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Abstract. This paper presents efficient parallel methods for solving
ill-conditioned linear systems arising in fluid dynamics problems. The
first method is based on the Modified LU decomposition, applied as a
preconditioner to the Conjugate gradient algorithm. Parallelization of
this method is based on the use of nested twisted factorization. Another
method is based on a highly parallel Algebraic multigrid algorithm with a
new smoother developed for anisotropic grids. Performance comparisons
demonstrate superiority of new methods over commonly used variants of
the Conjugate gradient method.
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1 Introduction

The multi-physical FireStar3D numerical simulation model was developed in
order to predict the behavior of wildfires at local scales (up to 500 m) [1,2].
This model consists of solving the conservation equations of a coupled system
composed of vegetation and the surrounding gaseous medium. The model is able
to account explicitly for all mechanisms of degradation of vegetation and various
interactions between the gas mixture and the vegetation cover such as drag force,
heat transfer by convection and radiation, and mass transfer.

Solving a three-dimensional nonstationary multi-physical problem requires
significant computational resources. An appreciable part of the computational
time is spent on solving large sparse linear systems arising from the discretization
of partial differential equations in the above model [3].

The most popular iterative methods used to solve large linear systems are
the Conjugate Gradient for symmetric matrices and its non-symmetric variants
(BiCGStab, GMRES etc.) [4]. To accelerate convergence, these methods require

c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 140–150, 2019.
https://doi.org/10.1007/978-3-030-25636-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_11


Efficient Parallel Solvers 141

preconditioning [5]. There exists also a family of multigrid methods which possess
very good convergence and parallelization properties [6,7].

The applicability of solvers depends on the nature of the underlying physical
processes and on the speed of propagation of physical information. In particular,
incompressible viscous fluid flows can be driven by three basic mechanisms with
different propagation speeds:

– convection: slow propagation, Courant condition can be applied (one or few
grid distances per time-step); using an iterative solver with few iterations;

– diffusion: faster propagation (tens grid distances per time-step), well-conditi-
oned linear system; using an iterative solver with more iterations;

– pressure: instant propagation, ill-conditioned linear system; using an iterative
solver with a robust preconditioner or a multigrid or a direct solver.

The choice of the solution method is determined by the above property. In
the FireStar3D code, robust and efficient methods are used to solve the most
time-consuming Poisson equation for pressure – the preconditioned Conjugate
Gradient and the Algebraic multigrid. To solve the coupled system of convection-
diffusion equations, for which a robust solver is not required, the BiCGStab
method is applied.

In the previous papers [5,7,8], we analyzed various properties of iterative
methods from the point of view of mathematics, convergence, efficiency and
parallelization. In this paper we will consider the application of these methods
for wildfire modeling, taking into account specific properties and requirements
of the corresponding numerical simulation model.

The remaining part of the paper is organized as follows. Section 2 briefly
presents the mathematical and geometric formulation of the FireStar3D model.
Section 3 discusses the preconditioned Conjugate gradient method and describes
the parallelization approach for the implicit MILU preconditioner. Section 4
introduces the multigrid method and describes a new smoother for anisotropic
grids. Section 5 presents and analyzes the performance comparison results.

2 Mathematical Model

The mathematical model is based on a multiphase formulation [1]. It consists of
two parts, that are solved on two distinct grids. The first part is described by
the equations of the reacting turbulent flow in the gaseous phase, consisting of
a mixture of fresh air with gaseous products resulting from the degradation of
the solid phase and homogeneous combustion in the flaming zone. The second
part consists of the equations governing the state and composition of the solid
phase subjected to an intense heat flux coming from the flaming zone.

Solving the gaseous phase model consists in the resolution of conservation
equations of mass, momentum, energy (in enthalpy formulation), and chemical
species filtered using an unsteady RANS approach. Degradation of the vegetation
is governed by three temperature-dependent mechanisms: drying, pyrolysis, and
charcoal combustion.
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The balance equations in the gaseous phase are solved numerically using
the fully implicit finite volume method in a segregated formulation [9,10]. The
Finite Volume discretization is applied to the non-uniform Cartesian staggered
grid. The transport equations are solved by a fully implicit segregated method
based on the PISO algorithm [11].

Figure 1 shows the computational domain of the wildfire numerical simulation
model with two distinct grids [2].

Fig. 1. Perspective view showing the computational domain and vegetation cover. The
ignition line is shown on the left side of the vegetation cover

3 Preconditioned Conjugate Gradient Method

3.1 Explicit and Implicit Preconditioners

The original non-preconditioned Conjugate Gradient method (CG) [4] for solving
a linear system Ax = b is simple to implement and can be easily parallelized.
However, due to the explicit nature, it has a low rate of convergence and requires
about O(N) iterations, where N is the dimension of the problem in one spatial
direction.

Because of this, the CG method is usually applied to the preconditioned linear
system (M−1A)x = M−1b where M is a symmetric positive-definite matrix
that is “close” to the main matrix A (also symmetric and positive-definite). In
practice, the system to be solved looks like (L−1AL−T)x∗ = L−1b where LL−1 =
M (Incomplete LU decomposition), but in the preconditioned CG algorithm,
only computations of the form x = M−1z or Mx = z are required [4].

Preconditioning works well if the condition number of the matrix L−1AL−T

is much less than that of the original matrix A. The easiest way to reduce
this condition number and speed up the convergence is to apply an “explicit”
preconditioner (B = M−1) than does not require the inversion of M (i.e. x = Bz
is to be computed).
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A good example of this kind is the polynomial Jacobi preconditioner [8],
based on the truncated approximation series 1/(1 − a) = 1 + a + a2 + . . .

B = M−1 =
n∑

k=0

(Hk)P−1 where P = diag(A), H = P−1(P −A) = I − P−1A

For n = 0, this expression degenerates into a diagonal preconditioner
B = P−1, which, due to its simplicity, is usually not considered as a true precon-
ditioner. For n = 1, the Jacobi preconditioner looks like B = (I+(I−P−1A))P−1

and improves the acceleration rate twice (with some increase in computational
complexity). This exactly corresponds to the expansion of the computational
stencil in one iteration of the algorithm. Therefore, it can be easily applied and
parallelized.

Unfortunately, neither kind of the simple explicit preconditioner can drasti-
cally improve convergence. The reason is that the explicit preconditioner acts
locally using a stencil of limited size and propagates information through the
domain with low speed. On the other hand, the implicit preconditioner, based
on solving auxiliary linear systems, operates globally and propagates informa-
tion almost instantly. Due to this, the implicit preconditioner works much faster
and has a better than linear dependence of convergence on the geometric size
of the problem. For this reason, to solve an ill-conditioned linear system, it is
necessary to apply a preconditioner of the implicit kind.

In the FireStar3D code, the explicit Jacobi preconditioner is used to solve
well-conditioned linear systems resulting from the discretization of a coupled
system of convection-diffusion equations. Due to the non-symmetric nature of
these linear system, the BiCGStab method is used.

3.2 Parallelization of the Implicit Preconditioner

The parallel properties of preconditioners are strongly dependent on how infor-
mation is propagated in the algorithm. For this reason, it can be difficult to
parallelize an implicit preconditioner, and a lot of effort is required to find the
geometric and algebraic approach to parallelization. In particular, this applies
to Incomplete LU-decomposition (ILU).

For the Cartesian computational domain, the geometric potential of paral-
lelization can be revealed. The initial idea of the method is taken from the twisted
parallelization of the tridiagonal linear system, when Gauss elimination is per-
formed from both sides simultaneously. This idea can be naturally generalized to
three dimensions. The resulting method is called “nested twisted factorization”
[8,12].

In this method, the rectangular parallelepipedic domain is divided into 8
octants by separator planes (Fig. 2). In each octant, Gauss elimination is per-
formed from the corner in the direction inwards independently in different
threads (Fig. 2, left).
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Fig. 2. Parallelization of the nested twisted factorization: illustration of the method
(left); separator planes (center). Parallelization for 16 threads, staircase method (right)

After doing eliminations at internal octant points, they are performed in
quadrants of separator planes in the same way (Fig. 2, center). Then, the inter-
section lines of the separator planes are processed and, finally, the solution is
calculated at the central point. The following backsubstitution is performed in
the reverse order, from the central point outwards.

Parallelization for 16 threads can be achieved by applying the staircase
method shown on Fig. 2 (right). Here, each octant is divided into two halves
in the direction j (see bottom left octant, divided between threads 0 and 1).
Computations in the plane (i,j) for a certain k cannot be performed by thread
1 until they are completed by thread 0. However, they can be performed by a
pipelined fashion: thread 1 computes the layer for some k at the same time when
thread 0 computes the next layer for k+1 (this looks like a step on the stairs).
At the backsubstitution stage of the algorithm, the computations are performed
in the reverse order.

Additional parallelization of the method for more threads seems to be imprac-
tical due to synchronization overhead. Nevertheless, this method can be used on
a computer with more cores, since the performance of the algorithm is mainly
limited by the memory bandwidth (i.e. the method belongs to the memory-bound
class). Because of this, it is possible to implement a procedure for any reason-
able number of threads, and not just for 8 or 16. To achieve this, it is necessary
to distribute the active threads of the method (8 or 16) among all cores of the
computing system, thus ensuring load balance. As a result of this modification,
the method works well on up to 32 cores of a bi-processor computer.

The convergence of the ILU preconditioner depends on how the decompo-
sition is calculated. The most accurate variant of the method, Modified ILU
(MILU), requires about O(N

1
2 ) iterations, where N is the dimension of the

problem in one spatial direction [8,13]. As a result, this algorithm becomes 5 to
6 times faster than the Conjugate gradient method with explicit Jacobi polyno-
mial preconditioner.

3.3 Modified ILU Preconditioner for Periodic Boundary Conditions

The Modified ILU preconditioner can be mathematically strictly implemented
and parallelized only for a rectangular parallelepipedic domain with non-periodic
boundary conditions. In the case of periodic conditions, the algorithm becomes
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not strict, and its convergence properties deteriorate. In particular, while the
convergence estimate for a strict MILU is O(N

1
2 ) iterations, the loss of these

properties leads to an estimate of O(N) iterations.
However, in the problem under consideration, the flow properties in the peri-

odic transverse direction are almost uniform with some fluctuations. For this
reason, it becomes possible to use the original MILU preconditioner, which does
not care on the periodic boundaries. This preconditioner is applied on the top
of the Conjugate gradient algorithm with accurate treatment of the periodicity.
This algorithm smooths the solution around periodic boundaries and maintains
relatively fast convergence.

This new algorithm was implemented and tested. Its convergence with an
accuracy 10−10 for a problem size 100 × 200 × 224 is 68 iterations, compared
with about 50 iterations of the original algorithms applied to a non-periodical
problem of a similar size. This is much less than 350 iteration of the Conjugate
gradient method with explicit Jacobi polynomial preconditioner. In term of the
computational time, the new algorithm is about 4 times faster.

4 Algebraic Multigrid

The multigrid method is potentially the most efficient one for solving ill-condi-
tioned linear systems because of its ability to suppress error components of all
scales. Also, it can be parallelized to a large number of threads. This method
solves differential equations using a hierarchy of discretizations.

In one multigrid cycle (V-cycle, Fig. 3), both short-range and long-range com-
ponents of the error are smoothed out, so information is instantaneously trans-
mitted throughout the domain. As a result, this method becomes very efficient
for elliptic problems that spread physical information infinitely fast.

1 Pre-smooth x1 = S1 (x0, b)
2 Residual b1 = b − Ax1

3 Restriction b̃1 = R b1
4 Next level Ãx̃2 ≈ b̃1
5 Prolongation x2 = P x̃2

6 Correction x3 = x1 + x2

7 Post-smooth x0 = S2 (x3, b)

1

2

3

...

last

12 3

123

123

123

4

4

4

4

exact

56 7

567

567

567V-cycle

Fig. 3. Scheme of the multigrid algorithm (left); illustration of the V-cycle (right)

In the FireStar3D code, the Algebraic multigrid (AMG) approach [6,7] is
applied. This method is based on matrix coefficients rather than on geometric
parameters of the domain. The main computational operations in the multigrid
cycle are smoothing (usually an iteration of the Gauss-Seidel or SOR method)
and, to a lesser extent, restriction (fine-to-coarse grid conversion by averaging)
and prolongation (coarse-to-fine conversion by interpolation).
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4.1 Smoothers for Anisotropic Grids

The multigrid is a very efficient method, its convergence does not depend on the
problem size. However, it does not perfectly work on anisotropic grids (with cells
that have a high aspect ratio). The reason is that the typically used smoothing
procedure (Gauss-Seidel or SOR) effectively suppresses error components only
along the shortest cell dimension. In the considered problem, the cell aspect ratio
reaches 15:1. Because of this, the traditional approach leads to extremely slow
convergence (up to 300 iterations against a typical value of the order of 10).

There are several approaches to resolve this problem. The most straight-
forward method is semi-coarsening [6]. However, after applying this procedure,
the grid becomes non-structured, and the overall method becomes very complex
and numerically less efficient. Another method is based on the use of incomplete
matrix factorization as a smoother [14], which improves the performance and
convergence of the multigrid. Other approaches originate on building a more
robust smoother that is not sensitive to grid anisotropy [15]. They are based on
the replacement of point relaxation methods with plane relaxation ones.

If the grid cells are compressed in a single spatial direction, it becomes possi-
ble to apply the line Gauss-Seidel (line GS) or the line SOR smoothing procedure
in this direction. The idea is to solve the GS or SOR equation for the full line of
grid points, rather than separately for each grid point. As a result, the smooth-
ing of error components along the longest cell dimension is not suppressed. The
new procedure requires solving a tridiagonal linear system along a compressed
direction and, therefore, is slightly more expensive than the standard one.

It was found that the line smoother successfully solves the above problem, but
it is not efficient enough to smooth the error components in the remaining part
of the domain. To improve the convergence, this procedure was supplemented
by standard (point) Gauss-Seidel or SOR smoother, which costs less. The above
approach was applied for all levels of the multigrid algorithm.

To achieve good convergence, it is necessary to determine the optimal over-
relaxation parameters for SOR procedures. These values depend on the size and
configuration of the grid. For the first (finest) grid level, the optimal values are
about 1.3–1.4 for line smoothers and about 1.6–1.65 for point smoothers. For the
upper (coarser) levels, a plain GS is used as a line smoother, while the optimal
values for point smoothers are about 1.6–1.9.

The application of over-relaxation reduces the number of iterations from 40–
50 to 10–11 (for grid sizes up to 100 × 200 × 504 and relative accuracy 10−10).

4.2 Parallelization of Smoothers

An iteration of the Gauss-Seidel or SOR method looks like an implicit procedure:
(D + L)xk+1 = b− Uxk (here D, L and U are diagonal, lower and upper parts
of the matrix A in the equation Ax = b). To avoid dependences that prevent
parallelization, a multicolor grid partitioning is required. For the first level of the
grid with 7-point stencils, a two-color (red-black) scheme can be used. In this
scheme, the procedure is divided into two explicit steps: D(1)x

(1)
k+1 = b(1)−Ux

(2)
k
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and D(2)x
(2)
k+1 = b(2)−Lx

(1)
k+1 (superscripts (1) and (2) refer to red and black grid

points, respectively). After that, elements with the same color can be processed
independently, and, as a consequence, parallel splitting can be applied.

For line smoothers, red-black partitioning is applied to whole lines.
For the upper levels of the grid with 27-point stencils, a 4-color scheme is

used, also applied to whole lines.
Multicolor processing of the computational domain can be performed in sev-

eral passes according to the number of colors. However, each pass needs access
to all the elements of the data arrays. Since the performance of the algorithm
depends primarily on the memory access rate, this proportionally increases the
computational time.

To reduce the number of passes, it is necessary to somehow combine the
processing of different colors, while retaining the property of a multicolor scheme.
The idea of the combination technique is illustrated in Fig. 4. Shown here are
the cross-sections of the computational domain perpendicular to the compressed
direction (i.e. the direction where the line GS or SOR is applied). The proposed
idea is expressed in terms of rows and columns assuming that, in lexicographic
order, rows are processed first.

Fig. 4. Illustration of a multicolor smoothing procedure: alternating iterations of the
red-black pass (left, center); single pass of the 4-color case (right) (Color figure online)

For the red-black case, processing is performed in a single pass with alter-
nating iterations. At even iterations of the pass (Fig. 4, left), adjacent pairs of
red and black elements of even columns are calculated (first red, then black). At
odd iterations (Fig. 4, center), similar pairs of elements of odd columns with a
row number increased by one are processed (in the same order).

For the 4-color case, two passes are required (Fig. 4, right) – one pass for
even rows and another pass for odd ones. Within each pass, two sub-passed are
performed – one for each color in a row. The second sub-pass does not require
costly memory accesses, since most of the data is cached after the first sub-pass.

Multicolor partitioning allows to implement in the shown cross-section any
splitting of the computational domain required for parallelization.

The above technique ensures regular and efficient memory accesses as an
important requirement of computational efficiency. It is supplemented by the
vectorization of arithmetic operations (in frame of the AVX vector extension)
and by other optimizations.
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5 Performance Comparison

The convergence and performance of the new solvers were evaluated using matri-
ces and data taken from the typical runs of the FireStar3D code (Table 1). The
first matrix corresponds to a larger problem with the periodic boundary con-
ditions for the second spatial dimension. The second matrix was taken from a
smaller problem with non-periodic boundary conditions (see Fig. 1 for the geo-
metric illustration of this problem).

The tests were conducted on a cluster node built on two 16-core Xeon
Gold 6142 processors at the Mesocentre computer center (Marseille, France).
In addition to the new solvers described in the paper (Algebraic multigrid and
MILU-preconditioned Conjugate gradient), two variants of the Conjugate gra-
dient method were tested – one with explicit Jacobi preconditioner and another
one with simple diagonal scaling. Results are presented for parallel runs on 32
cores of a cluster node with the relative accuracy 10−10, time for solving a linear
system is shown in seconds.

Table 1. Comparison of convergence and performance of different solvers

Matrix size AMG CG MILU CG Jacobi CG diag

Iter. Time Iter. Time Iter. Time Iter. Time

100 × 200 × 504 10 0.440 48 0.788 267 3.15 541 5.02

100 × 248 × 224 11 0.293 46 0.398 317 2.06 638 3.22

It can be seen that the multigrid solver is about 11 times faster than the plain
Conjugate gradient (CG diag). Using the explicit Jacobi preconditioner makes
the CG method 1.5 times faster due to more optimal structure of the algorithm,
but does not change its convergence properties, so the number of iterations still
depends linearly on the largest dimension of the discretized problem.

Compared to the Conjugate gradient method with the MILU-preconditioner,
the multigrid solver is 36% faster for the problem with non-periodic boundary
conditions and 79% faster for the problem with a periodicity. The latter can be
explained by two properties of the CG MILU method – sensitivity to the size
of the problem (as opposed to the multigrid) and some decrease in convergence
due to explicit treatment of periodic boundary conditions.

Another advantage of the multigrid method is better scalability. In particu-
lar, the speedup for this method for 32 threads ranges from 15 to 17 (depending
on the size of the matrix), while for CG MILU it is at the level of 10–11. For
both methods, the speedup is limited by the memory bandwidth, but the sec-
ond method is more memory-bound than the first one. In addition, CG MILU
parallelization is limited to 16 threads.
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For these reasons, the multigrid method is more preferable for using in the
FireStar3D code. On the other hand, variants of the CG MILU method do not
require adjustment of the parameters of over-relaxation, as is necessary for the
multigrid. Therefore, it may happen to be more robust for some problems. Thus,
this method can still be applicable, at least, for running on computer systems
with a smaller number of processor cores.

There is another promising approach, Algebraic multigrid as a preconditioner
for the Conjugate gradient method. At the moment, it does not benefit when
solving linear systems in FireStar3D runs, unlike happens in other fluid dynam-
ics problems [7]. However, in the future this approach will be examined more
carefully in order to achieve faster convergence and lower computational costs.

6 Conclusion

In this paper, we presented two parallel methods for solving ill-conditioned linear
systems arising from the discretization of partial differential equations as applied
to the FireStar3D wildfire numerical simulation model.

The first of the presented methods is based on a parallel MILU-preconditio-
ned Conjugate gradient algorithm. This method has been extended to run on
any number of processor cores and to support periodic boundary conditions. The
second method is based on an Algebraic multigrid. It uses a new smoothing algo-
rithm that can work with highly compressed grids. This smoother is optimally
parallelized using multicolor grid partitioning and a special processing scheme.

New methods were used to build efficient parallel solvers for the FireStar3D
code. Both solvers were evaluated using data taken from the production runs
of the code. They demonstrate robustness and superiority over the widely used
variants of the Conjugate gradient method. In particular, the multigrid solver is
more than ten times faster than the diagonally scaled Conjugate gradient solver.

Of these two methods, the multigrid algorithm is faster and more scalable for
large number threads. On the user hand, it requires some tuning to achieve faster
convergence. For this reason, MILU-based methods remain attractive because of
their robustness and therefore can be used for running with fewer threads.
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