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1 Introduction

Image inpainting tackles the problem of filling missing or replacing damaged parts
of an image. For a large extent of the missing region reconstructing the original
content is almost impossible. Therefore, the goal is to inpaint new parts that are
visually appealing, such that they fit the surrounding content and that the whole
image looks realistic.

Image inpainting is an important problem in digital image processing [10]. It
allows to restore images that are damaged by scratches, holes or small artifacts.
Furthermore, it enables to erase overlaid text or logos from the image. Similarly,
image inpainting allows filling gaps caused by object removal [5] during image
editing. Other possible applications are censoring [11, 12] and decensoring. Such as
restoring blurred faces or license numbers or decensoring images by inpainting fake
but visually appealing faces or license numbers instead of blurring them. Further-
more, inpainting can replace image parts that were lost during data transmission.
Hence, typical patterns to be restored are: many fine grained structures (lost during
transmission or overlaid text) and small to large polygons covering large parts of the
image (removing objects, logos or decensoring and censoring images).

Image inpainting is an ill-posed problem, such that no unique solution exists.
Therefore, it requires priors that depend on a consensus assumption that surrounding
regions share the same statistic of properties than the gap. Enforcing these priors
during restoration aims for inpainting regions that are conclusive and visually
appealing.
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Filling small artifacts such as holes, scratches or overlaid text is less chal-
lenging because the extent of the gap is small and already simple properties
lead to sufficient information to plausibly fill the holes. Typical priors base upon
smoothness assumptions using the total variation in spatial domain or sparsity
in curvelet or wavelet domain [3, 4, 18, 21]. Patch Match (PM) [2] searches for
patches with similar properties in the image, that enable inpainting the missing
parts. Dictionary learning, first trains statistically representative patterns on a dataset
containing similar images, such that the clean pixels and the learned elements allow
reconstructing the image [17, 24]. Although dictionary learning based methods lead
to higher quality restorations than using sparsity or smoothness, they fail in filling
missing parts with a significantly larger extent. Instead of filling small holes, such
large gaps lead to more difficult tasks of semantic inpainting. The goal is predicting
high quality content of a large region based on the surrounding pixels and the
global scene that may be far from the lost original content but looks plausible and
appealing.

Most methods that effectively tackle such tasks require large problem specific
datasets, use adversarial training and generative models [6, 13, 19, 23], such as
Variational Auto Encoderss (VAEs) [15] or Generative Adversarial Networkss
(GANs) [7]. Such generative models approximate the data distribution and allow
to produce synthetic images at a high visual quality. Thus, the key idea is using such
models to generate images that achieve a consensus between the clean part of the
damaged and the synthetic image and inpaint the missing regions. Pathak et al. [19]
use a VAE for image inpainting. The encoder maps a damaged image to the latent
space and the decoder generates a synthetic image from the latent representation.
During training a consensus loss ensures that the clean parts of the damaged and
synthetic images agree and an adversarial loss ensures that the restored image have
a high quality. This method respects the hole patterns only during training and not
at inference. Hence, the visual quality of the reconstructions is less convincing.

Conversely, Yeh et al. use a GAN for image inpainting. Their method requires
solving a minimization problem to find the corresponding latent representation
instead of predicting it with an encoder. An image specific loss based on the clean
pixels in the vicinity of holes and a dataset specific perceptual loss, lead to high
quality image inpainting. After inpainting, Poisson blending flawlessly fuses the
inpainted and clean pieces to the final image.

1.1 Contributions

In this paper we propose an new method for image inpainting using a refiner based
on a GAN. Figure 1 shows a sample image where simple image inpainting produces
unaesthetic and unrealistic results, whereas our refinement improves the restoration
significantly. The novelty and the advantage of the refiner is its global consistency
loss that requires a global consensus between all clean pixels and the corresponding
synthetic parts. The refiner uses an already plausible inpainting from a former stage
and therefore converges faster and ensures that the restored image and the synthetic
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Fig. 1 Sample image that demonstrates the deficits of semantic image inpainting that our proposed
refinement method can correct

image are closer. Closer images are beneficial as the perceptual loss assesses the
quality of restored images via the synthetic image. Therefore, a small perceptual
loss for a synthetic image that is largely different than the restored image has a
limited expressiveness for the image quality. As our refinement method is similar to
semantic image inpainting developed by Yeh et al. [23], we will briefly introduce the
corresponding components and highlight its shortcomings and the differences to our
refinement approach. To illustrate that our method overcomes these deficits, we use
the CelebA [16] face dataset containing more than 200k face images. Humans are
most sensitive even for small artifact in faces. Thus, we use face images to evaluate
our method because restoring missing parts of a face, is among the most challenging
problems in image inpainting.

Contributions
• Disentangling the different components of a state-of-the-art image inpainting

method, showing its deficits and how to overcome them.
• Developing of a refinement GAN for improving image inpainting using a global

consensus loss.
• Proposing and implementing of a pipeline that benefits from our refinement

GAN.
• Training and evaluating the image inpainting pipeline on face images using four

classical metrics in image inpainting for various different distortion patterns.

1.2 Semantic Image Inpainting

Let P = M∪Mc, where P is the set that contains all the pixel indices of an image.
An index of the set M corresponds to a clean pixel. The set Mc contains the indices
of damaged or missing pixels and is therefore the complement of the set M. Thus,
we refer to the set, that contains all clean pixels, as IM = {Ii}i∈M. See Fig. 2 for
an illustration of the introduced nomenclature using an example image.

In other words, image inpainting tries to predict IMc using the damaged image I
and the mask M. Due to the ill-posedness of image inpainting, recovering the exact
solution is usually impossible therefore, semantic image inpainting uses a GAN to
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Fig. 2 Illustration of the introduced sets and which pixels they contain when applied to a sample
image

hallucinate a plausible prediction of IMc . We train the GAN using the classical
GAN objective, see Eq. (1), where G is the generator and D the discriminator that
returns a probability estimate how likely the seen sample is real and the origin of
the image lies in the true data distribution.

min
G

max
D

Ex∼pdata

[
log D(x)

]
+ Ez∼pz

[
log

(
1 − D

(
G(z)

))]
, (1)

The generator of a GAN generates random synthetic samples of the data distri-
bution for a sample, drawn from a fixed prior distribution. The goal of inpainting is
using the generator to produce an image that agrees on the clean pixels and produces
plausible content for the missing region. Instead of exhaustively drawing samples
from the generator until one matches the requirements. Yeh et al. [23] proposed to
define a loss, that measures the quality of the inpainting, and to minimize this loss
using gradient decent and the chain rule to calculate the gradients. The optimization
problem reads as follows

minimize Linpainting (x | y,S)

subject to x = G(z),
(2)

where x and y are the generated and the damaged image, S is a subset of the mask
M that we will define shortly (see Fig. 2 for an example), G(·) is the generator and z

the latent variable. Yeh et al. [23] proposed a loss function that consists of a content
loss and a perceptual loss, see Eq. (3).

Linpainting(x|y,S) = Lcontent(x|y,S) + λLperception(x) (3)

The content loss tries to achieve an agreement of clean pixels between the
generated and the damaged image. However, Yeh et al. [23] proposed to consider
only pixels that are in the vicinity of holes, instead of respecting all unimpaired
pixels. The heuristic is, that pixels next to a hole contain far more information
used to fill holes than pixels far away. Furthermore, their proposed loss contains
a scalar that assigns a clean pixel a weight depending on the number of holes in
local neighborhood, based on the same heuristic.
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Fig. 3 Illustration of the
sliding window set W and
the two sets containing all
indices corresponding to
clean pixels (M) or holes
(Mc). Black corresponds to
holes and white to clean
pixels

Lcontent(x|y,S) =
∑
i∈S

wi · |xi − yi |, where wi = |H i |
|Hc

i | (4)

Equation (4) shows the detailed content loss, where x and y are the generated
and the damaged image, z is the latent variable, S is the set containing the selected
pixels and w is a weight.

The weight corresponds to the ratio of holes |H i | and clean pixels |Hc
i | in

a centered n × n window Wi around the corresponding pixel i, see Fig. 3 for an
illustration of the different sets. The expression | · | applied to a set denotes the
cardinality, i.e. the number of element in the set. Note, that the weight for a clean
pixel is zero, if all other pixels in the window are undamaged. Hence, the set S
contains the indices of all pixels that contain at least one hole in their neighborhood.
Thus, the set S used in Lcontent is a subset of the mask M, such that S ⊂ M.

The idea of the perception loss is: favouring visually plausible synthetic images
and penalizing unrealistic restorations. Fortunately, GANs consist beside the gen-
erator of a discriminator. The task of the discriminator is to identify whether an
image is real or synthetic. In addition, the generator tries to fool the discriminator
by producing images that the discriminator predicts as real although they are
fake. Therefore, the perception loss uses the discriminator to assess whether the
input image is real or fake. The loss is smaller the higher the probability of the
discriminator that an images is real, see Eq. (5).

Lperception(x) = log
(
1 − D(x)

)
(5)

Figure 4 shows a block diagram of the aforementioned semantic image inpainting
method. The block requires the damaged input image y and the set S to select
the pixel required to compute the content loss. Minimizing the content and the
perception loss produces the generate image xg .

1.3 Poisson Blending

Although the content loss favors a consensus on selected clean pixels in the vicinity
of holes, there is no guarantee, that all pixels corresponding to the clean parts agree.
Therefore, we replace the gap in the damaged image with the corresponding pixels
from the synthetic image. To improve the quality of the fused image, Yeh et al. [23]
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Fig. 4 Semantic image inpainting GAN. The method requires the damaged image y and the
set S that selects the pixels used to compute the content loss. G and D are the generator and
discriminator. We minimize the losses with respect to the latent variable z and the corresponding
generated image xg is the desired result

propose using Poisson blending to polish the reconstruction by smoothing the
transition between clean and inpainted pixels, see Fig. 5 for examples. Poisson
blending requires solving the optimization problem depicted in Eq. (6), where D
is a linear discrete differentiation operator that approximates the gradient, M is
the mask, x is the restored blended image, y is the damaged image and xg is the
generated image.

minimize ‖ D x − D xg‖2
2

subject to xi = yi, ∀i ∈ M (6)

Simply speaking, Poisson blending retrieves an image that achieves a consensus
for pixels corresponding to the clean parts and the gradient between the synthetic
and blended image should be as close as possible. Therefore, visible artifacts at the
transition between the clean and inpainted region are penalized.

1.4 Shortcomings of Semantic Image Inpainting Without
Refinement

The aforementioned semantic image inpainting has two different deficits. One is
caused by the locally restricted content loss, that considers only the immediate
vicinity of holes to condition the reconstruction and the other by the perception
loss, that classifies the synthetic and not the restored image upon plausibility. This is
especially harmful as the synthetic image seeks agreement with the damaged image
only on a small region. Therefore, the synthetic image might look by itself realistic
and might achieve a consensus on the selected region. However, transferring the
inpainted region to the damaged image might lead to an implausible result. See
Fig. 6, that shows eight different images with different artifacts. Mainly caused by
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Fig. 5 Sample images highlighting that blending improves the image quality, by removing
artifacts at the transition of inpainted and clean pixels

disagreeing face attributes between the synthetic and the damaged image. The first
row shows an image of a girl but the inpainted region belongs to an adult and on
the right, an image of a woman where inpainting adds a moustache. The other rows
show that inpainting fails to restore symmetrical properties such as eye color, skin
color, cheekbones, beard, mouth shape, eyebrows or eyeglasses. The problem is that
the local extent of the content loss leads to limited information such as gender or
other face attributes. Therefore, the generator might produce an image depicting a
male instead of a female to fill the gap. Although the synthetic image might look
plausible the fused may not.
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Fig. 6 Sample images where semantic image inpainting fails to produce visually appealing and
plausible results. Conversely, our propose refinement method corrects many failures such as:
removing moustache, enforcing similar eye and skin color, matching eye brows, cheekbones. In
general our refinement leads to higher quality reconstructions that are more plausible and restores
symmetric properties of a face

2 Improving Semantic Image Inpainting with Refinement
GANs

As highlighted in Sect. 1.4, semantic image inpainting suffers from a too narrow
field of view when conditioning the content loss and applying the perception loss
on visually distinct images than the final reconstructions. Thus, we propose a
refinement method, that takes all clean pixels into account and forces the damaged
and the synthetic images to agree, such that the score of the perception loss of the
synthetic image is more reliable.

Our refinement method operates similarly as semantic image inpainting. We
solve an optimization problem by searching the values of the latent variable
that corresponds to an image, minimizing our refinement objective. The objective
consists of a perception loss and two content losses. The global consensus loss
is minimal when the clean and the corresponding synthetic pixels agree. The
inpainting loss favors similarly inpainted parts by the refiner as obtained from
semantic inpainting with blending. We use the same perception loss as stated
in Eq. (5). The two content losses read as follows, when using the previously
introduced nomenclature,

Lglobal-consensus(x|y,M) =
∑
i∈M

|xi − yi | (7)
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Linpainting-consensus(x|y,Mc) =
∑

i∈Mc

|xi − yi |, (8)

where the only difference are the two distinct sets that contain the pixel positions.
Equation (9) shows the full refinement loss with the two weighting parameters
μ and λ.

Lrefinement(x|xb,M,Mc) =Lglobal-consensus(x|xb,M)

+ μLinpainting-consensus(x|xb,Mc)

+ λLperception(x)

(9)

The parameter μ corresponds to the confidence or the plausibility of the inpainted
region. Therefore, we are less confident for large gaps and use smaller values for μ

the larger the damaged area. Note, that the proposed refinement loss considers all
pixels of the inpainted and blended image instead of only a few clean pixels of the
damaged image. Therefore, the loss is conditioned on the sets M and Mc and the
inpainted and blended image xb. λ regulates the additional cost added to the content
loss for unrealistic reconstructions.

Figure 7 shows the block diagram of the proposed refinement GAN, where the
selection process highlights that the refiner uses all pixels to compute the two
content losses.

After refinement we propose again to use Poisson blending to smoothly fuse
the inpainted region with the clean part. Figure 8 illustrates the full pipeline of the
proposed semantic image inpainting with a refinement GAN.

The global awareness of clean and missing pixels of the refiner allows correcting
errors of simple inpainting with blending. Figure 6 shows all kind of failures that
the refiner eliminates. It restores symmetry such that eye color, skin color, eyebrows
and cheekbones of the inpainted and clean parts agree. Furthermore, the refiner
suppresses implausible face attributes such as mouth and nose of an adult for a child,
moustache for a woman, female eye and lips for a man or inpainting eyeglasses for
only one eye.

z G D

select

xb

McM
xb

McM

xr

xr xr

Lperception

Linpainting-consensus

Lglobal-consensus

Fig. 7 Refinement GAN. The method requires an inpainted and blended image xb and the set M
and Mc to assign the pixels to the corresponding loss. G and D are the generator and discriminator.
We minimize the losses with respect to the latent variable z and the corresponding refined image
xr is the desired result
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Inpainting
y

Blending Refinement Blendingxg xb xrS
M Mc

x

Fig. 8 Pipeline. The full pipeline consists of a cascade of an inpainting and refinement block.
After each of this blocks we apply Poisson blending, to generate our final prediction of the restored
image x from the damaged image y

3 Experiments and Results

3.1 Dataset

We use the CelebA dataset that contains more than 200k face images and use 2000
images each for validation and testing and use all other images for training. The
images are aligned and cropped to 64 × 64 × 3 pixels.

3.2 Implementation Details

We use the same GAN architecture and training policy as proposed by
Yeh et al. [23], namely a DCGAN [20]. The generator produces a 64×64×3 image
using a randomly sampled variable from a 100 dimensional uniform distribution
between [−1, 1]. The discriminator outputs a probability how likely a seen image
is real. For training we use the Adam optimizer [14] with learning rate γ = 0.002,
momentum β1 = 0.5 and β2 = 0.9 and batch size of 64 for 25 epochs.

During inpainting we use again the Adam optimizer to minimize the inpainting
objective with respect to the latent variable z. We draw a random sample from
the uniform distribution for initialization and restrict the values to [−1, 1] along
each dimension during optimization. We use the step size γ = 0.003, momentum
β1 = 0.5 and β2 = 0.9. We use λ of 0.003 in all our experiments and use
μ ∈ [0.2, 0.66] depending on the extent of the gap. We perform 1500 gradient
descent steps during inpainting and refinement. We use TensorFlow [1] as deep
learning framework on a Nvidia GeForce GTX TITAN X for training the GAN,
inpainting and refinement. Refinement including inpainting takes approximately
4.7 s per image (1500 iterations each).

We used CVX, a package for specifying and solving convex programs [8, 9], to
minimize the objective of the blending problem,. Minimization takes approximately
6 s per image in Matlab on a an Intel I7u CPU. We empirically observed highest
quality results when using the Laplacian of Gaussians as discrete differentiation
operator D, that we convolve with the corresponding image to approximate the
gradient. The Laplacian of Gaussian is a 3 × 3 kernel with all 1 entries except the
central element which is −9.
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3.3 Mask or Hole Patterns

We use six different mask patterns: (1) and (2) a squared random positioned mask
with 25% and 50% damaged or missing pixels, (3) a mask consisting of a vertical
and horizontal stripe, (4) a mask where roughly 50% of the left hand side of the face
is missing, (5) a centered mask where 25% of pixels are missing, (6) a mask where
70% of randomly selected pixels are missing. We use μ = 0.66 for pattern (1) and
(5), μ = 0.33 for pattern (2) and (4) and μ = 0.2 for pattern (3) and (6).

3.4 Results

We compute four classical metrics for image inpainting with and without refinement
using the testing set. The metrics are Mean Absolute Error (MAE), Mean Squared
Error (MSE), Peak Signal to Noise Ratio (PSNR) and Mean Structural Similarity
Index Measure (MSSIM) [22]. Table 1 shows the scores of each metric before and
after refinement. We report the better score in bold. We conclude that refinement
improves always for each metric and all masks except the mask with randomly
missing pixels. For this experiments the differences before and after refinement is
beyond the reported precision such that the reported numbers agree. Note, that these
metrics need a reference image such as the undamaged image. Nonetheless, a high
quality inpainted region might look very different than the original one and can lead
to a lower inpainting score. Therefore, we show more examples of inpainting with
and without refinement in Figs. 9 and 10.

Table 1 Results of all testing images before and after refinement using six different hole patterns
and four common metrics in image inpainting

Random square (1) Big random square (2) Stripes (3)

Refinement Before After Before After Before After

MAE ↓ 16.20 14.04 35.60 32.75 39.43 35.01
MSE ↓ 777.16 626.17 1852.22 1599.89 2011.45 1607.32
PSNR ↑ 19.23 20.16 15.45 16.09 15.45 16.07
MSSIM ↑ 0.8760 0.8921 0.7411 0.7624 0.707 0.740

Left (4) Center (5) Random (6)

Refinement Before After Before After Before After

MAE ↓ 34.87 31.62 15.18 13.68 16.08 16.08

MSE ↓ 1980.77 1645.05 704.54 570.18 323.97 323.97

PSNR ↑ 15.16 15.97 19.65 20.57 23.03 23.03

MSSIM ↑ 0.7601 0.7823 0.8716 0.8840 0.8908 0.8908

We highlight the superior performance (before or after) in bold. The arrows next to the metrics
denote whether a lower score (↓) or a higher score (↑) is better. Note, that the difference of the
random pattern between before and after is smaller than the displayed precision. Hence, we omit
reporting any score in bold
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Fig. 9 Additional randomly selected images that highlight that the images after refinement are of
a higher perceptional quality, corrected artifacts and look more plausible

To highlight that inpainting for 1500 steps followed by refinement for 1500 steps
leads to a much higher quality than running inpainting for 3000 steps, we report the
results for the centered hole pattern (5) in Table 2. See, Fig. 10 for sample images
using 1500 or 3000 gradient steps for image inpainting. The quality of running
inpainting for 3000 steps is marginally higher than using 1500 iterations. However,
using refinement improves significantly for all metrics.

4 Discussion

Refinement improves in average for any hole pattern when considering different
metrics. We show that refinement corrects visual artifacts caused by the locally lim-
ited content loss of classical semantic image inpainting. Furthermore, the synthetic
image restored by the refinement GAN is much closer to the damaged image such
that the perception score is more reliable and improves the inpainting. We observe,
that refinement inpaints regions with similar face attributes than the damaged image,
see Fig. 6. Although the restored images are often clearly visible distinct from
the ground truth, most of the results are plausible and appealing. Nonetheless, we
observed some failure cases, that we show in Fig. 11. We consider a refinement as
failure if refinement reduces the image quality or fails to correct strong artifacts that
were previously inpainted. Possible reasons are that the minimization approach did
not converge fast enough, is stuck in an inappropriate local minimum or the initial
inpainted solution has a very low quality, such that the inpainting loss prevents
improving the reconstruction. We observed in Table 1, that refinement does not



Photo-Realistic and Robust Inpainting of Faces Using Refinement GANs 141

Fig. 10 Additional examples showing the results for different hole patterns inpainted using 1500
or 3000 iterations with or without blending and the result of our refinement method with blending
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Table 2 Comparison between running inpainting for 1500 or 3000 iterations or spending 3000
iterations for the proposed method (inpainting 1500 and refinement 1500)

Inpainting Inpainting and refinement

Iterations 1500 3000 1500 and 1500

MAE ↓ 15.18 15.03 13.68
MSE ↓ 704.54 694.53 570.18
PSNR ↑ 19.65 19.71 20.57
MSSIM ↑ 0.872 0.874 0.8840

We report the results using all testing images damaged with a centered square pattern.We highlight
the superior performance (before or after) in bold. The arrows next to the metrics denote whether a
lower score (↓) or a higher score (↑) is better

Fig. 11 Sample images where refinement either fails to correct the failures produced by semantic
inpainting or where refinement degrades the image quality

improve the inpainting of an image where randomly selected pixels are damaged.
The reason is, that the corresponding scores even without refinement are the highest
among all other, that belong to different hole patterns. Hence, refinement is unable
to further improve the inpainting because the difference between refinement and
inpainting is much smaller for this hole pattern because almost every clean pixel is
next to a hole and is therefore considered during inpainting. Similarly, the synthetic
and the damaged image are much closer such that the perception loss is more
reliable.

5 Conclusion

To summarize, in this paper we propose a new refinement GAN. We apply it on
top of classical semantic image inpainting and design the corresponding pipeline.
We tackle the challenging problem of reconstructing missing parts of human faces.
We choose this problem and dataset because humans are especially sensitive even
for tiny artifacts in faces. Therefore, plausible results for a human observer have
already a very high quality. We show that refinement increases or achieves the
same performance for any hole pattern for all measured quality metrics. However,
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additional computations are required and the computational cost is twice as large.
Nonetheless, refinement suppresses many disturbing failures of image inpainting
such as inpainting moustaches in a female face, disagreeing eye or skin color or
adding only a fraction of eyeglasses. Hence, we conclude that refinement is crucial
for high quality image inpainting, where plausible and visually appealing results are
desired and the additional computational cost is tolerable.

Acknowledgement This work was partly supported by ETH General Fund and a Nvidia GPU
grant.
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