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1 Introduction

Image inpainting is a long-standing problem in computer vision where the goal is to
recover the original image from the corrupted image. Filling the missing pixels so
that an observer who does not know the original image cannot detect the changes is
challenging since the inpainted regions must be realistic-looking and semantically
plausible. The completed regions should be consistent with the rest of the image for
pleasing results. This problem can be applied to a wide variety of problems, e.g.
photo editing to remove unwanted objects or 3D object generation from occluded
2D images.

While recent inpainting methods have proven to work well on various texture,
object, face and street-view databases, no work exclusively targets the in-the-
wild human body inpainting task, specifically in the generative neural networks
domain. For the case where missing human body parts are to be recovered, the
challenge arises from the complexity of the data itself: masked areas of humans
in various actions such as daily activities or sports are hard to predict since joints
can be in numerous positions which can only inferred from the semantics of the
image. Also, the existing generative methods are unable to learn the human figure
which is apparent from the fact that for fully masked cases e.g. a fully masked
hand, the system erases the hand and fills masked area with the background rather
that recovering the body part. The inability to infer that there is a human in the
background inhibits these methods from recovering the missing body parts. Another
challenge is that masks can be anywhere on the image: background pixels as well
as human areas should be inpainted successfully in equal measure (Fig. 1).
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Fig. 1 Given an image with arbitrary masks (a) which can be on the body parts or the background,
inpainting (b) is applied to recover the missing parts. Using this result with the recovered body
parts, pose information is extracted from a complete human figure. (c) OpenPose [6] library was
used for pose estimation

Previous inpainting approaches that are not deep learning based such as [5, 7],
calculate randomized patch correspondences and select the closest one to the
masked area in an iterative scheme. The downside of such methods is that it assumes
the the missing patch is present in the background and fills the hole accordingly,
unable to generate or hallucinate original objects which is necessary for the case of
fully masked.

More recent deep learning based approaches use generative models for the
inpainting task, with adversarial training [4] as the focus. As the pioneering work in
this area, [8] proposed Context Encoder, an encoder-decoder based network which
has an adversarial loss in addition to the regular L.2-loss inherent to autoencoder
type networks with success. In [9], a second discriminator was introduced to
the previous work, to stabilize the training and produce more-realistic results by
assessing the produced inpainted result both locally and globally. Inspired by these,
[10] implemented an attention module, to find and borrow features to fill the holes
from similar patches in the background (Fig. 2).

In this work, we apply Generative Adversarial Networks to the complex problem
of human body part inpainting with a two stage coarse-to-fine generator/completion
network and two critics: local and global. Experiments are done within Chalearn’s
Image Inpainting Challenge and we showcase the performance of GLS-GAN [16]
loss in the inpainting domain. Example results are shown in Fig. 3.
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Fig. 2 Network architecture used for inpainting which was proposed in [10]. A masked image
is given as input, an initial inpainting is done by the coarse network. The coarse result is then
fed to refinement network to produce the final inpainting result. Two critics, global and local
discriminators, assess the inpainting performance

2 Related Work

Natural image generation using generative networks has shown promising results.
Since the release of Goodfellow et al.’s paper [4] Generative Adversarial Networks
(GAN), numerous works on GAN stability have been proposed for the notoriously
unstable adversarial training, resulting in an abundance of network architectures,
losses, and regularization/normalization techniques as well as significant amount
of ‘tricks’[11]. One of the leading architectures is Deep Convolutional Generative
Adversarial Networks (DCGAN)[12], where the GAN idea was first combined
with convolutional layers with architectural constraints that are said to provide a
more stable training setting. Some loss functions that are said to stabilize training
are Wasserstein GANs (WGAN) [13], WGAN-GP[14] and least squares GAN
(LSGAN) [15]. A more recent work in the in this area is Generalized Loss Sensitive
GAN (GLSGAN [16]) which is a regularized model that can produce better samples
from a probability distribution and is shown to be a generalized family of functions
with WGAN and LSGAN as its special cases.

For the image inpainting task, older non-learning based methods try to recover
the missing information from the neighbouring areas of the mask via a distance field
[1, 2], but they fall short in performance when the masked area is relatively big and
texture variance is high. Patch-matching algorithms such as [5, 7], iteratively search
for the best corresponding patches in the foreground pixels to fill the corrupted
regions without producing semantically-accurate inpainting with high computa-
tional costs. Recently, deep learning based methods which use convolutional layers
have shown superior performance [3, 8, 10]. In [3], an encoder-decoder based
network was developed for filling irregular sized holes in images, as opposed to
rectangular masks seen in other works, e.g., [8—10]. This work also introduces a
novel partial convolution operation for the image completion where the information
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Fig. 3 Some results of the model on the test images are shown here. Masked images and their
corresponding completions are given. The inpainted areas consistent with rest of the image with
the body parts recovered adequately



Person Inpainting with Generative Adversarial Networks 105

for the masked areas are propagated only from existing pixels and excluding the
empty pixels, which enable the network to condition the output on “valid inputs”.

Generative networks, a sub-class of deep neural networks, are used quite often
in the image inpainting task [8§—10]. We build upon the recent work [10] and apply
it to the human body part recovery task with modifications to the loss function to
observe the effects on the problem.

3 Method

For the human-body inpainting task, we use a deep convolutional neural network
based architecture shown in Fig. 2. The inpainting network fills the missing pixels
in the input image, while two discriminator networks assess this output to determine
how consistent the completion is both locally and globally. Training the completion
network against the discriminators adversarially yields the final inpainting network
that is able to produce realistic results.

3.1 Network Architecture

Our approach based on the inpainting architecture from the paper [10]. The
inpainting network consists of two sub-networks: coarse inpainting network and
refinement network. The coarse network takes a masked image to produce an
initial completion which is then fed to the refinement network to obtain the final
inpainting results. Dilated convolutions are used to incorporate surrounding context
by expanding the receptive field of kernels which increases inpainting success. A
fully convolutional attention module is integrated to the refinement network which
learns to match the most relevant background patches to the patches in the masked
area. Both discriminators, global and local, are fully convolutional with Leaky
RELU as the activation function.

3.2 Loss Function

The network is trained with a combination of reconstruction losses and adversarial
loss which was used in previous inpainting works [8—10]. The coarse network in the
two-stage completion network is trained with L1 reconstruction loss only, whereas
the refinement network is trained with both an L1-loss as well as an adversarial loss.
This mixture of loss was well studied in recent inpainting literature and allows for a
stable the training process [9].

Unlike the previous approaches where either a DCGAN based loss [8, 9] or a
Wasserstein Loss (WGAN-GP) [10], we use the loss proposed in [16] for Loss-



106 G. E. Unli

sensitive GANs which was shown to outperform the original GAN[4] formulation
and exhibits comparable results compared to other existing GAN models in terms
of their ability to generalize to the underlying data distribution.

As oppose to the original GAN formulation where the goal of the discriminator
is to determine if the sample is real or fake, GLS-GAN learns a loss function Ly,
parametrized by 6, with the objective of measuring how different a fake sample
is from a real one. For the inpainting case, let x be the original image, X be the
corrupted/masked image and G, parametrized by ¢ is the generator/completion
network. Then, it is assumed that the loss for a real sample x, Ly (x), is lower than
the loss for a completed image G4 (X) by a margin:

Lo(x) = Lo(Gy(X)) — Alx, Gy(X))

where A(x, G4(x)) measures the difference between x and G4(X), calculated
simply as L1-distance.

After stating the main idea of GLS-GAN, the actual objectives functions of
the critic Ly and generator Gy which are trained alternately, are written below.
Following the notation from [16], for a fixed generator G,, the objective function
for the discriminator is given as follows: let Pyurq and Peompierea be the real and
completed image distributions. Then,

JO.0)= E_ Lo+ E_ C(Aw. Gy @)+Le)~Lo(Go. ()

X~ Piarq (x) - x~Piara(¥) .
*~Peompleted ¥)

in which the cost function C chosen as a leaky rectified linear function such that
Cy(a) = max(a,va) with slope v € (—inf, 1] and X is a positive balancing
parameter. The generator’s objective is minimized as shown below: for a fixed
discriminator Lg,,

HOw$)=  E_ Lo(Go@)

XNPmmplet('d (x)

4 Experiments

The performance of the inpainting network was evaluated on a dataset which was
released within “Chalearn Looking at People Satellite Workshop ECCV’18[17]
which contains humans in arbitrary poses. The quantitative and qualitative results
are given in the following sections.
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4.1 Datasets

Chalearn’s human inpainting dataset is created by collecting images from multiple
human activity and pose datasets and consists of 41,076 images which are aligned
to have a human at the center. This complex dataset contain humans in diverse poses
and environments, such as various sports activities both indoors and outdoors. We
use the given training/validation/test splits with percentages 70, 15, 15, respectively.
This dataset does not have a fixed data size, therefore, all images are resized to
256 x 256 for training purposes. No data augmentation was used.

Implementation Details In all our experiments, the pre-trained model of [10] on
Places2 [18] dataset is used and we finetune with Chalearn’s dataset. For training,
we use Adam optimizer[19] with 1 = 0.5 and B> = 0.9 and learning rate is le—4.
All models are with a batch size of 32 for 10K iterations (Fig. 4).

4.2 Qualitative Results

Since the challenge test dataset consists of images various resolutions as small as
71 x 154 and as big as 1819 x 1080 and different masks sizes, the qualitative results
of the model should be examined in three cases: small images, big images, and
mask size and placement. The results for the first case can be seen in Fig. 3 which
show adequate inpainting performance in recovering missing body-parts as well as
background patches. For the second case of big images, the performance degrades
visibly and the model generates unrealistic hallucinations which is to be expected
because the training of the inpainting network was done with images of resolution
256 x 256. An example inpainting for an image of resolution 1152 x 720 is shown in
Fig. 5 first row where the model hallucinates unrealistic patches. The last case for the
qualitative results explains the model’s behaviour for masks that cover a body part
fully, i.e. the head is completely masked. In this case, the model acts as an eraser,
fills the body part with background which is explained by the fact that training is
done without a body-part oriented approach. The model’s further performance on
test set images with various sizes can be seen in Fig. 4.

4.3 Quantitative Results

Table 1 shows the metrics used to evaluate inpainting performance in Chalearn’s
Image Inpainting Challenge and the corresponding results of the model we used.
The metrics are Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR),
Structural Dissimilarity Index (DSSIM) and Weakly Normalized Joint Distance
(WNIJD).
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Fig. 4 Comparison of results from the model on the test dataset for different image sizes. The
resolutions are as follows: ab:102 x 167, cd:258 x 413, ef:322 x 303, hg:448 x 720, ij: 1608 x 1080,
kl:1920 x 1080. As can be expected, the inpainting quality degrades as the resolution increases
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Fig. 5 Failure cases for our approach. In the first row, the model generates patches that blurry and
inconsistent with the rest of the image due to big image size. The second row image contains a
mask that fully covers the person’s leg which was erased in the completion

Table 1 The results obtained PSNR |21.8711893588

in Chalearn's challenge in MSE | 0.0158471260207

image inpainting which

earned first place DSSIM | 0.208834181594
WNID 0.148852195872

5 Conclusion and Future Work

In this work, we have addressed the complex task of human-body inpainting with
Generative Adversarial Networks. We have shown that using Generalized Loss
Sensitive GAN loss produces good results in the human inpainting problem with
respect to several quantitative measures. For future work, we plan to propose human-
body specific approaches for person inpainting task which can also work in higher
resolution images.
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