distance an agent can
move for a new interaction

weight social distance The weight of (SD) to calculate
the interaction probability

weight link distance The weight of (SP) to calculate
the interaction probability

As Geometric Graph Generators returns coordinates normalized between 0
and 1, the probability of being at the same location will be computed as the
inverse of the distance between two agents.

SPi,j = (1 − |di,j |) (5)

where |di,j | is the distance between the nodes. Like in the SD the probability
is bounded by a sphere of influence parameter, in SP the probability will be
bounded by a vision range parameter. All agents outside this perimeter will be
unreachable by the current agent.
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Once both parameters have been defined, we can compute the probability of
interaction that will be calculated as follows.

P Interaction
i,j = ω1 SDi,j + ω2 SPi,j (6)

where ω1 and ω2 are the weights of SD and SP respectively with the purpose of
customizing the environment.

None of the parameters will limit the probability of interaction. Thus, the
candidate agents will be the sum of all the agents that are inside the perimeter
of the sphere of influence or the vision range.

Thereby, an agent can establish a new way of communicating with its can-
didate agents, so the probability of interaction is calculated between each agent
and its candidate agents.

As it was explained, the aim of the model is trying to approach to the fact
of the radicalism spread within a specified geographic area. For that reason, in
Table 2 all parameters of the simulation are detailed for representing a scenario
as real as possible. Aside from all the parameters explained, the network can be
modeled using one of the random network generation methods from NetworkX.
It is also possible to control the ratio of each type of agent.

3.3 Workflow of the Simulation

In order to present a broad perspective of the general workflow of the simulation,
Fig. 4 displays the simulation cycle of an agent. Each agent will follow this cycle
in every step of the simulation for updating its properties and interacting with
its neighbors.

Initalize agent social
context and vision 

update 
relationships 

level based on
neighbours and

vulnerabilty

Change 
agent role

exchange 
information 

Fig. 4. General workflow of the simulation

At first, every agent is initialized taking into account several factors which
have been described in the previous section, such as the stance on radicalism
which is normalized between 0 and 1, where 0 represents pacifist, and 1 repre-
sents radical. Other factors that define an agent are its level of influence and
vulnerability.

Once each agent has been initialized, it will update its relationships based
on its position on the graph. Relationships are controlled by the Network Model
regarding spatial and social relations. For computing the probability of inter-
action between two agents, two parameters are considered: (I) social distance
and (II) spatial proximity. While the social distance is bounded by the sphere
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of influence of an agent, the spatial proximity is bounded by the vision range.
Thus, the candidate agents to establish a new link of communications are all
those who are inside the sphere of influence or the vision range.

After updating its relationships, each agent will exchange information with
its neighbors. This step is controlled by the Spread Model as it was explained in
the previous section. Each agent calculates a weighted main radicalism from its
neighbors regarding the information spread intensity as how much information
is exchanged between any two agents.

Once the agent has exchanged information with its neighbors, it will update
its radicalism level which is computed combining mean radicalism and its initial
level of radicalization. When computing the radicalism level, its vulnerability
and neighbors’ influence are considered.

Finally, at the end of the simulation cycle and once the own radicalism level
developed by the agent reaches a threshold, its state will change from civilian
to radical. Besides, as it was explained in the previous section, those whose
betweenness centrality is the highest will be marked as leaders.

4 Experimental Results

The model has been implemented using the Soil Simulator as it was discussed
above. The scenario represents a specified geographic area that can be cus-
tomized with the purpose of approaching a real scenario.

Every agent exchange information several times during the simulation, and
every portion of time is known as a step. On the one hand, an agent belonging to
the Network Model will update its relationships based on the input parameters

Fig. 5. Visualization of the simulation
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in every step. After this action, the control is passed to the Spread Model that
will be in charge of how the information will flow in that step. The current agent
will be influenced by its neighbors depending on their internal parameters values.

On the other hand, if the current agent is a haven or a training area, the
step will consist of modifying the internal parameters of their neighbors as it
was explained in the previous section.

With the purpose of making the simulations more interactive, a web appli-
cation has been developed using a client-server architecture. The server side has
been implemented using Python while the client side uses D3.js [33] for visual-
izing the results. Server and client sides are divided into different modules that
have dependencies between each other.

The modular server is in charge of handling the template which holds the
visualization and the HTTP requests while the simulator will receive data from
the server for running simulations. The client side is the one in charge of the
visualization. It processes the information received from the server and the user
configuration with the aim of representing the simulation in the browser.

(a) Initial state (b) Final state

(c) t = 25 (d) t = 100 (e) t = 125

Fig. 6. Simulation flow (Color figure online)
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As we can notice in Fig. 5 the simulation returns a graph that is presented
in the central area of the web application. The graph can be positioned in a
map, and it could be represented depending on the step, being able to see it
evolve. Furthermore, the interface allows users to filter the results or to change
the simulation parameters.

The application not only allows the user to visualize the results, but it also
provides statistics and the option of running more simulations changing the input
parameters.

The web application also allows users to export the results of the simulation
in different formats such as GEXF [11] or JSONGraph4 to be analyzed with any
other tool.

In order to present a simulation flow, in Fig. 6 an example is presented using
the input values shown in Table 3 for a total of 100 nodes and a simulation time
of 150 steps. Figure 6a and b present the initial and final state of the simulation
respectively. The green nodes in the pictures represent the neutral agents while
the red ones represent the radicalized ones. Places such as training areas and
havens are represented with different shapes. The remaining figures represent
the state of the simulation in different moments.

The network topology used is a random clustered network where nodes are
connected when two of them are within 0.2 of distance. The distribution of agents
has been made considering 80% of civilian agents, 10% of terrorist agents and
10% of heavens and training areas distributed equally.

Table 3. Simulation input values

Parameter Initial value Bounds

Information spread intensity 0.70 0.0−1.0

Terrorist additional influence 0.035 0.0−1.0

Maximum vulnerability 0.70 0.0−1.0

Probability of interaction 0.50 0.0−1.0

Training area influence 0.20 0.0−1.0

Heaven influence 0.20 0.0−1.0

Vision range 0.30 0.0−1.0

Sphere of influence 2.0 1−N

Weight of social distance 0.035 0.0−1.0

Weight of link distance 0.035 0.0−1.0

The model has been evaluated using two different sensitivity analysis meth-
ods. Sensitivity analysis allows studying how the uncertainty in the output of
a model can be apportioned to different sources of uncertainty in the model

4 http://netflix.github.io/falcor/documentation/jsongraph.html.

http://netflix.github.io/falcor/documentation/jsongraph.html
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input [28]. The first one is a local approach known as One-at-Time (OAT) app-
roach, that studies small input perturbations on the model output. 1.000 simula-
tions have been launched to bring about this method with different input values
and have been analyzed using the Seaborn [30] library available for Python for
exploring and understanding the results.

The other method applied is the Morris method [22] that is referred to as
“global sensitivity analysis” that in contrast to local sensitivity analysis, it con-
siders the whole variation range of the inputs [16]. This method is computed
using the SALib [15] library for Python.

(a) Scale Free output (b) Small World output

Fig. 7. Morris method results representation for radical population output for 200
trajectories

The primary model outputs of interest in the sensitivity analysis are: (1) the
radicalism diffusion computed as the percentage of agents that have been radical-
ized during the simulation from those who were not radical at the beginning and
(2) the mean radicalism within the network computed as the average radicalism
of all the agents.

Both outputs will be measured taking into account different types of simula-
tions. On one side, the network model will be studied assuming that the spread
model inherits the another. On the other side, three different topologies (small
world, scale free and random clustered) will be analyzed.

In Table 4 the Morris indices are detailed for the network model and mean
radicalism output ordered by μ∗. A total of 200 trajectories were built for the
model which results in 1.800 samples. Figure 8 plots result on the graph (μ∗, σ)
and identify the probability of interaction, the maximum vulnerability and the
information spread intensity as the most substantial influence on the mean rad-
icalism within the network.
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Table 4. Morris indices for network model and mean radicalism output.

Parameter μ μ∗ σ

prob interaction 0.320631 0.367384 0.51795

max vulnerability 0.243827 0.349831 0.413981

information spread intensity 0.252602 0.324202 0.379572

terrorist additional influence 0.036039 0.128335 0.206991

weight social distance −0.004388 0.110129 0.186007

vision range 0.019502 0.10909 0.18097

sphere influence 0.006756 0.107522 0.173183

weight link distance 0.007996 0.101815 0.17993

Fig. 8. Morris method results representation for network model and mean radicalism
output for 200 trajectories

The analysis has been made using a random clustered topology that is created
based on proximity between nodes for 100 nodes, and with the same number of
radical agents at the beginning. However, taking into account the population
radicalized in a simulation as we can notice in Table 5 and Fig. 9 are similar, but
the maximum vulnerability and the information spread intensity is in this case
more influential than the probability of interaction.

Morris indices for the three different topologies have similarities as the weight
of the radical agents for the distribution through the network is the most influ-
ential parameter for both outputs as it can be noticed in Fig. 7 for Scale Free
and Small World topologies. In addition, the model output linearly depends on
the weight of the agents. Nevertheless, the size of the network does not influence
the two model outputs.

The methods presented, attempt to validate certain factors such as types of
network connections and the presence of certain kinds of meeting sites which
facilitate radicalization while other plausible factors such as community size
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Table 5. Morris indices for network model and radicalized population output.

Parameter μ μ∗ σ

max vulnerability 0.466355 0.484857 0.596371

information spread intensity 0.392325 0.402566 0.541922

prob interaction 0.268707 0.331403 0.568499

terrorist additional influence 0.092038 0.186473 0.415794

weight link distance −0.012333 0.181102 0.401011

vision range −0.001680 0.176981 0.380602

sphere influence 0.005437 0.169812 0.358775

weight social distance 0.003899 0.165475 0.375792

Fig. 9. Morris method results representation for network model and radicalized popu-
lation output for 200 trajectories

have little effect. Network types can play an essential part in understanding how
radicalism spreads and can be equally important when trying to destabilize or
destroy a network.

5 Conclusions and Future Work

Understanding radicalization roots is a first step for being able to define and
apply suitable counter-terrorism measures. There are many challenges for ana-
lyzing terrorist networks, given the lack of public datasets and the sensibility of
this information. Nonetheless, the application of agent-based social simulation
is a useful technique for modeling nonlinear adaptive systems, and they enable
analyzing and validating social theories of the radicalization process.

In this work, we present a model and a tool for agent-based modeling of
radical terrorist networks. We have proposed building the agent-based model
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around two main concepts, the Network Model and the Agent Model. While
the first is in charge of managing agent relationships, the second defines the
specific behavior of every agent. This approach has been applied to modeling
terrorist growth. The proposed model is focused on analyzing the impact of
the information exchange and environmental radicalization in the radicalization
process. The evaluation and analysis of the simulation results provides insight
regarding the importance of the simulation parameters, including the network
characteristics.

Future work should include a broader and deeper perspective of absolute and
relative deprivation and how each can influence the spread of radicalism.
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Abstract. A well studied problem in the engineering of open MASs
is to enable uniform interaction among heterogeneous agents. However,
AOSE as a field has grown to recognize that a MAS consists of more
than only agents and thus should be designed on multiple dimensions
(including the environment, organization etc.). The problem of enabling
interaction among heterogeneous entities across dimensions is either not
considered, or it is addressed in an ad hoc and non-uniform manner.
In this chapter, we introduce a novel approach to use hypermedia as
a general mechanism to support uniform interaction in MASs. The core
idea is that agents use hypermedia to discover at runtime (i) other entities
in a MAS (e.g., other agents, tools, organizations) and (ii) the means
to interact with those entities (e.g., interaction protocols, APIs). This
reduces coupling and enhances the scalability and evolvability of the
MAS. We present a demonstrator that supports these claims. We believe
that a hypermedia-based mechanism for uniform interaction in MASs
could provide a foundation for engineering world-wide MASs.

Keywords: Multi-agent systems · Hypermedia systems · Interaction

1 Introduction

The vision of world-wide multi-agent systems (MASs) has been around for some
time. In 2001, the Agentcities initiative was aiming to create a world-wide
open network of heterogeneous agents to which any organization or individ-
ual researcher could connect their agents [38]. The same year, the seminal paper
on the Semantic Web was published [1], which promoted the vision of a Web for
both people and autonomous agents. Since then, we have witnessed significant
progress both in MASs and Semantic Web research, but we have yet to witness
the deployment of world-wide and long-lived MASs.

The Web, on the other hand, has had remarkable success as a world-wide
and long-lived system of people. One way to look at the Web is that it provides
people with a distributed hypermedia environment (composed of interrelated Web
c© Springer Nature Switzerland AG 2019
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pages) that they can navigate and use in pursuit of their goals. This hypermedia
environment was specifically designed to be open, Internet-scale, and to allow
people to use it in new and unanticipated ways [2,14]. All these properties were
designed into the Web architecture, and its central distinctive feature is the use
of hypermedia as an engine for uniform interaction between components [14].
We believe that we can apply the same design rationale as an effective means to
engineer open, scalable, and evolvable MASs – which implies significantly more
than just implementing MASs using Web services.

Our hypothesis is that we can use hypermedia to create a general mecha-
nism for uniform interaction in MASs. Given such a mechanism, heterogeneous
agents would then be able to interact in a uniform manner with other agents
as well as other heterogeneous entities (tools, knowledge repositories, organi-
zations, datasets etc.) that could help them achieve their goals. Engineers in
different parts of the world could then develop and deploy agents and other enti-
ties independently from one another, and old and new implementations could
co-exist in one system.

A mechanism for uniform interaction in MASs such as the one described
above is currently lacking. Perhaps the closest solution can be found in the
FIPA standards1, but it only addresses interaction among agents. Interaction
between agents and other entities in a MAS is not addressed.

In this chapter, we introduce an approach to use hypermedia for uniform
interaction in MASs. In a hypermedia MAS, agents are situated in a distributed
hypermedia environment (composed of interrelated resources) that they can nav-
igate and use in pursuit of their goals. Agents use the hypermedia environment
to discover and interact with heterogeneous entities in the MAS. To support
our approach, we implemented a demonstrator in which BDI agents are able
to discover and interact with artifacts in a hypermedia environment distributed
across multiple nodes. Hypermedia allows the environment to be seamlessly dis-
tributed from the agents’ viewpoint, and allows agents to discover and exploit
new functionalities added to artifacts at runtime. This demonstrator confirms
key elements of our hypothesis and suggests it could provide a foundation for
engineering world-wide MASs.

We discuss background and related work in Sect. 2. In Sect. 3, we propose a
set of design principles and a model for hypermedia MASs. We report on our
implementation and experience in Sect. 4, and then conclude in Sect. 5.

2 Background and Related Work

In the following, we first discuss the role of hypermedia in the Web architecture,
and then current approaches to engineer Web-based and world-wide MASs.

2.1 Hypermedia and HATEOAS

A central feature of REST, the architectural style of the Web, is that it uses
hypermedia to drive interaction between components, a principle known as
1 http://www.fipa.org/repository/standardspecs.html, accessed: 05.11.2018.

http://www.fipa.org/repository/standardspecs.html
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hypermedia as the engine of application state (HATEOAS) – see [14] for details.
To illustrate this principle, an HTML page typically provides the user with a
number of affordances, such as to navigate to a different page by clicking a
hyperlink or to submit an order by filling out and submitting an HTML form.
Performing any such action transitions the application to a new state, which
provides the user with a new set of affordances. In each state, the user’s browser
retrieves an HTML representation of the current state from a server, but also
a selection of next possible states and the information required to construct
the HTTP requests to transition to those states. Retrieving all this informa-
tion through hypermedia allows the application to evolve without impacting the
browser, and allows the browser to transition seamlessly across servers. The use
of hypermedia and HATEOAS is central to reducing coupling among Web com-
ponents, and allowed the Web to evolve into an open, world-wide, and long-lived
system.

In contrast to the above example, when using a non-hypermedia Web service
(e.g., an implementation of CRUD operations over HTTP), developers have to
hard-code into clients all the knowledge required to interact with the service.
This approach is simple and intuitive for developers, but the trade-off is that
clients are then tightly coupled to the services they use (hence the need for API
versioning). In recent years, hypermedia has started to receive more attention in
Web service design (e.g., [27]), in particular in the context of the Web of Things
(WoT) [25] – where it is important for devices to be able to interact with one
another in a loosely coupled manner rather than having developers in the loop to
constantly update integrations as devices (and their exposed Web APIs) evolve.

2.2 Web-Based Multi-Agent Systems

There has been extensive research on using the Web as an infrastructure for
distributed MASs. Early work was influenced by service-oriented architectures
(SOA) based on the WS-* standards (SOAP, WSDL, UDDI etc.) [19,23,24,35].
However, Web service design has evolved drastically over the past decade. It
is now well recognized that WS-* services use the Web merely as a trans-
port layer [30]. Based on similar ideas, FIPA proposed a specification for using
HTTP as a transport protocol for messages exchanged among agents [17], which
was implemented by several FIPA-compliant platforms (e.g., [10,12,21]). The
problem with systems that use the Web merely for transport is that they
are misaligned with the Web architecture (see Section 6.5.3 in [15] for a
detailed discussion). Consequently, such systems make limited use of the existing
Web infrastructure and its future extensions, and – more importantly for our
purposes – do not inherit the architectural properties that turned the Web into
an open, world-wide, and long-lived system (e.g., scalability, loose coupling).

More recent approaches for engineering Web-based MASs have turned to
resource-oriented architectures (ROA) based on REST-like, non-hypermedia ser-
vices (e.g., [20,29]). In contrast to the WS-* services, which are typically designed
in terms of operations, these services are designed in terms of resources. Clients
then interact with the services using a small set of generic operations with well



288 A. Ciortea et al.

defined semantics, such as the ones defined by the HTTP protocol [13] (e.g.,
GET, PUT, POST, DELETE). These services use the Web as an application
layer and are better aligned with the Web architecture, but they generally do
not use hypermedia or HATEOAS, which leads to tight coupling (see the discus-
sion in the previous section). To the best of our knowledge, the engineering of
Web-based MASs using hypermedia services is not yet thoroughly investigated.

2.3 World-Wide Multi-Agent Systems

There have been considerable efforts to support the engineering of open, world-
wide, and long-lived MASs – among the most prominent, the FIPA standards,
Agentcities [38], DARPA CoABS GRID [26], and the Semantic Web [1]. These
efforts have generally focused on enabling uniform interaction among heteroge-
neous agents (e.g., see [16,18]), but a general mechanism for uniform interaction
with any entity in an open MAS is lacking. From an architectural perspective,
most previous efforts to engineer large-scale MASs generally relied on RPC-
like architectures.2 When it comes to engineering world-wide systems, RPC-like
architectures have shortcomings as compared to REST-style, resource-oriented
architectures. For instance, they cannot (or make it very difficult to) use interme-
diary layers that can process requests almost as well as their intended recipients
(see Section 6.5.2 in [15]). Intermediaries have proven very useful in world-wide
systems such as the Web. Furthermore, in a REST-style architecture, hyperme-
dia enables the serendipitous use of resources, a property promoted in recent
years by the linked data initiative [3]. Support for new and unanticipated appli-
cations is an important property for sustaining long-lived systems.

3 Hypermedia Multi-Agent Systems

We consider that a sensible path towards the engineering of open, world-wide,
and long-lived MASs is to use hypermedia as a uniform interaction engine in
MASs. In a hypermedia MAS, agents are situated in a distributed hypermedia
environment that they can navigate and use in pursuit of their goals. The envi-
ronment is a first-class abstraction in the system and on the surface it provides
agents with all typical functionalities of endogenous environments (see [32,37]),
such as interaction with services, tools, and the external world, or mediating
interaction and coordination with other agents. However, in contrast to typical
endogenous environments, a hypermedia environment uses hypermedia to drive
interaction in the MAS: agents navigate the hypermedia environment to discover
other entities in the MAS, as well as the means to interact with those entities.
This reduces coupling and enhances the scalability and evolvability of the sys-
tems. We introduce a set of design principles for hypermedia MASs in Sect. 3.1,
and then present a concrete model in Sect. 3.2.

2 This includes approaches that use Web services to tunnel RPC-like method invoca-
tions through HTTP (e.g., using SOAP).
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3.1 Design Principles for Hypermedia Multi-Agent Systems

As discussed in Sect. 2.2, the mere use of any Web service design is not sufficient
to create a hypermedia MAS. We introduce three key design principles meant to
ensure the proper use of hypermedia as a general mechanism for uniform inter-
action in MASs. These principles are based on the design rationale behind the
Web architecture [14]. As it is generally the case with software design principles,
the proposed principles impose constraints on the design of MASs. Engineers can
choose to ignore one or more of these principles, but then the MASs would most
likely make limited use of hypermedia and would not achieve uniform interaction.

Principle 1 (Uniform resource space). All entities in a hypermedia MAS
and relations among them should be represented in the hypermedia environment
in a uniform, resource-oriented manner.

In a hypermedia system, and in particular in REST-style systems, a resource
is the key abstraction of information [14]. The core idea behind this first principle
is to project the entire observable state of the MAS into the distributed hyper-
media environment in a uniform, resource-oriented manner (e.g., as an RDF
graph [9]) such that agents can interpret, reason upon, and interact with the
MAS by consuming and producing hypermedia. For instance, one agent could
send a message to another by writing an RDF representation of the message
in the hypermedia (e.g., using an OWL ontology for describing messages).3 To
receive messages, an agent could observe a resource that represents its mailbox in
the hypermedia. To turn on a light bulb, an agent could manipulate the state of a
resource that represents the light bulb in the hypermedia. Interactions between
agents and resources in their hypermedia environment should conform to the
REST constraints. In what follows, we discuss only three key aspects of apply-
ing REST to hypermedia MASs (and refer readers to [14] for more details about
REST): uniform identification of entities, uniform representation of entities, and
the use of relations among entities to enable discoverability.

Uniform identification (e.g., via IRIs [11]) allows entities in a hypermedia
MAS to be referenced globally. Agents can then use hypermedia to interact with
the entities regardless of their location. For instance, if an agent or a light bulb in
its environment are identified via IRIs, then they can be referenced without the
need for additional contextual information – such as how to interpret platform-
specific identifiers, or low-level network information (e.g., IP addresses of hosts).
In non-hypermedia MASs, this is not generally the case. FIPA defined its own
standard uniform identifier for agents (see Section 3 in [18]), but uniform iden-
tification of other entities in a MAS is not addressed. Furthermore, the use of
FIPA-specific identifiers requires custom infrastructure for managing entity iden-
tifiers and descriptions – as opposed to using IRIs and the existing Web infras-
tructure. Platforms that support distributed endogenous environments, such as

3 Note that FIPA already proposed an RDF-based content language for FIPA mes-
sages: http://www.fipa.org/specs/fipa00011/XC00011B.html, accessed: 05.11.2018.

http://www.fipa.org/specs/fipa00011/XC00011B.html
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CArtAgO [32], either require agents to manage the low-level network informa-
tion when joining remote nodes, or use additional infrastructure to manage this
information (e.g., [28]).

Uniform representation of the externally observable state of entities in hyper-
media MASs4 allows to hide any implementation-specific details behind stan-
dardized knowledge models. For instance, the state of a light bulb could be rep-
resented in the hypermedia environment using RDF and some standard ontology.
An agent could then interact with the light bulb by interpreting and manipu-
lating its semantic representation either directly or via some intermediary tool
(e.g., to translate it in a different knowledge representation language, or to use
the light bulb via an artifact). A similar approach was taken by FIPA to define
a standard format for ACL messages exchanged between agents [16], and to
describe agents and the services they provide [18]. However, the uniform model-
ing of any other entities in a MAS is not addressed.5

In a hypermedia MAS, relations among entities (e.g., agents, tools, docu-
ments, organizations, datasets) can be represented explicitly in the hypermedia.
The relations can then be crawled to discover entities of interest in the MAS.
Agents could do the crawling themselves, or they could use search engines (i.e.,
external services) that do the crawling for them. This approach to discoverabil-
ity has proven very practical for open, large-scale and decentralized systems,
such as the Web [5]. In non-hypermedia MASs, discoverability is typically based
on the registration of agents (and their services) to centralized directories, such
as the Directory Facilitator (DF) standardized by FIPA [18]. Multiple DFs can
then be federated to support decentralized searches, where requests are propa-
gated between DFs up to a maximum depth level. However, this approach to
discoverability is biased towards the locality of agents, which may prove inef-
ficient in a Web-scale MASs. In contrast, crawling-based DFs could avoid the
locality bias by exploiting relations in the distributed hypermedia environment.
Furthermore, having typed relations among federated DFs could help propagate
search requests in an informed manner.

The uniform resource space principle provides the underpinning for scal-
able and evolvable hypermedia MASs: it enables the seamless distribution of
the hypermedia environment, and it allows agents to interact with other enti-
ties in the MAS in a uniform manner through hypermedia. The implied trade-
off is interoperability vs. innovation: translating an implementation-specific
model to a uniform representation promotes interoperability, but may loose
implementation-specific features.

Principle 2 (Single entry point). Given a single entry point into the envi-
ronment of a hypermedia MAS, an agent should be able to discover the knowledge
required to participate in the system by navigating the hypermedia.
4 We are not interested here in the entities’ internal state.
5 Note that while any entity in a MAS could be encapsulated behind an agent (and
then described using existing FIPA standards), this approach would simply obscure
large parts of the MAS. The literature on engineering MASs already provides argu-
ments for considering MASs as composed of more than just agents (e.g., see [4,37]).
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The core idea behind this second principle is to maximize the usage of hyper-
media in order to minimize coupling in the MAS. As mentioned for Principle 1,
hypermedia can help reduce coupling by enabling system-wide discoverability –
agents can crawl the hypermedia to discover what other agents, tools, or entities
in the system can help them achieve their goals (hard-coding any such relations
into the agents would increase coupling). Equally important, however, agents can
also discover in the hypermedia how to interact with entities: the affordances of
resources in their environment (e.g., operations exposed by a light bulb and how
to perform them), specifications of agent interaction protocols in a given lan-
guage (e.g., BSPL [34]), specifications of organizations in a given language (e.g.,
MOISE [22]), polices created by policy engineers (e.g., the terms of service of a
hypermedia search engine), or norms created by other agents (e.g., norms that
emerged in a given society) etc. The single entry point principle implies that any
knowledge required to participate in the system that can be represented in the
hypermedia should be represented in the hypermedia.

In other words, given an entry point into the environment of a hypermedia
MAS, agents should require minimal a priori knowledge to interact with entities
in the system besides the general knowledge required to consume and produce
hypermedia. Any a priori knowledge and assumptions required to participate in
the system should be standardized at the system-level (i.e., shared by everyone in
the system). All other knowledge required to participate in the system should be
discovered in the hypermedia. Furthermore, if an agent has to interact with one
or more entities to achieve its goals and those entities are present in the system,
the hypermedia environment should allow their eventual discovery via crawling.
Violating any of these two constraints (i.e., hard-coding ad hoc knowledge into
agents instead of placing it in the hypermedia, not enabling navigability) would
violate the single entry point principle.

To illustrate the above point with an example, say an agent in a hypermedia
MAS has to turn on a light bulb. A priori knowledge required by the agent to
achieve its goal could include the HTTP protocol, RDF standards, a general
model of its environment, and an OWL ontology describing light bulbs and the
operations they expose (e.g., turn on), which could all be standardized at the
system-level. Knowledge that should be discovered in the hypermedia would
include the uniform identifier of a light bulb and the specification of an HTTP
request that turns on the light bulb. Hard-coding into the agent the light bulb’s
identifier or, for instance, the knowledge required to use the Philips Hue HTTP
API6 (e.g., the Philips Hue data model) would couple the agent to the light
bulb, and similar knowledge would have to be hard-coded in order to use light
bulbs from other manufacturers.

The single entry point principle is central to designing evolvable and long-
lived hypermedia MASs. The main trade-off is that relying on knowledge discov-
ered in the hypermedia can increase the complexity of programming the MAS,
but this can be mitigated through the use of appropriate middleware (as we
show in Sect. 4).

6 https://developers.meethue.com/documentation/getting-started, accessed:
05.11.2018.

https://developers.meethue.com/documentation/getting-started
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Principle 3 (Observability). In a hypermedia MAS, any resource in the
hypermedia environment that could be of interest to agents should be observable.

The first two principles ensure the dynamic discovery of a hypermedia MAS
via crawling. However, constantly crawling large hypermedia MASs to keep track
of their evolution would be inefficient. Instead, this third principle promotes the
use of mechanisms that allow agents to selectively observe entities of interest in
the MAS via the entities’ representation in the hypermedia environment, which
could include the entities’ states, affordances, relations to other entities etc. This
principle improves the scalability of hypermedia MASs: agents can handle larger
environments, and at the same time the load on the hypermedia infrastructure
is decreased (and thus it can serve more agents). The trade-off is the extra com-
plexity added by observability mechanisms, but this can be mitigated through
the use of appropriate middleware and intermediary components (see Sect. 4).

3.2 A Model for Hypermedia Multi-Agent Systems

We applied the proposed design principles to define a model for hypermedia
MASs. This model is intended to provide an extensible conceptual foundation
and thus only defines the core abstractions required to design and program
hypermedia MASs.7 The model (see Fig. 1a) is based on the Agents and Artifacts
(A&A) meta-model [32] and our previous research on socio-technical networks
(e.g., see [6,8]). We present the model in what follows, and then introduce a Web
ontology that formalizes this model and discuss its usage.

Cognitive Agents in Artifact-Based Hypermedia Environments. Fol-
lowing the A&A meta-model, we design and program hypermedia MASs in terms
of agents and artifacts. In A&A, artifacts are first-class programming abstrac-
tions (and not just design abstractions): they are as much a programmable part
of the MAS as are agents. We use artifacts to program the application environ-
ment (cf. Fig. 1a) such that it provides agents with a uniform, general inter-
face defined in terms of observable properties, observable events, and operations
(see [32] for more details on artifacts). Artifacts thus help reduce the coupling
between agents and their environment.

As depicted in Fig. 1a, all entities (e.g., agents, their services, artifacts,
workspaces), the relations among them, and the affordances of artifacts are pro-
jected into a uniform RDF abstraction layer – cf. Principle 1 (uniform resource
space). This layer effectively decouples agents from the application environment
and enables system-wide discoverability via crawling. From an agent’s viewpoint,
the set of all affordances of its environment is determined by the artifacts dis-
covered in the hypermedia, where the affordances of a given artifact are also
discovered in the hypermedia – see Principle 2 (single entry point). To avoid
dealing with low-level manipulation of hypermedia, agents could use hyperme-
dia controllers (similar to Web browsers) in order to interact seamlessly with
artifacts through the hypermedia layer (see implementation in Sect. 4.2).
7 We leave a more complete treatment of MASs as future work (see Sect. 5).
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Fig. 1. The core concepts used to model hypermedia MASs.

The environment and workspace abstractions (cf. Fig. 1a) are containers that
allow agents to prune their crawling in the hypermedia environment, as well as
focus their observations on those parts of the environment that are of inter-
est – cf. Principle 3 (observability). When observing an artifact, the artifact’s
observable properties and events constitute percepts. In BDI architectures, such
percepts can be modeled inside agents as beliefs about the state of their environ-
ment. Agents can use artifacts to observe other agents in the system regardless
of their location.

Hypermedia Networks of Agents and Artifacts. We formalized the pro-
posed model in an OWL 2 ontology, which we call the Agent Environment (EVE)
ontology (see Fig. 1b). Engineers can use the ontology to create uniform repre-
sentations of hypermedia MASs based on the proposed core model. The ontol-
ogy can then be extended with modules for other dimensions of MASs, or with
domain- and application-specific modules. A benefit of choosing Web standards
is that engineers of hypermedia MASs can then benefit from all the results and
resources provided by the Semantic Web community (ontologies, tooling etc.).

To enforce Principle 2 (single entry point), it is important to consider the
navigability of hypermedia MASs. Representing explicitly in the environment all
eve:joined and eve:contains properties guarantees that all agents and arti-
facts in the system are discoverable. Agents are represented in the system via
user accounts, which can be used (among others) to interact with other agents
and observe their relations. Representing explicitly the agents’ relations (e.g.,
via eve:connectedTo) can help enhance navigability. The affordances of arti-
facts should also be described explicitly. The EVE ontology defines concepts and
properties for this purpose (cf. Fig. 1b). However, it is outside the scope of this
ontology to describe implementations of affordances. Other existing ontologies
can be used in conjunction with the EVE ontology for this purpose (e.g., [25]).
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4 Implementation and Experience

To demonstrate our approach, we developed a prototype platform for hypermedia
MASs and used it to deploy a distributed hypermedia environment. We present
the demonstrator scenario in Sect. 4.1, and an overview of the deployed system
in Sect. 4.2. We discuss what has been achieved through this demonstrator and
what are the limitations in Sect. 4.3. The software used in our demonstrator is
available on GitHub.8,9

4.1 Demonstrator Scenario

We implemented a demonstrator in which a BDI agent has to notify a human
whenever an event occurs. The agent is situated in a hypermedia environment
that contains one workspace with two artifacts: an artifact that generates two
types of observable events (i.e., positive and negative), and a light bulb arti-
fact that can be used to send visual notifications to humans. The hypermedia
environment is distributed. The agent is given an entry IRI in the hypermedia
environment and has to discover the rest of the system at runtime.

In the beginning of our demonstration, the environment contains only the
event generator artifact (henceforth the event-gen artifact). The agent discovers
the event-gen artifact and starts observing the generated events, but at this
point the agent has no means to notify humans. The light-bulb artifact is
added to the environment. The agent discovers the light-bulb artifact and its
affordances, and can now send visual notifications to humans by flicking the light
bulb. At this point, however, the visual notifications do not differentiate between
positive or negative events – the light bulb is simply turned on and off.

While the system is running, a developer extends the light-bulb artifact
with a new operation for setting the color of the light. The agent discovers the
newly added operation and can now send visual notifications with different color
codes (i.e., green light for positive events, blue light for negative events).

4.2 System Overview and Deployment

We deployed the hypermedia environment in our demonstrator scenario using a
prototype platform for hypermedia MASs, named Yggdrasil10. The environment
was distributed across two Yggdrasil nodes: one node hosted the event-gen
artifact and was deployed on a virtual machine in the cloud, and the other node
hosted the light-bulb artifact and was deployed on a Raspberry Pi in our
local network. We used a Philips Hue light bulb that is accessed via the HTTP
API exposed by a Philips Hue bridge in the local network. The BDI agent in
our scenario was implemented in a separate JaCaMo [4] application that was
deployed on a MacBook Air machine in the local network.

8 https://github.com/andreiciortea/emas2018-yggdrasil, accessed: 05.11.2018.
9 https://github.com/andreiciortea/emas2018-jacamo, accessed: 05.11.2018.

10 Yggdrasil is a mythical tree that interconnects the nine worlds in Norse mythology.

https://github.com/andreiciortea/emas2018-yggdrasil
https://github.com/andreiciortea/emas2018-jacamo
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In what follows, we first present the deployed hypermedia environment, and
then discuss our implementation considerations for Yggdrasil and the JaCaMo
application.

Hypermedia Environment. We constructed the hypermedia environment
in our scenario using the EVE ontology. Dereferencing the environment’s IRI
retrieves the RDF representation shown in Listing 1.1. This representation points
to one contained workspace (line 4), which allows agents to continue their crawl-
ing. Dereferencing the workspace IRI returns a similar representation (presented
later in Listing 1.3) that points to the artifacts available in that workspace.

Listing 1.1. A Turtle [31] representation of the deployed environment created with
the EVE ontology.

1 @pref ix eve : <http :// w3id . org / eve#> .

2

3 <http :// yggd r a s i l . a nd r e i c i o r t e a . ro / environments /env1> a eve : Environment ;

4 eve : conta ins <http :// yggd r a s i l . a nd r e i c i o r t e a . ro /workspaces /wksp1> .

Dereferencing the IRI of the light-bulb artifact retrieves the representa-
tion shown in Listing 1.2. In addition to the EVE ontology, this representation
uses the W3C Web of Things (WoT) Thing Description (TD) ontology (cur-
rently being standardized [25]) and is based on a WoT TD used at the latest
plugfest of the W3C WoT Working Group. The WoT TD ontology was designed
to describe interactions with things in the WoT. Even though the thing and
artifact abstractions have been developed independently in two different com-
munities (and for different purposes), the abstractions define a similar interface
composed of observable properties, observable events, and actions (or operations,
respectively). This makes the WoT TD ontology a good candidate standard for
describing interfaces of artifacts in hypermedia environments. Here, we use the
WoT TD to describe the HTTP API of the Philips Hue light bulb in our deploy-
ment.

Listing 1.2 shows the description of an artifact operation for setting the color
of a Philips Hue light bulb. In our demonstrator, this operation is added in the
hypermedia by a developer while the system is running. We have created similar
operation descriptions for turning the light bulb on and off.

Listing 1.2. This listing shows an excerpt from the RDF representation used for the
light-bulb artifact in our deployment. The operation shown here allows an agent to set
the color of a given Philips Hue light bulb. The description includes a full specification
of the HTTP request that implements the operation.
1 @pref ix td : <http ://www.w3 . org /ns/ td#> .
2 @pref ix xsd : <http ://www.w3 . org /2001/XMLSchema#> .
3 @pref ix i o t : <http :// iotschema . org/> .
4 @pref ix http : <http :// iotschema . org / p ro toco l /http> .
5

6 <http : / /85 . 2 04 . 1 0 . 2 33 : 8 080/ a r t i f a c t s /hue1>
7 a eve : Ar t i f a c t , td : Thing , i o t : Light , i o t : BinarySwitch ;
8 eve : hasName ”Lamp”ˆˆxsd : s t r i n g ;
9 td : base ”http : //192 . 168 . 0 . 101/”ˆˆ xsd : anyURI ;

10 td : i n t e r a c t i o n [
11 a eve : Operation , td : Action , i o t : SetColor ;
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12 td : name ”Set Color ”ˆˆ xsd : s t r i n g ;
13 td : form [
14 http :methodName ”PUT”ˆˆxsd : s t r i n g ;
15 td : h r e f ”/ api /YqqaHVH8QF−...−UQc/ l i g h t s /3/ s t a t e ”ˆˆ xsd : anyURI ;
16 td : mediaType ” app l i c a t i on / j son ”ˆˆ xsd : s t r i n g ;
17 td : r e l ” invokeAction ”ˆˆ xsd : s t r i n g
18 ] ;
19 td : inputSchema [
20 td : schemaType td : Object ;
21 td : f i e l d [
22 td : name ”on”ˆˆ xsd : s t r i n g ;
23 td : schema [ td : schemaType td : Boolean ; td : const t rue ]
24 ] ;
25 td : f i e l d [
26 td : name ”xy”ˆˆ xsd : s t r i n g ;
27 td : schema [
28 td : schemaType td : Array ;
29 td : i tems [ a i o t : CIExData ; td : schemaType td : Number ] ,
30 [ a i o t : CIEyData ; td : schemaType td : Number ]
31 ] ] ] ] ,
32 ( . . . )

Yggdrasil. The hypermedia environment deployed in our demonstrator was
hosted on Yggdrasil. While still under early development, Yggdrasil provides two
core functionalities required by our demonstrator: (i) it serves as a repository
for hypermedia environments that conform to the model in Sect. 3.2, and (ii) it
acts as a hub that (partially) implements the W3C WebSub recommendation11;
agents (or any software clients) can use this functionality to observe resources
in the environment. The Yggdrasil version used in our demonstrator is available
on GitHub.12

Yggdrasil implements an event-driven non-blocking architecture using
Vert.x 13, a framework that is both powerful enough to support high-throughput
Web servers14, and lightweight enough to perform well on small devices, such
as the Raspberry Pi15. The platform exposes a REST HTTP API for creating,
updating, and deleting RDF representations of environment, workspace, and arti-
fact abstractions. For instance, Listing 1.3 shows an HTTP request that retrieves
a Turtle [31] representation of the workspace used in our deployment. Lines 12–14
point to the artifacts contained in this workspace (and make them discoverable).

Listing 1.3. A sample HTTP request (and the corresponding response) for retrieving
the representation of a workspace from Yggdrasil.
1 GET /workspaces /wksp1 HTTP/1.1
2 Host : y g gd r a s i l . a nd r e i c i o r t e a . ro
3

4 HTTP/1.1 200 OK
5 Content−Type : t ext / t u r t l e
6 Link : <http :// yggd r a s i l . a nd r e i c i o r t e a . ro /hub>; r e l=”hub”
7 Link : <http :// yggd r a s i l . a nd r e i c i o r t e a . ro /workspaces /wksp1>; r e l=” s e l f ”

11 https://www.w3.org/TR/2018/REC-websub-20180123/, accessed: 05.11.2018.
12 https://github.com/andreiciortea/emas2018-yggdrasil, accessed: 05.11.2018.
13 http://www.vertx.io/, accessed: 05.11.2018.
14 According to independent benchmarks for Web frameworks: https://www.

techempower.com/benchmarks/, accessed: 05.11.2018.
15 http://vertx.io/blog/vert-x3-web-easy-as-pi/, accessed: 05.11.2018.

https://www.w3.org/TR/2018/REC-websub-20180123/
https://github.com/andreiciortea/emas2018-yggdrasil
http://www.vertx.io/
https://www.techempower.com/benchmarks/
https://www.techempower.com/benchmarks/
http://vertx.io/blog/vert-x3-web-easy-as-pi/
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8

9 <http :// yggd r a s i l . a nd r e i c i o r t e a . ro /workspaces /wksp1>
10 a <http :// w3id . org / eve#Workspace> ;
11 <http :// w3id . org / eve#hasName> ”wksp1” ;
12 <http :// w3id . org / eve#conta ins>
13 <http : / /85 . 2 04 . 1 0 . 2 33 : 8 080/ a r t i f a c t s /hue1> ,
14 <http :// yggd r a s i l . a nd r e i c i o r t e a . ro / a r t i f a c t s / event−gen> .

The response shown in Listing 1.3 contains two Link headers that conform
to the W3C WebSub recommendation. Agents can thus discover and use these
headers to subscribe for notifications whenever the workspace evolves (e.g., an
artifact is added or removed, the workspace is deleted). All resources hosted on
Yggdrasil support WebSub by default.

JaCaMo Application. To facilitate access to the hypermedia environment, our
JaCaMo application16 provides agents with “middleware” they can use. Given
the IRI of a hypermedia environment (e.g., see Listing 1.1), the middleware
automatically reflects into the local CArtAgO environment all the workspaces
discovered in the hypermedia and the artifacts they contain. Agents are notified
whenever a workspace or an artifact has been reflected. The middleware also
provides agents with a CArtAgO artifact that serves as a hypermedia controller
(i.e., a facade) for hypermedia artifacts with WoT TDs (e.g., see Listing 1.2).
A controller is instantiated for each such artifact discovered in the hypermedia.
Using these controllers, agents can then interact with hypermedia artifacts as
they would typically interact with local CArtAgO artifacts. The main difference
is that each controller instance exposes metadata via observable properties, such
as what are the operations supported by the hypermedia artifact. To perform an
operation, such as the one of changing the light color in Listing 1.2, agents use
a generic act operation provided by the controller, as shown in Listing 1.4. This
generic operation takes as arguments the IRI of the actual intended operation
and its parameters, which can also carry semantics via IRIs. The IRIs could
denote terms defined by an ontology.

Listing 1.4. The Jason plan used to send visual notifications via colored light.

1 +! t h i n g c o l o r e d l i g h t n o t i f i c a t i o n ( ArtifactName , CIEx , CIEy) : t rue <−
2 act (” http :// iotschema . org / SetColor ” , [

3 [ ” http :// iotschema . org /CIExData” , CIEx ] ,

4 [ ” http :// iotschema . org /CIEyData” , CIEy ]

5 ] ) [ a r t i f a c t name ( ArtifactName ) ] ;

6 . wait ( 2000 ) ;

7 act (” http :// iotschema . org / SwitchOff ” , [ ] ) [ a r t i f a c t name ( ArtifactName ) ] .

In addition to hypermedia controllers, the middleware can also instantiate
regular CArtAgO artifacts based on semantic descriptions discovered in the
hypermedia, such as the one in Listing 1.5 for the event-gen artifact in our
demonstrator. This allows offloading the execution of artifacts on the client-side
– if the artifact code can be retrieved at runtime (e.g., via JavaScript, OSGi).

16 https://github.com/andreiciortea/emas2018-jacamo, accessed: 05.11.2018.

https://github.com/andreiciortea/emas2018-jacamo
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Listing 1.5. RDF description of the event-gen artifact, which includes the canonical
name of the Java class of the corresponding CArtAgO artifact. Initialization parameters
could also be specified in the description.

1 <http :// yggd r a s i l . a nd r e i c i o r t e a . ro / a r t i f a c t s / event−gen> a eve : A r t i f a c t ;

2 eve : hasName ”event−gen” ;

3 eve : hasCartagoArt i fac t ”emas . EventGeneratorArt i fact ” .

4.3 Discussion

Our demonstrator proves key elements of our hypothesis. In what follows, we
analyze what has been demonstrated for the scalability and evolvability of hyper-
media MASs, and then discuss the limitations of our demonstrator.

Scalability. Our demonstrator shows that agents can perceive and act upon
a distributed hypermedia environment while being agnostic to the underlying
infrastructure. The environment in our demonstrator is distributed across loosely
coupled origin servers, and agents observe the environment using WebSub hubs
discovered at runtime. All entities in our demo use the same WebSub hub, but
each entity could use any number of hubs (e.g., to distribute the load). Other
publish/subscribe mechanisms for Web resources can also be used, such as the
one built into CoAP [33]. In principle, any mechanisms that have proved useful
for managing the growth of the Web (e.g., load balancers, intermediaries for
enforcing security or encapsulating legacy systems) could be applied to manage
the growth of the hypermedia environment infrastructure.

Evolvability. Our demonstrator shows that hypermedia-driven interaction
allows agents and their environments to be deployed and to evolve independently
from one another. Agents can discover the distributed hypermedia environment
at runtime starting from a single entry point, and they can observe the environ-
ment as it evolves – for instance, as workspaces and artifacts are added to the
environment. Artifacts themselves can also evolve at runtime without disrupting
the behavior of agents. This allows engineers to enrich the MAS with features
that were not anticipated when the system was initially deployed. Furthermore,
both engineers and agents could further exploit the hypermedia to enrich the
system over time, for instance by writing new resources for agents to discover
and use (e.g., shared knowledge) or by rewiring relations among resources (e.g.,
to create mash-ups of artifacts). The Web has already shown that a resource-
oriented, evolvable environment can support new and unanticipated applications,
which is essential for sustaining long-lived MASs.

Limitations. In our demonstrator, agents are able to use artifacts as they evolve
at runtime, but the behaviors that use the artifacts are pre-programmed (e.g.,
see Listing 1.4). However, this is a limitation of our demonstrator and not an
intrinsic limitation of our approach. One way to avoid this limitation would be
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to advertise in the hypermedia artifact manuals (e.g., [7,36]) that would allow
agents to infer how to achieve their goals using the discovered artifacts.

As mentioned, Yggdrasil is in an early stage of development. As such, it
does not yet implement an engine for actually running the artifacts, such as
CArtAgO [32]. The logic of the event-gen artifact was simulated for the purpose
of this demonstrator by sending the generated events via HTTP to Yggdrasil,
which then dispatches the events to subscribers. The “middleware” developed
in our JaCaMo application is an ad hoc solution meant to demonstrate that the
additional programming complexity that comes with hypermedia environments
can be mitigated through tooling. A proper extension would require a deeper
integration into CArtAgO.

5 Conclusions

This chapter presents an approach to enable uniform interaction among het-
erogeneous entities in an open MAS such that the entities can be developed,
deployed and can evolve independently from one another. The core idea is to use
hypermedia to drive the interaction between agents and their environment. Our
demonstrator proves that this approach: (i) can effectively decouple agents from
their environment, and (ii) allows a seamless distribution of the environment.
Even though in this chapter we focus on the agent ↔ environment interaction,
the environment can also mediate interaction with other dimensions of a MAS:
it can be used to discover and interact with other agents (e.g., as we have shown
in [6,8]), with organizations (e.g., by means of organizational artifacts [4]) etc. In
principle, any abstract entity in a MAS that is relevant to agents can be reified
in the hypermedia environment – either as a passive resource that agents can
discover and consume (e.g., to learn a new interaction protocol), or as an active
resource (e.g., a tool) that agents can interact with. The results presented in
this chapter suggest that using hypermedia as a general mechanism to support
uniform interaction in MASs enhances the systems’ scalability and evolvability –
and could potentially enable the deployment of world-wide and long-lived MASs.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43
(2001)

2. Berners-Lee, T., Fischetti, M.: Weaving the Web: The Original Design and Ulti-
mate Destiny of the WorldWideWeb by Its Inventor. DIANE Publishing Company,
Darby (2001)

3. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic
Web Inf. Syst. (IJSWIS) 5(3), 1–22 (2009)
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Abstract. The evaluation of cognitive agent systems, which have been
advocated as the next generation model for engineering complex, dis-
tributed systems, requires more benchmark environments that offer more
features and involve controlling more units. One issue that needs to be
addressed time and again is how to create a connector for interfacing cog-
nitive agents with such richer environments. Cognitive agents use knowl-
edge technologies for representing state, their actions and percepts, and
for deciding what to do next. Issues such as choosing the right level of
abstraction for percepts and action synchronization make it a challenge
to design a cognitive agent connector for more complex environments.
The leading principle for our design approach to connectors for cogni-
tive agents is that each unit that can be controlled in an environment
is mapped onto a single agent. We design a connector for the real-time
strategy (RTS) game StarCraft and use it as a case study for establishing
a design method for developing connectors for environments. StarCraft is
particularly suitable to this end, as AI for an RTS game such as StarCraft
requires the design of complicated strategies for coordinating hundreds
of units that need to solve a range of challenges including handling both
short-term as well as long-term goals. We draw several lessons from how
our design evolved and from the use of our connector by over 500 students
in two years. Our connector is the first implementation that provides full
access for cognitive agents to StarCraft: Brood War.

1 Introduction

Multi-agent systems, consisting of multiple autonomous agents interacting with
an external environment, have been promoted as the approach for handling
problems that require multiple problem solving methods, multiple perspec-
tives, and/or multiple problem solving entities [8]. In the past twenty years,
the research community has combined multi-agent system (MAS) concepts and
approaches into mature frameworks for agent-oriented programming (AOP)
[2,15]. Current cognitive agent technology thus offers a viable and promising

An earlier version of this work was presented at the 2018 EMAS workshop [10].
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alternative to other approaches for engineering complex distributed systems
[6,14]. However, Hindriks [6] also concludes that “if [cognitive] agents are advo-
cated as the next generation model for engineering complex, distributed systems,
we should be able to demonstrate the added value of [multi] agent systems.”

Designing a connector that can demonstrate this added value by connecting
cognitive agents with an environment that puts strict real-time constraints on
the responsiveness of agents, requires coordination at different levels (ranging
from a few agents to large groups of agents), and requires complex reasoning
about long-term goals under a high level of uncertainty is not a trivial task. The
connectors that are currently available for use with cognitive agent systems have
remained rather simple, and thus do not fully demonstrate the added value of
cognitive agent technology.

In this chapter, we aim to establish a design approach for developing connec-
tors for complex environments, aimed at facilitating the development of more
connectors that can be used to demonstrate the ease of use of cognitive tech-
nologies for engineering large-scale complex distributed systems for challenging
environments. We believe that RTS games that deploy large numbers of units
provide an ideal case study to this end [4,17]. The basic idea is to control each
unit with a cognitive agent. Based on this, and in accordance with Google (Deep-
Mind) and many other AI researchers [13,16], we believe that StarCraft is the
most suitable RTS game to target in our case study. Moreover, several popular
competitions exist for StarCraft AI that can serve as a benchmark for implemen-
tations that use cognitive technologies [16]. By carefully designing and efficiently
implementing a cognitive agent connector to StarCraft, and then testing this con-
nector with large groups of students, we iteratively refine our approach for the
development of agent-environment connectors.

Our focus in this work is on the case study of designing a connector that
enables and facilitates the use of cognitive agent technology for engineering
strategies for StarCraft (Brood War) based on a one-to-one unit-agent map-
ping, which is different from most existing StarCraft AI implementations. This
unit-agent mapping introduces important challenges that need to be addressed:

1. The connector should facilitate a MAS that operates at a level of abstraction
that is appropriate to cognitive agents.

2. The connector should be sufficiently performant in order to support a suffi-
cient variety of viable MAS implementations using cognitive agents (i.e., both
different approaches to implementing strategies as well as the use of different
agent platforms).

In other words, the connector design should not force a cognitive MAS to oper-
ate at the same level of detail as bots written for StarCraft in C++ or Java,
but also not promote the other extreme and abstract too much (e.g., clearly the
extreme abstraction of providing a single action ‘win’ is not useful). To make
optimal use of the reasoning typically employed by cognitive agents, the con-
nector should leave low-level details to other control layers whilst still allowing
agents sufficiently fine grained control.
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The remainder of this chapter is organized as follows. In Sect. 2, we discuss
the current state-of-the-art in environments available for cognitive agents. Next,
in Sect. 3, we introduce StarCraft as a case study for connector design. In Sect. 4,
we detail our design approach of a multi-agent connector by introducing general
guidelines, applying them to our case study, and discussing the lessons learned
from this. Finally, Sect. 5 concludes this chapter with recommendations for future
work on both cognitive agent connectors as well as cognitive agent technologies
in general.

2 Related Work

Connectors that support connecting cognitive agent technology to games have
been made available for other games [3]. So far, however, most connectors have
remained rather simple. The most complex cognitive multi-agent connectors that
have been made available so far, are connectors for Unreal Tournament [7]. The
design of such a connector involves similar issues related to the facilitated level of
abstraction and the resulting performance as in this work. However, the resulting
implementation as reported on by Hindriks [7] does not support running more than
10 agents, whereas for a StarCraft interface we need to connect hundreds of cog-
nitive agents to control the hundreds of units in game. Moreover, corresponding
agent systems for Unreal Tournament generally offer only a very restricted set of
actions that agents can perform (i.e., mostly just a “go to” action because other
middleware software is used to take care of path planning, shooting, etc.) or com-
munication (i.e., mostly just informing others about enemy positions), limiting the
complexity of decision making that is required. Relatively speaking, compared to
StarCraft, the diversity in strategies or tactics that can be deployed is rather small.
Another problem related to Unreal Tournament is that games cannot be sped up,
complicating testing and debugging. It is therefore not feasible to derive a design
approach for connectors to richer environments from this work.

RTS games are widely regarded as an ideal testbed for AI [13,17]. An RTS
game like StarCraft involves long-term high-level planning and decision making,
but also short term control and decision-making with individual units. This dis-
tinction between respectively strategical and tactical decision making is generally
referred to as macro and micro respectively. These factors and their real-time
constraints with hidden information make RTS games like StarCraft ideal for
iterative advancement in addressing fundamental AI challenges [17]. Although
machine learning solutions have been applied to some problems at the micro
level, learning techniques have not been successfully applied to other aspects,
mainly due to the vast state spaces involved [16]. The concepts of cognitive
agents seem to be a good fit for addressing these challenges, allowing individual
cognitive agents to reason about their tactical decision making whilst also inher-
ently facilitating communication to make decisions at a joint strategical level.
The reasoning typically applied by cognitive agents seems to lend itself for macro
really well, but such systems can potentially employ learning techniques to per-
form specific sub-tasks (at the micro level) as well. A cognitive agent connector
can also facilitate the use of MAS as an approach for allowing several individual
AI techniques to work together.
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The work of Weber et al. [19] recognizes the value of agent-oriented techniques
for StarCraft AI. Their “EISBot” uses a reactive planner combined with external
components like case-based reasoning and machine learning. Similar to multi-
agent systems, the concepts of percepts and actions are used. However, there is
only a single ‘agent’ that is compartmentalized into several specific managers.
This approach is thus still based on a single-bot approach, whilst in this work,
we instead aim to design a connector for multi-agent systems in which each in-
game unit is connected to an individual cognitive agent. Moreover, it is not made
clear which percepts and actions are provided, and what the gain in terms of
abstraction level and the loss in terms of performance in this implementation is,
as the focus is on the implementation of the StarCraft bot itself, instead of on
the design of a (generic) connector as in this paper.

The prototypical RTS game is StarCraft [16], originally developed by Bliz-
zard in 1998, but still immensely popular both in (professional) gaming and
AI research. An API for StarCraft (Brood War) has been developed for sev-
eral years: BWAPI [5]. BWAPI reveals the visible parts of the game state to
AI implementations, facilitating the development of competitive (non-cheating)
bots. Several dozens of such bots have been created with this API, mostly writ-
ten in C++ or Java, aimed at participating in one of the tournaments that
are being held for StarCraft AI implementations. However, this work does not
directly facilitate cognitive agents that use knowledge technologies and realise a
one-to-one unit-agent mapping.

A first attempt at creating a cognitive interface for StarCraft was performed
by Jensen et al. [9]. In this work, a working proof-of-concept that ties in-game
units to cognitive agents was introduced. However, it does not address the major
challenges such an implementation faces concerning the level of abstraction and
corresponding performance, as we do in this work. When using this connector, it
is not possible to create viable (diversities of) strategies, as the range of strategies
it supports is quite limited. This connector only offers a small subset of all
possible actions associated with each unit in the game, and the percepts made
available by the connector do not provide sufficient information for in game
decision making either. In this work, we aim to allow virtually any strategy to
be implemented with a sufficient level of performance using a cognitive agent
connector based on the design approach we propose.

3 Case Study: StarCraft

In StarCraft, each of the three playable races have their own set of unit types,
with roughly 15 types of air/ground units and 15 types of buildings per race.
Although many races share similar types of buildings (e.g., depots to bring
resources to), there are also substantial differences to take into account (e.g.,
one race requiring units to ‘morph’ into a different type of unit). For most types
of units, there are usually multiple ‘instances’ (i.e., individual units) in a game,
thus allowing anywhere from 5 up to 400 units representing one army in the
game at a certain time. Depending on factors such as game length, the average
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number of units for an army in a typical game at any point in time is around
100, although many units will also die during the game (i.e., the total number of
agents used is much higher). Performance is thus of vital importance, as a sub-
stantial performance impact caused by large amounts of percepts for example,
will limit the amount of viable strategies.

Our cognitive agent connector to StarCraft was developed and refined in
three iterations. We draw several general lessons from these iterations, which
we have incorporated into our proposal for a connector design approach. Ini-
tially, a pilot was held with around 100 Computer Science master’s students
that worked in groups on creating a StarCraft bot using this connector. Shortly
after, over 200 first year Computer Science bachelor’s students did the same with
an improved version of the connector, being the largest StarCraft AI project so
far. We continued development of the connector after this project, and made
several additional improvements, after which 300 first year Computer Science
bachelor’s students used the ‘final version’ of our connector.

4 Connector Design Approach

In this section, we discuss our design approach for a cognitive agent connector.
The core of such a connector consists of three components: (i) the entities that
are provided for agents to connect to (i.e., units in an RTS game), (ii) the outputs
that are generated by each entity (and thus which percepts a corresponding
agent receives), and (iii) the inputs that are available for each entity (and thus
which actions an agent controlling the entity can perform). This structure is
illustrated in Fig. 1. Each of these aspects will be discussed, starting with general
guidelines, their application to our case study of StarCraft, and the refinements
that were made after practical use of the StarCraft connector. Next, key steps for
evaluating whether the connector design is fit for use in practice for developing
cognitive MAS will be given and performed for our connector.

Fig. 1. An overview of the various components, with StarCraft on the left, our con-
nector in the center, and a cognitive agent system playing the game on the right.

We make some basic assumptions about the architecture of a cognitive agent,
as illustrated in Fig. 2. We assume such an agent pro-actively reasons about the
actions that it should take based on (for example) its goals and beliefs in some
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Fig. 2. The assumed structure of a cognitive agent in a multi-agent system (left) inter-
acting with an external environment (right).

fixed decision cycle that is asynchronous from the environment in which it oper-
ates (for a certain entity in that environment), from which it receives information
through percepts. Multiple agents can work together in one multi-agent system,
which is not centrally controlled but does facilitate direct messaging between
(groups of) agents. Our connector makes use of the Environment Interface Stan-
dard [1] in order to facilitate interacting with MAS platforms.

4.1 Micro and Macro Management

In complex environments such as StarCraft, a crucial distinction exists between
top-down strategical decision making (macro) and bottom-up tactical decision
making (micro). The basic assumption that we make is that a connector needs
to provide support for a multi-agent approach based on a one-to-one unit-agent
mapping, which inherently facilitates decision making from a bottom-up per-
spective. At the micro level, every unit that is active in the environment should
be mapped onto an entity that a cognitive agent can connect to in order to con-
trol the behaviour of the unit. For StarCraft, this thus means that any moving or
otherwise active unit such as a building will be controlled by a cognitive agent.

Although we initially assumed that the emergent behaviour from these agents
would be sufficient to cover the strategical aspects, in practice this was hindered
by the high dynamicity of an environment such as StarCraft, for example illus-
trated by the fact that any unit can be killed at any point in time. To facilitate
macro management, we therefore have introduced a new, special kind of entities,
so-called managers, which are made available by the connector. Managers do not
match with unique in-game units, and as such they do not naturally have percepts
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or actions associated with them. However, as they still need to be informed about
the state of the game in order to perform strategical decision making, they instead
should have the ability to receive desired global information through percepts, as
for example indicated by a developer in the initialization settings of a MAS.

Manager agents are especially useful to reason about groups of units. For
example, without managing agents, all agents for resource gathering units in
StarCraft (of which there are generally several dozen) would have to process
information about the available resources and resource depots (i.e., subscribe to
the relevant percepts and handle them), and then coordinate amongst each other
about the division of tasks (i.e., implement some decentralized messaging pro-
tocol). Instead, a single manager agent can be the only one to have to deal with
all the information about resources, and then use this information to assign a
task to each resource gathering unit (i.e., through messaging), whilst in contrast
the agents for those units would still handle defending themselves for example.
This significantly reduces the total amount of percept processing and message
sending that is required in such a situation. Moreover, in our case study we found
that there is a need for dynamically adding or removing managers in order to
for example temporarily centralize the reasoning for a group of attacking units,
which is another frequently occurring situation in which using managers is bene-
ficial for both performance and the effectiveness of the coordination between the
relevant agents. The specific type and choice of managers that are made avail-
able by a connector and the resulting organizational structure is, however, not
specified in our design approach so as to facilitate as many multi-agent system
structures as possible. As there is information that is specific to certain units
(and thus specific agents), and each unit has its own set of actions (which a single
agent needs to call), it is not possible to completely centralize the reasoning.

Because our approach is to provide an entity (i.e., to which an agent can
connect) for each unit, and the available actions for each unit are mainly defined
by the (interface to) the environment itself, the main challenge when balancing
the level of abstraction with the resulting performance is in determining the
percepts that are available. As we assume cognitive agents here that explicitly
represent their beliefs and goals, this essentially means we need to design an
ontology that includes all relevant concepts for representing and reasoning about
the environment at an appropriate level of abstraction.

4.2 Local and Global Information

The set of available percepts determines what information a specific entity ‘sees’
during the game, and thus what information its corresponding agent will receive.
Percepts have a name to describe them and a set of arguments that contain the
actual data. For example, a percept could be defined as map(Width, Height),
and an agent could then receive map(96, 128) in a match. In order to determine
the percepts that are created for each type of unit, our approach proposes several
design guidelines. A key foundation of our approach to handling information from
complex environments such as StarCraft is that there is a difference between
‘local ’ information that is specific to a certain unit in the game (e.g., a unit’s
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health) and ‘global ’ information that is potentially relevant to all units (e.g.,
the locations of enemy units). An agent should be able to perceive all local
information that is specific to its corresponding unit’s state, whilst a manager
agent should be able to perceive all global information that is needed for its
strategic (macro) reasoning. However, pieces of global information might also be
needed in the agent for a specific unit (e.g., nearby enemy units in StarCraft).

To this end, we initially pushed all global information to all unit and man-
ager entities, as a connector cannot determine which parts of this information
a specific agent will need. However, our case study showed that this caused a
significant performance impact with larger numbers of units. We have therefore
found it useful to provide specific mechanisms to a developer to fine-tune the
delivery of global percepts. Through the connector’s initialization settings, a
list of desired ‘global information’ (i.e., names of percepts) can be given (“sub-
scribed to”) for each unit type. For example, the (pseudocode) initialization
rule zergHatchery: [friendly, enemy] will ensure that all agents for all Zerg
Hatchery entities in a match will receive information about all friendly units and
all visible enemy units. In this way, a developer can decide which information is
relevant for certain agents, instead of such information being sent to agents at
all times. This mechanism can also be used for specifying in more detail which
global information a certain manager agent needs to be made aware of. Finally,
we assume that when local information is needed for macro reasoning, this can
be sent to the appropriate manager agent by the agent for a specific unit within
the agent platform; it is thus not required to handle this within the connector
(design) itself, as illustrated by the wave-shape in Fig. 3.

Fig. 3. Main design approach for organizing information into local and global percepts
for micro (unit) or macro (manager) entities.

The ease of use of the percepts for an agent programmer should also be
taken into consideration, i.e., by grouping related pieces of information together.
The design guideline here is that one should only group sets of parameters that
naturally belong together. Moreover, to avoid having to deal with different kinds
of percepts for each type of unit, a design guideline is that the percepts should be
as generic as possible in order to facilitate re-use between different agents. This
guideline is aimed at reducing the number of different concepts introduced in
our percept ontology, and thus aims for efficiency of design. An example of this
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is the status percept for each unit, as its structure (i.e., the set of parameters)
is the same for each unit, even though not all information might be relevant for
each unit (not all units use energy for example, but a unit’s energy level is always
provided in the percept). This also allows for specifying generic code for handling
the status percept for all agents only once in the program, instead of having to
specify this specifically (and nearly identically) for each unit type; special cases
for certain types of units can then be programmed only where necessary.

Performance. One of the main challenges is how to deliver all percepts while
guaranteeing sufficient performance levels. It is important to manage the per-
cept load of individual agents, as creating the information needed for percepts
(i.e., in the connector) and relaying that information to one or multiple agents
who then have to make this information available for use in reasoning (i.e., by
representing them in a Prolog base) is the most resource intensive task in a
connector. In contrast to actions, of which usually at most one is selected per
decision cycle, there are usually many percepts (all containing various amounts
of information) sent to each agent per decision cycle. We therefore introduce a
number of optimization guidelines which aim to either reduce the total number
of percepts an agent will have (to store) or the amount of updates to this set of
percepts that an agent will have to process.

Complex environments have a lot of static information to which all individual
agents may need to have access, like what a certain unit costs to produce or what
kinds of units a certain building can produce in StarCraft. Because such environ-
ments also introduce many units (and thus many agents), the initialization costs
for such information for each of these agents can have a rather big impact on a
connector’s performance. To avoid this issue as much as possible, we introduce
another design guideline to only create percepts for information that changes
in a single match or between matches. Static information is better suited to be
encoded in the agent system itself instead of being sent through percepts, as
this will significantly reduce the performance when initializing an agent (which
as aforementioned can happen many times during a game as large numbers of
units come and go almost constantly). To this end, information that is fixed by
the game itself can be coded as a separate part of the ontology that can and
needs to be loaded only once at the start of the game. Agents will still need to be
informed about changes between matches, e.g., map-specific information should
not be included in the ‘fixed part’ of the ontology. Another guideline to keep the
number of percepts low is to ensure that no data is sent through percepts that
can either be calculated based on other data (e.g., the number of friendly units
by counting the number of percepts about their status), or retrieved from other
agents (e.g., the position of a friendly unit). Relaying information (like friendly
unit positions) through messaging between the agents in a MAS is usually much
more efficient, as an agent programmer can then selectively choose at which
times and to which units to send specific pieces of information, as opposed to
percepts always being sent to certain units even when they do not require them
(at that time).
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In order to improve the performance of the percepts that we do have to send,
the Environment Interface Standard (EIS) [1], that we have used as a foundation
for implementing our connector, differentiates between three types of percepts1:

– Send once: this type of percept is only sent once. Such percepts are generally
used to send data about the (specific) match when an agent is created, such
as information about the map on which the match is played.

– Send on change: a percept of this type will only be sent if the percept
changes. Such percepts are generally used to update known information, such
as a unit’s health or the number of available resources.

– Send always: a percept of this type will be perceived every time the corre-
sponding agent asks for percepts. Such percepts are generally used to indicate
temporary information, such as seeing an enemy unit (which can die, after
which the corresponding percept is no longer generated).

Send once percepts will be most performant, whilst send always percepts will
be least performant. However, as indicated, some information cannot be repre-
sented in a ‘more performant’ type. It is thus important for to carefully consider
which percept category certain (groups of) information would best fit in order
to optimize the performance.

For StarCraft, combining the (finite set of) information that is available
through the BWAPI interface with the guidelines as posed in this section lead
to a set of about 25 percepts2.

We have designed and optimized our algorithms to compute the difference
between information states in order to generate new percepts as fast as possible.
Most percepts are only generated if some change occurred. Our connector has
been carefully designed so as to optimize the generation of percepts by first and
only once generating the global percepts (i.e., that are not specific to units),
such as the list of (visible) friendly and enemy units, followed by the generation
of the percepts specific to each entity. This structure also ensures that agents
receive their percepts immediately when they ask for them, i.e., they are not
generated when requested (which would slow down the agent significantly) but
only when information actually changes.

4.3 Asynchronous Actions

The actions available for a certain entity define the range of behaviour that is
possible for a corresponding agent implementation. The basic design guideline
here is that as a rule, any action that a unit can do (i.e., that is available in the
environment) should be available to its corresponding entity (and thus agent).

1 There are actually four percept types, but we do not consider on-change-with-
negation as this type will be removed in future versions of EIS due to compatibility
issues with knowledge representation languages other than Prolog.

2 For the full set of percepts and actions that are available, we refer to the Star-
Craft Connector Manual at https://github.com/eishub/Starcraft/blob/master/doc/
Resources/StarCraftEnvironmentManual.pdf.

https://github.com/eishub/Starcraft/blob/master/doc/Resources/StarCraftEnvironmentManual.pdf
https://github.com/eishub/Starcraft/blob/master/doc/Resources/StarCraftEnvironmentManual.pdf
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A unit in StarCraft can roughly choose from about 15 types of actions at any
given time. Certain actions are only available to specific types of units (e.g.,
loading a unit into a loadable building). Some abstractions were used in order
to better facilitate the usability of this set of actions for agent programmers. For
example, instead of using pixel coordinates, StarCraft allows tile coordinates
to be used, i.e., corresponding to a certain block of 32 by 32 pixels (buildings
in StarCraft always have a size that is a multiple of 32 pixels in any dimen-
sion). This abstraction of pixels to tiles is also used in coordinates in percepts,
thus not only ensuring easy compatibility with the actions but also allowing for
percepts containing coordinates to be updated significantly fewer times when
a unit is moving for example. We also note that BWAPI does not explicitly
support grouping units (i.e., as a human player would do), and thus each unit
needs to choose its own course of action. However, creating group behaviour in
a multi-agent system is facilitated through inherent mechanisms such as mes-
saging between agents. Manager agents thus do not need specific actions from a
connector, as they can rely solely on the facilities in the agent platform.

However, as a MAS platform uses and runs agents in its own (set of) thread(s)
that need to be connected to the environment, synchronisation issues arise that
in particular for StarCraft pose a challenge, as StarCraft runs at a specific rate,
updating the game logic at fixed millisecond intervals in so called ‘match frames’.
In existing (C++/Java) BWAPI bots, the match frame function is used as the
starting point (or even single function) for all decision making. In principle, this
conflicts with a multi-agent approach in which all cognitive agents run in their
own separate (autonomous) thread(s). As a solution, we use several synchroni-
sation mechanisms. First, and most importantly, for each entity all requested
actions are recorded (queued). On each match frame call, all queued actions
(for all entities) are executed, i.e., ‘forwarded’ to the corresponding unit in Star-
Craft itself. Agents have to carefully rely on feedback from the environment
(i.e., through percepts) to detect the effect of their actions, or when an action
has failed (e.g., because some other action by another agent just used up some
resources). A basic understanding of the synchronisation issues is thus needed
when developing agents for highly dynamic environments such as StarCraft.

Debugging and Testing. For complex environments such as real-time strat-
egy games and StarCraft in particular, it is also essential to provide a devel-
oper with environment-specific visualization tooling that provides easy access
to information that will allow the developer to understand what is going on in
this environment. Which (types of) tooling can be provided is specific to an
environment and the access provided by the basic API made available by the
environment.

In our case study, we have found that visualization tooling is most useful for
providing insight into basic capabilities such as navigation, the status of units,
and the progress of long-term actions such as a buildings producing a unit. For
example, even though agents do not exercise low-level navigation control, agents
do control the setting of target locations where units will move to. We therefore
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provide a developer with the option to enable visual cues about where a unit
is moving to in order to be able to debug the agent code that sets these target
locations. Another example of what our connector supports is visualizing when
a unit is being produced by a building, removing the need to click on each
building to see what it is producing (and how far along this production is) when
trying to debug the production logic in a specific building agent. Visualizations
like this can be implemented in StarCraft by using its debug drawing features
that support drawing lines or writing text in the game window. Using these
basic features, our connector allows for specific visualizations to be created by
agents themselves (i.e., through calling specific actions), also facilitating drawing
custom texts above in-game units. Examples of such ‘debug visualizations’ in
StarCraft are shown in Fig. 4.

Fig. 4. A screenshot of StarCraft with a bot performing many debug draw actions.

More generally, to be able to debug and test multi-agent systems effectively
and efficiently in an environment such as StarCraft where hundreds of agents
are running simultaneously, requires a developer to have access to cheats that
disclose or even modify gaming information that is not normally available to a
player. StarCraft specifically offers useful development functionalities (through
BWAPI calls) like removing the fog of war (i.e., making the whole map visible
to the player), quickly gaining resources, or to making units invincible. We have
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integrated these functionalities in a separate development tool (that includes a
button for gaining resources for example) and through initialization properties
of the connector (e.g., making units invincible right from the start of a match)
in order to make them easily accessible.

4.4 Evaluation

As high performance is critical for any cognitive approach that uses many agents
to deal with the challenges of AI for RTS, it is important to verify the (CPU)
performance of a connector. In addition, one should evaluate the requirement
that a connector does not restrict the strategy space in any essential way by
for example examining the success (i.e., in tasks in the environment) of a set
of cognitive MAS implementations that make use of the connector. We do so
by discussing the lessons we learned from the use of our connector by over 500
students in two years.

Performance. Complex real-time tasks, such as effectively attacking enemy
units in StarCraft, potentially require a new decision to be made in each match
frame (based on the new information such a frame generates). As our approach
is based on an unit-agent mapping, there are at least as many agents as units in
the game. To be performant, we need to show that all agents have the oppor-
tunity to receive new percepts and make a decision (i.e., perform an action)
each match frame. AI tournaments run StarCraft at speeds of at least 50 match
frames per second, which implies that in our case every agent should receive new
information and be able to perform a new action at least 50 times per second as
well, i.e., averaging3 at most 20 ms for performing all cycles of the agents in a
MAS. We assume here that no single agent should perform less than 50 decision
cycles per second, even though many agents will not need that many decision
cycles (e.g., most buildings would not as the decision making for production is
not as time critical as for combat for instance). We aim to demonstrate that
the minimum load required in the execution of the StarCraft connector leaves
sufficient CPU time for adding the key decision logic in an agent program. We do
so for our StarCraft connector by evaluating a simple multi-agent system that
keeps producing simple units (‘Zerglings’) that continuously move to a random
location on the map. In addition, all of these units are subscribed to all percepts
(i.e., have to process them every decision cycle). A cheat was also enabled to
ensure that these units cannot die. In this way, the maximum amount of units
that a player can have (which is close to 400) can be reached without being influ-
enced by the enemy in the game. Even though a player is very unlikely to reach
this number of units in a game in practice, or to have all units subscribed to all
percepts, we aim for our connector to provide sufficient CPU time for strategic
reasoning even in this worst-case scenario.

3 Most tournaments allow bots to take more time for a limited amount of frames
during a single match, but we disregard that here.



Designing a Cognitive Agent Connector for Complex Environments 315

Fig. 5. The average speed of a decision cycle for all agents in the system under a
growing number of agents.

The results of this evaluation for a minimum baseline are shown in Fig. 5. The
evaluation was performed on a system with an Intel i7-6500U CPU and 8 GB
RAM, with the StarCraft game speed set to the default tournament speed of 50
FPS. As each agent runs in its own thread(s), the average time any agent’s cycle
takes will increase when the number of agents increases due to limited system
resources (e.g., the number of available CPU cores). However, even in this worst-
case situation with up to 400 agents all processing all information available in
the environment, the average cycle time per agent grows to about 10 ms at most.
This thus leaves 10 ms for any additional reasoning to be implemented in the
MAS in this extreme scenario. In practice, there will be fewer agents that are all
subscribed to percepts more selectively. Therefore, in general, we see that around
18 ms (out of the possible 20 ms enforced by the tournaments themselves) will
be available to a MAS that uses our connector.

We note that we have designed this baseline MAS such that all of the agents
continuously execute decision cycles, whilst in practice, a decision is not required
by each agent in every frame. This fact provides further support for our claim
that sufficient processing power remains for implementing decision logic, as
agents in a MAS with a more diverse set of agents should refrain from exe-
cuting decision cycles (i.e., ‘sleep’) from time to time, thus freeing up CPU time
for where it is needed most.

Success. As we cannot directly establish whether the full strategy space is
made available by a connector, we aim to indirectly determine this by how well
a cognitive MAS is able to perform relative to an environment measure that we
would like to optimize. For a game like StarCraft, being successful at the game
by winning (against other AI implementations) can provide such a measure.
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Over the course of two years, groups of students created a varied range of
full-fledged StarCraft AI implementations using (different versions of) our con-
nector. After at most 8 weeks of work, nearly all of their implementations are
able to defeat the game’s built-in AI consistently. Some of the groups joined the
Student StarCraft AI Tournament (SSCAIT) [20] with their implementations,
successfully competing with the over 100 other active bots (which are mostly
written in C++ or Java, frequently based on other well-established implemen-
tations, and have often been around for many years or developed by companies
like Facebook). One of the students’ StarCraft AI implementations that makes
use of our connector is currently ranked at around the 50th place with a win-rate
of roughly 60%. Altogether, this suggest that we have made the strategy space
associated with StarCraft sufficiently available.

During the development and initial uses of the connector, we also gained
valuable insights into the benefits and challenges of using current cognitive tech-
nologies for engineering complex distributed systems. One particularly challeng-
ing development issue that developers face when environments become more
complex and the number of agents increases, is that every run of the system
will produce different results. For this reason, it is very hard for a developer
to test a specific scenario that s/he has in mind without additional tooling to
provide a developer with control over the type of scenario that will evolve in the
game. This makes testing very difficult and it thus is of the utmost importance
to do whatever possible to provide a developer with tooling and capabilities to
handle this. Testing against StarCraft’s built-in AI, for example, will give dif-
ferent results on each run. More importantly, it can take quite a while before a
scenario of interest occurs (if it does at all). In order to test specific (defined)
scenarios, agent programmers should be allowed to save the state of the game at
any given point, and then load that specific game again at a later stage, which
is supported by StarCraft itself. Although our connector has been designed to
support such state saving, in practice this will only provide support to some
extent, and agent platforms should provide some way of storing and restoring
the state of all agents at the same time.

4.5 Impact on Cognitive Technology

Even though the StarCraft connector has been optimized as far as possible when
it comes to percept delivery, we found that there still are optimizations that can
and should only be provided by the cognitive technology that is used, as we can
only do so much; if the MAS platform itself is inefficient, it will not be possible to
create an effective MAS approach for StarCraft with its strict real-time response
requirements. One issue is for example that cognitive agents typically try to run
as many decision cycles as possible. Considering the large number of agents that
are typically employed in StarCraft, however, this is not ideal. In order to free
up cycle time for e.g. agents that that have received new information to reason
about. Therefore, we believe that functionalities that reduce the total load on
the CPU, such as a ‘sleep mode’ in which an agent that does not receive new
percepts from the connector or new messages from other agents will not execute
any reasoning, should be provided by agent platforms.
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However, problems do arise in this mode when for example an agent is sup-
posed to do something (e.g., move around) after it has not received new informa-
tion for some time. Therefore, a timing mechanism should be introduced as well,
facilitating the automatic generation of timer percepts upon a certain requested
interval (thus waking up the agent after a set amount of time). A sleep action
can be added as well, allowing a developer to manually sleep an agent for a
certain amount of time, and thus free up performance for other agents if they
do not need to do any reasoning for a while (even when new information comes
in). An example of this is when a building agent starts producing a new unit,
and is sure it will keep producing this unit (which takes a while). In addition,
to allow developers to get more insight into the performance of their agents,
specific logging messages can be added to agents that when enabled, after each
decision cycle, show how many queries were performed and how many beliefs,
goals, percepts and messages the agent has (received) in total. This can be useful
for a developer to for example improve the ordering or nesting of rules in order
to reduce the average amount of queries that are executed per cycle, or to keep
tabs on the amount of messaging between agents (e.g., one agent might flood
another agent with redundant messages due to some bug).

Another observation is that communication with large amounts of agents
poses many challenges. In practice, with peer-to-peer based messaging, as is
typically done in cognitive architectures, developers often use broadcasts to all
agents in order to prevent having to use numerous bookkeepings of agents, which
has an especially large performance impact in systems with many agents (such as
those for StarCraft). We believe that this suggests that agent platforms should
support a publish-subscribe messaging system to be effective, as this prevents
agents that need to send messages to other agents from having to deal with
continuously keeping track of which agents are relevant for its messages (i.e.,
interested in the information and still alive). Publish-subscribe messaging facili-
tates sending messages to a ‘channel ’. Agents can subscribe to (and unsubscribe
from) such channels, thus receiving messages sent to a certain channel only if
they have explicitly indicated they want to do so. This allows for messaging based
on content instead of specific targets. This is especially convenient for ‘manager
agents’ to communicate with other (groups of) agents, as such an agent could for
instance relay all required information about enemy units in a specific region to a
certain channel, to which agents that need that information can then subscribe.

We believe that the application of cognitive agent technologies to complex
environments such as StarCraft will yield more ideas for further development.

5 Conclusions and Future Work

We have presented a design approach for creating connectors for cognitive agent
technology to (complex) environments, illustrated by a case study of such a
connector that provides full access to StarCraft. A major challenge that was
addressed during the development of this connector was to ensure correspond-
ing cognitive agent systems can be programmed at a high level of abstraction
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whilst simultaneously allowing sufficient variety in strategies to be implemented
by such systems. Based on this challenge, design guidelines for determining the
set of available percepts and actions in agent-environment connectors were deter-
mined. The viability of our approach is demonstrated by multiple large-scale
practical uses of the StarCraft connector, resulting in a varied set of competitive
AIs. Based on the development of the connector and this initial use, we gained
valuable insights such as the benefits of using publish-subscribe based messaging
and the challenges of debugging large sets of agents.

Ensuring a sufficient level of performance of the connector was a significant
challenge that had to be addressed in particular in order to demonstrate that a
unit-agent mapping (MAS) approach is viable. In our evaluations, we determined
the baseline performance of the connector in a worst-case scenario, which shows
that on average there remains sufficient CPU time for strategic reasoning in a
cognitive MAS. Even though the performance of such a MAS depends largely on
the agent technology used itself, we believe that our connector can be effectively
used in practice. Although our case study is focused on the ‘Brood War’ version
of StarCraft, the new ‘raw API’ of StarCraft 2 is reported to be similar to
BWPAI by Vinyals et al. [18], and tour work should therefore be relatively
straightforwardly applicable and/or portable to StarCraft 2 (and possibly other
RTS games) in future work.

Finally, through the development and use of our connector for StarCraft,
a number of challenges to cognitive agent technologies were identified. One of
those challenges is the fact that debugging (cf. Koeman et al. [12]) becomes
increasingly difficult with increasing numbers of agents. As debugging concur-
rent programs is a hard problem in general, more work is required in this area;
it could for example be useful to visualize the interaction between agents or
the CPU time required by each agent. In addition, in order to better support
automated testing, (cf. Koeman et al. [11]), it may be beneficial to develop a
mechanism that automatically saves the state of a MAS when a save game is
created in StarCraft. This can be used to immediately initialize a MAS to the
desired state when executing a test with a specific save game (i.e., a scenario).
Another observation is that communication with large amounts of agents poses
many challenges, requiring more investigation in future work, for example into
messaging architectures based on a publish-subscribe pattern. Finally, the per-
formance of a MAS itself (i.e., all processing that takes place outside of a connec-
tor) is of critical importance in highly dynamic environments such as StarCraft.
Functionalities that can reduce the CPU load of a MAS are thus important to
explore as well.
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Abstract. The main characteristic of an agent is acting on behalf of
humans. Then, agents are employed as modeling paradigms for com-
plex systems and their implementation. Today we are witnessing a grow-
ing increase in systems complexity, mainly when the presence of human
beings and their interactions with the system introduces a dynamic vari-
able not easily manageable during design phases. Design and implemen-
tation of this type of systems highlight the problem of making the system
able to decide in autonomy. In this work we propose an implementation,
based on Jason, of a cognitive architecture whose modules allow struc-
turing the decision-making process by the internal states of the agents,
thus combining aspects of self-modeling and theory of the mind.

Keywords: Human-agent interaction · BDI agent · Jason

1 Introduction

Today we want software able to cooperate with us, to anticipate our needs and
to coordinate its activities with us. We also wish to have software that can
autonomously and intelligently intervene and act in dynamic and changing con-
texts, operating as humans would do. For example, an agent-human team has
to cooperate to achieve a common goal in an environment not fully known. All
the members of the team have to decompose the overall goal into a series of
subgoals. They should then be able to understand or learn which actions are
needed to reach the objective. Finally, they should match their skills with the
correct steps to perform, and eventually, they should delegate some task to each
other. This scenario concerns fully autonomous cooperative work that requires
a complex software system with runtime adaptation to new situations that may
lead to new requirements and constraints. Everything injected and evaluated at
runtime cannot be defined during design phases, and therefore the system has
to be handled as a self-adaptive system. In brief, a self-adaptive system must
be aware of its objectives; it must be able to monitor the working environment
and understand how far it is and if it is deviating from the objective. Moreover,
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it must be able to adopt alternative plans and it must also be able to generate
new plans when necessary.

Important challenges in this field concern knowledge representation and
updating, the selection and creation of plans at runtime, the invention of tech-
niques for purposefully and efficiently conveying the (runtime) decision process.
These challenges lead to different solutions depending on whether we look at
the architectural level or the system level. At the architectural level, it is nec-
essary to identify a set of cognitive modules for modeling the cognitive process
behind decisions in the before said scenario. At the system level, it is necessary
to employ the right technological solution for coding and implementing a system
working in changing conditions and in continuous interaction with the human.

In this chapter, we focus on the system level counterpart of the decision
process that we achieve by employing BDI agents paradigm [15] and Jason as
an agent language [5,6]. Decision processes elaborate data coming from external
sources and the environment. In many domains, it would not be enough, or it
would be hard to design and implement the decision process merely employing
the monitoring, analyzing, planning, acting (MAPE) cycle [2]. In our view, the
decision process should take as input all the internal states of agents involved
in the environment, including human. Internal states then embody the changes
occurring at runtime. The work we discuss aims at considering, as a crucial part
of the decision process, the data coming from the capability of attributing mental
states (beliefs, desires, emotions, knowledge, abilities) to itself and the other. In
brief, we take into account self-modeling and theory of mind capabilities. Also, we
briefly illustrate the architectural level in the form of the cognitive architecture
we identified to include modules for knowledge representation and management,
for internal states modeling and for the decision process.

Contribution and Outline of the Chapter. In this chapter, we illustrate the first
steps of our ongoing work aiming at integrating self-modeling and the theory of
mind in an architectural structure to implement an adaptive decision process at
the architectural and the system level. The architectural part extends the MAPE
cycle with modules allowing the perception of the external and the inner world
in the form of internal states. The way we structured the architectural part and
the rationale it underpins let us quickly fill the gap with the system level. We
then present the core of this chapter, an extended version of the Jason reasoning
cycle to map the architectural level into an agent framework.

The chapter is organized as follows. Section 2 discusses the features and chal-
lenges of human-agent interaction; in Sect. 3 we briefly describe the architectural
level of the proposed work; in Sect. 4 we illustrate Jason features and its reason-
ing cycle and in Sect. 5 we show how we extend Jason reasoning to implement
the cognitive architecture and its decision process modules at the system level.
Finally, Sect. 6 draws some discussions and conclusions.

2 Human-Agent Interaction. Features and Challenges

Agent paradigm [27] has been used since decades as a solution, both from a
theoretical and an implementation point of view, for systems providing aid to



322 A. Chella et al.

humans in their everyday life. An agent is thought and programmed to act on
behalf of humans. Cases studied and implemented since now refer to automated
systems emulating in some way the autonomous behavior of humans involved
in complex tasks. However, automation is very different from autonomy; real
autonomy also implies self-adaptation and self-organization abilities.

Autonomy intervenes in scenarios where agents have to intelligently interact
with humans and with other agents to reach a common objective in an unknown
or partially known environment. The environment may be not totally known
at design time or may change during agents’ working. A possible scenario is
a human-agent team. Normally, teammates share the same objectives and the
same knowledge on the environment. They know the goal and have a plan to
reach it, collaborating and cooperating with the others. Collaboration and coop-
eration amount to knowing own abilities and others’ ones, interacting each time
something is unknown or is going wrong or each time a task has to be dele-
gated to another or adopted by another. Also, collaboration and cooperation
imply explaining why an action/task has failed or cannot be done. Moreover,
the teammate may anticipate actions of another member as the result of contin-
uously observing the other and the environment. Knowledge of the environment
is continuously updated to let teammates re-plan or create new plans if neces-
sary. Knowledge on the environment also includes the ability to develop a model
of the self, the inner state of the teammate changes over time and influences,
along with the general knowledge on the environment and on the goal to pursue,
the decision-making process. We also consider that the result of anticipating
actions, both on the inner and outer world, greatly affects the decision process
of the action to perform.

Generalizing, features of human-agent team systems require to investigate
and analyze (i) knowledge acquisition, representation and updating, including
memory management, (ii) environment representation, inner and outer one, (iii)
plans selection or creation (iv) learning, (v) introspection, for allowing team
members to be aware of himself and his capabilities.

Human-agent interactions can be encoded from simple situations where
everything may be identified and established at design time (environment, plans,
actions and changing situations) to more complex ones where changes occur at
any time and where the agent has to decide autonomously and self-adapt.

To better explain the case we are facing, let us consider the following three
scenarios. In the first case, a team composed of agents and humans working
together to carry out a task known to both. Let’s suppose that the working
environment is known in advance and during runtime, there are no changes
other than those resulting from the actions of some pre-programmed agents. In
this situation, agents may act in complete autonomy, and goals may be achieved
performing actions in the repertory. The collaboration is apparent in the sense
the agents and humans do not need mutual help; the BDI logic [22] and its
implementation using Jason [6] are perfectly efficient and usable.

In the second case, let us suppose the agent needs collaboration by a human
for performing some part of the overall goal. For instance, the agent may realize
to be not able to do an action for some physic limitations even though having
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the know-how for doing the action. This situation implies an intervention of the
human under an explicit request of the agent. It is a collaborative work. This
case requires some “soft” self-adaptation; the agent has to be endowed with the
capability to understand when it cannot select/perform an action to achieve a
goal. This case can also be handled with the use of the Jason interpreter by
customizing methods of some of its predefined classes (see [6] for more details).

In the third case, the most complicated one, let us suppose that only part
of the environment is known beforehand. The common goal, as well as a set
of plans to achieve it, are identified at design time, but the ongoing interac-
tion of the agent with the environment and with the human change conditions
unpredictably. This fact happens when interactions bring out new terms of oper-
ability that must be worked out to decide what action to take. Generally, when
a team is made up of only humans, they choose actions from their experience,
the knowledge they have of the other team member, the trust they place in the
other team, their emotional state or the anticipation of the actions of others.

For example, suppose that two people are caring for a disabled patient. Rou-
tine care includes the administration of medicines, cleaning, help during meals,
etc. and each of the two has been assigned tasks. Suppose that during lunch the
patient spills a glass of water. In this case, it is required picking up the glass
from the ground and cleaning the patient, but none of the two actions have been
assigned to a specific caregiver it may happen that if one takes the initiative and
decides to clean the patient, then the other chooses to pick up the glass. More-
over, if there is no procedure to respond to an emergency, the two caregivers
generally do not stay still, they decide what to do based on their experience and
in general on their internal state. Besides, they will collaborate, even delegating
to each other what to do. Our long-term work is to replicate this way of behaving
in human-(multi) agent systems.

A human-agent team is a complex system [11], designing and developing
different levels of cooperation and self-adaptation are the main challenges in
this context. The system has to be equipped with the ability to select the best
action to perform, to conduct the right decision-making process basing on goals,
capabilities, mental state and so on not totally known at design time.

Actually, designers have not tools to analyze and identify all the possible
elements that cause perturbation and change in the environment nor to imple-
ment an efficient system level (the running multi-agent system). They cannot
determine the decision-making process to be implemented at the system level.

There not exist design approaches handling cooperative and self-adaptive sys-
tems where requirements and goals change at runtime, during systems working,
and where systems configuration and features are the results of the interaction
system, environment and humans; the system behavior emerges from interac-
tions. Thus, a gap still exists between design and implementation level of such
a kind of systems. We claim that this gap may be filled by employing theory
coming from the cognitive process area: the cognitivist and the emergent sys-
tem approaches [13,16,25]. The first approach relies on the common perceive-
decide-act loop and on symbolic representations to physically instantiate code
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operations devoted to realize and implement cognitive agents behavior and deci-
sion process. The emergent system approach considers cognition as a dynamic
emergent process implying self-organization. Many emergent approaches con-
sider anticipative skills more important than knowledge acquisition and consider
the physical instantiation of the cognitive model as an important factor. Issues
related to the research area we are investigating may be faced using a cogni-
tive architecture relying on the principles of an emergent approach. However, we
believe that separating knowledge acquisition from anticipative skills is not the
right direction. Thus, we are moving towards a hybrid model form that will be
illustrated in the following section.

It is necessary to have means for analyzing how the mind builds a model of
self and uses the theory of mind. Our proposal is to integrate self-modeling and
theory of mind in the modules of a cognitive architecture to implement all the
human-human team features handled by a multi-agent system. The work focuses
both on theoretical aspects and on low-level ones. Indeed, we aim at identifying
an abstract cognitive model (see Sect. 3) and the related implementation coun-
terpart (see Sect. 5). In the literature, some promising approaches [3,4] propose
to solve this problem by shifting the design time to runtime. Also, some archi-
tectures containing modules for learning and memory have been introduced to
pass the decision-making process through the stored and processed sensing data
[14,20,26]. However, these approaches do not take into account the use of mental
states and cognitive processes, which are the primary element in our hypothesis
to be able to create human-agent interaction systems behaving as human-human
systems.

We focus on the multi-agent system managing interactions with humans in a
human-like fashion. We employ the multi-agent systems paradigm for implement-
ing our cognitive architecture; each module becomes an agent which interacts
with all the others for achieving its objectives and at the same time the overall
system objective. In particular, we pay attention to the Belief-Desire-Intention
model (BDI) [22] for modeling the cognitive reasoning process of each agent.

3 The Architectural Level for the Decision Process

To realize an emergent cognitive approach and conceive a cognitive architecture
useful for our purposes, we took inspiration from the standard model of the mind
[19]. The standard model of the mind has been developed along three different
levels, from the purely biological level of mind to the more complex deliberative
one. Hence, from simple behavior to complex one. The standard model has been
conceived in a way that allows extending modules in each level; the higher levels
are constrained by the lower ones. The scenario we are studying lays at the
higher level, the one ruling an intelligent and deliberative behavior.

The standard model is intended to be a reference model and a theoretical
driving approach. It has been based on three well known cognitive architectures
(ACT-R, SOAR and Sigma [1,18,20]) and presents a core composed of the cog-
nitive cycle: perception, working memory and action. ACT-R decomposes the



Decision Process in Human-Agent Interaction 325

cognition process in five specialized modules and shows how to integrate the
modules in order to create a complete cognitive process. SOAR is based on a
cyclic process that includes the production process and the decision one. One
decision cycle follows each production cycle. Sigma blends elements both from
ACT-R and SOAR and provides just a single long-term memory. We also stud-
ied other cognitive architectures [12,14,17,24]. The result was, starting from the
standard model in Fig. 1 and the influence of all the other architectures, the
architecture shown in Fig. 2. The figure recalls the deliberative behavior of an
agent that perceives, reasons and acts. This architecture may be implemented,
at the system level, by using Jason agents and their reasoning cycles1.

Declarative 
Long-Term Memory 

Procedural 
Long-Term Memory 

Working Memory 

Perception Motor

Fig. 1. The standard model of the mind - redrawn from [19]

Both this standard model and Jason, however, do not account the internal
states, the fact that the environment may continually change in a not prescribed
way and that the representation of the agents’ environment also includes own
inner world. To face this problem, we extended the higher level of the standard
model, without modifying its core cycle.

Figure 2 shows an extended version of the perception-action cycle in which
we added modules for handling decision process and memory in the most useful
way for our purposes. It can be seen that a cognitive agent uses, for deciding
which action to execute, inputs coming from the environment perception and
from the memory. Agent decides actions to perform after a reasoning process
and then it executes and continuously observes the results of its action on the
environment.

This part is perfectly in line with existing cognitivist approaches. In order
to integrate self-modeling and theory of mind abilities that, as already said, we
guess to be fundamental for triggering the decision process in a way useful for

1 Details about Jason reasoning cycle are given in Sect. 4.
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Fig. 2. The cognitive architecture model that includes self-modeling ability for the
decision-process.

human-agent teaming interactions, we needed to shift to a kind of emergent
approach and we added some elements in the decision and memory modules.

We decided to represent knowledge not only including all the objects in
the environment but also including goals to be pursued and motivations for
executing a specific action. This allows us to consider the new perspective on
the environment we introduced before: the environment is seen as something
composed of objects, cognitive agents and all that is inside each agent. This
latter elements, such as for instance the awareness to be able to do something,
constitutes agent’s self-model and then trigger the decision process along with
the whole available knowledge on the “static” environment.

Continuous observing and perceiving allow to constantly update and increase
knowledge even during execution phase. In addition, in the anticipation mod-
ule, we consider the possibility of creating an anticipation of an action result,
some kind of post-condition on the state of affairs (the whole environment) at the
end of each action. This part is fundamental for realizing human-like reasoning
and decision process since it allows to anticipate also all other cognitive agents’
behaviors and actions. In so doing, we may implement the elements of the theory
of mind letting agents coordinating, cooperating and delegating actions at run-
time and in a totally autonomous fashion. In the anticipation module we also
included the elements for generating the current situation and a queue of
possible situations, generated starting from the knowledge base and gained when
the current situation is not applicable. The module, we simply named Moti-
vation, includes all the elements related to a human-like mental state; these
elements have to be considered during the decision process. Examples of some
of these elements are the emotional state, the level of trust in the other and in
itself. Motivations, along with knowledge on goals, environment, including the
self and own capabilities lead to take purposeful decisions.
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In summary, in our architecture, the design process has the same input of
the standard model but it also has an intermediate part. Executing an action
has effects on the environment and also on the internal state. The perception
refers to the external and internal world and also to the working memory, in our
case goals and motivations. The working memory, so as the reasoning/learning
process and action selection, is affected by the ability to generate anticipation.

In the following, we explain how we extended the Jason reasoning cycle to
implement this architecture.

4 The BDI Agent and Its Implementation by Using Jason

Due to its features, the BDI agent-oriented paradigm well fits our need to model
and implement the modules of the cognitive architecture shown in the previous
section. Indeed, Belief-Desire-Intention model has been recognized as the most
useful paradigm to implement human-like agents. We can talk about computer
programs as cognitive agents owning a mental state. So, an agent is characterized
by beliefs, desires and intentions:

– beliefs - are information that the agent has about the surrounding area or the
world in general.

– desires - are all the possible states of affairs that an agent perform. The desire
is not a must to do action but it could be seen as a condition that influences
other actions.

– intentions - are the states of affairs that an agent decides really to perform.
The intentions can be normally intended as a particular operation that other
can be delegated to the agent or agent’s consideration. This latter definition
comes from practical reasoning systems inside agent.

Moreover, the BDI paradigm has its natural equivalent in the agent programming
language: Jason [6]. Jason is an implementation of AgentSpeak language [21] that
somehow allows overcoming the old denotation of software. The software is no
longer something that provides a service by an exact coding, and that depends
heavily on the intervention of the user. In Jason’s logic, a computer program is
something that has the know-how and chooses actions to pursue a goal on behalf
of the human and without his intervention. For this reason, a Jason program is
called Agent. It does not yet have the characteristics to perfectly replicate how a
human acts, but it can autonomously process the knowledge it possesses about
how to do things. The basic idea behind Jason is to define what is called the
program’s know-how in the form of a set of plans. The Jason platform allows
executing the deliberation process of a BDI agent that leads to choosing the
intention to pursue within a set of possible states of affairs.

An agent can decide what to do, the set of actions in its repertoire to be
undertaken starting from a set of data obtained through sensing and to modify
the surrounding environment. In AgentSpeak, and therefore in Jason, deciding
what to do means manipulating plans and the environment. Typically, a Jason
agent has partial control over the environment in which it lives because it is also
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populated by other agents having control over their part of the environment. It
can autonomously work because it is structurally defined to do this but cannot
adapt itself in a dynamic environment; especially if the dynamicity of the envi-
ronment derives from interactions with humans and other agents. The procedure
for handling agent-agent interaction is standardized and mainly established at
design time. Human-agent interactions have to be still explored, especially in the
context of cooperation between humans and agents which presupposes delega-
tion and/or selection of actions to be undertaken even by observing the human
actions and skills. Jason is an optimum language to implement the standard
model with the perception-action cycle. Figure 3 represents the Jason agent’s
reasoning cycle and its modules realizing the beforesaid cycle; however it lacks
means for implementing the architecture in Fig. 2. The agent reasoning cycle
consists of three main processes, (i) a knowledge updater, (ii) an event handler
and (iii) a module to act.
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Fig. 3. The original reasoning cycle of Jason language - redrawn from [6].

According to [6], rectangles represent the principal components that deter-
mine the agent’s state, such as belief base component and all the components
that handle the set of events, plan library and intentions. Diamonds, circles and
rounded boxes are used for describing the functions used in the reasoning cycle.
In particular, circles model the application processes and diamonds represent
the selection functions. Jason allows to modify and customize the functions rep-
resented by round boxes and diamonds.

In the following section, we give a detailed description of the Jason reasoning
cycle and then in Sect. 5 we explain where and how we added new modules.
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4.1 The Jason Reasoning Cycle

The main concepts in the Jason reasoning cycle are illustrated and described in
the following table (Table 1). This subsection, Tables 1 and 2 are loosely based
on Chap. 4 in the book by Bordini et al. [6].

Table 1. A complete summary of Jason’s components and elements.

Agent An agent is an entity with several capabilities. An agent is able to
perceive and act in environment, communicate with others and
reason about possible events. Agents have several skills and offer
services

Belief Beliefs are information about the world

Belief Base A Belief Base is the structure where all beliefs are organized

Plan A Plan is composed by three parts: the triggering event, the
context, and the body. The body contains other plans or actions

Plan Library A Plan Library is where all plans are stored and lets agent choosing
which plan is more applicable or not to reach the goal

Event An event is a couple where the first component denotes the change
that are taking place, and the second is the associated intention. It
may be internal or external, the first is related to the goal the
second is related to environment’s changes

Intention Intentions are the states of affairs that the agent has decided to
commit

Percepts Percepts are referred to state of affairs in the surrounding world.

Context As mentioned in [7] a context is the place where agents take into
account others and/or where the others act to realize tasks

In an AgentSpeak program, we define an agent type where we can set the
initial state of beliefs, the events and the set of the plans that an agent could
execute during its life-cycle.

The first thing that an agent does at the beginning of each reasoning cycle is
perceiving the environment through its senses. This operation involves the belief
base and the related function2. Beliefs are represented by using a symbolic form,
the architecture has an internal Literal component that converts perceptions
into a list of Literals; each of these is a single percept and this is a symbolic rep-
resentation of a specific property perceived from the environment. This percept
is detected by perceive method that implements the process. Once the agent has
perceived the environment, it updates its internal belief base to reflect changes
in the environment. The method able to do this is the belief update function,
also known as buf. The Jason’s buf presumes that every perceptible thing could
be included into the list of percepts generated by the perceive module.
2 During the description of the reasoning cycle, we refer to Fig. 4 for the sequence

of agent’s activities and Fig. 5 for the related implemented classes. In Fig. 5 both
classes of the original cycle and those of the extended one (in green) are represented.
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Generally, the buf method updates the belief base in a simple way; this
method consists of two points: (i) each literal l in p not currently in b is added
to b; (ii) each literal l in b no longer in p is deleted from b; where the symbol p
is the set of current percepts and b is the set of literals in the belief base that
the agent obtained from the last sensing process.

An event in Jason is considered as a couple, where the first component is the
change occurred and the second is the associated intention. Furthermore, the
event could be divided mainly into two categories, internal and external events.
Each change produced by buf method invokes an external event. This kind of
event is created when the source of belief is related to the percept. In this case,
the associated couple contains as the first member the change produced and as
the second member an empty intention denoted by a �.

Another important module is the communication system. Inside the cycle, an
agent could retrieve information about the environment or other agents through
others in the same system. At this point, the cycle checks for new messages that
might have been sent from others. This distribution system is just integrated
into Jason and it works such a mailbox for each agent.

The method within the reasoning cycle is called checkMail that simply checks
for received messages and makes them available at the level of AgentSpeak inter-
preter to be handled by agents.

The message selection function, denoted by SM in Fig. 3, selects the first
message in the list in the default implementation. By security reason a social
acceptance function is defined into the system, the aim is ignoring potential
malicious attack that others could do or bypass wrong messages that could spoil
the reasoning loop, the default implementation accepts all messages from all
agents.

A relevant role is taken by events since they represent the effective changes
in the environment or agent’s own goal. The principal cognitive skill of the
BDI Jason Agent is handling events, this happens only managing them one at
time; for instance in a hypothetic cooperative scenario, the agent could have the
necessity to evaluate other events before the first in the set of events; to solve this
problem Jason lets the user customize a specific function called event selection
function denoted with Sε in Fig. 3. The default implementation selects the first
event in the list of events; it works like a FIFO structure if not customized.

Once relevant event has been selected, the agent needs to select a set of
reliable plans from a collection called Plan Library that will permit to react to
a specific event with a designed action. The agent searches into the library all
necessary plans for each event. After selecting the relevant plans, a unification
process helps the reasoning cycle to catch a set of relevant plans on which a check
context process will be applied. The output of the latter process lets deleting
all plans that do not match with the current context and only a subset of all
relevant plans will be marked as applicable plans.

Given the set of applicable plans and all the knowledge acquired by agent
through perception and communication skills, converted into a set of literals rep-
resented as beliefs, the agent is able to choose one of the selected applicable plans
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Table 2. Description of functions for the Jason reasoning cycle.

Function Description

perceive The perceive method lets agents sense the environment and retrieve
from it information about things. It implements the perceive
function in Fig. 3

socAcc Social Acceptance Function establishes the reliability of other
agents, it implements the socAcc function in Fig. 3

selectEvent Selects the events that will be handled in the reasoning cycle; it
implements the SE function in Fig. 3

selectIntention Selects an Intention to be further executed in the reasoning cycle; it
implements the SI function in Fig. 3. The default implementation
executes intentions with a round robin scheduling process

selectOption This method is used to select one among several options (an
applicable plan and an unification) to handle an event. It
implements the SO function in Fig. 3

selectMessage Selects the message that will be handled in the current reasoning
cycle; it implements the SM function in Fig. 3

buf Updates the belief base with the given percepts and adds all changes
that were actually carried out as new events in the set of events

brf Revises the belief base with a literal to be added (if any), a literal
to be deleted (if any), and the Intention structure that required the
belief change

act Act function lets agents execute action in the environment

through an internal method: Option Selection Function denoted with the symbol
SO in the Fig. 3. The output of SO produces what is called intended means and
this name is associated to the mean that the agent intends to execute to handle
the related event. It is worth to remind that each plan in the set of applicable
plans represents an alternative to reach the goal. The default implementation
of this function considers as applicable plan the first in order of appearance in
the plan library; the position of each plan is defined in the agent definition file
written in AgentSpeak. Thus in the default implementation, the agent attempts
to choose the applicable plan according to the agent’s developer.

To select which intention to be computed during the cycle, a intention selec-
tion function denoted with the symbol SI is used. SI has a default implementa-
tion like a round-robin scheduler. Moreover every times an intention is extracted,
it is removed from the list of intention after the execution and when this will be
inserted back into the list, this will be added at the end of the list. In this way
every intention have the same portion of agent’s attention.

The last stage of the reasoning cycle performs an action in the agent envi-
ronment or produces a message to communicate with other agents. Generally,
the action that an agent performs are (i) environment action, (ii)achievement
action, (iii) test goal, (iv) mental notes, (v) internal actions or (vi) expressions.
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Table 3. Definitions new elements integrated in Jason.

Component Description

Motivation A Motivation is a form of belief for self-awareness
modeling. Motivations are information that the agent has
about itself. Motivation contains knowledge about the
consciousness of the agent

Motivation Base A Motivation Base is where all motivations are organized

Situation A Situation is an extension of Intention. It represents the
future state of affairs after the execution of agent’s action

5 The Jason Reasoning Cycle Extension

The reasoning cycle proposed in Fig. 3 as said before develops three general pro-
cesses: the knowledge update process, the handle event and the acting module.

The elements: motivation, goal, anticipation (current situation and queue)
are not handled by the traditional Jason reasoning cycle. In some way, goals
are implicitly treated in the plan and the plan library plus the context and the
intention. However, it is not enough for our objectives. We need a structure
to match goals with the anticipated results of single actions. This provides a
cornerstone for realizing self-modeling.

Motivation serves for modeling all that is related to the internal state, the
inner world. It is a kind of belief (the state of the environment) but they differ
from a conceptual point of view. In fact, beliefs are data about the environment,
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Table 4. Description of functions for the extended Jason reasoning cycle.

Function Description

perceive The perceive method lets agents sense the environment
and retrieve from it information; in our approach, the
function gets information about itself through sensing
the status of internal parts and the status of the mind.
It implements the perceive function in Fig. 4

selectEvent Our implementation takes in input a queue of events
and motivations to select the plan that accomplish
agent’s desires (see Algorithm 2)

selectIntention Selects an Intention to be further executed in the
current reasoning cycle; it implements the SI function
in Fig. 4. Our implementation uses an intelligent
scheduling that selects the right intention considering
not only the queue of intentions but also a queue of
situations that helps the algorithm to choice the better
situation to compute in the handle situation. This
function looks in future scenario to accomplish the
desires and respects the agent’s motivation (see
Algorithm 4)

muf Motivation update function updates the motivation base
with given perception

mrf Motivation revision function revises the motivation base
with a literal to be added (if any), a literal to be deleted
(if any)

buf, brf, SM, socAcc, SO These functions are not modified. For a description read
the Table 2

are values providing pre-conditions for a plan to be activated or selected. Moti-
vation is, in some senses, a superstructure of beliefs including the agent’s mental
state.

Anticipation, in the two forms, current situation and situation queue, is used
for generating a sort of simulation of the scene, the state of the world, if every-
thing would go well. During the reasoning cycle, the agent decides which action
to commit also after having evaluated the anticipation against the first compo-
nent of the event, thus reinforcing the decision process.

In Tables 3 and 4 a summary of definition of concepts used in the extended
cycle (Fig. 4) is reported.

Jason reasoning cycle does not allow to implement these elements, above all
the anticipation so, in order to add them, we created two new functions MUF
and MRF with their related methods muf and mrf in the agent class (Fig. 5),
one other principal component, the “Motivation Base” and one new application
process, the “Handle Situation”. We also modified some selection functions as
will be illustrated later in this section. Through motivations, it is possible to solve
other complex plans and to force to select an intention to accomplish agent’s
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desires. The deliberative process of actions is not limited to simple execution of
a plan assigned to agents at design time and stored into the Plan Library, but
the extension provides a valid alternative built on the motivation base. With
this knowledge, the agent tries to define new alternative applicable plans that
should be successful plans cause these are generated by checking the status of
the agent internal state and the context.

Anticipation, as said before, has the aim to produce a queue of situations
where the head of the queue is the situation (alias intention) that the cycle
is scheduling to handle for acting. The tail of the queue contains all possible
future situations in according to the inner state of the agent including its moti-
vation. The mechanism of the anticipation module recalls the perception loop
described in [23]. Another important module that we add to the reasoning cycle
is motivation.

The reasoning process starts with a perceive method. In Fig. 4 percept is
handled by a perceive function, this latter handles two kinds of percept, the first
is external perception or better, percepts that come from the environment and
the second is the internal perception. In this last, the agent sense itself looking for
features such as for instance execution time, stress-level, emotive state and other
motivational features. This is the first significant difference with the original
cycle. Inner perceptions are not defined as normal beliefs (Literal) but once
agent perceives the feature this is converted into motivation. Each motivation
is organized in a MotivationBase that is an extension of the BeliefBase (see in
Fig. 5). In the same UML diagram, it is possible to find some changes that we did
to implement the cycle. As described we extended the AgArch class by creating
another derived class called AgArchMotivated that implements the handling of
internal perceptions. Knowledge is updated by means of belief update function
and motivation update function. As said for the buf method in the original Jason
reasoning cycle, the operating mechanism is not modified but we added a new
branch to handle the inner state.

Initially every perception acquired is a belief with some operations the belief
update function and the belief revision function convert internal perceptions in
motivations and using the motivation update function, the system saves internal
perceptions (aka motivations) in the MotivationBase. Processing motivations
involves also motivation revision function to revise the MotivationBase. These
functions are implemented in AgentMotivated class, this class extend the Jason
Agent class. Information about the state of affairs of the environment is also
perceived by the communication module. The reasoning contains methods to
communicate with other agents.

For this purpose, Jason has two important functions to handle the commu-
nication between agents. The checkMail method is the first function that the
agent does as shown in Fig. 4 and it gets external messages sent by agents and
organizes them into a mailbox assigned to the agent. Here, the function remains
the same of the original cycle (AgArch class in Fig. 5). The social acceptance
function(aka socAcc) and its associated method are modified for our purposes
and their functionalities are described in Table 2. After beliefs and motivations
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are updated, new events are generated. At this point, in the original cycle the
selectEvent function, given as parameter a queue of events, returns the related
poll function. Algorithm 1 shows as the original selectEvent function works. Algo-
rithm2 shows how we modified the selectEvent function in order to consider the
situation.

Algorithm 1. The selectEvent algorithmn implemented in Jason.
1: procedure SE(Queue<Event> events)
2: queue← events
3: return queue.poll()
4: end procedure

Algorithm 2. The selectEvent algorithmn implemented in the extended Jason
reasoning cycle.
1: procedure SE(Queue<Event> events, Queue<Situation> situations)

2: Queue<Event> eventsQueue ← events
3: Queue<Situation> situationsQueue ← situations
4: Queue<Event> queue := generateEventsQueue(eventsQueue, eventsSituations)

5: Event selectedEvent := queue.poll()
6: return selectedEvent
7: end procedure

So SE function implements an algorithm that, given as parameters the event
queue and the situation queue generated at the previous cycle, executes a gen-
erateEventsQueue function to obtain a queue of events that are reformulated
considering the queue of possible future scenarios carried by the queue of situa-
tions (if any). Once the algorithm has generated the Selected Event as shown in
Fig. 4, such a result of the diamond SE function, a unification process is fired.
It unifies events evaluating the previous results and a list of plans generated by
a plan library module. This process is exactly the one described in the previ-
ous Sect. 4. The result of this process is a list of relevant plans. Once plans are
selected another process is started.

The following process check context (Fig. 4) is the same of the original cycle.
This process is not influenced by the motivation module or anticipation module
because the relative check context for our scope is included in the select event
function with the generateEventQueue function as you can see in Algorithm2.
After the context is verified, the process generates applicable plans that are
given as input to the function applicable plan selection function denoted as SO
in Fig. 4. The output of this function is called intended means that is the chosen
applicable plan because the actions executed by that plan is the means that
the agent intends to execute to handle the chosen event. The intended means is
converted into intentions and will be handled by the intention select function.
The list of intentions, this is given as argument for the intention select function
and through a handle situation process our reasoning cycle extracts from this
latter process the current situation, that is shown in the UML diagram a derived
class of Intention. The original intention selection function SI implements a poll
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function as argument as described in Algorithm 3. Our implementation, instead,
involves two functions (Algorithm4). The first creates a simulation process that
implements a structure similar to the one described in [23] and the second verify
the queue of situations generated at the step before. In Algorithm4, it is proposed
our pseudo-code for the reasoning cycle.

Algorithm 3. The selectIntention algorithm implemented in Jason.
1: procedure SI(Queue<Intention> intentions)
2: queue← intentions
3: return queue.poll()
4: end procedure

Algorithm 4. The selectIntention algorithm implemented in the extended Jason
reasoning cycle.
1: procedure SI(Queue<Intention> intentions, Queue<Motivation> motivations)

2: intentionsQueue ← intentions
3: motivationsQueue ← motivations
4: Queue<Situation> situations := simulate(intentionsQueue, motivationsQueue)

5: Queue<Situation> selectedSituations := verify(situations)

6: return selectedSituations
7: end procedure
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Regarding code, the situation queue is internal to the agent so the code
structure is not changed because a poll function is always called on the result of
the previous function. So the execute intention process has as input a situation
that is an intention as evidenced in the UML diagram in Fig. 5. This process tries
to perform all actions included in the current situation and the agent is able to
produce the act function, after which the reasoning cycle could be restart.

6 Discussion and Conclusions

The work presented in this chapter deals with systems (such as human-agent
interaction systems) working in not completely known operational conditions.
This research area lacks techniques and tools for modeling and implementing all
that regards the decision-process activities of systems intrinsically self-adaptive
and autonomous.

We present the implementation of agent’s decision making process in a
dynamic context. Our proposal is based on the fact that agent’s decision-making-
process is determined by processing data coming from observation of the external
environment and also by the knowledge the agent has about itself and other
agents acting around. The implementation of such a system is a hard task
because its features can be seen only at runtime, during the interaction with
the whole environment. Therefore, the system must be treated and implemented
with self-adaptive characteristics.

We have exploited the power of BDI agents and the Jason language, which
natively allow creating agents that perform a deliberation and means-ends rea-
soning process. We modified the Jason reasoning cycle to include modules to
manage events, plans, and intentions selection in order to take into account what
we call motivations in addition to traditional beliefs. To complete the infrastruc-
ture, even at the agent coding level, we modified classes of the Jason component
called user-defined. In particular, we added the classes needed to implement the
part of the new reasoning cycle by adding the methods necessary for the agent
to be able to choose the plan to pursue; in this way agents use a cognitive pro-
cess based on what we called motivations that embody the mental states of the
agent.

In order to model and implement motivations, we could have extended the
belief concept instead of creating a new element. We decided to separate the
two for two reasons: first, we want to resemble the human mind where these
two aspects are considered separately, indeed the observation of the state of the
environment brings to computation on data whereas elaboration on mental state
gives an agent the attitude to make propositions such as believing, hating, loving
and so on. The second reason, the most important for us, is that the continuation
of this work will regard the modification of the Jason interpreter. We think that
it will be more efficient t work in a modular fashion and adding elements to the
interpreter instead of extending the existing one so to maintain a high degree of
modularity and a low coupling.
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It is worth to note that the proposed cycle extension does not alter the
original Jason agent reasoning at a high level, but extends its capabilities, allow-
ing the development of agents able to manage at the same time the sense of
self and the theory of the mind together with the usual decision-making pro-
cess. This work is the initial part of a larger project for the implementation of
complex adaptive systems including knowledge update, selection and creation
of new plans at runtime. The approach we are suggesting has given some good
results in the validation phase during a series of experiments conducted in the
robotics laboratory of the University of Palermo [8–10]. In the future, we think
to definitively formalize the approach with the addition of all the design aspects
to experiment with a complex case study.
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Abstract. The objective of this chapter is to revisit and explore how
intelligent agents can be used in conjunction with modern Web technolo-
gies. We use JADE and BDI4JADE to expose cognitive agents using a
BDI architecture as web services that can be integrated with different
modern cloud-based services, such as Amazon AWS services and Google
Home.
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1 Introduction

Agents can be described as relatively independent and autonomous entities that
can be used to solve problems of different complexity degrees [16]. These entities
can be organized in communities and work together using different interaction
mechanisms in order to solve complex problems. Such communities are also
known as multiagent system (MAS): a system composed of multiple agents that
interact among themselves in a single environment [36].

Due to their autonomous and interactive capabilities, agents can be seen as
a paradigm for software engineering. In fact, since software architectures may
contain many different components, each one with its own thread of control and
attributions, agents can be used as a paradigm when designing such systems
[41]. Moreover, such paradigm can be adopted within complex systems, since
interaction is one of the most important characteristics of complexity in software.

Using agents and MAS in conjunction with web services has been explored
for a long time, from simple interactions between web services and agents [3,15,
17,23,27] to using existing software engineering methodologies such as model-
driven development (MDD) [7,32,42] to support the development of web-based
MAS [29,37,38].

Using agents exposed as web services to design systems for the Semantic
Web [5] was also studied [13,35]. Designing such systems involves not only cre-
ating systems with distributed capabilities, but also systems capable of using
c© Springer Nature Switzerland AG 2019
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existing communication protocols and mechanisms in order to share and reuse
knowledge. This is so because the Semantic Web is an extension of the web by
adding semantics to the current data format representation in order to turn web
information understandable not only for humans but also for software entities [5].

However, despite the extensive research already done in this field, the advent
of new paradigms such as the Web of Things (WoT) [18] has encouraged a re-
visitation on the use of agents in the Web as a viable approach for deploying
autonomous systems [9]. This idea revolves around the fact that in the WoT, it
is possible for web services to perceive the real world and act on it though the
use of physical devices (sensors).

In this context, our research interests reside in the Agent-Oriented Software
Engineering (AOSE) [24] domain, focused on agents capable of interacting with
the Web and its services. We refer to such agents as web-based agents. Our
objectives are (i) to review the existing software engineering techniques used in
conjunction with web agents and (ii) to explore how web agents and MAS can
be extensively used with different new Web-related paradigms. In particular,
we would like to understand the difficulties involved in the use of multiagent
technologies in real-world situations. This also involves studying the use of well-
established multiagent platforms and concepts by developers and development
teams already employed in the industry, which are not necessarily familiar with
agents. Before exploring these topics, however, it is necessary to better under-
stand the current state-of-the-practice on web-based agents and related frame-
works. For that reason we established a process composed of three different steps:
(i) reviewing existing work relating agents and the Web; (ii) evaluating exist-
ing multiagent frameworks and Web-related capabilities; and (iii) implementing
web-capable agents (exposed as web services) to serve as an evolving proof-of-
concept, to be used during the course of our work. This process is fundamental
to our subsequent research, and it constitutes the basis of the present chapter.

With that in mind, we implemented a Smart Agenda MAS using one of
the multiagent platforms of our interest (JADE). At the same time that we
understand this platform is fairly mature, we would like to understand how
difficult it would be for students recently introduced to multiagent theory to use
and apply this platform in the process of solving a problem based in a real-world
scenario. For this reason, an agent-based personal assistant was proposed as the
evolving proof-of-concept.

This chapter is organized as follows: in Sect. 2, we provide some background
on intelligent agents. Section 3 contains some of the existing work related to using
agents in conjunction with Web-related technologies. In Sect. 4, we illustrate the
implementation of the Smart Agenda system, using agents deployed as a web
services. Finally, Sect. 5 presents some discussion and concludes this chapter with
some perspectives for future work.

2 Background

In this section we present some concepts that will be used along this chapter.
First we provide a brief description of web services, followed by an overview
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on intelligent agents (with emphasis on one particular architecture). After that
we provide an overview on languages used by the agents to interact between
themselves, referred to as agent communication languages.

2.1 Web Services

Web services can be generically described as “a software system designed to
support inter-operable machine-to-machine interaction over a network, provid-
ing a standard means of inter-operating between different software applications,
running on a variety of platforms and/or frameworks”1. It possesses an interface
that allows other systems (or web services) to interact with it using structured
messages [2].

In practical terms, a web service can be described as a mean to interact
with existing applications using Web-related technologies. A web service can
be discoverable if it is published in a registration or directory service, which
acts as an yellow-pages equivalent. Its specification also includes a Web Service
description defining all message formats, protocols, and data types used by the
web service. From this description, valid messages can be formed and used to
communicate with the web service in question. When a web service is published
in a directory service, its description is also included.

From a distributed systems perspective, web services enable multiple appli-
cations to interact between themselves using Web technologies and protocols [1].
A web service can be used to remotely access a database, or to execute specific
processes in a remote machine with a certain set of parameters. They embody
the concepts of a service-oriented architecture (SOA)2 [14]. This allows for dif-
ferent web services to be used together in order to obtain the functionalities of
an equivalent larger system.

2.2 Intelligent Agents

An agent is a computer system with autonomous capabilities, which are able to
take decisions on what is needed to do in order to satisfy their objectives [41].
While this definition is not consensual, it revolves around the concept of auton-
omy.

Agents are also capable of interacting with other agents, exchanging data
and engaging in complex interactions such as cooperation, coordination, and
negotiation. A multiagent system is a system composed of multiple agents that
interact among themselves in a single environment [36]. The main purpose of
a MAS is to autonomously solve complex problems that would otherwise be
impossible (or very difficult) to solve by using a monolithic system.

Intelligent agents are capable of reason and decide which action to perform
according to available information. This information usually is related to the
conditions or consequences of the actions to be executed [41]. Taking advantage

1 https://www.w3.org/TR/ws-arch/.
2 http://www.opengroup.org/subjectareas/soa.
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of the agents’ inherent capabilities allow MAS to adapt to changes in the envi-
ronment. Also, the use of multiple agents allow for cooperation mechanisms to
take place in situations where solving the problem at hand is beyond the capa-
bilities of any single agent. Applications of MAS include manufacturing control,
production planning, logistics, transportation, among others [34].

BDI is one of the software architectures used to model and implement intel-
ligent agents. It is based on the human practical reasoning model [6] and any
BDI agent uses the concepts of belief, desire, and intention in its reasoning pro-
cess. These concepts are used by agents in a means-ends reasoning process. In
this sense, the agent’s actions are organized in an execution plan built on top of
what it believes to be true, and what it desires to achieve as a goal. This rea-
soning process is usually referred to as “planning” [26]. By using this separation
between information, planning, and execution, the agent is capable of adapting
to different conditions presented by the environment it is situated in.

3 Related Work

The idea of integrating agents and the web services has been proposed (and
experimented on) since the late 1990s [3,15,17,23,27]. The main idea at that
time was to use agents as assistants for web-based services, such as web stores [3],
or even for web browsing [27].

In particular, the idea of using agents as web services and using the Semantic
Web appeared in early 2000s [20,22]. Specifically, the use of BDI agents as web
services was also proposed around that time by Dickinson and Wooldridge [13].
Their work was later referenced in different works using agent as web services,
including collaborative testing [4] and e-learning [21].

Part of the subsequent work on agents as web services, however, was also
related to web-based MAS [29,37,38] and agent architectures [33,39]. Software
engineering methodologies related to this topic were also being developed and
studied [19,25,44]. In 2007, a survey on existing agent methodologies based on
the agent-oriented paradigm was published [8] with the aim of evaluating in what
extent existing agent-oriented methodologies were also oriented to the develop-
ment of services. From the AOSE perspective, the study served to demonstrate
that all evaluated methodologies could be used to model service-oriented agents.
At this point, the focus was on modeling agents as services, or generally using
the concepts around services in order to facilitate the interaction between agents.

In 2010, however, Ricci et al. introduced a platform called CArtAgO-WS [35],
intended to allow the development of service-oriented applications (SOA) popu-
lated by agents. This was a more embracing approach from the MAS perspective,
since it took into account both the concepts of artifacts - “objects” or services
that could be used by the agents - and the use of heterogeneous agent architec-
tures (including BDI). This idea was further explored and used in conjunction
with other agent frameworks, such as JaCaMo3 (we will briefly introduce this

3 http://jacamo.sourceforge.net/.
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framework later in the text). More recently, another step in the same direction
was proposed by Ciortea et al. [10]: they proposed that the World Wide Web
(WWW), in its current state, could be suitable as a middleware for Internet-
scale multiagent systems. This would be achieved through the use of a resource-
oriented layer that would allow the application environment to be decoupled
from its deployment context. In order to demonstrate this proposal, an agent
environment was developed using JaCaMo. This environment was specifically
aimed at the Internet of Things (IoT), emphasizing the separation between the
application environment and the deployment context.

It is interesting to notice, however, that while different research has been per-
formed in web-based MAS, most of this work perceives the Internet environment
as a means of communication. Even larger proposals such as Agentcities [40] and
distributed platforms for data processing [31] rely on web protocols and agent
communication standards to establish and coordinate the communication pro-
cesses, while the agents - although exposed as services and sharing resources -
are reasoning blocks taking advantage of such structure. In addition, the lower-
level communication mechanisms are still based in procedure calls, not taking
advantage of newer mechanisms. There is very recent work on this field that
aims at addressing such issues [9,10].

In the current state of the Web, using it as a middleware for MAS is certainly
appealing. At the same time, modeling MAS while taking full advantage of the
web environment (not only as a communication-enabled environment) is par-
tially subject to the constant evolution of the Internet itself. From a higher-level
perspective, it is possible to model web-based agents and MAS using existing
AOSE methodologies (such as GAIA [43] and O-MASE [11,12]) while abstract-
ing the Internet environment. From a lower-level perspective, however, different
communication protocols, web-specific components and technologies can influ-
ence the way web-based agents and MAS can be build and deployed into the
Internet environment.

Our motivation comes from this context. From the modeling perspective, we
would like to explore how we could structure web-based agents that could take
full advantage from the Internet environment. Also, from the implementation
perspective, we would like to explore how the newest mechanisms and protocols
could be used by agents and MAS when deployed into the Internet.

4 Smart Agenda

As part of our study process, we modeled a simple MAS that used agents
deployed as web services. The objective of this step was to verify how this could
be built and deployed using the current technologies and tools. As mentioned
before, we chose JADE as the target framework. Part of the reason behind
this choice was related to the framework’s web-related functionalities previously
described. While the modeled MAS is not complex, we intend to explore and
evolve this implementation as our research advances.

Integrating Web Services and JADE agents has already been done in the
past [28,30]. Nevertheless, we decided to design a simple MAS completely based
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in agents deployed as web services. For that purpose, we adopted a JADE add-on
aimed at providing support for exposing agents as web services called WSIG4.
This add-on acts as a relaying gateway, handling all requests coming from the
Web and sending them to the MAS.

In order to be exposed as a web service, a JADE agent must possess an Ontol-
ogy and a set of Actions. Ontologies are structures used to define the vocabulary
and semantics used in the communication between JADE agents. The WSIG
add-on also uses the ontologies to define which agent operations will be exposed
as web services. Moreover, an action is an object corresponding to a request.
Once a request is made from the Web, the resulting action object containing the
request elements is sent to the JADE agent.

In this first phase of our project, our objective was to implement an MAS
that would be able to handle all the tasks associated with an specific event. For
this purpose, we modeled a Smart Agenda MAS, which is built to function as an
agent-based personal assistant. For example, if the user updates his agenda with
a meeting in Brussels and he is in Paris, the Smart Agenda system is supposed
to detect that the user needs a train to go from Paris to Brussels, and use a
text-to-speech service in order to ask Google Home to book a train ticket. The
text-to-speech service is named AWS Polly5.

4.1 Requirements and Architecture

The Smart Agenda possesses a web page used as an interface between the user
and the MAS. After creating an account, the user can set personal preferences
regarding transportation, hotel stars, and hours. The web page is used to sched-
ule new events and to modify or view existing events. The system also allows the
user to create events involving other users, or to join existing events created by
other users. Events are classified either as “individual events” or “group events”.

Individual events are scheduled solely according to the user’s preferences.
They possess two distinct properties, named “Automatic” and “Movable”. An
automatic event can be scheduled by the agent arbitrarily along the day, accord-
ing to the preset user preferences. A movable event can be rescheduled without
the user’s confirmation if it’s necessary. Thus, if an automatic event is created,
the agent will try to find an available time slot in the agenda according to the
user’s preferences. If there is not a free slot long enough to accommodate it, the
agent will try to reorganize other movable events to optimize the day.

Group events are events shared by two or more users. They are non-movable
by default. When a user creates an event, he can assign it to an existing users
group. Group events can be marked as “Optional”, meaning that the attendance
for all users is not mandatory. If at least two users within the group are available
at the scheduled time, the event will be created and added to these users’ agenda.
In the case the event is not marked as “Optional”, the attendance is considered

4 http://jade.tilab.com/doc/tutorials/WSIG Guide.pdf.
5 https://aws.amazon.com/polly/.
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mandatory for all participants - meaning that if at least one user is not available
at the scheduled time the event will not be created.

The Smart Agenda MAS is composed by four different agents: Coordinator,
Manager, Agenda, and Assistant. The Coordinator is responsible for handling
all requests from the Web. When a new user account is created, the request is
forwarded to an available Manager agent, which creates two new agents linked
to this user: the Agenda agent, and the Assistant agent. In order to provide scal-
ability to the system each Manager agent is responsible for a limited number of
users. The Agenda agent is responsible for processing all future event operations
for the new user, and the Assistant is the BDI agent responsible for processing
complementary actions related to an event (such as booking a ticket) and gen-
erating the final sentence with the help of AWS Polly. Consequently, there are
two agents (Assistant and Agenda) for each user registered in the system.

When a new event is created in the user’s calendar, the Coordinator forwards
it to the corresponding Manager, which then sends it to user’s Agenda agent.
This event is added to the agenda and, if this is an individual event, the Assistant
agent creates its related Goals. A plan will be selected from an existing plan
library according to the user’s preferences and context-dependent feasibility. If
it fails, the next one will be tried. If the event contains the keywords “rdv”,
“rendez vous” or “meeting”, and “@SomeTown”, the resulting plan will be a
sentence containing all the event’s elements: the date, the time, the starting and
arrival towns. This sentence is then translated into audio (speech) through the
use of the AWS Polly service, and finally played to Google Home with the help
of speakers. This architecture is shown in Fig. 1, and its demonstration can be
found at: http://bit.ly/Emas18Demo.

Fig. 1. Implementation architecture for the Smart Agenda agents

http://bit.ly/Emas18Demo
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5 Discussion

In this chapter, we revisited some of the existing work on web-based agents and
MAS. We also implemented a simple MAS using JADE and agents deployed as
web services. Although not being complex, the idea behind the implementation
was to create an MAS that could be further evolved and explored during the
course of our research. Thus, the implemented system is meant to be an evolv-
ing proof-of-concept. We found a few difficulties related to the implementation
(mostly related to WSIG), but the MAS architecture was simple enough to be
modeled using a traditional BDI architecture. At the moment, the BDI model is
limited to individual events and sequential goals (context dependency and AWS
integration).

From the development process perspective, we found a few difficulties related
to using the JADE platform. Most of these difficulties were related to the WSIG
plugin, used to expose JADE agents as web services. Despite being a mature
platform, we identified a few discrepancies in the framework documentation, and
apparently the platform itself possesses some outdated dependencies (considering
the state-of-the-art of web-related technologies and base frameworks, such as
the http server and the graphical user interface). Also, the initial use of the
platform raised questions related to its scalability, and how it could be used by a
truly distributed system. Applying multiagent concepts to the proposed problem,
however, was not difficult - most of the development effort was concentrated on
learning and running the JADE platform according to the desired conditions.

This work is meant to be a stepping stone to our research interests in the
AOSE domain. Our long-term objective is to study and explore web-based agents
and MAS from both the modeling and the implementation perspective, consider-
ing AOSE methodologies and new Web-related paradigms. The next steps in this
research topic involve (i) studying architectural patterns for web-based agents
and related interaction protocols, as well as their relationship with existing agent
modeling methods; and (ii) exploring new Web-related paradigms and studying
how web-based agents could be used in conjunction with such paradigms. From
the development perspective, we intend not only to evaluate existing multia-
gent frameworks and Web-related capabilities, but also to explore the existing
platforms considering the current state-of-the-art scenario in terms of technolo-
gies and tools. In particular, we intend to address the problem of implementing
distributed MAS using the available platforms, and which are the current limi-
tations in this sense.

As for our initial proof-of-concept, we intend to evolve it by (i) implementing
the same MAS in different frameworks, in order to establish a common base-
line for future performance and scalability comparisons; and (ii) expanding the
BDI model used in the implementation, increasing the complexity of the agents
and their associated reasoning processes. The next steps reside in (i) expand-
ing the BDI model (taking geographical constraints and group preferences into
consideration), (ii) the original related research (architectural patterns for web-
capable agents and related interaction protocols, as well as their relationship with
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existing agent modelling methods) and (iii) the implementation itself (comparing
non-agent and agent-based approaches, automating the ticket booking process,
improve shared events).

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Distributed information sys-
tems. Web Services: Concepts, Architectures and Applications, pp. 3–27. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-662-10876-5 1

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web services. Web Services: Con-
cepts, Architectures and Applications, pp. 123–149. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-662-10876-5 5

3. Ardissono, L., Barbero, C., Goy, A., Petrone, G.: An agent architecture for person-
alized web stores. In: Proceedings of the Third Annual Conference on Autonomous
Agents, pp. 182–189. ACM (1999)

4. Bai, X., Dai, G., Xu, D., Tsai, W.T.: A multi-agent based framework for collabo-
rative testing on web services. In: The Fourth IEEE Workshop on Software Tech-
nologies for Future Embedded and Ubiquitous Systems, 2006 and the 2006 Second
International Workshop on Collaborative Computing, Integration, and Assurance,
SEUS 2006/WCCIA 2006, 6 pp. IEEE (2006)

5. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43
(2001)

6. Bratman, M.: Intention, Plans, and Practical Reason. Cambridge University Press,
Cambridge (1987)

7. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
an agent-oriented software development methodology. Auton. Agent. Multi Agent
Syst. 8(3), 203–236 (2004)

8. Cabri, G., Leonardi, L., Puviani, M.: Service-oriented agent methodologies. In:
16th IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2007, WETICE 2007, pp. 24–29. IEEE (2007)

9. Ciortea, A., Boissier, O., Ricci, A.: Beyond physical mashups: autonomous systems
for the web of things. In: Proceedings of the Eighth International Workshop on the
Web of Things, pp. 16–20. ACM (2017)

10. Ciortea, A., Boissier, O., Zimmermann, A., Florea, A.M.: Give agents some rest: a
resource-oriented abstraction layer for internet-scale agent environments. In: Pro-
ceedings of the 16th Conference on Autonomous Agents and MultiAgent Sys-
tems, AAMAS 2017, pp. 1502–1504. International Foundation for Autonomous
Agents and Multiagent Systems, Richland (2017). http://dl.acm.org/citation.cfm?
id=3091125.3091342

11. DeLoach, S.A.: The MaSE methodology. In: Bergenti, F., Gleizes, M.P.,
Zambonelli, F. (eds.) Methodologies and Software Engineering for Agent Systems.
Multiagent Systems, Artificial Societies, and Simulated Organizations (Interna-
tional Book Series), vol. 11, pp. 107–125. Springer, Boston (2004). https://doi.
org/10.1007/1-4020-8058-1 8

12. DeLoach, S.A., Garcia-Ojeda, J.C.: The O-MASE Methodology. In: Cossentino, M.,
Hilaire, V., Molesini, A., Seidita, V. (eds.) Handbook on Agent-Oriented Design
Processes, pp. 253–285. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-39975-6 9

https://doi.org/10.1007/978-3-662-10876-5_1
https://doi.org/10.1007/978-3-662-10876-5_5
http://dl.acm.org/citation.cfm?id=3091125.3091342
http://dl.acm.org/citation.cfm?id=3091125.3091342
https://doi.org/10.1007/1-4020-8058-1_8
https://doi.org/10.1007/1-4020-8058-1_8
https://doi.org/10.1007/978-3-642-39975-6_9
https://doi.org/10.1007/978-3-642-39975-6_9


Exposing Agents as Web Services in JADE 349

13. Dickinson, I., Wooldridge, M.: Agents are not (just) web services: considering
BDI agents and web services. In: Proceedings of the 2005 Workshop on Service-
Oriented Computing and Agent-Based Engineering (SOCABE 2005), Utrecht,
The Netherlands (2005)

14. Erl, T.: Service-Oriented Architecture - Concepts, Technology, and Design, 1st edn.
Prentice Hall, Upper Saddle River (2005)

15. Etzioni, O.: Moving up the information food chain: deploying softbots on the world
wide web. In: Proceedings of the National Conference on Artificial Intelligence,
pp. 1322–1326 (1996)

16. Ferber, J.: Multi-agent Systems: An Introduction to Distributed Artificial Intelli-
gence, vol. 1. Addison-Wesley, Reading (1999)

17. Greenwood, D., Calisti, M.: Engineering web service-agent integration. In: 2004
IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1918–
1925. IEEE (2004)

18. Guinard, D., Trifa, V., Wilde, E.: A resource oriented architecture for the web of
things. In: Internet of Things (IOT), 2010, pp. 1–8. IEEE (2010)

19. Hahn, C., Jacobi, S., Raber, D.: Enhancing the interoperability between multiagent
systems and service-oriented architectures through a model-driven approach. In:
2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelli-
gent Agent Technology (WI-IAT), vol. 2, pp. 415–422. IEEE (2010)

20. Hendler, J.: Agents and the semantic web. IEEE Intell. Syst. 16(2), 30–37 (2001)
21. Hirsch, B., Ng, J.W.: Education beyond the cloud: anytime-anywhere learning

in a smart campus environment. In: 2011 International Conference for Internet
Technology and Secured Transactions (ICITST), pp. 718–723. IEEE (2011)

22. Huhns, M.N.: Agents as web services. IEEE Internet Comput. 6(4), 93–95 (2002)
23. Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and

development. Auton. Agent. Multi Agent Syst. 1(1), 7–38 (1998)
24. Jennings, N.R., Wooldridge, M.: Agent-oriented software engineering. In: Hand-

book of Agent Technology, vol. 18 (2001)
25. Kardas, G., Goknil, A., Dikenelli, O., Topaloglu, N.Y.: Model driven development

of semantic web enabled multi-agent systems. Int. J. Coop. Inf. Syst. 18(02), 261–
308 (2009)

26. Konolige, K., Nilsson, N.J.: Multiple-agent planning systems. In: AAAI 1980,
pp. 138–142 (1980)

27. Lieberman, H., et al.: Letizia: an agent that assists web browsing. In: IJCAI 1995,
vol. 1, pp. 924–929 (1995)
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