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Abstract. In the paper a new parallel & distributed hydrodynamical
code HydroBox3D for numerical simulation of supernovae Ia type explo-
sion was described. The HydroBox3D code is created on basis of combina-
tion the adaptive nested mesh for hydrodynamical simulation of super-
novae explosion and the regular mesh is second level of nested mesh
for hydrodynamical simulation of nuclear reaction. The adaptive nested
mesh code for shared memory architecture with using Intel Optane tech-
nology was developed. The second level of nested mesh code for Intel
Xeon Phi KNL supercomputer was developed. The HydroBox3D code
analysis is described. The results of numerical simulation of supernova
Ia explosions on massive parallel supercomputers by means HydroBox3D
code are presented.

1 Introduction

Supernovas are major sources of “life” elements—from carbon to iron. Type Ia
supernovas (SNIa) are very bright and, therefore, they are used as “standard
candles” to determine distances to galaxies and the expansion rate of the Uni-
verse. A major scenario [1] of supernova explosion is based on the merging of
two degenerate white dwarfs with subsequent collapse of a new star when it
reaches the Chandrasekhar mass, ignition of the carbon burning process, and
type Ia supernova explosion. The goal of this paper is to determine the role of
the ignition point in nuclear fuel burning and in the dynamics of the remnants
of a degenerate dwarf explosion.

Numerical simulations plays a key role in the modern astrophysics. Perhaps,
it is the only universal approach to study the nonlinear evolutional processes in
the Universe. One of the main problems of astrophysics simulation is the scale
ratio. By example, a typical galaxy can have the mass of 1013 Solar masses and
the size of 104 parsecs, resulting in 13 order gap for the mass and 14 order gap for
the size in comparison to the Sun. Therefore it is necessary to use best available
supercomputers in order to simulate complex astrophysical processes with high
resolution.
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Nine of the top ten supercomputers listed in the 2018 November version of the
Top 500 list are equipped with graphic accelerators and Intel Xeon Phi/Sunway
accelerators. Most likely, the first ExaScale performance supercomputer will be
built based on the hybrid approach. The code development for the hybrid super-
computers is not a solely technical problem, but an individual complex scientific
problem, requiring co-design of algorithms during all stages of problem solving –
from physical statement to development tools.

The problem of Mind the Gap of reproducing the nuclear front of heavy
elements burning thin relatively to the star size, remains even when using top-
level supercomputers when solving problems SNIa. One possible solution to such
problems is the use of multi-level nested grids. The approach is to use adaptive
nested grids to simulate hydrodynamics of the SNIa explosion and the dynamics
of residuals. The next level of nesting of grids allows to reproduce the burning
front more correctly. Using the resources of SSCC, we were able to partially solve
the Mind the Gap problem by reproducing seven orders of magnitude. We hope
that regular access to more productive supercomputers will allow us to advance
several orders of magnitude. Following is a short review of codes, that allow you
to use a high resolution.

AREPO [2]. The code is based on the technology of moving mesh based on
Voronoi and Delaunay triangulation with Lloyd’s regularization [3]. This app-
roach allows you to adapt the mesh for the solution. In this case, unlike the SPH
methods, the method is based on the Eulerian approach. With all the advantages
of such an approach, it is rather difficult in terms of computational costs. The
question remains about the quality of the solution in the areas described by less
detailed grid cells. Nevertheless, the AREPO code is one of the most used in the
World at the moment.

BETHE-HYDRO [4]. This code is based on an ALE-approach combining
advantages of the Euler and Lagrange approaches. The equations of hydrody-
namics are solved on an unstructured grid in nonconservative Lagrangian form.
The numerical method is based on an operator approach which makes it possible
to construct (and this is done in the present paper) balanced schemes to approx-
imate the gradient and divergence operators. To solve the Poisson equation in
one-dimensional statement, the tridiagonal matrix algorithm (or the Thomas
method) is used. In two-dimensional statement the Poisson equation is solved
by a conjugate gradient method. Then the potential is corrected to conserve
the total energy (the sum of the kinetic, internal, and potential energies) of the
system. It should be noted that the total energy of the system is not exactly
conserved, but the error in the collapse problem is insignificant, about 10−2 per
cent. Unfortunately the approach has not been extended to the three-dimensional
case.

CHOLLA [5]. The software package is designed for GPU computational experi-
ments and is based on a CTU (Corner Transport Upwind) method. The method
is used to extend the upwind scheme to the multidimensional case [6,7]. A cell
structure containing all hydrodynamic parameters is used to store the calculation
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grid on the GPU. Such data locality allows more efficient use of the graphics card
global memory. Calculations of a time step are performed on graphic accelera-
tors with the use of CUDA extensions. All numerical methods being used are
described in detail in [5].

ENZO [8]. The software package is based on the solution of the equations of mag-
netic gas dynamics with allowance for cosmological expansion. An N-body model
is used to simulate the collisionless component. The code includes a large number
of subgrid processes: primordium chemical kinetics, cooling/heating functions,
radiation transport, as well as star formation processes and effects resulting from
supernova explosions. Several solvers are used to solve the hydrodynamic equa-
tions: PPM (implemented only for the equations of gas dynamics), MUSCL, and
a finite difference method. An algorithm based on the fast Fourier transform is
used to solve the Poisson equation. A so-called structured adaptive grid is also
used. Here the basic idea is that the calculation grid has a minimum difference
between the neighboring cells. This structure allows using regular trees where a
subdomain is divided not more than two times, which increases the efficiency of
using such calculation grids.

GADGET2 [9]. The code uses an SPH method as a basic method of solution. At
present this is the most widely used code based on the SPH approach. However,
the number of codes based on the SPH method decreases, and a major tendency
is to use Lagrange–Euler approaches in combination with grid methods. A pas-
sage along a Peano–Hilbert curve is used to distribute the particles between the
processes. Now it is a standard approach for the parallel implementation of SPH
methods.

GAMER [10]. The code contains a solution of the gas dynamics equation using
an AMR approach on graphic accelerators. A TVD approach is used to solve
the gas dynamics equations, and a combination of a method based on the fast
Fourier transform and a method of successive upper relaxation is used to solve
the Poisson equation. It seems that a major peculiarity of this complex is the
implementation of the AMR approach on graphics cards. In this way a regular
structure of the grid is naturally projected onto the GPU architecture, whereas
a tree structure needs special approaches. This approach is in using “octets”
to define the grid by projecting onto a specific graphics card flow. A major
problem here is the formation of fictitious cells for the octet, which takes about
63% of the time. However, this procedure can be performed for each of the octets
independently.

GIZMO [11]. For this software code, a new mesh-free approach to solving
equations of gravitational gas dynamics has been developed and implemented.
The approach is based on a combination of classical grid methods and an SPH
method. This method is in using the gas dynamics equations in Euler coordi-
nates which, according to the variational Galerkin principle, are multiplied by
test functions. A peculiarity of these functions is that they are linked not to
the calculation grid, as in paper [12], but to individual particles [13] which are
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similar to SPH particles. To determine the values at the domain boundaries, a
solution of the Riemann problem using the MUSCL scheme is used.

RAMSES [14]. The code employs a numerical solution of the gravitational gas
dynamics equations using an AMR approach based a division into octets. A com-
bination of a method based on the fast Fourier transform and the Gauss–Seidel
method is used to solve the Poisson equation. Simple 5-point finite difference
approximation is used to solve the Poisson equation. It was replaced by a more
efficient 19-point approximation implemented in the form of an extension of the
RAMSES code for the case of nonclassical gravitation (MOND) [15].

In the Sect. 2, we describe the concept of co-design, within which the compu-
tational model SNIa was developed. We also briefly summarize the information
about numerical methods that was used. The Sect. 3 will be devoted to the
parallel implementation of the HydroBox3D code. In the Sect. 4 the results of
mathematical modeling of the SNIa noncentral explosion will be presented. The
conclusion is given in the Sect. 5.

2 The Co-design of Numerical Model

As mentioned in the introduction, the development of software for supercomput-
ers is a complicated scientific problem and it requires the co-design at all stages
of the numerical model creation. We outline six co-design stages of numerical
modeling Fig. 1. The main difference between the co-design and the classic design
of the computational model is the possibility of returning to the previous devel-
opment stage with the constraints at the current stage. This makes it possible to
build in a short time an effective computational model that takes into account
all the developments.

The physical model

The developer tools

The mathema�cal model

The supercomputer

The numerical solver

The data structures

Fig. 1. The co-design conception of astrophysical problem solution method

The problem statement is studying the SNIa explosion during the perturba-
tion of an individual white dwarf, which occurs before the merger of two white
dwarfs. In this case, the SNIa explosion occurs at the periphery of the star.
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The source of the perturbation is a companion, which is introduced into the
physical model by a white dwarf perturbation displaced from the center. For the
transition from deflagration to detonation, it is necessary to carefully take into
account the combustion front at which nuclear combustion of carbon takes place
(we will dwell on it in present study as the most energy efficient source of the
explosion). The size of such a front is not resolvable for present day architec-
tures, so we will focus on use of hydrodynamic modeling on multilevel nested
grids. Next, we describe the organization of calculations, and then give a briefly
description of mathematical model and numerical methods that are used.

2.1 The Parallel & Distributed Computing

The hydrodynamic numerical simulation of SNIa is performed on architecture
with shared memory on adaptive nested meshes and is distributed using OpenMP
tools within a single process. In our computational experiments we used an Intel
Optane node which has 700 GB RAM for a single process. The nuclear reac-
tion hydrodynamics of SNIa is performed on an architecture with distributed
memory, with a software implementation based on a one-dimensional geometri-
cal decomposition of a regular calculation domain by MPI tools and subsequent
decomposition of the calculations into threads using OpenMP tools within a
single process. A diagram of calculations organization is shown in Fig. 2. Reg-
ular grids at the second level of adaptive nested mesh are used to calculate
hydrodynamic turbulence, which begins with a uniform density distribution cor-
responding to the cell. For a characteristic time step, one should not expect a

Classic adap�ve nested mesh

1st level of adap�ve nested mesh 2nd level of adap�ve nested mesh

Regular mesh

Core 0 Core NCore 1

Memory

Intel Optane

Shared Memory

CPU 0

Memory

Intel KNL

CPU N

Memory

Intel KNL

Massive Parallel Supercomputer

Fig. 2. The organization of parallel and distributed computing in HydroBox3d code
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local increase in density by several orders of magnitude. Therefore, the use of
regular grids on the second level is fully justified.

2.2 The Numerical Model

Consider the conservative form of the equations of gravitational gas dynamics
of conservation of masses

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

conservation of momentum

∂ρu

∂t
+ ∇ · (ρuu) = −∇p − ρ∇Φ, (2)

and conservation of total mechanical energy

∂

∂t

[
E + ρ

u2

2

]
+ ∇ ·

([
E + ρ

u2

2

]
u

)
= −∇ · (pu) − (ρ∇Φ,u) + Q, (3)

supplemented by the Poisson equation for the gravitational potential

ΔΦ = 4πGρ, (4)

where ρ is the density, u is the velocity, p is the pressure, Φ is the gravitational
potential, E is the internal energy of the gas, G is the gravitational constant,
and Q is a source of energy due to nuclear reactions.

The equation of state for stars consists of the pressure of a nondegenerate
hot gas and the pressure due to radiation and a degenerate gas [16]. In the case
of a degenerate gas, both relativistic and nonrelativistic regimes are considered.
The equation of state p = (ρ, T ) is sought for as the sum of four components:

p = prad + pion + pdeg,nrel + pdeg,rel, (5)

where T is the temperature, prad is the pressure of radiation, pion is the pres-
sure of a nondegenerate hot gas (ions), pdeg,nrel is the pressure of a degenerate
nonrelativistic gas, and pdeg,rel is the pressure of a degenerate relativistic gas.

As nuclear carbon burning we first consider a nuclear reaction responsi-
ble for the bombardment of carbon by carbon yielding natrium and proton
12C (12C, p) 23Na, where Q = 2.24 MeV is the energy released during the
nuclear reaction. Assume that the nuclear reaction rate k12C(12C,p)23Na is known
from the literature [17].

2.3 The Hydrodynamical Solver

The numerical method to solve the equations of hydrodynamics is based on a
combination of Godunov’s method for conservation laws by calculating fluxes
through the boundaries [18], an operator splitting method to construct a scheme
that is invariant with respect to rotation to approximate the advection terms
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[19–21], and Rusanov’s method to solve Riemann problems [22] for determining
the fluxes with vectorization of the calculations [23]. A compact scheme for a
piecewise-parabolic representation of the solution in each of the directions is
used to solve the Riemann problems [24–26].

To solve the hydrodynamic equations, a modification of an original numerical
method based on a combination of an operator splitting method, Godunov’s
method, and a Rusanov-type scheme is used. This method has all advantages of
the above methods and a high degree of parallelization. The numerical scheme
is considered in detail in paper [23]. The main idea of the method is in writing
the equations of hydrodynamics in vector form:

∂v

∂t
+ � · f(v) = 0, (6)

where v is the vector of conservative variables. For Eq. (6) we use the following
numerical scheme in one of the directions:

vn+1
i − vn

i

τ
+

Fi+1/2 − Fi−1/2

h
= 0, (7)

where F is the solution to a Riemann problem. Omitting the details of derivation
of the numerical scheme, which is based on adjoint equations and an operator
splitting method, we have the final form of the solution to the Riemann problem:

F =
f(vL) + f(vR)

2
+

c + ‖u‖
2

(vL − vR) . (8)

To determine the quantities f(vL), f(vR), vL, and vR, we use a piecewise-
parabolic representation of the solution. The equations of hydrodynamics for
the quantities will be calculated in the cells of the root and nested meshes. The
Poisson equation for the root mesh will also be calculated in the cells. Then the
solution will be projected onto the boundary nodes of the nested mesh. To solve
the Poisson equation on the nested mesh the quantities of the potential (and
density) will be arranged at the nodes of the nested mesh.

The equations of hydrodynamics (Riemann problems) are solved in two steps:
(1) solving the Riemann problems on all boundaries of the nested mesh, and (2)
solving Riemann problems at all internal interfaces of the nested mesh. Whereas
the second part of solving the Riemann problems is rather trivial, in the first part
the method of calculation depends on the sizes of cells of the two neighboring
nested meshes. If the cell sizes are equal, the solution to the Riemann problem is
the same as that of the Riemann problems at the internal interfaces of the nested
mesh, and it is trivial. If a cell of the neighboring nested mesh is larger than the
cell being considered the Riemann problem is solved at the interface between the
reduced neighboring cell. If the cell being considered has a common boundary
with several cells of the neighboring nested mesh the Riemann problems are
solved at all interfaces, and then the fluxes are averaged [27]. To organize the
satellite calculations, a regular mesh is used this is equivalent to using a root
mesh.
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2.4 The Poisson Solver

To solve the Poisson equation we use a combination of method based on the fast
Fourier transform (for the root mesh) and method of successive over-relaxation
(for nested meshes). The Poisson equation is solved in two steps:

1. Solve the Poisson equation on the root mesh by the fast Fourier transform.
2. Solve the Poisson equation on the nested mesh by the method of successive

over-relaxation.

We will not consider the method at the first step of solving the Poisson equation
(a detailed description of the method to solve it can be found in paper [26]),
which is also used to solve the Poisson equation in the satellite calculations.

The method of successive over-relaxation (SOR) is an iterative process of
finding the potential on a nested mesh with given initial and boundary conditions
obtained by solving the Poisson equation on the root mesh. A similar approach
to solve the Poisson equation has been proved to be efficient is some program
codes, for instance, in the GAMER code [10].

3 The Performance Analysis

As noted above, the hydrodynamics numerical simulation of SNIa is made on
architecture with shared memory. Therefore, we consider a parallel implementa-
tion of the second level of nested meshes based on domain decomposition [21].
The MPI tools are used to perform a one-dimensional geometrical decompo-
sition of the calculation domain. In the case of Intel Xeon Phi processors the
OpenMP tools are employed. When using Intel Xeon Phi (KNL) processors the
calculations are vectorized with some low-level tools [23,28].

The speedup of the code on a mesh of size 5123 has been studied. For this,
the total numerical method time was measured in seconds at various numbers
of threads. The speedup P was calculated as

P =
Total1
TotalK

,

where Total1 is the calculation time using one thread, and TotalK is the calcu-
lation time on K threads. The actual performance has also been estimated. The
results of these investigations of the speedup and performance on the mesh of
size 5123 are shown in Fig. 3. A performance of 173 gigaflops and a 48x speedup
are obtained on a single Intel Xeon Phi processor.

The scalability of the code on calculation grid size of a 512p × 512 × 512
was studied using all threads for each of the processors, where p is the number
of processors being used. Thus, a subdomain of size of 5123 was used for each
processor. To study the scalability, the total numerical method time was mea-
sured in seconds at various numbers of Intel Xeon Phi (KNL) processors. The
scalability T was calculated as

T =
Total1
Totalp

,
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Fig. 3. Speedup and performance of the code on Intel Xeon Phi

where Total1 is the calculation time with the use of one processor, and Totalp
is the calculation time with the use of p processors. The results of these investi-
gations of the scalability are shown in Fig. 4. A 97% scalability is reached with
16 processors, which is a rather good result.

Fig. 4. Scalability of the code

4 The Numerical Simulation

Let’s perform simulation of white dwarf with one solar mass and temperature
T = 109 K and a normal distribution of the velocities with a variance of ten
percent of the sound speed in the central part of the star. Fig. (5) shows the
simulation results: density dynamics from the onset of the explosion to its passage
through the bulk of the star. One can see from the simulation results (Fig. 5) that
a periphery ignition of the white dwarf takes place when the critical densities for
the onset of detonation carbon burning are achieved. As a limiting density for
the onset of the process of carbon burning, we use the density of transition from
deflagration to detonation from paper [29], which is ρDDT = 107.2 g cm−3. From
the distributed computing it is clear that carbon burning approx 80% complete.
This statistics was used to simulate noncentral explosions. However, only the
hydrodynamics can show the dynamics of real carbon burning.



196 I. Kulikov et al.

Fig. 5. Relative density distribution from the onset of the explosion to its passage
through the bulk of the star

5 Conclusion

The new parallel & distributed hydrodynamical code HydroBox3D for numerical
simulation of supernovae Ia type explosion was described in the paper. The
HydroBox3D code is developed on the basis of combination of adaptive nested
mesh for hydrodynamical simulation of supernovae explosion and regular mesh
that is a second level of nested mesh for hydrodynamical simulation of nuclear
reaction. A performance of 173 gigaflops and a 48x speedup are obtained on
single Intel Xeon Phi processor. A 97% scalability is achieved on 16 processors.
Results of numerical simulation of supernova Ia explosions on massive parallel
supercomputers obtained with help of the HydroBox3D code are presented.

We developed the HydroBox3D code for a specific problem of supernova of
Ia type. Requirements for describing the process of carbon nuclear burning are
also was initiated by the features of the problem. However, as the result the
technology for solving problems of different-scale gravitational hydrodynamics
was developed. So staying within the framework of the implemented hydrody-
namic model, we can perform simulation of the star formation process in the
interstellar medium in the problems of galaxies collisions and evolution. Also we
can perform simulation of the explosion hydrodynamics of supernovae of type
II with explosion source – core-collapse, as well as model all the hierarchy of
cosmological modeling “observed Universe – cosmic web – clusters of galaxies –
and galaxies interaction”. The code extension for that hyperbolic models, such
as magnetic hydrodynamics, relativistic hydrodynamics and collisionless fluid
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dynamics allows one to use program code like a technology to solve a wide class
of astrophysics problems. In the future, we plan to use the developed technology
for actual problems of astrophysics.
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