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Chapter 12
The Cytoskeleton as a Modulator of Aging 
and Neurodegeneration

Konstantinos Kounakis and Nektarios Tavernarakis

1  Introduction

The cytoskeleton is a cellular entity, encompassing a multitude of filamentous pro-
teins, forming structures that impart mechanical strength, allow intracellular trans-
port and spatial organization, connect the cell to its environment, and generate 
forces that permit movement [1]. The ubiquitous nature of the cytoskeleton and the 
breadth of its functionality make it one of the most fascinating aspects of cellular 
biology, as well as one that is always worth considering when researching or dis-
cussing phenomena that affect the cells. In this review, we discuss the relevance of 
the cytoskeleton to the processes of aging and neurodegeneration, and provide 
examples that demonstrate its importance.

1.1  Components of the Cytoskeleton

Three types of cytoskeleton polymers have been defined: actin microfilaments, 
microtubules and intermediate filaments [1, 2]. We briefly describe their structure 
and function below.
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1.1.1  Actin Microfilaments

Actin filaments (also commonly referred to as F-actin) are about 7 nm in diameter 
and consist of monomers of globular (G-actin) that interact head-to-tail with each 
other. G-actin can bind ATP, and this promotes its polymerization to F-actin. ATP is 
subsequently hydrolyzed to ADP. Actin filaments are polarized with a positive (+) 
and negative (−) end. Polymerization can occur at both ends but is significantly 
faster at the + end. The filaments can organize into higher order structures with the 
help of crosslinkers (Fig. 12.1). Highly aligned actin bundles are responsible for the 
formation of narrow cell protrusions, such as filopodia, while highly branched bun-
dles take part in larger cellular movements, such as those that occur in phagocytosis. 
The polarity of the filaments also allows them to support a family of ATP driven 
motor proteins, the myosins, that contribute to actin network organization and force 
generation [1, 2].

In neurons, actin forms patches in the initial segment of the axon and at points 
along its length [3, 4]. It also forms, in association with the actin capping protein 

Fig. 12.1 Organization of actin microfilaments. (a) G-actin polymerization. Actin monomers are 
loaded with ATP with the help of a protein with ATP exchange factor (AEF) activity. This induces 
their polymerization. (b) F-actin. (c) Larger scale F-actin organization facilitated by crosslinker 
proteins
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adducin, a series of periodic rings spaced by spectrin that are wrapped around the 
axonal shaft [5]. Actin is also a major contributor the motility and guidance of the 
neuronal growth cone. The growth cone has three domains: the central (C), the 
peripheral (P) and the transition (T) domain [6]. Actin is rich in the P and T domain 
and its polymerization and recycling allows for the formation of exploratory filopo-
dia. In addition, myosin 2 generates forces that assist in propelling the growth cone 
forward and steer it towards its targets. Inhibition of these functions does not pre-
vent axonal growth but it significantly reduces its speed and abolishes its ability to 
respond to guidance cues [7, 8]. It can also act as the driving force for axonal 
branching, as actin filament patches can initiate the formation of protrusions that 
subsequently are invaded by microtubules to create new collateral branches that 
allow the same axon to interact with multiple targets [9]. Furthermore, actin has 
been connected to synaptic signaling, as it has been implicated in the regulation of 
synaptic vesicle pools, vesicle docking to the active zone, and even endocytic 
retrieval of vesicle membranes [10]. Finally, actin contributes to dendritic spine 
organization [11–13] and, in collaboration with microtubules and the receptor- 
associated protein gephyrin, contributes to postsynaptic receptor clustering [14].

In oligodendrocytes, the glial cells that are responsible for myelinating the axons 
of the CNS to facilitate fast action potential conduction, the actin cytoskeleton plays 
a critical role by allowing these cells to alter their morphology during development 
[15]. These cells possess protrusions with actin rich filopodia and lamellipodia. 
Actin in these structures is organized in a fashion mostly similar to growth cones 
[16]. It acts as a necessary driving force that allows these protrusions to extend 
towards their target axons and wrap around them [17–20]. Subsequently, actin 
depolymerization allows these protrusions to convert into sheets by reducing sur-
face tension, enabling proper myelin spreading [19].

1.1.2  Microtubules

Microtubules (MTs) are cylindrical bundles of parallel protofilaments comprised of 
α- and β- tubulin. These bundles can have 10–16 individual filaments, with 13 being 
the most common. They have a typical diameter of about 25 nm. Both tubulins can 
bind GTP, which promotes polymerization, but eventually hydrolyze it to GDP, 
weakening their affinity. This leads to what is described as “dynamic instability”, as 
microtubules can switch between stable growth and rapid depolymerization. 
Microtubules are polarized, with a + and a − end. This polarity becomes particularly 
apparent during a phenomenon known as treadmilling, during which tubulin is 
simultaneously removed from the − end of the filament and polymerized to the + 
end (Fig. 12.2). This polarity also allows microtubules to support ATP driven motor 
proteins, the kinesins and dyneins, which are responsible for the guided transport of 
cellular cargo. Microtubules interact with a group of proteins known as MAPs 
(microtubule associated proteins) that influence their stability and interactions with 
other cellular components. A subset of MAPs, the +TIPs (plus-end-tracking pro-
teins) interact specifically with growing microtubule ends. There are also − end 
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capping proteins that can prevent depolymerization. Microtubule nucleation often 
needs to start at a Microtubule organization center (MTOC) where γ-tubulin inter-
acts with α- and β- tubulin, providing a base for the start of filament extension [1, 2, 
21]. The MTOC of mammalian cells is known as the centrosome. It consists of two 
perpendicular tubulin structures known as centrioles that are surrounded by a centro-
somal matrix of proteins involved in microtubule nucleation, anchoring and release. 
The duplicated centrosome is responsible for the formation of the mitotic spindle, 
the microtubule structure that segregates chromatids during cell division [22].

In mature neurons, microtubules are arranged with the − end towards the cell 
body and the + end extending outwards, along the axon. They are discontinuous, 
with multiple start and stop sites [21]. In this context, there is evidence that micro-
tubules cease to rely on the centrosomal MTOC for their organization [23, 24]. 
Axonal microtubules extend into growth cones, where they localize primarily in the 
C domain. However, they can extend even further and they are known to interact 

Fig. 12.2 Organization of microtubules. (a) GTP is loaded to α- and β- tubulin with the help of a 
protein with GTP Exchange Factor (GEF) activity. (b) A tubulin filament. (c) Microtubule struc-
ture and dynamics
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with actin, particularly actin bundles that form filopodia in the P zone [6]. These 
microtubules have dynamic ends and are crucial to growth cone steering [25]. 
Outside of the growth cone, in cases of interstitial axonal branching formation, 
some axonal microtubules are reorganized and interact with the newly forming pro-
trusion [26]. Microtubules also extend between the cell body and dendrites. In this 
case they adopt a mixed orientation, with + and − ends facing towards both direc-
tions [27].

1.1.3  Intermediate Filaments

Intermediate filaments (IFs) constitute a diverse family of cytoskeletal proteins that 
are expressed differentially across cell types. All of these proteins share structural 
similarity and organize in similar ways to provide mechanical strength and stability 
to most cell types, especially against tensile forces. IF subunits consist of a globular 
N-terminal head, an α-helical core and a variable C-terminal domain. Intermediate 
filament monomers tend to coalesce in pairs, forming parallel coiled coil dimers. 
Two antiparallel dimers can also associate to form a tetramer (Fig. 12.3). The higher 
scale organization depends on the tissue and the actual filament components but 
typically leads to a filamentous polymer of ~10 nm in diameter. Examples of IFs 
include keratin, vimentin, the lamins of the nuclear skeleton, α-internexin, periph-
erin, synemin, nestin or the light, medium and heavy neurofilaments (NF-L, NF-M 
and NF-H, respectively). Intermediate filaments are not polarized and therefore do 
not support molecular motors [1, 2, 28, 29].

Neuronal intermediate filaments (which will be referred as neurofilaments or 
NFs from now on) represent the main cytoskeletal element of mature neurons. They 
consist of NF-L, NF-M, NF-H and occasionally α-internexin and peripherin, with 

Fig. 12.3 Intermediate filament organization. (a) Monomer. (b) Dimer of parallel monomers. (c) 
Tetramer of antiparallel dimers
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the actual composition varying by organism or even stage of development. The 
NF-M and NF-H C-terminal domains are notable for the presence of a large number 
of lysine-serine-proline (KSP) repeats that represent targets for regulatory phos-
phorylation. Neurofilaments reside in axons and act as regulators of axonal caliber, 
which has implications in myelin thickness and the rate of axonal conduction. They 
are also associated with axonal growth and regeneration [2, 29, 30].

2  The Importance of the Cytoskeleton to Aging 
and Neurodegeneration

2.1  Cytoskeleton and Organismal Aging

There is ample experimental evidence connecting the cytoskeleton with the pro-
cesses of cellular and organismal aging. In yeast, actin has emerged as a regulator 
of lifespan by regulating the inheritance of mitochondria. During budding, actin 
cables create a retrograde flow from the bud towards the mother cell, driven by 
polymerization and myosin activity. This flow pushes mitochondria away from the 
bud, forcing them to “swim upstream” and ensuring that only healthy mitochondria 
can reach the new cell, granting it a longer lifespan and healthspan [31, 32].

In C. elegans, the actin cytoskeleton has been observed to deteriorate with aging. 
HSF-1, the master regulator of the heat shock response that provides thermotoler-
ance and also contributes to organismal longevity, has been shown to act against this 
deterioration. This effect is mostly mediated through the upregulation of the expres-
sion of the calcium binding protein PAT-10. Most notably, loss of pat-10 is sufficient 
to decrease organismal lifespan and thermotolerance, while overexpression 
enhances thermotolerance and promotes longevity [33, 34].

In mammals and particularly in humans, oocyte fertility is reduced in aging. This 
is in part due to deterioration of meiotic spindle integrity. Spindle microtubules lose 
their ability to accurately interact with meiotic chromosomes and separate them, 
thus causing aneuploidies. The deterioration of the spindle can be attributed to the 
reduced activity of enzymes that are responsible for centrosome and microtubule 
maintenance [22, 35]. Centrosome defects have also been proposed as a possible 
explanation for the age-related decline of stem cell division [36].

The myelin sheath is crucial to adult neuron performance. Unfortunately, even 
healthy aging is accompanied by the emergence of defects in myelin composition 
and structure [37–39]. Thus maintenance mechanisms need to be activated to pro-
tect the axons. In the case of CNS oligodendrocytes, there is evidence indicating 
that the cytoskeleton is a fundamental constituent of these processes. Septins, a 
family of cytoskeleton associated scaffold proteins, have been shown to form fila-
ments along with anillin in mice that support the myelin sheath and loss of these 
proteins leads to defects in myelin structure [40]. Additionally, it has been shown 
that de novo myelination pathways in the CNS remain active in adulthood through 
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new oligodendrocytes [41–43], the maturation of which is guided by cytoskeleton 
dynamics. This de novo myelination has been mostly associated with plasticity 
related adaptations but could also participate in maintenance.

In humans, aging is associated with increased aortic stiffness. This is often con-
sidered to preclude myocardial infarction, renal disease or even cognitive decline. A 
significant part of this aortic stiffness is attributed to vascular smooth muscle cells 
and particularly to their non-muscle actin cytoskeleton that is responsible for their 
connection to the extracellular matrix. Decoy peptides that inhibit actin polymeriza-
tion or the interaction of the actin associated proteins talin and vinculin have been 
shown to be a potential method for counteracting aortic stiffness [44].

Another issue that emerges with human aging is the deterioration of heart health. 
Heart failure in particular is one of the most prominent causes of death and disabil-
ity in the elderly [45]. Actin is critical to heart health, as actin fibers constitute a 
major component of sarcomers, the mechanical units that drive cardiomyocyte con-
traction [46]. Experiments in mice and rats have shown a conserved activation of 
actin remodeling by vinculin during aging. Further experiments in Drosophila have 
suggested that this is an anti-aging mechanism that improves heart function and 
overall organismal lifespan [47]. Actin is also relevant to heart health due to its 
association with the proliferative capacity of cardiac fibroblasts. Aging fibroblasts 
exhibit reduced levels of the LOX-1 receptor, lose their proliferative capacity and 
exhibit a disorganized actin network. Restoration of LOX-1 levels re-establishes 
fibroblast proliferative potential and reinstates actin organization [48].

2.2  Cytoskeleton and Neurodegeneration

Considering the prominent presence and important functionality of cytoskeletal 
proteins in neurons, it comes as no surprise that they have also been heavily impli-
cated over the years in processes underlying their dysfunction. Below, we discuss 
experimental data that connects the cytoskeleton to neurodegenerative diseases, as 
well as injury induced neurodegeneration.

2.2.1  Tau Associated Pathologies

Alzheimer’s disease (AD) is characterized by extracellular deposits of Aβ peptides 
and intracellular filamentous aggregates of Tau, a major microtubule associated pro-
tein [49–52]. Beyond AD, Tau aggregation has emerged as a common form of phe-
nomenon in more than 20 different types of neurological disease, including Pick’s 
disease, progressive supranuclear palsy, chronic traumatic encelopathy, argyrophilic 
grain disease, frontotemporal dementia with parkinsonism-17, corticobasal degen-
eration and Parkinson’s disease (PD) [49, 53]. In the human brain, Tau has six iso-
forms with either 3 or 4 microtubule binding repeats at its C-terminal domain (3R 
and 4R Tau respectively) [49, 54, 55]. The protein is typically a dipole but 
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post- translational modification, especially phosphorylation, can affect its charges 
and disrupt its ability to bind microtubules [56–58]. In addition to its microtubule 
binding abilities, it has been shown to interact with the plasma membrane [59]. It is 
also capable of interacting with actin, induce its polymerization and promote micro-
tubule and actin co-alignment [60].

Tau assembles into filaments through its repeats forming a cross-beta structure. 
Thus, the microtubule binding regions are trapped in the core of the aggregate, ren-
dering physiological interaction with microtubules impossible [61–64]. Tau aggre-
gates are commonly referred to as Neurofibrillary Tangles (NFTs), but their actual 
morphology can vary across different diseases, leading to their sub-characterization 
into paired helical filaments (PHFs), straight filaments (SFs) and twisted ribbon-like 
lilaments (TRFs) [49, 51]. Tau is abnormally hyperphosphorylated in all of its 
aggregates. This has led to the belief that phosphorylation is toxic and induces Tau 
aggregation. However, this might not be the case as human tauopathies have not 
been linked to defects in kinases or phosphatases, and kinase inhibition has not been 
shown to be an effective treatment option [49, 51]. Furthermore, there is evidence 
of Tau phosphorylation acting in a benign fashion in the process of hibernation [65, 
66], without fibril formation and with reversibility.

There are several possible explanations on the causes of Tau associated neuropa-
thology; Tau aggregation could lead to an effective LoF phenotype by preventing 
the protein form exercising its normal roles [67]. For instance loss of Tau in mouse 
models of AD (over-expressing mutant APP, the precursor of the Aβ peptide) aggra-
vated neurodegeneration and exhibited axonal swellings full of cellular debris and 
mislocalized organelles, vesicles and even presynaptic terminal components [68]. In 
addition, Tau KO mice exhibit intracellular iron accumulation, substantia nigra neu-
rodegeneration, brain atrophy and parkinsonism. Supplementation with an iron che-
lator rescued this phenotype. These observations were attributed to reduced transport 
of APP onto the neuronal membrane (APP in conjunction with ferroportin acts as 
the sole iron export system in neurons) due to the altered microtubule dynamics that 
arise from lack of Tau [69]. Another indication supporting this idea is the observa-
tion that microtubule stabilizing drug treatment has had some effectiveness in ame-
liorating tauopathy [70–72]. An alternate explanation could be that Tau (normal, 
mutant and/or phosphorylated) represents a toxic threat to cells in a gain of function 
(GoF) fashion. The protein has, for instance, been implicated in the disruption of 
mitochondria through the induction of mitochondrial fusion, inhibition of mitoph-
agy and a reduction of ATP production [73, 74]. There are indications suggesting 
that a GoF threat might arise from non-filamentous forms of Tau [51], as experi-
ments have demonstrated that truncated/cleaved Tau can be toxic [75, 76]. In addi-
tion, neurodegeneration can occur before or without Tau filament formation [77, 78] 
and tangle formation can persist in rescued animal models [79]. In the latter case, 
NFT formation might act as an attempt from the cell to quarantine dangerous Tau 
forms. Arguably, it is possible that both explanations are true on a disease by disease 
basis, or even simultaneously, with aggregation acting as the “lesser evil” that ini-
tially protects neuronal cells from toxicity but eventually ends up being deleterious 
through dysregulation of the cytoskeleton or other effects.
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The aforementioned Tau-actin interaction [60] might have a functional implica-
tion in neurodegenerative disease, as experiments in Drosophila melanogaster and 
have shown that mutant forms of Tau associated with human tauopathies are capa-
ble of inducing the formation of actin rich structures resembling Hirano bodies 
(actin aggregates that occur in human patients). Actin was necessary for Tau toxicity 
in these instances. Tau phosphorylation, as well as transgenic Aβ42 expression, 
exacerbated actin aggregation and neuronal death [80]. Recently it was reported that 
tau can accumulate and form tangles in the medial temporal lobe and particularly in 
the entorhinal cortex as a pure consequence of normal “healthy” aging indicating a 
possible mechanism for the aging-associated loss of episodic memory [81].

2.2.2  Other Microtubule Associated Pathologies

The implication of microtubules in neurodegenerative disease extends beyond the 
role of Tau. Part of the neurotoxicity in Huntington’s disease (HD) can be attributed 
to defects in microtubule based axonal transport, and MT stabilizing acetylation is 
potentially beneficial [82]. Very similar observations have been made in a model of 
Charcot-Marie-Tooth disease (CMT) [83]. Experiments in a PD model have shown 
that intracellular transport could be disrupted due to the reduction of microtubule 
dynamics, and that this might preclude mitochondrial damage and caspase 3 activa-
tion [84]. Disrupted mitochondrial dynamics, along with reduced levels of MAP 
expression, can also be observed in amyotrophic lateral sclerosis (ALS) patients and 
models, and pharmacological MT stabilization can delay the progression of the dis-
ease in mice [85–87].

2.2.3  Actin Associated Pathologies

ALS is a neurodegenerative disorder associated with the loss of motor neurons in 
the cerebral cortex, the brainstem, and the ventral horn of the spinal cord [88]. The 
disease is mainly linked with alterations in genes such as superoxide dismutase 1 
(SOD1), fused in sarcoma (FUS) and TAR DNA binding protein (TARDBP / TDP- 
43) [89]. Spinal muscular atrophy (SMA) is a disorder with phenotypical similarity 
to ALS that exhibits motor neuron loss exclusively in the ventral horn of the spinal 
cord [88]. SMA is attributed to loss of function (LoF) of the survival of motor neu-
ron 1 gene (SMN1) [90]. Both ALS and SMA have been linked with altered cyto-
skeletal dynamics or mutations in known regulators of the cytoskeleton [91–97]. 
Notably, the actin regulators profilins have been implicated in both diseases [93, 
96–98]. Profilins are a family of proteins that can bind monomeric G actin and 
facilitate the exchange of ADP for ATP. Depending on the cellular conditions, pro-
filins have been suggested to act as either a promoter of actin polymerization and 
F-actin stabilizer, or as a sequester of G-actin and F-actin destabilizer [88, 99]. 
Profilin binding activity can be inhibited through phosphorylation by the RhoA 
kinase (ROCK), an important regulator of actin dynamics [100, 101]. It has been 
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shown that SMN1 binding to profilin 2 reduces its inhibitory effects and promotes 
actin polymerization [93]. It has also been suggested that this binding protects pro-
filin from ROCK phosphorylation and that the source of cytoskeletal defects in 
SMA is the loss of this protection [88]. In ALS, profilin 1 has been suggested to 
contribute to disease pathology through the formation of TDP-43 associated aggre-
gates [97, 102, 103], through loss of its ability to interact with stress granules [104], 
or through dysregulation of actin dynamics [105, 106]. It is worth mentioning that 
profilin has also been shown to interact with the polyglutamate protein Huntingtin 
and inhibit its aggregation. The prevention of profilin inhibition by ROCK has also 
been demonstrated as a potential therapeutic approach for HD [101]. Beyond its 
aforementioned potential association with Tau, another connection of actin with AD 
pathology was revealed recently. The actin cytoskeleton was shown to be compro-
mised in transgenic mouse models early in disease progression in conjunction with 
dendritic spine effects and a decline of AMPA signaling [107].

Microglia can act as a line of defense against AD by migrating towards extracel-
lular Aβ42 aggregates, binding them and phagocytosing them. However during 
aging, Nogo/Ngr signaling reduces the ability of microglia to migrate and adhere to 
Aβ42 through Rho-GTPases that regulate actin dynamics and end up preventing 
protrusion extension and cell polarization [108]. On the other hand, the cytoskeleton 
might also have an inhibitory role in this interaction, as it has been reported that 
cytosolic phospholipase A2 (cPLA2), a factor that mediates the Aβ-induced response 
in glial cells, acts to reduce the cytoskeletal-membrane connectivity that represents 
a physical barrier against Aβ endocytosis [109].

Alterations in actin dynamics may also play a role in PD, as a-syn has been 
shown to inhibit cofilin, an actin destabilizer, in experimental models and patients. 
This leads to actin overstabilization, with potential negative implications for synap-
tic signaling [110]. Cdc42 is a Rho-GTPase that is involved in the regulation of actin 
dynamics. Some variants of variants of CMT have been associated with a mutation 
in Frabin, the GTP exchange factor of Cdc42 [111, 112].

2.2.4  Neurofilament Associated Pathologies

Neurofilaments have also been associated with neurodegenerative disease. Abnormal 
neurofilament aggregation has been observed in various disorders, such as AD, PD, 
CMT and ALS. It seems to be connected with deviations from the exact correct NF 
component stoichiometry, as it can occur in response to both down-regulation or 
up-regulation of individual NF genes [113–115].

In AD, neurofilaments are another major component of Tau NFTs [116]. In these 
tangles, they adopt a paired helical filament conformation [117], and exhibit exten-
sive levels of phosphorylation [118].

Neurofilaments are also a primary component of the Lewy bodies, the character-
istic protein inclusions of PD [119, 120]. They are extensively phosphorylated in 
this instance as well [121]. Patient tissues exhibit down-regulation of NF-L and 
NF-H expression [122]. Mutations in the gene that codes NF-L have emerged as a 
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cause for CMT. These mutations lead to defects of axonal transport, neurofilament 
disorganization, and usually aggregation [123–131]. Some of the NF-L mutations 
that cause CMT lead to neurofilament aggregation due to the abolition of protective 
phosphorylation [129–132].

ALS is characterized by intraneuronalaxonal NF aggregation [133–135]. This is 
also the case in mice expressing mutant human SOD1, the gene mostly associated 
with familial cases of ALS [136]. This aggregation might be dispensable for the 
eventual progression of the disease [137] but its reduction might still be somewhat 
beneficial. Perhaps unexpectedly, overexpression of NF-H [138–140], or NF-L 
[138] or downregulation of NF-L [141] were all successful in imparting a partial 
protective effect that is attributed to a redirection of NF accumulation from the axon 
to the cell body/perikaryon. The exact mechanism of this protection is, however, 
uncertain.

2.2.5  Neurodegeneration Due to Injury

Injured axons of CNS neurons degenerate, in a process known as Wallerian degen-
eration. Fragmentation of microtubules is possibly the earliest step in this process 
[142]. Axons that are retracting due to injury exhibit a disorganized microtubule 
network [143]. In cases where axonal regeneration is possible (such as the periph-
eral nervous system), it is driven by microtubules and requires tubulin deacety-
lation, a modification that decreases their stability [144, 145]. The levels of expressed 
and axonally transported neurofilaments are also reduced, and are only restored in 
axons that can regenerate [146–154]. Microtubule destabilization accompanied by 
energy depletion precludes neurofilament defects, mitochondrial swelling and axo-
nal degeneration. Artificial energy repletion is effective at stopping this process 
[155]. Dendrites also degenerate after injury. Experiments in D.  Melanogaster 
showed that this requires microtubule severance by the ATPase fidgetin [156].

3  Conclusions

Despite decades of research, our knowledge on the cytoskeleton remains incom-
plete. There are still numerous questions that need to be addressed regarding cyto-
skeletal contributions to pathology. In this regard, the cytoskeleton represents a 
clear challenge for future research, and for the development of potential therapeutic 
strategies relevant to aging and neurodegeneration.
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