
An Adaptive Bully Algorithm for Leader
Elections in Distributed Systems

Monir Abdullah1,2(B), Ibrahim Al-Kohali2, and Mohamed Othman3,4(B)

1 Computer Science Department, University of Bisha, Bisha, Saudi Arabia
mkaid@ub.edu.sa

2 Information Technology Department, Thamar University, Dhamar, Yemen
legend22013@hotmail.com

3 Laboratory of Computational Science and Mathematical Physics,
Institute for Mathematical Research, Universiti Putra Malaysia,

UPM, 43400 Serdang, Malaysia
4 Department of Communication Technology and Network,
Universiti Putra Malaysia, UPM, 43400 Serdang, Malaysia

mothman@upm.edu.my, mothman@ieee.org

Abstract. Leader election is a classical problem in distributed system
applications. There are many leader election algorithms, but we focus
here on Bully Algorithm (BA). The main drawback of BA algorithm
is the high number of messages passing. In BA algorithm, the message
passing has order O (n2) that increases heavy traffic on the network. In
this paper, an Adaptive BA (ABA) is proposed to reduce the number of
messages and make the leader election operation more flexible and safer.
The proposed algorithm is based on the Highest Process Identification
(HPI) and the Next HPI (NHPI) to facilitate the leader election oper-
ation. Moreover, the repetition of the leader election is stopped when
the candidate coordinator fails. Our analytical equations show that the
ABA algorithm is more efficient rather than BA algorithm, in both, the
number of message passing and the latency, and the message passing
complexity decreased to O(n).

Keywords: Bully algorithm · Election system · Message passing

1 Introduction

Leader election is considered as an important problem, classical and fundamental
problem which happens in distributed systems [1]. Leader election is to select one
process or node in the system to become the new coordinator after the previous
coordinator fail. The purpose of the leader election is to complete the same job
as the ex-coordinator and to avoid any delay in tasks execution. Failures happen
because of the occurrence of failures in the software, or hardware or maybe main-
tenance. Leader election operation occurred when there was no response from
the coordinator, thus we were encouraged to start leader election. There are sev-
eral algorithms had been introduced for electing coordinator process that based
c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 373–384, 2019.
https://doi.org/10.1007/978-3-030-25636-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_29&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_29


374 M. Abdullah et al.

on two basic algorithms, i.e. BA algorithm [2] and Token Ring algorithm [3]. In
the coordinator election, our objective is to select a coordinator process among
various processes that reside in a distributed environment. In this research, we
are specifically focusing on BA algorithm. BA algorithm is an important algo-
rithm used in leader election operation which is considered more popular [4].
Not only this, but it is recently used and implemented in Big Data and NoSQL
[5] and IoT [6]. There is a plethora of research on BA algorithm and that helped
in renewing related studies in this study [2,4,7,9–14]. The main drawback of BA
algorithm is the high number of message passing. In this method, the message
passing has order O (n2) that increases heavy traffic on the network. Our pro-
posed adaptive algorithm successfully reduced the number of message passing to
O(n). The rest of the paper is organized as follows. Section 2 reviews the related
works. In Sect. 3, the original BA algorithm is presented. Section 4 presents the
ABA algorithm. The experimental results and discussion will be presented in
Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related Works

Several coordinator election algorithms have been proposed over the years some
of the main election algorithms are BA algorithm, Ring algorithm. Garcia-Molina
[2] proposed a BA algorithm in which they introduce an election mechanism for
the selection of the coordinator. While undertaking this procedure the number
of messages increased, i.e. the identification of the failed node, then starting an
election procedure and the process that having the highest identification process
number will be selected as a coordinator. After selecting a coordinator we make
an announcement of the selection of new coordinator among various processes
in the network. This whole procedure requires a number of messages is to be
exchanged which increases the traffic in the network. The researchers discuss the
shortcoming of synchronous BA algorithm and propose a modified version. They
maintain that their modified algorithm is more efficient than the traditional BA
algorithm because it decreases the number of passing messages, and it has fewer
stages [9]. Some researchers added an additional feature to the original algorithm
[10]. This method uses an assistant as a leader when ex-leader fails. Therefore,
there is no need to stop the execution of tasks when a leader crashes. The
performance increases when the numbers of node increase. The modified bully
election proposes a linear time algorithm for leader election using heap structure
that deals with the leader election algorithm for a set of connected processes like
a tree network [11]. The researchers discuss the shortcomings of three algorithms
of the original and modified BA algorithms. They propose the same traditional
BA algorithm but using a new concept called election commission, with the
addition of Failure Detector (FD) and a Helper processes (H) to have a unique
election with the Election Commission (EC). This method is more efficient and
decreases the number of passing messages [12]. A new method is based on electing
a leader and an alternative is proposed [16]. In this method, if the leader fails, the
alternative takes care of the leader’s responsibilities. This way is more effective,



An Adaptive Bully Algorithm for Leader Elections in Distributed Systems 375

messages will be less complexity in the fewer stages. The researchers proposed
a new method that uses fault tolerant mechanisms to improve the BA and Ring
algorithms [13]. They present a new algorithm called a heap tree algorithm, based
on the max-heap data structure. Their results show a fewer number of passing
messages. Furthermore, a new algorithm is proposed in which a new leader is
elected immediately after the leader fails. It depends on a process status table
which contains the number of each process and its status in the current system
[14]. The researchers present a safety strengthened leader election protocol with
an unreliable failure detector. By analysis, it appears as more efficient in safety
and liveness properties in asynchronous distributed systems [15]. A new method
which uses a flag that works to reduce the number of passing messages when a
failure discovered by more than one process is presented [8]. The results show a
relative success in decreasing the number of passing messages and the number of
steps. In [7], the researchers proposed a new method reduced passing messages
between the coordinator and processes. This mean, when a process starts sending
a request to the coordinator, it stores them in a list. Every period the coordinator
sends messages to other processes that it has the higher id number. But when the
coordinator failed, we will compare the processes between id number of process
and id number which sent by the coordinator [7]. The researchers in [17] proposed
a new method that uses a proxy server for leader election by performing an
analytical simulation. Their results show a decreasing in the number of passing
messages and waiting time. A comparative study discussed the concept of four
election algorithms, BA [2], Modified Bully Election [9], Improved Bully Election
[20], Ring Election [18]. In [19], a slight modification in the classic BA algorithm
is proposed which reduces the number of messages that are needed to elect the
leader and also proposes new methods of how to react when the dead leader
recovers again. The result of the modified BA algorithm is more efficient than
the existing leader election algorithms. The researchers in [4] put forward a
new method which depends on the distance. They assumed that there exist a
node is called centroid. If the distance between a centroid and a node is short,
the node has the highest priority and if the distance between the centroid and
the node is long, the node has the lowest priority. Recently, BA algorithm is
implemented on a specific and low-performance Internet of Thing (IoT) devices
[6]. The implementation of the BA algorithm for leader election is achieved in a
two-stage process.

3 Bully Algorithm

Based on message generation in the system, a comparative analysis of [2] and
our proposed algorithm would be appropriate to determine which algorithm
performs better than the others. BA algorithm requires n − 1 messages to elect
a leader node in the best case, where n is the number of nodes. The best case
happens when the node having the next highest id number detects the failure of
the leader node and hence announces an election [4].

In the worst case, it requires O(n2) messages to elect a leader node. The
worst case happens when the lowest id node of the system detects the failure



376 M. Abdullah et al.

of the leader node. It will send election messages to n − 1 nodes having higher
id than itself. Each of the nodes eventually initiates a separate election one
by one. In this algorithm, a previously failed node which was not a leader node
initiates an election after recovery. But if it was a former leader, it just broadcasts
coordinator messages to other nodes to announce itself as the new leader. Hence,
it requires O(n2) messages to elect a leader node in the worst case and n − 1
messages in the best case. The BA algorithm steps are as follows:

1. The process (Pd) that discovers a failure sends a message to all processes in
the system. The message contains the id of a process (Pd).

2. When the process (Pi) receives the message, it starts comparing the received
id with its id.

3. If the id of process (Pd) is lower than the id of process (Pi), Then process
(Pi) returns a message: “Ok” to process (Pd).

4. the process (Pd) continues steps 1, 2, 3 even coordinator selected.
5. If process (Pd) does not receive a message: “Ok” from the other processes,

and then it will be chosen as a coordinator (Fig. 1).

Fig. 1. Bully leader election algorithm.

The drawback of BA algorithm is that if the process that discovers the failure
has a lower Id, this leads to the increase of the number of messages in the election
operation. In this method, the message passing has order O (n2) that increases
heavy traffic on the network.

4 Adaptive Bully Algorithm

In this section, our proposed ABA algorithm is presented. Firstly, we will explain
the four important variables:



An Adaptive Bully Algorithm for Leader Elections in Distributed Systems 377

1. The Election Variable (EV ): is a variable that stores the node id of the
coordinator.

2. Node ID: is a variable that stores the id number of the process itself. It
cannot be modified.

3. The Highest Process Identification (HPI) and the Next HPI (NHPI): are
variables which store the highest two numbers during election operation.

To implement our algorithm, we adapt a new structure for every node in the
system which contains the above four variables as shown in Fig. 2:

Fig. 2. ABA algorithm node structure.

4.1 Adaptive Bully Election Algorithm

When a process (Pi) requests any task from the coordinator and it does not
receive any response within time (T1), this signifies the coordinator fails. This
action is called: failure check. Failure Check “is a procedure that is immediately
executed whenever any process makes a request to the coordinator. This proce-
dure will detect a failure if it occurs”. The failure check is the first step in any
election operation. Afterwards, the election operation starts. Now, process Pd
sends “Start Election” message to all the processes in the system: The message
contains the id of the process that discovered the failure. Time T2 starts when
this message is sent. During this time, the process Pd receives messages from
the other processes. We have two cases:

1. If a process Pi does not receive a response within the specified time, it sends
a message to all the processes in the system: “I’m Coordinator”.

2. If a process Pi receives a response within the specified time, then the main
operation, which stores the HPI and NHPI starts.

When time (T2) finishes, process Pi sends a message to the winning process
containing the highest NID: (Highest Value) and: “Tell everyone you are the
coordinator”. Time (T3) begins when process (P ) receives the message. The
winning process returns a message: “Ok” to process (P ). If process (Pi) does not
receive the message: “Ok” within time (T3), this means the process fails. Hence,
process (P ) sends to the second winning process, which has the second highest
ID, a message contains NHPI and: “Tell everyone you are the coordinator”.
Time (T4) begins when process (Pi) receives the message: “Ok”. If process (Pi)
does not receive the message “Ok” within time (T4), this means the process
fails. The process (Pi) sends a message to all the processes in the system: “I’m
Coordinator” as shown in Fig. 3.



378 M. Abdullah et al.

Fig. 3. Leader election operation in case of a failure.

When a process receives the message: “I’m the Coordinator”, this signifies
the end of the leader election operation, and the receiving process updates the
value of EV which is attached to the message received. The ABA algorithm is
shown in Fig. 4.

Fig. 4. Adaptive bully election algorithm.

Before ending the election, there are important points that should be tackled.
These points relate to what happens to the other processes when they receive the



An Adaptive Bully Algorithm for Leader Elections in Distributed Systems 379

messages: “Start Election” and “I’m the Coordinator”. When a process receives
the message: “Start Election”, it starts comparing the EV and the received ID
(NID):

1. If Node ID is 0 or less than the EV , then do not return a message.
2. If Node ID is higher than the EV , then update the value of the EV and

return a message to the sender which contains the value of (NID).

4.2 Notations and Definitions

Before discussing the cost model and its related equations, it is necessary to
clarify the notations and the definitions used throughout this paper as shown in
Table 1.

Table 1. Notations and definitions

Notation Definition

n number of processes

Pd process that discover the failure

Pw wining process

id process identification

EV election variable

HPI highest identification

NHPI next highest identification

NMP number of message passing

PHPI the process that has the highest priority identification

PNHPI process that has the next highest priority identification

l constant latency

L latency cost

4.3 Cost Model

HPI and NHPI Variables. For the best case, the number of messages passing
that we need to complete the election operation in our proposed algorithm is
calculated by:

NMP = (n − 1) ∗ 2 (1)

where n is the number of processes that discovers the failure. Where the process
that discovers the failure has a higher (id) number.

For the worse case, when the process that discovers failure has not the highest
(id) number and there is more than one process discover the failure. Here, we
will have two equations as follows:



380 M. Abdullah et al.

When a process Pd discovers a failure, then the leader election starts:

1. Process Pd sends its id to all processes to compare it with their ids. If Pd >
Pq, do not send your id. It needs n − 1 operations.

2. If Pd < Pq, then return a message of your id. It needs n − Pd.
3. When the process Pd receives the messages, the following steps take place:

• Compare the received ids.
• Store the highest two ids in two variables (HPI, NHPI).

4. Process Pd sends a message to the winning process P − w, which has the
highest id, telling it that it is the coordinator.

5. Process Pw sends a message: “Ok” back to process Pq. It needs only 2 oper-
ations.

6. The winning process Pw sends to everyone: “I’m Coordinator”.

Based on steps (1–6), NMP will be calculated by Eq. (2):

NMP = (n − 1) + [n − Pd] + 2 + (n − 1) (2)

Equation (2) used when the election starts and there is no problem in the
candidate coordinator.

However, when there is no response from Pd within (T2):

1. Process PNHPI sends a message to process Pd that has the next highest
priority id (NHPI) telling it that it is the coordinator now.

2. Process Pq sends a message: “Ok” back to process PNHPI .
3. The winning process PNHPI sends to everyone: “I’m the Coordinator”. It

needs n − 1 operations.

Based on (1–3), Eq. (3) will be used:

NMP = 2 + (n − 1) (3)

Latency. Another parameter used to compare our method is the latency
(L). Latency is the time of sending a message from a source to the destination.
However, the latency calculation in distributed system is difficult because of the
different distances between devices. For this we assume the latency as stated in
[21]. Equation (4) will be used to calculate the latency when using our algorithm:

L = [NMP ∗ l) (4)

where NMP is the number of message passing that calculated by Eqs. (1), (2)
and (3) and l is a constant number (200µs [4]).

The adaptive BA algorithm decreases the number of massages passing and
latency. Four variables (VE, NID, HPI, NHPI) successfully decreased message
passing complexity from O(n2) to O(n). We can say when two processes discover
failure, the election process is more flexible and safer.



An Adaptive Bully Algorithm for Leader Elections in Distributed Systems 381

5 Experimental Results and Discussions

In order to compare the performance of our algorithm with the other algorithms,
we execute them in five test cases where the systems comprised 5, 10, 15, 20, and
25 nodes, respectively. We simulate our proposed algorithm using Java language
on NetBeans editor. We used mesh topology to evaluate the cost model. Firstly,
we will use Eqs. (1) and (2) mentioned above. We use Eq. (1) when the number
of processes is equal to n. We assumed that the process n − 1 discovered the
failure, which means that there is no process higher than it. Secondly, we use
Eq. (2) when there are processes higher than the process that discovered the
failure. The number of messages and latency is presented in Table 2.

Table 2. Number of passing messages and latency of the ABA algorithm.

No. of processes Eqs. (1), (2) Eq. (3)

Latency (µs) Number of
messages

Latency Number of
messages

5 1600 8 1200 6

10 5200 26 2200 11

15 8200 41 3200 16

20 11200 56 4200 21

25 14200 71 5200 26

As shown in Table 2, we observed that Eq. (3) produces better results com-
pared with the results of Eqs. (1) and (2). In addition, when we compare our
ABA with the BA algorithm [2] and Modified BA algorithm [8], it produces
better results. The three algorithms are compared based on Messages passing
and the results are shown in Table 3.

Table 3. Number of messages of the three algorithms.

No. of processes BA MBA ABA

Eqs. (1), (2) Eq. (3)

5 8 13 8 6

10 69 28 26 11

15 209 43 41 16

20 424 58 56 21

25 804 73 71 26

As shown in Table 3, it can be said that our method is better than Bully
algorithm [2] and modified Bully algorithm [8] when there is no failure during
the algorithm execution. That is because the number of passing messages in our
method is less as clearly shown in Fig. 5.



382 M. Abdullah et al.

Fig. 5. Comparison between three algorithms.

As clearly shown in Table 3 and Fig. 5, it can be observed that our method
is better than original Bully algorithm [2] and modified Bully algorithm [8]
when repeating the leader election operation which occurs when the candidate
coordinator fails too.

Latency. Another parameter compared in our work is latency. As shown in
Tables 2 and 3, we created Table 4 and Fig. 6. Which contains the latency of the
three algorithms.

Table 4. Latency (µs) of the three algorithms.

No. of processes BA MBA ABA

Eqs. (1), (2) Eq. (3)

5 1600 2600 1600 1200

10 13800 5800 5200 2200

15 41800 8600 8200 3200

20 84800 11600 11200 4200

25 160800 14600 14200 5200

As shown in Table 4, it can be observed that our method has a higher speed
than the original Bully algorithm and modified Bully algorithm. When there is
no failure during the algorithm execution it is safer. Overall, our experimental
result shows that in the proposed algorithm, the number of messages and latency
are very less as compared to the previous algorithms.



An Adaptive Bully Algorithm for Leader Elections in Distributed Systems 383

Fig. 6. Latency (µs) of the three algorithms.

6 Conclusion

In this paper, we successfully proposed ABA algorithm. Our ABA is better and
more effective than BA algorithm and modified BA algorithm. It decreased the
numbers of passing messages. Moreover, our ABA algorithm is safe (reliable)
if failure for candidate coordinator happened. During the implementation of
the algorithm, if errors occur for candidate coordinator, our method leads to
stopping the repetition of algorithm implementation when failed in starting. In
addition, four variables (VE, NID, HPI, NHPI) successfully decreased message
passing complexity from O(n2) to O(n).

Acknowledgment. The authors would like to thank everyone who provided valuable
suggestions and support to improve the content of the paper. This research work is
partial financially supported by the Malaysian Ministry of Education under the Fun-
damental Research Grant Scheme (FRGS/1/2018/STG06/UPM/01/2).

References

1. Coulouris, G., Dollimore, J., Kindberg, T., Blair, G.: Distributed System Concept
and Design, 5th edn. Addison Wesley, USA (2011)

2. Garcia-Molina, H.: Elections in a Distributed Computing System. IEEE Trans.
Comput. 100(1), 48–59 (1982)

3. van Steen, M., Tanenbaum, A.S.: Distributed Systems. 3rd edn. CreateSpace Inde-
pendent Publishing Platform (2017)

4. Murshed, Md.G., Allen, A.R.: Enhanced bully algorithm for leader node election
in synchronous distributed systems. J. Comput. 1(1), 3–23 (2012)



384 M. Abdullah et al.

5. Distributed Algorithms in NOSQL Databases. https://highlyscalable.wordpress.
com/2012/09/18/distributed-algorithms-in-nosql-databases/

6. Méndez, M., Tinetti, F.G., Duran, A.M., Obon, D.A., Bartolome, N.G.: Distributed
algorithms on IoT devices: bully leader election. In: Proceeding of the International
Conference on Computational Science and Computational Intelligence (CSCI), pp.
1351–1355, December 2017

7. Chhabra, S., Tyagi, G., Mundra, A., Rakesh, N.: Location based coordinator elec-
tion algorithm in distributed environment. In: Proceedings of the International
Conference on Computer and Computational Sciences (ICCCS), Noida, pp. 183–
188 (2015)

8. Soundarabai, P.B., Sahai, R., Thriveni, J., Venugopal, K.R., Patnaik, L.M.:
Improved bully election algorithm for distributed systems. Int. J. Inform. Process.
7(4), 43–54 (2013)

9. Kordafshari, M.S., Gholipour, M., Mosakhani, M., Haghighat, A.T., Dehghan, M.:
Modified bully election algorithm in distributed systems. In: Proceedings of the
9th WSEAS International Conference on Computers, Greece, pp. 1–6 (2005)

10. Zargarnataj, M.: New election algorithm based on assistant in distributed sys-
tems. In: ACS International Conference on Computer Systems and Applications
(AICCSA), Amman, pp. 324–331 (2007)

11. Sepehri, M., Goodarzi, M.: Leader election algorithm using heap structure. In: 12th
WSEAS International Conference on Computers, Heraklion, pp. 668–672 (2008)

12. Rahman, M.M., Nahar, A.: Modified bully algorithm using election commission.
MASAUM J. Comput. (MJC) 1(3), 439–446 (2009)

13. EffatParvar, M.R., Yazdani, N., EffatParvar, M., Dadlani, A., Khonsari, A.:
Improved algorithms for leader election in distributed systems. In: Proceedings
of the 2nd International Conference on Computer Engineering and Technology,
Chengdu, China (2010)

14. Basu, S.: An efficient approach of election algorithm in distributed systems. Indian
J. Comput. Sci. Eng. (IJCSE) 2(1), 16–21 (2011)

15. Park, S.-H.: A stable election protocol based on an unreliable failure detector
in distributed systems. In: Proceedings of the 8th International Conference on
Information Technology: New Generations, pp. 979–984. IEEE Computer Society
(2011)

16. Kordafshari, M M.S., Gholipour, M., Rahmani, A.M., Jahanshahi, M.: A New
Approach for Election Algorithm in Distributed System, pp. 70–74 (2009)

17. Mishra, B., Singh, N., Singh, R.: Master-slave group based model for co-ordinator
selection, an improvement of bully algorithm. In: Proceedings of the International
Conference on Parallel, Distributed and Grid Computing, Solan, India, pp. 457–460
(2014)

18. Garg, D., Suman, N.: Study of assorted election algorithms in distributed operat-
ing system. In: Proceedings of the National Conference on Innovative Trends in
Computer Science Engineering, pp. 132–134 (2015)

19. Sathesh, B.M.: Optimized bully algorithm. Int. J. Comput. Appl. 121(18), 24–27
(2015)

20. Arghavani, A., Ahmadi, A.E., Haghighat, A.T.: Improved bully election algorithm
in distributed systems. In: Proceedings of the 5th International Conference on
Information Technology & Multimedia, pp. 14–16 (2011)

21. Fredrickson, G.N., Lynch, N.A.: Electing a leader in asynchronous ring. J. ACM
34(1), 98–115 (1987)

https://highlyscalable.wordpress.com/2012/09/18/distributed-algorithms-in-nosql-databases/
https://highlyscalable.wordpress.com/2012/09/18/distributed-algorithms-in-nosql-databases/

	An Adaptive Bully Algorithm for Leader Elections in Distributed Systems
	1 Introduction
	2 Related Works
	3 Bully Algorithm
	4 Adaptive Bully Algorithm
	4.1 Adaptive Bully Election Algorithm
	4.2 Notations and Definitions
	4.3 Cost Model

	5 Experimental Results and Discussions
	6 Conclusion
	References




