
Victor Malyshkin (Ed.)
LN

CS
 1

16
57

15th International Conference, PaCT 2019
Almaty, Kazakhstan, August 19–23, 2019
Proceedings

Parallel Computing
Technologies

Lecture Notes in Computer Science 11657

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Victor Malyshkin (Ed.)

Parallel Computing
Technologies
15th International Conference, PaCT 2019
Almaty, Kazakhstan, August 19–23, 2019
Proceedings

123

Editor
Victor Malyshkin
Institute of Computational Mathematics
and Mathematical Geophysics SB RAS
Novosibirsk State University,
Novosibirsk State Technical University
Novosibirsk, Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-25635-7 ISBN 978-3-030-25636-4 (eBook)
https://doi.org/10.1007/978-3-030-25636-4

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7874-3686
https://doi.org/10.1007/978-3-030-25636-4

Preface

The 15th International Conference on Parallel Computing Technologies (PaCT 2019)
was a four-day event held in Almaty, Kazakhstan. It was organized by the Institute of
Computational Mathematics and Mathematical Geophysics of the Russian Academy of
Sciences (Novosibirsk) in cooperation with Novosibirsk State University, Novosibirsk
State Technical University, al-Farabi Kazakh National University (Almaty,
Kazakhstan), and the University of International Business (Almaty).

Previous conferences of the PaCT series were held in various cities of Russia every
odd year beginning with PaCT 1991 that took place in Novosibirsk (Akademgorodok).
Since 1995, all the PaCT proceedings have been published by Springer in the LNCS
series.

The aim of the PaCT 2019 conference was to provide a forum for an exchange of
views among the international community of researchers in the field of development of
parallel computing technologies. The PaCT 2019 Program Committee selected papers
that contributed new knowledge in methods and tools for parallel solution of topical
large-scale problems. The papers selected for PaCT 2019:

– Present and study tools for parallel program development such as languages,
performance analyzers, automated performance tuners

– Examine and optimize the processes related to management of jobs, data and
computing resources at high-performance computing centers

– Look into ways to enhance productivity of those who use high-performance
computing resources to solve problems in their application domains

– Propose new models and algorithms in numerical analysis and data processing
specifically targeted at parallel computing architectures

– Theoretically study practically relevant properties of distributed systems

Authors from 17 countries submitted 72 papers. The submitted papers were
subjected to a single-blind reviewing process. The average number of reviews per
submitted paper was 2.6. The Program Committee selected 24 full papers and ten short
papers for presentation at the PaCT 2019.

Many thanks to our sponsors: the Ministry of Science and Higher Education of the
Russian Federation, Russian Academy of Sciences, JSC Kazakhtelecom, Microsoft,
and RSC Technologies.

August 2019 Victor Malyshkin

Organization

The PaCT 2019 was organized by the Institute of Computational Mathematics and
Mathematical Geophysics, Siberian Branch of Russian Academy of Sciences
(Novosibirsk, Russia) in cooperation with Novosibirsk State University, Novosibirsk
State Technical University, al-Farabi Kazakh National University (Almaty,
Kazakhstan), and the University of International Business (Almaty, Kazakhstan).

Organizing Committee

Conference Co-chairs

V. E. Malyshkin ICMMG SB RAS, NSU, NSTU, Novosibirsk, Russia
G. M. Mutanov KazNU named after al Farabi, Almaty, Kazakhstan
D. Zh. Akhmed-Zaki UIB, KazNU named after al Farabi, Almaty,

Kazakhstan

Conference Secretary

M. A. Gorodnichev ICMMG SB RAS, NSU, NSTU, Russia

Organizing Committee

S. M. Achasova ICMMG SB RAS, Russia
S. B. Arykov ICMMG SB RAS, NSTU, Russia
M. A. Gorodnichev ICMMG SB RAS, NSU, NSTU, Russia
T. S. Imankulov KazNU named after al Farabi, Kazakhstan
M. N. Kalimoldayev Institute of Information and Computational

Technologies, Almaty, Kazakhstan
S. E. Kireev ICMMG SB RAS, NSU, Russia
A. E. Kireeva ICMMG SB RAS, Russia
A. B. Kydyrbekuly KazNU named after al Farabi, Kazakhstan
D. V. Lebedev UIB, KazNU named after al Farabi, Kazakhstan
A. M. Mahmetova UIB, Kazakhstan
M. E. Mansurova KazNU named after al Farabi, Kazakhstan
V. P. Markova ICMMG SB RAS, NSU, NSTU, Russia
Yu. G. Medvedev ICMMG SB RAS, Russia
V. A. Perepelkin ICMMG SB RAS, NSU, Russia
T. S. Ramazanov KazNU named after al Farabi, Kazakhstan
G. A. Schukin ICMMG SB RAS, NSTU, Russia
V. S. Timofeev NSTU, Russia
U. A. Tukeyev KazNU named after al Farabi, Kazakhstan
D. B. Zhakebayev KazNU named after al Farabi, Kazakhstan

Program Committee

Victor Malyshkin (Co-chair) Novosibirsk State University, Novosibirsk State
Technical University, Russia

Darkhan Akhmed-Zaki
(Co-chair)

University of International Business, al-Farabi Kazakh
National University, Kazakhstan

Sergey Abramov Russian Academy of Sciences, Russia
Farhad Arbab Leiden University, The Netherlands
Jan Baetens Ghent University, Belgium
Stefania Bandini University of Milano-Bicocca, Italy
Thomas Casavant University of Iowa, USA
Pierpaolo Degano University of Pisa, Italy
Dominique Désérable National Institute for Applied Sciences, Rennes, France
Victor Gergel Lobachevsky State University of Nizhni Novgorod,

Russia
Bernard Goossens University of Perpignan, France
Sergei Gorlatch University of Münster, Germany
Yuri G. Karpov St.Petersburg State Polytechnic University, Russia
Alexey Lastovetsky University College Dublin, Ireland
Jie Li University of Tsukuba, Japan
Thomas Ludwig University of Hamburg, and German Climate

Computing Center, Germany
Giancarlo Mauri University of Milano-Bicocca, Italy
Igor Menshov Russian Academy of Sciences, Russia
Nikolay Mirenkov University of Aizu, Japan
Marcin Paprzycki Polish Academy of Sciences, Poland
Dana Petcu West University of Timisoara, Romania
Viktor Prasanna University of Southern California, USA
Michel Raynal Research Institute in Computer Science

and Random Systems, Rennes, France
Bernard Roux National Center for Scientific Research, France
Uwe Schwiegelshohn Technical University of Dortmund, Germany
Waleed W. Smari Ball Aerospace & Technologies Corp., Ohio, USA
Victor Toporkov National Research University Moscow Power

Engineering Institute, Russia
Carsten Trinitis University of Bedfordshire, UK and Technical

University of Munich, Germany
Roman Wyrzykowski Czestochowa University of Technology, Poland

viii Organization

Additional Reviewers

Svetlana Achasova
Christian Beecks
Florian Fey
Maxim Gorodnichev
Sergey Kireev
Mikhail Marchenko
Yuri Medvedev
Vladislav Perepelkin

Anastasia Perepelkina
Ari Rasch
Georgy Schukin
Richard Schulze
Aleksey Snytnikov
Oleg Sukhoroslov
Juri Tomak

Sponsoring Institutions

Ministry of Education and Science of the Russian Federation
Russian Academy of Sciences
JSC Kazakhtelecom
Microsoft
RSC Technologies

Organization ix

Contents

Programming Languages and Execution Environments

Automated Construction of High Performance Distributed Programs
in LuNA System. 3

Darkhan Akhmed-Zaki, Danil Lebedev, Victor Malyshkin,
and Vladislav Perepelkin

LuNA-ICLU Compiler for Automated Generation of Iterative
Fragmented Programs . 10

Nikolay Belyaev and Sergey Kireev

Objects of Alternative Set Theory in Set@l Programming Language 18
Ilya I. Levin, Alexey I. Dordopulo, Ivan V. Pisarenko,
and Andrey K. Melnikov

Mathematical Abstraction in a Simple Programming Tool for Parallel
Embedded Systems . 32

Fritz Mayer-Lindenberg

Improving the Accuracy of Energy Predictive Models for Multicore CPUs
Using Additivity of Performance Monitoring Counters 51

Arsalan Shahid, Muhammad Fahad, Ravi Reddy Manumachu,
and Alexey Lastovetsky

An Experimental Study of Data Transfer Strategies for Execution
of Scientific Workflows . 67

Oleg Sukhoroslov

Preference Based and Fair Resources Selection in Grid VOs 80
Victor Toporkov, Dmitry Yemelyanov, and Anna Toporkova

CAPE: A Checkpointing-Based Solution for OpenMP
on Distributed-Memory Architectures . 93

Van Long Tran, Éric Renault, and Viet Hai Ha

Compiler Generated Progress Estimation for OpenMP Programs 107
Peter Zangerl, Peter Thoman, and Thomas Fahringer

Methods and Tools for Parallel Solution of Large-Scale Problems

Analysis of Relationship Between SIMD-Processing Features Used
in NVIDIA GPUs and NEC SX-Aurora TSUBASA Vector Processors 125

Ilya V. Afanasyev, Vadim V. Voevodin, Vladimir V. Voevodin,
Kazuhiko Komatsu, and Hiroaki Kobayashi

Efficient Parallel Solvers for the FireStar3D Wildfire Numerical
Simulation Model . 140

Oleg Bessonov and Sofiane Meradji

Optimizing a GPU-Parallelized Ant Colony Metaheuristic
by Parameter Tuning . 151

Andrey Borisenko and Sergei Gorlatch

Parallel Dimensionality Reduction for Multiextremal
Optimization Problems. 166

Victor Gergel, Vladimir Grishagin, and Ruslan Israfilov

Multiple-Precision Scaled Vector Addition on Graphics Processing Unit 179
Konstantin Isupov and Alexander Kuvaev

HydroBox3D: Parallel & Distributed Hydrodynamical Code for Numerical
Simulation of Supernova Ia . 187

Igor Kulikov, Igor Chernykh, Dmitry Karavaev, Evgeny Berendeev,
and Viktor Protasov

GPU Implementation of ConeTorre Algorithm for Fluid
Dynamics Simulation. 199

Vadim Levchenko, Andrey Zakirov, and Anastasia Perepelkina

GPU-Aware AMR on Octree-Based Grids . 214
Pavel Pavlukhin and Igor Menshov

Performance and Energy Efficiency of Algorithms Used to Analyze
Growing Synchrophasor Measurements . 221

Aleksandr Popov, Kirill Butin, Andrey Rodionov,
and Vladimir Berezovsky

A Comparison of MPI/OpenMP and Coarray Fortran for Digital Rock
Physics Application . 232

Galina Reshetova, Vladimir Cheverda, and Tatyana Khachkova

Computational Issues in Construction of 4-D Projective Spaces with Perfect
Access Patterns for Higher Primes. 245

Shreeniwas N. Sapre, Sachin B. Patkar, and Supratim Biswas

xii Contents

Data Processing

Dimensional Reduction Using Conditional Entropy for Incomplete
Information Systems . 263

Mustafa Mat Deris, Norhalina Senan, Zailani Abdullah, Rabiei Mamat,
and Bana Handaga

Data-Parallel Computational Model for Next Generation Sequencing
on Commodity Clusters . 273

Majid Hajibaba, Mohsen Sharifi, and Saeid Gorgin

Parallelization of Algorithms for Mining Data from Distributed Sources. 289
Ivan Kholod, Andrey Shorov, Maria Efimova, and Sergei Gorlatch

HaraliCU: GPU-Powered Haralick Feature Extraction on Medical Images
Exploiting the Full Dynamics of Gray-Scale Levels. 304

Leonardo Rundo, Andrea Tangherloni, Simone Galimberti,
Paolo Cazzaniga, Ramona Woitek, Evis Sala, Marco S. Nobile,
and Giancarlo Mauri

Cellular Automata

A Web-Based Platform for Interactive Parameter Study of Large-Scale
Lattice Gas Automata . 321

Maxim Gorodnichev and Yuri Medvedev

A Probabilistic Cellular Automata Rule Forming Domino Patterns 334
Rolf Hoffmann, Dominique Désérable, and Franciszek Seredyński

Synchronous Multi-particle Cellular Automaton Model of Diffusion
with Self-annihilation. 345

Anastasiya Kireeva, Karl K. Sabelfeld, and Sergey Kireev

Pseudorandom Number Generator Based on Totalistic
Cellular Automaton . 360

Miroslaw Szaban

Distributed Algorithms

An Adaptive Bully Algorithm for Leader Elections
in Distributed Systems . 373

Monir Abdullah, Ibrahim Al-Kohali, and Mohamed Othman

Affinity Replica Selection in Distributed Systems . 385
W. S. W. Awang, M. M. Deris, O. F. Rana, M. Zarina, and A. N. M. Rose

Contents xiii

Does the Operational Model Capture Partition Tolerance
in Distributed Systems? . 400

Grégoire Bonin, Achour Mostéfaoui, and Matthieu Perrin

Blockchain-Based Delegation of Rights in Distributed
Computing Environment . 408

Andrey Demichev, Alexander Kryukov, and Nikolai Prikhod’ko

Participant-Restricted Consensus in Asynchronous Crash-Prone Read/Write
Systems and Its Weakest Failure Detector . 419

Carole Delporte-Gallet, Hugues Fauconnier, and Michel Raynal

Capture on Grids and Tori with Different Numbers of Cops 431
Fabrizio Luccio and Linda Pagli

Author Index . 445

xiv Contents

Programming Languages and Execution
Environments

Automated Construction of High Performance
Distributed Programs in LuNA System

Darkhan Akhmed-Zaki1, Danil Lebedev1 , Victor Malyshkin2,3,4,
and Vladislav Perepelkin2,3(&)

1 Al-Farabi Kazakh National University, Almaty, Kazakhstan
2 Institute of Computational Mathematics

and Mathematical Geophysics SB RAS, Novosibirsk, Russia
perepelkin@ssd.sscc.ru

3 Novosibirsk State University, Novosibirsk, Russia
4 Novosibirsk State Technical University, Novosibirsk, Russia

Abstract. The paper concerns the problem of efficient distributed execution of
fragmented programs in LuNA system, which is a automated parallel programs
construction system. In LuNA an application algorithm is represented with a
high-level programming language, which makes the representation portable, but
also causes the complex problem of automatic construction of an efficient dis-
tributed program, which implements the algorithm on given hardware and data.
The concept of adding supplementary information (recommendations) is
employed to direct the process of program construction based on user knowl-
edge. With this approach the user does not have to program complex distributed
logic, while the system makes advantage of the user knowledge to optimize
program and its execution. Implementation of this concept within LuNA system
is concerned. In particular, a conventional compiler is employed to optimize the
generated code. Some performance tests are conducted to compare efficiency of
the approach with both previous LuNA release and reference hand-coded MPI
implementation performance.

Keywords: Automated parallel programs construction �
Fragmented programming technology � LuNA system

1 Introduction

Considerable constant growth of supercomputers’ capabilities during last decades is
accompanied with the increase of complexity of high performance computing hardware
usage. This, in turn, makes implementation of large-scale numerical models harder for
users of supercomputers. Efficient utilization of modern supercomputers’ resources
requires an application to be scalable and tunable to hardware configuration. In some
cases dynamic load balancing, co-processors support (GPU, FPGA, etc.), fault toler-
ance and other properties are required. Implementation of such properties is not easy
and requires specific knowledge and skills, different from what implementation of the
“numerical” part of the program requires.

© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 3–9, 2019.
https://doi.org/10.1007/978-3-030-25636-4_1

http://orcid.org/0000-0002-5186-6483
http://orcid.org/0000-0002-6998-4525
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_1

Especially this problem affects users, who develop new numerical models and
algorithms, and therefore they are unable to use ANSYS Fluent [1], NAMD [2] and
other highly-efficient software tools, optimized by skillful programmers. Strict per-
formance and memory constraints also make unusable most non-programmer friendly
mathematical software, such as MathWorks MATLAB [3], GNU OCTAVE [4] or
Wolfram Mathematica [5]. The only option to reduce complexity of efficient parallel
program development is to employ programming systems [6–11], which automate
many low-level error-prone routine jobs and provide higher level means, suitable for
various particular cases.

In Charm++ [6] computations are represented as a set of distributed communicating
objects called chares. The run-time environment is capable of serializing and redis-
tributing chares, scheduling their execution and performing other execution manage-
ment tasks in order to optimize program execution. The user is allowed to tune some
settings of the execution, including choice of dynamic load balancer. Charm++
achieves high efficiency while freeing the user from a number of complex tasks of
parallel programming. In PaRSEC [7] the application domain is limited to a dense
linear algebra algorithms class (and some other similar algorithms). In particular,
iterations with dynamic conditions are not supported. This and other constraints are
used to make particular systems algorithms and heuristics effective, which, in turn,
allows to achieve high performance within the application domain. Legion [8] system
follows a powerful approach to separately define computations and their execution
management as orthogonal parts of the application. With this approach the user is
responsible for programming resources distribution, computations scheduling and other
execution management tasks, but the means Legion provides allow doing it without the
risk of bringing errors into code. LuNA system [9] follows the similar approach, but
instead of obliging the user to do the management the system allows automated con-
struction of the management code. Many other systems exist and evolve to study
various computational models, system algorithms and heuristics and develop better
facilities of parallel programs construction automation [10, 11].

It can be stated, that big effort is put into development of such systems, although
much more work has to be done in order to widen their application domains and
improve quality of the automation performed.

This paper discusses the approach employed by LuNA system to achieve satis-
factory performance of constructed parallel programs. LuNA is a system of automated
construction of parallel programs, which implement large-scale numerical models for
supercomputers. The system is being developed in the Institute of Computational
Mathematics and Mathematical Geophysics, SB RAS.

The next sections present the fragmented programming technology approach upon
which LuNA system is based, the implementation of the approach in LuNA system and
some performance tests. The conclusion and future works section ends the paper.

4 D. Akhmed-Zaki et al.

2 The Fragmented Programming Technology Approach

In the fragmented programming technology an application algorithm is represented in a
hardware-independent form called fragmented algorithm. Fragmented algorithm
(FA) is basically a declarative specification, that defines two potentially infinite sets—a
set of computational fragments (CF) and a set of data fragments (DF), where each CF is
a side-effect free sequential subroutine invocation and each DF being an immutable
piece of data. For each CF two finite subsets of DFs are defined to be input and output
DFs correspondingly. The CF’s subroutine computes values of output DFs provided
values of input DFs are available in local memory. FA as an enumeration represen-
tation employs a number of operators, which describe DFs and CFs. The representation
is based on the definition of computational model [12], i.e. FA is a particular form of
computational model, in which exactly one algorithm is deductible.

Fragmented program (FP) is an FA with supplementary information called rec-
ommendations. While FA defines computations functionally (i.e. how DFs are com-
puted from other DFs), recommendations affect non-functional properties of the
computations, such as computational time, memory usage, network traffic, etc. For
example, a recommendation may force two DFs to share the same memory buffer
within different time spans in order to reduce memory usage, or a recommendation may
define data allocation strategy for a distributed array of DFs, etc.

FA and recommendations are orthogonal in sense that recommendation do not
affect the values computed, but only affect how FA entities (DFs and CFs) are mapped
into limited resources of a multicomputer in time. Different recommendations cause
execution of the same FA to be optimized for different hardware configuration and/or
optimization criteria (memory, time, network, etc.). There are two different kinds of
recommendations. The first one is informational recommendation, which formulates
properties of FA, which are hard to obtain automatically, for example estimated
computational complexity of different CFs or the structure of DFs. The second kind of
recommendations is prescriptive recommendation, which directs the execution in some
way, for example mapping of DFs to computing nodes or order of CFs execution.
Neither kind of recommendations is mandatory and even if recommendations are
supplied, they can be partially or completely ignored by the system.

Such an orthogonality is common for various programming systems [6–9], since it
is the basis, which allows a system to control execution. Let’s illustrate some differ-
ences in systems’ approaches on the example of objects (fragments, jobs, etc.) distri-
bution. In some systems, such as Charm++, the system distributes the objects using
system algorithms. In other systems, such as PaRSEC, the user specifies the distri-
bution without programming it, and the system implements it. In systems, such as
Legion the user needs to program the distribution using system API.

In LuNA a hybrid approach is employed. If no recommendations are supplied, the
system will decide on distribution using system algorithms. If informational recom-
mendations are supplied, a (probably) better distribution will be constructed based on
this additional knowledge. If prescriptive recommendations are given, then they will be
followed by the system. The prescriptive recommendations are least portable, they are
useful until the system is able to automatically construct satisfactory distribution. After

Automated Construction of High Performance Distributed Programs 5

that the prescriptive recommendations should be ignored. Informational recommen-
dations are useful in a longer term. They describe significant properties of FA, which
are hard to obtain automatically and are used to construct better distribution by
knowing the particular case and thus using better particular distribution construction
algorithms and heuristics. Once system algorithms of static and dynamic analysis
become more powerful, informational recommendations become superfluous. At that
point pure FA is sufficient to construct an efficient parallel program.

According to this approach FA is made free of all non-functional decisions, which
include multiple assignment (data mutability), order of computations (except
informational dependencies), resources distribution, garbage collection and so on. In
Charm++, for instance, multiple assignment present, which is currently employed to
optimize performance, but later it will become an obstacle for existing Charm++
programs. Recommendations currently play critical role in achieving high performance,
because current knowledge in parallel programming automation is not enough to
efficiently execute such high performance representations as FA automatically. Rec-
ommendations cover the lack of such knowledge and allow to achieve satisfactory
performance of FA execution.

3 LuNA System

FP is described in two languages—LuNA and C++. LuNA is used to specify DFs and
CFs, as well as recommendations, while C++ is used to define sequential subroutines,
which are used to implement CFs in run time. C++ is a powerful conventional lan-
guage, supported by well-developed compilers and other tools, thus making single jobs
—CFs—highly efficient, leaving the system solely with problems of distributed
execution.

Older LuNA releases employed the semi-interpretation approach, where FP is
interpreted in run time by LuNA run-time system. With this approach the run-time
system interprets FP, constructs internal objects, which correspond to CFs and DFs,
distributes them to computing nodes, transfers input DFs to CFs and executes CFs once
all input DFs are available locally, etc. Current LuNA release employs conceptually the
same, but practically more efficient approach. With this approach each CF is considered
as a lightweight process, controlled by a program and being executed in a passive run-
time environment, accessible via API. Program for each CF is generated automatically
by LuNA compiler and usually comprises the following main steps:

– Migrate to another node (if needed), where CF will be executed,
– Request input DFs and wait for them to arrive,
– Perform execution on input DFs with production of output DFs,
– Spawn and initialize new CFs,
– Perform finalization actions.

Finalization actions may include deletion of DFs, storing computed DFs to current
or remote computing nodes and so on. Certain steps may vary depending on CF type
(single CF execution, subroutine invocation, for- or while- loop, if-then-else operator,
etc.), allowed in LuNA language. (Here and below CF’s program denotes the program,

6 D. Akhmed-Zaki et al.

generated for the CF by LuNA compiler, which should be differentiated from C++
sequential subroutines, which are provided by user as a part of FP.) CF’s program also
depends on compiler algorithms, recommendations, hardware configuration, etc.
Generally, all static decisions on how FP should perform are formulated as CFs’
programs. Note, that CFs’ programs are not rigid. For instance, the migration step is
statically generated, but exact node and route to it may be computed dynamically.
Generally, all dynamic decisions are left to run time.

Since CF’s programs are generated in C++, they are also optimized by conventional
C++ compiler, which takes care of many minor, but important optimizations, such as
static expressions evaluation, dead code elimination, call stack optimizations and all
other optimizations conventional compilers are good at.

While delegating serial code optimization (sequential CF’s implementations and
CF’s generated programs) to a well-developed C++ compiler, LuNA compiler and run-
time system focus on the distributed part of the execution. Based on recommendations,
decisions on CFs and DFs distribution to computing nodes, order of CFs execution,
garbage collection and others are made statically (in LuNA compiler) and/or dynam-
ically (in run-time system). Consideration of these algorithms is out of scope of the
paper and can be found in other publications on LuNA system.

4 Performance Evaluation

To investigate performance of generated programs in comparison with the previous
approach a number of tests was conducted. As an application a model 3D heat equation
solution in unit cube is considered. This application was studied in our previous paper
[13], where more details on the application can be found. The application data consists
of a 3D mesh, decomposed in three dimensions into subdomains. The computations are
performed iteratively, where each step is solved with pipelined Thomas algorithm [14].

The testing was conducted on MVS-10P supercomputer of the Joint Supercomputer
Centre of Russian Academy of Sciences [15]. It comprises 2�Xeon E5-2690 CPU-
based computing nodes with 64 GB RAM each. The following parameters, represen-
tative for such applications, were chosen. Mesh size: from 1003 to 10003 with step 100
(in every dimension), number of cores: from 23 (8) to 63 (216) with step 1 (in each
dimension).

The results are shown in Fig. 1. Here LI (LuNA-Interpreter) denotes the previous
LuNA release, where run-time interpretation approach is employed, while LC (LuNA-
Compiled) denotes the current approach, where CFs’ programs are generated. MPI
denotes the reference implementation, hand-coded using Message Passing Interface.

From Fig. 1 it can be seen, that current LuNA release produces a much more
efficient implementation, than the previous release, although reference MPI imple-
mentation outperforms them both. It also can be seen, that the most advantage LC over
LI can be observed for smaller fragments sizes, which is expected, since serial code
optimization mainly reduces overhead, which is proportional to number of fragments
(and not their sizes, for example). The reference MPI implementation is about 10 times

Automated Construction of High Performance Distributed Programs 7

faster, which means, that more optimizations are required. In particular, network
overhead, imposed by run-time system communications, has to be reduced. However,
such a slowdown may be tolerable, because, firstly, development of FP required less
skill and effort from the user, and, secondly, with system optimization existing FPs
become more efficient as a consequence without any need to change.

5 Conclusion

An approach to achieve efficient execution of parallel programs, defined in a high level
language, is considered, as well as its implementation in LuNA system for automated
parallel programs construction. Performance tests were conducted to compare current
LuNA performance with the previous release and reference hand-coded implementa-
tion of the same test. In the future both software optimization and development of
intelligent system algorithms are required to achieve better performance.

Fig. 1. Program execution time (in seconds). MPI- LI- and LC- are MPI-based, LuNA-
Interpreter and LuNA-Compiled implementations correspondingly. The number denotes the
number of cores. The X axis is the mesh size.

8 D. Akhmed-Zaki et al.

References

1. ANSYS Fluent Web Page. https://www.ansys.com/products/fluids/ansys-fluent. Accessed 01
Apr 2019

2. Phillips, J., et al.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–
1802 (2005)

3. MathWorks MATLAB official web-site. https://www.mathworks.com/products/matlab.html.
Accessed 01 Apr 2019

4. GNU Octave Web Site. https://www.gnu.org/software/octave/. Accessed 01 Apr 2019
5. WOLFRAM MATHEMATICA Web Site. http://www.wolfram.com/mathematica/. Acces-

sed 01 Apr 2019
6. Robson, M., Buch, R., Kale, L.: Runtime coordinated heterogeneous tasks in Charm++. In:

Proceedings of the Second International Workshop on Extreme Scale Programming Models
and Middleware (2016)

7. Wu, W., Bouteiller, A., Bosilca, G., Faverge, M., Dongarra, J.: Hierarchical DAG
scheduling for hybrid distributed systems. In: 29th IEEE International Parallel and
Distributed Processing Symposium (2014)

8. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: The International Conference on Supercomputing (SC
2012) (2012)

9. Malyshkin, V.E., Perepelkin, V.A.: LuNA fragmented programming system, main functions
and peculiarities of run-time subsystem. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol.
6873, pp. 53–61. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23178-0_5

10. Sterling, T., Anderson, M., Brodowicz, M.: A survey: runtime software systems for high
performance computing. Supercomput. Front. Innovations Int. J. 4(1), 48–68 (2017). https://
doi.org/10.14529/jsfi170103

11. Thoman, P., Dichev, K., Heller, T., et al.: A taxonomy of task-based parallel programming
technologies for high-performance computing. J. Supercomputing 74(4), 1422–1434 (2018).
https://doi.org/10.1007/s11227-018-2238-4

12. Valkovsky, V., Malyshkin, V.: Synthesis of Parallel Programs and Systems on the Basis of
Computational Models. Nauka, Novosibirak (1988)

13. Akhmed-Zaki, D., Lebedev, D., Perepelkin, V.: J. Supercomput. (2018). https://doi.org/10.
1007/s11227-018-2710-1

14. Sapronov, I., Bykov, A.: Parallel pipelined algorithm. Atom 2009, no. 44, pp. 24–25 (2009).
(in Russian)

15. Joint Supercomputing Centre of Russian Academy of Sciences Official Site. http://www.jscc.
ru/. Accessed 01 Apr 2019

Automated Construction of High Performance Distributed Programs 9

https://www.ansys.com/products/fluids/ansys-fluent
https://www.mathworks.com/products/matlab.html
https://www.gnu.org/software/octave/
http://www.wolfram.com/mathematica/
http://dx.doi.org/10.1007/978-3-642-23178-0_5
http://dx.doi.org/10.14529/jsfi170103
http://dx.doi.org/10.14529/jsfi170103
http://dx.doi.org/10.1007/s11227-018-2238-4
http://dx.doi.org/10.1007/s11227-018-2710-1
http://dx.doi.org/10.1007/s11227-018-2710-1
http://www.jscc.ru/
http://www.jscc.ru/

LuNA-ICLU Compiler for Automated
Generation of Iterative Fragmented

Programs

Nikolay Belyaev1,2 and Sergey Kireev1,2(B)

1 ICMMG SB RAS, Novosibirsk, Russia
kireev@ssd.sscc.ru

2 Novosibirsk State University, Novosibirsk, Russia

Abstract. The work focuses on the application of Fragmented Program-
ming approach to automated generation of a parallel programs for solving
applied numerical problems. A new parallel programming system LuNA-
ICLU applying this approach was introduced. The LuNA-ICLU compiler
translates a fragmented program of a particular type written in the LuNA
language to an MPI program with dynamic load balancing support. The
application algorithm representation and the system algorithms used in
the LuNA-ICLU system are described. Performance comparison results
show a speedup compared to the previous implementation of the LuNA
programming system.

Keywords: Fragmented programming technology · LuNA system ·
Parallel program generation · Dynamic load balancing

1 Introduction

The problem of efficient parallel implementation of numerical algorithms on
supercomputers remains relevant since the advent of supercomputers. Previously,
low-level programming of processes or threads with different memory models
was mainly used [1]. In recent decades, the growing diversity and complexity of
computing architectures and the need to raise the level of programming have
made automation of solving system parallel programming problems increasingly
important. A number of parallel programming systems was developed in order to
simplify the development of parallel programs. An overview of modern parallel
programming systems for supercomputers may be found in [2,3]. The following
features may characterize them.

– Separation of the application algorithm description from its implementation.
A special algorithm representation is usually developed to describe the appli-
cation algorithm [4–11]. The representation is supported by an API based
on an existing language [4–6] (or its extension [7]) or a DSL [8–11]. Efficient

Supported by the budget project of the ICMMG SB RAS No. 0315-2019-0007.

c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 10–17, 2019.
https://doi.org/10.1007/978-3-030-25636-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_2&domain=pdf
http://orcid.org/0000-0003-2217-8777
https://doi.org/10.1007/978-3-030-25636-4_2

LuNA-ICLU Compiler for Automated Generation 11

execution of the algorithm presented in this way is provided by special system
software, a compiler and/or a distributed runtime system.

– Fragmented representation of an algorithm. The complexity of the automatic
decomposition of the application algorithm in general case still makes it nec-
essary to perform the decomposition manually. Thus, the algorithm must be
represented in a fragmented form [4–11].

A common representation of an algorithm for many parallel programming sys-
tems is a set of tasks (fragments of computations) linked by data and control
dependencies, forming a graph. The system software provides parallel execu-
tion of tasks, while satisfying the dependencies. The task graph can be defined
statically [9,11], or be formed dynamically during the execution of the program
[5,6,10]. The static representation of the task graph has the advantage that
the entire structure of the graph is known before execution, which allows wider
scoped compile-time optimizations. Examples of systems with static task graph
representation are PaRSEC (DAGuE) [9,10] and LuNA [11]. Compared to PaR-
SEC, the LuNA language can represent a wider class of algorithms.

LuNA system is an implementation of Fragmented Programming technology
being developed at the ICMMG SB RAS in Novosibirsk, Russia. Program in
LuNA language (fragmented program) defines a potentially infinite data flow
graph, built of single-assignment variables called data fragments (DFs) and
single-execution operations called fragments of computation (CFs). Each DF
contains one or a portion of application variables. CFs compute some DFs from
others. There are two types of CFs in LuNA language: atomic and structured.
Atomic CFs are implemented by C/C++ subroutines, while structured CFs are
bipartite graphs of CFs and DFs. The LuNA language supports the following
structured CFs: conditional CFs (“if” operator), indexed sets of CFs (“for” and
“while” operators), and subprograms (“sub” operator). CFs’ or DFs’ names
may contain an arbitrary number of indices, that allow them to be interpreted
as arrays.

The current implementation of the LuNA runtime system is a distributed
interpreter of LuNA programs. In the process of execution it gradually unfolds
a compact notation of a potentially infinite task graph, performing dynamical
management of a distributed set of DFs and CFs. However, the use of universal
control algorithms in the implementation has led to the fact that the LuNA
runtime system has a considerable overhead, which leads to a poor performance
on real-world applications [12,13].

The paper presents another approach to the implementation of the LuNA
system based on the static translation of a LuNA program into an MPI pro-
gram. In this approach, the set of supported algorithms was narrowed to a class
of iterative algorithms over rectangular n-D arrays, where n is the dimension of
the array. The LuNA language was extended by additional high-level constructs
in order to ease the program analysis. The implementation of this approach
is a new LuNA-ICLU compiler. It provides construction of an MPI program
with dynamic load balancing support. Using the example of the particle-in-
cell method implementation, it is shown that the performance achieved by the

12 N. Belyaev and S. Kireev

LuNA-ICLU is better than that of LuNA system and is comparable to the per-
formance of a manually written MPI program.

2 LuNA-ICLU System

To overcome the problems affecting performance of the LuNA system, the LuNA-
ICLU system is developed. As described above, performance problems of LuNA
system are basically caused by using universal system algorithms of fragmented
program execution. The idea of the LuNA-ICLU system is to apply system
algorithms that are able to generate automatically a static MPI program from
strongly defined class of fragmented programs. So, the applied program devel-
oper does not have to solve the system parallel programming problems such as
developing of dynamic load balancing algorithms.

To generate a static MPI program from a given fragmented program it is
necessary to analyze information dependencies between CFs described in the
input fragmented program. Expressions of the LuNA language use CFs and
DFs, including the indexed ones, which are parts of fragmented arrays. Index
expressions can be complex and difficult to analyze. To overcome this problem
a limited class of input fragmented programs is defined. In addition, the LuNA
language was extended by certain high-level statements, which are described
below.

In the current implementation of the LuNA-ICLU compiler the class of sup-
ported algorithms is the following. The fragmented program can contain 1D or
2D fragmented data arrays (arrays of DFs) and iteration processes described via
“while” operator. DF values on current iteration are computed from a set of DF
values from one or more previous iterations. The dimensions of DF arrays are
strictly separated into temporal, over which iterations go, and spatial. Within
iteration each element of DF array may be computed by CF from the elements
of DF arrays with corresponding spatial dimension indices being the same. For
example, DF A[i] can be computed from B[i], but not from B[i+1] or B[i*2].
The sizes of the corresponding spatial dimensions of different arrays must also
coincide. The other types of dependencies should be supported in the language
and compiler by special operators (see below). Such a class of algorithms is
simple enough for compiler to analyze and contains solutions for many applied
problems. In this paper a fragmented program for the PIC method solver is
described. In future the class of supported input programs can be extended by
implementing certain analyzing and code generating modules for compiler.

3 LuNA Language Extension

In order to overcome the problems of the fragmented program static analysis,
the LuNA language has been extended by new syntactic constructions.

– The “DFArray” statement defines an array of DFs (its structure and sizes)
that should be distributed among the nodes of multicomputer.

LuNA-ICLU Compiler for Automated Generation 13

– Among the dimensions of the DF arrays, “spatial” and “temporal” dimensions
are clearly distinguished. A “spatial” dimension is denoted by the symbols
“[” and “]” and defines a set of DFs that correspond to the same iteration of
the iterative process. A “temporal” dimension is denoted by the symbols “(”
and “)” and defines different iterations of the iterative process.

– Data dependencies between DF array elements on different iterations of
“while” loop are specified explicitly in a loop header using expressions such
as: <A(i-1), A(i) --> A(i+1)>.

– The “borders exchange” and “reduce” operators define frequently met tem-
plates of structured CFs over arrays of DFs in order to simplify the process
of information dependencies analysis and to apply a special optimized imple-
mentation in a target program.

– The “dynamic” statement marks a set of CFs in the iteration body that may
cause a load disbalance.

4 System Algorithms in LuNA-ICLU System

4.1 Control-Building Algorithm

Since the idea of the LuNA-ICLU system is to generate a static MPI-C++
program from a fragmented program written in LuNA-ICLU language, there is
a necessity to design an algorithm that take a fragmented program as input and
convert it to a fragmented program with defined control, i.e. it should define a
partial order relation on a set of CFs.

In this paper, the bulk synchronous parallel (BSP) model for the target MPI
program was considered. Thus, a sequence of CF calls interleaved with communi-
cation stages should be built for each MPI process. CFs with spatially distributed
indices are distributed among MPI processes according to a distribution function
(see below), while the calls to the other CFs are duplicated in each MPI process.
The control-building algorithm follows the requirement that each CF must have
all its input DF values computed and stored in the memory of the corresponding
MPI process before it can be executed. The communication stages of the target
MPI program comprise operations such as DF boundaries exchange, reductions,
load balancing, etc.

4.2 Arrays Distribution Algorithm

To generate an MPI program from the fragmented program it is required to
generate a distribution of DFs by MPI processes. In the current implementation
only DFs that are elements of DF arrays are distributed. All other DFs are
duplicated in all MPI processes. Indexed CFs are distributed in accordance with
indexed DFs they produce.

In the target MPI program the distribution is defined by a mapping func-
tion that maps spatial coordinates of array elements to MPI processes. Com-
piler should generate this function and emit it to the target MPI program. The

14 N. Belyaev and S. Kireev

requirement to the distribution generation algorithm is that it should provide
the distribution of DFs that is as close as possible to a uniform. A naive algo-
rithm is applied in the LuNA-ICLU compiler. It considers DFs to be of the same
weight, so each DF array dimension is divided by a corresponding size of the
Cartesian MPI communicator.

4.3 Dynamic Load Balancing Algorithm

A “dynamic” statement is used by LuNA program developer to tell the com-
piler that a given subset of CFs can cause a load disbalance on multicomputer
nodes at runtime. Compiler should generate the call of load balancing algorithm
implementation from LuNA-ICLU runtime library or inline the implementation
of some dynamic load balancing algorithm to the output program in order to
execute such kind of CFs efficiently.

In the LuNA-ICLU system the dynamic load balancing algorithm is imple-
mented in a runtime library and the compiler inserts calls of corresponding
implementation to output program. The load balancing algorithm itself meets
the following requirements.

– The algorithm must overcome the load disbalance by changing the mapping
function (see Sect. 4.2). At load balancing stage, DFs from overloaded multi-
computer nodes are transferred to underloaded ones.

– The algorithm should be parameterized. This requirement is caused by a
necessity to tune the algorithm for different applied algorithms and supercom-
puters. Examples of such parameters are unbalance threshold and frequency
of load measurement. In the future versions of the system the execution profile
analysis is going to be applied in order to tune the parameters automatically.

In the current implementation a dynamic diffusion load balancing algorithm is
applied. In the description below we consider two DFs as neighbors if both DFs
are the components of the same DF array and one of their corresponding indices
differs by one. We also consider two processes as neighbors if these processes
store neighboring DFs. Each process of the target MPI program stores a set of
DFs’ values that are available locally and a list of each DF’s neighbors. The
algorithm itself is the following:

1. Each process checks if there is a necessity to call the load balancer (the current
iteration number of the iteration process is used).

2. Each process exchanges its current load value (which is basically a measured
time spent on execution of CFs specified by the “dynamic” block) with all its
neighboring processes.

3. Each process is searching for a neighbor with a maximum load difference
compared to itself.

4. If the maximum loads difference is greater than the minimum disbalance
threshold (which is basically a parameter of the algorithm), then the process
calculates the number of DFs to be sent to the found neighboring process and
selects certain DFs.

LuNA-ICLU Compiler for Automated Generation 15

5. Each process exchanges the information about selected DFs and their neigh-
bors with all neighboring processes.

6. Each process exchanges the values of selected DFs with neighboring processes.
7. Each process updates information about stored DFs and their neighbors.

The considered algorithm has several disadvantages. For example, restriction to
local communications may cause a load gradient within a load threshold between
neighboring processes, but with a large disbalance between distant processes. In
addition, the number of neighboring processes may increase to a large value,
which will increase the overhead of load balancing. However, as can be seen
from the next section, the algorithm can be applied to resolve the load disbalance
appeared when executing fragmented programs.

5 Performance Evaluation

To evaluate the performance of the program obtained by the LUNA-ICLU com-
piler a test problem of gravitating dust cloud simulation is considered [14]. The
simulation algorithm is based on the particle-in-cell method [15]. Parameters of
the simulation used in all test runs were the following: mesh size 160×160×100,
number of particles 500 000 000, number of time steps 800. Initial particles dis-
tribution was a ball with uniform density located in the center of the simulation
domain. The domain decomposition in two directions into 16×16 fragments was
applied, so that only several fragments in the center contain particles. Since the
main computational load is associated with particles, such problem statement
leads to a load imbalance.

Three implementations of the algorithm were developed, using MPI, LuNA
and LuNA-ICLU. Moreover, two versions of the programs generated by the
LuNA-ICLU compiler were compared: with load balancing and without it. The
parameters of the load balancer were the following: the balancing module was
invoked every fifth time step, the minimum disbalance threshold was set to 10%.
All tests were run using 16 nodes of the MVS-10P Tornado cluster (16 cores per
cluster node, 256 cores in total) [16]. The hand-coded MPI program and the MPI
program generated by LUNA-ICLU compiler were run using one MPI process
per core, whereas the LuNA program was run with one process per node and 16
working threads per process.

Figure 1 shows execution times obtained for different parallel implementations
of the considered application algorithm. LuNA-ICLU implementation without
load balancing outperforms the LuNA implementation by 10%, whereas with load
balancing enabled the execution time decrease is 33%. Hand-written and manu-
ally optimizes MPI program even without load balancing outperforms all the other
implementations, presumably due to more efficient memory management.

Figure 2 shows the dynamics of time spent by all cores at each time step
on useful calculations compared to the time spent on communication opera-
tions, including waiting, when running LuNA-ICLU implementations. Without
the load balancing enabled, calculations took up only 20% of the total time,
whereas load balancing increased this fraction to 45% (60% in the steady state
at the end of the simulation).

16 N. Belyaev and S. Kireev

409,9
371,7

273,0

189,1

0

50

100

150

200

250

300

350

400

450

LuNA LuNA-ICLU LuNA-ICLU +
load balancing

MPI

Ex
ec

u�
on

 �
m

e,
 m

in
ut

es

Fig. 1. Execution time for different parallel implementations

0
20
40
60
80

100
120
140
160

1 81 16
1

24
1

32
1

40
1

48
1

56
1

64
1

72
1

St
ep

 �
m

e,
 m

in
ut

es

Time steps

LuNA-ICLU

Wait

Load

0
20
40
60
80

100
120
140
160

1 81 16
1

24
1

32
1

40
1

48
1

56
1

64
1

72
1

St
ep

 �
m

e,
 m

in
ut

es

Time steps

LuNA-ICLU + load balancing

Wait

Load

)b()a(

Fig. 2. Dynamics of time spent by all cores at each time step on calculations (Load)
and communication operations, including waiting (Wait): LuNA-ICLU implementation
without load balancing (a), LuNA-ICLU implementation with load balancing (b)

6 Conclusion

The paper takes a step towards improving the performance of fragmented pro-
grams. The problems of the previously developed LuNA system were considered
and the prototype of LuNA-ICLU compiler was presented. The results of the
performance evaluation are given. It was demonstrated that the performance of
LuNA-ICLU system obtained on a PIC method implementation is better than
that of the LuNA system and close to the performance of the manually writ-
ten MPI program. The dynamic load balancing algorithm in the automatically
generated MPI program provides a speedup of 1.3 times on the considered prob-
lem. The developed fragmented program compiler can be used to automatically
generate efficient parallel programs from fragmented programs. In the future,
compiler modules can be improved, giving the compiler the ability to support
a more complex class of fragmented programs and generate more efficient MPI
programs.

LuNA-ICLU Compiler for Automated Generation 17

References

1. Kessler, C., Keller, J.: Models for parallel computing: review and perspectives.
PARS Mitt. 24, 13–29 (2007)

2. Sterling, T., Anderson, M., Brodowicz, M.: A survey: runtime software systems for
high performance computing. Supercomput. Front. Innovations: Int. J. 4(1), 48–68
(2017). https://doi.org/10.14529/jsfi170103

3. Thoman, P., Dichev, K., Heller, T., et al.: A taxonomy of task-based parallel pro-
gramming technologies for high-performance computing. J. Supercomput. 74(4),
1422–1434 (2018). https://doi.org/10.1007/s11227-018-2238-4

4. Legion Programming System. http://legion.stanford.edu. Accessed 23 May 2019
5. HPX - High Performance ParalleX. http://stellar-group.org/libraries/hpx.

Accessed 23 May 2019
6. Mattson, T.G., et al.: The open community runtime: a runtime system for extreme

scale computing. In: 2016 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–7 (2016). https://doi.org/10.1109/HPEC.2016.7761580

7. Charm++. http://charm.cs.illinois.edu/research/charm. Accessed 23 May 2019
8. Regent: a Language for Implicit Dataflow Parallelism. http://regent-lang.org.

Accessed 23 May 2019
9. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra,

J.: DAGuE: a generic distributed DAG engine for high performance computing.
In: 2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and Ph.d Forum, Shanghai, pp. 1151–1158 (2011). https://doi.org/10.
1109/IPDPS.2011.281

10. PaRSEC - Parallel Runtime Scheduling and Execution Controller. http://icl.utk.
edu/parsec. Accessed 23 May 2019

11. Malyshkin, V.E., Perepelkin, V.A.: LuNA fragmented programming system, main
functions and peculiarities of run-time subsystem. In: Malyshkin, V. (ed.) PaCT
2011. LNCS, vol. 6873, pp. 53–61. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23178-0 5

12. Akhmed-Zaki, D., Lebedev, D., Perepelkin, V.: Implementation of a three dimen-
sional three-phase fluid flow (“Oil-Water-Gas”) numerical model in LuNA frag-
mented programming system. J. Supercomput. 73(2), 624–630 (2017). https://
doi.org/10.1007/s11227-016-1780-1

13. Alias, N., Kireev, S.: Fragmentation of IADE method using LuNA system. In:
Malyshkin, V. (ed.) PaCT 2017. LNCS, vol. 10421, pp. 85–93. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-62932-2 7

14. Kireev, S.: A parallel 3D code for simulation of self-gravitating gas-dust systems.
In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 406–413. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-03275-2 40

15. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. IOP Pub-
lishing, Bristol (1988)

16. MVS-10P cluster, JSCC RAS. http://www.jscc.ru. Accessed 23 May 2019

https://doi.org/10.14529/jsfi170103
https://doi.org/10.1007/s11227-018-2238-4
http://legion.stanford.edu
http://stellar-group.org/libraries/hpx
https://doi.org/10.1109/HPEC.2016.7761580
http://charm.cs.illinois.edu/research/charm
http://regent-lang.org
https://doi.org/10.1109/IPDPS.2011.281
https://doi.org/10.1109/IPDPS.2011.281
http://icl.utk.edu/parsec
http://icl.utk.edu/parsec
https://doi.org/10.1007/978-3-642-23178-0_5
https://doi.org/10.1007/978-3-642-23178-0_5
https://doi.org/10.1007/s11227-016-1780-1
https://doi.org/10.1007/s11227-016-1780-1
https://doi.org/10.1007/978-3-319-62932-2_7
https://doi.org/10.1007/978-3-642-03275-2_40
http://www.jscc.ru

Objects of Alternative Set Theory in Set@l
Programming Language

Ilya I. Levin1, Alexey I. Dordopulo2(&), Ivan V. Pisarenko2,
and Andrey K. Melnikov3

1 Southern Federal University, Academy for Engineering and Technology,
Institute of Computer Technologies and Information Security, Taganrog, Russia

iilevin@sfedu.ru
2 Supercomputers and Neurocomputers Research Center, Taganrog, Russia

{dordopulo,pisarenko}@superevm.ru
3 “InformInvestGroup” CJSC, Moscow, Russia

ak@iigroup.ru

Abstract. Software porting between high-performance computer systems with
different architectures requires a major code revision due to the architectural
limitation of available programming languages. To solve the problem, we have
proposed an architecture-independent Set@l programming language based on the
principles of set-theoretic codeview and aspect-oriented programming. In Set@l,
a program consists of a source code, which describes an information graph of a
computational problem, and aspects, which adapt an algorithm to the architecture
and configuration of a computer system. If an algorithm remains unchanged
during its architectural adaptation, calculations and their parallelizing are
described within the Cantor-Bolzano set theory. In the case of algorithm modi-
fication, some collections are indefinite, and we can not treat them as traditional
sets with sharply defined elements. To describe indefinite objects, Set@l applies
the alternative set theory developed by P. Vopenka. If collection has indefinite
type and structure at some level of abstraction, it belongs to a “class” type. In
contrast to a class, the indefiniteness of a semiset is an essential and inalienable
attribute. The application of classes, sets and semisets allows to describe various
methods of the algorithm implementation and parallelizing as an entire Set@l
program. In this paper the Jacobi algorithm for the solution of linear equation
systems is considered as an example of the utilization of classes and semisets.

Keywords: Architecture-independent programming �
Set@l programming language � Alternative set theory �
Aspect-oriented paradigm

1 Introduction

Nowadays the porting of parallel applications between high-performance computer
systems with different architectures implies the development of a new code due to the
architectural limitations of available programming languages and lack of efficient
methods and tools for architecture-independent description of computational algo-
rithms. Existing approaches to architecture-independent parallel programming have

© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 18–31, 2019.
https://doi.org/10.1007/978-3-030-25636-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_3

some significant shortcomings: they are based on the specialized translation algorithms
(e.g. the Pifagor language of functional programming [1]) or on the fixed parallelization
model (e.g. the OpenCL (Open Computing Language) standard [2]). To solve the
problem we have proposed an advanced Set@l language of architecture-independent
programming [3, 4]. It develops the basic principles of the high-level COLAMO
(Common Oriented Language for Architecture of Multi Objects) programming lan-
guage and set-theory-based SETL (SET Language) programming language which have
the following disadvantages. COLAMO [5–7] is oriented only to the structural and
procedural organization of computing. Traditional set-theoretical programming lan-
guages such as SETL, SETL2 and SETLX [8–10] lack the flexibility of the object- and
aspect-oriented approaches, do not use indefinite collections and are not aimed at the
description of parallel calculations.

In contrast to the aforementioned programming languages, Set@l classifies col-
lections by parallelism, definiteness and other criteria, including every user’s attributes.
Furthermore, the Set@l language is based on the paradigm of aspect-oriented pro-
gramming [11–14]. According to the paradigm, a typical program consists of a source
code, which represents an algorithm in the architecture-independent form, and aspects,
which specify the features of its implementation on computer system with certain
architecture and configuration.

The source code in the Set@l language describes the information graph of a
computational problem in terms of sets and relations between them. Architectural
independence of the source code is determined by the indefiniteness of collections’
types and of their partitions into subsets. The system of aspects specifies the variations
of collections’ decomposition, completes and redefines their attributes, and adapts an
algorithm to the architecture and configuration of a computer system.

The parallelism of elements is one of the essential classification criteria for col-
lections in the Set@l programming language. The language allows to combine col-
lections with various partitions and types of parallelism in order to describe different
methods of the algorithm parallelizing.

If aspects do not modify an algorithm during its architectural adaptation, the
solution of a computational problem can be described within the Cantor-Bolzano set
theory [15] (see example in paper [3]). However, the functionality of aspects is not
limited to the parallelization of algorithms. In some cases, it is reasonable to modify an
algorithm according to the architectural features of the computer system used for
calculations. Then some collections are indefinite and are not sets; so, it is impossible to
describe them using the concepts of the Cantor-Bolzano set theory. Another example of
the blurred sets phenomena was demonstrated in the paper [3], where we introduced a
special type imp denoting the indefiniteness of collections by parallelism.

The architecture-independent Set@l programming language describes various
implementations of an algorithm in a unified aspect-oriented program. For this purpose
we have introduced the classification of collections by the definiteness of their elements
[3]. In the Set@l language indefinite collections are described by the special mathe-
matical objects (classes and semisets). The concepts of a class and semiset were pro-
posed by Vopenka within the alternative set theory [16–19]. In this paper we consider
the application features of the alternative set theory objects in the Set@l language. To
illustrate the aforementioned features, we have chosen the algorithm for the solution of

Objects of Alternative Set Theory in Set@l Programming Language 19

the system of linear algebraic equations (SLAE) by the Jacobi iterative method [20]. As
we will discuss in the forthcoming, it is reasonable to modify the algorithm for com-
puter systems with the reconfigurable architecture [21].

2 Approaches to Implementation of Jacobi Algorithm
and Their Set-Theoretical Description

There are two basic approaches to the computer-aided solution of a SLAE by the Jacobi
iterative method. The first one is shown in Fig. 1a and assumes the verification of a
termination condition during each iteration of computing. Figure 1b demonstrates the
second approach, which implies one verification after several computational iterations.

In the case shown in Fig. 1a, each iteration of the Jacobi algorithm for the SLAE
solution contains the following operations:

• the calculation of the column-vector of unknown variables (block C);
• the verification of the termination condition (block V) given by errðkÞ� d, where

err is the residual; k is the number of iteration; d is the fixed value of tolerance.

If the condition is true, the control device transfers data via the untapped blocks
C and V and saves the result into a specially allocated area of distributed memory. This
variant of implementation completely corresponds to the mathematical description of
the Jacobi algorithm. In practice, the considered approach is efficient, but not for all
computational architectures. Each verification block V performs the resource-intensive
and time-consuming operation of err(k) calculation. The hardware resource required for
the implementation of V block is comparable with the C one, and time costs are
equivalent too.

Fig. 1. Approaches to the implementation of the Jacobi algorithm for the SLAE solution on
reconfigurable computer system: with verification during each iteration (a) and with one
verification after several computational iterations (b)

20 I. I. Levin et al.

For the increase in hardware usage efficiency and reduction of time costs, it is
reasonable to modify the Jacobi algorithm for the SLAE solution in case of the
reconfigurable architecture. This modification assumes single verification of the ter-
mination condition in a cadr (see Fig. 1b). In the case being discussed, a cadr is a set of
hardwarily implemented operations. These operations are united into an indivisible
computing structure, which performs the functional transformation of input data flows
into output ones [22]. If the condition is fulfilled before the operation of verification (in
iterations with numbers from ðp� 1Þ � niþ 1 to p � ni� 1), further iterations will not
worsen the calculation results. At the same time, the algorithm’s modification provides
the reduction of time costs: hardware resource freed from V blocks can be used for the
placement of additional C blocks. The quantity of C blocks in the cadr is defined by ni
parameter. It is worth noting that the both considered variants of the calculations’
organization are suitable for multiprocessor computer systems as well as for recon-
figurable ones.

The following paragraphs provide some important details on the set-theoretical
description of two implementation approaches for the Jacobi algorithm, which are
given in Fig. 1.

In the case of verification during each iteration (Fig. 1a), it is possible to detect the
number of the last iteration Im explicitly. In spite of the fact that Im is unknown in
advance, the set K of the algorithm iterations can be sharply defined by the termination
condition as follows:

K ¼ set k j k 2 N & k ¼ 1 or err k � 1ð Þ[dð Þð Þ; ð1Þ

where N is the collection of natural numbers; set attribute classifies a collection as a set.
In any case, 1-st and Im-th (when Im 6¼ 1) iterations belong to K, because the operation
of verification always follows the corresponding recalculation procedure. To describe
the information graph F of the Jacobi algorithm, we can assign the attributes of cal-
culation (C) and verification (V) to each element of K set:

F ¼ set k C;V½ �½ � j k 2 K
� �

; ð2Þ

where braces denotes the indefiniteness of collection’s type by parallelism. Taking
into account statements (1), (2) and decomposition into blocks for the parallelizing by
iterations, it is possible to represent K and F as follows:

K ¼ 1. . .ni½ �½ �; niþ 1. . .2 � ni½ �½ �; . . .; T � 1ð Þ � niþ 1. . . Im½ �½ �½ �½ �; ð3Þ

F ¼ 1 C;V½ �½ �. . .ni C;V½ �½ �
h ih i

; ðniþ 1Þ C;V½ �½ �. . .ð2 � niÞ C;V½ �½ �
h ih i

; . . .; ðT � 1Þ � niþ 1ð Þ C;V½ �½ �. . .I C;V½ �½ �
m

h ih ih ih i
; ð4Þ

where T is the number of the iteration block, in which condition err� d is fulfilled; ni is
the number of iterations in the completed block. According to the arguments given
above, the approach to the implementation of the Jacobi algorithm for the SLAE
solution with the verification of the termination condition during each iteration is
described within the classical Cantor-Bolzano set theory.

Objects of Alternative Set Theory in Set@l Programming Language 21

The implementation approach shown in Fig. 1b attracts the highest interest,
because its set-theoretical description requires the application of indefinite collections.
Within the Cantor-Bolzano set theory, only sets with clearly defined elements are
considered. Using this theory, we can describe only one special case K* corresponding
to the fulfillment of the termination condition at the iteration with T � ni number:

K� ¼ 1. . .ni½ �½ �; niþ 1. . .2 � ni½ �½ �; . . .; T � 1ð Þ � niþ 1. . .T � ni½ �½ �½ �½ �; ð5Þ

where T is the number of the last iteration block, and it is defined by stopping criterion
errðT � niÞ� d. Otherwise, sets K and K* describe different mathematical objects:
collection K* contains not only necessary but also excessive iterations (see Fig. 1b),
and it is impossible to specify the exact location of fulfillment point for termination
condition err� d. We can precisely detect that the condition is true at iteration T � ni
and is false at iteration ðT � 1Þ � ni. In contrast to the last element Im of set K, the last
element of K* indicates the boundary of the subset, to which the iteration of fulfillment
belongs. To keep the semantics of K definition and to provide the unified notation of
objects in all modules of aspect-oriented programs, we need new set-theoretical
methods and description aids, which go beyond the Cantor-Bolzano theory.

An alternative set theory proposed by Czech mathematician P. Vopenka is a field of
mathematics dealing with indefinite collections and their set-theoretical description.

According to the Vopenka’s theory, a set is a sharply defined and definite collection
of certain objects. It is characterized by identity and represented as an independent and
entire object [16]. For a set we always know exactly if one or another object belongs to
it. In fact, plenty of naturally organized collections are not sets, because their elements
are not clearly defined. The alternative set theory analyses the phenomenon of indef-
inite collections with the help of special mathematical objects (classes and semisets).

A class is specified in much the same way as a set, but it does not require the sharp
definition of the corresponding collection of objects [16]. However, for each element of
a class the belonging concept is considered in its traditional meaning, i.e. it is
impossible that the chosen object both belongs and does not belong to a certain class.
Since the class is indefinite it is not always feasible to detect precisely if the object
belongs to a collection or not. Analogously to a subset, the alternative set theory
introduces the concept of a subclass, which indicates the relation of inclusion between
multiple blurred collections. If a class is a subclass of some clearly defined set, then it is
a semiset [16]. The concept of a semiset is used for the description of cases, when an
indefinite collection is a subset of a definite set.

In the papers of P. Vopenka, the category of an indefiniteness (fundamental for the
notions of a class and a semiset) is closely connected with the horizon concept. A
horizon is a special virtual object; if we move closer to it, the indefiniteness of our view
appears. In contrast to clearly definite boundaries, the horizon does not have some fixed
position and can move on its own. Objects near the horizon are always indefinite;
approaching to the horizon increases the indefiniteness of their representation. Indefi-
niteness of a semiset and a class means that one or several horizons exist and limit our
view of the observed objects.

When we implement the Jacobi algorithm for the SLAE solution with one verifi-
cation in the cadr (see Fig. 1b), the collection of iterations K is a semiset, i.e. a class

22 I. I. Levin et al.

that has the subset relation K�K� with set K*. The iteration at which the termination
condition err� d becomes true represents a horizon. Due to the implementation fea-
tures of the algorithm, it is impossible to point out the horizon position precisely (see
Fig. 1b). Depending on various factors (e.g., initial approximation or matrix proper-
ties), the horizon can move and form different variants of collection K. In the case of
the condition fulfillment at iteration T � ni, the horizon transforms to a sharp boundary,
and semiset K becomes a definite set of operations, which coincides with set K*. In
general, the set difference of K* and K corresponds to the semiset of special iterations.
During these iterations, the condition err� d is true, but calculations are not terminated
because it is impossible to check the condition. The aforementioned semiset describes
beyond-the-horizon calculations, which are not necessary from the mathematical point
of view, but do not lead to the degradation of results. These calculations occur due to
the features of the considered approach to the Jacobi algorithm implementation.

In order to describe semiset K as a mathematical object, we have to declare superset
K* and assign the corresponding subset relation between collections:

K�
subðkÞ ¼ set k1. . .k2 j k1 ¼ ðk � 1Þ � niþ 1 & k2 ¼ k � nið Þ; ð6Þ

K� ¼ set K�
subðkÞ j k 2 N & k ¼ 1 or err k � 1ð Þ � nið Þ[dð Þ� �

; ð7Þ

smðKÞ � setðK�Þ; ð8Þ

where K�
subðkÞ is the k-th subset of K* corresponding to the k-th block of iterations; sm

attribute classifies the collection type as “semiset”. The graph F of the Jacobi method
implementation with one verification after ni computational iterations is described by
the following formula of the relation calculus:

F ¼ sm PðkÞ j k 2 K & mod k; nið Þ ¼ 0 ! P ¼ C;V½ �½ �ð Þ & . . .ð
. . . & mod k; nið Þ! ¼ 0 ! P ¼ C½ �½ �ð Þ; ð9Þ

where mod is the reminder of a division. It is worth noting that F contains the elements
of collection K and is a semiset too. Each element of F is supplied with the attribute of
calculation (C) or verification (V). Taking into account the partition into iteration
blocks, semisets K and F have the following form:

ð10Þ

ð11Þ

where ? designates the indefiniteness of collection caused by the presence of a horizon,
which does not allow to identify the number of the last required iteration exactly.
According to expressions (10) and (11), T-th subclasses of collections K and F are
semisets, and their union with sharply defined subsets of complete iteration blocks are
semisets too.

Objects of Alternative Set Theory in Set@l Programming Language 23

As we have discussed in paper [3], every collection in the architecture-independent
Set@l programming language have one of the following type attributes: a set (set), a
semiset (sm) or a class (cls). These attributes describe the definiteness of collections’
elements. “Set” and “semiset” types correspond to definite and indefinite collections,
respectively, and “class” type identifies collections with the type that can not be
specified explicitly. The application of classes provides the unification of objects’
names in all units of an aspect-oriented program in Set@l. For example, in the Jacobi
algorithm for the SLAE solution, iteration collection K and graph F can be sets (for-
mulas (1)–(4)) as well as semisets (expressions (6)–(11)). It depends on the approach to
the algorithm’s implementation, which is described in the aspect of processing method.
When we develop the source code of the program, the implementation details are still
unknown. Therefore, we can not define the type of collection K unambiguously, and it
is marked as a class.

To specify a collection as a class in the Set@l programming language, one has to
assign cls attribute to this collection and give possible variants of its typing in any
module of a program:

cls(<name of a class>);
typing(<name of a class>): <type 1> or <type 2> or … ;

A class is the most general and universal type of collections in Set@l. If it is
necessary to introduce a collection in some module of a program, but it is impossible to
explicitly define the type and structure of this collection on the current level of
abstraction, then the collection can be declared as a class and can be used in the
program analogously to a classical set. Owing to the extension of collection’s definition
in one of the aspects, the collection type and decomposition are concretized during the
program’s translation. In fact, the indefiniteness of collections by parallelism (denoted
by imp attribute [3] in the Set@l language) can be described with classes.

3 Description of Jacobi Algorithm in Set@l Programming
Language

Typing of collections by various criteria is one of the special features of the
architecture-independent Set@l programming language. In addition to the typing of
collections by parallelism and indefiniteness [3], programs can include every user’s
attributes declared by attribute keyword as follows:

attribute <name of attribute >(<collection or element>):
<description of attribute>;

end(<name of attribute>);

An attribute is assigned to a collection or an element. It defines the methods of their
processing by translator or specifies the relations between various objects of a program.
Like any other objects in the Set@l language, attributes can form collections with
appropriate types of parallelism and definiteness.

24 I. I. Levin et al.

For the algorithm of the SLAE solution by the Jacobi iterative method, it is rea-
sonable to declare the following attributes assigned to the elements of iterations’ col-
lection K:

• the attribute of calculation C connecting iteration number k 2 K with the set-
theoretical description of the information graph for the following basic computa-
tional operation of the Jacobi method:

xðkþ 1Þ
i ¼ 1

ai;i
� bi �

X
1� j� n; j 6¼i

ai;j � xðkÞj

 !
; i ¼ 1; 2; . . .; n; ð12Þ

where i, j are the indexes of row and column numbers; n is the size of SLAE; a is
the matrix of the SLAE coefficients; b is the right-hand side vector; x(k) is the vector
of unknown variables at k-th iteration;

• the attribute of verification V which sets up the correspondence between the iter-
ation number and collection describing the information graph of err(k) calculation,
further checking of condition errðkÞ� d and termination of computing in case of the
condition fulfillment. The residual is calculated as follows:

errðkÞ ¼ max xðkþ 1Þ
i � xðkÞi

��� ���� �
; i ¼ 1; 2; . . .; n: ð13Þ

In fact, attributes C and V describe the relation between iteration collection K and
set-theoretical representation F of the information graph for the Jacobi algorithm
decomposed into subsets by iterations.

Figure 2 shows the code fragment in the Set@l language that describes the attri-
butes of calculation C and verification V. A comment starts with a double slash symbol
“//”, and Set@l treats all the information after it on a line as a comment. The attributes
are assigned to the number of iteration k, where k is the element of iterations’ collection
K (see lines (1) and (7) in Fig. 2). The initial approximation is saved in a special set
x_init. Before the first iteration of the Jacobi algorithm, x_init is assigned to the first
subset of set x (line (2)). Symbol “*” means the entire selection of elements in a set or
subset. To form the conditional statement in line (2) we us the logical operation of
implication denoted by “–>”. The universal quantifier forall (lines 3–5) loops over
the collection of row numbers I. Collection J contains the numbers of columns in the
matrix of the SLAE coefficients. The summation of elements of J (line (4)) is described
in terms of the relation calculus as follows:

sum(<term of sum>|<predicate for summation index>).

In line (8), the maximum of the specific set is searched; this set is formed by the
differences between the corresponding elements of unknown vectors at (k + 1)-th and
k-th iterations. Line (9) describes the verification of the termination condition. If it is
true, the last approximation of unknown vector is saved in set x_res.

Objects of Alternative Set Theory in Set@l Programming Language 25

The fragment of the source code of the Jacobi algorithm for the SLAE solution in
Set@l is given in Fig. 3. In addition to this fragment, the source code contains the
description of C and V attributes (see Fig. 2).

Lines (1)–(4) in Fig. 3 declare the collections of rows (I) and columns (J) of matrix,
collection of iterations of the matrix processing (K) and collection F which represents
the information graph of the Jacobi algorithm in a set-theoretical manner. Collections
I and J of rows and columns are sets, because their elements are sharply defined by the
size of a coefficient matrix. According to the chosen approach to implementation,
collections K and F are sets or semisets. Therefore, in the source code we declare them
as classes. In lines (5)–(7), information graph F is described as a relation between the
triplet of sets (x_init, a, b) and set x_res, where x_res is the specially allocated set for
the saving of calculation results. Lines (8)–(10) declare the generalized algorithm F as a
union (union) of two subclasses (sub) CI and VI. These subclasses include the
numbers of the calculation and verification iterations with appropriate attributes C and
V (Fig. 2). In lines (8) and (9), the Cartesian product of collections is denoted by the
keyword prod.

Fig. 2. Declaration of the attributes of calculation (C) and verification (V) in the Set@l
programming language

Fig. 3. The fragment of the source code for the Jacobi algorithm in the Set@l programming
language

26 I. I. Levin et al.

The code fragment of the aspect of processing method for the Jacobi algorithm is
shown in Fig. 4. This aspect contains two main sections: the decomposition of sets
(set construction, line (1)–(5)) and description of approaches to the algorithm’s
implementation (implementation method, lines (6)–(19)). The approach to
implementation is declared by imp_method variable (line (7)). It can take two values:
‘oneC_oneV’ (the algorithm is implemented with the verification of the termination
condition during each iteration according to Fig. 1a) and ‘manyC_oneV’ (the algo-
rithm is implemented with one verification after several computational iterations (see
Fig. 1b)). With regard to the chosen implementation method, class of iterations K can
be a set or semiset (line (8)); corresponding branches of the program are described by
the case statement (lines (9) and (14)).

Lines (2) and (3) of the set construction section (Fig. 4) declare the sets of
matrix rows (I) and columns (J). These sets are used for the description of calculation
(C) and verification (V) attributes (see Fig. 2). Row set I is decomposed into N subsets
BL(i), and each subset includes s rows. Column set J is decomposed into M subsets BC
(j), and each subset includes c rows. As a results, I and J are given as follows:

I ¼ 1. . .s½ �½ �|fflfflffl{zfflfflffl}
BLð1Þ

; sþ 1. . .2 � s½ �½ �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
BLð2Þ

; . . .; N � 1ð Þ � sþ 1. . .N � s½ �½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
BLðNÞ

2
64

3
75

2
64

3
75; ð14Þ

Fig. 4. The aspect of processing method for the Jacobi algorithm in Set@l

Objects of Alternative Set Theory in Set@l Programming Language 27

J ¼ 1. . .c½ �½ �|fflfflffl{zfflfflffl}
BCð1Þ

; cþ 1. . .2 � c½ �½ �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
BCð2Þ

; . . .; M � 1ð Þ � cþ 1. . .M � c½ �½ �|ffl{zffl}
BCðMÞ

2
64

3
75

2
64

3
75: ð15Þ

Different variants of parallelization by rows, columns and cells are specified by
parameters s, c, N and M in the architectural aspect of the program [3]. The definiteness
of a collection and parallelism of its elements are independent typing criteria. There-
fore, the corresponding attributes (e.g., set and imp) form parallel-independent set
enclosed into curly braces ({set,imp}) in the program code.

In line (4) of the set construction section (see Fig. 4), set K* is declared. Its
decomposition corresponds to the expression (5) and describes the parallelization by
iterations typical for computer systems with the reconfigurable architecture. The subset
IT(k) of K* consists of ni iterations and corresponds to k-th iteration block. The amount
of subsets in K* is calculated with the help of the termination condition. The supple-
mentary set K* is necessary for the declaration of semiset K, which appears in the case
of implementation with one verification after several computational iterations (see
expressions (6)–(11) and Fig. 1b). In contrast to the semiset K, set K describes the
implementation variant characterized by the verification during each iteration (see
expressions (1)–(4) and Fig. 1a). It is worth noting that set K is also a subset of
collection K*.

The approach to the implementation of the Jacobi algorithm with the verification of
termination condition during every iteration (oneC_oneV, see Fig. 1a) is described by
lines (9)–(13) in Fig. 4. In line (10), the typing of class K is refined: in the case being
considered, it is a definite set (set). Line (11) forms the structure of set K using
previously declared set K*. For this purpose, only some iterations are selected from K*.
In these iterations, the termination condition is not fulfilled or is fulfilled for the first
time. In line (12), the attributes of calculation C and verification V are assigned to every
element of set K. The attributes form a parallel dependent set (conc) due to the
sequential execution of corresponding operations. Iteration set K is applied for the
declaration of collection F that describes the information graph of the Jacobi algorithm.
Therefore, F inherits the typing of K ({set,imp}) and decomposition into blocks by
iterations.

Lines (14)–(18) in Fig. 4 describe the implementation of the Jacobi algorithm for
SLAE solution with one verification of the termination condition after several com-
putational iterations (manyC_oneV, see Fig. 1b). In this case, class K is a semiset (line
(15)) and a subclass of sharply defined set K* (line (16)). K has the K*-like structure
that assumes parallelizing by iterations. Collection F contains the vertices of the
information graph and inherits the types ({sm,imp}) and decomposition of semiset
K (line (17)). Variable attribute P in the left side of relational expression (see line (17))
takes the following values:

• conc(C,V) or calculation and further verification of the termination condition;
• C or only calculation of unknown vector.

The value of P depends on the remainder (mod) of the division of iteration index k by ni.

28 I. I. Levin et al.

Figure 5 demonstrates the code fragment of the architectural aspect of the Set@l-
program for the SLAE solution by the Jacobi iterative method.

In the case of the reconfigurable architecture (RCS, left column in Fig. 5), the
processing by iterations is used: collection K is decomposed into subclasses, and each
subclass contains ni iterations. The following parameters of computer system’s con-
figuration are utilized during architectural adaptation:

• the available computational resource (R);
• the hardware costs for one iteration of calculation (Rc) and verification (Rv).

These parameters are declared in the special aspect for the configuration of com-
puter system.

In the case of the multiprocessor architecture (MP, right column in Fig. 5), the
processing by cells is used. The size of a cell depends on the amount of processors
q1 � q2. It is worth to note that the code being considered provides the implementation
with one verification after several computational iterations (Fig. 1b) on multiprocessor
computer systems. To choose this option, one should set integer value of ni, which
exceeds unity, and additional parallelizing by iterations will be performed during the
implementation of the algorithm.

Fig. 5. The code fragment of the architectural aspect for the Jacobi algorithm

Objects of Alternative Set Theory in Set@l Programming Language 29

4 Conclusions

In contrast to available architecture-specialized aids for the parallel programming of
high-performance computer systems, the Set@l language allows to describe a com-
putational algorithm and the methods of its modification and parallelizing as separate
modules (a source code and aspects) of a unified architecture-independent program.

The description of indefinite collection according to the alternative set theory of
P. Vopenka is one of the distinctive features of the Set@l programming language. In
addition to typing by parallelism, Set@l provides the classification of collections by the
definiteness of their elements. If the type and partition of a collection are not sharply
defined on the current level of abstraction, it is declared as a class and is used in code
analogously to traditional sets. The structure and typing of a class can be specified and
re-declared in other aspects of a program. In addition to classes, semisets are introduced
into Set@l. The indefiniteness is the essential characteristic of a semiset, and it can not
be eliminated in aspects of a program. Using classes, sets and semisets, one can
describe various implementation methods for algorithms in a unified aspect-oriented
Set@l-program. The proposed approach to the programming of high-performance
computer systems offers new possibilities in the development of architecture- and
resource-independent software.

References

1. Legalov, A.I.: Functional language for creation of architecture-independent parallel
programs. Comput. Technol. 10(1), 71–89 (2005). (in Russian)

2. OpenCL: The open standard for parallel programming of heterogeneous systems. https://
www.khronos.org/opencl/

3. Levin, I.I., Dordopulo, A.I., Pisarenko, I.V., Mel’nikov, A.K.: Approach to architecture-
independent programming of computer systems in aspect-oriented Set@l language. Izv.
SFedU. Eng. Sci. 3, 46–58 (2018). https://doi.org/10.23683/2311-3103-2018-3-46-58.
(in Russian)

4. Levin, I.I., Dordopulo, A.I., Mel’nikov, A.K., Pisarenko, I.V.: Aspect-oriented approach to
architecture-independent programming of computer systems. In: Proceedings of the 5th All-
Russia Conference on Supercomputer Technologies (SCT-2018), Izdatel’stvo YUFU,
Taganrog, vol. 1, pp. 181–183 (2018). (in Russian)

5. Kalyaev, I.A., Levin, I.I., Semernikov, E.A., Shmoilov, V.I.: Reconfigurable Multipipeline
Computing Structures. Nova Science Publishers, New York (2012)

6. Guzik, V.F., Kalyaev, I.A., Levin, I.I.: Reconfigurable Computer Systems. Izdatel’stvo
YUFU, Taganrog (2016). (in Russian)

7. Dordopulo, A.I., Levin, I.I., Kalyaev, I.A., Gudkov, V.A., Gulenok, A.A.: Programming of
hybrid computer systems in the programming language COLAMO. Izv. SFedU. Eng. Sc. 11,
39–54 (2016). https://doi.org/10.18522/2311-3103-2016-11-39-54. (in Russian)

8. Stroetmann, K., Herrmann, T.: SetlX – A Tutorial. Research Gate Website. https://www.
researchgate.net/publication/236174821_SetlX_-_A_Tutorial. Accessed 21 Jan 2019

9. Cantone, D., Omodeo, E., Policriti, A.: Set Theory for Computing: From Decision
Procedures to Declarative Programming with Sets. Springer-Verlag, New York (2001).
https://doi.org/10.1007/978-1-4757-3452-2

30 I. I. Levin et al.

https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
http://dx.doi.org/10.23683/2311-3103-2018-3-46-58
http://dx.doi.org/10.18522/2311-3103-2016-11-39-54
https://www.researchgate.net/publication/236174821_SetlX_-_A_Tutorial
https://www.researchgate.net/publication/236174821_SetlX_-_A_Tutorial
http://dx.doi.org/10.1007/978-1-4757-3452-2

10. Dewar, R.: SETL and the evolution of programming. In: Davis, M., Schonberg, E. (eds.)
From Linear Operators to Computational Biology, pp. 39–46. Springer, London (2013).
https://doi.org/10.1007/978-1-4471-4282-9_4

11. Dessi, M.: Spring 2.5 Aspect-Oriented Programming. Packt Publishing Ltd., Birmingham
(2009)

12. Kurdi, H.A.: Review on aspect oriented programming. Int. J. Adv. Comput. Sci. Appl. 4(9),
22–27 (2013)

13. Podorozhkin, D.Yu., Kogaj, A.R., Safonov, V.O.: Application of aspect-oriented program-
ming methods for development of software systems. J. Comput. Sci. Telecommun. Control
Syst. 126(3), 166–171 (2011)

14. Rebelo, H., Leavens, G.T.: Aspect-oriented programming reloaded. In: Proceedings of the
21st Brazilian Symposium on Programming Languages, SBLP 2017 (2017). Art. no. 10.
https://doi.org/10.1145/3125374

15. Hausdorff, F.: Set Theory. AMS Chelsea Publishing, Providence (2005)
16. Vopenka, P.: Alternative Set Theory: A New Look At Infinity. Izdatel’stvo Instituta

matematiki, Novosibirsk (2004). (in Russian)
17. Holmes, M.R., Forster, T., Libert, T.: Alternative set theories. In: Gabbay, D.M., Kanamori,

A., Woods, J. (eds.) Handbook of the History of Logic: Sets and Extensions in the Twentieth
Century, vol. 6, pp. 559–632. Elsevier (2012)

18. Gabrusenko, K.A.: Philosophical foundations of Georg Cantor and Petr Vopenka set
theories. Tomsk State Univ. J. 339, 32–25 (2010). (in Russian)

19. Vopenka, P.: The philosophical foundations of alternative set theory. Int. J. Gen. Syst. 20(1),
115–126 (1991)

20. Bahvalov, N.S., ZHidkov, N.P., Kobel’kov, G.M.: Numerical methods. BINOM. Labora-
toriya znanij, Moscow (2017). (in Russian)

21. Ebrahimi, A., Zandsalimy, M.: Evaluation of FPGA hardware as a new approach for
accelerating the numerical solution of CFD problems. IEEE Access 5, 9717–9727 (2017).
https://doi.org/10.1109/ACCESS.2017.2705434

22. Kalyaev, I.A, Levin, I.I., Semernikov, E.A., SHmojlov, V.I.: Reconfigurable Multipipeline
Computing Structures, 2nd edn. Izdatel’stvo YUNC RAN, Rostov-on-Don (2009). (in
Russian)

Objects of Alternative Set Theory in Set@l Programming Language 31

http://dx.doi.org/10.1007/978-1-4471-4282-9_4
http://dx.doi.org/10.1145/3125374
http://dx.doi.org/10.1109/ACCESS.2017.2705434

Mathematical Abstraction in a Simple
Programming Tool for Parallel Embedded

Systems

Fritz Mayer-Lindenberg(&)

Technical University of Hamburg, Hamburg, Germany
mayer-lindenberg@tuhh.de

Abstract. We explain the application of a mathematical abstraction to arrive at
a simple tool for a variety of parallel embedded systems. The intended target
systems are networks of processors used in numeric applications such as digital
signal processing and robotics. The processors can include mixes of simple
processors configured on an FPGA (field programmable gate array) operating on
various number codes. To cope with such hardware and to be able to implement
numeric computations with some ease, a new language, p-Nets, was needed and
supported by a compiler. Compilation builds on a netlist identifying the pro-
cessors available for the particular application. It also integrates facilities to
simulate entire many-threaded applications to analyze for the precision and the
specified timing. The main focus of the paper will be on the language design,
however, that firmly builds on mathematical considerations. The abstraction
chosen to deal with the various codes is to program on the basis of real numbers,
and to do so in terms of predefined operations on tuples. A separate step is then
needed to execute on some processor. To deal with errors, the number set is
enlarged to also contain ‘invalid’ data. Further simplification is through the
generous overloading of scalar operations to tuples e.g. used as complex signal
vectors. Operating on the reals also fits to high-precision embedded computing
or performing computations on one or several PCs. To these features, p-Nets
adds simple, non standard structures to handle parallelism and real time control.
Finally, there is a simple way to specify the target networks with enough detail
to allow for compilation and even modeling configurable, FPGA based com-
ponents in an original way. The paper concludes by a short presentation of an
advanced target and by a funny example program.

Keywords: Real computing � Tuple data � Substitutions � Processor networks �
Compilation

1 Introduction

The following exposition explains the design of a programming language and the related
selection of methods and paradigms. Some are standard, a few appear to be novel, e.g.
the transition from the abstract computation of the reals to the operations of the pro-
cessors on number codes, the simple type system with its capabilities to change the base
ring for vector and polynomial operations, and the compiled multi-threading based on a

© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 32–50, 2019.
https://doi.org/10.1007/978-3-030-25636-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_4

course grained overlay of the data flow. There has been a sustained effort to keep things
as simple as possible, using a simple syntax and avoiding unnecessary choices. It would
have been still simpler to compile for a single processor of a fixed type but it is not the
intended targets mentioned in the abstract that shall be restricted. For subsequent
exposition there is the difficulty that our language and the compiler, albeit simple, try to
be comprehensive such that a full description would have to touch many different
aspects. So we will need to focus on the most essential, non-standard ingredients, the
unified syntax for programs and data, but be short on details of the compilation and the
thread management, and the run time environment including details on the supported
FPGA processors and the hardware infrastructure they attach to.

There is the event of the SoC chips holding several standard processor cores and a
fairly complex FPGA part with enough resources to configure dozens of specialized
additional processors on it, and fast interfaces to expand them off chip. To fully access
their resources one has to work through a technical documentation of many thousands
of pages. For such a single chip it is mandatory to address heterogeneous networks, and
a head start through a simple tool is most desirable. The present work can be seen as a
practical investigation whether such head start is possible, with the by-product of an
entry level environment to parallel and distributed programming to try out the concepts.
Our paradigm to deal with FPGA programming for the intended applications is to build
on a family of separately defined FPGA processors [2] attached to predefined hardware
infrastructure, reducing it to defining or specifying a coarse grained network of pro-
cessors further programmed through software. It is not intended to use FPGA overlays
of similar processors as discussed in [22] but to use FPGA networks with application-
specific mixes of processors for different number types.

The language p-Nets has evolved since some years and only now attained kind of a
stable state. An early version has been described in [21]; a mix of simplifications (e.g.,
renouncing on an extra machine oriented data type) and functional extensions has been
applied since. p-Nets has a predecessor language ‘Fifth’ used more than 30 years ago
by engineers programming for small networks of the microprocessors of that time
including the Transputer [5]. It was hardware oriented and based on implementing
fairly efficient stack processors for every type of processor to be supported, thereby
abstracting from hardware details. Programs could be run and tested interactively. Even
today, one will hardly find tools for programming heterogeneous networks of pro-
cessors at the system level (as opposed to one-by-one) not bound to a particular
manufacturer – and small and simple. Therefore, the effort to design and implement a
concise language for the intended targets and applications on contemporary processors
and FPGA was accepted, taking up ideas from Fifth. The SoC with its external
interfaces can actually be considered as a modern counterpart of the Transputer.

Programming languages, so p-Nets are classified based on of the underlying pro-
gramming paradigms. In our understanding the main task of a programming language is
to formally describe finite computations composed of many elementary operations (e.g.,
‘+’ and ‘*’), such that programs can be processed to automatically control a digital
computer to actually perform the computation. In an abstract description the number of
operations need not be explicit or data independent in which case the programmer has to
care for it to be acceptable. In view of large applications, programs should be well-
structured and understandable for the human computer user and hide purely technical

Mathematical Abstraction in a Simple Programming Tool 33

detail. The existing imperative, functional and object oriented languages are of this kind
[9, 10]. In our case, the mathematical orientation suggests a functional view. The only
data to be handled in a program will be tuples of real numbers, i.e. tables of functions on
finite index sets. Then there are ‘program functions’ (algorithms composing real oper-
ations) that operate on the tuple entries. While several elements of functional languages
are used (e.g. the single assignment of data names), function tables and program
functions are well distinguished. Program functions are statically defined only and not a
type of data to be operated on. This distinction is crucial for being able to compile.
Operations on functions and evaluations of constant tuples defined through algorithms
are allowed at compile time. At the run time of a compiled program, fixed functions
transform variable tuple input to tuple output. Algorithms on tuples don’t need memory.
For an embedded system performing computing processes in real time, data must be
transported through time, however. To handle memory beyond distinguishing data
names from memory locations holding them, a notion of automaton is added used
borrowing some structural concepts of object oriented languages.

For embedded systems, the most common language is the imperative ‘C’ as
functional and object oriented languages cause overheads for the processing of
dynamic data structures. If the target contains several processors, they are usually
programmed separately. The object-oriented C++, could be (and has been) used to
define an abstract data type of real numbers, yet on top of types representing the
numbers in the different codes what we want to avoid. Software tools tend to become
complex when an operating system is required for the target, and libraries for time
control and communications. The Occam language is an example for a language
integrating synchronous communications. Several existing languages including C (e.g.
within Arduino), Occam and the more recent Python have been claimed by their
inventors and users to be simple languages. Our demands go further, and we need to
support other targets.

Besides its basic structure and syntax, also the lexicographic features determine the
appeal of a language, e.g. the way how to integrate comments, the keywords, and the
allowed characters. For the handling of comments, p-Nets take up Knuth’s idea of
‘literate programming’, interleaving the program with a textual software description
[15]. p-Nets programs break up into series of definitions each beginning by one of four
keywords only and having a well-defined end. All text lines not beginning by one of the
keywords skipped as comments. Only after detecting a starting keyword the compiler
switches on its textual analysis up to the end of the definition. With this feature, a
program text can look like a page in a textbook with some formula lines in between (the
program lines). Literate Programming has been promoted as and is believed to be a way
to arrive at more thoughtful programs with fewer errors. Another lexicographic feature is
to avoid of pseudo-natural key words such ‘begin’, ‘end’, ‘if’, and ‘else’. Finally, p-Nets
support the use of some Greek characters, subscript and superscript characters, and some
more, depending on a program editor capable of inputting and displaying UTF-8 codes.
More text processing features like page formatting and printing, formula editing and
more choices for the characters would be helpful. The p-Nets compiler defines ASCII
equivalents to the special characters and starts by replacing them by these equivalents
before further analysis. To adapt to an editor using more textual features, the expansion
into ASCII equivalents would have to be changed.

34 F. Mayer-Lindenberg

After these remarks we start by a discussion of the data handled by p-Nets, and the
operations selected for them. The next chapter discusses a technique of substitutions of
operations that is key to the execution of program functions on physical processors
using encoded data, and to extend the mathematical capabilities of the language. We
then turn to the functions, automata and processes, to parallelism, communications and
timing control, and to the mapping of processes to processors, and conclude on how to
implement p-Nets on the PC and other processors, and possible extensions.

2 Real Tuples with Invalid Entries

In this section we define the basic data and operations provided by the language, and a
small calculus on how to construct tuples and to address their entries with a slightly
non-standard notation. The choice of the reals as the basic data set to build on is
motivated as an abstraction of the multitude of number encodings for computers and at
the same time to clearly distinguish between a number and its various codes. Most
algorithms used on computers were developed in a mathematical context composing
real operations and functions and are not bound to particular number codes. We
postpone the question of whether and how to ‘implement’ real operations to support the
operation of the compiler and how to transition to the intended target processors
operating on fixed length codes. Real numbers are limits of sequences of rational ones,
and a computer can at best deliver rational approximations to certain reals within given
error bounds. They also provide the abstraction of being able to arbitrarily increase the
precision of finite computations. The complexity of real computation depending on the
allowed errors is a topic of current research [12, 13]. Mathematical software systems
supporting non-integer data typically provide a type of floating-point numbers, implicit
and non-parametric in the worst case, and not intended for embedded targets.

After focusing on the reals, we need two extensions to arrive at the p-Nets data sets.
The first is related to the processing of errors due to calling functions outside their
domains. It consists in adding a set of non-numbers to form the data set R = IR[
{nn’s}. For both numbers and non-numbers literals are provided. For numbers, they are
the usual decimal fixed and floating point literals like 14, 14.0, or 1.4�10^1 for the real
number 14. The formats of the alternative real literals don’t hint at particular ways to
encode the numbers; they do encode precision. Without the decimal point, the number
is supposed to be exact, otherwise its last digit is supposed to be rounded. Exact
rationals are input as quotients of integers, if needed. Non-numbers are input as strings.
The second extension is to the family of tuple sets Rn = {(x0, …, xn−1)|xi 2 R},
identifying R and R1. Tuples may thus have invalid entries. Tuple literals derive from
the number literals by listing component literals within a pair of brackets. We note that
tuples don’t store numbers like a variable does, but are the data that could be stored in a
linear array for reals. The Rn are the only data sets used in p-Nets; there are no pointers,
no Boolean values, and indexes are just special reals. Tuples always have specific sizes
to support static memory allocation and overloading by size.

Operations and functions map one or more input tuples of specific sizes to single
output tuples but need not be defined for all combinations of input values. If called
outside their domains, they are extended to deliver tuples of non-numbers. They also

Mathematical Abstraction in a Simple Programming Tool 35

extend to invalid input by then delivering invalid output as well. Their original domain
is the set of input tuples yielding a valid result. As a consequence, all functions defined
in a p-Nets program are defined for every input and must terminate after a finite number
of steps. Invalid data need not stop an application; applications to signal processing
often tolerate some invalid output. The invalid data in R can further be used to transport
information about the failure to deliver valid ones. When the numbers are eventually
encoded for a machine, the non-numbers have to be mapped to at least one ‘invalid’
code; otherwise the indication of a result to be invalid would be lost.

An n-tuple (xi)i 2 Rn is defined to be table of a function x:In!R, with In = {0,
…, n−1}. The natural order of In is used to list the table entries without their indexes.
As a first operation of tuples, the pair of brackets (..) is used to construct a tuple from a
list of numbers or other tuples by concatenating them, as already in the case of the tuple
literals. The tuples are ‘flat’ and do not include the information on how they were
concatenated. ((1, 2), (3, 4)) and (1, 2, 3, 4) are literals for the same tuple. The inverse
to concatenation, i.e. breaking a long tuple into parts is implicit only and occurs, when
a tuple x is named by a list of names for the sub tuples, ‘x ← a, b, c’. p-Nets functions
are called with their argument tuple in the form ‘f(x, y, z,…)’, i.e. concatenating the
arguments into a single tuple. In this case, the concatenation is formal only as the
function starts by de-concatenating its argument into the previous parts again, allowing
to check the number and sizes of the components. The function would also accept a
single, large input tuple defined otherwise. For a single input tuple the call reads ‘f(x)’
or, alternatively, ‘f x’, which is common in mathematics and as easy to understand.

There are a few more operations only concerned with accessing the components of
their tuple arguments:

x.i or xi (apply to index argument, instead of the common x[i]),
x.y (compose x,y as functions, y must be index valued),
x:m.i (apply n*m tuple x as a function In→Rm),
x:m.(i,j) or xij (double indexing for an n*m tuple x),
x:s:m.(i,j) (double indexing of an m valued n*s tuple, etc.).

The tuple x remains the same, 1D or 2D addressing just being different access
operations. The ‘.’ default is 1D indexing or using ‘:1.’. It can be changed to ‘:m.’ or
‘s:m.’ etc. when x is named. x:s:(i, j) would then become ‘x.(i, j)’, and x a function
Ir�Is!Rm. Tuple sizes are currently limited to 216. Larger tuples need to reside in
memory and can only be accessed by reading sub tuples from there.

The index sets for tuples are small compared to the value set R. Indexes are integers
typically computed from integer indexes but not from variable input data except for
interpolating from a table. The index ranges are defined at compile time, and index
computations are compositions with constants. In contrast, functions composed of
arithmetic operations and other predefined ones computing new tuple values for their
result typically have infinite domains and are applied to variable data, too. Tuple
operations often arise by performing the same scalar operation on every entry. The
tuple operation then eliminates a conventional loop and contributes to have shorter,
more abstract programs. p-Nets have the built-in feature to automatically extend every

36 F. Mayer-Lindenberg

function f this way to larger tuples. LISP e.g. uses an explicit operator for special cases
of this. If the arguments off are tuples of sizes r, s, t,…, then some or all can be replaced
by m-tuples of r, s, t…-tuples for the same m (i.e. using the same index set) to produce
an m-tuple of results, e.g.

f x, y:s, z:tð Þ ¼ ðf(x,y0; z0Þ; . . .; f(x,ym�1; zm�1ÞÞ:

The extension actually applies to the concatenation operator (..), and to the indexing
by a number to yield the indexing by a tuple of indexes. A function on m-tuples also
applies to m scalars and vice versa. Indexing is different for both versions, however,
and needs an extra selection if it is invisible.

The choice of the provided scalar operations is quite conventional, apart from
dealing with ideal real operations and their immediate extensions to vector operations:

+, – , *, /, %, // (int.divide), <,<=,<>,=,=>,>,nni(int.test) sqrt, ld, 2^, sin, cos, atan

i32, x16, x35, v144, f32, f64, g45 (rounding operations).

The inclusion of the roundings is a unique, important feature of p-Nets. The concept
was introduced in [1]. The roundings correspond to the supported number encodings.
They are defined as the compositions of their coding and decoding maps and share their
domains. ‘x16’, ‘i32’, ‘f32’, ‘f64’ are standard formats while ‘x35’, ‘v144’, ‘g45’ are
non-standard for FPGA-based processors. ‘v144’ is a floating point vector variant of the
‘x35’ fixed point coding that encodes tuples differently from the usual tuples of scalar
codes, using a common exponent for a vector of mantissas. As a rounding it operates
differently than just by components [2]. The encodings thus become individual opera-
tions instead of extra data types. More operations and thereby encodings can be added
without otherwise affecting the language. For the evaluation of constants at compile time
the compiler employs a virtual machine (VM) ‘implementing’ its real operations in such
a way that all needed roundings can be obtained from rounding the VM reals. As long as
no codes of arbitrary precision are to be supported on the processors the VM can still use
fixed word size codes for the individual operations. Computing constants, however, also
applies to tuple operations and evaluating functions (arbitrary finite compositions of
operations), and rounding errors will accumulate. Therefore the VM uses an encoding
that is significantly more precise than required just for rounding individual operations,
namely a double-double quad precision type [17, 18]. The methods in [20] can be
applied to determine whether a composite operation is faithfully rounded. Double
floating point codes can be attractive and supported on FPGA processors, too [21]. p-
Nets could make use of an arbitrary precision floating point library like [19] to select the
real operations of the VM to be of any desired precision to further extend its applications
to high performance high precision ones.

The choice of predefined tuple operations includes extensions of the scalar ones and
some more. Their selection determines the expressiveness of programs but must also
take care to cover the most common cases only to keep things simple:

Mathematical Abstraction in a Simple Programming Tool 37

+, –, * (std. vector sum and difference, product of functions),
sum, min, max, ||.|| (having single tuple arguments),
x y (dot product of n-tuples x,y, matrix*vector for x size n*m),
x:m y, x/\y (matrix*matrix, tensor product, vector/Clifford product),
x § y, x §* y (apply as polynomial function, 1-16 variables, multiply),
x ipl y (interpolate from table of samples, 1-16 variables),
x find y , order x (selected set operations).

The notation ‘x y’ is similar to applying a function writing ‘f x’. For scalars it
becomes the standard product, now written without the ‘*’ character. A few more
operations to solve linear and polynomial equations are under consideration. Sampling
and interpolating functions are complementary similarly to the coding and decoding of
numbers. The selection has been made after evaluating a number of benchmark
programs.

Applications usually add extra, composite operations. The next section explains,
how and how data types like complex numbers can be defined and used.

3 Functions, Substitutions, Encoded Execution

In this section, ‘function’ means ‘algorithm based on the predefined operations’ and
does not refer to the tuples as function tables. The first level of composing operations is
the expression. Expressions use infix notation for the arithmetic operations and prefix
function calls, and are right associative on the same priority level. The (..) brackets
override the infix priorities, thus reappear in another role. Expressions evaluate into
single result tuples and don’t give access to sub expressions. For such, and for adding
program control (branches), a structure of nested blocks of expressions is provides by
further extending the options of the (..) brackets. Not having to use different brackets
for program control and defining data tuples simplifies the language. The early LISP
also worked with a single pair of brackets. Brackets holding programs are only dis-
tinguished from data by holding constant expressions only evaluated at compile time
whereas variable expressions are evaluated only later to data, and on demand. The
options are

– define computed constants
(3+1/7)

– listing several expression to concatenate their results
(h+1, h–1)

– listing named sub expressions for referencing, not necessarily output
(a2 − 4 ←h h+1, h–1)

– using formal parameters to be able to compute with varying data
(←a a2 − 4 ←h h+1, h–1)

– naming a top-level bracket to be able to call it as a named function
fct abc (←a a2 − 4 ←h h+1, h–1)

38 F. Mayer-Lindenberg

– permit nested open branches to one of several closing brackets
(… expr0 … x < y ? … expr1 .) … expr2)

– indexing, end recursion, and recursive named functions (example in ch.6).

In all cases (except for the naming of a global constant or function), the (..)
structure can figure as a data operand within an expression. Data names including
formal parameters are valid within the (..) only, disallowing references to tuple values
therein. The use of formal parameters makes sense for unnamed sub blocks as the
automatic extension to tuples applies. The branching syntax is similar to the ‘x?y:z’ of
‘C’. If the condition (‘x<y’ in the example) holds, expr1 is computed and output at the
exit ‘.)’, otherwise expr2. The usual keywords for branches are thus replaced by ‘?’ and
‘.)’. There can be no mutual references to values of expressions in the different
branches. ‘?’ can also be used test for the result of an expression to be valid. Several
conditions can be listed and then stand in conjunction. Without a second branch the
block returns the tuple with all entries invalid if the ‘?’ condition fails, or becomes a
condition itself. Indexed blocks produce a long, concatenated result tuple. This last
option can also be used to define constant tuples, writing e.g. (12: 0) for an all zero 12-
tuple. A few more options exist for the process control blocks discussed in the next
section.

p-Nets provide an additional structure to the set of functions defined in a program
that is primarily intended as a simple substitute for data type definitions, and to
reducing the number of symbols through further overloading. A full data type definition
would define some particular data set and operations on it. In our case, no data sets can
be added, such that only a set of operations remains. The simplified structure is called
and declared as a ‘function type’ with an optional default size for the tuples the member
functions apply to. All members of a given function type ‘abc’ get double names
composed of the type name and a selector, e.g. ‘abc fgh’. This double naming can be
used just to have more expressive names. The overloading comes in when an
expression or a block is prefixed with the type name. Then type members are no more
selected by their full names but by their selectors only which then overload possible
previous meaning of the selectors. A function type ‘cpx’ of complex operations can e.g.
define a member function ‘cpx *’ (complex multiplication):

cpx � a; b; c; d a c � b d; a d � b cð Þ:

Then all 4-input multiplies in a prefixed block ‘cpx (…)’ then become complex
multiplications.

A unique feature to the knowledge of the author is that through overloading the
basic arithmetics to defining some particular ring, this change automatically extends to
a change of base ring for the predefined linear and polynomial operations as well. ‘A v’
becomes the multiplication of a complex matrix (a 2n2-tuple) to a complex vector (a
2n-tuple), and polynomials have complex coefficients and evaluate a complex argu-
ment (a 2-tuple) to a complex result. Multiplying the real ‘1’ (a 1-tuple) to a real or
complex number remains unchanged. As a result, reals need not be ‘converted’ to
complex ones by appending a ‘0’, and even complex polynomials evaluate correctly on

Mathematical Abstraction in a Simple Programming Tool 39

real input. Many interesting real algebras can be implemented similarly as function
types. Ambiguities are resolved by simple rules or restrictions. In the embedded block

. . .expr 8 h. . .cpx . . . x. . . hx x y. . .ð Þ. . .

the argument x of the polynomial ‘h§’ is complex but the polynomial is one with real
coefficients as the tuple h was defined outside the block. h§x correctly evaluates to the
complex number y. Also, there is the option to overload ‘+’ and ‘*’ with the integer
modulo operations to deal with finite fields. We note that the overloading of the
arithmetic operations for other data is very common in mathematics, and not at all a
source of misunderstandings. Even if the listing of expressions within the unified
brackets may appear oversimplified, this is compensated by the ease to switch to
different data types, to use expressive double names, and e.g. to program on the level of
complex tuple operations. Not to construct additional data sets reflects that the tuples
sets and the supported mapping of tuple indexes are rich enough for most numeric
applications.

Another mathematical feature has been selected for p-Nets to support applications
to robotics, namely the variant of automatic differentiation to derive an algorithm to
compute partial derivatives of a function from an algorithm just for the function. By
integrating this into the compiler, there is nearly no complication for the programmer.
The function f: Rn ! Rm is simply given the composite name T’f in its definition along
with the block defining f. It can then be called both as ‘f’ and as ‘T’f’ which is then a
function Rn � Rn ! Rm � Rn of two tuple arguments, mapping (u, v) ! (f(u), Df(u)
v) where Df denotes the full differential of f. Similarly, a tuple of n-tuples named as
T’U is a tuple of 2n-tuples that can also be referenced by U as a tuple of n-tuples.
Automatic differentiation is a formal operation not actually determining Df as a linear
approximation to f. If T’U is obtained by sampling a differentiable curve c then T’f
maps T’U correctly to the samples of f°c. In other words, T’f correctly composes with
sampled tuple functions T’U. The idea of automatic differentiation is not new [8], but
the place to integrate it may be. Another useful variant of automatic differentiation is to
derive the Hamiltonian vector field of a function and compute solution curves [7].

There is a common basis for all of the indicated automatic features, the extension of
functions to tuples, the switch from real to complex operations, and replacing function
and operations be their tangential maps. It is to exchange the operations in an algorithm
with other operation yet maintaining the composition scheme to arrive at an algorithm
for different data, or defining algorithms through a composition scheme and a com-
patible assignment of operations [3]. For the extension to tuples the change is from the
original operations in the program to their individual extensions. The replacement of
real by complex operations or the like already occurs during the textual analysis and the
construction of the intermediate code by the compiler. A substitution also occurs for the
eventual execution of a program on some processor using some particular number
encoding. The processor performs ‘encoded’ versions of the real operation on the data
codes to produce result codes. These don’t decode to the true result of the real operation
but to the rounded one, the rounding being the composition of first coding then
decoding. The switch is here from real to encoded operations or, for the processing on
the reals, the change of replacing every operation by the one obtained by performing it

40 F. Mayer-Lindenberg

and rounding its result. In this case, the composition of real operations no longer
corresponds to the composition of the encoded operations in general, and the machine
delivers worse approximations to the true results than a unique final rounding. Using
this substitution the VM can simulate the encoded operations.

4 Parallelism, Communications and Timing

The pure functions discussed above are complex SW building blocks. Whether they are
really executed depends on the processes defined for the application. There may be
many processes; all start in parallel when the application is started and perform
encoded operations on processors of the target. Processes use additional building
blocks, in particular variables and automata with a state memory. Variables are pre-
defined automata offering read and write operations of tuples of real numbers, and serve
to define automata with hidden state memories. They are organized by automata types
defining variables and associated functions. The access functions are, apart from per-
forming read and write operations, similar to the pure functions before. Each automaton
of the same type has its own instances for the variables. We skip the details.

An application process is defined by first listing its variables and sub automata and
then providing a control block starting by ‘#’ to indicate that a new thread is described:

apc pnm; x; 4 y #ð Þ

would define a process ‘pnm’ with a scalar variable x and a variable y holding 4-tuples.
Optionally, initial values can be specified for them. The control block is similar to the
algorithmic block used for the pure functions, can contain branches, sub blocks etc. It
differs by having no arguments and result, and allowing a few extra, non functional,
sequential operations (read, write, send, receive) and structures (#, $$). This completes
what is needed and provided to abstractly describe parallel real-time systems. The
extras are confined to the top level processes which also invoke pure functions and
access functions on their sub automata.

The write operation to a variable x is reserved to the process for which it is declared
and reads

expr � x

where ‘expr’ is a tuple expression for the data to be written. The chosen syntax for this
is thus quite different from the naming of an intermediate tuple item, ‘expr←nme’. The
read operation is simply ‘x’ like calling a function, this time actually calling to the
automaton ‘x’. A process ‘p’ can also read variables of another process ‘q’ writing ‘q x’
which is called ‘state sampling’. State sampling involves no synchronization but is a
first way to let the processes communicate. Handshaking and synchronous communi-
cation can be derived from this. The send operation from p to q sends a list of tuples,

r; s; t; . . .� q:

The tuples are received by q one by one simply writing ‘p’. This is stream com-
munications and involves synchronization. Stream communications are supposed to be

Mathematical Abstraction in a Simple Programming Tool 41

buffered such that only the receiver has to wait for data. The similarity of the syntax to
accessing a variable is intentional. Variables and sub automata can be viewed as
primitive processes communicated with. The syntax also fully abstracts from how
communication is implemented on the PC or an embedded target.

Sampling and stream communications also serve for general input and output (IO),
name by sending, receiving, and sampling with predefined or external processes.
Screen output is through sending tuples to the predefined host terminal process ‘HTC’.
File IO is handled similarly. When an embedded system is programmed for, the pro-
cesses will eventually be executed by the target processors using dummy processes to
describe IO. Alternatively, the environment can be modeled by giving appropriate
process definitions for it, and executing them in a comprehensive simulation.

In order to be able to easily define many processes for a highly parallel target, or to
group processes with a related timing or at least with related control, processes can
break up (‘be dissected’) into several threads. The dissection is by means of the ‘#’
control already used at the start. It can be used almost anywhere (not within expres-
sions) to coarsely cut the control block into sections which are labeled to indicate that
sections belong to the same thread. Writing to a specific variable and sending to a
specific process is always bound to a specific thread. The pattern

(#S … expr ← y … … #T … … f(y) ← z … … #S … … z >> u …)
(send y) (rec y) (send z) (rec z)

is for a process subdivided into two threads S,T. The threads are processes of their own
and might eventually run on different processors. The shown communications are then
needed but fully abstracted from by simply referencing data computed in another thread
(as T references y in the call of f). In the example the result of f is sent back to S which
is similar performing a remote function call from S to T. The dissection does not affect
the data flow of the full process but simply defines a distribution of the workload. This
also holds for the control flow. A branch carried out in one thread also carries over to
another if it has sections in one or both branches. In

#S. . . cond? . . .#T. . . :ð Þ. . . #T . . .Þ

thread S computes a branch condition and branches accordingly. T takes over in the
first branch (after the ‘?’). S also executes the first half of the second branch (after ‘.)’)
until T takes over again. The branch condition has not been computed by T but T must
branch, too. This implies that the information whether the branch condition holds or not
will be communicated to T. As a result communications between the threads can be
compiled as all follow the same control path such that one can define unique sequences
of send and receive operations between any two threads.

Dissection is also made compatible with the structure of sub blocks for the case that
the block also contains sections of another than the calling thread. Flow control within
the block is constrained to it, i.e. a branching within the block does not affect outside
threads which then have independent control flows for a while. Also, there is no
communication between insides the block and outsides but communications with other
threads may be through explicit send and receive operations. Threads of the block

42 F. Mayer-Lindenberg

which already started before synchronize at their entry and each time the block is
repeated. The application processes could all be packed as sub processes inside a large
container process yet with no particular benefit. Blocks with threads can be indexed and
deliver a tuple result to the calling thread. The following creates 100 threads computing
the components of a vector in parallel:

. . . 100 : #. r; s; tð Þ 100 : 3 v. . .

The dissection into threads is particularly simple to define and to change as it only
concerns the labeling of the ‘#’ dissectors. The finest granularity would be to have just
one expression in every section, each being a thread of its own except those performing
stream communications and writing variables. Single operations, even tuple operations
or function calls, cannot be further dissected. As the dissections respect the control
flow, they can be viewed as a coarse-grained overlay to the data flow with the purpose
to group the expressions to be evaluated into threads.

The last, still missing element is timing control. A single command is in use for
this. It causes the calling thread to wait for a given time after the previous wait
command or the start of the actual process or sub process before performing the next
output to a variable or process. It is denoted ‘$$d’ for waiting for d seconds. The cyclic
process (cyclic due to the ‘<)’ at the end)

0� x $$1 1� x $$1 \ð Þ

repetitively outputs to a variable ‘x’ that can be sampled by an external process as a
square wave (period 2 s). The parameter of ‘$$’ need not be constant. The control
depends on a predefined process outputting the real time from the start of an application
in seconds to a variable RT. The command can also be used to define timeouts for one
or more alternative receive operations.

‘$$d’ has another important use. In a sequence

' $$c f(x) ← h $$d h>>y'

waiting at ‘$$d’ only occurs when the execution time to compute ‘f(x)’ on a processor
is less than d. This is a real time condition which can be checked by simulation.

5 Simulation and Execution on the PC, and Code Generation

The PC is not required to be able to execute the real-number algorithms compiled on it.
For the task of compiling for simple processors under real time restrictions it is enough
to compute at a level of precision from which the computations of the processors using
codes of finite word sizes can be obtained through rounding. The PC disposes of the
virtual machine already needed by the compiler to compute constants. It is used to
interpret the real operations in the intermediate code output by the compiler, too, and
can do this fairly efficiently as it performs precompiled tuple operations using fairly

Mathematical Abstraction in a Simple Programming Tool 43

precise yet still finite word size codes. The availability of the VM thus plays an
important triple role. It also allows the PC to figure within the target network and take
over some processing (and, typically, the user interfacing). If the PC runs as part of an
application it can interactively sample variables on other processors which is useful for
control and for debugging. And it can be used to simulate entire applications including
the processes in its environment, their timing and testing for real time conditions.
The VM executes the many application threads with context switches each time a
thread has to wait as prescribed by p-Nets. The p-Nets approach also works for
networks of PCs connected by an LAN, each running a VM of its own.

Native code generation is being worked on for an ARM based micro controller and
will extend to the ARM processors in SoC chips with fairly complex FPGA parts. On
an FPGA, entire processors can be configured performing scalar and non-scalar
operations using standard or non-standard number codes of unusual lengths. Processors
can but generally need not run an operating system (OS). The compiler then attaches a
small run time kernel instead. FPGA OS have started to emerge, too [11]. A family of
FPGA based processors attached to a dedicated hardware infrastructure for external
communications, memory interfacing and providing sequential controllers has been
designed in related projects, combining a controller with a number of arithmetic units
of different complexities to choose from [2]. They execute from small memory blocks
within the FPGA in the range of a few 10 kB only and rely on DMA supported
software caching for more. Each runs up to four threads, providing separate registers
for them and performing context switches in zero time. The design tries to maximize
ALU efficiency through parallel memory and control operations. An FPGA can be
configured to hold several to many of them depending on the complexities of the
arithmetic circuits, each bringing in some 108 operations per second. External memory
connects to the FPGA and provides the storage for large programs and data.

Ongoing work is to port the processors with some needed changes to a more recent
FPGA platform. This is particularly motivated not only by hoping to attract applica-
tions, but also by the design of an experimental processor system that links 50 SoC
nodes into a powerful parallel computer. It can make use of all p-Nets facilities and is
the flexible hardware counterpart to what may prove a flexible tool for its use [24]. This
system contains 100 ARM processors, up to a thousand FPGA processors for running
thousands of threads, 100 GB of DRAM and 800 GB of nonvolatile storage. Memory
is strictly distributed to the nodes. Every node connects to 7 neighboring nodes though
high-speed interfaces managed by the infrastructure. The system is wired up for the
famous Hoffman-Singleton graph [23] with a diameter of two only.

To define the target network for an application with just enough detail to permit
compilation, p-Nets provides the syntax to enter a netlist for it through a series of
simple commands, building on a hierarchy of modules containing processors of some
types, networking and memory nodes, and sub systems built from them. The command
to define an additional target component has the general form

node type nameð Þ component name components linked to it

and defines for every component the previous ones it is linked to. Indexed sets of
components of the same type can be defined using an extra parameter, and parameters

44 F. Mayer-Lindenberg

like memory sizes be specified. Optionally, code distribution can be specified through
one or several boot trees. There are predefined nodes, the ‘HOST’ computer of the PC
type connected to the ‘LAN’ node. ‘LAN’ is a non-computational node of the B type
(‘bus’). Another non-computational type is the ‘M’ node just providing memory. An M
node can be connected to several processor nodes, and variables of the attached pro-
cessors can be allocated on it. M nodes are used to model the external memories
attached to an FPGA and to which the simple FPGA processors are linked. If the
definition of the target by defining node types and nodes can be considered as a sort of
programming, then it is a purely structural one. The targets definition can also be
understood as a target specification, and the definition of a network of FPGA pro-
cessors could be further processed to actually derive the FPGA configuration data.

The component hierarchy includes some special support for dealing with FPGA
based processors. The FPGA is presented as a virtual component type with an internal
network, memory nodes and fixed function automata (i.e. a hardware infrastructure),
including hardwired processors if there are any. Various configurations adding sub
networks of processors configured on the FPGA are then defined as types inheriting
from the virtual type. The link to the encodings supported by the rounding operations
of the language is that the processors implementing the encoded operations are selected
by the name of the encoding; this works on the basis of the compatible processors only
differing by their arithmetic unit circuits. A node type definition inheriting from a type
SoC with memory nodes M0 and M1 and attaching 8 FPGA processors of the type
‘f45’ and 4 of the type ‘v144’ reads

node type SoCð Þ f45ð Þ 8R M0 v144ð Þ 4 S M1

The target definition for the 50-node computer mentioned above reads

node SoC:xð Þ 50 P LAN; hs P:

It declares a set of 50 SoC nodes of sub types x derived from the virtual type by
defining various combinations of processors on them. ‘x’ stands for a tuple/table to
select from a set of configurations for every P node. Thus the single tuple constant x
selects one of the large set of possible heterogeneous configurations of the entire
system. The computer is linked to the ‘LAN’ and thereby to the host processor for code
downloads etc., and the P nodes are connected to each other according to the inter-
connection list ‘hs’, another tuple constant holding the table for the Hoffman-Singleton
graph. Depending on the contents of ‘x’, and also due to the presence of ARM pro-
cessors in every SoC node and the PC, the system is highly heterogeneous. The
configuration can be dynamically changed on individual nodes.

A modern PC with several processor cores and a graphics subsystem with a sep-
arate memory could be described similarly to the SoC chip as another parallel target.
We skip further details on this and content ourselves to state that even with the extras to
specify the target, the simplicity of the language is not compromised as most details are
resolved by the compiler and the runtime environment, including code distribution and
FPGA configuration from an attached memory. It remains to be said how the hardware
is actually employed for executing an application program. The required assignments

Mathematical Abstraction in a Simple Programming Tool 45

are manual by annotating the program text. This and some other choices described
before would profit from being automated, deriving e.g. a target network specification
from the network of application processes [4]. Editing the thread and processor
assignments is easy, however, simulation helps to further optimize it, and gives control
to the user. The thread and processor assignments actually stand in tables within the
intermediate code and could be optimized automatically without recompiling the
intermediate code; only code generation must be performed.

The workload assignment and the transition to the executing processors proceeds
on a per-thread basis and involves two selections. This only regards the processes to be
performed by the embedded system, not to those just modeling the environment. First
an encoding for executing the thread (or the entire process) must be prescribed. Every
thread uses a single encoding, but different threads can choose independently. If a
thread communicates data to another one using a different encoding, automatic code
conversions occur. Just selecting the encodings already permits simulation. The VM
interprets the intermediate code and executes by automatically adding the selected
rounding to every real operation. This can, of course, lead to new program errors.

The second step is to select executing processors from the processors of the target.
The processors need to be available for executing and need to support the selected data
encoding. The annotation is confined to the entries into the threads. To select the
encoding and the processor one annotates

apc . . . #S #T f64 on hostð Þ:

After making the assignments, the program can finally be compiled, this time for
every processor and the threads selected for it only. The selection of the processors for
the threads also determines the distribution of the variables the write to.

The processors will generally execute the predefined tuple operations from com-
piled subroutines (as does the VM). For a most precise simulation by the VM, the target
processors must do so using the same algorithms as the VM. There may be choices
between more than one algorithm performing similarly using the VM’s highest pre-
cision but differently for different target codes. Context switches between threads
running on the same processor can be managed by an operating system. On a simple
processor, conditional indirect jumps and a single return variable suffice. As function
calls are not interrupted, no return stacks have to be switched. For processors executing
interrupt routines at different priority levels, the described switching of threads would
be implemented for every interrupt level needed. For the FPGA processors, the code
generator builds on the hardware infrastructure and ‘knows’ about its communications
structures and protocols. For multi-threaded processes, communications can be com-
piled up to the point of performing compile-time routing.

6 A Funny Example

This entire chapter including its headline is an example of a p-Nets program. All text
lines but the program lines are skipped by the p-Nets compiler as comments. The
process ‘mus’ defined below outputs several sequences of tones via the MIDI interface

46 F. Mayer-Lindenberg

of the PC as sequences of pitch codes. Here, the sequences are derived from the
Fibonacci sequence mod(25) generated by a recursive function named ‘fib’. Every
number of the sequence is the sum of the two previous ones. The first two stand at the
beginning of the block performing the calculation and must be integers in the range
0..24, in order to be used as tones. The recursion always breaks for the applied non-
negative integer input. Without the mod operation ‘%25’ the sequence would approach
infinity very fast, and the sequence of tones would leave the range of audible fre-
quencies if large numbers were accepted at all. So it rests within a range of two octaves,
but would repeat periodically after a while. The definition is

fct fib (0,1 ← a,b,i i>0 ? b, a+b %25, i–1 <) a)

The computation by ‘fib’ uses an end recursion indicated by ‘<)’ instead of ‘.)’. The
p-Nets block offers the feature that the argument ‘i’ of the function call is extended by
constants whereas the recursive recalls must deliver the full argument a,b,i. ‘i’ is used
as the iteration count of the recursion. The branch behind ‘<)’ is the breaking branch
and delivers the result. ‘a+b %25’ computes (a+b)%25, ‘%’ having a low priority.

The process ‘mus’ controls three automata of the predefined type MDO (midi
output channels) using a separate thread for each of them. Each is set to a particular
instrument and a desired volume such that the threads generate their separate melodies
during 14 measures of 2/4 beats and run and out-put in parallel. They play a mono-
phone melody, an accompaniment by dual tones and a rhythmic pattern on an
instrument called ‘wood’, and finish by a ‘drum’ sound. The threads with the names of
the MDO automata can use the constants defined for that type and output unassigned
numbers or results of expressions to them. Constants of the form \16 (1/16 note) set
tone durations by forcing a synchronization delay and then end the tones started
previously. ‘c\4’ thus generates a quarter note ‘c’ on the instruments of the thread, and
‘\1’ w/o previously started tones a pause of a full measure (2 s). The output syn-
chronization replaces explicit wait commands, and enhances the readability of the tone
sequence (cf. the thread ‘vc3’ below). The add operations like ‘fis + fib(..)’ etc.
transpose the fib values to another starting tone (here ‘fis’).

apc mus on host,(mdo) vc1 (pia,77),
(mdo) vc2 (band,55),
(mdo) vc3 (wood,88)

(

)

#vc1(14:←i Fis+fib(3i) B+fib(3i+1)\38 c+fib(3i+2)\8)
c, e, g, c' \2

#vc2 \1 (24:←i fis+fib(2i)\16 fis+fib(2i+1)\316)
#vc3 (7: c'\316 c'\316 c'\4 c'\316 c'\316)

drum 100 c'\38

Mathematical Abstraction in a Simple Programming Tool 47

The indexed blocks ‘(24:…)’ etc. are repeated sequentially in the order of the index
values. The index is named ‘i’ in the first two blocks. The musical output ends, once the
last thread has finished (vc2 by its final accord). Note that the program out-put is
generated by the process in physical time. The output is invariable, however, could be
directed to a file and be read back as a timed tuple constant.

‘mus’ can be used as a starting point to experiment with other algorithms to
generate melodies [16]. The threads vc1-3 could be mapped to different PC computers
as spatially separated sources of sound.

7 Summary and Conclusion

Our discussion has focused on p-Nets as a language for numeric computations,
emphasizing its simplicity in spite of the needs of the parallel and distributed targets. At
its basis, there are the predefined tuple sets and abstract, non scalar operations on them.
Tuples are used as coordinates for the numeric treatment of almost all mathematical
structures, even coordinate-free structures that are defined through sets of equivalent
coordinates and tracking changes of coordinates, things which appear more difficult
from a less abstract starting point [14]. Transforms like the FFT or discrete exterior
calculus [6] profit from the available tuple compositions. The structures to describe
parallelism and real time control have proven to be versatile; they may appear primitive
but operate on a high level. The same holds for the mathematical algorithms that call to
non-trivial compiler operations.

As to the algorithmic language, our quest for simplicity is due to the belief that a
tool should be sharp and effective, but at the same time easy to use in order not to
distract time and concentration from the applications to be made. As for every task, for
the design a simple programming language there are many choices from the basic
paradigms to details of the syntax, and many ways to go. One may e.g. argue about the
strange ‘x←n’ naming which is our way to distinguish between variables, names for
referencing, and the equality relation. Indexing by subscripts or the ‘x.i’ may be easier
to accommodate to. The massive overloading to other tuple sizes and types may be
considered dangerous but stays close to what is usual in mathematics. The lack of data
set constructions is compensated by the predefined rich types of n-tuples and sub sets of
them and the ability to perform tuple compositions. The lack of an extra type of
integers is compensated by the fact that the compiler can track index computations with
an integer result and support these with precise integer codes. For an efficient execution
on FPGA based processors, there is the large selection of number codes. The most
important and unique feature of p-Nets may be the use of the reals as basic data while
staying grounded up to the point of to be able to compile for very simple processors.
Numbers and their codes remain clearly distinguished. Criticism is certainly in place
regarding several aspects of the present prototypical implementation.

There are several steps to be taken to improve the quality and the scope of the
compiler implementation which at its present state mainly serves to evaluate the lan-
guage and adjust it if needed, to support a few target systems for purposes of their
special support, to demonstrate the ease to compile applications, and to experiment
with implementing or supporting additional mathematical methods. The operation of

48 F. Mayer-Lindenberg

the VM will be extended to higher precisions typically not needed on embedded
processors but beneficial for the quality of constant foldings and simulation, and for
supporting additional high precision PC based computing applications exploiting
current multi-core and GPU hardware. The support for the embedded targets could be
enhanced in various ways, too, by automating workload distribution and optimizing for
efficiency, and performing software caching and reconfiguration automatically instead
of using the existing explicit commands. The target support conceptually offered by the
present p-Nets tool already exceeds what most other programming tools offer.

References

1. Mayer-Lindenberg, F.: A management scheme for the basic types in high level languages.
In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS,
vol. 3381, pp. 390–393. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30577-4_46

2. Mayer-Lindenberg, F.: A modular processor architecture for high-performance computing
applications on FPGA. In: Conference on Computer Design, CDES 2012, Las Vegas, USA
(2012). https://134.28.202.18/t3resources/ict/dateien/Mitarbeiter/f-mayer-lindenberg/Las_
Vegas.pdf

3. Mayer-Lindenberg, F.: Dedicated Digital Processors: Methods in Hardware/Software
System Design. Wiley, London (2004)

4. Mayer-Lindenberg, F.: High-level FPGA programming through mapping process networks
to FPGA resources. In: 2009 International Conference on Reconfigurable Computing and
FPG as ReConFig 2009, Cancun, Quintana Roo, Mexico, pp. 302–307 (2009). https://doi.
org/10.1109/reconfig.2009.73

5. Mayer-Lindenberg, F.: Fifth on the transputer. Microprocessing Microprogramming 19(5),
367–373 (1987). https://doi.org/10.1016/0165-6074(87)90248-1

6. Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete exterior calculus. https://arxiv.
org/abs/math/0508341v2

7. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numerica
10(1), 357–514 (2001). https://doi.org/10.1017/S096249290100006X

8. Bücker, H.M., Corliss, G., Hovland, P., Naumann, U., Norris, B.: Automatic Differentiation:
Applications, Theory, and Implementations. Lecture Notes in Computational Science and
Engineering. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-28438-9

9. Sebesta, R.W.: Concepts of Programming Languages. The Benjamin/Cummings Series in
Computer Science. Benjamin/Cummings, Redwood City (1989)

10. Krishnamurthy, E.V.: Parallel Processing: Principles and Practice. Addison-Wesley, Sydney
(1989)

11. Eckert, M., Meyer, D., Haase, J., Klauer, B.: Operating system concepts for reconfigurable
computing: review and survey. Int. J. Reconfigurable Comput. 2016, 1–11 (2016). https://
doi.org/10.1155/2016/2478907. Article No. 2478907

12. Kawamura, A., Ota, H., Rösnick, C., Ziegler, M.: Computational complexity of smooth
differential equations. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS,
vol. 7464, pp. 578–589. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32589-2_51

13. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer,
New York (1998). https://doi.org/10.1007/978-1-4612-0701-6

Mathematical Abstraction in a Simple Programming Tool 49

http://dx.doi.org/10.1007/978-3-540-30577-4_46
http://dx.doi.org/10.1007/978-3-540-30577-4_46
https://134.28.202.18/t3resources/ict/dateien/Mitarbeiter/f-mayer-lindenberg/Las_Vegas.pdf
https://134.28.202.18/t3resources/ict/dateien/Mitarbeiter/f-mayer-lindenberg/Las_Vegas.pdf
http://dx.doi.org/10.1109/reconfig.2009.73
http://dx.doi.org/10.1109/reconfig.2009.73
http://dx.doi.org/10.1016/0165-6074(87)90248-1
https://arxiv.org/abs/math/0508341v2
https://arxiv.org/abs/math/0508341v2
http://dx.doi.org/10.1017/S096249290100006X
http://dx.doi.org/10.1007/3-540-28438-9
http://dx.doi.org/10.1155/2016/2478907
http://dx.doi.org/10.1155/2016/2478907
http://dx.doi.org/10.1007/978-3-642-32589-2_51
http://dx.doi.org/10.1007/978-3-642-32589-2_51
http://dx.doi.org/10.1007/978-1-4612-0701-6

14. Padula, A.D., Scott, S.D., Symes, W.W.: A software framework for abstract expression of
coordinate-free linear algebra and optimization algorithms. ACM Trans. Math. Softw. 36(2),
1–36 (2009). https://doi.org/10.1145/1499096.1499097. Article No. 8

15. Knuth, D.E.: Literate Programming. Comput. J. 27(2), 97–111 (1984). https://doi.org/10.
1093/comjnl/27.2.97

16. Nierhaus, G.: Algorithmic Composition. Paradigms of Automated Music Generation.
Springer, Wien (2009). https://doi.org/10.1007/978-3-211-75540-2

17. Knuth, D.: The Art of Computer Programming, Volume 2. The: Seminumerical Algorithms
4.2.3, 3rd edn. Addison-Wesley, Sydney (1998)

18. Hida, Y., Li, S., Bailey, D.: Library for double-double and quad-double arithmetic (2008).
https://www.researchgate.net/publication/228570156_Library_for_Double-Double_and_
Quad-Double_Arithmetic

19. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a multiple-
precision binary floating-point library with correct rounding. ACM Trans. Math. Softw.
(TOMS) 33(2), 1–14 (2007). https://doi.org/10.1145/1236463.1236468. Article No. 13

20. Lange, M., Rump, S.: Faithfully rounded FP computations. preprint, vol. 1, no. 1 (2017).
https://urldefense.proofpoint.com/v2/url?u=http-3A__www.ti3.tuhh.de&d=DwIBaQ&c=vh
6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=phx_h-t0CpJpXloE7Nt7XzoVuW
Ol1rYzfCfuZFItYqZo5lxViGBLk_fC3J092Uza&m=as-6aujO3oSMlwe2QObpbwos2EV58
0rwz45Btb2diZk&s=x4bV2sQwvF2OiCfTJI5P0v04JsZK2ZzuyxOXxY7-8JY&e

21. Mayer-Lindenberg, F., Beller, V.: An FPGA-based floating-point processor array supporting
a high-precision dot product. In: 2006 IEEE International Conference on Field Pro-
grammable Technology, Bangkok, Thailand, pp. 317–320. IEEE (2006). https://doi.org/10.
1109/fpt.2006.270337

22. Li, X., Phung, C.F., Maskell, D.L.: FPGA overlays: hardware-based computing for the
masses. In: Proceedings of the Eighth International Conference on Advances in Computing,
Electronics and Electrical Technology - CEET 2018, pp. 25–31. SEEK Digital Library
(2018). https://doi.org/10.15224/978-1-63248-144-3-12

23. Hafner, P.R.: On the graphs of Hoffman-Singleton and Higman-Sims. Electron. J. Comb.
11(1), 1–33 (2004). Article No. R77

24. Parallelrechner ER-4, Technische Universität Hamburg. www.tuhh.de/ict/forschung/
parallelrechner-er-4.html

50 F. Mayer-Lindenberg

http://dx.doi.org/10.1145/1499096.1499097
http://dx.doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1007/978-3-211-75540-2
https://www.researchgate.net/publication/228570156_Library_for_Double-Double_and_Quad-Double_Arithmetic
https://www.researchgate.net/publication/228570156_Library_for_Double-Double_and_Quad-Double_Arithmetic
http://dx.doi.org/10.1145/1236463.1236468
https://urldefense.proofpoint.com/v2/url?u=http-3A__www.ti3.tuhh.de&d=DwIBaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=phx_h-t0CpJpXloE7Nt7XzoVuWOl1rYzfCfuZFItYqZo5lxViGBLk_fC3J092Uza&m=as-6aujO3oSMlwe2QObpbwos2EV580rwz45Btb2diZk&s=x4bV2sQwvF2OiCfTJI5P0v04JsZK2ZzuyxOXxY7-8JY&e
https://urldefense.proofpoint.com/v2/url?u=http-3A__www.ti3.tuhh.de&d=DwIBaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=phx_h-t0CpJpXloE7Nt7XzoVuWOl1rYzfCfuZFItYqZo5lxViGBLk_fC3J092Uza&m=as-6aujO3oSMlwe2QObpbwos2EV580rwz45Btb2diZk&s=x4bV2sQwvF2OiCfTJI5P0v04JsZK2ZzuyxOXxY7-8JY&e
https://urldefense.proofpoint.com/v2/url?u=http-3A__www.ti3.tuhh.de&d=DwIBaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=phx_h-t0CpJpXloE7Nt7XzoVuWOl1rYzfCfuZFItYqZo5lxViGBLk_fC3J092Uza&m=as-6aujO3oSMlwe2QObpbwos2EV580rwz45Btb2diZk&s=x4bV2sQwvF2OiCfTJI5P0v04JsZK2ZzuyxOXxY7-8JY&e
https://urldefense.proofpoint.com/v2/url?u=http-3A__www.ti3.tuhh.de&d=DwIBaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=phx_h-t0CpJpXloE7Nt7XzoVuWOl1rYzfCfuZFItYqZo5lxViGBLk_fC3J092Uza&m=as-6aujO3oSMlwe2QObpbwos2EV580rwz45Btb2diZk&s=x4bV2sQwvF2OiCfTJI5P0v04JsZK2ZzuyxOXxY7-8JY&e
http://dx.doi.org/10.1109/fpt.2006.270337
http://dx.doi.org/10.1109/fpt.2006.270337
http://dx.doi.org/10.15224/978-1-63248-144-3-12
http://www.tuhh.de/ict/forschung/parallelrechner-er-4.html
http://www.tuhh.de/ict/forschung/parallelrechner-er-4.html

Improving the Accuracy of Energy
Predictive Models for Multicore CPUs

Using Additivity of Performance
Monitoring Counters

Arsalan Shahid(B) , Muhammad Fahad , Ravi Reddy Manumachu ,
and Alexey Lastovetsky

School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
{arsalan.shahid,muhammad.fahad}@ucdconnect.ie,

{ravi.manumachu,alexey.lastovetsky}@ucd.ie

Abstract. Energy predictive modelling using performance monitoring
counters (PMCs) has emerged as the leading mainstream approach for
modelling the energy consumption of an application. Modern computing
platforms such as multicore CPUs provide a large set of PMCs. The pro-
grammers, however, can obtain only a small number of PMCs (typically
3–4) during an application run due to the limited number of hardware
registers dedicated to storing them. Therefore, selection of a reliable sub-
set of PMCs as predictor variables is crucial to the prediction accuracy of
online energy models. State-of-the-art methods for selecting the PMCs
are largely based on their correlation with energy consumption.

Recently, Additivity is introduced as a property of PMCs that appears
to have significant impact on the accuracy of energy predictive models.
It is based on an experimental observation that energy consumption of
serial execution of two applications is equal to the sum of the energy
consumption of those applications when they are run separately. In this
work, we demonstrate how the accuracy of energy predictive models
based on three popular techniques (Linear regression, Random forests,
and Neural networks) can be improved by selecting PMCs based on a
property of additivity.

Keywords: Performance monitoring counters · Energy consumption ·
Energy modelling · Multicore CPU · Energy predictive models

1 Introduction

Energy is now a first-class design constraint along with performance in all com-
puting settings. It is a critical limitation for battery-operated mobile systems.
Energy-proportional designs [1] in servers are crucial to the operational effi-
ciency of data centres. According to a 2010 DOE Office of Science report [3], it
is the leading concern for High Performance Computing (HPC) system designs.

c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 51–66, 2019.
https://doi.org/10.1007/978-3-030-25636-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_5&domain=pdf
http://orcid.org/0000-0002-3748-6361
http://orcid.org/0000-0002-3595-8484
http://orcid.org/0000-0001-9181-3290
http://orcid.org/0000-0001-9460-3897
https://doi.org/10.1007/978-3-030-25636-4_5

52 A. Shahid et al.

Energy consumption in computing contributes nearly 3% to the overall carbon
footprint and is now a serious environmental concern [24].

Energy efficiency in computing is driven by innovations in hardware repre-
sented by the micro-architectural and chip-design advancements, and software
that can be grouped into two categories: (a). System-level energy optimization,
and (b). Application-level energy optimization. System-level optimization meth-
ods aim to maximize energy efficiency of the environment where the applications
are executed using techniques such as DVFS (dynamic voltage and frequency
scaling), Dynamic Power Management (DPM), and energy-aware scheduling.
Application-level optimization methods use application-level parameters and
models to maximize the energy efficiency of the applications.

Accurate measurement of energy consumption during an application execu-
tion is key to energy minimization techniques at software level. There are three
popular approaches to providing it: (a). System-level physical measurements
using external power meters, (b). Measurements using on-chip power sensors,
and (c). Energy predictive models.

While the first approach is known to be accurate, it can only provide the
measurement at a computer level and therefore lacks the ability to provide fine-
grained component-level decomposition of the energy consumption of an appli-
cation. This is a serious drawback. Consider, for example, a computer consisting
of a multicore CPU and an accelerator (GPU or Xeon Phi), which is represen-
tative of nodes in modern supercomputers. While it is easy to determine the
total energy consumption of a hybrid application run that utilizes both the pro-
cessing elements (CPU and accelerator) using the first approach, it is difficult to
determine their individual contributions. This decomposition is critical to energy
models, which are key inputs to data partitioning algorithms that are critical
building blocks for optimization of the application for energy. Without the abil-
ity to determine accurate decomposition of the total energy consumption, one
has to employ an exhaustive approach (involving huge computational complex-
ity) to determine the optimal data partitioning that optimizes the application
for energy.

The second approach has no definitive research works proving its accuracy.
The third approach of energy predictive modelling emerged as the pre-

eminent alternative. The existing models predominantly use performance mon-
itoring counters as predictor variables for modelling energy consumption. Per-
formance monitoring counters are special-purpose registers provided in modern
microprocessors to store the counts of software and hardware activities. We will
use the acronym PMCs to refer to software events, which are pure kernel-level
counters such as page-faults, context-switches, etc. as well as micro-architectural
events originating from the processor and its performance monitoring unit called
the hardware events such as cache-misses, branch-instructions, etc. They have
been developed primarily to aid low-level performance analysis and tuning. While
remarkably PMCs have not been used for performance modelling, they have been
speedily adopted for energy predictive modelling and have come to dominate its
landscape over the years. The energy predictive models are, however, trained

Accuracy of Energy Predictive Models Using Additivity of PMCs 53

and validated using system-level physical measurements of energy consumptions
of the training and test applications. The most common approach proposing an
energy predictive model is to determine the energy consumption of a hardware
component based on linear regression of the performance events occurring in the
hardware component during an application run. The total energy consumption
is then calculated as the sum of these individual energy consumptions. There-
fore, this approach constructs component-level models of energy consumption
and composes them using summation to predict the energy consumption during
an application run.

We focus in this work on energy predictive modelling using PMCs. Modern
computing platforms such as multicore CPUs provide a large set of PMCs. The
most popular tools that can be used to gather the values of the PMCs for a
platform include Likwid [25], PAPI [18], Intel PCM [11], and Linux perf [19].
The programmers, however, can obtain only a small number of PMCs (typically
3–4) during an application run due to the limited number of hardware regis-
ters dedicated to storing them. Consider, for example, the Intel Haswell server
whose specification is shown in Table 1. Likwid tool provides 167 PMCs for this
platform. To obtain the values of the PMCs for an application, the application
must be executed about 53 times since only a limited number of PMCs can be
obtained in a single application run.

Table 1. Specification of the Intel Haswell and Intel Skylake multicore CPUs

Technical Specifications Intel Haswell Server Intel Skylake Server

Processor Intel E5-2670 v3 @2.30 GHz Intel Xeon Gold 6152

OS CentOS 7 Ubuntu 16.04 LTS

Micro-architecture Haswell Skylake

Thread(s) per core 2 2

Cores per socket 12 22

Socket(s) 2 1

NUMA node(s) 2 1

L1d cache/L11 cache 32 KB/32 KB 32 KB/32 KB

L2 cache 256 KB 1024 KB

L3 cache 30720 KB 30976 KB

Main memory 64 GB DDR4 96 GB DDR4

TDP 240 W 140 W

Idle Power 58 W 32 W

Since only 3–4 PMCs can be collected in a single application run, selecting
such a reliable subset as predictor variables is crucial to the prediction accuracy
of online energy models.

54 A. Shahid et al.

We classify techniques for selecting the PMCs into following four categories:

– Techniques that consider all the PMCs offered by a tool for a platform with
the goal to capture all possible contributors to energy consumption. To the
best of our knowledge, we found no research works that adopt this approach.

– Techniques that are based on a statistical methodology such as correlation,
principal component analysis (PCA) etc. [15,28].

– Techniques that use expert advice or intuition to pick a subset (that may
not necessarily be determined in one application run) and that, in experts’
opinion, is a dominant contributor to energy consumption [8].

– Techniques that select parameters with physical significance based on funda-
mental laws such as energy conservation of computing [21].

Shahid et al. [21] introduced a new property of PMCs that appear to have
significant impact on the accuracy of energy predictive models. It is based on an
experimental observation that dynamic energy consumption of serial execution
of two applications is equal to the sum of the dynamic energy consumption
of those applications when they are run separately. The property, therefore, is
based on a simple and intuitive rule that if the parameter is intended for a linear
predictive model, the value of a PMC for a serial execution of two applications
should be equal to the sum of its values obtained for the individual execution
of each application. The PMC is branded as non-additive on a platform if there
exists an application for which the calculated value differs significantly from the
value observed for the application execution on the platform. The use of non-
additive PMCs in a model impairs its prediction accuracy. The authors show
by employing a detailed statistical experimental methodology on a modern Intel
Haswell multicore server CPU that while many PMCs are potentially additive,
a considerable number of PMCs are not. Some of the non-additive PMCs are
widely used in energy predictive models as key predictor variables.

In this work, we study how the criterion of additivity can be used to select
PMCs to improve the accuracy of the following types of models: Linear regression
(LR), Random forests (RF), and Neural networks (NN). We observe that a large
number of energy predictive models in the literature (Sect. 3) is based on these
three methods. In a linear regression, we solve a linear model by estimating the
regression coefficients. The RF is a decision tree based non-linear model build
by constructing many linear boundaries. A linear transfer function is used to
train our NN. Additivity property has been envisioned to be useful for selection
of PMCs to use as predictor variables in linear energy predictive models. In
this paper, we first validate it using detailed experimental evaluation on two
modern multicore platforms: (1). Intel Haswell and (2). Intel Skylake. We further
investigate its applicability on non-linear modelling techniques such as RF and
NN. We analyze these techniques in terms of the PMCs employed in them and
make sure that they appear as additive linear parameters. We demonstrate that
additivity is highly applicable to non-linear methods that employ linear functions
for composition of models.

We perform three classes of experiments: Class A, Class B, and Class C.
For Class A, we use a dual-socket Intel Haswell multicore server (Table 1).

Accuracy of Energy Predictive Models Using Additivity of PMCs 55

We select six PMCs which are common in the state-of-the-art models [4,8,14,27]
and which are highly correlated with dynamic energy consumption. We build
three sets of models. The first set, ({LR1, LR2, ..., LR6}, contains linear regres-
sion models (LRS). The second set, {RF1, RF2, ..., RF6}, contains random for-
est models (RFS). The third set, {NN1, NN2, ..., NN6}, contains neural net-
work models (NNS). In each set, the models contain decreasing number of non-
additive PMCs. Consider, for example, the first set. Model LR1 employs all the
selected PMCs as predictor variables. Model LR2 is based on five most additive
PMCs. Model LR3 uses four most additive PMCs and so on until Model LR6
containing the highest additive PMC.

The predictions of the models are compared with system-level physical mea-
surements using power meters ([9]), which we consider to be the ground truth.
Our results show that the removal of non-additive PMCs improves the aver-
age prediction accuracy of LR from 31.2% to 18.01%. Similarly, the average
prediction accuracy for RF is improved from 38% to 24%, and for NN from
30% to 24%.

We find no PMC to be additive for all categories of applications within a
tolerance of 5%. For Class B and Class C experiments, we use a single-socket
Intel Skylake server (Table 1) to study the application specific energy predictive
models. We choose two highly optimized scientific kernels offered by Intel math
kernel library (MKL): (a). Fast Fourier transform (FFT) and (b). Dense matrix-
matrix multiplication application (DGEMM). We identify a set of nine most
additive PMCs (PA) common for both the applications and a set of nine PMCs
that are non-additive (PNA) but which are used in state-of-the-art energy pre-
dictive models. For Class B, we build three models, {LR-A,RF-A,NN-A}, based
on PA and three models, {LR-NA,RF-NA,NN-NA}, based on PNA. We show
that the models based on PA demonstrate notably better prediction accuracy.

For Class C, since only four PMCs can be collected in a single application
run, we compose two sets of PMCs, PA4 and PNA4. PA4 contains four highly
energy correlated PMCs selected from PA, and PNA4 contains four most corre-
lated PMCs selected from PNA. Models that use PA4 demonstrate noteworthy
improvement in average prediction accuracy in comparison with models com-
posed using PNA4. We also observed that higher correlation with energy when
applied to non-additive PMCs does not improve their prediction accuracy. The
models based on PNA4 perform even worse than those based on PNA.

We conclude, therefore, that correlation with dynamic energy consumption
alone is not sufficient to provide good prediction accuracy but should be com-
bined with methods such as additivity that take into account the physical sig-
nificance of the parameters originating from fundamental laws such as energy
conservation of computing.

To summarize, the main contribution of this work is a study of the impact of
additivity on the accuracy of mainstream PMCs-based energy predictive mod-
elling techniques.

The rest of this paper is organized as follows. Section 2 present the terminol-
ogy related to power and energy followed by related work in Sect. 3. Section 4

56 A. Shahid et al.

explains the additivity criterion of PMCs and its implications for energy predic-
tive models. In Sect. 5, we present our experimental methodology including setup
and design of the three classes of experiments. Section 5 presents the experimen-
tal results. Finally, Sect. 6 concludes the paper.

2 Terminologies

There are two types of power consumptions in a component: dynamic power and
static power. Dynamic power consumption is caused by the switching activity in
the component’s circuits. Static power or idle power is the power consumed when
the component is not active or doing work. From an application point of view,
we define dynamic and static power consumption as the power consumption of
the whole system with and without the given application execution. From the
component point of view, we define dynamic and static power consumption of
the component as the power consumption of the component with and without
the given application utilizing the component during its execution.

There are two types of energy consumptions, static energy and dynamic
energy. We define the static energy consumption as the energy consumption of
the platform without the given application execution. Dynamic energy consump-
tion is calculated by subtracting this static energy consumption from the total
energy consumption of the platform during the given application execution. If
PS is the static power consumption of the platform, ET is the total energy con-
sumption of the platform during the execution of an application, which takes TE

seconds, then the dynamic energy ED can be calculated as, ED = ET−(PS×TE).
In this work, we consider only the dynamic energy consumption. We describe

the rationale behind using dynamic energy consumption in the section 1 of sup-
plemental [22].

3 Related Work

This section presents a brief literature survey of some important tools widely
used to obtain PMCs, notable research on energy predictive models, and research
works that provide a critical review of PMCs.

Tools to obtain PMCs. Perf [19] can be used to gather the PMCs for CPUs
in Linux. PAPI [18] and Likwid [25] allow obtaining PMCs for Intel and AMD
microprocessors. Intel PCM [11] gives PMCs of core and uncore components of
an Intel processor.

Notable Energy Predictive Models for CPUs. Initial Models correlating PMCs to
energy values include [6,10,12,13]. Events such as integer operations, floating-
point operations, memory requests due to cache misses, component access
rates, instructions per cycle (IPC), CPU/disk and network utilization, etc. were
believed to be strongly correlated with energy consumption. Simple linear mod-
els have been developed using PMCs and correlated features to predict energy
consumption of platforms. Rivoire et al. [20] study and compare five full-system

Accuracy of Energy Predictive Models Using Additivity of PMCs 57

real-time power models using a variety of machines and benchmarks. They report
that PMC-based model is the best overall in terms of accuracy since it accounted
for majority of the contributors to system’s dynamic power. Other notable PMC-
based linear models are [2,8,23,26]. Manila [15] construct a densely populated
multi-dimensional space of PMCs and predict the energy consumption of plat-
form using a nearest neighborhood search algorithm. Zhuo et al. [28] present a
PMC-based energy consumption models for task characteristics in cloud data
center using regression algorithms.

Critiques of PMCs for Energy Predictive Modelling. Some attempts where poor
prediction accuracy of PMCs for energy predictive modeling has been critically
examined include [5,7,16,17]. Researchers highlight the fundamental limitation
to obtain all the PMCs simultaneously or in one application run and show that
linear regression models give prediction errors as high as 150%.

4 Additivity of PMCs

The property of additivity is based on a simple and intuitive rule that if a PMC is
intended as a parameter in a linear term of the energy predictive model then its
value for a compound application should be equal to the sum of its values for the
executions of the base applications constituting the compound application. It is
based on the experimental observation that the dynamic energy consumption of
a serial execution of two applications is the sum of dynamic energy consumptions
observed for the individual execution of each application.

We now present a test to determine if a PMC is non-additive or potentially
additive. It comprises of two stages. A PMC must pass both stages to be pro-
nounced additive for a given compound application on a given platform.

In the first stage, we determine if the PMC is deterministic and reproducible.
In the second stage, we examine how the PMC of the compound application

relates to its values for the base applications. At first, we collect the values of the
PMC for the base applications by executing them separately. Then, we execute
the compound application and obtain its value of the PMC. Typically, the core
computations for the compound application consist of the core computations of
the base applications programmatically placed one after the other.

If the PMC of the compound application is equal to the sum of the PMCs
of the base applications (with a tolerance of 5.0%), we classify the PMC as
potentially additive. Otherwise, it is non-additive.

For each PMC, we determine the maximum percentage error. For a compound
application, the percentage error (averaged over several runs) is calculated as
follows:

Error(%) = (| (eb1 + eb2) − ec
eb1 + eb2

|) × 100 (1)

where ec, eb1, eb2 are the sample means of predictor variables for the compound
application and the constituent base applications respectively. The maximum
percentage error is then calculated as the maximum of the errors for all the
compound applications in the experimental testsuite.

58 A. Shahid et al.

We automated the determination of a PMC’s additivity using a tool called
AdditivityChecker (see section 3 of the supplemental [22]).

5 Experimental Results

The experiments are carried out on two modern multicore platforms: (1). an Intel
Haswell based dual-socket server and (2). an Intel Skylake based single-socket
server. The specifications for both are given in Table 1. We choose a diverse
set of benchmarks in our test suite (section 4 of supplemental [22]) with highly
memory bound and compute bound scientific computing applications such as
DGEMM and FFT from Intel math kernel library (MKL), scientific applications
from NAS Parallel benchmarking suite, Intel HPCG, stress, non-optimized and
non-scientific applications. Apart from reducing bias, one other reason to com-
pose a diverse test suite is to have a range of PMCs for different executions of
applications on the platform.

For an application execution, we measure the following: (1). the dynamic
energy consumption, (2). the execution time and (3). PMCs. The dynamic energy
consumption of the platform is provided by WattsUp pro power meter and the
readings are obtained programatically using a detailed statistical methodology
employing HCLWattsUp API [9]. The power meters are periodically calibrated
using an ANSI C12.20 revenue-grade power meter, Yokogawa WT210. To ensure
the reliability of our results, we follow a statistical methodology where a sample
mean for a response variable is obtained from several experimental runs. We
follow a strict statistical methodology to ensure the reliability of our experiments
(see section 3 of supplemental [22]).

We use Likwid package [25] to obtain the PMCs. It offers 164 PMCs and 385
PMCs on Intel Haswell and Intel Skylake platform, respectively. We eliminate
PMCs with counts less than or equal to 10. The eliminated PMCs have no signif-
icance on modeling the dynamic energy consumption of our platform since they
are non-reproducible over several runs of the same application on our platform.

The reduced set contains 151 PMCs for Intel Haswell and 323 for Intel Sky-
lake. The collection of all of them takes a huge amount of time since only four
PMCs can be obtained in a single application run. This is because of a limited
number of hardware registers dedicated for storing them. We also notice that
some PMCs can only be collected individually or in sets of two or three for single
execution of an application. Therefore, we observe that each application must
be executed about 53 and 99 times on Intel Haswell and Intel Skylake platform,
respectively, to collect all the PMCs.

We select three predictive models for our experiments: (1). Linear Regression
Model (LR), (2). Random Forest (RF), and (3). Neural Networks (NN). We
explain them in detail in section 1 of supplemental [22]. In all these models,
PMCs appear as parameters in linear terms, and therefore must be additive.

We now divide our experiments into three classes, class A, class B and class
C, as follows:

Accuracy of Energy Predictive Models Using Additivity of PMCs 59

1. Class A: we show the improvements in the average prediction accuracy of
the three modeling techniques by the additivity of PMCs. A diverse set of
applications (see section 4 of supplemental [22]) on a dual socket Intel Haswell
multicore server is used in these experiments.

2. Class B: we study the impact of the additivity of PMCs on prediction accuracy
of application-specific energy predictive models. Two highly memory bound
and compute bound scientific computing applications such as DGEMM and
FFT from Intel MKL, are used in these experiments.

3. Class C: we compare the accuracy of two four parameter models. Both models
employ subsets of parameters from the original selected set. The only differ-
ence is that one subset include higher energy correlated parameters, and the
other contains the most additive parameters.

5.1 Class A: Improving Prediction Accuracy of Energy Predictive
Models Using Additivity

We conduct the Class A experiments on the dual-socket Intel Haswell multicore
server (see Table 1). We choose six PMCs (X1 to X6 in Table 2), which are widely
used in energy predictive models. We build a dataset of 277 points as base appli-
cations by executing the applications from our test suite with different problem
sizes. This dataset is used to train the models. We build a test dataset containing
points for 50 compound applications which are composed up of serial executions
of base applications. Each point contains the dynamic energy consumption and
PMCs for the execution of an application. We apply additivity test with allowed
error percentage of 5% and found no PMC to be additive. We list the PMCs and
their additivity error percentages in Table 2.

Table 2. List of selected PMCs for modelling with their additivity test errors (%).

Selected PMCs Additivity test error (%)

X1: IDQ MITE UOPS 13

X2: IDQ MS UOPS 37

X3: ICACHE 64B IFTAG MISS 36

X4: ARITH DIVIDER COUNT 80

X5: L2 RQSTS MISS 14

X6: UOPS EXECUTED PORT PORT 6 10

We build three sets of models, LRS = {LR1, LR2, LR3, LR4, LR5, LR6},
RFS = {RF1, RF2, RF3, RF4, RF5, RF6}, and NNS = {NN1, NN2, NN3, NN4,
NN5, NN6}. In each set, the models contain decreasing number of non-additive
PMCs. Consider, for example, the first set. Model LR1 employs all the selected
PMCs as predictor variables. Model LR2 is based on five most additive PMCs.
PMC X4 is removed because it has the highest non-additivity. Model LR3 uses

60 A. Shahid et al.

Table 3. Linear predictive models (LR1-LR6) using zero intercepts and positive coef-
ficients with their minimum, average, and maximum prediction errors.

Model PMCs Coefficients Percentage prediction

errors (min, avg, max)

LR1 X1, X2, X3, X4, X5, X6 3.83E−09, 3.67E−10, 5.30E−07, 0, 5.56E−08, 0 (6.6, 31.2, 61.9)

LR2 X1, X2, X3, X5, X6 3.83E−09, 3.67E−10, 5.30E−07, 0, 5.56E−08 (6.6, 31.2, 61.9)

LR3 X1, X3, X5, X6 3.75E−09, 5.34E−07, 5.58E−08, 0 (2.5, 25.3, 62.1)

LR4 X1, X5, X6 4.00E−09, 5.59E−08, 0 (2.5, 23.86, 100.3)

LR5 X1, X6 4.60E−09, 1.46E−09 (2.5, 18.01, 89.45)

LR6 X6 1.60E−09 (2.5, 68.5, 90.5)

Table 4. Random forest (RF) regression based energy predictive models (RF1-RF6)
with their minimum, average, and maximum prediction errors.

Model PMCs Percentage prediction errors (min, avg, max)

RF1 X1, X2, X3, X4, X5, X6 (2.78, 37.8, 185.4)

RF2 X1, X2, X3, X5, X6 (2.5, 30.4, 199.6)

RF3 X1, X3, X5, X6 (2.5, 30.02, 104)

RF4 X1, X5, X6 (2.5, 23.68, 59.3)

RF5 X1, X6 (2.5, 43.4, 174.4)

RF6 X6 (2.5, 57.7, 172.1)

four most additive PMCs and so on until Model LR6 containing the highest
additive PMC, which is X6.

We compare the predictions of the models with system-level physical mea-
surements using HCLWattsUp, which we consider to be the ground truth.
The minimum, average, and maximum percentage prediction errors for the mod-
els in the sets LRS, RFS, and NNS are given in Tables 3, 4 and 5.

Table 5. Neural Networks based energy predictive models (NN1-NN6) with their min-
imum, average, and maximum prediction errors.

Model PMCs Percentage prediction errors (min, avg, max)

NN1 X1, X2, X3, X4, X5, X6 (2.5, 30.31, 192.3)

NN2 X1, X2, X3, X5, X6 (2.5, 26.32, 201.2)

NN3 X1, X3, X5, X6 (2.5, 24.14, 160.1)

NN4 X1, X5, X6 (2.5, 24.06, 180.3)

NN5 X1, X6 (2.5, 40.21, 202.45)

NN6 X6 (2.5, 45.05, 180.5)

Since we are modelling dynamic energy consumption, the linear models in
Table 3 are built using penalized linear regression using R programming interface

Accuracy of Energy Predictive Models Using Additivity of PMCs 61

that forces the coefficients to be non-negative. All the models also have zero
intercept. One can see that the accuracy of the models improves as we remove
the highest non-additive PMCs one by one until Model LR5, which exhibits the
least average prediction error of 18.01%. We observe that LR6 has the worst
average prediction error of 68.5% due to poor linear fit.

Table 4 shows the same trend for random forest models in RFS until Model
RF4, which has the least average prediction error of 23.68%. Table 5 also shows
the same trend for neural network models in NNS until Model NN4 with the
least average prediction error of 24.06%.

It can be seen that improvements in average prediction accuracy due to
additivity are less for RF and NN models compared to linear models where we
are certain that additivity is crucial. The maximum prediction error percentages
for RF and NN models are particularly bad. We will investigate in our future
work how additivity can be used to reduce the maximum error percentage for the
three types of models. One can see, however, that the average prediction error
percentages of the best RF and NN models are close to the average prediction
accuracy of the best linear model suggesting that the RF and NN models exhibit
a relationship close to linearity.

5.2 Class B : Impact of Additivity on the Prediction Accuracy of
Application-specific Energy Predictive Models

In this section, we study the accuracy of application specific energy predictive
models built using LR, RF, and NN techniques. We choose a single-socket Intel
Skylake server (Table 1) for the experiments. We found no PMC to be additive
within tolerance of 5% for the application suite (see section 4 of supplemental
[22]). However, we discover that some PMCs are highly additive for two highly
optimized scientific kernels: Fast Fourier Transform (FFT) and Dense Matrix-
Multiplication application (DGEMM), from Intel Math Kernel Library (MKL).

We build a dataset of 50 base applications using different problem sizes for
DGEMM and FFT and apply the additivity test. The range of problem sizes
for DGEMM is 6500 × 6500 to 20000 × 20000, and for FFT is 22400 × 22400 to
29000×29000. We select this range because of reasonable execution time (>3 s)
of the applications. We also build a dataset of 30 compound applications from
these base applications.

The Additivity test based on the two datasets reveals that there are a number
of PMCs which are commonly additive for both applications. We select nine
PMCs that are highly additive with additivity test errors of less than 1%. We
also select nine PMCs which are non-additive for both the applications but which
have been employed as predictor variables in energy predictive models given in
literature (Sect. 3). We check the correlation of all PMCs with dynamic energy
consumption. The selected PMCs with their correlations are given in Table 6.

We denote the set of additive PMCs by PA and non-additive PMCs by PNA.
We build a dataset containing 801 points representing DGEMM and FFT for a
range of problem sizes from 6400 × 6400 to 38400 × 38400 and 22400 × 22400
to 41536 × 41536, respectively, with a constant step sizes of 64. We record the

62 A. Shahid et al.

dynamic energy consumption and the selected PMCs (Table 6) for each applica-
tion. We split the dataset into training and test datasets. Training dataset con-
tains 651 points used to train the three energy predictive models. Test dataset
contains 150 points.

We build two linear models, {LR-A,LR-NA}, two random forest models, {RF-
A,RF-NA}, and two neural network models, {NN-A,NN-NA}. The models {LR-
A,RF-A,NN-A} are trained using PMCs belonging to PA and the models {LR-
NA,RF-NA,NN-NA} are trained using PMCs belonging to PNA. Table 7a show
the prediction error percentages of the models. One can see that the models based
on PA have better average prediction accuracy than the models based on PNA.

Table 6. Additive and non-additive PMCs highly correlated with dynamic energy
consumption. 0 to 1 represents positive correlation of 0% to 100%.

Additive PMCs Correlation

X1 UOPS RETIRED CYCLES GE 4 UOPS EXEC 0.992

X2 FP ARITH INST RETIRED DOUBLE 0.993

X3 MEM INST RETIRED ALL STORES 0.870

X4 UOPS EXECUTED CORE 0.993

X5 UOPS DISPATCHED PORT PORT 4 0.870

X6 IDQ DSB CYCLES 6 UOPS 0.981

X7 IDQ ALL DSB CYCLES 5 UOPS 0.972

X8 IDQ ALL CYCLES 6 UOPS 0.993

X9 MEM LOAD RETIRED L3 MISS −0.112

Non-additive PMCs

Y 1 ICACHE 64B IFTAG MISS 0.960

Y 2 CPU CLOCK THREAD UNHALTED 0.600

Y 3 BR MISP RETIRED ALL BRANCHES 0.992

Y 4 MEM LOAD L3 HIT RETIRED XSNP MISS −0.020

Y 5 FRONTEND RETIRED L2 MISS 0.806

Y 6 ITLB MISSES STLB HIT 0.111

Y 7 L2 TRANS CODE RD 0.860

Y 8 IDQ MS UOPS 0.99

Y 9 ARITH DIVIDER COUNT 0.986

5.3 Class C : Comparison of the Impact of Energy Correlation
and Additivity of PMCs on the Accuracy of Energy Predictive
Models

Since only four PMCs can be collected in a single application run, selection
of such a reliable subset is crucial to the prediction accuracy of online energy
models. The Intel Skylake server (Table 1) is used for the experiments. We use

Accuracy of Energy Predictive Models Using Additivity of PMCs 63

Table 7. Prediction accuracies of LR, RF, and NN models. (a) Class B experiments
using nine PMCs. (b) Class C experiments using four PMCs.

Model PMCs Prediction Errors (%)
[Min, Avg, Max]

Model PMCs Prediction Errors (%)
[Min, Avg, Max]

LR-A PA (0.005, 35.32, 225.5) LR-A4 PA4 (0.024, 25.12, 87.25)
LR-NA PNA (0.449, 85.61, 4039) LR-NA4 PNA4 (0.449, 85.61, 4039)
RF-A PA (.0001, 29.39, 157.4) RF-A4 PA4 (0.005, 22.73, 207.7)
RF-NA PNA (0.004, 36.90, 1682) RF-NA4 PNA4 (0.035, 38.06, 1628)
NN-A PA (0.001, 15.43, 104.2) NN-A4 PA4 (0.003, 11.46, 152.2)
NN-NA PNA (0.003, 21.04, 170.3) NN-NA4 PNA4 (0.016, 21.32, 227.5)

(a) (b)

PA and PNA from Class B experiments to build two sets of four most energy
correlated PMCs. The first set PA4, {X1, X2, X4, X8}, is constructed using
PA and the second set PNA4, {Y 1, Y 3, Y 8, Y 9}, using PNA.

We build two linear models, {LR-A4,LR-NA4}, two random forest mod-
els, {RF-A4,RF-NA4}, and two neural network models, {NN-A4,NN-NA4}. The
models {LR-A4,RF-A4,NN-A4} are trained using PMCs belonging to PA4 and
the models {LR-NA4,RF-NA4,NN-NA4} are trained using PMCs belonging
to PNA4. The training and test datasets are the same as those for Class B
experiments.

Table 7b shows the prediction error percentages of the models. Model NN-A4
has the least average prediction error of 11.46%. We can see that models {LR-
NA4,RF-NA4,NN-NA4} built using highly correlated but non-additive PMCs
do not demonstrate any improvement in average prediction accuracy compared
to models {LR-NA,RF-NA,NN-NA} based on nine non-additive PMCs.

The models based on PA4 containing four most additive and highly corre-
lated PMCs have better average prediction accuracy than the models based on
the set of non-additive PMCs, PNA4.

We conclude, therefore, that correlation with dynamic energy consumption
alone is not sufficient to provide good average prediction accuracy but should be
combined with methods such as additivity that take into account the physical
significance of the parameters originating from fundamental laws such as energy
conservation of computing.

6 Conclusion

The ability of PMC-based predictive models to provide fine-grained decomposi-
tion of energy consumption during the execution of an application makes them
ideal fundamental building blocks for several application-level energy optimiza-
tion techniques. Modern computing platforms such as multicore CPUs provide
a large set of PMCs. However, only a limited number of PMCs (typically 3–
4) can be obtained during an application run. Therefore, selection of a reliable
subset of 3–4 PMCs is crucial to the prediction accuracy of online energy predic-
tive models. The existing techniques select the PMCs based on their correlation

64 A. Shahid et al.

with total energy consumption and construct models employing data analyti-
cal approaches such as linear regression, random forests, and neural networks.
They do not consider the physical significance of a PMC parameter arising from
fundamental laws such as energy conservation of computing.

In this work, we demonstrated how the accuracy of energy predictive mod-
els based on three popular techniques (Linear regression, Random forests, and
Neural networks) can be improved by selecting PMCs based on a criterion of
Additivity, which is derived from the application of energy conservation law for
computing.

We showed that the removal of non-additive PMCs from the list of predictor
variables in energy predictive models improved their accuracy. We illustrated
that using highly additive PMCs resulted in notable improvements in the aver-
age prediction accuracy of application-specific models compared to application-
specific models employing non-additive PMCs. Finally, we studied how a reliable
subset of 3–4 PMCs can be constructed for employment in online energy pre-
dictive models. We showed that using correlation based PMC selection methods
to non-additive PMCs do not improve the average prediction accuracy of energy
models. We demonstrated that using highly correlated PMCs but which are also
highly additive significantly improves the average prediction accuracy of the
models.

In our future work, we will focus on theoretic framework explaining why
additivity, which is based on a fundamental physical law of energy conservation,
improves the prediction accuracy for the three types of models.

Acknowledgement. This publication has emanated from research conducted with
the financial support of Science Foundation Ireland (SFI) under Grant Number
14/IA/2474.

References

1. Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. Computer
12, 33–37 (2007)

2. Basmadjian, R., Ali, N., Niedermeier, F., de Meer, H., Giuliani, G.: A methodology
to predict the power consumption of servers in data centres. In: 2nd International
Conference on Energy-Efficient Computing and Networking. ACM (2011)

3. DOE: The opportunities and challenges of exascale computing (2010). http://
science.energy.gov/∼/media/ascr//pdf/reports/Exascale subcommittee report.
pdf

4. Dolz, M.F., Kunkel, J., Chasapis, K., Catalán, S.: An analytical methodology to
derive power models based on hardware and software metrics. Comput. Sci.-Res.
Dev. 31(4), 165–174 (2016)

5. Economou, D., Rivoire, S., Kozyrakis, C., Ranganathan, P.: Full-system power
analysis and modeling for server environments. In: In Proceedings of Workshop on
Modeling, Benchmarking, and Simulation, pp. 70–77 (2006)

6. Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized
computer. In: 34th Annual International Symposium on Computer architecture,
pp. 13–23. ACM (2007)

http://science.energy.gov/~/media/ascr//pdf/reports/Exascale_subcommittee_report.pdf
http://science.energy.gov/~/media/ascr//pdf/reports/Exascale_subcommittee_report.pdf
http://science.energy.gov/~/media/ascr//pdf/reports/Exascale_subcommittee_report.pdf

Accuracy of Energy Predictive Models Using Additivity of PMCs 65

7. Hackenberg, D., Ilsche, T., Schöne, R., Molka, D., Schmidt, M., Nagel, W.E.: Power
measurement techniques on standard compute nodes: a quantitative comparison.
In: 2013 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 194–204. IEEE (2013)

8. Haj-Yihia, J., Yasin, A., Asher, Y.B., Mendelson, A.: Fine-grain power breakdown
of modern out-of-order cores and its implications on skylake-based systems. ACM
Trans. Archit. Code Optim. (TACO) 13(4), 56 (2016)

9. HCL: HCLWattsUp: API for power and energy measurements using WattsUp Pro
Meter (2016). http://git.ucd.ie/hcl/hclwattsup

10. Heath, T., Diniz, B., Horizonte, B., Carrera, E.V., Bianchini, R.: Energy conser-
vation in heterogeneous server clusters. In: 10th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pp. 186–195. ACM
(2005)

11. IntelPCM: Intel R© performance counter monitor - a better way to measure cpu
utilization (2012). https://software.intel.com/en-us/articles/intel-performance-
counter-monitor

12. Isci, C., Martonosi, M.: Runtime power monitoring in high-end processors: method-
ology and empirical data. In: 36th Annual IEEE/ACM International Symposium
on Microarchitecture, p. 93. IEEE Computer Society (2003)

13. Kansal, A., Zhao, F.: Fine-grained energy profiling for power-aware application
design. ACM SIGMETRICS Perform. Eval. Rev. 36(2), 26 (2008)

14. Li, T., John, L.K.: Run-time modeling and estimation of operating system power
consumption. In: ACM SIGMETRICS Performance Evaluation Review, vol. 31,
pp. 160–171. ACM (2003)

15. Mair, J., Huang, Z., Eyers, D.: Manila: using a densely populated pmc-space for
power modelling within large-scale systems. Parallel Comput. 82, 37–56 (2019)

16. McCullough, J.C., Agarwal, Y., Chandrashekar, J., Kuppuswamy, S., Snoeren,
A.C., Gupta, R.K.: Evaluating the effectiveness of model-based power characteri-
zation. In: Proceedings of the 2011 USENIX Conference on USENIX Annual Tech-
nical Conference. USENIXATC 2011. USENIX Association (2011)

17. O’Brien, K., Pietri, I., Reddy, R., Lastovetsky, A., Sakellariou, R.: A survey of
power and energy predictive models in HPC systems and applications. ACM Com-
put. Surv. 50(3), 37 (2017)

18. PAPI: Performance application programming interface 5.4.1 (2015). http://icl.cs.
utk.edu/papi/

19. Perf Wiki: perf: Linux profiling with performance counters (2017). https://perf.
wiki.kernel.org/index.php/Main Page

20. Rivoire, S., Ranganathan, P., Kozyrakis, C.: A comparison of high-level full-system
power models. In: Proceedings of the 2008 Conference on Power Aware Computing
and Systems, HotPower 2008. USENIX Association (2008)

21. Shahid, A., Fahad, M., Reddy, R., Lastovetsky, A.: Additivity: a selection crite-
rion for performance events for reliable energy predictive modeling. Supercomput.
Front. Innovations 4(4), 50–65 (2017)

22. Shahid, A., Fahad, M., Reddy Manumachu, R., Lastovetsky, A.: Supplemen-
tal: Improving the accuracy of energy predictive models for multicore cpus
using Additivity of performance monitoring counters (2019). https://github.
com/ArsalanShahid116/SLOPE-PMC/blob/master/PaCT-2019-Additivity-
supplemental.pdf

23. Singh, K., Bhadauria, M., McKee, S.A.: Real time power estimation and thread
scheduling via performance counters. SIGARCH Comput. Archit. News 37(2), 46–
55 (2009)

http://git.ucd.ie/hcl/hclwattsup
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/ArsalanShahid116/SLOPE-PMC/blob/master/PaCT-2019-Additivity-supplemental.pdf
https://github.com/ArsalanShahid116/SLOPE-PMC/blob/master/PaCT-2019-Additivity-supplemental.pdf
https://github.com/ArsalanShahid116/SLOPE-PMC/blob/master/PaCT-2019-Additivity-supplemental.pdf

66 A. Shahid et al.

24. Smarr, L.: Project greenlight: optimizing cyber-infrastructure for a carbon-
constrained world. Computer 43(1), 22–27 (2010)

25. Treibig, J., Hager, G., Wellein, G.: LIKWID: a lightweight performance-oriented
tool suite for x86 multicore environments. In: 2010 39th International Conference
on Parallel Processing Workshops (ICPPW), pp. 207–216. IEEE (2010)

26. Wang, H., Jing, Q., Chen, R., He, B., Qian, Z., Zhou, L.: Distributed systems meet
economics: pricing in the cloud. In: Proceedings of the 2nd USENIX Conference
on Hot Topics in Cloud Computing. USENIX Association (2010)

27. Wang, S.: Ph.d thesis: Software power analysis and optimization for power-aware
multicore systems (2014)

28. Zhou, Z., Abawajy, J.H., Li, F., Hu, Z., Chowdhury, M.U., Alelaiwi, A., Li, K.:
Fine-grained energy consumption model of servers based on task characteristics in
cloud data center. IEEE Access 6, 27080–27090 (2018)

An Experimental Study of Data Transfer
Strategies for Execution of Scientific

Workflows

Oleg Sukhoroslov(B)

Institute for Information Transmission Problems
of the Russian Academy of Sciences, Moscow, Russia

sukhoroslov@iitp.ru

Abstract. The paper studies the impact of data transfer strategies
on the execution of scientific workflows. Five strategies are described,
which define when and in what order data transfers are performed dur-
ing the workflow execution. The strategies are experimentally evaluated
by means of simulation using a realistic network model. It is demon-
strated that the execution time of data-intensive workflows significantly
depends on the used strategy. In particular, Eager and Lazy strategies,
often used in theory and practice of workflow scheduling, demonstrate
the poor results in most cases. The alternative strategies provide up to
36% makespan improvement by overlapping communications and com-
putations, prioritizing data transfers and reducing network contention.

Keywords: Scientific workflows · Data-intensive computing ·
Task scheduling · Data management · Simulation

1 Introduction

Workflows is an important class of loosely coupled parallel applications that
consist of multiple tasks with control or data dependencies. Such applications
are widely used for automation of complex computational and data processing
pipelines in science and technology [16]. The tasks in workflows run indepen-
dently by exchanging data only through their input and output files.

Workflows are well suited for parallel execution on distributed computing
systems such as clusters, grids and clouds. However, the efficiency of workflow
execution in a system critically depends on the methods used to schedule the
tasks among the system nodes which is an active area of research [21,22]. The
typical objective is to minimize the workflow execution time or cost, possibly
subject to additional constraints such as a fixed budget or a deadline.

The explosive growth of data observed in many domains has led to the prolif-
eration of workflows that consume and produce large amounts of data that has
to be transferred between the tasks during the workflow execution. For example,
in the survey of scientific workflows from several domains [9] the size of data files

c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 67–79, 2019.
https://doi.org/10.1007/978-3-030-25636-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_6

68 O. Sukhoroslov

varied from 2 GB to more than 200 TB. In some cases, the CPU time allocated
to I/O operations exceeded the time spent by computations.

Data-intensive workflows have specific runtime requirements [10]. Besides
the task scheduling, the execution of such workflows requires a careful choice
of data management strategies, since data transfers can significantly impact the
execution time. A multitude of approaches have been proposed over the last
decade that consider the data location and transfers when scheduling workflows
in distributed systems. These works make different assumptions on the data
sharing and transfer models, however the trade-offs among the different strategies
and their impact on the workflow execution are poorly studied. Also, previous
work almost completely ignores the network contention caused by concurrent
data transfers which can significantly impact the data transfer times.

We argue that the efficient execution of data-intensive workflows requires
considering not only the placement of data files (space dimension), but also the
scheduling of data transfers (time dimension). As a first step in this direction, we
investigate several data transfer strategies in isolation from the task scheduling
algorithm. We describe five strategies and evaluate their impact on the execution
of scientific workflows by means of simulation using a realistic network model.

We demonstrate that the execution time of data-intensive workflows signifi-
cantly depends on the used data transfer strategy. In particular, Eager strategy,
assumed in many theoretical studies of workflow scheduling, performs the worst
in most cases. Similarly, Lazy strategy, used in many practical implementa-
tions, never achieves the best results. The alternative strategies provide up to
36% makespan improvement by overlapping communications and computations,
prioritizing data transfers and reducing network contention. The relative perfor-
mance of the studied strategies depends on the workflow properties.

The paper is structured as follows. Section 2 discusses the related work.
Section 3 describes the workflow scheduling problem along with the used work-
flow and system models. Section 4 describes and discusses the studied data trans-
fer strategies. Section 5 presents the results of simulation experiments. Section 6
concludes and discusses the future work.

2 Related Work

A multitude of approaches have been proposed that consider the data location
and transfers when scheduling workflows in distributed infrastructures.

Heterogeneous Earliest Finish Time (HEFT) [18] is a well-known list schedul-
ing heuristic that takes into account the workflow graph (data dependencies)
and data transfer times. However, HEFT and other similar heuristics do not
consider the data placement during the scheduling, i.e the locality of data files
is not explicitly explored. More recent works on scheduling workflows in clouds
[1,5,13] take into account VM provision, financial costs and deadlines, but also
do not explore the data assignment. Works [11,20,23] focus on execution of
workflows across multiple data centers and propose data placement strategies
to reduce the data transfers between data centers. However, the task scheduling

An Experimental Study of Data Transfer Strategies for Scientific Workflows 69

and minimization of execution time are not deeply treated in such approaches,
e.g. tasks are simply assigned to the data center which stores the most of input
data. In [7] an integrated task and data placement algorithm based on graph
partitioning is proposed with the goal of minimizing data transfers. Bryk et al.
[4] propose a dynamic scheduling algorithm for workflow ensembles in clouds
that minimizes the number of transfers by taking advantage of data caching and
file locality. Finally, works [15,17] explicitly treat the data and task assignment
problems together and propose scheduling algorithms aiming at minimizing both
data transfers and the total execution time of the workflow.

These works make different assumptions on the data sharing and transfer
models. For example, some works assume direct data transfers between the exe-
cution nodes [17,18], while others rely on a shared storage system (e.g. Amazon
S3) for exchanging data between the workflow tasks [4,15]. Similarly, the data
staging strategies range from the eager transfers of input data as soon as it is
available [18] to the lazy transfers tightly coupled with task execution [4]. At
the same time, the trade-offs among the different strategies and their impact
on the execution of data-intensive workflows are poorly studied. Bharathi et al.
[2] analyzed different data staging strategies based on the degree of interac-
tion between the workflow manager and the data placement service. However,
the studied strategies rely on the centralized management of data transfers and
explore only simple sequential ordering of data transfers.

Also, previous work almost completely ignores the network contention which
can significantly impact the data transfer times [12]. For example, HEFT and
other static heuristics use the full network bandwidth for estimating the data
transfer times, since modifying such algorithms to take into account the interfer-
ence of data transfers is very challenging. Indeed, the transfers associated with
a just scheduled task can impact the transfers and start times of the previously
scheduled tasks. This assumption is also used in dynamic scheduling algorithms,
which at least can try to adapt to the introduced inaccuracies. Similarly, when
evaluating the proposed algorithms authors often rely on simulators with flaws in
their network model [19]. Interestingly, Bryk et al. [4], while using simple transfer
time estimates in their scheduling algorithm, actually simulate the bandwidth
sharing in the modeled system and serialize data transfers to mitigate the con-
gestion effects. This confirms the importance of employed data transfer strategy.

This paper addresses the aforementioned issues by analyzing the impact of
different data transfer strategies on the execution of data-intensive workflows
while taking into account the network contention. In contrast to related works,
direct data transfers between the execution nodes are assumed without the use
of a shared storage or a centralized data transfer manager.

3 Problem Description

In this section, we describe the main assumptions of the used workflow and
system models, introduce the workflow scheduling problem and HEFT algorithm.

A workflow is modeled as a directed acyclic graph, W = (T,D), where T is
the set of t vertices (tasks) and D is the set of d edges (dependencies) between the

70 O. Sukhoroslov

tasks. Each task ti has a weight wi equal to the required amount of computations.
Each edge (i, j) ∈ D represents a precedence constraint, such that task ti should
complete before task tj starts, and has a weight di,j equal to the amount of
data required to be transmitted between the tasks. A task without any parent
is called an entry task and a task without any child is called an exit task.

The distributed computing system is modeled as a set N of n nodes con-
nected via a network. Each node ni is characterized by its performance pi which
allows to estimate the task execution times. It is assumed that each node can
execute one task at a time and the task execution is nonpreemptive. The network
has a star topology where each node is connected to a central backbone via a
dedicated link li characterized by its bandwidth Bi and latency Li. The rate of
communication between a pair of nodes is determined only by the characteris-
tics of the corresponding links. The link bandwidth is shared between concurrent
data transfers using the realistic model [19].

The entry and exit tasks are executed on a dedicated master node, which does
not participate in the execution of ordinary tasks. This node corresponds to the
machine which stores the workflow input data and where the output data should
be placed after the workflow execution. The intermediate data produced by the
tasks is stored on the nodes that executed the corresponding tasks. The data
required for a task execution is transferred directly from the corresponding nodes.
It is also assumed that task execution can be overlapped with data transfers.

The workflow scheduling problem is to find the optimal assignment of work-
flow tasks to system nodes with respect to a given criterion. In this work, we
consider minimizing the workflow execution time (makespan) and use the well-
known Heterogeneous Earliest Finish Time (HEFT) algorithm [18]. This algo-
rithm takes into account the data dependencies between tasks by employing the
following list scheduling heuristics. The tasks are scheduled in descending order
of their rank computed as

rank(ti) = wi + max
tj∈children(ti)

(ci,j + rank(tj)) ,

where wi is the average execution time of task ti and ci,j is the average commu-
nication time between tasks ti and tj . Each task is scheduled to a node with a
minimum earliest finish time for this task.

HEFT and other static scheduling algorithms require a priori estimates of
task execution and data transfer times. In this work, it is assumed that the for-
mer are exact, while the latter are obtained using the full network bandwidth as
in related works. The network contention caused by concurrent data transfers
during the workflow execution can significantly impact the transfer times and
invalidate the assumptions made by the algorithm. This can lead to the perfor-
mance degradation of produced schedules [12]. However, the amount of network
contention can depend on a strategy used for scheduling of data transfers.

An Experimental Study of Data Transfer Strategies for Scientific Workflows 71

4 Data Transfer Strategies

Data transfer strategy defines when and in what order data transfers, correspond-
ing to edges in a workflow DAG, are performed during the workflow execution.
For each data transfer, the source task is called producer and the destination
task is called consumer. In this study, the following strategies are considered.

Eager: In this strategy, the data transfer starts immediately after the data is
ready, i.e. the producer is completed, and the destination node is known, i.e.
the consumer is scheduled to some node. In case of static scheduling, the lat-
ter information can be made available for all nodes before the workflow execu-
tion, so that the data transfers are started as earliest as possible. This strategy
is often implicitly assumed in theoretical and simulation studies of workflow
scheduling algorithms, because it looks effective and is simple to model analyt-
ically. However, in practice, this strategy can cause severe network contention
for data-intensive workflows, thereby delaying the execution of upcoming tasks
and resulting in significant divergence from the original static schedule.

Lazy: In this strategy, the data transfer is performed when the destination node
is ready to execute the consumer task, subject to readiness of the data. Lazy
strategy is the opposite to Eager strategy, since it delays the data transfer to the
latest time possible, i.e. when the data is actually needed, by tightly coupling the
data transfer and task execution. The obvious drawback of this approach is that
it does not allow to overlap communications and computations, since the node is
idle when it waits for the data transfer to complete. Nevertheless, this approach
is often used in real systems along with dynamic scheduling of ready tasks to idle
nodes. In this case, the destination node is not known beforehand, and Lazy is
the only applicable strategy. For static or forward dynamic scheduling, the node
schedule is known completely or for some time ahead, which enables the use of
more advanced strategies for overlapping communications and computations.

Eager and Lazy strategies form the two opposite sides of the spectrum of pos-
sible data transfer strategies, each with its shortcomings. The following strategies
try to address these shortcomings by prefetching task input data and prioritizing
data transfers according to the workflow execution schedule.

Prefetch: In this strategy, the data transfer is scheduled when the destination
node begins to execute a task immediately preceding the consumer task. This
approach is similar to prefetching technique widely used in computer science
where the data expected to be needed soon is loaded in advance. In contrast
to Lazy strategy, this approach allows to reduce the node idle time by overlap-
ping the data transfer with task execution. However, the idle time can not be
completely eliminated if the data transfer takes more time than the execution of
preceding task, or if the data transfer is delayed because the data is not ready.
This approach requires the information about the current and the next task
scheduled on the node, i.e. the use of static or forward dynamic scheduling.

Queue: In this strategy, data transfers on each destination node are scheduled
sequentially in the order of planned execution of consumer tasks on this node. In

72 O. Sukhoroslov

comparison to Prefetch strategy, this approach allows to more flexibly load data
for upcoming tasks in advance, i.e. before the execution of preceding task. In
contrast to Eager strategy, this approach prioritizes data transfers, so that the
tasks soon to be executed receive their data before the tasks far in the schedule.
Also, since incoming data transfers on each node are performed sequentially,
this strategy can reduce network contention, though outgoing transfers are not
limited. This strategy requires a task schedule on each node, i.e. the use of
static or forward dynamic scheduling. When only a single next task is known,
this strategy is equivalent to Prefetch. A possible drawback of this strategy is
that it can delay data transfers, and consequently task execution, by introducing
additional dependencies on data transfers of the preceding task. In particular, if
some input data for a given task has become ready earlier than the data for the
preceding task, the former cannot be downloaded before the latter.

QueueECT: In this strategy, data transfers on each destination node are sched-
uled sequentially in the order of expected completion time of producer tasks,
breaking the ties with the order of planned execution of consumer tasks as in
Queue. The intuition behind this strategy is to avoid the mentioned drawback
of Queue by prioritizing data transfers for data that is expected to be ready
earlier. While this approach allows to better utilize network by avoiding delays
of data transfers, it has two drawbacks. First, it can delay execution of a task
due to interfering data transfers of succeeding tasks. Second, it requires infor-
mation about the expected completion time of each task, while other strategies
require only a list of scheduled tasks on each node. This also makes this strategy
sensitive to inaccuracies in estimates during the workflow execution.

5 Experimental Study

The impact of described data transfer strategies has been studied by means of
simulation using pysimgrid1, an open source framework for studying schedul-
ing in distributed computing systems. This framework is implemented on the
base of mature SimGrid toolkit [6] which includes a verified network model [19].
pysimgrid implements a thin Python wrapper around the native SimGrid C API
and provides convenient interfaces for implementation of scheduling algorithms
and running simulations. The framework includes implementations of several
scheduling algorithms along with tools for generation of synthetic systems and
applications, batch execution of experiments and analysis of produced results.

The studied data transfer strategies have been implemented in pysimgrid by
using the SimDAG library from SimGrid. It maintains an internal DAG repre-
sentation of the workflow, which explicitly treats data transfers as special tasks,
i.e. vertices that are connected with producer and consumer tasks. Data transfer
tasks are automatically started by SimDAG when the producer is completed and
the consumer is scheduled. This behavior corresponds to Eager strategy. Other
strategies have been implemented by adding extra dependencies between the

1 https://github.com/alexmnazarenko/pysimgrid.

https://github.com/alexmnazarenko/pysimgrid

An Experimental Study of Data Transfer Strategies for Scientific Workflows 73

data transfer and compute tasks. For example, Lazy strategy is implemented by
adding dependencies between data transfer tasks and preceding compute tasks.

To model diverse workflow structures, the following workflows based on real-
world scientific applications are used in experiments: CyberShake, Epigenomics,
Inspiral, Montage [3], Montage1.5 [8], 1000Genome [14]. The majority of work-
flows consist of 100 tasks, except Montage1.5 (472 tasks) and 1000Genome (52
tasks). The workflows have been converted from DAX to DOT format used by
pysimgrid. During the conversion, multiple data transfers between the same pair
of tasks were replaced by a single data transfer with total data size, since pysim-
grid do not support multigraphs. To model different levels of data intensity,
multiple workflow instances were produced by scaling all data transfer sizes to
meet the specified CCR (communication to computation ratio) values. CCR is
reported as the ratio of the sum of data transfer times, disregarding network con-
tention, to the sum of task execution times, using the mean node performance.

The systems used in experiments consist of 5 or 10 worker nodes with perfor-
mance randomly distributed between 1 and 4 GFLOPS. Each node is connected
with others (via central backbone) by a network link with 100 MB/s bandwidth
and 100 us latency. 100 random systems are generated for each node count.

HEFT implementation from pysimgrid is used for scheduling of workflow
tasks. The choice of static algorithm is motivated by the use of task schedules
in many strategies. Also, this allows to investigate the influence of data trans-
fer strategies on degradation of static schedule due to network contention. The
algorithm implementation is modified to take into account both Eager and Lazy
strategies when computing data transfer estimates. Taking into account other
strategies inside HEFT is much harder and is left for future work.

The described workflows have been executed in simulated heterogeneous sys-
tems using the studied data transfer strategies. Makespan is used as the base
performance metric. For each workflow-system pair we perform runs using each
of studied data transfer strategies and then normalize their makespans to the
makespan of the baseline strategy, Eager. To reduce variance, we compute the
mean of normalized makespans across all systems and report these values in the
tables. The complete experimental setup is published on GitHub2.

Table 1 contains the results for execution of workflows with varying CCR on
systems with 5 and 10 nodes (the best results for each configuration are marked
with *). As expected, for small CCR the effect of data transfers on the makespan
is minimal, and all strategies perform similar. However, when CCR is increas-
ing, the results of different strategies increasingly diverge. Prefetch and Eager
strategies demonstrate the best and the worst results in the majority of cases
(79% and 67%) respectively, except Montage1.5 discussed later. Lazy strategy
never achieves the best results and is worst in 21% of cases. Queue strategy per-
forms the best in 44% of cases with results close to Prefetch. QueueECT shows
mixed results with good results for Montage and 1000Genome, and poor ones
for Epigenomics and Inspiral.

2 https://github.com/osukhoroslov/pysimgrid-experiments/tree/master/pact2019.

https://github.com/osukhoroslov/pysimgrid-experiments/tree/master/pact2019

74 O. Sukhoroslov

Table 1. Normalized makespan for systems with 5 (left) and 10 (right) nodes

CCR, % Eager Lazy Pfetch Queue QECT

CyberShake

1 1.000 0.998 0.997* 0.997* 0.997*
5 1.000 0.991 0.983* 0.984 0.985
10 1.000 0.985 0.971* 0.971* 0.974
20 1.000 0.975 0.953* 0.955 0.963

Epigenomics

1 1.000 0.974 0.964* 0.964* 1.000
5 1.000 0.899 0.850* 0.850* 1.000
10 1.000 0.853 0.750* 0.750* 1.000
20 1.000 0.821 0.641* 0.647 1.000

Inspiral

1 1.000 0.968 0.957* 0.957* 0.996
5 1.000 0.878 0.839 0.837* 0.996
10 1.000 0.818 0.757 0.749* 0.995
20 1.000 0.782 0.722 0.691* 0.995

Montage

1 1.000 1.006 0.998* 1.001 0.998*
5 1.000 1.033 0.990* 1.001 0.990*
10 1.000 1.062 0.969* 0.991 0.982
20 1.000 1.045 0.874* 0.899 0.984

Montage1.5

1 1.000* 1.005 1.004 1.003 1.000*
5 1.000* 1.063 1.079 1.078 1.001
10 1.000* 1.133 1.205 1.215 1.005
20 1.000* 1.260 1.448 1.479 1.017

1000Genome

1 1.000 0.973 0.966* 0.966* 0.966*
5 1.000 0.898 0.859* 0.859* 0.859*
10 1.000 0.853 0.768* 0.768* 0.768*
20 1.000 0.824 0.729* 0.734 0.734

CCR, % Eager Lazy Pfetch Queue QECT

CyberShake

1 1.000 0.996 0.995* 0.995* 0.995*
5 1.000 0.985 0.978* 0.980 0.981
10 1.000 0.977 0.965* 0.969 0.971
20 1.000 0.970 0.949* 0.954 0.965

Epigenomics

1 1.000 0.963 0.954* 0.954* 0.999
5 1.000 0.893 0.827* 0.827* 0.998
10 1.000 0.880 0.737* 0.737* 1.000
20 1.000 0.898 0.761* 0.761* 1.000

Inspiral

1 1.000 0.942 0.933* 0.934 0.992
5 1.000 0.827 0.802* 0.819 0.990
10 1.000 0.790 0.767* 0.797 0.986
20 1.000 0.810 0.807* 0.811 0.984

Montage

1 1.000 1.006 0.997* 1.002 0.998
5 1.000 1.026 0.976* 1.002 0.986
10 1.000 1.050 0.940* 0.990 0.997
20 1.000 1.036 0.851* 0.916 1.005

Montage1.5

1 1.000* 1.002 1.000* 1.002 1.000*
5 1.000* 1.040 1.064 1.061 1.006
10 1.000* 1.136 1.237 1.251 1.017
20 1.000* 1.231 1.511 1.548 1.079

1000Genome

1 1.000 0.966 0.962* 0.962* 0.962*
5 1.000 0.894 0.864* 0.864* 0.864*
10 1.000 0.883 0.802* 0.802* 0.803
20 1.000 0.905 0.838* 0.838* 0.839

Figure 1 contains the Gantt charts for execution of Epigenomics workflow
with CCR = 20% on a 5-node system. In this case, Prefetch strategy reduced
the workflow makespan by 36% in comparison to Eager (Queue, excluded from
the figure, has similar schedule). This workflow has large input data, which is
required by 26 of 100 tasks, and relatively small intermediate and output data.
Therefore, Eager strategy quickly saturates the network with input data transfers
and significantly delays task execution. Lazy strategy manages to decrease the
makespan by 18% by reducing the network contention, but creates noticeable
idle gaps between the task executions. Prefetch and Queue further decrease the
makespan by 18% by overlapping data transfers with task execution.

The results for Montage1.5 stands out from the rest of experiments, since
Eager strategy consistently outperforms other strategies, while Prefetch and
Queue perform the worst. Figure 2 contains the workflow structure and Gantt
charts for execution of Montage1.5 instance with CCR = 20% on a 5-node sys-
tem. These results can be explained by the workflow structure and task sizes.
The first layer consists of 48 mProjectPP tasks (colored yellow), the second

An Experimental Study of Data Transfer Strategies for Scientific Workflows 75

(a) Eager (b) Lazy

(c) Prefetch (d) QueueECT

Fig. 1. Gantt charts for execution of Epigenomics CCR = 20% on a 5-node system
(blue - task execution, green - data upload, red - data download) (Color figure online)

layer consists of 320 mDiffFit tasks (blue) and the fifth layer consists of 48
mBackground tasks (green). The task executions in Gantt charts are colored
according to these task groups, and data transfers are colored in black and gray.
The execution of mProjectPP tasks dominates the run time, while mDiffFit and
mBackground tasks, requiring data produced by mProjectPP tasks, take sig-
nificantly less time. Eager strategy manages to transfer the required data to
subsequent tasks the earliest by overlapping transfers with mProjectPP tasks
without impacting their execution. Prefetch strategy starts to transfer required
data late and fails to overlap data transfers with execution of small tasks. Queue
strategy starts early, but since it serializes data transfers according to the task
execution order, it can severely delay some transfers while waiting for data for
preceding tasks if such data is produced in a different order. Indeed, QueueECT
strategy, which serializes data transfers according to expected data readiness,
performs close to Eager. Interestingly, Lazy strategy performs slightly better
than Prefetch and Queue.

In contrast to Montage1.5, the Montage instance with 100 tasks has balanced
task sizes across all layers and is executed the fastest with Prefetch strategy.
CyberShake workflow demonstrates the lowest speedup, since its makespan is
dominated by the large data transfers to two initial tasks, which leaves less room
for optimizations. For 1000Genome workflow, the results of Prefetch, Queue and

76 O. Sukhoroslov

(a) Montage

(b) Eager

(c) Prefetch

Fig. 2. Montage workflow structure (a) and Gantt charts (b-c) for execution of Mon-
tage1.5 CCR = 20% on a 5-node system

QueueECT are almost identical, since all significant data transfers are concen-
trated on the first layer of the workflow.

The ratio of simulated makespan to makespan expected by HEFT algorithm
for experiments on 5-node systems is presented in Table 2. As expected, the
error caused by inaccurate data transfer time estimates made in the algorithm
increases with CCR. However, the resulting error significantly depends on the

Table 2. The ratio of simulated makespan to makespan expected by HEFT for runs
on 5-node systems

CCR, % Eager Lazy Pfetch Queue QECT

CyberShake

1 1.023 1.020 1.020 1.020 1.020
20 1.366 1.302 1.301 1.304 1.315

Epigenomics

1 1.048 1.010 1.011 1.011 1.048
20 1.926 1.319 1.233 1.245 1.926

Inspiral

1 1.049 1.005 1.004 1.004 1.045
20 2.008 1.320 1.450 1.386 1.997

CCR, % Eager Lazy Pfetch Queue QECT

Montage

1 1.002 1.004 1.001 1.003 1.001
20 1.188 1.143 1.036 1.066 1.169

Montage1.5

1 1.001 1.005 1.005 1.004 1.001
20 1.056 1.266 1.531 1.563 1.074

1000Genome

1 1.048 1.011 1.012 1.012 1.012
20 1.918 1.365 1.398 1.407 1.407

An Experimental Study of Data Transfer Strategies for Scientific Workflows 77

used data transfer strategy. For example, the use of Eager strategy for Epige-
nomics, Inspiral and 1000Genome results in 100% error, i.e. the real makespan
is twice the expected, while the use of other strategies allows to significantly
reduce this error (up to 23%). Note that the error reported for Lazy strategy
is not consistent with results from the Table 1 since the HEFT implementation
was modified to take into account this strategy when computing estimates.

6 Conclusion and Future Work

In this paper, several data transfer strategies for execution of scientific work-
flows have been described and experimentally evaluated by simulating execution
of different workflows based on real-world scientific applications. It is demon-
strated that the execution time of data-intensive workflows significantly depends
on the used data transfer strategy. In particular, the commonly used Eager and
Lazy strategies demonstrate the poor results in the most of cases. Prefetch and
Queue strategies performed the best by overlapping communications and com-
putations, prioritizing data transfers and reducing network contention, which
resulted in up to 36% makespan improvement. Nonetheless, as was also demon-
strated, there are cases where Eager can outperform other strategies, so the
relative performance of these strategies depends on the workflow properties.

An obvious limitation of this study is that data transfer strategies are used
in isolation from the task scheduling algorithm. We plan to address this issue
in future work by investigating the use of these strategies inside the work-
flow scheduling algorithms to implement coscheduling of computations and data
transfers. It is also planned to study the choice of optimal strategy depending
on the workflow properties, develop advanced strategies that take into account
overall network utilization, and incorporate optimizations such as data caching.

Acknowledgments. This work is supported by the Russian Science Foundation
(project 16-11-10352).

References

1. Abrishami, S., Naghibzadeh, M., Epema, D.H.: Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds. Future Gener. Comput.
Sys. 29(1), 158–169 (2013)

2. Bharathi, S., Chervenak, A.: Data staging strategies and their impact on the execu-
tion of scientific workflows. In: Proceedings of the Second International Workshop
on Data-Aware Distributed Computing, p. 5. ACM (2009)

3. Bharathi S., Chervenak A., Deelman E., Mehta G., Su M.H., Vahi K.: Character-
ization of scientific workflows. In: 2008 Third Workshop on Workflows in Support
of Large-Scale Science, pp. 1–10, November 2008

4. Bryk, P., Malawski, M., Juve, G., Deelman, E.: Storage-aware algorithms for
scheduling of workflow ensembles in clouds. J. Grid Comput. 14(2), 359–378 (2016)

78 O. Sukhoroslov

5. Byun, E.K., Kee, Y.S., Kim, J.S., Maeng, S.: Cost optimized provisioning of elastic
resources for application workflows. Future Gener. Comput. Syst. 27(8), 1011–1026
(2011)

6. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scal-
able, and accurate simulation of distributed applications and platforms. J. Parallel
Distrib. Comput. 74(10), 2899–2917 (2014)

7. Çatalyürek, Ü.V., Kaya, K., Uçar, B.: Integrated data placement and task assign-
ment for scientific workflows in clouds. In: Proceedings of the Fourth International
Workshop on Data-Intensive Distributed Computing, pp. 45–54. ACM (2011)

8. Deelman, E., et al.: Pegasus, a workflow management system for science automa-
tion. Future Gener. Comput. Syst. 46, 17–35 (2015)

9. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Char-
acterizing and profiling scientific workflows. Future Gener. Comput. Syst. 29(3),
682–692 (2013)

10. Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-intensive scientific
workflow management. J. Grid Comput. 13(4), 457–493 (2015)

11. Liu, Z., et al.: A data placement strategy for scientific workflow in hybrid cloud.
In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp.
556–563. IEEE (2018)

12. Nazarenko, A., Sukhoroslov, O.: An experimental study of workflow scheduling
algorithms for heterogeneous systems. In: Malyshkin, V. (ed.) PaCT 2017. LNCS,
vol. 10421, pp. 327–341. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-62932-2 32

13. Pandey, S., Wu, L., Guru, S.M., Buyya, R.: A particle swarm optimization-based
heuristic for scheduling workflow applications in cloud computing environments.
In: 2010 24th IEEE International Conference on Advanced Information Networking
and Applications, pp. 400–407. IEEE (2010)

14. da Silva, R.F., Filgueira, R., Deelman, E., Pairo-Castineira, E., Overton, I.M.,
Atkinson, M.P.: Using simple PID controllers to prevent and mitigate faults in
scientific workflows. In: WORKS@ SC, pp. 15–24 (2016)

15. Szabo, C., Sheng, Q.Z., Kroeger, T., Zhang, Y., Yu, J.: Science in the cloud: allo-
cation and execution of data-intensive scientific workflows. J. Grid Comput. 12(2),
245–264 (2014)

16. Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.: Workflows for e-Science:
Scientific Workflows for Grids. Springer, London (2014). https://doi.org/10.1007/
978-1-84628-757-2

17. Teylo, L., de Paula, U., Frota, Y., de Oliveira, D., Drummond, L.M.: A hybrid
evolutionary algorithm for task scheduling and data assignment of data-intensive
scientific workflows on clouds. Future Gener. Comput. Syst. 76, 1–17 (2017)

18. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002)

19. Velho, P., Schnorr, L.M., Casanova, H., Legrand, A.: On the validity of flow-level
TCP network models for grid and cloud simulations. ACM Trans. Model. Comput.
Simul. (TOMACS) 23(4), 23 (2013)

20. Wang, M., Zhang, J., Dong, F., Luo, J.: Data placement and task scheduling opti-
mization for data intensive scientific workflow in multiple data centers environment.
In: 2014 Second International Conference on Advanced Cloud and Big Data, pp.
77–84. IEEE (2014)

21. Wu, F., Wu, Q., Tan, Y.: Workflow scheduling in cloud: a survey. J. Supercomput.
71(9), 3373–3418 (2015)

https://doi.org/10.1007/978-3-319-62932-2_32
https://doi.org/10.1007/978-3-319-62932-2_32
https://doi.org/10.1007/978-1-84628-757-2
https://doi.org/10.1007/978-1-84628-757-2

An Experimental Study of Data Transfer Strategies for Scientific Workflows 79

22. Yu, J., Buyya, R., Ramamohanarao, K.: Workflow scheduling algorithms for grid
computing. In: Xhafa, F., Abraham, A. (eds.) Metaheuristics for Scheduling in
Distributed Computing Environments. Studies in Computational Intelligence, vol.
146, pp. 173–214. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
69277-5 7

23. Yuan, D., Yang, Y., Liu, X., Chen, J.: A data placement strategy in scientific cloud
workflows. Future Gener. Comput. Syst. 26(8), 1200–1214 (2010)

https://doi.org/10.1007/978-3-540-69277-5_7
https://doi.org/10.1007/978-3-540-69277-5_7

Preference Based and Fair Resources Selection
in Grid VOs

Victor Toporkov1(&), Dmitry Yemelyanov1, and Anna Toporkova2

1 National Research University “MPEI”,
Ul. Krasnokazarmennaya, 14, Moscow 111250, Russia

{ToporkovVV,YemelyanovDM}@mpei.ru
2 National Research University Higher School of Economics,

Ul. Myasnitskaya, 20, Moscow 101000, Russia
atoporkova@hse.ru

Abstract. In this work, a preference-based resources allocation algorithm for a
job-flow scheduling in Grid virtual organizations (VOs) is proposed and studied.
Users’ and resource providers’ preferences, VOs internal policies, resources
geographical distribution along with local private utilization impose specific
requirements for efficient scheduling according to different, usually contradic-
tive, criteria. The algorithm performs resources selection optimization according
to a specified general criterion and may be used in a variety of scheduling
procedures, such as Backfilling or First Fit. Fair scheduling policies in VOs
assume resources distribution according to VO stakeholders individual prefer-
ences. For this purpose, we consider a target optimization criterion as a linear
combination of global (group) and private (user) job scheduling criteria. The
mutual importance factor between the private and the global criteria is intro-
duced to achieve a balanced scheduling solution.

Keywords: Scheduling � Grid � Resources selection � Utilization �
Virtual organization � Preferences � Private � Global

1 Introduction and Related Works

In Grids with non-dedicated resources the computational nodes are usually partly
utilized by local high-priority jobs coming from resource owners. Thus, the resources
available for use are represented with a set of time intervals (slots) during which the
individual computational nodes are capable to execute parts of independent users’
parallel jobs. These slots generally have different start and finish times and a perfor-
mance difference. The presence of a set of slots impedes the problem of resources
allocation necessary to execute the job flow from VOs users. Resource fragmentation
also results in a decrease of the total computing environment utilization level [1, 2].

Application level scheduling [3] is based on the available resources utilization and,
as a rule, does not imply any global resource sharing or allocation policy. Job flow
scheduling in VOs [4, 5] suppose uniform rules of resource sharing and consumption,
in particular based on economic models [2, 3, 6]. This approach allows improving the
job-flow level scheduling and resource distribution efficiency. VO policy may offer

© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 80–92, 2019.
https://doi.org/10.1007/978-3-030-25636-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_7

optimized scheduling to satisfy both users’ and VO global preferences. The VO
scheduling problems may be formulated as follows: to optimize users’ criteria or utility
function for selected jobs [2, 7], to keep resource overall load balance [8, 9], to have
job run in strict order or maintain job priorities [10, 11], to optimize overall scheduling
performance by some custom criteria [12, 13], etc.

Computing system services support interfaces between users and providers of
computing resources and data storages, for instance, in datacenters. Personal prefer-
ences of VO stakeholders are usually contradictive. Users are interested in total
expenses minimization while obtaining the best service conditions: low response times,
high hardware specifications, 24/7/365 service, etc. Service providers and adminis-
trators, on the contrary, are interested in profits maximization based on resources load
efficiency, energy consumption, and system management costs. The challenges of
system management can lead to inefficient resources usage in some commercial and
corporate cloud systems.

Thus, VO policies in general should respect all members to function properly and
the most important aspect of rules suggested by VO is their fairness. A number of
works understand fairness as it is defined in the theory of cooperative games [7], such
as fair job flow distribution [9], fair quotas [14, 15], fair user jobs prioritization [11],
and non-monetary distribution [16]. In many studies VO stakeholders’ preferences are
usually ensured only partially: either owners are competing for jobs optimizing users’
criteria [3, 17], or the main purpose is the efficient resources utilization not considering
users’ preferences [10]. Sometimes multi-agent economic models are established
[3, 18]. Usually they do not allow optimizing the whole job flow processing.

The goal of the current study is to design a general resources selection procedure
and criteria to find a trade-off between VO stakeholders’ contradictory preferences. Fair
resource sharing assume that every VO stakeholder has mechanisms to influence
scheduling results providing own preferences. So, resources selection step may be used
for additional job scheduling optimization according to both global (VO) and private
(user) criteria. An important feature of the proposed approach is an independence from
the particular job-flow scheduling procedure, i.e. First Fit, backfilling or a cycle
scheduling scheme [12].

Main contribution of this paper is a general resources selection algorithm com-
bining VO stakeholders preferences in a single target optimization criterion. The
algorithm takes into account the system resources configuration and individual jobs
features: size, runtime, cost, etc. When used in high-performance distributed computing
systems and Grid metaschedulers during the resources allocation step it may improve
resources distribution according to fair share policies.

The rest of the paper is organized as follows. Section 2 presents the problem
statement and a general job-flow scheduling optimization approach based on conser-
vative backfilling. Section 3 contains experiment setup and the simulation results
obtained with different importance ratio of private and global criteria. Finally, Sect. 4
summarizes the paper.

Preference Based and Fair Resources Selection in Grid VOs 81

2 Job-Flow Scheduling Optimization

2.1 Problem Statement

We consider a set R of heterogeneous computing nodes with different performance pi
and price ci characteristics. Each node has a local utilization schedule known in
advance for a considered scheduling horizon time L. A node may be turned off or on by
the provider, transferred to a maintenance state, reserved to perform computational
jobs. Thus, it’s convenient to represent all available resources as a set of slots. Each slot
corresponds to one computing node on which it’s allocated and may be characterized
by its performance and price.

In order to execute a parallel job one needs to allocate the specified number of
simultaneously idle nodes ensuring user requirements from the resource request. The
resource request specifies number n of nodes required simultaneously, their minimum
applicable performance p, job’s computational volume V and a maximum available
resources allocation budget C. The required window length is defined based on a slot
with the minimum performance. For example, if a window consists of slots with
performances p 2 pi; pj

� �
and pi\pj, then we need to allocate all the slots for a time

T ¼ V
pi
. In this way V really defines a computational volume for each single job subtask

with no dynamic load redistribution possible: the worst scenario for the job runtime
estimation. Common start and finish times ensure the possibility of inter-node com-
munications during the whole job execution. The total cost of a window allocation is
then calculated as CW ¼ Pn

i¼1 T � ci.
These parameters constitute a formal generalization for resource requests common

among distributed computing systems and simulators.
Additionally we introduce a criterion f as a user preference for the particular job

execution during the scheduling horizon L. The criterion f can take a form of any
additive function and as an example, one may want to allocate suitable resources with
the maximum possible total data storage available before the specified deadline.

2.2 Job-Flow Scheduling with Backfilling

The simplest way to schedule a job-flow execution is to use the First-Come-FirstServed
(FCFS) policy. However this approach is inefficient in terms of resources utilization
and backfilling [10] was proposed to improve system utilization.

Backfilling procedure makes use of advanced resources reservations which is an
important mechanism preventing starvation of jobs requiring large number of com-
puting nodes. Resources reservations in FCFS may create idle slots in the nodes’ local
schedules thus decreasing system performance. So the main idea behind backfilling is
to backfill jobs into those idle slots to improve the overall system utilization. And the
backfilling procedure implements this by placing smaller jobs from the back of the
queue to these idle slots ahead of the priority order.

There are two common variations to backfilling - conservative and aggressive
(EASY). Conservative backfilling enforces jobs’ priority fairness by making sure that
jobs submitted later can’t delay the start of jobs arrived earlier. EASY backfilling

82 V. Toporkov et al.

aggressively fills jobs as long as they do not delay the start of a leading pending job.
Conservative backfilling considers jobs in the order of their arrival and either imme-
diately starts a job or makes an appropriate reservation upon the arrival. The jobs priority
in the queue may be additionally modified in order to improve system-wide job-flow
execution efficiency metrics. Under default FCFS policy the jobs are arranged by their
arrival time. Other priority reordering-based policies like Shortest job First or eXpansion
Factor may be used to improve overall resources utilization level [10, 19, 20].

Multiple Queues backfilling separates jobs into different queues based on metadata,
such as jobs resource requirements: small, medium, large, etc. The idea behind this
metaheuristic is that earlier arriving jobs and smaller-sized jobs should have higher
execution priority. The number of queues and the strategy for dividing tasks among
them can be set by the system administrators. Sometimes different queues may be
assigned to a dedicated resource domain segments and function independently. In a
single domain the metaheuristic cycles through the different queues in a round-robin
fashion and may consider more jobs from the queues with smaller-sized tasks [19].

The look-ahead optimizing scheduler [20] implements dynamic programming
scheme to examine all the jobs in the queue in order to maximize the current system
utilization. So, instead of scanning queue for single jobs suitable for the backfilling,
look-ahead scheduler attempts to find a combination of jobs that together will maxi-
mize the resources utilization.

2.3 General Window Search Procedure

Backfilling as well as many other job-flow scheduling algorithms in fact describe a
general procedure determining high level policies for jobs prioritization and advanced
resources reservations. However, the resources selection and allocation step remains
sidelined since its more system specific nature. On the other hand, applying different
resources allocation policies based on system or user preferences may affect scheduling
results not only for individual jobs but for a whole job-flow.

For a general window search procedure for the problem statement presented in
Sect. 2.1, we combine core ideas and solutions from algorithm AEP [21] and system
[22]. Both related algorithms perform window search procedure based on a list of slots
retrieved from a heterogeneous computing environment.

Following is the general square window search algorithm. It allocates a set of n
simultaneously available slots with performance pi [p, for a time, required to compute
V instructions on each node, with a restriction C on a total allocation cost and performs
optimization according to the criterion f . It takes a list of available slots ordered by
their non-decreasing start time as input.

1. Initializing variables for the best criterion value and corresponding best window:
fmax ¼ 0; wmax ¼ fg:

2. From the slots available we select different groups by node performance pi. For
example, group Pk contains resources allocated on nodes with performance pi �Pk.
Thus, one slot may be included in several groups.

3. Next is a cycle for all retrieved groups Pi starting from the max performance Pmax.
All the sub-items represent a cycle body.

Preference Based and Fair Resources Selection in Grid VOs 83

(a) The resources reservation time required to compute V instructions on a node
within group Pi is Ti ¼ V

pi
.

(b) Initializing variable for a window candidates list SW ¼ fg.
(c) Next is a cycle for all slots si in group Pi starting from the slot with the

minimum start time. The slots of group Pi should be ordered by their non-
decreasing start time. All the sub-items represent a cycle body.
(i) If slot si doesn’t satisfy any additional specific user requirements

(hardware, software, etc.) then continue to the next slot (3c).
(ii) If slot length l sið Þ\Ti then continue to the next slot (3c).
(iii) Set the new window start time Wi:start ¼ si:start.
(iv) Add slot si to the current window slot list SW
(v) Next a cycle to check all slots sj inside SW

(1) If there are no slots in SW with performance pðsjÞ ¼ pi then continue
to the next slot (3c), as current slots combination in SW was already
considered for previous group Pi�1.

(2) If Wi:startþ Ti [sj:end then remove slot sj from SW as it cannot be
part of a window with the new start time Wi:start.

(vi) If SW size is greater or equal to n, then allocate from SW a window Wi (a
subset of n slots with start time Wi:start and length Ti) with a maximum
criterion value fi and a total cost Ci\C. If fi [fmax then reassign fmax ¼
fi and Wmax ¼ Wi.

4. End of algorithm. At the output variable Wmax contains the resulting window with
the maximum criterion value fmax.

2.4 Optimal Slot Subset Allocation

Let us discuss in more details the procedure which allocates an optimal (according to
the criterion f) subset of n slots out of SW list (algorithm step 3c (vi)).

For some particular criterion functions f a straightforward subset allocation solution
may be offered. For example for a window finish time minimization it is reasonable to
return at step 3c(6) the first n cheapest slots of SW provided that they satisfy the
restriction on the total cost. These n slots (as any other n slots from SW at the current
step) will provide Wi:finish ¼ Wi:startþ Ti, so we need to set fi ¼ � Wi:startþ Tið Þ to
minimize the finish time at the end of the algorithm.

The same logic applies for a number of other important criteria, including window
start time, runtime and a total cost minimization.

However in a general case we should consider a subset allocation problem with
some additive criterion: Z ¼ Pn

i¼1 czðsiÞ, where cz sið Þ ¼ zi is a target optimization
characteristic value provided by a single slot si of Wi.

In this way we can state the following problem of an optimal n-size window
subset allocation out of m slots stored in SW :

Z ¼ x1z1 þ x2z2 þ � � � þ xmzm; ð1Þ

84 V. Toporkov et al.

with the following restrictions:

x1c1 þ x2c2 þ � � � þ xmcm �C;

x1 þ x2 þ � � � þ xm ¼ n;

xi 2 0; 1f g; i ¼ 1::m;

where zi is a target characteristic value provided by slot si, ci is total cost required to
allocate slot si for a time Ti, xi - is a decision variable determining whether to allocate
slot si (xi ¼ 1) or not (xi ¼ 0) for the current window.

This problem relates to the class of integer linear programming problems, which
imposes obvious limitations on the practical methods to solve it. However we used 0-1
knapsack problem as a base for our implementation. Indeed, the classical 0-1 knapsack
problem with a total weight C and items-slots with weights ci and values zi have the
same formal model (1) except for extra restriction on the number of items
required:x1 þ x2 þ � � � þ xm ¼ n. To take this into account we implemented the fol-
lowing dynamic programming recurrent scheme:

fi Cj; nk
� � ¼ max fi�1 Cj; nk

� �
; fi�1 Cj � ci; nk � 1

� �þ zi
� �

; ð2Þ

i ¼ 1; ::;m; j ¼ 1; ::;C; k ¼ 1; ::; n;

where fi Cj; nk
� �

defines the maximum Z criterion value for nk-size window allocated
out of first i slots from SW for a budget Cj. After the forward induction procedure (2) is
finished the maximum value Zmax ¼ fm C; nð Þ. xi values are then obtained by a back-
ward induction procedure.

An estimated computational complexity of the presented recurrent scheme is
O m � n � Cð Þ, which is n times harder compared to the original knapsack problem
ðOðm � CÞÞ. On the one hand, in practical job resources allocation cases this overhead
doesn’t look very large as we may assume that n � m and n � C. On the other hand,
this subset allocation procedure (2) may be called multiple times during the general
square window search algorithm (step 3c(vi)).

2.5 Preference Based Resources Allocation

The proposed Slots Subset Algorithm (SSA) performs window search optimization by
a general additive criterion Z ¼ Pn

i¼1 czðsiÞ, where cz sið Þ ¼ zi is a target optimization
characteristic value provided by a single slot si of window W . These criterion values zi
may represent different slot characteristics: time, cost, power, hardware and software
features, etc.

Introducing fair scheduling in VO requires mechanisms to influence scheduling
results for VO stakeholders according to their private, group or common integral
preferences. Individual users may have special requirements for the allocated resources,
for example, total cost minimization or performance maximization. From the other hand,

Preference Based and Fair Resources Selection in Grid VOs 85

VO policies usually assume optimization of a joint resources usage according to
accepted efficiency criteria. One straightforward example is a maximization of the
resources load.

In order to support both private and integral job-flow scheduling criteria we con-
sider the following target criterion function in SSA for a single slot i:

z�i ¼ zIi þ azUi : ð3Þ

Here zIi and z
U
i represent criteria for integral and private jobs execution optimization

correspondingly. zIi usually represents the same function for every job in the queue, while
zUi reflects user requirements for a particular job optimization. a 2 0; þ1½ � coefficient
determines relative importance between private and integral optimization criteria.

By using SSA with z�i criterion and different a values it is possible to achieve a
balance between private and integral job-flow scheduling preferences and policies. This
approach has two important differences from Anticipation scheduling scheme [12].

1. SSA may be used as a resources selection algorithm in a variety of scheduling
procedures, such as Backfilling or First Fit, and, thus, maintains job’s original
scheduling priorities and order. Anticipation works as a CSS extension, which
schedules jobs in order to optimize the integral job-flow execution criterion. Besides
that, Anticipation may require a reference solution for the additional specific jobs
execution optimization.

2. General window search scheme in SSA implements optimal resources selection
according to the specified criterion z�i with regards to the restrictions in problem (1).
Anticipation performs heuristic-based resources selection using almost unconfig-
urable execution similarity criterion.

3 Simulation Study

3.1 Implementation and Simulation Details

The experiment was prepared as follows using a custom distributed environment sim-
ulator [2, 12, 21]. For our purpose, it implements a heterogeneous resource domain
model: nodes have different usage costs and performance levels. A space-shared
resources allocation policy simulates a local queuing system (like in CloudSim [6]) and,
thus, each node can process only one task at any given simulation time. The execution
cost of each task depends on its execution time, which is proportional to the dedicated
node’s performance level. The execution of a single job requires parallel execution of all
its tasks. Some details regarding the computing model were provided in Sect. 2.1.

VO and computing environment were generated automatically during each
scheduling simulation with the following properties:

• The resource pool includes 32 heterogeneous computational nodes.
• Node performance level is given as a uniformly distributed random value in the

interval [2, 16]. This configuration provides a sufficient resources diversity level
while the difference between the highest and the lowest resource performance levels
will not exceed one order.

86 V. Toporkov et al.

• A specific cost of a node is an exponential function of its performance value (base
cost) with an added variable margin distributed normally as ±0.6 of a base cost.

• The scheduling interval length is 800 time quanta. The initial resource load with
owner jobs is distributed hyper-geometrically resulting in 5% to 10% time quanta
excluded in total.

Job queue properties:

• Jobs number in the queue is 64.
• Nodes quantity needed for a job is a whole number distributed evenly on n 2 [2, 5].
• Node reservation time is a whole number distributed evenly on V 2 [60; 600].
• Job budget varies in the way that some of jobs can pay as much as 160% of base

cost whereas some may require a discount.

The present configuration of the computing environment and the job-flow allows us
to evaluate and compare considered scheduling approaches on a few cycles. I.e. during
the job-flow execution each node is sequentially loaded with several jobs. Corre-
spondingly, cost and budget parameters were selected so that each job could be exe-
cuted at least on the cheapest resources. This determines steady market state
appropriate for the consistent scheduling results comparison. Resources exponential
price function and their initial load are designed to bring the model closer to the real
commercial and corporate computing systems.

For the integral job-flow scheduling criterion we used jobs finish time minimization
(zIi ¼ �si:finishTime) as a metric for the overall resources load maximization.

For the SSA preference-based resources allocation efficiency study we imple-
mented the following scheduling algorithms.

1. Firstly, we consider two conservative backfilling variations. BFs successively
implements start time minimization for each job during the resources selection step. So,
BFs criterion for slot i has the following form: zi ¼ �si:startTime.

By analogy BFf implements a more solid backfilling strategy of a finish time
minimization which is different from BFs in heterogeneous computing environments.
BFf target criterion for each job is zi ¼ �si:finishTime. BFf configuration represents
extreme SSA scenario with a ¼ 0.

2. Secondly, we implement a preference-based conservative backfilling (BP) with
SSA criterion of the following form: z�i ¼ �si:finishTimeþ azUi (3), where zUi depends
on a private user criterion uniformly distributed between resources performance
maximization (zUi ¼ si:nodePerformance) and overall execution cost minimization
(zUi ¼ �si:usageCost). So in average half of jobs in the queue should be executed with
performance maximization, while another half are interested in the total cost
minimization.

Considered a values covered different importance configurations of private and
integral optimization criteria: a 2 0:01; 0:1; 1; 10; 100½ �.

3. As a special extreme scheduling scenario with a ! 1 we implemented pure
conservative backfilling with SSA criterion z�i ¼ zUi , i.e. without any global parameters
optimization.

Preference Based and Fair Resources Selection in Grid VOs 87

3.2 Simulation Results

The results of 1000 scheduling simulation scenarios are presented in Figs. 1, 2, 3,
and 4. Each simulation experiment includes computing environment and job queue
generation, followed by a scheduling simulation independently performed using con-
sidered algorithms. The main scheduling results are then collected and contribute to the
average values over all experiments.

Figure 1 shows average jobs finish time for BFs, BFf and BP depending on a
values on a logarithmic scale. BFs and BFf plots are represented by horizontal lines as
the algorithms are independent of a.

As expected BFf provides 5% earlier jobs finish times compared to BFs. BFf with a
job finish time minimization considers both job start time and runtime. In computing
environments with heterogeneous resources job runtime may vary and depends on the
selected resources performance. Thus, BFf implements more accurate strategy for the
resources load optimization and a job-flow scheduling efficiency.

Similar results may be observed on Fig. 2 presenting average job queue execution
makespan. This time the advantage of BFf by makespan criterion exceeds 10%.

BP approach with a� 10 and considerable integral zIi criterion importance provides
average finish time and makespan nearly the same as BFf. Average finish time is 1%
later compared to BFf, while makespan is only 0,25% larger. However with increasing
a these values are growing rapidly as the importance of the private scheduling pref-
erences is increasing.

Interestingly, with a ¼ 10 BP provides even earlier average jobs finish time
compared to BFf. In such configuration finish time minimization remains an important
factor, while private performance and cost optimization lead to a more efficient
resources sharing. At the same time BFf increases advantage by makespan criterion
(Fig. 2) as some jobs in BP require more specific resources combinations generally
available later in time.

Fig. 1. Simulation results: average jobs finish time.

88 V. Toporkov et al.

Figures 3 and 4 show scheduling results for considered private criteria: average job
execution cost and allocated resources performance. BPc and BPp in Figs. 3 and 4
represent BP scheduling results for jobs subsets with cost and performance private
optimization correspondingly. Dashed lines show limits for BP, BPc and BPp, obtained
in a pure private optimization scenario (a ! 1) without the integral finish time
minimization.

The figures show that even with relatively small a values BP implements consid-
erable resource share between BPc and BPp jobs according to the private preferences.
The difference reaches 7% in cost and 5% in performance for a ¼ 0:01.

Fig. 2. Simulation results: average jobs queue execution makespan.

Fig. 3. Simulation results: average jobs execution cost.

Preference Based and Fair Resources Selection in Grid VOs 89

More noticeable separation up to 30–40% is observed with a[1. With higher
importance of the private criteria, BP selects more specific resources and increasingly
diverges from the backfilling finish time procedure and corresponding jobs execution
order. The values obtained by BP with a ¼ 100 are close to the practical limits pro-
vided by the pure private criteria optimizations.

We may conclude from Figs. 1, 2, 3, and 4 that by changing a mutual importance of
private and integral scheduling criteria it is possible to find a trade-off solution. Even
the smallest a values are able to provide a considerable resources distribution according
to VO users private preferences. At the same time BP with a\10 maintains an ade-
quate resources utilization efficiency comparable with BFf and provides even more
efficient preference-based resource share.

4 Conclusions and Future Work

In this paper, we study the problem of a resources selection optimization for job-flow
scheduling and execution in Grid virtual organizations. Fair scheduling policies in VOs
usually assume configurable resources distribution according to VO stakeholders
individual preferences. For this purpose we used SSA algorithm as a resources selection
step in a conservative backfilling procedure. SSA performs resources selection opti-
mization for each job according to both global (VO) and private (user) scheduling
criteria. In this study we considered jobs finish time minimization as a global criterion,
and jobs performance and cost optimization as users’ scheduling criteria.

The simulation study proved the efficiency of the proposed fair resources sharing
approach. The difference in jobs execution according to private criteria reached 40%.
At the same time the difference from a pure global criterion optimization is less than
1% in a wide range of considered scheduling scenarios. Besides that, by configuring the

Fig. 4. Simulation results: average performance of the allocated resources.

90 V. Toporkov et al.

importance factor between private and integral scheduling criteria it is possible to
influence the fair scheduling outcome and propose a balanced solution.

Future work will be focused on a more detailed private and global criteria study,
their mutual consistency and possible scheduling strategies to improve resources usage
efficiency and the quality of service.

Acknowledgments. This work was partially supported by the Council on Grants of the Presi-
dent of the Russian Federation for State Support of Young Scientists (grant YPhD-2979.2019.9),
RFBR (grants 18-07-00456 and 18-07-00534), and by the Ministry on Education and Science of
the Russian Federation (project no. 2.9606.2017/8.9).

References

1. Dimitriadou, S.K., Karatza, H.D.: Job scheduling in a distributed system using backfilling
with inaccurate runtime computations. In: Proceedings of the 2010 International Conference
on Complex, Intelligent and Software Intensive Systems, pp. 329–336 (2010)

2. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D., Potekhin, P.: Heuristic
strategies for preference-based scheduling in virtual organizations of utility grids. J. Ambient
Intell. Humanized Comput. 6(6), 733–740 (2015)

3. Buyya, R., Abramson, D., Giddy, J.: Economic models for resource management and
scheduling in grid computing. J. Concurrency Comput. 14(5), 1507–1542 (2002)

4. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Multicriteria aspects of grid resource
management. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource Management
State of the Art and Future Trends, pp. 271–293. Kluwer Acad. Publ., Dordrecht (2003)

5. Rodero, I., Villegas, D., Bobroff, N., Liu, Y., Fong, L., Sadjadi, S.M.: Enabling
interoperability among grid meta-schedulers. J. Grid Comput. 11(2), 311–336 (2013)

6. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: CloudSim: a
toolkit for modeling and simulation of cloud computing environments and evaluation of
resource provisioning algorithms. J. Softw. Pract. Experience 41(1), 23–50 (2011)

7. Rzadca, K., Trystram, D., Wierzbicki, A.: Fair game-theoretic resource management in
dedicated grids. In: IEEE International Symposium on Cluster Computing and the Grid
(CCGRID 2007), Rio De Janeiro, Brazil, pp. 343–350. IEEE Computer Society (2007)

8. Vasile, M., Pop, F., Tutueanu, R., Cristea, V., Kolodziej, J.: Resource-aware hybrid
scheduling algorithm in heterogeneous distributed computing. J. Future Gener. Comput.
Syst. 51, 61–71 (2015)

9. Penmatsa, S., Chronopoulos, A.T.: Cost minimization in utility computing systems.
Concurrency Comput. Pract. Experience 16(1), 287–307 (2014)

10. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the Maui scheduler. In: Feitelson, D.
G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45540-X_6

11. Mutz, A., Wolski, R., Brevik, J.: Eliciting honest value information in a batch-queue
environment. In: 8th IEEE/ACM International Conference on Grid Computing, New York,
USA, pp. 291–297 (2007)

12. Toporkov, V., Yemelyanov, D., Toporkova, A., Potekhin, P.: Cyclic anticipation scheduling
in grid VOs with stakeholders preferences. In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol.
10421, pp. 372–383. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62932-2_36

Preference Based and Fair Resources Selection in Grid VOs 91

http://dx.doi.org/10.1007/3-540-45540-X_6
http://dx.doi.org/10.1007/978-3-319-62932-2_36

13. Takefusa, A., Nakada, H., Kudoh, T., Tanaka, Y.: An advance reservation-based co-
allocation algorithm for distributed computers and network bandwidth on qos-guaranteed
grids. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2010. LNCS, vol. 6253,
pp. 16–34. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16505-4_2

14. Carroll, T., Grosu, D.: Divisible load scheduling: an approach using coalitional games. In:
Proceedings of the Sixth International Symposium on Parallel and Distributed Computing,
ISPDC 2007, p. 36 (2007)

15. Kim, K., Buyya, R.: Fair resource sharing in hierarchical virtual organizations for global
grids. In: Proceedings of the 8th IEEE/ACM International Conference on Grid Computing,
Austin, USA, pp. 50–57. IEEE Computer Society (2007)

16. Skowron, P., Rzadca, K.: Non-monetary fair scheduling cooperative game theory approach.
In: Proceedings of the Twenty-fifth Annual ACM Symposium on Parallelism in Algorithms
and Architectures, pp. 288–297. ACM, New York (2013)

17. Dalheimer, M., Pfreundt, F.-J., Merz, P.: Agent-based grid scheduling with Calana. In:
Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol.
3911, pp. 741–750. Springer, Heidelberg (2006). https://doi.org/10.1007/11752578_89

18. Thain, T., Livny, M.: Distributed computing in practice: the condor experience. Concurrency
Comput. Pract. Experience 17, 323–356 (2005)

19. Khemka, B., et al.: Resource management in heterogeneous parallel computing environ-
ments with soft and hard deadlines. In: Proceedings of 11th Metaheuristics International
Conference (MIC 2015) (2015)

20. Shmueli, E., Feitelson, D.G.: Backfilling with lookahead to optimize the packing of parallel
jobs. J. Parallel Distrib. Comput. 65(9), 1090–1107 (2005)

21. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D.: Slot selection algorithms in
distributed computing. J. Supercomput. 69(1), 53–60 (2014)

22. Netto, M.A.S., Buyya, R.: A flexible resource co-allocation model based on advance
reservations with rescheduling support. In: Technical Report, GRIDSTR-2007-17, Grid
Computing and Distributed Systems Laboratory, The University of Melbourne, Australia, 9
October 2007

92 V. Toporkov et al.

http://dx.doi.org/10.1007/978-3-642-16505-4_2
http://dx.doi.org/10.1007/11752578_89

CAPE: A Checkpointing-Based Solution
for OpenMP on Distributed-Memory

Architectures

Van Long Tran1,2(B), Éric Renault2, and Viet Hai Ha3

1 Hue Industrial College, 70 Nguyen Hue Street, Hue City, Vietnam
tvlong@hueic.edu.vn

2 SAMOVAR, Télécom SudParis, CNRS, Université Paris-Saclay,
9 rue Charles Fourier, 91011 Evry Cedex, France

eric.renault@telecom-sudparis.eu
3 College of Education, Hue University, Hue, Vietnam

haviethai@gmail.com

Abstract. CAPE, which stands for Checkpointing-Aided Parallel Exe-
cution, is a framework that automatically translates and provides run-
time functions to execute OpenMP programs on distributed-memory
architectures based on checkpointing techniques. In order to execute an
OpenMP program on distributed-memory systems, CAPE uses a set of
templates to translate an OpenMP source code into a CAPE source code
which is then compiled using a regular C/C++ compiler. This code can
be executed on distributed-memory systems under the support of the
CAPE framework.

This paper aims at presenting the design and implementation of a
new execution model based on Time-stamp Incremental Checkpoints.
The new execution model allows CAPE to use resources efficiently, avoid
the risk of bottlenecks, overcome the requirement of matching the Bern-
stein’s conditions. As a result, these approaches make CAPE improving
the performance, ability as well as reliability.

Keywords: CAPE · Checkpointing aided parallel execution ·
OpenMP on cluster · Parallel programming · Distributed computing ·
HPC

1 Introduction

OpenMP and MPI have become the standard tools to develop parallel programs
on shared-memory and distributed-memory architectures respectively. As com-
pared to MPI, OpenMP is easier to use. This is due to its ability to automati-
cally execute code in parallel and synchronize results using its directives, clauses,
and runtime functions while MPI requires programmers to do all this manually.
Therefore, some efforts have been made to port OpenMP on distributed-memory
architectures. However, excluding CAPE [7,9,18], no solution has successfully
c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 93–106, 2019.
https://doi.org/10.1007/978-3-030-25636-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_8

94 V. L. Tran et al.

met these two requirements: (1) to be fully compliant with the OpenMP stan-
dard and (2) high performance. Most prominent approaches include the use of
an SSI [15], SCASH [19], the use of the RC model [13], performing a source-
to-source translation to a tool like MPI [1,5] or Global Array [12], or Cluster
OpenMP [11].

Among all these solutions, the use of a Single System Image (SSI) is the
most straightforward approach. An SSI includes a Distributed Shared Memory
(DSM) to provide an abstracted shared-memory view over a physical distributed-
memory architecture. The main advantage of this approach is its ability to easily
provide a fully-compliant version of OpenMP. Thanks to their shared-memory
nature, OpenMP programs can easily be compiled and run as processes on dif-
ferent computers in an SSI. However, as the shared memory is accessed through
the network, the synchronization between the memories involves an important
overhead which makes this approach hardly scalable. Some experiments [15]
have shown that the larger the number of threads, the lower the performance.
As a result, in order to reduce the execution time overhead involved by the use
of an SSI, other approaches have been proposed. For example, SCASH maps
only the shared variables of the processes onto a shared-memory area attached
to each process, the other variables being stored in a private memory, and the
RC model that uses the relaxed consistency memory model. However, these
approaches have difficulties to identify the shared variables automatically. As a
result, no fully-compliant implementation of OpenMP based on these approaches
has been released so far. Some other approaches aim at performing a source-to-
source translation of the OpenMP code into an MPI code. This approach allows
the generation of high-performance codes on distributed-memory architectures.
However, not all OpenMP directives and constructs can be implemented. As yet
another alternative, Cluster OpenMP, proposed by Intel, also requires the use
of additional directives of its own (ie. not included in the OpenMP standard).
Thus, this one cannot be considered as a fully-compliant implementation of the
OpenMP standard either.

CAPE used the Discontinuous Incremental Checkpointing (DICKPT) [8] to
implement the OpenMP fork-join model. The jobs of OpenMP work-sharing
constructs are divided and distributed to slave nodes using checkpoints. At each
slave node, these checkpoints are used to resume execution. In addition, the
results after executing the divided jobs on each slave node are also extracted
using checkpoints and sent back to the master. It has been demonstrated that
this solution is fully compliant with OpenMP and provides high performance.
However, there are some limitations:

– to run on top of CAPE, an OpenMP program must fulfill the Bernstein’s
conditions. This is the reason why the matrix-matrix product has been exten-
sively used in the previous experiments.

– The implementation of CAPE wastes the resources. In the implementation of
OpenMP work-sharing constructs on CAPE, the master does not perform a
part of the computation. It waits for checkpoint results from the slave nodes
and merges them together.

CAPE: A Checkpointing-Based Solution for OpenMP on Cluster 95

– The risk of bottlenecks and low communication performance at the imple-
mentation of the join phase. After executing the divided jobs, each slave
node extracts a result checkpoint and sends it back to the master. The mas-
ter receives, merges checkpoints together and sends the result back to the
slave nodes in order to synchronize data.

This paper presents the design and implementation of a new model for CAPE
based on Time-stamp Incremental Checkpointing (TICKPT) [24] to bypass
the drawbacks mentioned above. The new implementation based on TICKPT
improves the performance, capability, and reliability of this solution.

2 Checkpoint Techniques

2.1 Checkpointing

Checkpointing is the technique that saves the image of a process at a point during
its lifetime, and allows it to be resumed from the saving’s time if necessary [4,17].
Using checkpointing, processes can resume their execution from a checkpoint
state when a failure occurs. So, there is no need to take time to initialize and
execute it from the begin. These techniques have been introduced for more than
two decades. Nowadays, they are used widely for fault-tolerance, applications
trace/debugging, roll-back/animated playback, and process migration. To be
able to save and resume the state of a process, the checkpoint saves all necessary
information at the checkpoint’s time. It can include register values, process’s
address space, open files/pipes/sockets status, current working directory, signal
handlers, process identities, etc. The process’s address space consists of text,
data, mmap memory area, shared libraries, heap, and stack segments. Depending
on the kind of checkpoints and its application, the checkpoint takes all or some
of these information.

Based on the structure and contents of the checkpoint file, checkpointings
are categorized into two groups: complete and incremental checkpointing.

– Complete checkpointing [3,4,14] saves all information regarding the process
at the points that it generates checkpoints. The advantages of this technique
are the reduction of the time of generation and restoration. However, not only
a lot of duplicated data are stored each time a checkpoint is taken, there are
also duplications in the different generated checkpoints.

– Incremental checkpointing [8,10,17] only saves the modified data. This has
to be compared with the previous checkpoint. This technique reduces check-
point’s overhead and checkpoint’s size. Therefore, it is widely used in dis-
tributed computing.

96 V. L. Tran et al.

2.2 Time-Stamp Incremental Checkpointing

Time-stamp Incremental Checkpointing (TICKPT) [24] is an improvement of
DICKPT by adding new factor – time-stamp – into incremental checkpoints
and by removing unnecessary data based on data-sharing variable attributes of
OpenMP programs.

Basically, TICKPT contains three mandatory elements including register’s
information, modified region in memory of the process, and their time-stamp.
As well as DICKPT, in TICKPT, the register’s information are extracted from
all registers of the process in the system. However, the time-stamp is added to
identify the order of the checkpoints in the program. This contributes to reduce
the time for merging checkpoints and selecting the right element if located at the
same place in memory. In addition, only the modified data of shared variables
are detected and saved into checkpoints. It makes checkpoint’s size significantly
reduced depending on the size of private variables of the OpenMP program.

3 CAPE Based on TICKPT

3.1 Abstract Model

Fig. 1. New abstract model for CAPE.

Figure 1 presents the new abstract model
for CAPE. It is designed based on
TICKPT and uses MPI to transfer data
over the network.

As presented in the previous ver-
sion [21,22], CAPE provides a set of pro-
totypes to translate OpenMP codes into
CAPE codes. An OpenMP CAPE code
in C or C++ is replaced by a set of calls
to CAPE runtime functions. In this ver-
sion, the CAPE translator prototypes are
modified and added to adapt to the new

mechanism based on TICKPT. This provides a set of prototypes to translate
the common constructs, clauses, and runtime functions of OpenMP.

For the CAPE Runtime library, apart from providing functions to handle
OpenMP instructions and to port them on distributed memory systems, some
functions have been added to manage the declaration of variables and the alloca-
tion of memory on the heap. To transfer data among nodes in the system, instead
of using the functions based on sockets like in the previous version, MPI Send
and MPI Recv functions are called to ensure high reliability.

CAPE: A Checkpointing-Based Solution for OpenMP on Cluster 97

3.2 RC-Model Based CAPE Memory Model Implementation

Cid ← generate_checkpoint(flag);
C ← all_reduce (Cid, id, nnodes,

[operators]);
inject(C) ;

Fig. 2. cape flush() implementation.

OpenMP uses the Relaxed Consis-
tency (RC) memory model. This
model allows shared memory allo-
cated in the local memory of a thread
to improve memory accesses. When a
synchronization point is reached, this
local memory is updated in the shared
memory area that can be assessed by all threads.

CAPE completely implements the RC model of OpenMP on distributed-
memory systems. All variables, including private and shared variables, are stored
at all nodes of the system, and they can be only accessed locally. At synchroniza-
tion points, only the modified data of shared variables at each node are extracted
and saved into a checkpoint. This checkpoint is sent to the other nodes in the
system, and is merged using the merging checkpoint operation with the other.
Then, the result checkpoint is injected into the application memory to synchro-
nize data.

In the CAPE runtime library, there are two fundamental functions which are
called implicitly at synchronization points:

– cape flush() generates a TICKPT, gathers, merges, and injects them into
the application memory. This function is described by pseudo code in Fig. 2.
Here, the all reduce() function is responsible for gathering and merging the
checkpoints generated by the generate checkpoint() function. The gather-
ing and the merging is implemented using both Ring and Recursive Doubling
algorithm. The algorithm is automatically selected to be executed by the
system depending on the size of the checkpoint.

– cape barrier() sets a barrier and updates shared data between nodes. This
function calls MPI Barrier() of the MPI runtime library, and then uses
cape flush() to update shared data.

3.3 Execution Model

Figure 3 illustrates the execution model of CAPE. The idea of this model is the
use of TICKPT to identify and synchronize the modified data of shared variables
of the program among the nodes. OpenMP threads are replaced by processes,
and each process runs in a node. At the beginning, the program is initialized
and executed at the same time in all nodes of the system. Then, the execution
works as the following rules:

– The sequential region or the code inside the parallel construct but not
belonging to any other constructs is executed in the same way for all nodes.

– When the program reaches a parallel region, on each node, CAPE detects
and saves the properties of all shared variables that are implicitly declared as
sharing. If there are any OpenMP clauses declared in the parallel construct,

98 V. L. Tran et al.

the relevant runtime functions are called to modify variable properties. Then,
the start directive of TICKPT is called to save the value of the shared
variables.

– At the end of a parallel region, the implementation of the barrier construct
is implicitly called to synchronize data, and the stop directive of TICKPT is
called to remove all relevant data.

– For the loop construct, each node (including the master node) is responsible
for computing a part of the work based on the re-calculation of the range of
iterations.

– For the sections construct, each node is divided into one or more parts of
works that are indicated using section construct.

– At the barrier, the implementation of the flush construct is called to syn-
chronize data.

– When the program reaches the flush construct, a TICKPT is generated and
synchronized among the nodes to update the modification of shared data.
According to [16], a flush is implicit at the following locations:
• At the barrier.
• At the entry to and the exit from parallel, critical, and atomic con-

structs.
• At the exit from for, sections, and single constructs unless a nowait

clause is present.

Fig. 3. The new execution model of
CAPE.

In this execution model, instead of
using the master node to divide jobs and
distribute to slave nodes based on incre-
mental checkpoints in order to imple-
ment OpenMP work-sharing constructs,
each node computes and executes the
divided jobs automatically. At synchro-
nization points, a TICKPT is generated at
each node. It contains the modified data
of shared variables and their time-stamps
after executing the divided jobs. These
checkpoints are gathered and merged at
all nodes in the system using the Ring or
Recursive Doubling algorithm [20]. This
allows CAPE to void the bottleneck and
improve the performance of communica-
tion tasks.

With the features of TICKPT, checkpoints are able to use checkpoint’s oper-
ations [23,24]. This allows memory elements to share the same address when
computing and makes it simple when merging. Therefore, it allows CAPE to
work without the need for the program to match with the Bernstein’s condi-
tions. Moreover, the master node takes a part in the computation of the divided
jobs. This uses all the resources and improves the system efficiency.

The only missing part of the OpenMP specifications for this implementation
is that dynamic and guided scheduling directives of the work-sharing construct

CAPE: A Checkpointing-Based Solution for OpenMP on Cluster 99

have not been implemented yet. However, one can demonstrate that they can be
easily translated into a static scheduling.

3.4 Prototypes

To be executed on a distributed-memory system with the support of the CAPE
runtime library, the OpenMP source code is translated into a CAPE source code.
There, each construct, clause, and runtime function of the OpenMP source code
is translated into the relevant runtime function of CAPE. This translation works
under the provision of a set of CAPE prototypes.

Based on the general syntax of OpenMP directives, a general template for
CAPE prototypes was designed and is illustrated in Fig. 4. They are as follows:

cape_begin(directive-name, param-1, param-2);

[cape_clause_functions]

ckpt_start();

//code blocks

cape_end(directive-name, reduction-flag);

Fig. 4. General template for CAPE prototypes in C/C++.

– cape begin() and cape end() are CAPE runtime functions which perform
the actions for entering and exiting OpenMP directives. The directive-name
is a label declared by CAPE which corresponds to the relevant CAPE runtime
function. Depending on this label, the cape barrier() function is called to
update the shared data of the system. param-1 and param-2 are used to store
the range of iterations for for loops, otherwise they both are set to zero. The
reduction-flag is set to TRUE if there is a declaration of OpenMP reduction
clause, otherwise it is set to FALSE.

– cape clause functions is a set of CAPE runtime functions which is used to
implement OpenMP clauses. This implementation is presented in [23].

– ckpt start() marks the location where to start the checkpointing. When
reaching the ckpt start() function, the value of shared variables is copied.

4 Experiments

In order to evaluate the performance of this new approach, we designed a set of
micro benchmarks and tested them on a Desktop Cluster. The designed programs
are based on the Microbenchmark for OpenMP 2.0 [2,6]. These programs have
been translated to CAPE and executed on a Cluster to compare the performance.

4.1 Benchmarks

(1) MAMULT2D: This program computes the multiplication of two matrices.
Originally, it was written in C/C++ and used the OpenMP parallel for con-
struct. It matches Bernstein’s conditions. Therefore, it has been used extensively
to test CAPE in the previous works.

100 V. L. Tran et al.

int vector(float A[], float B[], float C[], float D[], int n){

int i, nthreads, tid;

#pragma omp parallel shared(C,D,nthreads) private(A, B, i,tid)

{

tid = omp_get_thread_num();

if (tid == 0)

{

nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

printf("Thread %d starting...\n",tid);

#pragma omp sections nowait

{

#pragma omp section

printf("Thread %d doing section 1\n",tid);

for (i=0; i<N; i++)

{

for (j= 0 ; j< N; j+=25)

A[j] = A[j] * 0.15 ;

C[i] = A[i] + B[i];

printf("Thread %d: C[%d]= %f\n",tid,i,C[i]);

}

#pragma omp section

printf("Thread %d doing section 2\n",tid);

for (i=0; i<N; i++)

{

for (j= 0 ; j< N; j+=25)

B[j] = B[j] + 10.25 ;

D[i] = A[i] * B[i];

printf("Thread %d: D[%d]= %f\n",tid,i,D[i]);

}

} /* end of sections */

} /* end of parallel section */

return 0;

}

Fig. 5. OpenMP function to compute vectors using sections construct.

(2) PRIME: This program counts the number of prime numbers in the range
from 1 to N. The OpenMP code uses the parallel for construct with data-
sharing clauses.

(3) PI: This program computes the value of PI by mean of the numeric integra-
tion method using Eq. (1).

π =
∫ 1

0

4
1 + x2

dx (1)

CAPE: A Checkpointing-Based Solution for OpenMP on Cluster 101

(4) VECTOR-1: This program performs operations on vectors. It con-
tains OpenMP runtime functions, data-sharing clauses, a nowait clause, and
parallel and sections constructs. The OpenMP code is presented in Fig. 5.

(5) VECTOR-2: This program performs some operations on vectors. It contains
OpenMP parallel and for constructs with a nowait clause. The OpenMP code
is shown in Fig. 6.

int vector2(int A[], int B[], int Y[], int Z[], int n, int m)

{

int i,j;

#pragma omp parallel private(A,Z) shared(B, Y)

{

#pragma omp for nowait

for (i=1; i<n; i++){

for(j=0; j<n ; j+=20)

A[j] = A[j] + 10.25

B[i] = (A[i] + A[i-1]) / 2;

}

#pragma omp for nowait

for (i=0; i<m; i++){

for(j=0; j<m ; j+=20)

Z[j] = Z[j] * 0.025 ;

Y[i] = Z[i] * i;

}

}

return 0;

}

Fig. 6. OpenMP function to compute vectors using for construct.

4.2 Experimental Environment

The experiments have been performed on a 16-node cluster with different com-
puter’s configurations. There are two computers with Intel(R) Pentium(R) Dual
CPU E2160 at 1.80 GHz, 2 GB of RAM, 5 GB of free HDD; seven computers
with Intel(R) Core(TM)2 Duo CPU E7300 at 2.66 GHz, 3 GB of RAM, 6 GB
of free HDD; five computers with Intel(R) Core(TM) i3-2120 CPU at 3.30 GHz,
8 GB of RAM, 6 GB of free HDD; and two computers including an AMD Phe-
nom(TM) II X4 925 Processor at 2.80 GHz, 2 GB of RAM, 6 GB of free HDD.
All machines are operated by the Ubuntu 14.03 LTS operating system with
OpenSSH-Server and MPICH-2. They are interconnected by a 100 Mbps LAN
network.

4.3 Experimental Results

Figures 7 and 8 present the execution time in milliseconds for the MAMULT2D
program for various size of matrices and different sizes of cluster respectively.

102 V. L. Tran et al.

Fig. 7. Execution time (in milliseconds) of MAMULT2D with different size of matrix
on a 16-node cluster.

Note that, there are many kinds of processors in different nodes. Some of
them include many cores, but a single core was used for each node during the
experiments. Three measures are presented at each time: the left one (yellow)
for CAPE-DICKPT (the previous version), the middle one (blue) for CAPE-
TICKPT (the current version), and the right one (red) for MPI.

Figure 7 presents the execution time for various matrix sizes on a 16-node
cluster. The size increases from 800x800 to 6400x6400. The figure shows that
the execution times of all methods are proportional to the matrix size. It also
shows that the execution time of CAPE-TICKPT is much lower than the one
of CAPE-DICKPT and MPI (around 35%) while the execution time of CAPE-
TICKPT and MPI are roughly equal.

Fig. 8. Execution time (in milliseconds) of MAMULT2D for different cluster sizes.

CAPE: A Checkpointing-Based Solution for OpenMP on Cluster 103

Figure 8 presents the execution time for a matrix size of 6400x6400 on dif-
ferent cluster size. The number of nodes is successively 4, 8, and 16. The result
presented in this figure also shows the similar trend for different matrix size. The
execution time of CAPE is significantly reduced so that it is now much closer to
an optimized human-written program using MPI.

To demonstrate that the new version of CAPE can run OpenMP programs
that do not match with the Bernstein’s conditions while achieving high perfor-
mance, other experiments were conducted and performance were compared with
MPI. All of the four other programs presented in Sect. 4.1 have been used to
measure the execution time.

Figure 9 presents the execution time in milliseconds of PRIME with N = 106

on different cluster sizes for CAPE-TICKPT and MPI. It shows that the execu-
tion time of MPI is only around 1% smaller than the one of CAPE-TICKPT. In
this experiment, the OpenMP parallel for directive with the shared, private
and reduction clauses are translated and tested for both methods. Table 1
describes the steps executed by the program for both methods. The main differ-
ent step is the join phase. It gathers the results from all nodes and computes their
sum. For the MPI program, the user needs to clearly specify the values that need
to be gathered, and then call the MPI Reduce() function after to compute the
sum. CAPE-TICKPT automatically identifies the modified value of the shared
variables, extracts them into a TICKPT, and then gathers all checkpoints from
all the nodes with the merging checkpoint operator. However, as the execution
time of CAPE-TICKPT is nearly equal to the one of MPI, we consider that we
successfully obtained high performance with CAPE.

Table 1. Comparison of the executed steps for the PRIME code for both CAPE-
TICKPT and MPI.

Step CAPE-TICKPT MPI

Fork Updates the properties of variables,
saves data of shared variables, and
re-computes the iterators

Re-computes the iterators

Computation Computes the divided jobs Computes the divided jobs

Join Generates checkpoints, and calls
the merging checkpoint operator
with the sum operator

Calls MPI Reduce to gather
and sum the results

Figure 10 presents the execution time in milliseconds of PI with a number
of steps equal to 108 for different cluster sizes using CAPE-TICKPT and MPI.
In this experiment, the OpenMP for directive with reduction clause placed
inside the omp parallel construct with some clauses are tested. As well as
the previous experiments, this figure also shows that CAPE-TICKPT achieves
similar performance as MPI.

Figure 11 shows the execution time in milliseconds for the VECTOR-1 pro-
gram with N = 106 for different cluster sizes using CAPE-TICKPT and MPI.

104 V. L. Tran et al.

In this experiment, OpenMP functions and the sections construct with two
section directives are tested. The figure shows that the larger the number of
nodes, the longer the execution time for both methods. The execution time with
MPI is smaller than the one of CAPE-TICKPT, but the difference is not signif-
icant. Note that there are only two section directives in this program, so that
both CAPE-TICKPT and MPI distribute the execution to two nodes only. Each
node receives and executes the code of a section. However, the result has to be
synchronized to all nodes on the system. Therefore, the execution time increases
when increasing the number of nodes.

Fig. 9. Execution time (in millisec-
onds) of PRIME on different cluster
sizes.

Fig. 10. Execution time (in millisec-
onds) of PI on different cluster sizes.

Fig. 11. Execution time (in millisec-
onds) of VECTOR-1 on different clus-
ter sizes.

Fig. 12. Execution time (in millisec-
onds) of VECTOR-2 on different clus-
ter sizes.

Figure 12 shows the execution time in milliseconds for VECTOR-2 with N =
106 and M = 1.6 × 106 on different cluster sizes for both CAPE-TICKPT and
MPI. This experiment aims at testing two omp for directives with nowait clause.
The size of the two vectors are different from each other to ensure the nodes take

CAPE: A Checkpointing-Based Solution for OpenMP on Cluster 105

different time to execute the divided jobs. The execution on each node is marked
nowait until reaching the end block of the parallel region. The figure shows the
same trend as the previous experiments. The execution time for CAPE-TICKPT
is very close to MPI, the difference being negligible.

5 Conclusion and Future Works

This paper presented the design and implementation of a new execution model
and prototypes for CAPE based on TICKPT. With this new capability included,
CAPE improves the reliability and can run OpenMP programs that do not
require to match the Bernstein’s conditions. In addition, the analysis and evalu-
ation of performance of this paper demonstrated that CAPE-TICKPT achieves
performance very close to a comparable human-optimized hand-written MPI
program. This is mainly due to the fact that CAPE-TICKPT takes benefits of
the advantages of TICKPT such as checkpoint operators and can use resources
more efficiently. The synchronization phase of the new execution model also
avoids the risk of bottlenecks that may have occurred in the previous version.

In the near future, base on this mechanism, we will keep on developing the
CAPE framework in order to support other OpenMP constructs. Furthermore,
we expect to develop CAPE for GPUs.

References

1. Basumallik, A., Eigenmann, R.: Towards automatic translation of OpenMP to
MPI. In: Proceedings of the 19th Annual International Conference on Supercom-
puting, pp. 189–198. ACM (2005)

2. Bull, J.M., O’Neill, D.: A microbenchmark suite for OpenMP 2.0. ACM SIGARCH
Comput. Archit. News 29(5), 41–48 (2001)

3. Chen, Z., Sun, J., Chen, H.: Optimizing checkpoint restart with data deduplication.
Sci. Program. 2016, 11 (2016)

4. Cores, I., Rodŕıguez, M., González, P., Mart́ın, M.J.: Reducing the overhead of an
MPI application-level migration approach. Parallel Comput. 54, 72–82 (2016)

5. Dorta, A.J., Bad́ıa, J.M., Quintana, E.S., de Sande, F.: Implementing OpenMP for
clusters on top of MPI. In: Di Martino, B., Kranzlmüller, D., Dongarra, J. (eds.)
EuroPVM/MPI 2005. LNCS, vol. 3666, pp. 148–155. Springer, Heidelberg (2005).
https://doi.org/10.1007/11557265 22

6. EPCC: EPCC OpenMP micro-benchmark suite. https://www.epcc.ed.ac.uk/
research/computing/performance-characterisation-and-benchmarking/epcc-
openmp-micro-benchmark-suite

7. Ha, V.H., Renault, E.: Design and performance analysis of CAPE based on dis-
continuous incremental checkpoints. In: 2011 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing (2011)

8. Ha, V.H., Renault, É.: Discontinuous incremental: a new approach towards
extremely lightweight checkpoints. In: 2011 International Symposium on Computer
Networks and Distributed Systems (CNDS), pp. 227–232. IEEE (2011)

https://doi.org/10.1007/11557265_22
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite

106 V. L. Tran et al.

9. Ha, V.H., Renault, E.: Improving performance of CAPE using discontinuous incre-
mental checkpointing. In: 2011 IEEE 13th International Conference on High Per-
formance Computing and Communications (HPCC), pp. 802–807. IEEE (2011)

10. Heo, J., Yi, S., Cho, Y., Hong, J., Shin, S.Y.: Space-efficient page-level incremental
checkpointing. In: Proceedings of the 2005 ACM symposium on Applied computing,
pp. 1558–1562. ACM (2005)

11. Hoeflinger, J.P.: Extending OpenMP to clusters. White Paper, Intel Corporation
(2006)

12. Huang, L., Chapman, B., Liu, Z.: Towards a more efficient implementation of
OpenMP for clusters via translation to global arrays. Parallel Comput. 31(10),
1114–1139 (2005)

13. Karlsson, S., Lee, S.-W., Brorsson, M.: A fully compliant OpenMP implementation
on software distributed shared memory. In: Sahni, S., Prasanna, V.K., Shukla, U.
(eds.) HiPC 2002. LNCS, vol. 2552, pp. 195–206. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36265-7 19

14. Li, C.C., Fuchs, W.K.: Catch-compiler-assisted techniques for checkpointing. In:
20th International Symposium Fault-Tolerant Computing. FTCS-20. Digest of
Papers, pp. 74–81. IEEE (1990)

15. Morin, C., Lottiaux, R., Vallée, G., Gallard, P., Utard, G., Badrinath, R., Rilling,
L.: Kerrighed: a single system image cluster operating system for high performance
computing. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003.
LNCS, vol. 2790, pp. 1291–1294. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45209-6 175

16. OpenMP ARB: OpenMP application program interface version 4.0 (2013)
17. Plank, J.S., Beck, M., Kingsley, G., Li, K.: Libckpt: Transparent checkpointing

under unix. Computer Science Department (1994)
18. Renault, É.: Distributed implementation of OpenMP based on checkpointing aided

parallel execution. In: Chapman, B., Zheng, W., Gao, G.R., Sato, M., Ayguadé, E.,
Wang, D. (eds.) IWOMP 2007. LNCS, vol. 4935, pp. 195–206. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69303-1 22

19. Sato, M., Harada, H., Hasegawa, A., Ishikawa, Y.: Cluster-enabled OpenMP: an
OpenMP compiler for the SCASH software distributed shared memory system. Sci.
Program. 9(2–3), 123–130 (2001)

20. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communi-
cation operations in MPICH. Int. J. High Perform. Comput. Appl. 19(1), 49–66
(2005)

21. Tran, V.L., Renault, É., Ha, V.H.: Improving the reliability and the performance
of CAPE by using MPI for data exchange on network. In: Boumerdassi, S., Bouze-
frane, S., Renault, É. (eds.) MSPN 2015. LNCS, vol. 9395, pp. 90–100. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25744-0 8

22. Tran, V.L., Renault, E., Ha, V.H.: Analysis and evaluation of the performance
of CAPE. In: IEEE International Symposium on IEEE Conferences on Ubiquitous
Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing
and Communications, Cloud and Big Data Computing, Internet of People, and
Smart World Congress, pp. 620–627. IEEE (2016)

23. Tran, V.L., Renault, É., Ha, V.H., Do, X.H.: Implementation of OpenMP data-
sharing on cape. In: 9th International Symposium on Information and Communi-
cation Technology SoICT 2018, pp. 359–366. ACM (2018)

24. Tran, V.L., Renault, É., Ha, V.H., Do, X.H.: Time-stamp incremental checkpoint-
ing and its application for an optimization of execution model to improve perfor-
mance of cape. Informatica 42(3) (2018)

https://doi.org/10.1007/3-540-36265-7_19
https://doi.org/10.1007/978-3-540-45209-6_175
https://doi.org/10.1007/978-3-540-45209-6_175
https://doi.org/10.1007/978-3-540-69303-1_22
https://doi.org/10.1007/978-3-319-25744-0_8

Compiler Generated Progress Estimation
for OpenMP Programs

Peter Zangerl(B), Peter Thoman, and Thomas Fahringer

University of Innsbruck, 6020 Innsbruck, Austria
{peterz,petert,tf}@dps.uibk.ac.at

Abstract. Task-parallel runtime systems have to tune several parame-
ters and take scheduling decisions during program execution to achieve
the best performance. In order to decide whether a change was beneficial
to the program performance, the runtime needs some kind of feedback
mechanism on the progress of the program after such a parameter change
was performed. Traditionally, this feedback is derived from metrics only
indirectly related to the progress of the program.

To mitigate this drawback, we propose a fully automatic compiler
analysis and transformation which generates progress estimates for
sequential and OpenMP programs. Combined with a runtime system
interface for progress reporting this enables the runtime system to get
direct feedback on the progress of the executed program.

We based our implementation on the Insieme compiler and runtime
system and evaluated it on a set of eight benchmarks representing a vari-
ety of different types of algorithms. Our evaluation results show a sig-
nificant improvement in estimation accuracy over traditional estimation
methods, with an increasing advantage for larger degrees of parallelism.

1 Introduction

A modern runtime system needs to tune several operational parameters to better
utilize the underlying hardware and achieve high performance. Examples for this
kind of decisions are where to best apply dynamic voltage and frequency scaling
(DVFS) [9], how to adjust the granularity of tasks or controling the amount of
parallelism [5], and scheduling decisions in case a runtime system is responsible
for the co-scheduling of multiple programs [6,10,13].

In order for the runtime system to measure the effectiveness of the decisions
it took and reach the most effective combination of parameters, it requires some
kind of feedback mechanism which provides information about the performance
consequences of parameter changes – a progress metric. The system can then
monitor the progress development and judge whether or not a particular param-
eter change was beneficial – enabling it to steer towards optimal settings.

In practice, there are several ways for a runtime system to estimate an appli-
cation’s current progress. An obvious candidate for this kind of progress infor-
mation are CPU counters. A runtime system can monitor the development of

c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 107–121, 2019.
https://doi.org/10.1007/978-3-030-25636-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_9

108 P. Zangerl et al.

certain counters and thus reason about the amount of work the application has
carried out in a given timeframe. However, there are several drawbacks to this
approach: (i) the CPU counters do not have a direct relationship to the applica-
tion’s progress; (ii) counter values will also be influenced during the time spent
within the runtime system itself, thus skewing the obtained results; and (iii)
the use of CPU counters is not portable and the desired counters might not be
available on the given target hardware.

A runtime system can also take advantage of its internal state to estimate an
application’s progress. The runtime’s task throughput is a measure of how many
tasks the system finished within a given timeframe and thus is also related to
the progress of the executed program. This approach has the advantage that the
required values are already available in the runtime system or can be added easily
without any application code modifications or special permission requirements.
On the other hand, this approach is often coarse-grained and not very accurate.

Another popular alternative to the use of counters is manual instrumentation
of the input code to inform the runtime system of an application’s progress. This
eliminates the platform dependent implementation and also is not influenced by
time spent within the runtime system itself. However, this method requires a
very good understanding of the input program as well as the runtime system,
needs to be done manually for each program, and, due to these factors, is often
either quite coarse-grained and inaccurate or labor-intensive.

To mitigate these drawbacks, we propose a novel, fully automatic compiler-
based analysis and transformation to achieve accurate progress estimations in
parallel applications. This enables a low-overhead and platform-independent way
for parallel runtime systems to obtain direct feedback on the program’s progress
upon parameter changes. Our concrete contributions are as follows:

– A compiler based progress estimation analysis and transformation supporting
sequential as well as parallel OpenMP input programs.

– An application programming interface for progress information collection and
reporting in the runtime system.

– An implementation of the compiler analysis and runtime system facilities
based on the Insieme compiler and runtime system [7].

– An evaluation of the achieved progress estimation accuracy of eight bench-
mark applications on a shared memory system running in different configura-
tions, along with a comparison with the use of CPU counters, task throughput
metrics and manual code instrumentation.

2 Motivation and Related Work

Any dynamic optimizing runtime system can take advantage of obtaining a
progress estimation directly from the scheduled entities. This way, the system
can evaluate the choices and parameter tuning it applied and thus steer the
scheduling towards optimum settings.

Deriving an absolute progress completion rate towards application termina-
tion is unattainable for most non-trivial programs. Thus, one form of a good

Compiler Generated Progress Estimation for OpenMP Programs 109

progress estimation would be a value which increases linearly and monotonously
with the relative progress of an application. As long as the scheduled program
can perform the same amount of useful work towards its goal in two observational
timeframes, it should also report the same relative progress estimate.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Normalized execution time

N
or
m
al
iz
ed

re
po

rt
ed

pr
og

re
ss

Ideal
Instr. Counters
FP Counters
Task Throughput
Manual
Automatic

Fig. 1. Comparison of different progress reporting methods in NPB FT.

Figure 1 shows an illustration of different progress reporting methods during
the runtime of an application by plotting the relative reported progress against
the normalized time. The figure shows the results for all the progress estimation
methods we evaluated in this paper for the NPB FT benchmark running with
64 threads (cf. Sect. 4). A good reporting method would report a value very
close to the shown ideal line at any point during the execution. As we can see
in this example, some progress estimation methods fail to achieve this criterion.
This is the case for both counter approaches, which behave differently in the
sequential and parallel phase of this benchmark’s execution. The task throughput
as well as the manual estimation approach both suffer from their coarse-grained
accuracy, essentially rendering them useless for any kind of decision feedback.
Our automatic approach on the other hand is able to estimate the progress quite
well for most parts of the program execution.

The importance for direct feedback on the progress of scheduled applications
has already been well established in the past. There is a wide body of work which
tries to base scheduling decisions on the progress made by the scheduled appli-
cations to achieve optimal throughput. An example for this is the work by Wu
et al. [13], where the authors introduce the concept of an application’s progress
based on the number of CPU cycles executed during a scheduling period. The
goal of this work is a fair scheduling between equally-weighted processes where
each of the applications can progress the same amount. Feliu et al. [4] follow a
very similar approach. The progress of a process gets estimated by co-scheduling
it in a low-contention scenario and thereby determining the maximum possi-
ble executed instructions for a given timeframe. By comparing the actual CPU

110 P. Zangerl et al.

counters with the maximum achievable value they determine the relative progress
and use this value to create a fair co-scheduling between different processes.

The same approach has also been applied to scheduling kernels on GPUs by
Anantpur et al. [1]. Lee et al. [9] additionally use counter measurements to decide
when and where to best apply DVFS for reduced energy consumption while still
maintaining set performance constraints. The approach presented here does not
rely on CPU counters and has a more direct relation to an application’s progress,
enabling us to deliver more accurate and platform-independent results.

Instead of using CPU counters, Goel et al. [6] take scheduling decisions based
on observing input/output events as well as inter-process communication. The
approach presented by Georgakoudis et al. [5] takes into account several perfor-
mance indicators and tries to build a speedup model to quantify the resulting
limitations to scalability. These approaches are highly dependent on the behav-
ior of the monitored applications, and certain programs might not generate such
events for most part of their execution, resulting in unreliable estimates.

Steere et al. [10] recognize the need for a direct progress reporting mecha-
nism between a program and its environment for improved scheduling decisions.
However, they also acknowledge that it is advisable to keep these two software
domains not too tightly interlocked. As a solution, they propose a symbiotic
interface where e.g. the application notifies the operating system about data
buffers and their fill-levels, enabling the latter to reason about the application’s
progress. The runtime interface proposed by our approach offers a way of directly
reporting progress to the surrounding runtime system without burdening appli-
cation developers with this task, as the invocations of this interface are created
automatically with the help of a compiler component.

3 Method

Our approach combines a compiler analysis component with a task-parallel run-
time system. Figure 2 provides an overview of our proposed method. As a first
step, the input program is translated into a parallelism-aware intermediate rep-
resentation (IR) by the compiler frontend 1 . This IR is then analyzed by our
progress estimation component, which will insert reporting nodes at the appro-
priate locations 2 . The compiler backend 3 then creates the output code to be
compiled against the runtime system, resulting in the final program binary 4 .
The full implementation presented in this paper is publicly available1.

3.1 Compiler Component

As we wanted our analysis to distinguish between sequential and parallel progress
of an application, we decided to base it on a compiler with support for paral-
lelism awareness in its intermediate representation. For this reason, we chose the

1 Full implementation along with instructions and evaluation script available at
https://github.com/insieme/insieme/tree/progress estimation.

https://github.com/insieme/insieme/tree/progress_estimation

Compiler Generated Progress Estimation for OpenMP Programs 111

Input
Code

(C/C++)

Output
Code Binary

C
om

pi
le

r
Fr

on
te

nd

R
un

tim
e

Sy
st

em

C
om

pi
le

r
B

ac
ke

ndIR

Progress Estimation
Analysis and Transformation
Progress Report Generation

Parallelism Handling

IR

R
ep

or
tin

g
C

al
l

C
on

ve
rs

io
n

Pr
og

re
ss

R
ep

or
tin

g
In

te
rf

ac
eData

Existing Modules

Contributions

1

2

3 4

Fig. 2. Method overview for our automatic progress estimation.

Insieme research compiler system with its INSPIRE IR [8], as it allows us to
capture the parallel semantics of a variety of input languages. While some parts
of our analysis are currently tailored for OpenMP-specific semantics, it is easily
extensible to other input languages supported by the Insieme compiler system.

Compiler Analysis. The foundation for our progress estimation is a modified
and extended variant of the effort estimation component presented by Thoman
et al. [11,12]. This analysis allows us to generate effort estimations for arbitrary
code parts. In this work, we define the progress of an application as the accu-
mulated effort of its statements. In the analyses and transformations presented
here, we use the same notations as Thoman et al. with the following extensions:

– is compound(n) Checks whether the node n is a compound statement.
– is exit point(c, n) Checks whether node n is an exit point in compound c.
– all child statements(c) Returns all child nodes of the given compound c.
– get effort(n) Returns the effort estimation for node n.
– replace child(c, o, n) Replaces child o of node c with n.
– insert reporting call(c, s, p) Inserts a reporting node with progress p above

node s in the compound statement c, returning zero.
– insert reporting call at end(c, p) Inserts a reporting node with progress p at

the end of the compound statement c, returning zero.
– conditional(cond, then, else) Refers to a conditional statement with its con-

dition cond and the branch compound statements then and else.
– loop(cond, body) Refers to a loop with its condition cond and the body body.
– all reporting addresses(n) Returns a set of all addresses rooted at node n to

progress reporting nodes in any child node of n, at arbitrary depth.
– is openmp {parallel/single/master}(n) Checks whether node n represents the

respective OpenMP construct in INSPIRE.
– mark reporting {parallel/sequential}(n) Replaces reporting node n with a spe-

cialized parallel or sequential version.

Progress Report Generation: A simplified version of the algorithm used to gen-
erate progress reportings is depicted by Algorithm1. In a first phase, the anal-
ysis traverses all functions of the program. The handle compound function gets
passed the body, the current progress p and a flag r indicating whether or not to

112 P. Zangerl et al.

unconditionally report p at the end of the function. Each function body is ana-
lyzed statement by statement, and the effort for all the statements is evaluated
(line 19). The effort of the current statement is aggregated in the current progress
estimation value p (line 27). Before p would overflow a configurable threshold
value l, we insert a new IR node into the body reporting the current value of
p, and reset p to the effort of the current statement (lines 23–25). This aggre-
gation is applied to every statement within the compound, but several types of
statements require special treatment:

– Nested compound statements are handled by recursion (lines 3–5).
– For conditional statements, we accumulate the effort for evaluating the con-

dition (line 7) and then continue to evaluate for each branch individually,
reporting at the end of each branch (lines 8–11).

– Before a loop is entered, the current value of p is always reported (line 14).
Within the loop, the progress is reported before any exit-point of the loop,
as well as at the end of each iteration.

Also, before each exit-point of a function, the current value of p is reported
unconditionally (lines 20–21). However, in order to reduce the number of report-
ing instances and thus the program execution overhead, we remove instances
reporting only very small values in single exit-point functions and annotate the
functions with the reported value as unreported progress. Whenever a statement
calls such a function, we then add the unreported progress to the current accu-
mulation and thus effectively inline the progress reporting in this case. This
optimization is not shown in Algorithm1 for brevity.

Parallelism: This phase of the analysis is responsible for differentiating between
reports in sequential and parallel code. In a second pass through the whole pro-
gram we traverse all reporting nodes which have been created by the first phase.
A simplified version of this transformation pass is outlined in Algorithm2. The
context of each reporting within the program is analyzed for the parallelism at
its code location. This is achieved by traversing the path from each reporting
location backwards up to the root of the program (line 3). We then decide on the
parallel context based on what kind of OpenMP construct we meet first (lines 4
and 7). The reporting nodes are then transformed into specialized versions rep-
resenting sequential or parallel progress respectively (lines 9–12). Note that, if
the same function or set of functions is called in both sequential and parallel
contexts, this will generate two distinct versions of these functions in the output
program – this is an aspect of our automatic compiler-based system which is
particularly cumbersome to replicate in a manual approach.

Tunable Parameters. Our compiler component has a small set of tunable
parameters influencing its behavior:

– The most important one is the progress reporting threshold l. This is the value
above which the aggregated progress will lead to a new progress reporting
node being generated within the code.

Compiler Generated Progress Estimation for OpenMP Programs 113

Algorithm 1. Handle Program Flow
l the progress reporting threshold

1: function handle compound(c, p, r)
2: for all s ∈ all child statements(c) do
3: if is compound(s) then
4: (s′, p) ← handle compound(s, p,⊥)
5: replace child(c, s, s′)
6: else if ∃cond, then, else | s = conditional(cond, then, else) then
7: p ← p + get effort(cond)
8: (then′,) ← handle compound(then, p,�)
9: replace child(s, then, then′)

10: (else′,) ← handle compound(else, p,�)
11: replace child(s, else, else′)
12: p ← 0
13: else if ∃cond, body | s = loop(cond, body) then
14: p ← insert reporting call(c, s, p)
15: eCond ← get effort(cond)
16: (body′,) ← handle compound(body, eCond,�)
17: replace child(s, body, body′)
18: else
19: p′ ← get effort(s)
20: if is exit point(c, s) then
21: p ← insert reporting call(c, s, p + p′)
22: else
23: if p + p′ > l then
24: insert reporting call(c, s, p)
25: p ← p′

26: else
27: p ← p + p′

28: if r ∧ p > 0 then
29: p ← insert reporting call at end(c, p)

30: return (c, p)

Algorithm 2. Handle Parallelism
m the main program node

1: for all r ∈ all reporting addresses(m) do
2: par ← ⊥
3: for all n ∈ reverse sequence(r) do
4: if is openmp parallel(n) then
5: par ← �
6: break
7: else if is openmp single(n) ∨ is openmp master(n) then
8: break
9: if par then

10: make reporting parallel(r)
11: else
12: make reporting sequential(r)

114 P. Zangerl et al.

– We implemented an optimization which can be beneficial for programs which
contain many very fine grained conditional statements. This optimization will
– after the normal handling of conditional statements – compare the reported
progress of both branches. If the reported values differ only by an amount
less than a user-provided threshold, the reportings will be removed from the
conditional branches and the analysis will continue after the conditional with
the average of the removed values.

– As a last pass of the transformation, we optionally remove reportings of very
small values. This is useful for programs with very intricate and tightly nested
control flow, where the normal algorithm would lead to a large number of
reporting nodes, each of them reporting only tiny amounts of progress.

Listing 1. Runtime system API for progress reporting

// report sequential/global progress

void irt_report_progress (uint64_t progress);

// report parallel/per -worker progress

void irt_report_progress_thread(uint64_t progress);

All of these parameters can be tuned for a given use case, either to reduce the
runtime overhead of our progress reporting method at the cost of slightly reduced
accuracy, or alternatively to increase accuracy while potentially introducing more
overhead. The default values for these parameters are set to result in reasonable
compromise between low overheads and good prediction accuracy for sequential
and parallel code parts alike, as shown in Sect. 4.

3.2 Compiler Backend

In the backend of the compiler, the reporting IR nodes need to be translated
into calls which will use the runtime system’s reporting facilities. The sequential
and parallel version of our reporting nodes are translated into distinct runtime
function calls, with the reported progress estimate being an argument of the call.

3.3 Runtime System

We extended the Insieme runtime system to support reporting of sequential
as well as parallel (per-worker) progress. The runtime interface (cf. Listing 1)
consists of two functions which can be used to report progress. For our proto-
type implementation, a periodic maintenance task within the runtime system is
responsible for collecting and combining the reported progress. This thread then
prints the combined application progress, allowing us to evaluate the accuracy of
our approach. Additionally, these reporting facilities can also be used to imple-
ment task throughput estimation as well as manual progress reporting which we
used for comparison purposes in our evaluation.

Compiler Generated Progress Estimation for OpenMP Programs 115

4 Evaluation

Each progress estimation method we investigated comes with a set of require-
ments and in return offers some features. Table 1 summarizes these properties.

Tracking an application’s progress using CPU counters might require cer-
tain special permissions on some hardware platforms. More crucially, not every
platform will provide all counters which we might be interested in, and different
programs might be best measured by distinct counters. On the other hand, we
get a very fine grained estimation with minimal overhead. However, by relying on
CPU counters we work with estimates which are inherently influenced by work
spent within the runtime system itself and can not get per-worker estimates.

Table 1. Requirements and feature set of different progress estimation methods

CPU
counters

Task
throughput

Manual Automatic

Requirement Source code access ✗ ✗ ✓ ✓

Program understanding ✗ ✗ ✓ ✗

Special permissions (✓) ✗ ✗ ✗

Feature Platform independence ✗ ✓ ✓ ✓

Program independence ✓ ✗ ✓ ✓

Fine granularity ✓ (✗) (✗) ✓

Constant accuracy ✓ (✗) (✗) ✓

Low runtime overhead ✓ ✓ (✓) ✓/✗

Unskewed estimate ✗ ✓ ✓ ✓

Per-worker estimate ✗ ✗ (✗) ✓

Using the runtime’s task throughput does not impose any additional require-
ments on the execution, as this value is readily available or easily added to an
existing runtime system. However, this method does not allow per-worker per-
formance estimates and also might work poorly with certain kinds of programs
which do not produce many tasks. This also implies that its accuracy is often
very fluctuating and also rather coarse-grained.

Manual and automatic compiler generated progress estimations both require
the application source code in order for the necessary reporting calls to be
inserted. Granularity, accuracy as well as the runtime overhead for manual esti-
mation highly depends on how well the programmer understands the program
and places the reporting calls. Most often, the result has low estimation overhead
with coarse granularity and varying accuracy. Per-worker estimations are rather
hard to achieve with manual progress estimation, as any code parts used in both
sequential and parallel contexts have to be duplicated.

By generating the reporting calls automatically with the help of a compiler,
we can mitigate most of the disadvantages of manual progress reporting, while

116 P. Zangerl et al.

leveraging its advantages. What remains is a certain overhead at runtime, due
to the high number of reporting calls generated for high accuracy. In some pro-
grams, these overheads can be quite large and thus render a naive implementa-
tion of this approach infeasible. However, these overheads can be minimized by
adjusting the tunable parameters of the compiler component (cf. Sect. 3.1).

Table 2. Benchmark overview

Benchmark Alignment Strassen BT CG EP FT IS UA

Origin AKM Cilk NPB

Parameters/Class prot.100.aa -n 4096 B B B B C A

4.1 Evaluation Setup

The hardware platform we are using for our evaluation is a quad-socket system
with four Intel Xeon E5-4650 processors. The 8 cores (or 16 hardware threads) of
each CPU are clocked at 2.7 GHz. On the software side, the system is based on
CentOS 7.4 running kernel version 3.10.0-693.2.2.el7. All binaries are compiled
with GCC 6.3.0 using -O2 optimizations. The thread affinity for all the exe-
cutions has been fixed with a fill-socket-first policy. Each experiment has been
executed ten times and we are always reporting the average values achieved.

We evaluated five different progress estimation methods in this paper, namely
(i) CPU counters for executed instructions; (ii) CPU counters for executed float-
ing point instructions; (iii) task throughput statistics gathered in the runtime
system; (iv) manual progress estimation; and (v) automatic compiler generated
progress estimation as proposed in this paper.

4.2 Benchmarks

To evaluate the approach presented in this paper we chose a set of benchmark
applications representing real-world application kernels. Table 2 lists the bench-
marks used along with their origin. Most of the benchmarks originate from
NASA’s parallel benchmark suite [2], with the remainder being derived from
the Barcelona OpenMP tasks suite [3].

4.3 Estimation Overhead

The measured overheads averaged by benchmark are shown by Fig. 3. The over-
head values reported are relative to the execution of the unmodified bench-
marks. Measuring the overheads did produce rather unreliable results for some
benchmarks, as they showed some jitter in their execution times between suc-
cessive runs at higher levels of parallelism. This is caused mainly by the non-
deterministic task scheduling and work-distribution of these benchmarks.

As expected, we can observe that the overheads for both CPU counting
approaches are negligible in all cases, as reading out these values during program

Compiler Generated Progress Estimation for OpenMP Programs 117

execution should not cause significant overheads. The rather large negative over-
head for the floating point counter estimate for the UA benchmark is a result of
the execution time jitter described above, indicating that an uncertainty range
of around 1% has to be considered for overhead evaluation in this benchmark.

Estimating the progress with the help of the runtime’s task throughput
should also not have a lot of influence on the program execution time. Still, we
can observe some small negative overheads for FT as well as IS, but especially
a relatively significant negative overhead for the EP benchmark. Also interest-
ingly, on average, the manual estimation method seems to actually speed up the
execution of several evaluated benchmarks.

Alignment BT CG EP FT IS Strassen UA Average

−2%

0%

2%

O
ve
rh
ea
d

Instr. Counters FP Counters Task Throughput Manual Automatic

Fig. 3. Overheads for the evaluated progress estimation methods by benchmark

We investigated this behavior in detail, and determined that the reduction
in runtime in these benchmarks is related to changes in the binary layout which
occur due to the inclusion of additional functions related to progress reporting.
These layout changes affect L1 instruction cache effectiveness, particularly for
EP, and are not specific to the methods we are investigating – even adding or
removing unrelated functions in the same translation units causes similar effects.

Regarding our automatic progress estimation, we can note that it shows
some minor performance overhead for certain benchmarks, while it seems to
improve the performance for others. The latter behavior is caused by similar
effects related to the binary layout of functions in GCC as observed for the
other progress metrics. Crucially, the performance overhead for our automatic
progress estimation approach is less than 2% in all benchmarks.

4.4 Estimation Accuracy

For assessing the quality of the reported progress of our evaluated estimation
methods we chose to employ the mean squared error (MSE) calculation:

MSE =
1
n

n∑

i=1

(Yi − Ŷi)2 (1)

We average the squared difference between every normalized progress report Yi

and the expected value Ŷi during program execution. The latter is derived as an

118 P. Zangerl et al.

ideal progress estimation based on constructing a perfectly linear metric after
program completion. The smaller the reported MSE, the better the estimation.

For averaging MSE values, we average over the magnitude of the error rather
than the absolute value to avoid a single bad pulling the final average to non-
representative high values:

AVGmag =
1
m

m∑

j=1

log10(MSEj) AVG MSE = 10AVGmag (2)

Accuracy by Benchmark. Figure 4 shows the accuracy achieved for each
benchmark. All methods are able to achieve very good estimations within about
the same order of magnitude for the BT and UA benchmarks. The same holds
true for the EP benchmark, with the exception of the task throughput method.
Also for the CG benchmark all evaluated methods result in a similar accuracy of
the predictions. For the remaining four benchmarks, the achieved accuracy often
diverges between the different methods by one or more orders of magnitude, with
the Alignment-Benchmark being the most extreme example.

Alignment BT CG EP FT IS Strassen UA Average

10−5

10−4

10−3

10−2

10−1

M
SE

Instr. Counters FP Counters Task Throughput Manual Automatic

Fig. 4. Accuracy of the evaluated progress estimation methods by benchmark.

Accuracy by Threads. The accuracy achieved by averaging our results across
thread counts instead of by benchmark is shown in Fig. 5. We can observe that
the estimation accuracy seems to be best for a low number of threads. The accu-
racy then decreases until we reach the worst results with the maximum number
of threads evaluated. Moving from using all available cores to also running on
all hardware threads does not have much influence on the estimation accuracy.

Regarding the specific estimation methods, we can observe that:

– The use of instruction CPU counters results in better estimates than the use
of floating point CPU counters, regardless of the number of threads.

– Both counter-related estimates have a rather large drop in accuracy when
moving from running on a single CPU socket to multiple sockets (16+
threads), with not too much change further on.

Compiler Generated Progress Estimation for OpenMP Programs 119

– The accuracy achieved by relying on the task throughput estimation is always
very bad.

– Results for the manual progress estimation often fall between the accuracy
achieved by the use of instruction counters and floating point counters for
lower thread counts, but still are always worse than the results for our auto-
matic estimation method.

– The automatic estimation yields the best results overall for any number of
cores used, with the advantage over counter based methods increasing with
higher numbers of threads.

The final point regarding parallelism is particularly encouraging for our app-
roach: with hardware architectures continuously increasing in the number of
cores and hardware threads per socket, it indicates that a parallelism-aware
compiler-supported approach such as ours is more suitable for progress estima-
tion on such highly parallel hardware than any of the established alternatives.

1 2 4 8 16 32 64 Average
10−5

10−4

10−3

10−2

Number of Threads

M
SE

Instr. Counters FP Counters Task Throughput Manual Automatic

Fig. 5. Accuracy of the evaluated progress estimation methods by number of threads

5 Conclusion

In this work, we presented a novel and fully automatic compiler analysis and
transformation to generate progress estimations for OpenMP programs. Our
approach provides the runtime system with direct feedback on the progress of
an application, without having to resort to metrics only indirectly related to
the application’s progress or requiring a manual per-application implementa-
tion effort. This feedback can be used by the runtime system to measure the
effectiveness of parameter changes and thus steer the execution towards optimal
settings.

We evaluated our implementation on a set of eight benchmark applications
implementing a wide variety of different types of algorithms. The achieved results
show a good accuracy of our progress estimation, out-performing any other eval-
uated progress estimation method for any degree of parallelism evaluated. Cru-
cially, the accuracy advantage of our automatic approach is increasing with a
higher degree of parallelism, indicating it to be a valid approach for highly par-
allel future computing systems.

120 P. Zangerl et al.

The work presented here offers several extension opportunities for future
research. The compiler analysis itself can be further optimized to generate less
reporting calls and thus runtime overhead for code parts which can be fully stat-
ically analyzed (e.g. loops with statically constant boundaries). Additionally, the
set of tunable parameters of our transformation could be extended to enable a
more fine-grained tradeoff between accuracy and runtime overheads. Orthogo-
nally to the improvements of the compiler parts, future research also includes
taking advantage of the generated progress estimations in the runtime system.
The good accuracy of the provided estimations enables further runtime opti-
mizations ranging from improved scheduling decisions to energy optimizations.

Acknowledgement. This work is supported by the D-A-CH project CELERITY,
funded by DFG project CO1544/1-1 and FWF project 13388.

References

1. Anantpur, J., Govindarajan, R.: PRO: Progress Aware GPU Warp Scheduling
Algorithm. In: 2015 IEEE International Parallel and Distributed Processing Sym-
posium, pp. 979–988, May 2015

2. Bailey, D.H., Barszcz, E., Barton, J.T., et al.: The NAS parallel benchmarks. Int.
J. Supercomput. Appl. 5(3), 63–73 (1991)

3. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
Tasks Suite: A Set of Benchmarks Targeting the Exploitation of Task Parallelism
in OpenMP. In: 2009 International Conference on Parallel Processing, pp. 124–131
(2009)

4. Feliu, J., Sahuquillo, J., Petit, S., Duato, J.: Addressing fairness in SMT multi-
cores with a progress-aware scheduler. In: 2015 IEEE International on Parallel and
Distributed Processing Symposium (IPDPS), pp. 187–196. IEEE (2015)

5. Georgakoudis, G., Vandierendonck, H., Thoman, P., Supinski, B.R.D., Fahringer,
T., Nikolopoulos, D.S.: SCALO: Scalability-Aware Parallelism Orchestration for
Multi-Threaded Workloads. ACM Trans. Archit. Code Optim. 14(4), 54:1–54:25
(2017)

6. Goel, A., Walpole, J., Shor, M.: Real-rate scheduling. In: 10th IEEE Real-Time and
Embedded Technology and Applications Symposium, Proceedings, RTAS 2004, pp.
434–441, May 2004

7. Jordan, H., et al.: A Multi-Objective Auto-Tuning Framework for Parallel Codes.
In: 2012 International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pp. 1–12, November 2012

8. Jordan, H., Pellegrini, S., Thoman, P., Kofler, K., Fahringer, T.: INSPIRE: The
Insieme Parallel Intermediate Representation. In: Proceedings of the 22nd Inter-
national Conference on Parallel Architectures and Compilation Techniques, PACT
2013, pp. 7–18. IEEE Press, Piscataway (2013)

9. Lee, S.-J., Lee, H.-K., Yew, P.-C.: Runtime Performance Projection Model for
Dynamic Power Management. In: Choi, L., Paek, Y., Cho, S. (eds.) ACSAC 2007.
LNCS, vol. 4697, pp. 186–197. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74309-5 19

10. Steere, D.C., Goel, A., Gruenberg, J., McNamee, D., Pu, C., Walpole, J.: A
feedback-driven proportion allocator for real-rate scheduling. In: OSDI, vol. 99,
pp. 145–158 (1999)

https://doi.org/10.1007/978-3-540-74309-5_19
https://doi.org/10.1007/978-3-540-74309-5_19

Compiler Generated Progress Estimation for OpenMP Programs 121

11. Thoman, P., Zangerl, P., Fahringer, T.: Task-parallel Runtime System Optimiza-
tion Using Static Compiler Analysis. In: Proceedings of the Computing Frontiers
Conference, pp. 201–210. ACM (2017)

12. Thoman, P., Zangerl, P., Fahringer, T.: Static Compiler Analyses for Application-
specific Optimization of Task-Parallel Runtime Systems. J. Sig. Process. Syst.,
1–18 (2018)

13. Wu, C., Li, J., Xu, D., Yew, P.C., Li, J., Wang, Z.: FPS: a fair-progress process
scheduling policy on shared-memory multiprocessors. IEEE Trans. Parallel Distrib.
Syst. 26(2), 444–454 (2015)

Methods and Tools for Parallel Solution
of Large-Scale Problems

Analysis of Relationship Between
SIMD-Processing Features Used

in NVIDIA GPUs and NEC SX-Aurora
TSUBASA Vector Processors

Ilya V. Afanasyev1(B) , Vadim V. Voevodin1 , Vladimir V. Voevodin1 ,
Kazuhiko Komatsu2 , and Hiroaki Kobayashi2

1 Research Computing Center of Moscow State University, Moscow 119234, Russia
afanasiev ilya@icloud.com

2 Tohoku University, Sendai, Miyagi 980-8579, Japan

Abstract. This paper presents comprehensive analysis of main SIMD-
processing features and computational characteristics of three high per-
formance architectures: two NVIDIA GPU architectures (of Pascal and
Volta generations) and NEC SX-Aurora TSUBASA vector processor.
Since both these types of architectures strongly rely on using SIMD-
processing features, certain similarities of data-processing principles
can be found between them. However, despite having vectorised data-
processing included in both NVIDIA GPU and NEC SX-Aurora TSUB-
ASA architectures, vectorisation features of both architectures are imple-
mented in completely different ways. These differences lead to several
fundamental restrictions on classes of algorithms which can be efficiently
implemented on corresponding platforms. This paper is devoted to the
research of the possibility of porting various classes of programs and
algorithms among the discussed architectures with a focus on utilising
all vectorisation features available. However, without a detailed analy-
sis of similar and different SIMD-processing features in these architec-
tures, it is impossible to approach this problem. The performed analysis
allowed us to identify several important examples of typical applications
and algorithms. Some of them demonstrated comparable and the oth-
ers showed different efficiency on NVIDIA GPUs and NEC SX-Aurora
TSUBASA vector processors, including reduction operations, programs
relying on frequent indirect memory accesses and data-transfers through
co-processor interconnect. Moreover, the conducted analysis allows to
easily extend this set of examples to approach the problem of automated
porting of programs between the reviewed architectures, what we con-
sider as an important direction of our future research.

Keywords: NEC SX-Aurora TSUBASA · NVIDIA GPU ·
Vector processing · SIMD

c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 125–139, 2019.
https://doi.org/10.1007/978-3-030-25636-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_10&domain=pdf
http://orcid.org/0000-0002-0202-1548
http://orcid.org/0000-0003-1897-1828
http://orcid.org/0000-0001-6036-5106
http://orcid.org/0000-0003-4463-8359
http://orcid.org/0000-0002-3350-1413
https://doi.org/10.1007/978-3-030-25636-4_10

126 I. V. Afanasyev et al.

1 Introduction

There is a great variety of computational platforms widely used in modern super-
computing, that support some form of vectorisation. Vectorised data-processing
follows ideas of Single Instruction Multiple Data (SIMD) model [4] – an impor-
tant computational principle, which allows efficient utilisation of data-level par-
allelism. At the same time, vectorised data-processing is used both in traditional
modern CPUs, such as Intel or IBM Power processors, and dedicated vector
systems, such as supercomputers produced by NEC company. Vectorisation in
both types of processors can be implemented with two different approaches. Tra-
ditional central processors usually contain specialised vector instruction exten-
sions, such as AVX-512 or AltiVec, which allow them to execute a set of prede-
fined vector operations over vector registers of a fixed length. In the meantime,
NEC vector processors work according to a combination of parallel and pipelined
data-processing principles, utilising several computational pipelines integrated
into functional units.

NVIDIA GPU is another important supercomputing architecture. GPUs tend
to provide high performance and energy efficient computations, together with
high-bandwidth memory. Data-processing model in modern GPUs is called SIMT
(Single Instruction Multiple Threads) and is based on a combination of SIMD-
processing principles and multithreading. This model operates with thousands of
light-weighted computational threads, grouped into so-called warp, each of which
working according to the SIMD model. Similarity between GPU executional
model and vector-processing allows GPUs to potentially share many computa-
tional properties and features with modern high-performance vector processors,
such as SX-Aurora TSUBASA.

Thus, many modern architectures include certain features of vectorised data-
processing: AVX-512, AltiVec, GPU warps, NEC vector-pipelined units and
many others. Despite all of them being referred as “vector processing”, these vec-
torisation features are implemented differently, and thus can potentially impose
significant restrictions on classes of algorithms, which can be efficiently imple-
mented on corresponding architectures. At the same time, since all mentioned
features are related to a class of architectures operating according to SIMD
executional model, it implies possible similarity of data-processing principles
between them. This fact makes it very interesting to study a possibility of trans-
ferring various program classes between the reviewed platforms with a focus on
fully utilising available vectorisation support.

2 Description of Target Architectures

2.1 NEC SX-Aurora TSUBASA

NEC SX-Aurora TSUBASA is the latest SX vector supercomputer with ded-
icated vector processors [7,11]. SX-Aurora TSUBASA inherits the design con-
cepts of the vector supercomputer and enhances its advantages to achieve higher
sustained performance and higher usability. Different from its predecessors in the

SIMD-Processing in GPU and SX-Aurora Architectures 127

SX supercomputer series [3,6], the system architecture of SX-Aurora TSUBASA
mainly consists of vector engines (VEs), equipped with a vector processor and
a vector host (VH) of an x86 node. The VE is used as a primary processor for
executing applications while the VH is used as a secondary processor for exe-
cuting basic operating system (OS) functions that are offloaded from the VE.
The VE has eight powerful vector cores. As each core provides 537.6 GFlop/s of
single-precision performance with 1.40 GHz frequency, the peak performance of
the VE reaches 4.3 TFlop/s.

Each SX-Aurora vector core consists of three components: scalar processing
unit (SPU), vector processing unit (VPU), and memory subsystem. Most com-
putations are performed by VPUs, while SPUs provide functionality of typical
CPU. Since SX-Aurora is not just a typical accelerator, but rather a self-sufficient
processor, SPUs are designed to provide relatively high performance on scalar
computations. VPU of each vector core has its own relatively simple instruction
pipeline aimed for decoding and reordering vector instructions incoming from
SPU. Decoded instructions are executed on vector-parallel pipelines (VPP).
In order to store the results of intermediate calculations, each vector core is
equipped with 64 vector registers with a total register capacity equal to 128 KB.
Each register is designed to store a vector of 256 double precision elements (DP).

Vector processing on VE core is based on utilising 32 identical vector par-
allel pipelines, which process vectors located on registers in portions of 32 DP
elements according to SIMD model. Thus, one command operating on vectors
of 256 elements will be executed in 8 processor cycles, provided that there are
no stalls caused by high-latency instructions. In addition, each VPP contains
pipelined processing units that operate over scalar elements of input vectors.
Each VPP has 3 FMA (Fused Multiply-Add) units, 2 ALUs (Arithmetic and
Logic Unit) and 1 unit dedicated for processing high-latency commands (sqrt,
division and others), as well as communicating with memory subsystem. Depend-
ing on the program structure, required data is redirected between computational
units, forming a vector pipeline.

On the memory subsystem side six HBM modules in the vector processor can
deliver the 1.22 TB/s world’s highest memory bandwidth [3]. This high memory
bandwidth contributes to achieve higher sustained performance, especially in
memory-bound applications.

2.2 NVIDIA Pascal

Pascal [8] is the codename for modern GPU architecture developed by NVIDIA, a
successor of Maxwell and Kepler architectures. NVIDIA Tesla P100 GPU, which
is one of the most well-known representatives of Pascal architecture, is used for
the performance evaluation in this paper. The P100 GPU is equipped with 3584
light-weighted cores with 1.1 GHz frequency, which allows a single P100 GPU
to achieve 9.3 TFlop/s performance on single-precision computations. Cores in
Pascal architecture are grouped together into streaming multiprocessors (SM),
each one consisting of 64 CUDA-cores.

128 I. V. Afanasyev et al.

Program execution model is similar for all recent generations of GPUs, includ-
ing Pascal and Volta architectures. When computations are launched on a GPU,
a significant number of threads is spawned (usually at least several hundreds
of thousands). Up to 1024 threads are grouped together into a single compu-
tational block. All threads of the computational block are scheduled via Giga
Thread Engine into a single streaming multiprocessor. SM processes threads
of each block by grouping 32 of them into warps in round-robin order. GPU
hardware processes threads from the same warp using SIMD instructions of
length 32, assigning each thread to a separate computational CUDA-core. Those
instructions have several important limitations, which include processing branch
conditions and handling memory accesses.

Each SM of Pascal architecture includes 64 computational CUDA-cores, each
one including both FMA and Integer units. In addition Pascal SM is quipped
with 32 double-precision cores, 16 load/store cores, and 16 special function cores,
aimed to process high-latency instructions. SM also includes registers with a total
capacity of 256 KB, shared between all mentioned types of cores.

Device memory of Pascal GPU consists of four HBM2 memory stacks, pro-
viding together up to 16 GB memory capability and up to 700 GB/s memory
bandwidth.

2.3 NVIDIA Volta

Volta [9], being the latest GPU architecture, is also reviewed in the current
paper. In several studies the performance of V100 GPUs is compared to the per-
formance of SX-Aurora processors, since they have comparable technical charac-
teristics, including performance on double-precision computations and memory
bandwidth. In general, Volta inherits most computational features of Pascal
architecture, but also introduces several important innovations. For example,
Volta GPUs include specialised tensor cores, specially designed to speed-up deep
learning applications. Each tensor core is dedicated for efficient computation of
4×4 half-precision matrix products, calculating a single matrix product on each
GPU cycle using a special pipeline. Volta architecture also supports NVLINK
interconnect of version 2.0, which doubles the bandwidth compared to the pre-
vious generation of NVLINK. In addition, Volta accelerators are equipped with
HBM2 memory modules, providing up to 900 GB/s bandwidth and up to 32 GB
of total memory capacity. Volta architecture also uses slightly modified SMs,
divided into four processing blocks, each with 16 FP32 cores, 8 FP64 cores, 16
INT32 cores, 2 tensor cores.

3 Comparison of SIMD-Processing in NVIDIA GPUs
and NEC SX-Aurora Architectures

Based on the architecture descriptions from the previous section, it is possible to
conduct a comparative analysis of similar and different vector-processing features
of the reviewed architectures. In many cases, the discussed similar and different

SIMD-Processing in GPU and SX-Aurora Architectures 129

architectural features will be illustrated with sample programs and benchmarks,
more clearly demonstrating the principal distinguishing features of target plat-
forms.

3.1 Overall System Structure Based on Using Co-processors

Both NVIDIA GPUs and SX-Aurora vector engines are installed into a system
as co-processors. Connection to the host is usually implemented via PCI 3.0
bus, although for GPUs NVLINK interconnect is available, capable of providing
significantly higher bandwidth. However, despite being installed as accelerators,
these architectures have several crucial differences in program execution model,
demonstrated on Fig. 1.

Fig. 1. Execution models of NVIDIA GPU (left) and SX-Aurora TSUBASA (right)
architectures.

The first difference affects a process of launching a GPU or vector program. In
the case of NVIDIA GPU, the program initially runs on a system host, but uses
a special API in order to allocate required data structures inside GPU memory
or launch CUDA-kernels, aimed to directly perform parallel computations on
GPU. If the program has to perform a sequential region in between different
CUDA-kernels, GPU is forced to copy the required data back to the host and
perform sequential calculations on the CPU.

The situation on SX-Aurora TSUBASA is different. A vectorised program
initially launches on scalar processing units of vector engine. While control flow
logic is processed on SPUs, all vector instructions are redirected to vector pro-
cessing units. Usually, SPUs provide high-enough performance required for pro-
cessing sequential parts of typical algorithms. In addition, all of system calls
are transparently offloaded to VH. For this reason no data copies between VH
and VE are required. However, if there is a fundamental necessity for high-
performance execution of a sequential program region, the required calculations

130 I. V. Afanasyev et al.

can be explicitly redirected to vector host with corresponding data copies. In
this case execution models of SX-Aurora and GPU are similar.

3.2 Warp-Based GPU SIMD and SX-Aurora TSUBASA Vector
SIMD

NVIDIA GPUs execute program code on numerous threads, which are grouped
into warps in round-robin order. Each warp consists of 32 threads, which means
that warp schedulers of SMs process GPU code using SIMD instructions of
width 32. From programmer’s point of view, each CUDA-thread is executing it’s
own scalar instructions, but on the hardware side thread execution is organised
according to the principles of SIMD-processing, when all threads from the same
warp execute single instruction at any given period of time. Thus, in order to
maximise GPU performance, programmer has to take SIMD model of thread
execution into account. In the meantime, different warps can execute multiple
instructions on multiple data, all together working according to the principles of
MIMD model.

SX-Aurora TSUBASA works according to the SIMD model within a single
vector core. Each core has its separate command flow, which means that differ-
ent cores work according to MIMD model. The instruction flow of each vector
core includes both scalar and vector instructions, executed by SPU and VPU
respectively. Vector instructions operate over vectors of arbitrary (1–256 ele-
ments) length. Each vector core processes these vectors using 32 vector parallel
pipelines. Thus, vector of length 256 is processed in parts, and vector instruction
is executed in 8 cycles on such a vector.

Thus, the structure of instruction flow (SIMD + MIMD) and basic principles
of SIMD processing within a single warp of GPU and vector parallel pipeline
of SX-Aurora are similar for both architectures. This leads to an equivalent
behaviour of various programs and algorithms on both architectures in such
cases as execution of conditional branch operators, loading data from mem-
ory subsystem or performing various types of calculations. At the same time,
principles of interaction between GPU warps and SX-Aurora vector cores are
very different, which leads to an important source of computational distinctions
between the reviewed architectures, which will be described in future sections.

3.3 Control-Flow Divergence

An important feature of SIMD-processing in almost any computational plat-
form is a sequence of hardware actions performed in the case of divergence (i.e.
different behaviour) inside single SIMD instruction. Divergence, which may sig-
nificantly bottleneck the performance of vectorised code, usually occurs in two
cases, discussed in this and next subsections. The first type of divergence is usu-
ally referred as control-flow divergence. It may occur in the process of executing
conditional branch operators, such as if-then-else operator in C/C++ languages.
In this case vector instruction is executed depending on some external data, that

SIMD-Processing in GPU and SX-Aurora Architectures 131

forces SX-Aurora to generate extra vector instructions and NVIDIA GPU to
implement special warp behaviour.

Control-flow divergence on SX-Aurora architecture is handled using masking
instructions. A typical program with possible divergence within single vector
instruction is shown in Listing 1. SX-Aurora architecture converts the provided
conditional operator into 4 separate vector operations: (1) a comparison of A
and B vectors, resulting into vector logical mask, (2) a masked vector copy, (3)
an inversion of logical vector mask from step 1, and (4) another masked vector
copy using an inverted mask. Thus, regardless of branching structure inside if-
then-else operator within single SIMD instruction, additional vector instructions
are generated and executed even if the whole SIMD instruction follows the same
conditional branch.

Listing 1. An example of simple data-driven control-flow divergence on vector
processors.

#pragma simd
for (i = 0; i < 256; ++i)

if (a[i] >= b[i]) // (1)
c[i] = a[i] // (2)

else // (4)
c[i] = b[i] // (3)

GPU handling of similar if-then-else construct is quite different. On the same
program CUDA platform will instruct the warp to execute the “if” part first,
and then proceed to the “else” part. While executing the “if” part, all threads
falling into “false” branch (i.e. “else” threads) are effectively deactivated. When
execution proceeds to the “else” condition, the situation is reversed. Thus, “if”
and “else” parts are executed in serial but not in parallel as it could be expected,
which is very similar to SX-Aurora behaviour in the same situation. However,
different behaviour occurs in the case when all threads inside single GPU warp
execute the same conditional branch – then there will be no performance degra-
dation on the GPU, while in the case of SX-Aurora architecture the performance
will be always lower since extra vector instructions are always generated. This
may result in 2 times slower execution in the case of two conditional branches
inside if-then-else-statement, and up to n times slower execution in the case of
n independent branches for both architectures.

Listing 2. Program benchmarking different types of data-driven control-flow
divergence on vector processors and GPUs.

#pragma simd

for (int idx = 0; idx < _size; idx++)

{

if(_condition[idx] == 0)

{

float t1 = _x[idx];

132 I. V. Afanasyev et al.

float t2 = _y[idx];

float t3 = (float)_condition[idx] + _seed1;

_z[idx] += ((t1 / t2) + (t1 / t3)) * (t2 + t1 + t3);

}

else

{

float t1 = _x[_size - 1 - idx];

float t2 = _y[_size - 1 - idx];

float t3 = (float)_condition[_size - 1 - idx] + _seed2;

_z[idx] *= ((t2 / t1) + (t2 / t3)) * (t2 - t1 - t3);

}

}

An example of a benchmark program, which is affected by thread divergence
on both architectures is shown in listing 2. This program selects executional
branch depending on values from a “condition” array. These values can be eas-
ily varied in order to provide different divergence structure inside single SIMD
instruction. The difference between execution times of various divergence struc-
tures is presented in Table 1. “No conditional statement” refers to the program
from listing 2, which executes only the first conditional branch without any
conditional operator. Other table rows correspond to different distributions of
values from “condition” array – a number of consecutive zero values, which lead
to execution of “if” conditional branch.

Table 1. Control-flow divergence differences for program from listing 2.

Test type P100 (Pascal)
GPU time (ms)

GPU warp execution
efficiency (%)

SX-Aurora time
(ms)

No conditional
statement

2,71 100% 2,8

Divergence (every 1
vector element)

4,38 55,7% 6,5

Divergence (every 2
vector element)

4,38 55,7% 6,7

Divergence (every
32 vector element)

2,93 96,1% 6,7

Divergence (every
256 vector element)

2,93 96,1% 8,3

3.4 Memory Divergence

The second type of divergence is called memory divergence. It may while loading
data from the memory subsystem, if several elements of vector instruction or
warp threads fail to load data from the cache, and thus have to wait until a
transaction to the main memory is finished. This situation results into a stall

SIMD-Processing in GPU and SX-Aurora Architectures 133

of entire vector instruction or warp, since hardware has to process the whole
instruction in the same way. Both GPU and SX-Aurora architectures process
cases of memory divergence in a similar way: when a cache-miss occurs for at least
one element of SIMD instruction, an entire vector instruction or warp is stalled
until memory request is complete, which significantly reduces the performance.

3.5 Utilisation of High-Bandwidth Memory

Both of the reviewed architectures utilise High Bandwidth Memory 2 (HBM2)
technology. NEC SX-Aurora TSUBASA processors are equipped with 6 HBM2
memory stacks, operated by two memory controllers; these stacks provide up to
48 GB of total memory. NVIDIA P100 GPUs of Pascal architecture use 4 HBM2
memory stacks operated by 8 controllers, providing a total capacity of up to 16
GB. NVIDIA V100 GPUs of Volta architecture also use 4 HBM2 memory stacks
managed by 8 controllers, but with larger memory capacity (up to 32 GB). Both
architectures provide the same access speed for all computational vector and
CUDA cores no matter which memory stack stores the requested data.

Table 2. Memory bandwidths and capacity characteristics of the reviewed architec-
tures.

Architecture Memory
type

Memory
capacity

Theoretical
peak
bandwidth
(GB/s)

Bandwidth achieved
on STREAM
benchmark (GB/s)

The ratio of
bandwidth
achieved on
STREAM to
theoretical

SX-Aurora
TSUBASA

HBM2 48 GB 1200 995 82%

NVIDIA
Pascal P100

HBM2 16 GB 732 628 85%

NVIDIA
Volta V100

HBM2 32 GB 900 809 89%

Table 2 provides technical characteristics of memory subsystems of the stud-
ied architectures. Theoretical peak memory bandwidth values from this table are
provided by hardware vendors. Achievable bandwidth values have been obtained
based on the standard STREAM TRIAD benchmark [1]. The proposed com-
parison allows to conclude that SX-Aurora architecture has significantly larger
memory capacity, as well as slightly better memory bandwidth on serial mem-
ory access pattern (22%), and thus can perform better on memory-intensive
workloads with sequential memory access pattern.

Memory latency, which is another important characteristic for each level of
memory hierarchy is listed in Table 3. Comparison from this table shows that
memory access latency for GPU is significantly higher compared to SX-Aurora
processor. However, in order to efficiently hide this high memory latency, GPUs

134 I. V. Afanasyev et al.

Table 3. Memory latency of the reviewed architectures

Level of memory hierarchy NVIDIA V100 and P100
GPUs

NEC SX-Aurora

L1 cache/shared memory ∼1–2 cycles - (memory transactions
from VPUs go directly
through L3 cache)

L2 cache ∼70 cycles - (memory transactions
from VPUs go directly
through L3 cache)

L3 cache - (L3 cache is not used in
GPUs)

∼25 cycles

Main memory ∼200–300 cycles ∼45 cycles

use light-weighted context switches of computational threads: each streaming
multiprocessor can have up to 7 idle threads per 1 active. Idle threads are usu-
ally waiting for memory transfers to be complete, while active threads execute
necessary computations on warp schedulers. Thus, GPUs have comparable aver-
age latency with SX-Aurora architecture in practice (300/8 ∼ 37 cycles).

3.6 Available Computational Parallelism

An important characteristic of any modern processor is the maximum number
of computational operations which can be executed on each cycle by all avail-
able computational units across all cores. On the one hand, this value can be
viewed just as another definition of widely-used peak performance metric. How-
ever, on the other hand this metric can be viewed in a different context – as a
fundamental restriction on algorithms which can be efficiently implemented on
this architecture. If an algorithm does not include sufficient amount of paral-
lelism required to fully utilise all computational resources of target processor,
this algorithm will be processed inefficiently. The amount of required parallelism
may also be affected by other architecture properties. For example, GPU archi-
tecture requires a much larger amount of computational threads actively running
in order to effectively hide memory access latency.

Table 4 compares the amount of parallel resources provided by each of the
reviewed architectures, depending on the data types used during computations.
Since both SX-Aurora and Pascal GPU architectures do not explicitly support
half-precision computations, we assume that these processors have exactly the
same half-precision and single-precision performance. The values in the table are
calculated as follows. For GPU architectures, the amount of parallelism on sin-
gle(double) precision floating-point computations is equal to 2∗SMs per GPU ∗
FP (DP) cores per SM . The amount of parallelism over integer arithmetics is
equal to SMs per GPU ∗ Integer cores per SM . For SX-Aurora the formulas
are different: 2 ∗ 2 ∗ vector cores ∗ V PPs per core ∗FMA units per V PP cor-
responds to single-precision computational parallelism, while 2 ∗ vector cores ×

SIMD-Processing in GPU and SX-Aurora Architectures 135

V PPs per core∗FMA units per V PP corresponds to double precision. Finally,
the amount of integer arithmetics parallelism for SX-Aurora is equal to
vector cores ∗V PPs per core∗(FMA units per V PP+ALU units per V PP).

Table 4. The amount of computational parallelism (in required multiply and add
operations) available for each architecture on each cycle.

Datatype NVIDIA
Pascal (P100)

NVIDIA Volta
(V100)

NEC SX Aurora-
TSUBASA

Floating-point (FP)
single precision

7168 10752 3072

FP double precision 3584 5376 1536

FP half precision 7168 86016 3072

Integer 3584 5376 1280

Table 4 demonstrates that both generations of GPU architecture require algo-
rithms with significantly bigger parallelism available than SX-Aurora architec-
ture. For example, GPU V100 requires the program to include in average 7 times
more parallel operations than SX Aurora, while GPU P100 – 4.6 times.

Another significant difference between architectures is the support of con-
text switching. If an algorithm requires frequent memory accesses, both GPU
architectures use context switches in order to hide memory latency. To achieve
this, GPU is required to have even more (approximately 8 times) parallel opera-
tions running, which are executed by temporarily idle warps, waiting for memory
transfers to complete. On the other side, SX-Aurora vector engine doesn’t sup-
port thread context switches at all, so optimal number of threads is equal to the
number of VE cores. This is a significant computational difference on its own,
but in the context of comparing the resource of parallelism between different
platforms this means that Volta architecture requires in average 8 times more
parallel operations from programs, than values listed in table 4. This fact even
further narrows the class of algorithms which can be efficiently implemented on
GPU architectures, compared to SX-Aurora.

3.7 Communication Principles in SX-Aurora Vector Cores
and GPU Warps

NVIDIA GPUs and SX-Aurora architectures have several fundamental differ-
ences in how they perform thread synchronisations and communications. GPUs
provide tools required for synchronising computations only within a single com-
putational CUDA block – thus only among several (up to 32) adjacent warps. In
order to synchronise computations between different blocks and different SMs,
GPU has to explicitly launch a new CUDA-kernel, which can cause significant
overhead. SX-Aurora allows to synchronise computations between each pair of

136 I. V. Afanasyev et al.

vector instructions using standard OpenMP barrier synchronisation. Moreover,
SX-Aurora provides functionality for efficient data-sharing between different vec-
tor cores, implemented based on storing the required data inside shared between
all vector cores LLC cache, while GPUs can only share data inside single com-
putational block, using shared memory. Thus, a lack of efficient GPU-wide syn-
chronisation and data-sharing mechanisms imposes significant restrictions on
algorithms which could be efficiently implemented on GPUs.

Reduction is an important example of computational operation that
requires frequent synchronisations between different computing units. Reduc-
tion, together with other operations which operate over long vectors with a low
computational intensity (e.g. SAXPY), is a memory-bound problem, and thus
its overall efficiency can be measured in terms of utilised memory bandwidth
(in GB/s). Utilised memory bandwidth is calculated as a ratio of the amount
of bytes loaded from memory during the calculations to the actual computation
time. The percentage ratio of utilised to theoretical peak memory bandwidths
is another important efficiency metric of memory-bound applications, which can
also be used in the reduction case.

Reduction implementation for SX-Aurora architecture is very straightfor-
ward. Since NEC compiler parallelisation is based on OpenMP directives
together with automatic multithread parallelisation, it is possible to use
OpenMP reduction clause to allow the compiler automatically parallelise and
vectorise sequential reduction. Implementation principles of parallel reduction
for NVIDIA GPU architectures are fundamentally different. Due to the lack
of effective synchronisation mechanisms among different warps and the require-
ment to utilise all available computational units, an efficient implementation
of parallel reduction operation is much more complicated for GPU. Possible
optimisations of GPU parallel reduction are described in [5]. Efficient reduction
implementations are also available in Thrust library [2], which will be used for
the comparative performance analysis later in this section.

Table 5. The performance of parallel reduction operation for different architectures.

Architecture Reduction
type

Vector
size

Execution
time

Achieved
bandwidth

Efficiency (achieved
and theoretical peak
bandwidths ratio)

P100 Pascal
GPU

Sum 512 MB 1.46 ms 365 GB/s 52%

SX-Aurora Sum 512 MB 0.53 ms 1009 GB/s 84%

Table 5 compares performance characteristics of parallel reduction implemen-
tations for Pascal GPU and SX-Aurora architectures. The initial time required to
copy input data arrays into GPU memory is not included in time measurements.
The provided metrics demonstrate a clear advantage of SX-Aurora architecture
on parallel reduction operation both in execution time (2.7 times faster) and
bandwidth efficiency (1.6 times better).

SIMD-Processing in GPU and SX-Aurora Architectures 137

3.8 Processing Indirect Memory Accesses

Both classes of the reviewed architectures have fundamental differences in the
technology of processing indirect memory accesses. When accessing data using
an irregular pattern, both architectures at first check the presence of the required
data inside cache memory. Since most likely this will result in cache-misses, it
will be followed by the request to the main memory, causing memory divergence
described in the previous section. Memory requests are handled by SX-Aurora
and GPU architectures differently. In the case of GPU, threads from a single warp
load the required data using several transactions based on memory coalescing
approach, which implies combining multiple memory accesses into a single trans-
action. Coalesced memory access idea is described in [10], but it is important to
highlight that on irregular memory accesses GPU will generally load significantly
more data than required.

SX-Aurora architecture processes indirect memory accesses using special
gather and scatter vector instructions, which involve additional latency caused
by placing indexes into gather instruction. Moreover, irregular accesses cause
frequent memory port conflicts, which reduce effective bandwidth even further
in this code.

Figure 2 presents a comparison of effective bandwidth values achieved on ran-
dom memory access benchmark implemented for Pascal GPU and SX-Aurora
TSUBASA platforms. Different element types and sizes of array (which is
accessed with an indirect pattern) were used. The effective bandwidth values
achieved on both architectures are comparable in the case when the indirectly
accessed array can be entirely placed inside the last level cache. As soon as the
size of array exceeds the size of last level cache (16 MB for SX-Aurora and 2 MB
for Pascal GPU), the effective bandwidth drops significantly for both platforms.

Fig. 2. Bandwidth (in GB/s, left) and ratio percentages (right) achieved on P100 and
SX-Aurora platforms on indirect memory accesses benchmarks.

138 I. V. Afanasyev et al.

3.9 Processing Small Data Types

Volta architecture provides specialised support for half-precision computations.
Not only it demonstrates higher performance due to a significant number of
specialised half-precision computational units (tensor-cores), but also because
of an ability of loading significantly less data from memory due to an explicit
support of half-precision datatypes. On the contrary, SX-Aurora architecture
does not support vectorised computations both with half-precision arithmetics
and small data types, such as bool, char, and short.

Graph algorithms is an important class of problems demonstrating signifi-
cantly higher performance due to the possible usage of small data types, which
can significantly reduce the amount of data loaded from memory with an irreg-
ular access pattern. Another important application is neural networks training,
which allows to perform all the required matrix-matrix multiplications in half-
precision, thus effectively halving the required bandwidth.

3.10 Computational Scheduling and Execution

Several significant differences are caused by fundamental differences between
GPU CUDA-cores and SX-Aurora VPPs. GPU SMs execute active warps using
warp schedulers, which are dual-issue capable, as long as there are 2 independent
instructions in the instruction flow of the same warp. These 2 SIMD instructions
can be executed on any type of CUDA cores – integer, FP, DP, SFU or load/store.
Thus, GPU is able to utilise different types of computational cores on each cycle,
including simultaneous usage of single-precision and double-precision computa-
tions. In the meantime, SX-Aurora uses same FMA units for both single- and
double-precision computations (single-precision values are packed and processed
in pairs), and thus is incapable of performing simultaneous single- and double-
precision computations.

4 Conclusions

In this paper the main computational SIMD-processing features have been
reviewed for two types of modern high-performance platforms: NVIDIA GPU
of Pascal and Volta architectures, as well as NEC SX-Aurora TSUBASA archi-
tecture. A detailed analysis of SIMD-processing features of the reviewed architec-
tures have been conducted, which allowed to identify several examples of typical
algorithms, demonstrating similar and different efficiency on the reviewed archi-
tectures.

Examples of programs that can be executed more efficiently on SX-Aurora
architecture include algorithms, which require frequent synchronisations and
data exchanges between different computational units, sequential memory
accesses or regular execution of sequential regions. Typical examples of programs
more suitable for execution on GPU architectures include algorithms with fre-
quent computations over small data types or half-precision calculations.

SIMD-Processing in GPU and SX-Aurora Architectures 139

The presented study allows to address the problem of efficiently porting pro-
grams from GPU architectures to vector platforms and vice versa, based on
architecture properties highlighted in the current paper. This is an important
direction for future research.

This project was partially supported by JSPS Bilateral Joint Research
Projects program, entitled “Theory and Practice of Vector Data Processing at
Extreme Scale: Back to the Future”. The reported study was supported by the
Russian Foundation for Basic Research, project No. 18-57-50005.

References

1. STREAM Benchmark. https://www.cs.virginia.edu/stream/
2. Thrust Library. https://thrust.github.io
3. Egawa, R., et al.: Potential of a modern vector supercomputer for practicalappli-

cations: performance evaluation of SX-ACE. J. Supercomput. 73(9), 3948–3976
(2017). https://doi.org/10.1007/s11227-017-1993-y

4. Flynn, M.J.: Very high-speed computing systems. Proc. IEEE 54(12), 1901–1909
(1966)

5. Harris, M., et al.: Optimizing parallel reduction in CUDA. Nvidia Dev. Technol.
2(4), 70 (2007)

6. Komatsu, K., Egawa, R., Isobe, Y., Ogata, R., Takizawa, H., Kobayashi, H.: An
approach to the highest efficiency of the HPCG benchmark on the SX-ACE super-
computer. In: Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis (SC15), Poster, pp. 1–2, November 2015

7. Komatsu, K., et al.: Performance evaluation of a vector supercomputer SX-aurora
TSUBASA. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, SC 2018, pp. 54:1–54:12. IEEE
Press, Piscataway (2018). http://dl.acm.org/citation.cfm?id=3291656.3291728

8. NVIDIA: Nvidia Tesla P100: The most advanced datacenter accelerator ever built
featuring Pascal GP100, the world’s fastest GPU. Whitepaper (2016)

9. NVIDIA Tesla: V100 GPU architecture (2017)
10. Wu, B., Zhao, Z., Zhang, E.Z., Jiang, Y., Shen, X.: Complexity analysis and algo-

rithm design for reorganizing data to minimize non-coalesced memory accesses on
GPU. In: ACM SIGPLAN Notices, vol. 48, pp. 57–68. ACM (2013)

11. Yamada, Y., Momose, S.: Vector engine processor of NECs brand-new supercom-
puter SX-aurora TSUBASA. In: Intenational Symposium on High Performance
Chips (Hot Chips 2018) (2018)

https://www.cs.virginia.edu/stream/
https://thrust.github.io
https://doi.org/10.1007/s11227-017-1993-y
http://dl.acm.org/citation.cfm?id=3291656.3291728

Efficient Parallel Solvers
for the FireStar3D Wildfire Numerical

Simulation Model

Oleg Bessonov1(B) and Sofiane Meradji2

1 Ishlinsky Institute for Problems in Mechanics RAS, 101, Vernadsky ave.,
119526 Moscow, Russia

bess@ipmnet.ru
2 IMATH, EA 2134, University of Toulon, Avenue de l’Université,

83957 La Garde, France
sofiane.meradji@univ-tln.fr

Abstract. This paper presents efficient parallel methods for solving
ill-conditioned linear systems arising in fluid dynamics problems. The
first method is based on the Modified LU decomposition, applied as a
preconditioner to the Conjugate gradient algorithm. Parallelization of
this method is based on the use of nested twisted factorization. Another
method is based on a highly parallel Algebraic multigrid algorithm with a
new smoother developed for anisotropic grids. Performance comparisons
demonstrate superiority of new methods over commonly used variants of
the Conjugate gradient method.

Keywords: Ill-conditioned linear systems · Conjugate gradient ·
Preconditioners · Multigrid · Smoothers · Parallelization

1 Introduction

The multi-physical FireStar3D numerical simulation model was developed in
order to predict the behavior of wildfires at local scales (up to 500 m) [1,2].
This model consists of solving the conservation equations of a coupled system
composed of vegetation and the surrounding gaseous medium. The model is able
to account explicitly for all mechanisms of degradation of vegetation and various
interactions between the gas mixture and the vegetation cover such as drag force,
heat transfer by convection and radiation, and mass transfer.

Solving a three-dimensional nonstationary multi-physical problem requires
significant computational resources. An appreciable part of the computational
time is spent on solving large sparse linear systems arising from the discretization
of partial differential equations in the above model [3].

The most popular iterative methods used to solve large linear systems are
the Conjugate Gradient for symmetric matrices and its non-symmetric variants
(BiCGStab, GMRES etc.) [4]. To accelerate convergence, these methods require

c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 140–150, 2019.
https://doi.org/10.1007/978-3-030-25636-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_11

Efficient Parallel Solvers 141

preconditioning [5]. There exists also a family of multigrid methods which possess
very good convergence and parallelization properties [6,7].

The applicability of solvers depends on the nature of the underlying physical
processes and on the speed of propagation of physical information. In particular,
incompressible viscous fluid flows can be driven by three basic mechanisms with
different propagation speeds:

– convection: slow propagation, Courant condition can be applied (one or few
grid distances per time-step); using an iterative solver with few iterations;

– diffusion: faster propagation (tens grid distances per time-step), well-conditi-
oned linear system; using an iterative solver with more iterations;

– pressure: instant propagation, ill-conditioned linear system; using an iterative
solver with a robust preconditioner or a multigrid or a direct solver.

The choice of the solution method is determined by the above property. In
the FireStar3D code, robust and efficient methods are used to solve the most
time-consuming Poisson equation for pressure – the preconditioned Conjugate
Gradient and the Algebraic multigrid. To solve the coupled system of convection-
diffusion equations, for which a robust solver is not required, the BiCGStab
method is applied.

In the previous papers [5,7,8], we analyzed various properties of iterative
methods from the point of view of mathematics, convergence, efficiency and
parallelization. In this paper we will consider the application of these methods
for wildfire modeling, taking into account specific properties and requirements
of the corresponding numerical simulation model.

The remaining part of the paper is organized as follows. Section 2 briefly
presents the mathematical and geometric formulation of the FireStar3D model.
Section 3 discusses the preconditioned Conjugate gradient method and describes
the parallelization approach for the implicit MILU preconditioner. Section 4
introduces the multigrid method and describes a new smoother for anisotropic
grids. Section 5 presents and analyzes the performance comparison results.

2 Mathematical Model

The mathematical model is based on a multiphase formulation [1]. It consists of
two parts, that are solved on two distinct grids. The first part is described by
the equations of the reacting turbulent flow in the gaseous phase, consisting of
a mixture of fresh air with gaseous products resulting from the degradation of
the solid phase and homogeneous combustion in the flaming zone. The second
part consists of the equations governing the state and composition of the solid
phase subjected to an intense heat flux coming from the flaming zone.

Solving the gaseous phase model consists in the resolution of conservation
equations of mass, momentum, energy (in enthalpy formulation), and chemical
species filtered using an unsteady RANS approach. Degradation of the vegetation
is governed by three temperature-dependent mechanisms: drying, pyrolysis, and
charcoal combustion.

142 O. Bessonov and S. Meradji

The balance equations in the gaseous phase are solved numerically using
the fully implicit finite volume method in a segregated formulation [9,10]. The
Finite Volume discretization is applied to the non-uniform Cartesian staggered
grid. The transport equations are solved by a fully implicit segregated method
based on the PISO algorithm [11].

Figure 1 shows the computational domain of the wildfire numerical simulation
model with two distinct grids [2].

Fig. 1. Perspective view showing the computational domain and vegetation cover. The
ignition line is shown on the left side of the vegetation cover

3 Preconditioned Conjugate Gradient Method

3.1 Explicit and Implicit Preconditioners

The original non-preconditioned Conjugate Gradient method (CG) [4] for solving
a linear system Ax = b is simple to implement and can be easily parallelized.
However, due to the explicit nature, it has a low rate of convergence and requires
about O(N) iterations, where N is the dimension of the problem in one spatial
direction.

Because of this, the CG method is usually applied to the preconditioned linear
system (M−1A)x = M−1b where M is a symmetric positive-definite matrix
that is “close” to the main matrix A (also symmetric and positive-definite). In
practice, the system to be solved looks like (L−1AL−T)x∗ = L−1b where LL−1 =
M (Incomplete LU decomposition), but in the preconditioned CG algorithm,
only computations of the form x = M−1z or Mx = z are required [4].

Preconditioning works well if the condition number of the matrix L−1AL−T

is much less than that of the original matrix A. The easiest way to reduce
this condition number and speed up the convergence is to apply an “explicit”
preconditioner (B = M−1) than does not require the inversion of M (i.e. x = Bz
is to be computed).

Efficient Parallel Solvers 143

A good example of this kind is the polynomial Jacobi preconditioner [8],
based on the truncated approximation series 1/(1 − a) = 1 + a + a2 + . . .

B = M−1 =
n∑

k=0

(Hk)P−1 where P = diag(A), H = P−1(P −A) = I − P−1A

For n = 0, this expression degenerates into a diagonal preconditioner
B = P−1, which, due to its simplicity, is usually not considered as a true precon-
ditioner. For n = 1, the Jacobi preconditioner looks like B = (I+(I−P−1A))P−1

and improves the acceleration rate twice (with some increase in computational
complexity). This exactly corresponds to the expansion of the computational
stencil in one iteration of the algorithm. Therefore, it can be easily applied and
parallelized.

Unfortunately, neither kind of the simple explicit preconditioner can drasti-
cally improve convergence. The reason is that the explicit preconditioner acts
locally using a stencil of limited size and propagates information through the
domain with low speed. On the other hand, the implicit preconditioner, based
on solving auxiliary linear systems, operates globally and propagates informa-
tion almost instantly. Due to this, the implicit preconditioner works much faster
and has a better than linear dependence of convergence on the geometric size
of the problem. For this reason, to solve an ill-conditioned linear system, it is
necessary to apply a preconditioner of the implicit kind.

In the FireStar3D code, the explicit Jacobi preconditioner is used to solve
well-conditioned linear systems resulting from the discretization of a coupled
system of convection-diffusion equations. Due to the non-symmetric nature of
these linear system, the BiCGStab method is used.

3.2 Parallelization of the Implicit Preconditioner

The parallel properties of preconditioners are strongly dependent on how infor-
mation is propagated in the algorithm. For this reason, it can be difficult to
parallelize an implicit preconditioner, and a lot of effort is required to find the
geometric and algebraic approach to parallelization. In particular, this applies
to Incomplete LU-decomposition (ILU).

For the Cartesian computational domain, the geometric potential of paral-
lelization can be revealed. The initial idea of the method is taken from the twisted
parallelization of the tridiagonal linear system, when Gauss elimination is per-
formed from both sides simultaneously. This idea can be naturally generalized to
three dimensions. The resulting method is called “nested twisted factorization”
[8,12].

In this method, the rectangular parallelepipedic domain is divided into 8
octants by separator planes (Fig. 2). In each octant, Gauss elimination is per-
formed from the corner in the direction inwards independently in different
threads (Fig. 2, left).

144 O. Bessonov and S. Meradji

0 1
4 5 1 3

5 7

4 5
6 7

j

k
i

j

k
i

0 1 3 2
8 9 11 10 2 6

10
14

8 9 11 10
12 13 15 14

j

k
i

Fig. 2. Parallelization of the nested twisted factorization: illustration of the method
(left); separator planes (center). Parallelization for 16 threads, staircase method (right)

After doing eliminations at internal octant points, they are performed in
quadrants of separator planes in the same way (Fig. 2, center). Then, the inter-
section lines of the separator planes are processed and, finally, the solution is
calculated at the central point. The following backsubstitution is performed in
the reverse order, from the central point outwards.

Parallelization for 16 threads can be achieved by applying the staircase
method shown on Fig. 2 (right). Here, each octant is divided into two halves
in the direction j (see bottom left octant, divided between threads 0 and 1).
Computations in the plane (i,j) for a certain k cannot be performed by thread
1 until they are completed by thread 0. However, they can be performed by a
pipelined fashion: thread 1 computes the layer for some k at the same time when
thread 0 computes the next layer for k+1 (this looks like a step on the stairs).
At the backsubstitution stage of the algorithm, the computations are performed
in the reverse order.

Additional parallelization of the method for more threads seems to be imprac-
tical due to synchronization overhead. Nevertheless, this method can be used on
a computer with more cores, since the performance of the algorithm is mainly
limited by the memory bandwidth (i.e. the method belongs to the memory-bound
class). Because of this, it is possible to implement a procedure for any reason-
able number of threads, and not just for 8 or 16. To achieve this, it is necessary
to distribute the active threads of the method (8 or 16) among all cores of the
computing system, thus ensuring load balance. As a result of this modification,
the method works well on up to 32 cores of a bi-processor computer.

The convergence of the ILU preconditioner depends on how the decompo-
sition is calculated. The most accurate variant of the method, Modified ILU
(MILU), requires about O(N

1
2) iterations, where N is the dimension of the

problem in one spatial direction [8,13]. As a result, this algorithm becomes 5 to
6 times faster than the Conjugate gradient method with explicit Jacobi polyno-
mial preconditioner.

3.3 Modified ILU Preconditioner for Periodic Boundary Conditions

The Modified ILU preconditioner can be mathematically strictly implemented
and parallelized only for a rectangular parallelepipedic domain with non-periodic
boundary conditions. In the case of periodic conditions, the algorithm becomes

Efficient Parallel Solvers 145

not strict, and its convergence properties deteriorate. In particular, while the
convergence estimate for a strict MILU is O(N

1
2) iterations, the loss of these

properties leads to an estimate of O(N) iterations.
However, in the problem under consideration, the flow properties in the peri-

odic transverse direction are almost uniform with some fluctuations. For this
reason, it becomes possible to use the original MILU preconditioner, which does
not care on the periodic boundaries. This preconditioner is applied on the top
of the Conjugate gradient algorithm with accurate treatment of the periodicity.
This algorithm smooths the solution around periodic boundaries and maintains
relatively fast convergence.

This new algorithm was implemented and tested. Its convergence with an
accuracy 10−10 for a problem size 100 × 200 × 224 is 68 iterations, compared
with about 50 iterations of the original algorithms applied to a non-periodical
problem of a similar size. This is much less than 350 iteration of the Conjugate
gradient method with explicit Jacobi polynomial preconditioner. In term of the
computational time, the new algorithm is about 4 times faster.

4 Algebraic Multigrid

The multigrid method is potentially the most efficient one for solving ill-condi-
tioned linear systems because of its ability to suppress error components of all
scales. Also, it can be parallelized to a large number of threads. This method
solves differential equations using a hierarchy of discretizations.

In one multigrid cycle (V-cycle, Fig. 3), both short-range and long-range com-
ponents of the error are smoothed out, so information is instantaneously trans-
mitted throughout the domain. As a result, this method becomes very efficient
for elliptic problems that spread physical information infinitely fast.

1 Pre-smooth x1 = S1 (x0, b)
2 Residual b1 = b − Ax1

3 Restriction b̃1 = R b1
4 Next level Ãx̃2 ≈ b̃1
5 Prolongation x2 = P x̃2

6 Correction x3 = x1 + x2

7 Post-smooth x0 = S2 (x3, b)

1

2

3

...

last

12 3

123

123

123

4

4

4

4

exact

56 7

567

567

567V-cycle

Fig. 3. Scheme of the multigrid algorithm (left); illustration of the V-cycle (right)

In the FireStar3D code, the Algebraic multigrid (AMG) approach [6,7] is
applied. This method is based on matrix coefficients rather than on geometric
parameters of the domain. The main computational operations in the multigrid
cycle are smoothing (usually an iteration of the Gauss-Seidel or SOR method)
and, to a lesser extent, restriction (fine-to-coarse grid conversion by averaging)
and prolongation (coarse-to-fine conversion by interpolation).

146 O. Bessonov and S. Meradji

4.1 Smoothers for Anisotropic Grids

The multigrid is a very efficient method, its convergence does not depend on the
problem size. However, it does not perfectly work on anisotropic grids (with cells
that have a high aspect ratio). The reason is that the typically used smoothing
procedure (Gauss-Seidel or SOR) effectively suppresses error components only
along the shortest cell dimension. In the considered problem, the cell aspect ratio
reaches 15:1. Because of this, the traditional approach leads to extremely slow
convergence (up to 300 iterations against a typical value of the order of 10).

There are several approaches to resolve this problem. The most straight-
forward method is semi-coarsening [6]. However, after applying this procedure,
the grid becomes non-structured, and the overall method becomes very complex
and numerically less efficient. Another method is based on the use of incomplete
matrix factorization as a smoother [14], which improves the performance and
convergence of the multigrid. Other approaches originate on building a more
robust smoother that is not sensitive to grid anisotropy [15]. They are based on
the replacement of point relaxation methods with plane relaxation ones.

If the grid cells are compressed in a single spatial direction, it becomes possi-
ble to apply the line Gauss-Seidel (line GS) or the line SOR smoothing procedure
in this direction. The idea is to solve the GS or SOR equation for the full line of
grid points, rather than separately for each grid point. As a result, the smooth-
ing of error components along the longest cell dimension is not suppressed. The
new procedure requires solving a tridiagonal linear system along a compressed
direction and, therefore, is slightly more expensive than the standard one.

It was found that the line smoother successfully solves the above problem, but
it is not efficient enough to smooth the error components in the remaining part
of the domain. To improve the convergence, this procedure was supplemented
by standard (point) Gauss-Seidel or SOR smoother, which costs less. The above
approach was applied for all levels of the multigrid algorithm.

To achieve good convergence, it is necessary to determine the optimal over-
relaxation parameters for SOR procedures. These values depend on the size and
configuration of the grid. For the first (finest) grid level, the optimal values are
about 1.3–1.4 for line smoothers and about 1.6–1.65 for point smoothers. For the
upper (coarser) levels, a plain GS is used as a line smoother, while the optimal
values for point smoothers are about 1.6–1.9.

The application of over-relaxation reduces the number of iterations from 40–
50 to 10–11 (for grid sizes up to 100 × 200 × 504 and relative accuracy 10−10).

4.2 Parallelization of Smoothers

An iteration of the Gauss-Seidel or SOR method looks like an implicit procedure:
(D + L)xk+1 = b− Uxk (here D, L and U are diagonal, lower and upper parts
of the matrix A in the equation Ax = b). To avoid dependences that prevent
parallelization, a multicolor grid partitioning is required. For the first level of the
grid with 7-point stencils, a two-color (red-black) scheme can be used. In this
scheme, the procedure is divided into two explicit steps: D(1)x

(1)
k+1 = b(1)−Ux

(2)
k

Efficient Parallel Solvers 147

and D(2)x
(2)
k+1 = b(2)−Lx

(1)
k+1 (superscripts (1) and (2) refer to red and black grid

points, respectively). After that, elements with the same color can be processed
independently, and, as a consequence, parallel splitting can be applied.

For line smoothers, red-black partitioning is applied to whole lines.
For the upper levels of the grid with 27-point stencils, a 4-color scheme is

used, also applied to whole lines.
Multicolor processing of the computational domain can be performed in sev-

eral passes according to the number of colors. However, each pass needs access
to all the elements of the data arrays. Since the performance of the algorithm
depends primarily on the memory access rate, this proportionally increases the
computational time.

To reduce the number of passes, it is necessary to somehow combine the
processing of different colors, while retaining the property of a multicolor scheme.
The idea of the combination technique is illustrated in Fig. 4. Shown here are
the cross-sections of the computational domain perpendicular to the compressed
direction (i.e. the direction where the line GS or SOR is applied). The proposed
idea is expressed in terms of rows and columns assuming that, in lexicographic
order, rows are processed first.

Fig. 4. Illustration of a multicolor smoothing procedure: alternating iterations of the
red-black pass (left, center); single pass of the 4-color case (right) (Color figure online)

For the red-black case, processing is performed in a single pass with alter-
nating iterations. At even iterations of the pass (Fig. 4, left), adjacent pairs of
red and black elements of even columns are calculated (first red, then black). At
odd iterations (Fig. 4, center), similar pairs of elements of odd columns with a
row number increased by one are processed (in the same order).

For the 4-color case, two passes are required (Fig. 4, right) – one pass for
even rows and another pass for odd ones. Within each pass, two sub-passed are
performed – one for each color in a row. The second sub-pass does not require
costly memory accesses, since most of the data is cached after the first sub-pass.

Multicolor partitioning allows to implement in the shown cross-section any
splitting of the computational domain required for parallelization.

The above technique ensures regular and efficient memory accesses as an
important requirement of computational efficiency. It is supplemented by the
vectorization of arithmetic operations (in frame of the AVX vector extension)
and by other optimizations.

148 O. Bessonov and S. Meradji

5 Performance Comparison

The convergence and performance of the new solvers were evaluated using matri-
ces and data taken from the typical runs of the FireStar3D code (Table 1). The
first matrix corresponds to a larger problem with the periodic boundary con-
ditions for the second spatial dimension. The second matrix was taken from a
smaller problem with non-periodic boundary conditions (see Fig. 1 for the geo-
metric illustration of this problem).

The tests were conducted on a cluster node built on two 16-core Xeon
Gold 6142 processors at the Mesocentre computer center (Marseille, France).
In addition to the new solvers described in the paper (Algebraic multigrid and
MILU-preconditioned Conjugate gradient), two variants of the Conjugate gra-
dient method were tested – one with explicit Jacobi preconditioner and another
one with simple diagonal scaling. Results are presented for parallel runs on 32
cores of a cluster node with the relative accuracy 10−10, time for solving a linear
system is shown in seconds.

Table 1. Comparison of convergence and performance of different solvers

Matrix size AMG CG MILU CG Jacobi CG diag

Iter. Time Iter. Time Iter. Time Iter. Time

100 × 200 × 504 10 0.440 48 0.788 267 3.15 541 5.02

100 × 248 × 224 11 0.293 46 0.398 317 2.06 638 3.22

It can be seen that the multigrid solver is about 11 times faster than the plain
Conjugate gradient (CG diag). Using the explicit Jacobi preconditioner makes
the CG method 1.5 times faster due to more optimal structure of the algorithm,
but does not change its convergence properties, so the number of iterations still
depends linearly on the largest dimension of the discretized problem.

Compared to the Conjugate gradient method with the MILU-preconditioner,
the multigrid solver is 36% faster for the problem with non-periodic boundary
conditions and 79% faster for the problem with a periodicity. The latter can be
explained by two properties of the CG MILU method – sensitivity to the size
of the problem (as opposed to the multigrid) and some decrease in convergence
due to explicit treatment of periodic boundary conditions.

Another advantage of the multigrid method is better scalability. In particu-
lar, the speedup for this method for 32 threads ranges from 15 to 17 (depending
on the size of the matrix), while for CG MILU it is at the level of 10–11. For
both methods, the speedup is limited by the memory bandwidth, but the sec-
ond method is more memory-bound than the first one. In addition, CG MILU
parallelization is limited to 16 threads.

Efficient Parallel Solvers 149

For these reasons, the multigrid method is more preferable for using in the
FireStar3D code. On the other hand, variants of the CG MILU method do not
require adjustment of the parameters of over-relaxation, as is necessary for the
multigrid. Therefore, it may happen to be more robust for some problems. Thus,
this method can still be applicable, at least, for running on computer systems
with a smaller number of processor cores.

There is another promising approach, Algebraic multigrid as a preconditioner
for the Conjugate gradient method. At the moment, it does not benefit when
solving linear systems in FireStar3D runs, unlike happens in other fluid dynam-
ics problems [7]. However, in the future this approach will be examined more
carefully in order to achieve faster convergence and lower computational costs.

6 Conclusion

In this paper, we presented two parallel methods for solving ill-conditioned linear
systems arising from the discretization of partial differential equations as applied
to the FireStar3D wildfire numerical simulation model.

The first of the presented methods is based on a parallel MILU-preconditio-
ned Conjugate gradient algorithm. This method has been extended to run on
any number of processor cores and to support periodic boundary conditions. The
second method is based on an Algebraic multigrid. It uses a new smoothing algo-
rithm that can work with highly compressed grids. This smoother is optimally
parallelized using multicolor grid partitioning and a special processing scheme.

New methods were used to build efficient parallel solvers for the FireStar3D
code. Both solvers were evaluated using data taken from the production runs
of the code. They demonstrate robustness and superiority over the widely used
variants of the Conjugate gradient method. In particular, the multigrid solver is
more than ten times faster than the diagonally scaled Conjugate gradient solver.

Of these two methods, the multigrid algorithm is faster and more scalable for
large number threads. On the user hand, it requires some tuning to achieve faster
convergence. For this reason, MILU-based methods remain attractive because of
their robustness and therefore can be used for running with fewer threads.

Acknowledgements. This work was supported by the Russian State Assignment
under contract No. AAAA-A17-117021310375-7. The work was granted access to the
HPC resources of Aix-Marseille Université financed by the project Equip@Meso (ANR-
10-EQPX-29-01) of the program Investissements d’Avenir supervised by the Agence
Nationale pour la Recherche (France).

References

1. Morvan, D., Accary, G., Meradji, S., Frangieh, N., Bessonov, O.: A 3D physical
model to study the behavior of vegetation fires at laboratory scale. Fire Saf. J.
101, 39–53 (2018). https://doi.org/10.1016/j.firesaf.2018.08.011

https://doi.org/10.1016/j.firesaf.2018.08.011

150 O. Bessonov and S. Meradji

2. Frangieh, N., Morvan, D., Meradji, S., Accary, G., Bessonov, O.: Numerical simu-
lation of grassland fires behavior using an implicit physical multiphase model. Fire
Saf. J. 102, 37–47 (2018). https://doi.org/10.1016/j.firesaf.2018.06.004

3. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston
(2000)

4. Shewchuk, J.R.: An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain. School of Computer Science, Carnegie Mellon University, Pitts-
burgh (1994)

5. Bessonov, O.: Parallelization properties of preconditioners for the conjugate gra-
dient methods. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 26–36.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39958-9 3

6. Stüben, K.: A review of algebraic multigrid. J. Comput. Appl. Math. 128, 281–309
(2001). https://doi.org/10.1016/S0377-0427(00)00516-1

7. Bessonov, O.: Highly parallel multigrid solvers for multicore and manycore proces-
sors. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 10–20. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21909-7 2

8. Accary, G., Bessonov, O., Fougère, D., Gavrilov, K., Meradji, S., Morvan, D.:
Efficient Parallelization of the preconditioned conjugate gradient method. In:
Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 60–72. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-03275-2 7

9. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing,
New York (1980)

10. Versteeg, H., Malalasekera, W.: An Introduction to Computational Fluid Dynam-
ics: The Finite Volume Method. Prentice Hall, Harlow (2007)

11. Moukalled, F., Darwish, M.: A unified formulation of the segregated class of algo-
rithms for fluid flow at all speed. Numer. Heat Transf. Part B 37, 103–139 (2000).
https://doi.org/10.1080/104077900275576

12. van der Vorst, H.A.: Large tridiagonal and block tridiagonal linear systems on
vector and parallel computers. Parallel Comput. 5, 45–54 (1987). https://doi.org/
10.1016/0167-8191(87)90005-6

13. Gustafsson, I.: A class of first order factorization methods. BIT 18, 142–156 (1978).
https://doi.org/10.1007/BF01931691

14. Axelsson, O.: Analysis of incomplete matrix factorizations as multigrid smoothers
for vector and parallel computers. Appl. Math. Comput. 19, 3–22 (1986). https://
doi.org/10.1016/0096-3003(86)90094-9

15. Llorente, I.M., Melson, N.D.: Robust multigrid smoothers for three dimensional
elliptic equations with strong anisotropies. Technical report 98-37, ICASE (1998)

https://doi.org/10.1016/j.firesaf.2018.06.004
https://doi.org/10.1007/978-3-642-39958-9_3
https://doi.org/10.1016/S0377-0427(00)00516-1
https://doi.org/10.1007/978-3-319-21909-7_2
https://doi.org/10.1007/978-3-642-03275-2_7
https://doi.org/10.1080/104077900275576
https://doi.org/10.1016/0167-8191(87)90005-6
https://doi.org/10.1016/0167-8191(87)90005-6
https://doi.org/10.1007/BF01931691
https://doi.org/10.1016/0096-3003(86)90094-9
https://doi.org/10.1016/0096-3003(86)90094-9

Optimizing a GPU-Parallelized Ant
Colony Metaheuristic by Parameter

Tuning

Andrey Borisenko1(B) and Sergei Gorlatch2

1 Tambov State Technical University, Tambov, Russia
borisenko@mail.gaps.tstu.ru

2 University of Muenster, Münster, Germany
gorlatch@uni-muenster.de

Abstract. We address the problem of accelerating the GPU-parallelized
Ant Colony Optimization (ACO) metaheuristic used for an important
class of optimization problems – design of multiproduct batch plants,
with a particular use case of a Chemical-Engineering System (CES). We
propose and implement a novel approach to ACO’s parameter tuning,
with the following advantages compared to previous work: we accelerate
tuning by using GPU, and we do not require additional constructs like
function mapping in fuzzy logic, algorithms for online-tuning, etc. We
report our experimental results that confirm the efficiency of parameter
tuning and the advantages of our approach.

Keywords: Constraint Satisfaction Problem ·
Ant Colony Optimization · Tuning metaheuristics ·
Parallel metaheuristics · GPU computing ·
Multi-product batch plant design

1 Motivation and Related Work

The Ant Colony Optimization (ACO) metaheuristic is a popular approach to
solving optimization problems. It can be viewed as a multi-agent system in which
agents (ants) interact with each other in order to reach a global goal [10]. ACO
follows the idea of collective intelligence in colonies of ants: the ants cooperatively
search for food and bring this food to their nest. While walking between food
sources and the nest, ants deposit a chemical substance called pheromone on
their path. The pheromone is used to find the shortest path from their nest to
food. Parameters of ACO determine the probability with which ants follow the
pheromone deposited by previous ants, and how fast the pheromone evaporates.

We apply ACO to an important class of real-world optimization problems
– optimal design of multiproduct batch plants, with a particular use case of
a Chemical-Engineering System (CES). Such a system is a set of equipment
units (reactors, tanks, filters, dryers etc.) which manufacture products, and the

c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 151–165, 2019.
https://doi.org/10.1007/978-3-030-25636-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_12

152 A. Borisenko and S. Gorlatch

problem is finding the optimal number of units at processing stages and their
main sizes for the given input that includes: demand for each product of assort-
ment, production horizon, accessible equipment set, etc. This problem is NP-
hard, i.e., the time to solve a problem instance grows exponentially with the
instance size. Therefore, metaheuristics are often the only feasible way to obtain
good-quality solutions at acceptable computational cost [11]. In our previous
work [4], we develop a hybrid parallel algorithm consisting of two metaheuris-
tics: (1) ACO finds an initial soluting of the Constraint Satisfaction Problem
(CSP); (2) this initial solution is then optimized using Simulated Annealing
(SA). The hybrid ACO+SA algorithm is parallelized for Graphics Processing
Units (GPU) and successfully solves the design optimization problem for CES
of size up to 1216 ≈ 1017 variants; it demonstrates a significant time saving as
compared to the traditional branch-and-bound optimization method.

In this paper, we aim at further acceleration of the GPU-parallelized ACO
method, in order to apply it to even larger sizes of problems that arise in practice:
already starting with the size 1216, the run time of the original algorithm becomes
prohibitively high despite the use of a highly parallel GPU. Our approach is to
use the additional performance potential offered by the tunable parameters of
the ACO algorithm.

A significant amount of work has been devoted to tuning ACO parameters [2]
that has proven to be a hard problem [11,24].

The approaches to parameters tuning can roughly be divided into offline
versus online procedures. A tuning framework [25] is based on the sequential
optimization of perturbed regression models. Paper [1] presents a methodol-
ogy combining statistical and artificial intelligence methods in the fine-tuning of
metaheuristics. Paper [21] uses a fuzzy system for parameter adaptation in the
ACO metaheuristic. In [23], the problem of finding the parameters of a meta-
heuristic algorithm is formulated as a meta-optimization problem solved by an
evolutionary metaheuristic. An enhanced ACO with dynamic mutation and ad
hoc initialization for generating the initial ant solutions to improve the accuracy
of fuzzy system design is proposed in [8]. Paper [7] explores a new fuzzy app-
roach for diversity control in ACO. In [12], a parameter tuning methodology for
metaheuristics based on the design of experiments is proposed. Paper [13] uses a
Particle Swarm Optimization (PSO) algorithm to optimize the ACO parameters.

We propose and implement a novel approach to parameter tuning for an
ACO algorithm that solves the CSP (Constraint Satisfaction Problem) part of
our global problem. The main differences of the proposed approach to the pre-
vious work are as follows. By tuning for CSP, rather than for the optimization
problem as in [17,21], we can apply frequency analysis. For calculating how
often values occur within a range of values, we do not need any specific and
non-obvious information, like functions mapping in fuzzy logic, an algorithm for
online-tuning, etc. [7,8,21]. The parallelization of the algorithm and the use of
modern GPUs allow us to conduct a large number of computational experiments
to accumulate statistical data in a short time. An advantage is also that the
found optimal values of parameters for can be used for both parallel and sequen-

Ant Colony Metaheuristic Tuning 153

tial versions of the algorithm. Summarizing, the advantages of our approach as
compared to previous work are two-fold: (1) we exploit the computation power of
GPU in the tuning process, and (2) we do not rely on any additional information
like functions mapping in fuzzy logic, an algorithm for online-tuning, etc.

In the remainder of the paper, Sect. 2 outlines the CES optimization problem
and its GPU-implementation. In Sect. 3, we analyze our ACO algorithm for CSP
problem and the roles of its parameters, and we describe our novel methodology
of ACO parameters tuning. In Sect. 4, we report our experimental results that
confirm the advantages of our approach, and Sect. 5 concludes.

2 GPU-Algorithm for Designing Multi-product Plants

Our application use case is designing a Chemical-Engineering System (CES) – a
set of equipment (reactors, tanks, filters, dryers etc.) for manufacturing diverse
products. Assuming that the number of units at every stage of CES is fixed, the
problem can be formulated as follows (for a detailed formulation, see [3]). A CES
consists of a sequence of I processing stages; i-th stage can be equipped with
equipment units from a finite set Xi, with Ji being the number of equipment units
variants in Xi. The goal is to find the optimal number of units at stages and their
main sizes; the input data are: production horizon, demand for each product,
available equipment, etc. Each system’s variant Ωe has to be in an operable
condition (compatibility constraint) expressed by function S: S(Ωe) = 0. If Tmax

is the total available time horizon, then an operable variant of a CES must also
satisfy a processing time constraint : T (Ωe) ≤ Tmax.

Fig. 1. Example: a simple Chemical-Engineering System (CES)

Figure 1 shows an example CES consisting of 4 stages (I = 4), where each
stage can be equipped with 2 devices (J1 = J2 = J3 = J4 = 2); the number of

154 A. Borisenko and S. Gorlatch

all possible system variants in this case is 24 = 16. The optimization works on
the search tree, in which each path from the root to one of the leaves in this tree
corresponds to a candidate solution of the optimization problem.

In [3], we create a hybrid approach to optimizing CES; it combines two meta-
heuristics – Ant Colony Optimization (ACO) and Simulated Annealing (SA). We
parallelize and implement it on a CPU-GPU system using CUDA [19] and we
show that it is preferable to the popular Branch-and-Bound (B&B) method [5].
In our approach, the solution of the optimization problem is divided into two
stages: (1) construct a feasible (i.e., functionally operative CES variant) ini-
tial solution using ACO; (2) improve this feasible solution using SA. While for
classical optimization problems, e.g., Traveling Salesman Problem (TSP), it is
possible to use a random initial solution [17], in our case the random initialization
is unacceptable, because the compatibility and the processing time constraints
must be satisfied. Our search for a feasible solution in the first stage is a Con-
straint Satisfaction Problem (CSP) [26] which consists in finding an operable
variant of a CES, where both the compatibility constraint and the processing
time constraint are satisfied. For solving this problem, we use ACO.

In our parallel implementation on a GPU [3], the ACO kernel function
searches for the first feasible solution using the Multiple Ant Colonies app-
roach [9]: all colonies work as threads in parallel to solve a problem indepen-
dently.

1 AntColonyOptimization ()

2 { isFound = false; /* repeat while solution not found */

3 while (! isFound && iterCounter < maxIterNumber){

4 Initialize (); /* initialize pheromone value */

5 foreach(ant in colony){/* colony has M ants */

6 ConstructSolution(alpha , beta);}

7 if(isFound) return; /* if solution is found , then end */

8 PheromoneUpdate (); /* update pheromone */

9 EvaporatePheromone(rho);}

Listing 1. The pseudocode of ACO algorithm.

Listing 1 shows the pseudocode of our ACO algorithm for the CES optimiza-
tion problem. This code is executed as kernel in a thread for each ant colony.
The number of ants in the colony is the algorithm parameter which determines
the trade-off between the number of iterations and the breadth of the search at
each iteration: the larger the number of ants per iteration, the fewer iterations
are needed in ACO [24]. The local iteration counter is used by each thread as a
nonstop operation protection (line 3): if ants in this thread cannot find the solu-
tion after maxIterNumber iterations (which is in principle possible for stochastic
algorithms), then the thread terminates.

Up to now, most improvement work for ACO has concentrated on the tour
construction and pheromone update. But there is also a question how to decide

Ant Colony Metaheuristic Tuning 155

the termination condition of ACO algorithms in practice [29]. The possible vari-
ants of termination condition include: (1) the algorithm has found a solution
within a predefined distance from a lower bound on the optimal solution quality;
(2) a maximum number of tour constructions or a maximum number of algo-
rithm iterations has been reached; (3) a maximum CPU time has been spent;
(4) the algorithm shows stagnation behaviour [29]. These variants have short-
comings: e.g., we may not know the optimal solution, so (1) will lose the effect
in the algorithm, while (2) and (3) are often not economical [29]. We use a com-
bination of termination variants (1) and (2); they are good in our case, because
for CSP, it is clear when constraints are fulfilled and when not. According to
recommendations in [28,29] and our previous work we use maxIterCount = 100.

The first potential candidate ACO parameter for tuning in Listing 1 could be
the size M of the ant colony. However, different sizes of colonies would adversely
affect the GPU-algorithm, because of divergent branches and memory operations
that cause uncoalesced accesses or bank conflicts [5,6]. The NVIDIA Streaming
Multiprocessors (SMs) only get one instruction at a time and all CUDA cores
execute the same instruction. Threads within a warp (a group of 32 threads, that
are used in hardware to coalesce memory access and instruction dispatch) must
execute the same instruction at each cycle. The most common code construct
that can cause thread divergence is branching in an if-then-else statement: it can
hurt performance due to a lower utilization of the processing elements, which
cannot be compensated for via increased amount of parallelism [14]. To reduce
this divergence, we use one value of M for all threads.

As confirmed by numerous experiments in previous work [18,22,24] and our
own work [4], a good approximation for the number of ants in a colony is M =
100, so we use this value as default in all our experiments described in this paper.

We now turn to other tunable parameters of ACO which are the subject
in this work. Ants in Listing 1 all behave in a similar way: every ant moves
from the top of the tree-structured search space to the bottom. Once the ant
selects a node r = ni,j at tree level i, it can pick the next child node s =
ni+1,j . The tour of an ant ends in the leaves of the tree (level I); each path
corresponds to a potential solution of the problem. The ant transition from node
r to s is probabilistically biased by two values: pheromone trail τrs and heuristic
information ηrs as follows: prs = τα

rs · ηβ
rs/

∑
k∈Cr

(τα
rk · ηβ

rk), where Cr is the set
of child nodes for r [10,27], and k are indices of these nodes. The evaporation
(line 9 in Listing 1) is performed at a constant rate ρ at the end of each iteration.
It allows the ant colony to avoid an unlimited increase of the pheromone value
and to “forget” poor choices made previously [24]. We implement this by the
assignment: τrs = ρ · τrs, where ρ ∈ [0, 1] is the trail persistence parameter. In
calculating heuristic information, we make a unit which satisfies the constraint
for the beginning part of the CES and larger main size more preferable than a
unit with the unsatisfied compatibility constraint and smaller main size.

We observe that parameters α and β influence the pheromone value
and heuristic value, respectively. They control the relative importance of the
pheromone trails and the heuristic information, as we explain in the following.

156 A. Borisenko and S. Gorlatch

We use the following rule for the pheromone update: τrs = τrs + Q/
∑M

m=1 Lm,
where Q is some constant and Lm is the tour length of the m-th ant, M is the
swarm size. The smaller is the value of Lm the larger is the value added to the
previous pheromone value. We use Lm as a fitness value that indicates how close
is a given solution to achieving the required goals.

3 ACO Parameter Tuning

For our target applications, we solve the constraint satisfaction problem (CSP),
rather than the optimization problem as in previous work. A specific feature of
our CSP is that only the existence of a valid solution is required. The quality
criterion is the frequency of feasible solutions for particular parameters values.
We use offline tuning in terms of [24] to configure the ACO parameters used to
solve the CSP. Our objective function is the algorithm run time. Since ACO is
a probability-based algorithm, its results are different if run multiple times on
the same instance of a problem, with varying run time. So, in order to achieve
reliable results, we run each instance multiple times and take the average value.

3.1 Choosing Parameters for Tuning

In the case of CES, we tune the following three parameters of ACO.
The Information Elicitation Factor α reflects the importance of the

pheromone accumulation with regard to the ants’ path selection. If α is large, the
ants tend to choose the same path as the preceding ants, resulting in a stronger
cooperation among the ants [16]. Although the convergence speed of ACO in
this case increases, it is likely for the algorithm to fall into a locally optimal
solution, i.e. large α reduces the global search ability. Conversely, if α is small,
the convergence speed of the ACO is slowed down, although of the fact that the
global search ability of the algorithm can be improved.

The Expected Heuristic Factor β represents the relative importance of the
mutual ants’ visibility, i.e., it reflects the importance of the heuristic information
with regard to the ants’ path selection. If the value is very large, the probability
of a state transition is close to that of a greedy algorithm. If β is small, the
heuristic information has virtually no effect on the path selection, which may
lead ACO to fall into stagnation or a local optimum.

The third parameter, Pheromone Evaporation Rate ρ ∈ [0, 1] regulates the
degree of the decrease in pheromone level in trails. If ρ is high (near to 1) then
pheromone values will persist longer, while low values of ρ (near to 0) allow
forgetting quickly of previous choices and, hence, allow faster adaptation to
changes [24]. In other words, smaller ρ reduces the global search ability of ACO,
is while larger, ρ improves this ability but limits the convergence speed.

3.2 Our Tuning Method: The Idea

For tuning parameters α, β and ρ of parallel ACO, we use a statistical analysis
of the experimental data obtained as a result of computational experiments on

Ant Colony Metaheuristic Tuning 157

the CPU-GPU system. The application code for a CPU-GPU systems consists
of a sequential code (host code executed on the CPU) that invokes hundreds or
thousands of parallel threads on the device (GPU), where threads execute the
kernel code shown in Listing 1. If some thread finds a solution of CSP then all
threads finish their work. With an increasing number of threads, the probability
of finding a solution increases, and, therefore, the search time is typically reduced.

Fig. 2. General method of ACO parameter tuning.

Figure 2 shows the main steps of our tuning method, as follows: (1) CPU reads
the input data (number of CES stages I, number of devices J[I], production
horizon Tmax etc.) and starts on the GPU the parameter initialization α, β and
ρ; (2) GPU initializes ACO parameters by one of approaches described below;
(3) GPU starts the kernel function of Listing 1; (4) the ACO kernel searches
for the first feasible solution – the initial CES-variant; if some thread finds a
solution then all threads finish their work; (5) a if solution is not found, repeat
step 2 or 3 depending on the approach; otherwise CPU receives the obtained
feasible solution and records results for further processing.

Figure 3 shows that within the general tuning method consisting of steps
(1)–(5), we distinguish three particular approaches to parameter tuning Ran-
dom 3(a), Constant Approach 3(b) and Multi-Constant 3(c), as follows.

Random Approach. In the Random Approach, algorithm parameters are ini-
tialized in step 2 by uniformly distributed random values from the intervals
[αa, αb], [βa, βb], [ρa, ρb]. We set the bounds of these intervals as recommended
in literature, e.g. [15]. We use high-performance, GPU-accelerated random num-
ber generator from NVIDIA’s native cuRAND library (CUDA RAndom Number
Generation) [20]. Function curand uniform() returns a uniformly distributed
value in the interval (0.0, 1.0]. We generate random numbers within a specified
interval (a, b] as follows: rnd(a,b) = curand uniform() * (b-a) + a. So, the
SET() function for the Random approach reads as in Listing 2.

158 A. Borisenko and S. Gorlatch

(a) Random.

(b) Constant. (c) Multi-Constant

Fig. 3. Approaches for ACO-parameters tuning.

1 __global__ void SET() {

2 ... /* obtaining thread identifier */

3 threadID = blockDim.x * blockIdx.x + threadIdx.x;

4 alpha[threadID] = rnd(alpha_a , alpha_b);

5 beta[threadID] = rnd(beta_a , beta_b);

6 rho[threadID] = rnd(rho_a , rho_b); ...}

Listing 2. Random Approach: the SET() pseudocode.

If a particular combination of parameter values produces a feasible solution
then these values are saved for the further processing. This way, we obtain a
set of triples of parameter values α, β and ρ, for which ACO finds feasible
solutions. If a feasible solution in step 4 of the Random approach is not found
after maxIterNumber iterations then the approach goes to step 2 of Fig. 2.

Constant Approach. The Constant approach, see Fig. 3(b) differs from the
Random: all threads use the same values α, β and ρ for all threads (see Listing 3).

We obtain the starting values on the basis of a frequency analysis of the set of
α, β and ρ obtained using, for example, the Random approach. In the following
iterative process, we obtain a set of triples of parameter values α, β and ρ, for
which ACO finds feasible solutions. If a feasible solution is not found in step 2
after maxIterNumber iterations then we proceed to step 3 of Fig. 2.

Ant Colony Metaheuristic Tuning 159

1 __global__ void SET() {

2 ... /* obtaining thread identifier */

3 threadID = blockDim.x * blockIdx.x + threadIdx.x;

4 alpha[threadID] = const_alpha;

5 beta[threadID] = const_beta;

6 rho[threadID] = const_rho; ...}

Listing 3. Constant approach: the SET() kernel pseudocode.

1 __global__ void SET() {

2 ... /* obtaining thread identifier */

3 threadID = blockDim.x * blockIdx.x + threadIdx.x;

4 alpha[threadID] = const_alpha[threadID];

5 beta[threadID] = const_beta[threadID];

6 rho[threadID] = const_rho[threadID]); ...}

Listing 4. Multi-constant approach: the SET() pseudocode.

Multi-constant Approach. In the Multi-Constant Approach (see Fig. 3c), all
threads use different initial values of α, β and ρ for all threads.

In this case, parallel ACO algorithm with a Multi-Constant approach can
be viewed as “learning” from the random parameter tuning, since only those
triples of the parameters α, β and ρ are saved for which the solution was found.
If the Multi-const approach does not find a feasible solution in maxIterNumber
iterations then it goes to step 3.

4 Experimental Evaluation

Our experiments are conducted on a hybrid system comprising: (1) a CPU: Intel
Xeon Gold 5118, 12 cores with Hyper-Threading, 2.3 GHz with 192 GB RAM,
and (2) a GPU: NVIDIA Tesla V100-SXM2-16GB with 80 multiprocessors, each
with 64 CUDA cores (total 5 120 CUDA cores), GPU max clock rate 1.53 GHz,
16 GB of global memory. We use CentOS Linux release 7.5.1804, NVIDIA Driver
version 410.72, CUDA version 10.0 and GNU C++ Compiler version 6.4.0. On
the GPU we employ 5 120 threads as the number of CUDA cores for Tesla v100.

As our test case, we evaluate the use of ACO for designing a CES consisting of
16 processing stages with 11 to 20 variants of devices at every stage (in total from
1116 ≈ 1017 up to 2016 ≈ 1021 CES variants). Note that this size is significantly
larger than was possible in our previous work [4] without parameter tuning.

In the experiments, for each size of the problem from 1116 to 2016 (total 10
series of experiments), the algorithm is launched 100 times. For each launch,
the run time for finding a feasible solution is measured, the average run time is
calculated, and the corresponding values of α, β and ρ are recorded.

160 A. Borisenko and S. Gorlatch

Random Approach. For the first series of experiments, values of α and β are
set using a random uniform distribution in range (0, 2], and ρ in range (0, 1], as
recommended in [15]. After the entire series of experiments, we obtain 10 ·100 =
1 000 triples of values α, β and ρ with the problem sizes for which solutions were
found. The total run time spent by the GPU for the first series of experiments
with the Random approach is 50 575 s ≈ 14 h.

Fig. 4. Random approach for ACO-parameters tuning. First iteration.

Figure 4(a) shows the average run time of solving the optimization prob-
lem depending on the problem size. Figure 4(b) shows the frequency of the
found feasible solutions represented as histograms for different intervals/ranges
of parameter values. We observe from the histograms that ≈ 90% of the solu-
tions are obtained when the ACO parameters are in the intervals: α ∈ (0.0, 1.2],
β ∈ (0.1, 1.2], ρ ∈ (0.2, 1.0].

Our idea is to stepwise reduce the intervals for α, β, ρ by moving to values
where feasible solutions are more frequent. Therefore, we repeat the procedure
as above to obtain new 1 000 solutions with the reduced parameter ranges, and
again analyze the frequency of solutions. We repeat this process (search for
1 000 solutions – frequency analysis – correction of ACO-parameters intervals)
altogether 7 times. After these 7 repetitions, the parameter ranges narrow to a
single point: α = 0.2, β = 0.5, ρ = 0.9. We use it as the ACO parameter values
for Constant Approach in Subsect. 4.

Fig. 5. Random approach for ACO-parameters tuning.

Ant Colony Metaheuristic Tuning 161

Figure 5(a) shows the change in the average run time of the algorithm for
problems of various dimensions 1116 to 2016. Figure 6 shows the run time for the
parameter triple α = 0.2, β = 0.5, ρ = 0.9, together with other results for the
Constant approach. Figure 5(b) shows the frequency achieved after the final, 7th
iteration of experiments for α ∈ (0.1, 0.3], β ∈ (0.3, 0.7], ρ ∈ (0.8, 1.0].

Summarizing the results achieved by the Random approach in our exper-
iments, we can conlclude that, due to the parameter tuning, the average run
time of the algorithm decreased by ≈ 29 times (from ≈ 50 s for α ∈ (0.0, 2.0],
β ∈ (0.0, 2.0] and ρ ∈ (0.0, 1.0] to ≈ 1.7 s for α ∈ (0.1, 0.3], β ∈ (0.3, 0.7],
ρ ∈ (0.8, 1.0]). The total tuning time spent by the GPU for all seven iterations
of experiments was 83 116 s ≈ 23 h. In the sequel, we use thus obtained values
of α, β, ρ for problems of different size as initial values in the Constant and
Multi-constant approach.

Constant Approach. In the Constant approach, each GPU thread uses the
same triple of values α, β, ρ that was obtained by the Random approach.

Fig. 6. Constant approach: run time
depending on the problem size.

Fig. 7. Multi-constant approach: run
time depending on the problem size.

Figure 6 shows the results. The first triple of parameter values α = 0.4, β =
0.6, ρ = 0.9 are the same which we empirically used in our previous articles [3,4]
– we present them here for comparison.

As we described in the previous subsection, after the first series of exper-
iments with the Random approach we obtained first 1000 triples of α, β, ρ
values. An interesting finding of our experiments is that, although it may seem
intuitively apparent that the average values of the found parameter values would
serve as good candidates for parameter values, this hypothesis was not confirmed.
Indeed, the second triple in Fig. 6 (α = 0.31, β = 0.54, ρ = 0.65) is calculated
as the average values of the parameter intervals obtained after the first iteration
of the Random approach. We observe in the figure that these values seriously
worsened the run time of the algorithm by ≈ 1.4 times.

The third triple α = 0.1, β = 0.3, ρ = 0.9 in Fig. 6 is set based on the analysis
of the data frequency shown in Fig. 4(b) after the first iteration of the Random

162 A. Borisenko and S. Gorlatch

approach (we take the values that provide the highest frequency). This reduces
the run time by ≈ 8.5 times. The best, fourth triple of values α = 0.2, β = 0.5,
ρ = 0.9 in Fig. 6 is obtained after seven iterations of the Random approach. This
triple reduces the run time of the algorithm by ≈ 35 times. The tuning time
spent by the GPU is the same 23 h as in the Random approach.

Multi-constant Approach. The Multi-constant approach differs from the pre-
viously discussed Constant approach in that each GPU thread uses its own triple
of constants α, β, ρ that are obtained as a result of the first series of the Ran-
dom approach. The approach yields a total of 1 000 triples of ACO-parameters
for problems of various sizes from 1116 up to 2016, for which feasible solutions
are obtained. When running the program on the GPU (for our case on the Tesla
v100 we use 5 120 threads, which corresponds to the number of CUDA cores for
this GPU-model), the initialization of the algorithm parameters is performed
cyclically. If we have the set of 100 triples of algorithm parameters, then on the
GPU, after every 100 GPU threads, the values of algorithm parameters will be
repeated, for set of 200 triples repetition values will be every 200 GPU threads,
etc. For set of 1 000 triples of parameters, the values of the algorithm parameters
will be repeated on every 1 000 GPU threads.

Figure 7 shows the results of using the Multi-const approach. The worst run
time (especially for the maximum problem complexity 2016) corresponds to the
set of 100 triples, the best run time corresponds to the set of 1 000 triples. The
average run time of the algorithm starting from the set of 200 triples differs
from the runtime of the algorithm for the maximum set of 1 000 triples by only
a factor of ≈ 1.16 (2.75 s vs. 2.37 s). The search time for the set of 1 000 triples
is equal to the time of the first iteration of random approach with α ∈ (0, 2],
β ∈ (0, 2] and ρ ∈ (0, 1] is 50 575 s ≈ 14 h, and the search time for the set of 200
triples with the same random approach for a problem complexity 1116 + 1216 is
3 282 sec ≈ 54 min, which is 15.4 times faster.

Comparison of Tuning Approaches. Figure 8 compares the best run time
results obtained by each of our three tuning approaches. For the Multi-constant
approach, we compare also to the variant with 200 triples that provides still
acceptable results achieved in a significantly shorter tuning time.

Fig. 8. Comparison of approaches.

Ant Colony Metaheuristic Tuning 163

We observe in Fig. 8(a) that the fastest run time is achieved by using the
Constant approach with constant parameter values α = 0.2, β = 0.5, ρ = 0.9
(average execution time ≈1.1 s). Figure 8(b) shows that the tuning time for the
most economical Multi-const approach with 200 samples (≈54 min) is 25 times
shorter, while the resulting run time of the optimization process is only ≈2.5
times slower.

5 Conclusion

Our contribution is a new set of three approaches to parameter tuning of the
GPU-parallelized Ant Colonies Optimization (ACO) metaheuristic. The advan-
tage of our approaches is that they work for different metaheuristics and different
optimization problems. As a particular demonstration, this paper describes the
use case when ACO is used for solving the Constraint Satisfaction Problem
(CSP) in the process of optimizing the multiproduct batch plants design. Our
three tuning approaches – Random, Const and Multi-Const – proceed by using
a statistical analysis of solution frequences in particular intervals of parameter
values. By stepwise narrowing these intervals, we arrive at the intervals or even
single parameter values that provide good solutions in short time.

Using modern high-performance CPU-GPU systems, it is possible to conduct
a large number of computational experiments (e.g., overnight), and to use their
results for a statistical frequency analysis. We demonstrate that the user can
choose between longer experiments with a very good quality of solutions and
shorter experiments that still provide a acceptable level of quality. This shows
that it is possible to use the parameters values obtained for problems of a small
complexity for solving problems of a large complexity. It should be noted that
despite the relatively short time of the algorithm (minutes) without tuning on
high-performance equipment (Tesla v100), the values of the ACO parameters
obtained as a result of our approach can be applied for a different equipment
(e.g., Tesla k20s), as well as when implementing a sequential version of the algo-
rithm on the CPU, since ACO parameter values are device-independent. ACO
is a stochastic algorithm. On the one hand, the α, β, ρ parameters of the algo-
rithm are not associated with a specific implementation, so they are architecture-
independent. On the other hand, with an increase in the number of threads, the
probability of finding a solution, and, consequently, the speed of the algorithm,
increases. Therefore, improving the implementation for a particular target archi-
tecture allows to additionally increase the speed of finding the solution.

While the Const Approach achieves eventually the best performance, it
requires the most investigation time due to multiple repetitions of Random App-
roach with narrowing of the parameter value intervals. MultiConst approach can
significantly reduce the investigation time, but its results are applicable only for
the parallel implementation of the algorithm. Our approach can be used for
tuning other metaheuristic algorithms and for other applied problems based
constraint satisfiability.

164 A. Borisenko and S. Gorlatch

Acknowledgements. We are grateful to the anonymous reviewers for their very help-
ful comments, and to the Nvidia Corp. for the donated hardware used in our experi-
ments. This work was supported by the DAAD (German Academic Exchange Service)
and by the Ministry of Education and Science of the Russian Federation under the
“Mikhail Lomonosov II”-Programme, and by the HPC2SE project of BMBF (Federal
Ministry of Education and Research, Germany).

References

1. Barbosa, E., Senne, E.: Improving the fine-tuning of metaheuristics: an approach
combining design of experiments and racing algorithms. J. Optim. 2017, 1–7
(2017). https://doi.org/10.1155/2017/8042436

2. Birattari, M.: Tuning Metaheuristics. Studies in Computational Intelligence, vol.
197. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00483-4

3. Borisenko, A., Gorlatch, S.: Parallelizing metaheuristics for optimal design of mul-
tiproduct batch plants on GPU. In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol.
10421, pp. 405–417. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
62932-2 39

4. Borisenko, A., Gorlatch, S.: Comparing GPU-parallelized metaheuristics to branch-
and-bound for batch plants optimization. J. Supercomput. 1–13 (2018). https://
doi.org/10.1007/s11227-018-2472-9

5. Borisenko, A., Haidl, M., Gorlatch, S.: A GPU parallelization ofbranch-and-
bound for multiproduct batch plants optimization. J. Supercomput. 73(2), 639–651
(2017). https://doi.org/10.1007/s11227-016-1784-x

6. Burtscher, M., Nasre, R., Pingali, K.: A quantitative study of irregular programs
on GPUs. In: 2012 IEEE International Symposium on Workload Characterization
(IISWC), pp. 141–151. IEEE, November 2012. https://doi.org/10.1109/IISWC.
2012.6402918. http://ieeexplore.ieee.org/document/6402918/

7. Castillo, O., Neyoy, H., Soria, J., Melin, P., Valdez, F.: A new approach for dynamic
fuzzy logic parameter tuning in ant colony optimization and its application in fuzzy
control of a mobile robot. Appl. Soft Comput. 28, 150–159 (2015). https://doi.org/
10.1016/j.asoc.2014.12.002

8. Chen, C.C., Liu, Y.T.: Enhanced ant colony optimization with dynamic mutation
and ad hoc initialization for improving the design of TSK-type fuzzy system. Com-
put. Intell. Neurosci. 2018, 1–15 (2018). https://doi.org/10.1155/2018/9485478

9. Delévacq, A., Delisle, P., Gravel, M., Krajecki, M.: Parallel ant colony optimization
on graphics processing units. J. Parallel Distrib. Comput. 73(1), 52–61 (2013).
https://doi.org/10.1016/j.jpdc.2012.01.003

10. Dorigo, M., Birattari, M.: Ant colony optimization. In: Encyclopedia of Machine
Learning, pp. 36–39. Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-
4899-7687-1 22

11. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances.
In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, vol. 272, pp.
311–351. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91086-4 10

12. Fallahi, M., Amiri, S., Yaghini, M.: A parameter tuning methodology for meta-
heuristics based on design of experiments. Int. J. Eng. Technol. Sci. 2(6), 497–521
(2014)

13. Gómez-Cabrero, D., Ranasinghe, D.N.: Fine-tuning the ant colony system algo-
rithm through particle swarm optimization. arXiv preprint arXiv:1803.08353
(2018)

https://doi.org/10.1155/2017/8042436
https://doi.org/10.1007/978-3-642-00483-4
https://doi.org/10.1007/978-3-319-62932-2_39
https://doi.org/10.1007/978-3-319-62932-2_39
https://doi.org/10.1007/s11227-018-2472-9
https://doi.org/10.1007/s11227-018-2472-9
https://doi.org/10.1007/s11227-016-1784-x
https://doi.org/10.1109/IISWC.2012.6402918
https://doi.org/10.1109/IISWC.2012.6402918
http://ieeexplore.ieee.org/document/6402918/
https://doi.org/10.1016/j.asoc.2014.12.002
https://doi.org/10.1016/j.asoc.2014.12.002
https://doi.org/10.1155/2018/9485478
https://doi.org/10.1016/j.jpdc.2012.01.003
https://doi.org/10.1007/978-1-4899-7687-1_22
https://doi.org/10.1007/978-1-4899-7687-1_22
https://doi.org/10.1007/978-3-319-91086-4_10
http://arxiv.org/abs/1803.08353

Ant Colony Metaheuristic Tuning 165

14. Han, T.D., Abdelrahman, T.S.: Reducing branch divergence in GPU programs. In:
Proceedings of the Fourth Workshop on General Purpose Processing on Graph-
ics Processing Units - GPGPU-4, pp. 1–3. ACM Press, New York, March 2011.
https://doi.org/10.1145/1964179.1964184

15. Khan, S., Bilal, M., Sharif, M., Sajid, M., Baig, R.: Solution of n-Queen problem
using ACO. In: 2009 IEEE 13th International Multitopic Conference, pp. 1–5.
IEEE, December 2009. https://doi.org/10.1109/INMIC.2009.5383157

16. Li, P., Zhu, H.: Parameter selection for ant colony algorithm based on bacterial
foraging algorithm. Math. Probl. Eng. 1–12 (2016). https://doi.org/10.1155/2016/
6469721. https://www.hindawi.com/journals/mpe/2016/6469721/

17. Mahi, M., Baykan, Ö.K., Kodaz, H.: A new hybrid method based on particle swarm
optimization, ant colony optimization and 3-opt algorithms for traveling salesman
problem. Appl. Soft Comput. 30, 484–490 (2015). https://doi.org/10.1016/j.asoc.
2015.01.068

18. Maier, H.R., et al.: Ant colony optimization for design of water distribution sys-
tems. J. Water Resour. Plann. Manag. 129(3), 200–209 (2003)

19. NVIDIA Corporation: CUDA C programming guide 10.0, October 2018. http://
docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf

20. NVIDIA Corporation: The NVIDIA CUDA random number generation library
(cuRAND), December 2018. https://developer.nvidia.com/curand

21. Olivas, F., Valdez, F., Castillo, O.: Dynamic parameter adaptation in ant colony
optimization using a fuzzy system for TSP problems. In: IFSA-EUSFLAT, pp.
765–770 (2015)

22. Simpson, A., Maier, H., Foong, W., Phang, K., Seah, H., Tan, C.: Selection of
parameters for ant colony optimization applied to the optimal design of water
distribution systems. In: Proceedings of the International Congress on Modeling
and Simulation, Canberra, Australia, pp. 1931–1936 (2001)

23. Skakov, E.S., Malysh, V.N.: Parameter meta-optimization of metaheuristics of solv-
ing specific NP-hard facility location problem. J. Phys.: Conf. Ser. 973, 012063
(2018). https://doi.org/10.1088/1742-6596/973/1/012063

24. Stützle, T., et al.: Parameter adaptation in ant colony optimization. In: Hamadi,
Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 191–215. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21434-9 8

25. Trindade, Á.R., Campelo, F.: Tuning metaheuristics by sequential optimization of
regression models. arXiv preprint arXiv:1809.03646, pp. 1–22, September 2018

26. Tsang, E.: Foundations of Constraint Satisfaction: The Classic Text. BoD-Books
on Demand, Norderstedt (2014)

27. Valadi, J., Siarry, P.: Applications of Metaheuristics in Process Engineering.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06508-3

28. Veluscek, M., Kalganova, T., Broomhead, P.: Improving ant colony optimization
performance through prediction of best termination condition. In: 2015 IEEE Inter-
national Conference on Industrial Technology (ICIT), pp. 2394–2402. IEEE, March
2015. https://doi.org/10.1109/icit.2015.7125451

29. Zhang, Z., Feng, Z., Ren, Z.: Approximate termination condition analysis for ant
colony optimization algorithm. In: 2010 8th World Congress on Intelligent Control
and Automation, pp. 3211–3215. IEEE, July 2010. https://doi.org/10.1109/wcica.
2010.5554984

https://doi.org/10.1145/1964179.1964184
https://doi.org/10.1109/INMIC.2009.5383157
https://doi.org/10.1155/2016/6469721
https://doi.org/10.1155/2016/6469721
https://www.hindawi.com/journals/mpe/2016/6469721/
https://doi.org/10.1016/j.asoc.2015.01.068
https://doi.org/10.1016/j.asoc.2015.01.068
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://developer.nvidia.com/curand
https://doi.org/10.1088/1742-6596/973/1/012063
https://doi.org/10.1007/978-3-642-21434-9_8
http://arxiv.org/abs/1809.03646
https://doi.org/10.1007/978-3-319-06508-3
https://doi.org/10.1109/icit.2015.7125451
https://doi.org/10.1109/wcica.2010.5554984
https://doi.org/10.1109/wcica.2010.5554984

Parallel Dimensionality Reduction
for Multiextremal Optimization Problems

Victor Gergel , Vladimir Grishagin(B) , and Ruslan Israfilov

Lobachevsky State University, Gagarin Avenue 23, 603950 Nizhni Novgorod, Russia
gergel@unn.ru, vagris@unn.ru, ruslan@israfilov.com

Abstract. The paper is devoted to consideration of numerical global
optimization methods in the framework of the approach of reducing
dimensionality based on nested optimization schemes. For the adaptive
nested scheme being more efficient in comparison with its classical pro-
totype a new algorithm of parallel implementation is proposed. General
descriptions of the parallel techniques both for synchronous and asyn-
chronous versions are given. Results of numerical experiments on a set
of complicated multiextremal test problems of high dimension are pre-
sented. These results demonstrate essential acceleration of asynchronous
parallel algorithm in comparison with the sequential version.

Keywords: Multiextremal optimization · Global optimum ·
Dimensionality reduction · Parallel algorithms

1 Introduction

Global optimization problems aimed at finding the global optimum of multi-
extremal functions are complicated decision making models and describe many
important applications in engineering, economy, scientific researches, etc. (see
some examples in [3,9,13,26,30,32,36,43]). The complexity of these problems
depends crucially on the dimension (number of model parameters) because in
general case the growth of the computational costs measured, for example, in
number of objective function evaluations is exponential when increasing the
dimension. There exist several approaches to analyzing global optimization prob-
lems oriented at different classes of multiextremal functions defined by their
specific properties. The wide spectrum of directions in the field of global opti-
mization can be found in the fundamental monographs [23,31,32,35,39,44].

Among the approaches generating efficient algorithms to solving multiex-
tremal optimization problems with objective functions satisfying the Lipschitz
condition one can mention the approach based on different partition schemes
(component approach) and the class of methods which apply the ideas of
reducing multidimensional problems to one or a family of univariate subprob-
lems for solving those by means of well-developed one-dimensional optimization
algorithms.

c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 166–178, 2019.
https://doi.org/10.1007/978-3-030-25636-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_13&domain=pdf
http://orcid.org/0000-0002-4013-2329
http://orcid.org/0000-0002-2884-3670
http://orcid.org/0000-0002-4226-9644
https://doi.org/10.1007/978-3-030-25636-4_13

Parallel Dimensionality Reduction for Multiextremal Optimization Problems 167

In the framework of the component approach the search region is partitioned
into several subregions (components), every component are evaluated numeri-
cally for the purpose of its efficiency for search continuation, and after that a
new iteration is carried out in the most “perspective’ subregion. The first class of
component methods called characteristical ones was proposed and theoretically
investigated in the work [18], and later it was generalized to multidimensional
case by many researchers (see, for example, publications [24,25,27,31,32,35]).

As for the approach transforming a multidimensional problem to the univari-
ate case, it includes two different schemes. The first one is based on applying
the Peano space-filling curves which are continuous mappings of a multidimen-
sional hypercube onto the unit interval of the real axis [4,14,22,28,29,34,39].
The second scheme reduces a multidimensional problem to a family of univariate
subproblems connected recursively (nested optimization) [5,6,11,12,16,37–39].
These schemes can be combined when inside the recursive procedure the sub-
problems of the less dimensionality are considered and solved by means of Peano
mappings [40]. As it has been shown in [19], among algorithms of this type the
adaptive scheme of nested optimization has demonstrated the best efficiency.

A promising way to overcome the complexity of the multiextremal opti-
mization problems consists in parallelizing sequential schemes of optimiza-
tion algorithms. Following this idea, some optimization methods have been
proposed (see [2,8,15,17,20,33,39,40]). In this paradigm the usual way con-
sists in performing parallel trials (computations of objective function val-
ues) [8,17,20,21,39,40]. The algorithm [2] using multiple Peano mappings per-
forms parallel computations of trial couples corresponding to several Peano evol-
vents. Very interesting approach is used in parallel branch and bound algorithms
which build a hierarchical structure of feasible domain partitions and parallelize
the procedure of partitioning. For example, the paper [21] describes a model
using threads within one computational node and the publication [1] suggests a
parallel strategy of partitioning in distributed memory.

As opposed to above approaches the methods on the base of nested optimiza-
tion scheme [15,33] implement parallelization by means of parallel performance
of internal subtasks. In this paper we consider a parallel algorithm being a gen-
eralization of the adaptive scheme of global optimization [11] which belongs to
the type of recursive reduction techniques and applies for solving the nested uni-
variate subproblems the information characteristical method [33,39]. The main
goal of the work is to describe a new model of parallel computations inside the
adaptive scheme realizing “parallelization by subtask” approach and to estimate
the effectiveness of parallelizing measured as speedup of the parallel adaptive
scheme compared to the sequential one.

The rest of the paper is organized as follows. Section 2 contains the statement
of multiextremal optimization problem to be studied and the general algorithm
of the nested optimization scheme. Section 3 describes the model of parallelism
organization in the framework of the nested adaptive dimensionality reduction.
Section 4 presents results of numerical experiments and speedup estimations of
the parallel adaptive scheme. The last section concludes the paper.

168 V. Gergel et al.

2 Nested Optimization Scheme

The statement of the optimization problem to be considered is as follows. It
is necessary to find in a hyperparallelepiped H of the N -dimensional Euclidean
space R

N the least value (global minimum) F∗ of an objective function F (u) and
the coordinate u∗ ∈ H of the global minimum (global minimizer). This problem
can be written in a symbolical form as

F (u) → min, u = (u1, . . . , uN) ∈ H ⊆ R
N , (1)

H = {u ∈ R
N : ai ≤ ui ≤ bi, 1 ≤ i ≤ N}, (2)

The objective function F (u) is supposed to satisfy in the search domain H the
Lipschitz condition

|F (u′) − F (u′′)| ≤ L‖u′ − u′′‖, u′, u′′ ∈ H, (3)

where L > 0 is a finite value called Lipschitz constant and ‖ · ‖ denotes the
Euclidean norm in R

N . Under condition (3) the problem (1)–(2) is, in general
case, multiextremal and non-smooth.

The nested scheme of dimensionality reduction served as the source for differ-
ent global optimization methods [5,6,11,12,16,37–39]. It is based on the known
relation [5,39]

min
u∈H

F (y) = min
u1∈H1

min
u2∈H2

· · · min
uN∈HN

F (u1, . . . , uN), (4)

where Hi is a line segment [ai, bi], 1 ≤ i ≤ N .
Let us give the general description of the nested scheme introducing recur-

sively a family of reduced function F i(τi), τi = (u1, . . . , ui), 1 ≤ i ≤ N , in the
following manner.

FN (τN) ≡ FN (u) ≡ F (u), (5)
F i−1(τi−1) = min

ui∈Hi

F i(τi), 2 ≤ i ≤ N. (6)

Then, instead of minimizing in (1) the N -dimensional function F (u) we can
search for the global minimum of the univariate function F 1(u1) as, in accordance
with (4),

F∗ = min
u1∈H1

F 1(u1). (7)

However, any numerical optimization method in the course of solving the prob-
lem (7) has to calculate values of the function F 1(t1). But such a computation
at a point t̃1 requires solving the problem

F 2(t̃1, t2) → min, t2 ∈ H2, (8)

which are one-dimensional again as the argument t̃1 is fixed, and so on. Following
this way, we reach the level N , where the problem

FN (τ̃N−1, tN) → min, tN ∈ HN , (9)

Parallel Dimensionality Reduction for Multiextremal Optimization Problems 169

is one-dimensional as well because the vector τ̃N−1 = (t̃1, . . . , t̃N−1) is fixed (its
coordinates are given at previous levels of recursion). As FN (t) ≡ F (t) then
evaluation of objective function values in the problem (9) consists in calculation
of the values F (τ̃N−1, tN) of the given function from (1).

The procedure (7)–(9) described above is recursive and enables to find the
solution of the multidimensional problem (1)–(2) via solving the family

F i(τi−1, ui) → min, ui ∈ Hi, 1 ≤ i ≤ N, (10)

of univariate subproblems. Such the scheme is called the nested scheme of dimen-
sionality reduction.

The recursive structure of generation of the subproblems in the family (10)
can be presented as a tree of connections between generating (parental) and
generated (child) subtasks (see Fig. 1).

min
u1∈[a1,b1]

F 1(u1)

min
u2∈[a2,b2]

F 2(u1
1, u2)

min
u2∈[a2,b2]

F 2(u2
1, u2)

min
u2∈[a2,b2]

F 2(uk1
1 , u2)

min
u3∈[a3,b3]

F 2(u1
1, u

11
2 , u3)

min
u3∈[a3,b3]

F 2(u1
1, u

1k21
2 , u3)

min
u3∈[a3,b3]

F 2(u2
1, u

21
2 , u3)

min
u3∈[a3,b3]

F 2(u2
1, u

2k22
2 , u3)

min
u3∈[a3,b3]

F 2(uk1
1 , uk11

2 , u3)

min
u3∈[a3,b3]

F 2(uk1
1 , u

k1k2k1
2 , u3)

. . .

. . .

. . .

. . .

Fig. 1. Tree of subtasks in the nested optimization scheme for dimension 3.

In this tree the problem (7) is the root one and the problems (9) are leaves
of the tree. Of course, the tree is built in dynamics, and Fig. 1 shows the full
tree obtained after completing multidimensional optimization. It should be noted
that conducting one trial (computation of objective function value at a point) in
one-dimensional subproblem of minimization of F i(τi−1, ui), 1 ≤ i ≤ N −1, gen-
erates a subtree in the tree of subtasks. As a consequence, any subproblem (10)
is parental for subproblems in subtrees generated by its trials.

In classical implementation of the nested scheme the subproblems (10) are
solved until a stopping rule of applied univariate method holds true for all of
them. It means that in the course of optimization only subproblems which belong
to a sole path from the root to a leaf can interact inter se. It leads to loss of search
information obtained in the course of optimization and worsens the efficiency of
classical scheme significantly.

170 V. Gergel et al.

In order to overcome this drawback of the classical nested scheme, its
improved version called adaptive nested scheme of dimensionality reduction has
been proposed in the paper [11]. As opposed to the classical nested scheme, the
adaptive extension considers all the currently existing subproblems (10) simul-
taneously. A numerical value of “significance” called characteristic is assigned
to each subproblem of the current family and all the subproblems are decreas-
ingly ordered according to their characteristics. Then, the subproblem with the
maximal characteristic is chosen, and in the best subproblem a new iteration of
the univariate method connected with this subproblem is executed. The detailed
algorithm of the sequential adaptive scheme has been described in [11].

3 Parallel Adaptive Scheme

A natural way of parallelizing the adaptive scheme consists in solving several
subproblems in parallel. Let us suppose that at our disposal there are P > 1
parallel computational nodes (processors). Then a parallel iteration of the adap-
tive scheme could be organized as follows. All the subproblems (subtasks) are
ordered according to their characteristics, P subproblems with maximal charac-
teristics are chosen, are distributed among processors (one subproblem to one
computational node) and are solved in parallel. Solving within parallel iteration
one subproblem of a recursion level l means the decision rule implementation
of univariate optimization algorithm used in this subproblem, i.e., the choice
of a point ul of new trial and computation of the objective function value at
this point. If l < N , such the computation generates a subtree of new subtasks
that will be added to existing ones after completing the trial at the point ul.
Hereinafter the operation of executing a trial in a subproblem will be denoted
as ExecuteIteration.

If the next parallel iteration will start after completing the work of all pro-
cessors this procedure corresponds to the synchronous case. However, in such
organization of parallelism a processor completing computations is obliged to
wait until the other processors finish and will stand idle. To avoid this drawback
one can to use more effective, but more complicated asynchronous organization
of parallelism when a processor completing its work take the best subtask from
the pool of non- distributed subproblems.

Further we consider more detailed how both synchronous and asynchronous
parallelisms can be organized for the nested adaptive scheme. As a detailed
code of the parallel implementation is very large we will give a general algo-
rithmic description of parallel adaptive scheme on the base of an abstract one-
dimensional optimization method. For this formal description it is necessary to
introduce several notions and designations.

Let at a stage of the adaptive scheme implementation all subproblems renum-
ber with integer numbers from 1 to λ, where λ is the number of subtasks (10)
generated already and the root subproblem (7) is the first one. A univari-
ate method in the course of minimizing a subproblem F l(τl−1, ul) generates
a sequence of trial points u1

l , . . . , u
k
l at which the values z1l , . . . , z

k
l are computed

where zil = F l(τl−1, u
i
l), 1 ≤ i ≤ k. These points and values form the set of pairs

Parallel Dimensionality Reduction for Multiextremal Optimization Problems 171

ωk = {(u1
l , z

1
l), . . . , (u

k
l , z

k
l)}, (11)

that can be interpreted as the current state of the search for this subproblem.
It should be remembered that any computation of value zil requires solving a
one-dimensional subproblem at the next (l+1)-th level and, if l < N , building a
subtree of subproblems (10). Uniting the subtrees of all trials we get the subtree
generated by the subproblem on the whole.

Taking these circumstances into account, we identify a subtask t ∈ {1, . . . , λ}
as a tuple

t = 〈l, τl−1, k, ωk, h, tp, T c,W 〉. (12)

Here l is the number of the recursion level, which the subproblem belongs to, τl−1

is a vector of fixed coordinates obtained from preceding levels, k is the number
of trials executed by the univariate algorithm, ωk from (11). The indicator h =
h(ωk) shows whether solving this subproblem has been completed, namely, if h =
0 then the algorithm solving the described subproblem terminates its execution,
if h = 1 the optimization has to be continued. The number tp corresponds to the
parental subproblem having generated the current one, and, finally, T c presents
the set of all subtasks (up to the level N) generated by the subproblem considered
and, finally, W is a numerical characteristic of the subproblem significance. The
set of all subtasks t, t ∈ {1, . . . , λ}, we will denote as T .

It should be noted that tuple (12) is not applicable to the root subtask (7)
because it has no parents. In order to include the root subproblem into the unified
description let us introduce as a parent of the root an “empty” subtask t0 and
define t0 = ∅.

For starting the adaptive scheme (both sequential and parallel) it is necessary
to create an initial set T . It could be done applying the classical nested scheme
with a few trials in one dimensional search. We will consider just a general
procedure Initialize implementing this initial stage without its concretization.
It is executed only once and it is not important whether it is sequential or
parallel.

As for parallel implementation of the main body of the adaptive scheme we
will deal with a computational system with distributed memory. The system is
supposed to consist of P computational nodes. Each node has just one processor
and memory, to which the processor of the node only has the direct access. The
remote direct access to this memory (RDMA) is considered to be impossible. It
means that recording the data of j-th node in the memory of i-th node (i
= j)
can be carried out by means of operations of data transmission only.

The simplest way of parallelizing the adaptive scheme in a distributed system
can consist in employment of the program model MapReduce [7]. A generalized
algorithm of the parallel adaptive scheme could be presented as the Algorithm 1.

172 V. Gergel et al.

Algorithm 1. Parallel adaptive scheme on the base of MapReduce
1: l ← 1, t1 ← 1
2: T ← Initialize()
3: while h(t1) = 1 do
4: T ′ ← {

t1, . . . , tP : W (t) ≤ W (ti), 1 ≤ i ≤ P, t ∈ T \ {t1, . . . , tP } }

5: T ′′ ← MapReduce(T ′,ExecuteIteration)
6: T ← T ∪ T ′′

7: T ← T \ {t ∈ T ′ : h(t) = 0}
8: end while

In the Algorithm 1, after initialization in the loop until the termination condi-
tion in the root subproblem is satisfied parallel iterations of the adaptive scheme
are executed. At Stage 4 the set T ′ containing P subtasks with the best char-
acteristics is formed. Stage 5 distributes the subproblems from T ′ to processors
which in parallel execute one trial in their subtasks with the help of procedure
ExecuteIteration. After completing all the trials a set T ′′ of new subprob-
lems obtained in the course of computations is formed. Stage 6 complements the
set T with new subproblems and Stage 6 removes from the set T the terminated
subproblems.

Practical implementation of the described algorithm can be realized in the
framework of such the platforms as Hadoop [41] or Spark [42]. Unfortunately,
this algorithm is synchronous and requires significant number of data trans-
missions. Moreover, implementation of Algorithm 1 implies that one processor
(master node) plays the main role and coordinates the work of the other (slave)
processors, i.e., the organization of the parallel processes is centralized.

To improve the parallel implementation of the adaptive scheme we propose
for the adaptive scheme an asynchronous decentralized model of parallel com-
putations where all processors are equal in rights.

Let, as earlier, a distributed system have P processors. We change Algo-
rithm 1 so that procedure Initialize after creating an initial set T splits this
set into P parts and send each part to separate processor. Moreover, i-th pro-
cessor is supposed to be able to connect independently with any other node and
to execute the information interchange with it after completing a trial in its
subproblems. Under this assumption the full set T of subtasks can be stored
portionwise on different nodes and in order to get the best subproblems, a node
can request from other nodes only the best subproblems from their local subsets.

In this situation there exists no integrated iteration implemented by all the
processors jointly and we can deal with iterations executed by processors sep-
arately. Completing its iteration a node can request immediately the best sub-
problems from other nodes and begin a new iteration. Two examples of requests
are shown in Fig. 2.

Under these assumptions we propose an asynchronous algorithm of the par-
allel adaptive scheme that is presented below in a pseudo code. This algorithm
is supposed to be executed on every node.

Parallel Dimensionality Reduction for Multiextremal Optimization Problems 173

1

2

3

4

5

6

7

8

maxT2

maxT3

maxT4

maxT5

maxT6

maxT7

maxT8

(a)

1

2

3

4

5

6

7

8

maxT1

maxT2

maxT3

maxT4

maxT5

maxT6

maxT8

(b)

Fig. 2. Gathering information for new iteration to the 1-st node (a) and to the 7-th
node (b).

Algorithm 2. Parallel asynchronous adaptive scheme
1: procedure ReceiveTaskFromNode(j)
2: t∗j ← maxT local

j

3: T local
j ← T local

j \ { t∗j }
4: return t∗j
5: end procedure
6:
7: procedure RunOnNode(i)
8: T local

i ← PartOfInitialTaskSet()
9: for n ∈ {1, 2, . . . , ni

max} do
10: for j ∈ {1, 2, . . . , P} \ { i } do
11: t∗j ← ReceiveTaskFromNode(j)
12: T local

i ← T local
i ∪ { t∗j }

13: end for
14: t∗ ← maxT local

i

15: t1, T 1 ← ExecuteIteration(t∗)
16: T local

i ← T local
i ∪ T 1

17: if h(t∗) = 0 then
18: if l(t∗) = 1 then
19: BroadcastStopSignal()
20: break
21: end if
22: T local

i ← T local
i \ { t∗ }

23: end if
24: end for
25: end procedure

Let us give some remarks about the Algorithm 2. T local
i is the subset of sub-

problems stored on the i-th node. Procedure ReceiveTaskFromNode provides
receiving the best subtask from other node. In line 8 the procedure PartOfIni-
tialTaskSet forms the initial set T local

i from subtasks obtained by the proce-
dure Initialize.

174 V. Gergel et al.

The external loop for is an analogue of the loop while in Algorithm 1 but
instead of termination condition used in while a limit nmax

i of trials executed on
the i-th node is introduced. Termination condition of the optimization algorithm
is transferred into lines 17–21, where l(t) denotes the level of the subtask t. The
internal loop carries out collecting the subproblems with the best characteristics
from all the nodes (except for the i-th node). Further, from the local set T local

i

the subproblem with the maximal characteristic is chosen and the new trial in
this subproblem is executed.

If during solving a problem (1)–(2) i-th processor has performed ni trials,
it has transferred tasks to other processors (P − 1)ni times because one trial
requires P − 1 transmissions from the rest of nodes. Altogether the processors
have performed n =

∑P
i=1 ni trials and, consequently, executed (P − 1)n trans-

missions. The estimation of transmissions number for synchronous Algorithm 1
gives the result about (P 2 + P)n, which is worse essentially compared with the
asynchronous case.

4 Numerical Experiments

To evaluate the effectiveness of the parallelism described in Sect. 3 a computa-
tional experiment aimed at comparison of sequential and asynchronous parallel
implementations of the adaptive nested optimization schemes has been carried
out. The simpler synchronous version did not participated in comparison because
it is inferior to the asynchronous one according to theoretical estimations. The
experiment consisted in solving a set of functions from the test class GKLS [10] of
essentially multiextremal functions (hard subclass). These functions have com-
plicated structure with tens of local minima. Nowadays this class is a classical
tool for comparison of global optimization methods.

In experiment 50 functions of dimension 8 have been taken and solved both
sequential and parallel adaptive schemes. As one-dimensional method for solv-
ing the subproblems 10 in both the schemes the information global search algo-
rithm GSA [38,39] was taken with reliability parameter r = 6.5 and accuracy
in termination condition ε = 0.01. Computations were executed on the cluster
consisting of 64 nodes, where each node is equipped with Intel R© Xeon R© Gold
6148 processor having 20 physical cores. Mellanox R© Infiniband FDR was used
as interconnection technology. The parallelism was provided on the base of MPI,
version Intel R© MPI 2019. Only one MPI rank was assigned to one node.

The global minima have been found with given accuracy in all the test prob-
lems. The results of the experiment are reflected in Table 1 and Fig. 3. The
table contains average time spent by the parallel scheme per one test problem
and speedup in time achieved by the parallel technique in comparison with the
sequential one for different number of MPI ranks.

Parallel Dimensionality Reduction for Multiextremal Optimization Problems 175

Table 1. Speedup in time on GKLS test class

MPI rank 1 2 4 8 16 32 64

Time (sec.) 7409.39 4919.94 2422.97 1202.00 717.19 380.39 198.88

Speedup 1 1.50 3.05 6.16 10.33 19.47 37.26

1.00X 1.51X 3.06X
6.16X

10.33X

19.48X

37.26X

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes
0

10

20

30

40

Scalability with respect to execution time

Number of nodes

S
pe

ed
up

 f
ac

to
r

Fig. 3. Speedup in time on GKLS test class

5 Conclusion

The paper proposes general descriptions of new parallel algorithms implementing
methods of multiextremal optimization on the base of adaptive nested schemes
reducing a multidimensional problem to a family of one-dimensional subprob-
lems. Two parallel versions are presented in synchronous and asynchronous vari-
ants for computational distributed systems. Efficiency of the parallelism are
investigated experimentally on the test class GKLS of complicated multiextremal
multidimensional problems. The results of the experiment have shown essential
speedup of the optimization process in case of applying the asynchronous adap-
tive scheme.

Combining the general parallel procedure of the adaptive scheme with fast
univariate optimization methods (like characteristical ones) enables to construct
new efficient techniques for solving multiextremal problems of high dimensions.
Moreover, it is promising to develop new parallel implementations of the adaptive
scheme oriented at other parallel architectures, for example, at supercomputers
with mixed types of memory. It would be very interesting as well to compare
the proposed algorithm with parallel optimization methods based on the other
principles of parallelizing. These problems can be fruitful directions of further
researches.

Acknowledgements. The research has been supported by the Russian Science Foun-
dation, project No 16-11-10150 “Novel efficient methods and software tools for time-
consuming decision make problems using superior-performance supercomputers”.

176 V. Gergel et al.

References

1. Androulakis, I.P., Floudas, C.A.: Distributed branch and bound algorithms for
global optimization. In: Pardalos, P.M. (ed.) Parallel Processing of Discrete Prob-
lems. The IMA Volumes in Mathematics and its Applications, vol. 106, pp. 1–35.
Springer, New York (1999). https://doi.org/10.1007/978-1-4612-1492-2 1

2. Barkalov, K., Gergel, V.: Parallel global optimization on GPU. J. Glob. Optim.
66(1), 3–20 (2016). https://doi.org/10.1007/s10898-016-0411-y

3. Bartholomew-Biggs, M., Parkhurst, S., Wilson, S.: Using direct to solve anaircraft
routing problem. Comput. Optim. Appl. 21(3), 311–323 (2002). https://doi.org/
10.1023/A:1013729320435

4. Butz, A.R.: Space-filling curves and mathematical programming. Inform. Control
12, 314–330 (1968)

5. Carr, C.R., Howe, C.W.: Quantitative Decision Procedures in Management and
Economic: Deterministic Theory and Applications. McGraw-Hill, New York (1964)

6. Dam, E.R., Husslage, B., Hertog, D.: One-dimensional nested maximin designs. J.
Glob. Optim. 46, 287–306 (2010)

7. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Sixth Symposium on Operating System Design and Implementation, OSDI
2004, San Francisco, CA, pp. 137–150 (2004)

8. Evtushenko, Y.G., Malkova, V.U., Stanevichyus, A.A.: Parallel globaloptimiza-
tion of functions of several variables. Comput. Math. Math. Phys. 49(2), 246–260
(2009). https://doi.org/10.1134/S0965542509020055

9. Famularo, D., Pugliese, P., Sergeyev, Y.: A global optimization technique for check-
ing parametric robustness. Automatica 35, 1605–1611 (1999)

10. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Software for generation
ofclasses of test functions with known local and global minima for globaloptimiza-
tion. ACM Trans. Math. Softw. 29(4), 469–480 (2003)

11. Gergel, V.P., Grishagin, V.A., Gergel, A.V.: Adaptive nested optimization scheme
for multidimensional global search. J. Glob. Optim. 66, 35–51 (2016)

12. Gergel, V.P., Grishagin, V.A., Israfilov, R.A.: Local tuning in nested scheme of
global optimization. Proc. Comput. Sci. 51, 865–874 (2015)

13. Gergel, V.P., Kuzmin, M.I., Solovyov, N.A., Grishagin, V.A.: Recognition of sur-
face defects of cold-rolling sheets based on method of localities. Int. Rev. Autom.
Control 8, 51–55 (2015)

14. Goertzel, B.: Global optimization with space-filling curves. Appl. Math. Lett. 12,
133–135 (1999)

15. Grishagin, V.A., Israfilov, R.A.: Multidimensional constrained global optimization
in domains with computable boundaries. In: CEUR Workshop Proceedings, vol.
1513, pp. 75–84 (2015)

16. Grishagin, V.A., Israfilov, R.A.: Global search acceleration in the nested optimiza-
tion scheme. In: AIP Conference Proceedings, vol. 1738, p. 400010 (2016)

17. Grishagin, V.A., Sergeyev, Y.D., Strongin, R.G.: Parallel characteristical algo-
rithms for solving problems of global optimization. J. Glob. Optim. 10, 185–206
(1997)

18. Grishagin, V.: On convergence conditions for a class of global search algorithms.
In: Proceedings of the 3-rd All-Union Seminar Numerical Methods of Nonlinear
Programming, pp. 82–84 (1979, in Russian)

https://doi.org/10.1007/978-1-4612-1492-2_1
https://doi.org/10.1007/s10898-016-0411-y
https://doi.org/10.1023/A:1013729320435
https://doi.org/10.1023/A:1013729320435
https://doi.org/10.1134/S0965542509020055

Parallel Dimensionality Reduction for Multiextremal Optimization Problems 177

19. Grishagin, V., Israfilov, R., Sergeyev, Y.: Convergence conditions and numerical
comparison of global optimization methods based on dimensionality reduc-
tion schemes. Appl. Math. Comput. 318, 270–280 (2018). https://doi.org/
10.1016/j.amc.2017.06.036. http://www.sciencedirect.com/science/article/pii/
S0096300317304496. Recent Trends in Numerical Computations: Theory and
Algorithms

20. He, J., Verstak, A., Watson, L.T., Sosonkina, M.: Design and implementation of
a massively parallel version of DIRECT. Comput. Optim. Appl. 40(2), 217–245
(2008). https://doi.org/10.1007/s10589-007-9092-2

21. Herrera, J.F.R., Salmerón, J.M.G., Hendrix, E.M.T., Asenjo, R., Casado, L.G.: On
parallel branch and bound frameworks for global optimization. J. Glob. Optim.
69(3), 547–560 (2017). https://doi.org/10.1007/s10898-017-0508-y

22. Hime, A., Oliveira Jr., H., Petraglia, A.: Global optimization using space-filling
curves and measure-preserving transformations. Soft Comput. Industr. Appl. 96,
121–130 (2011)

23. Horst, R., Pardalos, P.M.: Handbook of Global Optimization. Kluwer Academic
Publishers, Dordrecht (1995)

24. Jones, D.R.: The DIRECT global optimization algorithm. In: Floudas, C., Parda-
los, P.M. (eds.) Encyclopedia of Optimization, pp. 431–440. Kluwer Academic Pub-
lishers, Dordrecht (2001)

25. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without
the Lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)

26. Kvasov, D.E., Menniti, D., Pinnarelli, A., Sergeyev, Y.D., Sorrentino, N.: Tuning
fuzzy power-system stabilizers in multi-machine systems by global optimization
algorithms based on efficient domain partitions. Electr. Power Syst. Res. 78, 1217–
1229 (2008)

27. Kvasov, D.E., Pizzuti, C., Sergeyev, Y.D.: Local tuning and partition strategies
for diagonal GO methods. Numer. Math. 94, 93–106 (2003)

28. Lera, D., Sergeyev, Y.D.: Lipschitz and Hölder global optimization using space-
filling curves. Appl. Numer. Math. 60, 115–129 (2010)

29. Lera, D., Sergeyev, Y.D.: Deterministic global optimization using space-filling
curves and multiple estimates of Lipschitz and holder constants. Commun. Non-
linear Sci. Numer. Simul. 23, 328–342 (2015)

30. Modorskii, V.Y., Gaynutdinova, D.F., Gergel, V.P., Barkalov, K.A.: Optimization
in design of scientific products for purposes of cavitation problems. In: AIP Con-
ference Proceedings, vol. 1738, p. 400013 (2016)

31. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, NewYork
(2014). https://doi.org/10.1007/978-1-4614-9093-7

32. Pintér, J.D.: Global Optimization in Action. Kluwer Academic Publishers, Dor-
drecht (1996)

33. Sergeyev, Y.D., Grishagin, V.A.: Parallel asynchronous global search and the
nested optimization scheme. J. Comput. Anal. Appl. 3, 123–145 (2001)

34. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization
Exploiting Space-Filling Curves. Springer, New York (2013). https://doi.org/10.
1007/978-1-4614-8042-6

35. Sergeyev, Y., Kvasov, D.: Deterministic Global Optimization: An Introduction to
the Diagonal Approach. Springer, New York (2017). https://doi.org/10.1007/978-
1-4939-7199-2

https://doi.org/10.1016/j.amc.2017.06.036
https://doi.org/10.1016/j.amc.2017.06.036
http://www.sciencedirect.com/science/article/pii/S0096300317304496
http://www.sciencedirect.com/science/article/pii/S0096300317304496
https://doi.org/10.1007/s10589-007-9092-2
https://doi.org/10.1007/s10898-017-0508-y
https://doi.org/10.1007/978-1-4614-9093-7
https://doi.org/10.1007/978-1-4614-8042-6
https://doi.org/10.1007/978-1-4614-8042-6
https://doi.org/10.1007/978-1-4939-7199-2
https://doi.org/10.1007/978-1-4939-7199-2

178 V. Gergel et al.

36. Shevtsov, I.Y., Markine, V.L., Esveld, C.: Optimal design of wheel profile for
railway vehicles. In: Proceedings of the 6th International Conference on Contact
Mechanics and Wear of Rail/Wheel Systems, Gothenburg, Sweden, pp. 231–236
(2003)

37. Shi, L., Ólafsson, S.: Nested partitions method for global optimization. Oper. Res.
48, 390–407 (2000)

38. Strongin, R.G.: Numerical Methods in Multiextremal Problems (Information-
Statistical Algorithms). Nauka, Moscow (1978, in Russian)

39. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints:
Sequential and Parallel Algorithms. Kluwer Academic Publishers/Springer, Dor-
drecht/Heiselberg (2014)

40. Sysoyev, A., Barkalov, K., Sovrasov, V., Lebedev, I., Gergel, V.: Globalizer – a
parallel software system for solving global optimization problems. In: Malyshkin, V.
(ed.) PaCT 2017. LNCS, vol. 10421, pp. 492–499. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-62932-2 47

41. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc., Newton (2009)
42. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster

computing with working sets. In: Proceedings of the 2Nd USENIX Conference
on Hot Topics in Cloud Computing, HotCloud 2010, p. 10. USENIX Association,
Berkeley (2010). http://dl.acm.org/citation.cfm?id=1863103.1863113

43. Zhao, Zh., Meza, J.C., Van Hove, M.: Using pattern search methods for surface
structure determination of nanomaterials. J. Phys.: Condens. Matter 18(39), 8693–
8706 (2006)

44. Zhigljavsky, A.A., Žilinskas, A.: Stochastic Global Optimization. Springer,
NewYork (2008). https://doi.org/10.1007/978-0-387-74740-8

https://doi.org/10.1007/978-3-319-62932-2_47
https://doi.org/10.1007/978-3-319-62932-2_47
http://dl.acm.org/citation.cfm?id=1863103.1863113
https://doi.org/10.1007/978-0-387-74740-8

Multiple-Precision Scaled Vector
Addition on Graphics Processing Unit

Konstantin Isupov(B) and Alexander Kuvaev

Vyatka State University, Kirov 610000, Russia
ks isupov@vyatsu.ru, kyvaevy@gmail.com

Abstract. Many large problems need linear algebra operations with a
precision exceeding the standard floating-point binary64 format. In this
paper, we implement a multiple-precision scaled vector addition BLAS
routine (WAXPBY) on graphics processing units. We use a residue num-
ber system (RNS) to represent significands of floating-point values. In
RNS, large numbers replace with their residues and the operations of
addition, subtraction and multiplication perform on these residues in par-
allel and without carry propagation. Our parallel WAXPBY algorithm
is divided into a number of steps, and each step is carried out by a sep-
arate GPU kernel. Experiments show that the developed routine clearly
outperforms parallel CPU-based multiple-precision implementations.

Keywords: High-precision computations · Computer arithmetic ·
Residue number system · BLAS · CUDA

1 Introduction

For given three floating-point vectors x, y and w of length N and scalars α
and β, the scaled vector addition routine (WAXPBY) scales x by α and y by
β, adds these two vectors to one another and stores the result in w, that is,
w ← αx + βy. This operation extends the original AXPY operation and is
included in the updated set of Basic Linear Algebra Subprograms (BLAS) [3].

There are several linear algebra libraries that implement WAXPBY, e.g.
ATLAS, Arm Allinea Studio, and the Perl Math::BLAS package. Moreover, Intel
MKL, OpenBLAS, as well as several other optimized BLAS libraries implement
the AXPBY routine (y ← αx + βy). Most of these libraries support double
precision floating-point format (binary64) with a significand part of 53 bits.
However, there are a large number of linear algebra applications that require
higher precision, up to hundreds or even thousands of digits [2,7,15].

Since arbitrary length data types are not natively supported by general-
purpose hardware, software emulation of multiple-precision arithmetic is used.
In this paper, we present a parallel multiple-precision implementation of the
WAXPBY operation for graphic processor units (GPUs) compatible with the
NVIDIA Compute Unified Device Architecture (CUDA).

c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 179–186, 2019.
https://doi.org/10.1007/978-3-030-25636-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_14&domain=pdf
http://orcid.org/0000-0003-0239-0404
http://orcid.org/0000-0002-7619-2470
https://doi.org/10.1007/978-3-030-25636-4_14

180 K. Isupov and A. Kuvaev

2 Related Works

There are a number of extended- and multiple-precision linear algebra packages,
such as XBLAS [9] and MPACK [12]. XBLAS provides double-double precision
(128-bit total, 106-bit significand) reference implementations for the dense and
banded BLAS functions. MPACK consists of MBLAS and MLAPACK, multiple-
precision versions of BLAS and LAPACK, respectively. For multiple-precision
arithmetic, MPACK uses the well-known GMP, QD and MPFR libraries. Both
XBLAS and MPACK target the CPU architecture.

There is also some research on multiple-precision computations on GPUs.
Mukunoki and Takahashi [11] used double-double arithmetic to implement
three BLAS functions, AXPY, GEMV and GEMM on GPUs using CUDA.
Lu et al. [10] proposed GARPREC and GQD, which are GPU-based imple-
mentations of the well known high-precision packages for CPUs, ARPREC and
QD, respectively. GQD consists of double-double and quad-double precision,
while GARPREC is suitable for arbitrary precision computation. Nakayama
implemented CUMP [13], a library for arbitrary precision arithmetic on CUDA-
enabled GPUs. It is based on the GMP library and can be a substitute of GMP
if arbitrary precision floating-point arithmetic is necessary in CUDA. CUMP
supports addition, subtraction and multiplication. A recent study shows that
the performance of CUMP is significantly better than that of GARPREC [16].
Joldes et al. [8] implemented CAMPARY, which supports extended (up to a few
hundred bits) precision on both CPUs and GPUs. Like double-double and quad-
double formats, the precision is extended by representing real numbers as the
unevaluated sum of several standard machine precision floating-point numbers.
The library contains “certified” algorithms with rigorous error bounds, as well
as “quick-and-dirty” algorithms that perform well for the average case, but do
not consider the corner cases.

3 Data Representation

We represent an arbitrary length floating-point number x as follows:

x = 〈s,X, e, I(X/M)〉, (1)

where s is the sign of x, X is the multiple-precision significand, e is the exponent,
and I(X/M) is the interval evaluation of the significand.

The significand X is represented in the residue number system (RNS) [14]
by the residues (r0, r1, . . . , rn−1) relative to the moduli set {m0,m1, . . . ,mn−1}
and is considered as an integer in the range of 0 to M −1, where M =

∏n−1
i=0 mi.

The residues ri = X mod mi are machine integers.
The interval evaluation I(X/M) is defined by two bounds, X/M and X/M ,

that localize the value of X scaled by M . The bounds are represented in an
extended-range floating-point format in order to avoid underflow when M is
large (∼21000 or more). To compute X/M and X/M , only modulo mi operations
and standard floating-point operations are required. The interval evaluation is

Multiple-Precision Scaled Vector Addition on Graphics Processing Unit 181

used to quickly obtain a magnitude order of the residue significand (for sign
identification, overflow detection, rounding, etc.). More details concerning the
interval evaluation of fractional representations in RNS can be found in [5].

Let x has the form (1). To compute the binary representation of x, we can use
the Chinese Remainder Theorem [14]: x = (−1)s ×

∣
∣
∣
∑n−1

i=0 Mi |riαi|mi

∣
∣
∣
M

× 2e,

where Mi = M/mi, and αi is the modulo mi multiplicative inverse of Mi.
Under the described number representation, the precision of arithmetic oper-

ations in bits is equal to p = �log2
√

M� − 1. For example, if 1024-bit computa-
tions are required, then the moduli set must be such that M ≥ 22050.

Now we consider the GPU implementation of the WAXPBY operation for
floating-point vectors whose entries are numbers of the form (1).

4 Multiple-Precision GPU-Based WAXPBY

We assume that the input data (vectors x and y of length N , scalars α and β)
are loaded into the GPU global memory. Our multiple-precision WAXPBY algo-
rithm consists of a sequence of GPU kernel launches, as shown in Fig. 1.

Allocate the buffer z of length N
in the global device memory

Launch Kernel 1 (x, , z)
Kernel 1

Compute the signs, exponents, and interval
evaluations of the significands for z = x

Kernel 2
In the RNS domain, multiply the significands

of x and storing the results in z
Launch Kernel 2 (x, , z)

Kernel 3
Round z using an RNS power-of two scaling

algorithm
Launch Kernel 3 (z)

Do the same as above for and y storing the result in w

Launch Kernel 4 (w, z, w)
Kernel 4

Compute the signs, exponents, and interval
evaluations of the significands for w = w + z

Kernel 5
In the RNS domain, add the significands of w

and z storing the results back to w
Launch Kernel 5 (w, z, w)

Kernel 3
Round w using an RNS power-of two scaling

algorithm
Launch Kernel 3 (w)

gridDim1 blocks
×

blockDim1 threads

gridDim2 blocks
×

blockDim2 threads

gridDim1 blocks
×

blockDim1 threads

gridDim1 blocks
×

blockDim1 threads

gridDim2 blocks
×

blockDim2 threads

gridDim1 blocks
×

blockDim1 threads

HOST DEVICE

Fig. 1. Flowchart of the proposed multiple-precision WAXPBY algorithm. Kernels 1–5
are the global functions, which are called from the host side and execute on the GPU.

182 K. Isupov and A. Kuvaev

The following is a description of the algorithm. We denote the elements of
the vectors x, y, z and w by xi, yi, zi, and wi, respectively. The symbol “.” is
used to access the fields of a multiple-precision number.

1. The host allocates the intermediate multiple-precision vector z of length N
in the GPU global memory.

2. Kernel 1 in gridDim1 blocks of blockDim1 threads computes the signs, expo-
nents, and interval evaluations of the significands for the elements of z:

zi .s ← (α.s + xi .s) mod 2
zi .e ← α.e + xi .e

zi .I(X/M) ← α.I(X/M) × xi .I(X/M)

Here gridDim1 and blockDim1 are tunable parameters. Interval arithmetic is
used to compute zi .I(X/M).

3. Kernel 2 in a fully parallel way multiplies the significand of α by the signifi-
cand of each element of the vector x and stores the results in z:

zi .rj ← (α.rj · xi .rj) mod mj 0 ≤ i ≤ N − 1, 0 ≤ j ≤ n − 1.

For multiplication, gridDim2 blocks of blockDim2 threads are used, where
gridDim2 is a tunable parameter while blockDim2 is specified as follows:

– if n ≥ MinBS then blockDim2 = n;
– if n < MinBS then blockDim2 = �MinBS/n� × n.

Here MinBS is the minimum number of threads per block needed to achieve
full occupancy of a streaming multiprocessor (MinBS depends on the hard-
ware environment of a specific GPU). Each block multiplies the significands
for N/gridDim2 elements of x using a grid-stride loop. Within a block, ith
thread is assigned for modulo mj computations, where j = i mod n. More
specifically, if n ≥ MinBS, then n threads compute all digits of one multiple-
precision number in parallel; if n < MinBS, then �MinBS/n� × n threads
concurrently compute all n digits for �MinBS/n� multiple-precision numbers.

4. Kernel 3 in gridDim1 blocks of blockDim1 threads rounds the vector z. For
each multiple-precision entry zi, the rounding is performed as a single thread
using an RNS power-of-two scaling algorithm. In particular, Algorithm 2 from
[6] can be used for scaling the significand by a power of two. The necessity of
rounding is checked using I(X/M).

5. Steps 2–4 are repeated for β and y. The results are stored in w, which must
be allocated in the global memory of the GPU device.

6. Kernels 4 and 5 perform parallel componentwise addition of w and z storing
the results in the vector w: wi ← wi + zi for all i = 0, 1, . . . , N − 1. These
kernels are very similar to Kernels 1 and 2. In Kernel 5, the multiple-precision
addition is performed simultaneously on all residues of the significand: in each
block, one thread calculates one residue of the significand.

7. Finally, Kernel 3 rounds the output vector w.

Multiple-Precision Scaled Vector Addition on Graphics Processing Unit 183

In principle, gridDim1, blockDim1 and gridDim2 can also be tuned automat-
ically for a specific device, precision and/or problem size. However, for better
performance, tuning these parameters through a series of experimental kernel
launches seems to be more preferable.

If the GPU has enough resources, then αx and βy can be computed simul-
taneously. In order to exploit this type of concurrency, the kernels in steps 2–4
and in step 5 must be launched in different CUDA streams with synchronization
immediately before running Kernel 4 in step 6. It is also possible to concurrently
execute Kernels 1 and 2, since there are no data dependencies between them.

Data Layout. We use the “Structure of Arrays” layout to store multiple-
precision floating-point vectors. For a vector of length N , all digits (residues)
of the multiple-precision significands are stored as an integer array of length
N × n. All n residues used for the same multiple-precision number are located
consecutively in the address space. Since the residues are computed in a parallel
fashion, the access pattern for the threads in a warp are coalesced. Additional
arrays are used for storing signs, exponents, and interval evaluations.

In addition to WAXPBY, we have also implemented the AXPBY routine
on GPUs. The AXPBY algorithm is similar to the considered algorithm for
WAXPBY with updating y instead of writing the results in w.

5 Experimental Evaluation

We compared the performance of our WAXPBY function, denoted as “Pro-
posed”, with counterparts based on the latest versions of the ARPREC [1] and
MPFR [4] libraries for CPU, and the CUMP library [13] for GPU. For compari-
son purposes, we also provide a CPU-based multiple-precision WAXPBY imple-
mentation that uses sequential algorithms for multiplying and adding floating-
point representations of the form (1). We denote this implementation on figures
as “Baseline”. To study the performance impact from computations with multi-
ple precision, we also evaluated some of the currently available BLAS packages:
OpenBLAS 0.3.5, cuBLAS 10.1, and XBLAS 1.0.248. OpenBLAS and cuBLAS
support double precision, while XBLAS provides double-double precision.

Evaluation environment: Intel Core i5 4590 (3.3 GHz, Quad-Core)/16 GB
DDR3 RAM/NVIDIA GeForce GTX 1060 (1.76 GHz, 1280 CUDA Cores, 6 GB
GDDR5)/Ubuntu 19.04/GCC 7.4.0 (-O3)/CUDA Toolkit 10.1.105.

We note that all CPU-based implementations, excluding XBLAS, are devel-
oped using OpenMP and performed in parallel on 4 threads with 4 physical
cores. XBLAS does not support parallel processing.

We measured the performance in Mflop/s (million floating-point operations
per second). For our implementations, ARPREC, MPFR and CUMP, by one
flop we mean one operation using multiple precision.

In all experiments, the input sets were composed of uniform random num-
bers. For each test case, we selected kernel execution configurations (gridDim1,
blockDim1, and gridDim2) that provide better performance.

184 K. Isupov and A. Kuvaev

In the first experiment, all vectors have length N = 1000 000 and the
precision of computations p varies from 120 to 1200 bits (16 to 160 RNS moduli
were used for our WAXPBY). The results are shown in Fig. 2.

Fig. 2. Performance of multiple-precision WAXPBY functions at N = 1000 000

At 120-bit precision, the performance of the proposed WAXPBY is
453 Mflop/s, which is 1.4x lower than that of CUMP. This is mainly due to
the overhead incurred by the memory writes for the intermediate vector z. In
addition, in the proposed WAXPBY, 9 kernel launches are performed, while for
CUMP only one kernel is launched. However, our implementation is less depen-
dent on the precision than CUMP and at 1200-bit precision it is faster than
CUMP. Compared to the parallel CPU-based implementations using MPFR and
ARPREC, our WAXPBY on the GPU gives a speedup of 4.6–6.6x and 5.4–15.6x,
respectively. We also note that the proposed implementation clearly outperforms
the quad-core baseline implementation with a speedup of up to 15.5x.

For the proposed WAXPBY, the measured memory bandwidth of the GPU is
around 131.3 GB/s. This is 68% of the theoretical peak bandwidth (192 GB/s).

In the second experiment, the problem size N varied from 10 000 to
10 000 000, while the precision was fixed to p = 240 bits (this is slightly higher
than octuple precision). To achieve this precision, 32 RNS moduli were used for
our WAXPBY implementations. The cblas daxpby and BLAS dwaxpby x rou-
tines were evaluated from OpenBLAS and XBLAS, respectively. In the case of
cuBLAS, we used the cublasDaxpy function. Unlike WAXPBY, cublasDaxpy
requires only 2N arithmetic operations, and this was taken into account in calcu-
lating the cuBLAS performance. Figure 3 presents the results of the experiment.

For multiple precision operations, the GPU-based implementations are sig-
nificantly faster than their counterparts for CPUs. When N = 10 000 000,
the proposed WAXPBY is 6.7x and 11.8x faster than MPFR and ARPREC,
respectively. In turn, double-precision cuBLAS is 6.4x faster than OpenBLAS.
We observe that the use of multiple-precision arithmetic results in a signifi-
cant drop in performance compared to the standard double precision. When
N = 10 000 000, the proposed WAXPBY is 40x slower than cuBLAS. In turn,

Multiple-Precision Scaled Vector Addition on Graphics Processing Unit 185

Fig. 3. Performance of WAXPBY and its counterparts as a function of problem size

MPFR is 42x slower than OpenBLAS. This is because the algorithms of multiple
precision are much more complex than that of double precision. Compared to
XBLAS, our WAXPBY is approximately 1.2x slower, but it provides 2x higher
precision.

6 Conclusion

In this study, we implemented a multiple-precision WAXPBY operation on
GPUs using CUDA. Our implementation is based on the representation of arbi-
trary length floating-point numbers using the residue number system, which
eliminates carry propagation delays and introduces parallelism in arithmetic
operations. We showed that the performance of the developed WAXPBY func-
tion is significantly higher than that of multi-threaded solutions based on
the well-known multiple-precision arithmetic libraries for CPUs, ARPREC and
MPFR.

The presented results were obtained with 16-bit RNS moduli. Using 32-bit
moduli (with precautions to avoid overflow in intermediate calculations) will
provide twice the precision without any performance penalties.

Acknowledgement. This work was supported by the Russian Science Foundation
(grant number 18-71-00063).

References

1. Bailey, D.H., Hida, Y., Li, X.S., Thompson, B.: ARPREC: an arbitrary precision
computation package. Technical report, Lawrence Berkeley National Laboratory
(2002). https://www.osti.gov/servlets/purl/817634. Accessed 28 Jan 2019

2. Bailey, D., Borwein, J.: High-precision arithmetic in mathematical physics. Math-
ematics 3(2), 337–367 (2015). https://doi.org/10.3390/math3020337

3. Blackford, L.S., et al.: An updated set of basic linear algebra subprograms (BLAS).
ACM Trans. Math. Softw. 28(2), 135–151 (2002). https://doi.org/10.1145/567806.
567807

https://www.osti.gov/servlets/purl/817634
https://doi.org/10.3390/math3020337
https://doi.org/10.1145/567806.567807
https://doi.org/10.1145/567806.567807

186 K. Isupov and A. Kuvaev

4. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR:
a multiple-precision binary floating-point library with correct rounding. ACM
Trans. Math. Softw. 33(2), article no. 13 (2007). https://doi.org/10.1145/1236463.
1236468

5. Isupov, K., Knyazkov, V.: Interval estimation of relative values in residue number
system. J. Circ. Syst. Comput. 27(1), 1850004 (2018). https://doi.org/10.1142/
S0218126618500044

6. Isupov, K., Knyazkov, V., Kuvaev, A.: Fast power-of-two RNS scaling algorithm
for large dynamic ranges. In: IVth International Conference on Engineering and
Telecommunication (EnT), pp. 135–139. IEEE, Moscow (2017). https://doi.org/
10.1109/ICEnT.2017.36

7. Johnson-McDaniel, N.K., Shah, A.G., Whiting, B.F.: Experimental mathematics
meets gravitational self-force. Phys. Rev. D 92(4), 044007 (2015). https://doi.org/
10.1103/PhysRevD.92.044007

8. Joldes, M., Muller, J.-M., Popescu, V., Tucker, W.: CAMPARY: cuda multiple
precision arithmetic library and applications. In: Greuel, G.-M., Koch, T., Paule,
P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 232–240. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-42432-3 29

9. Li, X.S., et al.: Design, implementation and testing of extended and mixed precision
BLAS. ACM Trans. Math. Softw. 28(2), 152–205 (2002). https://doi.org/10.1145/
567806.567808

10. Lu, M., He, B., Luo, Q.: Supporting extended precision on graphics processors. In:
Sixth International Workshop on Data Management on New Hardware (DaMoN
2010), pp. 19–26. ACM, Indianapolis (2010). https://doi.org/10.1145/1869389.
1869392

11. Mukunoki, D., Takahashi, D.: Implementation and evaluation of quadruple preci-
sion BLAS functions on GPUs. In: Jónasson, K. (ed.) PARA 2010. LNCS, vol.
7133, pp. 249–259. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28151-8 25

12. Nakata, M.: Poster: Mpack 0.7.0: Multiple precision version of BLAS and
LAPACK. In: 2012 SC Companion: High Performance Computing, Networking
Storage and Analysis, pp. 1353–1353. IEEE, Salt Lake City (2012). https://doi.
org/10.1109/SC.Companion.2012.183

13. Nakayama, T.: The CUDA multiple precision arithmetic library. https://github.
com/skystar0227/CUMP. Accessed 30 Apr 2019

14. Omondi, A., Premkumar, B.: Residue Number Systems: Theory and Implementa-
tion. Imperial College Press, London (2007)

15. Simmons-Duffin, D.: A semidefinite program solver for the conformal boot-
strap. J. High Energy Phys. 2015(6), 174 (2015). https://doi.org/10.1007/
JHEP06(2015)174

16. Sobyanin, P.: GPU multiple-precision arithmetic libraries (in Russian). Intellek-
tual’nyye sistemy. Teoriya i prilozheniya 22(3), 89–95 (2018). http://intsysjournal.
org/pdfs/22-3/Sobyanin.pdf. Accessed 13 May 2019

https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1142/S0218126618500044
https://doi.org/10.1142/S0218126618500044
https://doi.org/10.1109/ICEnT.2017.36
https://doi.org/10.1109/ICEnT.2017.36
https://doi.org/10.1103/PhysRevD.92.044007
https://doi.org/10.1103/PhysRevD.92.044007
https://doi.org/10.1007/978-3-319-42432-3_29
https://doi.org/10.1145/567806.567808
https://doi.org/10.1145/567806.567808
https://doi.org/10.1145/1869389.1869392
https://doi.org/10.1145/1869389.1869392
https://doi.org/10.1007/978-3-642-28151-8_25
https://doi.org/10.1007/978-3-642-28151-8_25
https://doi.org/10.1109/SC.Companion.2012.183
https://doi.org/10.1109/SC.Companion.2012.183
https://github.com/skystar0227/CUMP
https://github.com/skystar0227/CUMP
https://doi.org/10.1007/JHEP06(2015)174
https://doi.org/10.1007/JHEP06(2015)174
http://intsysjournal.org/pdfs/22-3/Sobyanin.pdf
http://intsysjournal.org/pdfs/22-3/Sobyanin.pdf

HydroBox3D: Parallel & Distributed
Hydrodynamical Code for Numerical

Simulation of Supernova Ia

Igor Kulikov(B), Igor Chernykh, Dmitry Karavaev, Evgeny Berendeev,
and Viktor Protasov

Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Lavrentjeva 6, 630090 Novosibirsk, Russia

kulikov@ssd.sscc.ru

Abstract. In the paper a new parallel & distributed hydrodynamical
code HydroBox3D for numerical simulation of supernovae Ia type explo-
sion was described. The HydroBox3D code is created on basis of combina-
tion the adaptive nested mesh for hydrodynamical simulation of super-
novae explosion and the regular mesh is second level of nested mesh
for hydrodynamical simulation of nuclear reaction. The adaptive nested
mesh code for shared memory architecture with using Intel Optane tech-
nology was developed. The second level of nested mesh code for Intel
Xeon Phi KNL supercomputer was developed. The HydroBox3D code
analysis is described. The results of numerical simulation of supernova
Ia explosions on massive parallel supercomputers by means HydroBox3D
code are presented.

1 Introduction

Supernovas are major sources of “life” elements—from carbon to iron. Type Ia
supernovas (SNIa) are very bright and, therefore, they are used as “standard
candles” to determine distances to galaxies and the expansion rate of the Uni-
verse. A major scenario [1] of supernova explosion is based on the merging of
two degenerate white dwarfs with subsequent collapse of a new star when it
reaches the Chandrasekhar mass, ignition of the carbon burning process, and
type Ia supernova explosion. The goal of this paper is to determine the role of
the ignition point in nuclear fuel burning and in the dynamics of the remnants
of a degenerate dwarf explosion.

Numerical simulations plays a key role in the modern astrophysics. Perhaps,
it is the only universal approach to study the nonlinear evolutional processes in
the Universe. One of the main problems of astrophysics simulation is the scale
ratio. By example, a typical galaxy can have the mass of 1013 Solar masses and
the size of 104 parsecs, resulting in 13 order gap for the mass and 14 order gap for
the size in comparison to the Sun. Therefore it is necessary to use best available
supercomputers in order to simulate complex astrophysical processes with high
resolution.
c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 187–198, 2019.
https://doi.org/10.1007/978-3-030-25636-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_15

188 I. Kulikov et al.

Nine of the top ten supercomputers listed in the 2018 November version of the
Top 500 list are equipped with graphic accelerators and Intel Xeon Phi/Sunway
accelerators. Most likely, the first ExaScale performance supercomputer will be
built based on the hybrid approach. The code development for the hybrid super-
computers is not a solely technical problem, but an individual complex scientific
problem, requiring co-design of algorithms during all stages of problem solving –
from physical statement to development tools.

The problem of Mind the Gap of reproducing the nuclear front of heavy
elements burning thin relatively to the star size, remains even when using top-
level supercomputers when solving problems SNIa. One possible solution to such
problems is the use of multi-level nested grids. The approach is to use adaptive
nested grids to simulate hydrodynamics of the SNIa explosion and the dynamics
of residuals. The next level of nesting of grids allows to reproduce the burning
front more correctly. Using the resources of SSCC, we were able to partially solve
the Mind the Gap problem by reproducing seven orders of magnitude. We hope
that regular access to more productive supercomputers will allow us to advance
several orders of magnitude. Following is a short review of codes, that allow you
to use a high resolution.

AREPO [2]. The code is based on the technology of moving mesh based on
Voronoi and Delaunay triangulation with Lloyd’s regularization [3]. This app-
roach allows you to adapt the mesh for the solution. In this case, unlike the SPH
methods, the method is based on the Eulerian approach. With all the advantages
of such an approach, it is rather difficult in terms of computational costs. The
question remains about the quality of the solution in the areas described by less
detailed grid cells. Nevertheless, the AREPO code is one of the most used in the
World at the moment.

BETHE-HYDRO [4]. This code is based on an ALE-approach combining
advantages of the Euler and Lagrange approaches. The equations of hydrody-
namics are solved on an unstructured grid in nonconservative Lagrangian form.
The numerical method is based on an operator approach which makes it possible
to construct (and this is done in the present paper) balanced schemes to approx-
imate the gradient and divergence operators. To solve the Poisson equation in
one-dimensional statement, the tridiagonal matrix algorithm (or the Thomas
method) is used. In two-dimensional statement the Poisson equation is solved
by a conjugate gradient method. Then the potential is corrected to conserve
the total energy (the sum of the kinetic, internal, and potential energies) of the
system. It should be noted that the total energy of the system is not exactly
conserved, but the error in the collapse problem is insignificant, about 10−2 per
cent. Unfortunately the approach has not been extended to the three-dimensional
case.

CHOLLA [5]. The software package is designed for GPU computational experi-
ments and is based on a CTU (Corner Transport Upwind) method. The method
is used to extend the upwind scheme to the multidimensional case [6,7]. A cell
structure containing all hydrodynamic parameters is used to store the calculation

HydroBox3D: Parallel & Distributed Hydrodynamical Code 189

grid on the GPU. Such data locality allows more efficient use of the graphics card
global memory. Calculations of a time step are performed on graphic accelera-
tors with the use of CUDA extensions. All numerical methods being used are
described in detail in [5].

ENZO [8]. The software package is based on the solution of the equations of mag-
netic gas dynamics with allowance for cosmological expansion. An N-body model
is used to simulate the collisionless component. The code includes a large number
of subgrid processes: primordium chemical kinetics, cooling/heating functions,
radiation transport, as well as star formation processes and effects resulting from
supernova explosions. Several solvers are used to solve the hydrodynamic equa-
tions: PPM (implemented only for the equations of gas dynamics), MUSCL, and
a finite difference method. An algorithm based on the fast Fourier transform is
used to solve the Poisson equation. A so-called structured adaptive grid is also
used. Here the basic idea is that the calculation grid has a minimum difference
between the neighboring cells. This structure allows using regular trees where a
subdomain is divided not more than two times, which increases the efficiency of
using such calculation grids.

GADGET2 [9]. The code uses an SPH method as a basic method of solution. At
present this is the most widely used code based on the SPH approach. However,
the number of codes based on the SPH method decreases, and a major tendency
is to use Lagrange–Euler approaches in combination with grid methods. A pas-
sage along a Peano–Hilbert curve is used to distribute the particles between the
processes. Now it is a standard approach for the parallel implementation of SPH
methods.

GAMER [10]. The code contains a solution of the gas dynamics equation using
an AMR approach on graphic accelerators. A TVD approach is used to solve
the gas dynamics equations, and a combination of a method based on the fast
Fourier transform and a method of successive upper relaxation is used to solve
the Poisson equation. It seems that a major peculiarity of this complex is the
implementation of the AMR approach on graphics cards. In this way a regular
structure of the grid is naturally projected onto the GPU architecture, whereas
a tree structure needs special approaches. This approach is in using “octets”
to define the grid by projecting onto a specific graphics card flow. A major
problem here is the formation of fictitious cells for the octet, which takes about
63% of the time. However, this procedure can be performed for each of the octets
independently.

GIZMO [11]. For this software code, a new mesh-free approach to solving
equations of gravitational gas dynamics has been developed and implemented.
The approach is based on a combination of classical grid methods and an SPH
method. This method is in using the gas dynamics equations in Euler coordi-
nates which, according to the variational Galerkin principle, are multiplied by
test functions. A peculiarity of these functions is that they are linked not to
the calculation grid, as in paper [12], but to individual particles [13] which are

190 I. Kulikov et al.

similar to SPH particles. To determine the values at the domain boundaries, a
solution of the Riemann problem using the MUSCL scheme is used.

RAMSES [14]. The code employs a numerical solution of the gravitational gas
dynamics equations using an AMR approach based a division into octets. A com-
bination of a method based on the fast Fourier transform and the Gauss–Seidel
method is used to solve the Poisson equation. Simple 5-point finite difference
approximation is used to solve the Poisson equation. It was replaced by a more
efficient 19-point approximation implemented in the form of an extension of the
RAMSES code for the case of nonclassical gravitation (MOND) [15].

In the Sect. 2, we describe the concept of co-design, within which the compu-
tational model SNIa was developed. We also briefly summarize the information
about numerical methods that was used. The Sect. 3 will be devoted to the
parallel implementation of the HydroBox3D code. In the Sect. 4 the results of
mathematical modeling of the SNIa noncentral explosion will be presented. The
conclusion is given in the Sect. 5.

2 The Co-design of Numerical Model

As mentioned in the introduction, the development of software for supercomput-
ers is a complicated scientific problem and it requires the co-design at all stages
of the numerical model creation. We outline six co-design stages of numerical
modeling Fig. 1. The main difference between the co-design and the classic design
of the computational model is the possibility of returning to the previous devel-
opment stage with the constraints at the current stage. This makes it possible to
build in a short time an effective computational model that takes into account
all the developments.

The physical model

The developer tools

The mathema�cal model

The supercomputer

The numerical solver

The data structures

Fig. 1. The co-design conception of astrophysical problem solution method

The problem statement is studying the SNIa explosion during the perturba-
tion of an individual white dwarf, which occurs before the merger of two white
dwarfs. In this case, the SNIa explosion occurs at the periphery of the star.

HydroBox3D: Parallel & Distributed Hydrodynamical Code 191

The source of the perturbation is a companion, which is introduced into the
physical model by a white dwarf perturbation displaced from the center. For the
transition from deflagration to detonation, it is necessary to carefully take into
account the combustion front at which nuclear combustion of carbon takes place
(we will dwell on it in present study as the most energy efficient source of the
explosion). The size of such a front is not resolvable for present day architec-
tures, so we will focus on use of hydrodynamic modeling on multilevel nested
grids. Next, we describe the organization of calculations, and then give a briefly
description of mathematical model and numerical methods that are used.

2.1 The Parallel & Distributed Computing

The hydrodynamic numerical simulation of SNIa is performed on architecture
with shared memory on adaptive nested meshes and is distributed using OpenMP
tools within a single process. In our computational experiments we used an Intel
Optane node which has 700 GB RAM for a single process. The nuclear reac-
tion hydrodynamics of SNIa is performed on an architecture with distributed
memory, with a software implementation based on a one-dimensional geometri-
cal decomposition of a regular calculation domain by MPI tools and subsequent
decomposition of the calculations into threads using OpenMP tools within a
single process. A diagram of calculations organization is shown in Fig. 2. Reg-
ular grids at the second level of adaptive nested mesh are used to calculate
hydrodynamic turbulence, which begins with a uniform density distribution cor-
responding to the cell. For a characteristic time step, one should not expect a

Classic adap�ve nested mesh

1st level of adap�ve nested mesh 2nd level of adap�ve nested mesh

Regular mesh

Core 0 Core NCore 1

Memory

Intel Optane

Shared Memory

CPU 0

Memory

Intel KNL

CPU N

Memory

Intel KNL

Massive Parallel Supercomputer

Fig. 2. The organization of parallel and distributed computing in HydroBox3d code

192 I. Kulikov et al.

local increase in density by several orders of magnitude. Therefore, the use of
regular grids on the second level is fully justified.

2.2 The Numerical Model

Consider the conservative form of the equations of gravitational gas dynamics
of conservation of masses

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

conservation of momentum

∂ρu

∂t
+ ∇ · (ρuu) = −∇p − ρ∇Φ, (2)

and conservation of total mechanical energy

∂

∂t

[
E + ρ

u2

2

]
+ ∇ ·

([
E + ρ

u2

2

]
u

)
= −∇ · (pu) − (ρ∇Φ,u) + Q, (3)

supplemented by the Poisson equation for the gravitational potential

ΔΦ = 4πGρ, (4)

where ρ is the density, u is the velocity, p is the pressure, Φ is the gravitational
potential, E is the internal energy of the gas, G is the gravitational constant,
and Q is a source of energy due to nuclear reactions.

The equation of state for stars consists of the pressure of a nondegenerate
hot gas and the pressure due to radiation and a degenerate gas [16]. In the case
of a degenerate gas, both relativistic and nonrelativistic regimes are considered.
The equation of state p = (ρ, T) is sought for as the sum of four components:

p = prad + pion + pdeg,nrel + pdeg,rel, (5)

where T is the temperature, prad is the pressure of radiation, pion is the pres-
sure of a nondegenerate hot gas (ions), pdeg,nrel is the pressure of a degenerate
nonrelativistic gas, and pdeg,rel is the pressure of a degenerate relativistic gas.

As nuclear carbon burning we first consider a nuclear reaction responsi-
ble for the bombardment of carbon by carbon yielding natrium and proton
12C (12C, p) 23Na, where Q = 2.24 MeV is the energy released during the
nuclear reaction. Assume that the nuclear reaction rate k12C(12C,p)23Na is known
from the literature [17].

2.3 The Hydrodynamical Solver

The numerical method to solve the equations of hydrodynamics is based on a
combination of Godunov’s method for conservation laws by calculating fluxes
through the boundaries [18], an operator splitting method to construct a scheme
that is invariant with respect to rotation to approximate the advection terms

HydroBox3D: Parallel & Distributed Hydrodynamical Code 193

[19–21], and Rusanov’s method to solve Riemann problems [22] for determining
the fluxes with vectorization of the calculations [23]. A compact scheme for a
piecewise-parabolic representation of the solution in each of the directions is
used to solve the Riemann problems [24–26].

To solve the hydrodynamic equations, a modification of an original numerical
method based on a combination of an operator splitting method, Godunov’s
method, and a Rusanov-type scheme is used. This method has all advantages of
the above methods and a high degree of parallelization. The numerical scheme
is considered in detail in paper [23]. The main idea of the method is in writing
the equations of hydrodynamics in vector form:

∂v

∂t
+ � · f(v) = 0, (6)

where v is the vector of conservative variables. For Eq. (6) we use the following
numerical scheme in one of the directions:

vn+1
i − vn

i

τ
+

Fi+1/2 − Fi−1/2

h
= 0, (7)

where F is the solution to a Riemann problem. Omitting the details of derivation
of the numerical scheme, which is based on adjoint equations and an operator
splitting method, we have the final form of the solution to the Riemann problem:

F =
f(vL) + f(vR)

2
+

c + ‖u‖
2

(vL − vR) . (8)

To determine the quantities f(vL), f(vR), vL, and vR, we use a piecewise-
parabolic representation of the solution. The equations of hydrodynamics for
the quantities will be calculated in the cells of the root and nested meshes. The
Poisson equation for the root mesh will also be calculated in the cells. Then the
solution will be projected onto the boundary nodes of the nested mesh. To solve
the Poisson equation on the nested mesh the quantities of the potential (and
density) will be arranged at the nodes of the nested mesh.

The equations of hydrodynamics (Riemann problems) are solved in two steps:
(1) solving the Riemann problems on all boundaries of the nested mesh, and (2)
solving Riemann problems at all internal interfaces of the nested mesh. Whereas
the second part of solving the Riemann problems is rather trivial, in the first part
the method of calculation depends on the sizes of cells of the two neighboring
nested meshes. If the cell sizes are equal, the solution to the Riemann problem is
the same as that of the Riemann problems at the internal interfaces of the nested
mesh, and it is trivial. If a cell of the neighboring nested mesh is larger than the
cell being considered the Riemann problem is solved at the interface between the
reduced neighboring cell. If the cell being considered has a common boundary
with several cells of the neighboring nested mesh the Riemann problems are
solved at all interfaces, and then the fluxes are averaged [27]. To organize the
satellite calculations, a regular mesh is used this is equivalent to using a root
mesh.

194 I. Kulikov et al.

2.4 The Poisson Solver

To solve the Poisson equation we use a combination of method based on the fast
Fourier transform (for the root mesh) and method of successive over-relaxation
(for nested meshes). The Poisson equation is solved in two steps:

1. Solve the Poisson equation on the root mesh by the fast Fourier transform.
2. Solve the Poisson equation on the nested mesh by the method of successive

over-relaxation.

We will not consider the method at the first step of solving the Poisson equation
(a detailed description of the method to solve it can be found in paper [26]),
which is also used to solve the Poisson equation in the satellite calculations.

The method of successive over-relaxation (SOR) is an iterative process of
finding the potential on a nested mesh with given initial and boundary conditions
obtained by solving the Poisson equation on the root mesh. A similar approach
to solve the Poisson equation has been proved to be efficient is some program
codes, for instance, in the GAMER code [10].

3 The Performance Analysis

As noted above, the hydrodynamics numerical simulation of SNIa is made on
architecture with shared memory. Therefore, we consider a parallel implementa-
tion of the second level of nested meshes based on domain decomposition [21].
The MPI tools are used to perform a one-dimensional geometrical decompo-
sition of the calculation domain. In the case of Intel Xeon Phi processors the
OpenMP tools are employed. When using Intel Xeon Phi (KNL) processors the
calculations are vectorized with some low-level tools [23,28].

The speedup of the code on a mesh of size 5123 has been studied. For this,
the total numerical method time was measured in seconds at various numbers
of threads. The speedup P was calculated as

P =
Total1
TotalK

,

where Total1 is the calculation time using one thread, and TotalK is the calcu-
lation time on K threads. The actual performance has also been estimated. The
results of these investigations of the speedup and performance on the mesh of
size 5123 are shown in Fig. 3. A performance of 173 gigaflops and a 48x speedup
are obtained on a single Intel Xeon Phi processor.

The scalability of the code on calculation grid size of a 512p × 512 × 512
was studied using all threads for each of the processors, where p is the number
of processors being used. Thus, a subdomain of size of 5123 was used for each
processor. To study the scalability, the total numerical method time was mea-
sured in seconds at various numbers of Intel Xeon Phi (KNL) processors. The
scalability T was calculated as

T =
Total1
Totalp

,

HydroBox3D: Parallel & Distributed Hydrodynamical Code 195

Fig. 3. Speedup and performance of the code on Intel Xeon Phi

where Total1 is the calculation time with the use of one processor, and Totalp
is the calculation time with the use of p processors. The results of these investi-
gations of the scalability are shown in Fig. 4. A 97% scalability is reached with
16 processors, which is a rather good result.

Fig. 4. Scalability of the code

4 The Numerical Simulation

Let’s perform simulation of white dwarf with one solar mass and temperature
T = 109 K and a normal distribution of the velocities with a variance of ten
percent of the sound speed in the central part of the star. Fig. (5) shows the
simulation results: density dynamics from the onset of the explosion to its passage
through the bulk of the star. One can see from the simulation results (Fig. 5) that
a periphery ignition of the white dwarf takes place when the critical densities for
the onset of detonation carbon burning are achieved. As a limiting density for
the onset of the process of carbon burning, we use the density of transition from
deflagration to detonation from paper [29], which is ρDDT = 107.2 g cm−3. From
the distributed computing it is clear that carbon burning approx 80% complete.
This statistics was used to simulate noncentral explosions. However, only the
hydrodynamics can show the dynamics of real carbon burning.

196 I. Kulikov et al.

Fig. 5. Relative density distribution from the onset of the explosion to its passage
through the bulk of the star

5 Conclusion

The new parallel & distributed hydrodynamical code HydroBox3D for numerical
simulation of supernovae Ia type explosion was described in the paper. The
HydroBox3D code is developed on the basis of combination of adaptive nested
mesh for hydrodynamical simulation of supernovae explosion and regular mesh
that is a second level of nested mesh for hydrodynamical simulation of nuclear
reaction. A performance of 173 gigaflops and a 48x speedup are obtained on
single Intel Xeon Phi processor. A 97% scalability is achieved on 16 processors.
Results of numerical simulation of supernova Ia explosions on massive parallel
supercomputers obtained with help of the HydroBox3D code are presented.

We developed the HydroBox3D code for a specific problem of supernova of
Ia type. Requirements for describing the process of carbon nuclear burning are
also was initiated by the features of the problem. However, as the result the
technology for solving problems of different-scale gravitational hydrodynamics
was developed. So staying within the framework of the implemented hydrody-
namic model, we can perform simulation of the star formation process in the
interstellar medium in the problems of galaxies collisions and evolution. Also we
can perform simulation of the explosion hydrodynamics of supernovae of type
II with explosion source – core-collapse, as well as model all the hierarchy of
cosmological modeling “observed Universe – cosmic web – clusters of galaxies –
and galaxies interaction”. The code extension for that hyperbolic models, such
as magnetic hydrodynamics, relativistic hydrodynamics and collisionless fluid

HydroBox3D: Parallel & Distributed Hydrodynamical Code 197

dynamics allows one to use program code like a technology to solve a wide class
of astrophysics problems. In the future, we plan to use the developed technology
for actual problems of astrophysics.

Acknowledgements. The research work was supported by the Grant of the Russian
Science Foundation (project 18-11-00044).

References

1. Iben, I., Tutukov, A.: On the evolution of close triple stars that produce type Ia
supernovae. Astrophys. J. 511(1), 324–334 (1999)

2. Springel, V.: E pur si muove: Galilean-invariant cosmological hydrodynamical sim-
ulations on a moving mesh. Mon. Not. Royal Astron. Soc. 401, 791–851 (2010)

3. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982)

4. Murphy, J., Burrows, A.: BETHE-hydro: an arbitrary Lagrangian-Eulerian mul-
tidimensional hydrodynamics code for astrophysical simulations. Astrophys. J.
Suppl. Ser. 179, 209–241 (2008)

5. Schneider, E., Robertson, B.: Cholla: a new massively parallel hydrodynamics code
for astrophysical simulation. Astrophys. J. Suppl. Ser. 217(2), 24 (2015)

6. Collela, P.: Multidimensional upwind methods for hyperbolic conservation laws. J.
Comput. Phys. 87, 171–200 (1990)

7. Gardiner, T., Stone, J.: An unsplit Godunov method for ideal MHD via constrained
transport in three dimensions. J. Comput. Phys. 227, 4123–4141 (2008)

8. Bryan, G., et al.: ENZO: an adaptive mesh refinement code for astrophysics. Astro-
phys. J. Suppl. Ser. 211(2), 19 (2014)

9. Springel, V.: The cosmological simulation code GADGET-2. Mon. Not. Royal
Astron. Soc. 364, 1105–1134 (2005)

10. Schive, H., Tsai, Y., Chiueh, T.: GAMER: a GPU-accelerated adaptive-mesh-
refinement code for astrophysics. Astrophys. J. 186, 457–484 (2010)

11. Hopkins, P.: A new class of accurate, mesh-free hydrodynamic simulation methods.
Mon. Not. Royal Astron. Soc. 450(1), 53–110 (2015)

12. Mocz, P., Vogelsberger, M., Sijacki, D., Pakmor, R., Hernquist, L.: A discontinu-
ous Galerkin method for solving the fluid and magnetohydrodynamic equations in
astrophysical simulations. Mon. Not. Royal Astron. Soc. 437(1), 397–414 (2014)

13. Gaburov, E., Nitadori, K.: Astrophysical weighted particle magnetohydrodynam-
ics. Mon. Not. Royal Astron. Soc. 414(1), 129–154 (2011)

14. Teyssier, R.: Cosmological hydrodynamics with adaptive mesh refinement. A new
high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002)

15. Candlish, G., Smith, R., Fellhauer, M.: RAyMOND: an N-body and hydrodynamics
code for MOND. Mon. Not. Royal Astron. Soc. 446(1), 1060–1070 (2015)

16. Timmes, F.X., Arnett, D.: The accuracy, consistency, and speed of five equations
of state for stellar hydrodynamics. Astrophys. J. Suppl. Ser. 125, 277–294 (1999)

17. Spillane, T., et al.: 12C + 12C fusion reactions near the Gamow energy. Phys. Rev.
Lett. 98, 122501 (2007)

18. Godunov, S., Kulikov, I.: Computation of discontinuous solutions of fluid dynamics
equations with entropy nondecrease guarantee. Comput. Math. Math. Phys. 54,
1012–1024 (2014)

198 I. Kulikov et al.

19. Kulikov, I., Chernykh, I., Snytnikov, A., Protasov, V., Tutukov, A., Glinsky, B.:
Numerical modelling of astrophysical flow on hybrid architecture supercomputers.
In: Tarkov, M. (ed.) Parallel Programming: Practical Aspects, Models and Current
Limitations, pp. 71–116 (2014)

20. Vshivkov, V., Lazareva, G., Snytnikov, A., Kulikov, I., Tutukov, A.: Computational
methods for ill-posed problems of gravitational gasodynamics. J. Inverse Ill Posed
Probl. 19(1), 151–166 (2011)

21. Kulikov, I., Lazareva, G., Snytnikov, A., Vshivkov, V.: Supercomputer simulation
of an astrophysical object collapse by the fluids-in-cell method. In: Malyshkin,
V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 414–422. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03275-2 41

22. Rusanov, V.V.: The calculation of the interaction of non-stationary shock waves
with barriers. Comput. Math. Math. Phys. 1, 267–279 (1961)

23. Kulikov, I.M., Chernykh, I.G., Tutukov, A.V.: A new parallel intel xeon phi hydro-
dynamics code for massively parallel supercomputers. Lobachevskii J. Math. 39(9),
1207–1216 (2018)

24. Popov, M., Ustyugov, S.: Piecewise parabolic method on local stencil for gasdy-
namic simulations. Comput. Math. Math. Phys. 47(12), 1970–1989 (2007)

25. Popov, M., Ustyugov, S.: Piecewise parabolic method on a local stencil for ideal
magnetohydrodynamics. Comput. Math. Math. Phys. 48(3), 477–499 (2008)

26. Kulikov, I., Vorobyov, E.: Using the PPML approach for constructing a low-
dissipation, operator-splitting scheme for numerical simulations of hydrodynamic
flows. J. Comput. Phys. 317, 318–346 (2016)

27. Kulikov, I.: The numerical modeling of the collapse of molecular cloud on adaptive
nested mesh. J. Phys. Conf. Ser. 1103, 012011 (2018)

28. Kulikov, I.M., Chernykh, I.G., Glinskiy, B.M., Protasov, V.A.: An efficient opti-
mization of Hll method for the second generation of Intel Xeon Phi processor.
Lobachevskii J. Math. 39(4), 543–551 (2018)

29. Willcox, D., Townsley, D., Calder, A., Denissenkov, P., Herwig, F.: Type Ia super-
nova explosions from hybrid carbon - oxygen - neon white dwarf progenitors. Astro-
phys. J. 832(1), 13 (2016)

https://doi.org/10.1007/978-3-642-03275-2_41

GPU Implementation of ConeTorre
Algorithm for Fluid Dynamics Simulation

Vadim Levchenko1 , Andrey Zakirov2 , and Anastasia Perepelkina1,2(B)

1 Keldysh Institute of Applied Mathematics, 4, Miusskaya Sq., Moscow, Russia
lev@keldysh.ru, mogmi@narod.ru

2 Kintech Lab Ltd., Moscow, Russia
zakirov@kintechlab.ru

Abstract. LRnLA algorithms allow simulation of large problems with
performance that exceeds the memory-bound limit of the traditional
stepwise algorithms, that is, algorithms without any kind of temporal
blocking. We show how the ConeTorre LRnLA algorithm that was suc-
cessfully implemented for various CPU codes may be ported to work
with CUDA framework and implemented the Lattice-Boltzmann Method
(LBM) for fluid dynamics. As the standard tools and guidelines do not
comply with the LRnLA paradigm, we have performed manual opti-
mization of the communication between main memory levels of GPU and
reduce overhead for data access patterns. We have made the performance
estimate of the LRnLA implementation with the use of the Roofline
model. The computation remains memory-bound, but with the Cone-
Torre algorithm the operational intensity is increased several times, and
the maximum achievable performance for the chosen algorithm parame-
ters is 9 billion cell updates per second on Tesla V100. We have achieved
more than 66% of the estimate. As a result, we have developed a fluid
simulation code based on the Lattice-Boltzmann method with a perfor-
mance that surpasses state-of-the-art solutions.

Keywords: LRnLA · Lattice-Boltzmann · Temporal blocking ·
Wavefront blocking

1 Introduction

One way to increase the performance of the stencil computations is to increase
the operational intensity since this kind of problems is essentially memory-
bound. In most codes, the computational domain is synchronized after each
time step. We denote this method as ’stepwise’. In temporal blocking algo-
rithms [5,10,13], with the given amount of data, as much as possible opera-
tions are performed. However, the question now is not just about the spatial,
but about the space and time decomposition of computations. Locally Recursive
non-Locally Asynchronous (LRnLA) algorithms [8] provide a theory for some
optimal decomposition, the effect on the operational intensity, and the estima-
tion of the efficiency of the chosen algorithm on the given hardware.
c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 199–213, 2019.
https://doi.org/10.1007/978-3-030-25636-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_16&domain=pdf
http://orcid.org/0000-0003-3623-0556
http://orcid.org/0000-0001-7346-6635
http://orcid.org/0000-0003-2517-6064
https://doi.org/10.1007/978-3-030-25636-4_16

200 V. Levchenko et al.

Computational Fluid Dynamics (CFD) is one of the fields where the demand
for high performance codes exist. CFD simulation aids in modern science and
technology. Among the CFD methods, the Lattice-Boltzmann Method (LBM)
has a good balance of parallel efficiency and physical correctness, which is why
it is heavily used in modern applications [4,11,14,20]. It was also a subject of
several temporal blocking developments [6,13,20].

With the popularization of general purpose GPU computing with the appear-
ance of the CUDA programming model, many LBM code developers have used
it as a primary computational platform [3,14,22]. The GPU is preferable since
it has both higher memory bandwidth and compute rate than CPU, and LBM
is a readily parallelizable CFD scheme. Thus, GPU implementations are usually
faster than CPU implementations by an order of magnitude [19,25]. The high-
est documented one GPU performance we have currently found is 2.96 · 109 cell
updates per second [19].

Previously the LBM was implemented with LRnLA algorithms on CPU [16].
On GPU, some successful LRnLA implementations are based on the fact that the
used numerical scheme has a cross-shaped stencil [7,26], which is not the case for
relevant LBM schemes. LBM stencil is better fitted to a cube, so ConeFold-based
algorithms are preferred.

Here we present the recent developments in our first attempt to implement
the ConeFold-based algorithm on NVidia GPU. The CUDA programming model
provides a useful tool that made the first GPU LRnLA codes possible [26]. How-
ever, the model is more suited to stepwise domain decomposition than to any
kind of time skewing. For example, the cell updates may be distributed between
CUDA threads, and the distribution remains static. In LRnLA, the position of
the domain, allocated to an SM, dynamically shifts inside the computational
region. The thread allocation and data access pattern are to be manually pro-
grammed, which results in a cumbersome code even for the simplest schemes,
and the overhead may surpass the computation cost.

The challenge to make an efficient temporal blocking on GPU can be sim-
plified, if the decomposition of the space-time domain occurs only in time and
one spatial direction [9,10,23]. However, full 3D1T decomposition is preferable,
since it provides more locality, and the data in the main computation loop may
be localized in the on-chip memory [17,18].

As a result, to make an efficient code, the understanding of the LRnLA theory
should be complemented by the proficiency in CUDA tools and optimization
techniques. In this paper, we provide a thorough explanation of the ConeTorre
algorithm, implementation ideas, and also put an emphasis on the programming
details.

2 Numerical Method

Among its numerous variations, the specific Lattice Boltzmann Method [21] is
defined by:

GPU Implementation of ConeTorre Algorithm 201

A set of discrete speeds ci, i = 1, 2, .., Q the links between cells of the numer-
ical grid. Each cell has the number of Discrete Distribution Functions (DDF)
fi equal to the number of discrete speeds (i = 1, 2, ..Q). In the streaming step,
each fi is copied to the cell in the ci direction.

The collision operator Ω, which locally transforms fi.
The equilibrium function that is used in most types of the collision operators.

The cell update is

fi(x + ci, t + 1) = f∗
i (x, t); i = 1, ..19; (1)

f∗
i (x, t) = Ω(f1(x, t), f2(x, t), ...f19(x, t)). (2)

For the purpose of the performance benchmark we take the most common vari-
ation of LBM, with Q = 19 speeds (D3Q19), collision term in BGK form, and
an equilibrium function as a polynomial of order 2. This is one of the most com-
putationally cheap collision operators, so the memory bound property of the
method is heavily pronounced.

For many stepwise codes, the collision and streaming operations are merged.
Among these, the algorithm where the data is read and stored in place, are
preferable for parallel implementation, especially on GPU, so as to avoid write
conflicts. We choose the AA-pattern in the current code [2] (Fig. 1). The α step
of the AA-pattern involves only one collision. It is local in a way that it reads and
stores the fi inside only one cell. In the β step of AA-pattern, for each collision,
the data, necessary for the collision, is pulled from the neighboring cells, collision
is performed, and the updated fi propagate further and are stored into the same
cells from which the data was taken beforehand. Thus, the β step combines 2
streaming steps and a collision step.

Fig. 1. The AA pattern of streaming propagation. The 1D slice is similar in all
directions.

In α and β steps the fi data is swapped back and forth between the storage
points of fi and fi′ which corresponds to the opposite direction of ci.

202 V. Levchenko et al.

3 LRnLA Algorithm ConeTorre

3.1 LRnLA Algorithm Construction

LRnLA algorithms are built as a hierarchical recursive decomposition of the
dependency graph (DG). The DG can be aligned with coordinates in (d + 1)-
dimensions, where d is the dimensionality of simulation space. This dimension-
ality is denoted dD1T, to emphasize the cases where the time axis is included.
In the implementation discussion we take d = 3, smaller d is used only for illus-
tration of the concepts. The recursive definition of the LRnLA algorithm states
that it is a shape in dD1T space with a rule of its decomposition into smaller
shapes. The shapes after the decomposition should have only unilateral depen-
dencies. A shape represents the computation of all DG points inside it, in the
order, that is determined by the dependencies between its parts. The ability to
parallelize portions of operations is determined by tracing these dependencies.

3.2 ConeTorre

For GPU implementation the prism-based shapes were successfully used before
[7,26] and seem to be a more viable option this time as well. Let us take the
simulation domain as a cube with side N . Other shapes of the domains may be
tiled by cubes, so there is no loss in generality. The ConeTorre (CT) algorithm
is initially built by stacking ConeFold [15] shapes on top of each other and
defining the new decomposition rule for the resulting shape. Hence, the ConeFold
illustration (Fig. 2) helps to visualize the ConeTorre construction.

Fig. 2. (a) ConeFold projection in 1D1T. Arrows show data dependencies. (b) Cone-
Fold and its decomposition projection in 2D1T.

From the algorithm construction point of view, the 3D1T domain between two
chosen time instants (global synchronization events) is covered by slanted prisms
(Fig. 3). The base of the prism is a 3D cube, and its slant is parallel to the
(Δx,Δy,Δz, cΔt) direction. Here, c is the half-width of the stencil, which is
equal to one in the chosen scheme. The prism is the ConeTorre. The size of
the cube in the base and the height of the prism are the parameters of the
algorithm, denoted by TS and NT respectively. To cover the 3D1T simulation
domain by prisms, the prisms which have the lower or upper bases outside of
the domain should be included, so ((N + NT)/TS)d CTs are required. The por-
tions that lie outside of the domain, are empty and do not include cell updates.

GPU Implementation of ConeTorre Algorithm 203

The CTs are divided into prisms with a lower height, CFsteps time steps each.
The smaller prisms are divided into flat (in time) layers with the height equal
to two time steps. In the current scheme, these two steps are the α and β steps
of the AA algorithm. The computation in one layer is divided into portions
of one cell update. At each subdivision, the dependencies between shapes are
traced. The shapes which have no dependencies may be executed in parallel. If
the dependency exists, the synchronization must occur.

Fig. 3. ConeTorre illustration in 1D1T case.

From the GPU implementation point of view, one CT is assigned to one
CUDA-block on a Streaming Multiprocessor (SM). The cell updates are dis-
tributed between CUDA-threads in the block, one cell per thread. The data for
the updates is in the shared memory, and forms a cube with (TS + 2) edge
length (Fig. 4). After each 2 time steps the data in the (−1,−1,−1) direction
is loaded from the device memory into the shared memory, and the data in the
(1, 1, 1) direction is saved to the device memory and deleted from the shared
memory. Thus,

– the shared memory stores a cube of data that travels inside the computation
domain in one CT computation.

– the communication of SM with device memory per 2 · TS3 cell updates
amounts to save and load of (TS + 2)3 − TS3 cell data.

The latter illustrates the advantage of the temporal blocking: in the stepwise
approach, for each cell update its data should be loaded and stored once.

The computation starts with one CT at the corner of the domain. Its slant
is directed towards the domain boundary, so it has no dependencies with any
other CT. The CTs that are adjacent to it may start after it has progressed
several steps. The CUDA-block synchronization event occurs each CFsteps. It
is implemented with an array of semaphores. The CT base has 3 semaphores
assigned to it, since each CT is influenced by 3 CTs to its left and influences 3
CTs to its right. The semaphore is implemented as an integer. It is considered

204 V. Levchenko et al.

Fig. 4. 2D ConeTorre slice. The algorithm progression in a loop in one CUDA-block
is: (1) compute α-step in the green cube; (2) compute β-step in the blue cube; (3) save
the cell groups on the right; (4) wait for semaphores; (5) load the cell groups to the
left. In steps (1)–(3) the cube outlined in red is stored in the shared memory. After
step (5) the cube outlined in purple is in the shared memory. (Color figure online)

locked if it is zero, and unlocked if it is positive. After CFsteps, the semaphores
to the right of the current CT are incremented by 1, and the semaphores to the
left are decremented by 1.

4 Performance Analysis

The Roofline model [24] presents the performance limitation based on the oper-
ational intensity of the algorithm. Operational intensity represents how many
operations may be performed per byte of data throughput. If it is high, the per-
formance is limited by the horizontal roof of the peak performance (compute-
bound). Memory bound problems are limited by the inclined slope. Thus the
central task for the implementation of memory-bound problems is the increase
of the operational intensity, since at some point it affects the performance more
than reducing the computational overhead and than hardware optimization.

In [8], it is shown that the construction of the LRnLA algorithms simplifies
the estimations of the location of the algorithm under the Roofline. This may
be summarized as follows. For the whole problem, the operational intensity is
the ratio of the total number of operations required for the simulation to the
total data of the simulation. This ratio may also be arbitrarily large. On the
other hand, under some assumptions (for example, if the data load/store opera-
tions and floating point calculations are assumed to be parallel), the time of the
algorithm execution is the accumulated time of execution of its parts. Thus the

GPU Implementation of ConeTorre Algorithm 205

Fig. 5. The Roofline for Tesla V100 GPU. The colored arrows correspond to the sub-
tasks of the implemented algorithm for D3Q19 LBM. The color of the arrow corresponds
to the color of the Roofline it is limited by, and this is determined by the data size
of the task. The required Load/Store data is printed on the arrow and pointed in the
third, ‘Data size’, axis. The floor is a color map of the Roofline for several localization
sites. (Color figure online)

performance is limited by the minimal operational intensity which is encountered
at some level of subdivision. In a stepwise algorithm, a loop over the domain on
one time step is repeated several times, so the operational intensity of one time
iteration limits the performance in case of an ideal implementation (one load
and store per fi per time step).

For LRnLA algorithms there are several steps where a task is subdivided
into sub-tasks. If at some decomposition level the task data is localized in the
higher level of memory hierarchy, the performance of its sub-tasks is limited by
the bandwidth of this level.

Π ≤ min

(
ΠGPU , ΘHBM2

O(Problem)

S(Problem)
, ΘHBM2

O(CT)

S(CT)
, ΘSHmem

O(floor)

S(floor)
, ΘReg

o

s

)
. (3)

Here, O(x) is the number of arithmetic operations in a task x, where x is Problem
for the whole simulation, CT for one ConeTorre, Floor for CFsteps updates in a
CT between block synchronizations. S(x) is the amount of data in the load and
store operations in a task x. ΠGPU is the peak performance of the device; ΘM

is memory throughput of the memory storage M . Since data of CT are localized
in the shared memory, the next argument (floor) is limited by ΘSHmem. o and
s are the operations and data of one cell update. The formula is devised in [8],
with the procedure of plotting arrows under the roofline from right to left. Here,
we plot it in 3D, adding the data localization axis (Fig. 5). The heat map at
the bottom of the plot represents the compute-bound domain in yellow, and
memory bound in darker shades. The color of the arrow shows what Roofline it

206 V. Levchenko et al.

is limited by. The arrow can not be higher than any arrow that corresponds to
the current implementation to the right of it.

The colored arrows from right to left show the progression of the LRnLA
subdivision for the current code. The last (green) arrow shows about 3.25 TFlops,
which corresponds 9 · 109 lattice update per second. The actual performance
is reduced by latency and overhead, but expect to achieve more than 50% of
that value. The green marker shows the currently obtained performance in our
implementation, see Sect. 5.6.

The stepwise estimation is plotted with a black arrow. If the stepwise code
is optimized so that no more than one fi is loaded and stored per cell update
(i.e. every value is accessed only once), its performance is limited by 2.25 TFlops
which corresponds to 6.2 · 109 lattice update per second.

5 GPU Implementation Details

5.1 Data Structure

In the data structure in the global memory, 8 cells in a 2 × 2 × 2 cube are
combined in groups.

struct Group {float f[Q][8]; float rho[8];};

Here Q = 19 is the number of fi in the cell for D3Q19. The density is also
stored so that the data block is aligned to 128B. It may be used for results
visualization. This guarantees coalesced thread access to the device memory if
one CUDA-block is assigned to read one group data.

The groups in device memory are stored in a Z-curve array [12]. Thus the
size of the cube-shaped domain is parametrized by maximal rank MR, where
N = 2MR is the linear size of the domain.

The (TS + 2)3 cells are loaded into the shared memory of an SM. Here, the
data is not stored in groups. The data organized as a simple 3D array of cells. If
TS = 6, 40KB of data is required in shared memory of the SM. This fits most
modern NVidia GPU architectures shared memory capacity. Thus, hereafter, the
TS parameter is fixed to 6.

5.2 Cell Updates

The computation of TS3 cells is distributed among the CUDA-threads. The α
step is performed in the TS3 cube, then the β step is performed in the cube
shifted by (−1,−1,−1) cells. TS3 = 216 CUDA-threads are required. We decide
that the optimum number of threads to start in the kernel is 256. Only 216 of
these are performing calculations. All started threads are involved in the load
and store operations. This way, each thread has access to 255 registers, which
allows to store of all necessary data.

GPU Implementation of ConeTorre Algorithm 207

5.3 Data Communication

After the two steps, the two cell halo layer of the TS3 cube in the (1, 0, 0),
(0, 1, 0) and (0, 0, 1) directions is to be saved to the device memory. These
cells will not be updated anymore in the current CT, and will not be used in
further updates. Thus, the place they take in shared memory may be freed for
future use.

In their place, the 2 cell layer in the (−1, 0, 0), (0, −1, 0) and (0, 0, −1)
direction is loaded from the device memory into the shared memory. Thus, the
shared memory stores the copy of cell block from the whole region, that travels
in time in the (−1, −1, −1) direction.

Since the shared memory is limited, the data that is saved to device is
exchanged in place by the newly loaded data. Thus, the shared memory array is
in a cyclic order. The indexes of cells may be retrieved by the modulo operation.

5.4 Main Calculation Kernel

Roughly, the CT kernel three parts are: (1) preliminary loading of the TS3 cell
data cube into the shared memory; (2) loop over time iterations NT /2 times (or
less if a boundary intersection occurs); here only the 2 cell halo layer is stored
and loaded at each iteration and α and β steps of the AA-pattern are performed;
(3) save the cell data that was not saved during the loop to the device memory.

5.5 Data Access

At this step the main difficulty of the implementation of LRnLA algorithms is
encountered. The offsets of the required data in the shared memory (during the
cell update, and during the rewrite of the shared memory array) and in the
global memory (during the load and store operations) need to be computed.

At the naive approach, many integer operations and conditional statements
are put in a code. Most GPU devices are not optimized for this kind of opera-
tions, so the overhead may become overwhelming. While this remains the main
challenge for 3D LRnLA algorithm implementation, we list the considerations
that help to optimize the data offset calculation.

Base Point. The CT is defined by the coordinate of its lower base. Each CUDA-
thread executes calculation for a cell in this cube, and then for the (NT-1) cells
shifted by (−1,−1,−1) each. The behavior of the thread, that is, which cell
updates it performs, and what data it fetches, is defined by the base point of the
CT and the thread index.

Cyclic Shared Memory Access. Each CUDA-thread at each time step
requires an integer offset of the cell it currently updates in the shared memory.
The array in the shared memory is cyclic, so the 3D coordinates are wrapped
around. The offset is one integer value that is stored for the thread. It is updated

208 V. Levchenko et al.

at each step of the calculation to point to the cell shifted by (−1,−1,−1) from
the current position. Storing less integers in the registers is advantageous to the
computation. If the number of registers in use is less than 128, two CUDA-blocks
may fit an SM on some architectures, such as Pascal or Volta. The wrap-around
shift for 3 coordinates requires at least 16 integer operations, so the shift is
implemented directly on the offset.

The offset is encoded with the two’s complement approach. First of all, we
fix the array size TS + 2 = 8. Thus, 3 bits are required for each of the x, y and
z position of the current cell in the array. We take 1 integer and put these bits
to the 0–2, 6–8, and 12–14 bits of the integer. The spaces between are filled by
..100.., such as

int id = ...100yyy100zzz100xxx

This integer is decremented by 001000001000001. Then, the offset is collected
from the id as zzzyyyxxx. This way, the offset update takes 5 integer operations.
Note that the id should be renewed at least once in 8 time steps.

Offset of the Stencil Points. For a cell update, the location of the current
cell in the shared memory, as well as the locations of its 18 neighbors should
be known. The 18 shifts to the offset described above are required. They are
implemented as constants, so that they are known at the compilation stage. In
this case, the loop over neighboring cells is unrolled. The compiler optimization
ensures that there are no redundant shifts, loads or calculations. The accumu-
lated cost cut of two’s complement approach above becomes considerable.

Domain Boundary. The thread should exit the computation loop if the cell
assigned to it on the current step falls outside of the domain. On the other hand,
the CT that had started outside the domain boundary may cross it at later steps.
In this case it is required to begin the computations at some point. We find that
a better way to implement this is to calculate the time step, at which the thread
enters the domain and the time step, at which the thread exits the domain, using
the location of the base point of the currents CT.

Similarly, when the cell is close to the boundary, the boundary condition
should apply. At these steps, the shared memory array is partially empty. All
fi in the stencil are checked if they are required from a cell outside of the
domain. In the naive approach, the conditional statement should be applied
on each fi. To avoid this, first of all, the special treatment is only applied on
at most two time steps (CT entering and leaving the domain). These steps
are known beforehand from the base point. Secondly, the type of boundary case
(x-boundary, y-boundary, xy-corner, etc) is also computed beforehand and stored
as a mask.

Thus, the conditional statements are minimized in the code. This is a general
rule for a CUDA-kernel and helps to avoid significant decrease in performance.

GPU Implementation of ConeTorre Algorithm 209

Balancing of the Load and Store Operations. After the two computation
step the store, block synchronize and load operations are performed in a halo
around the TS3 cube. The communication with device memory is executed by
whole groups (see Sect. 5.1). There are 43 − 33 = 37 groups to be loaded.

One group contains 160 float values. For the coalesced access, the data is
loaded in portions of whole groups. Each one group is loaded by a warp, 5 values
per thread. The load and store operations are distributed as evenly as possible
among the 8 warps in the thread block. This amounts to approximately five
groups for save and load in total per warp.

It is important to remark that near the outer corners of a CT the cell groups
that are written may be updated by other CUDA-blocks. There are no data
conflicts, thanks to the properties of the AA-pattern. In these cells, only a portion
of fi should be written. To implement this, the data save operation is performed
with a mask.

Global and Shared Memory Offset Compression. A thread needs several
offsets: the shared memory offset of a cell that it updates, and the shared memory
and the global memory offsets of the cells the data from which it loads and stores.
About 5 groups are loaded and stored by a warp, so this takes 10 shared memory
offsets and 10 global memory offsets. This many values is too much to compute
each time or to store. However, since these values concern a whole warp, there
is a way to use only one register per thread to store them. The 10 offsets are
computed by ten different threads in the warp, and are accessed by other threads
by shuffle operations. After the initialization, the update of the offsets due to
the (−1,−1,−1) shift is identical for all these values. Since they are stored in
one register, one instruction is enough to update them all.

The data in the global memory is stored in groups, and a whole warp loads a
group. Each thread in a warp should be assigned an offset to a value in a group
that it loads. This offset is constant for each load operation: for each of the 5
groups the warp loads, and for each time step. This is due to the fact that in
the main kernel the shift is (−2,−2,−2) after the two α and β steps.

5.6 Semaphore Implementation

Semaphores are stored in a separate Z-curve array. The cell of the array corre-
sponds to the TS3 cell data block, which is the base of some CT. Note that many
of these are outside of the domain Fig. 3. The semaphore array cell contains three
integers: the semaphores to the next CT base in x, y, and z axes. Each CT on the
block synchronization step requires six semaphores which are stored in the four
cells of the semaphore array. Namely, the three semaphores that are unlocked in
the progression of the corresponding CT are stored in one cell of the semaphore
array; the semaphores that are to be locked are taken from the three neighboring
cells. The semaphore read is one L2 access in the CUDA-block synchronization
event. The semaphores are accessed in parallel.

The Z-curve traversal rule ensures that at the start of the CT it is already
unlocked most of the times, so the wait does not take additional time.

210 V. Levchenko et al.

Fig. 6. Performance dependency on the ConeTorre height NT .

6 Performance Results

For the performance test we used GPU devices on the K60gpu [1] cluster: nVidia
Volta GV100GL. The code was compiled with nvcc v.10.0 with optimization level
-O3. The performance was tested on a problem that uses as much as possible of
the device memory. That is, MR = 6, and (TS ·2MR)3 cells in the cubic domain.

In (Fig. 6) the performance dependency on NT parameter is shown, with
CFsteps = 2. As is expected for LRnLA algorithms, the performance at small NT

is low. At the start (and at the end) of the CT the load (and store) of the whole
TS3 cell data is performed, so there is no gain from temporal blocking. Moreover,
the preparation of the offsets is performed, so the algorithm is more computation-
ally intensive than the traditional stepwise implementation. With higher NT the
performance increases. We see, that NT ∼ 100 is enough for good efficiency.

In (Fig. 7) we show the dependency of the performance on the CFsteps
parameter. CFsteps is the number of time steps between block synchroniza-
tions, which are operated by semaphores. NT is a multiple of CFsteps. If the
CFsteps parameter is low, more asynchronous computation portions exist in the
algorithms, and higher parallelism is possible. If the parameter is high, less syn-
chronizations occur. The optimal value should be a compromise between these
two considerations. In (Fig. 7) we see that this value has little effect on the perfor-
mance, and lower values lead to more efficiency. This shows that the asynchrony
of the algorithm is slightly less than enough in the current environment.

Since one CT occupies one CUDA-block, its kernel may be started for all
Nblk = (2 · 2MR)3 CT simultaneously. On the other hand, the number of the
asynchronous block NA may be controlled. The same CTs may be started in a
loop of Nblk/NA iterations, where each kernel is started with NA CUDA-blocks.
In (Fig. 8) we show the dependency of the performance on NA. The V100 GPU
has 80 SM. Thus, up to NA = 80 the low occupancy is expected. The full
performance is reached at NA = 160.

GPU Implementation of ConeTorre Algorithm 211

Fig. 7. Performance dependency on the CFsteps parameter

Fig. 8. Performance dependency on the asynchronous blocks number

7 Conclusion

We have implemented the ConeTorre LRnLA algorithm on CUDA GPU. While
previous LRnLA algorithm implementations on GPU relied on the diamond
blocking in space [7,26], the necessity of the use of the CT shape was imposed
by the consideration of LBM scheme which has the cube-shaped stencil.

The algorithm was constructed for CPU in the previous works [15]. To obtain
the desired efficiency in a GPU implementation, the difficulties of the implemen-
tation overhead had to be overcome. One of this difficulties in the large cost of
the data offset storage or calculation, coalesced data access and balancing the
load/store operation between CUDA-threads. We note that full 3D1T decom-
position is sometimes avoided in favor of 1D1T or 2D1T [7] decomposition of a

212 V. Levchenko et al.

3D1T simulation, and this simplifies some of these problems. Nevertheless, here
we have obtained the performance of 6.1 · 109 lattice node update per second,
that is more than 66% of the estimated efficiency by careful use of the CUDA
tools.

Among the achievements of the current work are the implementation of
semaphores in CUDA for block synchronization.

The developed approach may be used for other codes with cube-shaped
stencils.

Aknowledgement. The work is supported by Russian Science Foundation, grant
18-71-10004.

References

1. Computer system K-60 (2018). http://kiam.ru/MVS/resourses/k60.html
2. Bailey, P., Myre, J., Walsh, S.D., Lilja, D.J., Saar, M.O.: Accelerating lattice Boltz-

mann fluid flow simulations using graphics processors. In: International Conference
on Parallel Processing, ICPP 2009, pp. 550–557. IEEE (2009)

3. Calore, E., Gabbana, A., Kraus, J., Pellegrini, E., Schifano, S.F., Tripiccione, R.:
Massively parallel lattice-boltzmann codes on large GPU clusters. Parallel Comput.
58, 1–24 (2016)

4. Degenhardt, R.: Advanced Lattice Boltzmann Models for the Simulation of
Additive Manufacturing Processes. doctoralthesis, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU) (2017)

5. Endo, T., Midorikawa, H., Sato, Y.: Software technology that deals with deeper
memory hierarchy in post-petascale era. In: Sato, M. (ed.) Advanced Software
Technologies for Post-Peta Scale Computing, pp. 227–248. Springer, Singapore
(2019). https://doi.org/10.1007/978-981-13-1924-2 12

6. Habich, J., Zeiser, T., Hager, G., Wellein, G.: Enabling temporal blocking for a
lattice Boltzmann flow solver through multicore-aware wavefront parallelization.
In: 21st International Conference on Parallel Computational Fluid Dynamics, pp.
178–182 (2009)

7. Levchenko, V., Perepelkina, A., Zakirov, A.: Diamondtorre algorithm for high-
performance wave modeling. Computation 4(3), 29 (2016)

8. Levchenko, V., Perepelkina, A.: Locally recursive non-locally asynchronous algo-
rithms for stencil computation. Lobachevskii J. Math. 39(4), 552–561 (2018)

9. Malas, T., Hager, G., Ltaief, H., Stengel, H., Wellein, G., Keyes, D.: Multicore-
optimized wavefront diamond blocking for optimizing stencil updates. SIAM J. Sci.
Comput. 37(4), C439–C464 (2015)

10. Maruyama, N., Aoki, T.: Optimizing stencil computations for NVIDIA kepler
GPUs. In: Proceedings of the 1st International Workshop on High-Performance
Stencil Computations, Vienna, pp. 89–95 (2014)

11. Montessori, A., et al.: Chapter 20 - multicomponent lattice Boltzmann models
for biological applications. In: Cerrolaza, M., Shefelbine, S.J., Garz-Alvarado, D.
(eds.) Numerical Methods and Advanced Simulation in Biomechanics and Bio-
logical Processes, pp. 357–370. Academic Press (2018). https://doi.org/10.1016/
B978-0-12-811718-7.00020-4, http://www.sciencedirect.com/science/article/pii/
B9780128117187000204

http://kiam.ru/MVS/resourses/k60.html
https://doi.org/10.1007/978-981-13-1924-2_12
https://doi.org/10.1016/B978-0-12-811718-7.00020-4
https://doi.org/10.1016/B978-0-12-811718-7.00020-4
http://www.sciencedirect.com/science/article/pii/B9780128117187000204
http://www.sciencedirect.com/science/article/pii/B9780128117187000204

GPU Implementation of ConeTorre Algorithm 213

12. Morton, G.M.: A computer oriented geodetic data base and a new technique in file
sequencing (1966)

13. Nguyen, A., Satish, N., Chhugani, J., Kim, C., Dubey, P.: 3.5-D blocking optimiza-
tion for stencil computations on modern CPUs and GPUs. In: High Performance
Computing, Networking, Storage and Analysis (SC), pp. 1–13. IEEE (2010)

14. Niedermeier, C.A., Janßen, C.F., Indinger, T.: Massively-parallel multi-GPU sim-
ulations for fast and accurate automotive aerodynamics. In: 7th European Confer-
ence on Computational Fluid Dynamics (2018)

15. Perepelkina, A.Y., Levchenko, V.D., Goryachev, I.A.: Implementation of the
kinetic plasma code with locally recursive non-locally asynchronous algorithms.
J. Phys. Conf. Ser. 510, 012042 (2014)

16. Perepelkina, A., Levchenko, V.: LRnLA algorithm ConeFold with non-local vector-
ization for LBM implementation. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays
2018. CCIS, vol. 965, pp. 101–113. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-05807-4 9

17. Perepelkina, A., Levchenko, V., Khilkov, S.: The DiamondCandy LRnLA algo-
rithm: raising efficiency of the 3D cross-stencil schemes. J. Supercomputing (2018).
https://doi.org/10.1007/s11227-018-2461-z

18. Perepelkina, A., Levchenko, V.: The DiamondCandy algorithm for maximum per-
formance vectorized cross-stencil computation. Keldysh Institute Preprints (225)
(2018)

19. Riesinger, C., Bakhtiari, A., Schreiber, M., Neumann, P., Bungartz, H.J.: A holistic
scalable implementation approach of the lattice Boltzmann method for CPU/GPU
heterogeneous clusters. Computation 5(4), 48 (2017)

20. Shimokawabe, T., Endo, T., Onodera, N., Aoki, T.: A stencil framework to realize
large-scale computations beyond device memory capacity on GPU supercomputers.
In: 2017 IEEE International Conference on Cluster Computing (CLUSTER), pp.
525–529. IEEE (2017)

21. Succi, S.: The Lattice Boltzmann Equation: For Fluid Dynamics And Beyond.
Oxford University Press, Oxford (2001)

22. Tomczak, T., Szafran, R.G.: A new GPU implementation for lattice-Boltzmann
simulations on sparse geometries. arXiv preprint arXiv:1611.02445 (2016)

23. Vizitiu, A., Itu, L., Niţă, C., Suciu, C.: Optimized three-dimensional stencil com-
putation on Fermi and Kepler GPUs. In: 2014 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–6. IEEE (2014)

24. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

25. Wittmann, M.: Hardware-effiziente, hochparallele implementierungen von lattice-
boltzmann-verfahren für komplexe geometrien (2016)

26. Zakirov, A., Levchenko, V., Perepelkina, A., Zempo, Y.: High performance FDTD
algorithm for GPGPU supercomputers. J. Phys. Conf. Ser. 759, 012100 (2016)

https://doi.org/10.1007/978-3-030-05807-4_9
https://doi.org/10.1007/978-3-030-05807-4_9
https://doi.org/10.1007/s11227-018-2461-z
http://arxiv.org/abs/1611.02445

GPU-Aware AMR on Octree-Based Grids

Pavel Pavlukhin1,2(B) and Igor Menshov1

1 Keldysh Institute of Applied Mathematics, Moscow 125047, Russia
{pavelpavlukhin,menshov}@kiam.ru

2 Research and Development Institute “Kvant”, Moscow 125438, Russia

Abstract. Algorithms for refinement/coarsening of octree-based grids
entirely on GPU are proposed. Corresponding CUDA/OpenMP imple-
mentations demonstrate good performance results which are comparable
with p4est library execution times. Proposed algorithms permit to per-
form all dynamic AMR procedures on octree-based grids entirely in GPU
as well as solver kernels without exploiting CPU resourses and pci-e bus
for grid data transfers.

Keywords: AMR · CUDA · OpenMP · Octree

1 Introduction

Exploiting GPU for calculations of problems with dynamic adaptive mesh refine-
ment (AMR) when the computational grid is locally refined or coarsened depend-
ing on the solution is quite limited. This is basically performed in the following
manner: grid data is first copied from GPU to CPU memory then modified
on CPU generally in sequential mode and after that transferred back to GPU
(for example [1,2]). In this conventional scheme GPU stalls are unavoidably
happened because of pci-e transfers with quite low bandwidth and CPU grid
modification.

In the present paper we consider a multi-GPU gas dynamics solver [3,4]
based on Cartesian regular grids and aim to extend this solver to locally adaptive
octree-based grids coming from the AMR procedure. To authors knowledge there
is only one ongoing work in which all operations related with the grid adaptation
are performed entirely on GPU [5]. However details of implementation and
performance results are not published. In other works [6,7] CPU is utilized along
with GPU for grid refinement and coarsening that also leads to decrease in overall
performance. A common drawback in the mentioned papers [5–7] is a coarse-
graded AMR procedure which is implemented on entire structured grid blocks.

In the approach considered in the present paper the AMR function is fine-
graded, i.e., grid modification procedures are carried out at each grid cell sepa-
rately. To improve the overall GPU performance, all grid modifications are car-
ried out entirely in GPU, so that CPU is only exploited to exchange data between
processes. In what follows we discuss AMR-related algorithms of octree-based
grids that run on only GPU.
c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 214–220, 2019.
https://doi.org/10.1007/978-3-030-25636-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_17

GPU-Aware AMR on Octree-Based Grids 215

2 Algorithms for Octree-Based Grids on GPU

At initial, a Cartesian regular grid consisting from base cells is generated in
the whole computational domain. Then AMR procedure is performed, and some
base grid cells become root nodes for corresponding octrees (Fig. 1. Here, for
simplicity the sketch is given for quadtrees which are 2-dimensional analogs of
octrees). It is assumed the 2-to-1 balance property in the AMR that means that
each computational cell may have no more than 4 neighbors over any its face in
the 3D case and no more than 2 neighbors in the 2D case.

(a) (b)

Fig. 1. (a) Octree-based grid (left) and corresponding graph representation with space-
filling curve (right); (b) Grid after AMR procedure (left) and corresponding graph
representation (right).

Fig. 2. Grid, corresponding graph and arrays before (left) and after (right) coarsening/
refining.

Basic AMR-related grid modification procedures are refining when a cell is
divided into 8 subcells and coarsening when 8 cells with a common parent in
the octree are united into one cell). For these procedures, all grid octrees are
stored in three arrays allocated in GPU (Fig. 2): base/root cell array (denoted
as “�”), anchored/virtual nodes (denoted as “•”) and (denoted as “◦”) dan-
gling/physical nodes (which are real grid cells) attributed with gas dynamical
state vectors. CFD solvers actually exploit only the last array. All octree node
pointers (denoted as arrows) are initialized. Base cells are stored in accordance
with the Z-SFC (space filling curve) order with pointers to its neighbors over 6
faces.

Each thread in parallel performs solution analysis for coarsening/refinement
on physical cells. If cells are pointed for performing coarsening/refinement, their
locations in the array of “◦” are marked as empty and new corresponding cells
are written to the reserved free space at the end of the array by each thread.
Since some writings may occur simultaneously, one should use atomic addition
memory operations on the variable storing current last used index in array of
“◦”. The same modification procedure is performed with the array of “•”. In the
final coarsening/refinement stage all necessary octree pointers are updated fully
independently in parallel by each thread.

216 P. Pavlukhin and I. Menshov

Fig. 3. Grid arrays before defragmentation (left), cell reordering based on Z-space SFCs
(center) and grid arrays after defragmentation (right).

One can see that coarsening/refinement procedures lead to appearance of
holes (denoted as “×” on Fig. 2) in physical/virtual cells arrays. Multiple callings
these holes result in poor efficiency (less opportunities for coalescing load/store
transactions from/to GPU RAM) and exhaustion of available memory. There-
fore, a kind of the array defragmentation must be performed. In our approach
this operation is also executed in GPU entirely. Each thread treats one base cell
and traversing via its octree is performed over all physical cell based on the local
Z-SFC (Fig. 3). Physical cells are copied to a new array in traversing order by
each thread. To improve memory locality, all octrees with physical cells must
be written in order given by the Z-SFC over base cells. According to this order
first thread initially writes defragmented physical cells in the new array, then
the second thread appends its cells, and so on. In such a way, thread serializing
is performed - defining of start index in the new array in each thread for further
writing of physical cells.

Finally, neighbor searching procedure is based on the octree coordinates stor-
ing in each physical cell. At each octree layer each its node has local number
from 1 to 8 meaning corresponding geometrical position in the 2 × 2 × 2 cube.
Thus, the physical cell in a layer n is uniquely defined by n such local num-
bers named octree coordinates. By using only these coordinates, corresponding
neighbor octree coordinates for each physical cell are defined quite straightfor-
ward; neighbors are searched by simple traversing over octree according to these
coordinates. All these operations are performed in each thread for each physical
cell independently in parallel.

3 Implementation Details

Two versions of AMR procedures are developed: for GPU using CUDA Toolkit
and for CPU using OpenMP pragmas. They are based on the same code except-
ing some parts that are described below.

Procedures performed over all physical cells in CUDA version exploits
grid/block indexes for computing unique cell indexes whereas the iteration num-
ber is used as the cell index in OpenMP loops.

Atomic addition memory operations used in refining/coarsening procedures
represent as atomicAdd()/ atomic fetch add() built in function in CUDA/icpc
compiler.

In the defragmentation procedure the variable serving for sequential assign-
ment of indexes in new physical cell array between threads is declared as

GPU-Aware AMR on Octree-Based Grids 217

volatile and threads after its updating perform memory fence operation via
threadfence()/ sync synchronize() builtin function in CUDA/icpc compiler.

To avoid deadlocks in this procedure pragma for the loop over base cells is
used with static scheduling and chunk size = 1 in OpenMP version. For the
same reason in each warp only one thread is used in CUDA version.

4 Results

For evaluating performance of the implemented algorithms the following test
is used. A half part of a 8 × 8 × 8 cube consisting of base cells is divided in
(8×8×4)× 8 = 2048 physical cells whereas another part corresponds to 8×8×4
= 256 physical cells. With such a grid, the following procedure is iteratively (for
some iteration number) performed in given order: (1) refining each physical cell
into 8 subcells; (2) defragmentation of physical cells; (3) neighbors searching for
each physical cell. After that the resulting grid is iteratively (for some iteration
number) transformed by following procedures in given order: (1) coarsening each
8 physical cells with common parent into 1 cell; (2) defragmentation of physical
cells; (3) neighbors searching for each physical cell. Each physical grid has only
1-dimensional state vector (float) which is simply copied into 8 child subcells or
arithmetic mean of 8 cells is assigned to new cell in the case of coarsening.

Fig. 4. Results for refining and coarsening procedures.

Measurements are performed on Nvidia Tesla C2050 (CUDA Toolkit 7.5),
Tesla K20 (CUDA Toolkit 7.5), GTX 1050 Ti (CUDA Toolkit 9.0), Tesla V100
(32 GB) (CUDA Toolkit 10.0) and on a dual-socket system with 2 Intel Xeon
Gold 6142 (OpenMP implementation with 1, 8, 32, 64 threads, Intel icpc 18.0

218 P. Pavlukhin and I. Menshov

compiler). For comparison this test is also implemented with p4est [8] and run on
dual-socket system with 2 Intel Xeon E5-2690 v4. Although test servers are based
on different CPUs their technical specifications are matching so comparision
is correct. As mentioned above P4est lacks multithreaded AMR capabilities.
Therefore, to use multiple CPU cores, the test is run with 28 MPI ranks in
the system. Since there is no defragmentation, neighbor searching procedures
explicitly available in P4est refining, coarsening and dynamic load balancing
procedures are only measured.

Results for refining procedure are shown in Fig. 4. Hereafter, numbers on the
horizontal axis mean the order number of physical cells before corresponding pro-
cedure. As described in the previous section, OpenMP implementation for this
procedure is very naive and straightforward: atomic addition memory operation
is called for every physical cell although chunk of them is performed sequentially
in thread. So OpenMP version demonstrates primarily slowdown performance
of atomic addition memory operations implemented in CPU especially in multi-
threaded mode. P4est performs refining independently in different processes, and
thus delivering performance order of magnitude is larger in comparison with the
OpenMP version. The subsequent dynamic load balancing procedure takes small
fraction (less than 10%) of refining time.

Quite naive CUDA implementation with the atomic addition memory oper-
ation performed in every physical cell/thread (although there is a big room for
great reducing total its number via exploiting shared memory) demonstrates
considerable improvement in atomicAdd() performance in newer GPU architec-
tures. In fact, even current non-optimized CUDA version is performed several
times faster (on Pascal, Volta GPU) then P4est version on dual-socket system.

All previous statements are also valid for the coarsening procedure, Fig. 4,
since it exploits similar memory access patterns.

The neighbor searching procedure is performed fully independently for each
cell so now the OpenMP version demonstrates good scalability, Fig. 5. It’s
notable that exploiting hyper-threading (64 OpenMP threads on 32 physical
CPU cores) as memory latency hiding mechanism also considerably (up to 64%)
increase performance. This mechanism greatly enhanced in GPU with massively-
parallel architecture (ability to serve “on-the-fly” scores of threads instead of
only two in CPU hyper-threading) leads to further performance improvement
by about an order of magnitude (for Pascal, Volta GPU).

Finally, results of the defragmentation procedure are shown also on Fig. 5.
This is the hardest procedure for parallelization since it’s performed over base
but not physical cells with serialization stage. Nevertheless the OpenMP version
demonstrates quite good scalability even with hyper-threading exploited. The
CUDA version has very low SM utilization since in each warp only one thread is
used (again, there is a big room for further optimization of this procedure) which
leads to performance (on all GPUs) comparable with only 1-thread OpenMP
version.

By summing times of refining/coarsening, neighbor searching, defragmenta-
tion for GPU and comparing with times of refining/coarsening + dynamic load

GPU-Aware AMR on Octree-Based Grids 219

Fig. 5. Results for neighbor searching and defragmentation procedures.

Fig. 6. Refinement procedure on 9 × 220 cells grid (left) and coarsening procedure on
9 × 223 cells grid (right).

balancing for p4est, one can see that GPU (namely Tesla V100) performance
only slightly lower than CPU one (Fig. 6) in refinement procedure and consid-
erably higher in coarsening process. The most time consuming part for GPU is
defragmentation which will be optimized in ongoing work.

Therefore, the main conclusion can be inferred as follows: it’s possible to
efficiently perform all dynamic AMR procedures on octree-based grids entirely
on GPU without pci-e transfers and CPU processing on AMR grid. In other
words, eliminating CPU - GPU pci-e transfers in our GPU-only AMR process-
ing significally decreases overall AMR processing time compared to processing
on CPU with p4est even in “the worst” case when all grid cells need to be
refined/coarsen. In real CFD applications only small fraction of cells is modified
during one refining/coarsening procedure call so it would take insignificant time
compared to GPU - CPU entire grid moving for AMR processing on CPU.

220 P. Pavlukhin and I. Menshov

5 Conclusions

Algorithms for dynamic modification of octree-based grids entirely on GPU are
proposed. Corresponding CUDA and OpenMP implementations on GPU and
CPU demonstrate good performance results which are comparable with p4est
library execution times. Instead of conventional scheme where all grid modifica-
tion procedures are performed on CPU generally in single-threaded mode and
GPU is used only for execution of solver kernels with regular CPU ↔ GPU
memory transfers in our approach, in contrast, all dynamic AMR procedures
on octree-based grids are performed entirely on GPU as well as solver kernels
without exploiting CPU resources and pci-e bus for grid data transfers.

Acknowledgments. This research was supported by the Grant No 17-71-30014 from
the Russian Science Foundation.

References

1. Beckingsale, D., Gaudin, W., Herdman, A., Jarvis, S.: Resident block-structured
adaptive mesh refinement on thousands of graphics processing units. In: Parallel
Processing (ICPP), 2015 44th International Conference on Parallel Processing, pp.
61–70. IEEE (2015)

2. Lawlor, O.S., et al.: ParFUM: a parallel framework for unstructured meshes for
scalable dynamic physics applications. Eng. Comput. 22(3–4), 215–235 (2006)

3. Menshov, I.S., Pavlukhin, P.V.: Efficient parallel shock-capturing method for aero-
dynamics simulations on body-unfitted cartesian grids. Comput. Math. Math. Phys.
56(9), 1651–1664 (2016)

4. Pavlukhin, P., Menshov, I.: On implementation high-scalable CFD solvers for hybrid
clusters with massively-parallel architectures. In: Malyshkin, V. (ed.) PaCT 2015.
LNCS, vol. 9251, pp. 436–444. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21909-7 42

5. Brown, A.: Towards achieving GPU-native adaptive mesh refinement. Oxford
e-Research Centre (2017). https://www.oerc.ox.ac.uk/sites/default/files/uploads/
ProjectFiles/CUDA//Presentations/2017/A Brown 8th March.pdf

6. Sætra, M.L., Brodtkorb, A.R., Lie, K.A.: Efficient GPU-implementation of adaptive
mesh refinement for the shallow-water equations. J. Sci. Comput. 63, 23 (2015).
https://doi.org/10.1007/s10915-014-9883-4

7. Xinsheng, Q., Randall, L., Michael, R.M.: Accelerating wave-propagation algorithms
with adaptive mesh refinement using the Graphics Processing Unit (GPU) (2018).
https://arxiv.org/abs/1808.02638

8. Burstedde, C., et al.: Extreme-scale AMR. In: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–12. IEEE Computer Society (2010)

https://doi.org/10.1007/978-3-319-21909-7_42
https://doi.org/10.1007/978-3-319-21909-7_42
https://www.oerc.ox.ac.uk/sites/default/files/uploads/ProjectFiles/CUDA//Presentations/2017/A_Brown_8th_March.pdf
https://www.oerc.ox.ac.uk/sites/default/files/uploads/ProjectFiles/CUDA//Presentations/2017/A_Brown_8th_March.pdf
https://doi.org/10.1007/s10915-014-9883-4
https://arxiv.org/abs/1808.02638

Performance and Energy Efficiency
of Algorithms Used to Analyze Growing

Synchrophasor Measurements

Aleksandr Popov1,2 , Kirill Butin1,2 , Andrey Rodionov2 ,
and Vladimir Berezovsky1(&)

1 Northern (Arctic) Federal University,
Severnaya Dvina Emb.17, 163002 Arkhangelsk, Russia

v.berezovsky@narfu.ru
2 Engineering Center Energoservice,

Kotlasskaya St., 26, 163046 Arkhangelsk, Russia

Abstract. The development of synchrophasor measurement technology opens
new possibilities in solving the problems of ensuring the proper functioning of
energy systems. The timely processing of large volumes of measurement data is
required. One of the current applications of synchrophasor measurement tech-
nology is the analysis of the oscillatory stability of the power systems. Many
signal processing procedures can be represented as a set of related typical
subtasks. In this paper an approach to high-level description of signal processing
schemes in the form of generalized graph structures with the possibility of
varying the applied methods for solving subtasks is presented. The program
implementation of this approach is presented. The ways to paralleling such
schemes on the general level are reviewed and one of them is implemented and
analysed in details from performance and energy efficiency points of view. The
implementation shows satisfactory performance and parallel scaling. The
energy-efficient regimes of its parallel execution were found. Ways of further
optimization are identified. The results of numerical experiments are presented.

Keywords: High-performance computing � Digital signal processing �
Synchrophasor measurements � Energy efficient computing � Green computing

1 Introduction

The synchrophasor measurement technology [1] at the present level of development
allows to analyze the dynamic processes in the electrical network and creates the
opportunities for the implementation of new methods of control and management.
Deploying in electrical grid wide area measurement system (WAMS), based on this
technology, provide voltage and current phasors, frequency and other electrical param-
eters with high data rate. Nowadays in the production systems the data rate equals to 50
frames per second. The high-precision sources of time synchronization (GLONASS/GPS
or like other) are used for the phasor measurement units (PMUs). Electrical parameters
are measured discretely and relative to the start of the second (1PPS) [2]. This provides
time synchronism of measures between all PMUs at any point of electrical grid.

© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 221–231, 2019.
https://doi.org/10.1007/978-3-030-25636-4_18

http://orcid.org/0000-0001-9648-7551
http://orcid.org/0000-0001-7319-9979
http://orcid.org/0000-0002-3752-994X
http://orcid.org/0000-0003-1694-5896
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_18

As of the end of 2018 year, 740 PMU devices have been installed in the power
system of Russia, and their number is increasing annually [3]. Computational com-
plexity of the algorithms used to analyze growing synchrophasor measurements data is
causes need to apply new approaches to implementation of computational operations.

One of the current applications of synchrophasor measurement technology is the
analysis of the oscillatory stability of the power systems [4]. Poor damped low fre-
quency oscillations degrading the stability of system are especially interesting [5–7].
One of the main reasons for their occurrence is a significant power imbalance, and one
of the factors of their continuation and development is the incorrect work of the
regulators of the excitation system of electric generators [6]. The poor damping of these
oscillations leads to negative consequences, for example, the degradation of power
quality, undue stress on equipment, system separation, blackouts and others.

The mentioned oscillations are observed in the low frequency part of spectrum (to
4 Hz) of the measured quantities (power, frequency). The corresponding components
of the measurement signals are called low frequency modes. The problems of analysis
of low frequency modes include: selecting modes from input signal, calculation of their
dynamic parameters (phase, frequency, amplitude, number of damping characteristics),
clustering of power system objects involved to the oscillations, identifying the source
of oscillations, analysis of further development of process and others. The calculations
for selecting modes and getting their parameters are viewed because the solving of
these tasks is the basis of all following analysis.

The example of measured signal and two low-frequency modes are shown on
Fig. 1.

This article describes applying of high-performance computing (HPC) in pro-
cessing synchrophasor measurement data using a low-frequency oscillation problem as
an example.

HPC clusters are indispensable in a variety of applications, energy-intensive
infrastructures that run large-scale programs. Their energy models play a key role in the
design and optimization of energy-saving operations to reduce over-power in HPC
clusters. This can be achieved through the efficiency of algorithms, proper allocation of
resources and virtualization. The modern methods of energy saving include algorithmic
efficiency, virtualization, power management and equipment optimization. Energy
efficiency in computing has recently been mentioned in the light of the so-called
“green” computing and “green” technologies that relate to the environmentally
responsible use of computers and any other resources related to technology [8]. Green
computing includes the introduction of advanced technologies such as energy efficient
central processing units (CPUs), peripherals, and servers. In addition, green tech-
nologies are aimed at reducing resource consumption and improving the disposal of
electronic waste (e-waste).

Green computing is no longer just a white expression, like government schemes
such as the Carbon Reduction Commitment (CRC) scheme (e.g. Russia adopted a
domestic greenhouse gas emissions target that limits emissions to 75% of the 1990
level by 2020 [8]), the Climate Change Agreement (CCA). National commitments,
national regulations or e.g. The European Union Emissions Trading Scheme (EU ETS)
encourages companies to reassess their use of IT resources. Searching for new ways to
improve energy efficiency is no longer a discussion on the board of directors, but a

222 A. Popov et al.

reality for many enterprises. The Carbon Reduction Commitment (CRC) scheme is
designed to reduce carbon emissions. The CRC covers all forms of energy—electricity,
gas, fuel, and oil—with the exception of fuel for transportation. For example, in 2005,
the total energy consumption of the data center was 1% of the total energy consumption
in the United States, and created as many emissions as a medium-sized nation, such as
Argentina [9].

We survey the algorithmic efficiency that directly affects the amount of resources
required for running computer functions. Because of this, changes such as moving from
linear search to hashing or indexing can speed up processes, thereby reducing resource
utilization. Closely linked to this is the aspect of resource allocation. If proper allo-
cation of resources can be made in computing, one can reap the benefits, as it means
their efficient utilization. It can also lead to reduction in costs for businesses.

In this paper an approach to high-level description of signal processing schemes in
the form of generalized graph structures with the possibility of varying the applied
methods for solving subtasks is presented. The ways to paralleling such schemes are
reviewed and one of them is implemented and analysed in details from performance
and energy efficiency points of view.

Fig. 1. Example of low-frequency mode: (a) source signal, (b) mode.

Performance and Energy Efficiency of Algorithms 223

2 Methods

The scheme of data processing used in this research is shown on the Fig. 2. The circles
represent the compute nodes and the arrows represent the data streams. In general, there
is a number of input signals x(t) from several connection points. Each signal represents
a frequency of alternating current. First, the trend is removed from each signal (node T).
Then the low part of detrended signal is decomposed (node M) to the number of modes
(m(t)). The instantaneous frequency f(t), amplitude a(t) and damping time d(t) are
calculated for every mode (nodes F, A and D).

To make this scheme executable, it is necessary to assign an algorithm with each
node. The dsplab [10] package developed by authors provides such a two-step design
procedure: the system of linked works is built in the first step and the workers from
library, specific to the subject area, are «put» to the works in the second one. Works are
not connected directly but should be placed to the nodes. The system of linked nodes is
called a plan in dsplab. The structure of node is shown on the Fig. 3.

In this work the following methods are used for signal processing. The trend line is
calculated by smoothing filter with Hamming window and then subtracted from input
signal. The three modes with frequency in bands 0.01–0.1 Hz, 0.1–0.2 Hz, 0.2–0.4 Hz
are selected with FIR-filter with Hamming window. The amplitude of mode is calcu-
lated with digital Hilbert filter. The instantaneous frequency of mode is calculated using

Fig. 2. The scheme of data processing

224 A. Popov et al.

IQ demodulation. The decay time is detected by fitting of fading exponents to the
amplitude. The length of all used filters equals to 3001 samples (1 min). All calculating
procedures are implemented in the package es_analytics [11].

Due to the computational complexity and the large amount of data being processed,
it becomes necessary to use HPC. In this work computing resources of Northern
(Arctic) Federal University (NArFU) has been used. Computing cluster in NArFU with
a peak performance of 17.6 TFLOPS is still one of the most high-performance system
in the Barents region today. The cluster has a hybrid architecture consisting of twenty
10-core dual-processor nodes with an Intel Xeon E5-2680 processor having 64 GB
RAM, eight of which have Intel Xeon Phi 5110P co-processors. The nodes are con-
nected by a high-performance interconnect InfiniBand 56. The platform management
interface is integrated into the cluster motherboard system.

For monitoring and collecting statistical information from cluster nodes Intelligent
Platform Management Interface (IPMI) was used. IPMI is a platform management
interface designed for offline monitoring and control of functions built directly into the
hardware and firmware of server platforms. It provides the number of parameters which
are necessary for monitoring the system.

IPMI works independently of the operating system and allows to manage a plat-
form that does not have an operating system, even in cases when the server is turned
off. The greatest interest in the process of technical control over the operation of the
system is represented by such IPMI capability as monitoring the following parameters:
temperature, voltage, fan speed, power supply status, bus errors, physical system
safety.

3 Parallelizing

The three hours record of current frequency from single connection point was used in
experiments with paralleling of calculations. The sample rate of processed signal is
50 Hz. So, the length of signal equals to 540,000 samples.

Fig. 3. The structure of node.

Performance and Energy Efficiency of Algorithms 225

We can use fast parallel computation at several levels: Vector or array operations,
which allows to distribute data chunks on several CPU cores and process them in
parallel. In order to gain an advantage from this, some additional effort is usually
required during implementation. With packages like NumPy [12] and Python’s mul-
tiprocessing module [13] the additional work is manageable and usually pays off when
compared to the enormous waiting time that may be needed when doing large-scale
calculations inefficiently.

The main idea is the splitting of input signal into equally sized chunks and then
distributing them to the CPU cores. The partial results are then combined to the final
result. Adjacent chunks of signals must have some intersection to compensate for the
losses that occur when filtering signals. This approach can be applied in many cases of
signal processing.

An example of signal splitting for 4 chunks is shown on the Fig. 4.

This approach should not necessarily speed up calculations. For example, with
10 min length signal 4-core machine took about 17% longer for calculating the results
in parallel than with single processor execution. This is explained as follows. The
optimized code already runs quite fast, even for large datasets. Splitting the data into
chunks, starting the worker processes, distributing the data and then collecting and
combining the results again introduces a lot of extra work (“overhead”). This extra
work unfortunately does not pay off in this scenario, because the actual processing time
for each chunk is quite low, compared to the time spend for the parallelization overhead
(Table 1).

Still, there are many scenarios where parallelization does pay off despite the
overhead. This is usually the case when the processing time for the data is high as

Fig. 4. Example of splitting signal for 4 chunks.

Table 1. Execution time for serial and parallel processing of various length signals.

Signal length (min) 10 100 200 300 400 500
Single process (time, sec) 1.37 4.43 7.79 11.22 14.76 17.72
4 processes (time, sec) 1.59 11.64 23.47 35.27 46.98 59.23

226 A. Popov et al.

compare to the parallelization overhead. If one has a relatively big data frame (100 min
or larger, see Fig. 5), running this in parallel gives a speed up factor of *3 on 4-core
machine (again, the theoretical speed up of 4 is not reached because of overhead).

4 Results

A series of experiments was conducted to determine the acceleration and efficiency of
the parallel implementation for the scheme of data processing, as well as the energy
efficiency of task execution for solving the problem using HPC cluster. Scaling results
for various signal length are shown on Fig. 6. In those tests the signal was splitted to
equal chunks of the same length and then they distributed between cores for processing.
Experiments show degradation of efficiency to 0.3–0.5 depending on the signal length,
giving the worst results for larger signal, that corresponding larger chunk size. This
situation indicates the emergence of competition between processes for the shared
memory and i/o channels.

We also investigated runtime behaviors of the implementation. The utilization,
energy consumption, temperature of the devices and other information obtained from
the sensors onboard were measured. Figure 7 shows overall picture of the computing.
The top graph represents the CPU utilization value in percent over time. The graph of
power consumption in Watts at the same times is shown in the middle. There is also the
bar diagram showing the specific energy consumption in Joules – energy consumed by
hardware to processing signal with 1-minute length (3001 samples). The width of the
bar is expended computation time. Speedup and efficiency of task execution at the same
time are shown at the bottom. Note, that the x-axes positions of the markers on this

Fig. 5. Execution time versus signal length

Performance and Energy Efficiency of Algorithms 227

graph correspond to the completion time. Specific energy consumption graph shows
that best energy efficient execution regime corresponds to a rather mediocre efficiency
of execution parallelism around values of 0.5.

Figure 8 presents the diagram of the temperature change for the processor and
RAM modules when the task is running. Visible characteristic hysteresis, indicating the
presence of an unbalanced number of calculations and memory accesses.

5 Discussion

Consideration of power consumption by hardware during the execution of calculations
allows us to suppose the linear model as satisfactory for assessing the dependence of
energy costs on computational complexity. Power breakdown across the components of
server [14] are shown on the Fig. 9a. In Xeon based server, the CPUs are the main
power consumers. Experiments on different workload shows the correlation in char-
acter of power consumption, CPU utilization and cache misses which in turn are
proportional to the memory consumption of energy [15] (Fig. 9b). This leads us to a
linear consumption model (1) (see Fig. 9c).

P ¼ aUþ b ð1Þ

where P is power consumption, U – computation complexity in e.g. FLOP, a and
b – arbitrary constants.

Fig. 6. Speedup and efficiency of parallel realization

228 A. Popov et al.

Performed energy consumption tests did not include the power consumption for
network interaction (MPI) and input/output operations (work with the file system). The
linear model of energy consumption assumes the idea that the best strategy for mini-
mizing energy consumption will be the most complete use of the processor, and,
therefore, the best algorithm in terms of optimizing energy consumption and its
implementation will be those that solve given problem as soon as possible and at the
same time most fully use computing hardware.

Ways of further optimization may be as follows. We have exploited data paral-
lelism, but it is possible to get a gain with task parallelism. If there are many signals at
the input and one need to do the same with them, then one can divide the initial data set
into groups of signals and process them in parallel. In that case even the shared memory
and exchanges are not needed during processing. This approach will increase the
efficiency of both parallelism and power consumption.

Another approach consists in parallel execution of those nodes of the plan (sce-
nario) for which the following conditions are fulfilled: the input data is ready and the
node has not yet been executed (look at Figs. 2 and 3 for the guidance). There should

Fig. 7. Runtime behaviors of the realization. Overall CPU utilization during tests runs is shown
on the top of the figure. There is speedup (green line) and efficiency (brown line) of currently ran
case at the bottom. Specific energy consumption in Joules as bars with height equal to energy
consumed to compute signal with 1-minute length and width equal to expended computation time
for processing 25 (blue), 50 (orange), 100 (green), 200 (red) and 400 (orchid) minutes signals are
shown in the middle. The current power consumption in Watts (black line) is also shown there.
(Color figure online)

Performance and Energy Efficiency of Algorithms 229

be a less gain. This may not be the case if the scenario is linear. Nothing is needed to
know about the task for its correct execution, but in order to have a positive effect, you
must still consider the specifics of the task.

6 Conclusion

A Python based framework for digital signal processing with its parallel implemen-
tation was developed to use it in analysis of growing synchrophasor measurements. The
results of numerical experiments with implementation are presented. An implementa-
tion shows satisfactory performance and parallel scaling. This will allow the processing
of data collected from power grids in real-time and carrying out post analysis of

Fig. 9. (a) Power breakdown across the components of server [14]. (b) Characteristics of the
real-world workload. (c) The linear power model

Fig. 8. The dependence of the temperature of processors and memory modules during the
execution.

230 A. Popov et al.

incidents in the shortest time. The energy-efficient regimes of the parallel execution
were found. An interesting result was obtained that the optimal energy efficiency of
computing is achieved with a mediocre parallel efficiency near value of 0.5. Ways of
further optimization are identified.

Acknowledgements. All computing experiments were performed using the HPC environment
at NArFU [16].

References

1. Mokeev, A.V.: Methods for analysis of PMU functioning during electromagnetic and
electromechanical transient processes. In: 5th International Scientific and Technical
Conference Actual Trends in Development of Power System Relay Protection and
Automation, Sochi (2015)

2. IEEE Std C37.118.1-2011 IEEE Standard for Synchrophasor Measurements for Power
Systems. https://doi.org/10.1109/61.660853

3. smpr.technology|WAMS. https://www.smpr.technology/. Accessed 16 Feb 2019
4. Antonello, M., Muscas, C., Ponci, F.: Phasor Measurement Units and Wide Area Monitoring

Systems. Academic Press, Cambridge (2016)
5. Al-Ashwal, N., Wilson D., Parashar M.: Identifying sources of oscillations using wide area

measurements. In: Proceedings of the CIGRE US National Committee 2014 Grid of the
Future symposium, Houston, vol. 19 (2014)

6. Kovalenko, P.Yu.: Methods of analysis of low-frequency oscillations and the synchronizing
action of a generator based on vector measurements: dissertation for the degree of candidate
of technical sciences: 05.14. 02 (Diss.) (2016). (in Russian)

7. Rodionov, A.V., Popov, D.N., Sosnin, A.S., Mokeev, A.V., Popov, A.I.: Extending
functionality and application scope of synchronised phasor measurement technology. In:
International Youth Scientific and Technical Conference Relay Protection and Automation
(RPA), 27–28 September 2018, pp. 1–15 (2018). https://doi.org/10.1109/rpa.2018.8537229

8. Kokorin, A.O., Korppoo, A.: Russia’s Greenhouse Gas Target 2020: Projections, Trends and
Risks. Friedrich-Ebert-Stiftung (FES), Berlin (2014)

9. Mathew, V., Sitaraman, R.K., Shenoy, P.J.: Energy-aware load balancing in content delivery
networks. CoRR, vol. Abs/1109.5641 (2011). https://doi.org/10.1109/infcom.2012.6195846

10. dsplab – PyPI. https://pypi.python.org/pypi/dsplab. Accessed 16 Feb 2019
11. Bovykin, V.N., Mokeev, A.V., Popov, A.I., Rodionov, A.V. Expansion of the field of

application of the technology of synchronized vector measurements. Automatizatciya i IT v
energetike 12(113), 44–50 (2018). ISSN: 2410-4043

12. NumPy. http://www.numpy.org/. Accessed 16 Feb 2019
13. Multiprocessing—Process-based parallelism. https://docs.python.org/3/library/multiproces-

sing.html. Accessed 16 Feb 2019
14. Malladi, K.T., et al.: Towards energy-proportional datacenter memory with mobile DRAM.

In: Proceedings of the 39th Annual ISCA, pp. 37–48. (2012). https://doi.org/10.1109/isca.
2012.6237004

15. Lewis, A.W., Tzeng, N.-F., Ghosh, S.: Runtime energy consumption estimation for server
workloads based on chaotic time-series approximation. ACM Trans. Archit. Code Optim.
9(3), 15:1–15:26 (2012). https://doi.org/10.1145/2355585.2355588

16. HPC NArFU. http://fujitsu-hpc-02.narfu.ru/. Accessed 16 Feb 2019

Performance and Energy Efficiency of Algorithms 231

http://dx.doi.org/10.1109/61.660853
https://www.smpr.technology/
http://dx.doi.org/10.1109/rpa.2018.8537229
http://dx.doi.org/10.1109/infcom.2012.6195846
https://pypi.python.org/pypi/dsplab
http://www.numpy.org/
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
http://dx.doi.org/10.1109/isca.2012.6237004
http://dx.doi.org/10.1109/isca.2012.6237004
http://dx.doi.org/10.1145/2355585.2355588
http://fujitsu-hpc-02.narfu.ru/

A Comparison of MPI/OpenMP
and Coarray Fortran for Digital Rock

Physics Application

Galina Reshetova1(B), Vladimir Cheverda2, and Tatyana Khachkova2

1 The Institute of Computational Mathematics and Mathematical
Geophysics SB RAS, Novosibirsk 630090, Russia

kgv@nmsf.sscc.ru
2 The Trofimuk Institute of Petroleum Geology and Geophysics SB RAS,

Novosibirsk 630090, Russia

Abstract. A new parallel numerical technique to estimate the effec-
tive elastic parameters of a rock core sample from the three-dimensional
Computed Tomography images is presented. The method is based on the
energy equivalence principle and a new approach to solving the 3D static
elasticity problem by the iterative relaxation technique.

The method in the three-dimensional case requires the obligatory par-
allel implementation. The most commonly used strategy of paralleliza-
tion is MPI and OpenMP. The latest Fortran extension offers the new
Coarray Fortran (CAF) features, which can potentially compete with
the MPI due to its efficiency and simple implementation. We compare
three parallel approaches based on the MPI, MPI+OpenMP and CAF
to solve the problem. Comparison of these methods has shown that the
CAF brings about a sufficiently compact parallel code with a simple
syntax, thus making the parallelism easier to understand. The results
presented demonstrate that the CAF implementation provides compara-
ble performance to an equivalent MPI version.

Keywords: Effective parameters · Elastic moduli ·
3D Tomographic images · Coarrays · Fortran · PGAS languages · MPI

1 Introduction

The technologies for the core research based on the computer-aided simulation
are a new direction of Digital Rock Physics. The tomographic core images make it
possible to obtain the digital three-dimensional reconstruction of a core sample
material and to perform numerical experiments using modern computer tech-
nologies. Digital Rock Physics includes the whole complex of the research into
digital tomographic core images and their processing.

In this paper, we present a parallel numerical algorithm for estimating the
elastic properties of a rock sample from their three-dimensional tomographic

c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 232–244, 2019.
https://doi.org/10.1007/978-3-030-25636-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_19

Comparison MPI and Coarray 233

images. Within the framework of these studies, there are a number of approaches
to determining the effective heterogeneous elastic moduli, including the meth-
ods based on the analysis of inclusions [4,14,15], the use of a wide range of
homogenization methods [1] and some other approaches.

Currently, to solve this type of problems, the methods that, as a rule, are
being developed for studying wave fields with surface acquisitions are used [6,7].
Such methods are well studied both from the mathematical and from mechanical
points of view, and in terms of organizing parallel computing for providing max-
imal scalability [2,11]. The current experience in solving the problems demon-
strates the key role of optimizing exchanges among the processes organized for
parallel computing. Therefore the main attention in this paper is concentrated
on a comparative analysis of the well-known parallelization schemes based on
MPI/OpenMP and the recently introduced approach on the base of CoArray
Fortran (CAF). In the published works we have not found any other compar-
isons of MPI and CAF technologies in the field of associated studies.

For solving the problem of estimating the elastic properties of a rock sam-
ple from their three-dimensional tomographic images, the method based on the
energy equivalence principle proposed in [16] to study the properties of compos-
ite materials and a new approach to solving 3D static elasticity problem by the
iterative relaxation technique [12] were chosen. This choice is made because of
the possibility to carry out the numerical parallelization of the original prob-
lem with linear acceleration. The elastic moduli are determined by the parallel
computation of potential energy of the elastic deformations in a sample under
static homogeneous stresses applied to the boundary, thus simulating the effects
occurring in laboratory measurements.

2 Statement of the Problem

The effective elastic properties of a sample are determined based on the gen-
eralized Hooke’s law, which expresses the relationship between the averaged
deformations and stresses over a representative volume:

σ̄ij = c∗
ijklε̄kl or ε̄ij = s∗

ijklσ̄kl. (1)

The components of the stiffness tensor c∗
ijkl and of the compliance tensor s∗

ijkl

form the fourth rank tensors which, by definition, are the effective stiffness C∗

and the compliance S∗ tensors. The average stresses and strains are determined
by the formulas:

σ̄ij =
1
V

∫

V

σijdV, ε̄ij =
1
V

∫

V

εijdV, (2)

where σij and εij are the components of the stress and the strain tensors describ-
ing the stress-strain state of a sample in the representative volume V and satis-
fying the equilibrium equations and the Saint-Venant compatibility equations.

234 G. Reshetova et al.

3 Method

To find the effective stiffness C∗ and the compliance S∗ tensors we use the energy
equivalence principle method [16]. To this end, we introduce the notion of the
homogeneous boundary conditions [1]. Such conditions can be either kinematic
or static and are defined in such a way that when applied to the boundary S
of a homogeneous elastic body of volume V, they cause within it the uniform
(constant) stresses and displacements. In particular, the homogeneous static (3a)
and kinematic (3b) boundary conditions are boundary conditions with stresses
(3a) and displacements (3b) specified on the boundary in the form of the linear
functions

(a) ti(S) = σ0
ijnj , (b) ui(S) = ε0ijxj , (3)

where σ0
ij , ε

0
ij are some constant symmetric stress and strain tensors, respectively,

and n is the vector of the outer normal to the boundary S.
The energy equivalence principle method is based on the theorem [1] asserting

that the homogeneous static (kinematic) boundary conditions applied to the
boundary S of a non-homogeneous representative volume V generate such a
stress field σij (strain εij) that its averaging over volume (2) is equal to the
value of the constant stress σ0

ij (strain ε0ij) applied to boundary (3):

σ̄ij = σ0
ij , ε̄ij = ε0ij . (4)

The potential energy of deformations in the heterogeneous elastic body V is
expressed by the formula:

U =
1
2

∫

V

σijεijdV. (5)

We calculate the energy of deformations when the homogeneous static bound-
ary conditions are applied to a heterogeneous elastic body:

U = 1
2

∫
V

σijεijdV = 1
2

∫
S

σijuinjdS = 1
2σ0

ij

∫
S

uinjdS

= 1
2σ0

ij

∫
V

ui,jdV = 1
2σ0

ij

∫
V

εijdV

= 1
2 σ̄ij ε̄ijV = 1

2s∗
ijklσ

0
klσ

0
ijV.

(6)

It follows that the potential energy of a heterogeneous elastic body in the stress-
strain state is represented in the following form:

U =
1
2
s∗

ijklσ
0
klσ

0
ijV. (7)

Thus, if the value of the potential energy U of the stress-strain state of the
elastic body in which it has been transferred under the homogeneous boundary
conditions (static stresses) σ0

ij is known, then Eq. (7) can be used to find the
components of the effective compliance tensor s∗

ijkl. If we calculate the potential

Comparison MPI and Coarray 235

energy U0 with elastic parameters corresponding to the effective stiffness tensor
C∗, then we obtain the expression:

U0 =
1
2
s∗

ijklσ
0
klσ

0
ijV. (8)

Hence, it follows from formulas (7) and (8) that the energy method can be
regarded as a method based on the equivalence principle of the potential energies
for heterogeneous and homogeneous samples:

U0 = U. (9)

4 The Algorithm for Determining the Components of the
Tensor S∗

We suppose the volume V to be fixed in space by a rectangular (parallelepiped
in 3D) region with the sides (edges) parallel to the coordinate axes. To find the
components s∗

ijkl, we seek the solution of the boundary value problem of the
static linear elasticity theory

σij,j = 0 , (10)

σij = cijklεkl = cijkluk,l, i, j = 1, 2 (11)

with the corresponding homogeneous static boundary conditions applied to the
faces of the sample.

4.1 Two-Dimensional Case

In the case of a 2D sample, the tensor S∗ is written down in the form:
⎡
⎣ ε11

ε22
2ε12

⎤
⎦ = S∗

⎡
⎣σ11

σ22

σ12

⎤
⎦ , S∗ =

⎛
⎝s∗

1111 s∗
1122 s∗

1112

s∗
2222 s∗

2212

sym s∗
1212

⎞
⎠ . (12)

When calculating s∗
1111, s∗

2222 and s∗
1212 with the static boundary conditions

(Table 1) according to (7), we obtain:

U (1) =
1
2
s∗
1111V, s∗

1111 = 2U (1)/V. (13)

Here and below, the superscript in the notation indicates to number of the
case under consideration. Cases 1–3 are presented in Table 1. To determine the
remaining components s∗

1122, s
∗
2212 and s∗

1112, we use the linearity property of the
elasticity problem and define them by the formula presented in Table 1.

236 G. Reshetova et al.

Table 1. The boundary conditions and the formula for finding the components of S∗.

Case U Faces a Faces b Faces a, b Value s∗
ijkl

1 U (1) σ11 = 1 σ22 = 0 σ12 = 0 s∗
1111 = 2U (1)/V

2 U (2) σ11 = 0 σ22 = 1 σ12 = 0 s∗
2222 = 2U (2)/V

3 U (3) σ11 = 0 σ22 = 0 σ12 = 1 s∗
1212 = 2U (3)/V

4 U (4) = U (1) + U (2) + U (1,2) σ11 = 1 σ22 = 1 σ12 = 0 s∗
1122 = U (1,2)/V

5 U (5) = U (2) + U (3) + U (2,3) σ11 = 0 σ22 = 1 σ12 = 1 s∗
2212 = U (2,3)/V

6 U (6) = U (1) + U (3) + U (1,3) σ11 = 1 σ22 = 0 σ12 = 1 s∗
1112 = U (1,3)/V

Table 2. The boundary conditions for finding the components s∗
ijkl.

U Faces a Faces b Faces c Value s∗
ijkl

1 σ33 = σ13 = σ23 = 0 σ22 = σ12 = σ23 = 0 σ11 = 1, σ12 = σ13 = 0 s∗
1111 = 2U(1)/V

2 σ33 = σ13 = σ23 = 0 σ22 = 1, σ12 = σ23 = 0 σ11 = σ12 = σ13 = 0 s∗
2222 = 2U(2)/V

3 σ33 = 1, σ13 = σ23 = 0 σ22 = σ12 = σ23 = 0 σ11 = σ12 = σ13 = 0 s∗
3333 = 2U(3)/V

4 σ23 = 1, σ33 = σ13 = 0 σ23 = 1, σ22 = σ12 = 0 σ11 = σ12 = σ13 = 0 s∗
2323 = 2U(4)/V

5 σ13 = 1, σ33 = σ23 = 0 σ22 = σ12 = σ23 = 0 σ13 = 1, σ11 = σ12 = 0 s∗
1313 = 2U(5)/V

6 σ33 = σ13 = σ23 = 0 σ12 = 1, σ22 = σ23 = 0 σ12 = 1, σ11 = σ13 = 0 s∗
1212 = 2U(6)/V

4.2 Three-Dimensional Case

In the three-dimensional case, the algorithm for finding the components of the
compliance tensor is analogous to the two-dimensional one. The tensor S∗ is
written down in the form:

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
2ε23
2ε13
2ε12

⎤
⎥⎥⎥⎥⎥⎥⎦

= S∗

⎡
⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ23

σ13

σ12

⎤
⎥⎥⎥⎥⎥⎥⎦

, S∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

s∗
1111 s∗

1122 s∗
1133 s∗

1123 s∗
1113 s∗

1112

s∗
2222 s∗

2233 s∗
2223 s∗

2213 s∗
2212

s∗
3333 s∗

3323 s∗
3313 s∗

3312

s∗
2323 s∗

2313 s∗
2312

sym s∗
1313 s∗

1312

s∗
1212

⎞
⎟⎟⎟⎟⎟⎟⎠

. (14)

Similar to the two-dimensional case, we calculate U (1)-U (6) (Table 2), and
then use the linearity property to compute the remaining components of s∗

ijkl

(Table 3), where the values of U (k,l) are calculated by the formula:

U(k,l) = 1
2

∫

V

(σ(k)
ij ε

(l)
ij + σ

(k)
ij ε

(l)
ij)dV =

∫

V

1
E
(σ(k)

11 σ
(l)
11 + σ

(k)
22 σ

(l)
22 + σ

(k)
33 σ

(l)
33)dV

− ∫

V

ν
E
(σ(k)

11 σ
(l)
22 + σ

(l)
11 σ

(k)
22 + σ

(k)
22 σ

(l)
33 + σ

(l)
22 σ

(k)
33 + σ

(k)
11 σ

(l)
33 + σ

(l)
11 σ

(k)
33)dV

+
∫

V

2(ν+1)
E

(σ(k)
12 σ

(l)
12 + σ

(k)
23 σ

(l)
23 + σ

(k)
13 σ

(l)
13)dV.

(15)

Comparison MPI and Coarray 237

Table 3. The formulas for computing s∗
ijkl.

s∗
1122 = U(1,2)/V s∗

1123 = U(1,4)/V s∗
1113 = U(1,5)/V s∗

2313 = U(4,5)/V s∗
3312 = U(3,6)/V

s∗
1133 = U(1,3)/V s∗

2223 = U(2,4)/V s∗
2213 = U(2,5)/V s∗

1112 = U(1,6)/V s∗
2312 = U(4,6)/V

s∗
2233 = U(2,3)/V s∗

3323 = U(3,4)/V s∗
3313 = U(3,5)/V s∗

2212 = U(2,6)/V s∗
1312 = U(5,6)/V

5 Numerical Solution to a Static Elasticity Problem

The most time-consuming computations are associated with the solution of a
series of static problems in the elasticity theory with external stresses given at
the boundaries. In the final analysis, these problems are reduced to systems
of linear algebraic equations, for which it is possible to apply both direct and
iterative methods. The fact is, the direct methods, having certain advantages, in
this case are not suitable for solving three-dimensional problems due to excessive
demands for computer resources. Therefore, for determining effective parameters
we have chosen iterative methods.

We propose to find a solution of static problem (10), (11) with the static
boundary conditions (3a) by finding the steady-state solution of the dynamic
problem of the elasticity theory in the formulation of the stress/displacement
velocity with additional dissipative terms to equations of motion (16):

ρυ̇i + αυi = σij,j (16)

σ̇ij = Cijklε̇kl = Cijklυk,l (17)

with zero initial conditions for t = 0:

υi = 0, σij = 0 (18)

and constant in time boundary conditions on the boundary S (3a). Here υi = u̇i

is the displacement velocity of the i-th component of the displacement vector.
In order to show the convergence of problem (16)–(18) to the static problem

(10), (11), we use the virial theorem ([10], §10) asserting that the kinetic energy
of the mechanical system T averaged over an infinite time interval is equal to
the virial averaged over the same time interval. If the potential energy U is a
homogeneous function of the first degree of inverse values of the radius vectors,
then the relation

2T = −U (19)

is satisfied.
Therefore it follows that if the kinetic energy of the system is reduced

through an artificially introduced damping mechanism, then the rigid connec-
tion between the kinetic and the potential energies provided by this theorem
leads to a decrease in the potential energy up to its minimum. Then, based on
the Lagrange-Dirichlet principle, for a statically stressed body (of all possible
stress-strain states of a deformable solid, the actual stress state corresponds to
a minimum of the total deformation energy), we can conclude that the solution

238 G. Reshetova et al.

of the dynamic problem (16)–(18) converges to the solution of the stationary
problem (10), (11). For a numerical solution of the initial boundary value prob-
lem (16)–(18), we apply a finite difference scheme on staggered grids [18], whose
coefficients are modified to provide approximation in heterogeneous media [8,17].

6 Parallel Implementation

6.1 MPI/OpenMP Parallelization

The most time-consuming part of the algorithm, which in the three-dimensional
case requires the obligatory parallel implementation, consists in solving six stress-
strain linear elasticity problems for calculating the potential energy of the elastic
deformations in the sample under boundary static stresses. As these problems
can be solved independently, the most natural way is to use the MPI paral-
lelization to split the calculations to individual tasks. Further, the solution of an
individual task can be parallelized with the MPI or the OpenMP, depending on
the number of nodes and cores the problem is to be solved. This is the commonly
used strategy of parallelization. Briefly, let us consider these versions.

MPI. Parallelization has two stages. At the first stage, using the MPI group
constructor, the solution of the problem is divided into six independent tasks, as
is mentioned above. Each task is assigned to its independent MPI group. Each
group solves the local problem (16)–(18) with the help of finite difference time
domain staggered grid scheme combined with the domain decomposition method.
The domain decomposition is applied in order to decompose the original com-
putational domain to multiple elementary subdomains of lower dimensions, each
one being handled by its individual Processor Unit (PU) thus solving the sys-
tem of equations within the subdomain (Fig. 1). Updating unknown data while
moving from a time layer to the next one requires the exchange of values in the
grid nodes along the interface between the adjacent subdomains. The message
passing library MPI is used to communicate data between neighboring PU. The
necessity of this exchange negatively impacts the scalability of the method. How-
ever, the impact is less visible on the 3D domain decomposition than on one-
and two-dimensional ones [9]. In this implementation, we choose the 3D domain
decomposition. In order to reduce the idle time, the asynchronous computations
based on the non-blocking MPI procedures are used. The non-blocking MPI
functions Isend()/MPI Irecv() allow us to overlap communications and compu-
tations, thus hiding communication latencies and improving the performance of
an MPI application.

MPI+OpenMP. The choice of a specific method of parallelization depends
on the number of resources allocated to solve the problem. If, for example, we
are limited by only six nodes, a possible way to numerically solve the problem
may be the use of a combination of the MPI with the OpenMP. In this case,
parallelization is also performed in two stages. At the first stage, the MPI is

Comparison MPI and Coarray 239

Fig. 1. MPI parallelization scheme.

used in order to split the calculations to individual tasks. Then the solution
of an individual task is parallelized with the OpenMP, using the threads with
shared memory on the node (Fig. 2). This approach is simpler in terms of writing
a code, but has a limitation on the number of nodes used. In both cases, the
MPI or the MPI+OpenMP, after solving six stress-strain elasticity problems,
each process sending the calculated values to the zero process, which saves them
into a disk as binary files, containing the values of the stress components in the
representative volume. After this, the zero process produces a sequential reading
of the information from files and calculates the result using the formulas from
Table 2. The time required for the zero process for this operation is negligible
as compared to the time needed for solving the static elasticity problems. From
the MPI+OpenMP parallelization scheme, it follows, that the best architecture
for calculating the problem: the choice of six nodes with a maximum number of
cores per node.

Fig. 2. The MPI+OpenMP parallelization scheme.

240 G. Reshetova et al.

6.2 Parallelization Approach with Coarray Fortran

The Coarray Fortran (CAF) is based on a modern Fortran extension and incor-
porates a Partitioned Global Address Space (PGAS) in order to improve the
clarity of a parallel programming language. The CAF is a feature of Fortran
2008 standard published in 2010 [5] and, like the MPI is based on a Single Pro-
gram, Multiple Data model. A parallel program with the use of Coarray can be
interpreted as a set of replicated copies (images in the Coarray language) of the
code executed asynchronously. The syntax of Fortran was extended by adding
arrays with additional trailing subscripts in square brackets, which provide a
concise representation of references to data that can be accessed from other
images and distributed among them [3]. Using Coarrays, data can be directly
accessed in the neighbor memory without sending and receiving functions. Since
the MPI uses the same SPMD model, the Fortran features allow the MPI and
Coarray live together in a program. This fact is very convenient for a gradual
conversion of the MPI program to a Coarray language.

Fig. 3. Coarray parallelization scheme.

The MPI and OpenMP Fortran codes implementing the above-described
algorithm were rewritten in the Coarray (Fig. 3). The parts of the program
responsible for the parallel input/output of big data have remained in the
MPI, while the data exchanges between neighbors in the domain decomposi-
tion method were rewritten in terms of the Coarray. The new version of the
code has become more compact and clear, there is no need to write sending
and receiving messages and to check the correspondence of the packing and the
unpacking data. Figure 4 demonstrates, for example, the data exchange between
neighboring processes in 2D domain decomposition method written with MPI
and Coarray. The advantage of the Coarray is in that a parallel algorithm is in
a significantly simpler style than the MPI and less prone to the programmer’s
errors. In order to estimate the real acceleration and efficiency of the above-
mentioned approaches, a set of test calculations were performed and discussed
below.

Comparison MPI and Coarray 241

Fig. 4. Data exchange between neighboring processes in 2D domain decomposition
method written with MPI and Coarray.

Fig. 5. Different models of layered media (a–b) and the segmented digital model of a
core sample (c).

7 Numerical Experiments

7.1 Validation of the Numerical Algorithm

To validate the algorithm proposed for estimating the effective elastic parameters
of a rock core sample, a representative series of numerical experiments has been
carried out.

First, the homogeneous isotropic materials samples (plexiglas, copper and
steel) were considered, and the calculated effective parameters were compared
with the elastic moduli of a material itself (the difference is 10−6).

Second, the elastic moduli for the samples of layered materials were calcu-
lated (Fig. 5). The size of the models varied along the interlayers, across them,
the number of layers and their incline being changed. The results of the method
proposed were compared with the Schoenberg averaging method [13]. The dif-
ference decreased with increasing the size along the interlayer. For the model of
500*500*30 size along the interlayer this difference was about 4%.

Finally, calculations were done for a three-dimensional segmented digital
500*500*500 model of a carbonate core (Fig. 5c). The seismic velocities were
estimated and compared with the results of laboratory measurements. The dif-
ference makes up less than 3%.

242 G. Reshetova et al.

7.2 Comparison of MPI, MPI+OpenMP and Coarray Fortran

To compare the performance of the MPI, MPI+OpenMP and the Coarray For-
tran communications in terms of the speedup, a three-dimensional segmented
digital model of a carbonate core from the previous section (Fig. 5c) was consid-
ered as a validation test. To assess a strong scaling, the problem of 500*500*500
size remains the same as the number of processors (cores) increases. This test
was performed on the Siberian Supercomputer Center cluster, Novosibirsk,
Russia, that includes 27 CPU Intel Xeon E5-2697A v4 with 16*2 logical cores
per node (32 threads). The Intel Fortran Compiler 2019.1.144 was used to cre-
ate an executable file. We have chosen the performance on 96 cores as a baseline
for comparison. The CPU number is scaled from 3 to 16. Figure 6 (on the left)
presents the strong scaling results measured for the MPI, MPI+OpenMP and
the Coarray. The measured values are compared with the ideal speedup. We
observe the speedup of about 4.5 when scaling from 96 cores to 576 cores.

To estimate weak a scaling, we have to increase the problem size at the same
rate as the number of processors, keeping the amount of work per processor
the same. To be able to make this comparison, we have chosen the problem
of 500*500*100 size as a baseline and have increased the size of the problem
in the third dimension. In order to analyze the performance, we have limited
computations to a constant number of iterations, because the numerical scheme
is subject to the stability condition and may take longer to converge with a
denser grid. Figure 6 (on the right) presents the week scaling efficiency results
measured for the MPI, MPI+OpenMP and the Coarray Fortran versions of the
code. The results presented demonstrate that with an increase in the number of
cores, the CAF implementation provides comparable performance to an equiva-
lent MPI version, while the MPI+OpenMP hybrid model is worse than the pure
MPI model and CAF. We are aware of the fact it is quite possible that the best
implementation of the MPI+OpenMP among many possible implementations
was not chosen. However we did not intend to compare all alternative task dis-
tributions among the MPI processes and the OpenMP threads within them for

Fig. 6. The strong scaling speedup (on the left) and the week scaling efficiency (on the
right) on CPU Intel Xeon E5-2697A v4.

Comparison MPI and Coarray 243

choosing the best one. We were aimed at revealing whether the Coarray can be
considered to be an alternative to the conventional parallel parallelizations.

8 Conclusion

We have implemented the three parallel algorithms, written in Fortran 90 lan-
guage, to solve the problem to determine the effective elastic moduli of a rock
core sample from their tomographic images. This new method is based on the
energy equivalence principle and the new approach to solving the 3D static
elasticity problem by the iterative relaxation technique. The elastic moduli are
determined by the parallel computation of potential energy of the elastic defor-
mations arising in a sample under a certain homogeneous stress applied to the
boundary, thus simulating the effects occurring in laboratory measurements. The
numerical experiments have shown a high accuracy of the method proposed.

The three parallel implementation strategies of this method were compared
in terms of performance and ease of programming. From this comparison it
follows that Coarray Fortran can be considered as an alternative to the MPI and
MPI+OpenMP. The analysis of acceleration and efficiency shows that Coarrays
start to manifest superiority when using rather a large number of processes.

9 Author’s Contribution and Funding

Galina Reshetova has developed the 3D parallel implementations for static vir-
tual experiments with MPI, OpenMP and Coarray Fortran. Vladimir Cheverda
has justified convergence of the relaxation processes used for the 3D elastic
static solution. Tatyana Khachkova has prepared digital core samples and per-
formed numerical experiments. Galina Reshetova has been supported by the Rus-
sian Science Foundation project 19-77-20004. Vladimir Cheverda and Tatyana
Khachkova have been supported by RFBR project 19-01-00347.

Acknowledgements. The research has been carried out using the equipment of the
shared research facilities of HPC computing resources at the Joint Supercomputer
Center of RAS, the Siberian Supercomputer Center of SB RAS and the Irkutsk Super-
computer Center of SB RAS.

References

1. Aboudi, J.: Mechanics of Composite Materials: A Unified Micromechanical App-
roach. Elsevier Science, Amsterdam (1991)

2. Belonosov, M.A., Kostov, C., Reshetova, G.V., Soloviev, S.A., Tcheverda, V.A.:
Parallel numerical simulation of seismic waves propagation with intel math Kernel
library. In: Manninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 153–
167. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36803-5 11

3. Chivers, I., Sleightholme, J.: Introduction to Programming with Fortran. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-17701-4

https://doi.org/10.1007/978-3-642-36803-5_11
https://doi.org/10.1007/978-3-319-17701-4

244 G. Reshetova et al.

4. Christensen, R.: Introduction to Mechanics of Composite Materials, 1st edn. Wiley,
New York (1979)

5. ISO/IEC 1539–1:2010, Fortran – Part 1: Base language, International Standard
(2010)

6. Dupuy, B., Garambois, S., Virieux, J.: Estimation of rock physics properties from
seismic attributes - Part 1: Strategy and sensitivity analysis. Geophysics 81(3),
M35–M53 (2016)

7. Dupuy, B., et al.: Estimation of rock physics properties from seismic attributes –
Part 2: Applications. Geophysics 81(4), M55–M69 (2016)

8. Kostin, V., Lisitsa, V., Reshetova, G., Tcheverda, V.: Parallel algorithm with mod-
ulus structure for simulation of seismic wave propagation in 3D multiscale multi-
physics media. In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol. 10421, pp. 42–57.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62932-2 4

9. Kostin, V., Lisitsa, V., Reshetova, G., Tcheverda, V.: Simulation of seismic waves
propagation in multiscale media: impact of cavernous/fractured reservoirs. In:
Jónasson, K. (ed.) PARA 2010. LNCS, vol. 7133, pp. 54–64. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28151-8 6

10. Landau, L.D., Lifshitz, E.M.: Mechanics. Nauka, Moscow (1988)
11. Pevzner, R., et al.: Feasibility of time-lapse seismic methodology for monitoring

the injection of small quantities of CO2 into a saline formation, CO2CRC Otway
Project. Energy Procedia 37, 4336–4343 (2013)

12. Reshetova, G., Khachkova, T.: Parallel numerical method to estimate the effective
elastic moduli of rock core samples from 3D tomographic images. In: Dimov, I.,
Faragó, I., Vulkov, L. (eds.) FDM 2018. LNCS, vol. 11386, pp. 452–460. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11539-5 52

13. Schoenberg, M., Muir, F.: A calculus for finely layered anisotropic media. Geo-
physics 54(5), 581–589 (1989)

14. Sendetski, J. (ed.): Composition Materials, vol. 2. Mechanics of Composition Mete-
rials [Russian translation]. Mir, Moscow (1978)

15. Shermergor, T.: The Theory of Elasticity of Microinhomogeneous Media [Russian
translation]. Nauka, Moscow (1977)

16. Zhang, W., Dai, G., Wang, F., Sun, S., Bassir, H.: Using strain energy-based predic-
tion of effective elastic properties in topology optimization of material microstruc-
tures. Acta. Mech. Sin. 23(1), 77–89 (2007)

17. Vishnevsky, D., Lisitsa, V., Tcheverda, V., Reshetova, G.: Numerical study of the
interface errors of finite-difference simulations of seismic waves. Geophysics 79,
T219–T232 (2014)

18. Virieux, J.: P-SV wave propagation in heterogeneous media: velocity-stress finite-
difference method. Geophysics 51, 889–901 (1986)

https://doi.org/10.1007/978-3-319-62932-2_4
https://doi.org/10.1007/978-3-642-28151-8_6
https://doi.org/10.1007/978-3-030-11539-5_52

Computational Issues in Construction
of 4-D Projective Spaces with Perfect
Access Patterns for Higher Primes

Shreeniwas N. Sapre1(B) , Sachin B. Patkar2, and Supratim Biswas1

1 Department of Computer Science and Engineering, IIT Bombay, Mumbai, India
{sapre,sb}@cse.iitb.ac.in

2 Department of Electrical Engineering, IIT Bombay, Mumbai, India
patkar@ee.iitb.ac.in

Abstract. Matrix operations are some of the important computations
in scientific and engineering domains. Parallelization approaches for such
operations have been a common topic of research. One of the novel app-
roach proposed during the 90s is architectures based on finite projective
spaces. A key benefit of this approach is the communication efficiency
that can be achieved by exploiting perfect access patterns in the architec-
ture. Such spaces of dimension 4 appear suitable for matrix-matrix mul-
tiplication and are amenable for distributions with good performance
potential. The construction of such 4-dimensional spaces with perfect
access patterns, however, has been reported only for the smallest space –
the one corresponding to prime 2. In this paper, we explore the construc-
tion for primes greater than 2. We compare two alternative methods for
computational construction of such spaces, based on their efficiency. We
present the successful construction of such a space for prime 3 and indi-
cate directions for future work.

Keywords: Projective spaces · Parallel computations

1 Introduction

Matrix operations are common to many applications, from fluid dynamics equa-
tions to algorithms used to rank the result of web searches. Linear system solvers
often use LU or Cholesky factorization. LU decomposition of a matrix A decom-
poses the matrix into two - a lower triangular matrix L and an upper triangular
matrix U. Cholesky decomposition decomposes a symmetric positive definite
matrix A as A = L · LT. Multiplication of two matrices has often been used
as an indicator of the performance of a single computer, or a cluster. As the
matrix sizes involved in engineering applications tend to be large, parallelizing
such algorithms has been an actively researched topic [2].

Parallelization of matrix computations often requires splitting the matrix
across memory blocks and distributing the actual computations across processing

c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 245–259, 2019.
https://doi.org/10.1007/978-3-030-25636-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_20&domain=pdf
http://orcid.org/0000-0003-0170-6075
https://doi.org/10.1007/978-3-030-25636-4_20

246 S. N. Sapre et al.

units [3]. To address these, Karmarkar used principles of finite projective geome-
tries to propose a novel interconnection scheme [4]. Finite projective geometries
are parameterized by their dimension d and a prime power pk. The elements of
these geometries correspond to the processors and memories. The incidence rela-
tions of the geometry elements correspond to the interconnections. The alloca-
tion of data to memory blocks and computations to processors is governed by the
geometry and its incidence relations. The definition of the scheme ensures that
the communication of data is carried out without any conflicts, and involves all
the processors and memories, by exploiting perfect-access patterns and sequences
based on the properties of the geometry. These characteristics can be used to
develop algorithms for various problems.

In an earlier, as yet unpublished write-up [7] we investigated the properties
of Sparse Matrix-Vector multiplication with a 2 dimensional (or 2-D for short)
projective space for any prime, and LU Decomposition with a 4 dimensional
(4-D) projective space corresponding to prime 2, with promising results. We are
extending these results in our ongoing research. We are interested in understand-
ing the potential of 4-D finite projective spaces for higher primes, currently in
the context of matrix-matrix multiplication.

Performance comparisons in such studies are usually addressed as an asymp-
totic analysis of the resource appetite - memory footprint, amount of computa-
tions or communications - of the scheme. However, an asymptotic analysis may
not be the best choice for this first study of 4-D projective spaces. The sizes of
the 4-D projective spaces (this corresponds to the number of computers in the
network) increase rapidly for higher primes. Moreover, there are large gaps in
the sizes corresponding to consecutive primes. For instance, the number of com-
puters in the space for prime 2 is 155, for prime 3 is 1210, for prime 5 is 20306
and for prime 7 is 140050 (Table 1). Hence the number of distinct practical 4-D
projective spaces we can consider in our first comparison is a discrete few. In
light of this, we aim first at an exact comparison of the communication appetites.
Once we get a concrete handle on the exact comparisons, we plan to address an
asymptotic comparison in a subsequent study.

Table 1. Characteristics of subspaces of 4-D spaces for some primes

Prime #Points #Lines #Planes #Lines incident on every plane

2 31 155 155 7

3 121 1, 210 1, 210 13

5 781 20, 306 20, 306 31

7 2, 801 140, 050 140, 050 57

11 16, 105 1, 964, 810 1, 964, 810 133

13 30, 941 5, 259, 970 5, 259, 970 183

17 88, 741 25, 734, 890 25, 734, 890 307

19 137, 561 49, 797, 082 49, 797, 082 381

Computational Issues in Construction of 4-D Projective Spaces 247

The construction of 2-D projective spaces is well-understood and is com-
putationally simple as well. Construction of the smallest 4-D projective space
corresponding to prime 2 has been documented in the literature [7]. Constructing
4-D spaces for higher primes turns out to be non-trivial if targeting the desirable
property of perfect access patterns. Constructing these spaces for higher primes
becomes an essential step since we are aiming for an exact comparison of the
communication appetite.

In this paper, we document our study of two approaches for computationally
constructing 4-D spaces for higher primes with perfect access patterns, their
performance comparison at a high level, as well as the implementation of the
selected approach. We report the successful construction of such a space for
prime 3, for what we believe is the first time in literature. We conclude the
paper by summarizing the results, as well as spelling out future work directions
enabled by this research.

2 Projective Spaces Based Interconnect Topologies

We describe the basic concepts of projective spaces first. Projective spaces are
usually constructed from Galois fields [6]. Consider a finite field F = GF(pk) with
pk elements for a prime p.

An example Finite Field can be generated as follows. For each value of s in
GF(s), one needs to first find a primitive polynomial for the field. Such primitive
polynomials are well-known and have been documented in the past. The smallest
geometry, a 2-D geometry for prime 2 is generated using GF(23). One primitive
polynomial for this finite field is (x3 + x + 1). Powers of the root of this poly-
nomial, x, are then successively taken, 23 − 1 times, modulo this polynomial -
and during this operation, the coefficients are treated modulo 2. This means,
x3 is substituted with (x + 1), wherever required, since over base field GF(2),
−1 = 1. A sequence of such evaluations leads to the generation of the sequence
of (s− 1) finite field elements, other than 0. Thus, the sequence of 23 elements
for GF(23) is 0 (by default), α0 = 1, α1 = α, α2 = α2, α3 = α + 1, α4 = α2 + α

(see note1), α5 = α2 + α + 1, α6 = α2 + 1. In the multiplicative group of these
non-zero elements, which is used to construct the subspaces of the geometry, the
point αi is often denoted by its index i.

To avoid mixing up the two notations, we term the αi notation describing
the point as the point notation, and i notation describing the index of the
point as the index notation. Since αi × αj = αi+j , multiplications in the point
notation correspond to additions in the index notation. Similarly, (αi)

j
= αi×j ,

and exponentiation in point notation corresponds to multiplications in the index
notation.

A projective space of dimension d is denoted by P(d,F), and consists of one-
dimensional subspaces of the (d+1)-dimensional vector space over F. The points
in this space correspond to the zero-dimensional subspaces. The total number of

1 α4 = α ∗ α3 = α ∗ (α + 1).

248 S. N. Sapre et al.

points in P(d,F) are P (d) =
(sd+1 − 1)

s − 1
. Let us denote the collection of all the

l -dimensional projective subspaces by Ωl. To count the number of elements in
each of these sets, we define the function φ [4].

φ(n, l, s) =
(sn+1 − 1)(sn − 1) · · · (sn−l+1 − 1)

(s − 1)(s2 − 1) · · · (sl+1 − 1)
(1)

The number of m-dimensional subspaces of P(d, F) is φ(d, m, s). Hence,
the number of l -dimensional subspaces contained in an m-dimensional subspace
(where 0 ≤ l < m ≤ d) is φ(m, l, s), while the number of m-dimensional subspaces
containing a particular l -dimensional subspace is φ(d-l-1, m-l-1, s). For details
on projective space construction, refer [6]. We summarize subspaces of 2-D and
4-D spaces in Table 2.

Table 2. Characteristics of subspaces of 2-D and 4-D spaces for prime p

Dimension #Points #Lines #Points/Line #Planes #Lines/P lane

2 p2 + p + 1 p2 + p + 1 p + 1 - -

4 p5−1
p−1

(p5−1)(p2+1)
p−1

p + 1 (p5−1)(p2+1)
p−1

p2 + p + 1

For example, to generate Projective Geometry corresponding to above Galois
Field example (GF(23)), the 2-d projective plane, we treat each of the non-
zero element as a point of the geometry. Further, we pick subfields (vector
subspaces) of GF(23), and label them as lines. Thus, the 7 lines of the pro-
jective plane are {1, α, α3 = 1 + α}, {1, α2, α6 = 1 + α2}, {α, α2, α4 = α2 + α},
{1, α4 = α2 + α, α5 = α2 + α + 1}, {α, α5 = α2 + α + 1, α6 = α2 + 1}, {α2, α3 =
α + 1, α5 = α2 + α + 1} and {α3 = 1 + α, α4 = α + α2, α6 = 1 + α2}. The cor-
responding geometry can be seen in Fig. 1.

Automorphisms: Automorphisms on the points of a projective space retain
the incidence relations, mapping lines to lines, and planes to planes. Thus, if f
is an automorphism, the line between points i and j will be mapped to the line
between points f(i) and f(j). Similarly, the plane containing i, j, and k will
be mapped to the plane containing f(i), f(j) and f(k). The Frobenius and
shift automorphisms are of particular interest. The Frobenius automorphism is
Φ(x) = xp, p being the characteristic of F. This automorphism corresponds to
multiplying index of each point by p modulo the number of points. Similarly,
the shift automorphism corresponds to adding 1 to each point index modulo the
number of points. We will revisit the automorphisms and their important role
in the construction in subsequent sections.

Order of Frobenius Automorphism: Note that xp(d+1) ≡ x mod(p). Also,
xp(d+1) corresponds to multiplying p and (d+1) in the index notation, which is
the same as raising xp to (d+1)th power in the point notation. This operation is

Computational Issues in Construction of 4-D Projective Spaces 249

the same as (d+1) repeated applications of the Frobenius automorphism. Thus,
(d + 1), or 5 repeated applications of this automorphism cycle back to original
point.

Frobenius automorphism is cyclic with order 5 (2)

Order of Shift Automorphism: The shift automorphism maps each point
index to the next point index, and thus shifts the points cyclically. Hence,
repeated application of this automorphism by the number of points cycles back
to the original point.

Shift automorphism is cyclic with order equal to number of points, i.e.
p5 − 1
p − 1

(3)
Since Frobenius and Shift automorphisms are cyclic, each generates a subgroup.

0

1

2

34

5

6

Fig. 1. 2-D projective geometry

For projective spaces, Karmarkar had evolved an architecture [4] for parallel
computing. There are problems which have been found to be amenable for paral-
lel computation using processing units and memories, connected using subgraph
of an instance of projective geometry. For such problems, we choose a pair of
dimensions dm and dp. The subspaces of dimension dp and dm are associated
with the processing units and memories respectively. If a particular subspace of
dimension dm and dp have a non-empty intersection, the corresponding process-
ing unit and memory are connected together [4].

For a 2-D space, a perfect access pattern is defined to be a collection of
tuples {(ai, bi), i = 1, . . . n}, where n denote the number of points in the space,
satisfying:

1. Each of the collections of points {ai} and {bi} forms a permutation of all
points in the geometry

2. The collection of lines li = 〈ai, bi〉 forms a permutation of all lines in the
geometry

250 S. N. Sapre et al.

Once the problem is broken down to parallelizable atomic computations, and
corresponding memory blocks for storing data, the computations and memory
blocks can be allocated to processors and memory ensuring that the computation
takes place on a processor directly connected to the memory holding the requiring
data. Thus, data required for computation is brought in parallelly, computations
on each processor are carried out parallelly, leading to efficient and conflict-free
use of resources. A weak point of projective geometry based schemes may be the
fact that the number of processes is determined by the projective space, so it is
likely that some modern hardware may be used inefficiently.

In the context of 4-D spaces, the scheme proposed by Karmarkar for allocat-
ing and sequencing data/computations to the memories and processors respec-
tively, for the problem of LU Decomposition, is applicable for matrix multipli-
cation as well. In this scheme, memories correspond to the lines of a 4-D space,
and processors to the planes of a 4-D space. The block row and column indices
of the matrices are mapped to the points of the same space. A typical operation
in matrix multiplication is of the form

C(i, k) ← C(i, k) + A(i, j) × B(j, k)

In general case, every two points uniquely determine a line (memory), and two
lines/three points uniquely determine a plane (processor). When a triplet (i, j, k)
is in a general position, the points i, j, k uniquely determine a plane, say, P. The
computation of the partial sum A(i, j) × B(j, k) is allocated to the processor
corresponding to P. To carry out this computation, the processor P needs to
communicate with the memory modules corresponding to the point pairs (i, j),
(j, k) and (i, j). Since the lines determined by these pairs are incident on the
plane P, the necessary connections exist as direct connections.

A perfect access pattern for a 4-D space is defined to be a collection of triplets
{(ai, bi, ci), i = 1, . . . n}, where n is the number of lines in the space, satisfying:

1. Each of the collections of lines {〈ai, bi〉}, {〈bi, ci〉} and {〈ci, ai〉} forms a per-
mutation of all lines in the geometry

2. The collection of planes 〈ai, bi, ci〉 forms a permutation of all planes in the
geometry

It is easy to see that in a perfect access pattern, the sequence of the points
in the triplet is critical. Each triplet is a 3-tuple, and not an unordered set of
3 points. In an analogous way, the construction of 2-D spaces also relies on the
sequence of points in a line to ensure perfect access patterns.

We now see the detailed methods to construct projective spaces.

3 Construction of Projective Space

3.1 2-D Space Construction

The method described in Sect. 2, viz. identifying a primitive polynomial, then
identifying points (0-dimensional subspaces), and then lines (1-dimensional sub-
spaces), can be used to construct a 2-D projective space for any prime power pk.

Computational Issues in Construction of 4-D Projective Spaces 251

As a naive method, one can try all possible linear combinations of distinct points,
and enumerate all the lines. For instance, with the geometry for p = 2 described
in the earlier section, if the lines are identified as sets of points, the lines will
get enumerated as in the columns marked ¶ in Table 3. In this enumeration, it is
easy to see that none of the columns of points is a permutation of all the points.

Table 3. Lines in 2-D space as sets vis-a-vis tuples

Line ¶ Lines as sets § Lines as tuples

Point 1 Point 2 Point 3 Point 1 Point 2 Point 3

0 0 1 3 0 1 3

1 1 2 4 1 2 4

2 2 3 5 2 3 5

3 3 4 6 3 4 6

4 0 4 5 4 5 0

5 1 5 6 5 6 1

6 0 2 6 6 0 2

Does not produce permutations Produces permutations

Obviously, this method does not retain the sequence of points. It is possible
to construct the space by exploiting the structure for the 2-D spaces, by using
the Shift automorphisms. Here, it is important to note that the repeated appli-
cations of the shift automorphism give rise to n distinct automorphisms where
n is the number of points in the space. Thus the repeated applications of shift
automorphism on a point result in cycling through all the points. We see that
the tuple of points (0, 1, 3) corresponding to line number 0 in columns marked
§ in Table 3, yields each subsequent line, when each of the point index is incre-
mented by 1 modulo 7 - the number of points. Thus, by repeated application
of the shift automorphism on the tuple of points corresponding to first line, we
can construct the incidence relation of lines to points, while also generating the
perfect access pattern. Also note that applying the shift automorphisms to a
tuple naturally results in another tuple. This can be seen clearly in the column
marked § in Table 3. We also note that the order of the shift automorphism is
the number of points, and that for a 2-D space, the number of points and lines
is exactly the same. We see that shift automorphism is adequate to generate all
the lines in a 2-D space.

The construction of 2-D spaces is summarized in Algorithm 1.

3.2 Construction of 4-D Projective Space - Permuting Orbit
Representatives

In existing literature [1,7], the generation of 4-D projective spaces with perfect
access patterns has been detailed out only for prime p = 2. The generation for
higher primes has not been reported in the literature yet.

252 S. N. Sapre et al.

Algorithm 1. Identify lines in 2-D space F

1. Consider points x = 0 and y = 1
2. Identify new line w as the tuple consisting of maximal set of linear combinations

of x and y.
– Let X = {0, 1}, the set of points identified till now on the line w
– Iterate while no new points can be added to X

• Find Xnext = {c1x1 + c2x2, ci ∈ Zp, xi ∈ F}
• Stop iteration if Xnext = X
• X ← Xnext

1. w ← tuple(X)
2. Apply shift transformation on w successively to identify additional lines.

We saw that the shift automorphism can only generate n elements (points,
lines, planes) from a given element, since it has order n (number of points in
the space). From Table 2, we see that the number of lines or planes in a 4-D
space is much higher than the number of points, and hence we conclude that
shift automorphism alone will not be adequate to generate the entire space.

Will using a combination of Frobenius and shift automorphisms be adequate?
It turns out that adding the Frobenius automorphism for generation increases
the number of elements that can be generated, but still can generate the entire
space only for p = 2 and for no higher primes. The theorem below clearly shows
the reasons behind this inadequacy, and overcoming this limitation by identifying
ways to generate the entire space is the main focus of the work reported in
this paper.

Theorem 1. Frobenius and shift automorphisms together can generate the
entire 4-D projective space for p = 2 and for no higher primes

Proof. 1. Number of lines in the space is
(p5−1)(p2 + 1)

(p − 1)
2. Frobenius automorphism has order d + 1 = 5

3. Shift automorphism has order
(p5−1)
(p − 1)

4. Repeated application of only Frobenius and Shift automorphisms on a single

line can generate 5 × (p5−1)
(p − 1)

other lines.

5. p2 + 1 = 5 for p = 2, and p2 + 1 > 5 for p > 2 ��
These special automorphisms can be considered for generation of parts of the

entire space. We first state and prove a few results on these parts that are thus
generated.

Definition 1. For F = P(4, GF (p)), we define the F-subgroup as the set
of repeated applications of the Frobenius automorphism; S-subgroup as the set
of repeated applications of the Shift automorphism, and SF as the union of these
two subgroups.

Computational Issues in Construction of 4-D Projective Spaces 253

Since both the Frobenius and Shift automorphisms are cyclic, their repeated
applications would result in a subgroup. In our current research work, we do not
investigate the algebraic structure SF in further details, since we only look at
its adequacy (or lack of it) in generating the entire space. We denote by n, the

number of points in F, i.e.
p4+1 − 1
p − 1

.

We state some results and prove the not so obvious ones about the orbits
with respect to these subgroups.

Theorem 2. 1. The orbit of any point under the F-subgroup contains exactly 5
distinct elements.

2. The orbit of any point under the S-subgroup contains exactly n distinct ele-
ments.

3. The orbit of any line or plane under the S-subgroup contains exactly n distinct
elements.

4. The orbit of any line or plane under the F-subgroup contains either 1 or
exactly 5 distinct elements.

Proof. Most of the statements in this theorem are trivial. We provide an example
for (3) where the F-subgroup application can result in a single line.

For P(4, GF (5)), the first line identified through points 0 and 1 has points
{0, 1, 5, 25, 125, 625}. When each point is multiplied by 5 modulo 781 (number
of points in the space), the resultant set of points is identical to the same set. ��

These results allow us to identify the parts that can be generated by SF.

Theorem 3. The orbit of any line/plane under SF has either n or 5 × n
elements.

Theorem 4. There are
⌊
p2 + 1

5

⌋
+((p2 +1)%5) orbits of SF, where % denotes

the integer remainder.

Proof. 1. There are n × (p2 + 1) lines/planes, and each orbit contains either n
or 5 × (p2 + 1) lines/planes.

2. Thus, there are
⌊
p2 + 1

5

⌋
orbits each containing 5 × (p2 + 1) lines/planes.

3. Remaining (p2 + 1)%5 orbits each has n lines/planes
4. For instance, p = 5 results in

⌊
26
5

⌋
i.e. 5 orbits each with 781 × 5 i.e. 3905

lines, and 1 orbit with 781 lines, to result in the total of 20306 lines.
��

We define the function Ξ as this number of orbits: Ξ(p) =
⌊
p2 + 1

5

⌋
+

((p2 + 1)%5)
With this background, we now present two different approaches for generat-

ing the entire space, and consider the characteristics of these approaches. The
first approach attempts to generate one orbit at a time, and then permutes

254 S. N. Sapre et al.

Algorithm 2. 4-D Space Generation by permuting orbit representatives
1. Identify a new Line

(a) Identify two points p1 and p2, such that the line joining these two points
({c1p1 + c2p2, ∀ci ∈ Zp}) has not yet been identified

2. Identify a new Plane
(a) Identify two lines l1 and l2, such that the line joining l1 and l2 has not yet

been identified.
(b) Find new plane P as all linear combinations of points on these two lines {c1p1+

c2p2, ∀c1 ∈ l1, c2 ∈ l2}
3. Generate new Lines/Planes

(a) Repeat
i. Let l be a new line identified by line-identification step
ii. Find the set of lines in the orbit of l by repeated application of Frobenius

and Shift automorphisms
iii. Let P be a new plane identified by plane-identification step
iv. Find the set of planes in the orbit of P by repeated application of Frobenius

and Shift automorphisms
(b) until no new lines/planes can be added

4. Permute the orbits
(a) Permute the sequence of lines in each of the planes P identified in 3(a)iii

above, until the collection of their orbits is a perfect access pattern

We term the lines identified by 3(a)i and planes identified by 3(a)iii as orbit
representatives.

the sequences across the tuples to get perfect access patterns. This approach is
summarized in Algorithm 2.

We now identify ways to permute the results and the complexity of doing
that. With the approach in Algorithm2 but without the permutation step 4,
consider two lines identified in two distinct invocations of 3(a)i or two planes
identified in distinct invocations of 3(a)iii in Algorithm2. Since the two lines
(or two planes) are selected, not by considering the structure of the space, but
by virtue of the incident points (or lines) not having been combined together
earlier, the sequence of the points in the two lines (or sequence of lines in the two
planes) may not lead to a permutation. Hence, this approach can not directly
result in the space definition with perfect access patterns. Though the resulting
incidence relations between lines and planes will be correct, the sequence of lines
on the planes would not lead to perfect access patterns.

The permutation step 4 in Algorithm2 tries different permutations of the
sequence of lines in the orbit representative, till a combination of permutations
across the orbits results in a perfect access pattern.

Theorem 5. The number of different sequences required by the permutation step
is (Ξ(p) × (p2 + p + 1))!

Proof. There are Ξ(p) orbits, and each orbit representative has p2 + p + 1
lines ��

Computational Issues in Construction of 4-D Projective Spaces 255

The number of these sequences is so large, that we have tabulated (Table 4)
not the number itself, but the logarithm to base 10 of these numbers. We can
see that even for small primes, the number of trials would be very high for
the permutation approach. The next approach described aims to reduce this
complexity by addressing the problem in a different direction.

3.3 Construction of 4-D Projective Space - Using Non-singular
Matrices

In the earlier approach, the complexity increases because the orbits are identified
first, and then permuted. However, if orbits can be generated in a way that does
not require permutations, then it may be possible to control the complexity.
This approach aims at such a generation. Remember that for 2-D spaces, and
4-D space for p = 2, the generation effort is in identifying one line/plane, and
the remaining space is generated by simple arithmetic transformations on the
line/plane. If we are able to identify an automorphism, which together with
Frobenius and Shift automorphisms, can generate the space, then we can do
away with the permutation complexity.

Table 4. Number of operations required

p Log10 (Number of operations)

Permutations Non-singular matrices

3 26.6 11.9

5 342.8 17.5

7 1325.0 21.2

General automorphisms on our field of interest are represented by (d + 1) ×
(d + 1) non-singular matrices over Zp [5]. For 4-D spaces, this search space has
5 × 5 non-singular matrices over Zp. An analytical structure of these general
automorphisms is in progress, and will be reported in a separate paper. In this
paper, we focus on a computational approach. The total number of such non-
singular matrices is bounded above by the total number of 5 × 5 matrices over
Zp, i.e. by p25. The logarithm to base 10 of this number for some prime values
is tabulated in Table 4, and it is clear that trying to search suitable non-singular
matrices is a simpler problem compared to permuting the orbits.

Generating non-singular matrices, particularly over Zp can be done in a more
predictable manner, avoiding trial-and-error with singularity checks. Instead, we
use the following observations to systematically generate only the non-singular
matrices.

1. The first row can be any row other than the zero row, with p5−1 possibilities.
2. The second row can be any row other than a multiple of the first row, with

p5 − p possibilities

256 S. N. Sapre et al.

3. The third row can be any row other than a linear combination of the first
two rows, with p5 − p2 possibilities

4. In general, m’th row can be any row other than a linear combination of the
first m − 1 rows, with p5 − pm−1 possibilities.

These observations allow us to generate the non-singular matrices in a genera-
tive way, rather than exhaustively generating all the matrices and checking for
singularity. These observations also clearly indicate the number of non-singular
matrices to be

(p5 − 1) × (p5 − p) × (p5 − p2) × (p5 − p3) × (p5 − p4) ≈ O(p25).

Suitability of Non-singular Matrices: Ideally, a candidate non-singular
matrix to help us jointly generate the entire space, should complement the Frobe-
nius and Shift automorphisms. That is, it should generate precisely the complete
space along with Frobenius and Shift automorphisms, and nothing more. Since
we do not have any existing characterizations of the general automorphisms,
we use a weaker condition - the non-singular matrix should generate at least
the entire space. Thus, if a non-singular matrix (its associated automorphism)
has an order larger than required to complement Frobenius and Shift automor-
phisms, we do not discard the matrix. As we refine the criteria after studying
the characteristics of the non-singular matrices in the planned study, we will aim
to strengthen this criterion further, aiming to arrive at an optimal one.

With this background, we are now ready to define the algorithm for this
approach, as detailed in Algorithm3. Since the number of non-singular 5 × 5
matrices over Zp is O(p25), that is also an upper bound for the complexity of
the algorithm in the non-singular matrix based approach.

3.4 Implementation

Even though the complexity of the non-singular matrix based approach is com-
paratively lower, it is still large at p25. The implementation will therefore have
to test these many candidate non-singular matrices when looking for a solution.

Implementing the generation algorithm as a sequential implementation is not
practical. This problem turns out to be embarrassingly parallel, since a candidate
non-singular matrix can be tested for suitability, independent of the matrices.

We have implemented this algorithm using Python 3, and are running it on
the SpaceTime parallel cluster at computer center, IIT Bombay. The cluster
has 216 CPU-compute nodes, with each compute node having processor 2xIntel
Skylake 6148 2.4 GHZ and 192 GB Ram, for a total peak performance of 663.5
TFlops.

Since the problem is embarrassingly parallel, we choose a queue (the small
queue) on the cluster which has a higher throughput. This queue provides 60
processes per user. We have been using 30 processes for finding perfect access
patterns for prime 3, and 30 processes for prime 5. While one solution will be
adequate per prime, we are aiming to enumerate multiple solutions, to be able to

Computational Issues in Construction of 4-D Projective Spaces 257

Algorithm 3. 4-D Space Generation using Non-Singular Matrices
1. Identify a new Line

(a) Identify two points p1 and p2, such that the line joining these two points
({c1p1 + c2p2, ∀ci ∈ Zp}) has not yet been identified

2. Identify a new Plane
(a) Identify two lines l1 and l2, such that the line joining l1 and l2 has not yet

been identified.
(b) Find new plane P as all linear combinations of points on these two lines {c1p1+

c2p2, ∀p1 ∈ l1, p2 ∈ l2 and c1, c2 ∈ Zp}
3. Generate new Lines / Planes

(a) Let l0 be a new line identified by line-identification step
(b) Determine the orbit of l0 under repeated application of Frobenius and Shift

automorphisms
(c) Let P0 be a new plane identified by plane-identification step
(d) Determine the orbit of P0 under repeated application of Frobenius and Shift

automorphisms
(e) For each non-singular matrix M

i. let i ← 0
ii. For 1 < i < # of orbits:

A. let li be the map of line li−1 under automorphism corresponding to
M. Similarly let Pi be the map of plane Pi−1 under M

B. Determine the orbits of li and Pi.
C. If either of the orbits contain lines / planes already identified in earlier

orbits, continue the outermost iteration with the next non-singular
matrix

iii. If all the orbits identified in the iteration above are distinct, then we have
generated orbits resulting in perfect access pattern. The automorphism
corresponding to non-singular matrix M successfully generates the entire
space.

4. Generate the non-singular matrices
(a) 5-deep nested loop, iterating over all the possible combinations of rows
(b) For each choice of row at a particular row number, identify the discard list for

next depth of the loop
(c) After choosing 5 linearly independent rows, produce this as a candidate matrix
(d) Keep producing candidate matrices until all combinations are produced

get insights into the structure of the non-singular matrices that turn out to be
suitable. When enumerating multiple solutions, distinct non-singular matrices
can and do end up in identical perfect-access-patterns.

Code Overview: The code implements step 4 of Algorithm 3 as a python gen-
erator, yielding one non-singular matrix on every invocation. The rows of the
matrix are also constructed using another generator. Since the code is run on
multiple processes, the entire search space is divided across the number of pro-
cesses. The code also implements an in-built timeout feature, with each process
saveing its internal state after a specific time. A subsequent execution of the

258 S. N. Sapre et al.

process with the same MPI rank resume rather than repeat the run. Thus, the
search can span multiple runs.

To simplify the work division and resumable execution, we assign each matrix
a unique number, based on the sequence in which the matrices are enumerated.
This numbering allows quick mapping from sequence number to the matrix. This
numbering scheme enables each process to efficiently identify the resumption
point.

With this non-singular matrix generator, the code determines the first orbit,
and then tries the generated matrices one by one. For each matrix, the code
applies it repeatedly on the orbit representative identified in the beginning. On
each result of the matrix application, the Frobenius and Shift automorphisms
are applied. If the resulting line tuples do not form a permutation, the matrix is
discarded at the earliest opportunity. If all the tuples turn out to be permuta-
tions, for the entire space, then the matrix is a success. In such a case, the orbit
representative and its images under the successful matrix together is the signa-
ture for the candidate matrix. Solutions are tested for uniqueness with respect
to this signature.

With this setup, we have been able to successfully generate several alternative
solutions for prime 3. The summary of the results so far appears in Table 5.

For prime 5, the ongoing runs have not identified any solution so far.

Table 5. Results of generation

Prime 3 5

non-singular matrices 475,566,474,240 226,614,960,000,000,000

Searched so far 5,806,126,476 225,286,319

Percentage 1.22% 9.94e-8%

Success (suitable matrices) 4,156,797 0

Unique patterns 4834 0

4 Conclusions and Future Work

We have summarized our work on the construction of projective spaces of dimen-
sion 4 with perfect access patterns, for higher primes (p > 2). We have identified
the analytical and computational issues in constructing such spaces. We have
compared two methods for such construction, and implemented the one with
computationally lower complexity. With this implementation, we have, for the
first time reported the successful construction of a 4-D projective space with
perfect access patterns for prime p = 3.

For our larger research goal, to characterize the performance of matrix-matrix
multiplications over parallel computers connected in such perfect access patterns
for higher primes - p > 3 as well, we plan to extend this work in the following
directions:

Computational Issues in Construction of 4-D Projective Spaces 259

1. Explore feasibility of analytically identifying a set of generators, preferably
a minimal set, for the automorphism group. Also, study the suitable non-
singular matrices for p = 3 to gain insights into the structure of such matrices,
aiming to reduce the search space further.

2. Explore computational/implementation optimizations for efficient
construction.

3. Study the performance characteristics of matrix-matrix multiplications using
the spaces so constructed, for at least two or three primes.

Acknowledgements. The authors would like to thank Dr. B. S. Adiga for the many
discussions on the concepts of projective geometry, and Prof Milind Sohani for the
concepts of algebraic structure of the projective spaces.

References

1. Amrutur, B.S., Joshi, R., Karmarkar, N.K.: A projective geometry architecture for
scientific computation. In: Proceedings of the International Conference on Appli-
cation Specific Array Processors, pp. 64–80, August 1992. https://doi.org/10.1109/
ASAP.1992.218581

2. D’Azevedo, E.F., Dongarra, J.: The design and implementation of the parallel out-
of-core ScaLAPACK LU, QR and cholesky factorization routines. University of Ten-
nessee, Knoxville. Technical report (1997)

3. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing.
Addison–Wesley (2003)

4. Karmarkar, N.: A new parallel architecture for sparse matrix computation based on
finite projective geometries. In: Proceedings of Supercomputing, pp. 358–369 (1991)

5. Karmarkar, N.: Massively parallel systems and global optimization (2008). http://
math.mit.edu/crib/08/Extended-abstract.pdf

6. Lin, S., Costello, D.J.: Error Control Coding, 2nd edn. Prentice Hall, Upper Saddle
River (2004)

7. Sapre, S., Sharma, H., Patil, A., Adiga, B.S., Patkar, S.: Finite projective geometry
based fast, conflict-free parallel matrix computations. https://arxiv.org/abs/1107.
1127

https://doi.org/10.1109/ASAP.1992.218581
https://doi.org/10.1109/ASAP.1992.218581
http://math.mit.edu/crib/08/Extended-abstract.pdf
http://math.mit.edu/crib/08/Extended-abstract.pdf
https://arxiv.org/abs/1107.1127
https://arxiv.org/abs/1107.1127

Data Processing

Dimensional Reduction Using Conditional
Entropy for Incomplete Information Systems

Mustafa Mat Deris1,2,3,4(&), Norhalina Senan1, Zailani Abdullah2,
Rabiei Mamat3, and Bana Handaga4

1 Faculty of Computer Science and Information Technology,
Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia

{mmustafa,halina}@uthm.edu.my
2 Faculty of Entrepreneurship and Business, Universiti Malaysia Kelantan,

Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
zailania@umk.edu.my

3 Faculty of Informatics and Applied Mathematics,
University of Malaysia Terengganu,

21030 Kuala Terengganu, Terengganu, Malaysia
rab@umt.edu.my

4 Program Studi Informatika, Universitas Muhammadiah Surakarta,
57162 Surakarta, Central Java, Indonesia

bana.handaga@ums.ac.id

Abstract. Dimension reduction approach is one of the main data reduction
approaches in order to reduce the storage and processing time while maintaining
the integrity of the original data. A wide range of dimension reduction
approaches are based on classical approaches such as PCA and Bayer’s, and
machine learning approaches such as clustering, and feature selection tech-
niques. However, many of the approaches do not consider the incomplete
information systems where some attribute values are missing or incomplete.
Only few studies were proposed for the problem in incomplete information
systems due to its complexities, specifically on attribute selection. The most
popular approaches is based on probability theory to replace missing values with
the most common values, or remove the missing objects from the information
systems. However, it needs to know the probability distribution of data in
advance. To overcome these issues, we propose a new approach based on
conditional entropy to reduce dimensionality. The results show that the pro-
posed approach achieves better data reduction with higher accuracy for objects
and dimensionality reduction in incomplete information systems.

Keywords: Dimension reduction � Conditional entropy �
Incomplete information system

1 Introduction

With the massive data generated daily to computer systems, it is difficult to manage and
do analysis on it. The massive volume of data not only causes the data heterogeneity
but also the diverse of dimensionalities in the datasets. For example social data

© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 263–272, 2019.
https://doi.org/10.1007/978-3-030-25636-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_21

aggregators, scientific experimental systems, the profiles of internet users, etc., are
sparse with high dimensionalities [1]. Thus, it is imperative to reduce the data while
retaining the most important and useful data. Data reduction is a process to reduce the
volume/size of data to make effective data analysis. It is mainly based on the dimension
reduction to reduce the number of features in a dataset without having to lose much
information. Dimension reduction techniques are useful to handle the heterogeneity and
massiveness of data by reducing variables data into manageable size.

A wide range of dimension reduction approaches are based on classical approaches
such as PCA and Bayer’s, and machine learning approaches such as clustering, and
feature selection techniques. However, many of the approaches do not consider the
incomplete information systems where some attribute values are missing or incomplete.
Only few studies were proposed for the problem in incomplete information systems due
to its complexities, specifically on attribute selection.

Rough set theory [2] proposed by Pawlak was successful in the study of soft
computing characterized by uncertainty of information, especially in rule extraction [3],
uncertainty reasoning [4], granular computing [5, 6], data clustering [7–9], and data
classification [10]. It has been proven to be an efficient mathematical tool as compared
with PCA, neural networks and support vector machine [11, 12] methods. Unlike those
methods, rough set theory allows knowledge discovering process to be conducted
automatically by the data themselves without any dependence on the prior knowledge
[13]. The rough set theory however, only be used to solve complete information
systems where all available objects in information system have attribute values. It is
basically based on the indiscernibility relation that conforms with the reflexive, sym-
metric and transitive properties. A problem arises when certain attribute values in
information systems are missing that cause imprecise answer to some queries, which
sometimes happens in the real world. This information system is called incomplete
information system (IIS). Because some attribute values are missing in incomplete
information systems, such relational properties are difficult to generate, and it is hard to
process the incomplete information systems with the indiscernibility relation. There
have been many efforts in studying incomplete information systems, including the
works of [14–20].

To some fields, such as data mining, bio-informatics, and machine learning, data
sets have huge number of dimensions/attributes that often be encountered. Some
attributes are irrelevant or redundant that can complicate the problem and subsequently,
degrade the performance and solution accuracy. Thus, some redundant or irrelevant
attributes need to be removed which is the main objective of attribute selection.

Some approaches on attribute selection for IIS have been proposed: tolerance
relation approach [15], and tolerance relation using conditional entropy approach [13].
However, tolerance relation approach leads to poor results in terms of approximation.
Consequently, Stefanowski and Tsoukias [17, 18] introduced similarity relation to
refine the results obtained using tolerance relation approach. However, Wang [19] and
Yang et al. [20] prove that similarity relation will lost some information and proposed
limited tolerance relation. Nevertheless, some information may also loss because the
limited tolerance relation does not consider the similarity precision between objects.
Nguyen et al. [21] improve the tolerance relation by considering the probability
matching between two objects. However, the probability distribution should be known

264 M. M. Deris et al.

in advance. Consequently, we proposed a new limited tolerance relation based on
similarity precision between the two objects [22]. In this paper, the similarity precision
proposed in [22] will be adopted to reduce the similarity objects, and the conditional
entropy will be used for dimensions/attributes reduction. The main aim of this paper is
to construct a precise uncertainty measure evaluating the accuracy of knowledge to find
attribute selection in IIS. Comparative analysis and experiment results between the
proposed approach with the limited tolerance relation approach in terms of accuracy are
presented. We found that, the proposed approach is more precise and better in terms of
attribute selection.

The rest of the paper is organized as follows. Section 2 discusses the theoretical
background of information system, rough set theory and limited tolerance relation
based on similarity precision in IIS. Section 3 describes the proposed new approach
based on conditional entropy for incomplete information systems. Conclusions of this
work are presented in Sect. 4.

2 Theoretical Background

The basic concepts of information systems and the similarity precision for limited
tolerance relation will be explained in this section.

2.1 Information Systems

An information system is a 4-tuple (quadruple) S ¼ U;A;V ; fð Þ, where U ¼ u1;f
u2; � � � ; u Uj jg is a non-empty finite set of objects, A ¼ a1; a2; � � � ; a Aj j

� �
is a non-empty

finite set of attributes, V ¼ S
a2A Va, Va is the domain (value set) of attribute a, f :

U � A ! V is an information function such that f u; að Þ 2 Va, for every
u; að Þ 2 U � A, called information function [7]. If U in S ¼ U;A;V ; fð Þ contains at
least one object with an unknown or missing value, the S is called incomplete infor-
mation system (IIS). The unknown value is denoted as “*” in incomplete information
system. In this paper, we use the quadruple S# ¼ U;A;V#; f

� �
to denote an incomplete

information system. From the notion of an information system above, in the following
sub-section we recall the notion of a tolerance relation as an approach for incomplete
information system.

2.2 Rough Set Theory

The fundamental concept of Rough Set Theory proposed by Pawlak [2] is the
approximation of lower and upper spaces of a set, where it is based on indiscernibility
relation. The indiscernibility relation is the starting point to form the partition. Two
elements x; y 2 U in S ¼ U;A;V ; fð Þ is said to be B-indiscernible (indiscernible by the
set of attribute B � A in S) if and only if f x; að Þ ¼ f y; að Þ, for every a 2 B. An
indiscernible relation induced by the set of attribute B, denoted by IND Bð Þ, is an
equivalence relation. It is well-known that an equivalence relation can induce a unique
partition. The partition of U induced by IND Bð Þ in S ¼ U;A;V ; fð Þ denoted by U=B
and the equivalence class in the partition U=B contains x 2 U and denotes by x½ �B.

Dimensional Reduction using Conditional Entropy 265

Let B be any subset of A in S and let X be any subset of U, the B-lower approximation
of X, denoted by B Xð Þ and B-upper approximation of X, denoted by B Xð Þ respectively,
are defined by

B Xð Þ ¼ x 2 U x½ �j B � X
� �

and B Xð Þ ¼ x 2 U x½ �j B \X 6¼ /
� �

:

2.3 The Similarity Precision for Limited Tolerance Relations

Given an incomplete information system S# ¼ U;A;V#; f
� �

, where A ¼ C [df g, C is
a set of condition attributes and d the decision attribute, such that f : U � A ! V�. For
any a 2 A, where Va is called domain of an attribute a and a subset B � C, the
similarity precision is defined as follows.

Definition 1. Let PB xð Þ ¼ b j b 2 B ^ b xð Þ 6¼�f g, the similarity precision d, is
defined as

d x; yð Þ ¼ PB xð Þ \PB yð Þj j
Cj j ; ð1Þ

where �j j represents the cardinality of the set.
From (1), it is clear that 0\d x; yð Þ� 1: From Definition 1, the limited tolerance

relation with similarity precision is given as follow:

Definition 2. Let an given IIS, S# ¼ U;A;V#; f
� �

. The limited tolerance relation with
similarity precision L d is defined as follows

8x;y2U�U ðLdB x; yð Þ , 8b2B b xð Þ ¼ b yð Þ ¼�ð Þ _ d x; yð Þð Þ� að Þ^
8b2B b xð Þ 6¼�ð Þ ^ b yð Þ 6¼�ð Þð Þ ! b xð Þ ¼ b yð Þð Þð Þ

where a 2 0; 1ð � is a threshold value.
Since a 2 0; 1ð �, then 0\d x; yð Þ� 1 which implies that PB xð Þ \PB yð Þ 6¼ / holds,

but not vice versa if certain threshold value of the similarity is given.
Now, the similarity precision for limited tolerance with a threshold value will be

defined as follows.

Definition 3. Let given an IIS, S# ¼ U;A;V#; f
� �

, a subset B�C and a threshold a.
The limited tolerance relation with similarity precision is defined as;
LdB x; yð Þ , dB x; yð Þ� a.

The above relation is reflexive and symmetric but not necessarily transitive. The
concept of similarity precision between objects x and y in order to determine both
objects are tolerant will be adopted [22].

266 M. M. Deris et al.

We can illustrate the above concepts with an IIS (for scholarship-application)
below:

Table 1, is a list of students S = {si|i = 1, 2, …, 9} who apply for the scholarship
sponsored by a Malaysian company. The decision is based on four criteria or condition
attributes; the ability to do analysis (C1), Studying BSc in Mathematics (C2), the
communication skills (C3), and the ability to speak in Malay language (C4). The table is
an incomplete information system, where some values are not available, stated as ‘*’.

The decision (d), where its domain values are Accept ¼ fs1; s2; s4; s5; s6; s7; s9g and
Reject ¼ fs3; s8g:

To clearly depict the limited tolerance with similarity precision as defined above,
we illustrate through an example from Table 1.

Example 1. From Table 1, two objects s1 and s8 are not tolerant if a ¼ 0:4. However,
two objects s4 and s5 are tolerant due to d s4; s5ð Þ� 0:4.

Properties and Correctness of Proof

Proposition 1. Let given an IIS, S# ¼ U;A;V#; f
� �

, a subset B � C and x 2 U. If
d[0, then a. For any x and y, LdB x; yð Þ) LB x; yð Þ

b. LdB x; yð Þ (LB x; yð Þ except the case when

PB xð Þ \PB yð Þ ¼ /

Proof

a. When d[0, then

LdB x; yð Þ , aB x; yð Þ[0

, PB xð Þ \PB yð Þ 6¼ /

^ 8a 2 PB xð Þ \PB yð Þ; fa xð Þ ¼ f a yð Þ
) LB x; yð Þ

b. It is clear that LB x; yð Þ) LdB x; yð Þ except the case when PB xð Þ \PB yð Þ ¼ /:

Definition 4. Let an given IIS, S� ¼ U;A;V�; fð Þ and B � C. The limited tolerance
class with similarity precision is defined as ILdB xð Þ ¼ y j y 2 U ^ LdB x; yð Þf g.

Table 1. An incomplete information (for scholarship-application)

Students C1 C2 C3 C4 Decision (d)

s1 Good Good Fluent * Accept
s2 Poor * Fluent Good Accept
s3 * * Not fluent Good Reject
s4 Good * Fluent Good Accept
s5 * Good Fluent Good Accept
s6 Poor Good Fluent * Accept
s7 Poor Good Fluent Good Accept
s8 * Good * * Reject

Dimensional Reduction using Conditional Entropy 267

To clearly depict the new limited tolerance class as defined above, we illustrate
through an example from Table 1.

Example 2. From Table 1, and let d� 0:5, we have the new tolerance classes as
follows

ILdC s1ð Þ ¼ s1f g; ILdC s2ð Þ ¼ ILdC s6ð Þ ¼ ILdC s7ð Þ ¼ s2; s6; s7f g; ILdC s3ð Þ ¼ s3f g,
ILdC s4ð Þ ¼ ILdC s5ð Þ ¼ s4; s5f g; ILdC s8ð Þ ¼ s8f g, and AcceptLdC ¼ s1; s2; s4; s5; s6; s7f g;
RejectLdC ¼ s3; s8f g;

From the above analysis, s1 and s8 are divided into different class.

Definition 5. Let an given IIS, S# ¼ U;A;V#; f
� �

. The lower approximation and the
upper approximation of an object x based on the limited tolerance class with similarity
precision ILdB xð Þ denoted as DB

Ld xð Þ and DLd
B xð Þ respectively are defined as

DLd
B ¼ x j x 2 U ^ ILdB xð Þ�D

� �
and DB

Ld ¼ x j x 2 U ^ ILdB xð Þ \D 6¼ /
� �

:

From Definition 2, we can generalize Proposition 1 as describe in the following
proposition.

Proposition 2. Let given an incomplete information system S� ¼ U;A;V�; fð Þ, a
subset B � A and x 2 U. If 0� d1\d2 � 1, then ILd2B � ILd1B :

Proof. For every s 2 ILd2B xð Þ, we have aB x; yð Þ� d2. Since d2 [d1, then aB x; yð Þ� d1,
that is 8s 2 ILd1B xð Þ which implies ILd2B xð Þ ¼ ILd1B xð Þ. However, if aB x; yð Þ� d1 then it
does not necessarily aB x; yð Þ� d2. Hence ILd2B � ILd1B .

To clearly depict the property of generalized tolerance class in Proposition 2, we
illustrate through an example from Table 1.

Example 3. From Table 1, we have ILd1C s2ð Þ ¼ ILd2C s6ð Þ ¼ s2; s6; s7f g for d1 ¼ 0:5.
However,

for d2 ¼ 0:75, we have ILd2C s6ð Þ ¼ s6; s7f g and thus, ILd2C s6ð Þ 6¼ ILd1C s6ð Þ.
Reduction Based on Similarity Precision
Let an given IIS, S# ¼ U;A;V#; f

� �
. The similarity precision for limited tolerance

relation L d is defined as in Definition 5. The reduction based on similarity precision
can be defined as follows,

Definition 6. The reduction of L d is given as; () { | (,) R x x x L x yB
L 

| () | | () | (,) () '*' } ybxbfb x b y ro and the reduction of U can be defined as;
RU ¼ jfx 2 U : RLdðxÞgj
For example, for the case of d ¼ 0:75; ILd2C s6ð Þ ¼ s6; s7f g. Since bðs6Þj j ¼
poor; good; fluent; �f gj j ¼ 3, and bðs7Þj j ¼ poor; good; fluent; goodf gj j ¼ 4; then

RLdðs6Þ ¼ fs7g.
Relative Reduct

268 M. M. Deris et al.

Definition 7. Let S# ¼ U;A;V#; f
� �

and * 2 VC be an IIS, and A ¼ C [fdg, then the
generalized decision wB ¼ U ! Vd is defined as follows:

wBðxÞ ¼ fu j y 2 LdBðxÞ \ u ¼ dðyÞg

And, if jwBðxÞj ¼ 1 for any x 2 U, then the incomplete information system is
consistent.

Definition 8. Let S# ¼ U;A;V#; f
� �

be an IIS and A ¼ C [fdg with B � C. The
attribute set B is a relative reduct of IIS, if and only if

(a) wBðxÞ ¼ wAðxÞ for all x 2 U;
(b) b 2 B; wB	fbg 6¼ wC

are satisfied.

3 Conditional Entropy for Incomplete Information Systems

In this sub-section we will introduce conditional entropy on Similarity Precision
Tolerance Relation approach to measure the uncertainty of knowledge in IIS.

Definition 9. Given an IIS = (U, C U{d}) and B�C. Let U=IB ¼ fIBðx1Þ; IBðx2Þ; . . .;
IBðxjUjÞg, U=d ¼ fd1; d2; . . .; dmg. The conditional entropy of B to d is defined as
follows:

ENðd j BÞ ¼ 	
XjUj

i¼1

pðIBðxiÞÞx
XjU=dj

j¼1

pðdj j IBðxiÞÞ log pðdj j IBðxiÞÞ ð2Þ

where, pðIBðxiÞÞ ¼ jIBðxiÞj
jUj ; i ¼ 1; 2; . . . Uj j; and pðdj j IBðxiÞ ¼ jpðIBðxiÞ \ djÞj

jIBðxiÞj ; i ¼ 1; 2; . . .

Uj j; j ¼ 1; 2; . . .;m
From Eq. 2, it is obvious that EN(d|B) = 0 when IBðxiÞ \ dj ¼ 0.

Proposition 3. Let IIS = (U, C U {d}) be a consistent incomplete information system.
Then we have EN(d|C) = 0.

Proof. Since IIS is consistent, then jwBðxÞj ¼ 1, for xi 2 U. This means that
LdC xið Þ � dj; dj 2 U=d. Hence, we have LdC xið Þ \ dk ¼ /; dk 6¼ dj 2 U=d;

Consequently,

ENðdjCÞ ¼ 	PjUj

i¼1
pðLdCðxiÞÞ

PjU=dj

j¼1
pðdjjLdCðxiÞÞ log pðdjjLdCðxiÞÞ

¼ 	PjUj

i¼1

jLdCðxiÞj
jUj

PjU=dj

j¼1

jdj \ LdCðxiÞj
jLdCðxiÞj log jdj \LdCðxiÞj

jLdCðxiÞj

¼ 	PjUj

i¼1

jLdCðxiÞj
jUj ð0þ 0þ . . .þ 1 log 1þ 0þ . . .0Þ ¼ 0:

Dimensional Reduction using Conditional Entropy 269

The Algorithm
The algorithm that we impose in this paper is based on breath-first search algorithm in
order to find the minimal attribute selection for incomplete information system. The
algorithm is given as follows:

Input: An IIS (U, AU{d}).
Output: A minimal attribute selection result,M
a. For all sizes = 0 to |A|
b. For every subset Attributeselection with Attributeselection = size
c. If EN(d|Attributeselection) EN(d|A), go to step b, otherwise return

M=Attributeselection
d. End
e. End

Alg. 1: Breath-first search for attribute reduction

Example 4. Given the IIS shown in Table 1. We obtain, C ¼ fC1;C2;C3;C4g
U
d ¼ f s1; s2; s4; s5; s6; s7f g; fs3; s8gg

Let a� 0:5, then we have,
ILdC s1ð Þ ¼ s1f g; ILdC s2ð Þ ¼ ILdC s6ð Þ ¼ ILdC s7ð Þ ¼ fs2; s6; s7g; ILdC s3ð Þ ¼ s3f g;

ILdC s4ð Þ ¼ ILdC s4ð Þ ¼ s4; s5f g; ILdC s8ð Þ ¼ s8f g
Based on the Definition 9, for the conditional entropy, we obtain

EN djCð Þ ¼ 	½18 ð11 log 1
1 þ 0

1 log
0
1Þ� 	 ½18 ð11 log 1

1 þ 0
1 log

0
1Þ� 	 ½18 ð01 log 0

1 þ 1
1 log

1
1Þ�	2½28 ð22 log 2

2 þ 0
2 log

0
2Þ� 	 2½38 ð33 log 3

3 þ 0
3 log

0
3Þ� 	 ½18 ð01 log 0

1 þ 1
1 log

1
1Þ�¼ 0

:

The other conditional entropy for different conditional attributes such as EN(d|
{C1}), EN(d|{C1, C2}),…, EN(d|{C1, C2, C3}), EN(d|{C2, C3, C4}), can be deduced in
the same way. To make it short, we would like to show the EN(d|{C1, C3}) = 0, which
is a relative reduct of the whole attribute set in C. It can be calculated as;

ILdC1;C3 s1ð Þ ¼ ILdC1;C3 s4ð Þ ¼ ILdC1;C3 s5ð Þ ¼ s1; s4; s5f g; ILdC1;C3 s3ð Þ ¼ s3f g
ILdC1;C3 s2ð Þ ¼ ILdC1;C3 s5ð Þ ¼ ILdC1;C3 s6ð Þ ¼ ILdC1;C3 s7ð Þ ¼ s21; s5; s6; s7f g; ILdC1;C3 s8ð Þ ¼ s8f g;

ENðdjfC1;C2gÞ ¼ 	3½38 ð33 log 3
3 þ 0

3 log
0
3Þ� 	 4½48 ð44 log 4

4 þ 0
4 log

0
4Þ�	½18 ð01 log 0

1 þ 1
1 log

1
1Þ� 	 ½18 ð01 log 0

1 þ 1
1 log

1
1Þ�¼ 	 3 0ð Þþ 4 0ð Þþ 0þ 0ð Þ ¼ 0

:.

Thus, the attribute selection is {C1, C3}.
Table 2 is the reduction information system from Table 1 using similarity precision

and conditional entropy. The objects have been reduced to 4 objects only, and the
dimensions/attributes have been reduced to 2 dimensions/attributes only, which is of
50% reduction on both number of objects and dimensions/attributes.

270 M. M. Deris et al.

4 Conclusion

Dimension reduction approach is one of the main data reduction approaches in order to
reduce the storage and processing time while maintaining the integrity of the original
data. This paper establishes a new approach based on conditional entropy for dimension/
attribute reduction in incomplete information systems, besides objects/records reduction
using limited tolerance relation with similarity precision. From the example, we manage
to make a dimensional reduction up to 50% from the original data set which subse-
quently reduce the processing time as well as storage usage. The practical applications
including feature selection on large databases will be used in the near future.

Acknowledgment. The research was supported from Ministry of Higher Education through
Fundamental Research Grant Scheme (FRGS) vote number 1643.

References

1. Chandramouli, B., Goldstein, J., Duan, S.: Temporal analytics on Big Data for web
advertizing. In: 28th IEEE International Conference on Data Engineering, pp. 90–101 (2012)

2. Pawlak, Z.: Rough sets. Int. J. Comput. Inform. Sci. 11(5), 341–356 (1982)
3. Lu, Z., Qin, Z.: Rule extraction from incomplete decision system based on novel dominance

relation. In: Proceedings of the 4th International Conference on Intelligent Networks and
Intelligent Systems, pp. 149–152 (2011)

4. Dai, J., Wang, W., Xu, Q., Tian, H.: Uncertainty measurement for interval-valued decision
systems based on extended conditional entropy. Knowl. Based Syst. 27, 443–450 (2012)

5. Skowron, A., Wasilewski, P.: Toward interactive Rough-Granular Computing. Control
Cybern. 40(2), 213–235 (2011)

6. Skowron, A., Stepaniuk, J., Swiniarski, R.: Approximation spaces in Rough-Granular
Computing. Fundamentae Informaticae 100(1–4), 141–157 (2010)

7. Yanto, I.T.R., Vitasari, H.T., Deris, M.M.: Applying variable precision rough set model for
clustering suffering student’s anxiety. Expert Syst. Appl. 39(1), 452–459 (2012)

8. Herawan, T., Deris, M.M., Abawajy, J.H.: A rough set approach for selecting clustering
attributes. Knowl. Based Syst. 23(3), 220–231 (2010)

9. Parmar, D., Wu, T., Blackhurst, J.: MMR: an algorithm for clustering categorical data using
rough set theory. Data Knowl. Eng. 63(3), 879–893 (2007)

10. Kim, D.: Data classification based on tolerant rough set. Pattern Recogn. 34(8), 1613–1624
(2001)

11. Trabelsi, S., Elouedi, Z., Lingras, P.: Classification systems based on rough sets under the
belief function network. Int. J. Approximate Reasoning 52(9), 1409–1432 (2011)

Table 2. Reduction Information from Table 1

Students C1 C3 Decision (d)

s1, s4, s5 Good Fluent Accept
s2, s5, s6, s7 Poor Fluent Accept
s3 * Not-fluent Reject
s8 * * Reject

Dimensional Reduction using Conditional Entropy 271

12. Kaneiwa, K.: A rough set approach to multiple dataset analysis. J. Appl. Soft Comput. 11(2),
2538–2547 (2011)

13. Yan, T., Han, C.: A novel approach of rough conditional entropy-based attribute selection
for incomplete decision system. Math. Probl. Eng. 2014, 1–15 (2014)

14. Grzymala-Busse, J.W.: Rough set strategies to data with missing attribute values. In:
Proceedings of the workshop on Foundation and New Directions in Data Mining, associated
with the 3rd IEEE International Conference on Data Mining, pp. 56–63 (2003)

15. Kryszkiewicz, M.: Rough set approach to incomplete information systems. Inf. Sci.
112(1–4), 39–49 (1998)

16. Kryszkiewicz, M.: Rules in incomplete information systems. Inf. Sci. 113(3–4), 271–292
(1999)

17. Stefanowski, J., Tsoukiàs, A.: On the extension of rough sets under incomplete information.
In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711,
pp. 73–81. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48061-7_11

18. Stefanowski, J., Tsoukias, A.: Incomplete information table and rough classification.
Comput. Intell. 17(3), 545–566 (2001)

19. Wang, G.Y.: Extension of rough set under incomplete system. In: IEEE International
Conference on Fuzzy Systems, pp. 1098–1103 (2002)

20. Yang, X., Song, X., Hu, X.: Generalization of rough set for rule induction in incomplete
system. Int. J. Granular Comput. Rough Sets Intell. Syst. 2(1), 37–50 (2011)

21. Nguyen, D.V., Yamada, K., Unehara, M.: Extended tolerance relation to define a new rough
set model in incomplete information systems. Adv. Fuzzy Syst. 2013, 1–11 (2013)

22. Deris, M.M., Abdullah, Z., Mamat, R., Yuan, Y.: A new limited tolerance relation for
attribute selection in incomplete information systems. In: IEEE International Conference on
Fuzzy Systems and Knowledge Discovery, pp. 964–969 (2015)

272 M. M. Deris et al.

http://dx.doi.org/10.1007/978-3-540-48061-7_11

Data-Parallel Computational Model
for Next Generation Sequencing

on Commodity Clusters

Majid Hajibaba1,2(&), Mohsen Sharifi2, and Saeid Gorgin1

1 Department of Electrical and Information Technology,
Iranian Research Organization for Science and Technology, Tehran, Iran

hajibaba.m@irost.ir
2 Department of Computer Engineering,

Iran University of Science and Technology, Tehran, Iran

Abstract. It is obvious that the next generation sequencing (NGS) technolo-
gies, are poised to be the next big revolution in personalized healthcare, and
caused the amount of available sequencing data growing exponentially.
While NGS data processing has become a major challenge for individual
genomic research, commodity computers as a cost-effective platform for dis-
tributed and parallel processing in laboratories can help processing such huge
volume of data. To deploy sequence-processing methods on these platforms, in
this paper we present a parallel computational model for BLAST on commodity
clusters that works in a data parallel manner. The suggested model has a master-
worker paradigm. The master stores temporarily incoming requests and splits
the database to chunks according to the number of available workers. Each
worker pulls, formats, and searches queries against a unique chunk of the
database. To show that our model works well, we used queries with different
lengths to search against a small database (i.e. UniProtKB/SWISS-PROT) and a
large database (i.e. UniProtKB/TrEMBL). The results were equal with the
output of the golden method (i.e. NCBI BLAST) and the performance of our
model outperformed the most popular distributed form of BLAST (i.e. mpi-
BLAST) with 25% higher performance.

Keywords: Distributed systems � Next generation sequencing �
Parallel computational models � Parallel programming paradigm �
Commodity clusters

1 Introduction

The amount of available sequencing data is growing exponentially [1] by the advent of
high-throughput next-generation sequencing (NGS) technologies. As a result, the
processing and storing such big data has become a major challenge for modern
genomic research. Bioinformatics algorithms, like finding genes in DNA sequences and
aligning similar proteins are complex and time-consuming. Therefore, there is high
demand for faster methods to speed up the processing these data [1].

© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 273–288, 2019.
https://doi.org/10.1007/978-3-030-25636-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_22

Since the use of dedicated supercomputers is often very expensive, most research
groups have only limited access to such computers. In contrast, the use of computer
clusters has proved more affordable [2]. Therefore, parallel and distributed computing
on multiple computers has long been recognized as an attractive approach to paral-
lelization of database searches. Accordingly, to deal with the massive growth in the
quantity of data that is generated by NGS, researchers have become interested to use
new parallelization techniques over distributed systems to accelerate search of such data.

Sequence alignment is one of the most important research topics in Bioinformatics
that focuses on developing methods and tools for the discovery of similar biological
sequences and comparing their similarities [3]. BLAST [4] tool is extensively used for
searching similarities between biological sequences on a databases of known sequences
[5]. The standard BLAST is insufficient to handle the increasing demands for sequence
alignments on big databases [6]. Therefore, parallel distributed processing of BLAST
on multi computers has proved attractive to achieve faster execution times [7].

Two main approaches to parallelization of BLAST are query segmentation and
database segmentation. Our work is founded on distributed BLAST that use database
segmentation to parallelize BLAST, not just query segmentation such as SparkBLAST
[8]. Moreover, we concentrate on both distributed and parallel computing beyond
parallel applications such as H-BLAST [9]. The main research related to our work is
mpiBLAST [10], which adopts MPI (Message Passing Interface) for distributing
BLAST. Nevertheless, MPI suffers from scalability on big data. In addition, it cannot
hide system level details from user for parallel programming. The research on dis-
tributed parallel processing using BLAST extends to some other works too [11–14],
including ScalaBLAST [15] that uses a software implementation of shared memory or
G-BLAST [16] that can operate in heterogeneous distributed environments as well as
works reported in [17, 18]. There are also other researches [19, 20] that considered
other factors such as accelerating the rate of BLAST calculations in proportion to
available compute resources.

In BLAST, raw databases need to be indexed to becoming searchable which is done
in a separate process called format. Since BLAST databases are updated daily [21], for
short and medium length queries, the formatting database takes longer time than the
search on the formatted databases, which is quite a challenge, especially in commodity
computers. The above-mentioned works try to improve search time, which is accept-
able for a batch of queries or a long query. However, we try to improve search time and
format time by distributing these tasks among workers to gain higher performance.

BLAST as an embarrassingly parallel problem can be divided into a number of
independent subtasks to be executed by separate processors, which do not need to pass
messages between each other. It is ideally suited to master-worker programming
paradigm. Therefore, in this paper, we present a data-parallel model for running
BLAST application in a distributed manner using the master-worker paradigm. In this
model, a master process executes the sequential part of a parallel program that takes
requests, splits data and dispatches tasks to workers, and multiple workers do the
BLAST processing. Socket data transfer as the means for message passing is respon-
sible for data communication and coordination between the master and the workers.

274 M. Hajibaba et al.

The main contribution of the paper can be summarized as a new parallel compu-
tational model that addresses BLAST calculations using a data-parallel programming
model to distribute BLAST tasks adapted for commodity clusters.

2 Methods

2.1 Parallel Computational Model

A parallel computational model, also called parallel programming paradigm [22], is a
coherent collection of mechanisms for communication, synchronization, partitioning,
placement, and scheduling of tasks [23]. Typical parallel computational models include
master-worker, pipeline, divide-and-conquer, and domain decomposition [24–26]. To
develop applications, these paradigms must be explicitly programmed in the source
code via a programming model using special language constructs, complex directives,
or libraries. Three dominant parallel programming models in common use are shared
memory, distributed memory (message passing) and data-parallel models.

We adopt a simple data-parallel programming model to develop distributed
BLAST. It uses a master-worker programming paradigm, where the master works as
the manager and receives the request, split the data on a coarse-grained manner, and
sets up tasks; in the coarse-grain case, sequences are partitioned equally among the
processing elements [27]. It then transfers the data and tasks to his workers. The overall
view of the computational model is illustrated in Fig. 1. We have used the following
mechanisms in our parallel computational model to distribute BLAST:

• Partitioning, which is based on data decomposition that is database segmentation in
the problem domain.

• Communication, which uses sockets to transfer data or logically access data in
workers.

• Scheduling, which is based on First-in-First-out scheduling.
• Task placement, which is based on a simple peer selection.

Fig. 1. An overview of our parallel computational model to distribute BLAST

Data-Parallel Computational Model for Next Generation Sequencing 275

It should be noted that in contrast to some other computational models, our com-
putational model in proposed method does not use any synchronization mechanism
since it is based on a data-parallel model which no synchronizations required between
subtasks.

2.2 Architecture and Implementation

To design our data-parallel computational model for distributing BLAST, by a master-
worker model for scheduling tasks, we used socket data transfer to exchange data
between master and worker nodes. Socket data transfer based methods are less
dependent on platform than system based methods (like NFS), and thus can be installed
and operated more easily [16]. We employ a fine-grained resource-sharing model,
wherein nodes are subdivided into slots (corresponding to CPU cores) and a BLAST
job binds to each slot. Indeed, for each slot in each node in the cluster, we have one
BLAST worker. The master process is the coordinator that pumps the BLAST input
information to workers. The way the master works is outlined in Algorithm 1.

In Algorithm 1, in the partitioning phase, the database is split into equal sized
chunks based on the total number of slots in the cluster. To make the sequence aware of
the splitting files, the master uses gt splitfasta from genome tools package1. In the task
placement phase, the master assigns chunks of the database to slots from a worker list
by using a simple peer selection strategy. The worker list is read from an input file
called hosts. To launch a cluster, the user creates the hosts file, which must contain the
hostnames with the number of slots on each computer that runs the BLAST, one per
line. This file should be kept in the same directory as the executable program running
the master process. Figure 2 shows the architecture of our proposed method where
solid line means data transfer and dotted means command issue.

We name each worker process as socket server process or SSWorker. Each
SSWorker binds to one slot and waits for the master process to send BLAST inputs.
Each SSWorker gets the inputs via ssh and after downloading the inputs, first formats
the received chunk of the database using formatdb program and then searches it against
a given query using the blastall program. Algorithm 2 outlines how SSWorker works.

1 GenomeTools. Available at: http://genometools.org

276 M. Hajibaba et al.

http://genometools.org

The BLAST results are saved in a file using the blastall program and the SSWorker
uploads the final output file to shared storage. The master process waits for all results
from workers and upon receiving the results from all SSWorkers, it merges and sorts
them using an extended version of blastmerge [5], called sblastmerge. sblastmerge
sorts results according to e-values, the most significant hits appearing at the top, and
implemented by authors which is available in Code Ocean DOI https://doi.org/10.
24433/co.0216508.v2. At last, master delivers the final results to the user as a file
similar to the BLAST output.

We use database segmentation to parallelize BLAST in a coarse-grained manner,
but due to the data-parallel processing, we not only distribute the BLAST task but also
distribute the format database task. In most cases in sequence analysis, there is a big
database and a query that is commonly not long. BLAST databases are updated daily
with no established incremental update scheme and it is recommended that databases
be downloaded at regular intervals to keep the content of local copy current [21]. In this
case, the formatting of the database is a very time-consuming process taking longer
time to execute than the search process. This time can be much more important for
running BLAST on commodity computers. Thus, in our model, the database is split

Shared
Storage

Chunk 1 query

Chunk 2 query

query

query

query

query

Chunk1.1

Chunk2.1

Chunk n.1

BLAST

BLAST

BLASTChunk n

Worker 1:2
Worker 2 :2
Worker 3: 2

Result

result

result

BLAST result

BLAST result

BLAST result

Seq 1: …
Seq 2: …
Seq 3: ...

Merge and Sort
resultshosts Chunk1.2

Chunk1.3

Chunk2.2

Chunk2.3…………...

Chunk n.2

Chunk n.3

Master

SSWorker

SSWorker

SSWorker

Blast output

Fig. 2. The architecture of our proposed method

Data-Parallel Computational Model for Next Generation Sequencing 277

http://dx.doi.org/10.24433/co.0216508.v2
http://dx.doi.org/10.24433/co.0216508.v2

into small fixed size partitions, which are distributed along with the query among the
worker nodes for the sake of speedup. By this strategy, we distribute formatting
database to several nodes and reduce the time needed for formatting the whole data-
base. According to this data-parallel model, all workers have the same volume of work
to be performed on different partitions of data. Source code and a demo of proposed
method and running environment is available under the DOI https://doi.org/10.24433/
co.6424991.v2.

In order to remedy single point of failure in master process, we can use a high
availability (HA) option, which is based on Apache Zookeeper. Utilizing Zookeeper,
multiple masters can be launched in the cluster that one of themwill be elected as “leader”
and the others remain in standby mode. If the leader dies, another master is elected, the
old master’s state is recovered, and the new master resumes coordinating. However, in
this paper, our consideration is on performance not reliability or fault-tolerance.

In the next section, we report the results of experiments on a commodity cluster
using different databases and queries and study how they compare with the results of
NCBI BLAST and other distributed BLAST applications such as mpiBLAST.

3 Results

To evaluate our proposed method, we performed different evaluations and experiments,
each with a different goal. Firstly, we evaluated the validity of the results of our
proposed method and compared our results with NCBI BLAST. Then, we measured the
performance of our method and compared them to the performance of other works. To
compare our work with others, we selected mpiBLAST that is an open-source parallel
and distributed BLAST tool and is highly similar to our work. It uses database seg-
mentation by distributed and parallel methods not just parallel methods.

3.1 Query Sequences and Database Choices

For performance and validity tests, we used two publicly available protein databases
with different sizes: SWISS-PROT as a small database that is manually annotated and
reviewed, and UniProtKB/TrEMBL as a huge database that is automatically annotated
and not reviewed. For validity evaluation, we used SWISS-PROT as the target database
alongside Surface protein gp120 (Accession P04578) and Amyloid beta A4 (Accession
P05067) as query sequences. We used the Amyloid beta A4 protein because it hits
sequences on all partitions (six partitions in our test-bed), but Surface protein gp120 hits
sequences just in one partition. To measure the performance, we used three queries with
different lengths: Fibrinogen beta chain (Accession P14472) as a small query, Amyloid
beta A4 as a medium query, and Titin homolog (Accession G4SLH0) as a long query.

3.2 Cluster Testbed

Because of the evaluation on commodity clusters, available in individual laboratories,
the testbed composed of a cluster with just three commodity computers, each with 4 GB
memory and Intel processors with the same architecture, connected together with a

278 M. Hajibaba et al.

http://dx.doi.org/10.24433/co.6424991.v2
http://dx.doi.org/10.24433/co.6424991.v2

conventional network switch. As well, we used Ubuntu 12.04LTS 32 bits for running
with BLAST, and Ubuntu 14.04LTS 64 bits for running with BLAST+. In order to fairly
compare our results with mpiBLAST, we used the latest version of mpiBLAST (i.e.
v1.6.0) that is based on NCBI BLAST v2.2.20 released on 2010 and updated until 2012.

3.3 Validity Test

To investigate validity, we counted the number of differences in the top 100 sequences
in the final output by (1).

diff ¼
X 0 if ordres1 sð Þ ¼ ordres2 sð Þ

1 if ordres1 sð Þ\[ordres2 sð Þ
�

ð1Þ

Where ordres1 sð Þ is the order of sequence s in output res1. We ignored the dif-
ferences in the order of sequences with the same e-value and score. The similarity of
the proposed method and mpiBLAST results to NCBI BLAST, all with the same
version, are illustrated in Fig. 3.

Figure 3 shows that BLAST with partitioning the database and formatting it in
distributed mode lead to the same results with BLAST on a single system.

3.4 Performance Test

For performance test, we compare the performances of NCBI BLAST with a shared
memory model and mpiBLAST with a message-passing model to the performance of
our method, which has a data-parallel model.

Optimization of Parameters for mpiBLAST. mpiBLAST formats and divides the
database into many small fragments of approximately equal size. But, the user is
responsible to determine the number of fragments of database and also the number of
processes in the system to search queries on these fragments. With this static frag-
mentation and processing method, two parameters must be determined: Number of
database fragments as Parameter1, Number of processes as Parameter2.

Since two processes are dedicated for task scheduling and coordinating the output
in mpiBLAST, we need nþ 2 processes to actually perform search tasks on n frag-
ments. To determine the number of fragments, we consider Parameter2 as nþ 2 where

0%
50%

100%

HIV_GP120 on
sprot

A4_HUMAN on
sprot

Si
m

ila
rit

y
to

Le

ga
cy

 B
LA

ST

O
ut

pu
t

Proposed Method

mpiBLAST

Fig. 3. Similarity of our method and mpiBLAST vs. NCBI blast.

Data-Parallel Computational Model for Next Generation Sequencing 279

n is the value of Parameter1, while evaluating it on SWISS-PROT and a simple query.
We observed that the best execution time is when the number of fragments is equal to
the number of processing cores, in this case 6 fragments. The execution times of
mpiBLAST with different number of parts are illustrated in Fig. 4. When the number of
fragments increases, both the search time and non-search time rise [28].

To determine the number of processes that must be known when running mpi-
BLAST, we tested different settings for Parameter2 by setting Parameter1 to the best
case (6 partitions in this case). As expected, the best number of processes for n parts
was nþ 2. The results of the test are illustrated in Fig. 5.

Moreover, in mpiBLAST, when the number of processes rose above nþ 2,
duplicated copy fragments were loaded on worker nodes. If the number of processes
fell below n, some processors had nothing to do. Once the number of processes was set
between n� 1 and nþ 2, there were some processes doing more work.

We further evaluated these parameters with TrEMBL database, but during the test,
we faced critical problems in mpiBLAST. When database size grows, system failed
because of memory heap error. We tried with more fragments and larger memory size,
but got some other memory errors. This problem arises because a single BLAST
database can contain up to 4 billion letters [29]. We need to set Parameter1 such that
each fragment size not be larger than 4 GB. This parameter must be a multiple of six to
allow fair balancing of load among computing nodes. Therefore, we found the
parameter setting of our environment experimentally as is shown in Table 1.

61.3 54.7 50.2 43.9 47.5 53.8 50.9

0

100

Number of parts

Ex
ec

u�
on

Ti

m
e

(s
ec

.) 3 4
5 6
7 8
9

Fig. 4. Parameter setting for the Database Parts in mpiBLAST

60.2 51.4 46.7 43.9 49.5 50.8

0

100

5 6 7 8 9 10

Ex
ec

u�
on

Ti

m
e

(s
ec

.)

Number of Processes for 6 parts

Fig. 5. Parameter setting for the number of processes in mpiBLAST

280 M. Hajibaba et al.

Comparison with mpiBLAST and NCBI BLAST. For comparing performance in a
distributed system, we measure the total time as (2) [30].

Ttotal ¼ Tcomp þ Tcomm ð2Þ

Where Tcomm is the time involved in communication among master and workers,
and Tcomp is the computation time which is calculated as (3).

Tcomp ¼ Tsplit þ Tblast þ Tmerge ð3Þ

Where Tsplit is the time required to split database, Tblast is time taken to perform
BLAST search (including format) and Tmerge is the time relative to merge results.

The comparisons of the performances of our method with mpiBLAST and
NCBI BLAST, for a small and a big database, are illustrated in Figs. 6 and 7,
respectively. The times include executing BLAST, partitioning the database and
communication and exclude the overheads of remotely launching programs or moni-
toring the progress.

Figures 6 and 7 show that for medium and short length queries, mpiBLAST is
inefficient especially on a commodity cluster, while our method performs better in all
cases.

Table 1. Parameter setting for mpiBLAST

Database # of partitions # of processes

SWISS-PROT/TrEMBL 6/24 8/26

0

200

400

short medium longEx
ec

u�
on

s T
im

e
(S

ec
.)

Query Lenght

Legacy BLAST

mpiBLAST

Proposed Method

Fig. 6. Performance comparison of the proposed method, mpiBLAST and NCBI BLAST in a
small database

0

20

40

short medium long

Ex
ec

u�
on

 T
im

e

(T
ho

us
an

ds

se
c.

)

Query Lenght

Legacy BLAST

mpiBLAST

Proposed Method

Fig. 7. Performance comparison of the proposed method with mpiBLAST and NCBI BLAST in
a huge database

Data-Parallel Computational Model for Next Generation Sequencing 281

To highlight the outperformance of our method, we measured the time spent in each
method. Figure 8 illustrates the fraction of times spent in medium and large queries on
a big database in NCBI BLAST.

For a big query, a large fraction of time is attributed to the search time. mpiBLAST
tries to improve the search time by distributing the search task. However, in a medium
size query, database formatting takes a large fraction of the total spent time. The elapsed
times for a medium query on a big database in mpiBLAST are illustrated in Fig. 9.

The network file system (NFS) is used to share fragments between all nodes in
mpiBLAST. Thus, each worker node needs to copy fragments from shared storage to
its local host for performing BLAST. We consider Tcomm as the time elapsed for this
operation and show it by nfs copy in Fig. 9. The search time is improved in mpiBLAST
and takes a minimum fraction of time (5%) while database formatting still takes the
maximum fraction of time (67%). Our method shows improvement on both the search
time and the database formatting time by distributing both of these two tasks. Figure 10
shows the elapsed times for a medium query on a big database.

0%

50%

100%

small query big query

search

format

Fig. 8. Fraction of times on medium and large size queries against TrEMBL by NCBI blast

mpiformat
67%

nfs copy
28%

search
5%

Other
33%

Fig. 9. Fraction of times on a medium size query against TrEMBL by mpiBLAST

split
30%

socket
transfer

39%

format
20%

search
11%

merge
0%

Fig. 10. Fraction of times on a medium size query against trembl by the proposed method

282 M. Hajibaba et al.

Besides, due to data-parallel operations, for the same database, Tcomm is less than
mpiBLAST for blastp program. Because mpiBLAST first formats database and then
transfers fragments, while proposed method firsts transfer database chunks and then
formats them. The formatted fragments contain files other than sequence file such as
index file. Tcomm for huge database is as Fig. 11 for mpiBLAST and proposed method.

However, for blastn program, the formatted chunks have less size than the original
ones and hence mpiBLAST has less Tcomm related to our method. In mpiBLAST, the
main limitations are the formatting of databases and the copying of formatted fragments
to local disks in NFS. By contrast, the main limitation of our method is the copying of
chunks to computing nodes.

4 Discussion

In this section, we evaluate the load balance and estimate the scalability, which is
important for each distributed and parallel model accompanied by performance.

4.1 Load Balance

To efficiently use of a parallel computer system, a balanced workload among the
processors is required. To compare the workload balancing effectiveness of a com-
putational method, the percentage of load imbalance (PLIB) [31] was defined as (4).

PLIB ¼ MaximumLoad �MinimumLoad
MaximumLoad

� 100 ð4Þ

PLIB is the percentage of the overall processing time that the first processor must
wait for the last processor to finish his work. This number also indicates the degree of
parallelism. For example, if PLIB is less than one, we achieve over a 99% degree of
parallelism. Therefore, a parallel method with a lower PLIB is more efficient than
another one with a higher PLIB. The workload is perfectly balanced if PLIB is equal to
zero [31]. So, if in a cluster, we are given m workers for scheduling, indexed by the set
W ¼ w1; . . .;wmf g and there are furthermore given n tasks, indexed by the set
T ¼ t1; . . .; tnf g, which Ti be the set of tasks scheduled on wi, then the load of worker i
(that is wi) can be achieved from (5).

2760
1980

0

2500

5000

�m
e

(s
ec

.)

mpiBLAST

Proposed method

Fig. 11. The communication time for transferring TREMBL database chunks

Data-Parallel Computational Model for Next Generation Sequencing 283

‘i ¼
X

tj2Ti Ci;j ð5Þ

Where task tj takes Ci;j units of time if scheduled on wi. The maximum load of
scheduling is called the makespan of the schedule and is equal to (6).

‘max ¼ maxi� 1;...;mf g‘i ð6Þ

So, the (4) can be interpreted as (7).

PLIB ¼ ‘max � ‘min
‘max

� 100 ð7Þ

In the sequence alignment, the duration of the operation depends on the length of
the sequence. If the sequence is longer, the search time will be higher. Of course, there
are other factors like the similarity of the reference sequence with the query sequence.
However, for ease of measurement, it is assumed that the duration of the operation
depends only on the length of the sequence. Therefore, for the sequence S, we have (8).

CS ¼ v� nþ p� n ð8Þ

Where v is considered as the processing time required for a base pair and is a
constant value, which is the same in all workers. Also, p is the time related to transfer a
base pair from shared storage to a local storage. Therefore, if the expected sequences 1
to s are scheduled to run on the worker i (i.e., Ti ¼ t1:t2:t3: � � � :tsf g), we will have (9).

‘i ¼
X

tj2Ti Ci:j ¼ Ci;1 þCi;2 þ � � � þCi;n ¼ pþ vð Þ �
Xs

k¼1
len tkð Þ ð9Þ

Similarly, the total length of the sequences in a machine will be equal to the size of
the chunk delivered to that machine for processing. In fact, we will have the (10).

‘i ¼
X

tj2Ti Ci:j ¼ pþ vð Þ �
Xs

k¼1
len tkð Þ ¼ pþ vð Þ � SFi ð10Þ

Where Fi is the chunk assigned to the worker i and SFi is the size of the chunk.
Since the power of machines is considered equal (homogeneous), so the running

time of this operation is the same in all machines and the (11) is resulted.

C1;a ¼ C2;a ¼ � � � ¼ Cm;a ð11Þ

To evaluate PLIB on all workers, we merge the (10) with (7) which is resulted (12).

PLIB ¼ ‘max � ‘min
‘max

� 100 ¼ SFmax � SFmin

SFmax

� 100 ð12Þ

Therefore, the workload of workers is measured based on the amount of data
assigned to it. In proposed data-parallel model, the data is divided equally according to

284 M. Hajibaba et al.

the number of workers. Therefore, the sizes of all chunks are equal, which means
SFmax ¼ SFmin and hence PLIB is zero.

4.2 Scalability

To estimate scalability, we measure size scalability by using an insensitive search of
Titin homolog sequence on TrEMBL database. Although three nodes are not enough
for scalability test, but since our target is commodity computers and more importantly,
the master just issue commands with no synchronization between workers, so the
master and synchronization will not prevent scalability for more nodes.

Size scalability indicates how well the performance will improve when the size of
the cluster increased by additional processors. Add resources in this test, means to add
more nodes to the cluster, or scale horizontally not vertically by adding more cores to a
single node. Figure 12 shows the scalability of the proposed method running on 1, 2
and 3 nodes respectively.

To measure the relative performance of two systems processing the same problem,
the speedup in parallel computing is often used. Speedup is defined by the (13).

S Nð Þ ¼ Ts
Tp

ð13Þ

Where S Nð Þ is the theoretical speedup of the parallel program; N is the number of
processors in parallel mode; Ts is the execution time of program in serial and Tp is the
execution time of program in parallel mode. Moreover, scalability is the ratio between
the two efficiency estimates and can extended to (14).

S ¼ Tpm
Tpn

����n ¼ k � m; k[0
� �

ð14Þ

Where Tpm is the execution time of program with m processors and Tpn is the
execution time of program with n processors, while k is an integer. Linear speedup is
obtained when S Nð Þ ¼ N. When running a task with linear speedup, doubling the size
of the processors, then linear speedup doubles the overall speedup. By using the (14),
and the experiment results, we can conclude that the proposed method in commodity
clusters has nearly linear scalability. With doubling the size of the nodes from 1 to 2

8235

4160 2980

0

10000

Ex
ec

u�
on

Ti

m
e

(S
ec

.) 1 node (2 cores)

2 node (4 cores)

3 node (6 cores)

Fig. 12. The scalability of proposed method

Data-Parallel Computational Model for Next Generation Sequencing 285

nodes we have 1.97 times speedup, while with tripling the size of nodes from 1 to 3 we
have 2.76 times speedup.

S 2ð Þ ¼ 8235
4160

¼ 1:97; S 3ð Þ ¼ 8235
2980

¼ 2:76

According to Amdahl’s Law [32], the sequential fraction of the code is fundamental
limitation of the speedup of the system, and thus the maximum speedup that can be
achieved using N number of processors is as (15).

S Nð Þ ¼ 1
1� Pð Þþ P

N

ð15Þ

Where P is the proportion of a program that can be made parallel and 1−P is the
proportion that remains serial. Amdahl’s Law yields our speedup is logarithmic and
remains below the line S Nð Þ ¼ N.

5 Conclusion

This paper presents a new parallel computational method for BLAST that splits and
distributes a sequence database among workers running on a cluster with commodity
computers while each worker formats a unique portion of the database and searches
query in it. The formatting of database takes a significant portion of the non-search
fraction of the BLAST runtime. Therefore, we distribute this task as well search task.

The parallel computational model of the proposed method is similar to other works,
such as mpiBLAST, but differs in some conceptual and implementation aspects. So, we
compared our results with mpiBLAST to show the superiority of the proposed method.
BLAST suffers from high execution time for big database while mpiBLAST attempts
to reduce search time by distributing database’s chunks using MPI. In this work we
reduce both search and non-search time on a cluster of commodity computers by a
data-parallel computational model. We first present the performance of NCBI BLAST
on a single computer with 1 and 2 cores, to demonstrate its poor performance. Through
distribution by mpiBLAST we achieved a better performance compared to NCBI
BLAST with the same material. But our comparative study of the performances of the
proposed method showed that there is a good improvement on execution time over
mpiBLAST. We improved the performance 25% by proposed data-parallel model.

As we observed, the transfer time of chunks is high in our method and mpiBLAST.
During the transfer, CPUs are idle. Therefore, if we split the database into smaller
chunks and send them to workers one by one, we can do formatting and searching
during the transfer. In addition, we can merge the BLAST time in transfer time. For
future work, we decide to investigate these issues and compare them with this paper.

286 M. Hajibaba et al.

References

1. Fu, L., Niu, B., Zhu, Z., Wu, S., Li, W.: CD-HIT: accelerated for clustering the next-
generation sequencing data. Bioinformatics 28(23), 3150–3152 (2012)

2. Wilkinson, B., Allen, M.: Parallel Programming: Techniques and Applications Using
Networked Workstations and Parallel Computers. Prentice-Hall Inc., Upper Saddle River
(2004)

3. Petsko, G., Ringe, D.: From sequence to function: case studies in structural and functional
genomics. In: Protein Structure and Function. New Science Press (2004)

4. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment
search tool. J. Mol. Biol. 215(3), 403–410 (1990)

5. Mathog, D.: Parallel BLAST on split databases. Bioinformatics 19(14), 1865–1866 (2003)
6. Bjornson, R., Sherman, A., Weston, S., Willard, N., Wing, J.: TurboBLAST: a parallel

implementation of BLAST built on the TurboHub. In: Proceedings of the 16th International
Parallel and Distributed Processing Symposium, Washington, DC, USA, p. 325 (2002)

7. Matsunaga, A., Tsugawa, M., Fortes, J.: CloudBLAST: combining MapReduce and
virtualization on distributed resources for bioinformatics applications. In: Proceedings of
the 2008 Fourth IEEE International Conference on eScience, Indianapolis, IN, USA,
pp. 222–229 (2008)

8. Castro, M., Tostes, C., Dávila, A., Senger, H., Silva, F.: SparkBLAST: scalable BLAST
processing using in-memory operations. BMC Bioinformatics 18(1), 318 (2017)

9. Ye, W., Chen, Y., Zhang, Y., Xu, Y.: H-BLAST: a fast protein sequence alignment toolkit
on heterogeneous computers with GPUs. Bioinformatics 33(8), 1130–1138 (2017)

10. Darling, A., Carey, L., Feng, W.: The design, implementation, and evaluation of
mpiBLAST. In: 4th International Conference on Linux Clusters, San Jose, CA, USA,
p. 14p (2003)

11. Zhang, L., Tang, B.: Parka: a parallel implementation of BLAST with MapReduce. In:
Xhafa, F., Patnaik, S., Zomaya, A.Y. (eds.) IISA 2017. AISC, vol. 686, pp. 185–191.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-69096-4_26

12. Dong, G., Fu, X., Li, H., Li, J.: An accurate algorithm for multiple sequence alignment in
MapReduce. J. Comput. Methods Sci. Eng. 18(1), 283–295 (2018)

13. Guo, R., Zhao, Y., Zou, Q., Fang, X., Peng, S.: Bioinformatics applications on Apache
Spark. GigaScience 7(8), giy098 (2018)

14. Mondal, S., Khatua, S.: Accelerating pairwise sequence alignment algorithm by MapReduce
technique for Next-Generation Sequencing (NGS) data analysis. In: Abraham, A., Dutta, P.,
Mandal, J., Bhattacharya, A., Dutta, S. (eds.) Emerging Technologies in Data Mining
and Information Security. Advances in Intelligent Systems and Computing, vol. 813,
pp. 213–220. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-1498-8_19

15. Oehmen, C.S., Baxter, D.J.: ScalaBLAST 2.0: rapid and robust BLAST calculations on
multiprocessor systems. Bioinformatics 29(6), 797–798 (2013)

16. Kim, D.-W., et al.: G-BLAST: BLAST manager in an heterogeneous distributed
environment. In: 2012 Sixth International Symposium on Theoretical Aspects of Software
Engineering, Tianjin, China, pp. 315–316 (2009)

17. Braun, R.C., Pedretti, K.T., Casavant, T.L., Scheetz, T.E., Birkett, C.L., Roberts, C.A.:
Parallelization of local BLAST service on workstation clusters. Future Gener. Comput. Syst.
17, 745–754 (2001)

18. Xiao, S., Lin, H., Feng, W.-C.: Accelerating protein sequence search in a heterogeneous
computing system. In: Proceedings of the 2011 IEEE International Parallel Distributed
Processing Symposium (IPDPS), Washington, DC, USA, pp. 1212–1222 (2011)

Data-Parallel Computational Model for Next Generation Sequencing 287

http://dx.doi.org/10.1007/978-3-319-69096-4_26
http://dx.doi.org/10.1007/978-981-13-1498-8_19

19. Kim, H.-S., Kim, H.-J., Han, D.-S.: Hyper-BLAST: a parallelized BLAST on cluster system.
In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J.J.,
Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2659, pp. 213–222. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-44863-2_22

20. Pinthong, W., Muangruen, P., Suriyaphol, P., Mairiang, D.: A simple grid implementation
with Berkeley Open Infrastructure for Network Computing using BLAST as a model. PeerJ
4, e1388 (2016)

21. Tao, T., Madden, T., Christiam, C., Szilagyi, L.: BLAST® Help. https://www.ncbi.nlm.nih.
gov/books/NBK62345/

22. Li, L., Malony, A.D.: Model-based performance diagnosis of master-worker parallel
computations. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol.
4128, pp. 35–46. Springer, Heidelberg (2006). https://doi.org/10.1007/11823285_5

23. Agarwal, A.: Parallel Computational Models, Handout, Lecture02, Multicore Systems
Laboratory. MIT (2010)

24. Hamilton, S.: An Introduction to Parallel Programming. CreateSpace Independent Publish-
ing Platform, Scotts Valley (2014)

25. Muresano, R., Rexachs, D., Luque, E.: Learning parallel programming: a challenge for
university students. Procedia Comput. Sci. 1(1), 875–883 (2010)

26. Massingill, B., Mattson, T., Sanders, B.: Patterns for parallel application programs. In: 6th
Pattern Languages of Programs Workshop (1999)

27. Hughey, R.: Parallel hardware for sequence comparison and alignment. CABIOS 12(6),
473–479 (1996)

28. Lin, H., Ma, X., Chandramohan, P., Geist, A., Samatova, N.: Efficient data access for
parallel BLAST. In: Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium, Denver, Colorado, US, p. 72b (2005)

29. Korf, I., Yandell, M., Bedell, J.: BLAST - An Essential Guide to the Basic Local Alignment
Search Tool. O’Reilly & Associates, Sebastopol (2003)

30. Vidyarthi, D., Sarker, B., Tripathi, A., Yang, L.: Scheduling in Distributed Computing
Systems. Springer, New York (2009). https://doi.org/10.1007/978-0-387-74483-4

31. Yap, T., Frieder, O., Martino, R.: Parallel computation in biological sequence analysis. IEEE
Trans. Parallel Distrib. Syst. 9(3), 283–294 (1998)

32. Amdahl, G.: Validity of the single processor approach to achieving large scale computing
capabilities. In: Proceedings of the April 18–20, 1967, Spring Joint Computer Conference,
New York, NY, USA (1967)

288 M. Hajibaba et al.

http://dx.doi.org/10.1007/3-540-44863-2_22
https://www.ncbi.nlm.nih.gov/books/NBK62345/
https://www.ncbi.nlm.nih.gov/books/NBK62345/
http://dx.doi.org/10.1007/11823285_5
http://dx.doi.org/10.1007/978-0-387-74483-4

Parallelization of Algorithms for Mining Data
from Distributed Sources

Ivan Kholod1(&), Andrey Shorov1, Maria Efimova1,
and Sergei Gorlatch2

1 Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia
iiholod@mail.ru, ashxz@mail.ru,

maria.efimova@hotmail.com
2 University of Muenster, Muenster, Germany

gorlatch@uni-muenster.de

Abstract. We suggest an approach to optimize data mining in modern appli-
cations that work on distributed data. We formally transform a high-level
functional representation of a data-mining algorithm into a parallel implemen-
tation that performs as much as possible computations locally at the data
sources, rather than accumulating all data for processing at a central location as
in the traditional MapReduce approach. Our approach avoids the main disad-
vantages of the state-of-the-art MapReduce frameworks in the context of dis-
tributed data: increased run time, high network traffic, and an unauthorized
access to data. We use the popular data-mining algorithm – Naive Bayes – for
illustrating our approach and evaluating it experimentally. Our experiments
confirm that the implementation of Naive Bayes developed by using our
approach significantly outperforms the traditional MapReduce-based imple-
mentation regarding the run time and the network traffic.

Keywords: Parallel algorithms � Distributed algorithms � Data mining �
Distributed data mining � MapReduce � Homomorphisms

1 Introduction

The development of information technologies, smart devices and their wide use in the
Internet of Things (IoT) [1] lead to an increase in the number of distributed sources of
information which provide streams of data in large volumes.

Figure 1 presents an example of a system with distributed data sources – Remote
Monitoring System (RMS) that is designed to control objects of large and complex
systems such as network, factories, airports and other.

A system in Fig. 1 receives data from sensors that can be connected with a large
number of middleware data storage nodes. These nodes are often low-cost and have
low computational power. Therefore, data processing is carried out on a powerful
cluster of the monitoring center. For this, all data from the middleware data storage
nodes are gathered into the single data warehouse of the monitoring center.

For high-performance processing of data, scalable data processing systems like
Apache Hadoop [2] and Apache Spark [3] are usually running on the computational

© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 289–303, 2019.
https://doi.org/10.1007/978-3-030-25636-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_23&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_23

cluster. These systems are typically based on the MapReduce programming model [4]
that performs distributed data processing using a single data storage, e.g., warehouse.
Some components of Apache Hadoop use distributed replication [5] for reducing time
of access to data and increasing data storage reliability; however, such storage is
handled as single data storage in data processing.

The main feature of the RMS systems – collecting all data for processing in a single
data warehouse – has several disadvantages: it leads to an increase in total processing
time, network traffic, and a risk of unauthorized access to the data.

The goal of this paper to avoid these drawbacks by processing (mining) the data at
storage nodes: we achieve this by moving computations to the data nodes. Our
approach decomposes a data mining algorithm to perform its major parts locally on the
storage nodes without transferring data by network. This helps to reduce the run time of
the application and the network traffic. This paper extends our earlier approach to
parallelising data mining algorithms on multi-core CPU [6].

2 Our Approach: From Monolithic to Distributed
MapReduce

Figure 2(a) presents the traditional approach: the majority of frameworks used for
distributed data mining are based on the MapReduce programming model [4].

The MapReduce model uses the abstraction inspired by the map and reduce
primitives that are present in many functional programming languages and also actively
exploited in the skeleton-based approach to parallel computing [7]. Parts of MapRe-
duce can run in parallel on distributed nodes, thereby ensuring a high data mining
performance. The most important feature of MapReduce in the context of this paper is
that the distributed map functions take input data from a single data warehouse [4].

In the traditional approach shown in Fig. 2(a), for distributed execution of a data
mining algorithm it is restructured on the map and reduce functions. There are several
open-source data mining libraries and frameworks that contain implementations of data
mining algorithms for distributed execution based on the MapReduce model, e.g.:

Monitoring center

data

data

data

Storage node

Data
storage

Storage node

Data
storage

Storage node

Data
storage

data

data

data
data

data

Devices layer Middleware layer Application layer

Computational cluster
(MapReduce)

Controlled
objects

Data
warehouse

Fig. 1. Example of system with distributed data sources - Remote Monitoring System (RMS).

290 I. Kholod et al.

Apache Spark MLlib [8], ML Grid [9] from Apache Ignite 2.0, Scalable Advanced
Massive Online Analysis [10], Vowpal Wabbit (VW) [11].

There are two ways of distributed data mining when using MapReduce systems:

• collecting data in a single data warehouse;
• using a distributed file system that still presents distributed data as a single data

warehouse.

In both cases, data are transferred from distributed sources to the location where data
mining takes place. This variant shown in Fig. 2(a) implies the following problems:

• information transfer takes a comparatively long time which may be crucially dis-
advantageous, especially for real-time processing;

• an increase in network traffic limits the usability of low-capacity communication
channels (satellites, wireless, etc.);

• information containing confidential data is transferred using public channels, which
increases the risk of unauthorized access to the data;

• large volumes and types of data collected at a single location require enhanced
protection to ensure data security and reliability.

Figure 2(b) shows an alternative approach that attempts to overcome these problems
using geo-distributed batch processing MapReduce systems for pre-located distributed
data. Examples are G-Hadoop [12], G-MR [13], Nebula [14]. These systems assume
that there are local MapReduce systems (Hadoop or Spark) located at data sources and
responsible for local data processing in Fig. 1(b). An additional MapReduce system
dispatcher is used to manage such systems and produce a final result.

e
Data

warehouse

data

data

data

data

data

Data
storage

Data
storage

Data
storage

MapReduce
system

map
part of
DMA

reduce
part of
DMA

map
part of
DMA

reduce
part of
DMA

a)

result

result

result

Data
storage

Data
storage

Data
storage

Part of
DMA

part of
DMA

part of
DMA

part of
DMA

c)

result

result

Data
storag

Data
storage

MapReduce
system

(dispatcher)

map

map

reduce

reduce

MapReduce
system

MapReduce
system

map
part of
DMA

reduce
part of
DMA

map
part of
DMA

reduce
part of
DMA

map
part of
DMA

reduce
part of
DMA

map
part of
DMA

reduce
part of
DMA

b)

Fig. 2. Variants of data mining algorithms applied to distributed data: (a) traditional MapReduce;
(b) geo-distributed batch processing MapReduce-based systems; (c) suggested approach.

Parallelization of Algorithms for Mining Data 291

This approach is used in data centers with a powerful computation resource (a
compute cluster) at each data source. For systems with distributed data sources, this
approach still has several disadvantages:

• high requirements are put on the storage nodes – they must have enough compu-
tational power to run systems such as Hadoop, Spark, etc. locally;

• the advantages of shared memory on local nodes (e.g., multi-core CPUs or GPUs)
are not used because MapReduce model is specifically designed to work with
memory in a distributed manner.

In our envisaged approach, shown in Fig. 2(c), we improve the distributed data pro-
cessing and avoid the disadvantages mentioned above. The idea is that parts of a data
mining algorithm are performed at data sources, while intermediate results are sent to
the central computational node; the additional advantage is that they can be executed in
parallel using shared memory on the nodes with parallel processors.

3 The Formalization of Our Approach

We develop our approach using a general formalism, in order to cover a broad class of
data mining algorithms. Capital letters are used for types, and lower-case letters are
used for variables of these types and functions.

3.1 Data Mining Algorithm as a Composition of Functions

A data mining algorithm is represented in our approach as a function that takes a data
set d 2 D as input and creates a mining model l 2 M from it as output:

dma: D ! M ð1Þ

We use capital letters to denote types and lower case letters for variables of these types.
In (1), a data mining algorithm creates a mining model, without changing the input data.

A data set D usually contains characteristics (such as temperature, sound level,
vibration, pressure etc.) of objects (e.g., elements of complex system, vehicles and
other). We represent a data set as a 2-dimensional array (data matrix), e.g., for l objects
that are described by p characteristics [15]:

d¼

x1:1 . . . x1:k . . . x1:p
.
xj:1 . . . xj:k . . . xj:p
.
xm:1 . . . xm:k . . . xm:p

0
BBBB@

1
CCCCA ð2Þ

where xj.k is the value of the kth characteristic of the jth object.

292 I. Kholod et al.

Figure 3 represents a distributed storage: data matrix d is split between s nodes:

d ¼ d1 [. . .[ds;

where data submatrix dh is located at the storage node number h.

Traditionally, data processing is performed by a data mining algorithm on a par-
ticular computational node or computational cluster as shown in Fig. 2(a). For this, all
data from the storage nodes are transferred to it.

A mining model comprises elements that describe a knowledge extracted by a data
mining algorithm from a data set. These elements can be, e.g., classification or asso-
ciation rules, cluster centers, decision tree nodes, etc. Thus, the mining model l 2 M,
M = [E], can be represented as an array of elements ei, i = 0…u:

l ¼ e0; e1; . . .; eu½ �: ð3Þ

We represent a data mining algorithm as a sequence of steps, formally expressed as a
sequential composition of functions, e.g.:

dma ¼ f�nfn�1
� . . .� f�1 f0: ð4Þ

where ° is composition operator that is applied from right to left.
In (4), function f0: D!M takes a data set d 2 D as an argument and returns a

mining model l0 2 M. Function ft, t = 1..n in (4) takes the mining model lt−1 2 M
created by the previous function ft-1 and returns the changed mining model lt 2 M:

ft : M ! M: ð5Þ

The functions ft, t = 1..n of type (5) are called Functional Mining Blocks (FMB).
The functions that process data matrix d take an additional argument d:

fdt : D ! M ! M: ð6Þ

d1= ds=

Computational Node
dma

1.1 1.g

m.1 m.g

x ... x
...

x ... x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

1.r+1 1.p

m.r+1 m.p

x ... x
...

x ... x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

data data

Storage node 1 Storage node s

Fig. 3. Traditional processing distribution of data set.

Parallelization of Algorithms for Mining Data 293

Partial function application with the fixed first argument ft = fdt d (i.e. parameter d is
constant for the function ft) allows us to use such functions in the composition (4).

To apply some function fdt to each element of the data matrix, we invoke it in a
loop. We introduce loops over columns and rows for iterative processing of the data
matrix. We use an asterisk to refer to whole row (for example, d[j,*] refers to the jth

row) or whole column (for example, d[*, k] refers to the kth column) in a data matrix:

• loopc applies a function fdt of type (6) to columns of the data matrix d 2 D starting
from index is till index ie:

loopc : I ! I ! ðM ! MÞ ! D ! M ! M
loopc is ie fdt d l ¼ ððfdt d½�; ie�Þ�. . .�ðfdt d½�; is�ÞÞ l; ð7Þ

• loopr applies a function fdt of type (6) to rows of the data matrix d 2 D starting
from index is till index ie:

loopr : I ! I ! ðM ! MÞ ! D ! M ! M
loopr is ie ft d l ¼ ðfdt d½ie; ��Þ�. . .�ðfdt d½is; ��Þ l: ð8Þ

The first four arguments are fixed to use loopc and loopr in the composition (4).

3.2 Illustration for the Naive Bayes Algorithm

We use the Naive Bayes [16] algorithm to illustrate the parallelization of algorithms
represented as (4) for distributed data. Naive Bayes belongs to Top 10 data mining
algorithms [17]: it solves the classification task by analyzing data where attributes have
type that is a finite set of values:

Tk ¼ fv1:k; . . .; vl:kg; where k ¼ 1::p:

Figure 4 shows the pseudocode of the Naive Bayes algorithm. It calculates:

• the number of vectors with the value d[j, p] = vq.p, for each value vq.p (vq.p 2 Tp) of
a p-th attribute (line 4 in Fig. 4);

• the number of vectors with value d[j, k] = vi.k of the k-th attribute and with value d
[j, p] = vq.p of the p-th attribute, for each value vi.k of each k-th attribute (vi.k 2 Tk)
(line 6 in Fig. 4).

1. for q = 1… s // loop for each mining model’s element
2. μ[q] = 0; // initialization of mining model’s elements
3. for j = 1 … μ // loop for each vector
4. μ[d[j,p]]++; //increment count of vectors for value xj.p of vector xj;
5. for k = 1 ...p-1 // loop for each attribute
6. μ[φ(k-1)+(d[j, k]-1)·φ(0)+ d[j, p]]++; // increment count of vectors with

// value xj.k and value xj.p
7. end for;
8. end for;

Fig. 4. The Naive Bayes algorithm: pseudocode.

294 I. Kholod et al.

Using these values and Bayes’ theorem, we can calculate an unknown value of the p-th
attribute of a new object with some probability based on only the k-th (k = 1..p − 1)
attributes describing the object.

We interpret the value of the data matrix as the index number of value in the set:

d j; k½ � ¼ vi:k ¼ i; where i : 1 :: l:

Thus the mining model for Naive Bayes algorithm comprises:

• mining model’s elements l[1],…, l[s] are the counters (l[q] = 0, 1 � q � s) of
vectors with value vq.p of the p-th attribute (vq.p 2 Tp, s = |Tp|);

• mining model’s elements l[s+1],…, l[u] are the counters (l[g] = 0, s < g � u) of
vectors with value vi.k of k-th attribute (vi.k 2 Tk) and value vq.p of the p-th attribute:

g ¼ u k� 1ð Þþ ðd j; k½ � � 1Þ � u 0ð Þþ d j; p½ �; whereu kð Þ ¼ sþ
Xk
q¼1

ð Tq
�� �� � sÞ:

The function f0 initializes the array of the mining model’s elements (line 1–2 in Fig. 4).
All other FMBs are formed for each line of the Naive Bayes algorithm:

• f1 is the loop for the data set’s vectors (line 3 in Fig. 4):

f1 d l ¼ loopr 1 l ðf�3f2Þ d l;

• f2 increments the counter (l[q], 0 � q � s) of the vectors with the value q = d[j,
p] of the p-th attribute (line 4 in Fig. 4):

f2 d l ¼ l d j; p½ �½ � þþ ;

• f3 is the loop for the data set’s attributes (line 5 in Fig. 4):

f3 d l ¼ loopc 1 p� 1 f4 d l;

• f4 increments the counter (l[u(k − 1) + (d[j, k] − 1)�u(0) + d[j, p]], s < g � v)
of the vectors with the value d[j, k] of the k-th attribute and value d[j, p] of the p-th
attribute (line 6 in Fig. 4):

f4 d l ¼ l½u k� 1ð Þþ ðd j; k½ � � 1Þ � u 0ð Þþ d½j; p�� þþ :

Composition of these functions represents the Naive Bayes algorithm:

NB ¼ f�1f0 ¼ ðloopr 1 z ðf�3f2Þ dÞ�f0 ¼ ðloopr 1 z ððloopc 1 p� 1f4 dÞ�f2Þ dÞ�f0: ð9Þ

Summarizing, Fig. 5 represents the interaction of the FMBs in the Naive Bayes
algorithm with distributed data.

Parallelization of Algorithms for Mining Data 295

3.3 Functions for Parallelization

In case of distributed data, FMBs of type (6) can be performed on the storage nodes. In
addition they can be executed by in parallel. This corresponds to the parallel execution
with distributed memory. At the same time parallel execution on shared memory can be
performed on a storage node using a multi-core processor. Our approach aims at
parallelizing a data mining algorithm both for shared and distributed memory.

The higher-order function parallel expresses the parallel execution of FMBs by a
system with shared memory:

parallel : M ! Mð Þ½ � ! M ! M
parallel ½fr; . . .; fs� l ¼ head fork ½fr; . . .; fs� l; ð10Þ

where function fork invokes FMBs in parallel:

fork : M ! M½ � ! M ! M½ �
fork ½fr; . . .; fs� l ¼ ½fr l; . . .; fs l�: ð11Þ

function head returns the first element of a mining model’s list of elements.
The higher-order function paralleld for expresses the parallel execution of FMBs

on a distributed memory:

paralleld : ½ðM ! MÞ� ! M ! M
paralleld ½fr; . . .; fs� l ¼ join l forkd½fr; . . .; fsð � lÞ; ð12Þ

where function forkd allows to invoke FMBs in parallel on distributed memory:

forkd : ½M ! M� ! M ! M½ �
forkd ½fr; . . .; fs� l ¼ ½fr copy l; . . .; fs copy l�; ð13Þ

function copy creates copies of the initial mining model in separate areas of the dis-
tributed memory for parallel processing by FMBs:

copy : M ! M
copy l ¼ ½l 0½ �; l 1½ �; . . .; l v½ ��; ð14Þ

Computational node
loopr 1 zloopc 1 p-1

f0 f2 f4f4
loopc 1 p-1

f4f4f2 m

d1= dw=
1.1 1.p

y.1 y.p

x ... x
...

x ... x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

x+1.1 x+1.p

z.1 z.p

x ... x
...

x ... x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

Storage node 1 Storage node s

Fig. 5. Naive Bayes algorithm as a composition of functions on distributed data.

296 I. Kholod et al.

function join joins the mining models that are built by parallel FMBs in separate areas
of distributed memory:

join : M ! M½ � ! M
join l lr; . . .; ls ¼� ½l0 0½ �; . . .; l0 g½ �; . . .; l0 v½ �½ �;

where l0 g½ � ¼ l½g] if li½g] ¼ l½g] for all i ¼ r::s
union l½g] ½lr½g],. . .; ls½g]] otherwise

� ð15Þ

where function union merges elements of different mining models with the same index
to a single mining model’s element:

union : E ! E½ � ! E: ð16Þ

The implementation of function union depends on the structure of the element.
Figure 6 shows the distributed execution of a data mining algorithm using

paralleld.

3.4 Conditions for Parallel Execution of FMBs

Not all FMBs can be correctly executed in parallel to each other, because of possible
data dependencies between them. To check the correctness of the parallel execution
using shared and distributed memory, we introduce the following conditions.

Bernstein’s conditions [18] are traditionally used to verify parallel execution of the
FMBs f1,…, fr: two FMBs ft and ft+1 can be executed in parallel on a shared memory if:

• there is no data anti-dependency: In(ft) \ Out(ft+1) = ∅;
• there is no data flow dependency: Out(ft) \ In(ft+1) = ∅;
• there is no output dependency: Out(ft) \ Out(ft+1) = ∅;

where In(ft) is a subset of mining model elements used by FMB ft; Out(ft) is a subset of
mining model elements modified by FMB ft.

Bernstein’s conditions are sufficient, but not necessary. When representing an
algorithm as (4), we can weaken these conditions for shared and distributed memory.

Storage node 1 Storage node 2 Storage node s

Computational node
paralleld

fr fr+1 fs

forkd joinμr-1 μr

μr-1 μr-1 μr-1 μr μsμr+1

Fig. 6. Execution of a data mining algorithm on distributed data using distributed memory.

Parallelization of Algorithms for Mining Data 297

When executed in parallel using shared memory, FMBs ft and ft+1 use and modify
elements of the same mining model lt-1. Therefore, if following condition:

f�t ftþ 1 ¼ f�tþ 1 ft ð17Þ

is true for them, then the result of parallel execution is correct.
During parallel execution on distributed memory, FMBs ft and ft+1 receive a copy

of the mining model lt−1 constructed by FMB ft−1 and copied by the copy function (14)
as an argument of the forkd function (13). Therefore, FMB ft does not use elements that
are modified by FMBs ft+1, i.e. In(ft) \ Out(ft+1) = ∅ always is true.

As a result, FMBs ft and ft+1 create different instances of a mining model lt and
their modified elements are merged by the union function (16). Therefore, if there exist
the union functions for each modified elements l t[g] 2 Out(ft) \ Out(ft+1) invoked by
function join (15), such that the following condition is true:

ðftþ 1
�ftÞ lt�1 ¼ join lt�1 ½ðft copy l t�1Þ; ðftþ 1 copy lt�1Þ�; ð18Þ

then the result of parallel execution is correct.

3.5 Parallelizing a Data Mining Algorithm for Distributed Data

In our approach, a data mining algorithm is parallelized for distributed execution on the
storage nodes by following the steps below:

(1) represent the algorithm as a composition (4) of functions ft, t = 0..n and the
mining model as an array of elements (3);

(2) for each FMB determine its sets In and Out;
(3) for each pair of the functions of type (6) verify condition (18) for parallel exe-

cution on storage nodes using distributed memory;
(4) for all other FMBs verify condition (17) for parallel execution using shared

memory on nodes with multi-core processors;
(5) convert the sequential execution of FMBs, which can be performed in parallel

with distributed and shared memory, into parallel execution by using functions
paralleld and parallel, respectively.

Applying function paralleld to FMBs that interact with the data set (i.e., they are of
type (6)) allows their execution on the nodes where this data are stored, which makes it
possible to perform local processing without transferring data to other nodes (Fig. 6).
When the mining model of a data mining algorithm is significantly smaller than the
volume of the input data set, such distributed execution allows to reduce:

• network traffic by sending over a network a mining model that is smaller than large
volumes of data;

• run time of the algorithm by reducing the time that is necessary to transmit large
volumes of data.

298 I. Kholod et al.

An important feature of our approach is that we retain the capability to execute FMBs
in parallel on nodes with multi-core processors with shared memory. This enables
using computational resources at the nodes more efficiently, by exploiting two different
kinds of parallelism – on distributed and on shared memory.

3.6 Illustration of Approach: The Naive Bayes Algorithm

As a real-world use case, we apply our approach to parallelising the Naive Bayes
algorithm. The first step is described in Sect. 3.2; its result is the algorithm represented
as a composition of FMBs (9).The second step defines sets In and Out for each FMB of
the algorithm. First, the sets are defined for the simple FMB f2 and f4 are determined
based on the lines 4 and 6 of the pseudocode in Fig. 4 as follows:

Inðf2Þ ¼ fl d j; p½ �½ �g; Outðf2Þ ¼ fl d j; p½ �½ �g;
Inðf4Þ ¼ fl½u k� 1ð Þþ ðd j; k½ � � 1Þ � u 0ð Þþ d½j; p��g; Outðf4Þ ¼ fl½u k� 1ð Þþ ðd j; k½ � � 1Þ � u 0ð Þþ d½j; p��g:

The In and Out sets of the loops are a union of the corresponding sets of iterative FMB
that are called at each loop iteration. For it need to determinate the In and Out sets for
one iteration and extends it for whole loop. For example, the loop f3 invokes the FMB
f4 for attributes from 1 till p, thus, the In and Out sets are follows:

Inðf3Þ ¼ fl d½ ½j; 1 �u 0ð Þþ d� ½j; p��; . . .; l u p� 1ð Þþ ðd½ ½j; p �1Þ � u 0ð Þþ d� ½j; p��g;
Outðf3Þ ¼ fl d½ ½j; 1 �u 0ð Þþ d� ½j; p��; . . .; l u p� 1ð Þþ ðd½ ½j; p �1Þ � u 0ð Þþ d� ½j; p��g:

Table 1 presents the In and Out sets for all FMBs of the Naive Bayes algorithm.

In the 3rd step, we verify condition (18) for the loop f1 = loopr 1 z (f3°f2) that is
executed in parallel on storage nodes using distributed memory. The verification is
carried out for composition f3°f2 that is invoked on adjacent iterations as follows:

Inððf�3f2Þ d j; �½ �Þ \Outððf�3f2Þ d jþ 1; �½ �Þ ¼
Outððf�3f2Þ d j; �½ �Þ \ Inððf�3f2Þ d jþ 1; �½ �Þ ¼
Outððf�3f2Þ d j; �½ �Þ \Outððf�3f2Þ d jþ 1; �½ �Þ ¼

fl d½ ½j; p��; l d½ ½j; 1 �u 0ð Þþ d� ½j; p��; . . .; l u p� 1ð Þþ ðd½ ½j; p �1Þ � u 0ð Þþ d� ½j; p��g \
fl d½ ½jþ 1; p��; l d½ ½jþ 1; 1 �u 0ð Þþ d� ½jþ 1; p��; . . .;l u p� 1ð Þþ ðd½ ½jþ 1; p �1Þ � u 0ð Þþ d� ½jþ 1; p��g ¼

l d½ ½j; p��; l u k� 1ð Þþ ðd½ ½j; k �1Þ � u 0ð Þþ d� ½j; p��f g 6¼ ;;

when d[j, p] = d[j + 1, p] and d[j, k] = d[j + 1, k] for k = 1…p.

Table 1. Sets In and Out for the FMBs of the Naive Bayes algorithm

FMB In Out

f1 = loopr 1 z
(f3°f2) d

l[1],…, l[u(p − 1)] l[1],…, l[u(p − 1)]

f2 l[d[j, p]] l[d[j, p]]
f3 = loopc 1 p
f4 d

l[d[j, 1]�u(0) + d[j, p]],…, l[u(p − 1) +
(d[j, p] − 1)�u(0) + d[j, p]]

d[j, 1]�u(0) + d[j, p]],…, l[u(p − 1) +
(d[j, p] − 1)�u(0) + d[j, p]]

f4 l[u(k − 1) + (d[j, k] − 1)�u(0) + d[j, p]] l[u(k − 1) + (d[j, k] − 1)�u(0) + d[j, p]]

Parallelization of Algorithms for Mining Data 299

However, for these elements a union function exists that sums up vector counters
has been defined for these elements:

union : E ! E½ � ! E
union l q½ � m1½ ½q ; . . .;mr� ½q�� ¼ l q½ � þ m1 q½ � � l q½ �ð Þþ . . .þðmr q½ � � l q½ �Þ:

Thus, loop f1 in (9) can be executed in parallel on distributed memory (storage nodes).
In the 4th step, we verify the condition (17) for the loop f3=loopc 1 p f4 for the

execution using shared memory. The verification is carried out for iterative FMB f4 that
is invoked on adjacent iterations for different attributes:

f4 d �; k½ �ð Þ and ðf4 d �; kþ 1½ �ÞÞ;

consequently change different mining model’s elements:

ðl½u k� 1ð Þþ ðd j; k½ � � 1Þ � u 0ð Þþ d½j; p�� þþ Þ and ðl½u kð Þþ ðd j; kþ 1½ � � 1Þ � u 0ð Þþ d½j; p�� þþ Þ

Consequently, the condition (17) is true:

ððf4 d �; k½ �Þ� f4 d �; kþ 1½ �ÞÞ ¼ ððf4 d �; kþ 1½ �ð Þ�ðf4 d �; k½ �ÞÞ:

Thus loop f3 can be executed in parallel using shared memory.
Figure 7 represents the expression that is obtained at step 5 for data distribution:

NBPar = (paralleld [loopr d 1 z (parallel [(loopc 1 p f4)] f2]) f0. ð19Þ

As a result, a parallel version of the Naive Bayes algorithm is obtained for pro-
cessing the distributed data at the storage nodes. Note that loop loopc is parallelized on
n cores at each storage node. This allows us to use the computational resources at the
nodes more efficiently.

Storage node 1

Computational node

loopr 1 y
parallel

loopc 1 g

f0

f2 f4

loopc r+1 p
f4

headfork μ2

μ2

Core 1

Core 2

Core n

Storage node s
loopr x+1 z

parallel

loopc 1 g
f4

loopc r+1 p
f4

headfork μ2

μ2

Core 1

Core 2

Core n

paralleld

f2

forkd join

μ4μ4

μ0 μ5

d1= ds=
1.1 1.p

y.1 y.p

x ... x
...

x ... x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

x+1.1 x+1.p

z.1 z.p

x ... x
...

x ... x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

μ0 μ0

Fig. 7. Distributed execution of the Naive Bayes algorithm for distributed data

300 I. Kholod et al.

4 Experimental Evaluation

We implement the distributed variant of the Naive Bayes algorithm in the Java-based
library DXelopes [19]. With it, we perform experiments described in the following.

In our experiments, we use the data set “Predict Outcome of Pregnancy” from the
Kaggle Datasets [20]. This data set contains data from Annual Health Survey: Woman
Schedule. The data set contains 68 attributes related to birth (birth history; type of
medical attention at delivery; details of maternal health care (antenatal/natal/postnatal);
immunization of children, etc.) and one attribute that contains information about the
outcome of pregnancy (live birth/stillbirth/abortion). The data set comes as a text file
(in CVS format) that is 2 Gb in size.

Table 2 describes how the data are partitioned for our experiments. The data set is
split into 2 and then 4 parts and first distributed between two storage nodes and then
between four storage nodes. A non-divided data set (for single storage node) is used for
comparison.

The storage nodes are connected to the computational node by local network with
bandwidth 1 Gbps. Each storage node has the following configuration: CPU Intel Xeon
(4 physical cores), 2.90 GHz, 4 Gb. The computational node has: CPU Intel Xeon (12
physical cores), 2.90 GHz, 4 Gb. To imitate communication channel limitation, we use
channel throttling with level 75 Mbps, that matches 4G wireless systems.

Figure 8(a) shows the run time for distributed data. We compare two approaches of
processing distributed data: with gathering data into single data warehouse as in the
usual MapReduce frameworks and without gathering data as in our approach. We
observe that the run time when processing distributed data without gathering them is
reduced when increasing number of storage nodes. For two storage nodes with 4
physical cores on each, the run time of processing without gathering data almost equals
run time of processing without gathering data using12 physical cores. For four storage
nodes, this run time is less by 30%. These results can be explained by processing a
smaller volume of data on each storage node in parallel.

The difference between both approaches is increasing with limited bandwidth. With
a limit of 75 Mbsp, the difference for four storage nodes is more than twice. It can be
explained by the large time spent on data transfer. Obviously, with increasing volume
of data, the run time of processing distributed data with gathering data will increase.

Table 2. Distributed data sets.

Number of
distributed data sets

Number of vectors in
each data set

Number of attributes in
each data set

Size of each
data set (Mb)

4 3 402 670 68 500
2 6 805 350 68 1 000
1 14 461 451 68 2 000

Parallelization of Algorithms for Mining Data 301

Figure 8(b) shows a comparison of network traffic for both approaches. Distributed
data mining with gathering data generates larger traffic (� 100 times), because for it all
data are transferred by network. When processing distributed data in our approach
without gathering data, only processing results are transferred over the network.

We observe that increasing the number of storage nodes leads to increasing the
volume of network traffic, because a higher number of results are being sent over the
network. The number of the results that are being transferred equals the number of
distributed storage nodes (i.e., two mining models for two storage nodes and four
models for four storage nodes). Therefore, the volume of the network traffic directly
depends on the number of distributed storage nodes.

5 Conclusion

We suggest an approach to optimize data mining in the modern applications with
distributed data sources. Our approach formally transforms a high-level functional
representation of a data-mining algorithm into a parallel implementation that performs
as much as possible computations locally at the data sources, rather than accumulating
all data for processing at a central location as in the traditional MapReduce approach.
Thereby our data mining implementation avoids the main disadvantages of the state-of-
the-art MapReduce frameworks in the context of distributed data: increasing total
processing time, high network traffic, and a risk of unauthorized access to the data.

We develop a functional formalism as a formal base of our approach: it allows
proving the correctness of the formal program transformation and of the obtained
parallel implementation. We use the popular data-mining algorithm – Naive Bayes –
for illustrating our approach and for its experimental evaluation. Our experiments
confirm that the distributed implementation of Naive Bayes developed by using our
approach significantly outperforms the usual MapReduce-based implementation
regarding the run time and the network traffic.

0

20

40

60

80

100

120

140

160

Without gathering
(1 Gbps)

With gathering
(1 Gbps)

Without gathering
(75 Mbps)

With gathering
(75 Mbps)

Ru
n�

m
e

(s
ec

)

a)

1

10

100

1000

10000

Without gathering With gathering

N
et

w
or

k t
ra

ffi
c

(M
b)

4 data storages
2 data storages
1 data storages

b)

Fig. 8. Processing of distributed data by Naive Bayes algorithm: (a) run time; (b) network
traffic.

302 I. Kholod et al.

Acknowledgments. We thank the anonymous referees for very helpful remarks on the pre-
liminary version of the paper. This work was supported by the Ministry of Education and Science
of the Russian Federation in the framework of the state order “Organization of Scientific
Research”, task #2.6113.2017/BУ, and by the German Ministry of Education and Research
(BMBF) in the framework of project HPC2SE at the University of Muenster.

References

1. Santucci, G.: From internet to data to Internet of Things. In: Proceedings of the International
Conference on Future Trends of the Internet (2009)

2. Apache Hadoop. http://hadoop.apache.org
3. Apache Spark. http://spark.apache.org/
4. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In:

Proceedings of Operating Systems Design and Implementation, San Francisco, CA,
December 2004

5. Harshawardhan, S.B., et al.: A review paper on Big Data and Hadoop. Int. J. Sci. Res. Publ.
4(10), 1–7 (2014)

6. Kholod, I., Shorov, A., Titkov, E., Gorlatch, S.: A formally-based parallelization of data
mining algorithms for multi-core systems. J. Supercomputing (2018)

7. Gorlatch, S., Cole, M.: Parallel skeletons. In: Padua, D. (ed.) Encyclopedia of Parallel
Computing. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-09766-4

8. Introducing Apache Mahout. http://www.ibm.com/developerworks/java/library/j-mahout/
9. Apache Ignite. Documentation. Machine Learning. https://apacheignite.readme.io/docs/

machine-learning
10. De Francisci, M.G., Bifet, A.: SAMOA scalable advanced massive online analysis. J. Mach.

Learn. Res. 16, 149–153 (2015)
11. Langford, J., Strehl, F., Li, L.: Vowpal wabbit (2007). http://hunch.net/*vw
12. Wang, L., et al.: G-Hadoop: MapReduce across distributed data centers for data-intensive

computing. FGCS 29(3), 739–750 (2013)
13. Jayalath, C., Stephen, J.J., Eugster, P.: From the cloud to the atmosphere: running

MapReduce across data centers. IEEE Trans. Comput. 63(1), 74–87 (2014)
14. Ryden, M., et al.: Nebula: distributed edge cloud for data intensive computing. In: IC2E,

pp. 57–66 (2014)
15. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS. Springer,

New York (2009). https://doi.org/10.1007/978-0-387-84858-7
16. George, H.J., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In:

Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345 (1995)
17. Xindong, W., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2007)
18. Bernstein, J.: Program analysis for parallel processing. IEEE Trans. Electron. Comput.

EC-15, 757–762 (1966)
19. Prudsys Xelopes. https://prudsys.de/en/knowledge/technology/prudsys-xelopes/
20. Kaggle: Dataset: Predict Outcome of Pregnancy. https://www.kaggle.com/rajanand/ahs-

woman-1

Parallelization of Algorithms for Mining Data 303

http://hadoop.apache.org
http://spark.apache.org/
http://dx.doi.org/10.1007/978-0-387-09766-4
http://www.ibm.com/developerworks/java/library/j-mahout/
https://apacheignite.readme.io/docs/machine-learning
https://apacheignite.readme.io/docs/machine-learning
http://hunch.net/%7evw
http://dx.doi.org/10.1007/978-0-387-84858-7
https://prudsys.de/en/knowledge/technology/prudsys-xelopes/
https://www.kaggle.com/rajanand/ahs-woman-1
https://www.kaggle.com/rajanand/ahs-woman-1

HaraliCU: GPU-Powered Haralick
Feature Extraction on Medical Images

Exploiting the Full Dynamics
of Gray-Scale Levels

Leonardo Rundo1,2,3, Andrea Tangherloni3,4,5,6, Simone Galimberti3,
Paolo Cazzaniga7,8, Ramona Woitek1,2,9, Evis Sala1,2, Marco S. Nobile3,8,

and Giancarlo Mauri3,8(B)

1 Department of Radiology, University of Cambridge, Cambridge, UK
2 Cancer Research UK Cambridge Centre, Cambridge, UK
3 Department of Informatics, Systems and Communication,

University of Milano-Bicocca, Milan, Italy
giancarlo.mauri@unimib.it

4 Department of Haematology, University of Cambridge, Cambridge, UK
5 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK

6 Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute,
Cambridge, UK

7 Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
8 SYSBIO.IT Centre of Systems Biology, Milano, Italy

9 Department of Biomedical Imaging and Image-guided Therapy,
Medical University Vienna, Vienna, Austria

Abstract. Image texture extraction and analysis are fundamental steps
in Computer Vision. In particular, considering the biomedical field, quan-
titative imaging methods are increasingly gaining importance since they
convey scientifically and clinically relevant information for prediction,
prognosis, and treatment response assessment. In this context, radiomic
approaches are fostering large-scale studies that can have a significant
impact in the clinical practice. In this work, we focus on Haralick features,
the most common and clinically relevant descriptors. These features are
based on the Gray-Level Co-occurrence Matrix (GLCM), whose compu-
tation is considerably intensive on images characterized by a high bit-
depth (e.g., 16 bits), as in the case of medical images that convey detailed
visual information. We propose here HaraliCU, an efficient strategy for
the computation of the GLCM and the extraction of an exhaustive set
of the Haralick features. HaraliCU was conceived to exploit the parallel
computation capabilities of modern Graphics Processing Units (GPUs),
allowing us to achieve up to ∼ 20× speed-up with respect to the cor-
responding C++ coded sequential version. Our GPU-powered solution
highlights the promising capabilities of GPUs in the clinical research.

L. Rundo and A. Tangherloni—Contributed equally.

c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 304–318, 2019.
https://doi.org/10.1007/978-3-030-25636-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_24

HaraliCU: GPU-Powered Haralick Feature Extraction on Medical Images 305

Keywords: Haralick features · GPU computing ·
Full gray-scale range · Medical imaging · Radiomics · CUDA

1 Introduction

Texture analysis has been effectively used in the classification and categorization
of pictorial data in several Computer Vision tasks, such as object detection [1]
and representation [2]. More specifically, texture features allow for quantitative
analyses of the properties concerning scenes or objects of interest. Even though
Deep Learning has recently gained ground, conventional Machine Learning mod-
els built on top of hand-engineered features remain fundamental in practical
applications, especially thanks to the interpretability of the results [3]. With
particular reference to biomedicine, quantitative imaging methods are increas-
ingly gaining importance since they convey scientifically and clinically relevant
information for prediction, prognosis, and treatment response assessment [4]. In
this context, radiomic approaches are encouraging large-scale studies that can
have a significant impact in the clinical practice [5]. Radiomics aims at extracting
huge amounts of features from medical images and then mining them by means
of cutting-edge computational techniques [6]. By so doing, radiomics exploits
advanced imaging features to objectively and quantitatively describe tumor phe-
notypes [5]. Recently, radiomic studies have drawn considerable interest due to
the potentialities for predicting treatment outcomes and cancer genetics, which
may have important applications in personalized medicine [6,7]. Relying on the
idea that radiomic features convey information about the different cancer phe-
notypes, they enable quantitative measurements for intra- and inter-tumoral
heterogeneity.

The radiomic features can be essentially divided into four classes [8]. The
first class comprises features related to region-based measurements (i.e., size,
shape, diameter), while the other classes can be described as first-, second-,
and higher-order statistical outputs, respectively. First-order statistical features
concern the gray-level intensity histogram of a Region of Interest (ROI), such as
mean, median, standard deviation, minimum, maximum, quartiles, kurtosis, and
skewness. The second-order statistics consider texture analysis, which describes
the texture of the ROI, by relying on the Gray-Level Co-occurrence Matrix
(GLCM) that stores the co-occurrence frequency of similar intensity levels over
the region (i.e., intensity value pairs). An alternative technique belonging to the
second-order statistical outputs is fractal-based texture analysis, which examines
the difference between pixels at different length scales (i.e., offset differences) [9].
Lastly, the higher-order methods extract repetitive or non-repetitive patterns
by using kernel functional transformations, as in the case of the Gray-Level
Run Length Matrix (GLRLM), which gives the size of homogeneous runs for
each gray-level [10], and the Gray-Level Zone Length Matrix (GLZLM), which
provides information on the size of homogeneous zones for each gray-level [11].
Moreover, some popularly used descriptors in transformed domains are Fourier
transform, Wavelets, and Gabor filters [12,13].

306 L. Rundo et al.

Among the available radiomic descriptors, Haralick features are the most
commonly used and clinically relevant [14,15], allowing radiologists to assess
image regions characterized by heterogeneous/homogeneous areas or local
intensity variations [16]. GLCM-based texture features have been extensively
exploited in several medical image analysis tasks, such as breast Ultrasound
(US) classification [17], brain tissue segmentation on Magnetic Resonance (MR)
images [18], and volume-preserving non-rigid lung Computed Tomography (CT)
image registration [19]. Unfortunately, the computation of these features is con-
siderably intensive on images characterized by a high bit-depth (e.g., 16 bits),
such as in the case of medical images that have to convey detailed visual informa-
tion [20]. As a matter of fact, with the existing computational tools, the range of
intensity values of an image must be reduced and limited to achieve an efficient
radiomic feature computation [7].

In this work, we propose a novel strategy to compute the GLCM and extract
an exhaustive set of the Haralick features. In particular, we aim at overcoming
the limitations of the available feature extraction and radiomics tools that cannot
effectively manage the full-dynamics of gray-scale levels. Our method, called
HaraliCU, can offload the computations onto the GPU cores, thus allowing us
to drastically reduce the running time required by the execution on Central
Processing Units (CPUs).

This manuscript is organized as follows. Section 2 introduces the fundamen-
tal concepts regarding the GLCM-based textural features by presenting also the
set of the extracted Haralick features. Section 3 introduces the Compute Unified
Device Architecture (CUDA) and summarizes the state-of-the-art of the avail-
able software for Haralick feature extraction. Section 4 describes HaraliCU in
details. The achieved results are shown and discussed in Sect. 5. Finally, some
concluding remarks and future developments of this work are given in Sect. 6.

2 Haralick Features

Haralick features contain data about image textural characteristics, e.g., homo-
geneity, gray-tone linear dependencies, contrast, number and nature of bound-
aries present, along with indices of the inherent complexity of the image. All
these features are calculated according to a GLCM.

2.1 GLCM: Basic Concepts

Formally, a GLCM with size L×L, where L represents the maximum number of
gray-levels according to the quantization scheme, denotes the second-order joint
probability function p(i, j) of an image region—where i, j ∈ [0, 1, . . . , L − 1] are
gray-levels—defined as P(i, j). The GLCM considers the mapping of the initial
full dynamics due to computational limitations.

In what follows, we will refer to two neighboring pixels, separated by a
distance δ along an orientation θ, as the pair 〈reference, neighbor〉, where the
reference pixel has gray-level equal to i, while the neighbor pixel is characterized

HaraliCU: GPU-Powered Haralick Feature Extraction on Medical Images 307

by a gray-level j. More specifically, given a sliding window of size ω × ω, the
〈i, j〉-th element of the matrix P(i, j|δ, θ, ω) represents the number of times that
the combination of the levels i and j occurs in two pixels 〈reference, neighbor〉
inside the sliding window, which are separated by a distance of δ pixels along
the orientation θ. The distance δ is defined according to the infinity norm �∞.
The undirected and directed distances denote the symmetric and non-symmetric
GLCM, respectively, in terms of conditional co-occurrence probabilities. In some
specific applications, valuable information could be lost in the symmetric app-
roach [15]. Specifically:

– when computing the symmetric GLCM Ps, since the pairs of gray-levels 〈i, j〉
and 〈j, i〉 are considered as the same element in Ps, the frequency of both
〈i, j〉 and 〈j, i〉 is increased, so the resulting GLCM is symmetric across its
main diagonal;

– when computing the non-symmetric GLCM Pns, the pairs of gray-levels 〈i, j〉
and 〈j, i〉 are considered separately in Pns.

In medical imaging, the selection of δ and θ used for the GLCM computation
could depend on the specific application. For instance in breast US, the direc-
tion θ = 90◦ coincides with the direction of US propagation [17]. In order to
obtain rotationally invariant features, it is common to average the GLCM-based
statistics achieved over the four directions θ ∈ {0◦, 45◦, 90◦, 135◦}.

2.2 Haralick Features in Medical Imaging

As a first step, we conducted an in-depth analysis of the literature to accurately
define an exhaustive set of the Haralick features and avoid both ambiguities
and redundancies. In the literature, some features exhibited potential in the
characterization of the cancer imaging phenotype. For instance, entropy was
shown to be a promising quantitative imaging biomarker for characterizing can-
cer heterogeneity, although it could be affected by acquisition protocols in multi-
institutional studies [21]. With regard to the computation of the GLCM-based
features, HaraliCU exploits the existing dependencies among Haralick features.
Indeed, Gipp et al. [22] pointed out that some features can exploit some calcu-
lations pertaining to other features or intermediate results.

Considering the process of image digitalization, the compression of the initial
intensity range is called quantization, which is generally irreversible and results
in loss of information. For instance, in the case of texture features based on
the Standardized Uptake Value (SUV) [23] within the tumor, a quantization
phase is involved. Orlhac et al. [24] compared the different quantization strate-
gies in metabolic activity pattern identification, by showing that they might
significantly affect the texture values. In [25], the Positron Emission Tomogra-
phy (PET)-derived texture features were calculated by quantizing the tumor
voxel intensities with similar uptake to the same value. A similar study on
Haralick features computed on the Apparent Diffusion Coefficient (ADC) MR
images was presented in [16]. Even though the authors claimed that the impact of

308 L. Rundo et al.

noise is reduced, this gray-scale compression could considerably decrease the dis-
criminating power in feature-based classification tasks [26]. However, the main
practical argument for the gray-scale compression is the computational cost.
Therefore, to fully justify this choice, more advanced and adaptive quantization
schemes should be devised [16]. With reference to the normalization of CT-based
radiomics [27], the influence of gray-level quantification on radiomic feature sta-
bility for different CT scanners, tube currents and slice thickness was investigated
in [28].

3 State-of-the-Art

The main limitation of the existing radiomics tools concerns their inability to
deal with the full dynamics of 16-bit images, meaning that they are not capable
of extracting the feature maps by preserving the initial gray-scale range. This
drawback is emphasized when handling feature extraction tasks on the whole
input image, especially for image classification purposes.

The aim of our approach is to tackle these issues, by effectively computing the
feature maps for high-resolution images with their full dynamics. Since the cal-
culation of Haralick features represents an embarrassingly parallel problem, sev-
eral High-Performance Computing (HPC) technologies can be exploited. Among
them, General-Purpose Computing on GPUs (GPGPU) is one of the most
promising approaches. With reference to the existing Single Instruction Multiple
Data (SIMD) architectures, NVIDIA CUDA is one of the most widespread and
popular options [29]. CUDA is designed to exploit the parallelism provided by
many-core GPUs for general-purpose scientific computing. Specifically, the idea
is to offload intrinsically parallel calculations from the CPU, called the host, onto
one or more devices (the GPUs) by means of kernels, that is, functions launched
from the host and replicated in multiple threads running on the GPU cores.

CUDA threads are logically subdivided into thread blocks which, in turn,
are organized in block grids. From a hardware standpoint, blocks are distributed
over the GPU Streaming Multiprocessors (SMs) for their execution. When the
blocks outnumber the available SMs, they are queued by the CUDA scheduler,
transparently scaling the performance on different GPUs. Indeed, the higher the
number of SMs, the higher the number of blocks running at the same time.
The threads in execution on an SM are organized in tight groups of 32 threads
named warps, which are executed in locksteps. Thus, blocks smaller than 32
threads imply a reduced occupancy of the GPU resources. In addition, due to
this peculiar pattern of execution, any divergent path taken by some threads in
a warp (e.g., the consequence of a conditional if-then-else statement) causes
a serialization of the execution until re-convergence, affecting the overall perfor-
mance. Therefore, in order to achieve optimal performance, CUDA code must
be optimized to prevent any branch divergence in the execution.

CUDA has also a complex memory hierarchy, characterized by multiple mem-
ory types that provide different advantages and drawbacks. Notable examples
are the global memory (large, visible by all threads, and affected by high access

HaraliCU: GPU-Powered Haralick Feature Extraction on Medical Images 309

latency) and the shared memory (very small and used for intra-block commu-
nications with very slow access latency). A careful optimization of the data
structures in these memories is mandatory to achieve the theoretical peak per-
formance. Moreover, since any memory transfer between the host and device is
very time consuming, they should be reduced as much as possible. Due to these
peculiarities, CUDA programming could be challenging and generally requires
the redesign of existing algorithms [30].

GPUs are representing an enabling factor for feasible computational solu-
tions in medical image analysis [31,32]. Over the last years, GPUs proved to
be fundamental for the practical use of computationally demanding algorithms
[30], like the efficient training of deep neural networks [33]. Considering the
GPU-accelerated Haralick feature extraction methods, Gipp et al. [22] proposed
a packed representation of the symmetric GLCM, by storing only the rows and
columns with non-zero elements. Afterwards, the Haralick features are computed
by means of the lookup table that maps the index of the packed co-matrix. This
clever solution reduces the accesses to global memory and, in turn, reduces the
latencies due to memory reads, strongly improving the overall performances. The
authors applied this implementation to cell images with 12-bit intensity depth.
Tsai et al. [34] proposed an indirect encoding scheme for storing the GLCM,
named the meta GLCM array, designed to fully exploit the GPU memory hier-
archy. This approach was tested on brain MR images.

4 The Proposed GPU-Accelerated Method

Medical images convey a valuable amount of information, in terms of image
resolution as well as pixel depth, which should be maintained for automated
processing [20], since additional clinically useful pictorial details could be iden-
tified with respect to the naked eye perception. For these motivations, in the
proposed approach, we aimed at keeping the whole initial information provided
by the full dynamics of the gray-levels (i.e., 16 bits in the case of biomedical
images), by efficiently managing the memory. As a matter of fact, the state-of-
the-art methods exhaust the physical memory, such as in the case of the MatLab
built-in function graycomatrix, even if running on machines equipped with 16
GB of RAM.

HaraliCU aims at supporting the user by providing low-level control. Indeed,
the user can set the distance offset δ, the orientation θ, and the window size
ω ×ω, while the neighborhood N is defined according to δ and θ. Therefore, the
features can be computed for the four directions and then averaged to obtain
a single aggregate value. The user can also set the padding conditions for the
border pixels, either by choosing the zero padding or the symmetric padding. The
number of quantized gray-levels Q can be also provided; HaraliCU linearly maps
the initial minimum and maximum gray-levels onto 0 and Q− 1, respectively, in
order to avoid the loss of a considerable amount of intensity bins.

The accuracy of the proposed efficient GLCM computation approach was
evaluated against the built-in function graycomatrix provided by MatLab.

310 L. Rundo et al.

The computation of the Haralick features was carefully compared against the
graycoprops function, which provides only the contrast, correlation, energy (i.e.,
angular second moment), and homogeneity features. For the other features, we
relied also on a MatLab implementation publicly available on MatLab Central1.
It is worth to note that our comparison was limited to the use of L = 28 gray-
levels for the computation of the GLCM due to the computational limitations
of the MatLab implementation. As a matter of fact, the graycomatrix function
requires a double-precision L × L GLCM, by exceeding the main memory even
in the case of 16 GB of RAM.

Since allocating a GLCM with 216 rows and columns for each sliding win-
dow is memory demanding, and also considering that the size of each GLCM is
strictly related to the number of different gray-levels inside the considered sliding
window, we designed an effective and efficient encoding. More specifically, our
novel encoding consists in storing each GLCM by using a list-based data struc-
ture in which every element of the list is a pair 〈GrayPair, freq〉, where GrayPair is
a pair 〈i, j〉 of gray-levels and freq is the corresponding frequency (i.e., number of
occurrences of the pair 〈i, j〉) inside the considered sliding window. The number
of possible different elements composing the GLCM is given by the number of
pairs 〈reference, neighbor〉 that can be identified inside the sliding window, taking
into account the distance δ. The exact number of elements is provided by the
following equation: #GrayPairs = ω2 −ωδ. The GLCM is dynamically computed
by using the following procedure:

1. each pair 〈reference, neighbor〉, with gray-levels equal to 〈i, j〉, belonging to
the sliding window is evaluated;

2. when a pair 〈i, j〉 is found, if the corresponding GrayPair element in the list
exists, its frequency freq is incremented; otherwise, a new element GrayPair,
with freq equal to 1, is allocated and appended to the end of the list.

This simple but efficient encoding allows for removing all the zero elements
inside the GLCM. In addition, when the GLCM symmetry is exploited, the
length of the list is halved: indeed, the pairs 〈i, j〉 and 〈j, i〉 are considered as
the same pair and the frequency of the pair 〈i, j〉 is doubled.

Considering that there are no dependencies between the sliding windows, we
assigned each pixel of the input image to a GPU thread. In such a way, each
thread computes all the features related to its pixel, which represents the center
of the corresponding window. As a matter of fact, since a medical image could
be often composed of more than 250 thousand pixels, involving the same number
of sliding windows in the feature map computation, GPUs—thanks to their high
number of threads that can be executed in parallel—are the most suitable co-
processors to parallelize the required massive computational workload. In order
to maximize the GPU performance and to fully exploit the GPU acceleration, we
created a bi-dimensional structure for both the number of blocks and the number
of threads. We fixed the number of threads to 16 for both the components of the

1 https://uk.mathworks.com/matlabcentral/fileexchange/22187-glcm-texture-
features.

https://uk.mathworks.com/matlabcentral/fileexchange/22187-glcm-texture-features
https://uk.mathworks.com/matlabcentral/fileexchange/22187-glcm-texture-features

HaraliCU: GPU-Powered Haralick Feature Extraction on Medical Images 311

bi-dimensional structure, while the number of blocks for each component of the
corresponding bi-dimensional structure strictly depends on the number of the
pixels (#pixels) composing the input image, and can be calculated as follows:

nblocks =

{
n̂, if n̂2 ≥ �#pixels

256 �
1, otherwise

.

We used 16 threads in each component to take into consideration the CUDA
warp size (i.e., 32 threads) as well as the limited number of registers.

Each thread processes a sliding window, that is, a subset of the pixels of the
original image. Hence, all threads fetch from the GPU’s global memory the pix-
els that are necessary for the calculations. However, some pixels may be shared
by partially overlapping windows, a circumstance that introduces unnecessary
latencies in the execution and might be mitigated by exploiting the shared mem-
ory. We will investigate this feature in a next release of HaraliCU.

5 Experimental Results

As described in the previous section, we validated HaraliCU by comparing the
values of the features contrast, correlation, energy, and homogeneity with those
extracted using the built-in functions graycomatrix.

5.1 Test Images

For the tests presented here, we considered two medical datasets characterized
by different modalities and image size:

– axial T1-weighted Fast Field Echo contrast-enhanced MR sequences of brain
metastases (matrix size: 256 × 256 pixels, pixel spacing: 1.0 mm, slice thick-
ness: 1.5 mm), where the extracted features can be applied to segmentation
and classification tasks [18,35];

– axial contrast-enhanced CT series of high-grade serous ovarian cancer (matrix
size: 512×512 pixels, pixel spacing: ∼0.65 mm, slice thickness: 5.0 mm), where
texture features can evaluate intra- and inter-tumoral heterogeneity [36,37].
Pelvic lesions only were selected for this work.

In both cases, the intensity depth is 16 bits.

5.2 Computational Results

The existing versions of Haralick feature extraction tools are typically char-
acterized by prohibitive running times, making them unfeasible in the clinical
research. Moreover, these tools are not capable of taking into consideration the
full dynamics of gray-scale levels; we therefore developed a memory-efficient CPU
version of HaraliCU (coded in C++), which overcomes this limitation and was

312 L. Rundo et al.

Fig. 1. Examples of feature maps obtained by HaraliCU by considering the full dynam-
ics of gray-scale levels: (a) axial contrast-enhanced T1-weighted MR image of enhanc-
ing brain metastatic cancer; (b) axial venous phase contrast enhanced CT image of
a patient with high-grade serous ovarian cancer showing the partly calcified and cys-
tic ovarian tumor (red ROI) and omental disease (not outlined). The original images
are shown in the leftmost panel. The ROIs (i.e., the tumor regions) are highlighted
with a red contour and the corresponding cropped sub-images containing the ROIs are
zoomed at the bottom right of each sub-figure. In the rightmost panel, we show four
selected feature maps for the ROI-centered cropped images, namely: contrast, corre-
lation, difference entropy and homogeneity. In both cases, the features were extracted
by using δ = 1 and averaging over θ ∈ {0◦, 45◦, 90◦, 135◦} to enrich the visual content.
We selected ω = 5 and ω = 9 for the brain metastasis MR and the ovarian cancer CT
images, respectively. (Color figure online)

HaraliCU: GPU-Powered Haralick Feature Extraction on Medical Images 313

Fig. 2. Speed-up achieved by the GPU-powered version of HaraliCU, with respect to
the C++ counterpart, on brain metastatic tumor MR and ovarian cancer CT images,
by considering 28 intensity levels, enabling and disabling the GLCM symmetry, and
considering ω ∈ {3, 7, 11, 15, 19, 23, 27, 31}. Blue and green lines denote the speed-up
trend considering brain metastasis MRI images, while red and violet lines are used for
ovarian cancer CT images. (Color figure online)

also used as a benchmark to show the advantages of exploiting the GPUs to
accelerate the calculations required by this computationally intensive task.

We first show in Figs. 1a and b two examples of input images along with
the corresponding feature maps of four selected descriptors in the case of brain
metastatic tumor MR and ovarian cancer CT images, respectively, to evaluate
the correctness of our implementation. From the computational point of view,
our C++ implementation resulted extremely efficient with respect to the Mat-
Lab version, based on the graycomatrix and graycoprops functions, to extract
Haralick features on a brain metastasis MR image. As a matter of fact, by vary-
ing the gray-scale range from 24 to 29 levels, we achieved speed-up values around
50× and 200×, respectively.

As a second step, we compared the computational performance of our single
core CPU version and GPU-powered versions of HaraliCU to extract all the
provided features, to assess the capabilities of the parallel implementation. The
GPU version of HaraliCU was run on an NVIDIA GeForce GTX Titan X (3072
cores, clock 1.075 GHz, 12 GB of RAM), CUDA toolkit version 8 (driver 387.26),
running on a workstation with Ubuntu 16.04 LTS, equipped with a CPU Intel
Core i7-2600 CPU (clock 3.4 GHz) and 8 GB of RAM. The CPU version of
HaraliCU was run on the same workstation, relying on the computational power
provided by the CPU Intel Core i7-2600 CPU. The CPU version was compiled
by using the GNU C++ compiler (version 5.4.0) with optimization flag -O3,

314 L. Rundo et al.

Fig. 3. Speed-up achieved by the GPU-powered version of HaraliCU, with respect to
the C++ counterpart, on brain metastatic tumor MR and ovarian cancer CT images,
by considering 216 intensity levels, enabling and disabling the GLCM symmetry, and
considering ω ∈ {3, 7, 11, 15, 19, 23, 27, 31}. Blue and green lines denote the trend con-
sidering brain metastatic tumor MRI images, while red and violet lines are used for
ovarian cancer CT images. (Color figure online)

while the GPU version was compiled with the CUDA Toolkit 8.0 by exploiting
the optimization flag -O3 for both CPU and GPU code.

In order to collect statistically sound results and take into consideration
the variability and the heterogeneity typically characterizing these images, we
randomly selected 30 images from 3 different patients (10 per patient) affected
by brain metastases and 30 images from 3 different patients affected by ovarian
cancer. We tested both versions of HaraliCU by considering different window
sizes, that is, ω ∈ {3, 7, 11, 15, 19, 23, 27, 31}, as well as two different intensity
levels (i.e., 28 and 216). For each combination of ω and intensity levels, we also
enabled and disabled the GLCM symmetry to evaluate how the symmetry affects
the running time of HaraliCU. It is worth noting that the measurements of the
execution time of HaraliCU include the data transfer between the host memory
and the device memory.

Figures 2 and 3 show the speed-up achieved by the GPU-powered version of
HaraliCU. Considering only 28 intensity levels, the speed-up increases almost
linearly; in addition, by disabling the GLCM symmetry and using ω = 31
we obtained the highest speed-ups of 12.74× and 12.71× on brain metastasis
(256 × 256 pixels) and ovarian cancer images (512 × 512 pixels), respectively.
When the full dynamic of the gray-scale levels (i.e., 216) is considered, the GPU-
powered version of HaraliCU outperforms the sequential counterpart, achieving
speed-ups up to 15.80× with ω = 31 and 19.50× with ω = 23, on brain metasta-
sis and ovarian cancer images, respectively. Taking into account ovarian cancer

HaraliCU: GPU-Powered Haralick Feature Extraction on Medical Images 315

images, when ω is greater than 23 pixels the speed-up decreases for two reasons.
Firstly, each thread, which is associated with a pixel, must consider more neigh-
bor pixels that might have very different gray-level intensities, since their values
are in the range [0, 1, . . . , 216 − 1]. This corresponds in increasing the required
workload that each thread must perform; since the GPU cores have a lower clock
frequency than CPU cores, the speed-up is reduced. Secondly, the GPU resources
are saturated since the GLCM size associated with each thread may increase due
to the high full-dynamic range. In this specific situation, the total GLCM size
might overwhelm the dimension of the global memory and some threads handle
different pixels, computing the corresponding Haralick features in a sequential
way, decreasing the number of threads running in parallel.

The source code and the instructions for the compilation and execution of
HaraliCU are available under the GNU GPL v3.0 license on GitHub at the
following URL: https://github.com/andrea-tango/HaraliCU. HaraliCU requires
an NVIDIA GPU, CUDA toolkit version 8 (or higher), OpenCV library version
3.4.1 (or higher).

6 Conclusion

Image texture extraction and analysis is playing a key role in quantitative
biomedicine, leading to valuable applications in radiomic [5,6] and radiogenomic
[38] research, by also combining heterogeneous sources of information. Therefore,
advanced computerized medical image analysis methods, specifically designed
to deal with the massive amount of extracted features, could be beneficial for
the definition of imaging biomarkers, guiding towards personalized patient care.
However, these large-scale studies need efficient techniques to drastically reduce
the prohibitive running time that is typically required.

In this paper, we presented HaraliCU, a computationally efficient approach
capable of effectively exploiting the power of the modern GPUs, which aims at
accelerating the GLCM computation by keeping the full dynamic range in med-
ical images. Our method was tested on a dataset composed of brain metastatic
tumor MR images and ovarian cancer CT images. Our C++ coded sequential
version showed to be ∼200× faster than the corresponding MatLab implementa-
tion. In addition, the GPU-powered version was able to achieve speed-ups up to
15.80× and 19.50×, with respect to the CPU version, on brain metastasis MR
and ovarian cancer CT images, respectively. It is worth noting that neither the
C++ version nor HaraliCU implementations have been optimized. Indeed, we
expect to further increase their performance by exploiting vectorial instructions
and multi-threading, in the case of the sequential version, and by carefully using
the high-performance memories of the GPU (i.e., registers, shared memory), for
what concerns HaraliCU.

Finally, thanks to this outstanding performance, the C++ version and even
more so HaraliCU might enable multi-scale radiomic analyses by properly com-
bining several values of distance offsets, orientations, and window sizes.

As a future development, we plan to develop an improved version of Har-
aliCU by exploiting the vectorization of the input image matrices for a better

https://github.com/andrea-tango/HaraliCU

316 L. Rundo et al.

GPU thread block managing. In order to improve the scalability of the proposed
approach, the dynamic parallelism, supported by CUDA, could be exploited to
further parallelize the computations when the workload increases (e.g., high win-
dow size). Moreover, even though the spatial and temporal locality are already
exploited during the GLCM construction process, based on the sliding window,
the usage of the GPU memory hierarchy might be optimized [39]. Finally, deal-
ing with the clinical feasibility of radiogenomic studies, the integration of the
imaging phenotype and genotype can provide valuable information about tumor
heterogeneity as well as treatment response [40], by efficiently exploiting high-
throughput techniques.

Acknowledgment. This work was partially supported by The Mark Foundation for
Cancer Research and Cancer Research UK Cambridge Centre [C9685/A25177]. Addi-
tional support has been provided by the National Institute of Health Research (NIHR)
Cambridge Biomedical Research Centre. The views expressed are those of the authors
and not necessarily those of the NHS, the NIHR or the Department of Health and
Social Care.

References

1. Trivedi, M.M., Harlow, C.A., Conners, R.W., Goh, S.: Object detection based
on gray level cooccurrence. Comput. Vis. Graph. Image Process. 28(2), 199–219
(1984)

2. Soh, L.K., Tsatsoulis, C.: Texture analysis of SAR sea ice imagery using gray level
co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37(2), 780–795 (1999)

3. Torheim, T., et al.: Classification of dynamic contrast enhanced MR images of
cervical cancers using texture analysis and support vector machines. IEEE Trans.
Med. Imaging 33(8), 1648–1656 (2014)

4. Yankeelov, T.E., et al.: Quantitative imaging in cancer clinical trials. Clin. Cancer
Res. 22(2), 284–290 (2016)

5. Lambin, P., et al.: Radiomics: extracting more information from medical images
using advanced feature analysis. Eur. J. Cancer 48(4), 441–446 (2012)

6. Lambin, P., et al.: Radiomics: the bridge between medical imaging and personalized
medicine. Nat. Rev. Clin. Oncol. 14(12), 749 (2017)

7. Yip, S.S., Aerts, H.J.: Applications and limitations of radiomics. Phys. Med. Biol.
61(13), R150 (2016)

8. Stoyanova, R., et al.: Prostate cancer radiomics and the promise of radiogenomics.
Transl. Cancer Res. 5(4), 432 (2016)

9. Chen, C.C., DaPonte, J.S., Fox, M.D.: Fractal feature analysis and classification
in medical imaging. IEEE Trans. Med. Imaging 8(2), 133–142 (1989)

10. Galloway, M.M.: Texture analysis using gray level run lengths. Comput. Graph.
Image Process. 4(2), 172–179 (1975)

11. Thibault, G., et al.: Shape and texture indexes application to cell nuclei classifica-
tion. Int. J. Pattern Recognit. Artif. Intell. 27(01), 1357002 (2013)

12. Zhu, H., et al.: A new local multiscale Fourier analysis for medical imaging. Med.
Phys. 30(6), 1134–1141 (2003)

13. Arivazhagan, S., Ganesan, L.: Texture classification using wavelet transform. Pat-
tern Recognit. Lett. 24(9–10), 1513–1521 (2003)

HaraliCU: GPU-Powered Haralick Feature Extraction on Medical Images 317

14. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classifi-
cation. IEEE Trans. Syst. Man Cybern. SMC 3(6), 610–621 (1973)

15. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5),
786–804 (1979)

16. Brynolfsson, P., et al.: Haralick texture features from apparent diffusion coefficient
(ADC) MRI images depend on imaging and pre-processing parameters. Sci. Rep.
7(1), 4041 (2017)

17. Gómez, W., Pereira, W., Infantosi, A.F.C.: Analysis of co-occurrence texture statis-
tics as a function of gray-level quantization for classifying breast ultrasound. IEEE
Trans. Med. Imaging 31(10), 1889–1899 (2012)

18. Ortiz, A., Górriz, J., Ramı́rez, J., Salas-Gonzalez, D., Llamas-Elvira, J.M.: Two
fully-unsupervised methods for MR brain image segmentation using SOM-based
strategies. Appl. Soft Comput. 13(5), 2668–2682 (2013)

19. Park, S., Kim, B., Lee, J., Goo, J.M., Shin, Y.G.: GGO nodule volume-preserving
nonrigid lung registration using GLCM texture analysis. IEEE Trans. Biomed.
Eng. 58(10), 2885–2894 (2011)

20. Rundo, L., et al.: MedGA: a novel evolutionary method for image enhancement in
medical imaging systems. Expert Syst. Appl. 119, 387–399 (2019)

21. Dercle, L., et al.: Limits of radiomic-based entropy as a surrogate of tumor hetero-
geneity: ROI-area, acquisition protocol and tissue site exert substantial influence.
Sci. Rep. 7(1), 7952 (2017)

22. Gipp, M., et al.: Haralick’s texture features computation accelerated by GPUs
for biological applications. In: Bock, H., Hoang, X., Rannacher, R., Schlöder, J.
(eds.) Modeling, Simulation and Optimization of Complex Processes, pp. 127–137.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25707-0 11

23. Leijenaar, R.T., et al.: The effect of SUV discretization in quantitative FDG-PET
radiomics: the need for standardized methodology in tumor texture analysis. Sci.
Rep. 5, 11075 (2015)

24. Orlhac, F., Soussan, M., Chouahnia, K., Martinod, E., Buvat, I.: 18F-FDG PET-
derived textural indices reflect tissue-specific uptake pattern in non-small cell lung
cancer. PLoS One 10(12), e0145063 (2015)

25. Orlhac, F., Soussan, M., Maisonobe, J.A., Garcia, C.A., Vanderlinden, B., Buvat,
I.: Tumor texture analysis in 18F-FDG PET: relationships between texture param-
eters, histogram indices, standardized uptake values, metabolic volumes, and total
lesion glycolysis. J. Nucl. Med. 55(3), 414–422 (2014)

26. Jen, C.C., Yu, S.S.: Automatic detection of abnormal mammograms in mammo-
graphic images. Expert Syst. Appl. 42(6), 3048–3055 (2015)

27. Shafiq-ul Hassan, M., Latifi, K., Zhang, G., Ullah, G., Gillies, R., Moros, E.: Voxel
size and gray level normalization of CT radiomic features in lung cancer. Sci. Rep.
8(1), 10545 (2018)

28. Larue, R.T., et al.: Influence of gray level discretization on radiomic feature stabil-
ity for different CT scanners, tube currents and slice thicknesses: a comprehensive
phantom study. Acta Oncol. 56(11), 1544–1553 (2017)

29. Luebke, D.: CUDA: scalable parallel programming for high-performance scientific
computing. In: Proceedings 5th IEEE International Symposium on Biomedical
Imaging: From Nano to Macro (ISBI), pp. 836–838. IEEE (2008)

30. Nobile, M.S., Cazzaniga, P., Tangherloni, A., Besozzi, D.: Graphics processing units
in bioinformatics, computational biology and systems biology. Brief. Bioinform.
18(5), 870–885 (2016)

31. Eklund, A., Dufort, P., Forsberg, D., LaConte, S.M.: Medical image processing on
the GPU-past, present and future. Med. Image Anal. 17(8), 1073–1094 (2013)

https://doi.org/10.1007/978-3-642-25707-0_11

318 L. Rundo et al.

32. Smistad, E., Falch, T.L., Bozorgi, M., Elster, A.C., Lindseth, F.: Medical image
segmentation on GPUs-a comprehensive review. Med. Image Anal. 20(1), 1–18
(2015)

33. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev.
Biomed. Eng. 19, 221–248 (2017)

34. Tsai, H.Y., Zhang, H., Hung, C.L., Min, G.: GPU-accelerated features extraction
from magnetic resonance images. IEEE Access 5, 22634–22646 (2017)

35. Militello, C., et al.: Gamma Knife treatment planning: MR brain tumor segmenta-
tion and volume measurement based on unsupervised Fuzzy C-Means clustering.
Int. J. Imaging Syst. Technol. 25(3), 213–225 (2015)

36. Vargas, H.A., et al.: A novel representation of inter-site tumour heterogeneity from
pre-treatment computed tomography textures classifies ovarian cancers by clinical
outcome. Eur. Radiol. 27(9), 3991–4001 (2017)

37. Rizzo, S., et al.: Radiomics of high-grade serous ovarian cancer: association between
quantitative CT features, residual tumour and disease progression within 12
months. Eur. Radiol. 28, 4849–4859 (2018)

38. Pinker, K., et al.: Background, current role, and potential applications of radio-
genomics. J. Magn. Reson. Imaging 47(3), 604–620 (2018)

39. Gupta, S., Xiang, P., Zhou, H.: Analyzing locality of memory references in GPU
architectures. In: Proceedings ACM SIGPLAN Workshop on Memory Systems
Performance and Correctness. ACM (2013). 12

40. Sala, E., et al.: Unravelling tumour heterogeneity using next-generation imaging:
radiomics, radiogenomics, and habitat imaging. Clin. Radiol. 72(1), 3–10 (2017)

Cellular Automata

A Web-Based Platform for Interactive
Parameter Study of Large-Scale Lattice

Gas Automata

Maxim Gorodnichev1,2,3(B) and Yuri Medvedev1

1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Novosibirsk, Russia

{maxim,medvedev}@ssd.sscc.ru
2 Institute of Computational Technologies SB RAS, Novosibirsk, Russia

3 Novosibirsk State Technical University, Novosibirsk, Russia

Abstract. A problem of development of user-friendly interfaces for
high performance computing (HPC) applications is addressed. The HPC
Community Cloud (HPC2C) service that provides a RESTful applica-
tion programming interface for unified control of HPC jobs was used
to develop a prototype of a web-based UI for cellular automata simula-
tion package. The UI allows a user to easily run multiple simulations on
remote HPC resources and, this way, study a parameter space of a cellu-
lar automaton. The interface was used to organize a series of numerical
experiments resulting in reproduction of the Kármán vortex street.

Keywords: High performance computing · HPC cloud ·
User interfaces · Application programming interfaces ·
Cellular automata · Lattice Gas Automata · Turbulent flows ·
Kármán vortex street

1 Introduction

Development of new models such as a cellular automaton for simulation of tur-
bulent flows requires conducting a lot of computational experiments in order to
find model parameters that lead to reproduction of certain natural or artificial
phenomena. Often, such experiments cannot be run and analysed automatically
because researcher’s intuition plays an important role in selection of meaningful
subspaces of parameter values. This makes development of proper user inter-
faces a critical problem for productivity of a researcher’s work. There are tools
and projects that are focused on usability of model development tools (Matlab,
Jupiter Notebooks, Wolfram Alpha, etc.). However, many models are developed
as non-interactive programs that are controlled with command-line interface and

The Siberian Branch of the Russian Academy of Sciences (SB RAS) Siberian Super-
computer Center is gratefully acknowledged for providing supercomputer facilities.
Partially supported by the budget project of the ICMMG SB RAS No. 0315-2019-0007.

c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 321–333, 2019.
https://doi.org/10.1007/978-3-030-25636-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_25&domain=pdf
http://orcid.org/0000-0001-6580-0082
http://orcid.org/0000-0001-8134-7249
https://doi.org/10.1007/978-3-030-25636-4_25

322 M. Gorodnichev and Y. Medvedev

configuration files because the programs are targeted for remote runs on HPC
hardware. The paper addresses the problem of creation of high-level user inter-
faces for such programs.

We study a particular cellular automata (CA) model implemented as a soft-
ware package [1], and propose a web-interface that allows control of the package
and running of simulations on the resources of the Siberian Supercomputing Cen-
ter and other remote resources, access to which must be provided by a user. We
implement a graphical user interface (GUI) and apply it to a systematic search
of CA parameters that allows one to reproduce turbulent flow effects such as the
Kármán vortex street [2].

Cellular automata began to be studied as a mathematical model of spatial
processes at the end of the last century. At the present time, cellular automata
are typically used to model least-studied phenomena. They are also used as an
alternative to existing approaches. The demand for computer simulation led to
an intensive development of CA-models, as evidenced by the emergence of works
both on the theory of cellular automaton models and on their use [3–5].

The main advantages of CA-models are as follows.

1. Non-linear and discontinuous phenomena can be described using transitional
rules for the cells comprising the cellular automata per cell basis. This allows
for fine granularity of the model as contrasted to definition of the model with
general laws expressed by differential equations [6]. The process of simulation
becomes a simple application of transitional rules and a researcher is able to
naturally describe complicated boundaries up to the formation of a porous
structures [7].

2. Because of the natural parallelism of fine-grained models, they are well suited
for scalable parallel implementations on supercomputers.

3. Since cellular automata are discrete, their software implementations are nat-
urally processed by a discrete computer without rounding errors.

4. Using the available CA-models of simple processes, one can models a com-
plex process as a combination of these simple processes in a natural way by
composing simple automata.

The advantages listed above encourage researchers to study models based
on cellular automata and create new ones. One of such models for gas flow
simulation is a lattice gas automaton Frisch-Hasslacher-Pomeau—Multi-Particle
(FHP-MP) [8]. A correspondence of the original FHP model to the Navier-Stokes
equation is shown [9]. The FHP-MP cellular automaton is studied experimentally
at the current stage.

Since research in CA-based simulation is a relatively new field, there are no
established software packages allowing a researcher to efficiently implement new
models. Researchers have to independently create software implementations of
the models they study. Development of a user interface is a part of the complexity
associated with implementation of the models, particularly, if HPC resources
should be used for simulation.

Besides a need for high-level interfaces for particular remote running appli-
cations, research in the field of unified interfacing systems for development,

Web-GUI for FHP-MP CA 323

deployment and use of simulation and data processing applications is motivated
by multiple factors. These factors include concerns related to reproducibility,
accessibility, and transparency of computational research [10–12], problems of
application discovery [13], need for collaborative work, diversity of target high-
performance computing systems that must be abstracted for a regular applica-
tion user, and others.

An extensive survey of web-portals for HPC has been done recently in [14].
The problem of creation of such portals has a long history of discussion and
a vast list of associated projects. During the last decade a number of projects
emerged [15–21] building such portals around services that provide application
programming interfaces (API) in the trending RESTful architectural style. The
APIs allow developers to implement applications capable of data management
and control of computing jobs on remote HPC resources. Having their specific
traits, these projects seem to share a view on users’ needs and associated prob-
lems, and, thus, are similar in approaches and solutions. The particular focus of
the HPC Computing Cloud (HPC2C) project [16] used in the present work is on
development of a platform for accumulation and reuse of user-developed applica-
tions within its web-application and collaboration of users over the development
and use of the applications.

The development of the high-level HPC services should be based, among the
other, on analysis of use cases as particularly underlined in [22]. In the present
work, an attempt to develop a convenient environment for studying FHP-MP
model was made as a use case for the HPC2C.

Section 2 introduces a FHP-MP model—a specific model in a class of Lat-
tice Gas Automata [6]. Section 3 explains the process of parameter study and
present the particular parameter set that can be used to reproduce a vortex
street. Section 4 describes the HPC2C service and Sect. 5 explains how the ser-
vice was used to implement a platform for interactive model parameters study.
The summary of the work is given in the conclusion.

2 FHP-MP Cellular Automata

2.1 Basic Definitions

The cellular automaton FHP-MP is a triple of objects (W,A,N). Each element
w of the set W is called a cell and is associated with a finite state machine A,
called an elementary automaton. The state of a cell w ∈ W is represented by
the vector s(w) with components s1(w), s2(w), . . . , s6(w); their values are non-
negative integers. The set of states s(w) of all cells w ∈ W at the discrete time
t is called the global state of the cellular automaton.

Each cell w ∈ W is associated with some coordinates x(w) and y(w) on the
2D Cartesian plane. Thus, one can imagine the set W as a 2D cellular array.
Between any two cells w1 ∈ W and w2 ∈ W one can calculate the distance
d(w1, w2). Practical implementations of the cellular automaton contain finite
number of cells in each direction.

324 M. Gorodnichev and Y. Medvedev

For each cell w ∈ W , some ordered set N(w) = {Nj(w) : Nj(w) ∈
W ∧ d(w,Nj(w)) = 1, (j = 1, 2, . . . , 6)} is defined, whose elements are called
its neighboring cells.

A term of a model particle is introduced. We will say that a cell contains
particles, or particles are in a cell at a certain moment of time t. A particle will
be said to have unit mass and unit velocity. An element sj(w) of the state s(w) is
interpreted as a number of model particles in the cell w that are directed toward
its neighbour Nj(w) and we denote the direction as a vector cj . The mass of

all particles in the cell w is m(w) =
6∑

j=1

sj(w). The model momentum of the

particles in the cell w is p(w) =
6∑

j=1

sj(w)cj (w).

2.2 Behavior of the Cellular Automaton

Each iteration of the cellular automaton consists of two steps: propagation and
collision, i.e. the transition function δ of the elementary automaton A is the
composition of the functions δ1 (propagation) and δ2 (collision): δ(s) = δ2(δ1(s)).

At the propagation step, in each cell w ∈ W , each particle moves to the
neighboring cell Nj(w), corresponding to the vector of its velocity cj . Thus,
δ1(sj(w)) = sj(N((j+2) mod 6)+1(w)), j = 1, . . . , 6.

At the collision step, there is a change in the direction of movement of parti-
cles according to certain collision rules, which are independent of the neighbor-
ing cells’ states, i.e δ2 depends only on the value of δ1. In the FHP-MP cellular
automaton, the function δ2 is probabilistic. Collision rules for cells of different
types are described below: conventional cells Wc ⊂ W , walls Ww ⊂ W , inlet cells
Win ⊂ W , and outlet cells Wout ⊂ W . The pairwise intersections of these sub-
sets are empty, and their union coincides with the set of all cells of the cellular
automaton Wc ∪ Ww ∪ Win ∪ Wout = W . The behavior of the walls, the inlets,
and the outlets determines the boundary conditions of the cellular automaton.

In the conventional cells w ∈ Wc, the function δ2 is chosen so that the
particles’ mass m(w) and the momentum p(w) are preserved in the cell. The
value of the function δ2 equiprobably selected among all the possible values that
satisfy these conditions.

In the wall cells w ∈ Ww, the particles change the direction of the velocity
vector to the opposite, thus not preserving the momentum. Because the number
of particles in the cell does not change, the mass is preserved.

At each iteration an inlet (outlet) cell generates nin(w) (nout(w)) particles
selecting their velocities from all possible directions equiprobably. One can create
various objects from the inlet cells. For example, one can get a source of a uniform
flow of particles of a given concentration by placing a line of inlet cells somewhere
in the cellular array (typically, at the border of the cellular array). An isolated
inlet cell will simulate a nozzle. One can do the same with the outlet cells.
Obviously, neither mass nor momentum are preserved in the inlet and the outlet
cells.

Web-GUI for FHP-MP CA 325

2.3 The Averaged Values

Gas flow simulation is performed to obtain velocity and pressure fields. The mass
and the velocity of a separate particle in a cell do not provide this information.
The flow velocity and gas pressure at a certain point (x, y) correspond to the
averaged vector of the particles’ velocity and to particles’ concentration com-
puted in some vicinity V (x, y) of the point (x, y). The vicinity of (x, y) includes
all cells w ∈ W such that their distances to the point (x, y) do not exceed some
value r called the averaging radius.

The averaged velocity of particles in the vicinity V (x, y) is calculated as

u(x, y) =
1

|V (x, y)|
∑

w∈V (x,y)

6∑

j=1

sj(w)cj (w),

where |V (x, y)| is the number of cells included in the vicinity, cj (w) is the unit
velocity vector corresponding to the jth component of the state vector s(w), and
the sj(w) is the value of the jth component of the state vector s(w) of the cell
w ∈ V (x, y).

The particle concentration in the vicinity V (x, y) is calculated as:

n(x, y) =
1

|V (x, y)|
∑

w∈V (x,y)

6∑

j=1

sj(w).

The averaged values of the model velocities and concentration correspond
to their physical counterparts only when the averaging vicinity V (x, y) consists
solely of the conventional cells w ∈ Wc. Otherwise, their values are considered as
undefined. This condition does not allow one to calculate n and u at the distance
to walls, inlet, and outlet cells closer than the averaging radius r.

3 Simulation of a Vortex Street

“We model a gas flow in a pipe with an obstacle inside (Fig. 1)”. The obstacle has
a shape of a straight line. The purpose of computer experiments is to determine
the parameters of a model that will lead to formation of a stable vortex street
behind the obstacle. The street is a sequence of vortices that detach from the
ends of the obstacle at approximately equal time intervals.

The simulation platform supports tree basic actions for a model researcher:

1. “construction of a cellular automaton global state (see Sect. 2.1) that takes a
specification of the global state as an input parameter;”

2. simulation that takes a global state and apply transition rules iteratively to
global states thus producing an array of consecutive global states;

3. post-processing that takes a global state, computes fields of averaged velocities
and concentration, and visualize these fields.

These three actions related to computer experiments are described below.

326 M. Gorodnichev and Y. Medvedev

3.1 The Cellular Automaton’s Global State Construction

Construction of the initial global state (Fig. 1) results in a file in which states of
all cells are stored separately. Construction is organized as follows. A researcher
provides a specification of a global state where massively defines the states of the
cells with basic declarations. In the case of the Fig. 1 the size of the 2D cellular
array is set first, then all the cells are declared as conventional cells, then some of
them are redefined as wall, inlet or outlet cells (see Sect. 2.2). Thus, the left-most
cells are declared inlet cells, the right-most cells become outlet cells and the cells
corresponding to the upper, lower boundaries and the straight line obstacle are
declared as wall cells.

Fig. 1. Initial global state.

Among the parameters of the CA-model that need
to be found during the experiments are the appropri-
ate size of the pipe (in model units: the model unit
of length is equal to the distance between the cen-
ters of neighboring cells). The criterion for choosing
sizes is a compromise between the lack of space for
the formation of vortices in the case of a small size of
the pipe and a large computing time in the case of its
large size.

As a result of numerous experiments, a compromise size of the simulated area
was chosen as 3000 × 2000 in model units.

The boundary cells y = 0 and y = 2000 have the function of a wall. The
x = 0 cells have the inlet function, the x = 3000 cells have the outlet function.

Another objective of the experiments is to choose the size, position and incli-
nation angle of an obstacle. Too small size of the obstacle does not provide
conditions for the stable vortices formation; too large obstacle deflects the flow
to the lateral walls so that they significantly affect the vortices behaviour. Too
small distance between the obstacle and the inlet adversely affects the stability
of a vortex street. A distant position of the obstacle from the inlet leaves little
room for a vortex street behind the obstacle. A “normal” vortex street is char-
acterized by stable periodic formation of similar-sized vortices. Too high angle
of attack of the obstacle slows down the moment of the beginning of a stable
formation of vortices in the transition process (beginning of simulation). If the
angle of attack is too low (this is similar to the case of a too small obstacle) then
the stability of the vortices formation is reduced.

As a result of many experiments, an obstacle was chosen, having the shape of
a straight line with ends at the points with coordinates (350, 1250) and (550, 750).

3.2 Running the Simulator

Running the simulator with the CA initial global state leads first to a transient
process, during which vortices can form aperiodically. Then the motion of the
simulated flow gets stabilized in the form of a vortex street.

One of the objectives of the experiments is to select the number of iterations
required to achieve a stable vortex street. The results of these iterations should

Web-GUI for FHP-MP CA 327

be excluded from consideration of the flow behaviour in a vortex street. Too
few iterations devoted to the transition process will lead to the fact that in
the first periods of the considered results there will be data distorted by the
transition process. Too many iterations, rejected as a transition process, will
lead to unnecessary computer time spent on calculations.

As a result of multiple experiments, 30, 000 iterations are chosen as an appro-
priate time for transition process. The period of separation of a pair of vortices
from the ends of the obstacle was found to be approximately 11, 000 iterations.
Thus, six complete periods were observed during simulation lasted from the
iteration 30, 000 to the iteration 96, 000.

An appropriate number of particles generated inlet and outlet cells at each
iteration must be selected. The concentration of particles is directly proportional
to the pressure of the simulated gas. It is necessary to take into account that
when the concentration of particles is too low, the artefacts caused by the discrete
nature of the model, such as directional anisotropy and an increased level of
automata noise, become more acute. Too large number of particles of particles
will lead to an increased consumption of computer time, since the processing
time of each cell at each iteration increases with the number of particles per cell.

The difference between the number of particles produced by the inlet border
and the outlet border determines the magnitude of the pressure gradient, which
affects the flow speed and, consequently, the conditions for the vortices forma-
tion. A too low gradient produces a flow with small velocity, unable to cause a
vortex to come off. A too steep gradient causes the flow to move at an excessively
high speed, at which the formation of vortices occurs not only on the obstacle,
but also spontaneously, on flow fluctuations; and the effect of automata noise on
the result also increases.

After performing a large number of experiments, the particle generation rate
at the inlet was chosen to be 80 particles per cell per iteration, and at the
outlet—40 particles per cell per iteration. To speed up the transition process, at
the initial global state all the cells are filled with particles, 40 particles per cell.

3.3 Post-processing

The global state of a cellular automaton saved to a hard disk should be sub-
jected to an averaging procedure in order to get pressure and velocity fields. The
obtained averaged values are used for visualization (Fig. 2). The obstacle, the
inlet and the outlet are shown in the picture. The lateral walls are cropped. The
grayscale background depicts the distribution of gas pressure in the simulation
space. Lighter areas correspond to higher pressure, darker—to lower. The max-
imum pressure is indicated by white, the minimum pressure in the simulation
area is black. Arrows indicate flow direction. Their length is proportional to the
local flow velocity.

Of many options for the averaging and visualization parameters, the following
were chosen to better display the simulated process. The averaging region is
a part of the simulation region located between the coordinates y1 = 350 and
y2 = 1850. Areas excluded from visualization cannot be excluded from simulation

328 M. Gorodnichev and Y. Medvedev

Fig. 2. Vortex street as a simulation result.

since the motion of the vortices will be affected by closely located walls. The
selected area is displayed on a bitmap of 4000 × 2000 pixels. To calculate the
averaged values of the concentration (pressure) of the gas, the averaging radius
was chosen to be 15 cells, and when calculating the averaged values of the flow
velocity—20 cells.

3.4 Interpretation of Simulation Results

As a result of the studies, the simulation parameters that provide a reproduction
of the gas flow with the necessary properties were found. Behind an obstacle,
a vortex street with vortices of equal sizes and with a stable period of vortex
separation is formed.

The difficulty of the work lies mostly not in the large number of various
parameters, but in the mutual influence of these parameters. For example, the
obstacle of a certain size is too large for the selected size of the cellular array;
or the necessary concentration gradient does not provide the stable vortices
formation on the obstacle of the selected size. Therefore, the number of neces-
sary experiments rapidly increases with an increase in the number of simulation
parameters.

The process of finding suitable parameters requires interactive human par-
ticipation. A brute-force search among all possible parameters is impossible due
to the huge number of computer experiments that would require a very large
amount of computer time. A researcher can significantly reduce this parameter
space, based on the human experience and intuition. The researcher’s work must
be supported with an appropriate user interface system.

Web-GUI for FHP-MP CA 329

4 HPC Community Cloud

The HPC2C software consists of a management server that provides a REST-
ful application programming interface (API) to external software systems and
a web application that provides a graphical interface to users. The HPC2C
implements a platform for accumulation and reuse of content created by users
and third-party developers: software development tools, data visualization tools,
interactive training materials, numerical simulation and data analysis tools.
The HPC2C web interface is developed to improve the productivity of users of
research and educational computer centers and, particularly, reduce the thresh-
old for users to enter the field of HPC. A prototype of the HPC2C service is
available at http://hpccloud.ssd.sscc.ru.

4.1 HPC2C Management Server

The management server keeps track of users, registered computing resources,
computing jobs. It organizes a storage for users’ programs and data. HPC2C
API is a basis for development of external software systems that can access the
resources of computer centers for large-scale computations. The HPC2C hides
specifics of interfaces of particular computing systems behind a single access
point and a single management system. This is achieved by implementing mod-
ules that transmit user commands made with a unified interface to specific inter-
faces of the attached computing systems. Any user can register (“attach”) a com-
puting system with the HPC2C by providing its address, access credentials (as
in [19]), and a type of the interface. Examples of interface types are: a TORQUE
job management system on a Linux cluster head node and a regular Linux box
with no job management system. Plain SSH protocol is used to control remote
jobs as a sufficient solution for current use cases.

Users can be included in different user groups. The rights to perform various
operations on various objects can be set at the group level and at the level of
individual users. Users can provide access to the objects they have created to
other users and groups.

A JavaScript library is implemented to support development of the
JavaScript-based HPC2C API clients.

4.2 Usage Scenarios

One of the possible usage scenario for the HPC Community Cloud can be
described as follows. The user uploads source files of a numerical simulation
or data processing application to HPC Community Cloud, registers computing
systems or selects computer systems from the list of systems provided by the
service and/or other users, describes rules for building programs based on the
Make automation tool, builds programs according to the rules and corresponding
to an architecture of a target computing system, uploads input data files, sub-
mits the computing job for execution, tracks the status of the jobs, gets access
to the output files produced by the job. An application, once uploaded, can be

http://hpccloud.ssd.sscc.ru

330 M. Gorodnichev and Y. Medvedev

registered with the HPC2C system and reused in further job submissions. It is
implied that such applications are controlled by input files and command-line
parameters, they are called CL-applications in the rest of the paper.

A CL-application can be registered without uploading sources files and build-
ing them through the HPC2C systems. The only important point is that exe-
cutable and configuration files are prepared according to the HPC2C rules for
any computing system where users may want to employ the application.

In other scenarios, users can submit jobs based on CL-applications to which
other users have granted access. All of these functions are available through
the API, and end-users access these functions either through the HPC2C web
interface or through external software systems.

4.3 GUI-Applications

A complex GUI application such as a proposed platform for CA-model parame-
ter study should be able to support complex user flows and keep track of all the
data belonging to the application and all the associated computing jobs. Such
applications can be implemented externally, as a desktop, mobile or a separate
web applications with calls to the HPC2C API. On the other hand, the HPC2C
encourages developers to embed complex GUI applications into the HPC2C web-
interface in order to build a collection of applications within the service. Thus,
a concept of an (embedded) GUI-application is introduced. This is a numerical
simulation or data processing application with an HPC2C-integrated graphi-
cal interface in which the user sets input parameters, submits jobs to chosen
computing systems, etc. A GUI-application can provide tools for analysis and
visualization of computing results. The user receives notifications on job state
changes, returns to continue to interact with the application, analyses the results,
prepares and launches further jobs.

The HPC2C system provides a model for embedding of GUI-applications.
When a user account is registered with HPC2C a “home” directory is created
in the file storage with the following subdirectories:

– apps: CL-applications are stored here,
– appstorage: GUI-applications store their data here,
– jobs: a directory for the files associated with computing jobs—management

scripts, configuration files, input and output files,
– gui-apps: subdirectories contain files of GUI-applications.

In order to embed a GUI-application a developer should create a directory under
gui-apps with the name of the GUI-application and place files implementing
the GUI into this new directory. These are *.html, *.css, and *.js files. A file
index.html should be included.

A list of all GUI-applications added in such a way becomes available in a
dashboard of a user in the HPC2C web-application. A user can choose one of
GUI-applications from a list, that makes elements defined in the corresponding
index.html to be displayed as a part of a HPC2C interface. The index.html will

Web-GUI for FHP-MP CA 331

include a JavaScript code that will manage user flows within the GUI-application
and load other necessary resources. HPC2C API is called to manage files in
the storage and jobs. The GUI-applications should remember all the associated
files and jobs. Typically, an application will store such data under appstorage
directory. Requirement to implementation of GUI-applications are provided in
the HPC2C documentation.

5 Implementation of a Web GUI for FHP-MP in HPC2C

Section 3 describes basic actions a user takes to work with the FHP-MP model:
construction of a CA global state, simulation, and post-processing. A first step
to implement a the GUI-application is to support these basic actions.

The FHP-MP package consist of three command-line applications corre-
sponding the above mentioned actions. They first should be registered with
HPC2C as CL-applications: fhpmake, fhpsimulation and fhpvizualization.

All three CL-applications require configuration files to be provided as their
inputs. That means each time a user wants to construct a new CA global state
as an initial conditions for a simulation, or wants to run simulation, or wants
to run visualization the user either selects an earlier prepared configuration files
or create new ones, edit the files and store them to use for future job launches.
GUI-forms for editing configuration files are generated automatically from their
JSON-based specifications.

A simulation can start from a CA global state file prepared with fhpmake or
continue from a certain global state obtained during previous simulations. This
means that the GUI should provide a tool to select a global state to start with.
In order to achieve this, each global state generated with fhpmake is placed in
a new subdirectory under appstorage/fhp-mp directory. A user can select such
a global state and run a simulation. The simulation will produce a series of
files with global states that correspond to certain iterations of the simulation as
requested by a user in a fhpsimulation configuration file. A user may wish to
continue a previously fulfilled simulation with more iterations. This is done in
the same directory with the same parameters. Then, a user may wish to select
not the last state in a simulation directory and repeat computations with the
same or modified parameters. Or, a user may wish to take the last state and
continue with modified parameters. In these cases, the selected state and the
parameters are placed in a new directory and a new computation experiment
is conducted. This allows one to keep directories consistent such that all the
global states in a directory are as produced in order from the initial state in this
directory. The history of such forks is stored and can be researched later. A user
can associate tags (key words) with global states. This allows a user to easily
find global states by a list of tags.

Post-processing is called for a certain global state or for a series of global
states and results in the files with numerical data for the averaged velocity and
concentration fields for each global state and corresponding raster images.

332 M. Gorodnichev and Y. Medvedev

6 Conclusion

A web-based platform for interactive parameter study of FHP-MP cellular
automata has been developed as a GUI-application within the HPC Comunity
Cloud service. Computer experiments have been carried out to find parameters
of the FHP-MP model appropriate for reproduction of the Kármán vortex street.
The conducted study is a typical use case for research in cellular automata mod-
els and particularly characterized by a large number of computer experiments
needed to find the required parameters. These experiments cannot be run in a
style of an automatic parameter sweep because of unreasonably large parameter
spaces. A researcher’s intuition remains an indispensable tool for optimization of
the parameter study process. The provided high-level interactive user interface
platform helps to boost the productivity of a researcher.

References

1. Medvedev, Y.G.: Lattice gas Cellular Automata for a flow simulation and their
parallel implementation. In: Tarkov, M.S. (ed.) Parallel Programming: Practical
Aspects, Models and Current Limitations. Series: Mathematics Research Develop-
ments, pp. 143–158. NSP Inc., New York (2014)

2. Kármán, T.: Aerodynamics, pp. 67–73. First McGraw-Hill Paperback Edition
(1963). ISBN 07-067602-x

3. Bandman, O.L.: Relationships between cellular automata model parameters and
their physical counterparts. Bull. Nov. Comp. Center, Series Comput. Sci. (42),
1–14 (2018). https://doi.org/10.31144/bncc.cs.2542-1972.2018.n42.p1-14

4. Vanag, V.K.: Study of spatially extended dynamical systems using probabilistic
cellular automata. Phys. Usp. 42(5), 413–434 (1999). https://doi.org/10.1070/
PU1999v042n05ABEH000558

5. Chopard, B.: Cellular automata modeling of physical systems. In: Meyers, R. (ed.)
Computational Complexity, pp. 407–433. Springer, New York (2012). https://doi.
org/10.1007/978-1-4614-1800-9

6. Toffoli, T.: Cellular automata as an alternative to (rather than approximation of)
differential equations in modeling physics. PhysicaD 10, 117–127 (1984). https://
doi.org/10.1016/0167-2789(84)90254-9

7. Bandman, O.L.: A discrete stochastic model of water permeation through a porous
substance: parallel implementation peculiarities. Numer. Anal. Appl. 11(1), 4–15
(2018). https://doi.org/10.1134/S1995423918010020

8. Medvedev, Y.: Cellular-automaton simulation of a cumulative jet formation.
In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 249–256. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03275-2 25

9. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-Gas Automata for the Navier-
Stokes Equation. Phys. Rev. Lett. 56(14), 1505–1508 (1984). https://doi.org/10.
1103/PhysRevLett.56.1505

10. Goecks, J., et al.: Galaxy: a comprehensive approach for supporting accessible,
reproducible, and transparent computational research in the life sciences. Genome
Biol. 11(8), R86 (2010). https://doi.org/10.1186/gb-2010-11-8-r86

11. Stodden, V., Seiler, J., Ma, Z.: An empirical analysis of journal policy effectiveness
for computational reproducibility. Proc. Nat. Acad. Sci. USA 115(11), 2584–2589
(2018). https://doi.org/10.1073/pnas.1708290115

https://doi.org/10.31144/bncc.cs.2542-1972.2018.n42.p1-14
https://doi.org/10.1070/PU1999v042n05ABEH000558
https://doi.org/10.1070/PU1999v042n05ABEH000558
https://doi.org/10.1007/978-1-4614-1800-9
https://doi.org/10.1007/978-1-4614-1800-9
https://doi.org/10.1016/0167-2789(84)90254-9
https://doi.org/10.1016/0167-2789(84)90254-9
https://doi.org/10.1134/S1995423918010020
https://doi.org/10.1007/978-3-642-03275-2_25
https://doi.org/10.1103/PhysRevLett.56.1505
https://doi.org/10.1103/PhysRevLett.56.1505
https://doi.org/10.1186/gb-2010-11-8-r86
https://doi.org/10.1073/pnas.1708290115

Web-GUI for FHP-MP CA 333

12. Jiménez, R.C., Kuzak, M., Alhamdoosh, M., et al.: Four simple recommendations
to encourage best practices in research software [version 1; peer review: 3 approved].
F1000Research 6, 876 (2017) https://doi.org/10.12688/f1000research.11407.1

13. Hucka, M., Graham, M.J.: Software search is not a science, even among scientists:
a survey of how scientists and engineers find software. J. Syst. Softw. 141, 171–191
(2018). https://doi.org/10.1016/j.jss.2018.03.047. ISSN 0164–1212

14. Calegari, P., Levrier, M., Balczyński, P.: Web portals for high-performance comput-
ing: a survey. ACM Trans. Web 13(1), 5:1–5:36 (2019). https://doi.org/10.1145/
3197385

15. Afanasiev, A., Sukhoroslov, O., Voloshinov, V.: MathCloud: publication and reuse
of scientific applications as RESTful web services. In: Malyshkin, V. (ed.) PaCT
2013. LNCS, vol. 7979, pp. 394–408. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39958-9 36

16. Gorodnichev, M., Vaycel, S.: Organization of access to supercomputing resources
in the HPC community cloud. Bull. South Ural State Univ. Ser. Comput. Math.
Softw. Eng. 3(4), 85–95 (2014). https://doi.org/10.14529/cmse140406

17. Sukhoroslov, O., Volkov, S., Afanasiev, A.: A web-based platform for publication
and distributed execution of computing applications. In: 14th International Sym-
posium on Parallel and Distributed Computing, Limassol, pp. 175–184 (2015).
https://doi.org/10.1109/ISPDC.2015.27

18. Cholia, S., Sun, T.: The NEWT platform: an extensible plugin framework for
creating ReSTful HPC APIs. Concurrency Computat. Pract. Exper. 27, 4304–
4317 (2015). https://doi.org/10.1002/cpe.3517

19. OLeary, P., Christon, M., Jourdain, S., Harris, C., Berndt, M., Bauer, A.: HPC-
Cloud: a cloud/web-based simulation environment. In: IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom), Vancou-
ver, BC, pp. 25–33 (2015). https://doi.org/10.1109/CloudCom.2015.33

20. Cao, R., Xiao, H., Lu, S., Zhao, Y., Wang, X., Chi, X.: SCEAPI: a unified rest-
ful web API for high-performance computing. J. Phys. Conf. Ser. 898(9), 092022
(2017). https://doi.org/10.1088/1742-6596/898/9/092022

21. Bychkov, I.V., Oparin, G.A., Bogdanova, V.G., Pashinin, A.A., Gorsky, S.A.:
Automation development framework of scalable scientific web applications based
on subject domain knowledge. In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol.
10421, pp. 278–288. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
62932-2 27

22. Struckmann, N., et al.: MIKELANGELO: MIcro KErneL virtualizAtioN for hiGh
pErfOrmance cLOud and HPC systems. In: Mann, Z.Á., Stolz, V. (eds.) ESOCC
2017. CCIS, vol. 824, pp. 175–180. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-79090-9 15

https://doi.org/10.12688/f1000research.11407.1
https://doi.org/10.1016/j.jss.2018.03.047
https://doi.org/10.1145/3197385
https://doi.org/10.1145/3197385
https://doi.org/10.1007/978-3-642-39958-9_36
https://doi.org/10.1007/978-3-642-39958-9_36
https://doi.org/10.14529/cmse140406
https://doi.org/10.1109/ISPDC.2015.27
https://doi.org/10.1002/cpe.3517
https://doi.org/10.1109/CloudCom.2015.33
https://doi.org/10.1088/1742-6596/898/9/092022
https://doi.org/10.1007/978-3-319-62932-2_27
https://doi.org/10.1007/978-3-319-62932-2_27
https://doi.org/10.1007/978-3-319-79090-9_15
https://doi.org/10.1007/978-3-319-79090-9_15

A Probabilistic Cellular Automata Rule
Forming Domino Patterns

Rolf Hoffmann1(B), Dominique Désérable2, and Franciszek Seredyński3

1 Technische Universität Darmstadt, Darmstadt, Germany
hoffmann@informatik.tu-darmstadt.de

2 Institut National des Sciences Appliquées, Rennes, France
domidese@gmail.com

3 Department of Mathematics and Natural Sciences,
Cardinal Stefan Wyszynski University, Warsaw, Poland

fseredynski@gmail.com

Abstract. The objective in this study is to form a domino pattern by
Cellular Automata (CA). In a previous work such patterns were formed
by CA agents, which were trained with high effort by the aid of Genetic
Algorithm. Now two probabilistic CA rules are designed in a methodical
way that can perform this task very reliably even for rectangular fields.
The first rule evolves stable sub–optimal pattern. The second rule maxi-
mizes the overlap between dominoes thereby maximizing the number of
dominoes.

Keywords: Pattern formation · Probabilistic cellular automata ·
Matching templates · Asynchronous updating ·
Parallel Substitution Algorithm

1 Introduction

Pattern formation is an area of active research in various domains as in physics,
chemistry, biology, computer science or natural and artificial life. Cellular
Automata (CA) are suitable and powerful tools for catching the influence of
the microscopic scale onto the macroscopic behavior of such complex systems
[1–3]. At the least, the 1–dimensional Wolfram’s “Elementary” CA can be viewed
as generating a large diversity of 2–dimensional patterns whenever the time evo-
lution axis is considered as the vertical spatial axis, with patterns depending or
not on the random initial configuration [4]. Regarding the agent–based Yamins–
Nagpal “1D spatial computer” [5,6] the authors emphasize therein how the local-
to-global CA paradigm can turn into the inverse global-to-local question, namely
“given a pattern, which CA rules will robustly produce it?” Such CA rules can
be found by (i) proper design, (ii) by exhaustive search, or (iii) by heuristics like
Genetic Algorithm (GA) or Simulated Annealing, methods which were applied
to solve the Density Classification Problem [7], for instance.

c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 334–344, 2019.
https://doi.org/10.1007/978-3-030-25636-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_26&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_26

A Probabilistic Cellular Automata Rule Forming Domino Patterns 335

The arrangement of dominoes in a grid of cells is a special case of pattern for-
mation. Possible applications are: parcel packing encountered in different logis-
tics settings, such as loading boxes on pallets, arrangements of pallets in trucks,
or cargo stowage [8]; the design of a sieve for rectangular particles with a maxi-
mum flow rate; or an optimal arrangement of nanoparticles; and so forth.

Previous and Related Work. In further previous work [9–11], different pat-
terns were generated by agents with embedded finite state control which was
evolved by GA. Matching pattern templates were also applied during the train-
ing period, but are not part of the CA rule as in our current proposal. They were
also defined in a different simple way in order to count the number of dominoes
for the fitness function during the evolutionary process.

In [12] domino patterns were formed by moving agents. Agents’ behavior
was controlled by a finite state machine, evolved by GA. The effort to find such
agents was quite high, especially to find agents that work on any field size. In
order to avoid such a computational effort, a novel approach to construct directly
the required CA rule was proposed that will be presented thereafter. It has also
the potential to be applied to further pattern formations.

Parallel Substitution Algorithm (PSA) [13] is a powerful generalization of
CA, which was also inspiring this work. PSA allows to substitute small locally
defined patterns P by other patterns Q in a non–conflicting way. Thereby very
complex computations and transformations can be performed in a decentralized
and parallel way.

The problem of optimal domino layout is presented in Sect. 2 and the prob-
abilistic CA rules derived from the Parallel Substitution method are discussed
in Sect. 3. Results of simulation, performance evaluation and robustness are dis-
cussed in Sect. 4 before Conclusion.

2 Optimal Arrangements of Dominoes

Given is a square array of N = n × n cells with values ∈ {0, 1}. It is enclosed by
a border of constant value 0. So the whole array is of size (n + 2) × (n + 2). In
our representation, state 0 is colored white or green, and state 1 is colored black
or blue.

2.1 The Problem

The objective is to find a CA rule that can form a Domino Pattern with a maxi-
mum number of dominoes. A domino consists of two black cells (the kernel) and
10 surrounding white cells (the hull). Two types of dominoes are distinguished,
the horizontal oriented domino (DH) and the vertical oriented (DV) (Fig. 1(a)).
It is allowed –and even necessary for a good solution– that white cells from the
hull of a domino can overlap with other white cells (border cells or hull cells of
other dominoes). The possible levels of overlapping, from 2 to 4, are displayed
in Fig. 1(b–c–d).

336 R. Hoffmann et al.

The number of dominoes is denoted as d = dH +dV , where dH is the number
of horizontal dominoes and dV is the number of vertical dominoes. A further
requirement can be that the number of domino types is equal (or almost equal)
(balanced pattern): dH = dV if dmax is even, and dH = dV ± 1 if dmax is odd,
where dmax(n) is the maximal possible number of dominoes that can be placed
into the field with overlapping. Some optimal solutions are shown in Fig. 2.

Fig. 1. (a) Horizontal and vertical domino tile, (b) two cells of two domino hulls are
overlapping, marked by 2, (c) the cell marked by 3 is the overlap of three domino hulls,
(d) a case with 4 overlapping hull cells. (Color figure online)

Fig. 2. N = 10 × 10. (a) Three optimal balanced domino patterns with 20 dominoes,
(b) three optimal unbalanced domino patterns with dH = 7 and dV = 13. (Color figure
online)

2.2 Domino Enumeration

The maximal domino number is derived from an inductive formula in [12]. Let νn
be the void index in a n × n field, with n even. Setting m = n/2 and p = �m/3�
we got

νn =

⎧
⎨

⎩

4p (3p − 2) (m ≡ 0)
4p (3p) (m ≡ 1) (mod 3)
4p (3p + 2) (m ≡ 2)

(1)

whence the maximal domino number

ξn =
n2 − νn

4
(2)

as denoted therein, which will be compared, for 2 ≤ n ≤ 16, with the dmax

column of Table 1 in Sect. 4.

A Probabilistic Cellular Automata Rule Forming Domino Patterns 337

3 The Designed CA Rules

The first approach was to design a deterministic rule with synchronous updating.
After some experiments and experience from previous work it showed to be very
difficult if not even impossible to design such a rule that can converge always or
with a high probability to the optimal or near-optimal aimed pattern.

Fig. 3. The 12 templates of the horizontal domino. The value of the template cen-
ter (marked) is used for cell updating if all remaining template cells match with the
corresponding cells of the current configuration. (Color figure online)

The second approach was the construction of a probabilistic rule with syn-
chronous updating. Indeed, such a rule was found for a field of size 6×6 by GA,
where each cell is modeled as an agent that can turn in any direction. But the
effort to find such rules is high and the good behavior can not be guaranteed in
general.

The third and successful approach used here is the design of a probabilistic
rule with asynchronous updating in a methodical way.

3.1 The First Rule

The basic idea is to modify the current configuration in a systematic way such
that increasingly more dominoes appear and at last the CA evolves to a stable
pattern. To do this, correct domino parts have to be detected and completed,
and some random noise has to be injected where no correct domino parts are
detected.

The domino parts are called templates Ai. They are derived from the two
domino tiles. For the horizontal domino the 12 templates are shown in Fig. 3.
For each cell value (marked in Fig. 3) of a domino a template is defined. A
marked value is also called the correct value v(Ai). It is placed at the relative
position (used for addressing inside a template) (Δx,Δy) = (0, 0), which is
the focus of the template. The remaining space-ordered values define the correct
neighbors A∗

i of a template. Note that many of these templates are similar under
mirroring, which can facilitate an implementation. For the vertical domino a
similar set of 12 templates is defined by 90◦ rotation, altogether we need 24

338 R. Hoffmann et al.

templates. The templates A7−A12 show white cells that are not used because the
maximal Manhattan distance (Δx + Δy) from the marked cell to the neighbors
was limited to MH = 2 + 2. The implementation with these incomplete templates
worked very well, but further investigations are necessary to prove to which
extent templates can be incomplete.

The rule updating scheme is:

1. A cell is randomly selected.
2. The rule is applied asynchronously. The new cell state s′ = f(s,B∗) is com-

puted and immediately updated without buffering. B∗ denotes the states of
the neighbors within distance MH ≤ 4, excluding the center cell s.
A new generation at time–step t + 1 is declared after N cell updates (A cell
can be updated more than once or never in this period).

The following rule is applied:

s′(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

v(Ai) if A∗
i matches with CA–Neighbors(x, y) (a)

otherwise
random(0, 1) with probability π0 (b1)
s(x, y) with probability 1 − π0 (b2)

.

The neighbors A∗
i of every template with the marked center (Δx,Δy) = (0, 0)

are tested on each site (x, y) of the current CA cell field configuration, i.e. A∗
i

is tested against the corresponding neighbors B∗(x, y). If all values match then
the value of cell at (x, y) is set to the correct value v(A∗

i), and we have then a
correct tile in the configuration. Otherwise with probability π0, the cell is set
randomly to either 0 or 1, or remains unchanged with probability 1 − π0.

It is important to note that the rule obeys the criterion of stability, which
means that a field filled with dominoes without gaps (uncovered cells) is stable
because we have matching hits at every site. Otherwise some random noise is
injected in order to drive the evolution to the aimed pattern.

The rule was tested on 1,000 10×10 fields with a random initial configuration
up to 2,000 time–steps (generations), with π0 = 0.2. The CA system converges
relatively fast to a sub–optimal domino pattern after 28.5 ± 13.6 time–steps on
average. These patterns contain 13–19 dominoes (16 on average).

All patterns reached a stable domino arrangement. But some of them con-
tained gaps; the lower the number of dominoes, the larger the number of gaps,
up to 5. With ongoing time, the gaps change their color to black randomly, but
the number of dominoes does not increase. Some of these patterns evolved are
shown in Fig. 4.

3.2 The Second, Improved Rule

The purpose of this enhancement was to improve the rule in such a way that
the number of dominoes reaches a maximum or be close to it.

A Probabilistic Cellular Automata Rule Forming Domino Patterns 339

Fig. 4. Field of size 10 × 10. Some patterns evolved with the first rule. (a) RUN284:
t = 40, d = 19 dominoes, no gap. (b) RUN699: t = 18, d = 19, one gap g = 1. (c)
RUN875: t = 40, d = 15, g = 0. (d) RUN165: t = 40, d = 15, g = 5. Template hits are
marked by dots, and gaps by white circles. (Color figure online)

A hit matrix was introduced. It stores the number of template hits for every
site (x, y) that was selected for computation and updating. The number of hits
on a site h(x, y) is:

• 0, if no template matches or there is a gap.
• 1, if it results from one template match where the template focus is white.
• 2–4, if it results from the overlap at the same site (x, y) of 2–4 template

matches with white focus, that means that 2–4 tiles are overlapping.
• 100, if it results from one template match where the template focus is black.

Note that black cells are not allowed to overlap. The number 100 was chosen
in order to differentiate such hits from the other.

The idea is to maximize the overlap between tiles by destroying non–overlapping
situations (h = 1) through noise, allowing a reordering with high hit rates. First
the new state s′ is computed, and then the hit matrix. Then the new state is
modified to s′′:

s′′(x, y) =
{

random(0, 1) with probability π1 if hit(x, y) = 1
s′(x, y) otherwise

Now with the second rule it is not clear whether the stability criterion is still
fulfilled because of the additional noise. In fact, it turned out that stability can
only be reached it there exists a tiling where every tile overlaps with at least
another or the border (called totally overlapping tiling). E.g. a totally overlapping
tiling exists for 10 × 10 fields but not for 8 × 8 fields. Therefore the number of
dominoes will reach the maximum and remain stable in a 10 × 10 field whereas
the number of dominoes in a 8 × 8 field is reaching a maximum, and then it is
decreasing and fluctuating and is driving again towards another maximum, and
so forth. A deeper analysis is subject to further research.

340 R. Hoffmann et al.

4 Simulation and Performance Evaluation

4.1 Performance for Field Size 10 × 10

The improved rule was tested on 10,000 10×10 fields with random initial colors,
for 2,000 time–steps, with π0 = 0.2 and π1 = 0.1. The CA system converges
most often to an optimal domino pattern. After 708 ± 528 time–steps a pattern
with 18–20 dominoes (19.66 on average) had evolved. The optimum with d = 20
dominoes was reached in 6,630 cases; 675 of them were balanced (dH , dV) =
(10, 10), 2,983 were unbalanced (13, 7) and 2,972 were unbalanced (7, 13). 3,369
contained 19 dominoes, and only one 18. This means that the probability to find

Fig. 5. Number of dominoes d vs. number of time–steps t. Average over 10,000 sim-
ulations. The CA system converges safely to the optimum (d = 20). (Color figure
online)

Fig. 6. Starting from a random initial configuration a balanced optimal pattern evolves.
Example: 10 × 10 field. One fastest evolution taken from 10,000 recorded simulations.
(Color figure online)

A Probabilistic Cellular Automata Rule Forming Domino Patterns 341

Table 1. 1,000 simulation runs were performed with time limit of 2,000 generations
(time–steps) for different field sizes. The number of optimal patterns with dmax domi-
noes was evaluated, and the needed number of time–steps (on average, min – max)
was computed. Optimal patterns are reliably generated (e.g. with a high probability of
66% for a 10 × 10 field).

Field size
n× n

Max. number
of dominoes
dmax

b = optimal
patterns found
in 1000 runs

Balanced
optimal
p. found

Average time to find
an optimal pattern

2× 2 1 1000 1000 1.74 (0−19)

4× 4 4 1000 1000 105 (1−800)

6× 6 8 831 831 732 (8−2000)

8× 8 13 1000 593 331 (10−2000)

10× 10 20 663 68 916 (40−2000)

12× 12 28 77 12 1233 (120−2000)

14× 14 37 275 99 1091 (120−2000)

16× 16 48 28 17 1283 (540−1940)

an optimal (balanced or unbalanced) pattern is 66 %, and to find an optimal
balanced pattern is 6.75 %, for fields of size 10 × 10.

Figure 5 shows that the CA system converges quickly to the optimum, on
the average of 10,000 simulation runs for 10×10 fields. A simulation sequence is
depicted in Fig. 6 where an optimal balanced pattern appeared after at t = 80.
Note that the number of dominoes is not increasing steadily but reaches finally
an optimum after reorganization through the injected noise.

4.2 Performance for Different Field Sizes

The system with the second rule was simulated on different fields of size n × n,
for a limit of 2,000 time-steps, 1,000 runs for each size. Table 1 shows the results
for even n. In all the cases, optimal patterns were found, and also balanced ones.
For n = 2, 4, 8 only optimal patterns were generated. For n = 16, the success
rate (percentage of optimal patterns found) was only 2.8%, but this rate can
be enhanced by increasing the simulation time limit beyond 2,000. The average
time to find an optimal pattern increases roughly with n, but not strictly. One
explanation could be that the percentage of optimal patterns of all possible
patterns is not strictly increasing with n. Note that the variance between the
recorded min and max time (in brackets) is high. It can also be observed that
the fluctuation of the domino number can be quite high during the evolution.

342 R. Hoffmann et al.

Table 2. The success rate (for finding optimal patterns) for n × n fields, where n is
odd. Average over 1,000 runs, time limit = 2,000 generations.

n 3 5 7 9 11 13 15

dmax 2 6 10 16 24 32 42

Success rate [%] 100 100 100 100 42.6 59.7 20.1

4.3 Robustness

Further experiments have shown that the CA second rule also works well if
(i) the initial configuration is totally black or white, (ii) the field size n is odd,
or (iii) the field is rectangular.

Initial Configuration White or Black. One thousand runs were performed
on a 10× 10 field where initially all cells were exclusively colored (WH) white or
(BL) black.

• (WH) After 723 time–steps on average (min 40 – max 2,000) a pattern with
19–20 dominoes (d = 19.65 on average) had evolved. The optimum with
dmax = 20 dominoes was reached for 64.6% of the cases, where 8.4% of them
were balanced.

• (BL) After 690 time–steps on average (min 40 – max 2,000) a pattern with
19–20 dominoes (d = 19.65 on average) had evolved. The optimum with
dmax = 20 dominoes was reached in 64.6% of the cases, where 5.9% of them
were balanced.

These results are statistically very close to the ones gained from random ini-
tial configurations (as evaluated before). Thus the evolution of domino patterns
does not depend significantly on the initial configuration.

Odd Field Size. By one thousand simulation runs, the maximal number of
dominoes and the percentage of optimal generated pattern were found (Table 2).
The results show that the (second) CA rule works very well for odd(n), too.

Rectangular Fields. The second rule was also tested successfully on several
rectangular fields with different sizes. The different simulations confirmed that
two cases have to be distinguished, (i) field sizes that do not allow a total overlap-
ping of the tiles, and (ii) field sizes that allow it. In the (i) case, different optimal
patterns appear in sequence, with changing non–optimal patterns in between.
The search for an alternate pattern is never ending, because the noise injection
at the non–overlapping sites does not vanish (for example, marked in yellow in
Fig. 7a). In the (ii) case, an optimal pattern remains stable (for example, Fig. 7b),
because no more noise is injected.

A Probabilistic Cellular Automata Rule Forming Domino Patterns 343

Fig. 7. (a) 2× 10 field: no solution with total overlapping exists; non-overlapping cells
are marked in yellow. Optimal patterns appear from time to time. (b) 4×10 field: there
are solutions with total overlapping. Some stable optimal patterns are shown. (Color
figure online)

5 Conclusion

Two probabilistic CA rules were designed that can form high quality domino
patterns. 24 matching templates were derived from the two 3 × 4 domino tiles.
Each selected cell was tested against the templates and was adjusted in the case
that a template matches in the neighborhood. The first rule is sub–optimal with
respect to the number of placed dominoes because non–overlapping tiles are
allowed, however the reached patterns are always stable. The second rule intro-
duces additional noise where domino tiles do not overlap. Thereby the overlap
between domino tiles and the number of dominoes is maximized, leading to
a global optimum with high probability. The reached optimal pattern remains
stable, if there exists a totally overlapping tiling.

References

1. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cam-
bridge University Press, Cambridge (1998)

2. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern
Formation. Birkäuser (2005)

3. Désérable, D., Dupont, P., Hellou, M., Kamali-Bernard, S.: Cellular automata in
complex matter. Complex Syst. 20(1), 67–91 (2011)

4. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3),
601–644 (1983)

5. Nagpal, R.: Programmable pattern-formation and scale-independence. In: Minai,
A.A., Bar-Yam, Y. (eds.) Unifying Themes in Complex Sytems IV, pp. 275–282.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-73849-7 31

6. Yamins, D., Nagpal, R.: Automated Global-to-Local programming in 1-D spatial
multi-agent systems. In: Proceedings 7th International Conference on AAMAS, pp.
615–622 (2008)

https://doi.org/10.1007/978-3-540-73849-7_31

344 R. Hoffmann et al.

7. Tomassini, M., Venzi, M.: Evolution of asynchronous cellular automata
for the density task. In: Guervós, J.J.M., Adamidis, P., Beyer,
H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L., (eds.): Parallel Problem
Solving from Nature – PPSN VIIPPSN 2002. LNCS, vol. 2439, pp. 934–943.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45712-7 90

8. Birgin, E.G., Lobato, R.D., Morabito, R.: An effective recursive partitioning app-
roach for the packing of identical rectangles in a rectangle. J. Oper. Research Soc.
61, 303–320 (2010)

9. Hoffmann, R.: How agents can form a specific pattern. In: W ↪as, J., Sirakoulis,
G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 660–669. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11520-7 70

10. Hoffmann, R.: Cellular automata agents form path patterns effectively. Acta Phys.
Pol. B Proc. Suppl. 9(1), 63–75 (2016)

11. Hoffmann, R., Désérable, D.: Line patterns formed by cellular automata agents.
In: El Yacoubi, S., W ↪as, J., Bandini, S. (eds.) ACRI 2016. LNCS, vol. 9863, pp.
424–434. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44365-2 42

12. Hoffmann, R., Désérable, D.: Generating maximal domino patterns by cellular
automata agents. In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol. 10421, pp. 18–
31. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62932-2 2

13. Achasova, S., Bandman, O., Markova, V., Piskunov, S.: Parallel Substitution
Algorithm, Theory and Application. World Scientific, Singapore (1994)

https://doi.org/10.1007/3-540-45712-7_90
https://doi.org/10.1007/978-3-319-11520-7_70
https://doi.org/10.1007/978-3-319-44365-2_42
https://doi.org/10.1007/978-3-319-62932-2_2

Synchronous Multi-particle Cellular
Automaton Model of Diffusion with

Self-annihilation

Anastasiya Kireeva1(B) , Karl K. Sabelfeld1,2 , and Sergey Kireev1,2

1 Institute of Computational Mathematics and Mathematical Geophysics,
6, Prospekt Lavrentjeva, Novosibirsk 630090, Russia

{kireeva,kireev}@ssd.sscc.ru, karl@osmf.sscc.ru
2 Novosibirsk State University, Pirogova str., 2, Novosibirsk, Russia

Abstract. In this paper a synchronous multi-particle cellular
automaton model of diffusion with self-annihilation is developed based
on the multi-particle cellular automata suggested previously by other
authors. The models of pure diffusion and diffusion with self-annihilation
are described and investigated. The correctness of the models is tested
separately against the exact solutions of the diffusion equation for dif-
ferent 3D domains. The accuracy of the cellular automata simulation
results is investigated depending on the number of cells per a single
physical unit. The calculation time of cellular automaton simulation of
diffusion with self-annihilation is compared with the calculation time
of the Monte Carlo random walk on parallelepipeds method for differ-
ent domain sizes. The parallel implementation of the cellular automaton
model is developed and efficiency of the parallel code is analyzed.

Keywords: Multi-particle cellular automaton · Synchronous mode ·
Diffusion · Self-annihilation · Monte Carlo

1 Introduction

Many complex phenomena include diffusion phase. There are different approa-
ches for simulation of diffusion. One of the conventional approaches is the use
of the finite-difference and finite-element methods [1]. In [2], a random walk
in a bounded domain is considered and related with a diffusion boundary value
problem. There exist other random walk based Monte Carlo algorithms [3] where
instead of a detailed trajectory tracking one simulates jumps to a surface of cer-
tain subdomains like spheres, cubes, cylinders. We mention the Random Walk on
Spheres method which is developed for isotropic stationary and transient drift-
diffusion equations [4,5]. In [6], the Random Walk on Parallelepipeds (RWP)
method is suggested for solving the transient anisotropic diffusion equation.

Supported by the Russian Science Foundation under Grant 19-11-00019.

c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 345–359, 2019.
https://doi.org/10.1007/978-3-030-25636-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_27&domain=pdf
http://orcid.org/0000-0001-8542-2496
http://orcid.org/0000-0003-3698-7540
http://orcid.org/0000-0003-2217-8777
https://doi.org/10.1007/978-3-030-25636-4_27

346 A. Kireeva et al.

Another approach to diffusion simulation is the use of cellular automata
modeling. Cellular automaton (CA) is a discrete dynamical system consisting of
a set of cells which evolve according to local rules in discrete time steps [7]. There
are different CA models of diffusion. Let us mention some classes of these CA. A
class of CA is constructed to simulate processes governed by partial differential
equations. Rules of these CA are based on simple finite difference schemes and
discretization operators [8–10]. The next class of CA is based on the lattice-gas
CA models. The lattice-gas model’s rules consist of two stages: collision and
propagation [11,12]. The collision describes how particles entering the same cell
change their moving directions. According to the propagation rule, the particles
shift to the neighboring cell in the direction of their moving. Simultaneously
only one particle can move in the same cell in the same direction. The lattice-
gas CA diffusion models usually use the propagation rule as it is, and modified
collision rules which imitate random rotation of particles [13,14]. These CA, as
a rule, save the restriction of the lattice-gas CA: a single cell cannot contain
two particles moving in the same direction, so, the number of particle in the
cell is up to the number of neighboring cells. Another class of CA simulates the
diffusion as a substance transport [15]. Unlike the lattice-gas CA, here particles
have not any velocities and at each time step move to one of the neighboring cells
selected at random. There are different modes of particle moving: synchronous,
when all particles are shifted simultaneously, block-synchronous, when particles
are shifted only inside their block, and asynchronous, when all particles are
shifted at random and independently [7,16]. A single cell can contain only one
particle, these models are Boolean CA [17]. Also, a single cell can contain several
particles, theses models are integer multi-particle CA [18,19]. The multi-particle
CA allow to extremely decrease the automaton noise with respect to the Boolean
ones [20].

CA approach is a useful method for simulation of nonlinear spatially dis-
tributed phenomena. CA rules are much simpler than mean-field methods used
for solving nonlinear partial differential equations. They usually mimic elemen-
tary acts of modeled process on the micro-level, for example, moving molecule at
unit distance or an interaction of two molecules in a collision. CA rules are free
from restrictions on the temporal and spatial steps of the difference schemes. In
addition, CA are appropriate for high efficient implementation on supercomput-
ers. The CA approach however has also many restrictions and disadvantages, for
instance, often there is a need to use very small time and space step. Combining
the CA approach with the developed random walk methods may result in new
efficient simulation algorithms.

The main problems of CA approach are to determine the physical character-
istics that correspond to the CA model, and to prove the coincidence of the CA
simulation results with the modeled phenomenon. To solve these problems one
matches the results of CA simulation with the results obtained by the method,
assumed to be correct. In [16,21] the diffusion coefficients are determined for
different CA models by comparison of the CA characteristics with the diffusion
equation solution obtained by the finite-difference method. In [22,23] the results

Synchronous Multi-particle Cellular Automaton Model 347

of the reaction-diffusion simulation by the Monte Carlo method and CA mod-
els are compared for proving CA models correctness. Also, analytical solution
of equations, that describe the modeled phenomenon, is used for analyzing CA
simulation results [13,14].

The purpose of this paper is to construct a CA model of diffusion of non-
interacting particles. Monte Carlo models [5,6] of the diffusion simulate many
independent trajectories and calculate such characteristics as the flux to the
boundary or adsorbed particle concentration. The multi-particle CA allow to
simulate a large number of particles at once, therefore, one single computing
may be enough to obtain characteristics with a good accuracy. The question
under study is: what is the comparative efficiency of the multi-particle CA and
Monte Carlo RWP algorithm. Therefore, based on [18,19] the synchronous multi-
particle CA model of diffusion with self-annihilation is developed. To check the
CA simulation, the results are tested against the exact expression for the proba-
bility density of some features characterizing the diffusion process. The calcula-
tion time of CA simulation of diffusion with self-annihilation is compared with
the calculation time of Monte Carlo RWP algorithm. Obtained results show that
the CA simulation of a diffusion process in comparatively large domains requires
more computer time than that of the Monte Carlo RWP algorithm. Therefore,
the parallel implementation of the CA model of diffusion with self-annihilation
is performed and analyzed.

This paper is organized as follows. In Sect. 2 the synchronous multi-particle
CA model of diffusion is described and its correctness is proved. In the third
section the CA model of diffusion is extended to take into account the self-
annihilation, and the accuracy of this model is studied. Section 4 presents
the results of parallel implementation of the CA model of diffusion with self-
annihilation.

2 Cellular Automaton Model of Diffusion
of Non-interacting Particles (CAM-DNIP)

2.1 Description of CAM-DNIP

Based on the notation [16], a CA is a set of cells denoted by the pairs (a, x),
where a is the state of the cell, and x is the coordinate of the cell in a finite
d-dimensional discrete space. All admissible in a model states are named an
alphabet A. All admissible cell coordinates are named a set of names X. The
set of cells Ω = {(a, x) : a ∈ A, x ∈ X}, that do not contain cells with the
same coordinates, are formed a cellular array. The cell states are updated by
local rules Θ that depend on states of cell (a, x) and its neighbors replace an old
state a to a new state a′. The rules Θ can be applied at different order named
mode. The application of the rule Θ to all cells of the cellular array is called an
iteration. The CA diffusion model is described by the following notations:

ℵ = 〈A,X,Θdif , μ〉. (1)

348 A. Kireeva et al.

Here, the alphabet A ∈ Z+ is a set of non-negative integer numbers that denote
the number of particles in a cell. The set of names

X = {x = (i, j, k) : i = 0, ..., SizeX , j = 0, ..., SizeY , k = 0, ..., SizeZ} (2)

is a three-dimensional Cartesian lattice. The rules Θdif of particle moving are
based on CA rules given in [18]. On each time step each particle in a cell can
jump to one of the neighboring cells with probability Pmove or remain in the cell.
For the cell (a, x) the neighboring cells are the cells having coordinates different
from x by 1 only in one of the directions. That is, the set of neighboring cells
is defined by the template T (i, j, k) = {(i ± 1, j, k), (i, j ± 1, k), (i, j, k ± 1)}. As
well as in [18], the cell state a is divided into two parts: moving particles am and
remaining particles al:

am = �a · Pmove� + b , al = a − am ,

where b =

{
1, if rand < (a · Pmove − �a · Pmove�) ,

0, otherwise .

(3)

Here, �a� denotes the integer part of a. The variable b simulates a rounding
residue of a. With probability a ·Pmove −�a ·Pmove� the a ·Pmove is rounded up,
otherwise it is rounded down. The variable rand is a random number uniformly
distributed on [0, 1].

Thus, an application of the rule Θdif to a cell (a, x) is as follows. One calcu-
lates the number of moving am and remaining in the cell al particles by formula
(3). One of the neighboring cells (c, xk) is selected with probability 1/6. The
moving particles jump to the selected neighboring cell, i.e. a state of cell (a, x)
is changed to a′ = a − am and a state of cell (c, xk) is changed to c′ = c + am.

Due to independence of the moving particles, the rule Θdif simulates only
jumping of moving particles to the neighboring cell, unlike [18], where the rule
simulates exchange of moving particles between cell (a, x) and one of the neigh-
boring cells. This difference is due to the mode of application of the rule. We use
the synchronous mode as well as in [19], but in [18] the asynchronous mode is
used. According to synchronous mode, the rule Θdif is applied to all cells of the
cellular array and changed their cells simultaneously. This mode is an analog of
the explicit scheme of the finite-difference methods [1]. It is implemented in a
code by the two arrays: for the current cell states and for the new states. For
each cell (a, x) the values of am and al are computed based on the current state
a and added to the state of cell x in the new array. After each iteration we copy
the cell values from the new array at the current array and then set the new
array to zero.

2.2 Verification of CAM-DNIP

To prove the correctness of CAM-DNIP we need to compare results of the CA
simulations with the results calculated by some exact method of solving the
diffusion equation:

Synchronous Multi-particle Cellular Automaton Model 349

∂u(r, t)
∂t

= DΔu(r, t), (4)

where r is a space coordinate, D is a constant diffusion coefficient.
In [19,21], the correspondence between a physical diffusion coefficient, for

which Eq. (4) is solved, and a diffusion coefficient, which is obtained by the
multi-particle CA diffusion models, is given in the following form:

D =
Pmove

2d

l2c
titr

, (5)

where Pmove is the moving probability, d is the space dimension, lc is a cell
length, titr is a time of a single iteration. For the three-dimensional space d = 3.

In the multi-particle CA models the variable parameters are the cell length lc,
the iteration time titr and the moving probability Pmove. Choosing the values of
any two parameters, one can calculate a value of the third parameter by formula
(5). Thus, we fix the values of lc and Pmove and calculate the value of titr.

In [6], a Random Walk on Cubes Monte Carlo method is suggested to solve
anisotropic transient drift-diffusion-reaction problems. It is a meshfree method
which is based on simulation of the particle trajectories exactly according to their
temporal and spatial distributions. Different concentration-related functions can
be calculated by this method without calculating the whole concentration field,
for example, the fluxes to the domain boundaries among them. The fluxes are
calculated as follows. A cube (or, generally, a parallelepiped) is constructed with
its center at the point of a particle source r0 and length side equal to the distance
to the closest boundary. The first passage time τ and the random position r1 on
the sides of the cube are sampled according to the densities explicitly derived in
[6]. The living time of the particle is increased by τ . If the random position r1
hits a small layer along the boundary, the particle is adsorbed on it and the score
fi for the flux to this boundary is added. Otherwise, the next cube is constructed
with its center at the point r1 and length side equal to the distance to the closest
boundary and the simulation steps are repeated as in the previous cube. After
simulation of Ntr particle trajectories, the fluxes to the domain boundaries are
calculated as the total scores fi divided by Ntr.

The probability density of the first exit time of the particle to some domain’s
boundary uniquely characterizes the diffusion process and can be taken as an
exact solution used to verify the CA diffusion model.

The probability density of the first passage time τ of a particle starting from
the center of a cube to the cube sides is derived in [6], and in the case of isotropic
diffusion it has the following form:

p(τ) =
192D

πl2
· F1(D, τ) · (F2(D, τ))2 , (6)

where l is a length of the cube side and functions F1(D, τ) and F2(D, τ) are
defined by the following formulae:

350 A. Kireeva et al.

F1(D, τ) =
∞∑

m=1

(−1)m+1(2m − 1) exp
[
− (2m − 1)2π2D

l2
τ

]
,

F2(D, τ) =
∞∑

n=1

(−1)n+1 1
2n − 1

exp
[
− (2n − 1)2π2D

l2
τ

]
.

(7)

In addition, the probability density of the first passage time of a particle
starting from the height z is derived in the case of diffusion in an infinite layer
of height l whose plane boundaries are both absorbing:

pl(τ) =
1

2t
√

πDt

∞∑
n=−∞

{
p1l − 1

2

(
p2l + p3l

)}
,

p1l = (2nl + z) exp
[
− (2nl + z)2

4Dt

]
,

p2l = [(2n + 1)l + z] exp
[
− [(2n + 1)l + z]2

4Dt

]
,

p3l = [(2n − 1)l + z] exp
[
− [(2n − 1)l + z]2

4Dt

]
.

(8)

Also, the probability density of the first passage time of a particle starting
from the height z is derived in the case of diffusion in an infinite layer of height
l with an absorption on the plane z = 0 and reflection on the plane z = l:

pref (τ) =
1

2t
√

πDt

∞∑
n=−∞

(−1)n(2nl + z) exp
[
− (2nl + z)2

4Dt

]
(9)

A histogram is an approximation of the probability distribution of a continu-
ous variable [24]. Therefore, we compare the histograms of the first passage time
obtained by the CA simulation of the diffusion inside the cube and layer with
the exact probability densities p(τ), pl(τ) or pref (τ) calculated by formulae (6),
(8), (9), respectively. To compute the histogram of the first passage time to the
cube sides the following computational experiment is performed. The diffusion
of particles starting from the center is simulated in the cube with length side l.
The length of a single cell lc and the value of the moving probability Pmove is
selected. For chosen lc and Pmove the number of iterations nitr needed to reach
the cube boundaries is computed and multiplied by the time of a single iteration
titr. For the obtained values of the exit time texit the histogram is computed as
follows. A sufficiently large interval [0, Tmax], where Tmax is a maximum time
needed to reach the cube boundaries, is taken. This interval is divided into subin-
tervals, or bins. The number of time values ntexit

falling in each bin is calculated
and divided by the bin width. The obtained values of ntexit

for each bin is the
histogram of first passage time h(texit). Analogously, for the layer, the number of
iterations nitr needed to reach the layer boundaries is computed and multiplied
by the time of a single iteration titr. For the obtained values of the exit time
texit the histogram is computed as well as it is described above.

Synchronous Multi-particle Cellular Automaton Model 351

2.3 Results of Simulation by CAM-DNIP

The CA diffusion model ℵ is tested on the diffusion task inside the cube with
side length l = 10 nm, with the diffusion coefficient D = 1nm2/ns. The moving
probability Pmove is taken equal to 0.7. The cell length lc is determined on the
basis of how many cells accounted per a physical unit of length. The value of lc
is calculated as 1/nc, where nc is the number of cells in a single physical unit,
here in 1 nm. The value of nc is varied from 1 to 10 cells. The cellular array
size Sizex · Sizey · Sizez = Size3, where Size is the number of cells in a single
side of the cube. The value of Size is equal to the ratio l/lc. The absorbing
boundary conditions are used. It means that the particles hitting the boundary
cell disappear.

At the initial time, the state of the central cell is (a, x) = (1014, x), x =
(Size/2, Size/2, Size/2), the other cell states equal to zero. The value a = 1014

has been chosen in order to decrease the automaton noise [20] and obtain the
histograms of the first exit time with a sufficient accuracy. It is worth noting that
small values of nc do not provide a sufficient accuracy and require the averaging
the results over several computational experiments with different sequences of
random numbers. For example, when nc < 4 the histograms h(t) are obtained by
the averaging over N = 1000 computational experiments, for nc = 4 N = 100,
and the values of nc > 4 provide a sufficient accuracy of CA simulation for a
single computational experiment.

Figure 1 presents the exact probability density p(t) and the histograms of the
first passage time h(t) obtained by the CA simulation for the different number of
cells accounted for 1 nm. The plots are shown in a logarithmic scale of both axis.
The histograms h(t) coincide with the exact probability density p(t) for large
time values, but they differ at small time values. This is because the accuracy
of CA simulation depends on the number nc of cells per a single physical unit.
The small values of nc < 4 do not allow to simulate a small value of the first
exit time. For example, nc = 1 allows to obtain the first exit time of order 10−3.
However, increasing nc leads to the possibility of simulating the smaller time
values. For instance, the CA with nc = 4 is able to simulate the first exit time
of order 10−7.

The next test is a simulation of diffusion in an infinite layer of height l =
10 nm, with the diffusion coefficient D = 1nm2/ns. A particle starts from the
height l/2. As well as in the previous test, the moving probability is Pmove = 0.7,
the cellular array size is Sizex ·Sizey ·Sizez = Size3, at the initial time the state
of the central cell is (a, x) = (1014, x). The absorbing boundary conditions for
top and down cube sides is used. The infinity along axes X and Y is simulated
by the periodic boundary conditions.

The plots of the exact probability density pl(t) and the histograms of the
first exit time computed by the CA ℵ in the case of a layer are given in Fig. 2.
As well as in the case of the cube, the CA ℵ with nc = 5 simulates the diffusion
with a good accuracy (10−9). However, the CA with the smaller number of cells
nc ≤ 4 provides a smaller accuracy: 10−5 at nc = 3 and 10−7 at nc = 4.

352 A. Kireeva et al.

Fig. 1. Comparison of the probability density p(t) and the histograms h(t) computed
by the CA simulation for different number nc of cells per a single physical unit

Fig. 2. Comparison of the probability density pl(t) and the histograms h(t) computed
by the CA model ℵ in an infinite layer with absorbing boundary conditions

Another test was a simulation of diffusion in an infinite layer with an absorp-
tion on the plane z = 0 and with the reflection on the plane z = l. As well
as in the previous test, the layer height l = 10 nm, a particle starts from the
height l/2, the diffusion coefficient D = 1nm2/ns, the moving probability is
Pmove = 0.7, the cellular array size is Size3. The periodic boundary conditions
along the axes X and Y and the absorbing boundary condition for the top cube

Synchronous Multi-particle Cellular Automaton Model 353

face are used. The reflecting boundary condition is simulated as follows. When a
particle jumps from a cell with coordinate z = Size−2 to a cell with coordinate
z = Size − 1, it is reflected back to the cell with coordinate z = Size − 2.

Fig. 3. Comparison of the probability density pref (t) and the histograms h(t) obtained
by the CA simulation of diffusion in an infinite layer with absorption on the plane z = 0
and reflection on the plane z = l

Figure 3 shows the histograms of the first exit time obtained by the CA ℵ and
the exact probability density pref (t). Like the previous cases, the CA simulation
results with nc = 5 agree well with the exact probability density.

Thus, we can conclude that the CA model ℵ is able to simulate the diffusion
in a domain with different boundary conditions (absorbing, periodic, reflecting)
with a good accuracy.

3 Cellular Automaton Model of Diffusion
with Self-annihilation (CAM-DSA)

3.1 Description of CAM-DSA

The multi-particle CA model of diffusion can be extended to simulation of
reaction-diffusion processes. Here, we consider a particular case of reaction, the
self-annihilation of particles in a domain volume at some annihilation rate.

The diffusion rule Θdif remains the same as described in Sect. 2.1. The self-
annihilation is simulated based on the diffusion rule as follows. When we apply
the rule Θdif to a cell (a, x), after calculation of the number of moving am and
remaining in the cell al particles, it is computed what parts of am and al are
annihilated. For that, each number am and al is divided into two parts according
to the self-annihilation probability Pads:

am ads = �am · Pads� + bm , am live = am − am ads ,

where bm =

{
1, if rand < (am · Pads − �am · Pads�) ,

0, otherwise .

(10)

354 A. Kireeva et al.

and al ads = �al · Pads� + bl , al live = al − al ads ,

where bl =

{
1, if rand < (al · Pads − �al · Pads�) ,

0, otherwise .

(11)

The number of moving particles am is decreased by am ads, and the number of
remaining in a cell particles al is decreased by al ads. One of the neighboring cells
(c, xk) is selected with probability 1/6. The surviving moving particles jump to
the selected neighbor cell. Thus, a state of the cell (a, x) is changed to a′ = a −
am−al ads, and the state of neighboring cell (c, xk) is changed to c′ = c+am live.

The self-annihilation probability Pads is calculated by the following formula:

Pads = 1 − exp
{

−τ

τ̄

}
, (12)

where τ̄ is a mean life time of the diffusing particle [3].
Further, the CA model of diffusion with self-annihilation is denoted by the

ℵads.

3.2 Verification of CAM-DSA

In [25], in the case of diffusion with self-annihilation, the probability density of
the first passage time of the particle starting from the center of a cube to the
cube faces has the form:

pads(τ) =
192D

πl2
· exp

{
−τ

τ̄

}
· F1(D, τ)(F2(D, τ))2 . (13)

Analogously to the pure diffusion case, we compute the histograms of the first
exit time by the CA simulation of the diffusion with self-annihilation inside the
cube. To prove a correctness of the CA model ℵads we compare these histograms
with the exact probability density pads(τ).

3.3 Results of Simulation by CAM-DSA

In this section, for the CA simulation mainly the same model parameter values
are used as in Sect. 2.3. The diffusion with self-annihilation is simulated inside
the cube with side length l = 10 nm, with the diffusion coefficient D = 1nm2/ns
and with the mean life time of the diffusing particle τ̄ = 5 ns. The moving
probability is Pmove = 0.7. The absorbing boundary conditions are used for all
cube sides. At the initial time, the state of the central cell is (a, x) = (1014, x),
where x = (Size/2, Size/2, Size/2), the other cell states equal to zero.

As well as in the case of the CA model ℵ, the number of cells in 1 nm affects
the accuracy of the CA model ℵads. The histograms of the first passage time
h(t) obtained by the CA simulation of diffusion with self-annihilation for the
different values of nc are given in Fig. 4. A comparison of the histograms h(t)
with the exact probability density pads(t) shows that the model ℵads provides
the accuracy of order 10−7 for using of nc ≥ 5 cells per 1 nm.

Synchronous Multi-particle Cellular Automaton Model 355

Fig. 4. Comparison of the probability density pads(t) and the histograms h(t) obtained
by the CA simulation of diffusion with annihilation in the cube

4 Performance of CAM-DSA Implementation

4.1 Comparison of CAM-DSA and RWP Implementations

In this section we compare the calculation time of the implementations of the
synchronous multi-particle CA and the Monte Carlo Random Walk on Paral-
lelepipeds (RWP) method [6], both simulating diffusion with self-annihilation.

The same model parameter values as in Sect. 3.3 are taken in calculations.
We consider the both cases: a pure diffusion with τ̄ = 0 ns, and diffusion with
self-annihilation with the mean life time of particle τ̄ = 5 ns. The number of cells
in 1 nm is nc = 4, that provides the accuracy of the simulation results of order
10−6. The same accuracy is obtained by the RWP method with the number of
trajectories equal to Ntr = 108.

Computational tests are executed on the processor Intel(R) Core(TM) i7-
4770 CPU 3.40 GHz.

In the case of pure diffusion, the calculation time of the CA ℵ implementation
Tℵ is 6.76 s, and the time of RWP method implementation TRWP is 52.316 s. In
the case of diffusion with self-annihilation, the CA ℵads implementation takes
6.34 s, and RWP method takes 36.175 s.

Now, we investigate how the model parameters affect the computation time
of the both models. In the case of pure diffusion, when varying the diffusion
coefficient, the calculation time of both models is practically not changing. For
example, for D = 10nm2/ns the computation time of the CA ℵ is 6.75 s and
TRWP = 49.977 s. However, in the case of diffusion with self-annihilation, the
execution time is increased for the both models: Tℵ ads = 9.858 s and TRWP =
54.741 s. When increasing the mean life time of particle τ̄ , the calculation time of
both method is increased as well. For example, for D = 1nm2/ns and τ̄ = 10 ns
the time of CA ℵads execution is 8.298 s, and the time RWP method is 43.728 s.
Increasing the domain size has a crucial impact on the computation time of CA
implementation and almost no effect on the time of RWP method. For instance,
in case of the pure diffusion with D = 1nm2/ns in the cube with l = 50 nm, the
execution time of CA ℵ is 22,902,983 s, i.e. 6.36 h, and the time of RWP method

356 A. Kireeva et al.

is 63.507 s. In the case of diffusion with self-annihilation with τ̄ = 5 ns, CA ℵads

implementation takes 1,783.25 s, i.e. 29.7 min, and the computation time of RWP
method is 28.657 s.

Thus, for the small domain size the CA models ℵ and ℵads allow to obtain
the result 6–8 faster compared to the RWP method. However, for the large
domain size the CA implementation is much slower than the RWP method.
The domain size for which CA implementation is faster than the RWP method
implementation depends on the architecture of the computational node. In the
case of the processor Core i7-4770 with the size of cache L2 equal to 8 Mb, the
computation time of the CA implementation practically coincides with the time
of the RWP method execution for the domain size l = 15 nm and D = 1nm2/ns.
A more detailed analysis of the cellular array size for which CA takes less time
than RWP method is an issue of a separate study.

4.2 Parallel Implementation of CAM-DSA

To simulate the diffusion with self-annihilation for large domains by the CA
model its parallel implementation is needed. We employ the MPI standard for
the parallel execution of the CA model ℵads. The general approach to CA par-
allel implementation is a domain decomposition method. The cellular array is
divided into subdomains which is distributed between available MPI processes.
Each MPI process computes states of cells of its subdomain. After each itera-
tion MPI processes exchange new states of their boundary cells by non-blocking
communication functions MPI Isend and MPI Irecv. The boundary exchange is
executed during the time of computation of cell states of an internal part of
a subdomain. Also, on each iteration each MPI process calculates the number
of particles adsorbed on the domain boundaries and annihilated in the volume.
The sum of these values over all MPI processes is obtained by the non-blocking
collective function MPI Iallreduce.

To estimate the performance of the parallel code its speedup S(nmpi) and effi-
ciency E(nmpi) are computed as follows: S(nmpi) = T (1)/T (nmpi), E(nmpi) =
S(nmpi)/nmpi, where nmpi is the number of MPI processes used, T (nmpi) is a
calculation time obtained when a task is executed on nmpi processes. The parti-
tion “Broadwell” of the cluster “MVS-10P” of the Joint Supercomputer Center
of RAS [26] is employed for calculations. The “Broadwell” node consists of two
processors Intel Xeon CPU E5-2697A v4 2.60 GHz, each contains 16 cores with
2 threads and 40 MB SmartCache.

The performance of the parallel code is tested for the following model param-
eter values. The simulating domain is a cube of side length l = 50 nm, the
diffusion coefficient is D = 1nm2/ns, the mean life time of particle τ̄ = 5 ns.
The moving probability is Pmove = 0.7. The absorbing boundary conditions
are used for all cube sides. At the initial time, the state of the central cell is
(a, x) = (1014, x), where x = (Size/2, Size/2, Size/2), and the other cell states
equal to zero. The number of cells in 1 nm is nc = 5. The cellular array size is
Size3 = (l · nc)3 = 2503 = 15, 625, 000 cells.

Synchronous Multi-particle Cellular Automaton Model 357

Fig. 5. The values of characteristics of the parallel implementation of the CA model
ℵads: (a) computation time, (b) speedup and (c) efficiency

Figure 5 shows the plots of characteristics of the parallel implementation of
the CA model ℵads: the computation time, speedup and efficiency, depending on
the number of MPI processes. The parallel code speedup is 197 times when using
256 MPI processes comparing with the sequential code. The speedup strictly
increases with the increase of MPI processes till 256. However, the parallel code
efficiency is strongly decreasing when using 32 nodes. It is explained by the mem-
ory bandwidth limiting. Each processor E5-2697A v4 has 16 cores and 40 MB
SmartCache. The computational node has two such processors. Thus when we
execute the task using 32 MPI processes, each 16 of these processes uses the same
40 MB SmartCache. The data needed to calculation of each processes does not
fit in the cache until using 128 MPI processes. When increasing the number of
processes the intensity of memory access increases and the memory bandwidth
constraints the code performance. Next increasing the number of MPI processes
causes the decreasing of the subdomain size. Therefore, the efficiency of using 64
and 128 processes increases. However, further increasing of the number of MPI
processes causes the slowdown of the code execution since the data exchange
becomes the limiting factor.

5 Conclusion

Synchronous multi-particle CA models of the pure diffusion (ℵ) and diffu-
sion with self-annihilation (ℵads) are developed based on [18,19]. To prove the

358 A. Kireeva et al.

correctness of the CA models ℵ and ℵads the histograms of the first passage time
for different domains are computed and compared with the exact solutions of
the diffusion equation and diffusion-reaction equation. The accuracy of the CA
models is investigated depending on the number of cells nc taken per a single
physical unit. It is concluded that nc = 4 provides the accuracy of order 10−7

for the CA model of the pure diffusion and the accuracy of order 10−6 for the
CA model of the diffusion with self-annihilation.

A comparison of the computational time of the CA models ℵ and ℵads with
the calculation time of the Monte Carlo RWP method is performed for different
model parameter values. It is obtained that CA ℵ and ℵads implementations take
less time than the RWP method implementation for small domains. However in
the case of large domains, the computation time of the CA is considerably greater
than the time of the RWP method. Therefore, the parallel implementation of CA
model of diffusion with self-annihilation is performed. The parallel code ensures
a speedup of the sequential version of CA ℵads about 197 times when using 256
MPI processes.

References

1. Smith, G.D.: Numerical Solution of Partial Differential Equations (Finite Differ-
ence Methods). Oxford University Press, Oxford (1990)

2. Courant, R., Friedrichsund, K., Lewy, H.: Über die partiellen Differentialgleichun-
gen der mathematischen Physik. Math. Annalen 100, 32–74 (1928)

3. Sabelfeld, K.K.: Monte Carlo Methods in Boundary Value Problems. Springer,
Heidelberg (1991)

4. Sabelfeld, K.K.: Random walk on spheres method for solving drift-diffusion prob-
lems. Monte Carlo Methods Appl. 22(4), 265–275 (2016)

5. Sabelfeld, K.K.: Random walk on spheres algorithm for solving transient drift-
diffusion-reaction problems. Monte Carlo Methods Appl. 23(3), 189–212 (2017)

6. Sabelfeld, K.: Stochastic simulation methods for solving systems of isotropic and
anisotropic drift-diffusion-reaction equations and applications in cathodolumines-
cence imaging. Submitted to Probabilistic Engineering Mechanics (2018)

7. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for
Modeling. MIT Press, USA (1987)

8. Weimar, J.R.: Cellular automata for reaction-diffusion systems. Parallel Comput.
23, 1699–1715 (1997)

9. Weimar, J.R.: Three-dimensional cellular automata for reaction-diffusion systems.
Fundamenta Informaticae 52(1–3), 277–284 (2002)

10. Weimar, J.R., Tyson, J.J., Watson, L.T.: Diffusion and wave propagation in cellular
automaton models of excitable media. Physica D 55(3–4), 309–327 (1992)

11. Chopard, B.: Cellular automata modeling of physical systems. In: Meyers, R. (ed.)
Computational Complexity, pp. 407–433. Springer, New York (2012). https://doi.
org/10.1007/978-1-4614-1800-9 27

12. Frenkel, D., Ernst, M.H.: Simulation of diffusion in a two-dimensional lattice-gas
cellular automaton: a test of mode-coupling theory. Phys. Rev. Lett. 63(20), 2165–
2168 (1989)

13. Chopard, B., Droz, M.: Cellular automata model for the diffusion equation. J. Stat.
Phys. 64(3–4), 859–892 (1991)

https://doi.org/10.1007/978-1-4614-1800-9_27
https://doi.org/10.1007/978-1-4614-1800-9_27

Synchronous Multi-particle Cellular Automaton Model 359

14. Dab, D., Boon, J.-P.: Cellular automata approach to reaction-diffusion systems. In:
Manneville, P., Boccara, N., Vichniac, G.Y., Bidaux, R. (eds.) Cellular Automata
and Modeling of Complex Physical Systems, pp. 257–273. Springer, Heidelberg
(1989). https://doi.org/10.1007/978-3-642-75259-9 23

15. Karapiperis, T., Blankleider, B.: Cellular automaton model of reaction-transport
processes. Physica D 78, 30–64 (1994)

16. Bandman, O.L.: Comparative study of cellular-automata diffusion models. In:
Malyshkin, V. (ed.) PaCT 1999. LNCS, vol. 1662, pp. 395–409. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48387-X 41

17. Bandman, O.: Cellular automata diffusion models for multicomputer implementa-
tion. Bull. Nov. Comp. Center Comp. Sci. 36, 21–31 (2014)

18. Medvedev, Y.: Multi-particle Cellular-automata models for diffusion simulation.
In: Hsu, C.-H., Malyshkin, V. (eds.) MTPP 2010. LNCS, vol. 6083, pp. 204–211.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14822-4 23

19. Chopard, B., Frachebourg, L., Droz, M.: Multiparticle lattice gas automata for
reaction diffusion systems. Int. J. Mod. Phys. C 05(01), 47–63 (1994)

20. Medvedev, Yu.: Automata noise in diffusion cellular-automata models. Bull. Nov.
Comp. Center Comp. Sci. 30, 43–52 (2010)

21. Bandman, O.: The concept of invariants in reaction-diffusion cellular-automata.
Bull. Nov. Comp. Center Comp. Sci. 33, 23–34 (2012)

22. Kortlüke, O.: A general cellular automaton model for surface reactions. J. Phys.
A Math. Gen. 31(46), 9185–9197 (1998)

23. Mai, J., von Niessen, W.: Diffusion and reaction in multicomponent systems via
cellular-automaton modeling: A + B2. J. Chem. Phys. 98(3), 2032–2037 (1993)

24. Rice, J.A.: Mathematical Statistics and Data Analysis, 3rd edn. Thomson
Brooks/Cole, USA (2006)

25. Sabelfeld, K.K., Kireeva, A.E.: A meshless random walk on parallelepipeds algo-
rithm for solving transient anisotropic diffusion-recombination equations and appli-
cations to cathodoluminescence imaging. Submitted to Numerische Mathematik
(2018)

26. MVS-10P cluster, JSCC RAS. http://www.jscc.ru. Accessed 22 May 2019

https://doi.org/10.1007/978-3-642-75259-9_23
https://doi.org/10.1007/3-540-48387-X_41
https://doi.org/10.1007/978-3-642-14822-4_23
http://www.jscc.ru

Pseudorandom Number Generator Based
on Totalistic Cellular Automaton

Miroslaw Szaban(B)

Institute of Computer Science, Siedlce University of Natural Sciences
and Humanities, Siedlce, Poland

mszaban@uph.edu.pl

Abstract. In this paper, is considered a problem of selection rules for
one-dimensional (1D) totalistic cellular automaton (TCA), which is used
for generation of pseudorandom sequences which could be useful in cryp-
tography. The quality of pseudorandom bit sequences generated by TCA-
based pseudorandom number generator (PRNG) depends on appropri-
ately selected totalistic rules assigned to CA cells. There is presented a
methodology of selecting TCA rules, starting from initial selection based
on application Entropy of bit streams generated by the TCA. Next, the
selected rules were examined with the use of the NIST SP 800-22rev1a
tests and the Diehard set of Marsaglia tests. In the paper was analyzed,
the uniform TCA with totalistic rules with neighborhood radius equal
to 1, 2, 3, and 4. During the studies, selected sets of TCA are presented
as a new set of CA rules, which can be used as quite cryptographically
strong TCA-based PRNG, supplying a new huge space of keys.

Keywords: Cellular automaton · Pseudorandom number generator ·
Totalistic rules · Cryptography

1 Introduction

Development of digital techniques and their expansion can be observed today in
almost every area of human activity. Large quantities of digital data are created
every minute, so the need for securing safety and privacy of digital information
stored or transmitted over global networks is growing. Cryptographic techniques
are among others used to provide information security, being essential compo-
nents of any secure communication tools. Nowadays, two core cryptography sys-
tems are used: secret and public-key systems. An extensive overview of currently
known or emerging cryptography techniques used in both type of systems can
be found, e.g., in [12]. One of such a promising for cryptography technique is the
application of CA.

Intended for public-key cryptosystems, CA was proposed by Guan [2] and
Kari [6]. Such systems require two types of keys: one key for encryption and
the other one for decryption. One is held in private, the other rendered public.
The main concern of this paper are cryptosystems with a secret key, also called
c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 360–370, 2019.
https://doi.org/10.1007/978-3-030-25636-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_28&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_28

Pseudorandom Number Generator Based on Totalistic Cellular Automaton 361

the symmetric key cryptography systems. In such systems, the encryption and
the decryption key are the same. The encryption process is based, in particular,
on the generation of high-quality pseudorandom bit sequences, and CA can be
effectively used for this purpose. CA for symmetric cryptography was first stud-
ied by Wolfram [20], who proposed 1D CA-based PRNG with rule 30, and later
by Habutsu et al. [3], Hortensius et al. [4] and Nandi et al. [10], who proposed
rules 90 and 150. After that, this subject was studied by Tomassini et al. [16],
[18], where the set of rules was enlarged to rules: 90, 105, 150, 165. Afterward,
in the paper [13] authors presented a new larger set of rules {86, 90, 101, 105,
150, 153, 165, 1436194405}, discovered with use of evolutionary technique called
cellular programming (CP) [14]. This set of rules consists of rules with the neigh-
bourhood of radius r = 1 and r = 2 (last rule in the set). Correspondingly, this
set gives similar results in the sense of passed tests like entropy test and also
FIPS 140-2 (standard tests for basic analysis of the PRNG’s quality), but offered
larger space of keys (different bit sequences) than previous proposals. Lately, in
the paper [15] were presented techniques of appropriate selection of rules for one-
dimensional (1D) cellular automata (CA), which is used for generation PRNG,
based on a cryptographic criterion known as a balance. The paper [15] present
a new set of CA rules with neighborhood radius r = 2. For a selected set of CA
rules, the statistical testing approach was applied. As a result, the whole general
set and each subset of these rules can be used in CA-based PRNG and provide
cryptographically strong bit sequences. Similar statistical testing approach for
analysing CA usefulness in cryptography and as PRNG used author in papers:
[1,5,7], etc.

Cryptographic techniques and ciphers require secure keys, being high pseudo-
random or almost random sequences. Many generators of such keys are known,
but they did not supply demanded today quantities of applied keys. CA are
known to be a powerful tool for supplying creation of such amounts of number
sequences. In literature, for this purpose are applied an elementary CA [21], but
also totalistic CA [19] seems to be promising and able to enlarge set of existing
tools for generating PRNS.

The paper is organized as follows. The next section presents an idea of an
encryption process based on Vernam cipher. Section 3 outlines the concept of
1D Totalistic CA and its relation with CA-based symmetric cryptography. In
Sect. 4, a construction of TCA-based PRNG is described. Section 5 describes the
sets of quality tests for examining obtained sequences of bits. Section 6 presents
the results of selecting proper totalistic rules, testing these rules, and analysis of
their cryptographical quality. The last section concludes the paper.

2 Symmetric Key Cryptography and Vernam Cipher

The main idea of cryptography using a symmetric key is that both sides of the
cryptographic process apply the same key to encrypt and decrypt the message.
The key is secret and most secure because only two persons can use it while
other people can only know the encrypted message, which is too challenging to

362 M. Szaban

encrypt without knowing the key. In this study, we continue Vernam’s approach
to cryptography with the secret key.

Let P be a plain-text message consisting of m bits (p1p2...pm) and (k1k2...km)
a bit stream of a key k. Let ci be the i − th bit of a cipher-text obtained by
applying XOR (exclusive-or) enciphering operation:

ci = piXORki. (1)

The original bit pi of a message can be recovered by applying the same operation
XOR on ci (bit of a cipher-text) using the same bit stream key k:

pi = ciXORki. (2)

The enciphering algorithm called Vernam Cipher is known (see, [8,12]) as
perfectly safe if the keystream is genuinely unpredictable and used only once.
In this paper, we answer the questions: how to select an appropriate set of CA
rules providing near pure randomness of key bitstreams, and how to obtain such
a key with length large enough to encrypt real-world amounts of data.

3 Totalistic Cellular Automata and Symmetric
Cryptography

A cellular automaton (CA) is a discrete, dynamical system consisted of identical
cells arranged in a regular grid, in one or more dimensions [21]. In this paper,
one-dimensional CA is considered. 1D CA is in the simplest case a collection
of two-state elementary cells arranged in a lattice of the length N , and locally
interacting in a discrete time t. For each cell i, called a central cell, a neighbor-
hood of a radius r is defined. The neighborhood consists of n = 2r + 1 cells,
including the cell i. A cyclic boundary condition is applied to a finite size CA,
which results is in a circle grid. Initial states of all cells (an initial configuration
of a CA) and states of cells are updated synchronously at discrete time steps,
according to a local rule defined on a neighborhood. In this paper, finite CA
with the totalistic type of CA rule (TCA) [19] is considered. It is assumed that a
state qt+1

i of a cell i at the time t+1 depends only on states of its neighborhood
at the time t, i.e.:

qt+1
i = TFt(

r∑

j=−r

qti+j) = TFt(qti−r + ... + qti−1 + qti + qti+1 + ... + qti+r), (3)

where TFt is a totalistic transition function called also a totalistic rule, defining
the way of updating the cell i. The length L of a totalistic rule and the number of
neighboring states for a binary CA is L = 2n = 2(r+1), where n is a number of
cells of a given neighborhood. The number of such rules can be expressed as 2L.
For CA with e.g., r = 1(r = 3) the length of the rule is equal to L = 4(L = 8),
while number of such rules is 24(28) and grows very fast with L.

Pseudorandom Number Generator Based on Totalistic Cellular Automaton 363

CA can change its state in time with the use of a single rule assigned to all
CA cells, and it is called a uniform CA. If two or more different rules are assigned
to update cells, CA is called nonuniform CA. Wolfram system [20] was uniform;
the other mentioned above systems were non-uniform. In this paper will analyse
uniform TCA.

4 A Concept of 1D TCA-Based PRNG

Similarly like in the case of elementary CA [4,10,13,15,16,18,20], let us consider
a PRNG based on 1D TCA with a lattice of the length N consisting of cells
locally interacting in a discrete time t. A rule (rules) of the TCA controlling
cells are described as in equation (3). A corresponding seed of the generator will
consist of few elements. The first element is an initial configuration of CA, second
is a set of TCA rules, third is an index of a cells (i), which generate bit sequence
used for encryption, and last is a number of time steps (T), which correspond to
the length of a bit sequence. During CA work, fixed cell i changes its states. The
next states of the cell i create the bit sequence. Such proposed construction is
TCA-based PRNG. The TCA-based PRNG should generate cryptographically
strong bit sequences independently to an initial configuration of CA, a selected
cell i and time step T . The set of totalistic rules for managing the CA should
be carefully chosen, and a particular assignment of rules to cells should not
be conflicting. To satisfy these requirements, key streams generated by selected
rules will be put under dedicated for these purpose cryptographic tests, like the
Entropy test, the NIST SP 800-22 tests and also a Diehard set of Marsaglia tests.

5 Quality Tests for Number Generators

5.1 The Entropy Test

The entropy Eh is used to specify the statistical quality of each PNS. We used
Shannon’s equation of even distribution as an entropy function. To calculate a
value of the entropy each PNS is divided into subsequences of size h (h = 4). Let
k be the number of values, which can construct a single element of a sequence
(for binary values k = 2) and kh a number of possible states of each sequence of
length h (if h = 4 than kh = 16). Eh can be calculated in the following way:

Eh = −
kh∑

j=1

phj
log2 phj

, (4)

where phj
is a probability of occurrence of a sequence hj in a PNS.

The entropy achieves its maximum Eh = h when the probabilities of the hj

(possible sequences of the length h) are equal to 1
kh .

364 M. Szaban

5.2 NIST SP 800-22

NIST SP 800-22rev1a (dated April 2010) is a Statistical Test Suite for the Valida-
tion of Random Number Generators and Pseudo Random Number Generators
for Cryptographic Applications [11]. These tests may be useful as a first step
in determining whether or not a generator is suitable for a particular crypto-
graphic application. However, none set of statistical tests can certify a generator
as appropriate for usage in a particular application, i.e., statistical testing can-
not serve as a substitute for cryptanalysis. The NIST SP 800-22 contains 15
hard tests. Additionally, it is recommended that the Spectral Test should only
be used for sequences of lengths 106 bits, so each bit sequence verified with NIST
SP 800-22 test was conducted with length 106 bits.

The NIST SP 800-22 test utilizes statistic to calculate a P-value that sum-
marizes the strength of the evidence against the null hypothesis. For these tests,
each P-value is the probability that a perfect random number generator would
have produced a sequence less random than tested one, given the kind of non-
randomness assessed by the test. If a P-value for a test is determined to be equal
to 1, then the sequence appears to have perfect randomness. A P-value of zero
indicates that the sequence appears to be entirely non-random. The P-value is
interpreted concerning a specified confidence interval, and then the proportion
of tests passing is calculated.

5.3 Diehard - Marsaglia Battery of Tests

The diehard tests are a battery of statistical tests for measuring the quality of
a random number generator [9]. They were developed by George Marsaglia over
several years and first published in 1995. The Diehard contains 18 tests. For
proper examining of the number sequence, it is recommended that the sequence
lengths should be not shorter than 80,000,000 bits. Most of the tests in Diehard
set return a p-value, which should be uniform on [0,1) if the input file contains
genuinely independent random bits. Those p-values are obtained by p = F (X),
where F is the assumed distribution of the sample random variable X - often
normal. However, that assumed F is just an asymptotic approximation, for which
the fit will be worst in the tails. When a bitstream really “fails big,” obtained
p-values will be equal or near to 0 or 1 in many places.

6 Experimental Results

6.1 Selection of Totalistic Rules for Application in TCA-Based
PRNG

The starting point is an analysis of a uniform CA with all totalistic rules
with neighborhood radius r = 1 and examination of all these 16 rules (i.e.,
{t0, ..., t15}), and also all of TCA with r = 2, 3, and 4 [17]. These set of TCA rules
consist of 64, 256 and 1024, respectively. In all experiments, CA size was equal to
100, and CA was working in 4096-time steps (a value suitable for Entropy test),

Pseudorandom Number Generator Based on Totalistic Cellular Automaton 365

which examine the distribution of subsequences consisted of 4 elements, in the
whole bit sequence. From one CA run was selected one-bit sequence obtained
from states of randomly selected CA cell. For each rule test was repeated 100
times with random initial configuration of CA state, and average Entropy of
each rule was calculated.

Table 1. Values of entropy for each TCA rule with r = 1, obtained from 100 tests
with the random initial configuration of CA state.

Rule Binary rule Entropy min. Entropy ave. Entropy max.

t9 1001 3,992149182 3,994392436 3,99615006

t5 0101 3,989524766 3,993392964 3,995395635

t10 1010 3,990261905 3,992207791 3,995395635

t6 0110 3,893282765 3,950631179 3,98135886

t2 0010 3,530754338 3,547633488 3,579125378

...

t0 0000 0 0,002011287 0,011173819

In the Table 1 are presented values of minimal, average and maximal entropy
for each rule with r = 1 for TCA. We can see that only four of all set of TCA
rules are good quality, and obtained entropy values near to maximal equal to 4.
The best rules are contained in a sequence {t9, t5, t10 and t6}, while the best
rule is t9 with average entropy equal to 3,994392436.

Results for the entropy test performed on the whole set of TCA rules with
r = 2 presents Table 2. We can see that only 13 rules from the whole set of 64
TCA rules with r = 2 are of good quality (ave. entropy ≥ 3, 9) and reached
entropy values near or equal to 4, i.e., maximal. The best rules enclose in set
{t21, t42, t25, t38, t30, t51, t33, t10, t43, t14, t35, t41 and t26}. The best rule in
the set is t21 with average entropy equal to 3,9999817 and t42 with average
entropy equal to 3,999980847. These rules attain the maximal value of entropy
equal to 4.

Examining each TCA rules with r = 3 gave similar results. The best
observed values of minimal, average and maximal entropy were obtained for rules
enclosed in a set {t60, t204, t51, t42, t171, t213, t43, t84, t154, t212, t166, t203,
t102, t153, t44 and t28}, this set of 16 rules was selected from 256 existing rules.
Selected rules were characterized by average entropy not lower than 3,97. The
best rule is t60 has average entropy equal to 3,994149919.

Testing each TCA rules with r = 4, resulted with the best observed val-
ues of minimal, average and maximal entropy obtained for rules from the set
{t614, t409, t340, t903, t852, t683, t542, t120, t171, t481, t853, t170, t682, t819, t715,
t342, t308, t229, t211, t597, t106, t341, t343, t85, t204, t854, t84, t665, t178, t596,
t679, t105 and t820}, this set of 33 rules was selected from 1024 existing rules.
Selected rules were characterized by average entropy not lower than 3,99. The
best rule is t614 with average entropy equal to 3,999959717.

366 M. Szaban

Table 2. Values of entropy for the best TCA rules with r = 2, obtained from 100 tests
with random initial configuration of CA state.

Rule Binary rule Entropy min. Entropy ave. Entropy max.

t21 010101 3,999977985 3,999981728 4

t42 101010 3,999977985 3,999980847 4

t25 011001 3,992381858 3,993456931 3,994802592

t38 100110 3,987154196 3,990798927 3,995433061

t30 011110 3,985916981 3,989140583 3,991474277

t51 110011 3,980464284 3,989084668 3,995395256

t33 100001 3,958708982 3,984050161 3,994774355

t10 001010 3,962158839 3,970533038 3,978475795

t43 101011 3,941343981 3,969315173 3,980360415

t14 001110 3,922575717 3,93316915 3,953488068

t35 100011 3,900546949 3,924284356 3,951504197

t41 101001 3,897518965 3,913300287 3,929707915

t26 011010 3,896005621 3,911179089 3,921030796

t22 010110 3,864817845 3,881104557 3,90548812

...

t24 011000 0 0,001340858 0,011173819

6.2 Testing of Selected Totalistic Rules and Analysis of Their
Cryptographical Quality

Entropy test was used for examining all of TCA with r = 1, 2, 3, and 4. During
these test large set of TCA rules was reduced. The selected sets of TCA rules
contain {t9, t5, t10 and t6}, {t21, t42, t25, t38, t30, t51, t33, t10, t43, t14, t35,
t41 and t26}, {t60, t204, t51, t42, t171, t213, t43, t84, t154, t212,t166, t203,
t102, t153, t44 and t28}, and also {t614, t409, t340, t903, t852, t683, t542,
t120, t171, t481, t853, t170, t682, t819, t715, t342, t308, t229, t211, t597, t106,
t341, t343, t85, t204, t854, t84, t665, t178, t596, t679, t105 and t820}, for radius
of neighbourhood r = 1, 2, 3 and 4 respectively. Selected rules are characterized
by the best entropy values from all rules in examined set. These selected rules
were examined in further stages of analysis of its the usefulness for application
as the TCA based PRNG.

Next stage of examining totalistic rules was testing selected rules with the
use of NIST SP 800-22rev1a - Statistical Test Suite for the Validation of Random
Number Generators and Pseudo Random Number Generators for Cryptographic
Applications [11]. Each TCA rule from selected sets was examined by each of 15
tests from NIST SP 800-22rev1a. These tests require the length of single sequence
equal to 106 bits. Thus a number of examined such bit sequences generated by
CA with selected totalistic rules was equal to 100. The parameters of some tests
were defaulted, i.e., blocks length for the test: 2. Frequency Test within a Block

Pseudorandom Number Generator Based on Totalistic Cellular Automaton 367

Table 3. Comparison of NIST SP 800-22 tests results for the best selected totalistic
CA rules. Values are given as percentage.

Test Rule
t170

Rule
t171

Rule
t340

Rule
t683

Rule
t852

Rule
t853

1. Frequency (Monobit) Test 5% 99% 2% 8% 100% 1%

2. Frequency Test within a Block 100% 100% 97% 99% 79% 90%

3. Runs Test 4% 0% 0% 4% 0% 0%

4. Test for the Longest Run of Ones in
a Block

99% 98% 98% 100% 96% 96%

5. Binary Matrix Rank Test 99% 98% 100% 96% 99% 98%

6. Discrete Fourier Transform
(Spectral) Test

100% 99% 98% 98% 99% 100%

7. Non-overlapping Template
Matching Test

98% 96% 97% 99% 94% 97%

8. Overlapping Template Matching
Test

97% 97% 97% 99% 72% 69%

9. Maurer’s “Universal Statistical”
Test

99% 100% 100% 98% 99% 98%

10. Linear Complexity Test 99% 98% 98% 99% 98% 100%

11. Serial Test 98% 98% 100% 99% 99% 99%

12. Approximate Entropy Test 93% 58% 92% 98% 60% 86%

13. Cumulative Sums (Cusum) Test 6% 99% 4% 10% 100% 2%

14. Random Excursions Test 100% 99% 94% 100% 98% 95%

15. Random Excursions Variant Test 98% 99% 100% 99% 99% 97%

was equal to 128, 7. Non-overlapping Template Matching Test was equal to 9, 8.
Overlapping Template Matching Test was equal 9, 10. Linear Complexity Test
was equal to 500, 11. Serial Test was equal to 16 and 12. Approximate Entropy
Test was equal to 10.

Conducted experiments lead to the strict selection of TCA rules. From quite
a broad set of rules selected by the entropy test, after analysis with the use of
NIST SP 800-22 tests, only six 1D TCA rules with r = 4 passed the tests quite
good and much better than other selected rules (see, Table 3). In Table 3 we can
see detailed information about the pass rate of these rules for each performed
test. The problem with passing occurred only in Test number 3 and Runs Test.
Other tests were passed almost in 100% (mostly in 98–99%). The average tests
pass rate for rule t170 is equal to 80%, for rule t171 89%, for rule t340 78%, for
rule t683 80%, for rule t852 86% and for rule t853 75%. So, we can see that each
of these six rules is characterized by similar average pass rate, but for rule t171
it is higher than for others (equal to 89%). Some other rules are characterized
by much lower pass rate (lower than 70%), while the most extensive collection
of examined rules has pass rate lower than 50% or near to 0%.

368 M. Szaban

After examining the selected rules with the use of NIST SP 800-22rev1a,
each TCA rule from sets selected by Entropy tests was examined by each of
19 Diehard tests and Marsaglia statistical tests for measuring the quality of a
random number generator [9]. The one assumptions, recommended for these tests
was the sequence’s lengths being not shorter than 8 ∗ 107 bits. Each parameter
of the tests had the default value.

From quite a broad set of rules selected by the entropy test, after analysis
with the use of Diehard tests and selection with the use of NIST SP 800-22rev1a
tests, only 6 1D TCA rules with r = 4 were selected. These selected rules passed
the tests quite good, and what is more, definitely better than other rules (see,
Table 4). Table 4 presents in details capacity for passing Diehard tests in partic-
ular K-S tests for these rules for each test. All presented rules are characterized
by similar capacity for passing the tests, however the calculated p-values do
accurately determine its capacity.

Table 4. Comparison of Diehard tests for the best selected totalistic CA rules. A
number of p-values calculated for each test and capacity for passing K-S tests for
presented rules, where: n-d means ‘no data’ (Diehard did not calculate K-S p-value)
and

√
w mean ‘weak passing.’

Test Number of
p-values

K-S Test

Rule
t170

Rule
t171

Rule
t340

Rule
t683

Rule
t852

Rule
t853

1. Birthday Spacings Test 9
√ √ √ √ √ √

2. Overlapping 5-permutation 2 n-d n-d n-d n-d n-d n-d

3. Binary Rank Test for 31 × 31
Matrices

1 n-d n-d n-d n-d n-d n-d

4. Binary Rank Test for 32 × 32
Matrices

1 n-d n-d n-d n-d n-d n-d

5. Binary Rank Test for 6 × 8
Matrices

25
√ √ √

w
√ √

w
√

6. Monkey Tests 20-bit (Bitstream
Test)

20 n-d n-d n-d n-d n-d n-d

7. Monkey Test OPSO 23 n-d n-d n-d n-d n-d n-d

8. Test OQSO 28 n-d n-d n-d n-d n-d n-d

9. Test DNA 31 n-d n-d n-d n-d n-d n-d

10. Count 1’s in Stream of Bytes
Test

2 n-d n-d n-d n-d n-d n-d

11. Count 1’s in Specific Bytes Test 25 n-d n-d n-d n-d n-d n-d

12. Parking Lot Test 10
√ √ √ √ √ √

13. Minimum Distance Test 20
√ √ √ √ √ √

14. 3D spheres Test 20
√ √ √ √ √ √

15. Sqeeze Test 1
√ √

w
√ √ √ √

16. Overlapping Sums Test 1
√ √ √ √ √ √

17. Runs Test 4 n-d n-d n-d n-d n-d n-d

18. Craps Test 5 n-d n-d n-d n-d n-d n-d

Pseudorandom Number Generator Based on Totalistic Cellular Automaton 369

Conducted studies show that selected set of totalistic rules {t170, t171, t340,
t683, t852 and t853} could be applied in cellular automaton for constructing
PRNG based on TCA. CA with these rules generates bit sequences, which passed
NIST SP 800-22rev1a - Statistical Test Suite for the Validation of Random
Number Generators and Pseudo Random Number Generators for Cryptographic
Applications and also Diehard Marsaglia set of tests for measuring the quality
of a random number generator. TCA with these rules could be indeed named
Pseudo Random Number Generator characterized by good cryptographic quality.

7 Conclusions an Future Works

In this paper was presented a problem of generation of a high cryptographic
quality pseudorandom bit sequences, useful in cryptography as cryptographic
keys. The pseudorandom number generator based on one-dimensional totalis-
tic cellular automaton was proposed to fulfil this requirement. The quality of
pseudorandom bit sequences generated by TCA-based pseudorandom number
generator depends on applied totalistic rules assigned to CA cells. In this paper
the one-dimensional totalistic rules with neighborhood radius equal to 1, 2, 3
and 4 were analyzed.

To select appropriate TCA rules, different statistical tests were performed.
The first selection was conducted with the use of Entropy test, which reduced
the broad set of TCA rules to a smaller subset. This subset was further exam-
ined with the use of two sets of tests: NIST SP 800-22rev1a and Diehard
set of Marsaglia tests. As a result was obtained set of six totalistic rules
{t170, t171, t340, t683, t852 and t853} with neighborhood radius equal to 4, other
considered rules failed the tests. Applied sets of tests determined TCA with
selected rules as a generator of pseudorandom numbers (PRNG based on TCA)
and confirmed the quite good quality of such generators.

In the future work is planned analysis of one-dimensional nonuniform TCA
with neighborhood radius equal to 1, 2, 3 and 4. The n-element sets of totalistic
rules, which applied in CA probably could be a good quality PRNG based on
TCA (better than in the case of uniform TCA), will be examined. Due to the
huge space of such subsets of rules, probably will be necessary to use for selection
some Nature inspired algorithm.

References

1. Formenti, E., Imai, K., Martin, B., Yunès, J.-B.: Advances on Random sequence
generation by uniform cellular automata. Computing with New Resources - Essays
Dedicated to J. Gruska on the Occasion of His 80th Birthday, pp. 56–70 (2014)

2. Guan, P.: Cellular automaton public-key cryptosystem. Complex Syst. 1, 51–56
(1987)

3. Habutsu, T., Nishio, Y., Sasase, I., Mori, S.: A secret key cryptosystem by iterating
a chaotic map. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp.
127–140. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6 11

https://doi.org/10.1007/3-540-46416-6_11

370 M. Szaban

4. Hortensius, R.D., McLeod, R.D., Card, H.C.: Parallel random number generation
for VLSI systems using cellular automata. IEEE Trans. Comput. 38, 1466–1473
(1989)

5. Hosseini, S.M., Karimi, H., Jahan, M.V.: Generating pseudo-random numbers by
combining two systems with complex behaviors. J. Inform. Secur. Appl. 19(2),
149–162 (2014)

6. Kari, J.: Cryptosystems based on reversible cellular automata (1992)
7. Leporati, A., Mariot, L.: Cryptographic properties of bipermutive cellular

automata rules. J. Cell. Automata 9(5–6), 437–475 (2014)
8. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.

CRC Press, Boca Raton (1996)
9. Marsaglia, G.: The Marsaglia Random Number CDROM including the Diehard

Battery of Tests of Randomness, Florida State University (1995)
10. Nandi, S., Kar, B.K., Chaudhuri, P.P.: Theory and applications of cellular

automata in cryptography. IEEE Trans. Comput. 43, 1346–1357 (1994)
11. National Institute of Standards and Technology (NIST), Special Publication 800–

22 (2010), A Statistical Test Suite for Random and Pseudorandom Number Gener-
ators for Cryptographic Applications. http://csrc.nist.gov/publications/nistpubs/
800-22-rev1a/SP800-22rev1a.pdf

12. Schneier, B.: Applied Cryptography. Wiley, New York (1996)
13. Seredynski, F., Bouvry, P., Zomaya, A.: Cellular automata computation and secret

key cryptography. Parallel Comput. 30, 753–766 (2004)
14. Sipper, M., Tomassini, M.: Generating parallel random number generators by cel-

lular programming. Int. J. Mod. Phys. C 7(2), 181–190 (1996)
15. Szaban, M., Seredynski, F.: Designing conflict free cellular automata-based PRNG.

J. Cell. Automata 13(3), 229–246 (2018)
16. Tomassini, M., Perrenoud, M.: Stream cyphers with one- and two-dimensional

cellular automata. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton,
E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 722–731.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3 71

17. Sienkiewicz, M.: Project, implementation and analysis of pseudorandom number
generator based on one dimensional totalistic cellular automata. Master thesis
(2017). (in Polish)

18. Tomassini, M., Sipper, M.: On the generation of high-quality random numbers
by two-dimensional cellular automata. IEEE Trans. Comput. 49(10), 1140–1151
(2000)

19. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–
644 (1983)

20. Wolfram, S.: Cryptography with cellular automata. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 429–432. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 32

21. Wolfram, S.: A New Kind of Science. Wolfram Media (2002)

http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
https://doi.org/10.1007/3-540-45356-3_71
https://doi.org/10.1007/3-540-39799-X_32
https://doi.org/10.1007/3-540-39799-X_32

Distributed Algorithms

An Adaptive Bully Algorithm for Leader
Elections in Distributed Systems

Monir Abdullah1,2(B), Ibrahim Al-Kohali2, and Mohamed Othman3,4(B)

1 Computer Science Department, University of Bisha, Bisha, Saudi Arabia
mkaid@ub.edu.sa

2 Information Technology Department, Thamar University, Dhamar, Yemen
legend22013@hotmail.com

3 Laboratory of Computational Science and Mathematical Physics,
Institute for Mathematical Research, Universiti Putra Malaysia,

UPM, 43400 Serdang, Malaysia
4 Department of Communication Technology and Network,
Universiti Putra Malaysia, UPM, 43400 Serdang, Malaysia

mothman@upm.edu.my, mothman@ieee.org

Abstract. Leader election is a classical problem in distributed system
applications. There are many leader election algorithms, but we focus
here on Bully Algorithm (BA). The main drawback of BA algorithm
is the high number of messages passing. In BA algorithm, the message
passing has order O (n2) that increases heavy traffic on the network. In
this paper, an Adaptive BA (ABA) is proposed to reduce the number of
messages and make the leader election operation more flexible and safer.
The proposed algorithm is based on the Highest Process Identification
(HPI) and the Next HPI (NHPI) to facilitate the leader election oper-
ation. Moreover, the repetition of the leader election is stopped when
the candidate coordinator fails. Our analytical equations show that the
ABA algorithm is more efficient rather than BA algorithm, in both, the
number of message passing and the latency, and the message passing
complexity decreased to O(n).

Keywords: Bully algorithm · Election system · Message passing

1 Introduction

Leader election is considered as an important problem, classical and fundamental
problem which happens in distributed systems [1]. Leader election is to select one
process or node in the system to become the new coordinator after the previous
coordinator fail. The purpose of the leader election is to complete the same job
as the ex-coordinator and to avoid any delay in tasks execution. Failures happen
because of the occurrence of failures in the software, or hardware or maybe main-
tenance. Leader election operation occurred when there was no response from
the coordinator, thus we were encouraged to start leader election. There are sev-
eral algorithms had been introduced for electing coordinator process that based
c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 373–384, 2019.
https://doi.org/10.1007/978-3-030-25636-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_29&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_29

374 M. Abdullah et al.

on two basic algorithms, i.e. BA algorithm [2] and Token Ring algorithm [3]. In
the coordinator election, our objective is to select a coordinator process among
various processes that reside in a distributed environment. In this research, we
are specifically focusing on BA algorithm. BA algorithm is an important algo-
rithm used in leader election operation which is considered more popular [4].
Not only this, but it is recently used and implemented in Big Data and NoSQL
[5] and IoT [6]. There is a plethora of research on BA algorithm and that helped
in renewing related studies in this study [2,4,7,9–14]. The main drawback of BA
algorithm is the high number of message passing. In this method, the message
passing has order O (n2) that increases heavy traffic on the network. Our pro-
posed adaptive algorithm successfully reduced the number of message passing to
O(n). The rest of the paper is organized as follows. Section 2 reviews the related
works. In Sect. 3, the original BA algorithm is presented. Section 4 presents the
ABA algorithm. The experimental results and discussion will be presented in
Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related Works

Several coordinator election algorithms have been proposed over the years some
of the main election algorithms are BA algorithm, Ring algorithm. Garcia-Molina
[2] proposed a BA algorithm in which they introduce an election mechanism for
the selection of the coordinator. While undertaking this procedure the number
of messages increased, i.e. the identification of the failed node, then starting an
election procedure and the process that having the highest identification process
number will be selected as a coordinator. After selecting a coordinator we make
an announcement of the selection of new coordinator among various processes
in the network. This whole procedure requires a number of messages is to be
exchanged which increases the traffic in the network. The researchers discuss the
shortcoming of synchronous BA algorithm and propose a modified version. They
maintain that their modified algorithm is more efficient than the traditional BA
algorithm because it decreases the number of passing messages, and it has fewer
stages [9]. Some researchers added an additional feature to the original algorithm
[10]. This method uses an assistant as a leader when ex-leader fails. Therefore,
there is no need to stop the execution of tasks when a leader crashes. The
performance increases when the numbers of node increase. The modified bully
election proposes a linear time algorithm for leader election using heap structure
that deals with the leader election algorithm for a set of connected processes like
a tree network [11]. The researchers discuss the shortcomings of three algorithms
of the original and modified BA algorithms. They propose the same traditional
BA algorithm but using a new concept called election commission, with the
addition of Failure Detector (FD) and a Helper processes (H) to have a unique
election with the Election Commission (EC). This method is more efficient and
decreases the number of passing messages [12]. A new method is based on electing
a leader and an alternative is proposed [16]. In this method, if the leader fails, the
alternative takes care of the leader’s responsibilities. This way is more effective,

An Adaptive Bully Algorithm for Leader Elections in Distributed Systems 375

messages will be less complexity in the fewer stages. The researchers proposed
a new method that uses fault tolerant mechanisms to improve the BA and Ring
algorithms [13]. They present a new algorithm called a heap tree algorithm, based
on the max-heap data structure. Their results show a fewer number of passing
messages. Furthermore, a new algorithm is proposed in which a new leader is
elected immediately after the leader fails. It depends on a process status table
which contains the number of each process and its status in the current system
[14]. The researchers present a safety strengthened leader election protocol with
an unreliable failure detector. By analysis, it appears as more efficient in safety
and liveness properties in asynchronous distributed systems [15]. A new method
which uses a flag that works to reduce the number of passing messages when a
failure discovered by more than one process is presented [8]. The results show a
relative success in decreasing the number of passing messages and the number of
steps. In [7], the researchers proposed a new method reduced passing messages
between the coordinator and processes. This mean, when a process starts sending
a request to the coordinator, it stores them in a list. Every period the coordinator
sends messages to other processes that it has the higher id number. But when the
coordinator failed, we will compare the processes between id number of process
and id number which sent by the coordinator [7]. The researchers in [17] proposed
a new method that uses a proxy server for leader election by performing an
analytical simulation. Their results show a decreasing in the number of passing
messages and waiting time. A comparative study discussed the concept of four
election algorithms, BA [2], Modified Bully Election [9], Improved Bully Election
[20], Ring Election [18]. In [19], a slight modification in the classic BA algorithm
is proposed which reduces the number of messages that are needed to elect the
leader and also proposes new methods of how to react when the dead leader
recovers again. The result of the modified BA algorithm is more efficient than
the existing leader election algorithms. The researchers in [4] put forward a
new method which depends on the distance. They assumed that there exist a
node is called centroid. If the distance between a centroid and a node is short,
the node has the highest priority and if the distance between the centroid and
the node is long, the node has the lowest priority. Recently, BA algorithm is
implemented on a specific and low-performance Internet of Thing (IoT) devices
[6]. The implementation of the BA algorithm for leader election is achieved in a
two-stage process.

3 Bully Algorithm

Based on message generation in the system, a comparative analysis of [2] and
our proposed algorithm would be appropriate to determine which algorithm
performs better than the others. BA algorithm requires n − 1 messages to elect
a leader node in the best case, where n is the number of nodes. The best case
happens when the node having the next highest id number detects the failure of
the leader node and hence announces an election [4].

In the worst case, it requires O(n2) messages to elect a leader node. The
worst case happens when the lowest id node of the system detects the failure

376 M. Abdullah et al.

of the leader node. It will send election messages to n − 1 nodes having higher
id than itself. Each of the nodes eventually initiates a separate election one
by one. In this algorithm, a previously failed node which was not a leader node
initiates an election after recovery. But if it was a former leader, it just broadcasts
coordinator messages to other nodes to announce itself as the new leader. Hence,
it requires O(n2) messages to elect a leader node in the worst case and n − 1
messages in the best case. The BA algorithm steps are as follows:

1. The process (Pd) that discovers a failure sends a message to all processes in
the system. The message contains the id of a process (Pd).

2. When the process (Pi) receives the message, it starts comparing the received
id with its id.

3. If the id of process (Pd) is lower than the id of process (Pi), Then process
(Pi) returns a message: “Ok” to process (Pd).

4. the process (Pd) continues steps 1, 2, 3 even coordinator selected.
5. If process (Pd) does not receive a message: “Ok” from the other processes,

and then it will be chosen as a coordinator (Fig. 1).

Fig. 1. Bully leader election algorithm.

The drawback of BA algorithm is that if the process that discovers the failure
has a lower Id, this leads to the increase of the number of messages in the election
operation. In this method, the message passing has order O (n2) that increases
heavy traffic on the network.

4 Adaptive Bully Algorithm

In this section, our proposed ABA algorithm is presented. Firstly, we will explain
the four important variables:

An Adaptive Bully Algorithm for Leader Elections in Distributed Systems 377

1. The Election Variable (EV): is a variable that stores the node id of the
coordinator.

2. Node ID: is a variable that stores the id number of the process itself. It
cannot be modified.

3. The Highest Process Identification (HPI) and the Next HPI (NHPI): are
variables which store the highest two numbers during election operation.

To implement our algorithm, we adapt a new structure for every node in the
system which contains the above four variables as shown in Fig. 2:

Fig. 2. ABA algorithm node structure.

4.1 Adaptive Bully Election Algorithm

When a process (Pi) requests any task from the coordinator and it does not
receive any response within time (T1), this signifies the coordinator fails. This
action is called: failure check. Failure Check “is a procedure that is immediately
executed whenever any process makes a request to the coordinator. This proce-
dure will detect a failure if it occurs”. The failure check is the first step in any
election operation. Afterwards, the election operation starts. Now, process Pd
sends “Start Election” message to all the processes in the system: The message
contains the id of the process that discovered the failure. Time T2 starts when
this message is sent. During this time, the process Pd receives messages from
the other processes. We have two cases:

1. If a process Pi does not receive a response within the specified time, it sends
a message to all the processes in the system: “I’m Coordinator”.

2. If a process Pi receives a response within the specified time, then the main
operation, which stores the HPI and NHPI starts.

When time (T2) finishes, process Pi sends a message to the winning process
containing the highest NID: (Highest Value) and: “Tell everyone you are the
coordinator”. Time (T3) begins when process (P) receives the message. The
winning process returns a message: “Ok” to process (P). If process (Pi) does not
receive the message: “Ok” within time (T3), this means the process fails. Hence,
process (P) sends to the second winning process, which has the second highest
ID, a message contains NHPI and: “Tell everyone you are the coordinator”.
Time (T4) begins when process (Pi) receives the message: “Ok”. If process (Pi)
does not receive the message “Ok” within time (T4), this means the process
fails. The process (Pi) sends a message to all the processes in the system: “I’m
Coordinator” as shown in Fig. 3.

378 M. Abdullah et al.

Fig. 3. Leader election operation in case of a failure.

When a process receives the message: “I’m the Coordinator”, this signifies
the end of the leader election operation, and the receiving process updates the
value of EV which is attached to the message received. The ABA algorithm is
shown in Fig. 4.

Fig. 4. Adaptive bully election algorithm.

Before ending the election, there are important points that should be tackled.
These points relate to what happens to the other processes when they receive the

An Adaptive Bully Algorithm for Leader Elections in Distributed Systems 379

messages: “Start Election” and “I’m the Coordinator”. When a process receives
the message: “Start Election”, it starts comparing the EV and the received ID
(NID):

1. If Node ID is 0 or less than the EV , then do not return a message.
2. If Node ID is higher than the EV , then update the value of the EV and

return a message to the sender which contains the value of (NID).

4.2 Notations and Definitions

Before discussing the cost model and its related equations, it is necessary to
clarify the notations and the definitions used throughout this paper as shown in
Table 1.

Table 1. Notations and definitions

Notation Definition

n number of processes

Pd process that discover the failure

Pw wining process

id process identification

EV election variable

HPI highest identification

NHPI next highest identification

NMP number of message passing

PHPI the process that has the highest priority identification

PNHPI process that has the next highest priority identification

l constant latency

L latency cost

4.3 Cost Model

HPI and NHPI Variables. For the best case, the number of messages passing
that we need to complete the election operation in our proposed algorithm is
calculated by:

NMP = (n − 1) ∗ 2 (1)

where n is the number of processes that discovers the failure. Where the process
that discovers the failure has a higher (id) number.

For the worse case, when the process that discovers failure has not the highest
(id) number and there is more than one process discover the failure. Here, we
will have two equations as follows:

380 M. Abdullah et al.

When a process Pd discovers a failure, then the leader election starts:

1. Process Pd sends its id to all processes to compare it with their ids. If Pd >
Pq, do not send your id. It needs n − 1 operations.

2. If Pd < Pq, then return a message of your id. It needs n − Pd.
3. When the process Pd receives the messages, the following steps take place:

• Compare the received ids.
• Store the highest two ids in two variables (HPI, NHPI).

4. Process Pd sends a message to the winning process P − w, which has the
highest id, telling it that it is the coordinator.

5. Process Pw sends a message: “Ok” back to process Pq. It needs only 2 oper-
ations.

6. The winning process Pw sends to everyone: “I’m Coordinator”.

Based on steps (1–6), NMP will be calculated by Eq. (2):

NMP = (n − 1) + [n − Pd] + 2 + (n − 1) (2)

Equation (2) used when the election starts and there is no problem in the
candidate coordinator.

However, when there is no response from Pd within (T2):

1. Process PNHPI sends a message to process Pd that has the next highest
priority id (NHPI) telling it that it is the coordinator now.

2. Process Pq sends a message: “Ok” back to process PNHPI .
3. The winning process PNHPI sends to everyone: “I’m the Coordinator”. It

needs n − 1 operations.

Based on (1–3), Eq. (3) will be used:

NMP = 2 + (n − 1) (3)

Latency. Another parameter used to compare our method is the latency
(L). Latency is the time of sending a message from a source to the destination.
However, the latency calculation in distributed system is difficult because of the
different distances between devices. For this we assume the latency as stated in
[21]. Equation (4) will be used to calculate the latency when using our algorithm:

L = [NMP ∗ l) (4)

where NMP is the number of message passing that calculated by Eqs. (1), (2)
and (3) and l is a constant number (200µs [4]).

The adaptive BA algorithm decreases the number of massages passing and
latency. Four variables (VE, NID, HPI, NHPI) successfully decreased message
passing complexity from O(n2) to O(n). We can say when two processes discover
failure, the election process is more flexible and safer.

An Adaptive Bully Algorithm for Leader Elections in Distributed Systems 381

5 Experimental Results and Discussions

In order to compare the performance of our algorithm with the other algorithms,
we execute them in five test cases where the systems comprised 5, 10, 15, 20, and
25 nodes, respectively. We simulate our proposed algorithm using Java language
on NetBeans editor. We used mesh topology to evaluate the cost model. Firstly,
we will use Eqs. (1) and (2) mentioned above. We use Eq. (1) when the number
of processes is equal to n. We assumed that the process n − 1 discovered the
failure, which means that there is no process higher than it. Secondly, we use
Eq. (2) when there are processes higher than the process that discovered the
failure. The number of messages and latency is presented in Table 2.

Table 2. Number of passing messages and latency of the ABA algorithm.

No. of processes Eqs. (1), (2) Eq. (3)

Latency (µs) Number of
messages

Latency Number of
messages

5 1600 8 1200 6

10 5200 26 2200 11

15 8200 41 3200 16

20 11200 56 4200 21

25 14200 71 5200 26

As shown in Table 2, we observed that Eq. (3) produces better results com-
pared with the results of Eqs. (1) and (2). In addition, when we compare our
ABA with the BA algorithm [2] and Modified BA algorithm [8], it produces
better results. The three algorithms are compared based on Messages passing
and the results are shown in Table 3.

Table 3. Number of messages of the three algorithms.

No. of processes BA MBA ABA

Eqs. (1), (2) Eq. (3)

5 8 13 8 6

10 69 28 26 11

15 209 43 41 16

20 424 58 56 21

25 804 73 71 26

As shown in Table 3, it can be said that our method is better than Bully
algorithm [2] and modified Bully algorithm [8] when there is no failure during
the algorithm execution. That is because the number of passing messages in our
method is less as clearly shown in Fig. 5.

382 M. Abdullah et al.

Fig. 5. Comparison between three algorithms.

As clearly shown in Table 3 and Fig. 5, it can be observed that our method
is better than original Bully algorithm [2] and modified Bully algorithm [8]
when repeating the leader election operation which occurs when the candidate
coordinator fails too.

Latency. Another parameter compared in our work is latency. As shown in
Tables 2 and 3, we created Table 4 and Fig. 6. Which contains the latency of the
three algorithms.

Table 4. Latency (µs) of the three algorithms.

No. of processes BA MBA ABA

Eqs. (1), (2) Eq. (3)

5 1600 2600 1600 1200

10 13800 5800 5200 2200

15 41800 8600 8200 3200

20 84800 11600 11200 4200

25 160800 14600 14200 5200

As shown in Table 4, it can be observed that our method has a higher speed
than the original Bully algorithm and modified Bully algorithm. When there is
no failure during the algorithm execution it is safer. Overall, our experimental
result shows that in the proposed algorithm, the number of messages and latency
are very less as compared to the previous algorithms.

An Adaptive Bully Algorithm for Leader Elections in Distributed Systems 383

Fig. 6. Latency (µs) of the three algorithms.

6 Conclusion

In this paper, we successfully proposed ABA algorithm. Our ABA is better and
more effective than BA algorithm and modified BA algorithm. It decreased the
numbers of passing messages. Moreover, our ABA algorithm is safe (reliable)
if failure for candidate coordinator happened. During the implementation of
the algorithm, if errors occur for candidate coordinator, our method leads to
stopping the repetition of algorithm implementation when failed in starting. In
addition, four variables (VE, NID, HPI, NHPI) successfully decreased message
passing complexity from O(n2) to O(n).

Acknowledgment. The authors would like to thank everyone who provided valuable
suggestions and support to improve the content of the paper. This research work is
partial financially supported by the Malaysian Ministry of Education under the Fun-
damental Research Grant Scheme (FRGS/1/2018/STG06/UPM/01/2).

References

1. Coulouris, G., Dollimore, J., Kindberg, T., Blair, G.: Distributed System Concept
and Design, 5th edn. Addison Wesley, USA (2011)

2. Garcia-Molina, H.: Elections in a Distributed Computing System. IEEE Trans.
Comput. 100(1), 48–59 (1982)

3. van Steen, M., Tanenbaum, A.S.: Distributed Systems. 3rd edn. CreateSpace Inde-
pendent Publishing Platform (2017)

4. Murshed, Md.G., Allen, A.R.: Enhanced bully algorithm for leader node election
in synchronous distributed systems. J. Comput. 1(1), 3–23 (2012)

384 M. Abdullah et al.

5. Distributed Algorithms in NOSQL Databases. https://highlyscalable.wordpress.
com/2012/09/18/distributed-algorithms-in-nosql-databases/

6. Méndez, M., Tinetti, F.G., Duran, A.M., Obon, D.A., Bartolome, N.G.: Distributed
algorithms on IoT devices: bully leader election. In: Proceeding of the International
Conference on Computational Science and Computational Intelligence (CSCI), pp.
1351–1355, December 2017

7. Chhabra, S., Tyagi, G., Mundra, A., Rakesh, N.: Location based coordinator elec-
tion algorithm in distributed environment. In: Proceedings of the International
Conference on Computer and Computational Sciences (ICCCS), Noida, pp. 183–
188 (2015)

8. Soundarabai, P.B., Sahai, R., Thriveni, J., Venugopal, K.R., Patnaik, L.M.:
Improved bully election algorithm for distributed systems. Int. J. Inform. Process.
7(4), 43–54 (2013)

9. Kordafshari, M.S., Gholipour, M., Mosakhani, M., Haghighat, A.T., Dehghan, M.:
Modified bully election algorithm in distributed systems. In: Proceedings of the
9th WSEAS International Conference on Computers, Greece, pp. 1–6 (2005)

10. Zargarnataj, M.: New election algorithm based on assistant in distributed sys-
tems. In: ACS International Conference on Computer Systems and Applications
(AICCSA), Amman, pp. 324–331 (2007)

11. Sepehri, M., Goodarzi, M.: Leader election algorithm using heap structure. In: 12th
WSEAS International Conference on Computers, Heraklion, pp. 668–672 (2008)

12. Rahman, M.M., Nahar, A.: Modified bully algorithm using election commission.
MASAUM J. Comput. (MJC) 1(3), 439–446 (2009)

13. EffatParvar, M.R., Yazdani, N., EffatParvar, M., Dadlani, A., Khonsari, A.:
Improved algorithms for leader election in distributed systems. In: Proceedings
of the 2nd International Conference on Computer Engineering and Technology,
Chengdu, China (2010)

14. Basu, S.: An efficient approach of election algorithm in distributed systems. Indian
J. Comput. Sci. Eng. (IJCSE) 2(1), 16–21 (2011)

15. Park, S.-H.: A stable election protocol based on an unreliable failure detector
in distributed systems. In: Proceedings of the 8th International Conference on
Information Technology: New Generations, pp. 979–984. IEEE Computer Society
(2011)

16. Kordafshari, M M.S., Gholipour, M., Rahmani, A.M., Jahanshahi, M.: A New
Approach for Election Algorithm in Distributed System, pp. 70–74 (2009)

17. Mishra, B., Singh, N., Singh, R.: Master-slave group based model for co-ordinator
selection, an improvement of bully algorithm. In: Proceedings of the International
Conference on Parallel, Distributed and Grid Computing, Solan, India, pp. 457–460
(2014)

18. Garg, D., Suman, N.: Study of assorted election algorithms in distributed operat-
ing system. In: Proceedings of the National Conference on Innovative Trends in
Computer Science Engineering, pp. 132–134 (2015)

19. Sathesh, B.M.: Optimized bully algorithm. Int. J. Comput. Appl. 121(18), 24–27
(2015)

20. Arghavani, A., Ahmadi, A.E., Haghighat, A.T.: Improved bully election algorithm
in distributed systems. In: Proceedings of the 5th International Conference on
Information Technology & Multimedia, pp. 14–16 (2011)

21. Fredrickson, G.N., Lynch, N.A.: Electing a leader in asynchronous ring. J. ACM
34(1), 98–115 (1987)

https://highlyscalable.wordpress.com/2012/09/18/distributed-algorithms-in-nosql-databases/
https://highlyscalable.wordpress.com/2012/09/18/distributed-algorithms-in-nosql-databases/

Affinity Replica Selection
in Distributed Systems

W. S. W. Awang1(&), M. M. Deris2, O. F. Rana3, M. Zarina1,
and A. N. M. Rose1

1 Faculty Informatics and Computing, University Sultan Zainal Abidin,
Besut Campus, Besut, Terengganu, Malaysia

{suryani,zarina,anm}@unisza.edu.my
2 Faculty of Computer Science and Information Technology,

Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia
mmustafa@uthm.edu.my

3 University of Cardiff, Cardiff, UK
ranaof@cardiff.ac.uk

Abstract. Replication is one of the key techniques used in distributed systems
to improve high data availability, data access performance and data reliability. To
optimize the maximum benefits from file replication, a systems that includes
replicas need a strategy for selecting and accessing suitable replicas. A replica
selection strategy determines the available replicas and chooses the most access
files. In most of these access frequency based solutions or popularity of files are
assuming that files are independent of each other. In contrast, distributed systems
such as peer-to-peer file sharing, and mobile database, files may be dependent or
correlated to one another. Thus, this paper focused on the combination of pop-
ularity and affinity files as the most important parameters in selecting replicas in
distributed environments. Herein, a replica selection is proposed focusing on
popular files and affinity files. The idea is to improve data availability in dis-
tributed data replica selection strategy. A P2P simulator, PeerSim, is used to
evaluate the performance of the dynamic replica selection strategy. The simu-
lation results provided a proof that the proposed affinity replica selection has
contributed towards a new dimension of replica selection strategy that incorpo-
rates the affinity and popularity of file replicas in distributed systems.

Keywords: Replica selection � Affinity files � Popularity files �
Data availability � Distributed systems � Replication strategy

1 Introduction

Data replication strategies have been widely employed in large-scale data intensive
application such as high energy particle physics, climate simulation, genomics,
molecular docking, and bioinformatics. The identical copies of data are generated and
stored at various distributed sites to improve data access performance and data avail-
ability. As the demand for data increases, the centralized replication strategies are liable
to a single point of failure and become a bottleneck when dealing with huge amount of
data trying to access the same data simultaneously [11, 14–16]. Moreover, if a single

© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 385–399, 2019.
https://doi.org/10.1007/978-3-030-25636-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_30&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_30&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_30&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_30

data file is only placed at a single server, in case of server crashes or does not respond,
this data file becomes unavailable. In contrast, if a replica of the data file is stored on
multiple servers, this additional server can provide the data file in case of a server or
network failure. Thus, the availability of data can be improved even in the event of
natural disasters like Tsunami or earthquakes. Since the similar data can be found at
multiple servers, availability of data is assured in case of servers’ failure. Additionally,
data replication can provide increased fault tolerance, improved scalability, reduced
bandwidth consumption and improved response time [12, 13].

When designing replication strategies one of the important parameters taken into
consideration is the popularity of a file or popular group of files [15–17]. A file is
determined by the most accessing files. Some files may be popular than others and data
access pattern may change over time. Most of the popularity files are assuming that
files are independent of each other. However, in distributed systems such as peer-to-
peer, files may be dependent or correlated to one another. Correlated or affine files refer
to the files that are accessed by the same transaction or more than one transaction
accessing the same files. For example, a client or a query accessing multiple queries
accesses the same data or a set of files accessed by one user is also likely to be accessed
together by other users. This set of files has common features that bind or stick them
together. Therefore, this paper focused on the notion of affinity as a binding feature in
selecting and accessing the best replicas to improve data availability in distributed
systems. An Affinity Replica Selection Mechanism (ARSM) is proposed to highlight
the importance of affinity relationship to improve file access performance and assist
replica selection decisions.

In this paper, two query scenarios were considered. The first query scenario refers
to Single Query-Single file case. Whilst the second scenario refers to Single Query-
Multi files case. The files in the distributed system were randomly broadcasted. The
objective of the proposed model is to minimize access latency and optimize availability
by allowing files to be replicated based on their high popularity and strong affinity
degree. The rest of this paper is organized as follows: Sect. 2 discusses previous works
on replication strategies. Section 3, the proposed ARSM model is presented. Next, we
presented the simulation results in Sect. 4. Finally, Sect. 5 concludes our work.

2 Related Work

One of the practical techniques to enhance the efficiency of data sharing in distributed
systems is data replication. In addition, load balancing, fault tolerance, reliability, and
the quality of service can be improved with the help of data replication strategy [5–7].
When the data are placed at a single data server, that server can be a bottleneck if too
many requests need to be served at the same time. Consequently, the whole system
slows down. The major features of replication algorithms for distributed systems are
the criteria for the selection of suitable objects for replication and selection of suitable
sites for hosting new replica. These two important aspects have a direct impact on the
performance of the system. If a node decides to replicate all the objects present in its
shared directory to other nodes, it will increase the overhead in the network. The replica
should be maintained in sites which are close to the source nodes to increase the search

386 W. S. W. Awang et al.

performance. The site selection policy of a replication technique decides where the
replica should be stored. The number of sites may vary based on the replication scheme
being employed. For example, if popular files are not replicated appropriately, over-
whelming requests from peers can cause network congestions and slow download
speed [14–16].

In addition, a system that includes replicas also requires a mechanism for selecting
the right files based on the data access patterns. Choosing and accessing appropriate
replicas are very important to optimize the use of distributed resources. Replica
selection criteria might include access time as well as the source node that initiate the
request, and the number of accesses. Slow network access hinders the efficiency of data
transfer regardless of client and server implementation. In the real world, some files
may be popular than others and data access pattern may change over time. The pop-
ularity of a file is determined by its recent access rate. Therefore, any dynamic repli-
cation strategies must keep track of file access histories to decide on when, what and
where to replicate. The dynamic replication algorithm proposed by [8–12], [20]
determines the popularity of a file by analyzing data access history.

Most of the related works [1–4] have concentrated on replication of a popular file or
popular groups of files. However, not enough attention was paid to affinity or depen-
dency among the files. An Affinity Replica Selection Mechanism (ARSM) is proposed
in this paper as a new replica selection strategy that combines the popularity and
affinity files. ARSM incorporates the popularity and the affinity among files; popularity
and affinity are used to replicate a group of files that shows high access frequency and a
strong affinity degree.

The notion of affinity in general refers to the close similarity, likeness, relationship
or correspondence. However, in this paper, we defined an affinity as the correlated files,
and dependency between two or more files. Inspired by the ancient social systems and
human behavior, Larbani and Chen [19] explore the concept of affinity further in fuzzy
and rough set framework, data mining and other applications. An affinity also means a
meeting between friends with the same hobbies, various relationships with people such
as friend to friend, parent to offspring, employee to boss and so on. These are some
examples in relationship and social behavior of an affinity [19].

Depending on how affinity is defined, it can be used to examine, describe and
predict the behavior of access pattern or data similarity in placing replica in distributed
organizations. Different measurement systems lead to various affinity degrees and more
importantly may lead to the dynamic decision or strategy in replica selection. The
affinity replica location policy algorithm proposed by [18] replicates data near the user
nodes where the file is accessed most. A file is copied and placed near to the user that
generates access traffic the most. The algorithm is similar to the cascading replica
placement algorithm discussed in [16].

3 Affinity Replica Selection Mechanism

This section presents a model for replica selection called Affinity Replica Selection
Mechanism (ARSM). The ARSM selects popular files and affinity files for replication
and calculates sufficient number of copies on the source node. The objective of ARSM

Affinity Replica Selection in Distributed Systems 387

is to improve data access performance through minimizing the access time and to
ensure data availability in distributed systems.

In this paper, the access time is minimized by replicating the popular and affinity
files to the requesting node(s). Likewise, to ensure data availability in the distributed
systems, sufficient number of replicas is maintained in the system. The popular and
affinity files were the two dominant factors proposed in ARSM. The access frequency
determines the popularity of the access files whilst the affinity degree determines the
binding feature between two nodes.

3.1 The Affinity

Data affinity in this paper is defined as the similarity between two or more correlated
data. The affinity set is a set of any data that creates an affinity between files. Thus, the
affinity between sets A and B is the set consisting of the intersection of elements
between A and B plus the requested file in the destination node, and is not a null set.
The requested file in the destination node is defined as fqidðBÞ where f is a file and qid
refers to the identity of a queried or requested file.

Definition 1: LetA ¼ fa1; fa2; . . . fanf g and B ¼ fb1; fb2; . . . fbnf g; fjk is a requested file
from the source node j to destination node k. The sets A and B are said to have affinity
denoted by affAB:

aff AAB ¼ fx j x 2 ðA\BþffqidðBÞgÞ 6¼ /g ð3:1Þ

where fqidðBÞ is the requested file in B.

Definition 2: The affinity degree between A and B with respect to A, aff AAB, is
defined as

aff AAB ¼ affABj j þ fqidðBÞ
�� ��

Aj j þ fqidðBÞ
�� �� ð3:2Þ

where the symbol affABj j is the cardinality of affinity set A and B over A including
fqidðBÞ which refers to the requested file in node B.

The value of aff AAB as shown in Eq. 3.2, expressing the degree of affinity between
the dataset A and the affinity sets AB with respect to A.

The affinity function is defined as the cardinality of the affinity dataset between
A and B over the cardinality A. Likewise the degree of affinity between B and A with
respect to B is defined as the cardinality of the affinity set A and B over B.

Example 1 below shows how the proposed affinity degree is calculated.

Example 1: LetA ¼ ff11; f12; f13; f14; f15g and B ¼ ff21; f22; f23; f13; f14; f15; f26; f27; f28g
and the requested fileId is f28. Therefore the affinity degree over A

¼ ff13; f14; f15gj j þ f28j j
ff11; f12; f13; f14; f15gj j þ f28j j

¼ 4=6

¼ 0:67 ðmoderateÞ

388 W. S. W. Awang et al.

Table 1 shows a categorization of affinity correlation adapted from Dancey and
Reidy [20]. The correlation of an affinity degree indicates that not every correlation
deserves to investigate and some filtering mechanisms can be adopted to remove those
files with weak correlation. In general, the higher the absolute value of affinity cor-
relation coefficient, the stronger the relationship between the two nodes in the P2P
network. For example, in Table 1, if the value of the aff AAB is equal to 0.49 or below, it
indicates that the degree of the affinity files is weak and thus can be ignored. In this
case, the files has weak affinity and will not be replicated.

Likewise, if the value of the affinity degree is either moderate, strong or very
strong, then the file will be replicated. The explanation is detailed in the next paragraph.
The representations of the affinity files are as follows Table 2:

If the value of is near to 1, we can say that the affinity set between files is very
strong whilst if the value of aff AAB is near to zero, we can say that the degree of affinity
set between files is very weak or zero affinity. Through the affinity indicators, we can
predict on how strong or high and how weak or low the affinity set between files in the

Table 1. The affinity degree indicator (Adapted from Dancey and Reidy [20])

Value of the aff AAB The degree of the affinity files

0.9 � x < 1.0 Very strong
0.7 � x < 0.9 Strong
0.5 � x < 0.7 Moderate
0.1 � x < 0.5 Weak
<0.1 Zero

Table 2. Example of affinity degree

A B fqid ðA\BÞþ fqid aff AAB ¼ affABj j þ fqidðBÞ
Aj j þ fqidðBÞ

Affinity
indicator

{1, 2, 3, 4} {1, 2, 3, 4, 5,
6}

6 5 5/5 = 1.0 Very
strong

{1, 2, 3, 9} {1, 2, 3, 4, 5,
6, 7, 8}

5 4 4/5 = 0.8 Strong

{1, 2, 3, 4, 7, 9, 10} {l, 2, 3, 4, 5} 5 5 5/8 = 0.61 Moderate
{1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12}

{1, 13} 13 2 2/13 = 0.15 Weak

#500 #1000 #20 300 300/520 = 0.58 Moderate
#1000 #5000 #50 300 300/1050 = 0.29 Weak

is the number of files

Affinity Replica Selection in Distributed Systems 389

nodes. This means that if the strength of similarity files is high, and if the average
frequency of the access number of the file requested is also high, ARSM will choose
the file to be replicated. This answers the issue of which file to replicate in replica
selection problems. Despite this, if the degree of the affinity set is weak or zero, ARSM
will NOT consider the file to be replicated regardless of how high the value of the file
access frequency. The decision of replica selection depends on the affinity degree and
the average number of access frequency. In the next section, the access frequency as
another criteria for replica selection is discussed.

3.2 Access Frequency

ARPM only consider affinity and popular files to replicate (deciding which file to
replicate). An access frequency, AF is calculated to represent the importance of access
histories in different cycle number. Assume Nt is the cycle number passed, F is the set
of files that have been requested and atf indicates the number of accessed files in each
cycle. Then AF is adapted from the calculation of AF in (Chang and Chang [17]):

Access Frequency ¼ AFNtðf Þ ¼
X

atf � 2� Nt�tð Þ
� �

; 8f 2 Ft ¼ 1 ð3:3Þ

For example, if an affinity file has been accessed 7 times and 10 times in the first
cycle and second cycle, respectively, then AF (f) is (7 � 2−1) + (10 � 20). AF assigns
different weights to access files for a different cycle number. The highest or largest AF
is chosen as the popular files. Next we compare the average AF per cycle number of the
popular files. The average AF is calculated as:

AverageAccess Frequency ¼ AFaverage
Ni

ðf Þ ¼
X

AFNiðf Þ=Nc; 8f 2 F ð3:4Þ

NF ¼ Fj j is the number of different files that have been requested by any nodes.
The threshold value of access frequency is considered as the average of access fre-
quencies in the systems. If the access frequency is above or equal to the average access
frequency, then we categorize it as “high” or “popular”. Likewise, if the access fre-
quency is below than the average frequency, then we categorize it as “low” or “un-
popular”. Table 3 shows which file to replicate based on the two dominant factors
proposed in this paper.

The primary goal of the algorithm is to increase data access performance from the
perspective of the clients by dynamically creating replicas for “popular” files. In the
real world, some files will be more popular than others and data access patterns may
change over time, so any dynamic replication strategy must keep track of file access
histories to decide on when, what and where to replicate. The “popularity” of a file is
determined by its recent access rate by the clients. Identifying popular files is thus one
of the dominant factors of ARSM. In ARSM, popular data files are identified by
analyzing the file access histories.

390 W. S. W. Awang et al.

3.3 Replica Selection Decisions

This section focuses on the decisions in replica selection phase. In this section, the affinity
properties from Table 3 has been transformed into Table 4 in Boolean-valued data. In
Boolean-valued data, the dominant factor is holding either a value 0 or 1. In this Boolean
representation, the aim is to qualify the different importance of linguistic terms of vague
terms of affinity factors which include very strong, strong, moderate, weak and zero.

Definition 3: Let affinity and average access frequency be two dominant factors for
replica placement. The replica placement occurs when both dominant factors are equal
to 1 respectively.

The Boolean representation in Table 4 are used as indicators to decide whether to
replicate or not. The replica placement occurs when both dominant factors are equal to
1. Indeed, if the affinity degree is high and the access frequency exceeds the threshold
value of the average number of accesses, or if both values are equal to 1, then the
decision to replicate is made.

Table 3. Dominant factors which file to replicate

Affinity indicator #Average access frequency Replicate Not replicate

Very strong High 1
Low 0

Strong High 1
Low 0

Moderate High 1
Low 0

Weak High 0
Low 0

Zero High 0
Low 0

Note: 1 = Yes 0 = No

Table 4. Dominant factors which file to replicate in Boolean representation

Affinity indicator #Average access frequency Replicate Not replicate

1 1 1
0 0

1 1 1
0 0

1 1 1
0 0

0 1 0
0 0

0 1 0
0 0

Affinity Replica Selection in Distributed Systems 391

3.4 Access Frequency as Dominant Factor

This section describes two cases considered in this paper in selecting popular data files
and calculating the files affinity degree. Case-1: Single-Query to Single-File, Case-2:
Single-Query to Multiple. Based on these two queries, both dominant factors play an
important role in influencing the decision of replica placement. Table 5 shows the two
cases scenarios between the requestor/source node(s) and the query file(s). During
experimentation, the number of cycles and files are increased whilst the number of
nodes simulated is up to 10000 nodes.

3.4.1 Case 1: Single-Query to Single-File
In Table 5 during cycle1, a NodeId 39 requests for a FileId23. This is a case of a
Single-Query to Single-File request whereby only one client node is requesting for one
file in the systems during a period of time. This refers to the cycle number between
cycle0 to cycle20. This is the case of no replication.

Table 5. The single query to single file and single query to multiple files scenarios

392 W. S. W. Awang et al.

3.4.2 Case 2: Single-Query to Multiple-Files
In cycle4 and cycle10, the same NodeId 97 was requesting two different files, FileId15
and FileId17. This is the case of the same client node requesting two files in the
systems during a period of cycles. Tables 6 and 7 show an example of historical
records of the NodeId97 during the first and the second time interval respectively.
Assume NT is the number of time interval passed, F is the set of files that have been
requested and atf indicates the number of accesses for file f at time interval t. In the first
time interval, t = 1, FileId15 have been requested by NodeId4 times and 10 times
during the second time interval, t = 2. Then The Access Frequency (AF) for each file
can be calculated as:

Access Frequency ¼ AFNt fð Þ ¼
X

atf � 2� Nt�tð Þ
� �

; 8f 2 Ft ¼ 1

Thus for FileId15, Access Frequency

¼ AFNt fð Þ ¼ 4� 2� 1�1ð Þ
� �

þ 10� 2� 2�1ð Þ
� �

¼ 12

Based on Eq. 3.3, number of access frequency for file 15, 17, and 21 were 5, 2.5,
and 1, 5 respectively. Therefore, the threshold of the average access frequency in the
period of cycle can be calculated as in 3.4. The average threshold is 4.17. Therefore
two files with fileId 15 and 17 are above the threshold value that are considered as
popular files. These files will be selected to be replicated if the affinity degree for these
files are moderate, strong, or very strong.

Table 6. An example of access frequency for Single-Query to Multiple-Files at time interval
t = 1

atf Requestor NodeId FileId Number of access frequency

4 97 15 4
10 97 17 10
2 97 21 2

Table 7. An example of access frequency for single query-many files at time interval t = 2

atf Requestor NodeId FileId Number of access frequency

10 97 15 5
5 97 17 2.5
3 97 21 1.5

Affinity Replica Selection in Distributed Systems 393

3.5 Affinity Degree as Dominant Factors

The second dominant factor will be calculated based on the affinity degree between the
source node and the destination node. Table 8 shows the nodeId and the fileId whilst
Table 9 shows the discovery layer where the file requested by the source node is found
in the destination node. This also refers to the success hit whenever a query file is found
in the destination node.

3.5.1 Case-1: Single Query - Single File
In a case of a single query - single file request, only one client node is requesting one
file in the system during a period of time. There is no replication and thus affinity
degree is not calculated in this case.

Table 8. An example of NodeId and FileId

NodeId FileId

40 23, 6, 34, 36, 17, 30, 15, 29, 19, 22
26 29, 39, 42, 27, 23, 21, 6, 5
39 10, 44, 43, 40, 21, 48
25 10, 44, 43, 40, 18, 3, 6
46 42, 1, 41, 14, 3, 31, 13
27 31, 26, 25, 4, 28, 37
11 6, 43, 38, 24, 19, 23, 7, 32
24 19, 12, 15, 28, 2, 25, 37, 27
97 30, 48, 25, 7, 22, 19
14 23, 17, 36, 34, 40, 29
32 40, 10, 44, 48, 43, 31, 13

Table 9. An example of success hit

Source node FileId Destination node

14 15 24, 40
40 1 46
18 1 46
32 21 39
16 23 11, 26
10 3 25
97 17 40
25 21 26, 39
46 21 26, 39
97 15 24, 40
18 21 26, 39

394 W. S. W. Awang et al.

3.5.2 Case 2: Single Query - Multi Files
In Sect. 3.2, the definition of affinity and how to calculate the affinity degree has been
discussed in detailed. In this section, the affinity degree is calculated based on the
formula from 3.1 and 3.2. The affinity degree as the second denominator will be
calculated using similar two cases as in Sect. 3.5.

In this case, the same Node is requesting two or more files in a fixed time interval.
Prior to this, an average access frequency has been calculated in Sect. 3.5 and the
popular files were found. As calculated in Sect. 3.5, only fileId 15 and fileId 17 are
popular whereas fileId 21 is below average frequency threshold and therefore is con-
sidered as less popular. Next, the affinity degree is calculated between the source node,
NodeId 97 and the destination node, NodeId 40, as shown in Table 9. The affinity
degree is calculated as below:

Example 1: Let source/Query node be S97 and the destination node be D40. The query
file is fileId 17.

S97 ¼ 30; 48; 25; 7; 22; 19f g andD40 ¼ 23; 6; 34; 36; 17; 30; 15; 29; 19; 22f g

The affinity is

aff S97S97D40
¼ S97 \D40 þRequested File inD40 ¼ 22; 30; 19; 17f g ¼ 4

From equation in 3.2, the affinity degree over S97,

¼ affS97D40j j
S97 þ fqidðD40Þj j

¼ 4=7
¼ 0:57 ðModerate affinityÞ

Example 2: Let source node be S97 and the destination nodes be D24 and D40. The
query file is fileId 15.

S97 ¼ 30; 48; 25; 27; 22; 19f g and D24 ¼ f19; 12; 15; 28; 2; 25; 37; 27g

aff S97S97D24
¼ S97 \D24 þRequested File inD24 ¼ 15; 19; 27; 25f g ¼ 4

From equation in 3.2, the affinity degree is

¼ 4=7 ¼ 0:57 Moderate Affinityð Þ

By calculating the affinity degree of the files between the source nodes and the
destination nodes using the proposed affinity formula, the affinity degree in example 1
indicates that the relation is strong. Therefore we can conclude that, fileId17 is a
popular file and the nodes (the source node and the destination node) has strong
relation. Not only fileId17 will be replicated but also all the intersection files that
represent the affinity data, will be replicated as well to the source node. However, in

Affinity Replica Selection in Distributed Systems 395

example 2, the affinity degree calculated indicates “weak affinity”. The fileId15 will not
be replicated since the affinity degree is “low” regardless how popular the File is.

The rationale is that, when a user generates a request for a file, large amount of
bandwidth could be consumed to transfer the file from the server to the client. Fur-
thermore, the popular files tend to be accessed more frequently than less popular files in
the near future. Therefore to select a popular file in the replica placement strategy is
very important. In real world most of the files have affinity with one another. A user
searching for one song from “The Beatles”, may search for another song from the same
music group. A researcher from a university may need more than one related journals
or research files from other university. These two examples of searching and accessing
files need to be done repeatedly. As a consequence, not only the total access cost is
increased but also the total communication cost in accessing the files. However, the
increase of both costs can be reduced if related files are copied instead of just one file
per request from the client.

Therefore, the idea behind ARSM is to create a set of replicas where affinity and
popularity are equally important and very essential criteria in replica selection strategy.
Besides, ARSM place the new replicas as close as possible to those clients that fre-
quently request the corresponding files, subject to storage availability. The effective-
ness of this ARSM algorithms also depend on the number of accesses threshold value
and the proximity threshold value that were used herein to determine the selection of
replicas in the distributed systems.

4 Results and Discussion

Figure 1 illustrates the popular files from time interval 1 to time interval 6 whilst the
data from time interval 7 to time interval 10. The graph is decreasing towards the end of
the intervals. The result indicates that the access frequency that pass the average access
frequency threshold were between interval T1 to T6, where from interval T5 onwards,
the files queried were less popular. This result illustrates that the files over the time
intervals were decreased and the files became less popular. In real scenarios, this
reflects that the popularity of files increased in the first dissemination and became less
popular after a period of time.

Figure 2 Illustrates the affinity degree calculated based on the files that exceed or
equal to the access frequency threshold and the affinity degree that have strong files
relatedness. In time interval 4 (T4), there was a slight increase in the number of the
replicated files. The replicated files over a period of time in T3 were decreased but
gained back in T4 before the pattern is repeated. The graph in Fig. 2 verified that there
is a certain access pattern and relatedness of the requested files by the clients in the
distributed systems.

396 W. S. W. Awang et al.

5 Conclusion

The demand for the popular and correlated files are high during the first dissemination
and then decreased after certain period. Consequently it will gain popularity and cor-
relativity before it decreases hence this pattern will be repeated. In real scenario, in
research collaboration for example, a new found technology or research will initially
expected to be highly demanded and therefore the number of replicas is increased and
copied to the trusted or affine clients. However, this data will decrease over a certain
period of time and whenever newer technology is found, the pattern will be repeated.

Generally, other replica selection strategies deal with the quantity of data dis-
semination. However, ARSM in this thesis deals with the quality over quantity data
replication strategy. If we just take popularity as a measure, a system may over
replicate. Moreover, in many cases, popularity does not continue. There will be lots of
replicas which may not be needed. Therefore, taking affinity into consideration as

Fig. 1. The relationship between Access Frequency (AF) and Time Interval (T)

Fig. 2. The relationship between Access Frequency (AF) and Time Interval (T)

Affinity Replica Selection in Distributed Systems 397

another measure is very significant to reduce the number of replicas in the distributed
systems. Combining both popularity and affinity parameters in replica selection will
finally improve data availability and accessibility whilst reduce over replication.

Acknowledgment. We wish to thank internal grant of UNISZA (UniSZA/2017/DPU/72) for
financial supporting our work. Also thanks to all team members in reviewing for spelling errors
and synchronization consistencies and also for the constructive comments and suggestions.

References

1. Nagarajan, V., Mohamed, M.A.M.: A prediction-based dynamic replication strategy for data
intensive applications. J. Comput. Electr. Eng. 57, 281–293 (2017)

2. Rahmani, A., Azari, L., Daniel, A.H.: A file group data replication algorithm for data grids.
J. Grid Comput. 15(3), 379–393 (2017). https://doi.org/10.1007/s10723-017-9407-1

3. Bsoul, M., Abdallah, A.E., Almakadmeh, K., Tahat, N.: A round-based data replication
strategy. IEEE Trans. Parallel Distrib. Syst. 27(1), 31–39 (2016)

4. Mansouri, M., Javidi, M.M.: An efficient data replication strategy in large-scale data grid
environments based on availability and popularity. AUT J. Model. Simul. 50(1), 39–50
(2018)

5. Rahman, R.M., Alhajj, R., Barker, K.: Replica selection strategies in data grid. J. Parallel
Distrib. Comput. 68(12), 1561–1574 (2008)

6. Nukarapu, D.T., Tang, B., Wang, L., Lu, S.: Data replication in data intensive scientific
applications with performance guarantee. IEEE Trans. Parallel Distrib. Syst. 22(8), 1299–
1306 (2011)

7. Meng, C.Z.X.: An ant colony model based replica consistency maintenance strategy in
unstructured P2P networks. Comput. Networks 62, 11 (2014)

8. Fadaie, Z., Rahmani, A.M.: A new replica placement algorithm in data grid. Int. J. Comput.
Sci. 9(2), 491–507 (2012)

9. Abawajy, J.H., Deris, M.M.: Data replication approach with consistency guarantee for data
grid. IEEE Trans. Comput. 63(12), 2975–2987 (2014)

10. Skakowski, K., Sota, R., Król, D., Kitowski, J.: QoS-based storage resources provisioning
for grid applications. Future Gener. Comput. Syst. 29(3), 713–727 (2013)

11. Shorfuzzaman, M., Graham, P., Eskicioglu, R.: QoS aware distributed replica placement in
hierarchical data grids. In: Proceedings of the International Conference on Advanced
Information Networking and Applications, AINA, 2011, pp. 291–299

12. Jaradat, A., Patel, A., Zakaria, M.N., Amina, M.A.H.: Accessibility algorithm based on site
availability to enhance replica selection in a data grid environment. Comput. Sci. Inform.
Syst. 10(1), 105–132 (2013)

13. Hamrouni, T., Slimani, S., Ben Charrada, F.: A data mining correlated patterns-based
periodic decentralized replication strategy for data grids. J. Syst. Softw. 110, 10–27 (2015)

14. Rahmani, A.M., Fadaie, Z., Chronopoulos, A.T.: Data placement using Dewey Encoding in
a hierarchical data grid. J. Netw. Comput. Appl. 49, 88–98 (2015)

15. Mostafa, N., Al Ridhawi, I., Hamza, A.: An intelligent dynamic replica selection model
within grid systems. In: 2015 IEEE 8th GCC Conference and Exhibition, GCCCE 2015
(2015)

16. Ranganathan, K., Foster, I.: Identifying dynamic replication strategies for a high-
performance data grid. In: Lee, C.A. (ed.) GRID 2001. LNCS, vol. 2242, pp. 75–86.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45644-9_8

398 W. S. W. Awang et al.

http://dx.doi.org/10.1007/s10723-017-9407-1
http://dx.doi.org/10.1007/3-540-45644-9_8

17. Chang, R.Sh., Chang, H.P., Wang, Y.T.: A dynamic weighted data replication strategy in
data grids. In: IEEE/ACS International Conference on Computer Systems and Applications,
pp. 414–421 (2008)

18. Abawajy, J.H.: Placement of file replicas in data grid environments. In: Bubak, M., van
Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 66–73.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24688-6_11

19. Larbani, M., Chen, Y.W.: A fuzzy set based framework for concept of affinity. Appl. Math.
Sci. 3(7), 317–332 (2009)

20. Dancey, C.P., Reidy, J.: Statistics Without Maths for Psychology, 4th edn. Pearson
Education Ltd., Harlow (2007)

Affinity Replica Selection in Distributed Systems 399

http://dx.doi.org/10.1007/978-3-540-24688-6_11

Does the Operational Model Capture
Partition Tolerance in Distributed

Systems?

Grégoire Bonin(B), Achour Mostéfaoui, and Matthieu Perrin

LS2N, Université de Nantes, Nantes, France
{gregoire.bonin,achour.mostefaoui,matthieu.perrin}@univ-nantes.fr

Abstract. In large scale distributed systems, replication is essential in
order to provide availability and partition tolerance. Such systems are
abstracted by the wait-free model, composed of asynchronous processes
that communicate by sending and receiving messages, and in which any
process may crash. Complexity in local memory has already been studied
for several objects, including sets, databases and collaborative editors.
However, the literature has focused on a subclass of algorithms, operating
in the so-called operational model, in which processes can only broadcast
one message per update operation and the read operation incurs no com-
munication.

This paper tackles the following question: are the operational model
and the wait-free model equivalent from the complexity point of view?
We show that, under a weak consistency criterion, implementations in
the wait-free model require strictly less local memory than their coun-
terparts in the operational model.

Keywords: Operational model · Eventual consistency ·
Space complexity · Update consistency · Wait-free model

1 Introduction

Eventual Consistency. In large scale distributed systems, replication is essential
in order to provide availability and partition tolerance. Problems arise with
replication as consistency has to be maintained between the different replicas.

The most natural and intuitive abstraction for the user would be to view a
distributed/replicated object as if it is a single physical object shared by all the
processes. This means that all the operations on the object, possibly concurrent
or interleaving, appear as if they have been executed atomically and sequen-
tially. Such an abstraction has to respect a correctness condition called strong
consistency. Unfortunately, the CAP Theorem [6] states that this property is
unrealizable in most systems, as it is impossible to combine strong consistency,
availability and partition tolerance in asynchronous systems. Eventual consis-
tency was introduced to overcome this issue. It states that, after update opera-
tions stop taking place, the different replicas will eventual converge towards an
identical state.
c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 400–407, 2019.
https://doi.org/10.1007/978-3-030-25636-4_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_31&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_31

Operational Model vs Wait-Free Model 401

The Operational Model. In this context, Conflict-Free Replicated Data Types
(CRDTs) [11] constitute a family of objects designed to achieve eventual consis-
tency. Those are based on a theorem stating the equivalence between two kinds
of objects: the Commutative Replicated Data Types (CmRDTs), in which all
update operations commute, and Convergent Replicated Data Types (CvRDTs),
the states of which form a lattice. For example, and implementation of the
set structure called G-set (grow-only set) provides two different operations: an
update operation that inserts an element in the set and a query operation that
says whether a specific element belongs to the set. From the CmRDT point of
view, the operations “insert x” and “insert y” commute. From the CvRDT point
of view, the set inclusion is a lattice order on the states of the set.

The operational model has been proposed to abstract the implementation of
CRDTs. In the operational model, each replica maintains a local state on which
the operations are done. An update operation is divided into two parts. First, the
update operation is prepared locally by the replica where the update operation
is issued and then a message is broadcast to inform all the other replicas. Then,
the local state of each replica is updated at the reception of the update message.
Given that the different operations are commutative, all replicas converge to the
same state when no update operation is in progress.

As only one message is broadcast per update operation, algorithms in the
operational model are, by design, optimal in terms of the number of used mes-
sages. The amount of metadata that must be stored on each replica is more prob-
lematic and has been widely studied for several objects including sets, counters
and registers [5], data stores [2] and collaborative editors [1].

The Wait-Free Model. Despite the fact that algorithms from the operational
model are naturally partition tolerant and minimize communication in their
implementation, the operational model imposes limitations on the form of its
admissible algorithms. It is for example impossible to acknowledge or forward
messages, to execute local steps without the reception of a message, or to prop-
agate information during read operations. This prevents algorithms from using
more advanced techniques like the message patterns used in checkpointing [3,9].

Such algorithms are usually studied in the wait-free asynchronous message-
passing distributed model, or simply the wait-free model, in which asynchronous
processes communicate by sending and receiving messages. Any number of pro-
cesses may crash: a faulty process executes correctly until it crashes, it then
stops operating. A process that does not crash during an execution is called
correct. Failure tolerance also captures partition tolerance as it is impossible for
a process to wait for an acknowledgement from any other process since all other
processes may have crashed.

402 G. Bonin et al.

Processes communicate and synchronize by sending and receiving messages,
using the causal broadcast abstraction1 that provides them with a broadcast(m)
operation and a receive(m) event, where m is a message. respecting the following
Communication channels are uniformly reliable meaning that all correct processes
eventually receive the same set of messages, including their own messages.

However, channels are asynchronous, in the sense that there is no bound on
the time it takes for one message to be delivered.

A history in the wait-free model is an abstraction of an execution that con-
tains the information accessible for an outside observer, i.e. the operations that
were performed, their invoking process and time, as well as their returned value.

Complexity. We consider deterministic algorithms. This allows us to define a
state using an execution or a history. In order to compare the local complexity
of algorithms in the different models, we define the H-complexity that allows us
to compare the efficiency of two algorithms when executing the same history.
As the algorithms are deterministic, we can compare equivalent state in the
two algorithms (if the states are defined by the same sub-history, then they are
equivalent).

More precisely, given a history H that contains a finite number of updates,
and an algorithm Λ, we define the H-complexity of Λ as follows. Let S be the
set of all local states reachable by any process executing Λ during an execution
that can be abstracted by H. We define the H-complexity of Λ as follows:

– if S = ∅ (i.e. if H is not admitted by Λ), the H-complexity is 0;
– if |S| = ∞ (i.e. if S has states of unbounded size), the H-complexity is ∞;
– otherwise, the H-complexity is the maximal size of a state in S.

Problem Statement. The wait-free model is strictly more general than the oper-
ational model, as any algorithm from the operational model is also an algorithm
in the wait-free model, but the converse does not hold. In particular, this means
that the complexity results proven in the operational model may not hold in the
wait-free model.

Therefore arises the following question: are the wait-free model and the oper-
ational model equivalent in terms of complexity?

Approach. In this paper, we propose a new object, called update consistent l-
countdown-append object, and compare its wait-free implementations in both
models. As its name suggests, the update consistent l-countdown-append object
is specified by a sequential specification, that describes the behavior of the object
when processes access it sequentially, and a weak consistency criterion, called

1 Note that causal broadcast can be easily implemented in the wait-free model [10].
However, this implementation has a cost in local memory. We choose to include the
primitive in the model to isolate the complexity needed to maintain consistency of the
shared objects from the complexity needed to ensure causality, and therefore reducing
the noise of the complexity results we obtain in the next sections.

Operational Model vs Wait-Free Model 403

update consistency [8], that describe how concurrency affects the sequential
behaviour of the object.

The l-countdown-append object, where l ∈ N, accepts the four update oper-
ations given by the set U = {a, b, c, d}, and one query operation, q. The behavior
of the object is divided into two phases: during the first phase, the object counts
the number of update operations, starting from l, down to 1, then ε (the empty
word). In the second phase, the operation is concatenated at the end of the state.
Finally, the query operation returns the local state of the object each time it is
executed.

Update consistency is a consistency criterion that strengthens eventual con-
sistency by stating that the convergence state must be obtainable in a sequen-
tially consistent execution. In other words, it can be obtained by a sequential
ordering of the update operations.

More formally, a history H is update consistent for an object O if it is in one
of the two following cases:

– The processes never stop updating, i.e. H contains an infinite number of
update operations.

– It is possible to omit a finite number of query operations such that resulting
history has a linearization admitted by the sequential specification of O.

On a computability point of view, it is possible to implement any object with
this criterion in both computing models [8].

Contributions. This paper proves that the two models are not equivalent: we
prove that O(l) bits are necessary in the operational model to implement an
update consistent l-countdown-append, whereas we give a logarithmic algorithm
for the wait-free model.

Organization. Section 2 proves the part of the result for the operational model,
and Sect. 3 explores the wait-free model. Finally, Sect. 4 concludes the paper.
We could not include all the proofs in this extended abstract, due to space
restriction. A complete version of the paper can be found in [4].

2 Lower Bound in the Operational Model

In order to compare these two models, we consider a set of possible histories
(executions): the Hv histories. Let l ∈ N, and let v = u1...ul be a word consisting
of l update operations of the l-countdown-append object. We denote by Hv

any history in which one process performs all updates of v in their order of
appearance, and the other processes keep performing the query operation.

We now prove that any algorithm in the operational model has a Hv-
complexity of at least l

2 − 1 bits for some v. Our proof follows the scheme
introduced in [5]: we build a family of executions that do not belong to Hv, in
such a way that, at some point in the execution, a process pi performing the

404 G. Bonin et al.

operations of v is unable to distinguish between these executions and an execu-
tion in Hv. Then, in a later stage of the execution, process pi must be able to
distinguish between enough of them in order to keep convergence possible.

Theorem 1. For any deterministic algorithm Λ that implements an update con-
sistent l-countdown-append object in the operational model, there exists v such
that the Hv-complexity of Λ is at least l

2 − 1 bits.

Proof. Let Λ be an algorithm in the operational model implementing an update
consistent l-countdown-append object. For each pair of words of update opera-
tions (v1, v2), where v1 ∈ {a, b}l and v2 ∈ {c, d}l, we define the execution X(v1,v2)

as follows. Only two processes p1 and p2 take steps in X(v1,v2). All other pro-
cesses crash before the beginning of the execution. Initially, process p1 (resp. p2)
executes sequentially the successive operations of v1 (resp. v2). In accordance to
the operational model, they broadcast a single message during each operation.
In a later stage, processes p1 and p2 receive the messages of each other, according
to the FIFO order. Finally, both processes perform a query operation. We denote
by X = {X(v1,v2)|v1 ∈ {a, b}l ∧ v2 ∈ {c, d}l} the set of all X(v1,v2) executions.

Let us first remark that update consistency imposes that both query opera-
tions return the same value vc, that is a suffix of size l, of an interleaving of v1
and v2. Let f(v1, v2) be the number of c and d operations in vc. Note that f is
well defined because Λ is deterministic.

We now distinguish the executions depending on which process has a major-
ity of operations in the convergence state. We define X1 = {X(v1,v2) ∈ X :
f(v1, v2) ≥ l

2} and X2 = X \ X1. As X1 and X2 form a partition of X which has
a size 22l, we have |X1| ≥ 22l−1 or |X2| ≥ 22l−1. Without loss of generality, we
suppose that |X1| ≥ 22l−1.

We now partition X1 based on the value of v1. For each word v1 ∈ {a, b}l, let
X1(v1) = {X(v,v2) ∈ X1 : v = v1}. There exists a word v1 such that |X1(v1)| ≥

|X1|
|{a,b}l| = 22l−1

2l
= 2l−1. Let us fix such a v1.

Let v2 and v′
2 be two words such that X(v1,v2) and X(v1,v′

2)
belong to X1(v1).

By definition of f , if X(v1,v2) and X(v1,v′
2)

converge to the same state, then v2
and v′

2 differ at most by their l − f(v1, v2) ≤ l
2 first operations. Consequently,

there are at least 2l−1

2
l
2

= 2
l
2−1 different values for v2 for which X(v1,v2) lead to

different convergence states. Let X be a subset of X1(v1) of size 2
l
2−1, in which

all convergence states are different.
In the operational model, the local state of process p2 at the end of the execu-

tion only depends on its local state after executing its own l update operations,
and the messages received from p1 afterwards. In all the executions of X ′, the
messages received by p2 are the same in all executions because v1 is fixed. More-
over, the local state of p2 at the end of all executions is different. This means
that the local state of p2 after doing its updates is also different in all executions.
Consequently, there is a word v2 such that, after executing all update operations
in v2 (execution X), the local state of p2 requires at least l

2 − 1 bits.

Operational Model vs Wait-Free Model 405

Finally, let us consider the execution X ′ in which only p2 takes steps, exe-
cuting the sequence of update operations of v2. Just after executing its updates,
p2 cannot distinguish between the executions X and X ′. Consequently, its local
state in X ′ also requires l

2 − 1 bits. Moreover, X ′ is modeled by Hv2 . Therefore,
the Hv2 -complexity of Λ is at least l

2 − 1 bits.

1 var clocki ∈ Array(N,N) ← [i �→ 0];
2 var leaderi ∈ N ← i;
3 var countdowni ∈ {0, ..., l} ← l;
4 var appendi ∈ U� ← ε;
5 operation q()
6 if countdowni = 0 then return appendi else return countdowni ;

7 operation u() // u ∈ U
8 broadcast mUpdate (clocki[i] + 1, i, u);

9 receive mUpdate (tj ∈ N, j ∈ N, u ∈ U)
10 if clocki[j] < tj then
11 clocki[j] ← tj ; leaderi ← i;
12 if countdowni = 0 then
13 appendi ← appendi · u;
14 broadcast mCorrect (clocki, i, appendi);

15 else countdowni ← countdowni − 1 ;

16 receive mCorrect (clj ∈ Array(N,N), j ∈ N, aj ∈ U�)
17 if (∀k, clocki[k] ≤ clj [k]) ∧ (j ≤ leaderi ∨ ∃k, clocki[k] < clj [k]) then
18 appendi ← aj ; clocki ← clj ; leaderi ← j;

Algorithm 1. The countdown-append object in the wait-free model

3 Upper Bound in the Wait-Free Model

This section exhibits an algorithm (Algorithm 1) that implements an update con-
sistent l-Countdown-append in the wait-free model with a lower Hv-complexity,
for any v. This algorithm is a variant of the algorithm UQ0 proposed in [7].

Each process pi maintains four variables. Variables countdowni and appendi
represent the current local state at pi. If countdowni > 0, the l-countdown-
append object is in the countdown phase. Otherwise it is in the append phase
and its value is appendi. Variable clocki is the equivalent of a version vector, such
that clocki(j) represents the number of operations issued by pj that are taken
into account into the current state of pi. As pi does not know the number of
participants, it is encoded as an associative array, rather than a vector. Finally,
variable leaderi is the identifier of a process such that, clocki < clockleaderi or pi
and pleaderi are in the same local state.

When a process invokes the query operation q, it computes locally the state
of the object based on countdowni and appendi.

When process pi invokes an update operation a, b, c or d, it increments
its local clock clocki[i] and broadcasts a message mUpdate (Line 8). Upon the

406 G. Bonin et al.

reception of such a message, pi executes the operation (decrements countdowni if
the countdown is still possible, or appends the operation to appendi), and answers
with a mUpdate message containing its state and its current vector clock.

When a correction message is received, the process checks whether it is more
recent according to the vector clock, and if that is the case, it replaces its own
data with the received one.

Algorithm 1 is clearly wait-free as its operations contain no loop. It is also
update consistent because, (1) all processes constantly maintain a state obtained
by a linearization of the operations of their causal past, and (2) after all updates
have been performed, all replicas converge towards a common state, that is the
state of the correct process with the smallest identifier.

Let l ∈ N and v ∈ U l. In any execution abstracted by Hv, there is a process pi
that performs all l update operations. For all processes pj , clockj only contains
one entry for pi, smaller than l. Therefore, clockj can be encoded in less than
log(n) + log(l) = log(nl) bits; The process identifier leaderi can be encoded in
log(n) bits; countdowni can take at most l different values, so it can be encoded
in log(l) bits and appendi = ε is a constant value, so it has an encoding of
constant size c. Finally, the Hv complexity of Algorithm 1 is O(log(nl)) bits,
which proves the following theorem.

Theorem 2. There exists an algorithm Λ implementing an update consistent
l-countdown-append object in the wait-free model such that, for all v ∈ U l, Λ has
an Hv-complexity of O(log(nl)) bits.

We can finally conclude on the non-equivalence between the two computing
model in the implementation of update consistency.

Corollary 1. There exists an object O and an algorithm Λwf implementing an
update consistent O in the wait-free model, such that, for any algorithm Λom

implementing an update consistent O object in the operational model, there is a
history H such that Λwf has a strictly lower H-complexity than Λom.

4 Conclusion

In this paper we answered the following question: are the wait-free model and the
operational model equivalent in terms of local complexity? We proved that the
response to this question is no in the case of update consistency: we proved that
there exists an object that has a different complexity in the two models: the l-
countdown-append object. In the wait-free model, there is an algorithm for which
the complexity required to encode a special state of the object is upper bounded
by O(log(nl)) bits, whereas in the operational model, any algorithm requires at
least l

2 −1 bits to encode the same state. This means that the operational model
does not allow the optimal implementation for update consistency.

The result proposed in this papers shows that the question of whether the
operational model is well suited to represent partition tolerance is not simple,
especially in the context of determining the complexity in local memory required

Operational Model vs Wait-Free Model 407

to implement shared objects. An interesting open question is whether the lower
bounds proved for several objects in the operational model can be extended to
the wait-free model.

References

1. Attiya, H., Burckhardt, S., Gotsman, A., Morrison, A., Yang, H., Zawirski, M.:
Specification and complexity of collaborative text editing. In: Symposium on Prin-
ciples of Distributed Computing, pp. 259–268. ACM (2016)

2. Attiya, H., Ellen, F., Morrison, A.: Limitations of highly-available eventually-
consistent data stores. IEEE Trans. Parallel Distrib. Syst. 28(1), 141–155 (2017)

3. Baldoni, R., Brzezinski, J., Hélary, J.M., Mostefaoui, A., Raynal, M.: Characteriza-
tion of consistent global checkpoints in large-scale distributed systems. In: Work-
shop on Future Trends of Distributed Computing Systems, pp. 314–323. IEEE
(1995)

4. Bonin, G., Achour, M., Perrin, M.: Does the operational model capture partition
tolerance in distributed systems? extended version (2019)

5. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: spec-
ification, verification, optimality. In: ACM Sigplan Notices, vol. 49, pp. 271–284.
ACM (2014)

6. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. ACM Sigact News 33, 51–59 (2002)

7. Perrin, M.: Distributed Systems: Concurrency and Consistency. Elsevier, Amster-
dam (2017)

8. Perrin, M., Mostefaoui, A., Jard, C.: Update consistency for wait-free concurrent
objects. In: International Parallel and Distributed Processing Symposium, pp. 219–
228. IEEE (2015)

9. Randell, B., Lee, P., Treleaven, P.C.: Reliability issues in computing system design.
ACM Comput. Surv. (CSUR) 10(2), 123–165 (1978)

10. Raynal, M., Schiper, A., Toueg, S.: The causal ordering abstraction and a simple
way to implement it. Inf. Process. Lett. 39(6), 343–350 (1991)

11. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24550-
3 29

https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29

Blockchain-Based Delegation of Rights
in Distributed Computing Environment

Andrey Demichev1(B), Alexander Kryukov1, and Nikolai Prikhod’ko2

1 Skobeltsyn Institute of Nuclear Physics,
Lomonosov Moscow State University, Moscow, Russia

{demichev,kryukov}@theory.sinp.msu.ru
2 Yaroslav-the-Wise Novgorod State University, Velikiy Novgorod, Russia

niko2004x@mail.ru

Abstract. The paper suggests a new approach based on blockchain
technology and smart contracts to delegation of rights within dis-
tributed computing systems, which is fault-tolerant, safe and secure. The
implementation of the proposed approach is based on the permissioned
blockchains and on the Hyperledger Fabric blockchain platform in con-
junction with Hyperledger Composer.

Keywords: Distributed computing · Blockchain · Access rights ·
Delegation · Hyperledger

1 Introduction

Nowadays, distributed computing systems (DCS) are widely used for solving
various problems in scientific, engineering and business areas. The advantage of
DCS is the unification and simplification of an access to computing resources,
e.g., clouds, supercomputers, databases, and, as consequence, to growth of effi-
ciency of scientific, engineering and business activities. However, using heteroge-
neous and geographically widely dispersed DCS requires sophisticated and robust
solutions for various aspects of the distributed computation in comparison with
the case of local resources or more localized DCS. In particular, a reliable but
still user-friendly security model for such DCS is of great importance. In this
paper we discuss some aspects of the security infrastructure for DCS and sug-
gest possible improvements. Providing the security of DCS implies solving the
following basic problems: (1) security of communications: this problem is solved
by encrypting the communication channels; (2) authentication: this means con-
firmation of the truth of the attribute of the data fragment declared by a certain
entity as a true one; (3) authorization: this means the granting of access rights
according to a policy; (4) delegation: this means delegation of rights from a user
or a Web service to another Web service.

This work was funded by the Russian Science Foundation (grant No. 18-11-00075).

c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 408–418, 2019.
https://doi.org/10.1007/978-3-030-25636-4_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_32&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_32

Blockchain-Based Delegation of Rights 409

In this paper we consider the last aspect of the DCS security. We will use grid
infrastructures and distributed storages as a reference DCS models for imple-
mentation of the security infrastructure. However the same problems are relevant
and the suggested solutions are applicable for any DCS which comprises of a set
of communicating Web services. The most striking example of grid infrastruc-
ture and globally distributed storage is the Worldwide LHC Computing Grid
(WLCG) [1,2] which is used for processing and simulation of experimental data
from the Large Hadron Collider (LHC) [3]. Other important examples of DCSs
are the data storages and processing infrastructures in the area of astroparticle
physics [4,5].

The security of most of DCSs, including WLCG, is based on the PKI [6] and
X.509 certificates [7] together with proxy certificates [8]. The proxy certificate is
a special short-time living certificate used for the purpose of providing restricted
rights delegation within a PKI based authentication system. The short lifetime
of the proxy certificate is due to security reasons. In DCSs the proxies are used
for both user access to computing resources and for processing workflows. A
workflow is a composite computational job that must be run sequentially by
multiple services, with each service in the sequence receiving requests directly
from the previous service. In this case, the delegation of rights from service
to service occurs with the help of the proxy certificates. However, the proxies
have short lifetimes, while one cannot predict how much time would take request
processing especially in the case of the composite jobs. There are special services
to support prolongation of proxy lifetime [9], and all this make the security
infrastructure overcomplicated and difficult to interact with.

Recently, we proposed an approach [10,11] which allows us to avoid using the
proxy certificates in security infrastructures entirely. Roughly speaking, in our
scheme each issued request is a pair of a message and individual hash related to
it. This single-shot hash has unlimited lifetime so that in our scheme the prolon-
gation service is not needed. At the same time, the security level is not reduced
because every hash can be used only once and only for a specific request. Thus
hash compromise can only result in the fact that the request has to be processed
again. However this approach also requires a central dedicated service, namely
validation service, to process requests in DCSs. The point is that upon getting
computational request each service checks request’s hash against the validation
service and continues only if the hash is correct and was not used before. Both the
proxy prolongation service and the validation service in the approach suggested
in [10,11] being centralized ones are potential points of failure and bottlenecks
for the entire distributed systems.

In this work, we suggest a DCS design which allows abandoning the spe-
cial dedicated centralized services in the DCS security infrastructure and the
use instead of them a blockchain-based distributed registry and smart contracts.
The very idea of using the blockchain technology for DCS security was expressed
in our work [12]. However that paper does not contain any details of the design
and is oriented to the Ethereum blockchain platform [13] which is not well suited
for DCSs. In the present paper, we propose an approach to solving the problem

410 A. Demichev et al.

of delegation on the basis of blockchain technology and smart contracts within
the Hyperledger platform [14,15] which is proved to be very suitable for DCS
management, in particular for distributed storages [16]. While in the paper [16]
we proposed a mechanism for managing provenance metadata and data access
rights based on the blockchain technology, in the present work we solved another
problem, namely, developing on the same basis a mechanism for delegation of
rights in distributed systems. To our best knowledge, the blockchain-based mech-
anism for delegation of rights in distributed system suggested in this work are
completely novel. Other existing blockchain-based suggestions and developments
in the field of DCS management are far from the system proposed in this paper,
both in their goals and objectives, and in the ways of their implementation. The
reader may find discussion of them in the survey [17].

In the next section we shortly consider security infrastructure with the use of
proxy certificates and the solution without proxy certificates but with a special
central service. In Sect. 3 the blockchain-based delegation of rights in DCS is
presented. The Sect. 4 is devoted to conclusions.

2 DCS Security Infrastructure

2.1 Security Infrastructure with the Use of Proxy Certificates

In distributed grid-like systems the security infrastructure is build around Public
Key Infrastructure (PKI) that uses asymmetric cryptography. One of the main
problem of the security infrastructure is the problem of delegation of rights
[18,19]. Let us consider the delegation procedure in DCS for the following work-
flow (see Fig. 1): a Client asks the Service1 to perform a request; the Service1
sends a subrequest to Service2. It is expected that the Client somehow dele-
gates its rights to Service1 to authenticate it to the Service2 since subrequest
is performed on his behalf. Therefore there is a question how this delegation is
carried out.

Fig. 1. Delegation of credentials.

The common solution used in grid is to use the proxy certificate with non-
critical extension to store information about user rights. The proxy certificate
is an extended X.509 public key certificate and has the following properties: it
is signed with standard X.509 or another proxy certificate of a user who needs
delegation of rights; contains both public and private keys; these are not the orig-
inal users keys but generated from them; does not require any password (unlike

Blockchain-Based Delegation of Rights 411

usual PKI certificates); cannot be revoked; is used by grid services, to act on
behalf of the proxy issuer. Thus the proxy certificates are essentially less secure
objects than standard certificates. To reduce the chance for proxy certificate to
be stolen, the proxy must have very short lifetime. This leads to the problem of
the renovation of the proxy. The possible solution of the problem is to use certain
service that have to manage proxy certificates and renew them if necessary. One
of such services is the MyProxy service [20].

The delegation scheme in this case looks as follows: (1) the user creates a
proxy certificate; (2) it sends it to the service with a request to perform some
action on behalf of the user; (3) from the point of view of any service, having
a proxy certificate means that its bearer is authorized to do whatever it likes
on behalf of the issuing the proxy. The last item leads to a vulnerability of the
proxy certificate approach, namely, the service that received the proxy is given
too much leeway on behalf of the entity issuing the proxy certificate. This is in
addition to the above mentioned necessity to have the proxy prolongation service
which is a potential point of failure, intrusion and bottle neck.

An example of a delegation is copying of a file from Service1 to Service2. For
this aim a user transmits to Service1 his proxy certificate and requests it to copy
a file to Service2 on his behalf so that the rights to the file will belong not to
Service1 or Service2, but to the user. In Sect. 3.2 we will consider this use case
for the delegation in the framework of the blockchain-based approach.

2.2 Intermediate Solution: Security Infrastructure Without Proxy
Certificates and with Special Central Service

In the papers [10,11] a new security infrastructure model for distributed com-
puting systems was suggested which does not require the proxy certificates. The
proposed architecture of the DCS security infrastructure is shown in Fig. 2 on
the left hand side.

Each request processed in DCS is accompanied by an accounting information.
Accounting information is a triple of the following objects: {h,Entitys, Entityd},
where h,Entitys, Entityd are the hash, source and destination entity of the
request. This triple means that the entity Entitys sends a request with the hash
h to the entity Entityd for execution. Complete format of accounting information
include some additional objects such as affiliation to a virtual organization and
user’s roles in it.

Let us consider the processing of a request from the point of view of the
credential delegation.

1. The Client generate a request r1 and the hash h1 = H(r1).
2. The Client registers the triple {h1, Client, Service1} in the validation service

(VS).
3. The Client sends the request r1 to the Service1 for processing.
4. The Service1 generates the hash from the obtained request r1 and asks the

VS to approve it. If VS approves then Service1 continues.

412 A. Demichev et al.

Fig. 2. The architectures of the security infrastructure with the central validation
service and with the distributed registry (blockchain).

5. The Service1 generates the new subrequest r2 that is generated from r1 and
the hash h2 = H(r2).

6. The Service1 registers the triple {h2, Service1, Service2} in the VS.
7. The Service1 sends the request to the Service2 for further processing.
8. The Service2 generates the hash from the obtained request r2 and asks the

VS to approve it. If VS approves then Service2 continues.

When Service1 registers {h2, Service1, Service2}, VS, knowing that this is
a secondary request generated from the user’s one, registers it as a user request.
Thus, when accessing it by Service2, it will confirm that the action should be
performed on behalf of the user, although received from Service1.

The hash of secondary requests should be calculated not only on the basis of
the body of the new request, but also the hash of the primary request (a weak
variant of the Merkle tree) from which it is generated. In processing the request,
the validation service accumulates chains of accounting information for each
request in the DCS. This information can be used for different purposes. In
particular, it may be used for revocation of the request at any stage of processing.

One of the possible weak points of the proposed approach is the requirement
to have on-line access to the validation service for all other services of the DCS.
The simulation using our prototype shows that such an infrastructure is quite
stable and works fine at least for the systems with 20 user requests per second.
For the critical high-availability systems it is possible to deploy two parallel
validation services with on-line database replication. At this case one of the
services acts as a master service that processes requests and another is a slave
(an inactive full copy of the master). If the master service crashes it would be easy
to switch to the slave service immediately with almost no loss of information. An
important benefit of the proposed security infrastructure is that during request
processing the validation service collects all the information concerning each
request in the DCS. This information can be used for monitoring purposes as
well as for request revocation at any stage of processing.

Blockchain-Based Delegation of Rights 413

3 Use of the Blockchain Technology for Providing
Delegation of Rights in DCS

The approach shortly presented in Sect. 2.2 results in essential simplification
both registration of new users in the system, and their operations in DCS, in
comparison with the most popular infrastructure of public keys (PKI) together
with use of the proxy certificates (Sect. 2.1). However the vulnerable point of
both the solutions is need of a special fault-tolerant and resistant to malicious
operations centralized service in the security infrastructure. In this section, we
investigate the possibility to refrain from the special server in the security infras-
tructure of DCS and to use for this purpose a distributed registry based on the
blockchain technology and smart contracts. Since in this case the security infras-
tructure registry is distributed across a number of nodes in the system, such an
approach will lead to increased fault tolerance and level of security of DCS. The
basic example of DCS which we use in present work is a distributed storage.

3.1 Distributed Storage with Provenance Metadata Driven Data
Management

In the work [16] we proposed a new approach to the construction of data man-
agement systems in a distributed environment, based on the integration of the
following basic principles and technologies:

– smart contracts [21];
– permissioned blockchains technology [22];
– Hyperledger blockchain platform [14,15] together with Hyperledger Composer

[23]; hereafter we shall refer to these two components as HLF&C-platform;
– management of data access rights with the help of special HLF&C-platform

tools;
– provenance metadata driven data management: the metadata is written to

the blockchain beforehand, and data management systems (DMS) refer to
the blockchain and performs the transactions recorded there;

– distributed consensus protocols [22].

Provenance metadata (PMD) contain key information that is necessary to
determine the origin, authorship and quality of relevant data, their storage and
usage consistency, and for interpretation and confirmation of relevant results of
data processing. The need for PMD is especially important when data is jointly
processed by several research groups that have their own, although interrelated
interests, which is a very common practice in many scientific, engineering, and
industrial fields lately. For the details we refer to the work [16] where princi-
ples, architecture and operation algorithms have been developed for the PMD
management system, entitled ProvHL (Provenance HyperLedger), which is fault-
tolerant, safe, reliable in terms of the safety and security of provenance meta-
data records from accidental or intentional distortion. Moreover, it allows users
to perform operations with files and directories in the DCS. The distribution

414 A. Demichev et al.

of the main HLF&C modules by administrative domains of the modeled dis-
tributed storage environment within the current testbed for the ProvHL system
is shown in Fig. 3. Here we shall concentrate on a new blockchain-based method
for delegation of rights within distributed computing systems which is free from
shortcomings inherent in other solutions.

Fig. 3. A simplified scheme of the ProvHL testbed environment.

3.2 Blockchain-Based Delegation in Distributed Storages

The algorithm which we propose for recording transactions with provenance
metadata and data management in the framework of ProvHL in a very simplified
form reads as follows:

– the owner accesses the chaincode function, which, according to the acl-file
(“acl” stands for access control language), allows the owner of the data to
grant access rights to these data to another user or group of users;

– a user who is granted access rights by the owner accesses the chaincode with
a request to make an operation (Client Request transaction) with data (for
example, file download, upload, copy, etc.);

– the chaincode verifies that such a transaction complies with the rules defined
in the acl-file and, if it does, sends a request to the HLF&C environment to
complete the transaction;

– HLF&C performs transaction processing (transaction workflow: simulation
and endorsements → ordering → validation → state updating);

– HLF&C sends a message (event) to the user about the successful transaction
and its recording in the blockchain; the message also contains the transaction
identification number;

– the user accesses the data management system (DMS) with a request to
perform a data operation that contains the number of the corresponding
transaction;

– the DMS checks for a record of this transaction in the blockchain;
– if there is a record of the valid transaction, the DMS performs the required

operation and, in turn, initiates a transaction record confirming that a data
operation was performed (Server Response transaction).

Blockchain-Based Delegation of Rights 415

As it can be seen, for each data operation, at least two transaction records are
made in the blockchain: one corresponds to the client request, and the second
corresponds to the server response. Actually, an operation comprises of even
more transactions.

Below we present more details on delegation of rights between services on the
example of operation of coping data from one local storage (Storage1) to another
(Storage2). Now the Service1 on Fig. 2 stands for the data management system
of the Storage1 (DMS Storage1) and Service2 stands for the data management
system of the Storage2 (DMS Storage2) and we use the right hand side of the
figure (distributed solution). Now the content of the request r1 is: “copy file
F from Sorage1 to Storage2” and that for the request r2 is: “upload file F
to Storage2”. In the framework of the ProvHL system, operations with files
are defined as assets (alongside with other business network entities) [16] by
using the object-oriented modeling language [23] in the so called cto-file. For the
delegation mechanism it is important that it contains the obligatory attributes
“requester” and “executor”. Also it inherits “file owner” attributes from the file
asset definition. Upon receiving a request from a User for a file copying the
DMS Storage1 (Storage1 contains the file to be copied) detects the type of the
copy operation, namely decides if this is local copying (within the Storage1) or
copying to another storage. In the latter case it initiates, on behalf of the User,
the operation of uploading the required file to destination Storage2. For this aim
it interacts with the chaincode which, among other actions, defines that while
for the initial copy operation the value of the requester attribute is equal to the
User and the executor is DMS Storage1, for the induced upload operation the
requester is DMS Storage1 and the executor is DMS Storage2. In addition, the
owner of the file copy on the Storage2 is the same as the owner of source file on
the Storage1.

Note that in this case it is not necessary to rely on request hashes, as described
in Sect. 2.2. Instead, one can use an arbitrary UUID for the request naming, since
an immutability of record for a request sequence is guaranteed by the blockchain
structure. The analog of the steps outlined in the Sect. 2.2 reads as follows.

1. The Client (User) generate the request r1 and UUID for it.
2. The client initiates a transaction to create a copy operation, after which the

entire transaction workflow is executed.
3. The Client sends the request r1 to the DMS Storage1 for processing. At this

stage the ‘requester’ field of the operation attributes is equal to the Client,
and the ‘executor’ is the DMS Storage1.

4. The DMS Storage1 checks that the related transaction is recorded in the
blockchain and valid; in the case of positive result it continues carrying out
the operation.

5. The DMS Storage1 generates the new subrequest r2 to DMS Storage2 for
uploading the file F to Storage2.

6. The DMS Storage1 initiates recording the corresponding transaction into
blockchain. At this stage the ‘requester’ field of the operation attributes is
equal to the DMS Storage1, and the ‘executor’ is the DMS Storage2. It is

416 A. Demichev et al.

worth stressing that the right to initiate this request for the transaction is
provided by the appropriate content of the smart contract (chaincode).

7. The DMS Storage1 sends the request r2 to the DMS Storage2 for the file F
uploading.

8. The DMS Storage2 checks that the related transaction is recorded in the
blockchain and valid. In the case of positive result it carries out the request.

Thus, the second request r2 is executed at the initial request of the User,
though it is issued by the DMS Storage1 (source storage), and the file owner-
ship does not change. This means that all goals of a delegation are completed.
It is worth mentioning that in contrast to the scheme based on proxy certifi-
cates (Sect. 2.1), in the blockchain-based approach, as well as in the mechanism
presented in the Sect. 2.2, the delegation is restricted solely to the specified opera-
tion. The chain of hashes used in Sect. 2.2 is replaced with a chain of transactions
and blocks that make up the history of the copy operation from one storage to
another. It is important to note that during the execution of the entire operation,
the file F preserves the attribute “file owner” unchanged, that is, the rights to
it in the process of the operations carried out by the chain of services (in this
case, DMSs) do not change.

The approach proposed in this section allows us to avoid central services
that can be bottlenecks, points of failure, and which are controlled by one of the
sides of the business process. Instead, a distributed registry (blockchain) is used,
which is controlled by all parties of the business process based on a consensus.
The flexibility of the proposed mechanism is achieved due to the fact that in
smart contracts one can fix any conditions for the delegation of rights. In this
paper, we have considered a relatively simple, but in practice, most popular
version of such conditions. The proposed mechanism directly extends to the case
of arbitrary data processing services. Some technical complications are related
to the fact that the result of such services can be an arbitrary number of output
files. However, the general approach works in this case too.

The metric values of the developed system are under study and will be pre-
sented elsewhere. The preliminary measurements on the testbed depicted on
Fig. 3 show that the overheads related to the operation processing by the ProvHL
system is of the order of 4÷7 s depending on setup variables such as maximal
time of block forming, etc. This is fully consistent with the extensive results of
the recent work [24] on the performance of the Hyperledger platform itself, with
the measurements in this work were carried out on a testbed similar to ours. In
particular, it was shown that for the input transaction rate up to 800 tx/s, the
transaction latency is � 1 s, and the transaction throughput is ∼800 tx/s. If we
take into account that each file operation consists of 3÷7 transactions (depend-
ing on the type of the operation), we get matching results for the latency, while
for the throughput we may expect ∼100 ops/s. These values, obtained on the
testbed with very modest computer facilities, are quite acceptable for opera-
tions with files of sufficiently large volumes, the handing time of which (copying,
downloading, uploading, etc.) is tens or more seconds. Such volumes of data files
are typical for distributed storages intended for large scientific experiments.

Blockchain-Based Delegation of Rights 417

4 Conclusion

In this work we have proposed a solution for a security infrastructure and del-
egation of rights for distributed computing systems based on the blockchain
technology and smart contracts in the framework of the Hyperledger Fabric
platform. This infrastructure is free from the significant drawbacks inherent to
other existing approaches, namely, from the vulnerabilities (bottlenecks, points
of failure) associated with the presence of a central services managing the secu-
rity infrastructure. Due to its distributed nature, the blockchain-based delegation
proves to be fully adequate to distributed computing systems. The use of smart
contracts, in turn, provides flexibility because they allow one to define various
conditions for the delegation of rights in DCSs.

At present, a testbed has been created on the basis of SINP MSU, where a
preliminary version of the ProvHL system implementing the developed solution
is deployed. Testing of the system has confirmed the correctness of the chosen
approach, basic principles and algorithms of work and the preliminary perfor-
mance measurements showed the suitability of the developed system for large
distributed data storages.

The implementation of the suggested solution for delegation of rights in the
framework of the ProvHL system of production level will significantly improve
the security as well as quality and reliability of the results obtained on the basis
of processing and analysis of data in a distributed computer environment.

References

1. Sciaba, A., et al.: Computing at the petabyte scale with the WLCG. Worldwide
LHC computing grid. Technical report CERN-IT-Note-2010-006 (2010)

2. WLCG. http://wlcg.web.cern.ch. Accessed 21 May 2019
3. CERN. http://www.cern.ch. Accessed 21 May 2019
4. Berghöfer, T., et al.: Towards a model for computing in European astroparticle

physics. arXiv preprint, arXiv:1512.00988 (2015)
5. Kryukov, A., Demichev, A.: Architecture of distributed data storage for astropar-

ticle physics. Lobachevskii J. Math. 39(9), 1199–1206 (2018)
6. Buchmann, J.A., Karatsiolis, E., Wiesmaier, A.: Introduction to Public

Key Infrastructures. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40657-7

7. Cooper, D., et al.: RFC 5280 - internet X.509 public key infrastructure certificate
and certificate revocation list (CRL) profile. Technical report (2008)

8. Tuecke, S., et al.: Internet X.509 public key infrastructure proxy certificate profile.
Technical report RFC 3820 (2004)

9. Kouril, D., Basney, J.: A credential renewal service for long-running jobs. In:
IEEE/ACM Proceedings of the International Workshop on Grid Computing 13–14,
pp. 2–13 (2005)

10. Dubenskaya, J., Demichev, A., Kryukov, A., Prikhod’ko, N.: Special aspects of
the development of the security infrastructure for distributed computing systems.
Procedia Comput. Sci. 66, 525–532 (2015)

http://wlcg.web.cern.ch
http://www.cern.ch
http://arxiv.org/abs/1512.00988
https://doi.org/10.1007/978-3-642-40657-7
https://doi.org/10.1007/978-3-642-40657-7

418 A. Demichev et al.

11. Dubenskaya, J., Demichev, A., Kryukov, A., Prikhod’ko, N.: New security infras-
tructure model for distributed computing systems. J. Phys. Conf. Ser. 681, 012051
(2016)

12. Kryukov, A., Demichev, A.: Security infrastructure for distributed computing sys-
tems on the basis of blockchain technology. CEUR Workshop Proc. 1787, 338–342
(2016)

13. A next-generation smart contract and decentralized application platform. White
Paper. https://github.com/ethereum/wiki/wiki/White-Paper. Accessed 21 May
2019

14. Hyperledger. https://www.hyperledger.org. Accessed 21 May 2019
15. Androulaki E., et al.: Hyperledger fabric: a distributed operating system for permis-

sioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, Article
No. 30, Porto, Portugal. ACM (2018)

16. Demichev A., Kryukov A., Prikhod’ko N.: The approach to managing prove-
nance metadata and data access rights in distributed storage using the hyper-
ledger blockchain platform. In: Proceedings of Ivannikov ISPRAS Open Confer-
ence, Moscow, Russia, pp. 131–136, 22–23 November 2018. IEEE Xplore Digital
Library (2019)

17. Salman, T., et al.: Security services using blockchains: a state of the art survey.
IEEE Commun. Surv. Tutor. 21(1), 858–880 (2018)

18. Welch V, et al.: 509 proxy certificates for dynamic delegation. In: 3rd Annual PKI
R&D Workshop, vol. 14 (2004)

19. Smirnova O.: Grid computing: delegation and authorisation. http://www.hep.lu.
se/courses/grid/2014/Grid-COMPUTE-l3.pdf. Accessed 21 May 2019

20. Novotny, J., Tuecke, S., Welch, V.: An online credential repository for the grid:
myproxy. In: Proceedings of 10th IEEE International Symposium on High Perfor-
mance Distributed Computing, pp. 104–111. IEEE (2001)

21. Szabo, N.: The idea of smart contracts (1997). http://szabo.best.vwh.net/smart
contracts idea.html. Accessed 21 May 2019

22. Baliga, A.: Understanding blockchain consensus models. Technical report, Persis-
tent Systems Ltd. (2017)

23. Hyperledger Composer. https://hyperledger.github.io/composer. Accessed 21 May
2019

24. Baliga, A., et al.: Performance characterization of hyperledger fabric. In: 2018
Crypto Valley Conference on Blockchain Technology (CVCBT), pp. 65–74 (2018)

https://github.com/ethereum/wiki/wiki/White-Paper
https://www.hyperledger.org
http://www.hep.lu.se/courses/grid/2014/Grid-COMPUTE-l3.pdf
http://www.hep.lu.se/courses/grid/2014/Grid-COMPUTE-l3.pdf
http://szabo.best.vwh.net/smart_contracts_idea.html
http://szabo.best.vwh.net/smart_contracts_idea.html
https://hyperledger.github.io/composer

Participant-Restricted Consensus in
Asynchronous Crash-Prone Read/Write

Systems and Its Weakest Failure Detector

Carole Delporte-Gallet1, Hugues Fauconnier1, and Michel Raynal2,3(B)

1 IRIF, Université Paris 7 Diderot, Paris, France
cd@irif.fr, hf@irif.fr

2 IRISA, Université de Rennes, 35042 Rennes, France
michel.raynal@irisa.fr

3 Department of Computing, Polytechnic University, Hung Hom, Hong Kong

Abstract. A failure detector is a device (object) that provides the pro-
cesses with information on failures. Failure detectors were introduced to
enrich asynchronous systems so that it becomes possible to solve prob-
lems (or implement concurrent objects) that are otherwise impossible
to solve in pure asynchronous systems where processes are prone to
crash failures. The most famous failure detector (which is called “even-
tual leader” and denoted Ω) is the weakest failure detector which allows
consensus to be solved in n-process asynchronous systems where up to
t = n − 1 processes may crash in the read/write communication model,
and up to t < n/2 processes may crash in the message-passing commu-
nication model. In these models, all correct processes are supposed to
participate in a consensus instance and in particular the eventual leader.

This paper considers the case where some subset of processes that do
not crash (not predefined in advance) are allowed not to participate in
a consensus instance. In this context Ω cannot be used to solve consen-
sus as it could elect as eventual leader a non-participating process. This
paper presents the weakest failure detector that allows correct processes
not to participate in a consensus instance.This failure detector, denoted
Ω∗, is a variant of Ω. The paper presents also an Ω∗-based consensus
algorithm for the asynchronous read/write model, in which any number
of processes may crash, and not all the correct processes are required to
participate.

Keywords: Agreement · Asynchronous system ·
Atomic read/write register · Concurrency · Consensus ·
Eventual leadership · Failure detector · Participating process ·
Process crash · Read/write shared memory · Snapshot object ·
Weakest information on failures

1 Introduction

Concurrent objects. When considering multiprocess programming, concurrent
objects are the objects that can be simultaneously accessed by several processes.
c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 419–430, 2019.
https://doi.org/10.1007/978-3-030-25636-4_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_33&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_33

420 C. Delporte-Gallet et al.

Examples of such objects are the classical objects encountered in sequential
computing (such as stacks, queues, graphs, sets, trees, etc.) now shared by sev-
eral processes to communicate and cooperate on a common goal, and objects
targeting new concurrency-related issues (such as rendezvous and non-blocking
atomic commitment objects). When there are no failures the implementation of
such objects are usually based on locks, which can be built from base read/write
or read/modify/write registers (see concurrency-related e.g., [16,19]).

In a failure-prone system (where a failure is a process crash), the situation is
different, and many concurrent objects (as simple as stacks and queues) can no
longer be implemented. This impossibility follows from the famous impossibilities
to build a consensus object in the presence of asynchrony and process crashes [10,
13] (pedagogical presentations of these results can be found in textbooks such
as [3,14,16,19]).

Impossibility Results and Failure Detectors. Several approaches have been
proposed and investigated to circumvent the previous impossibilities. One of
them, which is system-oriented, consists in enriching the system with failure-
related objects providing each process individually with information on failures.
This is the failure detector-based approach introduced in [6]. More precisely, a
failure detector provides each process with one or several read-only local vari-
ables, containing information on failures. According to the type and the quality
of this information, different failure detector classes can be defined. As a simple
example, the class of perfect failure detectors (denoted P) provides each process
pi with a read-only set suspectedi that (i) never contains a process identity
before it crashes, and (ii) eventually contains the identities of all the processes
that crashed. It is easy to see that a perfect failure detector allows a process that
does not crash not to remain blocked forever because another process is crashed.
(The power of perfect failure detectors was investigated in [11].)

A fundamental notion associated with failure detectors is the notion of weak-
est failure detector for a given concurrent object. Intuitively, “weakest failure
detector” means that, a failure detector D is the weakest failure detector to
implement an object O, if (1) D allows O to be implemented, and (2) any other
failure detector, that allows O to be implemented, provides each process with
enough information on failures that allow to build D.

This notion was introduced in [5], where it is shown that the “eventual leader”
failure detector (denoted Ω) is the weakest failure detector which allows consen-
sus to be implemented in an n-process asynchronous message-passing system
where up to t < n/2 processes may crash. Ω provides each process pi with a
read-only variable leaderi such that, after an arbitrarily long but finite time,
the variables leaderi of all the non-crashed processes contain the same process
identity, which is the identity of one of them. Before this time occurs, the vari-
ables leaderi can contain different, and varying with time, process identities.
(This result was extended in [7] in asynchronous message passing system prone
to any number t < n of process crashes and in [12] where it is shown that Ω is
the weakest failure detector that allows consensus to be implemented in asyn-
chronous read/write systems prone to any number t < n of process crashes.

Participant-Restricted Consensus and Its Weakest Failure Detector 421

Implementations of failure detectors such as Ω in asynchronous crash-prone
read/write systems can be found in [8,16]. These implementations rely on under-
lying behavioral assumptions, which means that the corresponding underlying
systems are not fully asynchronous).

Content of the Paper. When one want to solve consensus with the help of Ω,
it is implicitly assumed that all processes that do not crash participate in the
algorithm. This is due to the fact that Ω may elect any process that does not
crash as the eventual leader (a process that does not crash in a run is said to
be correct). So, if it elects a correct process but this process does not partici-
pate in the considered consensus instance, an Ω-based consensus algorithm may
never terminate. It follows that, in a model in which correct processes do not
participate Ω is too weak to solve consensus.

The system model considered consists of n asynchronous processes, which
communicate by reading and writing atomic read/write registers, and where
any number of processes may crash. In this setting, the paper considers consen-
sus instances where an a priori unknown subset of processes do not participate.
Hence the notion of participant-restricted consensus: possibly some processes
may crash, but it is possible that, while being correct, some others never partic-
ipate. In such a context the paper has the following contributions.

– It presents a failure detector (a variant of Ω denoted Ω∗) suited to participant-
restricted consensus.

– It then presents an Ω∗-based consensus algorithm, and shows that Ω∗ is the
weakest failure detector for participant-restricted consensus.

Roadmap. The paper is made up of 5 sections. Section 2 introduces the under-
lying computing model. Section 3 presents the failure detector Ω∗ and shows it
is the weakest to solve consensus in the presence of correct processes that do
not participate. Then Sect. 4 presents and proves correct an Ω∗-based consensus
algorithm. Finally, Sect. 5 concludes the paper. The presentation style used in
the paper is voluntarily informal.

2 Basic Computing Model and Consensus

2.1 Process, Communication, and Failure Model

The system is made up of a finite set Π of n sequential asynchronous processes
denoted p1, ..., pn. “Asynchronous” means that each process proceeds to its own
speed, which can vary with time and remains always unknown to processes.

The processes communicate by accessing a shared read/write memory made
up of atomic read/write registers. From 0 to (n− 1) processes can commit crash
failures. A process commits a crash when it halts prematurely. Before halting
(if it ever halts), a process executes correctly its algorithm. After it crashed,
it executes no more steps. Given an execution, a process that crashes in this
execution is said to be faulty. Otherwise, it is said to be correct in this execution.

422 C. Delporte-Gallet et al.

2.2 High Level Communication Abstraction

The algorithm described in Sect. 4 use high level communication objects,
namely snapshot object. Snapshot object can be implemented on top of asyn-
chronous read/write systems in which any number of processes may crash
(e.g., [1,2,16,19]). Hence, while they provide processes with a higher abstrac-
tion level than atomic read/write registers, snapshot objects do not provide a
stronger computational power than registers.

Snapshot Object. A snapshot object provides the processes with two operations
denoted write() and snapshot() [1,2]. Such an object can be seen as an array of
single-writer multi-reader atomic register SN [1..n] such that:

– When pi invokes the operation write(v), it writes v into SN [i]; and
– When pi invokes the operation snapshot(), it obtains the value of the array

SN [1..n] as if it read simultaneously and instantaneously all its entries.

Said another way, the operations write() and snapshot() are atomic (linearizable).

One-Shot Snapshot and Containment Property. A one-shot snapshot object SN
is such that each process can invoke SN .write() only once.

Let assume an one-shot snapshot object SN initialized to [⊥, · · · ,⊥], where
⊥ is a default value that cannot be written by a process. The arrays snap1 and
snap2 being the values returned by any two invocations of SN .snapshot(), let us
define snap1 ≤ snap2 as

∀ x ∈ {1, · · · , n} : (snap1[x] �= ⊥) ⇒ (snap2[x] = snap1[x]).

Any one-shot snapshot object SN has the following containment property, is
an immediate consequence of the fact that each process issues at most one write
operation, and the operations can be totally ordered (linearization):

(snap1 ≤ snap2) ∨ (snap2 ≤ snap1).

2.3 Consensus and Participant-Restricted Consensus

Consensus: Definition. Consensus is one of the most fundamental problems
of fault-tolerant distributed computing (see textbooks such as [3,14,16,17,19]
for more developments). More precisely, a consensus object is an one-shot object
which provides the processes with a single operation denoted propose(). This
operation takes a value as input parameter (called input or proposed value) and
returns a result (called decided value). A consensus object is defined by the
following properties.

– Validity: If a process decides a value v, this value was proposed by some
process.

– Agreement: No two processes decide different values.
– Termination: If a process invokes propose() and does not crash, it decides.

Participant-Restricted Consensus and Its Weakest Failure Detector 423

When a process pi invoke propose(v) we say “pi proposes v”. When this invoca-
tion terminates and returns value w, we say “pi decides w”.

It is well-known that consensus cannot be implemented in asynchronous
crash-prone systems in which the processes can communicate only through
atomic read/write registers [10,13]. Hence, it cannot be implemented by using
only objects (such as snapshot objects) which can be implemented with
read/write registers only.

Participant-Restricted Consensus. A process pi participates in a consen-
sus instance if it invokes the propose() (from an operational point of view, this
corresponds to the first shared memory access invoked by propose()).

The participant-restricted consensus is a consensus instance in which not
all the correct processes are required to participate. Hence, a non-participating
process can be correct or faulty. Moreover the subset of processes that participate
is not know in advance. But if a correct process takes one step in the execution
then it takes an infinity number of steps.

3 The Failure-Detectors Ω and Ω∗

3.1 The Eventual Leader Failure Detector Ω

The eventual leader failure detector, denoted Ω, was introduced in [5], where it
is shown to be the weakest failure detector to solve consensus in asynchronous
message-passing systems in which a majority of processes do not crash. This
failure detector provides each process pi with a read-only local variable leaderi,
which always contains a process identity, and is such that, after an unknown but
finite period, the variables leaderi of all the correct processes contain the same
identity and this identity is the identity of a correct process (this property is
called eventual leadership).

An Ω-based consensus algorithm for asynchronous read/write systems in
which any number of processes may crash is presented in [12], where it is
shown that Ω is the weakest failure detector to solve consensus in asynchronous
read/write systems in which any number of processes may crash.

Be the communication medium read/write registers or message-passing, the
Ω-based consensus algorithms implicitly assume that all the processes partici-
pate in the consensus. This is because the process that is eventually elected as
common leader by Ω can be any correct process. If this process does not par-
ticipate, consensus cannot be solved. It follows that Ω is not the weakest failure
detector to solve consensus if some correct processes do not participate.

3.2 The Eventual Leader Failure Detector Ω∗

The failure detector Ω∗ was introduced in [9,18]. It is used in [9] to boost live-
ness properties of concurrent objects, and in [18] to solve k-set agreement (a
generalization of consensus, which corresponds to the case k = 1).

424 C. Delporte-Gallet et al.

The Failure Detector Ω∗(X). Given any set X of processes, Ω∗(X) provides
each process pi with a read-only local variable leaderi(X) such that the fol-
lowing properties are satisfied.

– Validity: At any time, any local variable leaderi(X) contains the identity
of a process of X.

– Restricted eventual leadership: There is an unknown but finite time after
which the local variables leaderi(X) of the correct processes of X contain
the same process identity, which is the identity of a correct process of X.

Hence, given any non-empty set of processes X, there is an arbitrary period
during which the processes of X have arbitrary leaders, but this anarchic period
is finite. When this period terminates the correct processes of X agree on the
same leader, which is one of them. Let us remark that when X is the set of all
the processes, Ω∗(X) boils down to Ω.

The Failure Detector Ω∗. Considering all the non-empty subsets X ⊆ Π, Ω∗

is the failure detector made up of all the corresponding Ω∗(X).

Failure Detector Reductions. A failure detector D is weaker than a failure
detector D′ (denoted D
 D′) if there is a reduction algorithm from D′ to D,
i.e, an algorithm based on D′ whose outputs satisfy the properties of D. If D is
weaker than D′, any problem that can be solved with D can be solved with D′.
If D
 D′ but D′ �
 D, we said that D is strictly weaker than D′ (D ≺ D′).

The following theorem follows directly from the definition of �P (while Ω,
Ω∗, and �P belongs to the family of eventual failure detectors, �P is the only
of them that, after some finite time, behaves as the perfect failure detector P
–which was defined in the Introduction–).

Theorem 1. Ω ≺ Ω∗ ≺ �P ≺ P .

3.3 The Weakest Failure Detector for Participant-Restricted
Consensus

Theorem 2. Ω∗ is the weakest failure detector to implement participant-
restricted consensus in an asynchronous read/write system in which any number
of processes may crash.

Proof. The fact that Ω∗ allows participant-restricted consensus to be solved
follows from the existence of the algorithm described in Fig. 1.

The fact it is the weakest results from the following observation. Given an
execution, let part ⊆ Π be the set of the processes that participate in the
consensus (i.e., the set of processes that invoke the operation propose()). In such
an execution, it follows from its definition that Ω∗(part) behaves exactly as
Ω in a system of |part| processes. As Ω is the weakest failure detector to solve
consensus in a model in which all processes are assumed to participate, it follows
that Ω∗(part) is the weakest when only processes in part participate. �Theorem 2

Participant-Restricted Consensus and Its Weakest Failure Detector 425

4 An Ω∗-Based Participant-Restricted Consensus
Algorithm

This section presents an Ω∗-based consensus algorithm suited to the participat-
ing processes model. This algorithm is a round-based algorithm inspired from
message-passing algorithms such as the ones described in [4,15,17].

From a notational point of view, shared (snapshot) objects are denoted with
uppercase letters. Differently, local variables of each process are denoted with
lowercase letters sub-scripted with the index i of the corresponding process pi.

4.1 Shared Objects and Local Variables

The processes cooperate through a sequence of one-shot snapshot objects, each
associated with a specific round. Let SNAP [r] denote the snapshot object asso-
ciated with round r. The containment property of each of these objects is essen-
tial for the correctness of the algorithm. More precisely, the total order on the
operations on each one-shot snapshot object, can be seen as replacing both

– the majority of correct process requirement used in message-passing, and
– the requirement that all correct processes must participate.

Local variables at every process pi. Each process manages the following local
variables.

– ri: local round number.
– propi: current estimate of pi’s decision value.
– myli: current leader of pi.
– reporti: auxiliary variable containing a proposed value or the default value

“?” (as ⊥, “?” cannot be a proposed value).
– leaderpairi: pair made up of a proposed value and a participating process

identity.
– snapi[1..]: sequence of one-snapshot objects; snapi[r] is used at round r.
– seti[r]: set of non-⊥ values contained in snapi[r] (used only at even rounds).

In addition to these local variables, Ω∗ provides each process pi with the read-
only variables leaderi(X) where X is any non-empty subset of Π.

4.2 Description of the Algorithm

The algorithm is given in Fig. 1. It uses an internal operation myleader() which
returns the current Ω∗-based leader of the invoking processes. Operationally, the
invocation SNAP [1].snapshot() allows the invoking process pi to compute the
current set of participating processes, denoted parti. Then, myleader() returns
the output of the read only local variable leaderi(parti).

The algorithm consists of a sequence of phases, each composed of two con-
secutive rounds, an odd round followed by an even round.

426 C. Delporte-Gallet et al.

Fig. 1. Ω∗-based consensus (code for process pi)

First Round of a Phase. This (odd) round r can be seen as a filtering mech-
anism, whose aim is to reduce the set of proposed values, to a single value of the
default value “?”.

To this end, a process pi first computes its current leader mlyi, and writes
the pair 〈propi,mlyi〉 in SNAP [r] (line 3), and enters then in an internal loop
(lines 6-7). In this loop, pi reads SNAP [r], from which it extracts leaderpairi

(which is the pair 〈prop, leader〉 deposited by pi’current leader or ⊥ if this pair
has not yet been deposited, line 6). This is repeated until SNAP [r][myli] has
been written or pi’s current leader changed (predicates of line 7).

When pi exits the internal repeat loop, it checks if there is a process p� that is
the current leader of all the processes that (up to now) have written in SNAP [r]

Participant-Restricted Consensus and Its Weakest Failure Detector 427

(line 8). If this is the case, pi reports the proposal v of p� in reporti. The idea is
here to decide the value v. Otherwise, it writes “?” in reporti, whose meaning is
“during this phase, pi cannot help deciding”.

When the first (odd) round of a phase terminates (i.e., after line 9), the
following predicate is satisfied, where v is a proposed value:

PR1 ≡ ∀ i, j :
(
(reporti �=?) ∧ (reportj �=?)

) ⇒ (reporti = reportj = v �=?).

Second Round of a Phase. When a process pi enters this (even) round, it
writes it report in SNAP [r +1], reads its content, locally saves it in snapi[r +1],
and computes seti[r+1] (lines 10-13). When this is done, the following predicate
is satisfied:

PR2 ≡ ∀ i, j : seti[r + 1] = {v} �= {?} and setj [r + 1] = {?} are mutually exclusive.

Then, there are three cases according to the value of seti[r+1]. If seti[r+1] =
{v} �= {?}, pi decides v. If seti[r+1] = {v, ?}, pi adopts v as new proposed value
(propi). Otherwise, pi keeps its previous proposal. In the last two cases, pi starts
a new phase.

4.3 Proof of the Algorithm

Lemma 1. If, during an odd round r, pi and pj execute line 9, the predicate
PR1 ≡ ∀ i, j :

(
(reporti �=?) ∧ (reportj �=?)

) ⇒ (reporti = reportj = v �=?) is
satisfied, where v is the value defined at line 8.

Proof. Let r be an odd round executed by pi, at the end of which pi writes
v �=? in reporti (line 9). As process pi obtained v from the predicate of line 8,
it follows from the second part of this predicate that v is the value written in
SNAP [r] by p� at line 3. Moreover, as pi read atomically SNAP [r] for the last
time at line 6, SNAP [r] contained no pair with a leader different from p� (first
part of the predicate of line 8).

Let us assume, by contradiction, that a process pj writes v′ �= v, ? in reportj
at line 9. For the same reason as before, there is a process p�′ that wrote at line 3
the pair 〈v′,−〉 in the snapshot object SNAP [r], i.e., SNAP [r][�′] = 〈v′,−〉.

Let τi (resp., τj) be the time at which pi invoked SNAP [r].snapshot() for the
last (line 6). As the snapshot object SNAP [r] is atomic, and SNAP [r] did not
contain 〈v′,−〉 at time τi (otherwise, pi would not have written v in reporti), it
follows that τi < τj . It then follows, from the containment property of SNAP [r]
that, at time τj , SNAP [r] contains both the pair 〈v,−〉 and the pair the pair
〈v′,−〉. The predicate of line 8 is consequently not satisfied by the last value of
SNAP [r] read by pi. It follows that pj assigns the default value ⊥ to reportj at
line 9. A contradiction. �Lemma 1

Lemma 2. If, during an even round r, pi and pj execute line 13-17, it is not
possible to have seti[r] = {v}, where v �=? and setj [r] = {?}.

428 C. Delporte-Gallet et al.

Proof. Let us assume, by contradiction, that seti[r] = {v} (where v �=?) and
setj [r] = {?}. It follows from the atomicity of the read of SNAP [r] by pi at
line 10, and the definition of seti[r] at line 13, that, when it read it, SNAP [r]
contained at least one v, possibly ⊥, and no other values. This atomic read of
SNAP [r] occurred at time τi.

Similarly, it follows from the atomic read of SNAP [r] by pj at line 10 that,
when read by pj , SNAP [r] contained at least one ?, possibly ⊥, and no other
values. This atomic read of SNAP [r] occurred at time τi.

As the operation SNAP [r].snapshot() is atomic, we have either τi < τj or τj <
τi. Without loss of generality, assume τi < τj . Due to its containment property,
at time τj , SNAP [r] contains v, and we have setj [r] �= {?}. A contradiction.

�Lemma 2

Lemma 3. A decided value is a proposed value.

Proof. A process pi decides a value v when it executes line 14. This occurs
during an even round r during which seti[r] = {v}, where v �= ⊥, ? (lines 13-14).
The proof consists in showing that SNAP [r] contains only ⊥, “?”, or a proposed
value. This is an immediate consequence of Lemma 1; and the fact that, initially,
and then by induction on the updates of propi executed at line 15, any update
of propi assigns it a previous propj value. �Lemma 3

Lemma 4. No two processes decide different values.

Proof. Let r be the first (even) round at which a process pi decides, and v the
value it decides. Hence, we have seti[r] = {v} (line 14). Let pj be another process
that executes round r. There are two cases.

– pj decides during round r. Let us assume it decides v′. Hence, setj [r] = {v′}.
It then follows from the containment property of SNAP [r] that v = v′.

– pj does not decides during round r. If follows from Lemma 2, that setj [r] =
{v, ?}. Hence, pj adopts v as new proposed value. It follows that all the
processes pj that progress to the next round are such that propj [r] = v. Con-
sequently, v is the only value that remains in the execution, and consequently
no other value can be decided. �Lemma 4

Lemma 5. If a process that invokes propose() and does crash decides.

Proof. Let us assume by contradiction that no correct participating process
terminates. Let PART be the set of participating processes. Let τ denote a time
after which no more participating process crashes and Ω∗ returns forever the
same correct participating process identity (say �) to the participating processes.

Claim C. Assuming no correct participating process terminates, none of them
blocks forever in the internal repeat loop (lines 6-7).

Proof of the claim. Let r be the first round at which a correct participat-
ing process loops forever in the internal loop. This means that the predicate
(leaderpairi �= ⊥) ∨ (myli �= myleader()) (line 7) is never satisfied. From
time τ , the invocation of myleader() by pi (line 7) always returns the value
of leaderi(PART), that is �. There are two cases.

Participant-Restricted Consensus and Its Weakest Failure Detector 429

– If myli �= �, pi exits the internal loop (second predicate at line 7).
– If myli = �, the predicate leaderpairi �= ⊥ (first predicate at line 7) must be

satisfied for pi to exit the loop. But in this case, leaderpairi was previously
assigned the pair 〈propi,myli〉 = 〈propi, �〉 (line 6), which allows pi to exit
the loop.

It follows that r is not the smallest round during which a correct participating
process loops forever, contradicting the Claim assumption. End of the proof of
the claim.

Assuming no process decides, it follows from Claim C that the correct pro-
cesses of PART execute rounds forever. Moreover, after time τ they all have
the same correct participating leader p�. Let r be an odd round executed after
time τ by the correct processes of PART . During r, they all assign � to their
local variables myli, and each process pi writes the pair 〈propi, �〉 in SNAP [r].
Moreover, the predicate myli �= myleader() is never satisfied when they evaluate
the predicates of line 7.

Due the claim C, all processes progress, which means that, for pi, the pred-
icate leaderpairi �= ⊥ is eventually satisfied, which means that p� wrote a pair
〈v,−〉 in SNAP [r] when it executed line 3 of round r. It follows that, all pi are
then such that (i) snapi[r][�] = 〈v,−〉, and (ii) (snapi[r][j] �= ⊥) ⇒ (snapi[r][j] =
〈−, �〉). Consequently, they all report v (the current proposal of the leader) in
their local variables reporti. It then follows that they all decide during the next
even round r + 1. A contradiction. �Lemma 5

Theorem 3. The algorithm described in Fig. 1 implements a participant-
restricted consensus object in an asynchronous read/write model, in which any
number of processes may crash.

Proof. The proof follows from Lemma 3 (Validity), Lemma 4 (Agreement), and
Lemma 5 (Termination). �Theorem 3

5 Conclusion

This paper was on the implementation of consensus when a subset of correct
processes only participate in the consensus instance, hence the name participant-
restricted consensus.

After having introduced the failure detector Ω∗ (a straightforward gener-
alization of Ω), the paper has presented an Ω∗-based algorithm that solves
participant-restricted consensus, and shown that Ω∗ is the weakest failure detec-
tor to solve this problem.

Acknowledgments. This work was partially supported by the French ANR project
DESCARTES (16-CE40-0023-03) devoted to layered and modular structures in dis-
tributed computing. We want to thank the referees for their constructive comments.

430 C. Delporte-Gallet et al.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. JACM 40(4), 873–890 (1993)

2. Anderson, J.: Multi-writer composite registers. Distrib. Comput. 7(4), 175–195
(1994)

3. Attiya, H., Welch, J.L.: Distributed Computing: Fundamentals, Simulations and
Advanced Topics, 2nd edn. Wiley-Interscience, p. 414 (2004). ISBN 0-471-45324-2

4. Ben-Or, M.: Another advantage of free choice: completely asynchronous agreement
protocols. In: Proceedings of 2nd ACM Symposium on Principles of Distributed
Computing (PODC 1983), pp. 27–30. ACM Press (1983)

5. Chandra, T., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. J. ACM 43(4), 685–722 (1996)

6. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems.
J. ACM 43(2), 225–267 (1996)

7. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Tight failure detection bounds
on atomic object implementations. J. ACM 57(4), 32 (2010). Article 22

8. Fernández, A., Jiménez, E., Raynal, M., Trédan, G.: A timing assumption and two
t-resilient protocols for implementing an eventual leader service in asynchronous
shared-memory systems. Algorithmica 56(4), 550–576 (2010)

9. Guerraoui, R., Kapalka, M., Kuznetsov, P.: The weakest failure detectors to boost
obstruction-freedom. Distrib. Comput. 20(6), 415–433 (2008)

10. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

11. Hélary, J.-M., Hurfin, M., Mostéfaoui, A., Raynal, M., Tronel, F.: Computing global
functions in asynchronous distributed systems with perfect failure detectors. IEEE
Trans. Parallel Distrib. Syst. 11(9), 897–909 (2000)

12. Lo, W.-K., Hadzilacos, V.: Using failure detectors to solve consensus in asyn-
chronous shared-memory systems. In: Tel, G., Vitányi, P. (eds.) WDAG 1994.
LNCS, vol. 857, pp. 280–295. Springer, Heidelberg (1994). https://doi.org/10.1007/
BFb0020440

13. Loui, M., Abu-Amara, H.: Memory requirements for agreement among unreli-
able asynchronous processes. In: Preparata, F.P. (ed.) Advances in Computing
Research, vol. 4, pp. 163–183. JAI Press, Greenwich (1987)

14. Lynch, N.A.: Distributed Algorithms, p. 872. Morgan Kaufmann Pub.,
San Francisco (1996)

15. Mostéfaoui, A., Raynal, M.: Solving consensus using Chandra-Toueg’s unreliable
failure detectors: a general quorum-based approach. In: Jayanti, P. (ed.) DISC
1999. LNCS, vol. 1693, pp. 49–63. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48169-9 4

16. Raynal, M.: Concurrent Programming: Algorithms, Principles, and Foundations,
p. 515. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32027-9

17. Raynal, M.: Fault-Tolerant Message-Passing Distributed Systems: An Algorithmic
Approach, p. 492. Springer, Switzerland (2018). https://doi.org/10.1007/978-3-
319-94141-7

18. Raynal, M., Travers, C.: In search of the holy grail: looking for the weakest failure
detector for wait-free set agreement. In: Shvartsman, M.M.A.A. (ed.) OPODIS
2006. LNCS, vol. 4305, pp. 3–19. Springer, Heidelberg (2006). https://doi.org/10.
1007/11945529 2

19. Taubenfeld, G.: Synchronization Algorithms and Concurrent Programming, p. 423.
Upper Saddle River, Pearson Education/Prentice Hall (2006)

https://doi.org/10.1007/BFb0020440
https://doi.org/10.1007/BFb0020440
https://doi.org/10.1007/3-540-48169-9_4
https://doi.org/10.1007/3-540-48169-9_4
https://doi.org/10.1007/978-3-642-32027-9
https://doi.org/10.1007/978-3-319-94141-7
https://doi.org/10.1007/978-3-319-94141-7
https://doi.org/10.1007/11945529_2
https://doi.org/10.1007/11945529_2

Capture on Grids and Tori with Different
Numbers of Cops

Fabrizio Luccio(B) and Linda Pagli

Department of Informatics, University of Pisa, Pisa, Italy
luccio@di.unipi.it

Abstract. This paper is a contribution to the classical cops and rob-
ber problem on a graph, directed to two-dimensional grids and tori. We
apply some new concepts for solving the problem on grids and apply
these concepts to give a new algorithm for the capture on tori. Then we
consider using any number k of cops, give efficient algorithms for this
case yielding a capture time tk, and compute the minimum value of k
needed for any given capture time. We introduce the concept of work
wk = k · tk of an algorithm and study a possible speed-up using larger
teams of cops.

Keywords: Cops · Robber · Capture time · Grid · Tori · Work ·
Speed-up

1 Introduction

The problem of cops and robber on a graph has received considerable attention.
Started as a pure pursuit-evasion game it has shown interesting theoretical impli-
cations and importance in graph searching, network decontamination, motion
planning, security and environment control. As a consequence many versions of
the problem have been studied, typically depending on the type of graph, the
knowledge of the actors on the positions of the others, the type and speed of
movements allowed.

In the basic version of the problem cops and robber stay on the vertices of
a graph and can move to adjacent vertices or stay still, starting from initial
positions chosen first by the cops, then by the robber. The chase proceeds in
rounds, each of which is composed of a parallel move of the cops followed by
a move of the robber which is captured when a cop reaches its vertex and the
game terminates. We study the problem in this basic version if the graph is a
toroidal grid, also revisiting some known results on grids.

1.1 A Brief Analysis of the Literature

The cops and robber problem was defined by Quillot [19] and Nowakowski and
Winkler [18] as a pursuit-evasion game with one cop, to generate a complex
c© Springer Nature Switzerland AG 2019
V. Malyshkin (Ed.): PaCT 2019, LNCS 11657, pp. 431–444, 2019.
https://doi.org/10.1007/978-3-030-25636-4_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25636-4_34&domain=pdf
https://doi.org/10.1007/978-3-030-25636-4_34

432 F. Luccio and L. Pagli

theory in the following years. After studying graphs where the game can be
won by a single cop, the attention was directed to solve the problem on differ-
ent classes of graphs with a minimum number of cops, called the cop number.
A general survey in this direction can be found in the comprehensive book by
Bonato and Nowakowski [5] which brings together the main structural and algo-
rithmic results on the field known when the book appeared. In particular they
thoroughly discuss the still open Meyniel conjecture on the sufficiency of

√
n

cops for capturing the robber in an arbitrary graph of n vertices.
Many variants of the basic problem exist for general graphs or for particular

classes of graphs, such as considering more than one robber; or cops and robber
moving at different speeds; or a robber being invisible for some rounds; or, more
recently, the robber escaping surveillance if it maintains a given distance from
the cops [6].

With specific reference to two dimensional grids and toroidal grids studied
in this paper, the proof that the cop number is 2 in a two-dimensional grid was
originally given in [14], and the capture time was determined in [15]. The cop
number 3 for tori can be derived from the results of [17] where the robber capture
is studied for products of graphs. Several variations were proposed, in particular
if the visibility of each cop is limited to edges and vertices of its row or column.
In [7,16] the cops win if they can see the robber, and in [20] it is shown that the
problem with limited visibility has application in motion planning of multiple
robots. The study of [20] has been revisited in [8] and algorithms for the capture
using one, two or three cops having constant maximal speed are given. In [3] the
cop number is determined if the robber can move at arbitrary speed. A more
recent work [9] assumes that the initial positions of cops and robber are chosen
randomly. In [2] the study is extended to n-dimensional grids.

Other important problems with a relation with ours were born in the field
of distributed computing with moving agents, see the survey in [1]. Reachability
issues are also connected to thr cops and robber problem.

Finally we recall some studies on complexity issues for the cops and rob-
ber problem for arbitrary graphs. In [12] general results on the EXPTIME-
completeness of determining the cop number are given. In [10] it is proved that
computing such number is NP-hard. Changing the perspective, in [4] it was
shown that determining the number of cops needed for the capture in no more
than a given capture time is NP-hard.

1.2 Our Contribution

Among a wealth of possibilities, we limit our treatment to the standard game
on 2-dimensional grids starting from the results of [15], and then extend it to
toroidal grids. In Sect. 2 we introduce some new concepts on the capture valid
for general graphs, to be used in Sect. 3 for showing how the results of [15] can
be found with a new different approach. In Sect. 4 this approach is applied to
toroidal grids, for which we give efficient algorithms for the capture using three
cops, together with a new proof that these numbers are the minimal possible.
In Sect. 5 we treat the capture problem as a function of any (hence not necessarily
minimum) number of cops.

Capture on Grids and Tori with Different Numbers of Cops 433

For any given capture time t∗ we also determine the minimum number of
cops needed for the capture in at most t∗ rounds using our algorithms. In this
context we introduce the concept of work wk = k · tk of an algorithm run by k
cops in total time tk inherited from parallel processing, discussing the speed-up
that emerges using a larger number of cops.

2 Basic Model and Properties

In the basic model of the problem one or more cops and one robber are placed
on the vertices of an undirected and connected graph G = (V,E). The game
develops in consecutive rounds, each composed of a cops turn followed by a
robber turn. In the cops turn each cop may move to an adjacent vertex or stay
still. In the robber turn, the robber may move to an adjacent vertex or stay still.
The game is over when a cop reaches the vertex of the robber.

The initial positions of the cops are arbitrarily chosen, then the initial posi-
tion of the robber is chosen accordingly. The aim of the cops is capturing the
robber in a number of rounds as small as possible, called capture time t; while
the robber tries to escape the capture as long as possible. If needed two or more
cops can stay on the same vertex and move along the same edge. All agents
are aware all the time of the locations of the other agents. k, the cop number,
denotes the smallest number of cops needed to capture the robber.

We will direct our study to 2-dimensional grids or tori. However, first we
extend some known preliminary properties valid for all undirected and connected
graphs. For a vertex v ∈ V , let N(v) denote the set of neighbors of v, and let
N [v] = N(v) ∪ {v} denote the closed set of neighbors. We pose:

Definition 1. A siege S(v) of a vertex v is a minimum set of vertices containing
cops, such that at least one vertex u ∈ S(v) is in N(v), and

⋃
w∈S(v) N [w] ⊇

N(v). Among all the sieges of v, S̄(v) denotes one of these sets of minimal
cardinality.

Definition 1 depicts the situation shown in Fig. 1, where black and white
circles on the graph denote vertices occupied by the cops, or by the robber,
respectively. Let the robber be in v, and assume that the cops have just been
moved into the vertices of S(v). Now the robber has to complete the current
round, but whether it moves or stands still it will be captured in the next round.
In fact the condition

⋃
w∈S(v) N [w] ⊇ N(v) indicates that all the escape routes

for the robber have been cut. We immediately have:

Lemma 1. The robber is captured in round i if and only if at round i − 1 the
robber is in a vertex v and there is a siege S(v).

Lemma 2. Let v be a vertex for which S̄(v) has minimal cardinality among all
the vertices of the graph. Then k ≥ |S̄(v)|.

434 F. Luccio and L. Pagli

v

Fig. 1. A minimal siege S̄(v) with the robber (white circle) in v and three cops (black
circles) in S̄(v).

Based on the definition of siege we can also establish a lower bound on the
capture time t based on the initial positions of the cops and the moving strategy
of the robber. First we pose:

Definition 2. For a graph G = (V,E) and an integer e ≥ 4, an e-loop L is a
chordless cycle of e vertices where each vertex of V \ L is adjacent to at most
one vertex of L.

Note that a single cop would chase forever a robber that moves inside an
e-loop. We then have (for the proof see [13]):

Lemma 3. Let the initial positions of the k cops c1, c2, . . . , ck be established; let
v be the initial position of the robber; let d1 ≤ d2 ≤ · · · ≤ dk be the distances
(number of edges in the shortest paths) of c1, c2, . . . , ck from v; and let h be the
cardinality of a minimal siege for G, 2 ≤ h ≤ k. We have:

(i) t ≥ d1;
(ii) if v belongs to an e-loop, t ≥ dh − � e

2	.

3 Capture on Grids

An elegant approach to studying the capture on an m×n grid has been presented
in [15], where it is proved that two cops are needed, the capture time is t =
�m+n

2 	−1, and this result is optimum. We examine this problem under a different
viewpoint, as a basis for studying robber capture on tori.

Formally an m × n grid Gm,n is a graph whose vertices are arranged in m
rows and n columns, where each vertex vi,j , 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1 is
connected to the four vertices vi−1,j , vi+1,j , vi,j−1, vi,j+1, whenever these indices
stay inside the closed intervals [0,m − 1] and [0, n − 1] respectively. The vertices
are obviously divided into corner vertices, border vertices, and internal vertices,
having two, three, and four neighbors respectively.

If two vertices u,w of a grid are adjacent, the set N(u) ∩ N(w) is empty. If
w is at a distance two from u, the set N(u)∩N(w) contains one or two vertices.
This implies that the siege S(u) has cardinality three if u is an internal vertex,
or cardinality two if u is a border or corner vertex, see Fig. 2. Since the minimal
siege for a grid has cardinality two, the number of cops needed to capture the
robber is k ≥ 2 by Lemma 2, and in fact two cops suffice as already proved

Capture on Grids and Tori with Different Numbers of Cops 435

(a) (b) (c)

Fig. 2. Examples of a siege S(u) in a grid, if u is an internal vertex, a border vertex,
or a corner vertex.

in [15]. Lemma 1 shows that any algorithm using two cops must push the robber
to a border or to a corner vertex to establish a siege around it, as three cops
would be needed for a siege around an internal vertex. Furthermore, wherever
the cops are initially placed, there is a vertex v where the robber can be placed
that is at a distance d1 ≥ �m+n

2 	 − 1 from the closest cop, or at a distance
d2 ≥ �m+n

2 	 + 1 from the other cop. Since all the vertices of a grid belong to
an e-loop consisting of square cycles of e = 4 vertices we have � e

2	 = 2, hence
t ≥ �m+n

2 	−1 by Lemma 3 case (i) or (ii), that confirms the lower bound of [15].
Consider now the shadow cone of a cop c, namely a zone of the grid from

where the robber is impeded by c to escape. A similar concept was proposed
in [20] for different instances of the problem. Let c be in vertex u = vi,j and
consider two straight lines at ±45◦ through u that divide the grid into four
zones whose borders contain vertices placed on the two lines (or edges), and
vertices placed on the border of the grid, see Fig. 3. The shadow cone of c is the
zone containing the robber which is said to stay within the cone if it stays in the
cone but not on one of its edges.

x

y

c

Fig. 3. The shadow cone of cop c with the the robber within it (x), or in it (y).

W.l.o.g. let the shadow cone of c lay “below” the cop. Two cases may occur
to which the following Cone Rule applies, whose role is to keep the robber in
the cone, possibly moving the cone to compensate the robber’s movement (point
2.iv of the rule). We have (for the proof see [13]):

Lemma 4. By applying the Cone Rule, if the robber reaches an edge of the cone
it will never be able to reach the opposite edge.

Note that if at each round the robber stands on an edge of the cone, the cop
would not be able to reach the robber. The following algorithm GRID runs in
t = �m+n

2 	−1 rounds as for the algorithm of [15], but is useful for the discussion
that follows. We report only the cops’ moves, under the standard assumption

436 F. Luccio and L. Pagli

that the robber will properly move to delay capture. W.l.o.g. we let m ≤ n,
m1 = �m−1

2 	, m2 = �m−1
2 �, n1 = �n−1

2 	, n2 = �n−1
2 �.

CONE RULE

The cop c is in vertex vi,j , and the robber is in the shadow cone of c.

1. Let be the cop’s turn to move. (i) If the robber is within the cone (vertex x
in Figure 3) the cop moves “down” to vertex vi+1,j thereby reducing the size
of the cone while keeping the robber in it. (ii) If the robber is on an edge of
the cone (e.g. in vertex y) the cop does not move.

2. Let be the robber’s turn to move. (iii) If the robber remains in the cone the
subsequent cop’s move takes place as specified in points 1.i or 1.ii whichever
applies. (iv) If the robber moves out of the cone from one of its edges (e.g.
from vertex y, moving “up” or “to the right”), the cop moves across to vertex
vi,j+1 thereby shifting its shadow cone by one positions to keep the robber in
the cone.

algorithm GRID(m,n)

1. initial positions of the cops c1, c2:
for m even and n odd (e | o), or for e | e, place c1 in vm1,n1 and c2
in vm2,n1 ; for o | o, place c1 is in vm1−1,n1 and c2 is in vm1,n1 , see
figure 4.a; for o | e, place c1 is in vm1,n1 and c2 is in vm1,n2 ;

// assume to work on an o | o grid (the others are treated similarly)
// the shadow cones are chosen so that at least one of them will contain

the robber; assume that they lay below the cops as in Figure 4

initial position of the robber: any vertex not adjacent to a cop ;

2. repeat

2.1 if (the robber is in the two cones)

move both cops one step down

2.2 else (the robber is on the edge of a cone but outside the other
cone) or (the robber is outside the two cones)

move both cops horizontally in the direction of the robber ;

3. until the robber makes its last move inside a siege;
// the siege is established with the robber in a grid corner (figure 4.c)

4. capture the robber;

The cops are initially adjacent and their cones have a large portion in com-
mon, see Fig. 4. Then, up to the round in which the siege is established, they
move in parallel so their mutual positions do not change. At the beginning the
robber is in at least one of the shadow cones and is kept in this condition after
each cops’ move. Note that to delay the capture as much as possible the robber
must eventually escape from one side of a cone. By Lemma 4, however, it is
forced to escape always from the same side until it ends up in a siege, in a grid
corner. We state the following Theorem 1 (for the proof, based on the analysis
of algorithm GRID, see [13]).

Capture on Grids and Tori with Different Numbers of Cops 437

Theorem 1. In a grid Gm,n two cops can capture the robber in t = �m+n
2 	 − 1

rounds.

4 Capture on Tori

We now extend our study to 2-dimensional grids in the form of tori Tm,n with
closure in both dimensions. That is each vertex vi,0 is connected with vi,n−1,
0 ≤ i ≤ m − 1, and each vertex v0,j is connected with vm−1,j , 0 ≤ j ≤ n − 1.

(a)

c1
c2

(b)

c1
c2

(c)

c1
c2

z

y
x

Fig. 4. (a) Initial placement of the two cops for grids with m odd and n odd, denoted as
o | o. A similar procedure applies to grids e | o, o | e, e | e. (b) The cops push the robber
towards the border. Vertices x, y, z indicate particular positions of the robber. Vertices
x, y are in the two cones as in step 2.1 of GRID. Vertex z is in one of the two possible
conditions indicated in step 2.2. (c) The final siege.

From the known results on the cop number for the capture on products of
graphs proved in [17] we have that 3 cops are needed for tori. Based on Lemma
2 we confirm these numbers as lower bounds, give an algorithms for the capture
that uses 3 cops, and compare the time required with the lower bound given in
Lemma 3. Note that no explicit algorithm was given in [17] and the number of
moves was not computed.

The capture on tori Tm,n is more difficult as there are no borders where to
push the robber. All the vertices now admit a siege of cardinality 3, then at least
three cops are needed, see Fig. 2. The following capture algorithm TGRID calls
the procedures GUARD and CHASE and uses three cops c1, c2, c3 with shadow
cones γ1, γ2, γ3. Without loss of generality we define the algorithm for n ≥ m
(simply exchange rows with columns if m > n), and let m ≥ 6 and n ≥ 6 to
avoid trivial cases. Place all the cops c1, c2, c3 in row 0, and in columns 0, � 2n

3 �,
and �n

3 �, respectively (see Fig. 5). Note that initially there is a cop-free gap of
�n−3

3 � columns between c1 and c3, and a cop-free gap of �n−3
3 � or �n−3

3 	 columns
between c3 and c2 and between c2 and c1 around the torus. Starting with the
cops in any row will be the same because we work on a torus.

The strategy is to bring a cop to guard the robber r (procedure GUARD), that
is the cop will reach the column of r and then follow r if it moves horizontally,
so to build a virtual border if it moves horizontally, so to build a virtual border
along the row of the guard that prevents r from traversing it. When the guard
is established, the other cops start chasing r (procedure CHASE). Without loss
of generality we assume that the initial position of the robber is such that c2 or
c3 becomes the guard.

To understand how algorithm TGRID works observe the following:

438 F. Luccio and L. Pagli

– After step 1, the algorithm is divided in a phase GUARD to establish the
guard cg, with g=2 or g=3, followed by a phase CHASE of chasing.

algorithm TGRID(m,n)

1. initial positions of the cops c1, c2, c3:
place c1 in v0,0; place c2 in v0,� 2n

3 �; place c3 in v0,� n
3 �;

let γ1, γ2, γ3 be the shadow cones of c1, c2, c3;

initial position of the robber r: any vertex not adjacent to a cop;

// w.l.o.g let the column of r lie in the closed interval [�n
3
� : � 2n

3
�-1]

2. GUARD ;

// c2 and c3 move to establish the guard; upon exit cg is the guard
// and ch is in column �n

2
� to start chasing r together with c1,

// with g=2, h=3, or g=3, h=2

3. CHASE ;

// r is captured by c1, ch with an extension of algorithm SGRID
// cg is the guard

phase GUARD

1. let y0, y1, y2, y3 be the columns of r, c1, c2, c3 respectively;

g = 0;

// g=0, g=2, g=3 respectively denote that: the guard has not
// yet been established, or c2 is the guard, or c3 is the guard;

2. repeat // establishing the guard

2.1 if (y2 == y0) {g = 2; move c3 to the right (y3=y3 + 1);}
2.2 else if (y3 == y0) {g = 3; move c2 to the left (y2=y2 − 1);}
2.3 else {move c3 to the right; move c2 to the left;}
3. until g �= 0;

4. if (g == 2) h = 3 else h = 2 ; // now cg is the guard

5. repeat // cop ch reaches the initial chasing position

5.1. move cg horizontally to follow r;
5.2. move ch horizontally towards column �n

2
�;

6. until ch reaches column �n
2
�;

– GUARD is repeated until ch reaches the column �n
2 � to start the chase

together with c1.
– In the CHASE phase, the shadow cones γ1, γ2, γ3 lie below the cops c1, c2, c3.

As before the robber r must start on the edge of a cone to delay the capture
as much as possible, but now the best position for it is not below row �m

2 	
(Fig. 5), otherwise c1 and ch would chase it “from the bottom”.

Capture on Grids and Tori with Different Numbers of Cops 439

– When c1 and ch have established a pre-siege, r must move down. The novelty
here is that cg moves towards r in step 1.6, reducing its distance from r hence
the number of rounds for the capture.

phase CHASE

1. repeat // chasing r with cops c1 and ch, while cg is the guard

1.1 if (r is outside γ1 and γh) move c1 and ch horizontally towards r

1.2 else if (r is within γ1 and/or within γh) move c1 and ch down

1.3 else if (r is on an edge of γ1 (resp. γh)
and outside γh (rep. γ1))
move ch (resp. c1) horizontally towards that edge

1.4 else if (r is on an edge of γ1 and on an edge of γh)
{if (the cops are in different rows)

move down the cop in the highest row
else move down one of the cops};

1.5 if (cg and r are in different columns) move cg to the column of r

1.6 else if (c1, ch build a pre-siege)
move cg from its row z to row (z − 1) mod m;

1.7 move the robber in any way to try to escape from the cones ;

2. until the robber makes its last move inside a siege;
// the siege is established with the robber adjacent to cg

3. capture the robber;

We state the following Theorem 2 (for the proof, based on the analysis of
algorithm TGRID, see [13]).

Theorem 2. In a torus Tm,n three cops can capture the robber in time t such
that:

(i) 2n
3 + 5m

4 − 9
2 ≤ t ≤ 2n

3 + 5m
4 − 25

12 , for m ≤ �n
2 �;

(ii) 25n
24 + m

2 − 9
2 ≤ t ≤ 25n

24 + m
2 − 17

8 , for �n
2 � < m ≤ n.

For T7,15 of Fig. 5, case (i) of Theorem 2 applies and we have 11.75 < t <
16.67, that is 12 < t < 16 since t must be an integer. Computing t without
approximation, using the exact values shown in the proof of the theorem, we
have t1 = 2, t2 = 11, t3 = 1 hence t = 15. In the following Lemma 5 we establish
a lower bound on the capture time (for the proof see [13]).

Lemma 5. The capture time in a torus Tm,n is such that t ≥ �n
2 	 + �m

2 	 − 2.

Corollary 1. In Tm,n the ratio ρ between the upper and lower lower bound on
t is such that ρ → 4/3 for n/m → ∞, and ρ → ∼ 37/24 for n/m → 1.

Letting n < m, the new upper bounds for t are the ones of Theorem 2
exchanging n with m, while the lower bound of Lemma 5 holds unchanged. So
the first statement of Corollary 1 is rephrased as: ρ → 4/3 for m/n → ∞.

440 F. Luccio and L. Pagli

c2

r

c1
c3

Fig. 5. Chase with three cops in T7,15 up to a pre-siege, assuming that c3 becomes the
guard. The first two moves of c2, c3, and r take place in the GUARD phase, that ends
when c2 reaches column �n

2
� = 8.

5 Using Larger Teams of Cops

We now take a new approach to the problem, discussing how the capture time
decreases using an increasing number of cops, and conversely which is the mini-
mum number of cops needed to attain the capture within a given time. This has
a twofold purpose. On one hand, the possibility of employing the cops immedi-
ately in a new chase when they have completed their previous job. The second
purpose is completing a job within a required time when a smaller team of cops
cannot meet that deadline.

For this new approach we inherit the concept of speed-up introduced in par-
allel processing. The the work wk of a process carried out by k agents in time tk
is defined as wk = k · tk, and the speed-up between the actions of j over i < j
agents to catch the robber is defined as wi/wj . If the algorithms run by the two
teams of i and j agents are provably optimal, the speed-up is an important mea-
sure of the efficiency of parallelism. Referring to the cops and robber problem,
the speed-up is a measure of the gain obtained using an increasing number of
cops with the best available algorithms.

In algorithm GRID-K the robber may be captured on a left or on a right
corner of the grid by the leftmost or by the rightmost pair of cops; or it may be
captured on the top or on the bottom border by two cops, one from each pair,
in a vertex between the two pairs. We have (for the proof, based on the analysis
of algorithm GRID-K, see [13]):

5.1 k Cops on a Grid

Let us consider the case of k > 2 cops on a grid Gm,n, with m ≥ 4, n ≥ 4 to avoid
trivial cases. W.l.o.g let m ≤ n. The following algorithm GRID-K is designed as
an extension of algorithm GRID, taking k even. GRID-K is limited to its main
lines, however sufficient for computing the capture time.

The cops c1, . . . , ck start in h > 1 pairs of adjacent vertices, k = 2h, with the
cops of each pair placed in rows �m

2 	 − 1 and �m
2 	. The pairs are almost equally

spaced, with �n−h
h � and �n−h

h 	 cop-free columns between them except for the

Capture on Grids and Tori with Different Numbers of Cops 441

leftmost and the rightmost groups of columns of almost equal sizes whose sum
is again �n−h

h � or �n−h
h 	. See Fig. 6 for k = 4.

ALGORITHM GRID-K (SCHEMATIC)

Let the cones lay below the cops.

1. If the robber r is in both cones of a pair (vertex u of Fig. 6), all the cops move
vertically towards r

2. If r is in a column at the right (resp. left) of the rightmost (resp. leftmost)
pair of cops and is not within a cone of the pair (vertices x,w of the figure),
r is captured in a corner as in algorithm GRID.

3. If r is in a column between two pairs of cops and not within a cone (vertices
y, z of the figure), both pairs of cops move horizontally towards r until it ends
in a pair of cones. Then steps 1 and 3 are repeated until r is pushed in a siege
on the border with the concurrence of both pairs of cops.

c3
c4

w

x

c1
c2

uy

z

Fig. 6. Two pairs of cops in G4,13.

In algorithm GRID-K the robber may be captured on a left or on a right
corner of the grid by the leftmost or by the rightmost pair of cops; or it may be
captured on the top or on the bottom border by two cops, one from each pair,
in a vertex between the two pairs. We have (for the proof, based on the analysis
of algorithm GRID-K, see [13]):

Theorem 3. In a grid Gm,n, k = 2h cops, with h > 1, can capture the robber
in tk = �n−h

2h � + �m−2
2 � rounds.

For example in G4,13 of Fig. 6 we have t4 = � 13−2
4 � + � 4−2

2 � = 4, where the
longest capture takes place in the rightmost corner, or in the border between
the two pairs of cops.

We now compute the minimum number k of cops needed to attain the capture
within a given time t∗ using algorithm GRID-K, that is the best algorithm known
for this problem. From Theorem 3 we have tk ≥ n−h

2h + m−2
2 and we easily derive:

k ≥ 2n

2t∗ − m + 3
, valid for Gm,n. (1)

If we wish to attain the capture in t∗ = 3 rounds in G4,13, we must employ
k ≥ 26

6−4+3 = 5.2 cops, that is 3 pairs of cops are needed.

442 F. Luccio and L. Pagli

The speed-up for k = 2h cops versus 2 cops is given by:

w2

wk
= 2(�m + n

2
	 − 1)/2h(�n − h

2h
� + �m − 2

2
�).

For a grid G4,18 we have t = 10 with k = 2 and t4 = 5 with k = 4, so w2 = w4 =
20 and the speed-up is one in this case.

ALGORITHM TGRID-K (SCHEMATIC)

Let the robber start in the gap between ck and c2.

GUARD PHASE.
ck moves rightwards and c2, . . . , ck−1 move leftwards, concurrently in row 0, until
they reach their proper positions for the chase. ck eventually becomes the guard
and the phase ends when c2 reaches column � n

k−1
�.

CHASE PHASE.
1. While the robber r is within one or more cones, all the cops except ck move
down vertically. This eventually brings r on the edge of a cone. If needed, ck moves
horizontally to stay in the same column of r.

2.While r is in the gap between two consecutive cops (assume that they are c1 and
c2 for the longest chase), or on the edge of one or both cones, it is captured by
these two cops as in the CHASE phase of algorithm TGRID run by them together
with the guard ck.

5.2 k Cops on a Torus

Let us now consider k cops working on a torus Tm,n with k ≥ 4. W.l.o.g. let
n ≥ m, and let m ≥ 6, n ≥ 2k to avoid trivial cases. As before a schematic for-
mulation of TGRID-K, given as an immediate extension of TGRID, is sufficient
for computing the capture time. The k cops are placed in row 0 in the order
c1, ck, c2, c3, . . . , ck−1, with the first in column 0 and the others almost equally
spaced along the row, with a gap between two consecutive cops of �n−k

k � or
�n−k

k 	 cop-free columns according to the value of n. Assume that the larger gaps
occur between the cops at the beginning of the sequence, so ck and c2 respec-
tively start in columns �n

k � and 2�n
k �. W.l.o.g. assume that cop ck will be the

guard and the longest chase will be done by c1 and c2.
In the guard phase of algorithm TGRID-K the guard is established by ck

and the cops c1, . . . , ck−1 are brought to almost equally spaced positions in row
0 (the new gaps will be �n−(k−1)

k−1 � or �n−(k−1)
k−1) to be prepared for chasing the

robber (which, in the longest chase, will be captured by c1 and c2). For this
purpose c1, . . . , ck−1 move together rightwards for the needed number of steps,
depending on the sizes of the gaps between the cops. In any case c2 is placed in
column � n

k−1� with 2�n
k � − � n

k−1� moves, and no other cop makes more moves
in this phase of the algorithm. In the chase phase first the robber is confined in
a set of columns between two cops (say c1 and c2), then is chased as in TGRID
in this narrower section of the torus.

Capture on Grids and Tori with Different Numbers of Cops 443

For torus T7,15 with k = 4, the initial positions of the cops and the robber,
and their evolution according to algorithm TGRID-K, are indicated in Fig. 7.
The analysis of TGRID-K is an extension of the one of TGRID. We have (for
the proof, based on the analysis of algorithm TGRID-K, see [13]):

c2

r

c1
c4

c3

Fig. 7. Chase with four cops in T7,15 up to a pre-siege. The first three moves of c4, c2,
and r take place in the GUARD phase.

Theorem 4. In a torus Tm,n, k > 3 cops can capture the robber in time tk such
that:

(i) 2n
k + 5m

4 − 9
2 ≤ tk ≤ 2n

k + 5m
4 + k−1

k − 11
4 , for m ≤ � n

k−1�;
(ii) 2n

k + 3n
4(k−1) + m

2 − 9
2 ≤ tk < 2n

k + 3n
4(k−1) + m

2 − 1
2 , for � n

k−1� < m ≤ n.

The minimum number k of cops needed to attain the capture within a given
time t∗ using algorithm TGRID-K is derived in the two cases of Theorem 4 with
some further approximations. We have:

Case (i)
8n

4t∗ − 5m+ 18
≤ k <

8n
4t∗ − 5m+ 7

, for m ≤ � n

k − 1
� (2.1)

Case (ii)
11n

4t∗ − 2m+ 18
< k <

11n
4t∗ − 2m+ 2

+ 1 , for � n

k − 1
� < m ≤ n. (2.2)

For torus T7,15 of Fig. 7 case (ii) applies for any k > 3. Imposing a capture
time of at most t∗ = 12, from relation 2.2 we have 3.17 < k < 5.58, that is the
required number of cops is between 4 and 5. In fact we have already seen that
3 cops require 15 rounds and 4 cops require 11 rounds. This also implies that
w3 = 45 and w4 = 44, hence a slightly super-linear speed-up occurs.

6 Concluding Remarks

For extending the cops and robber problem to two-dimensional toroidal grids,
we have introduced the concepts of siege around the robber and of shadow-
cone of a cop to reconstruct known results on grids, and we have used these
tools for studying the new chase on tori. The behavior of our algorithm tends

444 F. Luccio and L. Pagli

to be optimal if the ratio between the numbers of rows and columns becomes
unbalanced. We have then considered using an arbitrary number of cops, giving
new algorithms for this case and computing the minimum number of cops needed
if the capture time is fixed. We have then inherited the concept of work from
parallel processing, for computing the speed-up obtained if the number of cops
increases, showing that even a super-linear speed-up may occur.

References

1. Alspach, B.: Searching and sweeping graphs a brief survey. Le Matematiche 59(I),
5–37 (2004)

2. Bhattacharya, S., Paul, G., Sanyal, S.: A cops and robber game in multidimensional
grids. Discrete Appl. Math. 158, 1745–1751 (2010)

3. Bhattacharya, S., Banerjee, A., Badyopadhay, S.: CORBA-based analysis of multi-
agent behavior. J. Comput. Sci. Technol. 20(1), 118–124 (2005). https://doi.org/
10.1007/s11390-005-0013-5

4. Blin, L., Fraignaud, P., Nisse, N., Vial, S.: Distributed chasing of network intruders.
Theoret. Comput. Sci. 399, 12–37 (2008)

5. Bonato, A., Nowakovski, R.: The Game of Cops and Robbers on Graphs. American
Mathematical Society, Rhode Island (2011)

6. Cohen, N., Hilaire, M., Martins, N.A., Nisse, N., Perennes, S.: Spy-game on graphs:
complexity and simple topologies. Theoret. Comput. Sci. 725, 1–15 (2018)

7. Dawes, R.: Some pursuit-evasion problems on grids. Inf. Process. Lett. 43, 241–247
(1992)

8. Dumitrescu, A., Kok, H., Suzuki, I., Żyliński, P.: Vision-based pursuit-evasion in a
grid. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 53–64. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-69903-3 7

9. Ellis, J., Warren, R.: Lower bounds on the pathwidth of some grid-like graphs.
Discrete Appl. Math. 156, 545–555 (2008)

10. Fomin, F., Golovach, P., Kratochvil, J., Nisse, N., Suchan, K.: Pursuing a fast
robber on a graph. Theoret. Comput. Sci. 411, 1167–1181 (2010)

11. Goldstein, F., Reingold, E.: The complexity of pursuing a graph. Theoret. Comput.
Sci. 143, 93–112 (1995)

12. Kinnersley, W.B.: Cops and Robbers is EXPTIME-complete. J. Comb. Theory,
Series B 111, 201–220 (2015)

13. Luccio, F., Pagli, L.: Cops and robber on grids and tori. arXiv:1708.08255v2 (2019).
https://arxiv.org/abs/1708.08255

14. Maamoun, M., Meyniel, H.: On a game of policemen and robber. Discrete Appl.
Math. 17, 18–44 (1988)

15. Mehrabian, A.: The capture time of grids. Discrete Math. 311, 102–105 (2011)
16. Neufeld, S.: A pursuit-evasion problem on a grid. Inf. Proc. Let. 58, 5–9 (1996)
17. Neufeld, S., Nowakovsky, R.J.: A game on cops and robbers played on products of

graphs. Discrete Math. 186, 253–268 (1998)
18. Nowakowski, R.J., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Math.

43, 253–259 (1983)
19. Quillot, A.: These di 3◦ cycle. Universit de Paris VI, 131–145 (1978)
20. Sugihara, K., Suzuki, I.: Optimal algorithm for a pursuit-evasion problem. SIAM

J. Discrete Math. 2, 126–143 (1989)

https://doi.org/10.1007/s11390-005-0013-5
https://doi.org/10.1007/s11390-005-0013-5
https://doi.org/10.1007/978-3-540-69903-3_7
http://arxiv.org/abs/1708.08255v2
https://arxiv.org/abs/1708.08255

Author Index

Abdullah, Monir 373
Abdullah, Zailani 263
Afanasyev, Ilya V. 125
Akhmed-Zaki, Darkhan 3
Al-Kohali, Ibrahim 373
Awang, W. S. W. 385

Belyaev, Nikolay 10
Berendeev, Evgeny 187
Berezovsky, Vladimir 221
Bessonov, Oleg 140
Biswas, Supratim 245
Bonin, Grégoire 400
Borisenko, Andrey 151
Butin, Kirill 221

Cazzaniga, Paolo 304
Chernykh, Igor 187
Cheverda, Vladimir 232

Delporte-Gallet, Carole 419
Demichev, Andrey 408
Deris, Mustafa Mat 263, 385
Désérable, Dominique 334
Dordopulo, Alexey I. 18

Efimova, Maria 289

Fahad, Muhammad 51
Fahringer, Thomas 107
Fauconnier, Hugues 419

Galimberti, Simone 304
Gergel, Victor 166
Gorgin, Saeid 273
Gorlatch, Sergei 151, 289
Gorodnichev, Maxim 321
Grishagin, Vladimir 166

Ha, Viet Hai 93
Hajibaba, Majid 273

Handaga, Bana 263
Hoffmann, Rolf 334

Israfilov, Ruslan 166
Isupov, Konstantin 179

Karavaev, Dmitry 187
Khachkova, Tatyana 232
Kholod, Ivan 289
Kireev, Sergey 10, 345
Kireeva, Anastasiya 345
Kobayashi, Hiroaki 125
Komatsu, Kazuhiko 125
Kryukov, Alexander 408
Kulikov, Igor 187
Kuvaev, Alexander 179

Lastovetsky, Alexey 51
Lebedev, Danil 3
Levchenko, Vadim 199
Levin, Ilya I. 18
Luccio, Fabrizio 431

Malyshkin, Victor 3
Mamat, Rabiei 263
Manumachu, Ravi Reddy 51
Mauri, Giancarlo 304
Mayer-Lindenberg, Fritz 32
Medvedev, Yuri 321
Melnikov, Andrey K. 18
Menshov, Igor 214
Meradji, Sofiane 140
Mostéfaoui, Achour 400

Nobile, Marco S. 304

Othman, Mohamed 373

Pagli, Linda 431
Patkar, Sachin B. 245
Pavlukhin, Pavel 214
Perepelkin, Vladislav 3

Perepelkina, Anastasia 199
Perrin, Matthieu 400
Pisarenko, Ivan V. 18
Popov, Aleksandr 221
Prikhod’ko, Nikolai 408
Protasov, Viktor 187

Rana, O. F. 385
Raynal, Michel 419
Renault, Éric 93
Reshetova, Galina 232
Rodionov, Andrey 221
Rose, A. N. M. 385
Rundo, Leonardo 304

Sabelfeld, Karl K. 345
Sala, Evis 304
Sapre, Shreeniwas N. 245
Senan, Norhalina 263
Seredyński, Franciszek 334
Shahid, Arsalan 51

Sharifi, Mohsen 273
Shorov, Andrey 289
Sukhoroslov, Oleg 67
Szaban, Miroslaw 360

Tangherloni, Andrea 304
Thoman, Peter 107
Toporkov, Victor 80
Toporkova, Anna 80
Tran, Van Long 93

Voevodin, Vadim V. 125
Voevodin, Vladimir V. 125

Woitek, Ramona 304

Yemelyanov, Dmitry 80

Zakirov, Andrey 199
Zangerl, Peter 107
Zarina, M. 385

446 Author Index

	Preface
	Organization
	Contents
	Programming Languages and Execution Environments
	Automated Construction of High Performance Distributed Programs in LuNA System
	Abstract
	1 Introduction
	2 The Fragmented Programming Technology Approach
	3 LuNA System
	4 Performance Evaluation
	5 Conclusion
	References

	LuNA-ICLU Compiler for Automated Generation of Iterative Fragmented Programs
	1 Introduction
	2 LuNA-ICLU System
	3 LuNA Language Extension
	4 System Algorithms in LuNA-ICLU System
	4.1 Control-Building Algorithm
	4.2 Arrays Distribution Algorithm
	4.3 Dynamic Load Balancing Algorithm

	5 Performance Evaluation
	6 Conclusion
	References

	Objects of Alternative Set Theory in Set@l Programming Language
	Abstract
	1 Introduction
	2 Approaches to Implementation of Jacobi Algorithm and Their Set-Theoretical Description
	3 Description of Jacobi Algorithm in Set@l Programming Language
	4 Conclusions
	References

	Mathematical Abstraction in a Simple Programming Tool for Parallel Embedded Systems
	Abstract
	1 Introduction
	2 Real Tuples with Invalid Entries
	3 Functions, Substitutions, Encoded Execution
	4 Parallelism, Communications and Timing
	5 Simulation and Execution on the PC, and Code Generation
	6 A Funny Example
	7 Summary and Conclusion
	References

	Improving the Accuracy of Energy Predictive Models for Multicore CPUs Using Additivity of Performance Monitoring Counters
	1 Introduction
	2 Terminologies
	3 Related Work
	4 Additivity of PMCs
	5 Experimental Results
	5.1 Class A: Improving Prediction Accuracy of Energy Predictive Models Using Additivity
	5.2 Class B: Impact of Additivity on the Prediction Accuracy of Application-specific Energy Predictive Models
	5.3 Class C: Comparison of the Impact of Energy Correlation and Additivity of PMCs on the Accuracy of Energy Predictive Models

	6 Conclusion
	References

	An Experimental Study of Data Transfer Strategies for Execution of Scientific Workflows
	1 Introduction
	2 Related Work
	3 Problem Description
	4 Data Transfer Strategies
	5 Experimental Study
	6 Conclusion and Future Work
	References

	Preference Based and Fair Resources Selection in Grid VOs
	Abstract
	1 Introduction and Related Works
	2 Job-Flow Scheduling Optimization
	2.1 Problem Statement
	2.2 Job-Flow Scheduling with Backfilling
	2.3 General Window Search Procedure
	2.4 Optimal Slot Subset Allocation
	2.5 Preference Based Resources Allocation

	3 Simulation Study
	3.1 Implementation and Simulation Details
	3.2 Simulation Results

	4 Conclusions and Future Work
	Acknowledgments
	References

	CAPE: A Checkpointing-Based Solution for OpenMP on Distributed-Memory Architectures
	1 Introduction
	2 Checkpoint Techniques
	2.1 Checkpointing
	2.2 Time-Stamp Incremental Checkpointing

	3 CAPE Based on TICKPT
	3.1 Abstract Model
	3.2 RC-Model Based CAPE Memory Model Implementation
	3.3 Execution Model
	3.4 Prototypes

	4 Experiments
	4.1 Benchmarks
	4.2 Experimental Environment
	4.3 Experimental Results

	5 Conclusion and Future Works
	References

	Compiler Generated Progress Estimation for OpenMP Programs
	1 Introduction
	2 Motivation and Related Work
	3 Method
	3.1 Compiler Component
	3.2 Compiler Backend
	3.3 Runtime System

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Benchmarks
	4.3 Estimation Overhead
	4.4 Estimation Accuracy

	5 Conclusion
	References

	Methods and Tools for Parallel Solution of Large-Scale Problems
	Analysis of Relationship Between SIMD-Processing Features Used in NVIDIA GPUs and NEC SX-Aurora TSUBASA Vector Processors
	1 Introduction
	2 Description of Target Architectures
	2.1 NEC SX-Aurora TSUBASA
	2.2 NVIDIA Pascal
	2.3 NVIDIA Volta

	3 Comparison of SIMD-Processing in NVIDIA GPUs and NEC SX-Aurora Architectures
	3.1 Overall System Structure Based on Using Co-processors
	3.2 Warp-Based GPU SIMD and SX-Aurora TSUBASA Vector SIMD
	3.3 Control-Flow Divergence
	3.4 Memory Divergence
	3.5 Utilisation of High-Bandwidth Memory
	3.6 Available Computational Parallelism
	3.7 Communication Principles in SX-Aurora Vector Cores and GPU Warps
	3.8 Processing Indirect Memory Accesses
	3.9 Processing Small Data Types
	3.10 Computational Scheduling and Execution

	4 Conclusions
	References

	Efficient Parallel Solvers for the FireStar3D Wildfire Numerical Simulation Model
	1 Introduction
	2 Mathematical Model
	3 Preconditioned Conjugate Gradient Method
	3.1 Explicit and Implicit Preconditioners
	3.2 Parallelization of the Implicit Preconditioner
	3.3 Modified ILU Preconditioner for Periodic Boundary Conditions

	4 Algebraic Multigrid
	4.1 Smoothers for Anisotropic Grids
	4.2 Parallelization of Smoothers

	5 Performance Comparison
	6 Conclusion
	References

	Optimizing a GPU-Parallelized Ant Colony Metaheuristic by Parameter Tuning
	1 Motivation and Related Work
	2 GPU-Algorithm for Designing Multi-product Plants
	3 ACO Parameter Tuning
	3.1 Choosing Parameters for Tuning
	3.2 Our Tuning Method: The Idea

	4 Experimental Evaluation
	5 Conclusion
	References

	Parallel Dimensionality Reduction for Multiextremal Optimization Problems
	1 Introduction
	2 Nested Optimization Scheme
	3 Parallel Adaptive Scheme
	4 Numerical Experiments
	5 Conclusion
	References

	Multiple-Precision Scaled Vector Addition on Graphics Processing Unit
	1 Introduction
	2 Related Works
	3 Data Representation
	4 Multiple-Precision GPU-Based WAXPBY
	5 Experimental Evaluation
	6 Conclusion
	References

	HydroBox3D: Parallel & Distributed Hydrodynamical Code for Numerical Simulation of Supernova Ia
	1 Introduction
	2 The Co-design of Numerical Model
	2.1 The Parallel & Distributed Computing
	2.2 The Numerical Model
	2.3 The Hydrodynamical Solver
	2.4 The Poisson Solver

	3 The Performance Analysis
	4 The Numerical Simulation
	5 Conclusion
	References

	GPU Implementation of ConeTorre Algorithm for Fluid Dynamics Simulation
	1 Introduction
	2 Numerical Method
	3 LRnLA Algorithm ConeTorre
	3.1 LRnLA Algorithm Construction
	3.2 ConeTorre

	4 Performance Analysis
	5 GPU Implementation Details
	5.1 Data Structure
	5.2 Cell Updates
	5.3 Data Communication
	5.4 Main Calculation Kernel
	5.5 Data Access
	5.6 Semaphore Implementation

	6 Performance Results
	7 Conclusion
	References

	GPU-Aware AMR on Octree-Based Grids
	1 Introduction
	2 Algorithms for Octree-Based Grids on GPU
	3 Implementation Details
	4 Results
	5 Conclusions
	References

	Performance and Energy Efficiency of Algorithms Used to Analyze Growing Synchrophasor Measurements
	Abstract
	1 Introduction
	2 Methods
	3 Parallelizing
	4 Results
	5 Discussion
	6 Conclusion
	Acknowledgements
	References

	A Comparison of MPI/OpenMP and Coarray Fortran for Digital Rock Physics Application
	1 Introduction
	2 Statement of the Problem
	3 Method
	4 The Algorithm for Determining the Components of the Tensor S
	4.1 Two-Dimensional Case
	4.2 Three-Dimensional Case

	5 Numerical Solution to a Static Elasticity Problem
	6 Parallel Implementation
	6.1 MPI/OpenMP Parallelization
	6.2 Parallelization Approach with Coarray Fortran

	7 Numerical Experiments
	7.1 Validation of the Numerical Algorithm
	7.2 Comparison of MPI, MPI+OpenMP and Coarray Fortran

	8 Conclusion
	9 Author's Contribution and Funding
	References

	Computational Issues in Construction of 4-D Projective Spaces with Perfect Access Patterns for Higher Primes
	1 Introduction
	2 Projective Spaces Based Interconnect Topologies
	3 Construction of Projective Space
	3.1 2-D Space Construction
	3.2 Construction of 4-D Projective Space - Permuting Orbit Representatives
	3.3 Construction of 4-D Projective Space - Using Non-singular Matrices
	3.4 Implementation

	4 Conclusions and Future Work
	References

	Data Processing
	Dimensional Reduction Using Conditional Entropy for Incomplete Information Systems
	Abstract
	1 Introduction
	2 Theoretical Background
	2.1 Information Systems
	2.2 Rough Set Theory
	2.3 The Similarity Precision for Limited Tolerance Relations

	3 Conditional Entropy for Incomplete Information Systems
	4 Conclusion
	Acknowledgment
	References

	Data-Parallel Computational Model for Next Generation Sequencing on Commodity Clusters
	Abstract
	1 Introduction
	2 Methods
	2.1 Parallel Computational Model
	2.2 Architecture and Implementation

	3 Results
	3.1 Query Sequences and Database Choices
	3.2 Cluster Testbed
	3.3 Validity Test
	3.4 Performance Test

	4 Discussion
	4.1 Load Balance
	4.2 Scalability

	5 Conclusion
	References

	Parallelization of Algorithms for Mining Data from Distributed Sources
	Abstract
	1 Introduction
	2 Our Approach: From Monolithic to Distributed MapReduce
	3 The Formalization of Our Approach
	3.1 Data Mining Algorithm as a Composition of Functions
	3.2 Illustration for the Naive Bayes Algorithm
	3.3 Functions for Parallelization
	3.4 Conditions for Parallel Execution of FMBs
	3.5 Parallelizing a Data Mining Algorithm for Distributed Data
	3.6 Illustration of Approach: The Naive Bayes Algorithm

	4 Experimental Evaluation
	5 Conclusion
	Acknowledgments
	References

	HaraliCU: GPU-Powered Haralick Feature Extraction on Medical Images Exploiting the Full Dynamics of Gray-Scale Levels
	1 Introduction
	2 Haralick Features
	2.1 GLCM: Basic Concepts
	2.2 Haralick Features in Medical Imaging

	3 State-of-the-Art
	4 The Proposed GPU-Accelerated Method
	5 Experimental Results
	5.1 Test Images
	5.2 Computational Results

	6 Conclusion
	References

	Cellular Automata
	A Web-Based Platform for Interactive Parameter Study of Large-Scale Lattice Gas Automata
	1 Introduction
	2 FHP-MP Cellular Automata
	2.1 Basic Definitions
	2.2 Behavior of the Cellular Automaton
	2.3 The Averaged Values

	3 Simulation of a Vortex Street
	3.1 The Cellular Automaton's Global State Construction
	3.2 Running the Simulator
	3.3 Post-processing
	3.4 Interpretation of Simulation Results

	4 HPC Community Cloud
	4.1 HPC2C Management Server
	4.2 Usage Scenarios
	4.3 GUI-Applications

	5 Implementation of a Web GUI for FHP-MP in HPC2C
	6 Conclusion
	References

	A Probabilistic Cellular Automata Rule Forming Domino Patterns
	1 Introduction
	2 Optimal Arrangements of Dominoes
	2.1 The Problem
	2.2 Domino Enumeration

	3 The Designed CA Rules
	3.1 The First Rule
	3.2 The Second, Improved Rule

	4 Simulation and Performance Evaluation
	4.1 Performance for Field Size 10 10
	4.2 Performance for Different Field Sizes
	4.3 Robustness

	5 Conclusion
	References

	Synchronous Multi-particle Cellular Automaton Model of Diffusion with Self-annihilation
	1 Introduction
	2 Cellular Automaton Model of Diffusion of Non-interacting Particles (CAM-DNIP)
	2.1 Description of CAM-DNIP
	2.2 Verification of CAM-DNIP
	2.3 Results of Simulation by CAM-DNIP

	3 Cellular Automaton Model of Diffusion with Self-annihilation (CAM-DSA)
	3.1 Description of CAM-DSA
	3.2 Verification of CAM-DSA
	3.3 Results of Simulation by CAM-DSA

	4 Performance of CAM-DSA Implementation
	4.1 Comparison of CAM-DSA and RWP Implementations
	4.2 Parallel Implementation of CAM-DSA

	5 Conclusion
	References

	Pseudorandom Number Generator Based on Totalistic Cellular Automaton
	1 Introduction
	2 Symmetric Key Cryptography and Vernam Cipher
	3 Totalistic Cellular Automata and Symmetric Cryptography
	4 A Concept of 1D TCA-Based PRNG
	5 Quality Tests for Number Generators
	5.1 The Entropy Test
	5.2 NIST SP 800-22
	5.3 Diehard - Marsaglia Battery of Tests

	6 Experimental Results
	6.1 Selection of Totalistic Rules for Application in TCA-Based PRNG
	6.2 Testing of Selected Totalistic Rules and Analysis of Their Cryptographical Quality

	7 Conclusions an Future Works
	References

	Distributed Algorithms
	An Adaptive Bully Algorithm for Leader Elections in Distributed Systems
	1 Introduction
	2 Related Works
	3 Bully Algorithm
	4 Adaptive Bully Algorithm
	4.1 Adaptive Bully Election Algorithm
	4.2 Notations and Definitions
	4.3 Cost Model

	5 Experimental Results and Discussions
	6 Conclusion
	References

	Affinity Replica Selection in Distributed Systems
	Abstract
	1 Introduction
	2 Related Work
	3 Affinity Replica Selection Mechanism
	3.1 The Affinity
	3.2 Access Frequency
	3.3 Replica Selection Decisions
	3.4 Access Frequency as Dominant Factor
	3.4.1 Case 1: Single-Query to Single-File
	3.4.2 Case 2: Single-Query to Multiple-Files

	3.5 Affinity Degree as Dominant Factors
	3.5.1 Case-1: Single Query - Single File
	3.5.2 Case 2: Single Query - Multi Files

	4 Results and Discussion
	5 Conclusion
	Acknowledgment
	References

	Does the Operational Model Capture Partition Tolerance in Distributed Systems?
	1 Introduction
	2 Lower Bound in the Operational Model
	3 Upper Bound in the Wait-Free Model
	4 Conclusion
	References

	Blockchain-Based Delegation of Rights in Distributed Computing Environment
	1 Introduction
	2 DCS Security Infrastructure
	2.1 Security Infrastructure with the Use of Proxy Certificates
	2.2 Intermediate Solution: Security Infrastructure Without Proxy Certificates and with Special Central Service

	3 Use of the Blockchain Technology for Providing Delegation of Rights in DCS
	3.1 Distributed Storage with Provenance Metadata Driven Data Management
	3.2 Blockchain-Based Delegation in Distributed Storages

	4 Conclusion
	References

	Participant-Restricted Consensus in Asynchronous Crash-Prone Read/Write Systems and Its Weakest Failure Detector
	1 Introduction
	2 Basic Computing Model and Consensus
	2.1 Process, Communication, and Failure Model
	2.2 High Level Communication Abstraction
	2.3 Consensus and Participant-Restricted Consensus

	3 The Failure-Detectors and *
	3.1 The Eventual Leader Failure Detector
	3.2 The Eventual Leader Failure Detector *
	3.3 The Weakest Failure Detector for Participant-Restricted Consensus

	4 An *-Based Participant-Restricted Consensus Algorithm
	4.1 Shared Objects and Local Variables
	4.2 Description of the Algorithm
	4.3 Proof of the Algorithm

	5 Conclusion
	References

	Capture on Grids and Tori with Different Numbers of Cops
	1 Introduction
	1.1 A Brief Analysis of the Literature
	1.2 Our Contribution

	2 Basic Model and Properties
	3 Capture on Grids
	4 Capture on Tori
	5 Using Larger Teams of Cops
	5.1 k Cops on a Grid
	5.2 k Cops on a Torus

	6 Concluding Remarks
	References

	Author Index

