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1 Introduction

Videos often have captions embedded into them such that one is unable to turn them
off when not required. Although it is more comfortable viewing the video without
the captions, there is hardly any way out. Video decaptioning aims to solve the
task of replacing the text overlays in frames with semantic coherent regions. In this
work, we explore the application of state-of-the-art computer vision algorithms to
address this challenge in an automated fashion. The task requires first finding the
region with captions and then predicting the high-level context, hence making it
significantly more difficult when compared to classical image or video inpainting
methods. However, decaptioning becomes increasingly more difficult, when the
subtitles cover most of the parts of the frame and are of different size, font and
colours.

The authors Sayan Sinha and Arnav Kumar Jain contributed equally.

S. Mundra (<)

Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur,
India

e-mail: coolshivansh8 @iitkgp.ac.in

A. K. Jain
Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, India

S. Sinha

Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur,
Kharagpur, India

e-mail: sayan.sinha@iitkgp.ac.in

© Springer Nature Switzerland AG 2019 77
S. Escalera et al. (eds.), Inpainting and Denoising Challenges,

The Springer Series on Challenges in Machine Learning,
https://doi.org/10.1007/978-3-030-25614-2_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25614-2_6&domain=pdf
mailto:coolshivansh8@iitkgp.ac.in
mailto:sayan.sinha@iitkgp.ac.in
https://doi.org/10.1007/978-3-030-25614-2_6

78 S. Mundra et al.

Video decaptioning can be seen analogous to the task of image inpainting. Image
inpainting is referred to filling of missing holes with pixel values harmonious with
the context. The major difference between the two tasks is that for decaptioning
there is an additional work to first find the textual region. For text detection, methods
are typically either connected component-based (CC-based) [1] or texture based
[2, 3]. The CC-based methods can extract text efficiently, but have difficulties when
text touches itself or other graphical objects, which may happen in digital video
since text is often embedded in complex backgrounds. Jain and Bhattacharjee [3]
presents a text extraction system that treats text as a distinctive texture and uses
unsupervised clustering to classify each pixel as text or non-text. However, in video
frames, natural scenes like the leaves of a tree or grass in a field have textures similar
to text, and in the feature space, text and non text often overlap. Thus, traditional
inpainting methods may not work well as finding the text regions are difficult.
Moreover, the traditional methods often fail in capturing the high level semantics
of the scene. This is because they tend to find matching patches from unmasked
regions.

Recently, Convolutional Neural Networks [4] have advanced the performance
of various tasks in Computer Vision [5-7]. Initial deep learning methods, used
L5 loss on the reconstructed pixel values. The models trained on Mean Squared
Error (MSE) loss are unable to capture high texture details of the scene, as they are
trained on pixel-wise differences. Also, the reconstructions are found to be blurry.
To solve this, adversarial loss [5, 6] have been widely used, where a discriminator is
trained simultaneously to distinguish between real and inpainted images, aiding in
sharper outputs. Also, Johnson et al.[8] took euclidean distance between the features
extracted from a VGG19 [9] network to yield perceptually better results.

In this work, we propose an end-to-end training method for the purpose of video
decaptioning. Our purpose of video decaptioning has been broken down such that
we try to focus on the regeneration of the entire image from the input, sans the
captions. An encoder-decoder network suits our case the most. The main idea lies
in the fact that an encoder-decoder model supplements the common contracting
network by successive layers, where pooling operators are replaced by up-sampling
operators. Hence, these layers help in increasing the resolution. We use an U-Net
based architecture, which have the following advantages: (1) U-net is symmetric,
(2) different image sizes can be used as input because there is no dense layer, and
(3) the skip connections help to combine general information with localization and
context.

Notably, Convolutional network based methods are found to create boundary arti-
facts, distorted structures and blurry structures inconsistent with surrounding areas.
It is likely due to the ineffectiveness of CNNs in modelling long-term correlations
between distant contextual information and the hole regions. For example, to allow
a pixel being influenced by the content of 64 pixels away, it requires at least 6 layers
of 3 (E 3 convolutions with dilation factor of 2 or equivalent factor [10, 11]. To tackle
the issue of recovering complex image semantics and structures, we propose to use
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dilated convolutions in the encoder. Dilated Convolutions expand the receptive fields
of the convolutions by dilating the convolution kernels. The architecture is based on
the fact that dilated convolutions support the exponential expansion of the receptive
field without loss of resolution or coverage. Moreover, for perceptually pleasing
outputs, we further trained our model to minimize distance between the features
from a pre-trained VGG19 [9] network.

2 Related Work

Initially, major works of inpainting could be categorized into three verticals. In the
works of Hirani and Totsuka [12], frequency and spatial domain information are
blended to fill in a given region with a selected texture. Dis occlusion was another
popular method introduced by Nitzberg et al. [13]. It can be seen that non-learning
approaches to image inpainting rely on propagating appearance information from
neighbouring pixels to the target region. They are specific to image sets and can be
used to fill in only small gaps.

Computer vision has made tremendous progress on semantic image understand-
ing tasks such as classification [14], video summarization [7, 15] and segmentation
[16] in the past decade. Conventional Sparse coding methods [17] were sensitive to
image orientation and environment and couldn’t be generalized into cross domain
works. Recently, Convolutional Neural Networks (CNNs), have greatly advanced
the performance in these tasks. The success of such models on image classification
paved the way to tackle harder problems, including unsupervised understanding and
generation of natural images. More recent methods typically initialize the gaps with
values such as a constant or mean pixel value after which the resultant is passed
through a deep CNN network. In our paper, such an effort is not required as the
captions are atop the image and are to be fed directly. Pathak et al. [5] first introduced
the concept of image inpainting using an encoder-decoder network with adversarial
losses.

Recent works based on Generative Adversarial Networks (GANs) [18], like [19,
20] have shown convincing results in patch based inpainting. They used GANs in
two contexts, one global discriminator and the other one is a local discriminator.
But GAN based methods often fail when it comes to inpainting on dataset with
diverse classes. Hence these methods couldn’t be directly applied in the task of
decaptioning. However, Ledig et al. [6] showed that GAN can produce more visually
sharper and pleasing images where they used the loss of discriminator to produce
sharper results.

Xie et al. [21] has shown that Auto Encoder-Decoder based methods have
produced good results in image denoising and image inpainting tasks. Also, this
work has shown that the shape of the mask (a region that needs to inpainted) is not
required to be given as input to the model. They directly take the corrupted frame
and output the reconstructed images. We follow this paradigm as the region with
subtitles can occupy different areas in frames.
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Feature Learning methods such as [5] have shown good results on high-
resolution images where a large section of an image was needed to be inpainted.
They have trained on reconstruction and adversarial losses which resulted in real
looking images and closer to manually inpainted image. One good advantage of
learning features is to understand it’s semantics which is essential for unsupervised
inpainting.

3 Proposed Method

3.1 Architecture
3.1.1 UNet

U-net [16] is a popular encoder-decoder network, which were first used for the task
of bio medical image segmentation. Since then, they have produced state-of-the-art
in a wide variety of computer vision tasks like image super-resolution, semantic
segmentation and image inpainting. In our case, the encoder takes the captioned
frame as input and converts it into a feature representation, which is feed-forwarded
through the decoder to get the decaptioned frame.

The input frame is passed through blocks of convolutions followed by maxpool
downsampling layers to encode the input image into a latent representation. The
purpose of contraction is to capture the context in the input frame. Our encoder
is inspired from pix2pix [10] which were used for the task of image-to-image
translation. The network consists of five convolutional blocks and each max pooling
layer reduces the spatial dimension by two with an increase in the channel length
by the same factor. The part of the network between the encoder and decoder is
called bottleneck layer. This layer consists of two convolutional layers with batch
normalization [22] and dropout.

The latent representation is then passed through the decoder to get the output
frame. The decoder network consists of regular convolution operations clubbed
with up sampling and concatenation. Up sampling, also called as convolutions
with fractional strides, results in higher resolution at each step. There are skip-
connections between the symmetrical layers of encoder and decoder i.e. the high
resolution features from encoder are concatenated with the up sampled features in
decoder. This encourages precise localization combined with contextual information
aiding in better reconstructions.

3.1.2 Dilated Convolutions

Dilated convolutions, also known as atrous convolutions, have been explored
widely in the computer vision tasks like semantic segmentation, object detection
and machine translation. The main idea is to improve the receptive field of the
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convolutions. This is achieved by exponentially expanding the receptive field
without losing resolution as well as coverage i.e. kernel weights are expanded by
a dilation factor. An increase in dilation factor makes the kernel more sparse with
an increase in the kernel size. Dilated convolutions can be defined as,

(Fx k)(p)= Y F()k(), (1)

s+t=p

where #; is referred as 1-dilated convolution. Moreover, we define dilated convolu-
tions to have exponentially expanding receptive field, as discussed in the original
paper. In our case, we replaced the convolution layers in encoder with dilated
convolutions.

3.1.3 Residual Skip Connections

Deep networks are often difficult to train. In fact, a deeper network might not
perform better than its shallower counterpart. Gradients get stalled, and the error
is larger. In order to make it easy to train such networks and to get over the issue of
vanishing gradient, we incorporated residual skip connections [23]. In our case, we
apply residual skip connections in the bottleneck layer.

3.2 Loss Functions

3.2.1 Mean Squared Error Loss

Pixel-wise Mean Squared Error (MSE) loss, also called as £ is the most widely
used optimization target in various similar tasks like image inpainting [5] and image

super resolution [6]. The L, helps to capture the structure and coherence of the
context frame. It is calculated as:

LA
- d _ 7. 2
buse = g 2L D UG = 1)’ )
i=1 j=1
where 9 denotes the decaptioned output from the model, W and H denote the
dimensions of the image.

3.2.2 VGG Based Perceptual Loss

Networks trained with £; result in overly smooth reconstructions and have visually
unpleasing high frequency content. Perceptual loss is a feature reconstruction loss
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defined by deep neural networks [8]. It guides neural models to generate images
visually similar to their corresponding targets (e.g., ground truth) and has been
widely utilized in style transfer [24]. We used VGG19 [9] network to extract middle-
level features of both generated frame and ground truth frame and then took pixel
wise reconstruction loss on both of them. The perceptual loss is defined as

veeyij 1 Coopd g 2
L = DO @i (L) = i i), 3)
? x=1y=1
where ¢; ; indicates the feature map obtained by the jth convolution (after
activation) before the ith max pooling layer within the VGG19 network. W; ; and
H; ; denote the width and height of the feature maps outputs (Figs. 1, 2 and 3).
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Fig. 3 Left: test case 1 and right: test case 2

4 Results

As explained above, our model was trained on MSE (pixel wise reconstruction)
Loss and fine tuned our model on VGG feature loss. In this training procedure,
we used Adam Optimizer [25] while decreasing learning rate by a factor of 10 in
fine tuning. As you can see in above images from the test case, there is very little
difference visible between images generated by adding dilated convolution layers
because the resolution of the data set provided in the challenge, but we can see
difference in the losses computed. We have kept residual connections in both the
part of our experimentation. In our testing pipeline, we used a pre-trained model
provided by organizers as a part of the baseline. First, the image was divided into
16 equal parts, and each part was fed to a pretrained model to check if there was
text overlay in the corresponding image. If there was text overlay in the part, it was
replaced by a similar part from the predicted image from the model. If the score of
text classification was below a threshold score, it was replaced by the corresponding
region from the input image. This process was similar to Poisson Blending [26]. Our
method took lesser time to reach optimal minimal compared to GAN based methods
as there were no generator and discriminator trying to optimize simultaneously by
min-max strategy. Also, our solution doesn’t require a binary mask for inpainting
hence decreasing inference time. Our method took approximately 5s to generate a
decaptioned video.
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Table 1 Results

Method MSE loss PSNR loss DSSIM loss
Baseline 0.0022 30.1856 0.0613
U-Net without dilation 0.014 32.850 0.0511
U-Net with dilations 0.0012 32.1713 0.0482

As this was the first attempt in the field of video decaptioning, there weren’t many
baselines we could refer to. Hence we had shown a comparison with Baseline and
our model without dilated convolution. With this approach we came 2nd in training
phase and 4th in test phase of Chalearn Video Decaptioning Challenge (Fig. 4 and
Table 1).

5 Conclusion

From our experience in this competition, we came to following conclusion in the
task of Video Decaptioning and related problem statements:

* Simple Auto Encoder-Decoder based solution is not good when it comes to noise
removal from a large section as the model is generating the image from just
encoded latent representation.

* Hence we need a model which have incorporated image semantics in the part
of encoding and can be used while generating a decaptioned image. U-Net
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based model was proven a good choice in the related field as it included skip
connections between symmetric layers in the encoder-decoder part.

As we needed to capture end to end semantics in the image to get the global fea-
ture, we used stacked dilated convolution layer to incorporate global semantics
in the encoding part. Here noise removal was to be done considering generated
image was supposed to look real and dilated convolution layers were useful to
that.

Simple Encoder Decoder architecture generally decrease the sharpness and
resolution in the image generated; residual connections were added to improve
sharpness. Although the advantage of adding residual connection was not adding
significant difference, but it could increase resolution and the visual appearance
by a significant margin when it comes to high-resolution data set.

We did not extract explicit mask for the region of text removal as the encoder-
decoder model implicitly learns it.

We didn’t explore the effect of temporal dimension in the process of video
denoising but incorporating temporal dimension should help.
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