
CAPE: A Checkpointing-Based Solution
for OpenMP on Distributed-Memory

Architectures

Van Long Tran1,2(B), Éric Renault2, and Viet Hai Ha3

1 Hue Industrial College, 70 Nguyen Hue Street, Hue City, Vietnam
tvlong@hueic.edu.vn

2 SAMOVAR, Télécom SudParis, CNRS, Université Paris-Saclay,
9 rue Charles Fourier, 91011 Evry Cedex, France

eric.renault@telecom-sudparis.eu
3 College of Education, Hue University, Hue, Vietnam

haviethai@gmail.com

Abstract. CAPE, which stands for Checkpointing-Aided Parallel Exe-
cution, is a framework that automatically translates and provides run-
time functions to execute OpenMP programs on distributed-memory
architectures based on checkpointing techniques. In order to execute an
OpenMP program on distributed-memory systems, CAPE uses a set of
templates to translate an OpenMP source code into a CAPE source code
which is then compiled using a regular C/C++ compiler. This code can
be executed on distributed-memory systems under the support of the
CAPE framework.

This paper aims at presenting the design and implementation of a
new execution model based on Time-stamp Incremental Checkpoints.
The new execution model allows CAPE to use resources efficiently, avoid
the risk of bottlenecks, overcome the requirement of matching the Bern-
stein’s conditions. As a result, these approaches make CAPE improving
the performance, ability as well as reliability.

Keywords: CAPE · Checkpointing aided parallel execution ·
OpenMP on cluster · Parallel programming · Distributed computing ·
HPC

1 Introduction

OpenMP and MPI have become the standard tools to develop parallel programs
on shared-memory and distributed-memory architectures respectively. As com-
pared to MPI, OpenMP is easier to use. This is due to its ability to automati-
cally execute code in parallel and synchronize results using its directives, clauses,
and runtime functions while MPI requires programmers to do all this manually.
Therefore, some efforts have been made to port OpenMP on distributed-memory
architectures. However, excluding CAPE [7,9,18], no solution has successfully
c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 93–106, 2019.
https://doi.org/10.1007/978-3-030-25636-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_8


94 V. L. Tran et al.

met these two requirements: (1) to be fully compliant with the OpenMP stan-
dard and (2) high performance. Most prominent approaches include the use of
an SSI [15], SCASH [19], the use of the RC model [13], performing a source-
to-source translation to a tool like MPI [1,5] or Global Array [12], or Cluster
OpenMP [11].

Among all these solutions, the use of a Single System Image (SSI) is the
most straightforward approach. An SSI includes a Distributed Shared Memory
(DSM) to provide an abstracted shared-memory view over a physical distributed-
memory architecture. The main advantage of this approach is its ability to easily
provide a fully-compliant version of OpenMP. Thanks to their shared-memory
nature, OpenMP programs can easily be compiled and run as processes on dif-
ferent computers in an SSI. However, as the shared memory is accessed through
the network, the synchronization between the memories involves an important
overhead which makes this approach hardly scalable. Some experiments [15]
have shown that the larger the number of threads, the lower the performance.
As a result, in order to reduce the execution time overhead involved by the use
of an SSI, other approaches have been proposed. For example, SCASH maps
only the shared variables of the processes onto a shared-memory area attached
to each process, the other variables being stored in a private memory, and the
RC model that uses the relaxed consistency memory model. However, these
approaches have difficulties to identify the shared variables automatically. As a
result, no fully-compliant implementation of OpenMP based on these approaches
has been released so far. Some other approaches aim at performing a source-to-
source translation of the OpenMP code into an MPI code. This approach allows
the generation of high-performance codes on distributed-memory architectures.
However, not all OpenMP directives and constructs can be implemented. As yet
another alternative, Cluster OpenMP, proposed by Intel, also requires the use
of additional directives of its own (ie. not included in the OpenMP standard).
Thus, this one cannot be considered as a fully-compliant implementation of the
OpenMP standard either.

CAPE used the Discontinuous Incremental Checkpointing (DICKPT) [8] to
implement the OpenMP fork-join model. The jobs of OpenMP work-sharing
constructs are divided and distributed to slave nodes using checkpoints. At each
slave node, these checkpoints are used to resume execution. In addition, the
results after executing the divided jobs on each slave node are also extracted
using checkpoints and sent back to the master. It has been demonstrated that
this solution is fully compliant with OpenMP and provides high performance.
However, there are some limitations:

– to run on top of CAPE, an OpenMP program must fulfill the Bernstein’s
conditions. This is the reason why the matrix-matrix product has been exten-
sively used in the previous experiments.

– The implementation of CAPE wastes the resources. In the implementation of
OpenMP work-sharing constructs on CAPE, the master does not perform a
part of the computation. It waits for checkpoint results from the slave nodes
and merges them together.



CAPE: A Checkpointing-Based Solution for OpenMP on Cluster 95

– The risk of bottlenecks and low communication performance at the imple-
mentation of the join phase. After executing the divided jobs, each slave
node extracts a result checkpoint and sends it back to the master. The mas-
ter receives, merges checkpoints together and sends the result back to the
slave nodes in order to synchronize data.

This paper presents the design and implementation of a new model for CAPE
based on Time-stamp Incremental Checkpointing (TICKPT) [24] to bypass
the drawbacks mentioned above. The new implementation based on TICKPT
improves the performance, capability, and reliability of this solution.

2 Checkpoint Techniques

2.1 Checkpointing

Checkpointing is the technique that saves the image of a process at a point during
its lifetime, and allows it to be resumed from the saving’s time if necessary [4,17].
Using checkpointing, processes can resume their execution from a checkpoint
state when a failure occurs. So, there is no need to take time to initialize and
execute it from the begin. These techniques have been introduced for more than
two decades. Nowadays, they are used widely for fault-tolerance, applications
trace/debugging, roll-back/animated playback, and process migration. To be
able to save and resume the state of a process, the checkpoint saves all necessary
information at the checkpoint’s time. It can include register values, process’s
address space, open files/pipes/sockets status, current working directory, signal
handlers, process identities, etc. The process’s address space consists of text,
data, mmap memory area, shared libraries, heap, and stack segments. Depending
on the kind of checkpoints and its application, the checkpoint takes all or some
of these information.

Based on the structure and contents of the checkpoint file, checkpointings
are categorized into two groups: complete and incremental checkpointing.

– Complete checkpointing [3,4,14] saves all information regarding the process
at the points that it generates checkpoints. The advantages of this technique
are the reduction of the time of generation and restoration. However, not only
a lot of duplicated data are stored each time a checkpoint is taken, there are
also duplications in the different generated checkpoints.

– Incremental checkpointing [8,10,17] only saves the modified data. This has
to be compared with the previous checkpoint. This technique reduces check-
point’s overhead and checkpoint’s size. Therefore, it is widely used in dis-
tributed computing.



96 V. L. Tran et al.

2.2 Time-Stamp Incremental Checkpointing

Time-stamp Incremental Checkpointing (TICKPT) [24] is an improvement of
DICKPT by adding new factor – time-stamp – into incremental checkpoints
and by removing unnecessary data based on data-sharing variable attributes of
OpenMP programs.

Basically, TICKPT contains three mandatory elements including register’s
information, modified region in memory of the process, and their time-stamp.
As well as DICKPT, in TICKPT, the register’s information are extracted from
all registers of the process in the system. However, the time-stamp is added to
identify the order of the checkpoints in the program. This contributes to reduce
the time for merging checkpoints and selecting the right element if located at the
same place in memory. In addition, only the modified data of shared variables
are detected and saved into checkpoints. It makes checkpoint’s size significantly
reduced depending on the size of private variables of the OpenMP program.

3 CAPE Based on TICKPT

3.1 Abstract Model

Fig. 1. New abstract model for CAPE.

Figure 1 presents the new abstract model
for CAPE. It is designed based on
TICKPT and uses MPI to transfer data
over the network.

As presented in the previous ver-
sion [21,22], CAPE provides a set of pro-
totypes to translate OpenMP codes into
CAPE codes. An OpenMP CAPE code
in C or C++ is replaced by a set of calls
to CAPE runtime functions. In this ver-
sion, the CAPE translator prototypes are
modified and added to adapt to the new

mechanism based on TICKPT. This provides a set of prototypes to translate
the common constructs, clauses, and runtime functions of OpenMP.

For the CAPE Runtime library, apart from providing functions to handle
OpenMP instructions and to port them on distributed memory systems, some
functions have been added to manage the declaration of variables and the alloca-
tion of memory on the heap. To transfer data among nodes in the system, instead
of using the functions based on sockets like in the previous version, MPI Send
and MPI Recv functions are called to ensure high reliability.



CAPE: A Checkpointing-Based Solution for OpenMP on Cluster 97

3.2 RC-Model Based CAPE Memory Model Implementation

Cid ← generate_checkpoint(flag);
C ← all_reduce (Cid, id, nnodes,

[operators]);
inject(C) ;

Fig. 2. cape flush() implementation.

OpenMP uses the Relaxed Consis-
tency (RC) memory model. This
model allows shared memory allo-
cated in the local memory of a thread
to improve memory accesses. When a
synchronization point is reached, this
local memory is updated in the shared
memory area that can be assessed by all threads.

CAPE completely implements the RC model of OpenMP on distributed-
memory systems. All variables, including private and shared variables, are stored
at all nodes of the system, and they can be only accessed locally. At synchroniza-
tion points, only the modified data of shared variables at each node are extracted
and saved into a checkpoint. This checkpoint is sent to the other nodes in the
system, and is merged using the merging checkpoint operation with the other.
Then, the result checkpoint is injected into the application memory to synchro-
nize data.

In the CAPE runtime library, there are two fundamental functions which are
called implicitly at synchronization points:

– cape flush() generates a TICKPT, gathers, merges, and injects them into
the application memory. This function is described by pseudo code in Fig. 2.
Here, the all reduce() function is responsible for gathering and merging the
checkpoints generated by the generate checkpoint() function. The gather-
ing and the merging is implemented using both Ring and Recursive Doubling
algorithm. The algorithm is automatically selected to be executed by the
system depending on the size of the checkpoint.

– cape barrier() sets a barrier and updates shared data between nodes. This
function calls MPI Barrier() of the MPI runtime library, and then uses
cape flush() to update shared data.

3.3 Execution Model

Figure 3 illustrates the execution model of CAPE. The idea of this model is the
use of TICKPT to identify and synchronize the modified data of shared variables
of the program among the nodes. OpenMP threads are replaced by processes,
and each process runs in a node. At the beginning, the program is initialized
and executed at the same time in all nodes of the system. Then, the execution
works as the following rules:

– The sequential region or the code inside the parallel construct but not
belonging to any other constructs is executed in the same way for all nodes.

– When the program reaches a parallel region, on each node, CAPE detects
and saves the properties of all shared variables that are implicitly declared as
sharing. If there are any OpenMP clauses declared in the parallel construct,



98 V. L. Tran et al.

the relevant runtime functions are called to modify variable properties. Then,
the start directive of TICKPT is called to save the value of the shared
variables.

– At the end of a parallel region, the implementation of the barrier construct
is implicitly called to synchronize data, and the stop directive of TICKPT is
called to remove all relevant data.

– For the loop construct, each node (including the master node) is responsible
for computing a part of the work based on the re-calculation of the range of
iterations.

– For the sections construct, each node is divided into one or more parts of
works that are indicated using section construct.

– At the barrier, the implementation of the flush construct is called to syn-
chronize data.

– When the program reaches the flush construct, a TICKPT is generated and
synchronized among the nodes to update the modification of shared data.
According to [16], a flush is implicit at the following locations:
• At the barrier.
• At the entry to and the exit from parallel, critical, and atomic con-

structs.
• At the exit from for, sections, and single constructs unless a nowait

clause is present.

Fig. 3. The new execution model of
CAPE.

In this execution model, instead of
using the master node to divide jobs and
distribute to slave nodes based on incre-
mental checkpoints in order to imple-
ment OpenMP work-sharing constructs,
each node computes and executes the
divided jobs automatically. At synchro-
nization points, a TICKPT is generated at
each node. It contains the modified data
of shared variables and their time-stamps
after executing the divided jobs. These
checkpoints are gathered and merged at
all nodes in the system using the Ring or
Recursive Doubling algorithm [20]. This
allows CAPE to void the bottleneck and
improve the performance of communica-
tion tasks.

With the features of TICKPT, checkpoints are able to use checkpoint’s oper-
ations [23,24]. This allows memory elements to share the same address when
computing and makes it simple when merging. Therefore, it allows CAPE to
work without the need for the program to match with the Bernstein’s condi-
tions. Moreover, the master node takes a part in the computation of the divided
jobs. This uses all the resources and improves the system efficiency.

The only missing part of the OpenMP specifications for this implementation
is that dynamic and guided scheduling directives of the work-sharing construct



CAPE: A Checkpointing-Based Solution for OpenMP on Cluster 99

have not been implemented yet. However, one can demonstrate that they can be
easily translated into a static scheduling.

3.4 Prototypes

To be executed on a distributed-memory system with the support of the CAPE
runtime library, the OpenMP source code is translated into a CAPE source code.
There, each construct, clause, and runtime function of the OpenMP source code
is translated into the relevant runtime function of CAPE. This translation works
under the provision of a set of CAPE prototypes.

Based on the general syntax of OpenMP directives, a general template for
CAPE prototypes was designed and is illustrated in Fig. 4. They are as follows:

cape_begin(directive-name, param-1, param-2);

[cape_clause_functions]

ckpt_start();

//code blocks

cape_end(directive-name, reduction-flag );

Fig. 4. General template for CAPE prototypes in C/C++.

– cape begin() and cape end() are CAPE runtime functions which perform
the actions for entering and exiting OpenMP directives. The directive-name
is a label declared by CAPE which corresponds to the relevant CAPE runtime
function. Depending on this label, the cape barrier() function is called to
update the shared data of the system. param-1 and param-2 are used to store
the range of iterations for for loops, otherwise they both are set to zero. The
reduction-flag is set to TRUE if there is a declaration of OpenMP reduction
clause, otherwise it is set to FALSE.

– cape clause functions is a set of CAPE runtime functions which is used to
implement OpenMP clauses. This implementation is presented in [23].

– ckpt start() marks the location where to start the checkpointing. When
reaching the ckpt start() function, the value of shared variables is copied.

4 Experiments

In order to evaluate the performance of this new approach, we designed a set of
micro benchmarks and tested them on a Desktop Cluster. The designed programs
are based on the Microbenchmark for OpenMP 2.0 [2,6]. These programs have
been translated to CAPE and executed on a Cluster to compare the performance.

4.1 Benchmarks

(1) MAMULT2D: This program computes the multiplication of two matrices.
Originally, it was written in C/C++ and used the OpenMP parallel for con-
struct. It matches Bernstein’s conditions. Therefore, it has been used extensively
to test CAPE in the previous works.



100 V. L. Tran et al.

int vector(float A[], float B[], float C[], float D[], int n){

int i, nthreads, tid;

#pragma omp parallel shared(C,D,nthreads) private(A, B, i,tid)

{

tid = omp_get_thread_num();

if (tid == 0)

{

nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

printf("Thread %d starting...\n",tid);

#pragma omp sections nowait

{

#pragma omp section

printf("Thread %d doing section 1\n",tid);

for (i=0; i<N; i++)

{

for (j= 0 ; j< N; j+=25)

A[j] = A[j] * 0.15 ;

C[i] = A[i] + B[i];

printf("Thread %d: C[%d]= %f\n",tid,i,C[i]);

}

#pragma omp section

printf("Thread %d doing section 2\n",tid);

for (i=0; i<N; i++)

{

for (j= 0 ; j< N; j+=25)

B[j] = B[j] + 10.25 ;

D[i] = A[i] * B[i];

printf("Thread %d: D[%d]= %f\n",tid,i,D[i]);

}

} /* end of sections */

} /* end of parallel section */

return 0;

}

Fig. 5. OpenMP function to compute vectors using sections construct.

(2) PRIME: This program counts the number of prime numbers in the range
from 1 to N. The OpenMP code uses the parallel for construct with data-
sharing clauses.

(3) PI: This program computes the value of PI by mean of the numeric integra-
tion method using Eq. (1).

π =
∫ 1

0

4
1 + x2

dx (1)



CAPE: A Checkpointing-Based Solution for OpenMP on Cluster 101

(4) VECTOR-1: This program performs operations on vectors. It con-
tains OpenMP runtime functions, data-sharing clauses, a nowait clause, and
parallel and sections constructs. The OpenMP code is presented in Fig. 5.

(5) VECTOR-2: This program performs some operations on vectors. It contains
OpenMP parallel and for constructs with a nowait clause. The OpenMP code
is shown in Fig. 6.

int vector2(int A[], int B[], int Y[], int Z[], int n, int m)

{

int i,j;

#pragma omp parallel private(A,Z) shared(B, Y)

{

#pragma omp for nowait

for (i=1; i<n; i++){

for(j=0; j<n ; j+=20)

A[j] = A[j] + 10.25

B[i] = (A[i] + A[i-1]) / 2;

}

#pragma omp for nowait

for (i=0; i<m; i++){

for(j=0; j<m ; j+=20)

Z[j] = Z[j] * 0.025 ;

Y[i] = Z[i] * i;

}

}

return 0;

}

Fig. 6. OpenMP function to compute vectors using for construct.

4.2 Experimental Environment

The experiments have been performed on a 16-node cluster with different com-
puter’s configurations. There are two computers with Intel(R) Pentium(R) Dual
CPU E2160 at 1.80 GHz, 2 GB of RAM, 5 GB of free HDD; seven computers
with Intel(R) Core(TM)2 Duo CPU E7300 at 2.66 GHz, 3 GB of RAM, 6 GB
of free HDD; five computers with Intel(R) Core(TM) i3-2120 CPU at 3.30 GHz,
8 GB of RAM, 6 GB of free HDD; and two computers including an AMD Phe-
nom(TM) II X4 925 Processor at 2.80 GHz, 2 GB of RAM, 6 GB of free HDD.
All machines are operated by the Ubuntu 14.03 LTS operating system with
OpenSSH-Server and MPICH-2. They are interconnected by a 100 Mbps LAN
network.

4.3 Experimental Results

Figures 7 and 8 present the execution time in milliseconds for the MAMULT2D
program for various size of matrices and different sizes of cluster respectively.



102 V. L. Tran et al.

Fig. 7. Execution time (in milliseconds) of MAMULT2D with different size of matrix
on a 16-node cluster.

Note that, there are many kinds of processors in different nodes. Some of
them include many cores, but a single core was used for each node during the
experiments. Three measures are presented at each time: the left one (yellow)
for CAPE-DICKPT (the previous version), the middle one (blue) for CAPE-
TICKPT (the current version), and the right one (red) for MPI.

Figure 7 presents the execution time for various matrix sizes on a 16-node
cluster. The size increases from 800x800 to 6400x6400. The figure shows that
the execution times of all methods are proportional to the matrix size. It also
shows that the execution time of CAPE-TICKPT is much lower than the one
of CAPE-DICKPT and MPI (around 35%) while the execution time of CAPE-
TICKPT and MPI are roughly equal.

Fig. 8. Execution time (in milliseconds) of MAMULT2D for different cluster sizes.



CAPE: A Checkpointing-Based Solution for OpenMP on Cluster 103

Figure 8 presents the execution time for a matrix size of 6400x6400 on dif-
ferent cluster size. The number of nodes is successively 4, 8, and 16. The result
presented in this figure also shows the similar trend for different matrix size. The
execution time of CAPE is significantly reduced so that it is now much closer to
an optimized human-written program using MPI.

To demonstrate that the new version of CAPE can run OpenMP programs
that do not match with the Bernstein’s conditions while achieving high perfor-
mance, other experiments were conducted and performance were compared with
MPI. All of the four other programs presented in Sect. 4.1 have been used to
measure the execution time.

Figure 9 presents the execution time in milliseconds of PRIME with N = 106

on different cluster sizes for CAPE-TICKPT and MPI. It shows that the execu-
tion time of MPI is only around 1% smaller than the one of CAPE-TICKPT. In
this experiment, the OpenMP parallel for directive with the shared, private
and reduction clauses are translated and tested for both methods. Table 1
describes the steps executed by the program for both methods. The main differ-
ent step is the join phase. It gathers the results from all nodes and computes their
sum. For the MPI program, the user needs to clearly specify the values that need
to be gathered, and then call the MPI Reduce() function after to compute the
sum. CAPE-TICKPT automatically identifies the modified value of the shared
variables, extracts them into a TICKPT, and then gathers all checkpoints from
all the nodes with the merging checkpoint operator. However, as the execution
time of CAPE-TICKPT is nearly equal to the one of MPI, we consider that we
successfully obtained high performance with CAPE.

Table 1. Comparison of the executed steps for the PRIME code for both CAPE-
TICKPT and MPI.

Step CAPE-TICKPT MPI

Fork Updates the properties of variables,
saves data of shared variables, and
re-computes the iterators

Re-computes the iterators

Computation Computes the divided jobs Computes the divided jobs

Join Generates checkpoints, and calls
the merging checkpoint operator
with the sum operator

Calls MPI Reduce to gather
and sum the results

Figure 10 presents the execution time in milliseconds of PI with a number
of steps equal to 108 for different cluster sizes using CAPE-TICKPT and MPI.
In this experiment, the OpenMP for directive with reduction clause placed
inside the omp parallel construct with some clauses are tested. As well as
the previous experiments, this figure also shows that CAPE-TICKPT achieves
similar performance as MPI.

Figure 11 shows the execution time in milliseconds for the VECTOR-1 pro-
gram with N = 106 for different cluster sizes using CAPE-TICKPT and MPI.



104 V. L. Tran et al.

In this experiment, OpenMP functions and the sections construct with two
section directives are tested. The figure shows that the larger the number of
nodes, the longer the execution time for both methods. The execution time with
MPI is smaller than the one of CAPE-TICKPT, but the difference is not signif-
icant. Note that there are only two section directives in this program, so that
both CAPE-TICKPT and MPI distribute the execution to two nodes only. Each
node receives and executes the code of a section. However, the result has to be
synchronized to all nodes on the system. Therefore, the execution time increases
when increasing the number of nodes.

Fig. 9. Execution time (in millisec-
onds) of PRIME on different cluster
sizes.

Fig. 10. Execution time (in millisec-
onds) of PI on different cluster sizes.

Fig. 11. Execution time (in millisec-
onds) of VECTOR-1 on different clus-
ter sizes.

Fig. 12. Execution time (in millisec-
onds) of VECTOR-2 on different clus-
ter sizes.

Figure 12 shows the execution time in milliseconds for VECTOR-2 with N =
106 and M = 1.6 × 106 on different cluster sizes for both CAPE-TICKPT and
MPI. This experiment aims at testing two omp for directives with nowait clause.
The size of the two vectors are different from each other to ensure the nodes take



CAPE: A Checkpointing-Based Solution for OpenMP on Cluster 105

different time to execute the divided jobs. The execution on each node is marked
nowait until reaching the end block of the parallel region. The figure shows the
same trend as the previous experiments. The execution time for CAPE-TICKPT
is very close to MPI, the difference being negligible.

5 Conclusion and Future Works

This paper presented the design and implementation of a new execution model
and prototypes for CAPE based on TICKPT. With this new capability included,
CAPE improves the reliability and can run OpenMP programs that do not
require to match the Bernstein’s conditions. In addition, the analysis and evalu-
ation of performance of this paper demonstrated that CAPE-TICKPT achieves
performance very close to a comparable human-optimized hand-written MPI
program. This is mainly due to the fact that CAPE-TICKPT takes benefits of
the advantages of TICKPT such as checkpoint operators and can use resources
more efficiently. The synchronization phase of the new execution model also
avoids the risk of bottlenecks that may have occurred in the previous version.

In the near future, base on this mechanism, we will keep on developing the
CAPE framework in order to support other OpenMP constructs. Furthermore,
we expect to develop CAPE for GPUs.

References

1. Basumallik, A., Eigenmann, R.: Towards automatic translation of OpenMP to
MPI. In: Proceedings of the 19th Annual International Conference on Supercom-
puting, pp. 189–198. ACM (2005)

2. Bull, J.M., O’Neill, D.: A microbenchmark suite for OpenMP 2.0. ACM SIGARCH
Comput. Archit. News 29(5), 41–48 (2001)

3. Chen, Z., Sun, J., Chen, H.: Optimizing checkpoint restart with data deduplication.
Sci. Program. 2016, 11 (2016)

4. Cores, I., Rodŕıguez, M., González, P., Mart́ın, M.J.: Reducing the overhead of an
MPI application-level migration approach. Parallel Comput. 54, 72–82 (2016)

5. Dorta, A.J., Bad́ıa, J.M., Quintana, E.S., de Sande, F.: Implementing OpenMP for
clusters on top of MPI. In: Di Martino, B., Kranzlmüller, D., Dongarra, J. (eds.)
EuroPVM/MPI 2005. LNCS, vol. 3666, pp. 148–155. Springer, Heidelberg (2005).
https://doi.org/10.1007/11557265 22

6. EPCC: EPCC OpenMP micro-benchmark suite. https://www.epcc.ed.ac.uk/
research/computing/performance-characterisation-and-benchmarking/epcc-
openmp-micro-benchmark-suite

7. Ha, V.H., Renault, E.: Design and performance analysis of CAPE based on dis-
continuous incremental checkpoints. In: 2011 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing (2011)

8. Ha, V.H., Renault, É.: Discontinuous incremental: a new approach towards
extremely lightweight checkpoints. In: 2011 International Symposium on Computer
Networks and Distributed Systems (CNDS), pp. 227–232. IEEE (2011)

https://doi.org/10.1007/11557265_22
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite


106 V. L. Tran et al.

9. Ha, V.H., Renault, E.: Improving performance of CAPE using discontinuous incre-
mental checkpointing. In: 2011 IEEE 13th International Conference on High Per-
formance Computing and Communications (HPCC), pp. 802–807. IEEE (2011)

10. Heo, J., Yi, S., Cho, Y., Hong, J., Shin, S.Y.: Space-efficient page-level incremental
checkpointing. In: Proceedings of the 2005 ACM symposium on Applied computing,
pp. 1558–1562. ACM (2005)

11. Hoeflinger, J.P.: Extending OpenMP to clusters. White Paper, Intel Corporation
(2006)

12. Huang, L., Chapman, B., Liu, Z.: Towards a more efficient implementation of
OpenMP for clusters via translation to global arrays. Parallel Comput. 31(10),
1114–1139 (2005)

13. Karlsson, S., Lee, S.-W., Brorsson, M.: A fully compliant OpenMP implementation
on software distributed shared memory. In: Sahni, S., Prasanna, V.K., Shukla, U.
(eds.) HiPC 2002. LNCS, vol. 2552, pp. 195–206. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36265-7 19

14. Li, C.C., Fuchs, W.K.: Catch-compiler-assisted techniques for checkpointing. In:
20th International Symposium Fault-Tolerant Computing. FTCS-20. Digest of
Papers, pp. 74–81. IEEE (1990)

15. Morin, C., Lottiaux, R., Vallée, G., Gallard, P., Utard, G., Badrinath, R., Rilling,
L.: Kerrighed: a single system image cluster operating system for high performance
computing. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003.
LNCS, vol. 2790, pp. 1291–1294. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45209-6 175

16. OpenMP ARB: OpenMP application program interface version 4.0 (2013)
17. Plank, J.S., Beck, M., Kingsley, G., Li, K.: Libckpt: Transparent checkpointing

under unix. Computer Science Department (1994)
18. Renault, É.: Distributed implementation of OpenMP based on checkpointing aided

parallel execution. In: Chapman, B., Zheng, W., Gao, G.R., Sato, M., Ayguadé, E.,
Wang, D. (eds.) IWOMP 2007. LNCS, vol. 4935, pp. 195–206. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69303-1 22

19. Sato, M., Harada, H., Hasegawa, A., Ishikawa, Y.: Cluster-enabled OpenMP: an
OpenMP compiler for the SCASH software distributed shared memory system. Sci.
Program. 9(2–3), 123–130 (2001)

20. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communi-
cation operations in MPICH. Int. J. High Perform. Comput. Appl. 19(1), 49–66
(2005)

21. Tran, V.L., Renault, É., Ha, V.H.: Improving the reliability and the performance
of CAPE by using MPI for data exchange on network. In: Boumerdassi, S., Bouze-
frane, S., Renault, É. (eds.) MSPN 2015. LNCS, vol. 9395, pp. 90–100. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25744-0 8

22. Tran, V.L., Renault, E., Ha, V.H.: Analysis and evaluation of the performance
of CAPE. In: IEEE International Symposium on IEEE Conferences on Ubiquitous
Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing
and Communications, Cloud and Big Data Computing, Internet of People, and
Smart World Congress, pp. 620–627. IEEE (2016)

23. Tran, V.L., Renault, É., Ha, V.H., Do, X.H.: Implementation of OpenMP data-
sharing on cape. In: 9th International Symposium on Information and Communi-
cation Technology SoICT 2018, pp. 359–366. ACM (2018)

24. Tran, V.L., Renault, É., Ha, V.H., Do, X.H.: Time-stamp incremental checkpoint-
ing and its application for an optimization of execution model to improve perfor-
mance of cape. Informatica 42(3) (2018)

https://doi.org/10.1007/3-540-36265-7_19
https://doi.org/10.1007/978-3-540-45209-6_175
https://doi.org/10.1007/978-3-540-45209-6_175
https://doi.org/10.1007/978-3-540-69303-1_22
https://doi.org/10.1007/978-3-319-25744-0_8

	CAPE: A Checkpointing-Based Solution for OpenMP on Distributed-Memory Architectures
	1 Introduction
	2 Checkpoint Techniques
	2.1 Checkpointing
	2.2 Time-Stamp Incremental Checkpointing

	3 CAPE Based on TICKPT
	3.1 Abstract Model
	3.2 RC-Model Based CAPE Memory Model Implementation
	3.3 Execution Model
	3.4 Prototypes

	4 Experiments
	4.1 Benchmarks
	4.2 Experimental Environment
	4.3 Experimental Results

	5 Conclusion and Future Works
	References




