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Abstract. The paper is devoted to consideration of numerical global
optimization methods in the framework of the approach of reducing
dimensionality based on nested optimization schemes. For the adaptive
nested scheme being more efficient in comparison with its classical pro-
totype a new algorithm of parallel implementation is proposed. General
descriptions of the parallel techniques both for synchronous and asyn-
chronous versions are given. Results of numerical experiments on a set
of complicated multiextremal test problems of high dimension are pre-
sented. These results demonstrate essential acceleration of asynchronous
parallel algorithm in comparison with the sequential version.
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1 Introduction

Global optimization problems aimed at finding the global optimum of multi-
extremal functions are complicated decision making models and describe many
important applications in engineering, economy, scientific researches, etc. (see
some examples in [3,9,13,26,30,32,36,43]). The complexity of these problems
depends crucially on the dimension (number of model parameters) because in
general case the growth of the computational costs measured, for example, in
number of objective function evaluations is exponential when increasing the
dimension. There exist several approaches to analyzing global optimization prob-
lems oriented at different classes of multiextremal functions defined by their
specific properties. The wide spectrum of directions in the field of global opti-
mization can be found in the fundamental monographs [23,31,32,35,39,44].

Among the approaches generating efficient algorithms to solving multiex-
tremal optimization problems with objective functions satisfying the Lipschitz
condition one can mention the approach based on different partition schemes
(component approach) and the class of methods which apply the ideas of
reducing multidimensional problems to one or a family of univariate subprob-
lems for solving those by means of well-developed one-dimensional optimization
algorithms.
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In the framework of the component approach the search region is partitioned
into several subregions (components), every component are evaluated numeri-
cally for the purpose of its efficiency for search continuation, and after that a
new iteration is carried out in the most “perspective’ subregion. The first class of
component methods called characteristical ones was proposed and theoretically
investigated in the work [18], and later it was generalized to multidimensional
case by many researchers (see, for example, publications [24,25,27,31,32,35]).

As for the approach transforming a multidimensional problem to the univari-
ate case, it includes two different schemes. The first one is based on applying
the Peano space-filling curves which are continuous mappings of a multidimen-
sional hypercube onto the unit interval of the real axis [4,14,22,28,29,34,39].
The second scheme reduces a multidimensional problem to a family of univariate
subproblems connected recursively (nested optimization) [5,6,11,12,16,37–39].
These schemes can be combined when inside the recursive procedure the sub-
problems of the less dimensionality are considered and solved by means of Peano
mappings [40]. As it has been shown in [19], among algorithms of this type the
adaptive scheme of nested optimization has demonstrated the best efficiency.

A promising way to overcome the complexity of the multiextremal opti-
mization problems consists in parallelizing sequential schemes of optimiza-
tion algorithms. Following this idea, some optimization methods have been
proposed (see [2,8,15,17,20,33,39,40]). In this paradigm the usual way con-
sists in performing parallel trials (computations of objective function val-
ues) [8,17,20,21,39,40]. The algorithm [2] using multiple Peano mappings per-
forms parallel computations of trial couples corresponding to several Peano evol-
vents. Very interesting approach is used in parallel branch and bound algorithms
which build a hierarchical structure of feasible domain partitions and parallelize
the procedure of partitioning. For example, the paper [21] describes a model
using threads within one computational node and the publication [1] suggests a
parallel strategy of partitioning in distributed memory.

As opposed to above approaches the methods on the base of nested optimiza-
tion scheme [15,33] implement parallelization by means of parallel performance
of internal subtasks. In this paper we consider a parallel algorithm being a gen-
eralization of the adaptive scheme of global optimization [11] which belongs to
the type of recursive reduction techniques and applies for solving the nested uni-
variate subproblems the information characteristical method [33,39]. The main
goal of the work is to describe a new model of parallel computations inside the
adaptive scheme realizing “parallelization by subtask” approach and to estimate
the effectiveness of parallelizing measured as speedup of the parallel adaptive
scheme compared to the sequential one.

The rest of the paper is organized as follows. Section 2 contains the statement
of multiextremal optimization problem to be studied and the general algorithm
of the nested optimization scheme. Section 3 describes the model of parallelism
organization in the framework of the nested adaptive dimensionality reduction.
Section 4 presents results of numerical experiments and speedup estimations of
the parallel adaptive scheme. The last section concludes the paper.
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2 Nested Optimization Scheme

The statement of the optimization problem to be considered is as follows. It
is necessary to find in a hyperparallelepiped H of the N -dimensional Euclidean
space R

N the least value (global minimum) F∗ of an objective function F (u) and
the coordinate u∗ ∈ H of the global minimum (global minimizer). This problem
can be written in a symbolical form as

F (u) → min, u = (u1, . . . , uN ) ∈ H ⊆ R
N , (1)

H = {u ∈ R
N : ai ≤ ui ≤ bi, 1 ≤ i ≤ N}, (2)

The objective function F (u) is supposed to satisfy in the search domain H the
Lipschitz condition

|F (u′) − F (u′′)| ≤ L‖u′ − u′′‖, u′, u′′ ∈ H, (3)

where L > 0 is a finite value called Lipschitz constant and ‖ · ‖ denotes the
Euclidean norm in R

N . Under condition (3) the problem (1)–(2) is, in general
case, multiextremal and non-smooth.

The nested scheme of dimensionality reduction served as the source for differ-
ent global optimization methods [5,6,11,12,16,37–39]. It is based on the known
relation [5,39]

min
u∈H

F (y) = min
u1∈H1

min
u2∈H2

· · · min
uN∈HN

F (u1, . . . , uN ), (4)

where Hi is a line segment [ai, bi], 1 ≤ i ≤ N .
Let us give the general description of the nested scheme introducing recur-

sively a family of reduced function F i(τi), τi = (u1, . . . , ui), 1 ≤ i ≤ N , in the
following manner.

FN (τN ) ≡ FN (u) ≡ F (u), (5)
F i−1(τi−1) = min

ui∈Hi

F i(τi), 2 ≤ i ≤ N. (6)

Then, instead of minimizing in (1) the N -dimensional function F (u) we can
search for the global minimum of the univariate function F 1(u1) as, in accordance
with (4),

F∗ = min
u1∈H1

F 1(u1). (7)

However, any numerical optimization method in the course of solving the prob-
lem (7) has to calculate values of the function F 1(t1). But such a computation
at a point t̃1 requires solving the problem

F 2(t̃1, t2) → min, t2 ∈ H2, (8)

which are one-dimensional again as the argument t̃1 is fixed, and so on. Following
this way, we reach the level N , where the problem

FN (τ̃N−1, tN ) → min, tN ∈ HN , (9)
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is one-dimensional as well because the vector τ̃N−1 = (t̃1, . . . , t̃N−1) is fixed (its
coordinates are given at previous levels of recursion). As FN (t) ≡ F (t) then
evaluation of objective function values in the problem (9) consists in calculation
of the values F (τ̃N−1, tN ) of the given function from (1).

The procedure (7)–(9) described above is recursive and enables to find the
solution of the multidimensional problem (1)–(2) via solving the family

F i(τi−1, ui) → min, ui ∈ Hi, 1 ≤ i ≤ N, (10)

of univariate subproblems. Such the scheme is called the nested scheme of dimen-
sionality reduction.

The recursive structure of generation of the subproblems in the family (10)
can be presented as a tree of connections between generating (parental) and
generated (child) subtasks (see Fig. 1).
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Fig. 1. Tree of subtasks in the nested optimization scheme for dimension 3.

In this tree the problem (7) is the root one and the problems (9) are leaves
of the tree. Of course, the tree is built in dynamics, and Fig. 1 shows the full
tree obtained after completing multidimensional optimization. It should be noted
that conducting one trial (computation of objective function value at a point) in
one-dimensional subproblem of minimization of F i(τi−1, ui), 1 ≤ i ≤ N −1, gen-
erates a subtree in the tree of subtasks. As a consequence, any subproblem (10)
is parental for subproblems in subtrees generated by its trials.

In classical implementation of the nested scheme the subproblems (10) are
solved until a stopping rule of applied univariate method holds true for all of
them. It means that in the course of optimization only subproblems which belong
to a sole path from the root to a leaf can interact inter se. It leads to loss of search
information obtained in the course of optimization and worsens the efficiency of
classical scheme significantly.
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In order to overcome this drawback of the classical nested scheme, its
improved version called adaptive nested scheme of dimensionality reduction has
been proposed in the paper [11]. As opposed to the classical nested scheme, the
adaptive extension considers all the currently existing subproblems (10) simul-
taneously. A numerical value of “significance” called characteristic is assigned
to each subproblem of the current family and all the subproblems are decreas-
ingly ordered according to their characteristics. Then, the subproblem with the
maximal characteristic is chosen, and in the best subproblem a new iteration of
the univariate method connected with this subproblem is executed. The detailed
algorithm of the sequential adaptive scheme has been described in [11].

3 Parallel Adaptive Scheme

A natural way of parallelizing the adaptive scheme consists in solving several
subproblems in parallel. Let us suppose that at our disposal there are P > 1
parallel computational nodes (processors). Then a parallel iteration of the adap-
tive scheme could be organized as follows. All the subproblems (subtasks) are
ordered according to their characteristics, P subproblems with maximal charac-
teristics are chosen, are distributed among processors (one subproblem to one
computational node) and are solved in parallel. Solving within parallel iteration
one subproblem of a recursion level l means the decision rule implementation
of univariate optimization algorithm used in this subproblem, i.e., the choice
of a point ul of new trial and computation of the objective function value at
this point. If l < N , such the computation generates a subtree of new subtasks
that will be added to existing ones after completing the trial at the point ul.
Hereinafter the operation of executing a trial in a subproblem will be denoted
as ExecuteIteration.

If the next parallel iteration will start after completing the work of all pro-
cessors this procedure corresponds to the synchronous case. However, in such
organization of parallelism a processor completing computations is obliged to
wait until the other processors finish and will stand idle. To avoid this drawback
one can to use more effective, but more complicated asynchronous organization
of parallelism when a processor completing its work take the best subtask from
the pool of non- distributed subproblems.

Further we consider more detailed how both synchronous and asynchronous
parallelisms can be organized for the nested adaptive scheme. As a detailed
code of the parallel implementation is very large we will give a general algo-
rithmic description of parallel adaptive scheme on the base of an abstract one-
dimensional optimization method. For this formal description it is necessary to
introduce several notions and designations.

Let at a stage of the adaptive scheme implementation all subproblems renum-
ber with integer numbers from 1 to λ, where λ is the number of subtasks (10)
generated already and the root subproblem (7) is the first one. A univari-
ate method in the course of minimizing a subproblem F l(τl−1, ul) generates
a sequence of trial points u1

l , . . . , u
k
l at which the values z1l , . . . , z

k
l are computed

where zil = F l(τl−1, u
i
l), 1 ≤ i ≤ k. These points and values form the set of pairs
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ωk = {(u1
l , z

1
l ), . . . , (u

k
l , z

k
l )}, (11)

that can be interpreted as the current state of the search for this subproblem.
It should be remembered that any computation of value zil requires solving a
one-dimensional subproblem at the next (l+1)-th level and, if l < N , building a
subtree of subproblems (10). Uniting the subtrees of all trials we get the subtree
generated by the subproblem on the whole.

Taking these circumstances into account, we identify a subtask t ∈ {1, . . . , λ}
as a tuple

t = 〈l, τl−1, k, ωk, h, tp, T c,W 〉. (12)

Here l is the number of the recursion level, which the subproblem belongs to, τl−1

is a vector of fixed coordinates obtained from preceding levels, k is the number
of trials executed by the univariate algorithm, ωk from (11). The indicator h =
h(ωk) shows whether solving this subproblem has been completed, namely, if h =
0 then the algorithm solving the described subproblem terminates its execution,
if h = 1 the optimization has to be continued. The number tp corresponds to the
parental subproblem having generated the current one, and, finally, T c presents
the set of all subtasks (up to the level N) generated by the subproblem considered
and, finally, W is a numerical characteristic of the subproblem significance. The
set of all subtasks t, t ∈ {1, . . . , λ}, we will denote as T .

It should be noted that tuple (12) is not applicable to the root subtask (7)
because it has no parents. In order to include the root subproblem into the unified
description let us introduce as a parent of the root an “empty” subtask t0 and
define t0 = ∅.

For starting the adaptive scheme (both sequential and parallel) it is necessary
to create an initial set T . It could be done applying the classical nested scheme
with a few trials in one dimensional search. We will consider just a general
procedure Initialize implementing this initial stage without its concretization.
It is executed only once and it is not important whether it is sequential or
parallel.

As for parallel implementation of the main body of the adaptive scheme we
will deal with a computational system with distributed memory. The system is
supposed to consist of P computational nodes. Each node has just one processor
and memory, to which the processor of the node only has the direct access. The
remote direct access to this memory (RDMA) is considered to be impossible. It
means that recording the data of j-th node in the memory of i-th node (i 
= j)
can be carried out by means of operations of data transmission only.

The simplest way of parallelizing the adaptive scheme in a distributed system
can consist in employment of the program model MapReduce [7]. A generalized
algorithm of the parallel adaptive scheme could be presented as the Algorithm 1.
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Algorithm 1. Parallel adaptive scheme on the base of MapReduce
1: l ← 1, t1 ← 1
2: T ← Initialize()
3: while h(t1) = 1 do
4: T ′ ← {

t1, . . . , tP : W (t) ≤ W (ti), 1 ≤ i ≤ P, t ∈ T \ {t1, . . . , tP } }

5: T ′′ ← MapReduce(T ′,ExecuteIteration)
6: T ← T ∪ T ′′

7: T ← T \ {t ∈ T ′ : h(t) = 0}
8: end while

In the Algorithm 1, after initialization in the loop until the termination condi-
tion in the root subproblem is satisfied parallel iterations of the adaptive scheme
are executed. At Stage 4 the set T ′ containing P subtasks with the best char-
acteristics is formed. Stage 5 distributes the subproblems from T ′ to processors
which in parallel execute one trial in their subtasks with the help of procedure
ExecuteIteration. After completing all the trials a set T ′′ of new subprob-
lems obtained in the course of computations is formed. Stage 6 complements the
set T with new subproblems and Stage 6 removes from the set T the terminated
subproblems.

Practical implementation of the described algorithm can be realized in the
framework of such the platforms as Hadoop [41] or Spark [42]. Unfortunately,
this algorithm is synchronous and requires significant number of data trans-
missions. Moreover, implementation of Algorithm 1 implies that one processor
(master node) plays the main role and coordinates the work of the other (slave)
processors, i.e., the organization of the parallel processes is centralized.

To improve the parallel implementation of the adaptive scheme we propose
for the adaptive scheme an asynchronous decentralized model of parallel com-
putations where all processors are equal in rights.

Let, as earlier, a distributed system have P processors. We change Algo-
rithm 1 so that procedure Initialize after creating an initial set T splits this
set into P parts and send each part to separate processor. Moreover, i-th pro-
cessor is supposed to be able to connect independently with any other node and
to execute the information interchange with it after completing a trial in its
subproblems. Under this assumption the full set T of subtasks can be stored
portionwise on different nodes and in order to get the best subproblems, a node
can request from other nodes only the best subproblems from their local subsets.

In this situation there exists no integrated iteration implemented by all the
processors jointly and we can deal with iterations executed by processors sep-
arately. Completing its iteration a node can request immediately the best sub-
problems from other nodes and begin a new iteration. Two examples of requests
are shown in Fig. 2.

Under these assumptions we propose an asynchronous algorithm of the par-
allel adaptive scheme that is presented below in a pseudo code. This algorithm
is supposed to be executed on every node.
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Fig. 2. Gathering information for new iteration to the 1-st node (a) and to the 7-th
node (b).

Algorithm 2. Parallel asynchronous adaptive scheme
1: procedure ReceiveTaskFromNode(j)
2: t∗j ← maxT local

j

3: T local
j ← T local

j \ { t∗j }
4: return t∗j
5: end procedure
6:
7: procedure RunOnNode(i)
8: T local

i ← PartOfInitialTaskSet()
9: for n ∈ {1, 2, . . . , ni

max} do
10: for j ∈ {1, 2, . . . , P} \ { i } do
11: t∗j ← ReceiveTaskFromNode(j)
12: T local

i ← T local
i ∪ { t∗j }

13: end for
14: t∗ ← maxT local

i

15: t1, T 1 ← ExecuteIteration(t∗)
16: T local

i ← T local
i ∪ T 1

17: if h(t∗) = 0 then
18: if l(t∗) = 1 then
19: BroadcastStopSignal()
20: break
21: end if
22: T local

i ← T local
i \ { t∗ }

23: end if
24: end for
25: end procedure

Let us give some remarks about the Algorithm 2. T local
i is the subset of sub-

problems stored on the i-th node. Procedure ReceiveTaskFromNode provides
receiving the best subtask from other node. In line 8 the procedure PartOfIni-

tialTaskSet forms the initial set T local
i from subtasks obtained by the proce-

dure Initialize.
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The external loop for is an analogue of the loop while in Algorithm 1 but
instead of termination condition used in while a limit nmax

i of trials executed on
the i-th node is introduced. Termination condition of the optimization algorithm
is transferred into lines 17–21, where l(t) denotes the level of the subtask t. The
internal loop carries out collecting the subproblems with the best characteristics
from all the nodes (except for the i-th node). Further, from the local set T local

i

the subproblem with the maximal characteristic is chosen and the new trial in
this subproblem is executed.

If during solving a problem (1)–(2) i-th processor has performed ni trials,
it has transferred tasks to other processors (P − 1)ni times because one trial
requires P − 1 transmissions from the rest of nodes. Altogether the processors
have performed n =

∑P
i=1 ni trials and, consequently, executed (P − 1)n trans-

missions. The estimation of transmissions number for synchronous Algorithm 1
gives the result about (P 2 + P )n, which is worse essentially compared with the
asynchronous case.

4 Numerical Experiments

To evaluate the effectiveness of the parallelism described in Sect. 3 a computa-
tional experiment aimed at comparison of sequential and asynchronous parallel
implementations of the adaptive nested optimization schemes has been carried
out. The simpler synchronous version did not participated in comparison because
it is inferior to the asynchronous one according to theoretical estimations. The
experiment consisted in solving a set of functions from the test class GKLS [10] of
essentially multiextremal functions (hard subclass). These functions have com-
plicated structure with tens of local minima. Nowadays this class is a classical
tool for comparison of global optimization methods.

In experiment 50 functions of dimension 8 have been taken and solved both
sequential and parallel adaptive schemes. As one-dimensional method for solv-
ing the subproblems 10 in both the schemes the information global search algo-
rithm GSA [38,39] was taken with reliability parameter r = 6.5 and accuracy
in termination condition ε = 0.01. Computations were executed on the cluster
consisting of 64 nodes, where each node is equipped with Intel R© Xeon R© Gold
6148 processor having 20 physical cores. Mellanox R© Infiniband FDR was used
as interconnection technology. The parallelism was provided on the base of MPI,
version Intel R© MPI 2019. Only one MPI rank was assigned to one node.

The global minima have been found with given accuracy in all the test prob-
lems. The results of the experiment are reflected in Table 1 and Fig. 3. The
table contains average time spent by the parallel scheme per one test problem
and speedup in time achieved by the parallel technique in comparison with the
sequential one for different number of MPI ranks.
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Table 1. Speedup in time on GKLS test class

MPI rank 1 2 4 8 16 32 64

Time (sec.) 7409.39 4919.94 2422.97 1202.00 717.19 380.39 198.88

Speedup 1 1.50 3.05 6.16 10.33 19.47 37.26
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Fig. 3. Speedup in time on GKLS test class

5 Conclusion

The paper proposes general descriptions of new parallel algorithms implementing
methods of multiextremal optimization on the base of adaptive nested schemes
reducing a multidimensional problem to a family of one-dimensional subprob-
lems. Two parallel versions are presented in synchronous and asynchronous vari-
ants for computational distributed systems. Efficiency of the parallelism are
investigated experimentally on the test class GKLS of complicated multiextremal
multidimensional problems. The results of the experiment have shown essential
speedup of the optimization process in case of applying the asynchronous adap-
tive scheme.

Combining the general parallel procedure of the adaptive scheme with fast
univariate optimization methods (like characteristical ones) enables to construct
new efficient techniques for solving multiextremal problems of high dimensions.
Moreover, it is promising to develop new parallel implementations of the adaptive
scheme oriented at other parallel architectures, for example, at supercomputers
with mixed types of memory. It would be very interesting as well to compare
the proposed algorithm with parallel optimization methods based on the other
principles of parallelizing. These problems can be fruitful directions of further
researches.
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