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Preface

Assisted living in Smart Home (SH) can change the way of caring the older people
and manage their conditions and maintain their well-being. This will support the
ageing population to live longer independently and to enjoy the comfort and quality
of life in their private environments. With the increasing ageing population and the
growing demand on novel healthcare models, research on SH for independent
living, self-management and well-being has intensified over the last decade coupled
by the wide availability of affordable sensing and effective processing technologies.
Yet it still remains a challenge to develop and deploy SH solutions that can handle
everyday life situations and support a wide range of users and care applications.
The challenge to the rapid development and deployment of SH solutions
essentially arises from the technology complexity and application diversity of the
SH field. SH is a highly multidisciplinary research field involving a number of
disciplinary areas and topics. To be successful any SH solution requires seamless
technology integration and inputs from multiple subject areas. Researchers working
in different technological disciplines usually have little understanding and appre-
ciation of each other’s research issues. There is little consideration of the “big
picture”, 1i.e. integration and interoperability. This leads to fragmented
self-contained technologies, which are not suitable to serve as an integral part of a
technology infrastructure to solve “bigger” complex problems. SH accommodates a
wide range of applications, and each of them may require different sensors, data
processing methods and intervention mechanisms. As technologies are developed
in a specific application context, the resulting technology infrastructures are usually
ad hoc, i.e. domain dependent, application specific, difficult to be applied to solve
problems of a different application characteristic. This suggests that an alternative to
a one-size-fits-all approach to develop SH technology infrastructure is needed in
order to advance the state-of-the-art. SH technologies must be interoperable for
seamless technology integration and rapid application development, and adaptable
for easy deployment and management, achieved by thorough testing and validation
in multiple application scenarios. In addition to multidisciplinarity and application
heterogeneity, SH is also a field involving multiple stakeholders, e.g. researchers,
technology and solution developers, service providers, carers and end users.
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Addressing the needs of a SH application solely from a single stakeholder’s per-
spective is insufficient to deliver the right solution for the right users. Any best
practices should be built upon effective communication and sharing of knowledge,
and consensus of views and needs between stakeholders in the value chain.

As IoT industry advances, SH can leverage from cheap ubiquitous sensors,
interconnected smart objects, packaged with robust context inference and interac-
tion techniques so that SH technologies will be adaptive to fit versatile living
environments, and interoperable for heterogeneous applications. In addition, the
service-oriented cloud-based system architecture will support reconfiguration and
modular design that is essential to empower care providers to customise their
solutions. An easy-to-use open technology infrastructure which provides validated
technology components and platforms built upon them is highly demanded. The
technologies in the infrastructure should be modular and extensible and can be
reused and automatically configured and integrated into a service infrastructure to
facilitate wider adoption. By using this infrastructure, developers can rapidly
develop functionality and applications, and care institutions and the elderly them-
selves could choose and configure solutions according to their needs.

This book is designed to make a critical contribution towards an open smart
home (SH) technology infrastructure by interlinking disciplines from sensor tech-
nology and integration, context inferences, and interaction, to service infrastruc-
tures, and considering key principles of social impact, security and privacy. This
book aims to be unique in its area because of the multidisciplinary integration scope
that leads to the development of new effective, integrated, and interoperable SH
solutions, taking into account multiple research areas. It offers killer applications for
pervasive computing technologies, demonstrating and inspiring researchers in
pervasive computing community how fundamental theories, models, algorithms can
be exploited to solve real-world problems, thus impacting the society and economy.
A total of 16 chapters are included in this book. These chapters are centred on
different areas such as assisted living solutions, Smart Home (SH) user needs and
system requirements, sensing and monitoring, activity recognition, context aware-
ness, adaptive user interfaces, open SH infrastructures and toolsets. The main
themes of the book are organised into four parts: (1) Sensing and Monitoring
Technologies; (2) Activity Recognition and Behaviour Analysis; (3) User Needs
and Personalisation, and (4) Open Smart Home and Service Infrastructures. The
following briefly describes the chapters included in each part.

Part T addresses the issues of sensing and monitoring technologies. Chapter 1
reviews some state-of-the-art user context sensing techniques under smart home
infrastructure. Chapter 2 describes a system that provides continuous localisation
and behavioural analysis of a person’s motion pattern over an indoor living space
using multiple Kinect sensors. Chapter 3 proposes an unobtrusive sensing solution
for monitoring post-stroke rehabilitation exercises within a home environment.
Unobtrusive sensing solutions such as thermal, radar, optical and ultrasound are
considered with practical examples. Chapter 4 explores how Google Glass can be
used to annotate cystoscopy findings in a hands-free and reproducible manner by
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surgeons during operations in the sterile environment inspired by the current
practice of hand-drawn sketches.

Part II focuses on the context interference and behaviour analysis. Chapter 5 aims
to accurately recognise different sports types in the Sports Video in the Wild
(SVW) data-set employing transfer learning. The proposed system can be integrated
with a smart home platform to identify sports activities of individuals and track their
progress. Chapter 6 covers a study regarding the use of object detections as input for
location and activity classification and analyses the influence of various detection
parameters. Chapter 7 explores how the quality of data may affect the recognition
performance. Outcomes are based on a comparison of activity recognition perfor-
mance of six machine learning classifiers. Chapter 8 presents an automated screening
approach to Prechtl’s General Movement Assessment (GMA), based on body-worn
accelerometers and a novel sensor data analysis method—Discriminative Pattern
Discovery (DPD).

Part IIT concerns with personalisation and adaptive interaction. Chapter 9 pre-
sents experiences, best practices and lessons learned applying user-centred design
methodology (UCD) in different European projects from several years of work
conducted at LifeSTech group from UPM, in areas such as chronic diseases
management, accessibility and cognitive rehabilitation. Chapter 10 introduces a
theoretical framework on detecting user emotions during human—robot interaction
and translating the detected user emotions into user mood estimates, enabling a
service robot to adapt its assistive behaviour based on its user mood and emotions.
Chapter 11 presents a semantic markup approach for the application of the Human
Behaviour Monitoring and Support (HBMS) assistive system to achieve the
required context awareness. The chapter shows how to semantically describe
devices and web applications, and how personalised and adaptive HBMS user
clients and the power of the context model of HBMS System can be used to bridge
an existing activity recognition gap.

Part IV covers the framework and infrastructures of open smart home and service.
Chapter 12 demonstrates a system that can turn a normal house to a smart house for
daily activity monitoring with the use of ambient sensors. The multiresident activity
recognition system is designed to support multiple occupants in a house with min-
imum impact on their living styles. Chapter 13 presents the living labs as the novel
instruments for evaluating, assessing and validating innovative products, solutions
or services in the particular domain of smart living environments. Chapter 14 pro-
poses a cloud-based smart medical system by applying MapReduce distributed
processing technology. A new distributed k-nearest neighbours (kNN) algorithm
that combines the Voronoi inverted grid (VIG) index and the MapReduce pro-
gramming framework is developed to improve the efficiency of the data processing.
Chapter 15 analyses a life-log comprising image data and context and applies
algorithms to collate, mine and categorise the data. Four approaches were investi-
gated and applied to each participant’s data-set, yielding an average 84.02%
reduction in size. Chapter 16 proposes a privacy-enabled smart home framework
consists of three major components: privacy-preserving data management module,
activity recognition and occupancy detection and voice assistant. The chapter also
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presents a detailed description of system architecture with service middleware of the
proposed framework.

As such, this comprehensive and timely book is conceived as a unique and
essential reference for the subject of smart assisted living, providing further
research opportunities in this dynamic field. It is hoped that this book will provide
resources necessary for policy makers, educators, students, technology developers
and managers to adopt and implement smart assisted living systems. The book aims
to attract four specific types of public groups interested in Smarter Assisted Living
solutions: (1) end users, carers, clinicians, healthcare service providers: to inform
them about smart assisted living technologies and solutions and their benefits to
improve people’s quality of live and independence; (2) industrial, academic and
commercial organisations: to enhance the transfer of knowledge and seek for
opportunities regarding commercialisation and exploitation of research outcomes;
(3) government policy makers, funding bodies: to define joint RTD strategies and
priorities; and (4) research student on Ambient Assisted Living, Smart Home
technology, e-healthcare.

Leicester, UK Feng Chen
Madrid, Spain Rebeca 1. Garcia-Betances
Belfast/Leicester, UK Liming Chen
Madrid, Spain Maria Fernanda Cabrera-Umpiérrez

Newtownabbey, UK Chris Nugent
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Chapter 1 ®)
Pervasive Sensing oo

Yiqiang Chen

Abstract The development of chips, sensors, and tele-communication, etc., with
integrated sensing brings more opportunities to monitor various aspects of personal
behavior and context. Especially, with the widespread use of intelligent devices and
smart home infrastructure, it is more possible and convenient to sense users’ daily
life. Two common information of daily life is location and activity. Location infor-
mation can reveal the places of important events. Activity information can expose
users’ health conditions. Besides these two kinds of information, other context also
can be useful for assisting living. Hence, in this chapter, we will introduce some
state-of-the-art user context sensing techniques under smart home infrastructure,
including accurate indoor localization, fine-grained activity recognition, and perva-
sive context sensing. With the continuous sensing of location, activity, and other
contextual information, it is possible to discovery users’ life patterns which are cru-
cial for health monitoring, therapy, and other services. What is more, it will bring
more opportunities for improving the quality of peoples’ life.

Keywords Pervasive sensing - Indoor localization - Activity recognition *+ Context
sensing

1.1 Accurate Indoor Localization

Do you know how to accurately get you location information under unpredictable
changes in environmental conditions? In recent years, with the development of mobile
Internet, location-based services (LBSs) [1] have been widely used in our daily
life, expanded from traditional navigation to real-time applications such as shared
mobility and social network. With the development of LBS applications, the location
area extends from outdoors to indoors, which creates great requirement of indoor
localization with high accuracy. Indoor localization can be implemented in a variety
of ways, such as base station, video, infrared, Bluetooth, Wi-Fi [2]. In which, Wi-
Fi-based indoor localization has become the most popular way because of the wide

Y. Chen (X)
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coverage of Wi-Fi access points and the rapid development of intelligent terminals
[3-5]. Although the research of indoor localization based on Wi-Fi has made great
progress, in highly dynamic environments, due to the influence of multipath effect,
environment changing and personnel flows, the fluctuation of wireless signal is large.
High accuracy indoor localization still faces the problems of (1) the lack of large-scale
labeled data in data layer, (2) the fluctuation of signal strength in feature layer, and
(3) the weak adaption ability in model layer, which resulting in low location accuracy,
rough trajectory granularity, and weak robustness. For the challenges above, this
section will introduce some accurate indoor localization techniques.

1.1.1 Context-Adaptive Localization Model

The wireless signal fingerprint-based indoor localization model is actually a mapping
between the high-dimensional signal space and the physical space. For this kind of
mapping models, the input x is the feature vector extracted from the wireless signal
strength, and the output y is the position coordinate. Training the location model is
to optimize the objective function f = argmin , Z,N=1 | £ (x;) — y;|* with the given
samples {(x;, y)li =1,..., N}.

However, for highly dynamic environments, a context-adaptive model is nec-
essary. This adaptive model should include the minimization of fitting errors
and the context-adaptive constraints, as shown in Fig. 1.1, where fiing err(X, ¥)
represents the fitting errors between model’s output and calibration results, and
g(cy, ca, ..., cp) represents the constraints constructed with multi-source informa-
tionof ¢y, ¢z, ..., ck. Inaddition, it is flexible to construct these constraints’ informa-
tion according to specific scenarios context, including multi-source signals, motion
information, and user activities.

Compared with existing methods, the model has three advantages: (1) It gives a
unified optimization objective, providing a reference for constructing multi-source
information fusion localization method; (2) it realizes multi-source information
fusion on the model level, fully mining the correlation and redundancy between

Fig. 1.1 Context-adaptive ({F) € Bluetooth
location model for high ¢ ¢,

dynamic environment ‘ ‘!

EX» fitting_err(x')’) el 9(c1, 2, ...,

+ 1
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multi-source information; (3) it has more flexible constraints, making the model
scalable for any kind of high dynamic environments.

1.1.2  Semi-supervised Localization Model with Signals’
Fusion

Aiming at the problem of low location accuracy caused by the lack of large-scale
labeled data, a semi-supervised localization model based on multi-source signals
fusion is introduced here. This model combines the fitting error term of the labeled
data and manifold constraint terms of the Wi-Fi and Bluetooth signals and optimizes
the objective equation by adjusting the weight coefficient of all terms. The experi-
mental results [6] showed that the method based on multi-source signals fusion can
achieve optimal location results when applied to the location problem of sparse cal-
ibration, and the location accuracy was higher than that of the existing supervised
learning methods and semi-supervised learning methods.

Unlike previous single-signal-based semi-supervised manifold methods [7-12],
it is better to combine the Wi-Fi and BLE signals into a single model. To the best of
our knowledge, Wi-Fi and BLE signals have different propagation characteristics and
effective distances. When considering both of Wi-Fi and BLE in a semi-supervised
learning model, it should separately build the manifold regularization for each of
them.

In accordance with the structural risk minimization principle [13], FSELM [6]
used graph Laplacian regularization to find the structural relationships of both the
labeled and unlabeled samples in the high-dimensional signal space. For the con-
struction of a semi-labeled graph G based on / labeled samples and u unlabeled
samples, each collected signal vector s; = [s 15825 0ees S jN] e RV is represented
by a vertex j, and if the vertex j is one of the neighbors of i, represented by drawing
an edge with a weight of w;; connecting them. According to Belkin et al. [14], the
graph Laplacian L can be expressed as L = D — W. Here, W = [W;;]¢4u)x(+u) 18
the weight matrix, where w;; = exp(— ||si —5; ||2/2<72> if s; and s; are neighbors
along the manifold and w;; = 0 otherwise, and D is a diagonal matrix given by
D; = ZZJJ;”I W;;. As illustrated in Fig. 1.2, to consider the empirical risk while
controlling the complexity, FSELM minimized the fitting error plus two separate
smoothness penalties for Wi-Fi and BLE as (1.1):

1
arg;nin{zllf—T||2+/\1fTL1f+szTsz} (1.1)

The first term represents the empirical error with respect to the labeled training
samples. The second and third terms represent the manifold constraints for Wi-Fi
and BLE based on the graph Laplacians L; and L,. By adjusting the two coefficients



6 Y. Chen
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Fig. 1.2 FSELM model illustration (L and L, are the graph Laplacians of the Wi-Fi and BLE
signals, and A and A, are the weight coefficients of the two manifold constraints)

A1 and A,, it can control the relative influences of the Wi-Fi and BLE signals on the
model.

When applied to sparsely calibrated localization problems, FSELM is advanta-
geous in three aspects. Firstly, it dramatically reduces the human calibration effort
required when using a semi-supervised learning framework. Secondly, it uses fused
Wi-Fi and BLE fingerprints to markedly improve the location accuracy. Thirdly,
it inherits the beneficial properties of ELMs in terms of training and testing speed
because the input weights and biases of hidden nodes can be generated randomly. The
findings indicate that effective multi-data fusion can be achieved not only through
data layer fusion, feature layer fusion, and decision layer fusion but also through
the fusion of constraints within a model. In addition, for semi-supervised learning
problems, it is necessary to combine the advantages of different types of data by opti-
mizing the model’s parameters. These two contributions will be valuable for solving
other similar problems in the future.

1.1.3 Motion Information Constrained Localization Model

For Wi-Fi fingerprint-based indoor localization, the basic approach is to fingerprint
locations of interest with vectors of RSS of the access points during offline phase
and then locate mobile devices by matching the observed RSS readings against this
database during online phase. By this way, continuous localization can be summa-
rized as trying to find a smooth trajectory going through all labeled points. Thus,
in order to recover the trajectory, it still needs a certain number of labeled data,
especially in some important positions (e.g., corners).
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Considering that a user holds a mobile phone and walks in an indoor wireless
environment with n Wi-Fi access points inside. At some time ¢, the signal received
from all the n access points is measured by the mobile devices to form a signal
vector §, = [s;1, S12, ..., Sm] € R". As time goes on, the signal vectors will come
in stream manner. After a period of time, a sequence of m vectors will be obtained
from mobile phone and form a m x n matrix S = [s,s7,...,s}], where the
‘T’ indicates matrix transposition. Along the user’s trajectory, only some places
are known and labeled, and the rest are unknown. The purpose is to generate and
update the trajectory points which can form a m x 2 matrix P = [ plT, pg, el p,Tn],
where p, = [x; y,]T is the location of mobile device at time . Meanwhile, for each
step, the user heading orientation can also be obtained from mobile devices in every
time ¢. Thus, while collecting the RSS, another vector of m orientation values can
be generated: O = [o01,...,0¢, ..., om]T. Here, o, indicates the angle to north in
horizontal plane, which is called azimuth. With the Wi-Fi signal matrix and the
orientation vector, the mapping function should be f(S, O) = P. By this way, it can
supplement the location for these unlabeled data, reducing the calibration work.

The fusion mapping model f(S, O) = P from the signal space to the physical
space can be optimized by f* = argmin Z§=1|f,~ —yil>+3 Zﬁ:l los — oy, |2 +
yfTLf, where the first term measures the fitting error to the labeled points, the
second term is the fitting error to the user heading orientation offered by mobile
phone, and the third term refers to the manifold graph Laplacian.

It brings good performance for both tracking mobile nodes and manual calibration
reduction in wireless sensor networks. This model is based on two observations:
(1) similar signals from access points imply close locations; (2) both labeled data
positions and the real-time orientations can help tracking the traces. Thus, it learned
a mapping function between the signal space and the physical space conjoin a few
labeled data and a large amount of unlabeled data, and the constraint of orientation
obtained from mobile devices.

The experimental results [15] showed that this method can achieve a higher track-
ing accuracy with much less calibration effort. It is robust to reduce the number of
calibrated data. Furthermore, if applying it for offline calibration, the online loca-
tion is much better than some other methods before. Moreover, it can reduce time
consumption by parallel processing while maintaining trajectory learning accuracy.

1.2 Fine-Grained Activity Recognition

Traditional activity recognition methods aim at discovering pre-defined activity with
body-attached sensors such as accelerometers and gyroscopes. However, peoples’
activities are so diverse; they cannot be covered by some pre-defined activities. As
the way the devices are worn, the location the devices are placed, the person who
wears the devices, etc., which all lead to the decreasing the recognition accuracy.
And it needs a large amount of labeled data to maintain the recognition performance.
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In this section, we will show the methods including transfer learning, generative
adversarial networks (GANs), incremental learning to implement fine-grained activ-
ity recognition with less human labor.

1.2.1 Transfer Learning-Based Activity Recognition

The combination of sensor signals from different body positions can be used to
reflect meaningful knowledge such as a person’s detailed health conditions [16] and
working states [17]. However, it is nontrivial to design wearing styles for a wearable
device. On the one hand, it is not comfortable to equip all the body positions with
sensors which make the activities restricted. Therefore, we can only attach sensors
on limited body positions. On the other hand, it is impossible to perform HAR if the
labels on some body parts are missing, since the activity patterns on specific body
positions are significant to capture certain information.

Assume a person is suffering from small vessel disease (SVD) [18], which is a
severe brain disease heavily related to activities. However, we cannot equip his all
body with sensors to acquire the labels since this will make his activities unnatural.
We can only label the activities on certain body parts in reality. If the doctor wants
to see his activity information on the arm (we call it the target domain), which only
contains sensor readings instead of labels, how to utilize the information on other
parts (such as torso or leg, we call them the source domains) to help obtain the labels
on the target domain? This is referred to as the cross-position activity recognition
(CPAR).

To tackle the above challenge, several transfer learning methods have been pro-
posed [19]. The key is to learn and reduce the distribution divergence (distance)
between two domains. With the distance, we can perform source domain selection
as well as knowledge transfer. Based on this principle, existing methods can be sum-
marized into two categories: exploiting the correlations between features [20, 21], or
transforming both the source and the target domains into a new shared feature space
[22-24].

Existing approaches tend to reduce the global distance by projecting all samples
in both domains into a single subspace. However, they fail to consider the local
property within classes [25]. The global distance may result in loss of domain local
property such as the source label information and the similarities within the same
class. Therefore, it will generate a negative impact on the source selection as well as
the transfer learning process. It is necessary to exploit the local property of classes
to overcome the limitation of global distance learning.

This chapter introduces a Stratified Transfer Learning (STL) framework [26] to
tackle the challenges of both source domain selection and knowledge transfer in
CPAR. The term ‘stratified’ comes from the notion of splitting at different levels and
then combining. The well-established assumption that data samples within the same
class should lay on the same subspace, even if they come from different domains
[27] is adopted. Thus, ‘stratified’ refers to the procedure of transforming features
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into distinct subspaces. This has motivated the concept of stratified distance (SD) in
comparison to traditional global distance (GD). STL has four steps:

1. Majority Voting: STL uses the majority voting technique to exploit the knowledge
from the crowd [28]. The idea is that one certain classifier may be less reliable, so
we assemble several different classifiers to obtain more reliable pseudo labels.
To this end, STL makes use of some base classifiers learned from the source
domain to collaboratively learn the labels for the target domain.

2. Intra-class Transfer: In this step, STL exploits the local property of domains
to further transform each class of the source and target domains into the same
subspace. Since the properties within each class are more similar, the intra-class
transfer technique will guarantee that the transformed domains have the minimal
distance. Initially, source domain and target domain are divided into C groups
according to their (pseudo) labels, where C is the total number of classes. Then,
feature transformation is performed within each class of both domains. Finally,
the results of distinct subspaces are merged.

3. Stratified Domain Selection: A greedy technique is adopted in STL-SDS. We
know that the most similar body part to the target is the one with the most similar
structure and body functions. Therefore, STL uses the distance to reflect their
similarity. It calculates the stratified distance between each source domain and
the target domain and selects the one with the minimal distance.

4. Stratified Activity Transfer: After source domain selection, the most similar body
part to the target domain can be obtained. The next step is to design an accurate
transfer learning algorithm to perform activity transfer. This chapter introduces a
Stratified Activity Transfer (STL-SAT) method for activity recognition. STL-
SAT is also based on our stratified distance, and it can simultaneously transform
the individual classes of the source and target domains into the same subspaces
by exploiting the local property of domains. After feature learning, STL can learn
the labels for the candidates. Finally, STL-SAT will perform a second annotation
to obtain the labels for the residuals.

1.2.2 GAN-Based Activity Recognition

Transfer learning methods are effective ways to label practical unknown data, but
they are incapable of generating realistic data. But fortunately, GANs framework is
an effective way to generate labeled data from random noise space.

The vanilla GANs framework was firstly proposed in 2014 by Goodfellow et al.
[29]. Since the GANs framework was proposed, it has been widely researched in
many fields, such as image generation [29], image inpainting [30], image translation
[31], super-resolution [32], image de-occlusion [33], natural language generation
[34], text generation [35]. In particular, a great many variants of GANs have been
widely explored to generate images with high fidelity, such as NVIDIA’s progressive
GAN [36], Google Deep Mind’ BigGAN [37]. These variants of GANs provide
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powerful methods for training resultful generative models that could output very
convincing verisimilar images.

The original GANs framework is composed by a generative multilayer perceptron
network and a corresponding discriminative multilayer perceptron network. The final
goal of GANSs is to estimate an optimal generator that can capture the distribution of
real data with the adversarial assistance of a paired discriminator based on min-max
game theory. The discriminator is optimized to differentiate the data distribution
between authentic samples and spurious samples from its mutualistic generator. The
generator and the discriminator are trained adversarially to achieve their optimization.

The optimization problem of the generator can be achieved by solving the formu-
lation stated in 1.2:

min Vg (D, G) = min(E:~, i [log(1 — D(G(2)))]) (12)

The optimization problem of the discriminator can be achieved by solving the
formulation stated in 1.3:

max Vp(D, G) = mgx(Exwpdm(x) [log D(x)]) + E.~p.»[log(1 = D(G(2)))]
(1.3)

The final value function of the min-max game between the generator and the
discriminator can be formulated as 1.4:

rrgn mgx(D, G) = B ppuax) [log D(x)] +E 0 [log(l - D(G(z)))] (1.4)

Firstly, the original GANs framework was proposed to generate plausible fake
images approximating real images in low resolution, such as MNIST, TFD, CIFAR-
10. Many straightforward extensions of GANs have demonstrated and leaded one of
the most potential research directions. Though the researches of GANs have gained
great success in the field of generating realistic-looking images, the GANs frame-
work has not been widely exploited for generating sensor data.

Inspired by the thought of GANs, Alzantot et al. [38] firstly tried idea of GANSs to
train the LSTM-based generator to produce sensor data, but their SenseGen is half-
baked GANs’ framework. Both the generator and the discriminator in SenseGen are
trained separately; that is, the training process of the generator in SenseGen is not
based on the back-propagating gradient from the discriminator.

In order to improve the performance of human activity recognition when a small
number of sensor data are available under some special practical scenarios and
resource-limited environments, Wang et al. [39] proposed SensoryGANs models. To
the best of our knowledge, SensoryGANs models are the first unbroken generative
adversarial networks applied in generating sensor data in the HAR research field. The
specific GANs models were designed for three human daily activities, respectively.
The generators accept the Gaussian random noises and output accelerometer data
of the target human activity. The discriminators accept both the real accelerometer
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sensor data and the spurious accelerometer sensor data from the generators and then
output the probability of whether the input samples are from the real distribution.
With the improvement of SensoryGANS, the research of human activity recognition,
especially in resource-constrained environments, will be greatly encouraged.

Then, Yao et al. [40] proposed SenseGAN to leverage the abundant unlabeled
sensing data, thereby minimizing the need for labeling effort. SenseGAN jointly
trains three components, the generator, the discriminator, and a classifier. The adver-
sarial game among the three modules can achieve their optimal performance. The
generator receives random noises and labels and then outputs spurious sensing data.
The classifier accepts sensing data and outputs labels. The samples from the classi-
fier and the generator are both fed to the discriminator for differentiating the joint
data/label distribution between real sensing data and spurious sensing data. Com-
pared with supervised counterparts as well as other supervised and semi-supervised
baselines, SenseGAN achieves substantial improvements in accuracy and F1 score.
With only 10% of the originally labeled data, SenseGAN can attain nearly the same
accuracy as a deep learning classifier trained on the fully labeled dataset.

1.2.3 Incremental Learning-Based Activity Recognition

With more labeled data, it becomes possible to get fine-grained activity. However,
traditional sensor-based activity recognition methods train fixed classification models
with labeled data collected off-line, which are unable to adapt to dynamic changes in
real applications. With the emergence of new wearable devices, more diverse sensors
can be used to improve the performance of activity recognition. While it is difficult to
integrate a new sensor into a pre-trained activity recognition model, the emergence
of new sensors will lead to a corresponding increase in the feature dimensionality of
the input data, which may result in the failure of a pre-trained activity recognition
model. The pre-trained activity recognition model is unable to take advantage of this
new source of data.

To take advantage of data generated by new sensors, feature incremental learning
method is an effective method. To improve the performance of indoor localization
with more sensors, Jiang et al. [41] proposed a novel feature incremental and decre-
mental learning method, namely FA-OSELM. It is able to adapt to the dynamic
changes of sensors flexibly. However, the performance of FA-OSELM fluctuates
heavily. Hou and Zhou [42] proposed the One-Pass Incremental and Decremental
learning approach (OPID), which is able to adapt to evolving features and instances
simultaneously. Xing et al. [43] proposed a perception evolution network that inte-
grates the new sensor readings into the learned model. However, the impact of the
sensor order is not considered.

Hu et al. [44] proposed a novel feature incremental activity recognition method,
which is named Feature Incremental Random Forest (FIRF). It is able to adapt an
existing activity recognition model to newly available sensors in a dynamic environ-
ment. Figure 1.3 shows an overview of the method.
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Fig. 1.3 Feature incremental random forest algorithm

In FIRF, there are two new strategies: (1) MIDGS which encourages diversity
among individual decision trees in the incremental learning phase by identifying the
individual learners that have high redundancy with the other individual learners and
low recognition accuracy, and (2) FITGM which improve the performance of these
identified individual decision trees with new data collected from both existing and
newly emerging sensors.

In real applications, people may learn new motion activities over time, which is
usually classified as dynamic changes in class. When a new kind of activity is per-
formed or the behavioral pattern changes over time, devices with preinstalled activity
recognition models may fail to recognize new activities or even known activities with
changed manners. To adapt to the changes of activities, traditional batch learning
methods require retraining the whole model from scratch. This will result in a great
waste of time and memory.

Class incremental learning method is an effective way to address this problem. Dif-
ferent from batch learning, incremental learning, or online learning methods update
existing models with new knowledge. In [45], Zhao et al. presented a class incre-
mental extreme learning machine (CIELM), which adds new output nodes to accom-
modate new class data. With update to output weights, CIELM can recognize new
activities dynamically. Camoriano et al. [46] employed recursive technique and reg-
ularized least squares for classification (RLSC) to seamlessly add new classes to the
learned model. They considered the imbalance between classes in the class incre-
mental learning phase. Zhu et al. [47] introduced a framework, namely the one-pass
class incremental learning (OPCIL), to handle new emerging classes. They proposed
a pseudo instances generating approach to address the new class adaptation issue.
Ristin et al. [48] put forward two variants of random forest to incorporate new classes.
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Four incremental learning strategies are devised to exploit hierarchical nature of ran-
dom forest for efficient updating.

In [49], Hu et al. proposed an effective class incremental learning method, named
class incremental random forest (CIRF), to enable existing activity recognition mod-
els to identify new activities. They designed a separating axis theorem-based split-
ting strategy to insert internal nodes and adopt Gini index or information gain to split
leaves of the decision tree in the random forests. With these two strategies, both insert-
ing new nodes and splitting leaves are allowed in the incremental learning phase. They
evaluated their method on three UCI public activity datasets and compared with other
state-of-the-art methods. Experimental results show that their incremental learning
method converges to the performance of batch learning methods (random forests
and extremely randomized trees). Compared with other state-of-the-art methods, it
is able to recognize new class data continuously with a better performance.

1.3 Pervasive Context Sensing

With the pervasiveness of intelligent hardware, more individual context can be
sensed, which is meaningful to infer users’ life patterns, health conditions, etc. In
this section, we will introduce context sensing methods with pervasive intelligent
hardware, including sleep sensing, household water-usage sensing, etc.

1.3.1 Sleeping Sensing

Sleeping is a vital activity that people spend nearly a third of lifetime to do. Many
studies have shown that sleep disorder is related to many serious diseases includ-
ing senile dementia, obesity, and cardiovascular disease [50]. Clinical studies have
reported that sleeping is composed of two stages including rapid eye movement
(REM) and non-rapid eye movements (NREM). NREM can be further divided into
light and deep sleep stages. During sleep, REM and NREM change alternately. Babies
can spend up to 50% of their sleep in the REM stage, compared to only about 20%
for adults. As people getting older, they sleep more lightly and get less deep sleep.
Therefore, it is meaningful to find out the distribution of different sleep stages.

As sleep quality is very important for health, a lot of previous researches have been
done on sleep detection. The methods of analyzing sleep quality mainly monitor dif-
ferent sleep stages. Recently, the technologies of recording sleep stages are divided
into two categories. One category is polysomnography (PSG)-based approaches [51].
PSG monitors many body functions including brain (EEG), eye movements (EOG),
skeletal muscle activation (EMG), and heart rhythm (ECG) during sleep. However,
collecting the polysomnography signals or brain waves requires professional equip-
ments and specialized knowledge. Another category is actigraphy-based approaches.
Typical devices can be divided into the following two categories. The first category
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is wearable sleep and fitness tracker such as Fitbit charge 2 and Jawbone Up [52].
These devices primarily work by actigraphy. Several algorithms [53] utilized wrist
activity data to predict sleep/wake states. The results have shown that the accuracy of
predicting sleep/wake through recording wrist activity data approaches score using
EEG data. But wearable sleep devices have some weaknesses because of accuracy
concerns for sleep stages. These devices detect sleep stages based on logged accel-
eration data generated by body movement. This means if a user does not move, these
devices have to rely on other auxiliary sensors. The second category is non-wearable
sleep trackers such as Beddit 3.0 Smart Sleep Monitor. These are dedicated sleep
trackers that users do not wear on wrist. They tend to provide more detailed sleep
data. Many products use non-wearable smartphone sensors to assess sleep quality or
sleep stage. An application called iSleep [54] used the microphone of smartphone
to detect the sleep events. The method extracts three features to classify different
events including body movement, snoring, and coughing. These non-wearable sleep
trackers tend to use many sensors on smartphone and a lot of manual intervention to
extract features.

Different from these works, the work [55] leveraged microphone without any other
auxiliary sensor or much manual intervention to detect sleep stages. Acoustic signal
collected by the microphone is sensitive enough to record information. After the
acoustic signal is collected, the spectrogram visual representation is given. Specifi-
cally, the spectrogram is the magnitude squared of the short-time Fourier transform
(STFT). It splits time signal to short segments of equal length and then computes
STFT on each segment.

Once the spectrogram has been computed, they can be processed by the deep
learning model. Deep learning is a new area of machine learning research. Its algo-
rithms build a large set of layers to extract a hierarchy of features from low level to
high level. Deep learning models include deep neural network (DNN), convolutional
neural network (CNN, or ConvNet), etc. ConvNet [56] is the most efficient approach
for image and speech recognition. The major difference between ConvNet and ordi-
nary neural networks is that ConvNet architectures make the explicit assumption
that the inputs are images, which allows us to encode certain properties into the
architecture and vastly reduce the amount of parameters in the network.

The convolutional neural network architecture and training procedure are shown
in Fig. 1.4. Learning from the relatively good effe