q

Check for
updates

LuNA-ICLU Compiler for Automated
Generation of Iterative Fragmented
Programs

Nikolay Belyaev!? and Sergey Kireey!»2(%)
L ICMMG SB RAS, Novosibirsk, Russia
kireev@ssd.sscc.ru
2 Novosibirsk State University, Novosibirsk, Russia

Abstract. The work focuses on the application of Fragmented Program-
ming approach to automated generation of a parallel programs for solving
applied numerical problems. A new parallel programming system LuNA-
ICLU applying this approach was introduced. The LuNA-ICLU compiler
translates a fragmented program of a particular type written in the LuNA
language to an MPI program with dynamic load balancing support. The
application algorithm representation and the system algorithms used in
the LuNA-ICLU system are described. Performance comparison results
show a speedup compared to the previous implementation of the LuNA
programming system.

Keywords: Fragmented programming technology + LuNA system -
Parallel program generation - Dynamic load balancing

1 Introduction

The problem of efficient parallel implementation of numerical algorithms on
supercomputers remains relevant since the advent of supercomputers. Previously,
low-level programming of processes or threads with different memory models
was mainly used [1]. In recent decades, the growing diversity and complexity of
computing architectures and the need to raise the level of programming have
made automation of solving system parallel programming problems increasingly
important. A number of parallel programming systems was developed in order to
simplify the development of parallel programs. An overview of modern parallel
programming systems for supercomputers may be found in [2,3]. The following
features may characterize them.

— Separation of the application algorithm description from its implementation.
A special algorithm representation is usually developed to describe the appli-
cation algorithm [4-11]. The representation is supported by an API based
on an existing language [4-6] (or its extension [7]) or a DSL [8-11]. Efficient

Supported by the budget project of the ICMMG SB RAS No. 0315-2019-0007.

© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 10-17, 2019.
https://doi.org/10.1007/978-3-030-25636-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_2&domain=pdf
http://orcid.org/0000-0003-2217-8777
https://doi.org/10.1007/978-3-030-25636-4_2

LuNA-ICLU Compiler for Automated Generation 11

execution of the algorithm presented in this way is provided by special system
software, a compiler and/or a distributed runtime system.

— Fragmented representation of an algorithm. The complexity of the automatic
decomposition of the application algorithm in general case still makes it nec-
essary to perform the decomposition manually. Thus, the algorithm must be
represented in a fragmented form [4-11].

A common representation of an algorithm for many parallel programming sys-
tems is a set of tasks (fragments of computations) linked by data and control
dependencies, forming a graph. The system software provides parallel execu-
tion of tasks, while satisfying the dependencies. The task graph can be defined
statically [9,11], or be formed dynamically during the execution of the program
[5,6,10]. The static representation of the task graph has the advantage that
the entire structure of the graph is known before execution, which allows wider
scoped compile-time optimizations. Examples of systems with static task graph
representation are PARSEC (DAGuE) [9,10] and LuNA [11]. Compared to PaR-
SEC, the LuNA language can represent a wider class of algorithms.

LuNA system is an implementation of Fragmented Programming technology
being developed at the ICMMG SB RAS in Novosibirsk, Russia. Program in
LuNA language (fragmented program) defines a potentially infinite data flow
graph, built of single-assignment variables called data fragments (DFs) and
single-execution operations called fragments of computation (CFs). Each DF
contains one or a portion of application variables. CFs compute some DFs from
others. There are two types of CFs in LuNA language: atomic and structured.
Atomic CFs are implemented by C/C++ subroutines, while structured CFs are
bipartite graphs of CFs and DFs. The LuNA language supports the following
structured CFs: conditional CFs (“if” operator), indexed sets of CFs (“for” and
“while” operators), and subprograms (“sub” operator). CFs’ or DFs’ names
may contain an arbitrary number of indices, that allow them to be interpreted
as arrays.

The current implementation of the LuNA runtime system is a distributed
interpreter of LuNA programs. In the process of execution it gradually unfolds
a compact notation of a potentially infinite task graph, performing dynamical
management of a distributed set of DFs and CFs. However, the use of universal
control algorithms in the implementation has led to the fact that the LuNA
runtime system has a considerable overhead, which leads to a poor performance
on real-world applications [12,13].

The paper presents another approach to the implementation of the LulNA
system based on the static translation of a LuNA program into an MPI pro-
gram. In this approach, the set of supported algorithms was narrowed to a class
of iterative algorithms over rectangular n-D arrays, where n is the dimension of
the array. The LulNA language was extended by additional high-level constructs
in order to ease the program analysis. The implementation of this approach
is a new LuNA-ICLU compiler. It provides construction of an MPI program
with dynamic load balancing support. Using the example of the particle-in-
cell method implementation, it is shown that the performance achieved by the

12 N. Belyaev and S. Kireev

LuNA-ICLU is better than that of LuNA system and is comparable to the per-
formance of a manually written MPI program.

2 LuNA-ICLU System

To overcome the problems affecting performance of the LuNA system, the LulNA-
ICLU system is developed. As described above, performance problems of LuNA
system are basically caused by using universal system algorithms of fragmented
program execution. The idea of the LuNA-ICLU system is to apply system
algorithms that are able to generate automatically a static MPI program from
strongly defined class of fragmented programs. So, the applied program devel-
oper does not have to solve the system parallel programming problems such as
developing of dynamic load balancing algorithms.

To generate a static MPI program from a given fragmented program it is
necessary to analyze information dependencies between CFs described in the
input fragmented program. Expressions of the LuNA language use CFs and
DFs, including the indexed ones, which are parts of fragmented arrays. Index
expressions can be complex and difficult to analyze. To overcome this problem
a limited class of input fragmented programs is defined. In addition, the LuNA
language was extended by certain high-level statements, which are described
below.

In the current implementation of the LuNA-ICLU compiler the class of sup-
ported algorithms is the following. The fragmented program can contain 1D or
2D fragmented data arrays (arrays of DF's) and iteration processes described via
“while” operator. DF values on current iteration are computed from a set of DF
values from one or more previous iterations. The dimensions of DF arrays are
strictly separated into temporal, over which iterations go, and spatial. Within
iteration each element of DF array may be computed by CF from the elements
of DF arrays with corresponding spatial dimension indices being the same. For
example, DF A[i] can be computed from B[i], but not from B[i+1] or B[i*2].
The sizes of the corresponding spatial dimensions of different arrays must also
coincide. The other types of dependencies should be supported in the language
and compiler by special operators (see below). Such a class of algorithms is
simple enough for compiler to analyze and contains solutions for many applied
problems. In this paper a fragmented program for the PIC method solver is
described. In future the class of supported input programs can be extended by
implementing certain analyzing and code generating modules for compiler.

3 LuNA Language Extension

In order to overcome the problems of the fragmented program static analysis,
the LuNA language has been extended by new syntactic constructions.

— The “DFArray” statement defines an array of DFs (its structure and sizes)
that should be distributed among the nodes of multicomputer.

LuNA-ICLU Compiler for Automated Generation 13

Among the dimensions of the DF arrays, “spatial” and “temporal” dimensions
are clearly distinguished. A “spatial” dimension is denoted by the symbols
“[” and “]” and defines a set of DF's that correspond to the same iteration of
the iterative process. A “temporal” dimension is denoted by the symbols “(”
and “)” and defines different iterations of the iterative process.

— Data dependencies between DF array elements on different iterations of
“while” loop are specified explicitly in a loop header using expressions such
as: <A(i-1), A(L) --> A(i+1)>.

— The “borders_exchange” and “reduce” operators define frequently met tem-
plates of structured CFs over arrays of DFs in order to simplify the process
of information dependencies analysis and to apply a special optimized imple-
mentation in a target program.

— The “dynamic” statement marks a set of CFs in the iteration body that may

cause a load disbalance.

4 System Algorithms in LuNA-ICLU System

4.1 Control-Building Algorithm

Since the idea of the LuNA-ICLU system is to generate a static MPI-C+-+
program from a fragmented program written in LuNA-ICLU language, there is
a necessity to design an algorithm that take a fragmented program as input and
convert it to a fragmented program with defined control, i.e. it should define a
partial order relation on a set of CFs.

In this paper, the bulk synchronous parallel (BSP) model for the target MPI
program was considered. Thus, a sequence of CF calls interleaved with communi-
cation stages should be built for each MPI process. CFs with spatially distributed
indices are distributed among MPI processes according to a distribution function
(see below), while the calls to the other CFs are duplicated in each MPI process.
The control-building algorithm follows the requirement that each CF must have
all its input DF values computed and stored in the memory of the corresponding
MPIT process before it can be executed. The communication stages of the target
MPI program comprise operations such as DF boundaries exchange, reductions,
load balancing, etc.

4.2 Arrays Distribution Algorithm

To generate an MPI program from the fragmented program it is required to
generate a distribution of DFs by MPI processes. In the current implementation
only DFs that are elements of DF arrays are distributed. All other DFs are
duplicated in all MPI processes. Indexed CF's are distributed in accordance with
indexed DF's they produce.

In the target MPI program the distribution is defined by a mapping func-
tion that maps spatial coordinates of array elements to MPI processes. Com-
piler should generate this function and emit it to the target MPI program. The

14 N. Belyaev and S. Kireev

requirement to the distribution generation algorithm is that it should provide
the distribution of DFs that is as close as possible to a uniform. A naive algo-
rithm is applied in the LuNA-ICLU compiler. It considers DFs to be of the same
weight, so each DF array dimension is divided by a corresponding size of the
Cartesian MPI communicator.

4.3 Dynamic Load Balancing Algorithm

A “dynamic” statement is used by LuNA program developer to tell the com-
piler that a given subset of CFs can cause a load disbalance on multicomputer
nodes at runtime. Compiler should generate the call of load balancing algorithm
implementation from LuNA-ICLU runtime library or inline the implementation
of some dynamic load balancing algorithm to the output program in order to
execute such kind of CFs efficiently.

In the LuNA-ICLU system the dynamic load balancing algorithm is imple-
mented in a runtime library and the compiler inserts calls of corresponding
implementation to output program. The load balancing algorithm itself meets
the following requirements.

— The algorithm must overcome the load disbalance by changing the mapping
function (see Sect. 4.2). At load balancing stage, DFs from overloaded multi-
computer nodes are transferred to underloaded ones.

— The algorithm should be parameterized. This requirement is caused by a
necessity to tune the algorithm for different applied algorithms and supercom-
puters. Examples of such parameters are unbalance threshold and frequency
of load measurement. In the future versions of the system the execution profile
analysis is going to be applied in order to tune the parameters automatically.

In the current implementation a dynamic diffusion load balancing algorithm is
applied. In the description below we consider two DF's as neighbors if both DF's
are the components of the same DF array and one of their corresponding indices
differs by one. We also consider two processes as neighbors if these processes
store neighboring DFs. Each process of the target MPI program stores a set of
DFs’ values that are available locally and a list of each DF’s neighbors. The
algorithm itself is the following:

1. Each process checks if there is a necessity to call the load balancer (the current
iteration number of the iteration process is used).

2. Each process exchanges its current load value (which is basically a measured
time spent on execution of CFs specified by the “dynamic” block) with all its
neighboring processes.

3. Each process is searching for a neighbor with a maximum load difference
compared to itself.

4. If the maximum loads difference is greater than the minimum disbalance
threshold (which is basically a parameter of the algorithm), then the process
calculates the number of DF's to be sent to the found neighboring process and
selects certain DFs.

LuNA-ICLU Compiler for Automated Generation 15

5. Each process exchanges the information about selected DFs and their neigh-
bors with all neighboring processes.

6. Each process exchanges the values of selected DF's with neighboring processes.

7. Each process updates information about stored DFs and their neighbors.

The considered algorithm has several disadvantages. For example, restriction to
local communications may cause a load gradient within a load threshold between
neighboring processes, but with a large disbalance between distant processes. In
addition, the number of neighboring processes may increase to a large value,
which will increase the overhead of load balancing. However, as can be seen
from the next section, the algorithm can be applied to resolve the load disbalance
appeared when executing fragmented programs.

5 Performance Evaluation

To evaluate the performance of the program obtained by the LUNA-ICLU com-
piler a test problem of gravitating dust cloud simulation is considered [14]. The
simulation algorithm is based on the particle-in-cell method [15]. Parameters of
the simulation used in all test runs were the following: mesh size 160 x 160 x 100,
number of particles 500 000 000, number of time steps 800. Initial particles dis-
tribution was a ball with uniform density located in the center of the simulation
domain. The domain decomposition in two directions into 16 x 16 fragments was
applied, so that only several fragments in the center contain particles. Since the
main computational load is associated with particles, such problem statement
leads to a load imbalance.

Three implementations of the algorithm were developed, using MPI, LuNA
and LuNA-ICLU. Moreover, two versions of the programs generated by the
LuNA-ICLU compiler were compared: with load balancing and without it. The
parameters of the load balancer were the following: the balancing module was
invoked every fifth time step, the minimum disbalance threshold was set to 10%.
All tests were run using 16 nodes of the MVS-10P Tornado cluster (16 cores per
cluster node, 256 cores in total) [16]. The hand-coded MPI program and the MPI
program generated by LUNA-ICLU compiler were run using one MPI process
per core, whereas the LuNA program was run with one process per node and 16
working threads per process.

Figure 1 shows execution times obtained for different parallel implementations
of the considered application algorithm. LuNA-ICLU implementation without
load balancing outperforms the LuNA implementation by 10%, whereas with load
balancing enabled the execution time decrease is 33%. Hand-written and manu-
ally optimizes MPI program even without load balancing outperforms all the other
implementations, presumably due to more efficient memory management.

Figure2 shows the dynamics of time spent by all cores at each time step
on useful calculations compared to the time spent on communication opera-
tions, including waiting, when running LuNA-ICLU implementations. Without
the load balancing enabled, calculations took up only 20% of the total time,
whereas load balancing increased this fraction to 45% (60% in the steady state
at the end of the simulation).

16 N. Belyaev and S. Kireev

450 409,9

400 371,7
«
2 350
g 273,0
€ 300 3
GEI 250
| 189,1
£ 200
o
£ 150
o
£ 100
fn}

50

0

LuNA LUNA-ICLU LuNA-ICLU + MPI

load balancing

Fig. 1. Execution time for different parallel implementations

160 160

LuUNA-ICLU LUNA-ICLU + load balancing
140 140
9] »
£ 120 2120
c 3
‘€ 100 g 100
g g0 ;
E g 80 " Wait
o 60 t 60 "
Q 2 M Load
&» 40 & 40
20 20
0 0
™ = =
00 O < NN O 0 O < N
NN < TN O~
Time steps Time steps
(a) (b)

Fig. 2. Dynamics of time spent by all cores at each time step on calculations (Load)
and communication operations, including waiting (Wait): LuNA-ICLU implementation
without load balancing (a), LuNA-ICLU implementation with load balancing (b)

6 Conclusion

The paper takes a step towards improving the performance of fragmented pro-
grams. The problems of the previously developed LuNA system were considered
and the prototype of LuNA-ICLU compiler was presented. The results of the
performance evaluation are given. It was demonstrated that the performance of
LuNA-ICLU system obtained on a PIC method implementation is better than
that of the LuNA system and close to the performance of the manually writ-
ten MPI program. The dynamic load balancing algorithm in the automatically
generated MPI program provides a speedup of 1.3 times on the considered prob-
lem. The developed fragmented program compiler can be used to automatically
generate efficient parallel programs from fragmented programs. In the future,
compiler modules can be improved, giving the compiler the ability to support
a more complex class of fragmented programs and generate more efficient MPI
programs.

LuNA-ICLU Compiler for Automated Generation 17

References

10.

11.

12.

13.

14.

15.

16.

Kessler, C., Keller, J.: Models for parallel computing: review and perspectives.
PARS Mitt. 24, 13-29 (2007)

Sterling, T., Anderson, M., Brodowicz, M.: A survey: runtime software systems for
high performance computing. Supercomput. Front. Innovations: Int. J. 4(1), 4868
(2017). https://doi.org/10.14529/jsfi170103

Thoman, P., Dichev, K., Heller, T., et al.: A taxonomy of task-based parallel pro-
gramming technologies for high-performance computing. J. Supercomput. 74(4),
1422-1434 (2018). https://doi.org/10.1007/s11227-018-2238-4

Legion Programming System. http://legion.stanford.edu. Accessed 23 May 2019
HPX - High Performance ParalleX. http://stellar-group.org/libraries/hpx.
Accessed 23 May 2019

Mattson, T.G., et al.: The open community runtime: a runtime system for extreme
scale computing. In: 2016 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1-7 (2016). https://doi.org/10.1109/HPEC.2016.7761580
Charm-++. http://charm.cs.illinois.edu/research/charm. Accessed 23 May 2019
Regent: a Language for Implicit Dataflow Parallelism. http://regent-lang.org.
Accessed 23 May 2019

Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra,
J.: DAGuE: a generic distributed DAG engine for high performance computing.
In: 2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and Ph.d Forum, Shanghai, pp. 1151-1158 (2011). https://doi.org/10.
1109/IPDPS.2011.281

PaRSEC - Parallel Runtime Scheduling and Execution Controller. http://icl.utk.
edu/parsec. Accessed 23 May 2019

Malyshkin, V.E., Perepelkin, V.A.: LuNA fragmented programming system, main
functions and peculiarities of run-time subsystem. In: Malyshkin, V. (ed.) PaCT
2011. LNCS, vol. 6873, pp. 53-61. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23178-0_5

Akhmed-Zaki, D., Lebedev, D., Perepelkin, V.: Implementation of a three dimen-
sional three-phase fluid flow (“Oil-Water-Gas”) numerical model in LuNA frag-
mented programming system. J. Supercomput. 73(2), 624-630 (2017). https://
doi.org/10.1007/s11227-016-1780-1

Alias, N., Kireev, S.: Fragmentation of IADE method using LuNA system. In:
Malyshkin, V. (ed.) PaCT 2017. LNCS, vol. 10421, pp. 85-93. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-62932-2_7

Kireev, S.: A parallel 3D code for simulation of self-gravitating gas-dust systems.
In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 406-413. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-03275-2_40

Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. IOP Pub-
lishing, Bristol (1988)

MVS-10P cluster, JSCC RAS. http://www.jscc.ru. Accessed 23 May 2019

https://doi.org/10.14529/jsfi170103
https://doi.org/10.1007/s11227-018-2238-4
http://legion.stanford.edu
http://stellar-group.org/libraries/hpx
https://doi.org/10.1109/HPEC.2016.7761580
http://charm.cs.illinois.edu/research/charm
http://regent-lang.org
https://doi.org/10.1109/IPDPS.2011.281
https://doi.org/10.1109/IPDPS.2011.281
http://icl.utk.edu/parsec
http://icl.utk.edu/parsec
https://doi.org/10.1007/978-3-642-23178-0_5
https://doi.org/10.1007/978-3-642-23178-0_5
https://doi.org/10.1007/s11227-016-1780-1
https://doi.org/10.1007/s11227-016-1780-1
https://doi.org/10.1007/978-3-319-62932-2_7
https://doi.org/10.1007/978-3-642-03275-2_40
http://www.jscc.ru

	LuNA-ICLU Compiler for Automated Generation of Iterative Fragmented Programs
	1 Introduction
	2 LuNA-ICLU System
	3 LuNA Language Extension
	4 System Algorithms in LuNA-ICLU System
	4.1 Control-Building Algorithm
	4.2 Arrays Distribution Algorithm
	4.3 Dynamic Load Balancing Algorithm

	5 Performance Evaluation
	6 Conclusion
	References

