
Chapter 1
Pervasive Sensing

Yiqiang Chen

Abstract The development of chips, sensors, and tele-communication, etc., with
integrated sensing brings more opportunities to monitor various aspects of personal
behavior and context. Especially, with the widespread use of intelligent devices and
smart home infrastructure, it is more possible and convenient to sense users’ daily
life. Two common information of daily life is location and activity. Location infor-
mation can reveal the places of important events. Activity information can expose
users’ health conditions. Besides these two kinds of information, other context also
can be useful for assisting living. Hence, in this chapter, we will introduce some
state-of-the-art user context sensing techniques under smart home infrastructure,
including accurate indoor localization, fine-grained activity recognition, and perva-
sive context sensing. With the continuous sensing of location, activity, and other
contextual information, it is possible to discovery users’ life patterns which are cru-
cial for health monitoring, therapy, and other services. What is more, it will bring
more opportunities for improving the quality of peoples’ life.

Keywords Pervasive sensing · Indoor localization · Activity recognition · Context
sensing

1.1 Accurate Indoor Localization

Do you know how to accurately get you location information under unpredictable
changes in environmental conditions? In recent years,with the development ofmobile
Internet, location-based services (LBSs) [1] have been widely used in our daily
life, expanded from traditional navigation to real-time applications such as shared
mobility and social network.With the development of LBS applications, the location
area extends from outdoors to indoors, which creates great requirement of indoor
localization with high accuracy. Indoor localization can be implemented in a variety
of ways, such as base station, video, infrared, Bluetooth, Wi-Fi [2]. In which, Wi-
Fi-based indoor localization has become the most popular way because of the wide
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coverage of Wi-Fi access points and the rapid development of intelligent terminals
[3–5]. Although the research of indoor localization based on Wi-Fi has made great
progress, in highly dynamic environments, due to the influence of multipath effect,
environment changing and personnel flows, the fluctuation of wireless signal is large.
High accuracy indoor localization still faces the problems of (1) the lack of large-scale
labeled data in data layer, (2) the fluctuation of signal strength in feature layer, and
(3) theweak adaption ability inmodel layer, which resulting in low location accuracy,
rough trajectory granularity, and weak robustness. For the challenges above, this
section will introduce some accurate indoor localization techniques.

1.1.1 Context-Adaptive Localization Model

Thewireless signal fingerprint-based indoor localizationmodel is actually amapping
between the high-dimensional signal space and the physical space. For this kind of
mapping models, the input x is the feature vector extracted from the wireless signal
strength, and the output y is the position coordinate. Training the location model is
to optimize the objective function f = argmin f

∑N
i=1| f (xi ) − yi |2 with the given

samples {(xi , yi )|i = 1, . . . , N }.
However, for highly dynamic environments, a context-adaptive model is nec-

essary. This adaptive model should include the minimization of fitting errors
and the context-adaptive constraints, as shown in Fig. 1.1, where fitting_err(x, y)
represents the fitting errors between model’s output and calibration results, and
g(c1, c2, . . . , ck) represents the constraints constructed with multi-source informa-
tion of c1, c2, . . . , ck . In addition, it is flexible to construct these constraints’ informa-
tion according to specific scenarios context, including multi-source signals, motion
information, and user activities.

Compared with existing methods, the model has three advantages: (1) It gives a
unified optimization objective, providing a reference for constructing multi-source
information fusion localization method; (2) it realizes multi-source information
fusion on the model level, fully mining the correlation and redundancy between
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multi-source information; (3) it has more flexible constraints, making the model
scalable for any kind of high dynamic environments.

1.1.2 Semi-supervised Localization Model with Signals’
Fusion

Aiming at the problem of low location accuracy caused by the lack of large-scale
labeled data, a semi-supervised localization model based on multi-source signals
fusion is introduced here. This model combines the fitting error term of the labeled
data and manifold constraint terms of the Wi-Fi and Bluetooth signals and optimizes
the objective equation by adjusting the weight coefficient of all terms. The experi-
mental results [6] showed that the method based on multi-source signals fusion can
achieve optimal location results when applied to the location problem of sparse cal-
ibration, and the location accuracy was higher than that of the existing supervised
learning methods and semi-supervised learning methods.

Unlike previous single-signal-based semi-supervised manifold methods [7–12],
it is better to combine the Wi-Fi and BLE signals into a single model. To the best of
our knowledge,Wi-Fi andBLE signals have different propagation characteristics and
effective distances. When considering both of Wi-Fi and BLE in a semi-supervised
learning model, it should separately build the manifold regularization for each of
them.

In accordance with the structural risk minimization principle [13], FSELM [6]
used graph Laplacian regularization to find the structural relationships of both the
labeled and unlabeled samples in the high-dimensional signal space. For the con-
struction of a semi-labeled graph G based on l labeled samples and u unlabeled
samples, each collected signal vector s j = [

s j1, s j2, . . . , s j N
] ∈ RN is represented

by a vertex j , and if the vertex j is one of the neighbors of i , represented by drawing
an edge with a weight of wi j connecting them. According to Belkin et al. [14], the
graph Laplacian L can be expressed as L = D − W . Here, W = [wi j ](l+u)×(l+u) is

the weight matrix, where wi j = exp
(
−∥

∥si − s j
∥
∥2

/2σ2
)
if si and s j are neighbors

along the manifold and wi j = 0 otherwise, and D is a diagonal matrix given by
Di i = ∑l+u

j=1 W i j . As illustrated in Fig. 1.2, to consider the empirical risk while
controlling the complexity, FSELM minimized the fitting error plus two separate
smoothness penalties for Wi-Fi and BLE as (1.1):

argmin
f

{
1

2
‖ f − T‖2 + λ1 f

TL1 f + λ2 f
TL2 f

}

(1.1)

The first term represents the empirical error with respect to the labeled training
samples. The second and third terms represent the manifold constraints for Wi-Fi
and BLE based on the graph Laplacians L1 and L2. By adjusting the two coefficients
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Fig. 1.2 FSELM model illustration (L1 and L2 are the graph Laplacians of the Wi-Fi and BLE
signals, and λ1 and λ2 are the weight coefficients of the two manifold constraints)

λ1 and λ2, it can control the relative influences of the Wi-Fi and BLE signals on the
model.

When applied to sparsely calibrated localization problems, FSELM is advanta-
geous in three aspects. Firstly, it dramatically reduces the human calibration effort
required when using a semi-supervised learning framework. Secondly, it uses fused
Wi-Fi and BLE fingerprints to markedly improve the location accuracy. Thirdly,
it inherits the beneficial properties of ELMs in terms of training and testing speed
because the input weights and biases of hidden nodes can be generated randomly. The
findings indicate that effective multi-data fusion can be achieved not only through
data layer fusion, feature layer fusion, and decision layer fusion but also through
the fusion of constraints within a model. In addition, for semi-supervised learning
problems, it is necessary to combine the advantages of different types of data by opti-
mizing the model’s parameters. These two contributions will be valuable for solving
other similar problems in the future.

1.1.3 Motion Information Constrained Localization Model

For Wi-Fi fingerprint-based indoor localization, the basic approach is to fingerprint
locations of interest with vectors of RSS of the access points during offline phase
and then locate mobile devices by matching the observed RSS readings against this
database during online phase. By this way, continuous localization can be summa-
rized as trying to find a smooth trajectory going through all labeled points. Thus,
in order to recover the trajectory, it still needs a certain number of labeled data,
especially in some important positions (e.g., corners).
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Considering that a user holds a mobile phone and walks in an indoor wireless
environment with n Wi-Fi access points inside. At some time t , the signal received
from all the n access points is measured by the mobile devices to form a signal
vector st = [st1, st2, . . . , stn] ∈ Rn . As time goes on, the signal vectors will come
in stream manner. After a period of time, a sequence of m vectors will be obtained
from mobile phone and form a m × n matrix S = [

sT1 , s
T
2 , . . . , s

T
m

]
, where the

‘T’ indicates matrix transposition. Along the user’s trajectory, only some places
are known and labeled, and the rest are unknown. The purpose is to generate and
update the trajectory points which can form a m × 2 matrix P = [

pT1 , p
T
2 , . . . , p

T
m

]
,

where pt = [xt yt ]T is the location of mobile device at time t . Meanwhile, for each
step, the user heading orientation can also be obtained from mobile devices in every
time t . Thus, while collecting the RSS, another vector of m orientation values can
be generated: O = [o1, . . . , ot , . . . , om]T. Here, ot indicates the angle to north in
horizontal plane, which is called azimuth. With the Wi-Fi signal matrix and the
orientation vector, the mapping function should be f (S, O) = P . By this way, it can
supplement the location for these unlabeled data, reducing the calibration work.

The fusion mapping model f (S, O) = P from the signal space to the physical
space can be optimized by f ∗ = argmin f

∑l
i=1| fi − yi |2 + δ

∑l
i=1

∣
∣o fi − oyi

∣
∣2 +

γ f TL f , where the first term measures the fitting error to the labeled points, the
second term is the fitting error to the user heading orientation offered by mobile
phone, and the third term refers to the manifold graph Laplacian.

It brings good performance for both trackingmobile nodes andmanual calibration
reduction in wireless sensor networks. This model is based on two observations:
(1) similar signals from access points imply close locations; (2) both labeled data
positions and the real-time orientations can help tracking the traces. Thus, it learned
a mapping function between the signal space and the physical space conjoin a few
labeled data and a large amount of unlabeled data, and the constraint of orientation
obtained from mobile devices.

The experimental results [15] showed that this method can achieve a higher track-
ing accuracy with much less calibration effort. It is robust to reduce the number of
calibrated data. Furthermore, if applying it for offline calibration, the online loca-
tion is much better than some other methods before. Moreover, it can reduce time
consumption by parallel processing while maintaining trajectory learning accuracy.

1.2 Fine-Grained Activity Recognition

Traditional activity recognition methods aim at discovering pre-defined activity with
body-attached sensors such as accelerometers and gyroscopes. However, peoples’
activities are so diverse; they cannot be covered by some pre-defined activities. As
the way the devices are worn, the location the devices are placed, the person who
wears the devices, etc., which all lead to the decreasing the recognition accuracy.
And it needs a large amount of labeled data to maintain the recognition performance.
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In this section, we will show the methods including transfer learning, generative
adversarial networks (GANs), incremental learning to implement fine-grained activ-
ity recognition with less human labor.

1.2.1 Transfer Learning-Based Activity Recognition

The combination of sensor signals from different body positions can be used to
reflect meaningful knowledge such as a person’s detailed health conditions [16] and
working states [17]. However, it is nontrivial to design wearing styles for a wearable
device. On the one hand, it is not comfortable to equip all the body positions with
sensors which make the activities restricted. Therefore, we can only attach sensors
on limited body positions. On the other hand, it is impossible to perform HAR if the
labels on some body parts are missing, since the activity patterns on specific body
positions are significant to capture certain information.

Assume a person is suffering from small vessel disease (SVD) [18], which is a
severe brain disease heavily related to activities. However, we cannot equip his all
body with sensors to acquire the labels since this will make his activities unnatural.
We can only label the activities on certain body parts in reality. If the doctor wants
to see his activity information on the arm (we call it the target domain), which only
contains sensor readings instead of labels, how to utilize the information on other
parts (such as torso or leg, we call them the source domains) to help obtain the labels
on the target domain? This is referred to as the cross-position activity recognition
(CPAR).

To tackle the above challenge, several transfer learning methods have been pro-
posed [19]. The key is to learn and reduce the distribution divergence (distance)
between two domains. With the distance, we can perform source domain selection
as well as knowledge transfer. Based on this principle, existing methods can be sum-
marized into two categories: exploiting the correlations between features [20, 21], or
transforming both the source and the target domains into a new shared feature space
[22–24].

Existing approaches tend to reduce the global distance by projecting all samples
in both domains into a single subspace. However, they fail to consider the local
property within classes [25]. The global distance may result in loss of domain local
property such as the source label information and the similarities within the same
class. Therefore, it will generate a negative impact on the source selection as well as
the transfer learning process. It is necessary to exploit the local property of classes
to overcome the limitation of global distance learning.

This chapter introduces a Stratified Transfer Learning (STL) framework [26] to
tackle the challenges of both source domain selection and knowledge transfer in
CPAR. The term ‘stratified’ comes from the notion of splitting at different levels and
then combining. The well-established assumption that data samples within the same
class should lay on the same subspace, even if they come from different domains
[27] is adopted. Thus, ‘stratified’ refers to the procedure of transforming features
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into distinct subspaces. This has motivated the concept of stratified distance (SD) in
comparison to traditional global distance (GD). STL has four steps:

1. MajorityVoting: STLuses themajority voting technique to exploit the knowledge
from the crowd [28]. The idea is that one certain classifier may be less reliable, so
we assemble several different classifiers to obtain more reliable pseudo labels.
To this end, STL makes use of some base classifiers learned from the source
domain to collaboratively learn the labels for the target domain.

2. Intra-class Transfer: In this step, STL exploits the local property of domains
to further transform each class of the source and target domains into the same
subspace. Since the properties within each class are more similar, the intra-class
transfer technique will guarantee that the transformed domains have the minimal
distance. Initially, source domain and target domain are divided into C groups
according to their (pseudo) labels, where C is the total number of classes. Then,
feature transformation is performed within each class of both domains. Finally,
the results of distinct subspaces are merged.

3. Stratified Domain Selection: A greedy technique is adopted in STL-SDS. We
know that the most similar body part to the target is the one with the most similar
structure and body functions. Therefore, STL uses the distance to reflect their
similarity. It calculates the stratified distance between each source domain and
the target domain and selects the one with the minimal distance.

4. StratifiedActivity Transfer: After source domain selection, themost similar body
part to the target domain can be obtained. The next step is to design an accurate
transfer learning algorithm to perform activity transfer. This chapter introduces a
Stratified Activity Transfer (STL-SAT) method for activity recognition. STL-
SAT is also based on our stratified distance, and it can simultaneously transform
the individual classes of the source and target domains into the same subspaces
by exploiting the local property of domains. After feature learning, STL can learn
the labels for the candidates. Finally, STL-SAT will perform a second annotation
to obtain the labels for the residuals.

1.2.2 GAN-Based Activity Recognition

Transfer learning methods are effective ways to label practical unknown data, but
they are incapable of generating realistic data. But fortunately, GANs framework is
an effective way to generate labeled data from random noise space.

The vanilla GANs framework was firstly proposed in 2014 by Goodfellow et al.
[29]. Since the GANs framework was proposed, it has been widely researched in
many fields, such as image generation [29], image inpainting [30], image translation
[31], super-resolution [32], image de-occlusion [33], natural language generation
[34], text generation [35]. In particular, a great many variants of GANs have been
widely explored to generate images with high fidelity, such as NVIDIA’s progressive
GAN [36], Google Deep Mind’ BigGAN [37]. These variants of GANs provide
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powerful methods for training resultful generative models that could output very
convincing verisimilar images.

The original GANs framework is composed by a generative multilayer perceptron
network and a corresponding discriminativemultilayer perceptron network. The final
goal of GANs is to estimate an optimal generator that can capture the distribution of
real data with the adversarial assistance of a paired discriminator based on min-max
game theory. The discriminator is optimized to differentiate the data distribution
between authentic samples and spurious samples from its mutualistic generator. The
generator and the discriminator are trained adversarially to achieve their optimization.

The optimization problem of the generator can be achieved by solving the formu-
lation stated in 1.2:

min
G

VG(D,G) = min
G

(
Ez∼pz(z)

[
log(1 − D(G(z)))

])
(1.2)

The optimization problem of the discriminator can be achieved by solving the
formulation stated in 1.3:

max
D

VD(D,G) = max
D

(
Ex∼pdata(x)

[
log D(x)

]) + Ez∼pz(z)
[
log(1 − D(G(z)))

]

(1.3)

The final value function of the min-max game between the generator and the
discriminator can be formulated as 1.4:

min
G

max
D

(D,G) = Ex∼pdata(x)
[
log D(x)

] + Ez∼pz(z)
[
log(1 − D(G(z)))

]
(1.4)

Firstly, the original GANs framework was proposed to generate plausible fake
images approximating real images in low resolution, such as MNIST, TFD, CIFAR-
10. Many straightforward extensions of GANs have demonstrated and leaded one of
the most potential research directions. Though the researches of GANs have gained
great success in the field of generating realistic-looking images, the GANs frame-
work has not been widely exploited for generating sensor data.

Inspired by the thought of GANs, Alzantot et al. [38] firstly tried idea of GANs to
train the LSTM-based generator to produce sensor data, but their SenseGen is half-
baked GANs’ framework. Both the generator and the discriminator in SenseGen are
trained separately; that is, the training process of the generator in SenseGen is not
based on the back-propagating gradient from the discriminator.

In order to improve the performance of human activity recognition when a small
number of sensor data are available under some special practical scenarios and
resource-limited environments, Wang et al. [39] proposed SensoryGANs models. To
the best of our knowledge, SensoryGANs models are the first unbroken generative
adversarial networks applied in generating sensor data in theHAR research field. The
specific GANs models were designed for three human daily activities, respectively.
The generators accept the Gaussian random noises and output accelerometer data
of the target human activity. The discriminators accept both the real accelerometer
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sensor data and the spurious accelerometer sensor data from the generators and then
output the probability of whether the input samples are from the real distribution.
With the improvement of SensoryGANs, the research of human activity recognition,
especially in resource-constrained environments, will be greatly encouraged.

Then, Yao et al. [40] proposed SenseGAN to leverage the abundant unlabeled
sensing data, thereby minimizing the need for labeling effort. SenseGAN jointly
trains three components, the generator, the discriminator, and a classifier. The adver-
sarial game among the three modules can achieve their optimal performance. The
generator receives random noises and labels and then outputs spurious sensing data.
The classifier accepts sensing data and outputs labels. The samples from the classi-
fier and the generator are both fed to the discriminator for differentiating the joint
data/label distribution between real sensing data and spurious sensing data. Com-
pared with supervised counterparts as well as other supervised and semi-supervised
baselines, SenseGAN achieves substantial improvements in accuracy and F1 score.
With only 10% of the originally labeled data, SenseGAN can attain nearly the same
accuracy as a deep learning classifier trained on the fully labeled dataset.

1.2.3 Incremental Learning-Based Activity Recognition

With more labeled data, it becomes possible to get fine-grained activity. However,
traditional sensor-based activity recognitionmethods train fixed classificationmodels
with labeled data collected off-line, which are unable to adapt to dynamic changes in
real applications.With the emergence of newwearable devices, more diverse sensors
can be used to improve the performance of activity recognition.While it is difficult to
integrate a new sensor into a pre-trained activity recognition model, the emergence
of new sensors will lead to a corresponding increase in the feature dimensionality of
the input data, which may result in the failure of a pre-trained activity recognition
model. The pre-trained activity recognition model is unable to take advantage of this
new source of data.

To take advantage of data generated by new sensors, feature incremental learning
method is an effective method. To improve the performance of indoor localization
with more sensors, Jiang et al. [41] proposed a novel feature incremental and decre-
mental learning method, namely FA-OSELM. It is able to adapt to the dynamic
changes of sensors flexibly. However, the performance of FA-OSELM fluctuates
heavily. Hou and Zhou [42] proposed the One-Pass Incremental and Decremental
learning approach (OPID), which is able to adapt to evolving features and instances
simultaneously. Xing et al. [43] proposed a perception evolution network that inte-
grates the new sensor readings into the learned model. However, the impact of the
sensor order is not considered.

Hu et al. [44] proposed a novel feature incremental activity recognition method,
which is named Feature Incremental Random Forest (FIRF). It is able to adapt an
existing activity recognition model to newly available sensors in a dynamic environ-
ment. Figure 1.3 shows an overview of the method.
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Fig. 1.3 Feature incremental random forest algorithm

In FIRF, there are two new strategies: (1) MIDGS which encourages diversity
among individual decision trees in the incremental learning phase by identifying the
individual learners that have high redundancy with the other individual learners and
low recognition accuracy, and (2) FITGM which improve the performance of these
identified individual decision trees with new data collected from both existing and
newly emerging sensors.

In real applications, people may learn new motion activities over time, which is
usually classified as dynamic changes in class. When a new kind of activity is per-
formed or the behavioral pattern changes over time, devices with preinstalled activity
recognitionmodels may fail to recognize new activities or even known activities with
changed manners. To adapt to the changes of activities, traditional batch learning
methods require retraining the whole model from scratch. This will result in a great
waste of time and memory.

Class incremental learningmethod is an effectiveway to address this problem.Dif-
ferent from batch learning, incremental learning, or online learning methods update
existing models with new knowledge. In [45], Zhao et al. presented a class incre-
mental extreme learning machine (CIELM), which adds new output nodes to accom-
modate new class data. With update to output weights, CIELM can recognize new
activities dynamically. Camoriano et al. [46] employed recursive technique and reg-
ularized least squares for classification (RLSC) to seamlessly add new classes to the
learned model. They considered the imbalance between classes in the class incre-
mental learning phase. Zhu et al. [47] introduced a framework, namely the one-pass
class incremental learning (OPCIL), to handle new emerging classes. They proposed
a pseudo instances generating approach to address the new class adaptation issue.
Ristin et al. [48] put forward two variants of random forest to incorporate new classes.
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Four incremental learning strategies are devised to exploit hierarchical nature of ran-
dom forest for efficient updating.

In [49], Hu et al. proposed an effective class incremental learning method, named
class incremental random forest (CIRF), to enable existing activity recognition mod-
els to identify new activities. They designed a separating axis theorem-based split-
ting strategy to insert internal nodes and adopt Gini index or information gain to split
leaves of the decision tree in the random forests.With these two strategies, both insert-
ing newnodes and splitting leaves are allowed in the incremental learning phase. They
evaluated their method on three UCI public activity datasets and comparedwith other
state-of-the-art methods. Experimental results show that their incremental learning
method converges to the performance of batch learning methods (random forests
and extremely randomized trees). Compared with other state-of-the-art methods, it
is able to recognize new class data continuously with a better performance.

1.3 Pervasive Context Sensing

With the pervasiveness of intelligent hardware, more individual context can be
sensed, which is meaningful to infer users’ life patterns, health conditions, etc. In
this section, we will introduce context sensing methods with pervasive intelligent
hardware, including sleep sensing, household water-usage sensing, etc.

1.3.1 Sleeping Sensing

Sleeping is a vital activity that people spend nearly a third of lifetime to do. Many
studies have shown that sleep disorder is related to many serious diseases includ-
ing senile dementia, obesity, and cardiovascular disease [50]. Clinical studies have
reported that sleeping is composed of two stages including rapid eye movement
(REM) and non-rapid eye movements (NREM). NREM can be further divided into
light and deep sleep stages.During sleep,REMandNREMchange alternately.Babies
can spend up to 50% of their sleep in the REM stage, compared to only about 20%
for adults. As people getting older, they sleep more lightly and get less deep sleep.
Therefore, it is meaningful to find out the distribution of different sleep stages.

As sleep quality is very important for health, a lot of previous researches have been
done on sleep detection. The methods of analyzing sleep quality mainly monitor dif-
ferent sleep stages. Recently, the technologies of recording sleep stages are divided
into two categories. One category is polysomnography (PSG)-based approaches [51].
PSG monitors many body functions including brain (EEG), eye movements (EOG),
skeletal muscle activation (EMG), and heart rhythm (ECG) during sleep. However,
collecting the polysomnography signals or brain waves requires professional equip-
ments and specialized knowledge. Another category is actigraphy-based approaches.
Typical devices can be divided into the following two categories. The first category
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is wearable sleep and fitness tracker such as Fitbit charge 2 and Jawbone Up [52].
These devices primarily work by actigraphy. Several algorithms [53] utilized wrist
activity data to predict sleep/wake states. The results have shown that the accuracy of
predicting sleep/wake through recording wrist activity data approaches score using
EEG data. But wearable sleep devices have some weaknesses because of accuracy
concerns for sleep stages. These devices detect sleep stages based on logged accel-
eration data generated by body movement. This means if a user does not move, these
devices have to rely on other auxiliary sensors. The second category is non-wearable
sleep trackers such as Beddit 3.0 Smart Sleep Monitor. These are dedicated sleep
trackers that users do not wear on wrist. They tend to provide more detailed sleep
data. Many products use non-wearable smartphone sensors to assess sleep quality or
sleep stage. An application called iSleep [54] used the microphone of smartphone
to detect the sleep events. The method extracts three features to classify different
events including body movement, snoring, and coughing. These non-wearable sleep
trackers tend to use many sensors on smartphone and a lot of manual intervention to
extract features.

Different from theseworks, thework [55] leveragedmicrophonewithout any other
auxiliary sensor or much manual intervention to detect sleep stages. Acoustic signal
collected by the microphone is sensitive enough to record information. After the
acoustic signal is collected, the spectrogram visual representation is given. Specifi-
cally, the spectrogram is the magnitude squared of the short-time Fourier transform
(STFT). It splits time signal to short segments of equal length and then computes
STFT on each segment.

Once the spectrogram has been computed, they can be processed by the deep
learning model. Deep learning is a new area of machine learning research. Its algo-
rithms build a large set of layers to extract a hierarchy of features from low level to
high level. Deep learning models include deep neural network (DNN), convolutional
neural network (CNN, or ConvNet), etc. ConvNet [56] is the most efficient approach
for image and speech recognition. The major difference between ConvNet and ordi-
nary neural networks is that ConvNet architectures make the explicit assumption
that the inputs are images, which allows us to encode certain properties into the
architecture and vastly reduce the amount of parameters in the network.

The convolutional neural network architecture and training procedure are shown
in Fig. 1.4. Learning from the relatively good effect of the network configuration in
image recognition, this configuration can improve the expression ability of ConvNet.
At the same time, accumulating convolutional layers and pooling layers guarantees
long-range dependence (LRD) of acoustic signal, which is more robust than conven-
tional ConvNet architecture.

During the training process, the goal is to minimize the loss function in backward
propagation. The optimizers such as stochastic gradient descent (SGD) and Nadam
are used to update the weights of hidden layers. The output of network is divided
into three categories, deep sleep, light sleep, and REM.
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Fig. 1.4 Illustration of the convolutional neural networks (CNNs) architecture and training proce-
dure

1.3.2 Water-Usage Sensing

A person’s daily activities can be recognized by monitoring the infrastructures
(e.g., water, electric, heat, ventilating, air conditioning) in the house. Infrastructure-
mediated sensing has been recognized as a low-cost and nonintrusive activity recog-
nition technique.

Several infrastructure-mediated sensing approaches for water-usage activity
recognition have been proposed recently. A water-usage activity recognition tech-
nique was proposed by Fogarty [57], deploying four microphones on the surface of
water pipes near the inlets and outlets. Froehlich et al. [58] proposed HydroSense,
another infrastructure-mediated single-point sensing technique. Thomaz et al. [59]
proposed an learning approach for high-level activity recognition, which combined
single-point, infrastructure-mediated sensing with a vector space model. Their work
has been considered to be the first one of employing the method for inferring high-
level water-usage activities. However, the infrastructure of the house has to be remod-
eled in order to work in with the installation of the pressure sensors.

To solve the above question, a single-point infrastructure-mediated sensing system
for water-usage activity recognition proved to be effective which has a single 3-axis
accelerometer clinging to the surface of the main water pipe in the house [60]. The
structure of the water pipe in the apartment can be seen in Fig. 1.5. The thick and thin
gray lines represent the main water pipe and branches of the main pipe. The green
circle and red star in Fig. 1.5 are water meter and the accelerometer, respectively.
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Fig. 1.5 Structure of the water pipe

The water-usage activity recognition system has six modules, which are:

A. Data Preprocessing
Normally, there exist some noises in the raw time series samples which should be
filtered out. The median filter technique is employed in this data preprocessing
module, and the filter window is set to 3.

B. Segmentation
The segmentationmodule is aimed at segmenting both the rugged segments (time
series rugged samples) and smooth segments (time series smooth samples) from
time series samples.
First, sample windows are generated on the set of time series samples according
to the sliding window mechanism; second, annotate each sample window to
be rugged or smooth based on whether its standard deviation is no less than a
threshold or not. At last, a rugged (or smooth) segment is defined as a time series
rugged (or smooth) windows.

C. Data Post-processing
The data post-processing module is to make all the rugged segments generated
in the previous module completer and more precise.
First-stage post-process procedure: In the first circumstance, any smooth seg-
ment (in between two rugged segments), whose corresponding samples are no
more than a threshold, is re-annotated to be rugged segments. After that, all the
neighboring rugged segments make up a long-rugged segment.
Second-stage post-process procedure: In the second one, any rugged segment
(in between two smooth segments), whose corresponding samples are no more
than another threshold, is re-annotated to be smooth segments. After that, all the
neighboring smooth segments make up a long smooth segment.
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D. Feature Extraction
Instances are generated by utilizing the sliding window mechanism again on
each rugged segment. The feature extraction module is executed on each sub-
segment. Eight features (0.25-quantile, 0.5-quantile, 0.75-quantile, mean value,
standard deviation, quadratic sum, zero-crossing, spectral peak) are extracted
from a window of sample values in each axis (x-axis, y-axis, or z-axis in the
accelerometer device). In all, there are 24 features for each instance.

E. Model Generation and Prediction
All the instances are split into two sets (the training set and the testing set) with
approximately the same size. Instances in the same segment are assured to put
into the same set, since you do not want any water-usage activity to be apart.
Support vector machine (SVM) is employed for model generation, and Gaus-
sian kernel can be utilized as its kernel function. Two parameters—the kernel
parameter and the penalty parameter—need to be set before starting the learning
process. In the end, a classifier is constructed on the training set.
The classifier is then employed to predict the labels of instances in the testing set
(testing instances). These prediction results are recognized as SVM’s prediction
labels for the testing instances.

F. Prediction Results’ Fusion
The prediction results’ fusion module is done by law of ‘The minority is subor-
dinate to the majority’. Specifically, for each water-usage activity, the number
of testing corresponds to the most testing instances. In the end, the prediction
labels of all instances in the segment are replaced by the dominant water-usage
activity. The prediction results of the rugged segment are fused finally.
The nonintrusive and single-point infrastructure-mediated sensing approach in
this chapter can recognize 4-class water-usage activities in daily life. Data is
collected unobtrusively by a single low-cost 3-axis accelerometer attached to
the surface of the main water pipe in the house, making the installation process
much more convenient.

1.3.3 Non-contact Physiological Signal Sensing

Non-contact vital sign detection has received significant attention from healthcare
researchers, for it can perform basic physiological signal acquisition without any
interference to the user. The electrode-attached ones, such as electrocardiography
(ECG) or respiratory detection instrument, need the user fixed in a particular place
or to be worn by the user all day long. These approaches have a negative impact
on the daily life of users, which cannot be used in many applications, such as sleep
apnea monitoring, burned patients’ vital sign monitoring, and health care jobs that
require long-terming monitoring.

The heartbeats and respiratory are common physiological signals, which can be
used for sleep monitoring and abnormal body monitoring. At present, the traditional
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methods for heartbeat detection are electrocardiogram (ECG) and photoplethysmog-
raphy (PPG). The traditional detection method for breathing is mainly measuring the
air volume and flow of the nose and mouth through the breathing process. All these
methods require direct physical contact with the user, and the electrodes, sensors,
masks need to be placed close to the skin for physiological signal measurement.
Although the measurement result is more accurate, it has a strong interference to the
normal life of the user, greatly reduces the comfort of the user, and cannot achieve
long-term monitoring of the physiological information of the user. Therefore, non-
contact detection methods attract more interest recently.

The non-contact detection of heartbeat and respiratory can be achieved by many
methods, such as camera [61], radar, Wi-Fi, ultrasonic [62]. The camera method is
to perform heartbeat detection through face video and perform respiratory detection
by using body video. The other methods mainly perform heartbeat and respiratory
frequency detection by detecting chest vibration caused by respiratory and heartbeat.
Among them, the radar method has better recognition effect when the user is still, for
electromagnetic can penetrate the clothes or covers and most of it will be reflected
when it reaches the surface of the human body.

The radar method also can be subdivided according to the principle of signal
transmission and reception. The most used radar methods are Doppler radar, FMCW
radar [63]. Also, there are many innovative radar methods are used in heartbeat and
respiratory detection, such as UWBpulse radar [64], self-injection-locked radar [65],
UWB impulse radar [66].

The Doppler Radar: The Doppler radar method measures a user’s chest move-
ment via the return signal phase. Doppler radar transmits continue wave (CW) elec-
tromagnetic wave toward the user’s body, and the RF signal will be reflected from
the skin and tissue of the body. The receiver acquires the electromagnetic signal and
mixes the received signal with the transmitter signal for vital signal detection.

Recently, the coherent receiver is used bymixing the received signalwith a quadra-
ture mixer. The quadrature mixer mixes the original received signal and a 90-degree
shifted signal with the transmitter signal to achieve two quadrature components.With
this method, the NULL point of radar detection is avoided. The signal needs to be
demodulationwith linear or nonlinear demodulationmethods to get the phase change
containing x(t). Then the heartbeat and the respiratory signal can be achieved with
signal processing methods or machine learning methods.

The FMCW Radar: The frequency modulated continuous wave (FMCW) radar
can determine the absolute distance between the system and a target. The FMCW
radar transmits variable frequency signal with a modulation frequency being able to
slew up and down as sine wave, sawtooth wave, triangle wave, or square wave [63].
And for vital sign detection, if the target is a man, the received signal will contain the
information of the chest movement. Then, the signal will have a frequency shift of the
chest motion frequency. By detecting the frequency shift in the range information,
the heartbeat and respiratory frequency can be calculated.
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1.4 Conclusions

In this chapter, we show different ways to sense user’s location information, activ-
ity information, and other context information with the pervasiveness of intelligent
devices under smart home infrastructure. In the future, with the development of
Internet of things (IoT), edge computing, and cloud computing, the sensing ability
in smart home will be unprecedentedly powerful. And the collaborative computing
framework of the above three (IoT, edge computing and cloud computing) would be
the trend, which can adaptively use the device and resource to optimally achieve the
task, what is more, with the maturity of pervasive sensing techniques, it will bring
more convenience to people’s daily life and make high-quality living possible.
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