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Chapter 11
From White to Brown – Adipose Tissue  
Is Critical to the Extended Lifespan 
and Healthspan of Growth Hormone 
Mutant Mice

Justin Darcy and Andrzej Bartke

1  Introduction

The growth hormone (GH) and insulin-like growth factor 1 (IGF-1) axis ( collectively 
known as the somatotropic axis) was demonstrated to be a major determinant of 
mammalian longevity more than 20 years ago [1, 2]. Since then, numerous labora-
tories have attempted to elucidate mechanisms underlying the role of this axis in 
longevity, leading to an ever-growing list of possible mechanisms to disentangle [3, 
4]. During the same timeframe, the growing obesity epidemic in the developed 
world has resulted in a dramatic increase in adipose tissue (AT) research. Since GH 
plays integral roles in the physiology of AT, there has been a surge in research 
attempting to understand how AT impacts longevity in GH-mutant mice. This 
review is aimed to give an overview of AT, GH, and how the interplay between the 
two influences longevity.

2  Adipose Tissue

Traditionally, AT was believed to be metabolically inactive, solely acting as a tissue 
to store excess calories. However, paradigm-shifting studies demonstrated that AT 
secretes adiponectin [5], leptin [5, 6] and resistin [7], which paved the way for 
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future work on AT as an endocrine organ. Since then, our understanding of AT has 
been greatly expanded. We now know that there are at least three distinct types of 
adipose tissue: white adipose tissue (WAT); brown adipose tissue (BAT); and beige 
AT. As predicted, each type of AT depot has specific functions. Further differentiat-
ing these types of AT is the significant cellular heterogeneity within an AT depot 
itself [8]. Despite this heterogeneity, AT is largely made-up of postmitotic adipo-
cytes and their replicative precursors, termed preadipocytes. The differentiation of 
preadipocytes into mature adipocytes is transcriptionally controlled through the 
coordination of CCAAT/enhancer-binding proteins (C/EBPs) and peroxisome 
proliferator- activated receptor gamma (PPARγ) [9]. This section is dedicated to 
defining the similarities and differences between WAT, BAT and beige AT, which 
are summarized in Table 11.1.

2.1  WAT

The defining characteristic of WAT in both humans and mice is the storage of excess 
energy. Morphologically, WAT is characterized by a large, unilocular lipid droplet, 
with few mitochondria. WAT has both similarities and differences in mice and 
humans. In mice, WAT is present in superficial subcutaneous depots, mainly in the 
scapular and inguinal regions. WAT is also present in the intra-abdominal region of 
mice in the form of perigonadal (epididymal and paraovarian in males and females, 
respectfully), mesenteric, and retroperitoneal AT. In humans, WAT is more widely 
distributed and is present subcutaneously in the gluteal, femoral, clavicular, and 
abdominal regions. WAT in humans is also present intra-abdominally in intraperito-
neal, retroperitoneal, mesenteric, and omental AT depots. The major difference in 
WAT distribution between mice and humans is the large perigonadal depot in mice, 
and the large omental depot in humans. Most mouse studies in the context of metab-
olism and aging use inguinal WAT (iWAT) to represent subcutaneous AT, and peri-
gonadal AT to represent the so-called visceral AT. Although this practice is widely 
used and accepted, it is worth mentioning that some investigators prefer a more 
stringent use of the term “visceral” to include only AT that directly drains into the 
portal vein, rather than any intra-abdominal AT depot. By this definition, only mes-
enteric AT in mice would be considered “visceral” [10].

Table 11.1 Different types of adipose tissue. The major similarities and differences between 
white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue

WAT Beige AT BAT

Color White White Brown
Lipid storage Unilocular Unilocular Multilocular
Mitochondria Few Some Many
Innervation Normal Increased High
Thermogenic capacity Low Medium High
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In obese subjects, there are critical changes in WAT physiology. AT itself is sur-
rounded by a thick extracellular matrix (ECM). During weight gain, the ECM in 
WAT must expand to accommodate hypertrophic adipocytes. However, this results 
in poor vascularization [11] and subsequent hypoxia. Hypoxia in the adipocyte 
is just one of several instances that cause an increased secretion of proinflamma-
tory cytokines to be released from WAT during obesity [12]. Another unfavorable 
impact of obesity on WAT is ectopic lipid distribution. For example, intra-myo-
cellular lipids [13–17] and intra-hepatic lipids [18–21] are associated with insulin 
resistance, while epicardial fat is associated with an increased risk of coronary 
artery disease [22–24].

2.2  Bat

The differences between BAT and WAT begin during development, as BAT comes 
from a mesoderm lineage that is myogenic factor 5 (MYF5) positive [25]. Unlike 
WAT, BAT is characterized by multilocular lipid droplets, many mitochondria, and 
is rich in both innervation and microvasculature. These anatomical traits are impor-
tant for the main function of BAT, thermogenesis. Sympathetic nerves provide a 
source of norepinephrine (NE) to stimulate thermogenesis, blood vessels provide 
nutrients to the tissue as well as aid in heat dissipation, and multilocular lipid drop-
lets have an increased surface area to facilitate an increased rate of lipolysis. The 
thermogenic circuit relies on several transcriptional inputs including peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) [26] and PR 
domain containing 16 (PRDM16) [27]. Moreover, cues from other transcriptional 
machinery such as thyroid hormone receptor [28] and retinoic acid receptor [29] 
play important roles in the thermogenic circuit. Readers interested in learning more 
about the transcriptional control of the thermogenic program are directed to the fol-
lowing reviews [30–32]. Central to the function of BAT is uncoupling protein 1 
(UCP1), which dissociates the electron transport chain to release chemical energy 
in the form of heat.

Thermogenesis itself begins with the release of NE from the sympathetic ner-
vous system, which acts on β3-adrenergic receptors, which are associated with 
G-protein coupled receptors (GPCRs) of the Gs subtype [33, 34]. Subsequently, a 
rise in cytosolic cAMP results in the activation of protein kinase A (PKA) [35], 
which has several functions including activating mitogen-activated protein kinase 
(MAPK) p38 [36] and increasing cytosolic free fatty acid (FFA) levels in the cell by 
phosphorylating perilipin [37]. This, in turn, causes the release of comparative gene 
identification-58 (CGI-58) to activate adipose triglyceride lipase (ATGL), the major 
triglyceride lipase in BAT [38–40]. The breakdown of triglycerides into FFAs in 
BAT is critical for two reasons. First, the resulting FFAs can be shuttled into the 
mitochondria where they can undergo β-oxidation to produce ATP and reduced 
electron carriers to maintain thermogenesis [30]. Second, the FFAs act as activators 
of UCP1 [41, 42]. Conversely, purine nucleotides act as inhibitors of UCP1 [41].
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It was long believed that BAT in humans was non-existent past adolescence. 
However, a decade ago, seminal studies that “rediscovered” BAT in adult humans 
proved otherwise [43–45]. Because a few hundred milligrams of BAT can oxidize 
up to 60% of consumed glucose and lipids in a cold-acclimated mouse [46, 47], 
investigators became interested in using BAT therapeutically to combat the growing 
obesity epidemic. Although humans do possess BAT, it differs in several ways from 
BAT in mice. Mice have several distinct BAT depots including the large interscapu-
lar depot, as well as the axillary, cervical, paraaortic, cardiac, and perirenal depots. 
In humans, brown adipocytes appear interspersed in WAT, mainly in the supracla-
vicular region, but are also present in the para-aortic, cervical, axillary, perirenal, 
and paravertebral regions. It is worth noting that recently a supraclavicular BAT 
depot was discovered in mice [48]. There is an interscapular BAT depot in humans, 
although it disappears during adolescence. Currently, the gold standard for assess-
ing the location and activity of BAT in humans is positron emission tomography 
coupled with computed tomography (PET/CT) during the infusion of radiolabeled 
18-fluoro-deoxyglucose (18FDG) in a patient either wearing a “cold vest” or receiv-
ing a β3-agonist, such as mirabegron [49]. However, this method does not always 
accurately reflect BAT activity, and has led to vastly different estimates of the total 
volume of BAT present in humans, ranging over two orders of magnitude from only 
a few, to a few hundred milliliters [50]. The measurement of BAT in humans, along 
with a detailed description of its pitfalls has been reviewed elsewhere [49]. 
Regardless, we know that BAT is present in adult humans and has a significant 
impact on metabolism. A clear example of this is a study in which type 2 diabetics 
spent several hours a day over a 10-day period at 15 °C, which resulted in a signifi-
cant increase in their glucose infusion rate (GIR) during a euglycemic clamp [51].

One of the biggest advances in our understanding of thermogenic AT in the past 
few years is the presence of UCP1-independent thermogenic mechanisms. For 
example, both brown and beige AT thermogenesis can occur through a creatine- 
based substrate cycle [52–54]. Moreover, beige AT thermogenesis can be controlled 
through ATP-dependent calcium cycling [55]. These findings can begin to explain 
why UCP1 null mice only become obese under thermoneutral temperatures [56, 
57], while BAT-deficient mice are obese and insulin resistant at standard room tem-
perature [58, 59]. To-date, however, these UCP1-independent forms of thermogen-
esis have not been examined in GH mutant mice.

2.3  Beige AT

Beige AT is distinct from both WAT and BAT. Beige adipocytes reside within WAT 
depots, contain mitochondria expressing UCP1, and are therefore thermogenic. 
Under basal conditions, thermogenic output of beige adipocytes is relatively low, 
however, stimulants such as cold exposure, exercise, or treatment with PPARγ ago-
nists significantly increase the expansion and energy expenditure in these cells in a 
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process termed beiging. Although beiging was described more than 30 years ago 
[60, 61], only recently have the specific lineages and molecular regulators that give 
rise to beige AT been worked out [62, 63]. It is worth noting that this is an area of 
ongoing investigation, with no clear consensus. For example, some studies have 
shown that beige AT derives from a lineage distinct from BAT that is positive for 
myosin heavy chain 11 (MYH11) and platelet derived growth factor receptor alpha 
(PDGFRα) in mice [64–67], while other beige adipocytes have been found to be 
positive for paired box 3 (PAX3) and MYF5 [68]. Adding further complexity are 
conflicting studies in which some investigators demonstrate that beige adipocytes 
are formed de novo in response to external cues [66, 69], while others argue they 
arise from the transdifferentiation of white adipocytes [70, 71]. Regardless of the 
developmental origin of beige adipose tissue, during cold-exposure, thermogenic 
beige adipocytes replace non-thermogenic white adipocytes, which is reversible 
when cold-acclimated mice are placed at thermoneutrality [72].

3  Properties of Adipose Tissue

3.1  Adipose Tissue Heterogeneity

Beyond the previously discussed inter-depot differences, AT is highly heterogenous 
within each depot. By volume, the majority of AT is composed of mature adipo-
cytes. These adipocytes have a turnover rate of approximately 10% annually in 
humans, with a much faster turnover rate of 5% daily in mice [73, 74]. Because of 
this, preadipocytes, or committed adipocyte progenitors, are critical to the AT niche. 
Work has already been done to identify markers of white, brown, and beige adi-
pocytes, however, studies identifying novel cell surface markers of preadipocytes 
that give rise to these adipocytes is mostly lacking, although some markers have 
been identified [75]. For example, sorting preadipocytes with high CD29 expres-
sion enriches for a population of preadipocytes that differentiate into cells with 
a high expression of UCP1 [75]. Preadipocytes are also a major source of tumor 
necrosis factor α (TNF-α), suggesting their role in AT extends beyond acting as a 
precursor cell [76].

Immune cells are another cell type with a large role in AT. It has been appreciated 
for years that macrophages are present in AT, and that their presence increases with 
obesity. However, considerable improvements have been made to our understanding 
of different subpopulations of macrophages in AT [77–79]. For example, there is 
good evidence that both M1 (referred to as classically activated) and M2 (referred 
to as alternatively activated) macrophages exist within AT [80, 81]. Along with mac-
rophages, natural killer cells are recruited to AT during obesity, causing insulin 
resistance [82]. Changes in resident immune cells may also play a beneficial role in 
the physiology of AT. For example, cold-exposure causes an influx of M2 macro-
phages and eosinophils that aid in thermogenesis [83–85].
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AT stores energy as triglycerides during caloric excess, and must liberate FFAs 
during periods of caloric demand through lipolysis. Since lipolysis is stimulated by 
the sympathetic release of NE, it makes sense that nerves are a core component of 
AT [86]. To transport nutrients to AT, or dissipate heat and FFAs (in BAT and WAT, 
respectfully), there must also be the presence of microvasculature, including endo-
thelial cells and smooth muscle cells [8]. Certainly, AT heterogeneity has garnered 
attention in recent years. With advances in technologies such as single cell RNA- 
sequencing, the makeup and functional importance of the AT niche is sure to be 
further developed in the near future.

3.2  Adipose Tissue as a Secretory Organ

Studying WAT as an endocrine organ began 20  years ago with the discovery of 
leptin, resistin, and adiponectin being secreted from WAT [5–7]. WAT has also been 
known to secrete proinflammatory cytokines such as TNF-α and IL-6, which facili-
tate the development of insulin resistance during obesity. What has been much less 
studied, however, is the role of BAT as a secretory organ. Recently, this has changed 
as secreted factors from BAT (referred to as batokines) have been demonstrated to 
have both autocrine/paracrine and endocrine effects. For example, the lipokine 
12,13-diHOME has been demonstrated to have an autocrine effect on BAT that 
results in increased lipid uptake [87]. Other factors that have paracrine/autocrine 
action in BAT are vascular endothelial growth factor A (VEGFa) and nitric oxide 
(NO), which increase angiogenesis [88, 89]. Moreover, fibroblast growth factor 2 
(FGF2) and nerve growth factor (NGF) increase innervation and the recruitment of 
preadipocytes [90–92]. Endocrine factors that are secreted from BAT include 
insulin- like growth factor-binding protein 2 (IGFBP2) [93], WNT10b [93], and 
FGF21 [94]. BAT also secretes microRNAs. For example, both mice and humans 
show an inverse relationship between BAT activity and circulating levels of miR- 
92a [95]. Readers interested in learning more about the secretory function of BAT 
are encouraged to read a relevant review [96].

3.3  Alterations in AT during Aging

The main changes in WAT during aging is the gradual decline in tissue mass, the 
redistribution from subcutaneous to intra-abdominal depots, and the ectopic distri-
bution of lipids in organs such as the liver and muscle [97–100]. Metabolically, aged 
WAT has a decline in its sensitivity to insulin and fatty acids [97, 101–103]. 
Moreover, aged WAT has an increased secretion of harmful proinflammatory cyto-
kines such as TNF-α and IL-6 [104, 105]. There does appear to be an increase in 
macrophage infiltration in subcutaneous WAT, although this does not seem to apply 
to intra-abdominal WAT [106]. A final means through which WAT changes during 
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aging is through the preadipocyte pool. Preadipocytes from aged tissue have lower 
levels of the transcription factors PPARγ C/EBPα, and their target genes [107, 108], 
which may explain the reduction in their capacity to differentiate into mature adipo-
cytes. Moreover, senescent preadipocytes accumulate in aged WAT, which could 
contribute to metabolic impairment and increased systemic inflammation [97]. 
Readers interested in learning more about WAT remodeling during aging are 
directed to a relevant review [97].

Some of the changes mentioned above apply to BAT. For example, BAT mass 
decreases with age. Although senescence in BAT has been understudied, it is plau-
sible to assume that brown preadipocytes also senesce, and lose the ability to dif-
ferentiate into mature brown adipocytes with age. Many of the age-related changes 
in BAT relate to impaired thermogenic capacity. One mechanism for this is through 
the increased visceral AT expression of forkhead box protein A3 (FOXA3), which 
impairs BAT mass and function [109]. Interestingly, deletion of FOXA3 increases 
BAT late into life and extends longevity [109]. Another deleterious change in aged 
BAT is the presence of sympathetic neuron-associated macrophages, which chelate 
NE, resulting in decreased thermogenic output [110]. Finally, the well-documented 
age-dependent mitochondrial dysfunction impairs thermogenesis. The decline in 
the thermogenic function of BAT likely plays a critical role in the metabolic impair-
ment and obesity observed during middle-age.

4  Growth Hormone

GH is a 22 kDa peptide hormone that is secreted from somatotrophs in the anterior 
pituitary. Its secretion is induced by the release of growth hormone releasing hor-
mone (GHRH), and inhibited by the release of somatostatin (SST), both of which 
are released from the hypothalamus. GH has negative feedback on GH release from 
the pituitary, as well as on GHRH from the hypothalamus. Another level of feed-
back is through IGF-1 which acts on both the pituitary and hypothalamus [111]. 
Ghrelin, a “hunger” hormone is another factor that stimulates the release of GH 
[112]. AT can regulate GH production through FFAs and leptin which inhibit and 
stimulate GH production, respectively [113, 114].

In circulation, GH acts by binding to growth hormone receptor (GHR) on target 
tissues. Mainly, GH acts on the liver to stimulate the production of IGF-1, but GH 
can also act on other tissues such as muscle and AT [115]. Therefore, GH can elicit 
direct effects, or indirect effects through the action of IGF-1. Once bound to a 
homodimerized GHR, there is a conformational change in the receptor structure 
which brings together the associated janus kinase 2 (JAK2) domains together, 
allowing for transactivation [116] and subsequent phosphorylation of signal trans-
ducer and activator of transcription 5 (STAT5). Activated STAT5 can then enter the 
nucleus and act as a transcription factor [117]. GH has been demonstrated to signal 
through other non-canonical pathways including mammalian target of rapamycin 
(mTOR) and extracellular signaling-regulated kinase (ERK) [118].
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5  Examples of Altered Growth Hormone Action

5.1  Humans

The two main ways that GH is altered in humans is through its overproduction in 
acromegaly and GH resistance, or through its under production in GH deficiency. 
Patients with acromegaly suffer from increased GH secretion, and subsequent 
increases in IGF-1 production. The increased secretion of GH is oftentimes the 
result of a pituitary adenoma. Acromegaly patients are more prone to cancer [119–
121], diabetes [122], and are often short-lived compared to people with normal GH 
secretion [123, 124]. GH deficiency has multiple etiologies that influence the age of 
the onset of disease. In children, congenital GH deficiency is usually the result of 
mutations in genes encoding GH, GHRH, or other pituitary factors involved in the 
secretion of GH [125]. In adults, acquired GH deficiency is typically the result of 
hypopituitarism or irradiation of a pituitary adenoma [126]. Beyond deficiency, 
patients can be resistant to GH through mutations in the gene encoding GHR [127]. 
This, disease, termed Laron syndrome, causes patients to have low IGF-1, with 
elevated levels of GH [128]. Patients with both GH deficiency and resistance dem-
onstrate decreased height, increased obesity, decreased bone mineral density, and 
altered lipid metabolism [3]. Interestingly, patients with Laron syndrome appear to 
be protected from cancer [129, 130] and diabetes [131], although Laron syndrome 
patients from cohorts in Israel and Turkey appear to still develop diabetes [132, 
133], making the “protected” status from diabetes less clear.

5.2  Mice

To further understand the impact of GH signaling, several transgenic lines over- 
expressing GH have been created, the most commonly used being the bovine GH 
(bGH) transgenic line [134, 135]. These mice have a transgene that ectopically 
expresses GH under a strong promoter such as phosphoenolpyruvate carboxykinase 
(PEPCK). bGH mice are noticeably larger than their control littermates, and exhibit 
increased muscle mass. bGH mice demonstrate increased insulin resistance, and 
severe hyperplasia and hypertrophy of their hepatocytes [136]. Many of these mice 
die of hepatic cancer. Aging in these mice appears to be accelerated, and lifespan is 
reduced to around 1 year-of-age [135, 137].

Ames dwarf mice were first described in 1961, and suffer from a spontaneous 
mutation in the gene encoding prophet of pituitary factor 1 (Prop1) [138]. Snell 
dwarf mice were first described in the 1929, and suffer from a spontaneous mutation 
in the gene encoding pituitary factor 1 (Pit1) [139]. Since Prop1 is a transcription 
factor for the Pit1 gene, the phenotypes of Ames and Snell dwarfs are essentially 
identical, with both strains of dwarf mice lacking the production of GH, thyroid- 
stimulating hormone (TSH) and prolactin [140]. The downstream consequences of 
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these mutations are a decreased production of IGF-1 and the thyroid hormones, T3 
and T4. Both Ames and Snell dwarf mice are extremely long-lived, with an ~50% 
increase in longevity in Ames dwarf mice (1) and ~42% increase in Snell dwarf 
mice [141]. Along with increased longevity, these animals have a decreased inci-
dence of cancer [142], increased insulin sensitivity [143] and increased adiposity, 
particularly in the subcutaneous depot [144].

Growth hormone receptor knockout (GHRKO) mice were developed to replicate 
Laron syndrome in mice by disrupting the gene encoding GHR/GH binding protein 
[145]. As with Laron syndrome patients, GHRKO mice are small, have increased 
adiposity, and have increased circulating GH with low circulating IGF-1 [145]. 
GHRKO mice also live ~38% longer than control mice [146]. Studies of cognitive 
function [147, 148] and tissue histopathology [149] revealed that GHRKO mice 
have a delay in aging, similar to that of Ames and Snell dwarf mice. To study the 
effects of GH action in specific tissues, many tissue-specific lines of GHRKO mice 
have been created [150–153]. The first line attempting to knockout the GHR gene in 
AT was done using Cre driven by the adipocyte protein 2 (Ap2) promoter (termed 
FaGHRKO) [154]. Unlike the global GHRKO mice, these animals had an increase 
in IGF-1 and had no improvement in insulin sensitivity [154]. It has since been 
reported that the Ap2 promoter is “leaky” and is expressed in macrophages, endo-
thelial cells, and in the brain [155, 156]. Therefore, an AT-specific GHRKO mouse 
(termed AdGHRKO) was generated using the more specific adiponectin promoter- 
driven Cre [157]. These animals show no difference in GH or IGF-1, have increased 
fat mass, decreased liver triglyceride content, and are insulin sensitive [157].

Other mouse lines such as the GHRH knockout (GHRHKO) mice live ~45% 
longer than their control littermates, and have decreased IGF-1 production and 
increased adiposity [158]. “Little” mice have a mutation of the GHRH receptor 
gene, live ~25% longer than their normal littermates, and develop increased adipos-
ity [141]. Several current reviews discuss mechanisms of altered longevity in all 
these mouse lines in more detail [4, 159, 160].

6  Adipose Tissue in Mice and Humans with Altered Growth 
Hormone Action

What is clear is that a defining phenotype of GH-related mutations is alterations in 
adiposity. For example, patients with acromegaly and bGH mice have decreased 
adiposity [161–164], while patients and mice that are GH-deficient or GH-resistant 
have increased adiposity [144, 165–167]. Particularly noteworthy is that the iWAT 
depot in GHRKO mice is equal in mass to that of their control littermates, despite 
GHRKO mice weighing approximately 66% less [166, 168]. It has also been dem-
onstrated that dwarf and GHRKO mice maintain a higher extra- to intra-peritoneal 
distribution of lipids [169], which is the opposite of acromegaly patients which have 
a higher ectopic distribution of lipids [170]. Beyond alterations in mass and 
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distribution, there appears to be an alteration in the endocrine function of AT in 
GH-mutant animals. For example, leptin and adiponectin are decreased in bGH 
mice, and increased in dwarf and GHRKO mice [171, 172]. In fact, altered endo-
crine function may partially explain an unexpected phenotype, where surgical 
removal of the epidydimal WAT (eWAT) in dwarf and GHRKO mice results in 
decreased insulin sensitivity [173, 174]. This finding may be due to the fact that 
eWAT in long-lived GH-mutant mice secretes less pro-inflammatory cytokines such 
as TNF-α and IL-6, while secreting more adiponectin [173, 174]. The secretory 
function of BAT in these animals has not yet been assessed. Lowering senescent cell 
burden can extend longevity [175]. Therefore, it is important that 18-month-old 
dwarf and GHRKO mice have a reduced senescent cell burden, and that their pre-
adipocytes demonstrate an increased differentiation capacity, suggesting that their 
AT has a “younger” phenotype [169]. Senescence in BAT of long-lived GH-mutant 
mice has not yet been investigated.

Although many studies have been conducted on WAT in GH-mutant mice, far less 
has been done relating to the BAT of these animals. To date, we know that BAT in 
GHRKO and Ames dwarf mice has an increased expression of Ucp1, and that BAT 
in bGH mice has a decreased expression of Ucp1 [176, 177]. This is accompanied by 
an increase or decrease in BAT mass in Ames dwarf/GHRKO and bGH mice, respec-
tively [176, 177]. The highly active BAT observed in Ames dwarf and GHRKO mice 
may at least partially explain the increased rate of energy expenditure and reduced 
respiratory quotient observed in these animals [178]. Particularly curious in Ames 
dwarf mice is the increased BAT activity despite having a depleted thyroid hor-
mone axis. This suggests that other circulating factors may be responsible for the 
increased BAT activity, although this hypothesis remains to be tested. It does appear 
that the increased BAT activity of these animals may play a role in several biomark-
ers of healthy aging. For example, placing Ames dwarf mice at thermoneutrality 
(30 °C) eliminates differences in oxygen consumption rate and respiratory quotient, 
and reduces their enhanced insulin sensitivity [179]. Further testing will need to be 
done to determine if thermoneutral housing also impacts longevity in these animals.

7  Final Thoughts

GH has a critical role in metabolism due to its profound effects highly metabolic 
tissues such as the liver, muscle and AT.  Increased adiposity is associated with 
comorbidities ranging from diabetes to Alzheimer’s disease. Therefore, it is of 
major consequence that the AT in long-lived GH-mutant mice functions in a more 
metabolically beneficial way. These differences include AT distribution (extra- 
instead of intraperitoneal), endocrine function (shift from pro- to anti-inflammatory 
cytokines), and replication and senescence status (differentiates well and has a low 
senescent cell burden), as well as an increase in thermogenesis and BAT activity. In 
terms of whole-body physiology, these alterations cannot be understated. For exam-
ple, both WAT and BAT in these animals most likely significantly contribute to 
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improved glycemic control, which is believed to be a major factor in their improved 
healthspan and lifespan. There are still areas that should be examined in the context 
of AT in GH animals. For example, we now know that AT secretes many proteins, 
metabolites, lipids, miRNAs, and is a rich source of exosomes. Examining how 
these are alteredin GH-mutant mice is a currently unexplored area. Moreover, 
extrapolating these findings to human subjects would be of considerable interest.
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